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Abstract. The analysis of relational and NoSQL databases leads to the con-
clusion that these data processing systems are to some extent complementary. In
current Big Data applications, especially where extensive analyses are needed, it
turns out that it is non-trivial to design an infrastructure involving data and
software of both types. In terms of performance, it may be beneficial to use a
polyglot persistence or multi-model approach or even to transform the SQL
database schema into NoSQL and to perform data migration between the rela-
tional and NoSQL database. The aim of the paper is to show these possibilities
and some new methods of designing such integrated database architectures.
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1 Introduction

Recently, most large enterprises seem to be taking actually care about minimizing
application maintenance of existing production systems. This causes “bad” database
schemas to be used and “database decay” generally occurs. The authors of [14] build
the assertion on discussions with nearly twenty database administrators (DBA) at three
very large enterprises. The databases vary depending on business conditions, usually
once a quarter or more. The environment leads to the often disappearing central DBA’s
roles and a more decentralized approach with more DBA groups maintaining databases
in the enterprise. NoSQL databases, a database alternative for storage and processing
so-called Big Data today, contribute to this state significantly.

The DBMS history always reflected requirements concerning new types of data to
be stored in a database way. Several database models such as Object-Oriented (OO),
Object-Relational (OR), XML, or RDF have been introduced since the relational data
model was introduced. OO and OR DBMSs responded to object-oriented approaches to
software engineering from the 1990s. However, these tools have never been compet-
itive on the market. Reasons might be in the lack of their theoretical foundations and
the limited performance in practice. The XML databases suffer from similar problems.
Their goal is to promote the distribution of XML documents, but the use of native
XML databases is rather limited. Major vendors of relational DBMS (RDBMS) such as
Oracle, Microsoft SQL Server, and MySQL, include XML support in their products,
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but native XML databases are not much involved in the database market. The initial
enthusiasm for XML databases was based on Web application architectures and service
orientations that use XML as a means to standardize data exchange format. However,
this is now already possible with document-oriented NoSQL databases (see, popular
JSON format), though not in such powerful languages as the XQuery in XML envi-
ronment. However, the XML format has been added to the relational environment and
is now the basic data type in SQL databases.

The situation in the database world today is affected by Big Data. Their V’s
characteristics are Volume, Velocity, and Variety. The author of [12] lists even 11 such
V’s. They fundamentally affect the storage and processing infrastructure of Big Data.
Effective use of systems involving the processing of large volumes of data requires, in
many application scenarios, adequate tools for storing and processing such data at a
low level and analytical tools at higher levels. From the user’s point of view, the most
important aspect of processing large volumes of data on a computer is their analysis, as
it is now called Big Analytics. Unfortunately, large data collections include data in
different formats, such as relational tables, XML data, text data, multimedia data, or
RDF triples, which may cause problems in processing data mining algorithms. Also,
the growing data volume in a repository or the number of users of this repository
requires a reliable solution of scaling in these dynamic environments, and more
advanced means of delivering high performance than traditional database architectures
offer. Moreover, traditional RDBMSs lack the dynamic data model necessary to tackle
high velocity data coming in from machine-oriented systems or time series applica-
tions, as well as cases needing to manage social media data.

It is obvious that Big Analytics is also performed over a large amount of transaction
data by extending the methods commonly used in Data Warehouses (DW). But DW
technology has always been focused on structured data compared to the much richer
variability of data types, as it is today for Big Data. Analytical processing of large data
volumes therefore requires not only new database architectures but also new methods
for data analysis.

To store and process Big Data today, we can choose:

• traditional DBMS (hereinafter referred to as databases, DB) - relational (SQL), OO,
OR,

• traditional parallel database systems (“shared-nothing”),
• distributed file systems (e.g., HDFS),
• NoSQL databases,
• new architectures (e.g. NewSQL database).

In practice, ITC and business professionals need to determine whether NoSQL
technologies are better suited than RDBMS for a particular system. The choice of
technology is critical for applications that can be both transactional and analytical.
They typically require different software and hardware architectures. The aim of the
paper is to discuss the relation between SQL databases and NoSQL databases, mod-
elling databases in the SQL and NoSQL polyglot world, mainly towards Big Analytics.
An attention is devoted to problems of integration of such heterogeneous platforms in
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one architecture. In Sect. 2, we briefly describe the Big Analytics concept, i.e. the
properties, processing and analysis of large volumes of data. In Sect. 3, we briefly
review the NoSQL database technologies, especially their data models, architectures,
and some their representatives. In Sect. 4, we show the duality between SQL databases
and NoSQL databases and its reflection in various integrated database architectures.
Section 5 contains conclusions and challenges for the database community.

2 Analytical Processing of Big Data

Big Analytics is used to transform information into knowledge through a combination
of existing and new approaches. Related technologies include:

• data management (considering uncertainty, real-time query processing, information
extraction, explicit time dimension management),

• new programming models,
• statistical methods, data mining (DM), and machine learning (ML),
• component architectures of data storage and processing systems, visualization of

information.

As usual, two types of processing are distinguished:

• real-time processing (data-in-motion),
• batch processing of data obtained from different sources into one database (data-at-

rest).

Batch analysis can then be:

• small (Small Analytics), i.e. OLAP over DW,
• big (Big Analytics), i.e. both DM and ML.

The problems that arise in this context are based on the fact that the requirements
for Big Data are often more dynamic than the classic data processing in DWs. This
concerns all 3 V’s mentioned in Sect. 1. The NoSQL database is an alternative.
Another issue is how to analyse Big Data coming from relational DBs.

A volume is not only a problem for data storage but also influences Big Analytics.
With the increase in data complexity, its analysis is also more complex. We need to scale
both the infrastructure and the standard data processing techniques for Big Data. Speed
can also be a problem because the value of the analysis (and often of the data) decreases
over time. If multiple data stream passes are required, data must be entered into DW
where further analysis can be performed. Data can thus be stored and processed in a
relatively traditional way or using cheap systems such as distributed NoSQL DB.

Big Data is often mentioned only in relation to business intelligence (BI). However,
not only BI developers but, generally, data scientists are analysing large data collec-
tions. The challenge for computer professionals or data scientists is to provide people
with tools that can efficiently perform complex analytics, taking into account the
particular nature of processing large volumes of data. It is important to emphasize that
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Big Analytics does not only include analysis and modelling phases. Often, distorted
context as well as data heterogeneity and interpretation of results are taken into
account. All these aspects affect scalable strategies and algorithms, so more efficient
pre-processing steps (filtering and integration) and advanced parallel computing
environments are needed. Data variability is now part of Big Data storage design and
analytical system design. But performance is still a first order requirement.

In addition to these rather classic issues of mining large volumes of data, other
interesting issues have emerged in recent years, such as recognizing named entities.
The analysis of views and opinions (such as positive, negative, neutral) and their
mining (sentiment analysis) are actual as topics using information retrieval methods
and Web data analysis. A specific problem is the search for and characterization of
discrepancies based on views and opinions. Comparison of graph patterns is commonly
used in social network analysis where graphs, for example, include a billion users and
hundreds of millions of links. In any case, the main problems of the current DM
techniques used for Big Data come from their lack of scalability and parallelization.

3 NoSQL Databases

Large-scale data collections are often used for the storage and processing in NoSQL
databases. NoSQL means “not only SQL”, which makes this database category very
diverse and not very clearly specified. NoSQL databases, starting in the late 1990s,
provide easier scalability and performance compared to traditional RDBMS. We briefly
describe their properties and classification (Sect. 3.1), followed by a discussion of their
usability (Sect. 3.2). A more detailed discussion of NoSQL and, more generally, Big
Data issues can be found, e.g., in [4, 8, 10, 12].

3.1 Categories of NoSQL Databases

What is the main classical approach to databases - a (logical) data model - is described
in NoSQL databases rather intuitively, without any formal basis. NoSQL terminology
is also very diverse, and the difference between a conceptual and database view is
mostly blurred.

The most well-known NoSQL databases can be classified according to the used
data model as:

• key-value stores, such as Redis1,
• column store, e.g. CASSANDRA2,
• document stores, such as MongoDB3.

Key-value stores contain a set of pairs (key, value). The key uniquely identifies the
opaque value. The choice of the key is, unlike relational DB, solved pragmatically.

1 https://redis.io/.
2 http://cassandra.apache.org/.
3 https://www.mongodb.com/.
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The goal is only quick access to data. The value can even be a list of pairs (name,
value) (e.g. in Redis). Data access operations, typically get and put, only work
through the key. NULL values are not required, because these databases do not use the
schema. Although it is a very efficient and scalable approach to implementation, the
disadvantage of a too simple data model can be substantial for such databases.

NoSQL stores can contain a set of couples (name, value) in a column family in a
row addressed by a key. A column family in different rows can contain different
columns. Then we are talking about a column-oriented NoSQL database. There is also
another level of structure called, e.g., supercolumn in Cassandra. The supercolumn
contains nested (sub)columns. Access to data using get and put is enhanced by using
column names.

Most general data models belong to document-oriented NoSQL DBs. They are the
same as key-value repositories, but each key is coupled with any complex data
structure that resembles a semi-structured document. The JSON format is usually used
to present these data structures. JSON is a typed data model that supports basic data
types and objects - non-ordered sets of couples (name, value), and the value can be
structured (array). JSON is similar to XML, but it is smaller, faster and easier for
parsing. For example, CouchDB4 uses the JSON format whereas MongoDB stores data
in BSON (binary coded serialization of JSON documents). It is possible to query the
data in a document in other ways than using a key (e.g. through indexing). Moreover,
selection and projection operations on the query results can be performed.

There are also other approaches. DB-Engines Ranking server5, e.g., considers also
search engines as NoSQL databases, e.g., Elasticsearch6. They are data management
systems dedicated to the search for data content. They are not typically classical
document systems. They typically offer a support for complex search expressions, full
text search, ranking and grouping of search results, geospatial search, and distributed
search for high scalability. More generally, NoSQL databases include also graph
databases [11], and others, e.g. XML and RDF ones.

The first three NoSQL categories are basically of the key-value type. They differ
mainly in the possibilities of aggregating couples (key, value) and accessing these
values. For our considerations, we consider only them.

3.2 Usability of NoSQL Databases

There is much debate about the role of NoSQL databases in providing information
services. NoSQL camp claims that this technology is the future of databases. On the
other hand, the RDBMS camp argues that the NoSQL databases have a big disad-
vantage of failing to provide correct data integrity. In any case, NoSQL technologies
are designed with Big Data needs in mind.

NoSQL are often a part of data intensive cloud applications (mainly Web appli-
cations). Examples of such applications include Web entertainment applications,

4 http://couchdb.apache.org/.
5 https://db-engines.com/en/ranking.
6 https://www.elastic.co/products/elasticsearch.
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high-traffic Web site services, media delivery in a streamlined fashion, or typical data
found in social networking applications.

NoSQL systems are more suitable for interactive data services environments.
Schema enforcing and row-level locking as in relational DBs may over-complicate
these applications. The absence of some ACID properties even allows significant
acceleration and decentralization of NoSQL databases.

On the other hand, one of the most famous problems with NoSQL repositories is
the lack of semantics caused by their underling feature – they are schema-less. The lack
of metadata prevents the database system from knowing which data is stored and how it
is interconnected.

NoSQL databases usually have little means of ad-hoc querying and analysis. Even
a simple query requires significant programming experience, and generally used BI
tools do not provide connectivity to NoSQL. NoSQL databases can also not be rec-
ommended for applications requiring enterprise level functionality (ACID properties,
security, and other relational technology features). NoSQL should not be the only
choice in the cloud.

Experience with the NoSQL database shows that they can be used

• even on “small” dates,
• for applications not requiring transactional semantics, such as directories, blogs, or

content management systems or for analysing high-volume, real-time data (such as
Web site click-streams). In the mobile data processing environment, transactions are
even more technically impossible in a larger range.

Among the good properties of NoSQL databases we can find:

• massive performance in write operations,
• quick search in a key-value way,
• they do have no portion causing a total network failure when an error occurs,
• enable rapid prototyping and development,
• allow scalability without user intervention,
• have easy maintenance.

On the other hand, a user may find unusual and often inappropriate phenomena in
NoSQL approaches:

• have different behaviour in different applications,
• no language query standards are available,
• migration from one system to another is complicated,
• join operation is missing,
• some of them are more mature than others, but each of them is trying to solve

similar problems,
• checking referential integrity “over” database partition segments is missing. As the

performance is crucial, an integrity control or the implementation of complex
operations is limited in a distributed environment.
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Table 1 shows a comparison of NoSQL and SQL DB in more details.
In the database world NoSQL DBs occupy a significant place. In the DB-Engines

Ranking, 339 various DB-Engines were tracked in December 2017. MongoDB, Redis,
and Cassandra occupied positions 5, 8, and 9, respectively, in this rating.

Table 1. Comparison of relational and NoSQL DBMSs

Property RDBMS NoSQL

1 Data model Relational Domain-oriented
2 Data is strongly typed Data is potentially dynamically

typed
3 Data of dependent tables

points to its parents (via
foreign keys)

Parent’s data points to children data

4 Associated entities have
an identi-ty (primary key)

Environment determines identity

5 Not compositional Compositional
6 Referential integrity based

on values
Weak referential integrity based on
computation or only “over” partition
segments

7 Integrity Responsibility at the DB
level

Responsibility moved to the
application level

8 DB schema Expressed in SQL Typically do not require a fixed DB
schema, i.e. they have a more
flexible data model

9 Detection of
problems in the
DB schema

At the DB level At the application level and data
access procedures

10 DB modelling
management

Begins from accessible
data

Patterns for data access and updates

11 Querying SQL Simple API, if SQL, then only its
very limited version; REST, client
libraries

12 Complex queries + ad hoc
queries

Inappropriate for ad hoc queries and
complex queries

13 Join operation Join emulation at application level
14 Data storage Centralized or distributed Horizontally scaled, replications
15 Data processing Synchronous (ACID)

updates over more rows
Asynchronous (BASE) updates
within single values

16 Environment coordinates
changes (transactions)

Entities responsible to react to
changes (eventual consistency)

17 Strong consistency and
also consistency tuneable
by application

Eventual consistency and also
consistency tuneable in application

18 Query optimizer –
responsibility by DBMS

Developer/pattern – responsibility
by application
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4 SQL and NoSQL: Towards Integrated Architectures

In the work [9], the authors argue that the NoSQL databases are rather complementary
to traditional transactional DBMSs. Should not they be called “co-relational”? Maybe
more natural would be to say coSQL instead of NoSQL. In Table 1, according to [9],
complementary differences are given by properties 2, 3, 4, 5, 6, 16, 17, and 19. This
complementarity negatively influences integration possibilities of these datastores both
at the data model and data processing level.

Particularly, normalization allows single object data in a relational database to be
spread over multiple relations. For example, customer data is in one table, data about
the banks where his/her account are is in the second table. The interconnection is
realized via foreign keys. In NoSQL database, this can be done in such a way that each
bank “row” can contain data and account numbers for each customer. The basic feature
of NoSQL is that they are denormalized, that is, they store copies of an object instead
of the object. This, of course, leads to worse data update options.

In ICT history, different DBMSs were designed to solve different problems, con-
sidering still new and new data types. In addition to centralized RDBMSs, specialized
servers, universal servers, relational DW, etc. appeared in the past. These tools were
based on a fixed database schema and an associated query language (mostly SQL).
OR SQL and its other extensions supported this strategy for a long time.

Concerning an integration of distributed data from different databases, two
approaches based on a database schema management were at disposal:

• top-down – starting with a global schema to design schemas for data in sites,
• bottom-up – through middleware, i.e. to use schema mapping for schemas in sites

into a middleware (e.g., OLE DB, JDBC) and then use a query transformation. Data
is loosely integrated and managed by multiple servers.

We remind that the former concerns rather homogenous databases models, while
the letter supports heterogeneous database models and consequently DBMSs.

In context of RDBMSs and NoSQL databases, it is not possible to use simply
traditional approaches to data integration. The reason is the complementarity of these
database types. Moreover, the problem of analysts is that the lack of data schemas
(semantics) prevents them from understanding their structure and thus generating
serious analyses. Now, the tendency is to create multilevel modelling approaches
involving both relational and NoSQL architectures including their integration [1].
Several approaches are under a development:

Polyglot persistence. We approach particular data stores with their original data access
methods [13]. The truth is that polyglot persistence is a method for data modelling
problems, not a solution to them. Developers need to customize data models for an
application and often need more than one, but they should not have to adopt different
DBMS to get them. “Polyglot” means “able to speak many languages”, not integration.
As an integration architecture, polyglot persistence is its weakest form.

Multi-model approach. Maybe, it presents a more user-friendly solution of heteroge-
neous database integration. Multi-model represents an intersection of multiple models
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in one product. For example, OrientDB7 is a multi-model DBMS including geospatial,
graph, fulltext and key-valued data models. OO concepts are used for user domain
modelling in OrientDB. Similarly, ArangoDB8 is designed as a native multi-model
database, supporting key-value, document and graph models. MarkLogic9 enables to
store and search JSON and XML documents and RDF triples.

NoSQL relationally. The multi-model solution [5] considers source document and
column-oriented DB integrated through a middleware into a virtual SQL database.

Multilevel modelling. Despite of the fact that database schemas are mostly not used in
the NoSQL world, some variations on multilevel modelling approaches exist. In
relation to solution of an alternative for data processing with relational and NoSQL data
in one infrastructure, common design methods for such DBs are based on the modi-
fication of the traditional 3-level ANSI/SPARC approach [7]. The approach involves
not only heterogeneous data sources but also the development of a database schema in
the overall infrastructure, i.e., its variability. A strong motivation for this approach is
the fact that when designing a database for Big Analytics, we must consider DM/ML
patterns, clustering of some attributes, etc., to ensure adequate system performance.
However, the conceptual design assumes the correctness of the current knowledge of
the application domain. The following examples document activities in this area:

• Special abstract model. A DB design methodology for NoSQL systems based on
NoAM (NoSQL Abstract Model), a novel abstract data model for NoSQL data-
bases, is presented in [2]. The associated design methodology starts with an UML
class diagram, a designer identifies so called aggregates (“chunks” of related data)
and maps the aggregates into NoAM blocks. These blocks are simply transformed
into constructs of a particular NoSQL data model.

• NoSQL-on-RDBMS. A coexistence of RDBMS and a NoSQL DB includes, e.g.,
storing and querying JSON data in a RDBMS (see, ARGO/SQL [3]).

• Ontology integration. A more advanced integrating architecture including several
NoSQL databases is proposed in [6]. The databases are described by several
ontologies and a generated global ontology. Global SPARQL queries are trans-
formed into query languages of sources.

Schema and data conversion. In practice, there are other options, such as the schema
conversion model, in which the schema from the SQL database is converted to the
NoSQL database schema [15]. Then, even a double-sided data migration between a
RDBMS and a NoSQL DB can be performed.

5 Conclusions

Key issues for building Big Data processing infrastructure are in decisions concerning
NoSQL databases. They include in particular

7 http://orientdb.com/orientdb/.
8 https://www.arangodb.com/.
9 http://www.marklogic.com/.
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• choosing the right (correct) product,
• designing a suitable database architecture for a given application class.

However, the role of a person is also significant especially in Big Analytics.
Currently, the DM process is driven by an analyst or data scientist. Depending on the
application scenario, the person determines a portion of the data from which, e.g.,
useful patterns can be extracted. A better solution would, however, be to have an
automated DM process in place to get approximate synthetic information about both
structure and content of large amounts of data. This is still a big problem for Big Data
analysts.

Current challenges for database research include:

• Modelling polyglot and multi-model databases including relational and NoSQL in
one infrastructure.

• Improving the quality and scalability of DM methods. Interpreting a query -
especially in the schema absence - and received answers, may be non-trivial.

• Transforming content into a structured format for later analysis, because many data
today is not natively in a structured format. At the same time, with a filtering we can
reduce the volume of data.

• Develop a meaningful and usable formalisms for modelling NoSQL databases and a
sufficiently general user-friendly query language.
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