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Abstract. In this paper, we reconsider an old and simple notion of par-
allel graph transformation and point out various perspectives concerning
the parallel generation of graph languages, the parallelization of graph
algorithms, the parallel transformation of infinite graphs, and parallel
models of computation.

1 Introduction

In 1976, Hartmut Ehrig and the first author introduced an approach to parallel
graph transformation in [1]. Parallel computation is obtained by the application
of parallel rules which are composed of component rules by means of disjoint
union. This is a particular simple and intuitive operation on graphs (and the
graphs within graph transformation rules) because it places graphs – in our case
directed edge-labeled graphs – next to each other without overlap and extra con-
nections. The application of parallel rules has some significant properties. The
component rules can be applied in arbitrary order yielding the same result as a
given application of a parallel rule (sequentialization theorem). Conversely, if the
component rules can be applied and their applications are independent of each
other in a certain sense, then their parallel rule can also be applied (paralleliza-
tion theorem). Parallel graph transformation has been one of the major research
topics within the area of graph transformation in the last four decades. In Sect. 3,
we revisit the starting point by recalling the basic notions and results introduced
in 1976. In the rest of the paper, we point out how parallel graph transforma-
tion can be used in the context of some significant issues of parallelism: parallel
modes of language generation, parallelization of algorithm, infinite graph theory,
and transformation of other parallel models into graph transformation models.
In all cases, the sequentialization and parallelization theorems play an important
role. All explicit examples are new. The parallelization of algorithm and the use
of graph transformation in the theory of infinite graphs are novel attempts as
far as we know. In more detail, the aspects considered in the Sects. 4 to 7 are
the following.

In proper context, parallel generation may provide more generative power
than sequential generation. Consider, for example, Lindenmeyer systems with
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context-free rules applied with maximum parallelism. If one requires in addi-
tion that in each step one set of rules out of several possibilities is used, then
these TOL-systems can generate languages that are not context-free. In Sect. 4,
we consider hyperedge replacement grammars as a counterpart to context-free
grammars and show that they behave in the same way if they are used in the
TOL-mode of transformation.

Frequently and in many contexts, parallelism is expected to allow more effi-
cient computations than sequential ones. In Sect. 5, we demonstrate that this
idea works also in the framework of graph transformation by analyzing and
parallelizing a shortest-path algorithm.

In contrast to the usual approaches, our notion of parallel rules is not
restricted to a finite number of component rules. In Sect. 6, we discuss the effect
of the application of infinite parallel rules and exemplify that infinite graph
transformation may contribute to infinite graph theory.

Parallel graph transformation provides a suitable framework for the mod-
eling and analysis of parallel and concurrent processes. In particular, other
approaches to parallel processing can be transformed into and interpreted as
graph-transformational parallelism. This is demonstrated for the well-known cel-
lular automata in Sect. 7.

Related work is discussed in the respective sections.

2 Preliminaries

In this section, we recall some basic notions and notations of graphs and graph
transformation. In particular, we define the disjoint union of sets and graphs
and consider its elementary properties as prerequisites for the introduction of
parallel rules.

2.1 Disjoint Union of Sets

Let F = (Xi)i∈I be a family of sets for some index set I. Then a set X together
with injective mappings ini : Xi → X for all i ∈ I is a disjoint union of F if
ini(Xi) ∩ inj(Xj) = ∅ for all i �= j and

⋃

i∈I

ini(Xi) = X. X may be denoted

by
∑

i∈I

Xi. For I = {1, 2}, one may denote X also by X1 + X2. A disjoint union

can be constructed as
⋃

i∈I

({i} × Xi) with ini : Xi → ⋃

i∈I

({i} × Xi) defined by

ini(x) = (i, x) for all i ∈ I and x ∈ Xi.
A disjoint union X with (ini)i∈I of F = (Xi)i∈I has the following (universal)

property: If Y is a set and (fi : Xi → Y )i∈I is a family of mappings, then there
is a unique mapping f : X → Y with f ◦ ini = fi for all i ∈ I. It is defined
by f(x) = fi(x) for the unique x ∈ Xi with ini(x) = x. It may be denoted by
〈fi〉i∈I . The property means that a disjoint union of F is a categorial coproduct
in the category of sets. Using the property, one can easily show that Y with
(fi)i∈I is a disjoint union of F if and only if 〈fi〉i∈I is bijective. Given a set Y
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and a bijection f : X → Y , then Y with the injections (f ◦ ini)i∈I is a disjoint
union of F provided that X with (ini)i∈I is one. In other words, the construction
of disjoint unions of sets is unique up to bijection.

We use two further nice properties of disjoint unions. The first property is
a (de-)composition property:

∑

i∈I

Xi =
∑

i∈I′
Xi +

∑

i∈I\I′
Xi for I ′ ⊆ I. This means

in particular that the +-operator is commutative and associative. The second
property is that inclusions are preserved. Let F = (Xi)i∈I and F ′ = (Yi)i∈I be
two families of sets and Y with (inY

i )i∈I a disjoint union of F ′. Let (gi : Xi →
Yi)i∈I be a family of mappings. Then 〈inY

i ◦ gi〉i∈I is also denoted by
∑

i∈I

gi. It

is injective if all gi are injective. It can be chosen as inclusion of
∑

i∈I

Xi into

Y =
∑

i∈I

Yi if the gi are inclusions, i.e. Xi ⊆ Yi for all i ∈ I.

2.2 Basic Notions of Graphs

Let Σ be a set of labels. A (directed edge-labeled) graph over Σ is a system
G = (V,E, s, t, l) where V is a set of nodes, E is a set of edges, s, t : E → V
are mappings assigning a source s(e) and a target t(e) to every edge in E, and
l : E → Σ is a mapping assigning a label to every edge in E. An edge e with
s(e) = t(e) is also called a loop. The components V , E, s, t, and l of G are also
denoted by VG, EG, sG, tG, and lG, respectively. The set of all graphs over Σ is
denoted by GΣ .

This notion of graphs is flexible enough to cover other types of graphs. Simple
graphs form a subclass consisting of those graphs two edges of which are equal
if their sources and their targets are equal respectively. A label of a loop can be
interpreted as a label of the node to which the loop is attached so that node-
labeled graphs are covered. We assume a particular label ∗ which is omitted in
drawings of graphs. In this way, graphs where all edges are labeled with ∗ may
be seen as unlabeled graphs. Moreover, undirected graphs can be represented
by directed graphs if one replaces each undirected edge by two directed edges
attached to the same two nodes, but in opposite directions. Finally, hypergraphs
can be handled by the introduced type of graphs as done explicitly in Sect. 4.

A graph G ∈ GΣ is a subgraph of a graph H ∈ GΣ , denoted by G ⊆ H, if
VG ⊆ VH , EG ⊆ EH , sG(e) = sH(e), tG(e) = tH(e), and lG(e) = lH(e) for all
e ∈ EG. In drawings of graphs and subgraphs, shapes, colors, and names are
used to indicate the identical nodes and edges.

Given a graph, a subgraph is obtained by removing some nodes and edges
subject to the condition that the removal of a node is accompanied by the removal
of all its incident edges. More formally, let G = (V,E, s, t, l) be a graph and
X = (VX , EX) ⊆ (V,E) be a pair of sets of nodes and edges. Then G \ X =
(V \ VX , E \ EX , s′, t′, l′) with s′(e) = s(e), t′(e) = t(e), and l′(e) = l(e) for
all e ∈ E \ EX is a subgraph of G if and only if there is no e ∈ E \ EX with
s(e) ∈ VX or t(e) ∈ VX . This condition is called dangling condition of X in G.

For graphs G,H ∈ GΣ a graph morphism g : G → H is a pair of map-
pings gV : VG → VH and gE : EG → EH that are structure-preserving, i.e.
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gV (sG(e)) = sH(gE(e)), gV (tG(e)) = tH(gE(e)), and lH(gE(e)) = lG(e) for all
e ∈ EG. We may write g(v) and g(e) for nodes v ∈ VG and edges e ∈ EG since
the indices V and E can be reconstructed easily from the type of the argument.
If gV and gE of a graph morphism g : G → H are bijective, then g is called a
graph isomorphism. In this case G and H are isomorphic, denoted by G � H.

For a graph morphism g : G → H, the image of G in H is called a match
of G in H, i.e. the match of G with respect to the morphism g is the subgraph
g(G) ⊆ H which is induced by (g(V ), g(E)).

Given F ⊆ G, then the two inclusions of the sets of nodes and edges define
a graph morphism. It is also easy to see that the (componentwise) sequential
composition of two graph morphisms f : F → G and g : G → H yields a graph
morphism g ◦ f : F → H. Consequently, if f is the inclusion w.r.t. F ⊆ G, then
g(F ) is the match of F in H w.r.t. g restricted to F .

Instead of removing nodes and edges, one may add some nodes and edges to
extend a graph such that the given graph is a subgraph of the extension. The
addition of nodes causes no problem at all, whereas the addition of edges requires
the specification of their labels, sources, and targets, where the latter two may be
given or new nodes. Let G1 = (V1, E1, s1, t1, l1) be a graph and (V2, E2, s2, t2, l2)
be a structure consisting of two sets V2 and E2 and three mappings s2 : E2 → V1+
V2, t2 : E2 → V1+V2, and l2 : E2 → Σ. Then H = G1+(V2, E2, s2, t2, l2) = (V1+
V2, E1 + E2, 〈ŝ1, s2〉, 〈t̂1, t2〉, 〈l1, l2〉) is a graph with G1 ⊆ H where ŝ1, t̂1 : E1 →
V1 + V2 with ŝ1(e) = s1(e), t̂1(e) = t1(e) for all e ∈ E1.

Let G = (Gi)i∈I be a family of graphs. Then the disjoint union of G is
defined by

∑

i∈I

Gi = (
∑

i∈I

VGi
,
∑

i∈I

EGi
,
∑

i∈I

sGi
,
∑

i∈I

tGi
, 〈lGi

〉i∈I). The construction

has all the properties summarized in Sect. 2.1 for the disjoint union of sets if one
replaces the term set by graph (with the exception of the index set), subset by
subgraph and mapping by graph morphism.

2.3 Rule-Based Graph Transformation

Formally, a rule r = (L ⊇ K ⊆ R) consists of three graphs L,K,R ∈ GΣ such
that K is a subgraph of L and R. The components L, K, and R of r are called
left-hand side, gluing graph, and right-hand side, respectively.

The application of a graph transformation rule to a graph G consists of
replacing a match of the left-hand side in G by the right-hand side such that the
match of the gluing graph is kept. Hence, the application of r = (L ⊇ K ⊆ R)
to a graph G = (V,E, s, t, l) comprises the following three steps.

First, a graph morphism g : L → G called matching morphism is chosen
to establish a match of L in G subject to the gluing condition consisting of two
parts: (a) the dangling condition of g(L)\g(K) = (g(VL)\g(VK), g(EL)\g(EK))
in G; and (b) the identification condition requesting that two nodes or edges of
L must be in K if they are identified in the match of L.

Second, the match of L up to g(K) is removed from G, resulting is the
intermediate graph Z = G \ (g(L) \ g(K)).
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Third, the right-hand side R is added to Z by gluing Z with R in g(K)
yielding the graph H = Z + (R \ K, g) where (R \ K, g) = (VR \ VK , ER \
EK , s′, t′, l′) with s′(e′) = sR(e′) if sR(e′) ∈ VR \ VK and s′(e′) = g(sR(e′))
otherwise, t′(e′) = tR(e′) if tR(e′) ∈ VR \ VK and t′(e′) = g(tR(e′)) otherwise,
and l′(e′) = lR(e′) for all e′ ∈ ER \ EK .

The extension of Z to H is properly defined because s′ and t′ map the edges
of ER \ EK into nodes of VR \ VK or g(VK) which is part of VZ . As the disjoint
union is only unique up to isomorphism, the resulting graph is only unique up to
isomorphism. Due to the construction, g can be restricted to d : K → Z, and d
can be extended to a right matching morphism h : R → H by the identity on
R \ K.

Hence a rule application of r can be depicted by the following diagram.

L ⊇ K ⊆ R

G ⊇ Z ⊆ H

g d h

It is worth noting that both squares of the diagram are pushouts in the cate-
gory of graphs if the subgraph relations in the diagram are interpreted as inclu-
sion morphisms. Therefore, an equivalent definition based on double pushouts
in category theory can be found in, e.g., [2]. Here the identification condition
is significant because the left diagram is not a pushout if g does not obey the
identification condition.

The application of a rule r to a graph G is denoted by G=⇒
r

H. A rule
application is called a direct derivation, and an iteration of direct derivations
G � G0 =⇒

r1
G1 =⇒

r2
· · · =⇒

rn

Gn � H (n ∈ N) is called a derivation from G to H.

As usual, the derivation from G to H can also be denoted by G
n=⇒
P

H where

{r1, . . . , rn} ⊆ P , or by G
∗=⇒
P

H if the number of direct derivations is not of

interest. The subscript P may be omitted.
As the disjoint union is only uniquely defined up to isomorphism, derived

graphs are also only uniquely constructed up to isomorphism. But without loss
of generality, one can assume that nodes and edges, which are not removed, keep
their identity. We make use of this fact in all our explicit examples.

A graph class expression may be any syntactic entity X that specifies a class
of graphs SEM (X) ⊆ GΣ like expressions or formula. A control condition may
be any syntactic entity that restricts the derivation process. Explicit examples
are introduced where they are needed.

A graph transformation unit is a system gtu = (I, P, C, T ) where I and T
are graph class expressions to specify the initial and the terminal graphs respec-
tively, P is a set of rules, and C is a control condition. Such a transformation
unit specifies a binary relation SEM (gtu) ⊆ GΣ ×GΣ that contains a pair (G,H)
if and only if (G,H) ∈ SEM (I) × SEM (T ) and there is a derivation G

∗=⇒
P

H

permitted by C.
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=⇒
sum

=⇒
sum

=⇒
sum

=⇒
min

r1 r2

Fig. 1. A derivation based on the shortest paths(max) graph transformation unit

Example 1. For some max ∈ N, consider all rules of the form:

sum: x y ⊇ x y ⊆ x y

x + y
for all x, y ∈ N with x+y ≤ max, and

min:
x
y ⊇ x ⊆ x for all x, y ∈ N with x ≤ y ≤ max.

Given a graph with labels in N, the application of a sum-rule adds an edge
bridging a path of length 2 and summing up the labels of the path. A min-rule is
applicable to each two parallel edges, keeping the edge with the smaller label or
one of the two if the labels are equal. A sample derivation can be seen in Fig. 1.
(The derivation applying r1 and r2 is explained in Sect. 3.1.) If the two edges
of the left-hand side match a single edge, then the identification condition is
not satisfied. The dangling condition is always satisfied because nodes are never
removed. But if one modifies the sum–rule in such a way that the middle node
and the edges of the gluing graph are omitted, then the dangling condition is
not satisfied whenever the middle node is attached to more than two edges.

The sum–rule can be applied to each path of length 2 arbitrarily often. This
can be avoided if one requires that there is no bridging edge with a label z ≤ x+y
in the accessed graph. Such a negative context condition is an example of a con-
trol condition. The rules together with this control condition specify a graph
transformation unit if one chooses proper initial and terminal graphs in addi-
tion. The constant expressions loop-free, strictly-simple and max-labeled denote
the classes of graphs without loops; with at most one edge between every two
nodes; and with labels in N whose sum does not exceed max, respectively. Com-
bined by &, one gets the intersection of the three classes. Then the expression
0-looped(max-labeled & strictly-simple & loop-free) defines the graphs in the
intersection with a 0-loop at each node in addition. Starting with these graphs
as initial graphs and applying the rules according to the control condition as long
as possible, results in graphs where each edge between nodes v and v′ is labeled
with the shortest distance between v and v′ in the respective initial graph, i.e.
the minimum label sum of all paths from v to v′. The terminal graphs can be
specified by the expressions {sum,min}-reduced . In summary, it is justified to
call the unit shortest paths(max). It is schematically given in Fig. 2. The com-
ponents of the unit are preceded with respective keywords, the negative context
condition of the sum-rule is denoted by the dashed edge.

The example is further discussed in Sect. 5.
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shortest paths(max)
initial: 0-looped(max-labeled & strictly-simple & loop-free)
rules: sum,min

control: x y

z
with z ≤ x+ y wrt sum

terminal: {sum,min}-reduced

Fig. 2. The graph transformation unit shortest paths(max)

3 Parallel Graph Transformation

In this section, we recall the notion of parallel graph transformation and its
fundamental properties of sequentialization and parallelization as introduced
in [1] only slightly modified. Our rules consist of two inclusions each while a rule
in [1] consists of an injective graph morphism from the gluing graph to the left-
hand side graph and an arbitrary graph morphism from the gluing graph into
the right-hand side graph. Moreover, the parralel rule in [1] is a disjoint union
of two rules while we consider parallel rules composed of an arbitrary family of
component rules.

Definition 1. Let F = (ri)i∈I = (Li ⊇ Ki ⊆ Ri)i∈I be a family of rules. Then
the parallel rule of F is defined by r(F ) =

∑

i∈I

ri = (
∑

i∈I

Li ⊇ ∑

i∈I

Ki ⊆ ∑

i∈I

Ri).

Due to the properties of disjoint unions, the parallel rule is an ordinary rule
so that parallel derivations are just derivations applying parallel rules.

3.1 Sequentialization and Parallelization Theorems

Let G =⇒
r1+r2

X be a direct parallel derivation, let g : L1 + L2 → G be the corre-

sponding matching morphism, and let in1 : L1 → L1 + L2 be the inclusion of
L1 into L1 + L2. Then g1 = g ◦ in1 defines a matching morphism of L1 into G.
It is easy to see that g1 satisfies the gluing condition using the satisfaction of
the gluing condition of g. This yields a direct derivation G=⇒

r1
H1. Let Z1 be

its intermediate graph. Then the identification condition satisfied by g yields
g(L2) ⊆ Z1. This allows one to define a matching morphism g′

2 of L2 into H1

by g′
2(x) = g(x) for all x of L2. Using again the gluing condition satisfied by

g, it turns out that g′
2 satisfies the gluing condition and yields a direct deriva-

tion H1 =⇒
r2

X1. Finally, one can show by the construction of direct derivations

and some basic properties of union and difference of sets that X and X1 are
isomorphic. Altogether, the reasoning yields the following result.

Theorem 1 (Sequentialization of parallel derivations). Let r1, r2 be rules
and G =⇒

r1+r2
X be a direct derivation. Then there is a derivation G=⇒

r1
H1 =⇒

r2
X.
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The resulting derivation is called the sequentialization of G =⇒
r1+r2

X. We also

get G=⇒
r2

H2 =⇒
r1

X as r1 + r2 = r2 + r1. The identification condition satisfied

by the given matching morphism g : L1 + L2 → G implies for the two match-
ing morphims g1 and g2 which restrict g to the components L1 and L2 that
g1(L1) ∩ g2(L2) ⊆ g1(K1) ∩ g2(K2), i.e. the two matches may overlap, but only
in common gluing elements. A further analysis yields for the right matching
morphism h1 : R1 → H1 of G=⇒

r1
H1 and the matching morphism g′

2 : L2 → H1

constructed above: h1(R1) ∩ g′
2(L2) ⊆ h1(K1) ∩ g′

2(K2). The two properties are
called parallel and sequential independence respectively. Independence refers to
the fact that the application of one of the two rules does not prevent or influence
the application of the other one. Nicely enough, independence is sufficient for
parallelization.

Definition 2. Let ri = (Li ⊇ Ki ⊆ Ri) for i = 1, 2 be rules.

1. Two direct derivations G=⇒
ri

Hi with the matching morphism gi : Li → G

respectively are parallel independent if g1(L1) ∩ g2(L2) ⊆ g1(K1) ∩ g2(K2).
2. Successive direct derivations G=⇒

r1
H1 =⇒

r2
X with the right matching mor-

phism h1 : R1 → H1 and the (left) matching morphism g′
2 : L2 → H1 are

sequentially independent if h1(R1) ∩ g′
2(L2) ⊆ h1(K1) ∩ g′

2(K2).

Theorem 2 (Parallelization of independent direct derivations). Let ri =
(Li ⊇ Ki ⊆ Ri) for i = 1, 2 be rules.

1. Let G=⇒
ri

Hi for i = 1, 2 be parallel independent direct derivations with

matching morphisms gi : Li → G. Then there is a direct parallel derivation
G =⇒

r1+r2
X for some X ∈ GΣ with matching morphism 〈g1, g2〉 : L1 + L2 → G.

2. Let G=⇒
r1

H1 =⇒
r2

X be sequentially independent direct derivations. Then there

is a parallel derivation G =⇒
r1+r2

X.

The first direct derivations of the two possible sequentializations of the con-
structed direct parallel derivation in Point 1 coincide with the given direct deriva-
tions.

Let g1 : L1 → G and g′
2 : L2 → H1 be the matching morphisms of the given

direct derivation in Point 2. Then the sequential independence and the construc-
tion of direct derivations yield g′

2(L2) ⊆ G. This allows to define a matching
morphism g2 : L2 → G. Then the direct derivation G =⇒

r1+r2
X is given by the

matching morphims 〈g1, g2〉 : L1 + L2 → G. G =⇒
r1+r2

X is called parallelization of

G=⇒
r1

H1 =⇒
r2

X.

Example 2. Look at the derivation in Fig. 1. The first two steps are sequentially
independent as the second step does not match the edge generated by the first
step. Moreover, the last two steps are also sequentially independent so that the
two possible parallelizations yield the derivation applying r1 = sum + sum and
r2 = min + sum in Fig. 1.
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The sequentialization and parallelization theorems involve the following
derivations from G to X where the two direct derivations G=⇒

r1
H1 and

G=⇒
r2

H2 are parallel independent and both derivations G=⇒
r1

H1 =⇒
r2

X and

G=⇒
r2

H2 =⇒
r1

X are sequentially independent.

G X
r1 + r2

H1

r1 r2

H2

r2 r1

The whole diagram is obtained (a) from the direct parallel derivation G =⇒
r1+r2

X,

(b) from the two parallel independent direct derivations G=⇒
r1

H1 and G=⇒
r2

H2,

or (c) from each of the sequentially independent derivations from G to X.
As pointed out in, e.g., [3], the diagram reflects the concurrency of two events:

One may happen after the other or the other way round or both may happen
simultaneously. All three ways to move from G to X are equally possible. There
is neither a causal dependence nor any mutual influence.

The results are particularly significant with respect to the construction of
matching morphisms which is the most time-consuming part of a rule appli-
cation. Whether a graph morphism from L to G exists, is a well-known NP-
complete problem if L and G are finite input graphs of arbitrary size. Hence,
all known algorithms that find graph morphisms for finite, but arbitrary large L
and G are exponential. In contrast to that, the search for matching morphisms
becomes polynomial in the size of G if L is fixed or the size of L is bounded by a
constant. This is the case if one assumes finite sets of finite rules. The number of
mappings from a set with k elements to a set with n elements is nk so that one
can check all possible matchings in polynomial time even in an exhaustive search.
This applies in particular to the case of finite sets of finite rules. But it does not
apply to parallel rules because their left-hand sides may become arbitrary large
so that one would have to face the problem of NP-completeness without fur-
ther knowledge. Fortunately, we know that the matching morphism of a parallel
rule is composed of matching morphisms of the atomic component rules so that
matching morphism for parallel rules can be found in polynomial time if the
number of components is polynomial or the components can be processed in
parallel.

3.2 Shifts and Canonical Derivations

The three derivations from G to X in the diagram above may be considered as
equivalent from a concurrency point of view. Further, this view can be extended
to arbitrary derivations so that the equivalence classes represent concurrent pro-
cesses. But the equivalence classes may be exponentially large. In order to give
an efficient representation a shift operation can be defined as a certain combina-
tion of sequentialization and parallelization such that shifting as long as possible
yields unique canonical representatives.
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Let s = G0
∗=⇒Gi =⇒

r1+r2
Gi+2

∗=⇒Gn and s′ = G0
∗=⇒Gi =⇒

r1
Gi+1 =⇒

r2
Gi+2

∗=⇒Gn be two derivations where Gi =⇒
r1

Gi+1 =⇒
r2

Gi+2 is a sequentialization of

Gi =⇒
r1+r2

Gi+2. Then s is seq-related to s′ denoted by s →
seq

s′. The equivalence

closure is denoted by ∼.
Let us restrict the consideration to parallel derivations where only parallel

rules with a finite number of component rules are applied. Then the equivalence
classes are always finite, but they may have an exponential number of elements.
Let s, s′ and s′′ be three derivations with s →

seq
s′ and s′′ →

seq
s′ of the form

G0 Gi−1 Gi Gi+1 Gi+2 Gnr1 r2 r3

∗ ∗r1 + r2

r2 + r3

where s is the derivation with r1 + r2, s′′ is the derivation with r2 + r3, and s′ is
the derivation in the middle. Then s′′ is shift-related to s, denoted by s′′ →

shift
s.

Moreover, if only s and s′ are given with s →
seq

s′, then s′ is also shift-related to s,

denoted by s′ →
shift

s. A rule applied in step i + 1 can only be shifted if its direct

derivation is sequentially independent of the preceding direct derivation, and it
can be shifted i times at most. Therefore, shift-sequences are never longer than
n(n − 1)/2 if n is the number of applications of atomic rules. In particular, one
gets always shift-reduced derivations if one shifts as long as possible. These shift-
reduced derivations are called canonical because they are unique representatives
of their equivalence classes.

Theorem 3. Let s and s′ be two canonical derivations with s ∼ s′, then s = s′.

The proof is based on the fact, that the shift-relation is locally Church-Rosser:
Given s →

shift
s′ and s →

shift
s′′, then there is s with s′ ∗→

shift
s and s

∗→
shift

s.

Example 3. The derivation applying r1 and r2 in Fig. 1 is canonical.

3.3 Related Work

In [1] and in the present paper, the proofs of the stated results are only roughly
sketched. The full proofs can be found in [2,4]. In the last 40 years, the topic of
parallel graph transformation has been further studied by many researchers in
various respects modifying and generalizing the approach. As it is impossible to
refer to all related publications – there are too many – the reader may consult
Volume 3 of the Handbook of Graph Grammars and Computing by Graph Trans-
formation [5] and the two monographs [6,7] where much of the work is systemati-
cally presented in the context of the double-pushout approach, and the important
references are given in the introductions of the books and of the respective chap-
ters. This covers nicely typed attributed graphs, high-level replacement systems
in adhesive categories as well as concurrent and amalgamated rules. Concerning
the single- and the sesqui-pushout approaches, the reader is referred to [8,9].
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(a) Hyperedge
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2
v2

A
k(A) vk(A)

(b) Its graph representation

Fig. 3. The graph representation of a hyperedge

4 Parallelism of Hyperedge Replacement

Hyperedge replacement (see, e.g., [10–13]) is a kind of context-free hyper-
graph transformation. Hyperedges of hypergraphs may be incident to arbitrary
sequences of nodes rather than to two nodes as ordinary edges. But there is
a straightforward way to formulate hyperedge replacement within the graph
setting introduced in Sect. 2 (cf. [14]). With respect to parallelism, hyperedge
replacement is of interest in at least two ways.

First, the context-freeness lemma provides a decomposition of derivations
into a set of fibers that corresponds to the decomposition of a direct parallel
derivation into direct derivations applying the rule components.

Second, due to the sequentialization theorem, sequential and parallel hyper-
edge replacement have the same generative power. But if one applies hyperedge
replacement rules in the mode of TOL-systems, then one can get quite different
languages.

4.1 Hyperedge Replacement and Its Context-Freeness Lemma

We assume some subset N ⊆ Σ of nonterminals which are typed, i.e. there is
an integer k(A) ∈ N for each A ∈ N . Moreover, we assume that Σ contains
the numbers 1, . . . ,max for some max ∈ N with k(A) ≤ max for all A ∈ N . A
hyperedge with label A ∈ N is meant to be an atomic item which is attached to a
sequence of nodes v1 · · · vk(A). It can be represented by a node with an A-labeled
loop and k(A) edges the labels of which are 1, . . . , k(A), respectively, and the
targets of which are v1, . . . , vk(A), respectively, as depicted in Fig. 3. Accordingly,
we call such a node with its incident edges an A-hyperedge. A graph is said to
be N -proper if each occurring nonterminal and each occuring number between 1
and max belong to some hyperedge. Each A ∈ N induces a particular N -proper
graph A• with the nodes {0, . . . , k(A)} and a single hyperedge where the A-loop
is attached to 0 and i is the target of the edge labeled with i for i = 1, . . . , k(A).
Let [k(A)] denote the discrete graph with the nodes {1, . . . , k(A)}. Using these
notations, a rule of the form A• ⊇ [k(A)] ⊆ R for some N -proper graph R
is a hyperedge replacement rule, which can be denoted by A ::= R for short. A
hyperedge replacement grammar is a system HRG = (N,T, P, S) with S ∈ N ,
T ⊆ Σ with T ∩ N = ∅, and a set of hyperedge replacement rules P with finite
right-hand sides. Its generated language contains all terminal graphs that are
derivable from S•, i.e. L(HRG) = {H ∈ GT | S• ∗=⇒

P
H}.
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In this way, hyperedge replacement is just a special case of graph transfor-
mation, but with some very nice properties.

1. Let r = (A ::= R) be a hyperedge replacement rule and G an N -proper graph
with an A-hyperedge y. Then there is a unique graph morphism g : A• → G
mapping A• to the A-hyperedge y such that the gluing condition is satisfied
and therefore r is applicable to G.

2. The directly derived graph H is N -proper and is obtained by removing y, i.e.
by removing the node with the A-loop and all other incident edges, and by
adding R up to the nodes 1, . . . , k(A) where edges of R incident to 1, . . . , k(A)
are redirected to g(1), . . . , g(k(A)), respectively. Due to this construction, H
may be denoted by G[y/R].

3. Two direct derivations G=⇒
r1

H1 and G=⇒
r2

H2 are parallel independent if and

only if they replace distinct hyperedges.
4. A parallel rule r =

∑

i∈I

ri of hyperedge replacement rules ri = (Ai ::= Ri) for

i ∈ I is applicable to G if and only if there are pairwise distinct Ai-hyperedges
yi for all i ∈ I. In analogy to the application of a single rule, the resulting
graph may be denoted by G[yi/Ri | i ∈ I].

5. If I = I1 + I2, then G[yi/Ri | i ∈ I] = (G[yi/Ri | i ∈ I1])[yi/Ri | i ∈ I2].
6. Two successive direct derivations G=⇒

r1
G1 =⇒

r2
H are sequentially indepen-

dent if and only if the hyperedge replaced by the second step is not created
by the first one.

Altogether, the direct derivations through hyperedge replacement rules can
be ordered arbitrarily as long as they deal with different hyperedges. This obser-
vation leads to the following result.

Theorem 4 (Context-Freeness Lemma). Let HRG = (N,T, P, S) be a
hyperedge replacement grammar and let A• n+1=⇒

P
H be a derivation. Then there

are some rule A ::= R and a derivation A(y)• n(y)
=⇒

P
H(y) for each hyperedge y of

R with label A(y) such that H = R[y/H(y) | y ∈ YR] and
∑

y∈YR

n(y) = n, where

YR is the set of hyperedges of R.

A derivation A• n+1=⇒H has A• =⇒R as the first step. The tail R
n=⇒H can

be decomposed into fibers A(y)• ni=⇒H(y) for y ∈ YR. The fibres induce rules
A(y) ::= H(y) for y ∈ YR. They can be applied to R in parallel yielding R =⇒H.
In this way, hyperedge replacement allows to generalize the sequentialization and
parallelization of direct derivations to derivations.

4.2 Maximum Parallel Hyperedge Replacement

Given a hyperedge replacement grammar HRG = (N,T, P, S) and H ∈ L(HRG).
Then there is a derivation S• ∗=⇒H which can be transformed into a canonical
derivation. As the replacements of two hyperedges are parallel independent and
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as H is terminal, each direct derivation of the canonical derivation replaces
all hyperedges in parallel. This means that canonical derivations are maximum
parallel normal forms to generate L(HRG), but maximum parallelism does not
extend or vary the generative power.

This changes if the set of rules is partitioned into subsets P1, . . . , Pk for some
k ≥ 1 and each direct derivation takes one of them and applies the rules with
maximum parallelism, i.e. in the style of TOL- and ETOL-systems (see, e.g.,
Chap. 5 in [15]). The TOL-mode of hyperedge replacement is a further example
of a control condition. It allows to generate all languages that are generated by
ordinary hyperedge replacement grammars because one can choose P1 = P . But
it also increases the generative power which is proved by a separating example.

Example 4. Consider the hyperedge replacement grammar KOCHTREE =
({S}, {∗}, P, S) where S has type 5 and P contains two rules:

branch : S ::=

3

4

2

1

S S
52 3

4

5
1

3
1

5
4

2

terminate : S ::=

3

4

2

1

5

If one decomposes P into {branch} and {terminate} and applies one or the
other with maximum parallelism, one gets very regular finite approximations
of the Koch tree (depicted in Fig. 4a). If one applies the rules arbitrarily, then
one can also get asymmetric trees (like the one depicted in Fig. 4b). As long as
the rule branch is used, the number of hyperedges doubles and each hyperedge
replacement produces 4 (undirected) edges such that the language of regular
Koch trees grows exponentially. On the other hand, it is a well-known fact that
the languages generated by ordinary hyperedge replacement grammars have a
sublinear growth so that they cannot generate regular Koch trees. Altogether,
this shows that hyperedge replacement grammars with a TOL-mode of transfor-
mation are more powerful than without.

(a) Regular Koch trees (b) Asymmetric Koch tree

Fig. 4. Approximations of the Koch tree

4.3 Related Work

While hyperedge replacement is a well-studied area of graph transformation, we
are not aware of much work on parallel generation of graph languages. But we
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would like to mention that we introduced recently fusion grammars in [16] that
display quite strong parallelization properties and extend the generative power
of hyperedge replacement grammars.

5 Parallelization of Graph Algorithms

A major promise of parallelism is that parallel computation can be faster than
sequential computation. Consider, for example, a totally balanced binary tree of
height n. It has 2n leaves, and therefore, a full traversal needs at least this many
steps whereas traversing the tree from the root to the leaves with maximum
parallelism takes n steps. So it seems worthwhile to look into graph transfor-
mation whether the use of parallel derivations can produce similar effects. To
demonstrate the potential of this line of research, we look into the well-known
search for shortest paths.

5.1 The Case of Shortest Paths

Most shortest-path algorithms like the prominent ones by Floyd/Warshall [17,18]
and by Dijkstra [19] are based on two elementary operations: the sequential com-
position of paths summing up the distances and keeping the path with minimum
distance out of some parallel paths (i.e. paths with the same source and target
nodes). The algorithms differ from each other by the order in which the two
basic operations are applied.

Let us reconsider the graph transformation unit shortest paths(max) in
Example 1. To make sure that the unit computes shortest distances, the fol-
lowing correctness properties can be proved. The distance of a path p in a graph
G is the sum of the distances of the edges on p and is denoted by distG(p).

Proposition 1 (Correctness). Let G
∗=⇒H be a derivation where G is initial

and H is terminal. Then the following hold:

1. For every shortest path p from v to v′ in G, there is some e ∈ EH with
sH(e) = v, tH(e) = v′, and lH(e) = distG(p).

2. For every e ∈ EH , there is a shortest path p from sH(e) to tH(e) in G with
lH(e) = distG(p).

The first statement can be proved by induction on the length of shortest
paths, the second one by induction on the length of derivations. The details are
omitted for reasons of space limitations.

Now we consider the parallelization of the algorithm. The graph transforma-
tion unit shortest paths in parallel(max) extends the unit shortest paths(max)
by the control condition

(sum[double−free maxpar];min[largest maxpar])∗.

It requires that, repeatedly, the sum-rule is applied with double-free maximum
parallelism followed by the largest maximum parallel application of the min-rule.
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In a double-free parallel rule application of sum, no two matches of left-hand
sides may overlap entirely. A largest parallel rule application of min must involve
as many min-rules as possible.

As the left-hand side of the sum-rule coincides with the gluing graph, each
two applications of sum are parallel independent. Therefore, there are at most
n ·(n−1) ·(n−2) double-free applications of sum where n is the number of nodes
in the initial graph. The following largest maximum parallel min-step makes
sure that no two parallel edges are left. More precisely, two min-applications
are parallel independent if they match four different edges or intersect in the
edge that is kept. Therefore, whenever there are m parallel edges between two
nodes, the largest parallel step removes m − 1 of them, and this happens if all
applications of min choose the same edge to be kept.

That the unit computes the shortest distances between each two nodes can
be seen as follows. The initial and terminal graphs are the same as in the unit
shortest paths(max) above. A parallel derivation from an initial to a termi-
nal graph can be sequentialized due to the sequentialization theorem. In this
sequential derivation, a sum-application may occur that does not obey the neg-
ative application condition. But then there is already an edge as good as or
better than the edge generated by sum. Hence, this step as well as the min-step
that removes this superfluous edge later on can be omitted without changing
the result. If the sequential derivation is modified in this way as long as pos-
sible, then we end up with a derivation from an initial to a terminal graph in
shortest paths(max). Hence the correctness of shortest paths in parallel(max)
follows from the correctness of shortest paths(max).

A closer look reveals that the edges after k rounds of a parallel sum-step
followed by a parallel min-step represent the shortest paths of the initial graph
of lengths up to 2k. This implies that after a logarithmic number of parallel steps
the terminal graph is reached.

Proposition 2 (Correctness and derivation length). Let G
2k=⇒H be a

derivation in shortest paths in parallel(max) from an initial graph to a terminal
graph with alternating parallel sum- and min-steps according to the control
condition. Then Points 1 and 2 of Proposition 1 hold as well, and the length of
the derivation has a logarithmic bound, i.e., 2k ≤ n − 1 where n is the number
of nodes in G.

In a similar way, well-known shortest paths algorithms can be parallelized.
For example, the parallelization of Mahr’s algorithm [20] (which originally is of
the order n3 · log n) yields a logarithmic number of parallel steps and the paral-
lelization of the Floyd/Warshall algorithm (which originally is a cubic algorithm)
yields a linear number of parallel steps. But it should be noted that the short
parallel derivations do not improve the complexity automatically, but only if the
matching of the parallel rules can be found in a time bound that is – multiplied
by the logarithmic length of the derivations – still smaller than the complexity
of the corresponding sequential algorithms.
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5.2 Related Work

There is not much work on parallel and distributed algorithms employing graph
transformation. A noteworthy exception is the modeling of distributed algo-
rithms by means of graph relabelling (see, e.g., [21]). Moreover, we would like
to mention graph-multiset transformation (see [22]) that can be interpreted as
a special case of the parallel graph transformation of Sect. 3 and allows to solve
NP-complete graph problems by parallel computations of polynomial lengths.
On the other hand, there is a realm of literature on parallel graph algorithm
and very much interest in this topic so that the area seems to invite further and
deeper studies by means of graph transformation.

6 Infinity

The definition of parallel graph transformation in Sect. 3 includes the case of
parallel rules of an infinite family of component rules. In this section, we indicate
that such infinite parallel rules may have some potential in the context of infinite
graph theory (see, e.g., [23]) but only if one applies them to infinite graphs.

6.1 Application to Finite Graphs

Let F = (ri)i∈I = (Li ⊇ Ki ⊆ Ri)i∈I be a family of rules for an infinite index
set I. Let G be a finite graph and G =⇒

r(F )
H be an application of the parallel

rule of F to G with the matching morphism g = 〈gi〉i∈I :
∑

i∈I

Li → G. Then the

definition of rule application reveals the following facts:

1. Let I ′ = {i ∈ I | Ki �= Li} be the set of indices of erasing rules. Then
I ′ is finite because otherwise g would not obey the identification condition.
Therefore, Ki = Li for almost all i ∈ I.

2. Let I ′′ = {i ∈ I | Ki �= Ri} be the set of indices of adding rules. Then H is
finite if and only if I ′′ is finite.

3. Let I ′′ be infinite. Then H contains an infinite number of finite subgraphs
that are pairwise disjoint or H has a node with infinite degree or both is the
case.

Infinite graphs consisting of infinitely many finite disjoint components or with
nodes of infinite degree are considered as less interesting in finite graph theory.
Therefore, the application of parallel rules of an infinite family of rules can make
more sense only if one applies them to infinite graphs.

6.2 Application to Infinite Graphs

We are not going to study the application of parallel rules of an infinite family
of rules to infinite graphs in any depth. But we would like to give an example
that displays an interesting property and nourishes the hope that infinite graph
transformation may be of interest.
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(b) A finite section of GRID◦

Fig. 5. Infinite plane grids

Example 5. Consider the infinite plane grid a finite section of which looks like
the structure in Fig. 5a. Nodes are the points in the plane with integer coordi-
nates. Each node has four outgoing edges to its Northern, Eastern, Southern,
and Western neighbor respectively. As each node is neighbor of its four neigh-
bors, the edges can be drawn as undirected edges. Formally, it can be defined
as follows: GRID = (Z × Z,Z × Z × {N,E, S,W}, sGRID , tGRID , lGRID) with
sGRID((x, y,D)) = (x, y), tGRID((x, y,N)) = (x, y + 1), tGRID((x, y,E)) =
(x + 1, y), tGRID((x, y, S)) = (x, y − 1), tGRID((x, y,W )) = (x − 1, y), and
lGRID((x, y,D)) = ∗ for all (x, y) ∈ Z × Z and D ∈ {N,E, S,W}.

Consider the rule edgesplit : ⊇ ⊆ that splits an edge into a
path of length 2. Each two applications of the rule are parallel independent if
they match different edges. Therefore, one can apply the rules to all edges in
parallel. A finite section of the result GRID◦ is drawn in Fig. 5b.

Consider now the rule squaresplit : ⊇ ⊆ . Each two applica-

tions of this rule are parallel independent as the rule is non-erasing. Hence, one
can apply the rule to all smallest squares (the cycles of length 8) of GRID◦ in
parallel – one rule per square. Then the result is obviously isomorphic to GRID .

This kind of self-replication is remarkable as the applied rules are strictly
monotonously growing in that they add more than they erase. Such a property
is impossible in the context of finite graphs. Hence it may be worthwhile to study
infinite graph transformation in more detail and depth.

7 Parallel Models of Computation

Parallel graph transformation is well-suited for modeling and analyzing parallel
processes and, in particular, as a domain into which other visual approaches to
parallel processing can be transformed. To demonstrate this, we model the well-
known cellular automata as graph transformation units with massive parallelism.
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7.1 The Case of Cellular Automata

Cellular automata are computational devices with massive parallelism known for
many decades (see, e.g., [24–27]). A cellular automaton is a network of cells where
each cell has got certain neighbor cells. A configuration is given by a mapping
that associates a local state with each cell. A current configuration can change
into a follow-up configuration by the simultaneous changes of all local states. The
local transitions are specified by an underlying finite automaton where the local
states of the neighbor cells are the inputs. If the network is infinite, one assumes
a particular sleeping state that cannot change if all input states of neighbor cells
are also sleeping. Consequently, all follow-up configurations have only a finite
number of cells that are not sleeping if one starts with such a configuration.

To keep the technicalities simple, we consider 2-dimensional cellular
automata the cells of which are the unit squares in the Euclidean plane GRID
and can be identified by their left lower corner. The neighborhood is defined by a
vector N = (N1, . . . , Nk) ∈ (Z×Z)k where the neighbor cells of (i, j) are given by
the translations (i, j)+N1, . . . , (i, j)+Nk. If one chooses the local states as colors,
a cell with a local state can be represented by filling the area of the cell with the
corresponding color. Accordingly, the underlying finite automaton is specified by
a finite set of colors, say COLOR, and its transition d : COLOR × COLORk →
COLOR. Without loss of generality, we assume white ∈ COLOR and use it as
sleeping state, i.e. d(white,whitek) = white. Under these assumptions, a config-
uration is a mapping S : Z×Z → COLOR and the follow-up configuration S′ of
S is defined by S′((i, j)) = d(S((i, j)), (S((i, j) + N1)), . . . , S((i, j) + Nk))).

If one starts with a configuration S0 which has only a finite number of cells
the colors of which are not white, then only these cells and those that have them
as neighbors may change the colors. Therefore, the follow-up configuration has
again only a finite number of cells with other colors than white. Consequently,
the simultaneous change of colors of all cells can be computed. Moreover there
is always a finite area of the Euclidean plane that contains all changing cells. In
other words, a sequence of successive follow-up configurations can be depicted
as a sequence of pictures by filling the cells with their colors.

Example 6. The following instance of a cellular automaton may illustrate the
concept. It is called SIER, has two colors, COLOR = {white, black}, and the
neighborhood vector is N = ((−1, 0), (0, 1)) meaning that each cell has the cell
to its left and the next upper cell as neighbors. The transition of SIER changes
white into black if exactly one neighbor is black, i.e. d : COLOR × COLOR2 →
COLOR with d(white, (black, white)) = d(white, (white, black)) = black and
d(c, (c1, c2)) = c otherwise. Let S0 be the start configuration with S0((0, 0)) =
black and S0((i, j)) = white otherwise. Then one gets the configuration S30

in Fig. 6 after 30 transitions. The drawing illustrates that SIER iterates the
Sierpinski gadget (see, e.g., [28]) if one starts with a single black cell.

Cellular automata can be transformed into graph transformation units.
Let CA be a cellular automaton with the neighborhood vector N =
(N1, . . . , Nk) ∈ (Z × Z)k, the set of colors COLOR and the transition function
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Fig. 6. A pictorial representation of the configuration S30 of SIER

d : COLOR × COLORk → COLOR. Then a configuration S : Z × Z → COLOR
can be represented by a graph gr(N,S) with the cells as nodes, with k edges
from each cell to its neighbors labeled with 1, . . . , k in the order of the neigh-
borhood, and a loop at each cell labeled with the color of the cell. The set
of all these graphs is denoted by G(CA). If the color of a cell (i, j) changes,
i.e. d(S((i, j)), (S((i, j) + N1), . . . , S((i, j) + Nk))) �= S(i, j), then the following
rule with positive context c ...

c1

ck

1

k
⊇ c ⊇ ⊆ d(c, (c1, . . . , ck))

can be applied to the node (i, j) in gr(N,S) provided that c = S(i, j) and
cp = S((i, j) + Np) for p = 1, . . . , k. Here the rule consists of the two inclusions
to the left. The inclusion to the right is the positive context which serves as a
control condition: The rule is applicable if the left-hand size is matched and the
matching can be extended to the context. The set of all those rules is denoted
by R(CA). A rule application removes a loop so that two rule applications are
independent if and only if their matches do not overlap. Consequently, all appli-
cable rules can be applied in parallel yielding gr(N,S′) where S′ is the follow-up
configuration of S. In other words, gr(N,S)=⇒ gr(N,S′) with maximum paral-
lelism is a direct derivation in the graph transformation unit gtu(CA) = (G(CA),
R(CA), maxpar, G(CA)).

Conversely, a derivation step gr(N,S)=⇒ H in gtu(CA) changes a c-loop
into a d(c, (c1, . . . , ck))-loop at the node (i, j) if and only if, for l = 1, . . . , k, the
neighbor (i, j) + Nl has a cl-loop. All other c-loops are kept. This means that
H = gr(N,S′). Summarizing, each cellular automaton can be transformed into
a graph transformation unit such that the following correctness result holds.

Theorem 5. Let CA be a cellular automaton with neighborhood vector N and
let gtu(CA) be the corresponding graph transformation unit. Then there is a
transition from S to S′ in CA if and only if gr(N,S))=⇒ gr(N,S′) in gtu(CA).

Therefore, cellular automata behave exactly as their corresponding graph
transformation units up to the representation of configurations as graphs. We
have considered cellular automata over the 2-dimensional space Z × Z. It is not
difficult to see that all our constructions also work for the d-dimensional space
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Z
d in a similar way. One may even replace the quadratic cells by triangular or

hexagonal cells or use completely other networks.

7.2 Related Work

Like cellular automata, other approaches to parallel processing have been
transformed into parallel graph transformation like Petri nets (cf. [3,29,30]),
production networks (cf. [31]), artificial-ant colonies and particle swarms
(cf. [32]). Moreover, parallel graph transformation provides a semantic domain
for the graph-transformational modeling of various kinds of parallelism like
for autonomous units (cf. [33]) and graph-transformational swarm computing
(cf. [32]). Besides these examples that are closely related to the kind of par-
allel graph transformation considered in this paper, one encounters many fur-
ther subjects in the literature where parallel rule application on and parallel
evaluation of graph-like structures play an important rule like interaction nets,
multi-agent systems, parallel and reversible circuits, various kinds of diagrams
and networks. It may be worthwhile to look into the diverse research topics from
a graph-transformational point of view.

8 Conclusion

In this paper, we have recalled the approach to parallel graph transformation that
was introduced in [1], and have discussed some of its perspectives including the
parallel generation of graph languages, the parallelization of graph algorithms,
the infinite parallel graph transformation, and parallel graph transformation as
a framework for the modeling of parallel processes. Further research on these
topics can shed more light on their significance.

The theory of graph languages and those obtained by parallel generation in
particular is not at all far developed. It may be worthwhile to study decidability
and closure properties and to compare the various classes.

Given a specification of a graph algorithm by sequential graph transforma-
tion, one can always analyze the independence of rule applications to get a
parallelized solution. The use of proper control conditions may lead to further
improvement. Alternatively, graph algorithms may be modeled directly by means
of parallel graph transformation. So far, not much work is done in this direc-
tion, but it may help to prove correctness and to analyze the complexity in a
systematic way.

One can handle infinite graphs by the application of parallel rule with
infinitely many finite component rules. There is a good chance that this machin-
ery can contribute to infinite graph theory.

Parallel graph transformation has proven to provide a framework for the
modeling of parallel processes and a domain into which other approaches to
parallel-process modeling can be transformed. Therefore, it may be desirable to
develop parallel graph transformation further into a visual modeling languages
with suitable tool support.
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