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Abstract. Accurate and efficient identification of vertebra fractures in
spinal images is of utmost importance in improving clinical tasks such
as diagnosis, surgical planning, and post-operative assessment. Previous
methods that tackle the problem of vertebra fracture identification rely
on quantitative morphometry methods. Standard six-point morphome-
try involves manual identification of the vertebral bodies’ corners and
placement of points on identified corners. This task is time-consuming
and requires effort from experts and technicians and prone to subjective
errors in visual estimation in spinal images. In this paper, we propose an
automated method to detect and classify vertebra fractures from 3D CT
lumbar spine images. Fifteen 3D CT images with accompanying fracture
labels for each of the five lumbar vertebra from the xVertSeg Challenge
were utilized as data set. Each vertebra from the 3D image is processed
into 100 × 50 2D 3-channel images composed of three grayscale images.
The three grayscale images represent the vertebral slices in the sagittal,
coronal, and transverse anatomical planes. These 100 × 50 2D images
are fed into the 152 layer Residual Network. A total of 13,400 images
were generated from the data pre-processing stage. 12,700 of which hav-
ing varying classifications were used as training data, and 100 images for
each of the seven vertebra fracture classifications were used as testing
data. The network achieved 93.29% testing accuracy.
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1 Introduction

Vertebra fractures are categorized into three major patterns, namely: flexion,
extension, and rotation. This work focuses on flexion fracture patterns, which
are further categorized into two: the compression fracture and the axial burst
fracture. A compression fracture is characterized by a reduction in height of the
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anterior portion of the vertebra, while an axial burst fracture is characterized
by reduction of both anterior and posterior portions. These reductions in height
are caused either by high-energy trauma such as various physical accidents, or
by low-impact activities such as reaching or twisting. Furthermore, diseases or
physiological abnormalities that may be inferred from having vertebra fractures
are osteoporosis, tumors, and various conditions that weaken the bone.

A precise vertebra fracture identification method in spinal imaging is in high
demand due to its importance in orthopedics, neurology, oncology, and many
other medical fields. A common method in identifying vertebra fractures is the
semi-quantitative (SQ) method proposed by Genant et al. [1]. This method intro-
duced specific morphological cases and grades of vertebral body fractures and is
accepted as the ground truth for the evaluation of vertebra fractures. By estimat-
ing the differences in the anterior, central and posterior heights of the vertebral
body in sagittal radiographic images, the SQ method presents the following mor-
phological cases of 3 vertebra fractures.

Morphological Cases

– Wedge: characterized by distinctive difference between the anterior and pos-
terior vertebral height.

– Biconcavity: characterized by similar anterior and posterior vertebral height
but smaller central vertebral height.

– Crush: characterized by the mean vertebral height lower than the statistical
value for that vertebra or for adjacent vertebral bodies.

For morphological grades, mild grade is characterized by a height difference of
20–25%. Moderate grade is characterized by a height difference of 25–40%. Severe
grade is characterized by a height difference of more than 40%.

For identification of these cases in CT Scans or MRI scans of bones, the
usual recourse is through visual inspection of vertebral bodies, which requires the
expertise of radiologists and physicians. The visual inspection of each vertebra
is time consuming and prone to subjective errors.

For our proposed procedure, we automate the classification of 3D bone images
according to the seven classes of the semi-quantitative method: (1) Normal, (2)
Mild Wedge, (3) Moderate Wedge, (4) Severe Wedge, (5) Mild Biconcavity, (6)
Moderate Biconcavity and (7) Moderate Crush. Automation is done using a
deep residual network from [2], which achieved outstanding benchmark results
in the ImageNet classification challenge. The deep residual network makes use
of ‘skip-connections’ to allow information to freely pass between network layers.
This facilitates training and allows the network to extend to very deep layers.
Employing deeper layers allow the network to abstract better and generate fea-
tures that contain high-value information.

We train the automated procedure using a total of 12,700 images, and then
test using 700 images spread equally to each of the seven vertebra fracture clas-
sifications. The automated network procedure achieved 93.29% accurate classi-
fication.
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2 Methodology

2.1 Data Acquisition

The data set used in this paper were obtained from the xVertSeg challenge, an
open online computational challenge in the field of spine medical image analysis.
The data set consists of 25 3D computed tomography (CT) lumbar spine images
in MetaImage (MHD) format, which requires a pair of .mhd and .raw file per
image. The fracture labels for the lumbar vertebra were given in a CSV file.
Fracture labels used in the data set follow the semi-quantitative vertebra fracture
classification system proposed by Genant et al.

This semi-quantitative system presents a total of 10 classifications, but we
exclude the following classifications due to insufficient samples: (1) Severe Bicon-
cavity, (2) Mild Crush, and (3) Severe Crush.

The data set split the 25 images into two: Data1 and Data2. Data1 consists
of 15 CT images, and Data2 consists of 10 CT images. The images from Data1
have accompanying segmentation masks and fracture labels, while the images
from Data2 do not. For the purpose of vertebra fracture classification, only the
Data1 images were used.

The segmentation mask given assigns a corresponding pixel value for each of
the five lumbar vertebra: 200 for the L1 vertebra, 210 for the L2 vertebra, 220
for the L3 vertebra, 230 for the L4 vertebra, and 240 for the L5 vertebra.

2.2 Data Preprocessing

The data to be fed to the deep residual network are 100 × 50 CT images that
are created from 3 grayscale images corresponding to the sagittal, coronal, and
transverse slices of the vertebra. Preprocessing for each of the 5 lumbar vertebra
in a single CT image undergoes the following steps:

1. Find the areas in the 3D image that are indicative of the vertebral
shape. The 3D image is repeatedly sliced into a 2D image in the sagittal
plane for every 2 pixels. Each sliced plane is checked for the 5 lumbar vertebral
bodies that are cleanly separable from their spinal parts.

2. Find the z and y coordinates for the coronal and horizontal planes.
From the first sagittal slice of each vertebra deemed indicative by step 1,
the contour of each of the five vertebral bodies are obtained using OpenCV’s
findContour function. From each of the contour coordinates, the leftmost
coordinate marks the area where the coronal planes of the respective vertebra
will be sliced from, and the topmost coordinate marks the area where the
horizontal planes of the respective vertebra will be sliced from.

3. Crop the vertebra in three planes. Step 1 and step 2 results to a voxel
coordinate for each of the lumbar vertebra. This voxel coordinate marks the
probable corner of the vertebral body. From this coordinate, the coronal,
and horizontal planes are each inspected. An algorithm checks if the slices
contain enough data or pixels to be indicative of the vertebral shape. Once
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the algorithm deems both planes indicative, it proceeds to crop the vertebral
shapes using OpenCV’s findContour function. The next iteration moves the
voxel coordinate by 2 pixels in each plane.

4. Create a single BGR image from the three grayscale images. Step
3 generates sets of three 2D grayscale images, each associated to each other
according the same voxel coordinate. These 3 grayscale images corresponds
to the sagittal (yz), coronal (xz), and horizontal (xy) planar views. Using
OpenCV’s merge function, the 3 grayscale images are combined to form a
3-channel BGR image. A single instance of this 3D image is equivalent to one
sample to be used either for training or testing (Fig. 1).

Fig. 1. Patches from the sagittal, axial, and horizontal planes are merged into a BGR
image

For every vertebral body, the algorithm iterates through steps 2 and 3. The
voxel coordinate is moved by 2 pixels to each of the planes, until it reaches the
probable end of the vertebral body. The data is augmented through rotation of
the 3D image through −30◦ to 30◦, with an interval of 5◦. Each BGR image
produced is vertically flipped to double the sample data. In total, this produces
13,400 vertebra samples, with the following classifications: Normal (4602), Mild
Wedge (1384), Moderate Wedge (3222), Severe Wedge (1454), Mild Biconcavity
(570), Moderate Biconcavity (1172), Moderate Crush (996).

3 Methods

After the data pre-processing step, we build a 3D convolutional network based
on ResNet-152 which takes 3-channel images as input. A residual learning frame-
work brings ease of training compared to other convolutional networks by adding
a +x to the traditional networks’ activation which is y = f(x), allowing the
gradient to pass backwards directly. This formulation of y = f(x) + x can be
realized in the shortcut connections of feed forward networks. The difference is
that, ResNet’s shortcuts perform identity mapping and adding its output to the
outputs of the stacked layers [2]. Figure 2 shows a visualization of the shortcut
operation in a feed forward network.
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Fig. 2. Residual learning: a building block [2]

3.1 Layers and Architecture

A generic ResNet is composed of Batch Normalization, Rectified Linear Unit,
Max Pooling, Convolutional Layers and Fully Connected. ResNet-152, or Deep
Residual Network with 152 Layers is implemented for this research. The ResNet
used in this research is largely based on the Residual Network implementation
for ImageNet. The network accepts 3-channel images as input and are resized to
244×244, with its shorter side randomly sampled in [256, 480] for scale augmen-
tation. Batch Normalization is done after each convolution and before activation.
Training is done from scratch since the data on hand is 3-dimensional and there-
fore needed to be augmented to fit the requirements of 3-channel Residual Net.
The learning rate is 0.0001. Stochastic Gradient Descent is used with mini-batch
size of 256. The last layer is a single fully connected layer with an output vector
of size 1000.

1. Convolutions. Convolution operations are applied to input volumes to form
a 3-dimensional arrangement of neurons arranged by height, width and depth.
Neurons are connected to a region of the input volume called a receptive
field of size N × N . Each neuron therefore has N × N × 3 weighted inputs.
A convolution operation takes a kernel on an input image and transforms
information encoded in pixels. A specified kernel size is convolved through
the entire input image forming “activated regions” [3].

2. Pooling. Pooling reduces the amount of parameters and the computations
needed to be executed in the network. This is also employed to reduce over-
fitting [3]. Max Pooling is used after the first batch of convolution operation.
A 3 × 3 sliding window is used and for every channel the values will be
down-sampled according to the results of the max pooling operation. Average
Pooling is used at the end of all the residual blocks with sliding window of
size 7.

3. Batch Normalization. Batch Normalization is an operation used in deep
neural networks that allows the usage of higher learning rates. It is a step
between each layer where the output of the previous layer is normalized first
before the next layer [4]. Batch Normalization is used every after convolution
operation in this research. The learning rate used is 0.0001.

4. Rectified Linear Unit (ReLU). ReLU is the most common activation
function for the outputs of CNNs used in deep learning. It has an equation
max(0,x) [3]. All residual blocks in this research uses ReLU.
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5. Fully Connected Layer. Neurons of the fully connected layer have full
connections to all the activations from the previous layer [3]. It is used to
construct the desired number of outputs and therefore usually placed on the
last layers of the network. This research used only one Fully Connected layer
after average pooling operation. It is a single vector with 1000 outputs.

Fig. 3. ResNet with 152 layers is used to create models and classifiers for vertebra
fracture classification problem. It is composed of 4 building blocks that are stacked
together
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6. Residual Block. This research uses the ResNet architecture that is com-
posed of 4 building blocks. Each building block is composed of 4 groups of
4-layers of different operations stacked together. In Fig. 3 we refer to these 4
groups as, ResNet Building Block 1, ResNet Building Block 2, ResNet Build-
ing Block 3, and ResNet Building Block 4. After the first group, an identity
mapping is applied where the output of the previous group is added to the
new output. This identity mapping allows the “shortcut” connections. Each of
the four ResNet Building Blocks is stacked on top of the same ResNet Build-
ing Block design 3, 8, 36, and 3 times, respectively. ResNet Building Block
1 is stacked together 3 times. This will attach to ResNet Building Block 2
which is stacked together 8 times. This is attached to ResNet Building Block
3 which is stacked together 36 times. This is attached to ResNet Building
Block 4 which is stacked together 3 times. The number of outputs and the
parameters used for each layers stacked and a visual representation of the
ResNet design are shown in Fig. 3.

4 Results and Discussion

The network was trained up to 3500 iterations. Weights are saved every 100th
interval from the 1st iteration to the 3500th iteration. A randomly selected 700
validation data was fed to every model saved. From the 3000th iteration, only
the 3500th iteration was saved coming up with 29 weights saved, thus yielding
29 validation results. Each of the 7 classifications had 100 test samples each. The
testing was done with batch size 100, therefore arriving with 7 test results.

Figure 4 suggests that ResNet-152 presents 93.29% overall classification accu-
racy for the validation data using the model trained at 3000 iterations. As the
number of iterations increases, validation accuracy also increases.

Training (testing) accuracy is the accuracy when a model is applied on the
training (testing) data. Figure 5 shows that training accuracy is generally higher
than the testing accuracy with an average of 0.092 difference.

Figure 6 shows the predicted labels of vertebra fracture classification after
700 randomly selected and balanced test data was applied to the classifier. The
classifier used was trained on 3000 iterations. The classifier was able to correctly
predict 99 true normal 3D vertebra images. Among all the classes, normal class
got the highest correct predictions followed by moderate crush and moderate
wedge.

Figure 7 shows comparison between the predictions given by ResNet-152
trained on 3000 iterations. Normal class got the most correct predictions and
the least number of predicted as false moderate wedge. It can also be inferred
that 5 out of 7 classes tend to be falsely classified as normal. This includes mild
wedge, moderate wedge, severe wedge, mild biconcavity, and moderate bicon-
cavity. Such trend can be a result of the number of training data set available
for normal 3D vertebra images amounting to 4 502, the largest among all the
classes. In majority, all 3D vertebra images in the test dataset ended up being
predicted correctly.
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Fig. 4. Trend of the classification accuracy for 700 validation data fed to 29 models
trained on different iterations from 100 to 3500

Fig. 5. Training accuracies and testing accuracies when 12700 training data and 700
validation data were fed to 29 models trained on different iterations from 100 to 3500

Fig. 6. 7-way classification confusion matrix of lumbar vertebra fracture classes
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Fig. 7. Distribution of class predictions given by ResNet-152 trained on 3000 iterations

Fig. 8. Evaluation measures using recall, precision and f1-score per lumbar vertebra
classification

Figure 8 shows the Recall, Precision and F1 Scores for all seven lumbar ver-
tebra fracture classes. The ResNet-152 trained on 3000 iterations returned 100%
predictions of Mild Biconcavity, Moderate Crush and Moderate Biconcavity.
This means that out of all the 3D Vertebra Images predicted as moderate bicon-
cavity, mild biconcavity, or moderate crush, 100% of it are truly moderate bicon-
cavity, mild biconcavity, or moderate crush. It can be seen from Fig. 6 that there
were a total of 98, 89, and 83 3D vertebra images classified as moderate crush,
moderate biconcavity, and mild biconcavity consecutively and 98, 89 and 83
of them are truly moderate crush, moderate biconcavity, and mild biconcavity.
Normal and Moderate Wedge scored lowest in precision. There were 131 and
101 3D vertebra images classified as normal and moderate wedge. 32 and 11 of
these two were wrongly classified as such. Normal scored highest in recall mea-
sure with 99. It can be deduced that out of the all the 100 normal 3D vertebra
Images, 99 of them were classified as normal. Mild biconcavity scored lowest in
recall with 84.
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Among the 700 testing data, the ResNet-152 model trained on 3000 iterations
has identified a total number of 653 correct classifications. This shows that the
automated model has an overall accuracy of 93.29%.

5 Conclusion

The research proposes an automated method to detect and classify vertebra
fractures from 3D CT Lumbar Spine Images. This system is limited to 7 classi-
fications only, namely the normal, mild-wedge, moderate-wedge, severe-wedge,
mild-biconcavity, moderate-biconcavity, and moderate-crush. The techniques on
handling and preparing data for the network is also included in this paper. The
architecture followed the ResNet-152, or the Deep Residual Network with 152
layers. ResNet-152 resulted to 93.29% overall testing accuracy for the model
trained at 3000 iterations. We have achieved these results by using extracting
multiple 3D RGB images from 3D Greyscale CT Images of the lumbar spines.
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