
Towards the Automated Generation
of Consistent, Diverse, Scalable and Realistic

Graph Models

Dániel Varró1,2,3 , Oszkár Semeráth1,2(B) , Gábor Szárnyas1,2 ,
and Ákos Horváth1,4

1 Budapest University of Technology and Economics, Budapest, Hungary
{varro,semerath,szarnyas,ahorvath}@mit.bme.hu

2 MTA-BME Lendület Research Group on Cyber-Physical Systems,
Budapest, Hungary

3 Department of Electrical and Computer Engineering,
McGill University, Montreal, Canada

4 IncQuery Labs Ltd., Budapest, Hungary

Abstract. Automated model generation can be highly beneficial for
various application scenarios including software tool certification, vali-
dation of cyber-physical systems or benchmarking graph databases to
avoid tedious manual synthesis of models. In the paper, we present a
long-term research challenge how to generate graph models specific to a
domain which are consistent, diverse, scalable and realistic at the same
time.

We provide foundations for a class of model generators along a refine-
ment relation which operates over partial models with 3-valued repre-
sentation and ensures that subsequently derived partial models preserve
the truth evaluation of well-formedness constraints in the domain. We
formally prove completeness, i.e. any finite instance model of a domain
can be generated by model generator transformations in finite steps and
soundness, i.e. any instance model retrieved as a solution satisfies all
well-formedness constraints. An experimental evaluation is carried out
in the context of a statechart modeling tool to evaluate the trade-off
between different characteristics of model generators.

Keywords: Automated model generation · Partial models
Refinement

1 Introduction

Smart and safe cyber-physical systems [16,54,69,93] are software-intensive
autonomous systems that largely depend on the context in which they operate,
and frequently rely upon intelligent algorithms to adapt to new contexts on-the-
fly. However, adaptive techniques are currently avoided in many safety-critical
systems due to major certification issues. Automated synthesis of prototypical
c© Springer International Publishing AG, part of Springer Nature 2018
R. Heckel and G. Taentzer (Eds.): Ehrig Festschrift, LNCS 10800, pp. 285–312, 2018.
https://doi.org/10.1007/978-3-319-75396-6_16

http://orcid.org/0000-0002-8790-252X
http://orcid.org/0000-0002-3592-5105
http://orcid.org/0000-0001-8233-4431
http://orcid.org/0000-0003-3545-3694

286 D. Varró et al.

test contexts [58] aims to systematically derive previously unanticipated contexts
for assurance of such smart systems in the form of graph models. Such prototype
contexts need to be consistent, i.e. they need to fulfill certain well-formedness
(consistency) constraints when synthesizing large and realistic environments.

In many design and verification tools used for engineering CPSs, system
models are frequently represented as typed and attributed graphs. There has
been an increasing interest in model generators to be used for validating, test-
ing or benchmarking design tools with advanced support for queries and trans-
formations [4,6,42,92]. Qualification of design and verification tools is necessi-
tated by safety standards (like DO-178C [89], or ISO 26262 [43]) in order to
assure that their output results can be trusted in safety-critical applications.
However, tool qualification is extremely costly due to the lack of effective best
practices for validating the design tools themselves. Additionally, design-space
exploration [47,57,66] necessitates to automatically derive different solution can-
didates which are optimal w.r.t. certain objectives for complex allocation prob-
lems. For testing and DSE purposes, diverse models need to be synthesized where
any pairs of models are structurally very different from each other in order to
achieve high coverage or a diverse solution space.

Outside the systems engineering domain, many performance benchmarks for
advanced relational databases [26], triple stores and graph databases [13,60,80],
or biochemical applications [36,99] also rely on the availability of extremely large
and scalable generators of graph models.

Since real models created by engineers are frequently unavailable due to the
protection of intellectual property rights, there is an increasing need of realistic
models which have similar characteristics to real models. However, these models
should be domain-specific, i.e. graphs of biomedical systems are expected to be
very different from graphs of social networks or software models. An engineer
can easily distinguish an auto-generated model from a manually designed model
by inspecting key attributes (e.g. names), but the same task becomes more chal-
lenging if we abstract from all attributes and inspect only the (typed) graph
structure. While several graph metrics have been proposed [10,12,44,68], the
characterization of realistic models is a major challenge [91].

As a long-term research challenge, we aim at automatically generating
domain-specific graph models which are simultaneously scalable, realistic, consis-
tent and diverse. In the paper, we precisely formulate the model generation chal-
lenge for the first time (Sect. 2). Then in Sect. 3, we revisit the formal foundations
of partial models and well-formedness constraints captured by graph patterns.
In Sect. 4, we propose a refinement calculus for partial models as theoretical
foundation for graph model generation, and a set of specific refinement opera-
tions as novel contributions. Moreover, we precisely formulate certain soundness
and completeness properties of this refinement calculus.1 In addition, we carry
out an experimental evaluation of some existing techniques and tools in Sect. 5

1 The authors’ copy of this paper is available at https://inf.mit.bme.hu/research/
publications/towards-model-generation together with the proofs of theorems pre-
sented in Sect. 4.

https://inf.mit.bme.hu/research/publications/towards-model-generation
https://inf.mit.bme.hu/research/publications/towards-model-generation

Towards the Automated Generation of Graph Models 287

to assess the trade-off between different characteristics (e.g. diverse vs. realis-
tic, consistent vs. diverse, diverse vs. consistent and consistent vs. scalable) of
model generation. Finally, related work is discussed w.r.t. the different properties
required for model generation in Sect. 6.

2 The Graph Model Generation Challenge

A domain specification (or domain-specific language, DSL) is defined by a meta-
model MM which captures the main concepts and relations in a domain, and
specifies the basic graph structure of the models. In addition, a set of well-
formedness constraints WF = {φ1, . . . , φn} may further restrict valid domain
models by extra structural restrictions. Furthermore, we assume that editing
operations of the domain are also defined by a set of rules OP .

Informally, the automated model generation challenge is to derive a set of
instance models where each Mi conforms to a metamodel MM . A model gen-
erator Gen �→ {Mi} derives a set (or sequence) of models along a derivation
sequence M0

op1,...,opk−−−−−−→ Mi starting from (a potentially empty) initial model M0

by applying some operations opj from OP at each step. Ideally, a single model
Mi or a model generator Gen should satisfy the following requirements:

– Consistent (CON): A model Mi is consistent if it satisfies all constraints
in WF (denoted by Mi |= WF). A model generator Gen is consistent, if it
is sound (i.e. if a model is derivable then it is consistent) and complete (i.e.
all consistent models can be derived).

– Diverse (DIV): The diversity of a model Mi is defined as the number of
(direct) types used from its MM : Mi is more diverse than Mj if more types
of MM are used in Mi than in Mj . A model generator Gen is diverse if
there is a designated distance between each pairs of models Mi and Mj :
dist(Mi,Mj) > D.

– Scalable (SCA): A model generator Gen is scalable in size if the size of
Mi is increasing exponentially #(Mi+1) ≥ 2 · #(Mi), thus a single model Mi

can be larger than a designated model size #(Mi) > S. A model generator
Gen is scalable in quantity if the generation of Mj (of similar size) does
not take significantly longer than the generation of any previous model Mi:
time(Mj) < max0≤i<j{time(Mi)} · T (for some constant T).

– Realistic (REA): A generated model is (structurally) realistic if it cannot
be distinguished from the structure of a real model after all text and values
are removed (by considering them irrelevant). A model generator is realistic
w.r.t. some graph metrics [91] and a set of real models {RMi} if the evaluation
of the metrics for the real and the generated set of models has similar values:
|metr({RMi}) − metr({Mi})| < R.

Note that we intentionally leave some metrics metr and distance functions
dist open in the current paper as their precise definitions may either be domain-
specific or there are no guidelines which ones are beneficial in practice.

288 D. Varró et al.

Each property above is interesting in itself, i.e. it has been addressed in
numerous papers, and used in at least one industrial application scenario. More-
over, similar properties might be defined in the future. However, the grand chal-
lenge is to develop an automated model generator which simultaneously satisfies
multiple (ideally, all four) properties. For instance, a model generator for bench-
marking purposes needs to be scalable, realistic and consistent, while a test
model generator needs to be diverse, consistent (or intentionally faulty), and
scalable in quantity. However, existing model generation approaches developed
in different research areas usually support one (or rarely at most two) of these
properties.

Such a multi-purpose model generator is out of scope also for the current
paper. In fact, as a novel contribution, we provide precise theoretical foundations
for a graph model generator that is scalable and consistent based on a refinement
calculus. Our specific focus is motivated by a novel empirical evaluation to be
reported in Sect. 5 which states that consistency is a prerequisite for the synthesis
of both diverse and realistic models.

3 Preliminaries

We illustrate automated model generation in the context of Yakindu Statecharts
Tools [101], which is an industrial DSL developed by Itemis AG for the develop-
ment of reactive, event-driven systems using statecharts captured in a combined
graphical and textual syntax. Yakindu supports validation of WF constraints,
simulation and code generation from statechart models. We first revisit the for-
malization of the partial models and WF-constraints as defined in [85].

3.1 Metamodels and Instance Models

Formally, a metamodel defines a vocabulary Σ = {C1, . . . , Cn, R1, . . . , Rm,∼}
where a unary predicate symbol Ci (1 ≤ i ≤ n) is defined for each class (node
type), and a binary predicate symbol Rj (1 ≤ j ≤ m) is defined for each reference
(edge type). The index of a predicate symbol refers to the corresponding meta-
model element. The binary ∼ predicate is defined as an equivalence relation over
objects (nodes) to denote if two objects can be merged. For space considerations,
we omit the precise handling of attributes from this paper as none of the four
key properties depend on attributes. For metamodels, we use the notations of
the Eclipse Modeling Framework (EMF) [90], but our concepts could easily be
adapted to other frameworks of typed and attributed graphs such as [21,28].

An instance model is a 2-valued logic structure M = 〈ObjM , IM 〉 over Σ
where ObjM = {o1, . . . , on} (n ∈ Z

+) is a finite set of individuals (objects) in
the model (where #(M) = |ObjM | = n denotes the size of the model) and IM

is a 2-valued interpretation of predicate symbols in Σ defined as follows (where
ok and ol are objects from ObjM with 1 ≤ k, l ≤ n):

– Type predicates: the 2-valued interpretation of a predicate symbol Ci in M
(formally, IM (Ci) : ObjM → {1, 0}) evaluates to 1 if object ok is instance of
class Ci (denoted by [[Ci(ok)]]

M = 1), and evaluates to 0 otherwise.

Towards the Automated Generation of Graph Models 289

– Reference predicates: the 2-valued interpretation of a predicate sym-
bol Rj in M (formally, IM (Rj) : ObjM × ObjM → {1, 0}) evaluates to 1
if there exists an edge (link) of type Rj from ok to ol in M denoted as
[[Rj(ok, ol)]]

M = 1, and evaluates to 0 otherwise.
– Equivalence predicate: the 2-valued interpretation of a predicate symbol

∼ in M (formally, IM (∼) : ObjM × ObjM → {1, 0}) evaluates to 1 for any
object ok, i.e. [[ok ∼ ok]]

M = 1, and evaluates to 0 for any different pairs of
objects, i.e. [[ok ∼ ol]]

M = 0, if ok
= ol. This equivalence predicate is rather
trivial for instance models but it will be more relevant for partial models.

3.2 Partial Models

Partial models [31,46] represent uncertain (possible) elements in instance mod-
els, where one partial model represents a set of concrete instance models. In this
paper, 3-valued logic [48] is used to explicitly represent unspecified or unknown
properties of graph models with a third 1/2 value (beside 1 and 0 which stand
for true and false) in accordance with [76,85].

A partial model is a 3-valued logic structure P = 〈ObjP , IP 〉 of Σ where
ObjP = {o1, . . . , on} (n ∈ Z

+) is a finite set of individuals (objects) in the model,
and IP is a 3-valued interpretation for all predicate symbols in Σ defined below.
The 3-valued truth evaluation of the predicates in a partial model P will be
denoted respectively as [[Ci(ok)]]

P , [[Rj(ok, ol)]]
P , [[ok ∼ ol]]

P .

– Type predicates: IP gives a 3-valued interpretation for each class symbol
Ci in Σ: IP (Ci) : ObjP → {1, 0, 1/2}, where 1, 0 and 1/2 means that it is true,
false or unspecified whether an object is an instance of a class Ci.

– Reference predicates: IP gives a 3-valued interpretation for each reference
symbol Rj in Σ: IP (Rj) : ObjP × ObjP → {1, 0, 1/2}, where 1, 0 and 1/2
means that it is true, false or unspecified whether there is a reference of type
Rj between two objects.

– Equivalence predicate: IP gives a 3-valued interpretation for the ∼ relation
between the objects IP (∼) : ObjP × ObjP → {1, 0, 1/2}.
A predicate ok ∼ ol between two objects ok and ol is interpreted as follows:

• If [[ok ∼ ol]]
P = 1 then ok and ol are equal and they can be merged;

• If [[ok ∼ ol]]
P = 1/2 then ok and ol may be equal and may be merged;

• If [[ok ∼ ol]]
P = 0 then ok and ol are different objects in the instance

model, thus they cannot be merged.
A predicate ok ∼ ok for any object ok (as a self-edge) means the following:

• If [[ok ∼ ok]]
P = 1 then ok is a final object which cannot be further split

to multiple objects;
• If [[ok ∼ ok]]

P = 1/2 then ok is a multi-object which may represent a set
of objects.

The traditional properties of the equivalence relation ∼ are interpreted as:
• ∼ is a symmetric relation: [[ok ∼ ol]]

P = [[ol ∼ ok]]
P ;

• ∼ is a reflexive relation: [[ok ∼ ok]]
P

> 0;

290 D. Varró et al.

• ∼ is a transitive relation: [[ok ∼ ol ∧ ol ∼ om ⇒ ok ∼ om]]P > 0 which
prevents that [[ok ∼ ol]]

P = 1, [[ol ∼ om]]P = 1 but [[ol ∼ om]]P = 0.

Informally, this definition of partial models is very general, i.e. it does not
impose any further restriction imposed by a particular underlying metamodeling
technique. For instance, in case of EMF, each object may have a single direct type
and needs to be arranged into a strict containment hierarchy while graphs of the
semantic web may be flat and nodes may have multiple types. Such restrictions
will be introduced later as structural constraints. Mathematically, partial models
show close resemblance with graph shapes [75,76].

If a 3-valued partial model P only contains 1 and 0 values, and there is no
∼ relation between different objects (i.e. all equivalent nodes are merged), then
P also represents a concrete instance model M .

Example 1. Figure 1 shows a metamodel extracted from Yakindu statecharts
where Regions contain Vertexes and Transitions (leading from a source ver-
tex to a target vertex). An abstract state Vertex is further refined into States
and Entry states where States are further refined into Regions.

Fig. 1. Metamodel extract of Yakindu statecharts Fig. 2. Partial models

Figure 2 illustrates two partial models: P4, P12 (to be derived by the refine-
ment approach in Sect. 4). The truth value of the type predicates are denoted
by labels on the nodes, where 0 values are omitted. Reference predicate values
1 and 1/2 are visually represented by edges with solid and dashed lines, respec-
tively, while missing edges between two objects represent 0 values for a predicate.
Finally, uncertain 1/2 equivalences are marked by dashed lines with an ∼ symbol,
while certain equivalence self-loops on objects are omitted.

Partial model P4 contains one (concrete) Region r, one State s, and some
other objects collectively represented by a single node new3. Object s is both
of type State and Vertex, while new3 represents objects with multiple possible
types. Object s is linked from r via a vertices edge, and there are other possible
references between r and new3. Partial model P12, which is a refinement of P4,
has no uncertain elements, thus it is also a concrete instance model M .

Towards the Automated Generation of Graph Models 291

3.3 Graph Patterns as Well-Formedness Constraints

In many industrial modeling tools, complex structural WF constraints are cap-
tured either by OCL constraints [70] or by graph patterns (GP) [11,49,67]. Here,
we use a tool-independent first-order graph logic representation (which was influ-
enced by [76,98] and is similar to [85]) that covers the key features of several
existing graph pattern languages and a first-order logic (FOL) fragment of OCL.

Syntax. A graph pattern (or formula) is a first order logic (FOL) formula
ϕ(v1, . . . , vn) over (object) variables. A graph pattern ϕ can be inductively con-
structed (see Fig. 3) by using atomic predicates of partial models: C(v), R(v1, v2),
v1 ∼ v2, standard FOL connectives ¬, ∨, ∧, and quantifiers ∃ and ∀. A simple
graph pattern only contains (a conjunction of) atomic predicates.

Semantics. A graph pattern ϕ(v1, . . . , vn) can be evaluated on partial model
P along a variable binding Z, which is a mapping Z : {v1, . . . , vn} → ObjP
from variables to objects in P . The truth value of ϕ can be evaluated over a
partial model P and mapping Z (denoted by [[ϕ(v1, . . . , vn)]]PZ) in accordance
with the semantic rules defined in Fig. 3. Note that min and max takes the
numeric minimum and maximum values of 0, 1/2 and 1 with 0 ≤ 1/2 ≤ 1, and
the rules follow 3-valued interpretation of standard FOL formulae as defined in
[76,85].

A variable binding Z is called a match if the pattern ϕ is evaluated to 1
over P , formally [[ϕ(v1, . . . , vn)]]PZ = 1. If there exists such a variable bind-
ing Z, then we may shortly write [[ϕ]]P = 1. Open formulae (with one or
more unbound variables) are treated by introducing an (implicit) existential
quantifier over unbound variables to handle them similarly to graph formu-
lae for regular instance models. Thus, in the sequel, [[ϕ(v1, . . . , vn)]]PZ = 1 if
[[∃v1, . . . ,∃vn : ϕ(v1, . . . , vn)]]P = 1 where the latter is now a closed formula
without unbound variables. Similarly, [[ϕ]]P = 1/2 means that there is a poten-
tial match where ϕ evaluates to 1/2, i.e. [[∃v1, . . . ,∃vn : ϕ(v1, . . . , vn)]]P = 1/2,
but there is no match with [[ϕ(v1, . . . , vn)]]PZ = 1. Finally, [[ϕ]]P = 0 means that
there is surely no match, i.e. [[∃v1, . . . ,∃vn : ϕ(v1, . . . , vn)]]P = 0 for all vari-
able bindings. Here ∃v1, . . . ,∃vn : ϕ(v1, . . . , vn) abbreviates ∃v1 : (. . . ,∃vn :
ϕ(v1, . . . , vn)).

The formal semantics of graph patterns defined in Fig. 3 can also be evalu-
ated on regular instance models with closed world assumption. Moreover, if a
partial model is also a concrete instance model, the 3-valued and 2-valued truth
evaluation of a graph pattern is unsurprisingly the same, as shown in [85].

Proposition 1. Let P be a partial model which is simultaneously an instance
model, i.e. P = M . Then the 3-valued evaluation of any ϕ on P and its 2-valued
evaluation on M is identical, i.e. [[ϕ]]PZ = [[ϕ]]MZ along any variable binding Z.

292 D. Varró et al.

Fig. 3. Semantics of graph patterns (predicates) Fig. 4. Malformed model

Graph Patterns as WF Constraints. Graph patterns are frequently used for
defining complex structural WF constraints and validation rules [96]. Those con-
straints are derived from two sources: the metamodel (or type graph) defines core
structural constraints, and additional constraints of a domain can be defined by
using nested graph conditions [40], OCL [70] or graph pattern languages [96].

When specifying a WF constraint φ by a graph pattern ϕ, pattern ϕ cap-
tures the malformed case by negating φ, i.e. ϕ = ¬φ. Thus a graph pattern match
detects a constraint violation. Given a set of graph patterns {ϕ1, . . . , ϕn} con-
structed that way, a consistent instance model requires that no graph pattern
ϕi has a match in M . Thus any match Z for any pattern ϕi with [[ϕi]]

M
Z = 1 is a

proof of inconsistency. In accordance with the consistency definition M |= WF
of Sect. 2, WF can defined by graph patterns as WF = ¬ϕ1 ∧ . . . ∧ ¬ϕn.

Note that consistency is defined above only for instance models, but not for
partial models. The refinement calculus to be introduced in Sect. 4 ensures that,
by evaluating those graph patterns over partial models, the model generation
will gradually converge towards a consistent instance model.

Example 2. The violating cases of two WF constraints checked by the Yakindu
tool can be captured by graph patterns as follows:

– incomingToEntry(v) : Entry(v) ∧ ∃t : target(t, v)
– noEntryInRegion(r) : Region(r) ∧ ∀v : ¬(vertices(r, v) ∧ Entry(v))

Both constraints are satisfied in instance model P12 as the corresponding
graph patterns have no matches, thus P12 is a consistent result of model gen-
eration. On the other hand, P10 in Fig. 4 is a malformed instance model that
violates constraint incomingToEntry(v) along object e:

[[incomingToEntry(v)]]P10
v �→e = 1 and [[noEntryInRegion(r)]]P10 = 0

While graph patterns can be easily evaluated on concrete instance models,
checking them over a partial model is a challenging task, because one partial
model may represent multiple concretizations. It is shown in [85] how a graph
pattern ϕ can be evaluated on a partial model P with 3-valued logic and open-
world semantics using a regular graph query engine by proposing a constraint

Towards the Automated Generation of Graph Models 293

rewriting technique. Alternatively, a SAT-solver based approach can be used as
in [24,31] or the general or initial satisfaction can be defined for positive nested
graph constraints as in [41,82].

4 Refinement and Concretization of Partial Models

Model generation is intended to be carried out by a sequence of refinement
steps which starts from a generic initial partial model and gradually derives a
concrete instance model. Since our focus is to derive consistent models, we aim
at continuously ensuring that each intermediate partial model can potentially
be refined into a consistent model, thus a partial model should be immediately
excluded if it cannot be extended to a well-formed instance model.

4.1 A Refinement Relation for Partial Model Generation

In our model generation, the level of uncertainty is aimed to be reduced step by
step along a refinement relation which results in partial models that represent
a fewer number of concrete instance models than before. In a refinement step,
predicates with 1/2 values can be refined to either 0 or 1, but predicates already
fixed to 1 or 0 cannot be changed any more. This imposes an information ordering
relation X � Y where either X = 1/2 and Y takes a more specific 1 or 0, or
values of X and Y remain equal: X � Y := (X = 1/2) ∨ (X = Y).

Refinement from partial model P to Q (denoted by P � Q) is defined as a
function refine : ObjP → 2ObjQ which maps each object of a partial model P to
a non-empty set of objects in the refined partial model Q. Refinement respects
the information ordering of type, reference and equivalence predicates for each
p1, p2 ∈ ObjP and any q1, q2 ∈ ObjQ with q1 ∈ refine(p1), q2 ∈ refine(p2):

– for each class Ci: [[Ci(p1)]]
P � [[Ci(q1)]]

Q;
– for each reference Rj : [[Rj(p1, p2)]]

P � [[Rj(q1, q2)]]
Q;

– [[p1 ∼ p2]]
P � [[q1 ∼ q2]]

Q.

At any stage during refinement, a partial model P can be concretized into an
instance model M by rewriting all class type and reference predicates of value
1/2 to either 1 or 0, and setting all equivalence predicates with 1/2 to 0 between
different objects, and to 1 on a single object. But any concrete instance model
will still remain a partial model as well.

Example 3. Figure 5 depicts two sequences of partial model refinement steps
deriving two instance models P10 (identical to Fig. 4) and P12 (bottom of Fig. 2):
P0 � P4 � P5 � P6 � P7 � P8 � P9 � P10 and P0 � P4 � P5 � P6 � P7 �
P8 � P11 � P12.

Taking refinement step P4 � P5 as an illustration, object new3 (in P4) is
refined into e and new4 (in P5) where [[e ∼ new4]]P5 = 0 to represent two different
objects in the concrete instance models. Moreover, all incoming and outgoing
edges of new3 are copied in e and new4. The final refinement step P11 � P12

concretizes uncertain source and target references into concrete references.

294 D. Varró et al.

Fig. 5. Refinement of partial models

A model generation process can be initiated from an initial partial model
provided by the user, or from the most generic partial model P0 from which
all possible instance models can be derived via refinement. Informally, this P0 is
more abstract than regular metamodels or type graphs as it only contains a single
node as top-level class. P0 contains one abstract object where all predicates are
undefined, i.e. P0 = 〈ObjP0

, IP0〉 where ObjP0
= {new} and IP0 is defined as:

1. for all class predicates Ci: [[Ci(new)]]P0 = 1/2;
2. for all reference predicates Rj : [[Rj(new ,new)]]P0 = 1/2;
3. [[new ∼ new]]P0 = 1/2 to represent multiple objects of any instance model.

Our refinement relation ensures that if a predicate is evaluated to either 1 or
0 then its value will no longer change during further refinements as captured by
the following approximation theorem.

Theorem 1. Let P,Q be partial models with P � Q and ϕ be a graph pattern.

– If [[ϕ]]P = 1 then [[ϕ]]Q = 1; if [[ϕ]]P = 0 then [[ϕ]]Q = 0 (called under-
approximation).

– If [[ϕ]]Q = 0 then [[ϕ]]P ≤ 1/2; if [[ϕ]]Q = 1 then [[ϕ]]P ≥ 1/2 (called over-
approximation).

Towards the Automated Generation of Graph Models 295

If model generation is started from P0 where all (atomic) graph patterns
evaluate to 1/2, this theorem ensures that if a WF constraint ϕ is violated in a
partial model P then it can never be completed to a consistent instance model.
Thus the model generation can terminate along this path and a new refinement
can be explored after backtracking. This theorem also ensures that if we evaluate
a constraint ϕ on a partial model P and on its refinement Q, the latter will be
more precise. In other terms, if [[ϕ]]P = 1 (or 0) in a partial model P along
some sequence of refinement steps, then under-approximation ensures that its
evaluation will never change again along that (forward) refinement sequence, i.e.
[[ϕ]]Q = 1 (or 0). Similarly, when proceeding backwards in a refinement chain,
over-approximation ensures monotonicity of the 3-valued constraint evaluation
along the entire chain. Altogether, we gradually converge to the 2-valued truth
evaluation of the constraint on an instance model where less and less constraints
take the 1/2 value. However, a refinement step does not guarantee in itself that
exploration is progressing towards a consistent model, i.e. there may be infinite
chains of refinement steps which never derive a concrete instance model.

4.2 Refinement Operations for Partial Models

We define refinement operations Op to refine partial models by simultaneously
growing the size of the models while reducing uncertainty in a way that each
finite and consistent instance model is guaranteed to be derived in finite steps.

– concretize(p, val): if the atomic predicate p (which is either Ci(o), Rj(ok, ol)
or ok ∼ ol) has a 1/2 value in the pre-state partial model P , then it can be
refined in the post-state Q to val which is either a 1 or 0 value. As an effect
of the rule, the level of uncertainty will be reduced.

– splitAndConnect(o,mode): if o is an object with [[o ∼ o]]P = 1/2 in the pre-
state, then a new object new is introduced in the post state by splitting o in
accordance with the semantics defined by the following two modes:

• at-least-two: [[new ∼ new]]Q = 1/2, [[o ∼ o]]Q = 1/2, [[new ∼ o]]Q = 0;
• at-most-two: [[new ∼ new]]Q = 1, [[o ∼ o]]Q = 1, [[new ∼ o]]Q = 1/2;

In each case, ObjQ = ObjP ∪ {new}, and we copy all incoming and outgo-
ing binary relations of o to new in Q by keeping their original values in P .
Furthermore, all class predicates remain unaltered.

On the technical level, these refinement operations could be easily captured
by means of algebraic graph transformation rules [28] over typed graphs. How-
ever, for efficiency reasons, several elementary operations may need to be com-
bined into compound rules. Therefore, specifying refinement operations by graph
transformation rules will be investigated in a future paper.

Example 4. Refinement P4 � P5 (in Fig. 5) is a result of applying refinement
operation splitAndConnect(o,mode) on object new3 and in at-least-two mode,
splitting new3 to e and new4 copying all incoming and outgoing references. Next,
in P6, the type of object e is refined to Entry and Vertex, the 1/2 equivalence is

296 D. Varró et al.

refined to 1, and references incompatible with Entry or Vertex are refined to 0.
Note that in P6 it is ensured that Region r has an Entry, thus satisfying WF con-
straint noEntryInRegion. In P7 the type of object new4 is refined to Transition,
the incompatible references are removed similarly, but the 1/2 self equivalence
remain unchanged. Therefore, in P8 object new4 can split into two separate
Transitions: t1 and t2 with the same source and target options. Refinement
P8 � P9 � P10 denotes a possible refinement path, where the target of t1 is
directed to an Entry, thus violating WF constraint incomingToEntry . Note that
this violation can be detected earlier in an unfinished partial model P9. Refine-
ment P11 � P12 denotes the consecutive application of six concretize(p, val)
operations on uncertain source and target edges leading out of t1 and t2 in
P11, resulting in a valid model.

Note that these refinement operations may result in a partial model that is
unsatisfiable. For instance, if all class predicates evaluate to 0 for an object o of
the partial model P , i.e. [[C(o)]]P = 0, then no instance models will correspond
to it as most metamodeling techniques require that each element has exactly or
at least one type. Similarly, if we violate the reflexivity of ∼, i.e. [[o ∼ o]]P = 0,
then the partial model cannot be concretized into a valid instance model. But at
least, one can show that these refinement operations ensure a refinement relation
between the partial models of its pre-state and post-state.

Theorem 2 (Refinement operations ensure refinement). Let P be a par-
tial model and op be a refinement operation. If Q is the partial model obtained
by executing op on P (formally, P

op−→ Q) then P � Q.

4.3 Consistency of Model Generation by Refinement Operations

Next we formulate and prove the consistency of model generation when it is
carried out by a sequence of refinement steps from the most generic partial model
P0 using the previous refinement operations. We aim to show soundness (i.e. if
a model is derivable along an open derivation sequence then it is consistent),
finite completeness (i.e. each finite consistent model can be derived along some
open derivation sequence), and a concept of incrementality.

Many tableaux based theorem provers build on the concept of closed branches
with a contradictory set of formulae. We adapt an analogous concept for closed
derivation sequences over graph derivations in [28]. Informally, refinement is not
worth being continued as a WF constraint is surely violated due to a match
of a graph pattern in case of a closed derivation sequence. Consequently, all
consistent instance models will be derived along open derivation sequences.

Definition 1 (Closed vs. open derivation sequence). A finite derivation
sequence of refinement operations op1; . . . ; opk leading from the most generic
partial model P0 to the partial model Pk (denoted as P0

op1;...;opk−−−−−−→ Pk) is closed
w.r.t. a graph predicate ϕ if ϕ has a match in Pk, formally, [[ϕ]]Pk = 1.

A derivation sequence is open if it is not closed, i.e. Pk is a partial model
derived by a finite derivation sequence P0

op1;...;opk−−−−−−→ Pk with [[ϕ]]Pk ≤ 1/2.

Towards the Automated Generation of Graph Models 297

Note that a single match of ϕ makes a derivation sequence to be closed,
while an open derivation sequence requires that [[ϕ]]Pk ≤ 1/2 which, by definition,
disallows a match with [[ϕ]]Pk ≤ 1.

Example 5. Derivation sequence P0
...−→ P9 depicted in Fig. 5 is closed for ϕ =

incomingToEntry(v) as the corresponding graph pattern has a match in P9, i.e.
[[incomingToEntry(v)]]P9

v �→e = 1. Therefore, P10 can be avoided as the same match
would still exist. On the other hand, derivation sequence P0

...−→ P11 is open for
ϕ = incomingToEntry(v) as incomingToEntry(v) is evaluated to 1/2 in all partial
models P0, . . . , P11.

As a consequence of Theorem 1, an open derivation sequence ensures that
any prefix of the same derivation sequence is also open.

Corollary 1. Let P0
op1;...;opk−−−−−−→ Pk be an open derivation sequence of refinement

operations w.r.t. ϕ. Then for each 0 ≤ i ≤ k, [[ϕ]]Pi ≤ 1/2.

The soundness of model generation informally states that if a concrete model
M is derived along an open derivation sequence then M is consistent, i.e. no
graph predicate of WF constraints has a match.

Corollary 2 (Soundness of model generation). Let P0
op1;...;opk−−−−−−→ Pk be a

finite and open derivation sequence of refinement operations w.r.t. ϕ. If Pk is a
concrete instance model M (i.e. Pk = M) then M is consistent (i.e. [[ϕ]]M = 0).

Effectively, once a concrete instance model M is reached during model gen-
eration along an open derivation sequence, checking the WF constraints on M
by using traditional (2-valued) graph pattern matching techniques ensures the
soundness of model generation as 3-valued and 2-valued evaluation of the same
graph pattern should coincide due to Proposition 1 and Theorem 1.

Next, we show that any finite instance model can be derived by a finite
derivation sequence.

Theorem 3 (Finiteness of model generation). For any finite instance
model M , there exists a finite derivation sequence P0

op1;...;opk−−−−−−→ Pk of refinement
operations starting from the most generic partial model P0 leading to Pk = M .

Our completeness theorem states that any consistent instance model is deriv-
able along open derivation sequences where no constraints are violated (under-
approximation). Thus it allows to eliminate all derivation sequences where an
graph predicate ϕ evaluates to 1 on any intermediate partial model Pi as such
partial model cannot be further refined to a well-formed concrete instance model
due to the properties of under-approximation. Moreover, a derivation sequence
leading to a consistent model needs to be open w.r.t. all constraints, i.e. refine-
ment can be terminated if any graph pattern has a match.

Theorem 4 (Completeness of model generation). For any finite and con-
sistent instance model M with [[ϕ]]M = 0, there exists a finite open derivation
sequence P0

op1;...;opk−−−−−−→ Pk of refinement operations w.r.t. ϕ starting from the
most generic partial model P0 and leading to Pk = M .

298 D. Varró et al.

Unsurprisingly, graph model generation still remains undecidable in general
as there is no guarantee that a derivation sequence leading to Pk where [[ϕ]]Pk =
1/2 can be refined later to a consistent instance model M . However, the graph
model finding problem is decidable for a finite scope, which is an a priori upper
bound on the size of the model. Informally, since the size of partial models is
gradually growing during refinement, we can stop if the size of a partial model
exceeds the target scope or if a constraint is already violated.

Theorem 5 (Decidability of model generation in finite scope). Given
a graph predicate ϕ and a scope n ∈ N, it is decidable to check if a concrete
instance model M exists with |ObjM | ≤ n where [[ϕ]]M = 0.

This finite decidability theorem is analogous with formal guarantees provided
by the Alloy Analyzer [94] that is used by many mapping-based model generation
approaches (see Sect. 6). Alloy aims to synthesize small counterexamples for a
relational specification, while our refinement calculus provides the same for typed
graphs without parallel edges for the given refinement operations.

However, our construction has extra benefits compared to Alloy (and other
SAT-solver based techniques) when exceeding the target scope. First, all candi-
date partial models (with constraints evaluated to 1/2) derived up to a certain
scope are reusable for finding consistent models of a larger scope, thus search
can be incrementally continued. Moreover, if a constraint violation is found with
a given scope, then no consistent models exist at all.

Corollary 3 (Incrementality of model generation). Let us assume that no
consistent models Mn exist for scope n, but there exists a larger consistent model
Mm of size m (where m > n) with [[ϕ]]M

m

= 0. Then Mm is derivable by a finite
derivation sequence Pn

i

opi+1;...;opk−−−−−−−−→ Pm
k where Pm

k = Mm starting from a partial
model Pn

i of size n.

Corollary 4 (Completeness of refutation). If all derivation sequences are
closed for a given scope n, but no consistent model Mn exists for scope n for
which [[ϕ]]M

n

= 0, then no consistent models exist at all.

While these theorems aim to establish the theoretical foundations of a model
generator framework, it provides no direct practical insight on the exploration
itself, i.e. how to efficiently provide derivation sequences that likely lead to con-
sistent models. Nevertheless, we have an initial prototype implementation of such
a model generator which is also used as part of the experimental evaluation.

5 Evaluation

As existing model generators have been dominantly focusing on a single challenge
of Sect. 2, we carried out an initial experimental evaluation to investigate how
popular strategies excelling in one challenge perform with respect to another
challenge. More specifically, we carried out this evaluation in the domain of
Yakindu statecharts to address four research questions:

Towards the Automated Generation of Graph Models 299

RQ1 Diverse vs. Realistic: How realistic are the models which are derived by
random generators that promise diversity?

RQ2 Consistent vs. Realistic: How realistic are the models which are derived by
logic solvers that guarantee consistency?

RQ3 Diverse vs. Consistent: How consistent are the models which are derived
by random generators?

RQ4 Consistent vs. Scalable: How scalable is it to evaluate consistency con-
straints on partial models?

Addressing these questions may help advancing future model generators by
identifying some strength and weaknesses of different strategies.

5.1 Setup of Experiments

Target Domain. We conducted measurements in the context of Yakindu state-
charts, see [2] for the complete measurement data. For that purpose, we extracted
the statechart metamodel of Fig. 1 directly from the original Yakindu metamodel.
Ten WF constraints were formalized as graph patterns based on the real valida-
tion rules of the Yakindu Statechart development environment.

Model Generator Approaches. For addressing RQ1-3, we used two different
model generation approaches: (1) the popular relational model finder Alloy Ana-
lyzer [94] which uses Sat4j [53] as a back-end SAT-solver, and (2) the Viatra
Solver, graph-based model generator which uses the refinement calculus presented
in the paper. We selected Alloy Analyzer as the primary target platform as it has
been widely used in mapping based generators of consistent models (see Sect. 6).

We operated these solvers in two modes: in consistent mode (WF), all derived
models need to satisfy all WF constraints of Yakindu statecharts, while in
metamodel-only mode (MM), generated models need to be metamodel compli-
ant, but then model elements are selected randomly. As such, we expect that this
set of models is diverse, but the fulfillment of WF constraints is not guaranteed.
To enforce diversity, we explicitly check that derived models are non-isomorphic.

Since mapping based approaches typically compile WF constraints into logic
formulae in order to evaluate them on partial models, we set up a simple measure-
ment to address RQ4 which did not involve model generation but only constraint
checking on existing instance models. This is a well-known setup for assessing
scalability of graph query techniques used in a series of benchmarking papers
[92,98]. So in our case, we encoded instance models as fully defined Alloy spec-
ifications using the mapping of [86], and checked if the constraints are satisfied
(without extending or modifying the statechart). As a baseline of comparison,
we checked the runtime of evaluating the same WF constraints on the same
models using an industrial graph query engine [97] which is known to scale well
for validation problems [92,98]. All measurements were executed on an average
desktop computer2.

2 CPU: Intel Core-i5-m310M, MEM: 16 GB, OS: Windows 10 Pro.

300 D. Varró et al.

Real Instance Models. To evaluate how realistic the synthetic model generators
are in case of RQ1-2, we took 1253 statecharts as real models created by under-
graduate students for a homework assignment. While they had to solve the same
modeling problem, the size of their models varied from 50 to 200 objects. For
RQ4, we randomly selected 300 statecharts from the homework assignments,
and evaluated the original validation constraints. Real models were filtered by
removing inverse edges that introduce significant noise to the metrics [91].

Generated Instance Models. To obtain comparable results, we generated four
sets of statechart models with a timeout of 1 min for each model but without
any manual domain-specific fine-tuning of the different solvers. We also check
that the generated models are non-isomorphic to assure sufficient diversity.

– Alloy (MM): 100 metamodel-compliant models with 50 objects using Alloy.
– Alloy (WF): 100 metamodel- and WF-compliant models with 50 objects using

Alloy (which was unable to synthesize larger models within 1 min).
– Viatra Solver (MM): 100 metamodel-compliant instance models with 100

objects using Viatra Solver.
– Viatra Solver (WF): 100 Metamodel- and WF-compliant instance models

with 100 objects using Viatra Solver.

Two multi-dimensional graph metrics are used to evaluate how realistic a
model generator is: (1) the multiplex participation coefficient (MPC) measures
how the edges of nodes are distributed along the different edge types, while (2)
pairwise multiplexity (Q) captures how often two different types of edges meet in
an object. These metrics were recommended in [91] out of over 20 different graph
metrics after a multi-domain experimental evaluation, for formal definitions of
the metrics, see [91]. Moreover, we calculate the (3) number of WF constraints
violated by a model as a numeric value to measure the degree of (in)consistency
of a model (which value is zero in case of consistent models).

5.2 Evaluation of Measurement Results

We plot the distribution functions of the multiple participation coefficient met-
ric in Fig. 6, and the pairwise multiplexity metric in Fig. 7. Each line depicts the
characteristics of a single model and model sets (e.g. “Alloy (MM)”, “Viatra
Solver (WF)”) are grouped together in one of the facets including the charac-
teristics of the real model set. For instance, the former metric tells that approx-
imately 65% of nodes in real statechart models (right facet in Fig. 6) have only
one or two types of incoming and outgoing edges while the remaining 35% of
nodes have edges more evenly distributed among different types.

Towards the Automated Generation of Graph Models 301

VIATRA Solver (MM) VIATRA Solver (WF)

Alloy (MM) Alloy (WF) Real

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00

0.00 0.25 0.50 0.75 1.00
0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

 M
ul

tip
le

x
Pa

rti
ci

pa
tio

n
C

oe
ffi

ci
en

t

category
Alloy (MM)
Alloy (WF)
Real
VIATRA Solver (MM)
VIATRA Solver (WF)

Fig. 6. Measurement results: Multiplex participation coefficient (MPC)

VIATRA Solver (MM) VIATRA Solver (WF)

Alloy (MM) Alloy (WF) Real

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00

0.00 0.25 0.50 0.75 1.00
0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

 P
ai

rw
is

e
M

ul
tip

le
xi

ty

category
Alloy (MM)
Alloy (WF)
Real
VIATRA Solver (MM)
VIATRA Solver (WF)

Fig. 7. Measurement results: Pairwise multiplexity (Q)

0

50

100

150

200

250

300

350

0 50 100 150 200 250

Ti
m

e
(s

)

Model Size (#Objects)

Valida�on by Alloy Valida�on by Graph Query Engine

Fig. 8. Measurement results: Time of consistency checks: Alloy vs. Viatra Solver

302 D. Varró et al.

Comparison of Distribution Functions. We use visual data analytics techniques
and the Kolmogorov-Smirnov statistic (KS) [55] as a distance measure of models
(used in [91]) to judge how realistic an auto-generated model is by comparing
the whole distributions of values (and not only their descriptive summary like
mean or variance) in different cases to the characteristics of real models. The
KS statistics quantifies the maximal difference between the distribution function
lines at a given value. It is sensitive to both shape and location differences: it
takes a 0 value only if the distributions are identical, while it is 1 if the values of
models are in disjunct ranges (even if their shapes are identical). For comparing
model generation techniques A and B we took the average value of the KS
statistics between each (A,B) pair of models that were generated by technique
A and B, respectively. The average KS values are shown in Fig. 9,3 where a
lower value denotes a more realistic model set.

Diverse vs. Realistic: For the models that are only metamodel-compliant, the
characteristics of the metrics for “Viatra Solver (MM)” are much closer to the
“Real” model set than those of the “Alloy (MM)” model set, for both graph
metrics (KS value of 0.27 vs. 0.95 for MPC and 0.38 vs. 0.88 for Q), thus more
realistic results were generated in the “Viatra Solver (MM)” case. However,
these plots also highlight that the set of auto-generated metamodel-compliant
models can be more easily distinguished from the set of real models as the plots of
the latter show higher variability. Since the diversity of each model generation
case is enforced (i.e. non-isomorphic models are dropped), we can draw as a
conclusion that a diverse metamodel-compliant model generator does not provide
any guarantees in itself on the realistic nature of the output model set. In fact,
model generators that simultaneously ensure diversity and consistency always
outperformed the random model generators for both solvers.

model set MPC Q
Alloy (MM) 0.95 0.88
Alloy (WF) 0.74 0.60
Viatra Solver (MM) 0.27 0.37
Viatra Solver (WF) 0.24 0.30

Fig. 9. Average Kolmogorov-Smirnov
statistics between the real and gener-
ated model sets.

Consistent vs. Realistic: In case of mod-
els satisfying WF constraints “Viatra
Solver (WF)” generated more realistic
results than “Alloy (WF)” according to
both metrics. The plots show mixed
results for differentiating between gener-
ated and realistic models. On the posi-
tive side, the shape of the plot of auto-
generated models is very close to that of
real models in case of the MPC metric
(Fig. 6) – statistically, they have a relatively low average KS value of 0.24. How-
ever, for the Q metric (Fig. 7), real models are still substantially different from
generated ones (average KS value of 0.3). Thus further research is needed to
investigate how to make consistent models more realistic.

3 Due to the excessive amount of homework models, we took a uniform random sample
of 100 models from that model set.

Towards the Automated Generation of Graph Models 303

Diverse vs. Consistent: We also calculated the average number of WF constraint
violations, which was 3.1 for the “Alloy (MM)” case and 9.75 for the “Viatra
Solver (MM)” case, while only 0.07 for real models. We observe that a diverse
set of randomly generated metamodel-compliant instance models do not yield
consistent models as some constraints will always be violated – which is not the
case for real statechart models. In other terms, the number of WF constraint
violations is also an important characteristic of realistic models which is often
overseen in practice. As a conclusion, a model generator should ensure consis-
tency prior to focusing on increasing diversity. Since humans dominantly come
up with consistent models, ensuring consistency for realistic models is a key
prerequisite.

Consistent vs. Scalable: The soundness of consistent model generation inherently
requires the evaluation of the WF constraints at least once for a candidate solu-
tion. Figure 8 depicts the validation time of randomly selected homework models
using Alloy and the VIATRA graph query engine w.r.t. the size of the instance
model (i.e. the number of the objects). For each model, the two validation tech-
niques made the same judgment (as a test for their correctness). Surprisingly, the
diagram shows that the Alloy Analyzer scales poorly for evaluating constraints
on medium-size graphs, which makes it unsuitable for generating larger models.
The runtime of the graph query engine was negligible at this scale as we expected
based on detailed previous benchmarks for regular graph pattern matching and
initial experiments for matching constraints over partial models [85].

While many existing performance benchmarks claim that they generate real-
istic models, most of them ignore WF constraints of the domain. According to our
measurements, it is a major drawback since real models dominantly satisfy WF
constraints while randomly generated models always violate some constraint.
This way, those model generators can hardly be considered realistic.

Threats to Validity. We carried out experiments only in the domain of stat-
echarts which limits the generalizability of our results. Since statecharts are a
behavioral modeling language, the characteristics of models (and thus the graph
metrics) would likely differ from e.g. static architectural DSLs. However, since
many of our experimental results are negative, it is unlikely that the Alloy gen-
erator would behave any better for other domains. It is a major finding that
while Alloy has been used as a back-end for mapping-based model generator
approaches, its use is not justified from a scalability perspective due to the lack
of efficient evaluation for complex structural graph constraints. It is also unlikely
that randomly generated metamodel-compliant models would be more realistic,
or more consistent in any other domains.

Concerning our real models, we included all the statecharts created by stu-
dents, which may be a bias since students who obtained better grades likely
produced better quality models. Thus, the variability of real statechart models
created by engineers may actually be smaller. But this would actually increase
the relative quality of models derived by Viatra Solver which currently differs

304 D. Varró et al.

Table 1. Characteristics of model generation approaches; +: feature provided, −:
feature not provided, 0: feature provided in some tools/cases

Logic
solvers

Random
generators

Network
graphs

Performance
benchmarks

Real
dataset

CON Model + − − + +

Complete 0 − − − −
DIV Model − + − − −

Set − + − − −
SCA In Size − + + + +

In Quantity − 0 + + −
REA Model − − − − +

Set − − − 0 +

from real models by providing a lower level of diversity (i.e. plots of pairwise
multiplicity are thicker for real models).

6 Related Work

We assess and compare how existing approaches address each challenge (Table 1).

Consistent Model Generators (CON): Consistent models can be synthesized as
a side effect of a verification process when aiming to prove the consistency of
a DSL specification. The metamodel and a set of WF constraints are captured
in a high-level DSL and logic formulae are generated as input to back-end logic
solvers. Approaches differ in the language used for WF constraints, OCL [18–20,
23,35,50–52,73,87,100], graph constraints [84,86], Java predicates [14] or custom
DSLs like Formula [46], Clafer [8] or Alloy [45]. They also differ in the solver
used in the background : graph transformation engines as in [100], SAT-solvers
[53] are used in [51,52], model finders like Kodkod [94] are target formalisms in
[5,23,50,87], first-order logic formulae are derived for SMT-solvers [65] in [73,84]
while CSP-solvers like [1] are targeted in [18,19] or other techniques [59,74].

Solver-based approaches excel in finding inconsistencies in specifications,
while the generated model is a proof of consistency. While SAT solvers can han-
dle specifications with millions of Boolean variables, all these mapping-based
techniques still suffer from severe scalability issues as the generated graphs may
contain less than 50–100 nodes. This is partly due to the fact that a Boolean
variable needs to be introduced for each potential edge in the generated model,
which blows up the complexity. Moreover, the output models are highly similar
to each other and lack diversity, thus they cannot directly be applied for testing
or benchmarking purposes.

Towards the Automated Generation of Graph Models 305

Diverse Model Generators (DIV): Diverse models play a key role in testing model
transformations and code generators. Mutation-based approaches [6,25,61] take
existing models and make random changes on them by applying mutation rules.
A similar random model generator is used for experimentation purposes in [9].
Other automated techniques [15,29] generate models that only conform to the
metamodel. While these techniques scale well for larger models, there is no guar-
antee whether the mutated models satisfy WF constraints.

There is a wide set of model generation techniques which provide cer-
tain promises for test effectiveness. White-box approaches [37,38,62,83] rely on
the implementation of the transformation and dominantly use back-end logic
solvers, which lack scalability when deriving graph models. Black-box approaches
[17,34,39,56,63] can only exploit the specification of the language or the trans-
formation, so they frequently rely upon contracts or model fragments. As a
common theme, these techniques may generate a set of simple models, and while
certain diversity can be achieved by using symmetry-breaking predicates, they
fail to scale for larger model sizes. In fact, the effective diversity of models is
also questionable since corresponding safety standards prescribe much stricter
test coverage criteria for software certification and tool qualification than those
currently offered by existing model transformation testing approaches.

Based on the logic-based Formula solver, the approach of [47] applies stochas-
tic random sampling of output to achieve a diverse set of generated models by
taking exactly one element from each equivalence class defined by graph isomor-
phism, which can be too restrictive for coverage purposes. Stochastic simulation
is proposed for graph transformation systems in [95], where rule application is
stochastic (and not the properties of models), but fulfillment of WF constraints
can only be assured by a carefully constructed rule set.

Realistic Model Generators (REA): The igraph library [22] contains a set of
randomized graph generators that produce one-dimensional (untyped) graphs
that follow a particular distribution (e.g. Erdős-Rényi, Watts-Strogatz). The
authors of [64] use Boltzmann samplers [27] to ensure efficient generation of
uniform models. GSCALER [102] takes a graph as its input and generates a
similar graph with a certain number of vertices and edges.

Scalable Model Generators (SCA): Several database benchmarks provide scal-
able graph generators with some degree of well-formedness or realism. The Berlin
SPARQL Benchmark (BSBM) [13] uses a single dataset that scales in model size
(10 million–150 billion tuples), but does not vary in structure. SP 2Bench [80]
uses a data set, which is synthetically generated based on the real-world DBLP
bibliography. This way, instance models of different sizes reflect the structure
and complexity of the original real-world dataset.

The Linked Data Benchmark Council (LDBC) recently developed the Social
Network Benchmark [30], which contains a social network generator module [88].
The generator is based on the S3G2 approach [72] that aims to generate non-
uniform value distributions and structural correlations. gMark [7] generates

306 D. Varró et al.

graphs driven by a pre-defined schema that allows users to specify vertex/edge
types and degree distributions in the graph, which provides some level of realism.

The Train Benchmark [92] uses a domain-specific generator that is able to
generate railway networks, scalable in size and satisfying a set of well-formedness
constraints. The generator is also able to inject errors to the models during
generation (thus intentionally violating the WF property).

Transformations of Partial Models. Uncertain models [31] document semantic
variation points generically by annotations on a regular instance model. Poten-
tial concrete models compliant with an uncertain model can be synthesized by
the Alloy Analyzer and its back-end SAT solvers [78,79], or refined by graph
transformation rules [77].

Transformations over partial models [32,33] analyse possible matches and
executions of model transformation rules on partial models by using a SAT
solver (MathSAT4) or by automated graph approximation called “lifting”, which
inspects possible partitions of a finite concrete model, i.e. regular graph trans-
formation rules are lifted, while in this paper, we attempt to introduce model
generator rules directly on the level of partial models.

Regular graph transformation rules are used for model generation is carried
out in [29,100] where output models are metamodel compliant, but they do not
fulfill extra WF constraints of the domain [29] or (a restricted set of) constraints
need to be translated first to rule application conditions [100].

Symbolic Model Generation. Certain techniques use abstract (or symbolic)
graphs for analysis purposes. A tableau-based reasoning method is proposed for
graph properties [3,71,81], which automatically refine solutions based on well-
formedness constraints, and handle state space in the form of a resolution tree.
As a key difference, our approach refines possible solutions in the form of partial
models, while [71,81] resolves the graph constraints to a concrete solution.

7 Conclusion and Future Work

In this paper, we presented the challenge of automated graph model generation
where models are consistent, diverse, scalable and realistic at the same time. In
an experimental evaluation, we found that traditional model generation tech-
niques which excel in one aspect perform poorly with respect to another aspect.
Furthermore, consistent models turn out to be a prerequisite both for the real-
istic and diverse cases. As the main conceptual contribution of this paper, we
presented a refinement calculus based on 3-valued logic evaluation of graph pat-
terns that could drive the automated synthesis of consistent models. We proved
soundness and completeness for this refinement approach, which also enables
to incrementally generate instance models of a larger scope by reusing partial
models traversed in a previous scope. As such, it offers stronger consistency
guarantees than the popular Alloy Analyzer used as a back-end solver for many
mapping-based model generation approaches.

Towards the Automated Generation of Graph Models 307

While an initial version of a model generator operating that way was included
in our experimental evaluation, our main ongoing work is to gradually address
several model generation challenges at the same time. For instance, model gen-
erators which are simultaneously consistent, diverse and realistic could help in
the systematic testing of the Viatra transformation framework [97] or other
industrial DSL tools.

Acknowledgements. The authors are really grateful for the anonymous reviewers
and Szilvia Varró-Gyapay for the numerous constructive feedback to improve the cur-
rent paper. This paper is partially supported by MTA-BME Lendület Research Group
on Cyber-Physical Systems, and NSERC RGPIN-04573-16 project.

References

1. Choco. http://www.emn.fr/z-info/choco-solverp
2. Complete measurement setup and results of the paper (2017). https://github.

com/FTSRG/publication-pages/wiki/Towards-the-Automated-Generation-of-
Consistent,-Diverse,-Scalable,-and-Realistic-Graph-Models/

3. Al-Sibahi, A.S., Dimovski, A.S., Wasowski, A.: Symbolic execution of high-level
transformations. In: Proceedings of the 2016 ACM SIGPLAN International Con-
ference on Software Language Engineering, Amsterdam, 31 October–1 November
2016, pp. 207–220 (2016). http://dl.acm.org/citation.cfm?id=2997382

4. Ali, S., Iqbal, M.Z.Z., Arcuri, A., Briand, L.C.: Generating test data from OCL
constraints with search techniques. IEEE Trans. Softw. Eng. 39(10), 1376–1402
(2013)

5. Anastasakis, K., Bordbar, B., Georg, G., Ray, I.: On challenges of model trans-
formation from UML to Alloy. Softw. Syst. Model. 9(1), 69–86 (2010)

6. Aranega, V., Mottu, J.M., Etien, A., Degueule, T., Baudry, B., Dekeyser, J.L.:
Towards an automation of the mutation analysis dedicated to model transforma-
tion. Softw. Test. Verif. Reliab. 25(5–7), 653–683 (2015)

7. Bagan, G., Bonifati, A., Ciucanu, R., Fletcher, G.H.L., Lemay, A., Advokaat,
N.: gMark: schema-driven generation of graphs and queries. IEEE Trans. Knowl.
Data Eng. 29(4), 856–869 (2017)

8. Bak, K., Diskin, Z., Antkiewicz, M., Czarnecki, K., Wasowski, A.: Clafer: unifying
class and feature modeling. Softw. Syst. Model. 15(3), 811–845 (2016)

9. Batot, E., Sahraoui, H.: A generic framework for model-set selection for the unifi-
cation of testing and learning MDE tasks. In: MODELS. pp. 374–384. ACM Press
(2016)

10. Battiston, F., Nicosia, V., Latora, V.: Structural measures for multiplex networks.
Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 89(3), 032804 (2014)

11. Bergmann, G., Ujhelyi, Z., Ráth, I., Varró, D.: A graph query language for EMF
models. In: Cabot, J., Visser, E. (eds.) ICMT 2011. LNCS, vol. 6707, pp. 167–182.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21732-6 12

12. Berlingerio, M., et al.: Multidimensional networks: foundations of structural anal-
ysis. World Wide Web 16(5–6), 567–593 (2013)

13. Bizer, C., Schultz, A.: The Berlin SPARQL benchmark. Int. J. Sem. Web Inf.
Syst. 5(2), 1–24 (2009)

http://www.emn.fr/z-info/choco-solverp
https://github.com/FTSRG/publication-pages/wiki/Towards-the-Automated-Generation-of-Consistent,-Diverse,-Scalable,-and-Realistic-Graph-Models/
https://github.com/FTSRG/publication-pages/wiki/Towards-the-Automated-Generation-of-Consistent,-Diverse,-Scalable,-and-Realistic-Graph-Models/
https://github.com/FTSRG/publication-pages/wiki/Towards-the-Automated-Generation-of-Consistent,-Diverse,-Scalable,-and-Realistic-Graph-Models/
http://dl.acm.org/citation.cfm?id=2997382
https://doi.org/10.1007/978-3-642-21732-6_12

308 D. Varró et al.

14. Boyapati, C., Khurshid, S., Marinov, D.: Korat: automated testing based on
Java predicates. In: International Symposium on Software Testing and Analy-
sis (ISSTA), pp. 123–133. ACM Press (2002)

15. Brottier, E., Fleurey, F., Steel, J., Baudry, B., Le Traon, Y.: Metamodel-based
test generation for model transformations: an algorithm and a tool. In: ISSRE,
pp. 85–94, November 2006

16. Bures, T., et al.: Software engineering for smart cyber-physical systems - towards
a research agenda. ACM SIGSOFT Softw. Eng. Notes 40(6), 28–32 (2015)

17. Büttner, F., Egea, M., Cabot, J., Gogolla, M.: Verification of ATL transformations
using transformation models and model finders. In: Aoki, T., Taguchi, K. (eds.)
ICFEM 2012. LNCS, vol. 7635, pp. 198–213. Springer, Heidelberg (2012). https://
doi.org/10.1007/978-3-642-34281-3 16

18. Cabot, J., Clarisó, R., Riera, D.: On the verification of UML/OCL class diagrams
using constraint programming. J. Syst. Softw. 93, 1–23 (2014)

19. Cabot, J., Teniente, E.: Incremental integrity checking of UML/OCL conceptual
schemas. J. Syst. Softw. 82(9), 1459–1478 (2009)

20. Clavel, M., Egea, M., de Dios, M.A.G.: Checking unsatisfiability for OCL con-
straints. ECEASST, vol. 24 (2009)

21. Corradini, A., König, B., Nolte, D.: Specifying graph languages with type graphs.
In: de Lara, J., Plump, D. (eds.) ICGT 2017. LNCS, vol. 10373, pp. 73–89.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-61470-0 5

22. Csardi, G., Nepusz, T.: The igraph software package for complex network research.
InterJournal Complex Syst. 1695 (2006). http://igraph.sf.net

23. Cunha, A., Garis, A., Riesco, D.: Translating between alloy specifications and
UML class diagrams annotated with OCL. Softw. Syst. Model. 14(1), 5–25 (2015)

24. Czarnecki, K., Pietroszek, K.: Verifying feature-based model templates against
well-formedness OCL constraints. In: 5th International Conference on Genera-
tive Programming and Component Engineering, GPCE 2006, pp. 211–220. ACM
(2006)

25. Darabos, A., Pataricza, A., Varró, D.: Towards testing the implementation of
graph transformations. In: GTVMT. ENTCS. Elsevier (2006)

26. DeWitt, D.J.: The Wisconsin benchmark: past, present, and future. In: The
Benchmark Handbook, pp. 119–165 (1991)

27. Duchon, P., Flajolet, P., Louchard, G., Schaeffer, G.: Boltzmann samplers for the
random generation of combinatorial structures. Comb. Probab. Comput. 13(4–5),
577–625 (2004)

28. Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic Graph
Transformation. Monographs in Theoretical Computer Science. An EATCS
Series. Springer, Heidelberg (2006). https://doi.org/10.1007/3-540-31188-2

29. Ehrig, K., Küster, J.M., Taentzer, G.: Generating instance models from meta
models. Softw. Syst. Model. 8(4), 479–500 (2009)

30. Erling, O., et al.: The LDBC social network benchmark: interactive workload. In:
SIGMOD, pp. 619–630 (2015)

31. Famelis, M., Salay, R., Chechik, M.: Partial models: towards modeling and rea-
soning with uncertainty. In: ICSE, pp. 573–583. IEEE Press (2012)

32. Famelis, M., Salay, R., Chechik, M.: The semantics of partial model transforma-
tions. In: MiSE at ICSE, pp. 64–69. IEEE Press (2012)

33. Famelis, M., Salay, R., Di Sandro, A., Chechik, M.: Transformation of models
containing uncertainty. In: Moreira, A., Schätz, B., Gray, J., Vallecillo, A., Clarke,
P. (eds.) MODELS 2013. LNCS, vol. 8107, pp. 673–689. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-41533-3 41

https://doi.org/10.1007/978-3-642-34281-3_16
https://doi.org/10.1007/978-3-642-34281-3_16
https://doi.org/10.1007/978-3-319-61470-0_5
http://igraph.sf.net
https://doi.org/10.1007/3-540-31188-2
https://doi.org/10.1007/978-3-642-41533-3_41

Towards the Automated Generation of Graph Models 309

34. Fleurey, F., Baudry, B., Muller, P.A., Le Traon, Y.: Towards dependable model
transformations: qualifying input test data, appears to be published only in a
technical report by INRIA (2007). https://hal.inria.fr/inria-00477567

35. Gogolla, M., Büttner, F., Richters, M.: USE: a UML-based specification envi-
ronment for validating UML and OCL. Sci. Comput. Program. 69(1–3), 27–34
(2007)

36. Goldberg, A.P., Chew, Y.H., Karr, J.R.: Toward scalable whole-cell modeling of
human cells. In: SIGSIM-PADS, pp. 259–262. ACM Press (2016)

37. González, C.A., Cabot, J.: ATLTest: a white-box test generation approach for
ATL transformations. In: France, R.B., Kazmeier, J., Breu, R., Atkinson, C.
(eds.) MODELS 2012. LNCS, vol. 7590, pp. 449–464. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-33666-9 29

38. González, C.A., Cabot, J.: Test data generation for model transformations com-
bining partition and constraint analysis. In: Di Ruscio, D., Varró, D. (eds.) ICMT
2014. LNCS, vol. 8568, pp. 25–41. Springer, Cham (2014). https://doi.org/10.
1007/978-3-319-08789-4 3

39. Guerra, E., Soeken, M.: Specification-driven model transformation testing. Softw.
Syst. Model. 14(2), 623–644 (2015)

40. Habel, A., Pennemann, K.-H.: Nested constraints and application conditions for
high-level structures. In: Kreowski, H.-J., Montanari, U., Orejas, F., Rozenberg,
G., Taentzer, G. (eds.) Formal Methods in Software and Systems Modeling.
LNCS, vol. 3393, pp. 293–308. Springer, Heidelberg (2005). https://doi.org/10.
1007/978-3-540-31847-7 17

41. Habel, A., Pennemann, K.: Correctness of high-level transformation systems rel-
ative to nested conditions. Math. Struct. Comput. Sci. 19(2), 245–296 (2009)

42. Härtel, J., Härtel, L., Lämmel, R.: Test-data generation for Xtext. In: Combemale,
B., Pearce, D.J., Barais, O., Vinju, J.J. (eds.) SLE 2014. LNCS, vol. 8706, pp.
342–351. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11245-9 19

43. ISO: Road vehicles - functional safety (ISO 26262) (2011)
44. Izsó, B., Szatmári, Z., Bergmann, G., Horváth, Á., Ráth, I.: Towards precise

metrics for predicting graph query performance. In: ASE, pp. 421–431 (2013)
45. Jackson, D.: Alloy: a lightweight object modelling notation. ACM Trans. Softw.

Eng. Methodol. 11(2), 256–290 (2002)
46. Jackson, E.K., Levendovszky, T., Balasubramanian, D.: Automatically reasoning

about metamodeling. Softw. Syst. Model. 14(1), 271–285 (2015)
47. Jackson, E.K., Simko, G., Sztipanovits, J.: Diversely enumerating system-level

architectures. In: EMSOFT, p. 11. IEEE Press (2013)
48. Kleene, S.C., De Bruijn, N., de Groot, J., Zaanen, A.C.: Introduction to Meta-

mathematics, vol. 483. van Nostrand, New York (1952)
49. Kolovos, D.S., Paige, R.F., Polack, F.A.C.: On the evolution of OCL for capturing

structural constraints in modelling languages. In: Abrial, J.-R., Glässer, U. (eds.)
Rigorous Methods for Software Construction and Analysis. LNCS, vol. 5115, pp.
204–218. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-11447-
2 13

50. Kuhlmann, M., Gogolla, M.: From UML and OCL to relational logic and back. In:
France, R.B., Kazmeier, J., Breu, R., Atkinson, C. (eds.) MODELS 2012. LNCS,
vol. 7590, pp. 415–431. Springer, Heidelberg (2012). https://doi.org/10.1007/978-
3-642-33666-9 27

https://hal.inria.fr/inria-00477567
https://doi.org/10.1007/978-3-642-33666-9_29
https://doi.org/10.1007/978-3-319-08789-4_3
https://doi.org/10.1007/978-3-319-08789-4_3
https://doi.org/10.1007/978-3-540-31847-7_17
https://doi.org/10.1007/978-3-540-31847-7_17
https://doi.org/10.1007/978-3-319-11245-9_19
https://doi.org/10.1007/978-3-642-11447-2_13
https://doi.org/10.1007/978-3-642-11447-2_13
https://doi.org/10.1007/978-3-642-33666-9_27
https://doi.org/10.1007/978-3-642-33666-9_27

310 D. Varró et al.

51. Kuhlmann, M., Gogolla, M.: Strengthening SAT-based validation of UML/OCL
models by representing collections as relations. In: Vallecillo, A., Tolvanen, J.-P.,
Kindler, E., Störrle, H., Kolovos, D. (eds.) ECMFA 2012. LNCS, vol. 7349, pp.
32–48. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31491-9 5

52. Kuhlmann, M., Hamann, L., Gogolla, M.: Extensive validation of OCL models
by integrating SAT solving into USE. In: Bishop, J., Vallecillo, A. (eds.) TOOLS
2011. LNCS, vol. 6705, pp. 290–306. Springer, Heidelberg (2011). https://doi.org/
10.1007/978-3-642-21952-8 21

53. Le Berre, D., Parrain, A.: The Sat4j library, release 2.2. J. Satisf. Boolean Model.
Comput. 7, 59–64 (2010)

54. Lee, E.A., et al.: The swarm at the edge of the cloud. IEEE Des. Test 31(3), 8–20
(2014)

55. Lehmann, E.L., D’Abrera, H.J.: Nonparametrics: Statistical Methods Based on
Ranks. Springer, New York (2006)

56. López-Fernández, J.J., Guerra, E., de Lara, J.: Combining unit and specification-
based testing for meta-model validation and verification. Inf. Syst. 62, 104–135
(2016)

57. Meedeniya, I., Aleti, A., Grunske, L.: Architecture-driven reliability optimization
with uncertain model parameters. J. Syst. Softw. 85(10), 2340–2355 (2012)

58. Micskei, Z., Szatmári, Z., Oláh, J., Majzik, I.: A concept for testing robustness
and safety of the context-aware behaviour of autonomous systems. In: Jezic, G.,
Kusek, M., Nguyen, N.-T., Howlett, R.J., Jain, L.C. (eds.) KES-AMSTA 2012.
LNCS (LNAI), vol. 7327, pp. 504–513. Springer, Heidelberg (2012). https://doi.
org/10.1007/978-3-642-30947-2 55

59. Misailovic, S., Milicevic, A., Petrovic, N., Khurshid, S., Marinov, D.: Parallel test
generation and execution with Korat. In: ESEC-FSE 2007, pp. 135–144. ACM
(2007)

60. Morsey, M., Lehmann, J., Auer, S., Ngonga Ngomo, A.-C.: DBpedia SPARQL
benchmark – performance assessment with real queries on real data. In: Aroyo,
L., Welty, C., Alani, H., Taylor, J., Bernstein, A., Kagal, L., Noy, N., Blomqvist,
E. (eds.) ISWC 2011. LNCS, vol. 7031, pp. 454–469. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-25073-6 29

61. Mottu, J.-M., Baudry, B., Le Traon, Y.: Mutation analysis testing for model trans-
formations. In: Rensink, A., Warmer, J. (eds.) ECMDA-FA 2006. LNCS, vol. 4066,
pp. 376–390. Springer, Heidelberg (2006). https://doi.org/10.1007/11787044 28

62. Mottu, J.M., Sen, S., Tisi, M., Cabot, J.: Static analysis of model transformations
for effective test generation. In: ISSRE, pp. 291–300. IEEE, November 2012

63. Mottu, J.M., Simula, S.S., Cadavid, J., Baudry, B.: Discovering model transfor-
mation pre-conditions using automatically generated test models. In: ISSRE, pp.
88–99. IEEE, November 2015

64. Mougenot, A., Darrasse, A., Blanc, X., Soria, M.: Uniform random generation
of huge metamodel instances. In: Paige, R.F., Hartman, A., Rensink, A. (eds.)
ECMDA-FA 2009. LNCS, vol. 5562, pp. 130–145. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-02674-4 10

65. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3 24

66. Neema, S., Sztipanovits, J., Karsai, G., Butts, K.: Constraint-based design-space
exploration and model synthesis. In: Alur, R., Lee, I. (eds.) EMSOFT 2003. LNCS,
vol. 2855, pp. 290–305. Springer, Heidelberg (2003). https://doi.org/10.1007/978-
3-540-45212-6 19

https://doi.org/10.1007/978-3-642-31491-9_5
https://doi.org/10.1007/978-3-642-21952-8_21
https://doi.org/10.1007/978-3-642-21952-8_21
https://doi.org/10.1007/978-3-642-30947-2_55
https://doi.org/10.1007/978-3-642-30947-2_55
https://doi.org/10.1007/978-3-642-25073-6_29
https://doi.org/10.1007/11787044_28
https://doi.org/10.1007/978-3-642-02674-4_10
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-45212-6_19
https://doi.org/10.1007/978-3-540-45212-6_19

Towards the Automated Generation of Graph Models 311

67. Nickel, U., Niere, J., Zündorf, A.: The FUJABA environment. In: ICSE, pp. 742–
745. ACM (2000)

68. Nicosia, V., Latora, V.: Measuring and modeling correlations in multiplex net-
works. Phys. Rev. E 92, 032805 (2015)

69. Nielsen, C.B., Larsen, P.G., Fitzgerald, J.S., Woodcock, J., Peleska, J.: Systems of
systems engineering: basic concepts, model-based techniques, and research direc-
tions. ACM Comput. Surv. 48(2), 18 (2015)

70. The Object Management Group: Object Constraint Language, v2.0, May 2006
71. Pennemann, K.-H.: Resolution-like theorem proving for high-level conditions. In:

Ehrig, H., Heckel, R., Rozenberg, G., Taentzer, G. (eds.) ICGT 2008. LNCS, vol.
5214, pp. 289–304. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-
540-87405-8 20

72. Pham, M.-D., Boncz, P., Erling, O.: S3G2: a scalable structure-correlated social
graph generator. In: Nambiar, R., Poess, M. (eds.) TPCTC 2012. LNCS, vol.
7755, pp. 156–172. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-
642-36727-4 11

73. Przigoda, N., Hilken, F., Peters, J., Wille, R., Gogolla, M., Drechsler, R.: Inte-
grating an SMT-based ModelFinder into USE. In: Model-Driven Engineering,
Verification and Validation (MoDeVVa) at MODELS, vol. 1713, pp. 40–45 (2016)

74. Queralt, A., Artale, A., Calvanese, D., Teniente, E.: OCL-Lite: finite reasoning
on UML/OCL conceptual schemas. Data Knowl. Eng. 73, 1–22 (2012)

75. Rensink, A., Distefano, D.: Abstract graph transformation. Electr. Notes in The-
oret. Comp. Sci. 157(1), 39–59 (2006)

76. Reps, T.W., Sagiv, M., Wilhelm, R.: Static program analysis via 3-valued logic.
In: Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS, vol. 3114, pp. 15–30. Springer,
Heidelberg (2004). https://doi.org/10.1007/978-3-540-27813-9 2

77. Salay, R., Chechik, M., Famelis, M., Gorzny, J.: A methodology for verifying
refinements of partial models. J. Object Technol. 14(3), 3:1–3:31 (2015)

78. Salay, R., Chechik, M., Gorzny, J.: Towards a methodology for verifying partial
model refinements. In: ICST, pp. 938–945. IEEE (2012)

79. Salay, R., Famelis, M., Chechik, M.: Language independent refinement using par-
tial modeling. In: de Lara, J., Zisman, A. (eds.) FASE 2012. LNCS, vol. 7212, pp.
224–239. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28872-
2 16

80. Schmidt, M., Hornung, T., Lausen, G., Pinkel, C.: SP2Bench: a SPARQL perfor-
mance benchmark. In: ICDE, pp. 222–233. IEEE (2009)

81. Schneider, S., Lambers, L., Orejas, F.: Symbolic model generation for graph prop-
erties. In: Huisman, M., Rubin, J. (eds.) FASE 2017. LNCS, vol. 10202, pp. 226–
243. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-54494-5 13

82. Schölzel, H., Ehrig, H., Maximova, M., Gabriel, K., Hermann, F.: Satisfaction,
restriction and amalgamation of constraints in the framework of M-adhesive cat-
egories. In: Proceedings Seventh ACCAT Workshop on Applied and Computa-
tional Category Theory, ACCAT 2012, Tallinn, 1 April 2012. EPTCS, vol. 93,
pp. 83–104 (2012)

83. Schonbock, J., Kappel, G., Wimmer, M., Kusel, A., Retschitzegger, W.,
Schwinger, W.: TETRABox - a generic white-box testing framework for model
transformations. In: APSEC, pp. 75–82. IEEE, December 2013

84. Semeráth, O., Barta, Á., Horváth, Á., Szatmári, Z., Varró, D.: Formal valida-
tion of domain-specific languages with derived features and well-formedness con-
straints. Softw. Syst, Model. 16(2), 357–392 (2017)

https://doi.org/10.1007/978-3-540-87405-8_20
https://doi.org/10.1007/978-3-540-87405-8_20
https://doi.org/10.1007/978-3-642-36727-4_11
https://doi.org/10.1007/978-3-642-36727-4_11
https://doi.org/10.1007/978-3-540-27813-9_2
https://doi.org/10.1007/978-3-642-28872-2_16
https://doi.org/10.1007/978-3-642-28872-2_16
https://doi.org/10.1007/978-3-662-54494-5_13

312 D. Varró et al.

85. Semeráth, O., Varró, D.: Graph constraint evaluation over partial models by con-
straint rewriting. In: Guerra, E., van den Brand, M. (eds.) ICMT 2017. LNCS,
vol. 10374, pp. 138–154. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-61473-1 10

86. Semeráth, O., Vörös, A., Varró, D.: Iterative and incremental model generation
by logic solvers. In: Stevens, P., W ↪asowski, A. (eds.) FASE 2016. LNCS, vol.
9633, pp. 87–103. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-
662-49665-7 6

87. Sen, S., Baudry, B., Mottu, J.M.: On combining multi-formalism knowledge to
select models for model transformation testing. In: ICST, pp. 328–337. IEEE
(2008)

88. Spasic, M., Jovanovik, M., Prat-Pérez, A.: An RDF dataset generator for the
social network benchmark with real-world coherence. In: BLINK (2016)

89. RTCA: DO-178C, software considerations in airborne systems and equipment
certification (2012). Technical report

90. Steinberg, D., Budinsky, F., Paternostro, M., Merks, E.: EMF: Eclipse Modeling
Framework 2.0, 2nd edn. Addison-Wesley Professional, Reading (2009)

91. Szárnyas, G., Kővári, Z., Salánki, Á., Varró, D.: Towards the characterization
of realistic models: evaluation of multidisciplinary graph metrics. In: MODELS,
87–94 (2016)

92. Szárnyas, G., Izsó, B., Ráth, I., Varró, D.: The train benchmark: cross-technology
performance evaluation of continuous model queries. Softw. Syst. Model. (2017).
https://doi.org/10.1007/s10270-016-0571-8

93. Sztipanovits, J., Koutsoukos, X., Karsai, G., Kottenstette, N., Antsaklis, P.,
Gupta, V., Goodwine, B., Baras, J.: Toward a science of cyber-physical system
integration. Proc. IEEE 100(1), 29–44 (2012)

94. Torlak, E., Jackson, D.: Kodkod: a relational model finder. In: Grumberg, O.,
Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424, pp. 632–647. Springer, Heidelberg
(2007). https://doi.org/10.1007/978-3-540-71209-1 49

95. Torrini, P., Heckel, R., Ráth, I.: Stochastic simulation of graph transformation sys-
tems. In: Rosenblum, D.S., Taentzer, G. (eds.) FASE 2010. LNCS, vol. 6013, pp.
154–157. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-12029-
9 11

96. Ujhelyi, Z., Bergmann, G., Hegedüs, Á., Horváth, Á., Izsó, B., Ráth, I., Szatmári,
Z., Varró, D.: EMF-IncQuery: an integrated development environment for live
model queries. Sci. Comput. Program. 98, 80–99 (2015)

97. Varró, D., Bergmann, G., Hegedüs, Á., Horváth, Á., Ráth, I., Ujhelyi, Z.: Road
to a reactive and incremental model transformation platform: three generations
of the VIATRA framework. Softw. Syst. Model. 15(3), 609–629 (2016)

98. Varró, D., Balogh, A.: The model transformation language of the VIATRA2
framework. Sci. Comput. Program. 68(3), 214–234 (2007)

99. Waltemath, D., et al.: Toward community standards and software for whole-cell
modeling. IEEE Trans. Bio-med. Eng. 63(10), 2007–2014 (2016)

100. Winkelmann, J., Taentzer, G., Ehrig, K., Küster, J.M.: Translation of restricted
OCL constraints into graph constraints for generating meta model instances by
graph grammars. Electr. Notes Theor. Comput. Sci. 211, 159–170 (2008)

101. Yakindu Statechart Tools: Yakindu. http://statecharts.org/
102. Zhang, J.W., Tay, Y.C.: GSCALER: synthetically scaling a given graph. In:

EDBT, pp. 53–64 (2016). https://doi.org/10.5441/002/edbt.2016.08

https://doi.org/10.1007/978-3-319-61473-1_10
https://doi.org/10.1007/978-3-319-61473-1_10
https://doi.org/10.1007/978-3-662-49665-7_6
https://doi.org/10.1007/978-3-662-49665-7_6
https://doi.org/10.1007/s10270-016-0571-8
https://doi.org/10.1007/978-3-540-71209-1_49
https://doi.org/10.1007/978-3-642-12029-9_11
https://doi.org/10.1007/978-3-642-12029-9_11
http://statecharts.org/
https://doi.org/10.5441/002/edbt.2016.08

	Towards the Automated Generation of Consistent, Diverse, Scalable and Realistic Graph Models
	1 Introduction
	2 The Graph Model Generation Challenge
	3 Preliminaries
	3.1 Metamodels and Instance Models
	3.2 Partial Models
	3.3 Graph Patterns as Well-Formedness Constraints

	4 Refinement and Concretization of Partial Models
	4.1 A Refinement Relation for Partial Model Generation
	4.2 Refinement Operations for Partial Models
	4.3 Consistency of Model Generation by Refinement Operations

	5 Evaluation
	5.1 Setup of Experiments
	5.2 Evaluation of Measurement Results

	6 Related Work
	7 Conclusion and Future Work
	References

