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Abstract In this paper an ensemble of three neural networks with type-2 fuzzy
weights is proposed. One neural network uses type-2 fuzzy inference systems with
Gaussian membership functions for obtain the fuzzy weights; the second neural
network uses type-2 fuzzy inference systems with triangular membership functions;
and the third neural network uses type-2 fuzzy inference systems with triangular
membership functions with uncertainty in the standard deviation. Average inte-
gration and type-2 fuzzy integrator are used for the results of the ensemble neural
network. The proposed approach is applied to a case of time series prediction,
specifically in the Mackey-Glass time series.

1 Introduction

We are presenting an ensemble with three neural networks for the experiments. The
final result for the ensemble was obtained with average integration and type-2 fuzzy
integration. The time series prediction area is the study case for this paper, and
particularly the Mackey-Glass time series is used to test the proposed approach.

This research uses the managing of the weights of a neural networks using
type-2 fuzzy inference systems and due to the fact that these affect the performance
of the learning process of the neural network, the used of type-2 fuzzy weights are
an important part in the training phase for managing uncertainty.
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One type of supervised neural network and its variations is the one that would be
of most interest in our study, which is the backpropagation network. This type of
network is the most commonly used in the above mentioned areas.

The weights of a neural network are an important part in the training phase,
because these affect the performance of the learning process of the neural network.

This conclusion is based on the practice of neural networks of this type, where
some research works have shown that the training of neural networks for the same
problem initialized with different weights or its adjustment in a different way but at
the end is possible to reach a similar result.

The next section presents the basic concepts of neural networks and type-2 fuzzy
logic. Section 3 presents a review of research about modifications of the back-
propagation algorithm, different management strategies of weights in neural net-
works and time series prediction. Section 4 explains the proposed ensemble neural
network. Section 5 describes the simulation results for the ensemble neural network
with average integration and the type-2 fuzzy integrator proposed in this paper.
Finally, in Sect. 6, some conclusions are presented.

2 Basic Concepts

2.1 Neural Network

An artificial neural network (ANN) is a distributed computing scheme based on the
structure of the nervous system of humans. The architecture of a neural network is
formed by connecting multiple elementary processors, this being an adaptive sys-
tem that has an algorithm to adjust their weights (free parameters) to achieve the
performance requirements of the problem based on representative samples [1, 2].
The most important property of artificial neural networks is their ability to learn
from a training set of patterns, i.e. they are able to find a model that fits the data
[3, 4].

The artificial neuron consists of several parts (see Fig. 1). On one side are the
inputs, weights, the summation, and finally the adapter function. The input values
are multiplied by the weights and added: ∑ xiwij. This function is completed with
the addition of a threshold amount i. This threshold has the same effect as an entry
with value −1. It serves so that the sum can be shifted left or right of the origin.

Fig. 1 Scheme of an artificial
neuron
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After addition, we have the function f applied to the sum, resulting the final value of
the output, also called yi [5], obtaining the following equation.

yi = f ∑
n

i=1
xiwij

� �
. ð1Þ

where f may be a nonlinear function with binary output + −1, a linear function f
(z) = z, or as sigmoidal logistic function:

f ðzÞ= 1
1+ e− z . ð2Þ

2.2 Type-2 Fuzzy Logic

The concept of a type-2 fuzzy set, was introduced by Zadeh (1975) as an extension
of the concept of an ordinary fuzzy set (henceforth called a “type-1 fuzzy set”).
A type-2 fuzzy set is characterized by a fuzzy membership function, i.e., the
membership grade for each element of this set is a fuzzy set in [0, 1], unlike a
type-1 set where the membership grade is a crisp number in [0, 1] [6, 7].

Such sets can be used in situations where there is uncertainty about the mem-
bership grades themselves, e.g., uncertainty in the shape of the membership func-
tion or in some of its parameters [8]. Consider the transition from ordinary sets to
fuzzy sets. When we cannot determine the membership of an element in a set as 0 or
1, we use fuzzy sets of type-1 [9–11]. Similarly, when the situation is so fuzzy that
we have trouble determining the membership grade even as a crisp number in [0, 1],
we use fuzzy sets of type-2 [12–17].

3 Historical Development

The backpropagation algorithm and its variations are the most useful basic training
methods in the area of research of neural networks. When applying the basic
backpropagation algorithm to practical problems, the training time can be very
high. In the literature we can find that several methods have been proposed to
accelerate the convergence of the algorithm [18–21].

There exist many works about adjustment or managing of weights but only the
most important and relevant for this research will be considered here [22–25].

Ishibuchi et al. [26], proposed a fuzzy network where the weights are given as
trapezoidal fuzzy numbers, denoted as four trapezoidal fuzzy numbers for the four
parameters of trapezoidal membership functions.
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Ishibuchi et al. [27], proposed a fuzzy neural network architecture with sym-
metrical fuzzy triangular numbers for the fuzzy weights and biases, denoted by the
lower, middle and upper limit of the fuzzy triangular numbers.

Momentum method—Rumelhart, Hinton and Williams suggested adding in the
increased weights expression a momentum term β, to filter the oscillations that can
be formed a higher learning rate that lead to great change in the weights [5, 28].

Adaptive learning rate—focuses on improving the performance of the algorithm
by allowing the learning rate changes during the training process (increase or
decrease) [28].

Castro et al. [29], proposed interval type-2 fuzzy neurons for the antecedents and
interval of type-1 fuzzy neurons for the consequents of the rules.

Kamarthi and Pittner [30], focused in obtaining a weight prediction of the net-
work at a future epoch using extrapolation. Feuring [31], developed a learning
algorithm in which the backpropagation algorithm is used to compute the new
lower and upper limits media weights. The modal value of the new fuzzy weight is
calculated as the average of the new computed limits.

Recent works on type-2 fuzzy logic have been developed in time series pre-
diction, like that of Castro et al. [32], and other researchers [33, 34].

4 Proposed Ensemble Neural Network

The focus of this work is to use ensemble neural networks with three neural
networks with type-2 fuzzy weights to allow the neural network to handle data with
uncertainty; we used an average integration approach and type-2 fuzzy integrator
for the final result of the ensemble. The approach is applied in time series prediction
for the Mackey Glass time series (for τ = 17).

The three neural network works with type-2 fuzzy weights [35], one network
works with two-sided Gaussian interval type-2 membership functions with uncer-
tain mean and standard deviation in the two type-2 fuzzy inference systems (FIST2)
used to obtain the weights (one in the connections between the input and hidden
layer and the other between the hidden and output layer); the other two networks
work with triangular interval type-2 membership function with uncertain and tri-
angular interval type-2 membership function with uncertain standard deviation,
respectively (see Fig. 2).

We considered a three neural network architecture, and each network works with
30 neurons in the hidden layer and 1 neuron in the output layer. These neural
networks handle type-2 fuzzy weights in the hidden layer and output layer. In the
hidden layer and output layer of the networks we are working with a type-2 fuzzy
inference system obtaining new weights in each epoch of the networks [36–39].

We used two similar type-2 fuzzy inference systems to obtain the type-2 fuzzy
weights in the hidden and output layer for the neural network.

The weight managing in the three neural networks will be done differently to the
traditional management of weights performed with the backpropagation algorithm
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(see Fig. 3); the method works with interval type-2 fuzzy weights, taking into
account the change in the way we work internally in the neuron (see Fig. 4) [40].

The activation function f (-) used in this research was the sigmoid function in the
neurons of the hidden layer and the linear function in the neurons of the output for
the three neural networks.

The three neural networks used two type-2 fuzzy inference systems with the
same structure (see Fig. 5), which have two inputs (the current weight in the actual
epoch and the change of the weight for the next epoch) and one output (the new
weight for the next epoch).

In the first neural network, the inputs and the output for the type-2 fuzzy
inference systems used between the input and hidden layer are delimited with two
Gaussian membership functions with their corresponding range (see Fig. 6); and the
inputs and output for the type-2 fuzzy inference systems used between the hidden

Fig. 2 Proposed ensemble neural network architecture with interval type-2 fuzzy weights using
average integration or type-2 fuzzy integrator

Fig. 3 Schematic of the
management of numerical
weights for input of each
neuron
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and output layer are delimited with two Gaussian membership functions with their
corresponding range (see Fig. 7).

In the second neural network, the inputs and the output for the type-2 fuzzy
inference systems used between the input and hidden layer are delimited with two
triangular membership functions with their corresponding ranges (see Fig. 8); and
the inputs and output for the type-2 fuzzy inference systems used between the
hidden and output layer are delimited with two triangular membership functions
with their corresponding ranges (see Fig. 9).

In the third neural network, the inputs and the output for the type-2 fuzzy
inference systems used between the input and hidden layer are delimited with two
triangular membership functions with standard deviation with their corresponding
range (see Fig. 10); and the inputs and output for the type-2 fuzzy inference sys-
tems used between the hidden and output layer are delimited with two triangular
membership functions with uncertainty in the standard deviation with their corre-
sponding ranges (see Fig. 11).

The rules for the six type-2 fuzzy inference systems are the same, we used six
rules for the type-2 fuzzy inference systems, corresponding to the four combina-
tions of two membership functions and we added two rules for the case when the
change of weight is null (see Fig. 12).

We obtain the prediction result for the ensemble neural network using the
average integration and type-2 fuzzy integrator.

Fig. 4 Schematic of the
management of interval type 2
fuzzy weights for input of
each neuron

Fig. 5 Structure of the six
type-2 fuzzy inference
systems used in the three
neural networks
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Fig. 6 Inputs (a and b) and output (c) of the type-2 fuzzy inference system used between the input
and hidden layer for the first neural network

Fig. 7 Inputs (a and b) and output (c) of the type-2 fuzzy inference system used between the
hidden and output layer for the first neural network
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Fig. 8 Inputs (a and b) and output (c) of the type-2 fuzzy inference system used between the input
and hidden layer for the second neural network

Fig. 9 Inputs (a and b) and output (c) of the type-2 fuzzy inference system used between the
hidden and output layer for the second neural network
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Fig. 10 Inputs (a and b) and output (c) of the type-2 fuzzy inference system used between the
input and hidden layer for the third neural network

Fig. 11 Inputs (a and b) and output (c) of the type-2 fuzzy inference system used between the
hidden and output layer for the third neural network

Ensemble Neural Network with Type-2 Fuzzy Weights … 183



The average integration is performed with the Eq. 3 (prediction of the neural
network with FIST2 Gaussian MF: NNGMF, prediction of the neural network with
FIST2 triangular MF: NNTMF, prediction of the neural network with FIST2 tri-
angular SD MF: NNTsdMF, number of neural networks in the ensemble: #NN, and
prediction of the ensemble: PE).

PE=
NNGMF+NNTMF +NNTsdMF

#NN
ð3Þ

The structure of the type-2 fuzzy integrator consists of three inputs: the pre-
diction for the neural network with type-2 fuzzy weights using Gaussian mem-
bership functions (MF), triangular MF and triangular MF with uncertainty in the
standard deviation; and one output: the final prediction of the integration (see
Fig. 13)

We used three triangular membership functions in the inputs and output for the
type-2 fuzzy integrator (T2FI) and the range is established in the interval for 0–1.5
(see Fig. 14). The footprint and positions of the membership functions are estab-
lished empirically.

Fig. 12 Rules of the type-2 fuzzy inference system used in the six FIST2 for the neural networks
with type-2 fuzzy weights

Fig. 13 Structure of the type-2 fuzzy integrator
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In the type-2 fuzzy integrator we utilized 30 rules, 27 for the combination of the
three inputs with “and” operator and there are also 3 rules using the “or” operator
(see Fig. 15).

5 Simulation Results

The results for the experiments for the ensemble neural network with average
integration (ENNAI) are shown on Table 1 and Fig. 16. The best prediction error is
of 0.0346, and the average error is of 0.0485.

We presented 10 experiments of simulations for the ensemble neural network
with the average integration and the type-2 fuzzy integrator, but the average error
was calculated considering 30 experiments with the same parameters and condi-
tions. The results for the experiments for the ensemble neural network with type-2
fuzzy integrator (ENNT2FI) are shown on Table 2. The best prediction error is of
0.0265, and the average error is of 0.0561.

We show in Table 3 a comparison for the prediction for the Mackey-Glass time
series between the results for the monolithic neural network (MNN), the neural

Fig. 14 Structure of the type-2 fuzzy integrator
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network with type-2 fuzzy weights (NNT2FW), the ensemble neural network with
average integration (ENNAI) and the ensemble neural network with type-2 fuzzy
integrator (ENNT2FI).

Fig. 15 Rules for the type-2 fuzzy integrator

Table 1 Results for the
ensemble neural network with
average integration for
Mackey-Glass time series

No. Prediction error

E1 0.0350
E2 0.0496
E3 0.0553
E4 0.0375
E5 0.0428
E6 0.0523
E7 0.0623
E8 0.0346
E9 0.0437
E10 0.0372
Average 0.0485
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6 Conclusions

In the experiments, we observe that using an ensemble neural network with average
integration and type-2 fuzzy integrator, we can achieve better results than the
monolithic neural network and the neural network with type-2 fuzzy weights for the

Fig. 16 Graphic of real data
again prediction data of
ENNAI for the Mackey-Glass
time series

Table 2 Results for the
ensemble neural network with
the type-2 fuzzy integrator for
time series Mackey-Glass

No. Prediction error

E1 0.0290
E2 0.0429
E3 0.0539

E4 0.0265
E5 0.0428
E6 0.0488
E7 0.0340
E8 0.0555
E9 0.0306
E10 0.0666
Average 0.0561

Table 3 Comparison results
for the Mackey-Glass time
series

Method Prediction error

MNN [35] 0.0530
NNT2FW [35] 0.0390
ENNAI 0.0346
ENNT2FI 0.0265
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Mackey-Glass time series. The ensemble with type-2 fuzzy integrator presents
better results in almost all the experiments than the optimization with PSO.
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