
CNN-Based Character Recognition
for License Plate Recognition System

Van Huy Pham(✉) , Phong Quang Dinh, and Van Huan Nguyen

Faculty of Information Technology, Ton Duc Thang University, Ho Chi Minh City, Vietnam
phamvanhuy@tdt.edu.vn

Abstract. License Plate Recognition is a practical use of computer vision based
application. With the increase in demand of automation transportation systems,
this application plays a very big role in the system development. Also, the use of
vehicles has been increasing because of population growth and human needs in
recent years makes the application is more challenging. Moreover, license plates
are available in diverse colors and style and that the presence of noise, blurring
in the image, uneven illumination, and occlusion makes the task even more diffi‐
cult for conventional recognition methods. We propose an approach of using a
Convolutional Neural Networks (CNN) classifier for the recognition. Pre-
processing techniques are firstly applied on input images, such as filtering, thresh‐
olding, and then segmentation. Then, we train a CNN classifier for character
recognition. Although the performance of a CNN is very impressive, it costs much
time to complete the character recognition step. In this study, a modified CNN is
proposed to help the system run in real-time. Experimental results have done and
analyzed with other methods.

Keywords: Convolution Neural Network · Character recognition
License Plate Recognition System

1 Introduction

License Plate Recognition (LPR) systems are very popular and studied all over the
world. A LPR system is a combination of several modules and involves object detection,
image processing, and pattern recognition. Beside image acquisition and preprocessing,
the process of reading a license plate goes through 3 main phases. The first phase is plate
localization or plate extraction. The second one is the character segmentation which
each character is detected and separated from the others. The last one is the character
recognition which the extracted characters are recognized. Because of quality of image
and the variance of plate’s shape, size, color, orientation, it is difficult to finding the plate
location. The character segmentation may be in trouble due to quality of image, partially
connected characters, noise, and rotation of plate. The last phase also has to deal with
variation in fonts, similarity among characters and non-characters.

In the past two decades, many different methods have been proposed and tested. The
purpose of this study is to provide a comparison for some of existing method and then
propose an improvement in performance of our system which is based on different

© Springer International Publishing AG, part of Springer Nature 2018
N. T. Nguyen et al. (Eds.): ACIIDS 2018, LNAI 10752, pp. 594–603, 2018.
https://doi.org/10.1007/978-3-319-75420-8_56

http://orcid.org/0000-0002-6513-4216
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-75420-8_56&domain=pdf


methods of character recognition: Artificial Neural Network (ANN) and Convolutional
Neural Networks (CNN).

The fact is that ANN-based OCR can work in real-time, but the performance of the
system is not as good as CNN-based systems. Although the use of CNN yields better
performance, it is very slow in both training and recognition phase. In our experiment
using CNN Lenet-5, the license plate system recognized one character in about 11 ms,
but the overall system needs to process in 30 ms to avoid false detection. Therefore, in
this study, we proposed a CNN structure which processes 20× faster than ordinary CNN
Lenet-5 that can help the system run in real-time.

2 Related Works

There are many difficulties that a LPR system must overcome. Due to the camera zoom
factor, the extracted characters do not have the same size and thickness. Resizing the
characters into one size before recognizing helps to overcome this problem. The char‐
acter’s font is not the same all the time since different states, different countries use
different fonts. Extracted characters may have some noise or may be broken. In the
following, we categorize some existing character recognition methods.

Ahmed et al. [1] have presented a template matching. Template matching is a simple
method. The similarity between a character and the template is measure. The template
that is the most similar to the character is recognized as the target. Most template
matching methods use binary images because the gray-scale is changed due to any
change in the lighting. Template matching is performed after resizing the extracted
character into the same size. This method is useful for recognizing single font, non-
rotated, non-broken. If a character is different from the template due to any font change,
rotation, noise, the template matching produces incorrect recognition.

LeCun et al. [2] used HOG-feature for character recognition. At the training phase,
training data was generated from a high-solution image of each letter and distribution
of each letter in the HOG-feature space was then obtained. At the recognition phase,
each character is cut out from the image, calculated the HOG-feature vector, and recog‐
nized characters with the distribution in HOG-feature space obtained above. Siddharth
et al. [3] used Support Vector Machine (SVM) classifier. SVM classifier is trained by a
given set of training data and a model is prepared to classify test data based upon this
model. For multiclass classification problem, we decompose multiclass problem into
multiple binary class problems, and we design suitable combined multiple binary SVM
classifiers. According to how all the samples can be classified in different classes with
appropriate margin, different types of kernel in SVM classifier are used. Commonly used
kernels are: Linear kernel, Polynomial kernel, Gaussian Radial Basis Function (RBF)
and Sigmoid (hyperbolic tangent).

Sharma and Singh [4] has applied Artificial Neural Network for character recogni‐
tion. This method simulates the way human neural system works to create intelligent
behavior. The idea is to take a large number of characters, known as training set, and
then develop a system which can learn from those training. In other words, the neural
network uses the training to automatically infer rules for recognize character.

CNN-Based Character Recognition for LPR System 595



These methods can achieve impressive result on good dataset but still produce incor‐
rect recognition in hard dataset. However, we can do much better if we introduce some
concept from CNN theory. Bounchain [5] has applied Lenet-5 in character recognition
task. This network was tested with a database containing more than 50,000 hand-written
digits, all normalized in the input image. An error rate of about 0.95% was achieved.
This is an impressive result on OCR task.

In this study, we will apply our CNN for OCR for the system running in real time
by reducing some unnecessary convolutional layers.

3 The Proposed Method

3.1 Plate Detection and Segmentation

Plate detection. In order to localize license plates in a given image, different methods
have been used. The simple and fast method is primarily based on identifying the vertical
edges of each license plate in the input image [6]. After extracting vertical edges from
the image, morphological filtering is applied to obtain candidate regions. Then spatial
features such as area, aspect ratio and edge density are considered to discard wrong
candidate regions.

In our study, we use the methods in [1, 7–9] for plate detection and segmentation.
A combination of Hough Transform and a counter algorithm in [10] is used to detect
license plate region. In the first step, the counter algorithm is applied to detect close
boundaries of the objects. These counter lines are transformed to Hough coordinate to
find interacted parallel lines that are considered as license plate candidates. To filter out
the candidate plates, the aspect ratio and the horizontal cross cuts are used. In [7–9],
Connected Component Labelling (CLL) is used license plate detection. CCL scans the
image the labels the pixels according to the pixel connectivity. In [8], a feature extraction
algorithm is used to count the similar labels to distinguish it as a region. The region
corresponding with the maximum area is considered as a possible license plate region.
Likewise, in [7], two detection methods are performed to detect white frame and to detect
black characters. To determine the candidate frames, aspect ratio of license plate, height
and width of characters have to be known. In [9], after the successful CCL on the binary
image, measurements such as orientation, aspect ratio for every binary object in the
image are calculated. Criteria such as orientation < 35°, 2 < aspect ratio < 6 are consid‐
ered as candidate plate regions.

Character segmentation. In [11], adaptive thresholding is applied to binary the input
image. Then connected component analysis is applied for character segmentation. The
components obtained from the process may be character or non-character. Character’s
aspect ratio is considered to suppress non-character. The ratio is set based upon the
observation from different images.

The method of row-column scan is chosen to segment characters in [10]. Firstly, the
line scan method is used to scan the binary image and lower-upper bounds are located.
Secondly, the column scan method is chosen to scan binary image and the left-right
bounds are located. Based on these, each character can be accurately segmented.

596 V. H. Pham et al.



Experimental results show that this method can even handle license plate images with
fuzzy, adhering, or fractured characters with high efficiency.

In [1], the strategy is based on pixel count (i.e., vertically projecting and counting
the number of pixel in each column). First, the image is converted into binary form and
vertical projections are made. Then, the number of black pixels in each column is
counted, and a histogram is plotted. The characters are segmented depending on the
transition from a crest to its corresponding trough. To avoid unnecessary segmentation,
some thresholds are taken properly.

3.2 Convolutional Neural Networks for Character Recognition

Convolutional neural networks have been successfully applied in the field of computer
vision. Unlike artificial neural network, the layers of a CNN have neurons arranged in
3 dimensions: width, height, depth (Fig. 1). The neurons in a layer will only be connected
to a small region of the layer before it, instead of all of the neurons in a fully-connected
layer.

Fig. 1. Left: A regular 3-layer neural network. Right: A Convolutional Neural Networks arranges
its neurons in 3 dimensions (width, height, depth) as visualized in one of the layers. Every layer
of a CNN transforms the 3D input volume to a 3D output volume of neuron activations. In this
example, the red input layer holds the image, so its width and height would be the dimensions of
the image, and the depth would be 3 (red, green, blue). (Color figure online)

A general CNN is a sequence of layers, and every layer of a CNN transforms one
volume of activations to another through a differentiable function. There are 3 main
types to build CNN architecture: convolutional layer, pooling layer, and fully-connected
layer (exactly as seen in artificial neural network). These layers will be stacked to form
a full CNN architecture. In more detail, a simple CNN classification could have the
architecture [INPUT - CONV - RELU - POOL - FC]. INPUT holds the raw pixel values
of the image with 3 color channels. CONV layer computes the output of neurons that
are connected to local regions in the input, each computing a dot product between their
weights and a small region they are connected to in the input volume. RELU layer applies
an elementwise activation function, such as the max(0, x) threshold at zero. POOL layer
performs a down-sampling operation along the spatial dimensions (width, height). FC
layer computes the class scores. As with artificial neural networks, each neuron in this
layer will be connected to all the numbers in the previous volume. In this way, CNN
transforms the original image from original pixel values to the final class score.

In this study, we follow the work of using Lenet-5 in [2]. Lenet-5 comprises 7 layers,
not counting the input, all of which contain trainable parameters (Fig. 2). In the

CNN-Based Character Recognition for LPR System 597



following, convolutional layers are labeled Cx, subsampling layers are labeled Sx, and
fully-connected layers are labeled Fx, where x is the layer index. Layer C1 is a convo‐
lutional layer with 6 features maps. Each unit in each feature is connected to a 5 × 5
neighborhood in the input. The size of the feature maps is 28 × 28. Layer S2 is a
subsampling layer with 6 feature maps of size 14 × 14. Each unit in each feature map
is connected to a 2 × 2 neighborhood in the corresponding feature map in C1. The 2 × 2
receptive fields are non-overlapping, therefore feature maps in S2 have half the number
of rows and columns as feature maps C1. Layer C3 is a convolutional layer with 16
feature maps. Each unit in each feature map is connected to several 5 × 5 neighborhoods
at identical locations in a subset of S2’s feature maps. Layer S4 is a subsampling layer
with 16 feature maps of size 5 × 5. Each unit in each feature map is connected to a 2 × 2
neighborhood in the corresponding feature map in C3, in a similar way as C1 and S2.
Layer C5 is a convolutional layer with 120 feature maps. Each unit is connected to a
5 × 5 neighborhood on all 16 of S4’s feature maps. Layer F6 contains 84 units and is
fully connected to C5. As in artificial neural networks, units in layers up to F6 compute
a dot product between their input vector and their weight vector, to which a bias is added.
This weighted sum is then passed through a sigmoid function. Finally, the output layer
is composed of Euclidean Radial Basis Function units (RBF), one for each class, with
84 input each. The output of each RBF unit yi is computed as follow.

yi =
∑

j

(
xj − wij

)2

Fig. 2. Architecture of Lenet-5 [2]

In other words, each output RBF unit computes the Euclidean distance between its
input vector and its parameter vector. The further away is the input from the parameter
vector, the larger is the RBF output.

Lenet-5 is designed to extract local geometric feature from the input field in a way
that preserves the approximate relative locations of these features. This is done by
creating feature maps that are formed by convolving the image with local feature-
extraction kernels. Lenet-5 has several advantages that make it attractive for recognizing
characters when high variability is expected. First, Lenet-5 has state-of-the-art accuracy
by its impressive performance. Second, Lenet-5 runs at high speeds on specialized
hardware. Lenet-5 can also be readily trained to recognize new character styles and fonts.
It works well for both handwritten and machine printed characters.

598 V. H. Pham et al.



3.3 Our Modification of Lenet-5

The modified Lenet-5 comprises 6 layers, not counting the input. Layer C1 and C3 has 4
features maps. Each unit in each feature C1 is connected to a 4 5 × 5 neighborhood in the
input. Each unit in each feature map C3 is connected to 4 3 × 3 neighborhoods at identical
locations in a subset of S2’s feature maps. Layer S2 and S4 is a subsampling layer with 4
feature maps. Layer F5 is a fully-connected layer with 1204 units. Each unit is connected
to all units in S4’s feature maps. Output layer contains 35 units and is fully connected to
F5. As can be seen, we remove the last convolutional layer and we just use 4 feature maps
in C1, C3 convolutional layer. The reason is there are only about 3 or 4 gray levels on each
real character image. Therefore, we don’t need many features as the original Lenet-5. The
time-consuming tasks occur mostly in the convolutional layers, so reducing in the number
of features makes our CNN faster. Moreover, each unit in each feature map C3 is only
connected to 3 × 3, instead of 5 × 5 neighborhoods, as the thickness of the characters is
about 3 pixels. This can help to reduce the processing time (Fig. 3).

Fig. 3. The proposed Lenet-5 with less feature maps in convolutional layers

4 Experimental Results

For experiments, we used two datasets for evaluation: MINIST used in [2] and our
collection. The MINIST database (Modified National Institute of Standards and Tech‐
nology database) is a large database of handwritten digits commonly used for training
various image processing system. Figure 4 shows some example characters in the data‐
base. The MNIST database contains 60,000 training images and 10,000 testing images.

For comparison, we built our own dataset from real-life traffic car images. On each
of collected images, we extracted the regions which have a single character. The
segmented characters are sorted into 35 categories: 0–9, A–Z. All the characters are
resized to 16 × 16 before training. Figure 5 shows some examples of license plate char‐
acters in our dataset. The dataset was collected from US traffic images using a simple
LPR commercial product in our company.

CNN-Based Character Recognition for LPR System 599



Fig. 5. Car license plates from some traffic images

We use a dataset of 112,000 samples to train, and test on various states in US (Cali
test set). The models used for comparsion are ANN Lenet-5 and our proposed CNN,
and we evaluate on the accuracy and processing time for each of the models.

Firstly, these models was trained with MNIST dataset and tested with our test set.
Table 1 shows the accuracy and time process of ANN, CNN Lenet-5 and our proposed
CNN in the MNIST dataset. The CNN-based models have best performance, and our
proposed method is at a bit lower accuracy at 98.77% compared with 99.10% of Lenet-5
but the processing time is much lower at 0.38 ms compared with 10 ms of Lenet-5.

Table 1. The accuracy and time process of ANN, CNN Lenet-5 and our proposed CNN
in the MNIST dataset.

For better and more practical evaluation, we divide the test set into 3 categories:
normal and good dataset containing characters in common and good conditions; and
hard dataset containing characters challenging the detection. Some examples are shown
in Fig. 6.

Fig. 4. Examples from MNIST dataset

600 V. H. Pham et al.



Fig. 6. Examples of good (a), normal (b) and hard (c) dataset

Tables 2, 3 and 4 show the accuracy and processing time of the 3 testing models on
3 levels of the testing datasets.

Table 2. The accuracy and processing time on ANN, CNN Lenet-5 and our proposed CNN
with good dataset.

CNN-Based Character Recognition for LPR System 601



Table 3. The accuracy and processing time on ANN, CNN Lenet-5 and our proposed CNN with
normal dataset.

Table 4. The accuracy and processing time on ANN, CNN Lenet-5 and our proposed CNN
with hard dataset.

Evaluation of the overall system is based on averaging the accuracy and the
processing time of each models on the datasets. Table 5 shows the evaluation on our
collected dataset.

Table 5. The average in accuracy and processing time of ANN, CNN Lenet-5 and our proposed
CNN in our collected dataset

The accuracy of our proposed CNN is higher about 3% than ANN and less 2% than
CNN Lenet-5. Although the time processing is still slower 10× than ANN, it is 20×
faster than CNN Lenet-5. Therefore, our proposed CNN can still run in real time at a
practically acceptable accuracy.

5 Conclusion

Starting from a basic classifier, various concepts for character recognition were intro‐
duced. In this study, we proposed a CNN model for character recognition task. The CNN
lenet-5 is modified by reducing the number of convolution layer and the size of neigh‐
borhood to become our model. The model was tested with 36,500 images of character.

602 V. H. Pham et al.



Although the accuracy is less 2% than Lenet-5, our proposed CNN gave satisfactory of
performance and real-time processing.

References

1. Ahmed, M.J., Sarfraz, M., Zidouri, A., Al-Khatib, W.G.: License plate recognition system.
In: Proceedings of the 2003 10th IEEE International Conference on Electronics, Circuits and
Systems, 2003, ICECS 2003, pp. 898–901. IEEE (2003)

2. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document
recognition. Proc. IEEE 86, 2278–2324 (1998)

3. Siddharth, K.S., Jangid, M., Dhir, R., Rani, R.: Handwritten Gurmukhi character recognition
using statistical and background directional distribution. Int. J. Comput. Sci. Eng. (IJCSE)
3, 2332–2345 (2011)

4. Sharma, S., Singh, N.: Optical character recognition using artificial neural networks approach.
Int. J. Emerg. Technol. Adv. Eng. 4, 339–344 (2014)

5. Bouchain, D.: Character recognition using convolutional neural networks. Inst. Neural Inf.
Process. 2007 (2006)

6. Zheng, D., Zhao, Y., Wang, J.: An efficient method of license plate location. Pattern Recogn.
Lett. 26, 2431–2438 (2005)

7. Wen, Y., Lu, Y., Yan, J., Zhou, Z., von Deneen, K.M., Shi, P.: An algorithm for license plate
recognition applied to intelligent transportation system. IEEE Trans. Intell. Transp. Syst.
12, 830–845 (2011)

8. Caner, H., Gecim, H.S., Alkar, A.Z.: Efficient embedded neural-network-based license plate
recognition system. IEEE Trans. Veh. Technol. 57, 2675–2683 (2008)

9. Anagnostopoulos, C.N.E., Anagnostopoulos, I.E., Loumos, V., Kayafas, E.: A license plate-
recognition algorithm for intelligent transportation system applications. IEEE Trans. Intell.
Transp. Syst. 7, 377–392 (2006)

10. Jin, L., Xian, H., Bie, J., Sun, Y., Hou, H., Niu, Q.: License plate recognition algorithm for
passenger cars in Chinese residential areas. Sensors 12, 8355–8370 (2012)

11. Kumari, S., Gupta, D., Singh, R.M.: A robust method for vehicle license plate recognition
based on Harries corner algorithm and artificial neural network. Int. J. Comput. Appl. 148,
16–19 (2016)

CNN-Based Character Recognition for LPR System 603


	CNN-Based Character Recognition for License Plate Recognition System
	Abstract
	1 Introduction
	2 Related Works
	3 The Proposed Method
	3.1 Plate Detection and Segmentation
	3.2 Convolutional Neural Networks for Character Recognition
	3.3 Our Modification of Lenet-5

	4 Experimental Results
	5 Conclusion
	References




