)

Check for
updates

Weights Ordering During Training
of Contextual Neural Networks
with Generalized Error Backpropagation:
Importance and Selection of Sorting
Algorithms

Maciej Huk®®

Department of Information Systems,
Wroclaw University of Science and Technology, Wroclaw, Poland
maciej. huk@pwr. edu. pl

Abstract. Contextual neural networks which are using neurons with condi-
tional aggregation functions were found to be efficient and useful generalizations
of classical multilayer perceptron. They allow to generate neural classification
models with good generalization and low activity of connections between
neurons in hidden layers. Their properties suggest also that usage of contextual
neurons with conditional signals aggregation can cause similar effects as dropout
technique in convolutional deep neural networks. The key factor to build such
solutions is achieving self-consistency between continuous values of weights of
neurons’ connections and their mutually related non-continuous aggregation
priorities. This allows to optimize neuron inputs aggregation priorities by
simultaneous gradient-based optimization of connections’ weights with gener-
alized BP algorithm. But such method additionally needs to perform sorting of
neuron inputs by its weights after each given number of training epochs. Thus
within this text we compare efficiency of training of contextual neural networks
with selected sorting algorithms. On this basis we discuss the theoretical
properties of analyzed training algorithm which are related not only to charac-
teristics of used weights sorting methods but also to application of
self-consistency to selection of neural scan-paths in contextual neural networks.

Keywords: Classification - Self-consistency - Sorting - Aggregation functions

1 Introduction

Contextual neural networks are generalizations of known neural networks architectures
which are using neurons with multi-step conditional aggregation functions [1]. Those
models were used with success to solve both benchmark as well as real-life classifi-
cation problems [2, 3]. In [4, 5] they were shown to be very good tools for fingerprints
detection for crime-related analyses. They were also successfully used for spectrum
prediction in cognitive radio and for research related to measuring awareness of

computational systems [6].

© Springer International Publishing AG, part of Springer Nature 2018
N. T. Nguyen et al. (Eds.): ACIIDS 2018, LNAI 10752, pp. 200-211, 2018.
https://doi.org/10.1007/978-3-319-75420-8_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-75420-8_19&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-75420-8_19&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-75420-8_19&domain=pdf

Weights Ordering During Training of Contextual Neural Networks 201

Contextual neural networks can form classifiers with better generalization proper-
ties than their non-contextual versions such as MLP [3]. But what is more important
they have also ability to considerably limit activity of connections between neurons
without decreasing accuracy of their output values — both during and after training [2].
This can be used to decrease time and energy costs of running trained neural networks,
especially in highly constrained applications. Limiting activity of given connections is
done adaptively to processed data, thus for different input vectors given neuron can use
different subsets of inputs and does not read signals from inputs not needed to calculate
output value for given input vector. Finally, this changes the character of the neural
network from black-box to grey-box model [3]. This is because by analyzing activity of
inputs of neurons in the first hidden layer of contextual neural network one can check
which data attributes are needed to calculate output values of the network for each input
vector. Finally, with this technique data attributes can be ordered by their importance
found by the contextual neural network for solving given problem.

In detail, neurons used to build contextual neural networks aggregate signals not in
one but in multiple steps. Each aggregation step is used to read-in given subset of
inputs and to decide if already processed information is enough to calculate the output
value of the neuron with acceptable accuracy. The composition and order of groups of
inputs, adequate for problem solved by the neural network, are selected independently
for each neuron during training of the model. Given ordered list of groups of inputs is
called a “scan-path”, because multi-step conditional aggregation functions are real-
izations of Starks’ scan-path theory [7]. Such functions in following steps aggregate
signals from different subsets of inputs until neuron activation cumulated from previous
groups of inputs is lower than given constant threshold. Examples of those functions
are Sigma-if, CFA, OCFA and RFA functions [1].

It is also worth to notice that contextual neural networks with multi-step conditional
aggregation functions in comparison to their non-contextual versions need only a small
number of additional parameters, and values of those extra parameters can be easily
selected with use of simple rules prior to the training [2]. This is the effect of special
construction of aggregation functions of their neurons which allows to use generalized
backpropagation algorithm (GBP) and self-consistency paradigm to setup their com-
plex behavior and represent it within values of connection weights [8]. This is con-
siderable improvement in comparison to multi-parameter aggregation functions of
other contextual neurons: Clusteron, Sigma-Pi [9] or Spratling-Hayes neuron [10].

In this paper we find that elements of the generalized error backpropagation
algorithm connected with sorting of data, can be further improved to increase the
efficiency of the training of contextual neural networks. Thus the rest of the paper is
organized as follows. In Sect. 2, brief description of the generalized backpropagation
algorithm is given. Then Sect. 3 presents detailed discussion of possible improvements
of the phase of GBP algorithm used to sort neuron’s inputs. This is next used in Sect. 4
to experimentally test which sorting algorithms are best suited to be used within GBP
while training contextual neural networks to solve selected UCI machine learning
benchmark classification problems. Finally in Sect. 5, we discuss how obtained results
and analyzed sorting methods can be used to characterize previously not studied the-
oretical properties of the GBP algorithm and contextual neural networks, especially the
influence of self-consistency on neural scan-paths during GBP.

202 M. Huk

2 Generalized Backpropagation Algorithm

The generalized error backpropagation algorithm (GBP) is a modification of classical
error backpropagation method extended to be able to train contextual neural networks
which are using neurons with multi-step conditional aggregation functions [1, 2]. This is
done by incorporating self-consistency paradigm known from physics [8]. It allows to
use gradient based method to optimize simultaneously continuous (connection weights)
and non-continuous, non-differentiable parameters of neuron’s aggregation functions.
The key to such abilities of the GBP method is maintaining mutual dependency of those
both groups of parameters. It is realized by defining non-continuous parameters as
function Q of continuous weights. For neurons with multi-step aggregation function the
Q relation consists of two operations: sorting N neuron connection weights and then
dividing ordered inputs into list of K equally-sized groups. N/K inputs with highest
weights go to the first group, next N/K inputs with highest weights go to the second
group, etc. Then the basic scan-path can be defined as the list of groups from first to last.
It can be used within aggregation function, where groups of inputs are read-in one after
another until given condition is met. Without details of aggregation the GBP algorithm
can be represented as on the Fig. 1.

Initialize neural network (random
weights, all scan-paths with one
group of inputs); epoch=0

Create random order D
of training vectors;
epoch=epoch+1

i

‘ Get next training vector d from D

All traning vectors
used?

Sort inputs of neurons by values of
their connection weights

Adjust the weights of connections in
each layer of neurons
(only connections active during
forward propagation are updated)

epoch mod w =0 ?

Stopping criterion met?

Output neural network
(without scan-paths)

Adjust scan-path of each neuron:
scan-path=Q(weights)

Calculate outputs of all layers of
neurons for vector d

Calculate error signals of output and
hidden layers of neurons
(error backpropagation; connections
not active during forward propagation
generate no error)

Calculate neural network
output error £

End

Fig. 1. General flowchart of the generalized error backpropagation algorithm (GBP) for given
scan-path creation function €. Scan-paths update interval @ controls the strength of
self-consistency between connections weights and parameters of neuron aggregation functions.
After the training, temporary neuron scan-paths are discarded — they can be re-created later from
weights with function Q.

Weights Ordering During Training of Contextual Neural Networks 203

It is important to notice how interval ® controls the strength of self-consistency
between connections weights and parameters of neuron aggregation functions. At the
beginning and during the first ® epochs of GBP algorithm all neurons have all inputs
assigned to the first group of their scan-paths. This is because at the beginning of
learning we do not want to make any assumptions about the importance of the neurons
inputs. Then, after each ® epochs scan-paths are updated with 2 function in accordance
to actual connection weights. Thus the selection of interval ® can considerably influ-
ence the training process. If @ = 00 (or number of groups K = 1) the GBP algorithm
behaves exactly as the classical error backpropagation method, and the contextual
neural network with neurons using conditional multi-step aggregation functions
behaves like MLP. On the other side, when K > 1 and the value of ® is close to one the
error space of the neural network is frequently reorganized due to the updates of
scan-paths of neurons after each ® epochs. This can make the training process to be
ineffective. But it was shown experimentally that when K > 1 and 5 < o << 00, the
output error of the neural network can temporarily increase after the update of the
scan-path, but during following epochs error can drop down again, together with the
activity of neural network connections.

Due to the above, the models built with GBP algorithm can have better general-
ization properties and lower average connections activity than their non-contextual
versions trained with classical error backpropagation. One of the reasons for such effect
is the following: cyclic reorganizations of the scan-paths of the neurons during the GBP
together with evolving of decision space of each neuron during conditional multi-step
signals aggregation, form mechanism analogous to the dropout technique extensively
used in deep learning solutions. But there are also fundamental differences. Dropout is
not dependent on the processed data, and the decision spaces of neurons of contextual
neural network change according to actually processed data vector and during GBP
take into account what the model has learned till given epoch. Dropout decreases the
internal activity of the network connections only during the training process, and
contextual neural networks limit it both during and after the training. This makes
conditional multi-step aggregation functions valuable both for basic feedforward neural
networks like MLP as well as for convolutional neural networks.

Presented description of the training process of contextual neural networks indi-
cates that frequent updates of scan-paths of the neuron’s aggregation functions are
connected with high number of sorting of neuron inputs by their weights. For high
number of neurons this can form considerable computational cost, thus it is worth to
check which sorting algorithm is most suitable for use within the GPB method.

3 Sorting Weights of Neurons’ Inputs Within GBP Algorithm

As it was indicated in the previous section, probably the most important element of the
GBP algorithm is the update of neuron’ scan-path realized with use of inputs sorting
phase. This is because it allows to merge gradient-based search done by the error
backpropagation algorithm with the self-consistency paradigm. But one can also notice
that the selection of the sorting algorithm for GBP method is not straight-forward. This
is because at least two factors can influence the efficiency of each sorting of inputs.

204 M. Huk

The first factor is the number of inputs of given hidden neuron — the size of the data to
be sorted can considerably influence efficiency of given sorting method. And the
second is the characteristic of the data to be sorted — which is hard to model in the
general case of scan-path changes during the GBP process for different problems. This
is because, depending on the data to be processed, values of parameters of GBP and on
the phase of the training process, connection’s weights can change a lot or almost not
change between epochs of subsequent scan-paths updates (after each ® epochs). And
different sorting algorithms can behave differently for sorted or partially sorted lists of
data. In such cases their computational efficiency can be even much lower or much
higher from their average efficiency.

To check the influence of the sorting method on the efficiency of the GBP algo-
rithm, it will be helpful to analyze in detail how the sorting method is used by the
training algorithm. At the beginning of the GBP the initial, random values are assigned
to the connections weights of neuron inputs of given indexes. At the same time all
inputs are assigned to the first aggregation group — this is to ensure that all inputs are
used during first cycles of error backpropagation algorithm. Let’s assume that after
such initialization and first omega epochs of the training, connection weights w of
neuron inputs of given indexes I as well as their assignment to scan-path groups G are
as presented below:

W= [0.3,0.9,0.1,0.4,0.2,0.6,0.8] //connection weights
-7 1, 2, 3, 4, 5, 6, 7] //indexes of inputs
G=[1, 1, 1, 1, 1 1 1] //assignments to groups

4 4

Then given sorting method creates ordered list of connection weights, reordering
accordingly also indexes of neuron inputs - without changing of the initial relation of
given weight of its neuron input. After sorting of weights and reordering of connection
indexes, neuron inputs are divided into given number of groups K. If possible, all
groups have the same number of elements. But when the number of neuron inputs N
can’t be divided into K groups of equal size, the eventual rest of connections are added
to the group of highest number. Then, during following epoch, neuron first aggregates
signals from inputs belonging to group 1. Next, accordingly to details of its aggregation
function, it conditionally aggregates signals from the remaining groups.

W= [0.9,0.8,0.6,0.4,0.3,0.2,0.1] //connection weights
I=7 2, 7, 6, 4, 1, 5, 3] //indexes of inputs
G=1 1, 1, 2, 2, 3, 3, 3] //assignment to 3 groups

Such weights sorting procedure and reassignment of neuron’s input connections to
aggregation groups is performed after every omega epochs of training, to keep mutual
relation between values of weights and aggregation priorities after changes of weights
values done in the effect of presentation of training vectors.

It is important to note, that for every sorting algorithm, given initial neural network
is transformed exactly into the same trained neural model. This is because each sorting
algorithm for the same input data outputs identical sorted list of values. But depending

Weights Ordering During Training of Contextual Neural Networks 205

on the number of inputs of network’ hidden neurons, different sorting methods will
present different efficiency. However, the reader can notice that average sorting effi-
ciency not necessarily must apply to data sorted during the training with generalized
backpropagation. This is because GBP training procedure changes weights and their
assignments to aggregation groups in non-random way. If the changes of values of
weights between epochs are very small, then subsequent runs of sorting algorithm for
given neuron will process list of data which is almost perfectly ordered. In such case
superior efficiency would be achieved by algorithms that are optimal for sorted data —
e.g. insertion-sort algorithm. In the opposite case, if the changes of values of weights
between epochs are big enough to considerably change initial assignments to aggre-
gation groups, then in most cases sorting algorithm for given neuron will process data
which is not ordered. In such case better efficiency would be achieved by method such
as quick-sort algorithm.

Finally, in this paper we want to check experimentally the efficiency of different
sorting algorithms under conditions occurring during training of contextual neural
networks with GBP algorithm. It will help to formulate guidelines how one should
select the sorting algorithm for given contextual neural network. But it is more
important, that it will help us to answer important question about characteristic of GBP
method: how much the changes of weights between subsequent sorts influence the
aggregation priorities of hidden neuron inputs? It can be, that after each sorting of
weights the aggregation priorities of neuron inputs and the related error space of neural
network change drastically. This would make the training more like random process. In
the opposite case, the sorting would not change the initial aggregation priorities at all,
what could mean that usage of the self-consistency paradigm has no influence on the
training results. Is any of the above dominating the training? Does it depend on the
frequency of scan-paths updates? Answering to the above questions will greatly
increase our understanding of properties of the generalized backpropagation algorithm.

4 Results of Experiments

To answer the questions stated in the previous section, a set of experiments was
performed for six different serial versions of sorting algorithms such as: Quick-sort
(recursive), Merge-sort (recursive), Insertion-sort, Bubble-sort, Optimized Bubble-sort
and Two-Way Optimized Bubble-sort [11-13]. Quick-sort, Insertion-sort and
Merge-sort were used in their basic versions, without any improvements. In particular
this means that Quick-sort was using middle element as a pivot and no specialized
mechanism was used for sorting short sub-partitions [12]. By analogy the Insertion-sort
was not performing initial placement of the smallest element at the beginning nor
shifting larger elements prior to the insertion instead of carrying out many exchanges
[11]. Decision to not use abovementioned optimizations was done because they were
designed for the average case of unsorted data and we expect that this can be not valid
in the case of partially sorted, GBP related data. Thus using simple algorithms should
ease the interpretation of the results and help formulating possible sorting optimizations
dedicated for use with GBP algorithm.

206 M. Huk

During the experiments contextual neural networks were trained with generalized
backpropagation algorithm to solve example UCI ML benchmark problems such as
Iris, Sonar, Soybean, Lung Cancer and Wine. All neurons within the neural network
were using bipolar sigmoid or leaky rectifier activation function and Sigma-if aggre-
gation function [2, 3]. Aggregation functions of all hidden neurons were dividing their
inputs into K groups and were using aggregation threshold ¢* = 0.6. Continuous data
attributes were normalized to range <0, 1>, and nominal attributes were represented
with single binary input for every value (one-hot encoding). Resulting architectures of
neural networks used during the experiments are presented in Table 1.

Table 1. Architectures of contextual neural networks used during the experiments for selected
benchmark problems from UCI ML repository.

Training Number of Number of | Number Number of Number of

data set inputs of hidden of connections groups of
neural neurons classes between inputs of
network N) neurons neurons (K)

Iris 4 10 3 70 3

Wine 13 10 3 160 3

Hypo 35 10 5 400 14

Sonar 60 10 2 620 10

Soybean 134 20 19 3060 22

LungC 244 3 3 741 3

The numbers of neurons in hidden layer and the number of groups K were based on
results of previous experiments and selected to achieve suboptimal classification
accuracies of resulting models with considerable reduction of connections activity
between neurons.

The values of parameters of the GBP training algorithm were as follows: constant
training step o = 0.1 (for networks with sigmoidal activation function) or o = 0.01 (for
networks with leaky rectifier activation function), interval of aggregation groups update
w = 25, stopping criterion: perfect classification of training data or no classification
accuracy improvement for more than 300 or 1300 subsequent training epochs. No
momentum was used.

For each set of values of above parameters, training was performed within Borland
Delphi 7 environment for set of ten different values of seed of built in pseudo-random
generator used to initialize neural networks and to select sequences of training vectors
during the training. The seed values were: 0, 1013420422, 550932796, 729462840,
923512745, 327401735, 423664106, 834385610, 245071639, 619168307. Addition-
ally each training was repeated ten times to ensure that resulting neural models for
given seed value and given set of values of other parameters are identical, and to
increase precision of measurements of computational cost. Cross-validation was not
used because analysis of the abilities of generalized backpropagation algorithm to build
contextual neural networks of good classification properties was not the goal of

Weights Ordering During Training of Contextual Neural Networks 207

performed experiments. Thus each training for given problem was done with use of the
whole given training data set.
During each experiment following properties were measured:

— cumulated cost of execution of sorting method during the training,

— number of training epochs before the stopping criterion was met,

— average classification error of the resulting model,

— average, minimal and maximal activity of internal connections of the neural
network.

Activity of the connections was measured for the neural network with the highest
average classification accuracy observed during the GBP process. Computational cost
of each sorting was measured with the use of main processor’ integrated
Time-Stamp-Counter (TSC) 64 bit register. Cumulated cost of execution of sorting
method during given training was calculated by summing up numbers of ticks of the
processor clock counted by TSC counter during each sorting (for each hidden neuron
and each epoch). Then, the average cost of single sorting was calculated by dividing the
cumulated cost of sorting by the number of calls of the sorting method. To minimize
influence of the operating system on the measurement precision, TSC register was used
with highest priority execution mode of the simulation program.

Basic results of experiments designed as described above are presented in Table 2.
They include average classification errors, average number of epochs of training and
average connections activity of contextual neural networks. Stopping criterion of the
GBP was: network error equal 0 or no decrease of the error during last 1300 epochs.

Table 2. Average values of classification error, epochs of training as well as minimal, maximal
and average activities of hidden neurons connections of contextual neural networks solving
example UCI benchmark classification problems. Neurons with Sigma-if aggregation function as
well as bipolar sigmoid (BS) and Leaky Rectifier (LR) activation functions were used.

Training | Activation | Classification | Training Activity Activity Activity
data set function error [%] epochs [1] | (avg.) [%] | (max) [%] |(min) [%]
Iris BS 3.9 149.1 86.0 87.5 85.7
Wine BS 43 194.6 91.7 91.7 91.7
Hypo BS 1.3 1763.3 25.7 73.1 17.5
Sonar BS 0.8 2037.8 15.4 35.6 9.7
Soybean | BS 2.0 2286.8 22.9 36.0 15.9
LungC BS 0.3 326.5 26.4 40.2 24.2
Iris LR 5.0 748.7 57.1 57.1 57.1
Wine LR 34 497.8 66.1 68.2 65.6
Hypo LR 24 2285.7 19.8 58.9 17.5
Sonar LR 6.9 725.7 19.7 39.2 11.5
Soybean |LR 2.1 2465.2 18.5 30.3 15.2
LungC LR 2.2 1703.2 26.9 41.7 24.2

208 M. Huk

Achieved considerable decrease of connections activity proves contextual behavior
of neural networks trained with GBP. It can be also seen that contextual neural net-
works of bigger structures (for Hypo, Sonar, Soybean and LungC problems) can
achieve lower activity of connections than smaller networks (here for Iris and Wine
problems). This was also expected because was observed in earlier experiments [3].
Thus performed simulations can be used to search for potential dependencies between
properties of contextual neural networks trained with the GBP algorithm and compu-
tational efficiency of selected sorting methods used for scan-paths updates in GBP.

Within Table 3 we present measured relative average computational cost of six
selected sorting methods during their use for neurons’ scan-path update by GBP
algorithm. Measures were taken by repeating GBP training for each of the sorting
methods for the same set of benchmark problems, neural networks architectures and
related parameters (including seed of pseudo-random generator, initial values of con-
nections weights, etc.). For given set of initial values of parameters the result of the
training was model identical for each of the sorting methods. This is because all used
sorting methods give the same output for the same input data, and switching between
different sorting methods can’t change the result of the GBP. But each of the sorting
methods can need different number of operations to sort given input data. This causes
differences between computational costs of considered sorting methods during the
GBP. To ease the analysis of results all obtained values of computational costs are
presented in relation to the cost measured for the Insertion-sort method. For the same
reason, within Table 3 the length of scan-path of hidden neurons is additionally pre-
sented. Scan-path length is defined here as the number of values which have to be
sorted during single update of the scan-path of given neuron by the GBP algorithm.

Within presented results it can be noticed that the factor with strongest influence on
the efficiency of scan-path updates is the length of scan-paths. This causes that for
neural networks with hidden neurons having low number of inputs (data for Iris and
Wine benchmarks) the most efficient sorting method is Insertion-sort. With the increase
of the length of the scan-path above certain length the most efficient sorting method
becomes Quick-sort. Based on the results from Table 3 this bound can be estimated by
interpolation but it can be also presented graphically as on the Fig. 2. This shows that
for considered contextual neural networks Quick-sort within GBP should be preferred
for scan-paths longer than 35 elements, irrespective of the type of activation function,
and Insertion-sort should be used for shorter scan-paths.

The above observation of effectiveness of sorting algorithms is considerably different
than when Quick-sort is compared with Insertion-sort for random distribution of values
to be sorted. In [12] as well as in well-known programming libraries the threshold, below
which Insertion-sort is used instead of Quick-sort, is much lower than 35. For example,
Bentley and Mcllroy set this threshold to 7 [12]. GNU C Library (glibc), GNU ISO C++
Library and C++ Standard Library (STL) as this threshold use value 5. And in FOR-
TRAN 90/95 one can find it to be equal 10. Such low values of this threshold are used
because mentioned solutions are implemented to maximize average sorting efficiency for
all possible sets of input data. Thus within conducted experiments Insertion-sort presents
computational cost lower than average and closer to its best case of computational
complexity ®(n), where n is the length of scan-path. In the same case cost of Quick-sort
is higher than average and closer to its worst case complexity of @(n?).

Weights Ordering During Training of Contextual Neural Networks 209

Table 3. Average relative cost of connections sorting per neuron per epoch during training of
contextual neural networks with GBP for different sorting algorithms. Sigma-if aggregation and
example UCI problems were used for two activation functions: bipolar sigmoid (BS) and Leaky
Rectifier (LR). Each result is average of 100 measurements. Scan-path length is the number of
inputs of hidden neuron. Stopping: 300 epochs without improvement of classification accuracy.

Training | Activation | Scanpath | Merge | Quick |Insert | Bub. sort | Bub. sort | Bubble
data set | function length sort sort sort two-way | optimized | sort [%]
[%] (%] |[%] | [%] [%]
Iris BS 4 153.4 | 131.2 | 100 112.8 111.0 97.2
Wine BS 13 180.8 | 137.1 | 100 172.4 188.4 242.1
Hypo BS 35 154.0 98.1 |100 |265.9 271.3 280.6
Sonar BS 60 103.1 83.1 | 100 |250.7 272.9 297.7
Soybean |BS 134 51.2 44.0 |100 |242.8 252.6 293.0
LungC |BS 244 50.7 359 100 |270.2 285.6 284.6
Iris LR 4 186.3 | 135.8 | 100 119.8 117.4 101.6
Wine LR 13 184.4 | 125.1 | 100 153.8 166.7 169.2
Hypo LR 35 1495 |101.6 |100 |220.9 228.3 253.3
Sonar LR 60 98.3 78.7 100 |243.8 268.1 282.4
Soybean |LR 134 53.9 44.0 |100 |244.2 254.2 260.3
LungC |LR 244 42.0 47.15|100 |225.2 2379 236.0

—B— Quick-sort (BS) —&—Quick-sort (LR)
40 —X%— Merge-sort (BS) —A— Merge-sort (LR)
—6— Insertion-sort

Relative computational cost of sort method
during scan-path update [%]

4 13 35 60 134 244

Length of the scan-paths of hidden neurons

Fig. 2. Average computational cost of sorting during updates of scan-paths of contextual neural
network by the GBP algorithm as a function of scan-paths length for selected sort algorithms and
two activation functions of neurons: bipolar sigmoid (BS) and leaky rectifier (LR). Results are
presented in relation to the measurements for Insertion-sort method. Subsequent, growing lengths
of scan-paths correspond to the following UCI ML benchmark data sets: Iris, Wine, Hypothyroid,
Sonar, Soybean and Lung Cancer. Scan-paths update interval was equal 25.

The interpretation of obtained results is straightforward - GBP algorithm can keep
weights of inputs of given hidden neuron partially ordered between subsequent updates
of its scan-path. Thus the scan-paths do not change in a random manner. Moreover, the

210 M. Huk

average percentage of the scan-path which is changed during scan-paths update can be
different for different activation functions of the neurons. We observe that it is higher
for bipolar sigmoid and training step o = 0.1. than for leaky rectifier function and
o = 0.01. Thus on average the scan-paths of neurons are not constant during the
training of considered contextual neural networks with the GBP algorithm. Finally, if
the scan-paths are changing during the training and those changes are not random, then
self-consistency effect has considerable influence on the training. This is important,
both practical and theoretical, result.

Using the outcomes of performed experiments it can be also checked how the
frequency of scan-paths updates influences the efficiency of sorting methods. For Wine
problem it is visualized on Fig. 3. For scan-paths interval o from 5 to 60 epochs mutual
relations of efficiency between sorting methods do not change. Thus, excluding cases
when o is higher than number of epochs of given training, earlier conclusions on
functioning of self-consistency and GBP method stay valid for different ® values.

225

—>—Merge Sort —O Quick Sort —O—Insert Sort
—A—Bubble Sort two-way —O— Bubble Sort Optimized —e—Bubble Sort Standard

150

Relative costof sortingmethod [%]

125

100

S 10 15 20 25 30 35 40 45 S0 55 60
Scan-paths update interval w [epoch]

Fig. 3. Average computational cost of sorting during updates of scan-paths of contextual neural
network by the GBP algorithm for Wine data set as a function of scan-paths update interval w.
Results are presented in relation to the measurements for Insertion-sort method. Activation
function: bipolar sigmoid. Stopping: 300 epochs without error decrease. Training step o = 0.1.

5 Conclusions

Measurements and analyses presented in this paper are unique in their nature because
basic BP algorithm is not related with sorting methods. We have shown that
self-consistency within GBP has considerable influence on the evolution of scan-paths
of contextual neurons during training. In the effect, for scan-paths shorter than 35
elements Insertion-sort makes GBP method less computationally expensive than other
considered sorting algorithms. Above this threshold Quick-sort was better choice and
such result was noted for wide range of scan-paths update interval w.

Weights Ordering During Training of Contextual Neural Networks 211

Moreover, measured values of this Insertion-sort threshold are considerably higher
than analogous values used by hybrid sorting methods implemented within standard
programming libraries. This is because those implementations of sorting algorithms are
optimized for achieving maximal average efficiency — and the scan-path related data of
neurons is preserved partially sorted during most of the epochs of their training with
GBP. Thus in cases when computational efficiency of GBP would be important, one
should consider using dedicated sorting method for scan-paths updates.

Presented experiments open new, previously not explored valley in the field of
research on artificial neural networks. Thus possible further work includes analyzing
relations between computational efficiency of GBP and such factors as different sorting
methods (e.g. Shell-sort, partial interval sorting), various multi-step aggregation
functions as well as parameters of neural networks and training methods. We expect
that such research will allow to train contextual neural networks more efficiently and
that it will extend our actual understanding of the nature of those models.

References

1. Huk, M.: Notes on the generalized backpropagation algorithm for contextual neural net-works
with conditional aggregation functions. J. Intell. Fuzzy Syst. 32, 1365-1376 (2017)

2. Huk, M.: Backpropagation generalized delta rule for the selective attention Sigma-if artificial
neural network. Int. J. Appl. Math. Comput. Sci. 22, 449-459 (2012)

3. Huk, M.: Learning distributed selective attention strategies with the Sigma-if neural network.
In: Akbar, M., Hussain, D. (eds.) Advances in Computer Science and IT, pp. 209-232.
InTech, Vukovar (2009)

4. Szczepanik, M., Jozwiak, I.: Data management for fingerprint recognition algorithm based on
characteristic points’ groups. In: Pechenizkiy, M., Wojciechowski, M. (eds.) New Trends in
Databases and Information Systems. Advances in Intelligent Systems and Computing, vol. 185,
pp. 425-432. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-32518-2_40

5. Szczepanik, M., Jozwiak, L.: Reliability and error probability for multimodal biometric
system. In: Korbicz, J., Kowal, M. (eds.) Intelligent Systems in Technical and Medical
Diagnostics. Advances in Intelligent Systems and Computing, vol. 230, pp. 325-332.
Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-39881-0_27

6. Huk, M.: Measuring the effectiveness of hidden context usage by machine learning methods
under conditions of increased entropy of noise. In: 3rd IEEE International Conference on
Cybernetics, pp. 1-6. IEEE Press (2017)

7. Privitera, C.M., Azzariti, M., Stark, L.W.: Locating regions-of-interest for the Mars Rover
expedition. Int. J. Remote Sens. 21, 3327-3347 (2000)

8. Raczkowski, D., Canning, A.: Thomas-Fermi charge mixing for obtaining self-consistency
in density functional calculations. Phys. Rev. B 64, 121101-121105 (2001)

9. Mel, B.W.: The Clusteron: toward a simple abstraction for a complex neuron. In: Advances
in Neural Information Processing Systems, vol. 4, pp. 35-42. Morgan Kaufmann (1992)

10. Spratling, M.W., Hayes, G.: Learning synaptic clusters for nonlinear dendritic processing.
Neural Process. Lett. 11, 17-27 (2000)

11. Knuth, D.: The Art of Computer Programming: Sorting and Searching, vol. 3. Addison
Wesley, Boston (1998)

12. Bentley, J.L., Mcllroy, M.D.: Engineering a sort function. Softw.: Pract. Exp. 23, 1249—
1265 (1993)

13. Astrachan, O.: Bubble sort: an archaeological algorithmic analysis. SIGCSE Bull. 35, 1-5
(2003)

http://dx.doi.org/10.1007/978-3-642-32518-2_40
http://dx.doi.org/10.1007/978-3-642-39881-0_27

	Weights Ordering During Training of Contextual Neural Networks with Generalized Error Backpropagation: Importance and Selection of Sorting Algorithms
	Abstract
	1 Introduction
	2 Generalized Backpropagation Algorithm
	3 Sorting Weights of Neurons’ Inputs Within GBP Algorithm
	4 Results of Experiments
	5 Conclusions
	References

