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Abstract Fuzzy logic techniques were originally designed to translate expert

knowledge—which is often formulated by using imprecise (“fuzzy”) from natural

language (like “small”)—into precise computer-understandable models and control

strategies. Such a translation is still the main use of fuzzy techniques. Lately, it turned

out that fuzzy methods can help in another class of applied problems: namely, in

situations when there are semi-heuristic techniques for solving the corresponding

problems, i.e., techniques for which there is no convincing theoretical justification.

Because of the lack of a theoretical justification, users are reluctant to use these

techniques, since their previous empirical success does not guarantee that these tech-

niques will work well on new problems. In this paper, we show that in many such sit-

uations, the desired theoretical justification can be obtained if, in addition to known

(crisp) requirements on the desired solution, we also take into account requirements

formulated by experts in natural-language terms. Naturally, we use fuzzy techniques

to translate these imprecise requirements into precise terms.

1 Introduction

Fuzzy logic techniques (see, e.g., [8, 11, 13]) were originally designed to trans-

late expert knowledge—which is often formulated by using imprecise (“fuzzy”)

from natural language (like “small”)—into precise computer-understandable mod-

els and control strategies. Such a translation is still the main use of fuzzy techniques.
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For example, we want to control a complex plant for which no good control technique

is known, but for which there are experts how can control this plant reasonably well.

So, we elicit rules from the experts, and then we use fuzzy techniques to translate

these rules into a control strategy.

Lately, it turned out that fuzzy methods can help in another class of applied prob-

lems: namely, in situations when there are semi-heuristic techniques for solving the

corresponding problems, i.e., techniques for which there is no convincing theoretical

justification. Because of the lack of a theoretical justification, users are reluctant to

use these techniques, since their previous empirical success does not guarantee that

these techniques will work well on new problems.

Also, these techniques are usually not perfect, and without an underlying theory,

it is not clear how to improve their performance. For example, linear models can be

viewed as first approximation to Taylor series, so a natural next approximation is to

use quadratic models. However, e.g., for 𝓁p
-models, when they do not work well, it

is not immediately clear what is a reasonable next approximation.

In this paper, we show that in many such situations, the desired theoretical justi-

fication can be obtained if, in addition to known (crisp) requirements on the desired

solution, we also take into account requirements formulated by experts in natural-

language terms. Naturally, we use fuzzy techniques to translate these imprecise

requirements into precise terms. To make the resulting justification convincing, we

need to make sure that this justification works not only for one specific choice of

fuzzy techniques (i.e., membership function, “and”- and “or”-operations, etc.), but

for all combinations of such techniques which are consistent with the corresponding

practical problem.

As examples, we provide a reasonably detailed justification of:

∙ sparsity techniques in data and image processing—a very successful hot-topic

technique whose success is often largely a mystery; and

∙ 𝓁p
-regularization techniques in solving inverse problems—an empirically suc-

cessful alternative to Tikhonov regularization appropriate for situations when the

desired signal or image is not smooth.

2 Fuzzy Logic: From Traditional to New Applications

Traditional use of fuzzy logic. Expert knowledge is often formulated by using

imprecise (“fuzzy”) from natural language (like “small”). Fuzzy logic techniques

was originally invented to translate such knowledge into precise terms. Such a trans-

lation is still the main use of fuzzy techniques.

Example A typical example is that we want to control a complex plant for which:

∙ no good control technique is known, but

∙ there are experts how can control this plant reasonably well.



Beyond Traditional Applications of Fuzzy Techniques . . . 467

So, we elicit rules from the experts. Then, we use fuzzy techniques to translate these

rules into a control strategy.

Other situations in which we need help. Lately, it turned out that fuzzy techniques

can help in another class of applied problems: in situations when

∙ there are semi-heuristic techniques for solving the corresponding problems, i.e.,

∙ techniques for which there is no convincing theoretical justification.

These techniques lack theoretical justification. Their previous empirical success does

not guarantee that these techniques will work well on new problems. Thus, users are

reluctant to use these techniques.

An additional problem of semi-heuristic techniques is that they are often not per-

fect. Without an underlying theory, it is not clear how to improve their performance.

For example, linear models can be viewed as first approximation to Taylor series.

So, a natural next approximation is to use quadratic models. However, e.g., for 𝓁p
-

models (described later), when they do not work well, it is not immediately clear

what is a reasonable next approximation.

What we show in this paper. We show that in many such situations, the desired

theoretical justification can be obtained if:

∙ in addition to known (crisp) requirements on the desired solution,

∙ we also take into account requirements formulated by experts in natural-language

terms.

Naturally, we use fuzzy techniques to translate these imprecise requirements into

precise terms.

To make the resulting justification convincing, we need to make sure that this

justification works not only for one specific choice of fuzzy techniques (membership

function, t-norm, etc.), but for all techniques which are consistent with the practical

problem.

Case studies. As examples, we provide a reasonably detailed justification:

∙ of sparsity techniques in data and image processing—a very successful hot-topic

technique whose success is often largely a mystery; and

∙ of 𝓁p
-regularization techniques in solving inverse problems, an empirically suc-

cessful alternative to smooth approaches which is appropriate for situations when

the desired signal or image is not smooth.

Comment. A detailed description of the corresponding case studies can be found

in [3–6].
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3 Why Sparse? Fuzzy Techniques Explain Empirical
Efficiency of Sparsity-Based Data- and Image-Processing
Algorithms

Sparsity is useful, but why? In many practical applications, it turned out to be

efficient to assume that the signal or an image is sparse (see, e.g., [7]):

∙ when we decompose the original signal x(t) (or image) into appropriate basic func-

tions ei(t):

x(t) =
∞∑

i=1
ai ⋅ ei(t),

∙ then most of the coefficients ai in this decomposition will be zeros.

It is often beneficial to select, among all the signals consistent with the observations,

the signal for which the number of non-zero coefficients—sometimes taken with

weights—is the smallest possible:

#{i ∶ ai ≠ 0} → min or

∑

i∶ai≠0
wi → min .

At present, the empirical efficiency of sparsity-based techniques remains somewhat

a mystery.

Before we perform data processing, we first need to know which inputs are rel-
evant. In general, in data processing, we estimate the value of the desired quantity yj
based on the values of the known quantities x1,… , xn that describe the current state

of the world.

In principle, all possible quantities x1,… , xn could be important for predicting

some future quantities. However, for each specific quantity yj, usually, only a few

of the quantities xi are actually useful. So, we first need to check which inputs are

actually useful.

This checking is an important stage of data processing: else we waste time pro-

cessing unnecessary quantities.

Analysis of the problem. We are interested in a reconstructing a signal or image x(t) =
∞∑
i=1

ai ⋅ ei(t) based on:

∙ the measurement results and

∙ prior knowledge.

First, we find out which quantities ai are relevant. The quantity ai is irrelevant if

it does not affect the resulting signal, i.e., if ai = 0. So, first, we decide which values

ai are zeros and which are non-zeros.
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Out of all such possible decisions, we need to select the most reasonable one. The

problem is that “reasonable” is not a precise term.

Let us use fuzzy logic. The problem is that we want the most reasonable decision,

but “reasonable” is not a precise term. So, to be able to solve the problem, we need

to translate this imprecise description into precise terms. Let’s use fuzzy techniques

which were specifically designed for such translations.

In fuzzy logic, we assign, to each statement S, our degree of confidence d in S.

For example, we ask experts to mark, on a scale from 0 to 10, how confident they

are in S. If an expert marks the number 7, we take d = 7∕10. There are many other

ways to assign these degrees.

Thus, for each i, we can learn to what extent ai = 0 or ai ≠ 0 are reasonable.

Need for an “and”-operation. We want to estimate, for each tuple of signs, to which

extent this tuple is reasonable. There are 2n such tuples, so for large n, it is not feasible

to directly ask the expert about all these tuples.

In such situations, we need to estimate the degree to which a1 is reasonable and
a2 is reasonable … based on individual degrees to which ai are reasonable. In other

words, we need to be able to solve the following problem:

∙ we know the degrees of belief a = d(A) and b = d(B) in statements A and B, and

∙ we need to estimate the degree of belief in the composite statement A&B,

as f&(a, b).

The “and”-estimate is not always exact: an example. It is important to emphasize

that the resulting estimate cannot be exact. Let us give two examples.

In the first example, A is “coin falls heads”, B is “coin falls tails”. For a fair coin,

degrees a and b are equal: a = b. Here, A&B is impossible, so our degree of belief

in A&B is zero: d(A&B) = 0.

Let us now consider the second example. If we take A′ = B′ = A, then A′ &B′
is

simply equivalent to A. So we still have a′ = b′ = a but this time d(A′ &B′) = a > 0.

In these two examples, we have d(A′) = d(A) = a and d(B′) = d(B) = b, but

d(A&B) ≠ d(A′ &B′).
Which “and”-operation (t-norm) should we choose. The corresponding function

f&(a, b) must satisfy some reasonable properties.

For example, since A&B means the same as B&A, this operation must be com-

mutative. Since (A&B)&C is equivalent to A&(B&C), this operation must be

associative, etc.

It is known that each such operation can be approximated, with any given accu-

racy, by an Archimedean t-norm of the type f&(a, b) = f −1(f (a) ⋅ f (b)), for some

strictly increasing function f (x); see, e.g., [10].

Thus, without losing generality, we can assume that the actual t-norm is

Archimedean.

Let us use fuzzy logic. Let d=i
def
= d(ai = 0) and d≠i

def
= d(ai ≠ 0). So, for each

sequence (𝜀1, 𝜀2,…), where 𝜀i is = or ≠, we estimate the degree that this sequence

is reasonable as:
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d(𝜀) = f&(d
𝜀1
1 , d𝜀22 ,…).

Out of all sequences 𝜀 which are consistent with the measurements and with the

prior knowledge, we must select the one for which this degree of belief is the largest

possible.

If we have no information about the signal, then the most reasonable choice

is x(t) = 0, i.e.,

a1 = a2 = ⋯ = 0 and 𝜀 = (=,=,⋯).

Similarly, the least reasonable is the sequence in which we take all the values into

account, i.e., 𝜀 = (≠,⋯ ,≠).
Thus, we arrive at the following definitions.

Definition 1

∙ By a t-norm, we mean f&(a, b) = f −1(f (a) ⋅ f (b)), where f ∶ [0, 1] → [0, 1] is

continuous, strictly increasing, f (0) = 0, and f (1) = 1.

∙ By a sequence, we mean a sequence 𝜀 = (𝜀1,… , 𝜀N), where each symbol 𝜀i is

equal either to = or to ≠.

∙ Let d= = (d=1 ,… , d=N) and d≠ = (d≠1 ,… , d≠N) be sequences of real numbers from

the interval [0, 1].
∙ For each sequence 𝜀, we define its degree of reasonableness as

d(𝜀)
def
= f&(d

𝜀1
1 ,… , d𝜀NN ).

∙ We say that the sequences d= and d≠ properly describe reasonableness if the fol-

lowing two conditions hold:

– for 𝜀=
def
= (=,⋯ ,=), d(𝜀=) > d(𝜀) for all 𝜀 ≠ 𝜀=,

– for 𝜀≠

def
= (≠,⋯ ,≠), d(𝜀≠) < d(𝜀) for all 𝜀 ≠ 𝜀≠.

∙ For each set S of sequences, we say that a sequence 𝜀 ∈ S is the most reasonable
if d(𝜀) = max

𝜀
′∈S

d(𝜀′).

Now, we can formulate the main result of this section.

Proposition 1 Let us assume that the sequences d= and d≠ properly describe rea-
sonableness. Then, there exist weights wi > 0 for which, for each set S, the following
two conditions are equivalent:

∙ the sequence 𝜀 ∈ S is the most reasonable,
∙ the sum

∑
i∶𝜀i=≠

wi =
∑

i∶ai≠0
wi is the smallest possible.

Discussion. Thus, fuzzy-based techniques indeed naturally lead to the sparsity con-

dition.
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Proof of Proposition 1 By definition of the t-norm, we have

d(𝜀) = f&(d
𝜀1
1 ,… , d𝜀NN ) = f −1(f (d𝜀11 ) ⋅… ⋅ f (d𝜀NN )).

So, d(𝜀) = f&(d
𝜀1
1 ,… , d𝜀NN ) = f −1(e𝜀11 ⋅… ⋅ e𝜀NN ), where we denoted e𝜀ii

def
= f (d𝜀ii ).

Since the function f (x) is increasing, maximizing d(𝜀) is equivalent to maximizing

e(𝜀)
def
= f (d(𝜀)) = e𝜀11 ⋅… ⋅ e𝜀NN .

We required that the sequences d= and d≠ properly describe reasonableness. Thus,

for each i, we have d(𝜀=) > d(𝜀(i)= ), where

𝜀

(i)
=

def
= (=,⋯ ,=,≠ (on i-th place),=,⋯ ,=).

This inequality is equivalent to e(𝜀=) > e(𝜀(i)= ). Since the values e(𝜀) are simply the

products, we thus conclude that e=i > e≠i .

Maximizing e(𝜀) =
N∏
i=1

e𝜀ii is equivalent to maximizing
e(𝜀)
c

, for a constant c
def
=

N∏
i=1

e=i . The ratio
e(𝜀)
c

can be reformulated as
e(𝜀)
c

=
∏

i∶𝜀i=≠

e≠i
e=i

.

Since ln(x) is an increasing function, maximizing this product is equivalent to

minimizing minus logarithm of this product:

L(𝜀)
def
= − ln

(
e(𝜀)
c

)
=

∑

i∶𝜀i=≠
wi, where wi

def
= − ln

(
e≠i
e=i

)
.

Since e=i > e≠i > 0, we have

e≠i
e=i

< 1 and thus, wi > 0.

The proposition is proven.

A similar derivation can be obtained in the probabilistic case. Alternatively,

reasonableness can be described by assigning a probability p(𝜀) to each possible

sequence 𝜀.

Let p=i be the probability that ai = 0, and let p≠i = 1 − p=i be the probability that

ai ≠ 0. We do not know the relation between the values 𝜀i and 𝜀j corresponding

to different coefficients i ≠ j. So, it makes sense to assume that the corresponding

random variables 𝜀i and 𝜀j are independent, thus

p(𝜀) =
N∏

i=1
p𝜀ii .

So, we arrive at the following definition.
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Definition 2
∙ Let p= = (p=1 ,… , p=N) be a sequence of real numbers from the interval [0, 1], and

let p≠i
def
= 1 − p=i .

∙ For each sequence 𝜀, its probability is p(𝜀)
def
=

N∏
i=1

p𝜀ii .

∙ We say that the sequence p= properly describes reasonableness if the following

two conditions are satisfied:

– the sequence 𝜀=
def
= (=,… ,=) is more probable than all others, i.e., p(𝜀=) > p(𝜀)

for all 𝜀 ≠ 𝜀=,

– the sequence 𝜀≠

def
= (≠,… ,≠) is less probable than all others, i.e., p(𝜀≠) < p(𝜀)

for all 𝜀 ≠ 𝜀≠.

∙ For each set S of sequences, we say that a sequence 𝜀 ∈ S is the most probable
if p(𝜀) = max

𝜀
′∈S

p(𝜀′).

Proposition 2 Let us assume that the sequence p= properly describes reasonable-
ness. Then, there exist weights wi > 0 for which, for each set S, the following two
conditions are equivalent to each other:
∙ the sequence 𝜀 ∈ S is the most probable,
∙ the sum

∑
i∶𝜀i=≠

wi is the smallest possible.

Proof of Proposition 2 The proof of this proposition is similar to the proof of Propo-

sition 1.

Discussion. In other words, probabilistic techniques also lead to the sparsity condi-

tion.

Fuzzy approach versus probabilistic approach. The fact that the probabilistic

approach leads to the same conclusion as the fuzzy approach makes us more confi-

dent that our justification of sparsity is valid.

It should be mentioned, however, that the probability-based result is based on the

assumption of independence, while the fuzzy-based result can allow different types

of dependence—as described by different t-norms. This is an important advantage

of the fuzzy-based approach.

4 Why 𝓵p-Methods in Signal and Image Processing:
A Fuzzy-Based Explanation

Need for beblurring. The second case study deals with signal and image processing.

Cameras and other image-capturing devices are getting better and better every

day. However, none of them is perfect, there is always some blur, that comes from

the fact that:
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∙ while we would like to capture the intensity I(x, y) at each spatial location (x, y),
∙ the signal s(x, y) is influenced also by the intensities I(x′, y′) at nearby loca-

tions (x′, y′):
s(x, y) =

∫
w(x, y, x′, y′) ⋅ I(x′, y′) dx′ dy′.

When we take a photo of a friend, this blur is barely visible—and does not constitute

a serious problem. However, when a spaceship takes a photo of a distant planet, the

blur is very visible—so deblurring is needed.

In general, signal and image reconstruction are ill-posed problems. The image

reconstruction problem is ill-posed in the sense that large changes in I(x, y) can lead

to very small changes in s(x, y).
Indeed, the measured value s(x, y) is an average intensity over some small region.

Averaging eliminates high-frequency components. Thus, for

I∗(x, y) = I(x, y) + c ⋅ sin(𝜔x ⋅ x + 𝜔y ⋅ y),

the signal is practically the same: s∗(x, y) ≈ s(x, y). However, the original images,

for large c, may be very different.

Need for regularization. To reconstruct the image reasonably uniquely, we must

impose additional conditions on the original image. This imposition is known as

regularization.

Often, a signal or an image is smooth (differentiable). Then, a natural idea is to

require that the vector d = (d1, d2,…) formed by the derivatives is close to 0:

𝜌(d, 0) ≤ C ⇔
n∑

i=1
d2i ≤ c

def
= C2

.

For continuous signals, sum turns into an integral:

∫
(ẋ(t))2 dt ≤ c or

∫

((
𝜕I
𝜕x

)2
+
(
𝜕I
𝜕y

)2
)

dx dy ≤ c.

Tikhonov regularization. Out of all smooth signals or images, we want to find the

best fit with observation: J
def
=

∑
i
e2i → min, where ei is the difference between the

actual and the reconstructed values. Thus, we need to minimize J under the constraint

∫
(ẋ(t))2 dt ≤ c and

∫

((
𝜕I
𝜕x

)2
+
(
𝜕I
𝜕y

)2
)

dx dy ≤ c.
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The Lagrange multiplier method reduced this constraint optimization problem to

the unconstrained one:

J + 𝜆 ⋅
∫

((
𝜕I
𝜕x

)2
+
(
𝜕I
𝜕y

)2
)

dx dy → min
I(x,y)

.

This idea is known as Tikhonov regularization; see, e.g., [12].

From continuous to discrete images. In practice, we only observe an image with

a certain spatial resolution. So we can only reconstruct the values Iij = I(xi, yj) on a

certain grid xi = x0 + i ⋅ 𝛥x and yj = y0 + j ⋅ 𝛥y.

In this discrete case, instead of the derivatives, we have differences:

J + 𝜆 ⋅
∑

i

∑

j
((𝛥xIij)2 + (𝛥yIij)2) → min

Iij
,

where 𝛥xIij
def
= Iij − Ii−1,j, and 𝛥yIij

def
= Iij − Ii,j−1.

Limitations of Tikhonov regularization and 𝓁p-method. Tikhonov regularization

is based on the assumption that the signal or the image is smooth. In real life, images

are, in general, not smooth. For example, many of them exhibit a fractal behavior;

see, e.g., [9].

In such non-smooth situations, Tikhonov regularization does not work so well.

To take into account non-smoothness, researchers have proposed to modify the

Tikhonov regularization:

∙ instead of the squares of the derivatives,

∙ use the p-th powers for some p ≠ 2:

J + 𝜆 ⋅
∑

i

∑

j
(|𝛥xIij|p + |𝛥yIij|p) → min

Iij
.

This works much better than Tikhonov regularization; see, e.g., [2].

Remaining problem. A big problem is that the 𝓁p
-methods are heuristic. For exam-

ple, there is no convincing explanation of why necessarily we replace the square with

a p-th power and not with some other function.

What we show. In this section, we show that a natural formalization of the corre-

sponding intuitive ideas indeed leads to 𝓁p
-methods.

To formalize the intuitive ideas behind image reconstruction, we use fuzzy tech-
niques, techniques that were designed to transform imprecise intuitive ideas into

exact formulas.

Let us apply fuzzy techniques. We are trying to formalize the statement that the

image is continuous. This means that the differences 𝛥xk
def
= 𝛥xIij and 𝛥yIij between

image intensities at nearby points are small.
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Let 𝜇(x) denote the degree to which x is small, and f&(a, b) denote the “and”-

operation. Then, the degree d to which 𝛥x1 is small and 𝛥x2 is small, etc., is:

d = f&(𝜇(𝛥x1), 𝜇(𝛥x2), 𝜇(𝛥x3),…).

We have already mentioned, in the previous section, that each “and”-operation can

be approximated, for any 𝜀 > 0, by an Archimedean one:

f&(a, b) = f −1(f (a)) ⋅ f (b)).

Thus, without losing generality, we can safely assume that the actual “and”-operation

is Archimedean.

Analysis of the problem. We want to select an image with the largest degree d of

satisfying the above condition:

d = f −1(f (𝜇(𝛥x1)) ⋅ f (𝜇(𝛥x2)) ⋅ f (𝜇(𝛥x3)) ⋅…) → max .

Since the function f (x) is increasing, maximizing d is equivalent to maximizing

f (d) = f (𝜇(𝛥x1)) ⋅ f (𝜇(𝛥x2)) ⋅ f (𝜇(𝛥x3)) ⋅…

Maximizing this product is equivalent to minimizing its negative logarithm

L
def
= − ln(d) =

∑

k
g(𝛥xk), where g(x)

def
= − ln(f (𝜇(x))).

In these terms, selecting a membership function is equivalent to selecting the related

function g(x).

Which function g(x) should we select: idea. The value 𝛥xi = 0 is absolutely small,

so we should have 𝜇(0) = 1 and g(0) = − ln(1) = 0.

The numerical value of a difference 𝛥xi depends on the choice of a measuring

unit. If we choose a measuring unit which is a times smaller, then 𝛥xi → a ⋅𝛥xi. It is

reasonable to request that the requirement
∑
k
g(𝛥xk) → min not change if we change

a measuring unit. For example, if g(z1) + g(z2) = g(z′1) + g(z′2), then

g(a ⋅ z1) + g(a ⋅ z2) = g(a ⋅ z′1) + g(a ⋅ z′2).

Which functions g(z) satisfy this property?

Definition 3 A function g(z) is called scale-invariant if it satisfies the following two

conditions:
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∙ g(0) = 0 and

∙ for all z1, z2, z′1, z
′
2, and a, g(z1) + g(z2) = g(z′1) + g(z′2) implies

g(a ⋅ z1) + g(a ⋅ z2) = g(a ⋅ z′1) + g(a ⋅ z′2).

Proposition 3 A function g(z) is scale-invariant if and only if it has the form g(a) =
c ⋅ ap, for some c and p > 0.

Discussion. Minimizing
∑
k
g(𝛥xk) is equivalent to minimizing the sum

∑
k
|𝛥xk|p.

Minimizing the sum
∑
k
|𝛥xk|p under condition J ≤ c is equivalent to minimizing the

expression J + 𝜆 ⋅
∑
k
|𝛥xk|p. Thus, fuzzy techniques indeed justify the 𝓁p

-method.

Proof of Proposition 3 We are looking for a function g(x) for which g(z1) + g(z2) =
g(z′1) + g(z′2), then g(a ⋅ z1) + g(a ⋅ z2) = g(a ⋅ z′1) + g(a ⋅ z′2).

Let us consider the case when z′1 = z1 + 𝛥z for a small 𝛥z, and

z′2 = z2 + k ⋅ 𝛥z + o(𝛥z)

for an appropriate k. Here, g(z1+𝛥z) = g(z1)+g′(z1)⋅𝛥z+o(𝛥z), so g′(z1)+g′(z2)⋅k =

0 and k = −
g′(z1)
g′(z2)

.

The condition g(a ⋅ z1) + g(a ⋅ z2) = g(a ⋅ z′1) + g(a ⋅ z′2) similarly takes the form

g′(a ⋅ z1) + g′(z2) ⋅ k = 0, so

g′(a ⋅ z1) − g′(a ⋅ z2) ⋅
g′(z1)
g′(z2)

= 0.

Thus,
g′(a ⋅ z1)
g′(z1)

=
g′(a ⋅ z2)
g′(z2)

for all a, z1, and z2.

This means that the ratio
g′(a ⋅ z1)
g′(z1)

does not depend on zi:
g′(a ⋅ z1)
g′(z1)

= F(a) for

some F(a).
For a = a1 ⋅ a2, we have

F(a) =
g′(a ⋅ z1)
g′(z1)

=
g′(a1 ⋅ a2 ⋅ z1)

g′(z1)
=

g′(a1 ⋅ (a2 ⋅ z1))
g′(a2 ⋅ z1)

⋅
g′(a2 ⋅ z1)
g′(z1)

= F(a1) ⋅ F(a2).

So, F(a1 ⋅ a2) = F(a1) ⋅ F(a2). Continuous solutions of this functional equations are

well known (see, e.g., [1]), so we conclude that F(a) = aq for some real number q.

For this function F(a), the equality
g′(a ⋅ z1)
g′(z1)

= F(a) becomes g′(a ⋅ z1) = g′(z1) ⋅ aq.
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In particular, for z1 = 1, we get g′(a) = C ⋅ aq, where C
def
= g′(1).

In general, we could have q = −1 or q ≠ −1. For q = −1, we get g(a) =
C ⋅ ln(a) + const, which contradicts to g(0) = 0. Thus, this case is impossible, and

q ≠ −1. Integrating, for q ≠ −1, we get g(a) = C
q + 1

⋅ aq+1 + const. The condition

g(0) = 0 implies that const = 0.

Thus, the proposition is proven, for p = q + 1.

5 How to Improve the Existing Semi-Heuristic Technique

What we do in this section. Until now, we have discussed how to justify the existing

semi-heuristic techniques. However, often, these techniques are not perfect, so it is

desirable to improve them. Let us describe an example of how this can be done.

Blind image deconvolution: formulation of the problem. In general, the measure-

ment results yk differ from the actual values xk dues to additive noise and blurring:

yk =
∑

i
hi ⋅ xk−i + nk.

From the mathematical viewpoint, y is a convolution of h and x: y = h ⋆ x.

Similarly, the observed image y(i, j) differs from the ideal one x(i, j) due to noise

and blurring:

y(i, j) =
∑

i′

∑

j′
h(i − i′, j − j′) ⋅ x(i′, j′) + n(i, j).

It is desirable to reconstruct the original signal or image, i.e., to perform deconvolu-
tion.

Ideal no-noise case. In the ideal case, when noise n(i, j) can be ignored, we can find

x(i, j) by solving a system of linear equations:

y(i, j) =
∑

i′

∑

j′
h(i − i′, j − j′) ⋅ x(i′, j′).

However, already for 256× 256 images, the matrix h is of size 65,536× 65,536, with

billions entries. Direct solution of such systems is not feasible.

A more efficient idea is to use Fourier transforms, since y = h ⋆ x implies Y(𝜔) =
H(𝜔) ⋅ X(𝜔); hence:

∙ we compute Y(𝜔) = F (y);
∙ we compute X(𝜔) = Y(𝜔)

H(𝜔)
, and

∙ finally, we compute x = F−1(X(𝜔)).
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Deconvolution in the presence of noise with known characteristics. Suppose that

signal and noise are independent, and we know the power spectral densities

SI(𝜔) = lim
T→∞

E
[ 1
T
⋅ |XT (𝜔)|2

]
, SN(𝜔) = lim

T→∞
E
[ 1
T
⋅ |NT (𝜔)|2

]
.

Then, we minimize the expected mean square difference

d
def
= lim

T→∞

1
T
⋅ E

[

∫

T∕2

−T∕2
(̂x(t) − x(t))2 dt

]
.

Minimizing d leads to the known Wiener filter formula

̂X(𝜔1, 𝜔2) =
H∗(𝜔1, 𝜔2)

|H(𝜔1, 𝜔2)|2 +
SN(𝜔1, 𝜔2)
SI(𝜔1, 𝜔2)

⋅ Y(𝜔1, 𝜔2).

Blind image deconvolution in the presence of prior knowledge. Wiener filter tech-

niques assume that we know the blurring function h. In practice, we often only have

partial information about h. Such situations are known as blind deconvolution.

Sometimes, we know a joint probability distribution p(𝛺, x, h, y) corresponding

to some parameters 𝛺:

p(𝛺, x, h, y) = p(𝛺) ⋅ p(x|𝛺) ⋅ p(h|𝛺) ⋅ p(y|x, h, 𝛺).

In this case, we can find

̂
𝛺 = argmax

𝛺

p(𝛺|y) =
∫ ∫x,h

p(𝛺, x, h, y) dx dh and

(̂x, ̂h) = argmax
x,h

p(x, h| ̂𝛺, y).

Blind image deconvolution in the absence of prior knowledge: sparsity-based
techniques. In many practical situations, we do not have prior knowledge about the

blurring function h. Often, what helps is sparsity assumption: that in the expansion

x(t) =
∑
i
ai ⋅ ei(x), most ai are zero. In this case, it makes sense to look for a solution

with the smallest number of non-zero coefficients:

‖a‖0
def
= #{i ∶ ai ≠ 0}.
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The function ‖a‖0 is not convex and thus, difficult to optimize. It is therefore replaced

by a close convex objective function ‖a‖1
def
=

∑
i
|ai|.

State-of-the-art technique for sparsity-based blind deconvolution. Sparsity is the

main idea behind the algorithm described in [2] that minimizes

𝛽

2
⋅ ‖y −𝐖a‖22 +

𝜂

2
⋅ ‖𝐖a −𝐇x‖22 + 𝜏 ⋅ ‖a‖1 + 𝛼 ⋅ R1(x) + 𝛾 ⋅ R2(h).

Here, R1(x) =
∑
d∈D

21−o(d)
∑
i
|𝛥p

i (x)|p, where 𝛥

p
i (x) is the difference operator, and

R2(h) = ‖𝐂h‖2, where 𝐂 is the discrete Laplace operator.

The 𝓁p
-sum

∑
i
|vi(x)|p is optimized as

∑
i

(vi(x(k)))2

v2−pi

, where vi = vi(x(k−1)) for x

from the previous iteration.

This method results in the best blind image deconvolution.

Need for improvement. The current technique is based on minimizing the sum

|𝛥xI|p + |𝛥yI|p. This is a discrete analog of the term
||||
𝜕I
𝜕x

||||

p
+
||||
𝜕I
𝜕y

||||

p
.

For p = 2, this is the square of the length of the gradient vector and is, thus,

rotation-invariant. However, for p ≠ 2, the above expression is not rotation-invariant.

Thus, even if it works for some image, it may not work well if we rotate this image.

To improve the quality of image deconvolution, it is thus desirable to make the

method rotation-invariant. We show that this indeed improves the quality of decon-

volution.

Rotation-invariant modification: description and results. We want to replace the

expression
||||
𝜕I
𝜕x

||||

p
+
||||
𝜕I
𝜕y

||||

p
with a rotation-invariant function of the gradient.

The only rotation-invariant characteristic of a vector a is its length ‖a‖ =
√∑

i
a2i .

Thus, we replace the above expression with

(||||
𝜕I
𝜕x

||||

2
+
||||
𝜕I
𝜕y

||||

2)p∕2

.

Its discrete analog is ((𝛥xI)2 + (𝛥yI)2)p∕2.
This modification indeed leads to a statistically significant improvement in recon-

struction accuracy ‖x̂ − x‖2.

Specifically, to compare the new methods with the original method from [2], we

applied each of the two algorithms 30 times, and for each application, we computed

the reconstruction accuracy. To make the results of the comparison more robust, for

each of the algorithms, we eliminated the smallest and the largest value of this dis-

tance, and got a list of 28 values. For the original algorithm, the average of these
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values is 1195.21. For the new method, the average is 1191.01, which is smaller

than the average distance corresponding to the original algorithm. To check whether

this difference is statistically significance, we applied the t-test for two independent

means. The t-test checks whether the null hypothesis—that both samples comes from

the populations with same mean—can be rejected. For the two samples, computa-

tions lead to rejection with p = 0.002. This is much smaller than the p-values 0.01

and 0.05 normally used for rejecting the null hypothesis. So, we can conclude that

the null hypothesis can be rejected, and that, therefore, the modified algorithm is

indeed statistically significantly better than the original one (see [3] for details).

How can we go beyond 𝓁p-methods? While 𝓁p
-methods are efficient, they are not

always perfect. A reasonable idea is to try to improve the quality of signal and image

reconstruction by using functions g(z)more general than g(z) = C⋅|z|p. For example,

instead of considering only functions from this 1-parametric family, we can consider

a more general 2-parametric family of functions

g(z) = C ⋅ |z|p + C1 ⋅ g1(z).

Which function g1(z) should we use?

In [6], we used the same ideas of scale-invariance—that are used above to justify

𝓁p
-techniques—to show that the best choice is to use functions g1(z) = |z|p ⋅ ln(z) or

g1(z) = |z|p1 for some p1. The same approach also helps to decide which functions to

use if we consider 3- and more-parametric families instead of 2-parametric ones [6].
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