
Graph Operations and Free Graph Algebras

Uwe Wolter1(B) , Zinovy Diskin2, and Harald König3

1 University of Bergen, Bergen, Norway
Uwe.Wolter@uib.no

2 McMaster University, Hamilton, Canada
diskinz@mcmaster.ca

3 FHDW Hannover, Hannover, Germany
Harald.Koenig@fhdw.de

Abstract. We introduce a concept of graph algebra that generalizes the
traditional concept of algebra in the sense that (1) we use graphs rather
than sets as carriers, and (2) we generalize algebraic operations to dia-
grammatic operations over graphs, which we call graph operations.

Our main objective is to extend the construction of term algebras, i.e.,
free algebras, for the new setting. The key mechanism for the construc-
tion of free graph algebras are pushout-based graph transformations for
non-deleting injective rules. The application of rules, however, has to be
controlled in such a way that “no confusion” arises. For this, we introduce
graph terms and present a concrete construction of free graph algebras
as graph term algebras.

As the main result of the paper, we obtain for any graph signature
Γ an adjunction between the category Graph of graphs and the category
GAlg(Γ) of graph Γ -algebras. In such a way, we establish an “integrating
link” between the two areas Hartmut Ehrig contributed most: algebraic
specifications with initial/free semantics and pushout-based graph trans-
formations.

Keywords: Universal Algebra · Term · Term algebra
Free algebra · Graph operation · Graph algebra · Graph term
Graph term algebra · Free graph algebra · Kleisli morphism

1 Introduction

Graph operations have been a key ingredient of the generalized sketch framework,
developed in the 90s by a group around the second author and motivated by
applications in databases and data modeling [1,3,5]. What was missing, until
now, is a proper formal substantiation of the “Kleisli mapping” construct heavily
employed in those papers. When we re-launched, ten years later, generalized
sketches under the name Diagrammatic Predicate Framework (DPF) [6,12–14],
we dropped operations due to the lack of a proper formalization appropriate for
our applications in Model Driven Software Engineering. Finally, during his period
in Hartmut’s group in 1991-00, the first author had always been wondering if one
c© Springer International Publishing AG, part of Springer Nature 2018
R. Heckel and G. Taentzer (Eds.): Ehrig Festschrift, LNCS 10800, pp. 313–331, 2018.
https://doi.org/10.1007/978-3-319-75396-6_17

http://orcid.org/0000-0002-7553-9858

314 U. Wolter et al.

should look for a uniform mechanism to create names for new items produced
by injective graph transformation rules via pushouts.

In the paper, we present a concept of graph algebra that generalizes the
traditional concept of algebra in the sense that (1) we use graphs as carriers,
instead of sets, and (2) we generalize algebraic operations to graph operations.
We introduce graph terms and present a concrete construction of free graph
algebras as graph term algebras. As a side effect, graph terms provide a uniform
mechanism for the new names problem mentioned above.

As the main result of the paper we obtain for any graph signature Γ an
adjunction between the category Graph of graphs and the category GAlg(Γ)
of graph Γ -algebras. These adjunctions generalize the traditional adjunctions
between the category Set and categories Alg(Σ) of Σ-algebras. The Kleisli cat-
egories of the new adjunctions provide the necessary substantiation of the idea
of “Kleisli morphisms” of the second author, we have been looking for.

As a pleasant surprise, we realized that the new setting of graph algebras
establishes an “integrating link” between the two areas Hartmut Ehrig con-
tributed most - algebraic specifications with initial semantics and graph trans-
formations.

To keep technicalities simple, and to meet the space limitations, we only con-
sider unsorted/untyped signatures and algebras, and leave the straightforward
generalization for the many-sorted/typed case for future work. As a running
example for a graph signature Γ , we have chosen Γ consisting of arrow compo-
sition, identity, initial object, and pullback, which hopefully most of the readers
are familiar with.

The paper is organized as follows. In Sect. 2 we recapitulate the basic alge-
braic concepts signature, operation, algebra, variable, term and term algebra,
and we discuss the characterization of term algebras as free algebras. In Sect. 3
we analyze algebraic operations and “diagrammatic” operations, like composi-
tion and pullbacks, in the light of graphs, and develop the new concepts graph
signature, graph operation and graph algebra. We define corresponding cate-
gories GAlg(Γ) of graph algebras for given graph signatures Γ . In Sect. 4, we
analyse the construction of terms in the light of graph transformations, and
develop the new concepts of a graph term and a graph term algebra. We show
that graph term algebras are free graph algebras and discuss applications of
this main result. Finally, we discuss related work in Sect. 5 and Sect. 6 outlines
different dimensions of further research.

2 Background: Algebras and Term Algebras

An (algebraic) signature Σ = (F, ar) is given by a finite set F of operation
symbols and an arity function ar : F → N. A Σ-algebra A = (A,FA) is provided
by a (carrier) set A, also denoted by |A|, and a family FA = (ωA : Aar(ω) →
A | ω ∈ F) of operations. For n ∈ N we denote by An the set of all n-tuples ā =
(a1, . . . , an) of elements in A. For n = 0 we obtain, in such a way, the singleton
set A0 = {()} containing the empty tuple. A symbol c ∈ F with ar(c) = 0 is

Graph Operations and Free Graph Algebras 315

also called a constant symbol. The corresponding operation cA : A0 → A in a
Σ-algebra A is a “pointer” with the only element () in A0 pointing to the element
cA() in A.

A Σ-algebra A is a subalgebra of a Σ-algebra B if, and only if, A ⊆ B and
ωA(ā) = ωB(ā) for all ω ∈ F and all ā ∈ Aar(ω) ⊆ Bar(ω). This means that
the subset A of the carrier of B has to be closed under the operations in B.
Specifically, A has to contain all the constants cB() from B.

A Σ-homomorphism f : A → B between two Σ-algebras A and B is a map f :
A → B such that for every ω ∈ F, ar(ω) = n we have f ◦ωA = ωB ◦fn where the
n’th power fn : An → Bn of the map f is defined by fn(ā) = (f(a1), . . . , f(an))
for all ā = (a1, . . . , an) ∈ An. That is, for each ω ∈ F, ar(ω) = n we require

f(ωA(a1, . . . , an)) = ωB(f(a1), . . . , f(an)) for all (a1, . . . , an) ∈ An. (1)

f0 : A0 → B0 is the identity on {()}. Note that requirement (1) for constants
c ∈ F means that constants are mapped to constants: f(cA()) = cB(f0()) = cB().

The composition g ◦ f : A → C of two Σ-homomorphisms f : A → B and
g : B → C is given by the composition g ◦ f : A → C of the underlying maps
f : A → B and g : B → C. In such a way, Σ-algebras and Σ-homomorphisms
constitute a category Alg(Σ), and the assignments A �→ |A| and (f : A → B) �→
(f : |A| → |B|) define a forgetful functor | | : Alg(Σ) → Set.

Example 1 (Natural numbers). We consider the signature Σ = (F, ar) with F =
{z, s, p} consisting of a constant symbol z, ar(z) = 0, a unary operation symbol
s, ar(s) = 1, and a binary operation symbol p, ar(p) = 2. As sample Σ-algebra
N = (N, FN) we consider the natural numbers with a zero, a successor, and a
plus operation: zN () = 0, sN = + 1 : N → N, pN = + : N2 → N.

Let be given an algebraic signature Σ and a set X of variables. Σ-terms on X
are strings build of three kinds of symbols: operation symbols from F , variables
from X and three auxiliary symbols “,”, “〈”, “〉”. The inductive definition of
terms goes traditionally as follows (compare [8], p. 18):

Definition 1 (Terms). The set TΣ(X) of all Σ-terms on a set X of variables
is the smallest set of strings of symbols such that:
(Variables). X ⊆ TΣ(X),
(Constants). c〈〉′ ∈ TΣ(X) for all c ∈ F with ar(c) = 0,
(Operations). ω〈t1, . . . , tn〉 ∈ TΣ(X) for all operation symbols ω ∈ F with
ar(ω) = n ≥ 1 and all Σ-terms t1, . . . , tn ∈ TΣ(X).

A simple, but crucial, observation is, that the generation of terms can be
interpreted as operations in special Σ-algebras (compare [8], p. 67):

Definition 2 (Term algebra). For a given set X of variables we denote by
TΣ(X) = (TΣ(X), F TΣ(X)) the Σ-algebra of Σ-terms on X with:
(Constants). cTΣ(X)() = c〈〉 ∈ TΣ(X) for all c ∈ F with ar(c) = 0,
(Operations). ωTΣ(X)(t1, . . . , tn) = ω〈t1, . . . , tn〉 ∈ TΣ(X) for all operation sym-
bols ω ∈ F with ar(ω) = n ≥ 1 and all n-tuples (t1, . . . , tn) ∈ TΣ(X)n.

316 U. Wolter et al.

That any term is generated in a unique way, is abstractly reflected by the char-
acterization of term algebras as free algebras (compare [8], p. 68):

Proposition 1 (Free algebras). For each set X of variables the Σ-algebra
TΣ(X) = (TΣ(X), F TΣ(X)) has the following universal property: For any Σ-
algebra A and any variable assignment α : X → |A| there exists a unique Σ-
homomorphism α∗ : TΣ(X) → A such that: α∗ ◦ inX = α.

X
� � inX ��

α
���

��
��

��
��

TΣ(X)

α∗

��

TΣ(X)

α∗

��
Set |A| A Alg(Σ)

Proposition 1 can be shown by structural induction according to the inductive
definition of terms in Definition 1: For the basic case of variables the defining
condition forces α∗(x) = α(x) for all x ∈ X. For the basic case of constant
symbols the definition of operations in TΣ(X) and the homomorphism condition
entail α∗(c〈〉) = α∗(cTΣ(X)()) = cA() for all c ∈ F with ar(c) = 0. And, for
the induction step the definition of operations in TΣ(X) and the homomorphism
condition provide the necessary induction/recursion scheme

α∗(ω〈t1, . . . , tn〉) = α∗(ωTΣ(X)(t1, . . . , tn)) = ωA(α∗(t1), . . . , α∗(tn)) (2)

for all operation symbols ω ∈ F with ar(ω) = n ≥ 1 and all t1, . . . , tn ∈ TΣ(X).
The universal property determines TΣ(X) up to isomorphism in Alg(Σ). A

Σ-algebra A is isomorphic to TΣ(X) iff the following conditions are satisfied:

1. Generators: There is an injective mapping em : X → |A|.
2. No confusion: em(x)
= ωA(ā) for any x ∈ X, any operation symbol ω ∈ F

and any tuple ā ∈ Aar(ω) . For any operation symbols ω1, ω2 ∈ F and any
tuples ā1 ∈ Aar(ω1), ā2 ∈ Aar(ω2) we have

ωA
1 (ā1)
= ωA

2 (ā2) iff ω1
= ω2 or ā1
= ā2.

3. No junk: A has no proper Σ-subalgebra containing em(X).

As any free construction [10], the universal property in Proposition 1 ensures
that we can extend the assignments X �→ TΣ(X) to a functor TΣ() : Set →
Alg(Σ) that is left-adjoint to the forgetful functor | | : Alg(Σ) → Set. The
adjunction

Set
TΣ()

⊥
��
Alg(Σ)

| |
��

is the fundament for the area of algebraic specifications as the two volumes [8,9]
exemplify. Just to mention, that any variant of equational and/or first-order
specifications is syntactically based on terms while the semantics relies on the

Graph Operations and Free Graph Algebras 317

uniqueness of the evaluation of terms w.r.t. variable assignments. And, not to
forget, the Kleisli category of this adjunction provides us a substitution calculus:
A substitution of terms for variables is a morphism in the Kleisli category, i.e.,
a map σ : X → TΣ(Y). The corresponding extended map σ∗ : TΣ(X) → TΣ(Y)
describes the simultaneous substitution of all variables x in Σ-terms on X by
the corresponding terms σ(x) ∈ TΣ(Y). The composition of two substitutions
σ : X → TΣ(Y) and δ : Y → TΣ(Z) is given by δ∗ ◦ σ : X → TΣ(Z).

3 From Algebras to Graph Algebras

As graphs we consider “directed multigraphs” [7]. A graph G =
(GV , GE , srG, tgG) consists of a set GV of vertices, a set GE of edges, and
two maps srG, tgG : GE → GV . A homomorphism ϕ = (ϕV , ϕE) between two
graphs G = (GV , GE , srG, tgG) and H = (HV ,HE , srH , tgH) consists of two
maps ϕV : HV → GV and ϕE : HE → GE such that ϕV ◦ srG = srH ◦ ϕE and
ϕV ◦ tgG = tgH ◦ ϕE .

The identity graph homomorphism on a graph G is the pair idG =
(idGV

, idGE
) of identity maps and graph homomorphisms are composed com-

ponentwise. By Graph we denote the category with graphs as objects and graph
homomorphisms as morphisms. To establish the concept of graph algebras, we
need, first, an adequate concept of signature.

Definition 3 (Graph signature). A graph signature Γ = (OP, I,R) is given
by a finite set OP of operation symbols and two maps I and R assigning to
each operation symbol ω ∈ OP a finite graph I(ω), its input arity, and a finite
graph R(ω), its result arity, respectively. Moreover, we assume that there is an
inclusion ιω : I(ω) ↪→ R(ω) between the two arity graphs.

To substantiate this definition, we discuss, in more detail, the transition from
algebraic signatures to graph signatures.

Let In = {in1, . . . , inn} be a set of indices. We can consider an n-tuple
ā = (a1, . . . , an) of elements from a set A as a representation of a map a : In → A
where ai = a(ini) for all 1 ≤ i ≤ n. The empty tuple () represents, in this view,
the unique map from the empty set I0 = ∅ into A.

For any n ∈ N there is a bijection between An and the set AIn of all maps
from In into A, thus we can consider maps a ∈ AIn as inputs for operations in
a Σ-algebra A. What about the output? Algebraic operations give only a single
value as output thus we can consider the codomain of an operation in A as the set
AO of all maps from a singleton O = {out} into A. From this viewpoint, we can
consider the declaration of an operation symbol ω with ar(ω) = n as declaring
a span In ←↩ ∅ ↪→ O of set inclusions, where the corresponding operation in a
Σ-algebra A would be a map from AIn into AO.

Operations are assumed, however, to have no side effects. This means that
the input is neither deleted nor changed. In such a way, we can consider the
declaration of the arity of an operation symbol ω as declaring a set inclusion

318 U. Wolter et al.

ιω : In ↪→ In ∪ O (obtained by pushing out the above span of inclusions). The
corresponding operation in A becomes then a map

ωA : AIn −→ AIn∪O such that a = ωA(a) ◦ ιω for all a ∈ AIn . (3)

In
ιω ��

a
���

��
��

��
=

In ∪ O

ωA(a)
����
��
��
��
�

A

We can recognize the same pattern in “graph operations”, like composition
of morphisms and limit/colimit constructions in categories, for example. There
are, however, three essential differences to the case of algebraic operations:

1. There are two different kinds of input items, namely vertices and edges.
2. Operations can produce arbitrary many output items instead of exactly one.
3. To relate output edges in an appropriate way to the input, we have to work

with non-empty “boundary graphs” instead of just the empty set.

As an example we consider the construction of pullbacks. Let a category C
with pullbacks be given and let |C| denote the underlying graph of C. To turn
the existence of pullbacks into an operation, we have to choose for any cospan
A

f→ C
g← B in C one of the existing pullbacks, i.e., we have to choose an object

D and morphisms g∗ : D → A, f∗ : D → B such that the resulting square is a
pullback in C.

The input arity of a corresponding operation symbol pb can be described
by the graph Cospan = (iv1

ie1−→ iv3
ie2←− iv2), i.e., a cospan in C is a graph

homomorphism from Cospan into |C|. Here, “iv” stands for input vertex while
“ie” refers to input edge. We will often use the term binding for these graph
homomorphisms. The output arity of the operation could be described by the
graph Span = (iv1

oe2←− ov
oe1−→ iv2), where “ov” stands for output vertex while

“oe” refers to output edge. The “boundary graph” 2, consisting of the two vertices
iv1 and iv2, connects the output items with the input items. Instead of a span
of graph inclusions Cospan ←↩ 2 ↪→ Span we consider, however, the inclusion
ιpb of the graph Cospan into the graph Square,

iv3 iv1
ie1��

iv2

ie2

��

ov
oe1��

oe2

��

obtained by pushing out the above span of graph inclusions, as the declaration
of the arity of the operation symbol pb.

Graph Operations and Free Graph Algebras 319

Convention 4 (Graph signature). For notational convenience we use canon-
ical names for input vertices and edges. For a given operation symbol ω ∈ OP ,
we denote the elements of I(ω)V by {iv1, . . . , ivnvω

} and the elements of I(ω)E

by {ie1, . . . , ieneω
}, where nvω and neω are the numbers of vertices and edges in

I(ω) resp. Output vertices and edges will be denoted by ovi and oej.

Example 2 (Graph signature). We consider a graph signature Γ = (OP, I,R)
with OP = {pb, comp, id, ini}. For the operation symbol pb we declare I(pb) =
Cospan and R(pb) = Square. The arity of the composition operation symbol
comp is given by the following inclusion of graphs

iv1
ie1 �� iv2

ie2 �� iv3
� � ιcomp �� iv1

ie1

��

oe

		
iv2

ie2

�� iv3

The input arity of id is the graph 1 with exactly one vertex iv and the result
arity is the graph Loop with exactly one vertex iv and one edge oe. Finally, the
input arity of ini is the empty graph ∅, and the result arity is a graph 1 with
exactly one vertex ov. That is, ini is a constant symbol with a trivial result arity,
but in general the result arity of a constant could be any finite graph!

For graphs G and H we denote by GH the set of all graph homomorphisms
from H into G. A fixed choice of pullbacks in category C gives rise to a map

pbC : |C|Cospan −→ |C|Square

such that b = pbC(b) ◦ ιpb for all bindings b : Cospan → |C|.

Cospan
ιpb ��

b

�
��

��
��

��
=

Square

pbC(b)
�����

��
��
��

|C|

Generalizing the pullback example, we coin now the new concept of graph
algebra.

Definition 5 (Graph algebra). For a graph signature Γ = (OP, I,R) a
Γ -algebra G = (G,OPG) is given by a (carrier) graph G = (GV , GE , srG, tgG),
also denoted by |G|, and a family OPG = (ωG : GI(ω) → GR(ω) | ω ∈ OP) of
maps such that b = ωG(b) ◦ ιω for all ω ∈ OP and all b ∈ GI(ω). These maps
will be called graph operations.

I(ω)
ιω ��

b ���
��

��
��

�
=

R(ω)

ωG(b)
����
��
��
��

G

For a vertex v ∈ R(ω)V and edge e ∈ R(ω)E, we write ωG
V (b)(v) and ωG

E(b)(e)
rather than ωG(b)V (v) and ωG(b)E(e). This eases reading formulas with b defined
by long tuples. We will also omit V,E subindices if it eases reading formulas.

320 U. Wolter et al.

For any graph G there is exactly one graph homomorphism ∅G : ∅ → G, i.e.,
G∅ = {∅G} is a singleton, thus for any constant symbol c ∈ OP , i.e., I(c) = ∅, the
corresponding graph operation in a graph Γ -algebra G just points at a subgraph
of G, namely the image of R(c) w.r.t. cG(∅G).

Example 3 (Graph algebra). The composition in a category C can be presented
as a graph operation compC : |C|I(comp) → |C|R(comp) where the only output of
the graph operation is given by compC

E(b)(oe) = b(ie2) ◦ b(ie1) for all bindings
b : I(comp) → |C|. Note, that compC is a total operation. The identity in C gives
another graph operation idC : |C|1 → |C|Loop such that idC

E(b)(oe) = idb(iv).
If C has pullbacks, we can define a graph operation pbC : |C|Cospan →

|C|Square, in such a way, that for any binding b : Cospan → |C| the result
pbC(b) : Square → |C| is a chosen pullback diagram. And, if C has initial objects,
we can define a constant iniC : |C|∅ → |C|1, in such a way, that iniCV (∅G)(ov) is
a (chosen) initial object in C.

A Γ -algebra G is a subalgebra of a Γ -algebra H if G is a subgraph of H and
in ◦ ωG(b) = ωH(in ◦ b) for all ω ∈ OP and all b ∈ GI(ω), where in : G → H is
the corresponding inclusion graph homomorphism (compare Definition 6). This
means that the subgraph G of the carrier of H has to be closed under the
operations in H in the sense that for all ω ∈ OP and all b ∈ GI(ω) the image
ωH(in ◦ b)(R(ω)) is a subgraph of G. Especially, G has to contain the image
graph cH(∅H)(R(c)) for any constant symbol c in OP .

A functor F : C → D between two categories C and D is a graph homo-
morphism F : |C| → |D| compatible with composition, i.e., for all morphisms
f : A → B, g : B → C in C we have F(g ◦ f) = F(g) ◦ F(f). We can reformulate
this condition in terms of the corresponding graph operations compC and compD

by requiring that the following diagram commutes:

|C|I(comp) compC

��

F◦
��

=

|C|R(comp)

F◦
��

|D|I(comp) compD

�� |D|R(comp)

That is, for any binding b : I(comp) → |C| we require (compare (1))

F ◦ compC(b) = compD(F ◦ b).

This example motivates our concept of homomorphisms between graph algebras.

Definition 6. A Γ -homomorphism ϕ : G → H between two Γ -algebras G =
(G,OPG) and H = (H,OPH) is a graph homomorphism ϕ : G → H such that

ϕ ◦ ωG(b) = ωH(ϕ ◦ b) for all ω ∈ OP and all b ∈ GI(ω). (4)

Graph Operations and Free Graph Algebras 321

I(ω)
ιω ��

b

��

R(ω)

ωG(b)

���
���

���
���

��

ωH(ϕ◦b)

��

GI(ω) ωG
��

ϕ◦
��

=

GR(ω)

ϕ◦
��

G
ϕ �� H HI(ω) ωH

�� HR(ω)

Example 4. Given two categories C and D with pullback operations, a functor
F : C → D, that preserves pullbacks, establishes a graph algebra homomorphism
only if it maps chosen pullbacks in C to chosen pullbacks in D.

The composition ψ ◦ϕ : G → K of Γ -homomorphisms ϕ : G → H and ψ : H → K
is given by the composition ψ ◦ ϕ : G → K of the underlying graph homomor-
phisms ϕ : G → H and ψ : H → K. For any graph Γ -algebra G the identity
Γ -homomorphism idG : G → G is given by the identity graph homomorphism
idG : G → G. In such a way, Γ -algebras and Γ -homomorphisms constitute a cate-
gory GAlg(Γ) where the assignments G �→ |G| and (ϕ : G → H) �→ (ϕ : |G| → |H|)
define a forgetful functor | | : GAlg(Γ) → Graph.

We conclude this section with a discussion how algebras can be transformed
into corresponding graph algebras. Any set A can be transformed into a graph
V(A) with an empty set of edges, and any map f : A → B provides trivially a
graph homomorphism V(f) : V(A) → V(B) thus the assignments A �→ V(A)
and (f : A → B) �→ (V(f) : V(A) → V(B)) define a functor V : Set → Graph.

Turning back to the discussion, at the beginning of this section, it becomes
obvious that we can transform any algebraic signature Σ = (F, ar) into a
graph signature ΓΣ = (F, IΣ , RΣ) with IΣ(ω) = V(Iar(ω)) and RΣ(ω) =
V(Iar(ω) ∪ {ov}). It is easy to see that any Σ-algebra can be transformed into a
ΓΣ algebra G(A), and any Σ-algebra homomorphism f : A → B gives rise to a
ΓΣ-homomorphism V(f) : G(A) → G(B).

Finally, the assignments A �→ G(A) and (f : A → B) �→ (V(f) : G(A) →
G(B)) define an embedding G : Alg(Σ) → GAlg(ΓΣ) where we have, by con-
struction, that | |◦G = V◦| | (see Fig. 1). Note, that Alg(Σ) and GAlg(ΓΣ) are,
in general, neither isomorphic nor equivalent since the carrier of a ΓΣ-algebra
can have edges even if the operations only work on vertices.

Fig. 1. Two compatible adjunctions

322 U. Wolter et al.

In the next section we will discuss the construction of free Γ -algebras for
arbitrary graph signatures Γ providing a functor TΓ () : Graph → GAlg(Γ) to
be shown to be left adjoint to the forgetful functor | | : GAlg(Γ) → Graph. This
construction should generalize the construction of term algebras, in the sense,
that for any algebraic signature Σ there is a natural isomorphism between the
two functors G ◦ TΣ() and TΓΣ

() ◦ V from Set into GAlg(ΓΣ).

4 From Terms to Graph Terms

To have a guideline how to define terms in the setting of graph algebras, we
analyze the construction of terms in Definition 1 in the light a graph signatures.
As example we consider the algebraic signature Σ in Example 1.

Fig. 2. Term construction as pushout

For the corresponding graph signature ΓΣ the graph inclusion ιp : IΓΣ
(p) →

RΓΣ
(p) is depicted in the upper part of the diagram in Fig. 2. In the left lower

corner we depict the set of terms that have been constructed until now. Applying
rule 3 in Definition 1 for ω = p and two already constructed terms t1, t2 means to
apply ιp, considered as a graph transformation rule, for the binding b = (in1 �→
t1, in2 �→ t2) and to construct a pushout, i.e., to produce exactly one new vertex
new, as depicted in the lower right corner in Fig. 2. Denoting this new item by
the term p〈t1, t2〉, solves two problems:

1. The term notation provides a uniform mechanism to create identifiers for
new graph items introduced by applying non-deleting injective graph trans-
formation rules (at least for graphs without edges). This problem is seldom
addressed in the graph transformation literature.

2. The term p〈t1, t2〉 codes all the information about the pushout that has been
creating the new item:
(a) The symbol “p” identifies the rule that has been applied and, by consult-

ing the signature, we find the necessary information about the input and
result arity, respectively.

(b) The string “t1, t2” codes the actual binding (match) b = (in1 �→ t1, in2 �→
t2) for the input arity.

(c) Since there is exactly one new item, we do have all information to identify
uniquely the new item, and thus to define the resulting binding b∗.

Graph Operations and Free Graph Algebras 323

In such a way, the term notation offers two possibilities to deal with the problem
of applying the same rule twice for the same binding:

1. A priori: Before we apply a rule for a certain binding, we check the term
denotations of all the items that have already been constructed. In such a
way, we can find out, if the rule had already been applied for this binding. If
this is the case, we do not apply the rule. Note, that the idea to use a rule as
its own negative application condition [7], would be too rigid here. In case of
the operation p, e.g., we couldn’t apply ιp to any graph with more than two
vertices.

2. A posteriori: After applying a rule another time for a certain binding we
repair the mistake silently by identifying the newly generated items with the
“same” already existing items by the assumption that sets are extensional.

We like to adapt the silent a posteriori reparation mechanism and extend
the term notation correspondingly. To deal with the rules arising from declaring
arities of graph operations (see Definition 3) we have to address two problems:
(1) An item can be of two different kinds - vertex or edge, and (2) there can
be any finite number of output items instead of exactly one. To tackle problem
(1), we will use for each kind a separate string of given terms, instead of just
one string. And, by using output items as additional parts of terms, we solve
problem (2).

In the context of graph algebras, we consider a collection of variables to
be a graph rather than a set. Given a graph signature Γ = (OP, I,R) and a
graph X of variables, we will define (graph) Γ -terms over X using the following
symbols/names: operation symbols from OP , names of output vertices and edges
in R(ω) \ I(ω) for all ω ∈ OP , and auxiliary symbols like commas and brackets.

Convention 7. For a graph G, operation symbol ω ∈ OP , and binding b :
I(ω) → G, we write the strings “b(iv1) . . . b(ivnvω

)” and “b(ie1) . . . b(ieneω
)” of,

resp., vertices and edges in G without commas and brackets, denote them by bV

and bE resp., and write b for bV ; bE. Extensionality ensures that b1 = b2 iff
b1 = b2 so that we can omit the overline bar.

Now we are prepared to define graph terms in parallel to the traditional definition
of terms in Definition 1.

Definition 8 (Graph terms). Let be given a graph signature Γ = (OP, I,R)
and a graph X of variables. The graph TΓ (X) of all graph Γ -terms on X is the
smallest graph, which satisfies the following three conditions:
(Variables). TΓ (X) contains the graph of variables, X � TΓ (X);
(Constants). For all c ∈ OP with I(c) = ∅, graph TΓ (X) contains

– for each ov ∈ R(c)V , tuple 〈ov, c, 〈〉〉 as a vertex,
– for each oe ∈ R(c)E, tuple 〈oe, c, 〈〉〉 as an edge, where

scTΓ (X)(〈oe, c, 〈〉〉) = 〈scR(c)(oe), c, 〈〉〉 and tgTΓ (X)(〈oe, c, 〈〉〉) = 〈tgR(c)(oe)c〈〉〉;
(Operations) For all ω ∈ OP with I(ω)
= ∅ and any b : I(ω) → TΓ (X), graph
TΓ (X) contains

324 U. Wolter et al.

– for each ov ∈ R(ω)V \ I(ω)V , tuple 〈ov, ω, b〉 as a vertex1,
– for each oe ∈ R(ω)E \ I(ω)E, tuple 〈oe, ω, b〉 as an edge2, whose source and

target vertices are defined as follows:

srTΓ (X)(〈oe, ω, b〉) =
{

b(srR(ω)(oe)) if srR(ω)(oe) ∈ I(ω)V

〈srR(ω)(oe), ω, b〉 if srR(ω)(oe) /∈ I(ω)V

tgTΓ (X)(〈oe, ω, b〉) =
{

b(tgR(ω)(oe)) if tgR(ω)(oe) ∈ I(ω)V

〈tgR(ω)(oe), ω, b〉 if tgR(ω)(oe) /∈ I(ω)V

Example 5. As an example we consider the graph signature Γ from Example 2
and the graph X depicted in the last line in the following diagram.

tv0 tv1
te1

��		
		
		
		 te2

���
��

��
��

�

te9
��

te10
��

tv3
te5�� te6 �� tv2

te3

��		
		
		
		 te4

���
��

��
��

� tv4
te7

�� te8��
xv1 xe1

�� xv2 xv3xe2
��

xe3
�� xv4 xv5xe4

��

Vertex tv0 is generated by the rule ιini, i.e., tv0 = 〈ov, ini, 〈〉〉. Vertices
tv1, . . . , tv4 and edges te1, . . . , te8 are generated by the following four applica-
tions bi, i = 1..4 of the rule ιpb (as there are no isolated vertices in the arity of
pb, it’s sufficient to specify the values of bindings on edges):

b1 b2 b3 b4
ie1 xe1 xe3 te2 xe4
ie2 xe2 xe4 te3 xe4

which produce

tv1 = 〈ov, pb, b1〉 te1 = 〈oe2, pb, b1〉 te2 = 〈oe1, pb, b1〉
tv2 = 〈ov, pb, b2〉 te3 = 〈oe2, pb, b2〉 te4 = 〈oe1, pb, b2〉
tv3 = 〈ov, pb, b3〉 te5 = 〈oe2, pb, b3〉 te6 = 〈oe1, pb, b3〉
tv4 = 〈ov, pb, b4〉 te7 = 〈oe2, pb, b4〉 te8 = 〈oe1, pb, b4〉

Note, that the edge pair te7 and te8 could be declared as kernel of edge
xe4. Finally, edges te9 and te10 are obtained by two applications of rule ιcomp:
b5(ie1) = te1, b5(ie2) = xe1, and b6(ie1) = te2, b5(ie2) = xe2, which produce
te9 = 〈oe, comp, b5〉, te10 = 〈oe, comp, b6〉.

Analogously, to the case of terms, we can interpret the construction of graph
terms as operations in special Γ -algebras:

1 To show analogy with Definition 1 clearer, we could denote such tuples as
ωov〈b(iv1), . . . , b(ivnvω); b(ie1), . . . , b(ieneω)〉.

2 Dito for ωoe〈b(iv1), . . . , b(ivnvω); b(ie1), . . . , b(ieneω)〉.

Graph Operations and Free Graph Algebras 325

Definition 9 (Graph term algebra). For a graph X of variables we denote
by TΓ (X) = (TΓ (X), OP TΓ (X)) the Γ -algebra of graph Γ -terms on X with:
(Constants). For all c ∈ OP with I(c) = ∅

c
TΓ (X)
V (∅G)(ov) = 〈ov, c, 〈〉〉 for all ov ∈ R(c)V ,

c
TΓ (X)
E (∅G)(oe) = 〈oe, c, 〈〉〉 for all oe ∈ R(c)E ;

(Operations). For all ω ∈ OP with I(ω)
= ∅ and all b ∈ TΓ (X)I(ω)

ω
TΓ (X)
V (b)(v) =

{
bV (v) , if v ∈ I(ω)V

〈v, ω, b〉, if v ∈ R(ω)V \ I(ω)V

ω
TΓ (X)
E (b)(e) =

{
bE(e) , if e ∈ I(ω)E

〈e, ω, b〉, if e ∈ R(ω)E \ I(ω)E

The definitions ensure that all resulting bindings ωTΓ (X)(b) ∈ TΓ (X)R(ω) are
indeed graph homomorphisms and that b = ωTΓ (X)(b) ◦ ιω, as required.

The condition “the smallest graph” in Definition 8 ensures that TΓ (X) has
“no junk”, i.e., no proper subalgebra containing X, and the graph term notation
ensures that there is “no confusion”, i.e., variables are not identified with items
introduced by operation applications. Moreover, items, introduced by different
operation applications, are not identified either.

More structurally, “no confusion” means, especially, that for any ω ∈ OP
and any b ∈ TΓ (X)I(ω), the commutative triangle below (on the left) factorizes,
by epi-mono-factorization b = bm ◦ be and ωTΓ (X)(b) = ωTΓ (X)(b)m ◦ωTΓ (X)(b)e,
into a pushout square and a commutative triangle (below on the right).

I(ω)
� � ιω ��

b

��

=

R(ω)

ωTΓ (X)(b)

����
��
��
��
��
��
��
��

I(ω)
� � ιω ��

be

��
PO

R(ω)

ωTΓ (X)(b)e

��
b(I(ω))

� � ιb
ω ��

bm

���
��

��
��

��

=

ωTΓ (X)(b)(R(ω))

ωTΓ (X)(b)m

TΓ (X) TΓ (X)

Proposition 2 (Free graph algebras). For each graph X the graph term
Γ -algebra TΓ (X) = (TΓ (X), OP TΓ (X)) has the following universal property: For
any Γ -algebra G and any variable assignment α : X → |G| there exists a unique
Γ -homomorphism α∗ : TΓ (X) → G such that: α∗ ◦ inX = α.

X � � inX ��

α
���

��
��

��
��

TΓ (X)

α∗

��

TΓ (X)

α∗

��
Graph |G| G GAlg(Γ)

326 U. Wolter et al.

Proof. We prove by structural induction according to Definition 8:
(Variables). In this basic case the defining condition forces α∗

V (xv) = αV (xv)
for all xv ∈ XV and α∗

E(xe) = αE(xe) for all xe ∈ XE .
(Constants). In this basic case the definition of operations in TΓ (X) and the
desired homomorphism condition for α∗ forces for all ov ∈ R(c)

α∗
V (〈ov, c, 〈〉〉) = α∗

V (cTΓ (X)
V (∅TΓ (X))(ov)) = cG

V (α∗ ◦ ∅TΓ (X))(ov) = cG
V (∅G)(ov)

and for all oe ∈ R(c)E we get, analogously, α∗
E(〈oe, c, 〈〉〉) = cG

E(∅G)(oe).
(Operations). The definition of operations in TΓ (X) and the desired homomor-
phism condition forces α∗ to be defined according to a corresponding recursion
scheme for all ω ∈ OP with I(ω)
= ∅ and all b ∈ TΓ (X)I(ω): The induction
hypothesis is that α∗ is already defined on the subgraph b(I(ω)) � TΓ (X). We
denote the restriction of α∗ to b(I(ω)) by α∗

b . In the induction step we extend
α∗ to the subgraph ωTΓ (X)(b)(R(ω)) � TΓ (X) (that contains b(I(ω))), i.e., to
all graph terms that have been constructed exactly by applying rule ιω for the
binding b: For all ov ∈ R(ω)V we get

α∗
V (〈ov, ω, b〉) = α∗

V (ωTΓ (X)
V (b)(ov)) = ωG

V (α∗
b ◦ be)(ov)

and for all oe ∈ R(ω)E we get α∗
E(〈oe, ω, b〉) = ωG

E(α∗
b ◦ be)(oe).

More structurally considered, the induction step constructs the unique medi-
ating morphism from ωTΓ (X)(b)(R(ω)) into G in the following diagram (Keep in
mind that α∗ ◦ be = ωG(α∗

b ◦ be) ◦ ιω since ωG is a graph operation.):

I(ω) �
� ιω ��

be

��
PO

R(ω)

ωTΓ (X)(b)e

��

ωG(α∗
b ◦be)

��
b(I(ω)) �

� ιb
ω ��

α∗
b

��ωTΓ (X)(b)(R(ω)) �������� G

A more traditional presentation of the induction step, analogously to (2), can
be given if we use for the binding b ∈ TΓ (X)I(ω) the abbreviations tvj = b(ivj),
1 ≤ j ≤ nvω and tek = b(iek), 1 ≤ k ≤ neω (compare Convention 7), consider
tuples as presentations of finite maps, as discussed at the beginning of Sect. 3,
and represent the two maps constituting a binding for I(ω) in G as a sequence
of vertices and edges of length nvω + neω in G: For all ov ∈ R(ω)V , we get

α∗
V (〈ov, ω, tv1 . . . tvnvω

te1 . . . teneω
〉)

= ωG
V (α∗

V (tv1) . . . α∗
V (tvnvω

)α∗
E(te1) . . . α∗

E(teneω
))(ov).

The universal property in Proposition 2 ensures that we can extend the
assignments X �→ TΓ (X) to a functor TΓ () : Graph → GAlg(Γ) that is left-
adjoint to the forgetful functor | | : GAlg(Γ) → Graph (see Fig. 1). That the
adjunction TΓ () � | | generalizes the construction of term algebras, in the sense,
that for any algebraic signature Σ there is a natural isomorphism between the

Graph Operations and Free Graph Algebras 327

two functors G ◦ TΣ() and TΓΣ
() ◦ V from Set into GAlg(ΓΣ)(see Fig. 1) can

be shown straightforwardly.
Establishing the adjunctions TΓ () � | | is the main result of the paper. Since

the new adjunctions generalize the adjunctions TΣ() � | |, we will be able to
transfer smoothly many concepts, constructions, and results from the area of
algebraic specifications to the new setting of graph algebras (see Sect. 6).

Equations, for example, can be defined as pairs of graph terms and can be
used to formulate properties of graph operations. Associativity of composition,
e.g., can be expressed by the equation (we recall Convention 7 about denotations
of binding mappings)

〈oe, comp, 〈oe, comp, xe1xe2〉xe3〉 = 〈oe, comp, xe1〈oe, comp, xe2xe3〉〉

where X is the graph (xv1
xe1→ xv2

xe2→ xv3
xe3→ xv4). Since there are no isolated

vertices in the arities of our sample operations we list only edge variables in the
sample equations. We may also require that our choice of pullbacks is symmetric
in the sense that the following equations are satisfied:

〈ov, pb, xe1xe2〉 = 〈ov, pb, xe2xe1〉
〈oe1, pb, xe1xe2〉 = 〈oe2, pb, xe2xe1〉
〈oe2, pb, xe1xe2〉 = 〈oe1, pb, xe2xe1〉,

where X is the graph (xv1
xe1→ xv3

xe2← xv2). Note, that we can not summarize
the three equations by a single (hypothetical) equation between bindings

pb〈xe1xe2〉 = pb〈xe2xe1〉

since oe1 and oe2 are interchanged in the last two equations above.
The Kleisli category of the new adjunction provides an appropriate substi-

tution calculus. A substitution is an arrow in the Kleisli category, i.e., a graph
homomorphism σ : X → TΓ (Y). The corresponding extended graph homo-
morphism σ∗ : TΓ (X) → TΓ (Y) describes the simultaneous substitution of all
variable vertices xv and variable edges xe in graph Γ -terms on X by the corre-
sponding graph terms σV (xv) ∈ TΓ (Y)V or σE(xe) ∈ TΓ (Y)E , respectively. The
composition of two substitutions σ : X → TΓ (Y) and δ : Y → TΓ (Z) is given
by δ∗ ◦ σ : X → TΓ (Z). Substitutions σ : X → TΓ (Y) allow us, for example, to
formalize the concepts of queries and views in databases [3].

Remark 1 (Universal properties). For a categorically minded reader, considering
such operations as pullback and pushout without their universal properties does
not make too much sense. Below we will show how to include universal proper-
ties into our framework of diagram operations. We will consider universality of
pullbacks, but the method is quite general and applicable for any limit/colimit
operation over graphs.

Commutativity of a pullback square can be expressed by the following equation

〈oe, comp, 〈oe1, pb, ie1ie2〉ie2〉 = 〈oe, comp, 〈oe2, pb, ie1ie2〉ie1〉

328 U. Wolter et al.

where operations pb and comp are defined in Example 3. Universal properties,
however, are conditional statements thus we need a kind of implication to express
them. The implications, we are looking for, are a further development of the
sketch axioms in [11] (see also Sect. 5). Those implications are based on graph
homomorphisms. To express the existence of mediating morphisms we consider,
in case of pullbacks, the following inclusion of graphs:

xv1 xv2
xe1�� � � ι �� xv1 xv2

xe1��

xv3

xe2

��

xv4
xe4��

xe3

��

xv3

xe2

��

tv
te1��

te2

��

xv4
m��

xe3
��

xe4

��

where tv = 〈ov, pb, xe1xe2〉, te1 = 〈oe2, pb, xe1xe2〉 and te2 = 〈oe1, pb, xe1xe2〉.
We denote the graph on the left-hand side by X and the graph on the right-hand
side by Y . Since, m is the only item in Y , that is not in X or generated by X,
respectively, the inclusion homomorphism allows us to formulate a conditional
existence statement of the form

∀X.(prem1
ι⇒ ∃m. concl1) where

prem1 := 〈oe, comp, xe4xe2〉 = 〈oe, comp, xe3xe1〉
concl1 := 〈oe, comp,m te1〉 = xe4 ∧ 〈oe, comp,m te2〉 = xe3.

A graph operation pbC : |C|Cospan → |C|Square, as in Example 3, satisfies this
implication iff every binding b : X → |C|, that makes the premise prem1 true,
can be extended to a binding b̄ : Y → |C| with b̄ ◦ ι = b such that the following
two conditions hold: (a) b̄(te1) = 〈oe1, pb, xe1xe2〉 and b̄(te2) = 〈oe2, pb, xe1xe2〉
and (b) the conclusion concl1 becomes true. Note, that condition (a) ensures
that only an appropriate match for the edge m needs to be found.

X � � ι ��

b |= prem1
���

��
��

��
�

=

Y

∃ b̄ |= concl1����
��
��
��

|C|

To express the uniqueness of mediating morphisms we exploit a non-injective
but surjective graph homomorphism ϕ : Y ′ → Y where Y ′ is Y plus an additional
edge m′ from xv4 to tv. ϕ is the identity except that it maps m and m′ in Y ′

to m in Y . The premise prem2 is given by two corresponding copies of concl1
above and the conclusion concl2 is just true. A graph operation pbC satisfies the
implication ∀Y ′.(prem2

ϕ⇒ true) iff every binding b : Y ′ → |C|, that makes the
premise prem2 true, can be extended to a binding b̄ : Y → |C| with b̄ ◦ ϕ = b.
In other words, there is no binding b : Y ′ → |C| with b̄(m)
= b̄(m) that makes
the premise prem2 true.

Graph Operations and Free Graph Algebras 329

5 Related Work

An abstract diagrammatic approach to logic, including a general notion of
diagram predicates and their models (generalized sketches), and implications
between diagram predicates (sketch axioms), was pioneered by Makkai in [11]
(see also historical remarks in our paper [6]). However, Makkai did not work
with diagram operations and algebras. Formal definitions of a (diagrammatic)
graph operation and a graph algebra were introduced by the second author in
[4], and many examples and discussions in the database context can be found
in [3]. The latter paper also describes the construction of what they call sketch
parsing. The idea is that any operation signature Γ gives rise to a predicate
signature Γ ∗ by forgetting the input arity parts in the entire operation arities.
Then any Γ -term becomes a Γ ∗-sketch [6]. Parsing does the inverse: given an
Γ ∗-sketch, it tries to convert it into an Γ -term. In these papers, graph terms are
defined as trees labeled by diagrams respecting operation arities. In the present
paper, we are more interested in the entire object of graph term algebra and
its universal properties rather than in the notion of a single graph term. Nei-
ther of the papers above formally defined the graph term algebra and proved its
universal properties.

Injective graph transformation rules have been studied extensively by
Hartmut Ehrig and his co-authors (see [7]). The special feature of injective rules,
elucidated in the paper, may shed new light on the “nature” of those rules.

6 Conclusion and Future Work

In the paper, we extended the classical construction of term algebra for opera-
tions over sets to the case of diagrammatic operations over graphs. We showed
that any graph term algebra freely generated by applying graph operations to
a given graph of variables is indeed free: it possesses the respective universal
property in the category of graph algebras. This basic result shows that our
definitions of graph operations and graph algebras work as we wanted, i.e., in
parallel with the ordinary algebra case. Moreover, this result hopefully paves a
way to a wider generalization of the core Universal Algebra framework for graph
operations and graph algebras. In more detail, we aim at defining congruence
relations, quotients and epi-mono factorizations for graph algebras, thus building
what we could call Graph-based Universal Algebra. More abstractly, it would also
be interesting to extend our result in [6] concerning institutions of generalized
sketches to any of the envisaged logical extensions.

We see other interesting and useful extensions of the framework.

Typing. The step from unsorted to many-sorted algebras is relatively straight-
forward. In the same way, we see no principle problems to extend the framework,
presented in this paper, to typed graphs [7]. This extension will be necessary to
meet the situations in applications (compare [3,12–14]).

Term Language. In the paper we considered two roles of ordinary terms and
their extension for graph algebras. These two roles are (a) to denote elements in

330 U. Wolter et al.

free algebras and (b) to provide induction/recursion schemes for evaluating the
elements of free algebras in arbitrary algebras. However, terms are also used (c)
to denote composed/derived operations in algebras. This role provides the foun-
dation for functorial semantics and thus for a categorical approach to Universal
Algebra. By extending the approach in [2], we plan to specify this role in the
setting of graph algebras too.

From Graphs to Presheaf Toposes. To meet the spirit of the Festschrift,
in the paper we focused on graph-based structures, which have been the basis
for research on graph transformations in Hartmut’s group for decades [7]. The
category of graphs, however, is a very simple instance of a quite general concept
of a presheaf topos that encompasses 2-graphs, Petri nets, attributed graphs
[7], and many other structures employed in computer science. There should be
no principle problems to extend the definitions and results of the paper to the
broader class of presheaf topoi.

References

1. Cadish, B., Diskin, Z.: Heterogeneous view integration via sketches and equations.
In: Raś, Z.W., Michalewicz, M. (eds.) ISMIS 1996. LNCS, vol. 1079, pp. 603–612.
Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-61286-6 184

2. Claßen, I., Große-Rhode, M., Wolter, U.: Categorical concepts for parameterized
partial specifications. Math. Struct. Comput. Sci. 5(2), 153–188 (1995). https://
doi.org/10.1017/S0960129500000700

3. Diskin, Z.: Databases as diagram algebras: specifying queries and views via the
graph-based logic of sketches. Technical report 9602, Frame Inform Systems, Riga,
Latvia (1996).http://www.cs.toronto.edu/zdiskin/Pubs/TR-9602.pdf

4. Diskin, Z.: Towards algebraic graph-based model theory for computer science. Bull.
Symb. Log. 3, 144–145 (1997)

5. Diskin, Z., Cadish, B.: A graphical yet formalized framework for specifying view
systems. In: First East-European Symposium on Advances in Databases and Infor-
mation Systems, pp. 123–132. Nevsky Dialect (1997)

6. Diskin, Z., Wolter, U.: A diagrammatic logic for object-oriented visual modeling.
ENTCS 203(6), 19–41 (2008). https://doi.org/10.1016/j.entcs.2008.10.041

7. Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic Graph
Transformations. EATCS Monographs on Theoretical Computer Science. Springer,
Heidelberg (2006). https://doi.org/10.1007/3-540-31188-2

8. Ehrig, H., Mahr, B.: Fundamentals of Algebraic Specification 1: Equations and
Initial Semantics. EATCS Monographs on Theoretical Computer Science, vol. 6.
Springer, Heidelberg (1985). https://doi.org/10.1007/978-3-642-69962-7

9. Ehrig, H., Mahr, B.: Fundamentals of Algebraic Specification 2: Module Specifi-
cations and Constraints. EATCS Monographs on Theoretical Computer Science,
vol. 21. Springer, Heidelberg (1990). https://doi.org/10.1007/978-3-642-61284-8

10. Mac Lane, S.: Categories for the Working Mathematician, 2nd edn. Springer,
New York (1978). https://doi.org/10.1007/978-1-4757-4721-8

11. Makkai, M.: Generalized sketches as a framework for completeness theorems. J.
Pure Appl. Algebra 115, 49–79, 179–212, 214–274 (1997)

https://doi.org/10.1007/3-540-61286-6_184
https://doi.org/10.1017/S0960129500000700
https://doi.org/10.1017/S0960129500000700
http://www.cs.toronto.edu/zdiskin/Pubs/TR-9602.pdf
https://doi.org/10.1016/j.entcs.2008.10.041
https://doi.org/10.1007/3-540-31188-2
https://doi.org/10.1007/978-3-642-69962-7
https://doi.org/10.1007/978-3-642-61284-8
https://doi.org/10.1007/978-1-4757-4721-8

Graph Operations and Free Graph Algebras 331

12. Mantz, F., Taentzer, G., Lamo, Y., Wolter, U.: Co-evolving meta-models and their
instance models: a formal approach based on graph transformation. Sci. Comput.
Program. 104, 2–43 (2015). https://doi.org/10.1016/j.scico.2015.01.002

13. Rossini, A., Rutle, A., Lamo, Y., Wolter, U.: A formalisation of the copy-modify-
merge approach to version control in MDE. J. Log. Algebraic Programm. 79(7),
636–658 (2010). https://doi.org/10.1016/j.jlap.2009.10.003

14. Rutle, A., Rossini, A., Lamo, Y., Wolter, U.: A formal approach to the specification
and transformation of constraints in MDE. J. Log. Algebraic Programm. 81(4),
422–457 (2012). https://doi.org/10.1016/j.jlap.2012.03.006

https://doi.org/10.1016/j.scico.2015.01.002
https://doi.org/10.1016/j.jlap.2009.10.003
https://doi.org/10.1016/j.jlap.2012.03.006

	Graph Operations and Free Graph Algebras
	1 Introduction
	2 Background: Algebras and Term Algebras
	3 From Algebras to Graph Algebras
	4 From Terms to Graph Terms
	5 Related Work
	6 Conclusion and Future Work
	References

