
Initial Conflicts and Dependencies:
Critical Pairs Revisited

Leen Lambers1(B) , Kristopher Born2, Fernando Orejas3 ,
Daniel Strüber4 , and Gabriele Taentzer2

1 Hasso-Plattner-Institut, Potsdam, Germany
leen.lambers@hpi.de

2 Philipps-Universität Marburg, Marburg, Germany
{born,taentzer}@informatik.uni-marburg.de

3 Technical University of Catalunia, Barcelona, Spain
orejas@lsi.upc.edu

4 Universität Koblenz-Landau, Koblenz, Germany
strueber@uni-koblenz.de

Abstract. Considering a graph transformation system, a critical pair
represents a pair of conflicting transformations in a minimal context. A
conflict between two direct transformations of the same structure occurs
if one of the transformations cannot be performed in the same way after
the other one has taken place. Critical pairs allow for static conflict and
dependency detection since there exists a critical pair for each conflict
representing this conflict in a minimal context. Moreover it is sufficient
to check each critical pair for strict confluence to conclude that the whole
transformation system is locally confluent. Since these results were shown
in the general categorical framework of M-adhesive systems, they can be
instantiated for a variety of systems transforming e.g. (typed attributed)
graphs, hypergraphs, and Petri nets.

In this paper, we take a more declarative view on the minimality of
conflicts and dependencies leading to the notions of initial conflicts and
initial dependencies. Initial conflicts have the important new characteris-
tic that for each given conflict a unique initial conflict exists representing
it. We introduce initial conflicts for M-adhesive systems and show that
the Completeness Theorem and the Local Confluence Theorem still hold.
Moreover, we characterize initial conflicts for typed graph transforma-
tion systems and show that the set of initial conflicts is indeed smaller
than the set of essential critical pairs (a first approach to reduce the
set of critical pairs to the important ones). Dual results hold for initial
dependencies.

1 Introduction

Graph transformations are often affected by conflicts and dependencies
between the included rules. To improve their transformation specifications, users
may require a list of all potential conflicts and dependencies occurring between
the contained rules. Critical pair analysis (CPA) is a static analysis to enable
c© Springer International Publishing AG, part of Springer Nature 2018
R. Heckel and G. Taentzer (Eds.): Ehrig Festschrift, LNCS 10800, pp. 105–123, 2018.
https://doi.org/10.1007/978-3-319-75396-6_6

http://orcid.org/0000-0001-6937-5167
http://orcid.org/0000-0002-3023-4006
http://orcid.org/0000-0002-5969-3521

106 L. Lambers et al.

Fig. 1. Overview of critical pair kinds with their formal foundations. Characterizations
are given in the category of typed graphs.

the automated computation of such a list. The notion of critical pair was coined
in the domain of mathematical logic, where it was first introduced for term
rewriting systems [1]. More recently, it turned out to be useful for graph trans-
formation systems as well. Plump [2] and Heckel et al. [3] introduced critical pair
notions for term graph rewriting and typed attributed graphs, respectively. It
was Ehrig who, together with his colleagues, came up with a generalized theory
of critical pairs for adhesive high-level replacement systems [4]. A remarkable
feature that CPA inherits from graph transformations is its versatility. CPA has
been used in many scenarios, including conflict detection in functional system
requirements [5], detection of product-line feature interactions [6], verification of
model transformations [7], and numerous other software engineering scenarios.
In these settings, CPA was used to show the correctness of a specification, to
improve a rule set by fostering the independent application of its rules, and to
support developers during design decisions.

The original critical-pair notion was focused on delete-use conflicts, i.e., situ-
ations where a rule deletes an element required by the second one, and the dual
counterpart of produce-use dependencies. To consider produce-forbid conflicts as
well, the notion of critical pair was extended to rules with negative application
conditions in [8]. Each critical pair represents one such conflict situation in a
minimal context : It comprises a graph specifying an overlap of the two consid-
ered rules, together with two jointly surjective match morphisms embedding the
rules’ left-hand sides into this graph.

Essential critical pairs [9] were introduced to optimize static conflict detec-
tion and local confluence analysis. They specify a well-defined subset of the set of
critical pairs between a pair of rules to support a more “compact” representation
of potential conflicts and dependencies, while providing the same main benefits
as regular critical pairs: completeness, i.e. each potential conflict or dependency
is represented by a critical pair in a minimal context, and analyzibility of local
confluence, i.e., strict confluence of each critical pair implies local confluence.
However, we shall see that essential critical pairs do not provide the most com-
pact representation of potential conflicts and dependencies.

Initial Conflicts and Dependencies: Critical Pairs Revisited 107

In this paper, we consider the following question: Can the set of essential
critical pairs be reduced even further without losing completeness and local con-
fluence? To answer this question, we introduce the notion of initial conflicts. As
shown in Fig. 1, initial conflicts further reduce the set of critical pairs, in the sense
that the same initial conflict represents multiple essential critical pairs. More
precisely, the initial conflict is obtained from these essential critical pairs by
“unfolding” them, i.e., reducing the overlap of the conflicting rules. A similar
relationship between essential and regular critical pairs was shown in [9]. In con-
trast to essential critical pairs, initial critical pairs are defined declaratively and
generically in a categorical way, rather than constructively and restricted to the
category of typed graphs. In sum, we make the following contributions:

– We define the notion of initial conflicts in a purely category-theoretical way,
using the framework of M-adhesive categories.

– We provide results to show that the set of initial conflicts still enjoys the com-
pleteness property and the local confluence theorem. Moreover, we introduce
M-initial conflicts and show that they are equivalent to critical pairs.

– We characterize initial conflicts for typed graph transformation systems and
show that the set of initial conflicts is effectively smaller than the set of essen-
tial critical pairs.

– Dually to initial conflicts, we introduce initial dependencies.

The rest of this paper is structured as follows. Section 2 introduces a running
example, whereas Sect. 3 revisits the necessary preliminaries. Section 4 intro-
duces the notion of initial conflicts for M-adhesive systems and its relationship
with critical pairs. Readers mainly interested in initial conflicts for graph trans-
formation systems may skip this section. Section 5 formally characterizes initial
conflicts in the category of typed graphs. Section 6 outlines how new results can
be transferred to dependencies. Section 7 discusses related work and concludes
our work.

2 Motivating Example

Throughout this paper, we illustrate the new concepts with an example, which
specifies the operational semantics of finite automata by graph transformation.
Finite automata are mainly used to recognize words that conform to regular
expressions. A finite automaton consists of a set of states, a set of labeled tran-
sitions running between states, a start state, and a set of end states. If the whole
word can be read by the automaton such that it finally reaches an end state,
the word is in the language of this automaton. In the literature, deterministic
automata are distinguished from non-deterministic ones. An automaton is deter-
ministic if, for every state and symbol, there is at most one transition starting in
that state and being labeled with that symbol. We will see that the specification
of non-deterministic automata shows conflicts.

In the upper left corner of Fig. 2, a simple type graph for finite automata
and input words is shown. A Transition has a (s)ource and a (t)arget edge to

108 L. Lambers et al.

Fig. 2. Type graph and rules for executing transitions in finite automata

two States and has a Label. The Cursor points to the (c)urrent state. An input
word is given by a Queue of Elements corresponding to labels. The queue points
to the (n)ext symbol to be recognized.

Additionally, Fig. 2 depicts two rules specifying the execution of automata.
Rule execute executes a transition which is not a loop. The cursor is set to the
next state and the input queue cursor points to the next element. For the last
symbol we use rule executeLast which just consumes the last symbol and sets
the cursor to the next state. Finally, all queue elements may be deleted.

Figure 3 shows an example automaton A in concrete and abstract syntax.
This automaton recognizes the language L(A) = {abnc|n ≥ 0}. An example
input word is abbc. The abstract syntax graph in Fig. 3 shows an instance graph
conforming to the type graph in Fig. 2. It contains the abstract syntax informa-
tion for both the example automaton and the input word, glued at all Label-
nodes. Note that n-typed edges define the order of symbols in the input word.

concrete syntaxabstract syntax

B
 b

a c CA

Fig. 3. An example automaton with an example input word

To recognize label a, rule execute is applied at its only possible match. As
the result, the cursor points to B:State, the first n-edge is deleted, and the queue
points to the first element containing label b. To recognize the whole word three
further rule applications are needed.

The execute-rules cause many potential conflicts; for example, the pair (exe-
cute, execute) has 49 essential critical pairs. It will turn out that most of them

Initial Conflicts and Dependencies: Critical Pairs Revisited 109

just show variants of basically the same conflicts. Their set of initial conflicts,
however, contains just 7 pairs. (By the way, AGG [10] runs out of memory
when computing all critical pairs after checking over 12,000 rule overlaps. Veri-
graph [11] found 51,602 overlaps with monomorphic matches, where 21,478 of
them represent critical pairs.)

3 Preliminaries

In this section, we give a short introduction to M-adhesive categories [4,12] and
M-adhesive systems to define the setting for the categorical results in Sect. 4.
Moreover, we recall the classical notions of conflict and critical pair as well as
the corresponding results Completeness Theorem and Local Confluence Theorem
within this categorical framework [4,13].

By considering M-adhesive categories it is possible to avoid similar investi-
gations for different instantiations like e.g. attributed graphs, Petri nets, hyper-
graphs, and algebraic specifications. An M-adhesive category 〈C,M〉 is a cate-
gory C with a distinguished class M of monomorphisms satisfying certain prop-
erties. The most important one is the van Kampen (VK) property stating a
certain kind of compatibility of pushouts and pullbacks along M-morphisms. In
[13] it is proven that the category of typed graphs 〈GraphsTG,M〉 with the
class M of all injective typed graph morphisms is M-adhesive. In Sect. 5 we will
instantiate the idea of initial conflicts to this category.

Within this categorical framework we introduce our notion of rule, direct
transformation, and M-adhesive system following the so-called DPO app-
roach [13]. Note that these definitions can be instantiated to the case of typed
graph transformation by replacing each object with a typed graph and each mor-
phism with a typed graph morphism. In the category GraphsTG, M-adhesive
systems are then called typed graph transformation systems.

Definition 1 (Rule, direct transformation, M-adhesive system). Given
an M-adhesive category 〈C,M〉, then we define the following:

– A rule p : L l← K
r→ R is a span of morphisms l, r ∈ M. We call L (resp.

R), the left-hand side (LHS) (resp. right-hand side (RHS)) of rule p.
– A direct transformation G

p,m⇒ H from G to H via a rule p : L ← K → R
and a morphism m : L → G, called match, consists of the double pushout
(DPO) [14] as depicted in Fig. 4. Since pushouts along M-morphisms in an
M-adhesive category always exist, the DPO can be constructed if the pushout
complement of m ◦ l exists. Then, the match m satisfies the gluing condition
of rule p.

– A transformation, denoted as G0
∗⇒ Gn, is a sequence G0 ⇒ G1 ⇒ · · · ⇒ Gn

of direct transformations. For n = 0, we have the identical transformation
G0 ⇒ G0. Moreover, for n = 0 we also allow isomorphisms G0

∼= G′
0, because

pushouts, and hence also direct transformations, are only unique up to iso-
morphism.

– Given a set of rules R, triple (C,M,R) is an M-adhesive system.

110 L. Lambers et al.

Fig. 4. Direct transformation as DPO, deletion graph constructed by initial pushout

The classical definitions for transformation pairs in conflict and critical pairs
are recalled in [13]. The latter represent conflicts in a minimal context material-
ized by a pair of matches being jointly epimorphic. In particular, for the critical
pair definition it is assumed that the M−adhesive category comes with a so-
called E ′-M pair factorization, generalizing the classical epi-mono factorization
to a pair of morphisms with the same codomain. It is proven in [13] that the cat-
egory GraphsTG of typed graphs has a unique E ′-M pair factorization, where
E ′ is the class of jointly surjective typed graph morphism pairs. Note that we
stick to the notation E ′ for jointly epimorphic morphisms as in [13], where E on
the other hand is used to denote a class of epimorphisms.

Definition 2 (conflict, critical pair). A pair of direct transformations t1 :
G

p1,m1⇒ H1 and t2 : G
p2,m2⇒ H2 is in conflict if �h12 : L1 → D2 : d2 ◦ h12 = m1

or �h21 : L2 → D1 : d1 ◦ h21 = m2.

R1

m′
1

��

K1
l1 ��r1��

��

L1

h12

��
m1

���
��

��
��

� L2

h21

��
m2

����
��
��
��

K2

��

l2�� r2 �� R2

m′
2

��
H1 D1

d1

��
e1

�� G D2
d2

��
e2

�� H2

Given an E ′-M pair factorization, a critical pair is a pair of direct transfor-
mations K

p1,m1⇒ P1 and K
p2,m2⇒ P2 in conflict with (m1,m2) in E ′.

Now, we recall the Completeness Theorem for critical pairs, where we need
the notion of extension morphism and extension diagram as presented in [4,13].

Definition 3 (Extension diagram). An extension diagram is a diagram (1)
as shown on the left of Fig. 5 where f : G′ → G is a morphism, called extension
morphism, and t : G

p
=⇒ H as well as t′ : G′ p

=⇒ H ′ are two direct transforma-
tions via the same rule p with matches m′ and f ◦m′ respectively, defined by the
four pushouts in the middle of Fig. 5.

Transformations are actually extended by extending their context D′ to D.
Morphisms f : G′ → G and f ′ : H ′ → H are the resulting pushout morphisms. In
the category GraphsTG, this means that the context graph D′ may be embedded
into a larger one and/or elements of it may be glued together. Corresponding
actions are reflected in f and f ′ but no additional actions may happen.

Initial Conflicts and Dependencies: Critical Pairs Revisited 111

Fig. 5. Extension diagram (overview and more detailed), extension diagram for trans-
formation pair

The Completeness Theorem [4,13] for critical pairs states that each potential
conflict can be represented in a minimal context by some critical pair. For con-
ciseness reasons in the following we sometimes write that the M-adhesive system
comes with an E ′-M pair factorization (or some other additional requirement)
if the corresponding M adhesive category does.

Theorem 4 (Completeness Theorem). Let an M-adhesive system with an
E ′-M pair factorization be given. For each pair of direct transformations H1

p1⇐=
G

p2=⇒ H2 in conflict, there is a critical pair P1
p1⇐= K

p2=⇒ P2 with extension
diagrams (1) and (2) and m ∈ M as depicted on the right of Fig. 5.

The Local Confluence Theorem [4,13] states that, by checking each crit-
ical pair for strict confluence, one can conclude local confluence of the overall
transformation system. Strict confluence ensures that the largest subobject of K
preserved by both t1 and t2 is preserved by the transformations establishing local
confluence. Note that for this result the M-adhesive category needs to fulfill an
additional requirement: The category needs so-called initial pushouts describing
the existence of a “smallest” pushout over a morphism [13]. It is proven in [13]
that the category GraphsTG of typed graphs has initial pushouts.

Theorem 5 (Local Confluence Theorem). Given an M-adhesive system
with an E ′-M pair factorization and initial pushouts over M-morphisms, it is
locally confluent if all its critical pairs are strictly confluent.

For a closer look at conflicts we have to identify the following two rule parts:
the deletion object comprising the part to be deleted and its boundary specifying
how the deletion object is connected to the preserved rule part.

Definition 6 (Boundary and deletion objects). Let an M-adhesive system
with initial POs [13] over M and a rule p : L l← K

r→ R as well as an initial
pushout (IPO) (see Fig. 4) over morphism l be given. Then we say that B is the
boundary object for rule p and the context object C in this IPO is the deletion
object for rule p.

112 L. Lambers et al.

4 Initial Conflicts

The original idea of critical pairs consists of considering all possible conflicting
transformations in a minimal context. In the classical critical pair definition
this minimal context is materialized by a pair of jointly epimorphic matches
from a special set E ′ arising from the E ′-M pair factorization as additional
requirement to the M-adhesive category. We propose here a more declarative
view on a pair of direct transformations in conflict to be minimal resulting in
the subsequent definition of initial conflicts. In categorical terms, one can use
actually the notion of initiality of transformation pairs to obtain this new view
on critical pairs. Interestingly, it will turn out that each initial conflict is a critical
pair but not the other way round. We will show however at the end of this section
that all initial conflicts still satisfy the Completeness Theorem as well as the
Local Confluence Theorem. Consequently, we have found an important subset
within the set of classical critical pairs for performing static conflict detection
as well as local confluence analysis for M-adhesive systems. Finally, we will see
also that the notion of M-initiality allowing merely M-morphisms as extension
morphisms leads to the notion of M-initial conflicts, representing an equivalent
characterization of critical pairs provided that the E ′-M pair factorization for
building them is unique. We will see that by definition (M-)initial conflicts
have the important new characteristic that for each given pair of conflicting
transformations there exists a unique (M-)initial conflict representing it.

Definition 7 ((M-)Initial transformation pair). Given a pair of direct

transformations (t1, t2) : H1
p1,m1⇐= G

p2,m2=⇒ H2, then (tI1, t
I
2) : HI

1

p1,m
I
1⇐= GI p2,m

I
2=⇒

HI
2 is an initial transformation pair (resp. M-initial transformation pair) for

(t1, t2) if it can be embedded into (t1, t2) via extension diagrams (1) and (2) and
extension morphism f I (resp. f I ∈ M) as in Fig. 6 such that for each transfor-

mation pair (t′1, t
′
2) : H ′

1
p1,m

′
1⇐= G′ p2,m

′
2=⇒ H ′

2 that can be embedded into (t1, t2)
via extension diagrams (3) and (4) and extension morphism f (resp. f ∈ M) as
in Fig. 6 it holds that (tI1, t

I
2) can be embedded into (t′1, t

′
2) via unique extension

diagrams (5) and (6) and unique vertical morphism f ′I (resp. f ′I ∈ M) s.t.
f ◦ f ′I = f I .

Fig. 6. (M-)initial transformation pair HI
1

p1,m
I
1⇐= GI p2,m

I
2=⇒ HI

2 for H1
p1,m1⇐= G

p2,m2=⇒ H2

Initial Conflicts and Dependencies: Critical Pairs Revisited 113

Lemma 8 (Uniqueness of (M-)initial transformation pair). Given a pair

of direct transformations (t1, t2) : H1
p1,m1⇐= G

p2,m2=⇒ H2 then, if (tI1, t
I
2) : HI

1

p1,m
I
1⇐=

GI p2,m
I
2=⇒ HI

2 is an initial pair of transformations (resp. M-initial pair of trans-
formations) for (t1, t2), any other initial transformation pair (resp. M-initial
transformation pair) for (t1, t2) is isomorphic to (tI1, t

I
2).

Proof. Consider some other initial pair (t′I1 , t
′I
2) : H ′I

1

p1,m
I
1⇐= G′I p2,m

I
2=⇒ H ′I

2 for
(t1, t2). Then the extension diagrams in Fig. 7 can be built by definition of (M)-
initial pairs. Now consider for (tI1, t

I
2) trivial extension diagrams via the identity

extension morphism id : GI → GI . The extension morphism of the extension
diagrams (7) + (5) and (8) + (6) w.r.t. (t1, t2) needs to be equal to the identity
extension morphism by definition. Analogously, one can argue for (5) + (7) and
(6) + (8). Therefore both initial pairs are isomorphic. �

Fig. 7. Uniqueness of (M-)initial transformation pair

Our key notion of initial conflicts is based on the existence of initial trans-
formation pairs for conflicting transformation pairs. It describes the “smallest”
conflict that can be embedded into a given conflict. It is an open issue to come
up with a constructive categorical characterization in the context of M-adhesive
systems, which is the reason for having it as an additional requirement (formu-
lated in Definition 9) for now. It is possible, however, to constructively charac-
terize M-initial transformation pairs for conflicts provided that a unique E ′-M
pair factorization is given (see Lemma 10). The key difference between initiality
and M-initiality is that the extension morphism used to embed the “smallest”
conflict into a given conflict is general or needs to be in M, respectively.

Definition 9 (Existence of initial transformation pair for conflict). An
M-adhesive system has initial transformation pairs for conflicts if, for each
transformation pair in conflict (t1, t2), the initial transformation pair (tI1, t

I
2)

exists.

Lemma 10 (Existence of M-initial transformation pair for conflict).
In an M-adhesive system with unique E ′-M pair factorization, for each pair of
transformations (t1, t2) in conflict, there exists an M-initial transformation pair
(tI1, t

I
2). In particular, it corresponds to the classical critical pair as constructed

in Theorem4.

114 L. Lambers et al.

Proof. Consider the critical pair (tI1, t
I
2) as given by Theorem 4. We show that this

is indeed an M-initial transformation pair for (t1, t2). Given matches (m1,m2)
of transformation pair (t1, t2) and matches (mI

1,m
I
2) for the pair (tI1, t

I
2) built

via the pair factorization (as on the left of Fig. 6). Then (mI
1,m

I
2) ∈ E ′ and the

extension morphism f I from (tI1, t
I
2) to (t1, t2) is in M and f I ◦ mI

1 = m1 and
f I ◦mI

2 = m2. Consider some other pair (t′1, t
′
2) that can be embedded via some

extension morphism f : G′ → G ∈ M into (t1, t2) (as on the right of Fig. 6).
According to Theorem 4 we again have a critical pair with matches in E ′ that can
be embedded into (t′1, t

′
2) via some extension morphism f ′I in M. Since the E ′-

M pair factorization is unique and M-morphisms are closed under composition,
this will actually be indeed the same critical pair (tI1, t

I
2) as for (t1, t2). �

Now we are ready to introduce our notion of (M-)initial conflicts representing
the set of all possible “smallest” conflicts. Like for classical critical pairs they
are defined for a given M-adhesive system allowing for static conflict detection.

Definition 11 ((M-)Initial conflict). Given an M-adhesive system with ini-
tial transformation pairs for conflicts, a pair of direct transformations in conflict
(t1, t2) : H1

p1⇐= G
p2=⇒ H2 is an initial conflict if it is isomorphic to the initial

transformation pair for (t1, t2).
Given an M-adhesive system with unique E ′-M-pair factorization, a pair of

direct transformations in conflict (t1, t2) : H1
p1⇐= G

p2=⇒ H2 is an M-initial
conflict if it is isomorphic to the M-initial transformation pair for (t1, t2).

It follows quite straightforwardly that the set of M-initial conflicts corre-
sponds to the classical set of critical pairs for an M-adhesive system with unique
E ′-M pair factorization.1 Moreover, it follows that each initial conflict is an M-
initial conflict (or critical pair), in particular. A counterexample for the reverse
direction will be given in the next section.

Theorem 12 (M-Initial conflict = critical pair). In an M-adhesive system
with unique E ′-M pair factorization, each M-initial conflict is a critical pair and
vice versa.

Proof. Given some M-initial conflict (tI1, t
I
2) : HI

1
p1⇐= GI p2=⇒ HI

2 . Then it
follows directly from Definitions 2, 11 and Lemma 10 that (tI1, t

I
2) is a critical

pair because it is in conflict and its matches are in E ′.
Given a critical pair (tI1, t

I
2) : HI

1
p1⇐= GI p2=⇒ HI

2 , we need to show that it
is an M-initial conflict. When constructing the initial transformation pair for
(tI1, t

I
2) according to Lemma 10, a pair of isomorphic transformations w.r.t. (tI1, t

I
2)

would be constructed because of the E ′-M pair factorization being unique and
the fact that one could choose alternatively as extension morphism the identity
morphism on GI (being in M), since the matches are already in E ′. �

1 Classical critical pairs are slightly more general since they do not require uniqueness
of the E ′-M pair factorization.

Initial Conflicts and Dependencies: Critical Pairs Revisited 115

Theorem 13 (Initial conflict is M-Initial conflict). In an M-adhesive
system with initial transformation pairs for conflicts and a unique E ′-M pair
factorization, each initial conflict is an M-initial conflict.

Proof. Given some initial conflict (tI1, t
I
2) : HI

1
p1⇐= GI p2=⇒ HI

2 , then because
of Lemma 10 we can construct an M-initial transformation pair for it. By defi-
nition, each M-initial transformation pair is also an initial transformation pair
since each morphism in M is a regular morphism. Because of Lemma 8, such an
initial pair is unique and, for an initial conflict, isomorphic to (tI1, t

I
2) in partic-

ular, such that the initial transformation pair is indeed an M-initial pair. �
To decide if initial conflicts can replace critical pairs for detecting conflicts
and analyzing local confluence statically, we investigate now if the Complete-
ness Theorem and Local Confluence Theorem hold. The Completeness Theorem
for initial conflicts can indeed be formulated in a slightly modified way w.r.t.
Theorem 4. This is because the extension morphism is not necessarily in M any-
more. Informally speaking, we are able to represent several critical pairs by one
initial conflict by unfolding elements that were overlapped unnecessarily (i.e.
without having importance for the described conflict). Note also that, instead
of requiring an E ′-M pair factorization as in the classical Completeness Theo-
rem for critical pairs, we assume the existence of initial transformation pairs for
conflicts.

Lemma 14 (Conflict inheritance). Given a pair of direct transformations
(t1, t2) : H1

p1⇐= G
p2=⇒ H2 in conflict and another pair of direct transformations

(t′1, t
′
2) : H ′

1
p1⇐= G′ p2=⇒ H ′

2 that can be embedded into (t1, t2) via extension
morphism f and corresponding extension diagrams as depicted in Fig. 8, then
(t′1, t

′
2) is also in conflict.

Fig. 8. Conflict inheritance

Proof. Assume that (t′1, t
′
2) : H ′

1

p1,m
′
1⇐= G′ p2,m

′
2=⇒ H ′

2 are parallel independent.
This means that some morphism h′

12 (and h′
21) exists such that d′

1 ◦ h′
12 = m′

2

(and d′
2 ◦ h′

21 = m′
1). Then (t1, t2) : H1

p1,m1⇐= G
p2,m2=⇒ H2 with f ◦ m′

1 = m1 and
f ◦m′

2 = m2 would be parallel independent as well, which is a contradiction. This

116 L. Lambers et al.

is because a morphism h12 = f ′
1◦h′

12 would exist such that d1◦h12 = d1◦f ′
1◦h′

12 =
f ◦ d′

1 ◦ h′
12 = f ◦m′

2 = m2 and similarly, a morphism h21 = f ′
2 ◦ h′

21 would exist
such that d2 ◦ h21 = m1. �
Theorem 15 (Completeness theorem for initial conflicts). Consider an
M-adhesive system with initial transformation pairs for conflicts. For each pair
of direct transformations (t1, t2) : H1

p1⇐= G
p2=⇒ H2 in conflict, there is an

initial conflict (tI1, t
I
2) : P1

p1⇐= K
p2=⇒ P2 with extension diagrams (1) and (2).

Proof. We can assume the existence of the initial transformation pair (tI1, t
I
2) for

the given pair (t1, t2) in conflict. It remains to show that the initial transforma-
tion pair (tI1, t

I
2) for (t1, t2) is indeed an initial conflict according to Definition 11.

Firstly, the transformation pair (tI1, t
I
2) is in conflict according to Lemma 14. Sec-

ondly, each initial conflict for (tI1, t
I
2) needs to be isomorphic to (tI1, t

I
2) since we

would have found a non-isomorphic initial transformation pair for (t1, t2) by
composition of extension diagrams otherwise. This contradicts Lemma 8. �
The Local Confluence Theorem can be formulated for initial conflicts similarly
to the one for classical critical pairs because its proof actually does not need the
requirement that extension morphisms should be in M.

Theorem 16 (Local confluence theorem for initial conflicts). Given an
M-adhesive system with initial pushouts and initial transformation pairs for
conflicts, an M-adhesive system is locally confluent if all its initial conflicts are
strictly confluent.

Proof. The proof runs completely analogously to the proof of the regular Local
Confluence Theorem (Theorem 5 in [13]). The only difference is that for this
proof, we need initial pushouts over general morphisms whereas in Theorem5
initial pushouts over M-morphisms are sufficient. The proof requires initial
pushouts over the extension morphism m embedding a critical pair (or initial
conflict) into a pair of conflicting transformations. This extension morphism
belongs to the special subset M of monomorphisms for classical critical pairs,
but it is a general morphism in the case of initial conflicts. �
In summary, given an M-adhesive system, we obtain the Completeness and
Local Confluence Theorem in slightly different flavors. For Completeness of M-
initial conflicts (or classical critical pairs) we assume to have a unique E ′-M
pair factorization and for Local Confluence we in addition require initial POs
over M. For Completeness of initial conflicts we assume the existence of initial
transformation pairs for conflicts (*) and for Local Confluence we in addition
require initial POs. For the category of typed graphs it is shown in [13] that all
these requirements hold apart from requirement (*) proven in the next section.

5 Initial Conflicts for Typed Graph Transformation

In this section, we discuss how initial conflicts look like in graph transforma-
tion systems, i.e., in the category GraphsTG. Moreover, we clarify how they are

Initial Conflicts and Dependencies: Critical Pairs Revisited 117

related to essential critical pairs which were introduced in [9] as a first optimiza-
tion of critical pairs in graph transformation systems. Essential critical pairs
form a subset of critical pairs for which the Completeness Theorem as well as
the Local Confluence Lemma still hold. Therefore, an obvious question is the fol-
lowing: Does the set of initial conflicts correspond to the set of essential critical
pairs in the case of typed graph transformation systems? It turns out that, in
general, the set of initial conflicts is a proper subset of the set of essential critical
pairs here. First, we show an initial conflict occurring in our running example.

Fig. 9. Example for an initial conflict (Color figure online)

Example 17 (Initial conflict). In a non-deterministic automaton there may be a
state with two subsequent transitions, both triggered by the same label. This sit-
uation is described symbolically by the (excerpt of the) initial conflict in Fig. 9.2

Both transitions can be executed, i.e., the rule execute is applicable with different
results at two different matches. These matches lead to transformations in con-
flict since they are both triggered and therefore change the current queue pointer
as well as the current cursor position. The corresponding edges are highlighted
in the overlap graph (green) at the bottom of the figure. Together with their

2 Note that this situation is somewhat unrealistic, since in principle it allows a symbol
to be connected to two different labels. However, graph G is supposed to be embedded
into realistic situations to check if a pair of transformations is conflicting. It is part of
future work to integrate the notion of constraints into our theory of initial conflicts,
leading – if possible – to realistic situations already in initial conflicts.

118 L. Lambers et al.

adjacent nodes they form the actual overlap of both matches. Note that apply-
ing rule execute at these matches leads to an initial conflict since the overlap is
in deleted elements and their adjacent boundary nodes only. (See also Lemma21
below.) If the overlap is so small, no other transformation pair is embeddable
since unfoldings can occur in preserved elements only.

In the category GraphsTG, a critical pair is essential if two injective matches
overlap in deleted elements and boundary nodes only [9]. The following example
illustrates that indeed not each essential critical pair is an initial conflict.

Fig. 10. Example for an essential critical pair not being an initial conflict

Example 18 (Essential critical pair not being an initial conflict). A parallel
automaton may have several transitions that can be executed in the current
states. Such a situation is described by the (excerpt of the) critical pair in Fig. 10.
There exist two different current states with outgoing transitions both recogniz-
ing the same label. In this case, both transitions could be executed, i.e., the rule
execute can be applied at two different matches. Since the matches overlap in
deleted elements and isolated boundary nodes (as highlighted in green) only, the
critical pair shown in Fig. 10 is essential. In particular, the isolated boundary
node 5:Cursor occurs in the overlap (and not the adjacent edges that are to be
deleted). The same conflict would be specified if the cursor nodes of both LHSs
were not overlapped. Hence, this essential critical pair is not an initial conflict. A
similar critical pair with two cursors is embeddable into the depicted one. Since
that cannot be further unfolded, it represents the corresponding initial conflict.

The following lemma shows that the category GraphsTG has initial trans-
formation pairs for conflicts and hence, initial conflicts. As a preparatory work,

Initial Conflicts and Dependencies: Critical Pairs Revisited 119

we define matches that do not overlap in isolated boundary nodes. If they would,
then it would be possible to unfold the matches at these isolated boundary nodes.

Definition 19 (No isolated boundary node). Given two rules p1 and p2
with LHSs L1 and L2, boundary graphs B1 and B2 as well as deletion graphs C1

and C2 as in Definition 6. Morphisms m1 : L1 → G and m2 : L2 → G do not
overlap in isolated boundary nodes if ∀x ∈ m1(c1(b1(B1))) ∩ m2(L2) :

∃e ∈ m1(c1(C1)) ∩ m2(L2) : x = src(e) ∨ x = tgt(e) and
∀x ∈ m2(c2(b2(B2))) ∩ m1(L1) :
∃e ∈ m2(c2(C2)) ∩ m1(L1) : x = src(e) ∨ x = tgt(e)

Lemma 20 (Existence of initial transformation pairs in GraphsTG).
Given a pair of direct transformations (t1, t2) in conflict, there is an initial trans-
formation pair for (t1, t2), in the category GraphsTG.

Proof. Due to the Completeness Theorem for critical pairs [13] there is a crit-
ical pair cp : H1

p1,m1⇐= G
p2,m2=⇒ H2 for (t1, t2). By the critical pair definition

the matches m1 and m2 are jointly surjective. If O = m1(L1) ∩ m2(L2) con-
tained some graph elements preserved by both rules, cp is tried to be unfolded
at these nodes and edges, i.e., a critical pair cp′ is searched which does not map
these elements to the same one in O. This is always possible for edges. It is also
possible for nodes if they do not have incident edges to be deleted, also being
in O. The dangling edge condition for unfolded nodes cannot be violated after
unfolding if it was not violated before since the same amount or fewer incident
edges per unfolded node arise. The identification condition is also fulfilled after
unfolding if it was fulfilled before since fewer elements are identified afterwards.
Unfolding a critical pair as much as possible in this way yields the transfor-

mation pair itp : HI
1

p1,m
I
1⇐= GI p2,m

I
2=⇒ HI

2 where the only preserved elements in
mI

1(L1) ∩ mI
2(L2) are boundary nodes with incident edges to be deleted. A fur-

ther unfolding is not possible since we would not find a corresponding extension
diagram. Remember that an extension morphism can only unfold elements that
are commonly preserved by both transformations. Preserved nodes with at least
one incident edge to be deleted being overlapped as well cannot be unfolded
since this edge would have to be unfolded as well.

We have to show now that itp is an initial transformation pair for (t1, t2).
It is obvious that itp can be embedded into cp, which can be embedded into
(t1, t2) via extension diagrams and extension morphisms. Given any other trans-
formation pair tp that can be embedded into (t1, t2), tp may differ from (t1, t2)
just by having fewer commonly preserved elements or by unfolding of preserved
elements. itp can be embedded into tp since it contains the minimal number of
preserved elements and the minimal overlap of preserved elements. The unique-
ness of the corresponding extension diagrams and morphism follows from the
construction of itp, i.e., the construction of critical pairs uses a unique E ′-M
pair factorization and the unfolding is canonical. �
As Lemma 20 suggests an initial conflict is a transformation pair in conflict with
minimal context and maximal unfolding of preserved elements.

120 L. Lambers et al.

Theorem 21 (Initial conflict in GraphsTG). In the category GraphsTG,
a transformation pair ic : H1

p1,m1⇐= G
p2,m2=⇒ H2 is an initial conflict iff ic has the

following properties:

1. Minimal context: m1 and m2 are jointly surjective.
2. At least one element in delete-use conflict:

m1(L1) ∩ m2(L2) �⊆ m1(l1(K1)) ∩ m2(l2(K2)).
3. Overlap in deletion graphs only:

m1(L1) ∩ m2(L2) ⊆ (m1(c1(C1) ∩ m2(L2)) ∪ (m1(L1) ∩ m2(c2(C2))) with
c1 : C1 → L1 and c2 : C2 → L2 being defined as in Definition 6.

4. No isolated boundary node in overlap graph: m1,m2 as given in Definition 19.

Proof. Given the initial conflict ic, we show that it fulfills items 1. to 4.: Accord-
ing to Definition 11, ic is isomorphic to the initial transformation pair for ic.
This transformation pair can be constructed as in Lemma 20 and it is unique
due to Lemma 8. Hence, we follow this construction and deduce the properties ic
has to satisfy. The first step yields a critical pair which fulfills items 1. and 2. as
shown in e.g. [13]. After the maximal unfolding of this critical pair, items 1. and
2. are still fulfilled since unfolding does not add context (item 1.) and does not
unfold elements to be deleted (item 2.). In addition, items 3. and 4. are fulfilled.

Given the transformation pair ic fulfilling items 1. to 4., we show that ic
is an initial conflict. When constructing the initial transformation pair for ic
according to Lemma 20, a pair of isomorphic transformations to ic would be
constructed since items 1. and 2. lead to an isomorphic critical pair and items
3. and 4. ensure that no more unfoldings can be made. �
The theorem above shows in particular that each initial conflict is an essential
critical pair satisfying properties 1. to 3. Example 18 shows, however, that not
each essential critical pair is an initial conflict.

6 Initial Dependencies

To reason about initial dependencies for a rule pair (p1, p2), we consider the
dual concepts and results that we get when inverting the left transformation of

a conflicting pair. This means that we check if G
p−1
1 ,m′

1⇐= H1
p2,m2=⇒ H2 is paral-

lel dependent, which is equivalent to the sequence G
p1,m1=⇒ H1

p2,m2=⇒ H2 being
sequentially dependent. Rule p−1 is the inverse of rule p obtained by exchanging
morphisms l and r (Definition 1). This exchange is possible since a transforma-
tion is symmetrically defined by two pushouts. They ensure in particular that
morphisms m : L → G as well as m′ : R → H fulfill the gluing condition.

Initial transformation sequences and dependencies can then be defined anal-
ogously to Definitions 7 and 11. Initial dependencies show dependencies in such
a way that there is no other dependency that can be extended to it. In the cat-
egory GraphsTG this means that each initial dependency is characterized by a
jointly surjective pair of morphisms, consisting of the co-match of p1 and match

Initial Conflicts and Dependencies: Critical Pairs Revisited 121

of p2, which overlap in at least one graph element produced by p1 and used
by p2, the overlap consists of produced elements and boundary nodes only, and
none of these boundary nodes is isolated. Results presented for conflicts above
can be formulated and proven for dependencies in an analogous way.

7 Related Work and Conclusion

The critical pair analysis (CPA) has developed into the standard technique
for detecting potential conflicts and dependencies in graph transformation sys-
tems [3] and more generally, of M-adhesive systems [4,12]. We introduced the
notions of initial conflict and dependency as a new yardstick to present poten-
tial conflicts and dependencies in graph transformation systems in a minimal
way. These notions are defined in a purely category-theoretical way within the
framework of M-adhesive systems. While each initial conflict is a critical pair, it
turns out that this is not true vice versa. Actually, our running example shows
that, given a rule pair, the set of initial conflicts can be considerably smaller
than the set of critical pairs and even than the set of essential critical pairs. We
characterized initial conflicts in graph transformation systems as transformation
pairs with minimal context and maximal unfolding of preserved graph elements.

The CPA is offered by the graph transformation tools AGG [10] and Veri-
graph [11] and the graph-based model transformation tool Henshin [15]. All of
them provide the user with a set of (essential) critical pairs for each pair of
rules as analysis result at design time. Since initial conflicts turned out to be
a real subset of essential critical pairs, we intend to optimize the conflict and
dependency analysis (CDA) in AGG and Henshin by prioritizing the initial ones.
We also intend to investigate how far we can speed up this analysis by our new
results. It would be interesting to come up with some results on the amount of
reduction of critical pairs, maybe w.r.t. a particular characterization of the rules.

Novel conflict and dependency concepts at several granularity levels are pre-
sented in [16]. It is up to future work to investigate the relation of this work with
initial conflicts and dependencies. The CPA is not only available for plain rules
but also for rules with application conditions (ACs) [17]. Due to their definition
in a purely category-theoretical form, we are quite confident that the theory for
initial conflicts and dependencies can be extended to rules with ACs.

Acknowledgements. Many thanks to Leila Ribeiro and Jonas Santos Bezerra for
providing us with support to CPA of our running example in Verigraph [11].

This work was partially funded by the German Research Foundation, Priority Pro-
gram SPP 1593 “Design for Future – Managed Software Evolution”. This research was
partially supported by the research project Visual Privacy Management in User Cen-
tric Open Environments (supported by the EU’s Horizon 2020 programme, Proposal
number: 653642).

122 L. Lambers et al.

References

1. Huet, G.: Confluent reductions: abstract properties and applications to term rewrit-
ing systems: abstract properties and applications to term rewriting systems. J.
ACM (JACM) 27(4), 797–821 (1980)

2. Plump, D.: Critical pairs in term graph rewriting. In: Pŕıvara, I., Rovan, B.,
Ruzička, P. (eds.) MFCS 1994. LNCS, vol. 841, pp. 556–566. Springer, Heidelberg
(1994). https://doi.org/10.1007/3-540-58338-6 102

3. Heckel, R., Küster, J.M., Taentzer, G.: Confluence of typed attributed graph trans-
formation systems. In: Corradini, A., Ehrig, H., Kreowski, H.-J., Rozenberg, G.
(eds.) ICGT 2002. LNCS, vol. 2505, pp. 161–176. Springer, Heidelberg (2002).
https://doi.org/10.1007/3-540-45832-8 14

4. Ehrig, H., Habel, A., Padberg, J., Prange, U.: Adhesive high-level replacement
categories and systems. In: Ehrig, H., Engels, G., Parisi-Presicce, F., Rozenberg,
G. (eds.) ICGT 2004. LNCS, vol. 3256, pp. 144–160. Springer, Heidelberg (2004).
https://doi.org/10.1007/978-3-540-30203-2 12

5. Hausmann, J.H., Heckel, R., Taentzer, G.: Detection of conflicting functional
requirements in a use case-driven approach: a static analysis technique based on
graph transformation. In: 22rd International Conference on Software Engineering
(ICSE), pp. 105–115. ACM (2002)

6. Jayaraman, P., Whittle, J., Elkhodary, A.M., Gomaa, H.: Model composition in
product lines and feature interaction detection using critical pair analysis. In:
Engels, G., Opdyke, B., Schmidt, D.C., Weil, F. (eds.) MODELS 2007. LNCS,
vol. 4735, pp. 151–165. Springer, Heidelberg (2007). https://doi.org/10.1007/978-
3-540-75209-7 11

7. Baresi, L., Ehrig, K., Heckel, R.: Verification of model transformations: a case study
with BPEL. In: Montanari, U., Sannella, D., Bruni, R. (eds.) TGC 2006. LNCS,
vol. 4661, pp. 183–199. Springer, Heidelberg (2007). https://doi.org/10.1007/978-
3-540-75336-0 12

8. Lambers, L.: Certifying rule-based models using graph transformation. Ph.D thesis.
Berlin Institute of Technology (2010)

9. Lambers, L., Ehrig, H., Orejas, F.: Efficient conflict detection in graph transfor-
mation systems by essential critical pairs. Electr. Notes Theor. Comput. Sci. 211,
17–26 (2008)

10. Taentzer, G.: AGG: a graph transformation environment for modeling and valida-
tion of software. In: Pfaltz, J.L., Nagl, M., Böhlen, B. (eds.) AGTIVE 2003. LNCS,
vol. 3062, pp. 446–453. Springer, Heidelberg (2004). https://doi.org/10.1007/978-
3-540-25959-6 35

11. Verigraph: Verigraph. https://github.com/Verites/verigraph
12. Ehrig, H., Golas, U., Hermann, F.: Categorical frameworks for graph transforma-

tion and HLR systems based on the DPO approach. Bull. EATCS 102, 111–121
(2010)

13. Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic
Graph Transformation. Monographs in Theoretical Computer Science. Springer,
Heidelberg (2006)

14. Corradini, A., Montanari, U., Rossi, F., Ehrig, H., Heckel, R., Löwe, M.: Algebraic
approaches to graph transformation I: basic concepts and double pushout approach.
In: Rozenberg, G. (ed.) Handbook of Graph Grammars and Computing by Graph
Transformation, Volume 1: Foundations, pp. 163–245. World Scientific, Singapore
(1997)

https://doi.org/10.1007/3-540-58338-6_102
https://doi.org/10.1007/3-540-45832-8_14
https://doi.org/10.1007/978-3-540-30203-2_12
https://doi.org/10.1007/978-3-540-75209-7_11
https://doi.org/10.1007/978-3-540-75209-7_11
https://doi.org/10.1007/978-3-540-75336-0_12
https://doi.org/10.1007/978-3-540-75336-0_12
https://doi.org/10.1007/978-3-540-25959-6_35
https://doi.org/10.1007/978-3-540-25959-6_35
https://github.com/Verites/verigraph

Initial Conflicts and Dependencies: Critical Pairs Revisited 123

15. Arendt, T., Biermann, E., Jurack, S., Krause, C., Taentzer, G.: Henshin: advanced
concepts and tools for in-place EMF model transformations. In: Petriu, D.C.,
Rouquette, N., Haugen, Ø. (eds.) MODELS 2010. LNCS, vol. 6394, pp. 121–
135. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-16145-2 9.
http://www.eclipse.org/henshin/

16. Born, K., Lambers, L., Strüber, D., Taentzer, G.: Granularity of conflicts and
dependencies in graph transformation systems. In: de Lara, J., Plump, D. (eds.)
ICGT 2017. LNCS, vol. 10373, pp. 125–141. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-61470-0 8

17. Ehrig, H., Golas, U., Habel, A., Lambers, L., Orejas, F.: M-adhesive transforma-
tion systems with nested application conditions. Part 2: embedding, critical pairs
and local confluence. Fundam. Inform. 118(1–2), 35–63 (2012)

https://doi.org/10.1007/978-3-642-16145-2_9
http://www.eclipse.org/henshin/
https://doi.org/10.1007/978-3-319-61470-0_8
https://doi.org/10.1007/978-3-319-61470-0_8

	Initial Conflicts and Dependencies: Critical Pairs Revisited
	1 Introduction
	2 Motivating Example
	3 Preliminaries
	4 Initial Conflicts
	5 Initial Conflicts for Typed Graph Transformation
	6 Initial Dependencies
	7 Related Work and Conclusion
	References

