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Abstract This paper analyzes various methods of structural and parametric opti-
mization for fuzzy control and decision-making systems. Special attention is paid to
hierarchical structure selection, rule base reduction, and reconfiguration in the
presence of incomplete data sets. In addition fuzzy system parameter optimization
based on gradient descent, Kalman filters, H-infinity filters, and maximization of
envelope curve values, are considered for unconstrained and constrained cases.
Simulation results show the validity of the proposed methods.

1 Introduction

Many systems require the automation of decision making and control processes for
the efficient functioning of complex coupled objects in the presence of uncertainty.
Such systems include mobile robots, marine objects, economic enterprises, and
others. These systems include a sparsity of information, and a corresponding need
for methods to decrease the degree and impact of uncertainty. Factors that impact
uncertainty are: (a) non-stationary disturbances with characteristics that are not
possible to measure in real time; (b) difficulties in creating accurate mathematical
models; (c) human factors and the subjectivity of human evaluations and decisions.

One popular approach to the design of efficient control and decision-making
systems in uncertain environments is fuzzy sets and fuzzy logic, first suggested by
L. A. Zadeh [29] as a control method based on linguistic rules. Fuzzy logic allows
the formation of linguistic models of processes and control methods based on
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human experts. New applications of fuzzy sets and fuzzy logic often require new
theoretical investigations, new approaches for the optimisation of fuzzy systems,
and new design methods for the hardware realisation of fuzzy systems, all while
taking into account requirements related to embedded systems and real-time deci-
sion making.

2 Related Works and Problem Statement

Many examples of fuzzy systems (FS) applications are given in the literature [2, 7,
15]: control of asynchronous, direct current, and thermoacoustic drives, vehicles,
ships, ecopyrogenesis plants, intelligent robots; decision making in uncertainty,
including route planning in transport logistics and intelligent robotics; and many
others.

Approaches to the optimization of designing fuzzy controllers (FC) are con-
sidered in [2, 8, 14], especially for the optimization of membership function
(MF) parameters of linguistic terms (LT) [8, 18, 25], weights of fuzzy rules [18],
selection of defuzzification methods [17, 18], etc. Special attention is paid to fuzzy
rule base reduction [5, 17] based on rule base interpolation [6], supervised fuzzy
clustering [19], combining rule antecedents [5], linguistic 3-tuple representation [1],
orthogonal transforms [20], multi-objective optimization [3], and evolutionary
algorithms [16, 26]. Publications [4, 15, 27, 30] show that researchers continue to
develop approaches for structural and parametric optimization (SPO). Recent
research deals with applications of FS, design requirements, increasing levels of
uncertainty (incomplete input data, random disturbances, and unknown parame-
ters), etc. Choosing specific methods for FS SPO is in most cases based on the
analysis of comparative modeling results and the designer’s experience.

The aim of this paper is to provide an overview of some of the proposed methods
of FS structural and parametric optimization and their abilities for increasing the
efficiency of real-time control and decision making processes.

3 Optimization of Fuzzy Systems

3.1 Structural Optimization of Fuzzy Systems

Structural optimization should be applied at different stages of the design of a fuzzy
logic system [8]:

• selection of the type of fuzzy inference engine (Mamdani, Takagi-Sugeno,
modifications, etc.);
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• selection of the most informative inputs; for example, the type of FC (PI, PD,
PID, etc.) depends on the input signals: error, integral, derivative, specific
measured disturbances, etc.;

• selection of MF the number K and H of LTs Lxi = L1xi . . . L
K
xi

n o
for input signals

xi i=1 . . .mð Þ, and LTs LG = L1G . . . LHG
� �

for output signals G, where K and
H affect the flexibility and memory of the FS, as well as the computation time
during fuzzy information processing;

• optimization and reduction of the rules number in rule base R1 ν1ð Þ . . .RR νRð Þf g
and the weights νj νj ∈ 0, 1½ �� �

; for example, if m=2, then the j-th rule
Rj νj
� �

, j∈ 1,R½ �ð Þ can be written as

IF x1 =Lð ÞAND x2 =Hð ÞTHEN Gj =LM,
� � ð1Þ

where L,H,LM are “Low”, “High”, and “Low-Medium”;

• selection of fuzzy processing algorithms for aggregation, accumulation, and
defuzzification; for example: (a) the AND operator can be realized by t-norm
operators or by parameterized mean operators [17]; (b) the OR operator can be
realized by the parameterized union mean operator, algebraic sum operator,
arithmetic sum operator, or by s-norm operators [17]; (c) different methods [17,

18] can be used for defuzzification G* =Defuz μres G
∼

� �� �
of the fuzzy set

μres G
∼

� �
= sup

G∈R+
μL1G G

∼

� �
. . . μLHG G

∼

� �n o
.

All the above-mentioned structural types, algorithms, operators, and analytic
models are candidates for structural optimization in fuzzy control and
decision-making systems.

3.2 Parametric Optimization of Fuzzy Systems

Structural and parametric FS optimization can be done on the basis of minimization
of the RMS criterion, for example,

J ε, B̄, ν ̄ð Þ= ∑
Nmax − 1

i=0
ε i½ �ð Þ2

� 	
̸Tmax, ð2Þ

where ε i½ � is the error of the control system at time ti, ti = i ⋅Δt,
i=0 . . .Nmaxð Þ; Tmax =Δt ⋅Nmax; B̄ is a matrix of LT parameters; and v ̄ is a vector of
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rule weights. Objective (2) can be used for evaluation of FS under the different
kinds of non-stationary disturbances and different system parameters to achieve
robustness. Some FS parameters that can be optimized task include the following.

(a) MF parameters of LTs Lxi = L1xi . . . L
K
xi

n o
for FS inputs [21, 23, 24] (triangular

(3), trapezoidal, Gaussian, polynomial, or harmonic [17]). For example, three
parameters b− , c, b+ð Þ are optimized (Fig. 1) for triangular LTs
c− b− , c, c+ b+ð Þ [7, 17]:

μA
∼
xð Þ=

0, ∀ x≤ c− b−ð Þ ∪ x≥ c+ b+ð Þ
x− c+ b−ð Þ ̸ b−ð Þ, ∀ c− b− < x≤ cð Þ
c+ b+ − xð Þ ̸ b+ð Þ, ∀ c< x< c+ b+ð Þ

8<
: ð3Þ

Two parameters b, cð Þ are optimized for bell-shaped LTs [18]:

μA
∼
xð Þ=1 ̸ 1+ x− bð Þ ̸cð Þ2

� �
ð4Þ

(b) MF parameters of LTs LG = L1G . . . LHG
� �

for FS outputs G (for Mamdani-type

FS) and parameters K ̄ j = k j
P, k

j
I , k

j
D

� �
of consequents Gj x1, x2, x3,K ̄

j
� �

,

j∈ 1 . . .R½ � (Takagi-Sugeno FS). For example, the contribution Gj of rule Rj to
output signal G* of a fuzzy PID controller [8] can be presented as:

Gj x1, x2, x3,K ̄
j

� �
= k j

Px1 + k j
I x2 + k j

Dx3 ð5Þ

(c) Weight coefficients νj of the fuzzy rules Rj [17, 18].

Fig. 1 Fuzzy numbers: 1—
triangular
C
∼
= ðc− b− , c, c+ b+ Þ; 2,3

—bell-shape from Eq. (4)
with various parameters of
MFs
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4 Hierarchical Systems and Incomplete Input Data

4.1 Rational Selection of the Hierarchical Structure

For multi-input FS it is appropriate to use a hierarchical structure, where the output of a
subsystem is supplied to the input of another subsystem. Such a hierarchical approach
allows reduction of the size of the FS rule base and an increase in the sensitivity to the
input variables [9, 17]. The design process for a hierarchical FS depends on the
selection of its structure (grouping, number of hierarchical levels, etc.).

Let us detail the main steps of the selection of the structure.

Step 1. Synthesis of the set D ̄ of alternative variants Di, i=1 . . . nð Þ for different
groupings of input signals xj, j=1 . . .mð Þ:

D̄= D1,D2, . . . ,Di, . . . ,Dnf g ð6Þ

For example, for a fuzzy system with 9 input signals (Fig. 2a) the set D ̄ of
alternatives can be presented as D ̄= D1,D2,D3f g, where

D1 = x1, x2, x3f g, x4, x5, x6f g, x7, x8, x9f gð Þ ð7Þ

D2 = x1, x2f g, x3, x4, x5f g, x6, x7, x8, x9f gð Þ ð8Þ

D3 = x1, x2, x3, x4f g, x5, x6, x7, x8f g, x9f gð Þ ð9Þ

Step 2. Synthesis of the set S ̄t of alternative structures Sti Dið Þ, i=1 . . . nð Þ of the
hierarchical FS based on (6):

S ̄t= St1 D1ð Þ, St2 D2ð Þ, . . . , Sti Dið Þ, . . . , Stn Dnð Þf g ð10Þ

(b) 
(a) 
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Fig. 2 FS structures with nine input signals. a Single-level FS; b hierarchical FS
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For example, three different structures of a hierarchical FS, based on (7), (8), and
(9), are presented in Figs. 2b and 3.

Step 3. Evaluation of each alternative structure Sti Dið Þ using some suitable criterion
K Stið Þ, i= 1, . . . , nf g, which quantifies the goodness of the FS output signals
(accuracy, response time, etc.). For example, the structure of an FS for gait intent
recognition during human ambulation can be evaluated by the number of correctly
classified cases K Stið Þ.
Step 4. The selection of the optimal configuration Stopt of a fuzzy system by solving
the optimization problem

Stopt =ArgMax
Sti

K Stið Þ, i=1 . . . nð Þ. ð11Þ

Figure 4a presents the hierarchical structure of an FS for transport logistics [12]
and Fig. 4b presents a FS for model-oriented support of university / IT-company
cooperation [9], with 19 and 27 inputs, respectively.

The hierarchical FS of Fig. 4b with discrete outputs (seven alternative models)
consists of 11 subsystems:

Sts =

y1 = f1 x1, x2, x3ð Þ, y2 = f2 x4, x5, x6, x7ð Þ,
y3 = f3 x8, . . . , x13ð Þ, y4 = f4 x14, . . . , x17ð Þ,
y5 = f5 x6, x18, x19ð Þ, y6 = f6 x18, . . . , x23ð Þ,
y7 = f7 x24, x25, x26, x27ð Þ, y8 = f8 y1, y2ð Þ,
y9 = f9 y3, y4ð Þ, y10 = f10 y5, y6ð Þ,
y= f11 y7, y8, y9, y10ð Þ

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;
. ð12Þ
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Fig. 3 Alternative structures of hierarchical fuzzy systems: a St2 D2ð Þ based on (8); b St3 D3ð Þ
based on (9)
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4.2 Fuzzy System Reconfiguration with Incomplete Data

FS reconfiguration is required in the case of incomplete input data [11]. In some
cases some input data may not be important according to human judgment. Suppose
r is the set of informative inputs, and NI is the set of uninformative or uninteresting
inputs. For example, if an FS operates with 16 inputs N =16ð Þ, but we have data on
only 11 input signals Nr =11ð Þ, we exclude the other 5 inputs NNI =5ð Þ, so
Nr +NNI =N, and the dimension of the FS input vector decreases from 16 to 11.
The FS rule base can be reconfigured [11] according to the following steps for a
Mamdani-type FS.

Step 1. Automatic exclusion of all input variables xi ∈NI, i∈ 1, 2, . . . ,Nf g from the
antecedents of all FS rules.
Step 2. Determination of the input dimension Nr for the newly-reconfigured ante-
cedents: Nr =N −NNI .
Step 3. Calculation of Quantj for each fuzzy rule:

Quantj = ∑
Nr

k=1
eval ILTjk

� �
, ð13Þ

where eval ILTjk
� �

corresponds to the number of input linguistic terms ILTjk for the
k-th input signal xk (Fig. 5) of the j-th fuzzy rule; eval ILTjk

� �
∈ 1, 2, . . . ,NLTkf g.

For example, if ILTjk ∈ L,M,Hf g, then NLTk =3 and eval Lð Þ=1; eval Mð Þ=2;
eval Hð Þ=3.
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Fig. 4 Hierarchical structures of FSs for a transport logistics and b “university-IT-company”
cooperation
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Step 4. Calculation of Div (Fig. 5):

Div=Quantj ̸Nr =Uout ∑ 2ð Þ ̸Uout ∑ 1ð Þ ð14Þ

which determines the new output linguistic term OLTj in the consequent of
the j-th rule. For example, if (as in Fig. 5) OLTj ∈ L,LM,M,MH,Hf g and
Div⊂ Int1, Int2, . . . , Int5f g, then OLTj = L, if Div⊂Int1; …;OLTj =H, if Div⊂Int5,
where Int1 = ½0, 1.5Þ; Int2 = ½1.5, 2.0Þ; Int3 = ½2.0, 2.5Þ; Int4 = ½2.5, 3.0Þ; Int5 =
½3.0, 4.0�.

The application of the proposed method to the reconfiguration of an FS for
transport logistics with various numbers of input signals confirms its effectiveness
[11, 12].

Fig. 5 An algorithm for reconfiguration of a fuzzy rule base
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5 Fuzzy Rule Base Reduction

5.1 Rule Base Reduction via Singular Value Decomposition

The reduction of the size of a fuzzy rule base via singular value decomposition
(SVD) [28] is an efficient method of FS optimization. One of its successful
implementations is rule base reduction of a fuzzy filter for the estimation of motor
currents [23]. For a FS with a single output r and two inputs a, bð Þ with a corre-
sponding number of LTs na, nb, the fuzzy rule base can be described using the
following rules:

IF fi1 að Þ AND fj2 bð Þ, THEN rij, i=1 . . . na; j=1 . . . nbð Þ ð15Þ

which can be represented with the na × nbð Þ matrix

R=

r11 r12 . . . r1nb
r21 r22 . . . r2nb
. . . . . .
rna1 rna2 . . . rnanb

2
664

3
775. ð16Þ

The SVD of R can be represented as

R=UΣVT , ð17Þ

where U is na × na, Vis nb × nb and the singular values in Σ indicate the relative
importance of the corresponding columns in U and V in the decomposition of
R [22]. Initially seven LTs are used for two inputs fi1 að Þ, fj2 bð Þ� �

and one output
signal, so na = nb =7 in the fuzzy filter [23]. The initial rule base with 49 fuzzy
rules is reduced to 9 fuzzy rules after the implementation of SVD. The reduced MFs
for the first input a, the second input b, and the output are presented in Fig. 6.

5.2 Rule Base Reduction Based on the Evaluation of Each
Rule Contribution

Reduction based on the evaluation of each rule contribution to the FS output signal
is proposed [10] for the optimization of the rule base of a Sugeno-type PID FC with
27 initial fuzzy rules (Fig. 7). The minimal number of rules can be determined to
maintain control quality within acceptable limits.
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Fig. 6 Reduced MFs for input a (a), input b (b), and output (c)

Fig. 7 Evaluation of fuzzy rule contributions μ tð Þ: a rules 13, 14, 19, 22—μ tð Þ∈ 0.1, 1½ � (large
contribution); b rules 9, 15, 25, 26—μ tð Þ∈ 0, 0.00027½ � (small contribution)
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6 Parametric Optimization of Linguistic and Analytical
Components in Fuzzy Rule Base Design

6.1 Gradient Descent Based on Sum Normal Constraints

One of the most popular methods for FS parameter optimization is gradient descent
(GD) [18, 24]. The following iterative procedure can be used for optimization of the
three parameters as c, b− and b+ of a triangular MF:

c k+1ð Þ= c kð Þ− η
∂E
∂c






c kð Þ

, ð18Þ

b− k+1ð Þ= b− kð Þ− η
∂E
∂b−






b− kð Þ

ð19Þ

b+ k+1ð Þ= b+ kð Þ− η
∂E
∂b+






b+ kð Þ

, ð20Þ

where k is the iteration number, E is the FS output error function, and η is a gradient
descent step size. E can be formed as

E= ∑
N

n=1
gn yn − yn̂ð Þ2

� 	
̸2N, ð21Þ

where yn, yn̂ are the target and actual outputs of the FS; gn is a time-dependent
weighting function depending on user preference; and N is the number of training
samples. Various methods can be used with gradient descent for avoiding local
minima. One problem that arises with this method is that the family of optimized
MFs are not sum normal; that is, the resulting MF values do not add up to 1 at each
point in the FS domain. In [24] the author proposes to use gradient descent with
additional constraints to enforce sum normality:

c1 + b+
1 = c1 + b−

2 = c2; c2 + b+
2 = c2 + b−

3 = c3; . . . ; ð22Þ

cv− 1 + b+
v− 1 = cv− 1 + b−

v = cv ð23Þ

where v is the number of LTs. This approach provides sum normal parametric
optimization of triangular MFs for corresponding input and output LTs:

c1 − b−
1 , c1, c+ b+

1

� �
, . . . , ci − b−

i , ci, ci + b+
i

� �
, . . .

� � ð24Þ
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6.2 Kalman Filtering for Parametric MF Optimization

The parameter optimization problem can be formulated as a nonlinear filtering
problem which can be solved using a Kalman filter (KF) or an H∞ filter (HiF). The
nonlinear system model to which the filter can be applied is:

xn+1 = f xnð Þ+wn

dn = h xnð Þ+ vn,
ð25Þ

where dn is the observation vector; f xnð Þ,hn xnð Þ are non-linear vector functions of
the state xn at time step n; wn, vn are artificially added noise processes. The use of a
state estimator for optimization of triangular MFs requires the formation of the state
vector x, which consists of all MF parameters arranged in a column vector:

x= [b−
11 b

+
11 c11 b−

21 b+
21 c21 . . . b−

v11 b
+
v11 cv11 . . .

b−
1r b

+
1r c1r b

−
2r b

+
2r c2r . . . b−

vrr b
+
vrr cvrr

b−
10 b

+
10 c10 b

−
20 b

+
20 c20 . . . b−

v00 b
+
v00 cv00�

T ,
ð26Þ

where b−
ij , b

+
ij , cij are the parameters of the i-th triangular LT for the j-th input,

ði=1 . . . vj; j=1 . . . rÞ; and b−
i0 , b

+
i0 , ci0 are the output LT parameters

i=1 . . . v0; j=0ð Þ. The estimate xn̂ can be obtained using the extended Kalman
filter [21, 22]:

Fn =
∂f xð Þ
∂x






x= xn

, Hn =
∂h xð Þ
∂x






x= xn

,

Kn =PnHT
n R+HnPnHT

n

� �− 1
,

xn̂ = f xn̂− 1ð Þ+Kn dn− 1 −h x ̂n− 1ð Þ½ �,
Pn+1 =Fn Pn −KnHnPnð ÞFT

n +Q,
ð27Þ

where Fn is the identity matrix; Hn is the partial derivative of the fuzzy output with
respect to the MF parameters; Kn is the Kalman gain; and Q,R are the covariance
matrices of wnf g and vnf g, respectively. Comparative results of the parametric
optimization for a fuzzy automotive cruise control [21, 24] are presented in Fig. 8
for unconstrained and sum normal (constrained) cases.

6.3 Parametric Optimization Based on H∞ estimation

If we consider a two-input, one-output fuzzy system, then the nonlinear model to
which the H∞ filter can be applied is
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xn+1 = xn +Bwn + δn

dn = h xnð Þ+ vn,
ð28Þ

where B is a tuning parameter which is proportional to the magnitude of the
artificial noise process; and δn is an arbitrary noise sequence. The augmented noise
vector en and the estimation error xñ can be defined [25] as

en = wT
n v

T
n

� �T
, x ̃n = xn − xn̂. ð29Þ

An H∞ filter for optimization of MF parameters (26) x ̂n satisfies the condition

Gx ̃ek k∞ < γ, ð30Þ

which is the infinity norm of the transfer function from the augmented noise vector
e to the estimation error x ̃, which is bounded by a user-specified value γ. The
desired estimate xn̂ can be obtained [25] with an H∞ estimator:

Fn =
∂f xð Þ
∂x






x= xn

, Hn =
∂h xð Þ
∂x






x= xn

, Q0 =E x0xT0
� �

,

Qn I −HTHPn
� �

= I −Qn ̸γ2
� �

Pn,

Qn+1 =FPnFT +BBT,Kn =FPnHT,

xn̂+1 =Fxn̂ +Kn dn− 1 −H xn̂− 1ð Þ½ �, ð31Þ

with the assumption that Qnf g and Pnf g are nonsingular matrices. Comparative
results for the optimization of MF parameters of a fuzzy automotive cruise control

Fig. 8 MF optimization: a gradient descent and Kalman filter optimization (1—unconstrained
KF, 2—constrained KF, 3—unconstrained GD, 4—constrained GD); b FC transients for the target
speed 40 m/s (1—default FC, 2—GD, 3—KF)
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system [21, 25], using H∞ and Kalman filters are presented in Fig. 9 for both
unconstrained and constrained (sum normal) cases.

6.4 The Envelope Curve of Instantaneous MF Values

Analyzing (for desired transients of a control system) the instantaneous values of
MF grades μi X tð Þð Þ, i=1 . . .Rð Þ at the consequents of all FC rules makes it is
possible to build a corresponding envelope curve (Fig. 10a). If the vector of
instantaneous inputs is X tð Þ= x*1 tð Þ, x*2 tð Þ, . . . , x*n tð Þ� �

, then the envelope curve
characterizes the instantaneous maximal value of the MF grade μmax X tð Þð Þ at time
t. Figure 10a shows that in some cases this maximal value μmax X tð Þð Þ<1, but in
some cases, for example, for time-intervals t∈ t1, t2½ � and t∈ t3, t4½ �, this value does

Fig. 9 MF optimization: a state estimation processes (1—unconstrained KF, 2—constrained KF,
3—unconstrained HiF, 4—constrained HiF) and b control transients (1—default FC, 2—KF, 3—
HiF)

Fig. 10 a The envelope curve; and b C Kð Þ from Eq. (32)
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not exceed 0.5. We introduce the criterion C Kð Þ for solving the MF parameter
optimization problem [13] (Fig. 10b):

C Kð Þ= 1
T

ZT

0

1−
μav X tð Þð Þ
μmax X tð Þð Þ


 �
dt, ð32Þ

where μmax X tð Þð Þ= sup
m

i=1
μi X tð Þð Þ½ � is the maximal value of the MF grade for all

fuzzy rules; μav X tð Þð Þ= ∑m
i=1 μi X tð Þð Þ½ �� �

̸m is the average value of μi X tð Þð Þ; and
K is a vector of optimized MF parameters. If we maximize the criterion MAXC Kð Þ
we can achieve μlim < μmax X tð Þð Þ≤ 1 and μmax X tð Þð Þ≫ μav X tð Þð Þ, where μlim is the
minimum acceptable value.

7 Conclusion

Various solutions to decrease memory and computational time requirements in FS
require new optimisation methods at all stages of the design processes. The SPO
methods discussed in this paper can be recommended for the design of fuzzy control
and decision-making systems, in particular for ship docking, mobile robotics,
transport logistics, etc. The authors’ experience in fuzzy logic as well as numerous
simulation and experimental results confirm the effectiveness of the proposed
methods, algorithms, and approaches. In the future we plan to apply FS
multi-objective optimization based on the combination of these methods and evo-
lutionary algorithms.
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