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Chapter 43
The Role of c-Jun N-Terminal  
Kinase (JNK) in Retinal Degeneration 
and Vision Loss

Byung-Jin Kim and Donald J. Zack

Abstract c-Jun N-terminal kinase (JNK), a member of stress-induced mitogen- 
activated protein (MAP) kinase family, has been shown to modulate a variety of 
biological processes associated with neurodegenerative pathology of the retina. In 
particular, various retinal cell culture and animal models related to glaucoma, age- 
related macular degeneration (AMD), and retinitis pigmentosa indicate that JNK 
signaling may contribute to disease pathogenesis. This mini-review discusses the 
impact of JNK signaling in retinal disease, with a focus on retinal ganglion cells 
(RGCs), photoreceptor cells, retinal pigment epithelial (RPE) cells, and animal 
studies, with particular attention to modulation of JNK signaling as a potential ther-
apeutic target for the treatment of retinal disease.
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43.1  Introduction

The activation of mitogen-activated protein (MAP) kinase family, including 
extracellular signal-regulated kinase (ERK), p38, and c-Jun N-terminal kinase 
(JNK), is often observed, playing a critical role in fate-determining process of 
neuronal cells (Kyosseva 2004). Together with p38, JNK is known as a stress-
induced MAP kinase, which is involved in neuronal development as well as 
degenerative diseases such as Alzheimer’s disease and Parkinson’s disease (Ries 
et al. 2008; Sclip et al. 2014). The intracellular signaling cascade of JNK is initi-
ated by many stressors followed by subsequent activation of downstream 
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signaling molecules (Barr and Bogoyevitch 2001; Weston and Davis 2002). 
These molecular events result in various gene transcription and following diverse 
biological outcomes, which promote the next step of disease progression 
(Mizuno et al. 2005; Morishima et al. 2001; Podkowa et al. 2010). The retina is 
comprised of several types of neurons, glial, and other supporting cells. The 
retina receives visual information, converts it into a neurochemical signal by 
phototransduction, initiates signal processing, and transmits the signal informa-
tion to the brain via the optic nerve (Heavner and Pevny 2012). Dysfunction and/
or death of many of the cells involved in this complex process, whether due to 
abnormalities in development or due to later disease processes, can result in 
vision loss and even blindness. To both better understand and develop improved 
methods to prevent and treat visual loss, numerous studies have been directed at 
understanding the molecular mechanisms of injury in the visual system. In this 
review, we will summarize current knowledge on the role of the c-JNK signaling 
pathway on retinal degeneration.

43.2  JNK Signaling and Axonal Degeneration of RGC 
Related to Glaucoma and Other Diseases

Retinal ganglion cells (RGCs) transmit visual information from bipolar cells to 
vision relay centers in the brain, such as the lateral geniculate nucleus (LGN) 
and superior colliculus (SC), and ultimately to the visual cortex (Yu et al. 2013). 
Injury and death of RGCs, which together constitute the so-called optic neuropa-
thies, are a major cause of vision loss and blindness worldwide (Quigley 1999). 
The impact of JNK and its upstream/downstream pathways in RGC death has 
been actively investigated using various in vivo models of optic nerve disease, 
such as neuronal excitotoxicity by NMDA (Bessero et al. 2010), experimental 
optic nerve crush (ONC) (Fernandes et al. 2012; Welsbie et al. 2013), and retinal 
ischemic injury (Kim et al. 2016; Roth et al. 2003). In particular, Fernandez and 
colleagues demonstrated that combined deletion of JNK2 and JNK3 inhibited 
RGC death with long- term protection after ONC injury, and a similar effect was 
shown by conditional deletion of JUN, a downstream signaling molecule of JNK 
(Fernandes et al. 2012). In addition, blocking upstream signaling of JNK led to 
significantly decreased JNK activation that was associated with enhanced RGC 
survival following ONC (Welsbie et al. 2013). Similar results have been reported 
with cell death caused by ischemic injury (Biousse and Newman 2014), a disor-
der of the inner retinal blood supply which results in a temporary or persistent 
ischemic environment for RGCs, resulting in cell death.(Havens and Gulati 
2016; Sugawara et al. 2004). As with the other conditions described above, isch-
emic injury also upregulates JNK activation in inner retinal layer cells, including 
RGCs (Roth et al. 2003), and results in RGC death accompanied with progres-
sive inner retinal remodeling (Kim et  al. 2013). Importantly, several studies 

B. -J. Kim and D. J. Zack



353

suggest that pharmacological inhibition of JNK activation can significantly 
increase RGC viability and prevented inner retinal degeneration (Kim et  al. 
2016). In particular, Kim et al. demonstrated that ischemia/reperfusion (I/R) 
triggered JNK activation in various cells in the inner retinal layers and RGC 
axonal loss were significantly inhibited by administration of SP600125. This 
finding suggested that activation of JNK plays a pivotal role in RGC death (Kim 
et al. 2016). In this study, Kim and colleagues also showed that ischemic injury 
initiated early JNK activation in RGC as well as non-RGC cells in the NFL/RGC 
layer at later post-injury time, which suggests that RGCs may be the most sus-
ceptible cell type for ischemic injury. In addition, this finding also suggested 
that ischemic injury possibly triggers JNK activation in non-RGCs in the NFL/
RGC layer such as displaced amacrine cells and astrocytes. One interesting 
observation related to this finding is that the role of JNK may be different in dif-
ferent retinal cell types treated with the same pathological impact. For example, 
Dvoriantchikova and Ivanov showed that RGCs treated with the proinflamma-
tory cytokine tumor necrosis factor (TNF) did not demonstrate NF-kB activation 
but showed sustained JNK activation (Dvoriantchikova and Ivanov 2014). In 
contrast, TNF-treated astrocytes showed induced NF-kB activation with tran-
sient JNK activation, which was associated with prolonged astrocyte survival. 
Taken together, these findings indicate that JNK inhibitors may be an interesting 
class of pharmacological molecules for promoting RGC survival through inhib-
iting JNK activation to prevent RGC death and simultaneously inhibiting proin-
flammatory responses in glial cells.

43.3  JNK Signaling and Retinal Pigment Epithelium Cells: 
Possible Relationship with Age-Related Macular 
Degeneration

Retinal pigment epithelial (RPE) cells are a retinal cell type underlying and 
supporting photoreceptor cells through various functions to maintain functional 
and structural integrity (Boulton and Dayhaw-Barker 2001; Strauss 2005). The 
biological aspects RPE cells in human diseases have been actively investigated, 
particularly in age-related macular degeneration (AMD) (Young 1987). AMD 
is a leading cause of vision loss in the elderly in the United States and other 
developed Western countries (Gehrs et  al. 2006), associated with multiple 
mechanisms and risk factors of AMD (Gehrs et al. 2006; Tan et al. 2016). AMD 
can be categorized into two broad types in late stage, a non-neovascular (dry) 
form and a neovascular (wet) form (Gehrs et al. 2006). The non-neovascular 
form is more common, but the neovascular form is generally associated with 
more severe vision loss. Neovascular AMD is characterized by aberrant choroi-
dal neovascularization mediated, at least in part, by the angiogenic growth fac-
tor vascular endothelial growth factor (VEGF). In the retina, VEGF both 
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stimulates neovascularization and increases vascular permeability, resulting in 
abnormalities in the macular region that are associated with central vision loss 
(Gehrs et al. 2006). Among other important roles that the RPE plays in AMD 
pathogenesis, RPE cells constitutively produce VEGF, and they show increased 
production in response to pathologic conditions (Blaauwgeers et  al. 1999; 
Holtkamp et al. 2001). Importantly, JNK has been suggested as a key signaling 
molecule promoting VEGF expression through phosphorylation of c-Jun and 
binding to the VEGF promotor mediating neovascularization (Du et  al. 2013; 
Guma et al. 2009). Dry AMD, characterized by regional loss of RPE cells fol-
lowed by photoreceptor cell dysfunction and cell loss, is currently untreatable 
(Ambati and Fowler 2012; Gehrs et  al. 2006). To better understand RPE cell 
death mechanisms, in vitro studies of primary human RPE cells and cell lines 
have been widely used to define JNK-associated RPE cell death under various 
pathologic conditions (Cao et al. 2012; Roduit and Schorderet 2008; Westlund 
et al. 2009). Despite these many studies, the role of JNK in RPE viability remains 
controversial. Cao and colleagues showed that ultraviolet B radiation induced 
apoptotic cell death of the ARPE-19 RPE cell line. Surprisingly, inhibition of 
JNK exacerbated apoptosis, whereas activation of JNK attenuated ARPE-19 cell 
death, suggesting an anti- apoptotic role of JNK (Cao et al. 2012). In contrast, 
Roduit et al. reported enhanced RPE cell survival upon JNK inhibition under UV 
irradiation (Roduit and Schorderet 2008). However, this issue is not resolved and 
warrants further research.

43.4  JNK Signaling and Photoreceptor Degeneration

Many vision diseases associated with photoreceptor loss have been reported, 
which are briefly categorized into inherited degeneration, such as retinitis pig-
mentosa, and adaptive degenerations caused by age and other multiple factors, 
such as AMD (Wright et al. 2010). Notably, nonsyndromic retinitis pigmentosa 
is highly polygenic, associated with mutation of more than 50 genes (Bowne 
et al. 2011; Nishiguchi et al. 2013; https://sph.uth.edu/Retnet/). The association 
of JNK with photoreceptor cell death is relatively less known compared to other 
retinal cell types. Nonetheless, several in  vitro and animal models have sug-
gested a role of JNK as a mediator of photoreceptor cell death, initiated by vari-
ous genetic and environmental factors. Using the photoreceptor cell line 661 W, 
Choudhury showed that reprogramming of the unfolded protein response (UPR) 
by genetic deletion of caspase 7 resulted in a decrease of JNK-induced apopto-
sis (Choudhury et  al. 2013). This finding suggested that JNK is an important 
apoptotic mediator of UPR, which is known as a major causative process of 
photoreceptor cell death in some forms of retinitis pigmentosa (Galy et al. 2005; 
Kang et al. 2012). These findings indicate that JNK may play an important role 
in photoreceptor cell death.
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43.5  Conclusions: JNK Signaling Pathway as a Potential 
Therapeutic Target in Retinal Degenerative Disease?

In summary, as described above, apoptosis of a variety of retinal cells is associated 
with activation of the JNK pathway. In addition, in a number of different retinal 
degeneration models, genetic and pharmacological inhibition of JNK signaling 
results in protection from cell death and reduced pathologic progression. As a 
common mediator of retinal cell death, pharmacological inhibition of JNK, or 
associated family members, may provide a pathway for a “generic” treatment 
strategy that is relatively independent of the specific genetic mutation causing the 
disease. Additionally, JNK inhibition strategies may provide a complementary 
treatment approach to gene-specific therapies. For these reasons, it seems reason-
able to pursue the JNK pathway as a promising target for the development of 
novel therapeutic strategies for treatment of the photoreceptor degenerative 
diseases.
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