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Abstract. Graph transformation (GT) is a rule-based framework, suit-
able for modelling both static and dynamic aspects of complex systems in
an intuitive yet formal manner. The algebraic approach to GT is based
on category theory, allowing the instantiation of theoretical results to
multiple graph-like structures (e.g. labelled or attributed graphs, Petri
nets, even transformation rules themselves). There exists a rich theory
of algebraic GT which underlies verification techniques such as static
analysis. Current tools based on GT are implemented in a very concrete
way, unlike the theory, making them hard to extend with novel theoret-
ical results. Thus a new software system called Verigraph was created,
with the goal of implementing the theory as closely as possible, while
maintaining a reasonable execution time. In this paper we present the
architecture of Verigraph, which enabled an almost direct implementa-
tion of the theory. We also provide a step-by-step guide to implementing
a new graph model within the system, using second-order graph transfor-
mation as an example. Finally, we compare the performance of Verigraph
and AGG.
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1 Introduction

Graph transformation is a rule-based framework, suitable for modelling both
static and dynamic aspects of complex systems in an intuitive yet formal man-
ner [8,24]. The main idea is to use graphs to specify the states of a system,
describing existing entities and their relations at each time of execution, and to
model the transitions between such states as graph rewriting rules, also called
productions. These rules describe precisely how the states can be modified.
Besides having an intuitive and visual representation, graph transformation has
a solid formal background, which enables several analysis techniques.

There are several approaches to describe Graph Transformation (GT) [24],
differing on the kinds of graphs that are used and how rules and their application
are defined. In some approaches, these notions are defined using set theory. The
algebraic approach to graph transformation [8] uses notions of category theory
to describe graph transformation rules and rule application. Category theory
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provides a language to describe and reason about complex situations at a high
level of abstraction. An advantage of this approach is that great part of the rich
algebraic GT theory is applicable not only to a particular kind of graph, but also
to several different structures such as labelled graphs, typed graphs, attributed
graphs [8] and even transformation rules themselves [16]. This is possible since
most of the theory is developed at the categorial level, as high-level replacement
systems [11] or M-adhesive categories [10]. The main idea is that theory is
developed at a very abstract level assuming that the concrete category to which
the theory should hold has particular properties. Then, by showing that specific
graph categories have these properties, the theory immediately applies to them.

Although most of the algebraic GT theory is done at this abstract level,
existing GT tools (AGG [26], Groove [22], among others), are implemented at
a rather concrete level: each tool supports only a fixed set of concrete graph
models, operations and analysis techniques. Furthermore, their implementation
is very far from the formal definitions, hindering arguments about correctness
and the construction of extensions to deal with novel approaches.

This led to the creation of the Verigraph System [7], which is open source
and implemented in Haskell. It has a current focus on static analysis techniques
and the following design goals:

1

G1. Quick prototyping and experimentation of novel theory

G2. Easy integration of different graph models

G3. Direct implementation of formal concepts at a high level of abstraction,
making it easier to reason about correctness

G4. Reasonable execution time.

In this paper we detail the architecture of Verigraph, explaining how the
separation of applications (e.g. simulation, static analysis techniques) from con-
crete graph models (e.g. simple directed graphs, typed graphs, attributed graphs)
allows us to achieve goals G1-G3. We also provide a step-by-step guide to imple-
menting custom graph models within the framework, using second-order graph
transformation as an example, and provide further evaluation of Verigraph’s
performance as evidence that goal G4 was achieved.

This paper is organized as follows. Section 2 reviews the theory of algebraic
graph transformation. Section 3 presents Verigraph’s architecture. To illustrate
the flexibility of the system, Sect. 4 provides a step-by-step guide to implement-
ing a graph model within Verigraph. Sectionb provides an overview of cur-
rently implemented applications and graph models. Section 6 lists related tools.
Section 7 compares the performance of static analysis techniques in Verigraph
and AGG. Section 8 provides final remarks and discusses features that are cur-
rently under development.

2 Algebraic Graph Transformation

In this section we briefly review the basic definitions of algebraic graph trans-
formation, according to the Double-Pushout (DPO) approach [9]. We follow the

! Source code available at https://github.com/Verites/verigraph/.
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generalization of DPO to work with objects of any M-adhesive category [10],
which include variations of graphs (typed, labelled, attributed), Petri nets and
algebraic specifications. The reader is assumed to be familiar with basic concepts
of Category Theory. A more detailed introduction to algebraic graph transfor-
mation is available in [8].

We begin by reviewing the notion of M-adhesive category, which underlies
the other definitions.

Definition 1 (M-adhesive Category). A category C is called M-adhesive,
where M is a suitable [10] class of monomorphisms, if

(i) C has pushouts along M-morphisms;
(ii) C has pullbacks along M-morphisms;
(#1) pushouts along monomorphisms are van Kampen (VK) squares [1]].

These properties ensure that C has well-behaved pushouts. This equips the cat-
egory with natural notions for union and intersection of M-subobjects, since it
ensures for all objects of C that their M-subobjects form a distributive lattice.
Furthermore, it ensures uniqueness of pushout complements, as described below.

Definition 2 (Pushout Complement)

f
Given the morphisms (A LB C) of a category C, a A—— B
pushout complement of (f, g) is a pair of morphisms (A il Q/J, Jg
B % C) making the square on the right a pushout. B’ *>f’ C

Fact 1 (Uniqueness of Pushout Complements). In an M-adhesive cat-
egory C, pushout complements along M-morphisms (i.e. when f € M in the
square above) are unique up to isomorphism, when they exist.

We proceed by reviewing the basic concepts of DPO rewriting for any
M-adhesive category C.

Definition 3 (Negative Condition)
A negative condition has the form NC(a), where a :

P — C is an arbitrary morphism. We say that a mor- 2 C
phism m : P — G satisfies the condition when there is no g Ta
monomorphism q : C — G with g oa = m, i.e. factor-

ing m through a. We denote by NC(A) a set of negative G <— P
conditions, where A is a set of morphisms.

Definition 4 (Double-Pushout Rule). A rule, also called production, p =

(L Lk R, NC(N)) contains a span in C with l,r € M, as well as a set of
negative conditions N = {n; : L — N, };er. We call L and R the left- and right-
hand sides, respectively, while K is called the interface. The conditions NC(N)
are referred to as Negative Application Conditions (NACs).
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Definition 5 (Match and Transformation Step). A match for the rule

l T
p= (L — K — R, NC(N)) in the object G is any morphism m : L — G. A
match is applicable if it satisfies all NACs and (I, m) has a pushout complement

(k£ DL ).

Given an applicable match m : L — G for rule p, L« < K "> R
we obtain the transformation step or derivation n‘q "c I
G 22 H by the diagram on the right, where both + o
squares are pushouts. G = Dr— H

Definition 6 (Double-Pushout Transformation System). A DPO
transformation system (TS) in the M-adhesive category C is a tuple G =
(Go, P) where Gy is a C-object, representing the initial state, and P a set of
rewriting rules.

The categorial foundation for DPO has enabled the definition of multiple anal-
yses that are also applicable to any M-adhesive category. In particular, critical
pair analysis helps understand the control flow that emerges from interacting
rules [11]. It is based on parallel independence.

Parallel independence captures the notion that two transformation steps do
not interfere with each other, being applicable in any order while still reaching
the same result. When they are not parallel-independent, at least one of the steps
disables the application of the other, which is called a conflict. In the following
discussion, we omit the treatment of NACs due to limited space.

Definition 7 (Parallel Independence). Given two transformation steps
G 2" Hy and G "2 H,, they are parallel-independent if there exist
morphisms qio : L1 — Do and q21 : Ly — D1 making the following diagram com-
mute. The rules are said to be in conflict when they are not parallel-independent.

l l
Ry <T;1 K — Ly S Ly — K, & Ry
l l 921 .\7711 mz/. a2 l l
K Y i
H, Dq o G 7 Do Ho
1 2

Remark 1. The conflicts characterized by the definition above are called delete-
use conflicts, because in the context of graphs they detect elements that are
deleted by one rule and used by the other. The complete notion of parallel
independence in the presence of NACs is more involved, including other kinds of
conflicts. A thorough treatment of these notions may be found in [15].

The notion of critical pair captures conflicts in a minimal context. By enu-
merating all critical pairs, we get an account of all possible interference between
two rules. Their formal definition and a thorough discussion is provided in [11].

The categories of graphs and of typed graphs, which are now introduced,
are M-adhesive. Thus, the generalized theory of DPO transformation applies to
those categories.
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Definition 8 (Graph, Graph Morphism). A graph G = (V, E,s,t) con-
tains a set V of nodes, a set E of edges and two functions s,t : E — V
mapping each edge into its source and target node, respectively. Given graphs
Gy = (V4,Eq,51,t1) and Go = (Va, Es, s2,12), a graph morphism [ : G; — G»
is a pair of functions f = (fv : Vi — Va, fg : By — Es) that preserve incidence,
that is, fy os1 = sg0 fp and fy ot =ty0 fg.

Definition 9 (T-typed Graph, T-typed Graph Morphism). Given a
graph T, called the type graph, a T-typed graph is a pair (G,t) where G
is the instance graph and t : G — T the typing morphism. Given two T-typed
graphs (G1,t1) and (Ga,ta), any graph morphism f : G1 — Go that preserves
typing, i.e. with ty o f =t1 is a T-typed graph morphism.

Definition 10 (Categories of Graphs). Graphs along with graph morphisms
form the category Graph. T-typed graphs along with their morphisms form the
category Graphy. Note that Graphy is the slice category Graph | T.

Fact 2. The categories Graph and Graph; are M-adhesive, taking as M the
class of all monomorphisms [10].

2.1 Example: Pacman

In this paper we will use the Pacman game as a running example, adapted
from [24], especially to discuss second-order graph transformation in Sect.4.
The example is depicted in Fig. 1. We use a typed graph transformation system
having 4 types of nodes and 5 types of edges (graph T'). Rules describe how
Pacman and the ghosts may move (rules movePacman and moveGhost); how
a ghost may kill Pacman (rule killPacman, that has a NAC — graph with gray
background — stating that Pacman may only be killed if it does not carry a
berry); how Pacman may kill a ghost (rule killGhost); and how Pacman may get
and drop berries (rules getBerry and dropBerry). Note that only the left- and
right-hand sides of rules are shown since in these examples all items that are
shown in both sides are preserved (thus graph K is their intersection and rule
morphisms are obvious).

3 Architecture

Verigraph was implemented in Haskell [19], a purely functional programming
language with mathematical foundations. We exploit its abstraction mechanisms
and functional style to reduce the mismatch between theory and code as much
as possible.

The core of the system is organized into three layers: The Abstract layer is
the central part of the architecture, providing high-level categorial and rewrit-
ing APIs. The Application layer provides a series of analysis techniques mainly
implemented over the abstract APIs. Finally, the Concrete layer encapsulates the
realisation of those APIs for specific categories, such as Graph and Graph.
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Fig. 1. Pacman transformation system

Figure 2 summarizes the architecture of Verigraph. Folders represent Haskell
modules, while simple boxes represent data types or, when text is in italic,
type classes. Dashed arrows indicate dependencies between modules. A thorough
documentation of Verigraph’s modules is available online?.

In the remainder of this section, we explain the design of each layer in detail,
and how they are used to achieve a generic and extensible architecture that is
also very close to theory.

3.1 The Abstract Layer

The abstract layer is responsible for defining basic constructions and operations
for category theory and rewriting systems. This is mainly accomplished by a
series of contracts, in the form of Haskell type classes, that specify abstract cat-
egorial operations. The application layer can then be largely generic with respect
to the category, depending only on these contracts. The actual implementation
of most operations is left for the concrete layer, though some operations have a
default implementation in terms of other categorial constructs (e.g. pushout as
coproduct and coequalizer).

Being the layer that directly expresses categorial concepts, its operations
closely reflect categorial definitions. In Verigraph, a category is described by the
type class Category, shown in Fig. 3. It defines the basic structure and operations
that any category implemented in Verigraph must provide. We omit some details
of the type classes due to space restrictions.

2 API documentation available at https://verites.github.io/verigraph-docs/.


https://verites.github.io/verigraph-docs/

166 G. G. Azzi et al.
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1
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Rewriting.DPO '\ [ Category
[ DPO ] [Production] ‘ [ Category ] [FindMorphism] [ MFinitary ] [MAdhesive]
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> [ Graph ] [ GraphMorphism ] [TypedGraph ] [ TypedGraphMorphism

Fig. 2. Verigraph architecture

Essentially, a category must have an object type>, a morphism composition
operation (<&>), a function that returns the identity morphism of an object,
together with functions that return the domain and codomain objects of a
morphism.

However, not all categories are suitable for all purposes. In general, the theory
of rewriting assumes that categories have enough structure to enable particular
constructions. This is also specified by type classes, such one for M-adhesive
categories, which have pushouts and pullbacks along monomorphisms, as shown
in Fig. 3.

The categorial portion of this module provides further type classes. For exam-
ple, FindMorphism defines the operations for finding all morphisms between a
pair of objects, possibly restricting to a specific class or satisfying restrictions
(e.g. make a span or a cospan commute). Similarly, E’PairCofinitary deals
with enumerating jointly epic pairs of morphisms with given domains.

Besides the high-level categorial framework, the abstract layer also contains
APIs for each rewriting approach. This is kept in a different submodule to decou-
ple categorial operations from the rewriting approaches.

Currently, the only rewriting approach implemented in the stable version of
Verigraph is DPO, although new approaches are being studied and have ongoing
implementation, particularly Sesqui-Pushout [6] and AGREE [5].

3 We use an extension of Haskell’s type system enabling type families to associate a
type of object to each type of morphism.
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class Eq morph => Category morph where
type Obj morph :: *

(<&>) :: morph -> morph -> morph
identity :: Obj morph -> morph
domain :: morph -> Obj morph
codomain :: morph -> Obj morph

class Category morph => MAdhesive morph where

calculatePushoutAlongM :: morph -> morph -> (morph, morph)
calculatePullbackAlongM :: morph -> morph -> (morph, morph)
hasPushoutComplementAlongM :: morph -> morph -> Bool

calculatePushoutComplementAlongM :: morph -> morph -> (morph, morph)

Fig. 3. Type classes for categories and M-adhesive categories.

data Production morph = Production N Ny,
{ left :: morph /\ /\
nacsy nacsy
, right :: morph
, nacs [morph] } L left K right R

Fig. 4. Data type for DPO productions (see Definition 4)

calculateDPO :: MAdhesive morph => morph -> Production morph
-> (morph, morph, morph, morph)
calculateDPO m (Production 1 r _) =
let (k, 1’) = calculatePushoutComplementAlongM 1 m
(r’, m’) = calculatePushoutAlongM r k
in (k, m’, 1°, r’)

K
i
D

Q3-t

Fig. 5. Implementation of DPO rewriting steps (see Definition 5)

Similar to the categorial APIs, those for rewriting provide basic data struc-
tures and operations of their underlying approaches, often defined in terms of
categorial operations. Examples are data types for rules and transformation sys-
tems, along with functions for checking if matches are applicable, performing
rewritings, etc. Figure4 shows the data definition for productions in the DPO
approach and Fig. 5 shows a function that, given a production and an applicable
match, calculates the transformation step.

3.2 The Application Layer

The application layer provides a collection of analysis techniques, mainly based
on the categorial and rewriting APIs. An example is critical pair analysis,
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described in Sect.2. It is implemented at a high level of abstraction, directly
depending only on the DPO and E’PairCofinitary type classes (which in turn
depend on FindMorphism).

Thus, critical pair analysis is available for any category that conforms to the
aforementioned type classes. Figure 6 shows the main functions that implement
critical pair analysis. Once again, we omit the treatment of NACs due to limited
space. The code also has been slightly simplified for readability and space.

isDeleteUse :: (DPO morph, E’PairCofinitary morph) =>
Production morph -> (morph, morph) -> Bool
isDeleteUse pl (ml,m2) =
let (_,11’) = calculatePushoutComplementAlong (leftMorphism pl) mi
in null (findCospanCommuters m2 117)

findAllDeleteUse :: (DPO morph, E’PairCofinitary morph) =>
Production morph -> Production morph -> [(morph, morph)]
findAllDeleteUse pl p2 =
let
allPairs = createJointSurjections (leftMorphism pl) (leftMorphism p2)
satisfyingPairs = filter (satisfyRewritingConditions pl p2) allPairs
in filter (isDeleteUse pl) satisfyingPairs

r 1 1-
1 ! 1 1 2 2 ik 2
R+ K, L Ly <2 Ky 23 R
l N /
q21 m1 mo
R N
D) —— G
1
1

Fig. 6. Functions that calculate critical pairs for delete-use (see Definition7 and
Remark 1)

In the code snippet shown in Fig.6, the function findJointSurjections
enumerates all jointly epic pairs of morphisms that have the left-hand
sides of either rule as domain. Function satisfyRewritingConditions tests
the existence of pushout complements for a pair of matches. Function
findCospanCommuter finds all morphisms go;1 : Ly — D1 such that g 0q21 = mo.

Although the main focus of this layer is to be generic and based on the
abstract layer, there exist analyses that are tied to the internal structure of a
particular category and/or its objects. For such situations, Verigraph allows the
application layer to directly access features of the concrete layer, at the cost that
these particular analyses will not be available to other categories. Some examples
are given in Sects.4 and 5.

3.3 The Concrete Layer

The concrete layer deals with the implementation of particular categories, i.e. the
data structures and category-specific operations for objects and morphisms (e.g.
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applying a morphism to a node or edge), as well as the realisation of contracts
from the abstract layer, such as operations for finding and composing morphisms,
pushouts and pullbacks.

This layer is split into three modules, as shown in Fig.2. The Data mod-
ule provides basic data structures, while the Category and Rewriting modules
provide instantiations of the appropriate type classes for those data structures.

Currently, there are three main categories implemented in Verigraph: Graph,
Graphy (see Definition 10) and GraphRule, (which will be described in
Sect.4). A category for typed attributed graphs is under development. Figure 7
shows data structures representing objects and morphisms of the first two cate-
gories.

In order to use the existing generic analyses with a different category, this
is the only layer that needs to be changed, as explained in Sect.4. One of the
main advantages is that new programmers do not have to worry about too many
categorial details, as long as they implement the basic operations defined in the
upper layers. Figure 8 shows the instantiation of category Graph.

Another advantage of this architecture is that optimizations dependent on
the internal representation of objects and morphisms can be done here without

data Graph n e = Graph
{ nodeMap :: [(NodeId, Node n)]
, edgeMap :: [(EdgeId, Edge e)] }

data GraphMorphism a b = GraphMorphism

{ domainGraph :: Graph a b

, codomainGraph :: Graph a b

, nodeRelation :: Relation Nodeld

, edgeRelation :: Relation Edgeld }

type TypedGraph a b = GraphMorphism a b

data TypedGraphMorphism a b = TypedGraphMorphism

{ domainGraph :: TypedGraph a b
, codomainGraph :: TypedGraph a b
, mapping :: GraphMorphism (Maybe a) (Maybe b) }

Fig. 7. Implementation of typed graphs and their morphisms

instance Category (TypedGraphMorphism a b) where
type Obj (TypedGraphMorphism a b) = TypedGraph a b

domain = domainGraph
codomain = codomainGraph
t2 <&> t1 = TypedGraphMorphism (domainGraph t1) (codomainGraph t2)

(mapping t2 <&> mapping t1)
identity t = TypedGraphMorphism t t (identity (domain t))

Fig. 8. Category instance for Graph
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compromising the clarity of the abstract operations or tying them to a particular
category. An example are optimized search procedures for morphisms that satisfy
particular restrictions, such as commuting with a particular span or cospan.
Finally, despite being focused on graphs, Verigraph is not necessarily limited
to them. Therefore, any category with the necessary properties can be imple-
mented in the system, such as sets, Petri nets, algebraic specifications, etc.

4 TImplementing a Graph Model in Verigraph

In this section, we provide a step-by-step guide to implementing a new graph
model in Verigraph. Note that all implementations shown in this section belong
to the concrete layer. Each step will be illustrated by describing the implemen-
tation of Second-Order Graph Grammars (SOGGs), which allow the transfor-
mation of graph rewriting rules using DPO transformation [17]. In the context of
Model-Driven Engineering, SOGGs are well-suited to analyse changes introduced
during the evolution or maintenance phase of development.

4.1 Step 1: Define the Graph Model as an M-adhesive Category

In order to integrate a graph model into Verigraph’s architecture, it must be
defined as an M-adhesive category. The notions of object and morphism must
be clear, as well as constructions such as (co)limits, initial pushouts, £-M fac-
torization and &’-M pair factorization.

Note that most of the implemented categories are finitary, that is, each object
has a finite number of subobjects. In this case, M-adhesiveness guarantees &-
M factorization and the existence of initial pushouts, and a strict initial object
additionally guarantees finite coproducts and £’-M pair factorization [4].

Second-order graph transformations are defined in the category of typed
graph spans, which is M-adhesive under certain assumptions [16].

Graph rewriting rules, in the DPO approach, are spans L. «—~ K ~— R in
Graph,. Thus, the following category is appropriate to model the rewriting of
graph rules.

Definition 11. The category GraphRuler has, [, P K, 1“3 R,

as objects, monic spans L «—~ K — R of Graphy. \ \ \
A rule morphism f : a — ( is then a triple of {f ff {f
graph morphisms (f1, fi, fr) between the graphs of Ls +— Kz ~— Rp
both rules making the diagram on the right com- e ?
mute.

Fact 3. GraphRule; is M-adhesive [16]. Its limits, colimits and pushout com-
plements can be constructed componentwise in Graphy.

Since GraphRule; is M-adhesive, the framework of DPO rewriting can be
instantiated for it. Thus, second-order rules, also called 2-rules, are spans of
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rule morphisms. Figure 9 shows two examples of 2-rules for the Pacman transfor-
mation system. Note that the interfaces are omitted from first- and second-order
rules, since all items shown in both sides are preserved (thus the interfaces are
the intersection of the left- and right-hand sides). The 2-rule no Violence trans-
forms a deletion of Pacman into its preservation, maintaining the deletion of the
edge linking Pacman to a block. The 2-rule fastGhost adds a new preserved block
in a rule that moves a ghost, allowing it to move two blocks at a time instead of
just one.

) - N ) e )
orule (& & @
LHS Y ™ e

‘ \ J _ 8 J \ )
e i
orue [ X &
RHS = e g &

¢] . & ) & e e o o

Fig. 9. Pacman second-order rules

4.2 Step 2: Implement Data Structures for Objects and Morphisms

The building blocks for DPO transformation are the objects and morphisms of
the category. Thus, the design of data structures that represent them is crucial
to ensure reasonable runtime and memory consumption.

The category GraphRule; is particularly simple, since it can reuse the
data structures that implement Graphy;. The types of graph rules and their
morphisms are show in Fig. 10, and they directly reflect Definition 11.

type TypedGraphRule n e = Production (TypedGraphMorphism n e)

data RuleMorphism n e = RuleMorphism

{ rmDomain :: TypedGraphRule n e

, rmCodomain :: TypedGraphRule n e

, mappinglLeft :: TypedGraphMorphism n e

, mappingInterface :: TypedGraphMorphism n e

, mappingRight :: TypedGraphMorphism n e }

Fig. 10. RuleMorphism implementation

4.3 Step 3: Instantiate the Appropriate Type Classes

According to the constructions available in the category, the type classes of
the abstract layer should be instantiated, that is, their operations should be
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implemented for the objects and morphisms of this category. The instantiated
type classes will define which applications are available to the implemented graph
model. The correspondence between each type class and the categorial concepts
it embodies are explained in the API documentation®.

Many of the type classes provide default implementations for some of the
operations, which are correct but inefficient. These are useful for early proto-
types, but careful implementation of all operations is important to ensure rea-
sonable runtime and memory consumption.

In the case of GraphRule; all of the aforementioned type classes are instan-
tiated. Indeed, most of the algorithms are constructed over Graphy primitives
since limits, colimits and other constructions on GraphRule; can be calcu-
lated componentwise. An example is the implementation of pushout comple-
ments, shown in Fig. 11. The function receives two RuleMorphisms f : a — (3

fr

R fr Rs
K — Kﬁ’/ \

|
o |
L — L L — | "
o ; T s !
‘ 9K ‘ . IK
) Ly Rﬁ’ I fr \L R’y
gr, K 7/'3/ gL K
L fi
A \L ¥
l’_),/
Lo e M L,Y /

instance MAdhesive (RuleMorphism a b) where
calculatePushoutComplementAlongM
g@(RuleMorphism _ ruleC fL fK fR)
f@(RuleMorphism ruleA ruleB gL gK gR) =

let
(glL’, fL’) = calculatePushoutComplementAlongM fL gL
(gk’, fK’) = calculatePushoutComplementAlongM fK gK

(gR’, fR’) = calculatePushoutComplementAlongM fR gR

leftB’ commutingMorphismSameCodomain
(leftMorphism ruleC <&> fK’) fL’
gk’ (gL’ <&> leftMorphism ruleA)
rightB’ = commutingMorphismSameCodomain
(rightMorphism ruleC <&> fK’) fR’

gk’ (gR’ <&> rightMorphism ruleA)

ruleB’ = Production leftB’ rightB’ []
in
( RuleMorphism ruleA ruleB’ gL’ gK’ gR’,
RuleMorphism ruleB’ ruleC fL’ fK’ fR’ )

Fig. 11. Implementation of Pushout Complement for RuleMorphism

* API documentation available at https://verites.github.io/verigraph-docs//.
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and g : B — ~, returning its pushout complement (f':a — ', ¢’ : 8’ — 7) (see
Definition 2). The first part of the function performs pushout complements in
Graph/, shown in orange in the previous diagram. This implicitly constructs the
typed graphs of rule 5’ as codomains of g7, g% and g%. The second part searches
for graph morphisms /3 and 7g that make the diagram commute. Finally, the
rule 8’ and the rule morphisms f’ and ¢’ are assembled from their components.

The complete realisation of MAdhesive, DPO and E’PairCofinitary type
classes for RuleMorphism enables the usage of many generic applications of
Verigraph with 2-rules, including critical pair analysis and the calculation of
concurrent, rules.

4.4 Step 4 (Optional): Implement Category-Specific Applications

There are often applications that depend on details of the graph model, and
cannot or were not generalized categorially. These may be still be implemented
within Verigraph, although they may not profit from the separation of the
abstract layer.

In the case of SOGGs, inter-level critical pair analysis detects situations
where the applicability of first-order rules is changed after applying a second-
order rule. This operation is inherent to the transformation of graph rules, and
was implemented in Verigraph.

4.5 Step 5: Adapt the Command-Line Interface

In order for end users to execute applications over the new graph model, some
functionality must still be implemented, such as: reading files that define trans-
formation systems of the graph model, writing files that describe the results,
interpreting configuration options. This needs to be implemented separately for
each graph model, since the syntax of input/output files and the available options
vary greatly. It also needs to be integrated into the executable providing the
command-line interface. This step is unrelated to the theory of algebraic graph
transformation, so it is beyond the scope of this paper.

5 Overview of Implemented Techniques

Verigraph already provides several applications for end users. It allows the exe-
cution of first- and second-order rewriting rules over typed graphs (i.e. trans-
formation of typed graphs and of graph rules). Its current main focus, however,
are static analysis techniques. Attributed graphs are not yet supported. At the
present time, Verigraph provides a Command Line Interface, using AGG [26]
.ggx and .cpx files as input/output formats.

Many of the implemented features are not specific to first- and second-order
graph transformation, being implemented generically with respect to the trans-
formed structure. This includes the execution of second-order rules, which may
be applied to first-order transformation of any structure. Other generic applica-
tions are the following static analysis techniques described in [8].
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Critical Pair Analysis: Captures all possibilites of conflicts between rules in
a minimal context.

Critical Sequence Analysis: Similar to critical pair analysis, captures all
possibilites of dependencies between rules in a minimal context.

Concurrent Rules Calculation: Generates rules that summarize the appli-
cation of several rules in a single step.

As for the applications available to a single kind of structure, Verigraph
provides:

Inter-level Critical Pairs Analysis (GraphRule;) [17]: Detects conflicts
between first- and second-order graph rules, i.e. whether and how the appli-
cation of second-order rules affects the applicability of first-order rules. This
is useful for analysing software evolution.

Occurrence Grammar Calculation (Graphy) [23]: Generates doubly-typed
graph grammars that describe the semantics of typed graph grammars and
their application history. These can be used for the generation of test cases.

Another important aspect of DPO transformation systems are Graph Con-
straints, which are also supported by Verigraph. They are not described in this
paper due to lack of space.

6 Related Work

Existing tools based on graph transformation (GT) vary according to the sup-
ported graph models, transformation approaches, execution models and analy-
sis techniques. Unlike Verigraph, most of them are domain-specific, but other
domain-neutral tools based on the algebraic approach include the following.

AGG [26] supports typed attributed graphs, allowing execution of transforma-
tion rules, critical pair analysis and calculation of concurrent rules.

GROOVE [22] supports a model of labelled graphs with types and attributes,
allowing execution of transformation rules, state space exploration and model
checking.

GrGEN.NET [12] supports typed attributed graphs, allowing the compilation
of transformation rules into C# for efficient execution. It also provides a
domain-specific language for controlling the application of rewrite rules.

Graph Programs [18] is a programming language containing transformation
rules of labeled graphs as primitive statements. A compiler is available, gen-
erating bytecode for the York abstract machine. Although a reasoning system
based on Hoare logic was proposed for verifying Graph Programs [21], tool
support is not yet available.

A particular application domain where many transformation tools are avail-
able is Model-Driving Engineering (MDE). In this setting, transformation rules
generally manipulate graph-based models such as those from the Unified Model-
ing Language (UML) or the Eclipse Modeling Framework (EMF). Besides DPO
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rewriting, Triple Graph Grammars (TGG) [25] are often used to define bidirec-
tional model transformations. EMorF [13] supports in-place model modifica-
tion rules (based on DPO), as well as model transformation and synchronization
(based on TGG) for EMF models, allowing execution of transformation rules.
eMoflon [1] supports Story Driven Modeling (a combination of UML Activity
Diagrams and DPO) as well as TGG for EMF models, allowing compilation into
Java code. Henshin [2] supports transformation rules for EMF models, along
with control-flow constructs to guide their execution. It allows execution of rules,
compilation into Java, state space exploration integrated with model-checking
tools and critical pair analysis (using AGG as a component).

7 Performance Evaluation

One of the design goals of Verigraph was a reasonable execution time. In order
to validate the satisfaction of this goal, we have performed some experiments
comparing the execution time of static analysis techniques on Verigraph and
AGG [26].

We have selected five transformation systems (TS) to use as inputs of the
experiment. PACMAN is the TS presented in Fig. 1. ELEV models the behaviour
of an elevator system with 9 rules, adapted from [15]. MED1, MED2 and MED3
model guidelines for a medical procedure, containing 36 rules in total [3]. PAC-
MAN and MED1 contain only relatively small graphs, with at most 5 nodes, and
at most 2 of the same type. ELEV contains slightly larger graphs, with up to 7
nodes and 3 of the same type. MED2 and MED3 have even larger graphs, with
up to 8 nodes and 2 of the same type.

The experiment consisted of running critical pair and sequence analysis over
the T'Ss, that is, calculating all critical pairs and sequences for each pair of rules
in each TS. The analysis was executed 10 times for each TS, with each tool,
in an Intel 15-3330 processor running at 3 GHz with 16 GiB of RAM. The total
time and peak memory usage was measured for each execution using GNU time.
Although the measurements include reading and writing XML files, this overhead
should be similar for both tools, and both execution time and memory usage
should be dominated by the analysis itself. Furthermore, the results directly
reflect the experience of end users. It is also important to note that both AGG
and Verigraph parallelize the analysis. All input files and the scripts used for
running the tests are available at https://github.com/Verites/verigraph/tree/
critical-pairs-benchmarks.

Table 1 presents the number of critical pairs and sequences found for each TS,
and Table 2 presents the measured execution times. For the TSs PACMAN, MED1
and ELEV, Verigraph’s performance was slightly better than AGG. On MED2
and MED3 AGG’s performance degraded substantially, and it was significantly
outperformed by Verigraph. This indicates that AGG is more sensitive to the
size of the graphs contained in rewriting rules, since the last two T'Ss contained
the largest graphs. Memory usage is shown in Table 3, and followed a similar
pattern.


https://github.com/Verites/verigraph/tree/critical-pairs-benchmarks
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Table 1. Number of critical pairs and sequences for each transformation system.

PACMAN | ELEV | MED1 | MED2 | MED3
Rules 6 9 9 11 12
Critical pairs 135 328 85 858 1462
Critical sequences | 146 242 16 229 272

Table 2. Average and standard deviation for execution times of critical pair and
sequence analysis, in seconds.

Tool PACMAN | ELEV MED1 MED2 MED3

avg |dev |avg |dev |avg |dev | avg dev |avg dev
Verigraph | 3.82|0.07 | 13.21 |/ 0.09 | 3.55|0.06 | 14.94| 0.18| 35.84| 0.30
AGG 4.9010.05|15.16 1 0.12|5.49 | 0.05 | 1233.10 | 12.91 | 1375.62 | 16.43

Table 3. Average and standard deviation for peak memory usage of critical pair and
sequence analysis, in MiB.

Tool PACMAN |ELEV MED1 MED2 MED3

avg dev |avg dev |avg dev |avg dev |avg dev
Verigraph| 65.50(2.27|157.88|4.12| 47.37|2.02| 434.34| 15.70| 764.60| 23.52
AGG 180.70|7.66|287.00/4.74]112.65|1.10|8660.15299.06 | 8739.41|229.26

8 Conclusion

Verigraph is a new system for Graph Transformation (GT) that exploits the use
of category theory to promote flexibility and extensibility. The use of category
theory as a basis allows not only for flexibility, but also provides a framework
in which formal definitions of algebraic GT can be implemented in a rather
straightforward way. Conceptually, this idea is similar to the use of institutions
as a basis for the HETS tool [20].

The flexibility of Verigraph was demonstrated by the implementation
of second-order graph transformation: by instantiating a categorial API for
GraphRuler, existing applications like critical pair analysis are automatically
available for second-order graph rewriting. Moreover, we have shown that it is
also possible to develop category-specific applications, like Interlevel Conflict
Analysis (which requires at least two levels of rewriting rules).

Despite flexibility and extensibility, a reasonable execution time can be
achieved by an efficient implementation of the categorial API. This was demon-
strated by comparing execution time of critical pair analysis on Verigraph and
AGG, having Verigraph outperform AGG in realistic test cases.

Currently Verigraph implements rewriting under the DPO approach using
the categories Graph, and GraphRule;, as well as critical pair/sequence
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analysis and calculation of concurrent rules. We are working on support for
(typed) attributed graphs, as well as the Sesqui-Pushout and AGREE trans-
formation approaches. Research is also being done on applying Verigraph to
generate test cases for software that is modeled with graph transformation.

The existing version of Verigraph uses AGG files for input and output via a
Command Line Interface. Nonetheless, Verigraph’s own Graphical User Interface
is under development, following a web-based approach completely decoupled
from the system’s code.

A flexible architecture makes Verigraph suitable as a platform for testing new
ideas in Graph Transformation. The system is free and open source, currently
available online at GitHub®, which allows collaborative development and discus-
sion. Extensive automated testing helps maintain its correctness, and its API is
thoroughly documented. All these aspects could enable the use and development
of Verigraph by the community of researchers.
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