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Abstract. Hartmut Ehrig was an active researcher in Algebraic Speci-
fications on the one hand and Graph and Model Transformations on the
other hand. We demonstrate that these two research fields are closely
connected, if we consider generating graph transformations only and use
partial algebras instead of total algebras as the underlying category.

1 Introduction

In the last two decades, algebraic graph transformations became popular as
a visual specification method for model transformations [8,9]. There are two
major reasons for that: Graph transformations use a graphical notation and
are rule-based. A graphical notation is adequate, since many modern modelling
techniques are graphical themselves, like for example use case, class, state, or
activity diagrams in the Unified Modelling Language UML [15] or process speci-
fications in Business Process Model and Notation BPMN [14]. And a rule-based
mechanism avoids explicit control structures. Thus, it opens up the chance for
massively parallel transformations.

Model transformations define the mapping between artefacts in possibly dif-
ferent modelling languages. Examples are the mapping of Petri-Nets [20] to State
Charts [17], entity relationship diagrams [4] to relational database schemata,
XML-schemata [6] to UML class diagrams [15], or arbitrary UML class diagrams
to UML class diagrams without symmetric associations and multiple inheri-
tance1. In all these situations, model transformations are generators: given a
model in the source language, the transformation process step by step generates
a model in the target language together with a mapping that records the corre-
spondence between the original items in the source to the generated items. Every
model generation of this type must satisfy the following general requirements:

Termination. The generation process terminates for every finite source model.
Uniqueness. It produces a uniquely determined target for every source model.2

Persistence. The target generation does not change the source model.

These three requirements suggest that model transformations can be under-
stood as some sort of (persistent) free construction from a suitable category of
1 This transformation can serve as a prerequisite for the “compilation” of UML class

diagrams to object-oriented programming languages like Java.
2 Up to isomorphism, if the semantics of transformations is using category theory.
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source models to a suitable category of target models.3 In this paper, we provide
such an interpretation. For this purpose, we do not have to introduce any new
definitions or results in terms of theorems and mathematical proofs. Instead, we
interpret the available results in a slightly adjusted environment:

1. We restrict the well-known algebraic graph transformations to generating
rules, i.e. to rules that do not delete or copy any items.

2. For the underlying category, we pass from total unary algebras4 to arbitrary
partial algebras.

The first adjustment leads to a special case of graph transformations, in which
the three different algebraic approaches to graph transformation, namely the
double-pushout [12], the single-pushout [18], and the sesqui-pushout approach [7]
coincide. This is due to the fact that generating rules are simple morphisms
L

r→ R. For rules of this format, the direct derivation at a match m : L → G is
a simple pushout construction of r and m in all three algebraic approaches.

The second adjustment provides a simple encoding of a “growing” corre-
spondence between items in the source model and generated items in the target
model, namely by partial mappings that are getting more and more defined
within the transformation process.5 And, in partial algebras, the generation of
elements, the creation of definedness for predicates, and the production of equiv-
alences can be controlled by the same simple mechanism, namely Horn-type
formulae.6

The rest of the paper is structured as follows. Section 2 introduces a typical
example of a model transformation scenario, namely the generation of relational
database schemata for object-oriented class diagrams. This example has also
been used as a running example in [9].7 We show by the example, that even
complex model transformation tasks can be modelled by purely generating rules.
Section 3 presents the rich theory of generating transformations in a very general
categorical framework. Especially, we show in Sect. 3.2 that special generating
transformation systems can be interpreted as specifications defining epi-reflective
sub-categories of the underlying category. Section 4 presents the basic theory for
algebraic specifications of partial algebras as a concrete syntax for transformation
rules. In this framework, the sample transformation rules in Sect. 2 obtain a
formal semantics, which allows a detailed review of all samples in Sect. 5. The
analysis results in substantial improvements that, on the one hand, simplify the
transformations from the practical point of view and, on the other hand, turn
all of them into free constructions.

3 For persistent free construction between abstract data types compare [5,10,11].
4 Like graphs, hypergraphs, graph structures [18], or general functor categories from

a finite category to the category of sets and mappings.
5 Possibly without becoming total at last.
6 Alfred Horn, American mathematician, 1918 – 2011.
7 Compare [9], Example 3.6 on page 54.
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Fig. 1. Handling of classes, attributes, and associations in ST and CT

2 Sample Transformations – from Classes to Relations

A typical model transformation scenario is the generation of relational schemata
for object-oriented class diagrams. In this section, we present transformation
rules for all three patterns that are useful to cope with inheritance, namely Single
Table Inheritance (ST), Class Table Inheritance (CT), and Concrete Class Table
Inheritance (CCT) [13].8 The presentation in this section stays on the intuitive
level and trusts in the suggestive power of the rule visualisations as graphs
with significant icons. Section 4 presents the necessary formal underpinning for
a precise semantics which is described in Sect. 5.

In this section, we use the same mapping from class diagrams to relational
schemata which has been used in Example 3.6 of [9]: Classes are mapped to
tables, attributes are mapped to columns, and associations are mapped to junc-
tion tables. The corresponding three rules for Single Table Inheritance and Class
Table Inheritance are depicted in Fig. 1.9 For each class, the rule c2t generates
a new table together with a column of numeric type (int) that is marked as
key column10. That a class has been mapped is stored by a (partial) map indi-
cated by the dotted arrow. The rule that generates columns in tables for class
attributes is at2co. It is applicable to each attribute the class of which possesses
an assigned table, possibly generated by an application of rule c2t. In order to
simplify the presentation in this paper, we suppose that the set of base types (int,
bool, string etc.) is identical in class models and relational schemata. Finally,
associations between classes are mapped to junction tables by rule as2jt. This
rule presupposes that the two classes at the ends of the association possess an

8 This section uses material from [21].
9 The correspondence of the items in the left hand side of the rule to items in the

right-hand side is always indicated by the visual correspondence in the layouts. In
Fig. 1, we give an additional explicit definition of the mapping from left to right by
index numbers. In most cases, this explicit indication is superfluous. Since mappings
must be type-conform, i.e. classes can only be mapped to classes, attributes can only
be mapped to attributes etc., and the mapping must respect the graphical structure,
the mapping is uniquely determined for all rules that are depicted below. Thus, we
do not use the index numbers in the following.

10 Standard key columns are unique and not null.
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Fig. 2. Handling of inheritance in ST and CT

assigned table with a primary key column each, which have possibly been gen-
erated by two applications of rule c2t. To each association, it assigns (dotted
arrow) a new table with two columns that both are marked as foreign keys.11

The foreign keys reference the keys that have been found by the match. For the
sake of simplicity, we suppose that the type of a foreign key column is implicitly
set to the type of the referenced key column.

The handling of inheritance relations between classes is different in ST and
CT. Figure 2 depicts the corresponding rules i4ST respectively i4CT which have
the same left-hand side. The ST-pattern puts a complete inheritance hierarchy
into a single table. This effect is implemented by the rule i4ST which merges the
tables and keys for the super- and the sub-class of an inheritance relation and
maps the relation itself to the same table, compare upper part of Fig. 2.12,13

Figure 3 depicts a sample transformation sequence for a small composite class
diagram in the single-table scenario. In the first step, rule c2t is applied three
times and produces a table with primary key column for each class in the start
object. The second step (2 × at4co) handles the column generation for the two
given attributes. The third step (2× i4ST) merges the three tables that have
been generated before and ensures that there is only one table for the complete
inheritance hierarchy. Finally, the fourth step applies the rule as2jt once which
adds the junction table for the given association.

The CT-pattern realises inheritance relations by foreign key references.
Therefore, the rule i4CT maps an inheritance relation to a foreign key, com-
pare lower part of Fig. 2. The key column of the table for the sub-class is

11 Standard foreign key columns are not null.
12 Merging of objects is expressed by non-injective rules.
13 Due to the merging, some of the generated junction tables for association may no

longer accurately model the association’s semantics.
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Fig. 3. Sample transformation sequence

simultaneously used as a foreign key reference to the key of the table for the
super-class. This strategy requires coordinated key value generation for all tables
“in an inheritance hierarchy” but provides unique object identity for all “parts”
of the same object in different tables.

The CCT-pattern generates tables for all concrete classes only and “copies”
all inherited attributes and associations to these tables. For the control of this
copying process, we need a relation that provides all direct and indirect (transi-
tive) sub-classes for a super-class. Figure 4 shows the rules, that “compute” the
reflexive (t0) and transitive (t∗) closure of the given inheritance relation (t1).

Fig. 4. Reflexive/transitive closure of inheritance

Since tables are generated for concrete classes only, we distinguish between
abstract and concrete classes. Concrete classes are visualised by the annotation
{c}. The rule cc2t in Fig. 5 generates tables and keys in the CCT-pattern.14

A single attribute can result in several columns, compare rule cat2co in
Fig. 5: For an attribute a of type T in class c, a column of type T is gener-
ated into every table for a concrete class c′ that is a sub-class of c. Thus, the
attribute mapping gets indexed by the concrete sub-classes of the owner class

14 The rule cc2t is a simple modification of rule c2t in Fig. 1. Here, the class-to-table
mapping is partial, since abstract classes are never mapped in CCT.
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Fig. 5. Handling of classes, attributes, and associations in CCT

of the attribute, compare dotted circle in the visualisation of rule cat2co in
Fig. 5.15

The handling of associations in CCT is even more complex. They cannot be
mapped to one foreign key pair, since rows from several “unconnected” tables
can be linked by instances of an association in this pattern. For an accurate map-
ping of the class model semantics, we need orthogonal combinations of foreign
keys into the tables for all concrete sub-classes of the association’s source class
with foreign keys into the tables for all concrete sub-classes of the association’s
target class. The generation of these foreign keys is prepared by rule as2t in
Fig. 5. It provides the table for all foreign key columns that are generated for an
association.

The rules s2co and t2co in Fig. 6 generate these columns together with the
foreign key references to the corresponding tables. These two rules are almost
identical; s2co handles all concrete sub-classes of the association’s source and
t2co all concrete sub-classes of the association’s target class. As in the case of
the attribute mapping, the two mappings that store the correspondence between
items in the class model and items in the relational schema are indexed by the
concrete sub-class either on the source or the target side, compare the two dotted
circles in Fig. 6.

Fig. 6. Foreign keys for associations in CCT

For an accurate representation of the semantics of the class model, in each
row of the “multi-junction table” exactly one foreign key on the source side and
exactly one foreign key on the target side must be not null.16 Thus, we need

15 Rule cat2co also works for the own attributes of a concrete class due to the reflexivity
rule t0 in Fig. 4. This situation requires non-injective matches!

16 For the sake of simplicity of the presentation we do not generate a suitable check

constraint in the relational schema.
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foreign key columns that allow null values. This sort of foreign keys is depicted
by a foreign key icon that is decorated by a ⊥-symbol in Fig. 6.

3 Generating Transformations and Epi-Reflections

The samples in the preceding section show that model transformations can be
specified by generating rules. This special case of transformation rules and trans-
formation systems is presented in this section. We show that there is a rich theory
especially wrt. parallel and sequential independence and parallel rule application.
We assume an underlying category C with all small co-limits.17,18

3.1 Generating Transformation Systems

A rule is a morphism r : L → R, a match for rule r : L → R in object G
is a morphism m : L → G, and a direct transformation with rule r at match
m is defined by the pushout (r 〈m〉 : G → r@m,m 〈r〉 : R → r@m) of the pair
(r,m).19 The derivation result is denoted by r@m, the morphisms r 〈m〉 is called
the trace of the direct derivation, and the morphism m 〈r〉 the co-match.20 The
result r@m is unique up to isomorphism, since pushouts are.

A transformation system R is a set of rules. The class R
→ of R-

transformations is the least class of morphisms which (i) contains all isomor-
phisms, (ii) contains all traces r 〈m〉 for all rules in r ∈ R and all suitable matches
m, and (iii) is closed under composition. By R

→
G = {h ∈ R

→ | domain(h) = G},
we denote the R-transformations starting at object G. An object G is final wrt. a
transformation system R, if all h ∈ R

→
G are isomorphisms.21 A system R is

terminating if, for any infinite sequence (ti : Gi → Gi+1 ∈ R
→)i∈N, there is

n ∈ N, such that Gn is final,
confluent if, for any two R-transformation t1 : G → H1 and t2 : G → H2, there

are R-transformations t′1 : H2 → K and t′2 : H1 → K, and
functional if it is terminating and confluent.

Every generating transformation system is strongly confluent as the follow-
ing argument demonstrates. Consider Fig. 7 which depicts two arbitrary direct

17 A category has all small co-limits, if it has all co-limits for small diagram categories.
A category is small if its collection of objects is a sets. As in [1], the family of
morphisms in a category is a family of sets anyway.

18 Examples for such categories are all total or partial Σ-algebras for a given signature
Σ or every epi-reflective sub-category of such categories of Σ-algebras, see below.

19 Neither rules nor matches are required to be monomorphisms. Rules and matches
can be arbitrary morphisms.

20 Sub-diagram (1) in Fig. 7 denotes a direct derivation with rule r1 at match m1.
21 Object G being final wrt. system R does not mean that there are no matches for rules

in R into G. But all these matches produce traces that are isomorphisms, i.e. do not
have any effect.
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L1 R1

L2 G r1@m1

R2 r2@m2 r1@m′
1 = r2@m′

2

r1

m1

m′
1〈r1〉

m1〈r1〉(1)

m2

r2 r2〈m2〉

r1〈m1〉

r2〈m′
2〉

m′
2 = r1〈m1〉◦m2

m′
2〈r2〉

m2〈r2〉

(2)

m′
1 = r2〈m2〉◦m1

r1〈m′
1〉

(3)

Fig. 7. Strong confluence

derivations with rules r1 and r2 at matches m1 and m2 respectively, i.e. sub-
diagrams (1) and (2) are pushouts. Composing the original match of one rule
with the trace induced by the other rule provides the two residual matches m′

1 =
r2 〈m2〉◦ m1 and m′

2 = r1 〈m1〉◦ m2. Applying rule r1 at that residual match m′
1

leads to the pushout (r1 〈m′
1〉 : r2@m2 → r1@m′

1,m
′
1 〈r1〉 : R1 → r1@m′

1). Since
sub-diagram (1) is a pushout and (r1 〈m′

1〉 ◦ r2 〈m2〉) ◦ m1 = r1 〈m′
1〉 ◦ m′

1 =
m′

1 〈r1〉 ◦ r1, we obtain the unique morphism from r1@m1 to r1@m′
1, which

we call r2〈m′
2〉, satisfying r2〈m′

2〉 ◦ m1 〈r1〉 = m′
1 〈r1〉 and r2〈m′

2〉 ◦ r1 〈m1〉 =
r1 〈m′

1〉 ◦ r2 〈m2〉. Since pushouts decompose, the sub-diagram (3) in Fig. 7 is
a pushout, i.e. the pair (r2〈m′

2〉, r1〈m′
1〉) is pushout of (r1〈m1〉, r2〈m2〉). Since

pushouts compose, the sub-diagrams (2) and (3) together constitute a pushout,
i.e. the pair (r1〈m′

1〉 ◦ m2〈r2〉, r2〈m′
2〉) is pushout of r2 and r1〈m1〉 ◦ m2 = m′

2.
Therefore r2〈m′

2〉 is the trace of the direct derivation with rule r2 at match m′
2

and r1〈m′
1〉◦m2〈r2〉 is the co-match m′

2〈r2〉. Combining these results, we obtain:

r1@ (r2〈m2〉 ◦ m1) = r2@ (r1〈m1〉 ◦ m2) and
r2〈m′

2〉 ◦ r1〈m1〉 = r1〈m′
1〉 ◦ r2〈m2〉.

Thus, the system is strongly confluent, which implies that it is confluent and,
furthermore, that it is functional, iff it is terminating. That every generating
transformation system is strongly confluent has some further direct positive con-
sequences, especially wrt. sequential independence and parallel transformations.

Two composable traces r2 〈m2〉 ◦ r1 〈m1〉 are sequentially independent, if
there is a match m′

2 for the rule r2 such that m2 = r1 〈m1〉 ◦ m′
2. In the case

of sequential independence, the order of rule application can be interchanged,
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Algorithm 1. Calculation of final objects
(1) Set the current object c to the start object o.
(2) Find all matches for all R-rules in c
(3) Produce trace t : c → c′ for corresponding parallel rule at induced parallel match.
(4) If t is an isomorphism stop and return c.
(5) Otherwise set the current object c to c′ and continue at (2).

i.e. r2 〈m2〉 ◦ r1 〈m1〉 = r1 〈r2 〈m′
2〉 ◦ m1〉 ◦ r2 〈m′

2〉. The proof for this result is a
simple reduction to strong confluence, compare Fig. 7.

Given two rules r1 : L1 → R1 and r2 : L2 → R2, we can construct the par-
allel rule r1+r2 : L1+L2 → R1+R2 as the unique co-product morphism, where
(iL1 : L1 → L1+L2, iL2 : L2 → L1+L2) is the co-product of the rule’s left-hand
sides, (iR1 : R1 → R1+R2, iR2 : R2 → R1+R2) is the co-product of the rule’s
right-hand sides, and r1+r2 satisfies iR1◦ (r1+ r2) = r1 ◦ iL1 and iR2◦ (r1+ r2) =
r2 ◦ iL2 . Having two matches m1 and m2 in the same object for r1 and r2 respec-
tively, the parallel match m1+m2 is uniquely determined by (m1+ m2)◦iL1 = m1

and (m1+ m2) ◦ iL2 = m2. Since any co-limit construction of the same situa-
tion in any order results in the same object (up to isomorphism), we immediately
obtain: r1+r2 〈m1+ m2〉 = r2〈r1 〈m1〉◦ m2〉◦r1〈m1〉 = r1〈r2 〈m2〉◦ m1〉◦r2〈m2〉.

This result provides a good (maximal parallel) strategy for the search of a
final object for a start object o in a system R, compare Algorithm 1. If the system
is terminating, the algorithm finds the final object for all start objects. Unfor-
tunately, most systems are not terminating as the following argument shows.

The application of a rule r at a match m is idempotent, i.e. r 〈r 〈m〉 ◦ m〉
is an isomorphism, if and only if the trace r 〈m〉 is an epimorphism. For the
proof, consider Fig. 7 again and let r1 = r2 as well as m1 = m2. For the if-part,
let r1 〈m1〉 as well as r2 〈m2〉 be epic. Then r1 〈m′

1〉, and r2 〈m′
2〉 are epic, since

pushouts preserve epimorphisms. Since pushouts are unique up to isomorphism,
there is an isomorphism i : r1@m1 → r2@m2 such that i ◦ r1 〈m1〉 = r2 〈m2〉.
Since (3) is pushout, we obtain j : r1@m′

1 → r2@m2 with j ◦ r1 〈m′
1〉 = id

and j ◦ r2 〈m′
2〉 = i. Thus, r1 〈m′

1〉 is section and epic, which means that it is
isomorphism. For the only-if-part, suppose the application is idempotent, i.e.
r1 〈m′

1〉 is isomorphism and r2 〈m′
2〉 is isomorphism with inverse morphism j.

Then r1 〈m1〉 is epic: h◦ r1 〈m1〉 = k ◦ r1 〈m1〉 implies h◦ r1 〈m1〉 = k ◦ r1 〈m1〉 =
k ◦ j ◦ r2 〈m′

2〉 ◦ r1 〈m1〉 = (k ◦ j ◦ r1 〈m′
1〉) ◦ r2 〈m2〉. Since (r1 〈m′

1〉 , r2 〈m′
2〉) is

pushout, there is unique morphism u such that u ◦ r1 〈m′
1〉 = k ◦ j ◦ r1 〈m′

1〉 and,
since r1 〈m′

1〉 is isomorphism, (i) u = k ◦ j as well as u ◦ r2 〈m′
2〉 = h and, since j

is inverse of r2 〈m′
2〉, (ii) h ◦ j = u ◦ r2 〈m′

2〉 ◦ j = u. Now (i) and (ii) imply that
h ◦ j = k ◦ j and h = k since j is isomorphism.

Therefore, a single non-epic trace r 〈m〉 in a system prevents termination,
since the rule r can be applied over and over again at residuals of m with
“new results”. Thus, a necessary condition for termination is that all traces in
the system are epic. Since pushouts preserve epimorphisms, this property can
be guaranteed, if we restrict rules to epimorphisms. Such systems consisting
of epic rules only possess another important property as the next sub-section
demonstrates.
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3.2 Transformation Systems as Epi-Reflections

Every generating transformation system R in the sense of Sect. 3.1 which consists
of epic rules only, can be interpreted as a specification of an epi-reflective sub-
category of the underlying category C. This section recapitulates the construction
of this epi-reflection.22

Every epic transformation rule r : L � R can be interpreted as a con-
structive axiom.23 It is finite or of Horn-type, if it satisfies the following con-
dition: For every chain of morphisms (mi : Oi → Oi+1)i∈N

with the co-limit(
C, (ci : Oi → C)i∈N

)
, every morphism p : L → C into the co-limit object factors

through an object in the chain, i.e. there is i ∈ N and a morphism pi : L → Oi

with ci ◦ pi = p.
A morphism m : L → A solves axiom r : L � R in object A, written m |= r,

if there is morphism mr : R → A such that mr ◦ r = m.24 An object A satisfies
axiom r, written A |= r, if every morphism m : L → A solves r. An object A
satisfies a transformation system R of epic rules, written A |= R, if A |= r for
all r ∈ R. The full sub-category of C which contains all objects satisfying R is
denoted by CR. Every such sub-category turns out to be an epi-reflection of C.

Given an object A and a transformation system R of epic rules,

AR =
{

A
m←− Lm

rm−→ Rm | (r : L � R) ∈ R,m : L → A
}

denotes the diagram of all occurrences of the left-hand sides of all rules in the
transformation system in A.25 In that diagram, for every morphism m : L → A,
the morphism rm : Lm→Rm is a “copy” of r : L � R. The co-limit of AR

is denoted by AR =
(

AR, r∗
A : A → AR,

(
mrm : Rm → AR

)(
A

m←−Lm
rm−→Rm

)
∈AR

)

and we have r∗
A ◦ m = mrm ◦ rm for all

(
A

m←− Lm
rm−→ Rm

)
∈ AR. The mor-

phism r∗
A is an epimorphism, since the equation (i)h◦r∗

A = k ◦r∗
A implies, for all(

A
m←− Lm

rm−→ Rm

)
∈ AR, h◦mrm ◦rm = h◦r∗

A ◦m = k◦r∗
A ◦m = k◦mrm ◦rm

and, since rules are epimorphisms, (ii) h ◦ mrm = k ◦ mrm . Since AR is co-limit,
(i) and (ii) imply h = k.

For given object A and transformation system R, consider (r∗
Ai

:
Ai � Ai+1)i∈N as the chain of epimorphisms starting at A1 = A and having
Ai+1 = AR

i . We denote the co-limit of this chain by
(
R(A), (ai : Ai � R(A))i∈N

)

and obtain
(
ai+1 ◦ r∗

Ai
= ai

)
i∈N

. All these co-limit morphism are epimorphisms,
since all morphisms in the chain are epic.

Furthermore R(A) ∈ CR: Let (r : L � R) ∈ R and let m : L → R(A). Since
r is finite, there is i ∈ N and mi : L → Ai with ai ◦ mi = m. Since Ai+1 = AR

i ,
we obtain morphism mr

i : R → Ai+1 with mr
i ◦ r = r∗

Ai
◦ mi. Putting all parts

22 The principle set-up follows [1], page 278 ff.
23 In this context, the objects L and R are called premise and conclusion respectively.
24 The morphism mr is unique, if it exists, since r is epic.
25 AR is a small diagram, since the family of morphisms in a category is a family of

sets, compare definition of categories in [1].
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together provides: (ai+1 ◦ mr
i ) ◦ r = ai+1 ◦ r∗

Ai
◦ mi = ai ◦ mi = m, such that we

found ai+1 ◦ mr
i as the desired morphism mr : R → R(A) with mr ◦ r = m.

Finally, we get the following result: For a transformation system R and object
A, a1 : A � R(A) is the epi-reflector for A into CR. The proof is straightforward:
If X ∈ CR and f : A → X are given, we show by induction on i that there
are morphisms (fi : Ai → X)i∈N

for all (Ai)i∈N
in the chain

(
r∗
Ai

: Ai � AR

i

)
i∈N

constructed above. Since A1 = A, the induction can start with f1 : A1 → X :=
f : A → X. Now let, as induction hypothesis, fi : Ai → X be given. By
construction Ai+1 = AR

i and AR

i is a co-limit object. Let (r : L � R) ∈ R and
m : L → Ai be a morphism to Ai, then fi◦m : L → X is a morphism to X. Since
X |= R, there is (fi ◦ m)r : R → X with (fi ◦ m)r ◦ r = fi ◦m. Thus, fi together
with the family of these morphisms are a co-cone for the diagram that has been
used to construct Ai+1 = AR

i from Ai. Since AR

i is the co-limit of this diagram,
we obtain the unique morphism fi+1 : AR

i → X that satisfies fi+1◦r∗
Ai

= fi. This
completes the induction. Now

(
X, (fi : Ai → X)i∈N

)
is a co-cone for the chain(

r∗
Ai

: Ai � AR

i

)
i∈N

. Since R(A) is the limit of this chain, we get a morphism
f∗ : R(A) → X that satisfies (f∗ ◦ ai = fi)i∈N

and, especially, f∗ ◦ a1 = f1 = f .
Uniqueness of f∗ follows from a1 being epic.

The co-limit construction for the chain
(
r∗
Ai

: Ai � Ai+1

)
i∈N

is superfluous,
if r∗

Ak
is an isomorphism for some k ∈ N. In this case, (i) Ak ∈ CR, (ii) r∗

k+j

is isomorphism for all j ∈ N, (iii) Ak+1 is the limit of the chain, and (iv) the
reflector for A is given by r∗

AK
◦ · · · ◦ r∗

A1
: A � Ak+1.

The presented approximation of the epi-reflector for a transformation sys-
tem R with epic rules is an instance of Algorithm1. Each approximation step
r∗
A : A � AR is the trace of an application of a maximal parallel rule, com-

pare diagram AR above. And the approximation stops after finitely many steps,
if and only if the computed object is final wrt. R, i.e. admits isomorphic R-
transformations only. Thus, Algorithm1 calculates the epi-reflector in CR for
every start object o in a terminating transformation system R with epic rules.

4 Partial Algebras

Section 3.2 shows that all generating transformation systems in which all rules
are epimorphisms induce free constructions and possess useful properties like
idempotent rule applications that facilitates the analysis with respect to termina-
tion. Unfortunately, all epimorphisms in categories of total algebras, which usu-
ally constitute the underlying category for most (graph) transformation frame-
works, are surjective, i.e. are just able to generate new equalities. Therefore,
frameworks based on total algebras must live with non-epic rules and need an
additional machinery for termination, like negative application conditions [16],
source consistence derivations in triple graph grammars [2], or artificial trans-
lation attributes as in [9], Sect. 7.4. The situation stays simple, if we pass from
total to partial algebras [3,19] as we recapitulate in this section.

A signature Σ = (S,O) consists of a set of sorts S and a family of oper-
ations O = (Od,c)d,c∈S∗ . For d, c ∈ S∗ and f ∈ Od,c, d is called the domain
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specification of f and c is called the co-domain specification. An (algebraic)
system A =

(
AS , OA

)
for a given signature Σ = (S,O) consists of a family

AS = (As)s∈S of carrier sets, and a family OA =
(
fA : Ad → Ac

)
f∈Od,c,d,c∈S∗

of partial functions.26

This set-up allows functions that provide several results simultaneously, since
co-domain specifications are taken from the free monoid over the sort set. Espe-
cially, operations with an empty co-domain specification are possible. They are
interpreted as predicates in algebraic systems: If p ∈ Od,ε for d ∈ S∗, the function
pA : Ad → {∗} maps to the one-element-set in every system A. Thus pA singles
out the elements in Ad for which it is defined, i.e. for which it is “true”.

Given two systems A and B with respect to the same signature Σ = (S,O),
a homomorphism h : A → B, is given by a family of total mappings h =
(hs : As → Bs)s∈S such that the following condition is satisfied:27

∀d, c ∈ S∗, f ∈ Od,c, x ∈ Ad : if fA (x) is defined, fB
(
hd(x)

)
= hc

(
fA (x)

)
. (1)

The condition (1) means for the special case where f ∈ Od,ε, that fB must
be defined for hd(x), if fA is defined for x. The concrete value of these functions
is irrelevant, since there is a single value in {∗} and hε = id{∗}. By Sys(Σ),
we denote the category of all Σ-systems and all Σ-homomorphisms. For every
signature Σ, Sys(Σ) has all small limits and co-limits for each signature Σ.28

The most important property of Sys(Σ) for the purposes of this paper is, that
epimorphisms are not necessarily surjective. This fact can be demonstrated by
a simple example using the signature with one sort N and one unary operation
s∈ ON,N, the system K =

(
KN = {x}, sK = ∅)

, the system of natural numbers
N =

(
NN = N0, sN :: i �→ i + 1

)
, and the morphism k : K → N defined by

x �→ 0. This morphism is epic, since N is generated by the function sN starting
at value 0 = k(x).29 However, the morphism k′ : K → N with x �→ 1 is not epic,
since the value 0 is not reachable by function calls of sN starting at 1.30

For a general characterisation of epimorphisms in Sys(Σ = (S,O)), we need
the following closure operations for a family of subsets (Bs ⊆ As)s∈S of a system
A. For all sorts s ∈ S:

B0
s = Bs ∪ {

y ∈ As :: fA(∗) = (p, y, q), f ∈ Oε,v

}

Bi+1
s = Bi

s ∪
{

y ∈ As :: fA(x) = (p, y, q), f ∈ Ow,v, x ∈ (
Bi

)w
, |w| ≥ 1

}

B∗
s =

⋃

i∈N0

Bi
s

26 Given a family of sets A=(As)s∈S , k ≥ 0, and s1 . . . sk ∈ S∗, As1...sk = As1×· · ·×Ask .
27 For a family of mappings f = (fs :As →Bs)s∈S , k ≥ 0, and w = s1 . . . sk ∈ S∗, fw :

Aw →Bw is defined by fw(x1, . . . , xk)=(fs1(x1), . . . , fsk(xk)) for all (x1, . . . xk)∈Aw.
28 Compare [19].
29 Any two morphisms p, q : N → M with p(k(x)) = q(k(x)) must coincide on all

natural numbers due to the homomorphism condition (1).
30 It is easy to construct p, q : N → M with p(k′(x)) = q(k′(x)) that differ at value 0.
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A Σ -morphism h : A → B is epic, if and only if h(A)∗
s = Bs for all sorts

s ∈ S, i.e. if and only if the system B is function-generated starting at the h
-image of A in B.31 Therefore, a constructive axiom in the sense of Sect. 3.2 in
a category Sys(Σ) of algebraic systems can generate new elements in the carriers
(as long as they are operation generated), can generate new “truths” by defining
new predicate instances, and can generate new equalities if it is not injective.

Constructive axioms are usually presented as finite implications, the elemen-
tary building blocks of which are formulae. Given signature Σ = (S,O) and
variable set X = (Xs) s∈S , the set of formulae FΣ,X =

(
TΣ,X

s

)
s∈S

∪ FΣ,X is
defined by:

x ∈ TΣ,X
s if x ∈ Xs (2)

fi(t) ∈ TΣ,X
si

if f ∈ Ow,s1...sk
, t ∈ (

TΣ,X
)w

, 1 ≤ i ≤ k, k ≥ 1 (3)

f(t) ∈ FΣ,X if f ∈ Ow,ε, t ∈ (
TΣ,X

)w
(4)

l = r ∈ FΣ,X if l, r ∈ TΣ,X
s , s ∈ S (5)

A syntactical presentation PX =
(
X,P ⊆ FΣ,X

)
of a Σ-system consists of

a variable set X and a set of formulae P ; it is finite, if X and P are finite
sets. The presented system APX = TPX/≡ is constructed as follows. The carriers(
TPX

s

)
s∈S

are inductively defined by:

x ∈ TPX
s if x ∈ Xs or

(
x ∈ P and x ∈ TΣ,X

s

)
(6)

fj(x) ∈ TPX
sj

if fi(x) ∈ TPX
si

, f ∈ Ow,s1...sk
, 1 ≤ i, j ≤ k (7)

tj ∈ TPX
sj

if fi(t1, . . . tm) ∈ TPX

s′
i

, f ∈ Os1...sm,s′
1...s′

n
, 1 ≤ j ≤ m, i ≤ n (8)

tj ∈ TPX
sj

if p(t1, . . . tk) ∈ P, p ∈ Os1...sk,ε, 1 ≤ j ≤ k, k ≥ 1 (9)

l, r ∈ TPX
s if (l = r) ∈ P and l, r ∈ TΣ,X

s (10)

For an operation f ∈ Ow,s1...sk
(k ≥ 1) and a possible argument x ∈ (

TPX
)w,

fTPX(x) = (f1(x), . . . , fk(x)), if fj(x) ∈ TPX
sj

for all 1 ≤ j ≤ k. For a predicate

p ∈ Ow,ε and a possible argument x ∈ (
TPX

)w, pT
PX(x) is defined, if p(x) ∈ P .

And the quotient relation ≡ ⊆ TPX×TPX is the smallest congruence containing
{(l, r) | (l = r) ∈ P}.32

Since TPX is closed wrt. sub-terms, compare Eq. (8), and ≡: TPX → APX is
surjective, APX is generated by X which means, that there is an epimorphism
xPX : X � APX mapping x to [x]≡.33 If we have two syntactical presentations
PX =

(
X,P ⊆ FΣ,X

)
and CX =

(
X,C ⊆ FΣ,X

)
with the same variable set X

31 Here, h(A) = (hs(As))s∈S and hs(As) = {y ∈ Bs | y = hs(x), x ∈ As}. For a proof
of the proposition, compare [19].

32 An equivalence ≡ on a Σ-System A is a congruence, if fA(x1, . . . xm) = (y1, . . . yn),
fA(x′

1, . . . x
′
m) = (y′

1, . . . y
′
n) and xi ≡ x′

i for all 1 ≤ i ≤ m implies yj ≡ y′
j for all

1 ≤ j ≤ n for all operations f ∈ O.
33 Every variable set is a Σ-system with completely undefined operations!
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Specification 1. Formalisation of class models
CM:= sorts C(lass), B(asetype), At(tribute), As(sociation), I(nheritance)

opns int: −→ B, conc: C

o(wner): At−→ C, t(arget) :At−→ B

o(wner): As−→ C, t(arget) :As−→ C

sub: I−→ C, sup(er) : I−→ C,

<= : C,C

axms x:C :: ==> <=(x,x) (a1)

x:I;l,u:C :: sub(x) = l, sup(x) = u ==> <=(l,u) (a2)

x,y,z:C :: <=(x,y), <=(y,z) ==> <=(x,z) (a3)

x,y:C :: <=(x,y), <=(y,x) ==> x = y (a4)

such that P ⊆ C, then the kernel of xPX is contained in the kernel of xCX and
we obtain an epimorphism =⇒

PXC : APX � ACX with =⇒
PXC ◦ xPX = xCX .34

A Horn-type presentation H =
(
X,P ⊆ C ⊆ FΣ,X

)
of an axiom consists of

a finite variable set X, a finite syntactical presentation C ⊆ FΣ,X , called the
conclusion, and a sub-presentation P of C, called the premise. The presented
axiom is the uniquely determined epimorphism =⇒

PXC . A system satisfies H, if it
satisfies =⇒

PXC , compare Sect. 3.2.
Specification 1 presents a formalisation CM of the class diagrams that we used in

Sect. 2, i. e. class diagrams are CM-algebras. As an example, consider the class dia-
gram which is the start object in Fig. 3. It is modelled by the following CM-algebra
S: SC = {1, 3, 4}; SB = {int,bool,string}; SAt = {2, 5}; SAs = {6}; SI = {7, 8};
intS :: ∗ �→ int; concS ={1, 3, 4}; oS

At :: 2 �→ 1, 5 �→ 4; tS
At :: 2 �→ bool, 5 �→ string;

oS
As :: 6 �→ 3; tS

As :: 6 �→ 1; subS :: 7 �→ 3, 8 �→ 4; supS :: 7 �→ 1, 8 �→ 1;
<=S ={(1, 1), (3, 3), (4, 4), (3, 1), (4, 1)}.

All underlined operation are implicitly required to be total. This requirement
can be explicitly specified by very simple axioms. For example, the axiom for the
operation o(wner):At→C is: x:At :: ==> o(x). The axioms (a1) – (a4) spec-
ify that inheritance is hierarchical, i.e. induces a partial order <=. The rules t0,
t1, and t∗ in Fig. 4 are picturesque visualisations of the epimorphisms presented
by axioms (a1), (a2), and (a3) respectively.

Specification 2. Formalisation of relational schemata
RS:= sorts T(able), B(asetype), Co(lumn), K(ey), F(oreign)K(ey)

opns int: −→ B

ta(ble): Co−→ T, t(ype): Co−→ B, n(ullable): Co

c(olumn): K −→ Co, c(olumn): FK−→ C, r(efers): FK−→ K

34 Compare for example Theorem 99 (Homomorphism Theorem 1) in [19].
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Specification 3. Formal basis for Single Table Inheritance (ST)
ST:= CM +Basetype RS + ST’ := CM +Basetype RS +

opns C2T: Class−→ Table opns C2K: Class−→ Key

At2Co: Attribute−→ Column At2Co: Attribute−→ Column

As2JT: Association−→ Table As2FKP: Association−→ FK,FK

I2T: Inheritance−→ Table I2K:Inheritance−→ Key

5 Sample Transformations – Revisited

The informally introduced model transformation rules in Sect. 2 can be precisely
formalised on the basis of the definitions in Sect. 4. Specifications 1 and 2 specify
class models and relational schemata respectively. For the model transforma-
tion pattern “Single Table Inheritance (ST)”, we devise the partial operations
depicted in the specification ST in the left part of Specification 3.35 With this
interpretation all rules in Fig. 1 and the rule i4ST in Fig. 2 depict morphisms
in Sys(ST). As an example, consider the rule c2t in Fig. 1. Its left-hand side L
is the following ST-algebra: LC = {1}; LB = {int,bool,string}; intL :: ∗ �→ int;
concL ={1}; <=L ={(1, 1)}; and all other components of L are empty. Its right-
hand side is represented by the ST-algebra R: RC={1}; RB={int,bool,string};
intR :: ∗ �→ int; concR = {1}; <=R = {(1, 1)}; RT = {2}; RCo = {3}; RK = {4};
taL :: 3 �→ 2; tL

Co :: 3 �→ int; cL
K :: 4 �→ 3; C2TL :: 1 �→ 2; and all other components

of R are empty. The rule morphism r : L → R maps as follows: rC :: 1 �→ 1;
rB ::int�→int,bool�→bool,string�→string; and all other components of the mor-
phism are empty.

Unfortunately, the corresponding transformation system is not terminating
for almost all class models. This is due to the fact, that the rules c2t and as2jt
are not epic and induce non-epic traces. Therefore, they are not idempotent.

This defect can be avoided by a simple reengineering of ST to the specification
ST’ in the right part of Specification 3 together with the adapted rules in Fig. 8
and the adapted rule i4ST’ in Fig. 9 which are epimorphism and guarantee
termination of the transformation system for finite class models, since all rules
are idempotent and the specification ST’ does not contain any recursive function.

Fig. 8. Epic handling of classes, attributes, and associations in ST (and CT)

35 The notation indicates that we assume the same carrier for Basetype in CM and RS.
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Fig. 9. Epic handling of inheritance in ST and CT

From the practical point of view, ST’ allows more compact rules (com-
pare Figs. 2 and 9.) and is a more precise description for the mapping of class
model items to elements in a relational schema than ST: Classes are mapped to
keys, since the only feature classes provide for their objects is object identity.
Attributes are mapped to columns as before. And associations are mapped to
foreign key pairs, since it is the key pair that enforces type conformance of the
association’s links in the relational model.

From the theoretical point of view, ST’ and the corrected, now epic rules are
better than the rules in Sect. 2, since they induce an epi-reflection, are idempo-
tent, and, therefore, can easily be analysed wrt. termination.

The two other patterns CT and CCT, discussed in Sect. 2, can also be turned
into epi-reflections. The pattern CT differs from ST just by the handling of inher-
itance. The corresponding transformation rule is i4CT’ in Fig. 9. The necessary
mapping of inheritance relations to relational schemata can be provided by a
partial operation I2FK : Inheritance−→ ForeignKey.

Specification 4. CCT as parametric specification
Source := CM; Target := Source +Basetype RS +

opns C2K: Class−→ Key

At2Co: Attribute,Class−→ Column

As2T: Association−→ Table [ x:As :: ==> As2T(x) ]

AS2FK,AT2FK: Association,Class−→ ForeignKey

axms x:C :: conc(c) ==> t(c(C2K(x))) = int (a5)

x:At;y:C;z:T :: z = ta(c(C2K(y))), <=(y,o(x)) ==>

ta(At2Co(x,y)) = z, t(At2Co(x,y)) = t(x) (a6)

x:As,y:C,z:K :: <=(y,o(x)), z = C2K(y) ==> r(AS2FK(x,y)) = z,

n(c(AS2FK(x,y))), ta(c(AS2FK(x,y))) = As2T(x) (a7)

x:As,y:C,z:K :: <=(y,t(x)), z = C2K(y) ==> r(AT2FK(x,y)) = z,

n(c(AT2FK(x,y))), ta(c(AT2FK(x,y))) = As2T(x) (a8)

Specification 4 presents CCT as a parametric specification in the sense of [10].36

The five rules for the transformation of class models into relation schemata
are specified by the total operation As2T and the axioms (a5) – (a8). The
semantics of such a specification is the free construction from Sys(Source) to

36 Again, Source and Target share sort Basetype with defined constant int.



158 M. Löwe

Fig. 10. Epic generation of foreign keys for associations in CCT

Sys(Target) wrt. the obvious forgetful functor in the opposite direction. The
point-wise construction of these free objects is described in Sect. 3.2.

It is obvious that the presentation of constructive axioms as Horn-formulae
is not as suggestive as the presentation as visual transformation rules, compare
for example Fig. 10 which graphically depicts the axioms (a7) and (a8) by rules
s2co’ and t2co’ respectively. But as we have shown in this paper both variants
are semantically equivalent, if the presented morphisms are epic.

6 Summary

In this paper, we discussed the close connection between generating graph rules
and the point-wise construction of epi-reflectors for finite constructive axioms.
Constructive axioms turned out to be special cases of arbitrary generating rules.
And a finite transformation from an arbitrary object o to a final one can be inter-
preted as the calculation of the epi-reflector of o, if all rules are epimorphisms.

In categories of partial algebras, constructive axioms can (operation-) gen-
erate new elements (e.g. rules in Fig. 10), can add new predicate definitions
(e.g. rules in Fig. 4) and are able to identify items (e.g. rule i4ST’ in Fig. 9).
Therefore, constructive axioms in categories of partial algebras are suitable for
the application area of model transformations for two reasons.

First of all, model transformation rules are typically generating rules, com-
pare for example Triple Graph Grammars (TGG) [2,9], which have been pro-
posed as a standard framework for model transformation. All rules in TGG are
generating, especially all sets of derived rules that can be used for model trans-
formation, i.e. forward, backward, source/target, and integration rules. Future
research will investigate the connection between TGG and the framework pro-
posed here.

Secondly, a model transformation produces the derived target model for a
given source model, i.e. the target shall be uniquely determined (possibly up to
isomorphism) for each source model and it shall be computable in a finite number
of steps. If the computation is a calculation of an epi-reflector, uniqueness is for
free. And, as we showed above, constructive axioms show better termination
behaviour than arbitrary rules. We demonstrated these features in this paper
by some typical examples. Future research, especially the elaboration of more
and bigger transformation examples, will show, if epimorphisms are sufficient for
model transformation.
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