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Abstract. In this paper, a category of undirected graphs is introduced
where the morphisms are chosen in the style of mathematical graph the-
ory rather than as algebraic structures as is more usual in the area of
graph transformation.

A representative function, ω, within this category is presented. Its
inverse, ω−1, is defined in terms of a graph grammar, ε.

1 The Abstract Category

Hartmut Ehrig was one who helped introduce the graph grammar community
(GraGra) to the concept of categories [6]. In this short paper we apply some of his
vision to develop a category of undirected graphs. A graph (V,E) is undirected
if its edge set E consists of sets {x, y}, not ordered pairs. It is not hard to
characterize one version of this category. It consists of obj = UG, the collection
of all finite undirected graphs, together with hom = all functions, f : G → G′,
where G,G′ ∈ UG, with composition, that is f : G → G′, g : G′ → G′′ implies
f ·g : G → G′′ ∈ hom. Let G = (V,E) and G′ = (V ′, E′). By f : G → G′ we
actually mean f : 2V → 2V ′

subject to appropriate constraints with respect to
the edge sets E and E′.1 But, without specifying these constraints this kind of
category conveys little information.

More interesting is the subcategory whose functions f, g are continuous (see
below). Continuity in the familiar continuous manifolds, such as R or C, is
defined in terms of open sets. With discrete, or finite, graphs it can be better
defined in terms of closed sets.

Let ϕ denote an arbitrary closure operator on an arbitrary collection, 2V , of
sets, that is for all subsets X,Y,∈ 2V , ϕ is expansive (Y ⊆ Y.ϕ), monotone (X ⊆
Y implies X.ϕ ⊆ Y.ϕ) and idempotent (Y.ϕ.ϕ = Y.ϕ).2 Such closure systems
(2V , ϕ) are rather well studied, since they include matroids and antimatroids
[2–5,8]. More importantly, we can now define what we mean by a continuous,

1 The codomain 2V ′
of f need not be 2V , and its edge set E′ need not have the same

structure as E. Therefore, elements of the codomain are denoted with a prime.
2 We use suffix notation to denote the application of set-valued operators and

functions.
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discrete, set-valued function f . A function f : (2V , ϕ) → (2V ′
, ϕ′) is said to be

continuous [11,12] if for all Y ⊆ V ,

Y.ϕ.f ⊆ Y.f.ϕ′

We observe that the closure operator, ϕ′ on V ′ need not be the same as ϕ on
V . To obtain a category, we must now show that the composition of continuous
functions f ·g is continuous. But, they need not be. The composition f ·g of
continuous, set-valued functions will be continuous provided f and g are also
monotone [12]. To create a subcategory, we need both properties.

Suppose the functions f and g are also “closure preserving”, that is the image
of any set Y , closed with respect to ϕ will be closed with respect to ϕ′. In this
case,

Y.f.ϕ′ ⊆ Y.ϕ.f

so Y.ϕ.f = Y.f.ϕ′, yielding the categorical diagram.

Y

Y’

Y. ϕ
ϕ

ϕ
Y.f.   ’ϕ

’

f f

Fig. 1. A typical categorical diagram

The preceding discussion creates a subcategory of continuous set-valued func-
tions. But as yet, it has nothing to do with undirected graphs!

As before, let obj be the set of all undirected graphs, G = (V,E) where V
is a set of vertices, points, or nodes and E is a symmetric binary relation on
V , commonly called the edge set. Now, we consider hom to be the collection
of all continuous, monotone, set-valued functions mapping subsets of the vertex
(point, node) set, V of G into subsets of the vertex set V ′ of G′. We expect,
somehow, that the closure operator on these graphs should reflect their edge
structure. Let η be an operator on 2V such that y ∈ {x}.η and x ∈ {y}.η if and
only if {x, y} is an edge in G. It is convenient if η, a neighbor operator is reflexive,
that is x ∈ {x}.η. We, now, extend η to subsets Y ⊆ V by Y.η = ∪y∈Y {y}.η.
Some texts call these “closed neighborhoods”.3 In the case of undirected graphs
we prefer to use neighborhood closure ϕη, defined below

Y.ϕη = {z|{z}.η ⊆ Y.η} (1)

Because η is reflexive, ϕη is expansive; it is monotone by construction; and
idempotency is not hard to prove [14,15].
3 This is a common terminology, but unfortunately such “closed neighborhoods” are

not “closed”. The intersection of closed sets must be closed, but it easy to show that
this is seldom true with “closed neighborhoods”.
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Now we have the makings of a category, UG, of undirected graphs consisting
of obj = the collection of all undirected graphs, and hom = all monotone, set-
valued functions f : 2V → 2V ′

that are continuous with respect to ϕη. It is worth
observing that this development allows us to continuously enlarge graphs by a
function f : 2V → 2V ′

in which Ø.f = X ′ ⊆ V ′4 and to contract graphs with
g : 2V ′ → 2V ′′

where Y.g = Ø ⊆ V ′′. It is convenient to employ the notation
f : G → G′ with the understanding that f is really defined on the power sets of
V and V ′ and that f is continuous with respect to a closure operator ϕ on the
edge set/relation E.

Is UG anything more than an abstract category? Are there really functions
in hom?

In the next section we present two graph transformations which define
ω ∈ hom and ε ∈ hom. Both have been implemented as algorthmic computer
programs.

2 Two Functions in hom(UG)

Let G be a graph (V,E), with a neighborhood operator η. Suppose z ∈ {y}.ϕη,
implying by (1) that {z}.η ⊆ {y}.η. Since {z}.ϕη = {y}.ϕη, the set {z} con-
tributes nothing to the closure structure of G; it can be removed from G with lit-
tle loss of information. We define the transformation ωz : G → G′ by {z}.ωz = Ø
where ωz is the identity map on V − {z}, Y ⊆ V , and {u′, v′} ∈ E′ if and only
if {u, v} ∈ E, u, v �= z. We say z has been subsumed by y. It is not hard to show
that ωz is both monotone and continuous since z ∈ {y}.ϕη.

2.1 Reduction, ω

A computer procedure, reduce implements ω. It repeatedly sweeps through all
vertices y ∈ V , deleting any vertices zi ∈ {y}.ϕη, together with all edges incident
to zi, until no such z remain in V .5 That is, ω = ωz1 ·ωz2 · . . . ·ωzn

. Since each ωzi

is monotone and continuous, ω is as well, that is Y.ϕη.ω ⊆ Y.ω.ϕη
′. The process

terminates when every singleton subset {y} ⊆ V is closed. Such a graph is said
to be irreducible.

It can be shown that G′ = G.ω is unique (up to isomorphism) regardless of the
order in which the vertices y ∈ V are visited by ω or the order in which vertices
z ∈ {y}.ϕη are deleted [14–16]. So ω is a well defined function in hom(UG).
Because every singleton set (vertex) in G′ is closed, ω must also be closure
preserving, with Y.ω.ϕη

′ ⊆ Y.ϕη.ω, so the diagram of Fig. 1 is applicable when
f = ω.

In Fig. 2, the graph G of 18 vertices is reduced to G′ = G.ω with 10 remaining
vertices. In G, the dashed lines encircle the vertices that were subsumed by
2′, 3′, 15′ and 17′.
4 We modify the usual definition of monotonicity to read: X ⊆ Y implies X.f ⊆ Y.f ,

provided X �= Ø.
5 This procedure has been quite effective reducing large graphs |V | ≥ 1, 000, with at

worst 6 iterative sweeps of V .
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Fig. 2. Reduction, ω, of a graph G

Irreducible graphs, such as G′, have a number of interesting properties. It is
not hard to show that G′ consists of a collection of chordless cycles of length ≥ 4.
By a “chordless cycle” we mean a sequence of vertices < y1, y2, . . . yn, y1 >, where
{yi, yi+1} ∈ E, 1 ≤ i ≤ n − 1, and where {yi, yi+k} �∈ E for k ≥ 2. Of course,
we also require {yn, y1} ∈ E. It’s a “pearl necklace” without cross connections.
Because there can be no cross connecting edges of the form {yi, yi+k}, k ≥ 2,
each cycle Cα, when considered strictly as a “set” of vertices, is a member of
a Sperner set [7]. That is, given a ground set V , for all cycles Cα, Cβ ⊂ V ,
Cα �⊆ Cβ . Besides the interesting combinatorics associated with Sperner sets,
this permits various computer algorithms to process irreducible graphs solely as
set systems without regard to individual edges. This reduction, G.ω, of G to an
irreducible graph G′ has a number of other intriguing properties [16], such as
the preservation of paths, of the graph “centers”, but this is not relevant to this
paper.

2.2 Expansion, ε

It is fairly easy to define the treatment of edges in a function, such as ω, that
contracts a graph. If Y

f−→ Ø, then all edges {y, z} such that y ∈ Y, z ∈ Y.η can
be deleted. Expanding a graph, Ø

g−→ Y ′, presents more problems. How is Y ′ to
be embedded in G′? One option is to employ an expansion grammar ε, such as
explored in [13]. Expansion grammars are quite different from phrase-structured
grammars in which a non-terminal symbol A is expanded with a rewrite rule of
the form A → σ [19]. The problematic aspect of a phase-structured grammar,
explored by Ehrig in [6], is how will the right side σ of the rewrite rule be
embedded in the growing, non-linear structure.

In an expansion grammar, a subset Y of a growing structure is first identified
to be the neighborhood of a new element p′. That is {p′}.η′ = Y ⊆ V in the
rewritten structure. More precisely, εi : (Vi, Ei) → (Vi+1, Ei+1) where Vi+1 =
Vi ∪ {p′

i}, Ei+1 = Ei ∪ {{yk, p′
i}, yk ∈ Y ⊂ Vi} and εi : Ø = {p′

i}.
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The set-valued procedure, ε can then be defined as a graph grammar with
any set of specified rewrite rules, or productions. The following example of an
expansion grammar is also given in [13]. Consider the rewrite rule r1 below,

r1 : Kn
ε−→ : p′ n ≥ 1

which specifies that any complete subgraph, Kn, (or clique) of order n in V can
serve as the neighborhood of a new point p′ provided n ≥ 1.6 Every point in
K ′

n will be adjacent to p′ in G′. Call the application of a rewrite rule a step, εi,
in the process ε. It is a well defined operation in which Ø.εi = {p′}. The left
side of the rewrite rule defines its embedding neighborhood. The right-most part
defines any conditions on this neighborhood.

Fig. 3. A sequence of neighborhood expansions generating chordal graphs

Application of r1 is illustrated in Fig. 3. Each expanded neighborhood (in
this case clique) has been made bold; and the expansion point, p′, circled. The
dashed edges indicate those links which define the clique as the neighborhood
of the expansion point p′. It is not hard to see that any graph generated in this
fashion must be chordal.7

A more relaxed version of the rewrite rule r1 above, will allow Y , the new
neighborhood of p′, to be any subset of the neighborhood of an existing vertex
y ∈ Vi. Specified as a rewrite rule r2 it is,

r2 : Y
ε−→ : p′ ∃y ∈ Vi, Y ⊆ {y}.η

6 A graph, Kn is complete if all n nodes are mutually connected by an edge.
7 Because extreme points are simplicial (neighborhood is a clique), and because every

chordal graph must have at least two extreme points [8,9], every chordal graph can
be so generated.
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Fig. 4. A member of G′.ε where G′ = G.ω in Fig. 2.

Fig. 4 shows one possible application of this expansion grammar ε to the
graph G′ of Fig. 2. Here, the rewrite rule r2 has been used 8 times, to create
a, b, . . . h. The vertex d is generated by r2 using the neighborhood {17}.η =
{15, 17, 18} = {d}.η′. The new vertex c was attached to {1, 15} ⊂ {1, 2, 3, 15} =
{1}.η; and f was later attached to {1, c} ⊂ {1}.η.

2.3 The Inverse Set, ω−1

The two procedures ω and ε are intertwined. The requirement in the second
rewrite rule r2 that {p′}.η = Y ⊆ {y}.η ensures that if ω is applied to G′.ε, p′

will at some iteration be subsumed by y. Thus, if G′ is irreducible, G′.ε.ω = G′

This characteristic is evident in Fig. 4 where b will be subsumed by 3, etc. It is also
true for the graph G′.ε of Fig. 5 as well. Consequently, ω is a right-inverse of ε over
the subspace of irreducible undirected graphs. The inverse of ω, that is G.ω.ω−1

is the collection of all undirected graphs {Gk} such that Gk.ω = G′ = G.ω. Each
invocation of the non-deterministic procedure ε is single-valued; but ε is not a
function. The execution of ε will yield a graph, Gk ∈ G.ω.ω−1.
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Fig. 5. Another graph G′.ε in G′.ω−1.
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In the rewrite rule r2 the choice of y ∈ Vi and the choice of Y ⊆ {yi}.η
are completely arbitrary. Given different choices for y and Y yields Fig. 5 which
seems to be a far more interesting graph. Both Figs. 4 and 5 were generated by
a computer version of ε using a random number generator.

This is not the only category of undirected graphs, but it is a promising one
[17]. Unfortunately, undirected graphs, and mappings between such graphs, have
little of the regular structure seen in the different abstract algebras that gave
rise to the categorical approach of [1,10,18], or that of [2] which was applied
to general closure operators. Yet, the rudiments are there, as this short treatise
shows. In the early 70’s, Hartmut Ehrig urged us to view graph grammars and
graph manipulation through a categorical lens. He was ahead of his time.
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