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Abstract. In this paper, we propose using dynamic ensemble selection
(DES) method on ensemble generated based on random projection. We first
construct the homogeneous ensemble in which a set of base classifier is obtained
by a learning algorithm on different training schemes generated by projecting the
original training set to lower dimensional down spaces. We then develop a DES
method on those base classifiers so that a subset of base classifiers is selected to
predict label for each test sample. Here competence of a classifier is evaluated
based on its prediction results on the test sample’s k� nearest neighbors
obtaining from the projected data of validation set. Our proposed method,
therefore, gains the benefits not only from the random projection in dimen-
sionality reduction and diverse training schemes generation but also from DES
method in choosing an appropriate subset of base classifiers for each test sample.
The experiments conducted on some datasets selected from four different
sources indicate that our framework is better than many state-of-the-art DES
methods concerning to classification accuracy.
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1 Introduction

In designing of an ensemble, there are three phases to be considered namely generation,
selection, and combination. In the first phase, the learning algorithm(s) learn on the
training set(s) to obtain base classifiers. In the second phase, a single classifier of a
subset of the best classifier is selected. In the last phase, the decisions made by clas-
sifiers of the ensemble are combined to obtain the final one [1].

Homogeneous ensemble methods like Bagging [2] and Random Subspace [3] focus
on the generation phase in which these methods concentrate on generating new training
schemes from the original training set. In 1984, Johnson and Lindenstrauss (JL)
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introduced an extending of Lipschitz continuous maps from metric spaces to Euclidean
spaces as well as the JL Lemma [4]. The lemma begins with a linear transformation
(known as a random projection) from a p-dimensional space R

p (called up space) to a
q-dimensional space R

q (called down space). Due to the unstable property, random
projections have used to construct the homogeneous ensemble [5].

In this study, we first employ random projection to generate the homogeneous
ensemble system to solve the classification tasks. In detail, the original training set is
projected to many down spaces to generate new training schemes. Due to the unstable
property of random projection in which the generated training scheme is different to
original training set as well as the other schemes, a learning algorithm can learn on
these schemes to obtain the diverse base classifiers. We then consider the selection
phase by selecting a subset of classifiers (also called ensemble of classifies or EoC)
associated with some random projections to predict class label. Here we propose using
a DES method [1, 6] to the random projection-based ensemble in which instead of
using all base classifiers for the prediction, only a subset of them is selected to predict
the class label for a specific test sample. The selection is based on the neighborhood of
the test sample belonging to the validation set in the local region of the projected
feature space. The merits of our work lie in the following: to the best of our knowledge,
this is the first approach to dynamically select EoC associated with random projections
to predict class label for each sample.

The paper is organized as follows. In Sect. 2, random projections and dynamic
classifier/ensemble selection are introduced. In Sect. 3, the proposed method based on
the combination of random projection and DES is proposed. Experimental results are
presented in Sect. 4 in which the results of the proposed method are compared with
those produced by some benchmark algorithms on 15 selected datasets. Finally, the
conclusions are presented in Sect. 5.

2 Related Methods

2.1 Random Projection

Given a finite set of p-dimension data D ¼ x1; x2; . . .; xnf g � R
p, we consider a linear

transformation T : Rp ! R
q : Z ¼ T D½ � ¼ z1; z2; . . .; znf g � R

q and zi ¼ T xið Þ. If the
linear transformation T can be represented in the form of matrix R zi ¼ T xið Þ ¼ Rxið Þ
so that if each element of the matrix is generated according to a specified random
distribution, T is known as a random projection. In practice, the random projection is
simply obtained by using a random matrix R ¼ 1=

ffiffiffi
q

p
rij

� �
of size p� qð Þ, where rij

are random variables such that E rij
� � ¼ 0 and Var rij

� � ¼ 1. Several forms of R are
summarized in [7] in which Plus-minus-one and Gaussian are the most popular random
projections.

Random projections are useful in dimension reduction since the dimension of the
down space can be chosen to be lower than that of up space, i.e., q\p. Comparing to
Principle Component Analysis (PCA), the directions of random projection are inde-
pendent of the data while those of PCA are data-dependent and generating the principle
components is computationally expensive compare to generating the random matrix in
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random projection [8]. Furthermore, Fern and Brodley [5] indicated that random
projections are very unstable since the dataset schemes generated from an original data
source based on random matrices are quite different. This property is important since
other sampling methods like bootstrapping only generate slightly different dataset
schemes. Thus an ensemble system based on a set of random projections offers a
potential for increased diversity. Until now, random projection has been extensively
studied and applied to many areas, for example dimensionality reduction in analyzing
noisy and noiseless images, and information retrieval in text documents [8], sparse
random projection to approximate the X 2 kernel [9], in supervised online machine
learning [7, 10], and in analyzing clusters [11].

2.2 Dynamic Ensemble/Classifier Selection

In the selection phase of multiple classifier systems, a single classifier or an EoC can be
obtained via static or dynamic approach. While in static approach, the selection is
conducted during the training process and then the selected classifier or EoC is used to
predict the label of all test sample, the dynamic approach works on the classification
process by selecting a different classifier or different EoC for each test sample. We
distinguish dynamic classifier selection (DCS) and DES term in which DCS techniques
select only one classifier while DES techniques select an EoC for each test sample.
Recent research on dynamic selection approaches shows its advantages for classifi-
cation problems [12].

In dynamic selection approach, we first need to evaluate the competence of each
base classifier from the pool of classifier and then select only the most competent or
ensemble containing the most competent classifiers to classify each specific test sam-
ple. Here the competence is computed according to some criteria on the samples in the
local region of feature space which can be defined by k-nearest neighbor techniques (in
MCB [13], MLA [14], KNOP [15], META-DES [6], KNORA-Union [16], DES-FA
[17]), clustering techniques [18], and potential functions (in DES-RRC [19], DES-KL
[20], DES-P [20]). The selection criteria includes the accuracy of base classifiers in the
local region [16], or meta-learning [6], or probabilistic-based models by considering
posterior probability of the classifier on the neighbors of each test sample [19, 20].

3 Proposed Method

In this paper, we propose an ensemble system for label prediction using KNORA
Union [1, 16] method and random projections. The survey in [1] shows that simple
DES method like KNORA Union is competitive to many more complex methods.
Meanwhile, the random project is advantageous in the homogeneous ensemble gen-
eration. In detail, in the training process, K random matrices of size ðp� qÞ denoted by
Rj ðj ¼ 1; . . .;KÞ are generated. The new K training schemes Zj of size ðN � qÞ (N is
the number of training observations) and then are generated from the original training

set D of size ðN � pÞ though the projection D!Rj
Zj given by:
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Zj ¼ DRj
� �

=
ffiffiffi
q

p ð1Þ

The ensemble of classifiers BCj j ¼ 1; . . .;Kð Þ is constructed by a learning algo-
rithm K on training schemes Zj. As random projection often generates significantly
different training schemes from original training set [5, 7, 10], the system diversity is
ensure. In DES, each test sample is predicted by selected EoC; and the EoCs for two
different test sample may be different. In general, we define the credit of a base
classifier on a sample.

Definition 1: The credit of a base classifier BCj on a sample x denoted by wj xð Þ is the
number of times the prediction of BCj on x used in the combining algorithm.

We propose using KNORA Union to our system to find the credit of base classifiers
on each test sample. The idea of the method is based on the prediction results of base
classifiers on the neighbors of each test sample. In this study, instead of getting the
neighbors from the validation set, we consider the neighbors in the projected schemes
of validation set. Specifically, the validation set V is projected to the down spaces as:

Vj ¼ VRj
� �

=
ffiffiffi
q

p ð2Þ

Denote kNNj xuð Þ as the k-nearest neighbors of an test sample xu in Vj. We select
base classifiers for xu based on their prediction results on kNNj xuð Þ as if BCj gives a
corrected prediction on each observation in kNNj xuð Þ, its credit wj xuð Þ will increase by
1. Based on prediction results on all observations belonging to kNNj xuð Þ, we obtain all
wj xuð Þ j ¼ 1; . . .;K. It is noted that there is an exception in which all base classifiers
misclassify all observations in kNNj xuð Þ so that base classifiers contribute nothing to
the combination. In this case, we simply set wj xuð Þ ¼ 18j ¼ 1; . . .;K which means that
all base classifiers contribute equally to the prediction for xu.

The output of the base classifiers on xu are combined to obtain the predicted class
label. Let ymf gm¼1;...;M denotes the set of M labels, Pj ymjxuð Þ is the probability that xu

belongs to the class with label ym given by the BCj. There are two output types for xu

namely Crisp Label (returns only class label, i.e. Pj ymjxuð Þ 2 0; 1f g andP
m Pj ymjxuð Þ ¼ 1) and Soft Label (returns posterior probabilities that xu belongs to a

class, i.e. Pj ymjxuð Þ 2 0; 1½ � and P
m Pj ymjxuð Þ ¼ 1) [21–24]. In this paper, we propose

using fixed combining rules [25–27] to combine the output of base classifiers. As the
fixed combining rules apply directly to the output of base classifiers to give the pre-
diction, they are simpler and fast to build and run. Several popular fixed combining
methods are Sum, Product, Majority Vote, Max, Min, and Median [25, 26]. In this
study because base classifiers set different credits on each test sample, the forms of
fixed combining rules applied to the outputs of base classifiers are given by:
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SumRule: xu 2 yt if t ¼ arg maxm¼1;...;M

XK

j¼1
wj xuð ÞPj ymjxuð Þ ð3Þ

Product Rule: xu 2 yt if t ¼ arg maxm¼1;...;M

YK

k¼1
wj xuð ÞPj ymjxuð Þ ð4Þ

MaxRule: xu 2 yt if t ¼ arg maxm¼1;...;M maxj¼1;...;K wj xuð ÞPj ymjxuð Þ ð5Þ

MinRule: xu 2 yt if t ¼ arg maxm¼1;...;M minj¼1;...;K wj xuð ÞPj ymjxuð Þ ð6Þ

Median Rule: xu 2 yt if t ¼ arg maxm¼1;...;M medianj¼1;...;K wj xuð ÞPj ymjxuð Þ ð7Þ

Majority Vote Rule: xu 2 yt if t ¼ arg maxm¼1;...;M

XK

j¼1
wj xuð ÞDjm

Djt ¼ 1 if t ¼ arg maxm¼1;...;M Pj ymjxuð Þ
0 otherwise

�
ð8Þ

Training set 

Scheme 1 Scheme

1

Validation set 

Scheme 1 Scheme Test sam
ple1

1

1

Fig. 1. The process to find the credits of base classifiers
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4 Experimental Studies

4.1 Datasets and Settings

We evaluated the proposed method on 15 datasets from UCI [28], STATLOG project
[29], Knowledge Extraction based on Evolutionary Learning (KEEL) [30] and Ludmila
Kuncheva Collection of real medical data (denoted by LKC) [31]. Information about
the datasets is summarized in Table 1.

Algorithm: DES with Random Projections-based ensemble
Training Process
Input: Training set: , Validation set: , Dimension of 

down space: , number of projections: , learning 
algorithm:

Output: Base classifiers: , Validation schemes , and 
random matrices: , (

For =1 to 
      Generate random matrix ;
      Get schemes  by (1) 

 = Learn( );
      Get validation scheme  by (2) 
End
Return , , and 

Classification process
Input Test sample , , , and 

Output Predicted class label for 
For =1 to 

;

End For
For =1 to 
     Find  in 
     For each  in 
         For =1 to 
             Predict label  for  by ;
             If ( == )

 =  +1; 
             End 
         End 
     End 
End
If( ==0 )

=1 ;
End
Predict using a fixed combining rule (3)-(8);
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We performed extensive comparison study with several well-known algorithms to
validate our approach. In this study, we compared with several well-known DES
methods namely MCB [13], MLA [14], KNOP [15], META-DES [6], DES-FA [17],
DES-RRC [19], DES-KL [20], and DES-P [20]. The experiments concerning to those
methods and the proposed method are conducted the same as experiments in [6, 12]
(the value of k is set to 7). For the proposed method, we used C4.5 learning algorithm
as the learning algorithm on 200 new training schemes to construct 200 base classifiers
[7, 10, 21]. The new training sets were generated by using Gaussian-based random
projections [7, 10] in which q was set as q ¼ 2� log2 pð Þ. We used Sum Rule to
combine the results of EoC on each test sample.

We used Friedman test [32] to assess the statistical significance of the classification
results of multiple methods on multiple datasets. Here we test the null hypothesis that
“all methods perform equally” on the test datasets. If the null hypothesis is rejected, a
post-hoc test is then conducted. In this paper, we used Shaffer’s procedure for all
pairwise comparisons [32]. The difference in the performance of two methods is treated
as statistically significant if the p-value computed from the post-hoc test statistic is
smaller than an adjusted value of confident level computed from Shaffer’s procedure
[32]. We set the confident level a to 0.05.

4.2 Comparing to Benchmark Algorithms

The experimental results of the benchmark algorithms and the proposed method are
shown in Table 2. The proposed method obtains the best classification result in 10
datasets. On some datasets, the accuracy of the proposed method is significantly better

Table 1. Information of datasets in evaluation

Datasets # of
features

# of
observations

# of
classes

Source

Pima 8 768 2 UCI
Bupa 6 345 2 UCI
Wdbc 30 568 2 UCI
Blood 4 748 2 UCI
Sonar 60 208 2 UCI
Ionosphere 34 315 2 UCI
Vertebral 6 310 2 UCI
Waveform without noise
(WwtN)

21 5000 3 UCI

Ecoli 7 336 8 UCI
Glass 9 214 6 UCI
Thyroid 3 215 3 LKC
Satimage 19 6435 7 STATLOG
Phoneme 6 5404 2 KEEL
Monk2 6 4322 2 KEEL
Mammographic 5 961 2 KEEL
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than the best result of all benchmark algorithms, for example on Sonar (88.50 vs. 80.77
of DES-RRC), Ionosphere (96.30 vs. 89.94 of META-DES), and Phoneme (96.22 vs.
81.64). For the remaining five datasets, the difference between the accuracy of the
proposed method and the best results are not significant except for two datasets, namely
Pima (77.87 vs. 79.03 of META-DES) and Bupa (68.53 vs. 70.08 of META-DES).

Figure 2 shows the average rankings of the benchmark algorithms and the proposed
method. It can be seen that the proposed method is ranked first (1.47), followed by
META-DES (3.13) and DES-RRC (3.3). We conducted the Friedman test base on the
rankings of the top five performing algorithms, i.e., DES-RRC, META-DES, DES-KL,
DES-P, and the proposed method. In this case, the p-value computed by Friedman test
is 1.44E-5. We rejected the null hypothesis of Friedman test and conducted the
post-hoc test for all pairwise comparisons among those methods. From the Shaffer’s
test results shown in Table 3, the proposed method is better than all four benchmark

Table 2. Mean of accuracy of benchmark algorithms and the proposed method

Database DES-FA MLA MCB KNOP DES-RRC META-DES DES-KL DES-P Proposed
method

Pima 73.95 77.08 76.56 73.42 77.64 79.03 77.97 76.87 77.87

Bupa 61.62 58 58 65.23 68.01 70.08 67.11 67.46 68.53

Wdbc 97.88 95.77 97.18 95.42 96.94 97.4 97.13 96.78 97.61

Blood 73.4 76.06 73.4 77.54 78.02 79.14 78.83 77.72 79.82
Sonar 78.52 76.91 76.56 75.72 80.77 80.55 78.15 79.49 88.50
Ionosphere 88.63 81.81 87.5 85.71 88.8 89.94 88.42 88.42 96.30
Vertebral 82.05 77.94 84.61 86.98 86.76 86.89 84.19 86.76 86.93

WwtN 84.01 79.95 78.75 84.21 84.63 84.56 84.61 84.59 86.88
Ecoli 75.29 76.47 76.47 80 80.66 77.25 79.95 79.83 82.12
Glass 55.32 57.6 67.92 62.45 66.04 66.87 63.32 63.13 67.93
Thyroid 95.37 94.79 95.95 95.95 97.61 96.78 97.04 96.98 97.89
Satimage 93 93.28 95.86 95.86 96.38 96.21 96.2 96.22 96.52
Phoneme 79.06 64.94 73.37 78.92 74.65 80.35 77.13 81.64 96.22
Monk2 75.92 75.92 74.07 80.55 80.98 83.24 80.85 79.93 87.44
Mammographic 80.28 75.55 81.25 82.21 85 84.82 84.12 84.98 84.89

*The best results for each dataset are highlighted in bold

6.87
7.97

6.97
6.2

3.3
3.13

4.57
4.53

1.47

DES-FA
MLA
MCB

KNOP
DES-RRC

META-DES
DES-KL

DES-P 
Proposed Method

Fig. 2. Average ranking of all methods
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algorithms. It shows the advantages of combining random projection and DES in a
building a high-performance ensemble method.

5 Conclusion

We have introduced a novel ensemble by using two techniques DES and random
projection to generate a single system. At first, original training set is projected to K
down spaces to generate K training schemes. A learning algorithm will learn on these
schemes to obtain K associated base classifiers. Validation set is also projected to the K
down spaces so as to be used for DES in classification process. In classification
process, a test sample is first projected to each of the down spaces. We determine how a
base classifier be selected based on its prediction outcomes on the neighbors of each
projected schemes of validation set. The experiments conducted on 15 datasets show
that our framework is better than many of the state-of-the-art dynamic classifier/
ensemble selection methods concerning to classification accuracy. In the future, the
model can be extended to incrementally deal with stream data [33].
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