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Abstract. One of the main advantages of the Logic of Nested Condi-
tions, defined by Habel and Pennemann, for reasoning about graphs, is
its generality: this logic can be used in the framework of many classes of
graphs and graphical structures. It is enough that the category of these
structures satisfies certain basic conditions.

In a previous paper [14], we extended this logic to be able to deal with
graph properties including paths, but this extension was only defined for
the category of untyped directed graphs. In addition it seemed difficult to
talk about paths abstractly, that is, independently of the given category
of graphical structures. In this paper we approach this problem. In par-
ticular, given an arbitrary category of graphical structures, we assume
that for every object of this category there is an associated edge relation
that can be used to define a path relation. Moreover, we consider that
edges have some kind of labels and paths can be specified by associating
them to a set of label sequences. Then, after the presentation of that
general framework, we show how it can be applied to several classes of
graphs. Moreover, we present a set of sound inference rules for reasoning
in the logic.

1 Introduction

Graphs and graphical structures play a very important role in most areas of
computer science. For instance, they are used for modeling problems or systems
(as done, e.g., with the UML or with other modeling formalisms). Or they are
also used as structures to store data in many computer science areas. In partic-
ular, in the last few years, in the database area, graph databases are becoming
relevant in practice and partially motivate our work. A consequence of this graph
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ubiquity is that being able to express properties about graphical structures may
be interesting in many areas of computer science.

We can use two kinds of approaches to describe graph properties. Obviously,
we may use some standard logic, after encoding some graph concepts in the logic.
For instance, this is the approach of Courcelle (e.g., [3]), who studied a graph
logic defined in terms of first-order (or monadic second-order) logic. The second
kind of approach is based on expressing graph properties in terms of formulas
that include graphs (and graph morphisms). The most important example of this
kind of approach is the logic of nested graph conditions (LNGC), introduced by
Habel and Pennemann [9] proven to be equivalent to the first-order logic of
graphs of Courcelle. A main advantage of LNGC is its genericity, since it can be
used for any category of graphical structures, provided that this category enjoys
certain properties. This is not the case of approaches like [3] where, for each class
of graphical structures, we would need to define a different encoding.

A main problem of (first-order) graph logics is that it is not possible to
express relevant properties like “there is a path from node n to n′”, because
they are not first-order. As a consequence, there have been a number of proposals
that try to overcome this limitation by extending existing logics (like [7,10,20]).
Along similar lines, in [14] we extended the work presented in [12], allowing us to
state properties about paths in graphs and to reason about them. Unfortunately,
the work in [14] applies only to untyped unattributed directed graphs. As a
continuation, in this paper we show how to overcome this limitation, extending
some of the ideas in [14] to deal with arbitrary categories of graphical structures.
Moreover, we allow for a more expressive specification of paths, assuming that
edges have some kinds of labels and specifying paths using language expressions
over these labels. Since this new generic logic allows one to describe properties
of paths in graphical structures, we have called it a navigational logic.

The paper is organized as follows. In Sect. 2 we present some examples for
motivation. In Sect. 3 we introduce the basic elements to define our logic and in
the Sect. 4 we see how these elements can be defined in some categories of graphs,
implicitly showing that our logic can be used in these categories. In Sect. 5 we
introduce the syntax and semantics of our logic, including some proof rules that
are shown to be sound. Completeness is not studied, because in our framework
we implicitly assume that paths are finite, which means that our inference rules
can not be complete [22]. However we conjecture that our rules will be complete
in a more complex framework, where graphs may be infinite. Finally, in Sect. 6
we present some related and future work.

2 Motivation

In this section, we present and motivate the basic concepts required to introduce
our navigational logic, that is, patterns with paths, and graph properties. In order
to give some intuition and motivation, in Subsect. 2.1, we consider a toy example
consisting of a network of airports connected by airline companies that operate
between them, that is, a graph where nodes are airports and edges are direct
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flights from an airport to another. The example follows the framework presented
in [14]. Then, in Subsect. 2.2 an example of a social network is introduced to
motivate the extension of that framework, including labels in paths and edges,
allowing us to specify the form of paths.

2.1 A First Navigational Logic Example

The graph in Fig. 1 represents a network with four airports: Barcelona (BCN),
Paris (CDG), New York (JFK) and Los Angeles (LAX) and the six directed edges
represent the existing direct flights between these airports. In this scenario, a
path (i.e. a concatenation of one or more edges) represents a connection from
an airport to another by a sequence of, at least, one direct flight. For instance,
BCN is connected to CDG and JFK by direct flights, whereas it is required to
concatenate at least two flights to arrive to LAX from BCN. To express basic
properties we use patterns, which are graphs extended with a kind of arrows that
represent “paths” between nodes. For instance, in Fig. 2, we have two patterns
that are present in the airport network in Fig. 1: The first pattern represents a
connection from BCN to LAX, and, the second one a direct flight from BCN to
CDG followed by a connection from CDG to LAX.

Fig. 1. A graph of connected airports Fig. 2. Two connection patterns

Imagine that we want to state that there should be a connection from BCN
to LAX with a stopover either in Paris or in New York and, moreover, that, in
the former case, there should be a direct flight from BCN to CDG, whereas in
the latter, the flight from JFK to LAX must be direct. The first graph condition
in Fig. 3 states those requirements.

Fig. 3. Properties on airports networks

The second graph condition in Fig. 3 states that if there is a connection from
an airport 1 to an airport 3 with a first stopover at an airport 2, it must be



Towards a Navigational Logic for Graphical Structures 127

possible to go back from 3 to 1 with a similar flight plan that also stops at 2
but as the last stopover. Our network in Fig. 1 does not satisfy this requirement,
since there is a connection from BCN to LAX with a first stopover in CDG but
there are no direct flights from CDG to BCN.

2.2 Path Expressions

In the framework described in the previous subsection [14], we can specify the
existence of a path between two nodes, but we cannot provide any description
of such path. For instance, suppose that edges are labelled with the name of the
airline company operating that flight. In the described framework it is impossible
to specify that there is a connection between BCN and LAX consisting of flights
from the same company.

A simple way of dealing with this situation is to label paths with language
expressions over an alphabet of edge labels. For instance, in most approaches
(e.g., [1,2,4,13,23]), paths are labeled by regular expressions. The idea is that,
if a pattern includes a path from node 1 to node 2 labelled with a language
expression denoting a language L, then if a graph G includes that pattern, it must
include some sequence of edges labelled with l1, . . . , lk, such that l1·l2·. . .·lk ∈ L.

Fig. 4. A social network type graph Fig. 5. Patterns of labeled connections

For example, in Fig. 4 we depict the type graph of a social network including
nodes of type person and edges of type friend, enemy, and colleague. Then, in
Fig. 5 we depict some conditions over this type graph. In the first two conditions
we (implicitly) assume that edges are labeled with the name of their types. So,
the first condition describes the existence of a path, consisting only of a sequence
of edges of type friend between nodes having Alan and Brenda as their name
attributes, while the second condition describes the existence of a path between
Alan and Brenda, consisting of edges of type friend or two consecutive edges of
type enemy. In the third condition, we implicitly assume that edges are labeled
not only with types, but also with the values of their attributes and it describes
the existence of a path between Alan and Brenda consisting of edges of type
friend, whose friendship attribute is greater or equal to 2.



128 L. Lambers et al.

3 Patterns with Paths for Arbitrary Graphical Structures

In this paper our aim is to define a general framework that will allow us to
express properties about arbitrary graphical structures and their paths, and to
reason about them. A main problem is how to cope with this level of generality.
In particular, given a specific class of graphs, like directed graphs (as in [14])
the notion of a path is clear. However, when working with an arbitrary category,
that is supposed to represent any kind of graphical structure (e.g. graphs, Petri
Nets or automata), we need some abstract notion of path that can accommodate
the notion of path that we would have in each of these categories.

In principle, a path is a sequence of edges, but not all kinds of categories that
we may consider have a proper notion of edge, although they may have something
that we may consider to be similar. For instance, in a Petri Net we may consider
that transitions play the role of edges1. So our first step is to consider that we
can associate to every category of graphical structures an associated category
including an explicit edge relation. Then, it will be simple to define paths in
these categories.

We assume that edges are labelled, so that we can use these labels to describe
paths, as seen above. Moreover, we will assume that all edges in our graphical
structures are defined over a universal set of nodes and a universal set of labels.

Definition 1 (Edges). Given a set of labels Σ and a set of nodes V , the set of
all possible Σ-labeled edges over V is EdgesΣ,V = V × Σ × V .

Definition 2 (Edge-Labelled Structures). Given a set of labels Σ and a set
of nodes V , and given a category of graphical structures Struct with pushouts
and initial objects, we say that StructEdges

Σ,V
is its associated category of

edge-labeled structures over V and Σ, EL-structures in short, if the following
conditions hold:

1. The objects in StructEdges
Σ,V

are pairs (S,E), where S is an object in
Struct and E is a set of Σ-labeled edges over V .

2. A morphism f : (S,E) → (S′, E′) in StructEdges
Σ,V

, consists of functions
f = (fs, fv, fe) such that
– fs : S → S ′ is a morphism in Struct, and
– fv : V → V and fe : E → E ′ satisfy for every 〈n, l, n′〉 ∈ E that

fe(〈n, l, n′〉) = 〈fv(n), l, fv(n′)〉.
3. Struct and StructEdges

Σ,V
are isomorphic. Specifically, there must exist an

isomorphism ψ : Struct → StructEdges
Σ,V

.

We will write just Edges and StructEdges whenever Σ and V are clear.

1 But in Petri Nets we may also consider that both places and transitions play the
role of the nodes in a graph and that the edges in a Petri Net are the arrows in
the graphical representation of the net going from places to transitions or from
transitions to places.
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Intuitively, the idea is that for each object S of an arbitrary category of
graphical structures, we can associate a set of labelled edges that we assume
that are implicit in S. Notice that if S is a graph this does not mean that it is
a labelled graph. It only means that we can associate some kind of labels to its
edges. For instance, if S is a typed graph, then we may consider that edges are
labeled by their types. Similarly, as said above, if S is not a graph, like in the
case of Petri Nets, this does not mean that S must include a proper notion of
edge, but that we may consider that its edges are some of its elements.

Now, before defining the notion of pattern, we must first define the notion of
path expressions, that is, the specification of a set of paths between two nodes.
Moreover, we also define the notion of closure of a set of path expressions under
composition and decomposition. Intuitively, a path is in the closure of a set of
path expressions if its existence is a consequence of these expressions.

Definition 3 (Paths, Path Expressions and their Closure). We define
the set of path expressions over Σ, V , PathExprΣ,V = V × 2Σ∗ × V .2

A path specified by a path expression pe = 〈n,L,m〉, is any triple 〈n, s,m〉 ∈
V × Σ+ × V such that s ∈ L. Then, paths(pe) denotes the set of paths specified
by pe.

If R ⊆ PathExprΣ,V is a set of path expressions, then the closure of R,
written R+, is the set of path expressions defined inductively:

1. R ⊆ R+.
2. Empty paths: For every node n, 〈n, ε, n〉 ∈ R+.
3. Composition: If 〈n,L1,m〉, 〈m,L2, n

′〉 ∈ R+ then 〈n,L1L2, n
′〉 ∈ R+.

Now, we can define what patterns are:

Definition 4 (Patterns). Given a category StructEdges
Σ,V

of EL-structures,
its associated category of patterns, StructPatternsΣ,V , is defined as follows:

1. Objects are triples P = (S,E, PE) where
– (S,E) is in StructEdges

Σ,V
and

– PE ⊆ PathExprΣ,V .
2. A pattern morphism f : (S,E, PE) → (S′, E′, PE′), is a morphism f :

(S,E) → (S′, E′) in StructEdges
Σ,V

such that, for every 〈n,L,m〉 ∈ PE,
there is a path expression 〈fv(n), L′, fv(m)〉 ∈ (E′ ∪ PE′)+ with L′ ⊆ L.

We will write just PathExpr and StructPatterns whenever Σ, and V are clear.

Notice that a Σ-labeled edge 〈n, l, n′〉 ∈ Edges can be considered a special
kind of unit path expression 〈n, {l}, n′〉. As we may see in the definition above,
even if there is an abuse of notation, given a set of edges E we will consider that
E also denotes its associated set of unit path expressions.
2 Even if we may consider that empty paths are not really paths, assuming that

every node is connected to itself through an empty path provides some technical
simplifications.
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Intuitively, a structure S can be considered a trivial pattern that is always
present in S itself. However, technically, following the above definition S is not
a pattern, but we can define a pattern, Pattern(S), that intuitively represents
S. Given S and its associated set of edges E, Pattern(S) = (S,E,E+), i.e. the
path expressions in Pattern(S) are precisely the paths defined by the edges in
E. Conversely, any pattern (S,E, PE) where PE = E+ can be considered equiv-
alent to the structure S3. As a consequence, even if it is an abuse of notation, we
will identify structures with their associated patterns. For instance, if we write
that there is a pattern morphism f : P → S, we really mean f : P → (S,E,E+).

As we will see in Sect. 5.3, an (important) inference rule for reasoning in our
logic is the unfolding rule that roughly says that if a pattern in a given condition
includes the path expression 〈n,L, n′〉, then we may replace this pattern by
another one that includes some of its possible decompositions. For instance,
if 〈n, a(c∗), n′〉 is a path expression in P , we should be able to infer that the
structures that satisfy the pattern either have an edge 〈n, a, n′〉, or an edge
〈n, a, n0〉 followed by a path from n0 to n′ consisting of edges labelled by c.
More precisely, from the condition ∃P we should be able to infer ∃P1 ∨∃P2, with
P1 = P + {〈n, a, n′〉} and P2 = P + {〈n, a, n0〉, 〈n0, c

+, n′〉}, where n0 is a node
that is not present in P and P + s denotes the pattern obtained adding to P the
paths and edges in the set s. The problem is how can we define formally P1 and
P2. If P = (S,E, PE), it would be wrong to define P1 = (S,E∪{〈n, a, n′〉}, PE),
because E is the set of edges (implicitly) included in S, and E ∪ {〈n, a, n′〉} can
not also be the set of edges of S (unless S already included 〈n, a, n′〉, which
in general will not be the case). Instead, we will assume that every specific
framework is equipped with a procedure to define the structure S′ that includes
S and whose set of edges is E∪{〈n, a, n′〉}. This procedure is the mapping called
Unfold in Definition 6, which actually does not return S′, but the morphism
u : S → S′ that represents the inclusion of S in S′.

Before defining the unfolding construction, we define the decompositions that
are associated to these unfoldings. First, a subdecomposition sd of a path expres-
sion pe = 〈n,L, n′〉 can be seen as a refinement of pe, in the sense that we
may consider that sd defines a path expression 〈n,L′, n′〉, where L′ ⊆ L. For
instance, in the example above {〈n, a, n′〉} and {〈n, a, n0〉, 〈n0, c

+, n′〉} are sub-
decompositions of 〈n,L, n′〉. In the former case L′ = {a} and in the later case
L′ = {ac, acc, accc, . . . }. Then, a decomposition of 〈n,L, n′〉 is a set of subde-
compositions such that L coincides with the union of the languages associated
to its subdecompositions. For, instance {〈n, a, n′〉} and {〈n, a, n0〉, 〈n0, c

+, n′〉}
are a decomposition of 〈n,L, n′〉, since ac∗ ≡ a|ac+.

Definition 5 (Path Expression Decomposition). If pe = 〈n,L, n′〉 is a
path expression, a subdecomposition sd of pe is a pair (L′, s), where L′ ⊆ L and
s is a set of edges and path expressions such that one of the following conditions
holds:

1. s = {〈n, l, n′〉} and L′ = {l}.
3 That is Struct is embedded in Patterns via the functor Pattern.
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2. s = {〈n,L1, n1〉, 〈n1, l, n2〉, 〈n2, L2, n
′〉} and L′ = L1{l}L2, with L1,L2 ⊆ Σ∗4.

A decomposition d of pe = 〈n,L, n′〉 is a finite set of subdecompositions,
d = {sd1, . . . , sdk}, with sdi = (Li, si), for i ∈ {1, . . . , k}, such that (L1 ∪ · · · ∪
Lk) = L.

Definition 6 (Unfolding Morphisms). We say that the category
StructPatterns has unfolding morphisms if it is equipped with a function Unfold
that given a pattern P = (S,E, PE), a path expression pe = 〈n,L, n′〉 ∈ PE, and
a subdecomposition sd = (L′, s) of pe, it returns a morphism u : P → P ′, where
P ′ = (S′, E′, PE′), such that:

1. E′ = E ∪ {〈n1, l, n2〉} if 〈n1, l, n2〉 ∈ s, with l ∈ Σ, and
2. PE′ = PE ∪ {〈n1, Li, n2〉|〈n1, Li, n2〉 ∈ s}.
3. For every morphism f : P → P0, with P0 = (S0, E0, PE0), if there is a path

expression 〈f(n), L0, f(n′)〉 ∈ PE0, with E′ ⊆ E0 and PE′ ⊆ PE0, then there
is a morphism h : P ′ → P0, such that f = h ◦ u.

That is, if u : P → P ′ = Unfold(P, 〈n,L, n′〉, sd) then P ′ contains an unfold-
ing of 〈n,L, n′〉 in P , built by adding new edges and paths to P . Notice that
the component us : S → S′ of every u = Unfold(P, 〈n,L, n′〉, sd) must build
the proper unfolded version S′ of S so that the isomorphism ψ : Struct →
StructEdges is preserved.

From now on, we assume that our categories of patterns have unfolding mor-
phisms.

4 Instantiation to Different Classes of Graphs

In this section we present how our general framework works in the context of
some classes of graphs. We assume that the reader knows the (more or less)
standard definitions in the literature of these classes of graphs (see, e.g., [5]).
For simplicity, we assume that the languages used to label paths are defined
by means of a regular expression. It should be clear that the three categories
of graphs have pushouts and an initial object (the empty graph). Moreover, it
is trivial to define Unfold for the three classes of graphs. In particular, given a
pattern P = (G,E, PE) where G is a graph of any of the three classes considered
below, Unfold(P, pe, sd) would return the inclusion (G,E, PE) ↪→ (G′, E′, PE′),
where G′ is the graph obtained after adding to G the edges and new nodes in
sd, E′ is E plus these edges and PE′ is PE plus the path expressions in sd. In
all cases, V will be the class of all nodes of the given class of graphs.

4 Notice that L1 or L2 may just consist of the empty string, in which case n = n1 or
n′ = n2, respectively.
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4.1 Untyped Directed Graphs

The category of untyped directed graphs can be seen as an instance of our general
framework, where:

– Σ is a set with a single label l.
– The isomorphism ψ between this category and StructEdges that defines how

a graph G is seen as an object in StructEdges is defined as follows:
• For every graph G = (VG,EG, sG, tG), ψ(G) is the EL-graph (G,E) where

E is the set implicitly defined by EG, that is, E = {〈n, l,m〉 | n,m ∈ VG,
such that there exists e ∈ EG with sG(e) = n and tG(e) = m}.

• For every morphism fs : G → G′, the corresponding EL-morphism ψ(fs)
is defined as (fs, fv, fe) with fe(〈n, l,m〉) = 〈fv(n), l, fv(m)〉 for each
〈n, l,m〉 ∈ E.

In this context, the only path expressions PE ⊆ PathExpr are of the form
〈n,L,m〉, where L is a regular expression over the single label l. In particular,
〈n, l+,m〉 would mean that there is a path from node n to node m formed by
a non specified number of edges. For instance, the patterns in Fig. 2 could be
seen as patterns in our framework if we consider that the paths depicted in those
patterns are labeled with l+.

4.2 Typed Graphs

To see that the category of typed graphs over a given type graph TG is an
instance of our general framework, we assume that types have unique names.

– Σ = {t1, t2, . . . } is a set of names for the types in TG .
– The isomorphism ψ between this category and StructEdges, that defines

how a typed graph (G, typeG) is seen as an object in StructEdges, is defined
as follows:

• For every typed graph (G, typeG), with G = (VG,EG, sG, tG),
ψ((G, typeG)) is the EL-graph (G,E) where E = {〈n, t,m〉 | n,m ∈ VG,
and t = typeG(e) for some edge e ∈ EG with sG(e) = n and tG(e) = m}.

• For every morphism f , the corresponding EL-morphism ψ(f) is defined
as (fs, fv, fe) with fe(〈n, t,m〉) = 〈fv(n), t, fv(m)〉 for each 〈n, t,m〉 in E.

For instance, the first two conditions in Fig. 5 include examples of patterns
for the given type graph.

We may notice that a different category StructEdges (and consequently a
different category StructPatterns) can be associated to typed graphs, if we
consider that an edge e is labeled not by the name of its type, but by the pair
(t1, t2) where t1 and t2 are the names of the types of the source and target nodes
of e, respectively.
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4.3 Attributed Graphs

Roughly, an attributed graph can be seen as some kind of labelled graph whose
labels (the values of attributes) consist of values from a given data domain. There
are several approaches to formalize this kind of graphs. In this paper we use the
notion of symbolic graph ([15,16]), because it is the most adequate approach to
define patterns that include conditions on the attribute values. Symbolic graphs
are defined using the notion of E-graphs, introduced in [5] as a first step to
define attributed graphs. Intuitively, an E-graph is a kind of labelled graph,
where both nodes and edges may be decorated with labels from a given set E.
Being more precise, a symbolic graph G consists of an E-graph EGG whose labels
are seen as variables that represent the values of the given attributes, together
with a formula ΦG over these variables, used to constrain the possible values
of the associated attributes. In general, a symbolic graph G can be considered
a specification of a class of attributed graphs, since every model of ΦG can be
considered a graph specified by G. However, we can identify attributed graphs
with grounded symbolic graphs, i.e. symbolic graphs G, where ΦG is satisfied by
just one graph (up to isomorphism).5

Then the category of attributed graphs (grounded symbolic graphs) can be
seen as an instance of our general framework, where:

– Labels in Σ consist of the types of the edges together with their attributes
and the variables associated to these attributes, i.e. labels are tuples
〈t, x1 : att1, . . . , xk : attk〉, where att1, . . . , attk are the attributes of type t
and x1, . . . , xk are their associated variables.

– The isomorphism ψ between this category and StructEdges is defined as
follows.

• For every symbolic graph G, ψ(G) is the EL-graph (G,E) where E =
{〈n, 〈t, x1 : att1, . . . , xk : attk〉,m〉 | there is an edge from n to m of type
t with attributes att1, . . . , attk and x1, . . . , xk are their associated vari-
ables}.

• For every attributed morphism fs : G → G′, the correspond-
ing EL-morphism ψ(fs) is defined as (fs, fv, fe) with fe(〈n, l,m〉) =
〈fv(n), l, fv(m)〉 for each label l and each 〈n, l,m〉 in E.

In this case, if we want to put conditions on paths, as in the third pattern in
Fig. 5, a path expression pe could be a triple pe = 〈n, (exp,Φpe),m〉, where exp
could be a regular expression over labels of the form 〈t, x1 : att1, . . . , xk : attk〉
and Φpe would be a formula on the variables in exp. In this case, the third
pattern in Fig. 5, the path from Alan to Brenda would be labelled with the
regular expression 〈friend,X : friendship〉+ together with the condition X > 2.

5 In particular, we may consider that in a grounded symbolic graph G we have ΦG ≡
(x1 = v1 ∧ · · · ∧ xk = vk), for some values v1, . . . , vk .
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5 Reasoning About Navigational Properties

In this section we introduce in detail our logic. In the first subsection, we define
its syntax and semantics. In the next one we show some properties that are used
in the third subsection to define our inference rules and to show their soundness.

5.1 Nested Pattern Conditions, Models and Satisfaction

For our convenience, we express our properties using a nested notation [9] and
avoiding the use of universal quantifiers.

Definition 7 (Conditions over Patterns, Satisfaction of Conditions).
Given a pattern P in StructPatterns, a condition over P is defined inductively
as follows:

– true is a condition over P . We say that true has nesting level 0.
– For every morphism a : P → Q in StructPatterns, and every condition cQ

over Q with nesting level j ≥ 0, ∃(a, cQ) is a condition over P , called literal,
with nesting level j + 1.

– If cP is a condition over P with nesting level j, then ¬cP is a condition over
P with nesting level j.

– If cP and c′
P are conditions over P with nesting level j and j′, respectively,

then cP ∧ c′
P is a condition over P with nesting level max(j, j′).

Given a structure S, we inductively define when the pattern morphism f :
P → S satisfies a condition cP over P , denoted f |= cP :

P
a ��

f ���
��

��
��

� Q � cQ

f ′|=cQ����
��
��
��
�

S

– f |= true.
– f |= ∃(a, cQ) if there exists f ′ : Q → S such

that f ′ ◦ a = f and f ′ |= cQ.
– f |= ¬cP if f �|= cP
– f |= cP ∧ c′

P if f |= cP and f |= c′
P .

If cP is a condition over P , we also say that P is the context of cP .

Definition 8 (Navigational Logic: Syntax and Semantics). The language
of our Navigational Logic (NL) consists of all conditions over the initial pattern,
∅, in the category of patterns. Given a literal ∃(a : ∅ → P, cP ) of NL, we also
denote it by ∃(P, cP ). A structure S satisfies a property c of NL if the unique
morphism i : ∅ → S satisfies c.

5.2 Transformation by Lift and Unfolding

In this section we introduce some constructions that are used in our inference
rules. The first one is the shift construction (introduced in [18,19]) that allows
us to translate conditions along morphisms.
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Lemma 1 (Shift of Conditions over Morphisms). Let Shift be a transfor-
mation of conditions inductively defined as follows:

– Shift(b, true) = true.
– Shift(b,∃(a, cQ)) = ∃(a′, cQ′) with cQ′ = Shift(b′, cQ)

such that (1) is a pushout.
– Shift(b,¬cP ) = ¬Shift(b, cP )
– Shift(b, cP ∧ c′

P ) = Shift(b, cP ) ∧ Shift(b, c′
P ).

Then, for each condition cP over P and each morphism b : P → P ′, cP ′ =
Shift(b, cP ) is a condition over P ′ with smaller or equal nesting level, such that
for each morphism f : P ′ → S we have that f |= Shift(b, cP ) ⇔ f ◦ b |= cP .

Proof. The proof uses double induction on the structure and the nesting level
of conditions. The base case is trivial since Shift(b, true) = true, so they have
the same nesting level j = 0, and every morphism satisfies true.

If cP is not true, we proceed by induction on the nesting level of conditions.
The base case is proven. Let cP be ∃(a, cQ) of nesting level j + 1 and suppose
there is a morphism f : P ′ → S such that f |= Shift(b,∃(a, cQ)). That is,
f |= ∃(a′,Shift(b′, cQ)), according to the definition and diagram (1) below. This
means there exists a morphism g : Q′ → S such that g |= Shift(b′, cQ) and
f = g ◦a′. Then, since (1) is a pushout, we know that f ◦ b = g ◦a′ ◦ b = g ◦ b′ ◦a
and, by induction, we have that g ◦ b′ |= cQ. Therefore, f ◦ b |= cP .

Conversely, if f ◦ b |= cP there exists h : Q → S
such that f ◦ b = h ◦ a and h |= cQ. By the uni-
versal property of pushouts, there exists g : Q′ → S
such that f = g ◦ a′ and h = g ◦ b′ and, by induc-
tion, g |= Shift(b′, cQ). Hence, f |= Shift(b,∃(a, cQ)). In
addition, ∃(a′,Shift(b′, cQ)) has nesting level smaller or
equal to j+1 since, again as a consequence of the induc-
tion hypothesis Shift(b′, cQ) has nesting level smaller or
equal to j.

The rest of the cases easily follow from the induction hypothesis and the
satisfaction and nesting level definitions. �

In [18,19], it is proved that, given two literals �1 and �2, a new literal �3 can
be built (pushing �2 inside �1) that is equivalent to the conjunction of �1 and �2.
Again, the following lemma is our version of that result:

Lemma 2 (Lift of Literals). Let �1 = ∃(a1, c1) and �2 be literals with mor-
phisms ai : P → Qi, for i = 1, 2. We define the lift of literals as follows:

Lift(∃(a1, c1), �2) = ∃(a1, c1 ∧ Shift(a1, �2))

Then, f |= �1 ∧ �2 if, and only if, f |= Lift(�1, �2).
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Proof. Assume f : P → S such that f |= ∃(a1, c1 ∧ Shift(a1, �2)). That is, there
exists a morphism g : Q1 → S such that f = g ◦ a1 and g |= c1 ∧ Shift(a1, �2).
Then, this is equivalent to f |= �1 and f |= �2, since by Lemma 1 we have that
g ◦ a1 |= �2. �

Note that when pushing �2 inside �1, the literal �2 can be positive or negative.
But we will also need a special way of pushing a negative literal �2 inside a
positive one �1 under some conditions, as shown in next lemma. In this case, the
literal resulting from the lifting is just a consequence of the conjunction of �1
and �2.

Lemma 3 (Partial Lift of Literals). Let �1 = ∃(a1 : P → Q1, c1) and �2 =
¬∃(a2 : P → Q2, c2) such that there exists a morphism g : Q2 → Q1 satisfying
a1 = g ◦ a2. We define the partial lift of literals as follows:

PLift(∃(a1, c1), �2) = ∃(a1, c1 ∧ Shift(g,¬c2))

Then, f |= �1 ∧ �2 implies f |= PLift(�1, �2).

Proof. On the one hand, since f |= �1, there exists a morphism h1 : Q1 → S such
that f = h1 ◦ a1 = h1 ◦ g ◦ a2, and h1 |= c1. On the other hand, since f |= �2,
it cannot exist a morphism h2 : Q2 → S satisfying both conditions f = h2 ◦ a2,
and h2 |= c2. Now, we consider the morphism h1 ◦ g : Q2 → S, which satisfies the
first condition. Then necessarily h1 ◦ g |= ¬c2 which implies h1 |= Shift(g,¬c2) by
Lemma 1. Since h1 |= c1 ∧ Shift(g,¬c2) we conclude that f |= PLift(�1, �2). �

Moreover, in addition to the lifting and partial lifting rules based on the Shift
operation, we also need a rule that allows us to unfold the paths occurring in
the contexts of conditions. For this purpose, in the rest of this subsection, we
formalize the unfolding mechanism that we will use in the rest of the paper.

The following proposition establishes a key tautology in our logic with paths:

Proposition 1 (Unfolding Tautology). Given a pattern P = (S,E, PE), a
pattern expression pe = 〈n,L, n′〉 ∈ PE, and a decomposition d of pe, we have
that the condition

∨
sd∈d ∃(Unfold(P, 〈n,L, n′〉, sd), true) is a tautology over P .
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Proof. We have to prove that every f : P → S |= ∨
sd∈d ∃(Unfold(P, 〈n,L,

n′〉, sd), true), where S is a structure. That is, we have to prove that there
exist sd ∈ d and g : P ′ → S such that g ◦ u = f , where u : P → P ′ =
Unfold(P, 〈n,L, n′〉, sd).

P
u ��

f ���
��

��
��

� P ′

g
����
��
��
��

S

Since f is a pattern morphism and S is a structure, we have that
〈fv(n), L0, fv(n′)〉 ∈ E+

S , where L0 includes only the sequence of labels of the
path from fv(n) to fv(n), i.e., L0 = {l1 . . . lk} ⊆ L. Then, since d is a decom-
position of 〈n,L, n′〉, there is a subdecomposition sd ∈ d, with sd = (L′, s) such
that L0 ⊆ L′. This means there exists u = Unfold(P, 〈n,L, n′〉, sd) and, as a
consequence of (3) in Definition 6, we have that the morphism g exists, such
that g ◦ u = f . �

5.3 Inference Rules

We consider the following set of rules, where �2 means any (positive or negative)
literal condition, cP is any condition over P = (S,E, PE), and d ∈ D(pe) denotes
that d is a decomposition of pe. Without loss of generality6, we will assume that
our conditions are in clausal form, that is, they are sets of disjunctions of literals,
where a literal is either true or a condition ∃(a, cQ) or ¬∃(a, cQ), where cQ is
again in clausal form.7

(Lift)
∃(a1, c1) �2

∃(a1, c1 ∧ Shift(a1, �2))

(Partial Lift)
∃(a1, c1) ¬∃(a2, c2)

∃(a1, c1 ∧ Shift(g,¬c2))
if a1 = g ◦ a2

(Unfolding)
cP∨

sd∈d ∃(Unfold(P, pe, sd), true)
if d ∈ D(pe) for pe = 〈n,L, n′〉 ∈ PE

(Split Introduction)
¬∃(a, c)

∃(a, true)
if a is a split mono

(False)
∃(a1, false)

false
Let us prove the soundness of the inference rules.

6 In [18,19] it is proved that we can transform any condition into a clausal form.
7 Split Introduction rule may seem not very useful, however in [14] it was needed to

achieve completeness. A morphism a : P → Q is a split mono if it has a left inverse,
that is, if there is a morphism a−1 such that a−1 ◦ a = idP .



138 L. Lambers et al.

Theorem 1 (Soundness of Rules). The above rules are sound.

Proof. Let S be a structure and f : P → S be a pattern morphism. We need to
prove that whenever f is a model of the premise(s) of a rule, it is also a model
of the conclusion.

Lemmas 2 and 3 respectively prove the soundness of the Lift and Partial Lift
rules, whereas soundness of the Unfolding rule is obtained from Proposition 1.

Soundness of Split Introduction is a consequence of the following property:
If a : P → Q is a split mono then ∃(a, true) is equivalent to true. The reason
is that every morphism h : P → S satisfies ∃(a : P → Q, true), because the
morphism h ◦ a−1 : Q → S satisfies (h ◦ a−1) ◦ a = h ◦ (a−1 ◦ a) = h, and h ◦ a−1

trivially satisfies true.
Finally, soundness of False is trivial, because there is no structure that sat-

isfies ∃(a1, false). �

As a very simple example, let us now show that the set of three conditions in
Fig. 6 is unsatisfiable.

Fig. 6. Example of insatisfiable properties

Applying the Lift rule to conditions 1 and 2 we get condition 4 in Fig. 7, and
applying again Lift to condition 4 and condition 3 we get condition 5 also in
Fig. 7. Now, let us consider the inner conditions in condition 5, i.e. conditions 6
and 7 in Fig. 7. Applying Unfolding to the path expression labelled with a+ in
condition 6, we get condition 8, and applying unfolding to the path expression
labelled with b+ in condition 8, we get condition 9. Now, applying Partial Lift
to condition 7 and, successively, to the four conditions in the disjunction in
condition 9, we get condition 10. Then applying four times the rule False to
condition 10, we get false, which means that if we replace the inner conditions
of condition 5, we get condition 11. Finally, if we apply the rule False to that
condition we get false.
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Fig. 7. Example of inferences

6 Related Work, Conclusion and Future Work

The idea of expressing graph properties by means of graphs and graph morphisms
has its origins in the notions of graph constraints and application conditions
[6,8,11]. In [21], Rensink presented a logic for expressing graph properties, closely
related with the Logic of Nested Graph Conditions (LNGC) defined by Habel
and Penneman [9]. First approaches to provide deductive methods to this kind
of logics were presented in [17] for a fragment of LNGC, and by Pennemann
[18,19] for the whole logic. Among the extensions allowing us to state path
properties, in [10], Habel and Radke presented a notion of HR+ conditions with
variables that allowed them to express properties about paths, but no deduction
method was presented. Also, in [20], Poskitt and Plump proposed an extension of
nested conditions with monadic second-order (MSO) properties over nodes and
edges. Within this extension, they can define path predicates that allow for the
direct expression of properties about paths between nodes, but without defining
any deduction method. Finally, in [7], Flick extended the LNGC with recursive
definitions using a μ notation and presented a proof calculus showing its partial
correctness.

In [14] we presented an extension of LNGC, restricted to the case of directed
graphs, including the possibility of specifying the existence of paths between
nodes, together with a sound and complete tableau proof method for this logic.
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The specification of paths by means of language expressions (in particular,
regular expressions) is a usual technique in query languages for graph databases
(e.g., [1,2,4,13,23]), but no associated logic is defined.

In this paper we have shown how to generalize the approach presented in
[14] to arbitrary categories of graphical structures, including attributed typed
graphs. In this sense, the results presented in this paper can be seen as a first
step to define a logic underlying graph databases. The next obvious step will be
showing the completeness of our inference rules.

Acknowledgements. We are grateful to the anonymous reviewers for their comments
that have contributed to improve the paper.
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