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Abstract. The evolution in software and hardware systems from clas-
sical systems with rigid structures to open, dynamic, and flexible struc-
tures has inspired the extension of Petri nets to reconfiguration. The
idea of reconfiguring Petri nets was launched in the early nineties and
since then has been developed by several researchers at different levels
of formalization. Researchers in this field have achieved a large amount
of theoretical results and of practical applications. The aim of this paper
is to present an overview of reconfigurable Petri nets dealing with sev-
eral aspects including: the fundamental, theoretical basis, application
domains, results at the verification/analysis level as well as practical
tools. The paper finally discusses some future research directions.
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1 Introduction

The characteristic feature of reconfigurable Petri nets, consisting of a Petri net
and a set of rules that can modify it, is the possibility to discriminate between dif-
ferent levels of change. They provide powerful and intuitive formalisms to model
dynamic software or hardware systems that are executed in dynamic infrastruc-
tures. These infrastructures are dynamic since they are subject to change as well
and since they support various applications that may share some resources. Such
dynamic software or hardware systems have become increasingly more common
but are difficult to handle. Modelling and simulating dynamic systems require
both the representation of their processes and of the system changes within
one model. As the underlying type of Petri net can vary (for example being
place/transition nets, object nets, timed and/or stochastic nets, or high-level
nets) this approach can be considered a family of formal modelling techniques.
Reconfigurable Petri nets are an instantiation of abstract transformation systems
that are formulated in category theory. The fundamental idea is to characterize
those categories that allow double-pushout transformations: therefore only the
diagrammatic descriptions are needed. This has the advantage of a thorough
theory that yields a vast amount of results concerning the transformation part.
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Reconfigurable Petri nets have been applied in various application areas
where complex coordination and structural adaptation at run-time are required
(e.g. mobile ad-hoc networks [62], communication spaces [21,51], ubiquitous com-
puting [10,24], concurrent systems [45], workflows in dynamic infrastructures
[29], flexible manufacturing systems [71], reconfigurable manufacturing systems
[31]). They improve the expressiveness of Petri nets as they increase flexibility
and change while allowing the transitions to fire. This greater expressiveness
yields rich models with very large state spaces. The state space of the model
is even more complex because states are not capturing only the change of the
markings but also structure and connectivity changes [2,57]. The reachability
graph is composed of several subgraphs [57], each representing the state space
of each accessible configuration in the modelled reconfigurable system. To deal
with such growing complexity there are two main ideas: relying on invariant
properties or to check the state space for such properties. The first idea is fol-
lowed mainly in a more informal approach, the second leads to explicit model
checking of reconfigurable Petri nets, both are discussed in Sect. 5.

The paper is organized as follows: The next section sketches related work,
followed by the section introducing reconfigurable Petri nets. Section 3 gives
their formal definition as well as an ongoing example and in Sect. 4 this notion
is extended to several different types of Petri nets. Subsequently, we illustrate
various application areas and concentrate on modelling reconfigurable manufac-
turing systems in Sect. 6. Then we discuss two tools that have been developed
explicitly as tools for reconfigurable Petri nets (see Sect. 7). Finally we discuss
some ideas concerning future work in the conclusion.

This paper overlaps with previously published papers, it presents and struc-
tures their results.

2 Related Work

The work in this area started in the beginning of the nineties [20] with
transformation of various Petri net types as a refinement concept. In several
papers [20,54,60] the use of net transformations in algebraic high-level nets
had been investigated and a rule-based refinement concept had been developed
that ensured safety and liveness properties under specific conditions (e.g. in
[55,61,63]). Moreover, based on a categorical framework, namely abstract Petri
nets [56] that comprises various low- and high-level types of Petri nets, the
results on horizontal and vertical structuring had been made available for these
net types. At the turn of the century the idea of adaptation of dynamic systems
became an important research topic. The notion “reconfigurable Petri nets” had
been coined at INRIA [3] where the reconfiguration had first been the replace-
ment of places.

Zero-safe nets are place-transition nets [12] that allow the distinction between
observable and hidden states. In [11] reconfigurable nets are defined as a special
case of zero-safe nets. In this approach the post-domain of a transition is not
static, but depends on the colours of the consumed tokens.
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In [2] net rewriting systems have introduced rules based on a partial mor-
phism between left-hand and right-hand side of the rule. In [47] marked-
controlled net rewriting system have been based on a place/transition nets and
a graph rewriting for changing configurations. In [4] open nets (a generalisa-
tion of place/transition nets suited to model open systems interacting with the
surrounding environment) are equipped with suitable classes of reconfiguration
rules whose application preserves the observational semantics of the net. The
“nets-within-nets” formalism was introduced by Valk in [74] and was combined
with workflow Petri nets [67] to develop an approach for the specification and
code generation of dynamically reconfigurable embedded systems in [75].

Another approach, called “improved net rewriting systems” (INRS) [41–
43] concentrates on preserving important Petri net properties, namely liveness,
boundedness and reversibility. It is based on a set of fixed building blocks and
rewrite rules with fixed interfaces for the left-hand and the right-hand side. INRS
is the basis for the application we investigate in Sect. 6.1, namely Reconfigurable
Manufacturing Systems (RMSs) [39]. RMSs allow changeable structures at run-
time for various kinds of industrial production systems. To model explicitly the
reconfiguration of RMSs several variants of reconfigurable Petri have been pro-
posed and applied. The different proposals can be classified into three principal
classes: graph transformation based approaches, approaches based on rewrit-
ing net systems, and finally hybrid approaches. Based on [19] formalisms and
methods have been developed to design, simulate and verify RMSs [75]. Recon-
figurable Object Nets (RON) [8,68] have been used to propose an approach for
the design, simulation and verification of RMSs [31–34].

Besides graph transformation based approaches and the INRSs based app-
roach there are proposals that combine Petri nets with rewriting logics, π-
calculus, or algebraic specifications to define reconfigurable models. In [35,36]
rewriting logic is combined with a variant of the recursive Petri nets [26] to
describe the reconfigurability through the ability to model dynamic creation of
threads. In [77] object Petri nets are combined with π-calculus, where object-
oriented Petri net are employed to depict the static structure and behaviours of
the RMS while the π-calculus is used to describe the dynamic structure of the
system. In [15] adaptive Petri nets are proposed to specify self-adaptive systems.
The adaptation is achieved by the learning ability of neural networks. In [13] the
authors deal with transformations over Petri nets as algebraic specifications, thus
they developed a tool to set up a basic set of transformation primitives, including
adding/removal of nodes, changing the marking and setting connections.

3 Reconfigurable Petri Nets

We now define place/transition nets formally, to have a basis for the definition
of rules and transformations later on. Subsequently, we present an example from
dynamic hardware reconfiguration.
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3.1 Basic Concepts

We use the algebraic approach to Petri nets, where the pre- and post-domain
functions pre, post : T → P⊕ map the transitions T to a multiset of places
P⊕ given by the set of all linear sums over the set P . A marking is given by
m ∈ P⊕ with m =

∑
p∈P kp · p. The multiplicity of a single place p is given

by (
∑

p∈P kp · p)|p = kp. The ≤ operator can be extended to linear sums: For
m1,m2 ∈ P⊕ with m1 =

∑
p∈P kp · p and m2 =

∑
p∈P lp · p we have m1 ≤ m2 if

and only if kp ≤ lp for all p ∈ P . The operations “+” and “–” can be extended
accordingly.

Definition 1 (Place/transition nets). A (marked place/transition) net is
given by N = (P, T, pre, post, cap, labP , labT ,m) where P is a set of places, T
is a set of transitions. pre : T → P⊕ maps a transition to its pre-domain and
post : T → P⊕ maps it to its post-domain. Moreover cap : P → N

ω
+ assigns to

each place a capacity (either a natural number or infinity ω), labP : P → AP is a
label function mapping places to a name space, labT : T → AT is a label function
mapping transitions to a name space and m ∈ P⊕ is the marking denoted by a
multiset of places.
A transition t ∈ T is m-enabled for a marking m ∈ P⊕ if we have pre(t) ≤ m
and ∀p ∈ P : (m + post(t))|p ≤ cap(p). The follower marking m′ is computed by
m′ = m − pre(t) + post(t) and represents the result of a firing step m[t > m′.

Net morphisms are given as a pair of mappings for the places and the tran-
sitions preserving the structure, the decoration and the marking. Given two
nets N1 and N2 as in Definition 1 a net morphism f : N1 → N2 is given
by f = (fP : P1 → P2, fT : T1 → T2), so that pre2 ◦ fT = f⊕

P ◦ pre1 and
post2 ◦ fT = f⊕

P ◦ post1 and m1(p) ≤ m2(fP (p)) for all p ∈ P1. The labels
and the capacity need to remain the same when mapping one net to another.
Moreover, the morphism f is called strict if both fP and fT are injective and
m1(p) = m2(fP (p)) holds for all p ∈ P1. A rule in the algebraic transformation
approach is given by three nets called left-hand side L, interface K and right-
hand side R, respectively, and a span of two strict net morphisms K → L and
K → R. Then an occurrence morphism o : L → N is required that identifies the
relevant parts of the left hand side in the given net N .

Fig. 1. Net transfor-
mation

A transformation step N
(r,o)
=⇒ M via rule r can be con-

structed in two steps by the commutative squares (1) and
(2) in Fig. 1. Given a rule with an occurrence o : L → N
the gluing condition has to be satisfied in order to apply
a rule at a given occurrence. Its satisfaction requires that
the deletion of a place implies the deletion of the adjacent
transitions, and that the deleted place’s marking does not
contain more tokens than the corresponding place in L. In this collection [37]
such double-pushout transformations are explained in more detail for attributed
graphs.

Reconfigurable place/transition nets exhibit dynamic behaviour using the
token game of place/transition nets and using net transformations by applying
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rules. So, a reconfigurable net as in Definition 2 combines a net with a set of
rules that modify the net [18,19].

Definition 2 (Reconfigurable place/transition nets). A reconfigurable
place/transition net RN = (N,R) is given by a net N and a set of rules R.

Fig. 2. Cyclic net with rules

Example 1 (Modifying a cyclic process). As an abstract example of a dynamic
system we model a cyclic process that can either be executed or modified using
the reconfigurable Petri net (N, {r1, r2}). Fig. 2 depicts a simple place/transition
net N and the rules r1 and r2. The net describes a cyclic process that executes
one step and then returns to the start. The modifications in rule r1 change the
process by inserting additional sequential steps. Rule r2 deletes an intermediate
step. In Fig. 3 the application of rule r1 to N is given. First a match of the left

Fig. 3. Application of rule r1 to N

hand side of the rule
is given by the occur-
rence morphism indi-
cated by the light grey
colour of the places
and transitions in L
and N. The gluing con-
dition holds since the
occurrence morphism
preserves the token.

In the first step the transition, which is coloured light grey, is deleted by the
construction of the net D and in the second step the intermediate place and its
adjacent transitions (coloured dark grey) are added.

3.2 Reconfigurable Computing

Here we give a realistic example that illustrates the use of reconfigurable
place/transition nets in dynamic hardware reconfiguration. Reconfigurable com-
puting allows performing several functions on the same hardware with only few
modifications. This economic solution avoids the re-fabrication of new hard-
ware when new functions are required. Reconfigurable computing replaces clas-
sical fixed digital circuits by FPGA (Field Programmable Gate Array) tech-
nologies. An FPGA is a matrix of interconnected logic blocs and it is charac-
terized by its flexibility on both interconnections and logic blocs levels. This
flexibility is ensured by programming bits which can be updated rapidly, thus
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Fig. 4. Reconfigurable computing using LUT

enabling the implementation of several functions in a short time. Usually, the
routing mechanism is implemented through programmable gates and the com-
putation exploits lookup-tables (LUTs). A programmable gate is closed or
opened due to the value of the programming bit P. A lookup-table is a small
circuit which can compute any basic logic function of n inputs by program-
ming its 2n programming bits. The values of the set of programming bits are
saved in an SRAM (Static Random Access Memory). Modifying the values of
these programming bits in the SRAM reconfigures the FPGA at two levels:

Fig. 5. Petri net models for the
“Or gate” and the “And Gate”

routing connections and computational struc-
ture, thus the behaviour of the FPGA is
reconfigured. We present in Fig. 4(a) a first
configuration which implements the logic
function: F = (A × B × ¬C) + D + E (known
as seat-belt warning light system) as an exam-
ple. The realisation of this circuit using a
LUT table is made using two 3-LUTs (with
8 programming bits) connected as shown in
Fig. 4(b). The first LUT uses A, B and C
as inputs and generates F ′. F ′, D and E
will be the inputs for the second 3-LUT.
Figure 4(a′) shows the circuit after a reconfig-
uration and how this reconfiguration is made
through LUT is Fig. 4(b′). In the approach proposed by [38,76] modelling digital
circuit (as digital gates) using Petri nets is based on the modelling of signals.
The behaviour of a signal x is modelled using two places denoted x0 and x1
(representing respectively the two signal states 0 and 1) and two transitions +x
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and −x (which model respectively the rising of the signal x from 0 to 1 and the
falling of the signal x from 1 to 0).
If there are many transitions which rise (resp. fall) the signal x then we denote
these transitions as +xi (resp. −xi). The signal y rises through the transition
+y when the signal x is in a 0 level (place x0). Then, the signal y will fall by
firing the transition −y when the signal x is in the level 1 (place x1). The signal
x is the input of the gate which will be controlled, eventually, by another circuit.

Fig. 6. Net models for the configurations in Fig. 4

Using the previous method,
the Fig. 5 presents the
Petri net models for the
AND and OR gates. Hence,
we depict in Fig. 6 the
models of the two con-
figurations presented in
Fig. 4. The formalisation
of reconfiguration using
the double-pushout (see
Fig. 7) requires the defini-
tion of a transformation
rule from the net TN1

representing the model of
Fig. 6(a) toward the net
TN2 representing the net
of Fig. 6(b).

4 Types of Reconfigurable Petri Nets

4.1 Reconfigurable Low-level Nets

Place/transition nets as given in Sect. 3 are well-known and widely used. Various
types of reconfigurable place/transition nets have been proposed, mostly differing
in the additional control structures. In [57] new features have been added to gain
an adequate modelling technique where transition labels have been introduced
that may change, when the transition is fired. This allows a better coordination of
transition firing and rule application, for example one can ensure that a transition
has fired (repeatedly) before a transformation may take place. This last extension
is conservative with respect to Petri nets as it does not change the net behaviour,
but it is crucial for the coordination of rule application and transition firing.

Reconfigurable place/transition nets with individual tokens [51] have tokens
that can be identified as individual objects. Hence, markings are multi-sets of
distinguished elements rather than amounts of indistinguishable black tokens.
This notion of token facilitates the definition of net processes and hence yields a
process semantics [21]. Petri nets do not inherently provide a way to model time
but various approaches have been suggested to extend Petri nets by notions of
time, as for example [6] or [30]. In [22] timed Petri nets extend place/transition
nets attaching time durations to transitions and timestamps to tokens and are
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Fig. 7. Double pushout for the example

equipped with rules and transformations. Elementary nets have been shown to
be a special case of abstract nets [56]. Hence reconfigurable elementary nets can
be considered as well, but they have not be used explicitly.

The above mentioned Petri net types have been proven to yield M-adhesive
categories, this means that the results given in Sect. 5.1 are valid for each of
these net types.

4.2 Reconfigurable Stochastic Nets

Stochastic Petri nets (SPN) are high level Petri nets that have been proposed
to model stochastic and random systems. The most used variant are SPNs in
the sense of [48]. They are an extension of timed transition Petri nets where the
duration is no longer deterministic but stochastic with a predefined probabilis-
tic law. The Generalised Stochastic Petri Nets (GSPN) [5] are an extension of
SPNs where transitions can be of two kinds: stochastic or immediate. The use of
GSPNs allows designers to evaluate performance for the modelled systems and to
study several quantitative parameters. Introducing reconfiguration into GSPNs
is an ambitious issue which will yield a new reconfigurable stochastic Petri net
formalism. A first approach has been developed in some recent work [69,70].
There GSPNs have been extended to reconfigurable GSPN using the Improved
Net Rewriting Systems [43] to provide a new formalism called INRS-GSPN. This
approach has been used to design Stochastic RMSs and to allow performance
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evaluation of configurations. Based on the INRS approach the reconfiguration of
GSPN is expected to preserve specific required qualities as: liveness, boundedness
and reversibility.

4.3 Reconfigurable High-level Nets

Algebraic high-level (AHL) nets are Petri nets combined with algebraic specifi-
cations [60]. In contrast to low-level nets AHL nets comprise a data type part,
so that the tokens are values in an underlying algebra of the given signature
rather than indistinguishable black tokens. The arcs are inscribed by terms over
the signature and firing of a transition requires the assignment of these vari-
ables to the values of the available tokens. Moreover, transitions are provided
with guards, called firing conditions and given by equations. Guards allow the
firing of a transition only if the tokens that are to be consumed satisfy the firing
conditions of that transition. The operational behaviour of AHL nets is given
analogously to the operational behaviour of low-level nets. The activation of a
transitions requires an assignment of the variables in the environment of the
transition, such that the assigned pre-domain is included in the marking and the
firing conditions of the transition hold. This assignment is then used to com-
pute the follower marking, obtained by decreasing the marking by the assigned
pre-domain and increasing the result by the assigned post-domain. Algebraic
higher-order (AHO) net are high-level nets where tokens can be place/transition
nets and net transformation rules. Thus AHO nets follow the paradigm “nets as
tokens”, introduced by Valk in [73] but extend this paradigm to “nets and rules
as tokens”. AHO nets are used for controlling firing steps and transformations
of low-level nets that has been introduced in [28] with AHL nets that contain
place/transition nets and transformation rules as tokens. Reconfigurable Object
Nets (RONs) as given in [28] are a restriction of AHO nets, so that firing of
RON-transitions may only involve firing of object net transitions, transporting
object net tokens through the high-level net, or applying net transformation
rules to object nets. Net transformation rules model net modifications such as
merging or splitting of object nets, and net refinements. Both AHL nets as well
as AHO nets are available with individual tokens [21,51].

The above mentioned high-level net types have also been proven to yield
M-adhesive categories, so the results given in Sect. 5.1 hold for each of them.

5 Results

First, we sketch the basics for abstract transformation systems and the results
obtained in that way. We now discuss some of the results concerning control
structures and verification of reconfigurable nets.

5.1 Results for Abstract Transformation Systems

The basic idea of transforming Petri nets is the same as transforming graphs
in the algebraic approach, e.g. in [16]. The theoretical backbone of these
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transformations are M-adhesive transformation systems that yield the abstract
transformation system. They are formulated in terms of category theory and can
be considered as a unifying framework for graph and Petri net transformations pro-
viding enough structure that most notions and results from algebraic graph trans-
formation systems hold. Such a categorical approach has the advantage that the
results in this frameworkhold for anycategorywhich satisfies the set of assumptions
for specific classes of morphisms. M-adhesive transformation systems have been
instantiated with various types of graphs, as hypergraphs, attributed and typed
graphs, structures, algebraic specifications, various Petri net classes, elementary
nets, place/transition nets, Colored Petri nets, or algebraic high-level nets, and
more (see [16]). M-adhesive transformation systems allow a uniform description
of the different notions and results based on a class M of specific monomorphisms
that have to be PO-PB-compatible, that is:

– Pushouts along M-morphisms exist and M is stable under pushouts.
– Pullbacks along M-morphisms exist and M is stable under pullbacks.
– M contains all identities and is closed under composition.

The fundamental construct for M-adhesive cat-
egories and systems are van Kampen squares of M-
morphisms.

Definition 3 (M-Adhesive Category). Given
a class M of PO-PB compatible monomorphisms
in a category C, then (C,M) is called M-adhesive
category, if pushouts along M-morphisms are M-
van Kampen squares, that is for any commutative
cube (2) with (1) in the bottom and back faces being
pullbacks, the following holds: the top is pushout ⇔
the front faces are pullbacks.

An M-adhesive transformation system AHS =
(C,M,R) consists of an adhesive M-category
(C,M) and a set of rules R.

Based on this categorical framework we have
the following results for those Petri net types that have been shown to be adhesive
categories:

– Negative application conditions [25] allow specifying undesired context. The
rules are equipped with additional nets that show the context in which the
rule should not be applied, see Fig. 12 in Sect. 7.2.

– Confluence and independency results as parallel and sequential independence,
local Church-Rosser, conflict and causal dependency describe how rules behave
in specific contexts. Indepenency conditions are given for two direct transfor-
mations being applied to the same net, so that they can be applied in arbitrary
order leading to the same result. Properties of dependent transformations have
been investigated as well (see e.g. [16]).
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– Critical pair analysis as known from term rewriting are used to check for con-
fluence. Critical pairs specify the minimal instance of a conflicting situation.
From the set of all critical pairs the items causing conflicts or dependencies are
extracted. Local confluence can be shown for abstract transformation systems
using the concept of critical pairs (see e.g. [17]).

– Net transformation units have been instantiated from HLR units [9] that are
a generalisation of graph transformation units (e.g. [40]). Net transformation
units [27] provides syntactic and semantic means for structuring net trans-
formations. They regulate the application of rules to nets encapsulating the
rules and control expressions, see also Fig. 12 in Sect. 7.2.

5.2 Control Structures

Control structures to reconfigurable Petri nets are required due to the expres-
sive power of the interplay between rule application and firing behaviour. The
available control structures can be differentiated into those that arise from Petri
nets, as transition priorities, inhibitor arcs or capacities and those that arise
from graph transformation systems as negative application conditions or trans-
formation units.

In [58] priorities for transitions and inhibitor arcs – both well-known concept
in Petri nets – have been introduced to reconfigurable Petri nets. The results of
M-adhesive transformation system for reconfigurable Petri nets with priorities
are ensured by proving the corresponding category to be M-adhesive. Moreover,
it was shown that Petri nets with inhibitor arcs yield an M-adhesive category
as well.

Other control structures determine the application of rules. They concern the
situation that may or may not be given or they concern the order of the rules
to be applied. Net transformation units are the transfer of graph transformation
units (see [40]) to reconfigurable Petri nets and have been achieved using the
abstract formulation of HLR units [9]. Control conditions can be given by regular
expressions, describing in which order and how often the rules and imported units
are to be applied. For an example see Sect. 7.2.

Negative application conditions for reconfigurable Petri nets have been intro-
duced in [66] and provide the possibility to forbid certain rule applications. These
conditions restrict the application of a rule forbidding a certain structure to be
present before or after applying a rule in a certain context. Such a constraint
influences thus each rule application or transformation and therefore changes
significantly the properties of the net transformation system, again see Sect. 7.2.

5.3 Verification

Ensuring that relevant properties as liveness, reachability of specific states or
boundedness hold, is central for the adequate use of a modelling technique.
Since the classical analysis techniques fail there are two main possibilities for
reconfigurable Petri nets that we discuss subsequently: either these properties
are preserved during the transformation or they are proven explicitly.
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Invariants. Invariant properties can be achieved if the rules preserve the corre-
sponding properties. Conditions for rules have been formulated so that the rule
application ensures safety properties [61] and liveness [72] in the resulting net
provided that the original net satisfies these properties.

Although Net Rewriting Systems (NRSs) allow the formalisation of dynamics
in Petri nets, they do not preserve properties such as liveness, boundedness (or
safeness), and reversibility. Based on the approach of NRSs developed in [2,45],
the authors of [42–44] propose Improved Net Rewriting Systems (INRS). The
INRS can not only change dynamically the structure of a Petri net but also
preserve important behavioural properties. In fact, preserving liveness, bound-
edness (or safeness), and reversibility is important in several systems such as
Reconfigurable Manufacturing Systems (RMSs), where the previous properties
are vital to guarantee that the RMS is free from deadlocks, has finite states, and
behaves cyclically, respectively. Reconfiguration in INRS replaces some subnet
from the source net by another subnet yielding a new net. The approach defines
net block class libraries (well-formed net blocks) and the reconfiguration process
substitutes a well-formed subnet of any live bounded reversible net with another
well-formed net block of the same interface type. The INRS approach was applied
in [43] to design reconfigurable Petri net controllers for the supervision of RMSs.

Model Checking. The non-deterministic and concurrent behaviour of reconfig-
urable Petri nets inhibit the determination of emerging properties. In [64] model
checking of reconfigurable place/transition nets has been developed, imple-
mented and proven to be correct. Maude is a mature theory of rewriting logic
and is feasible for modelling reconfigurable Petri nets, e.g. [14]. Model-checking
of reconfigurable Petri nets [64] is achieved by a conversion of a net and a set
of rules into a Maude specification. This specification can be model-checked for
properties expressed in linear temporal logic (LTL) using the Maude module
LTLR with extensions for rewrite rules and properties such as fairness. The
model-checking of reconfigurable nets allows the verification of reachability of
states or the absence of deadlocks.

6 Applications

In this section we introduce some of the application areas for reconfigurable Petri
nets. First we investigate the use reconfigurable nets for manufacturing systems
in some detail. Subsequently, other application areas are merely sketched.

6.1 Reconfigurable Manufacturing Systems

Reconfigurable Manufacturing Systems (RMSs) [39] represent a new innovative
approach providing “production systems” with a changeable structure at run-
time. Changing the structure can be a solution to satisfy dynamic customers
requirement as well as to resolve unpredictable system failures. The use of recon-
figurable Petri nets in the design of RMSs offers high level specification, simu-
lation, verification, performance analysis, and code generation at the software
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level. Using Reconfigurable Object Nets (RONs) [8] a formal approach [31] for
the design, simulation, and verification of RMSs is proposed.

Fig. 8. Designing RMSs using RONs based-approach

Fig. 9. (a) Manufacturing of product A, (b) Flow in MC1,
(c) Flow in MC2, (d) Reconfiguration 1: a new product B,
(e) Reconfiguration 2: introducing MC3.

It starts with an infor-
mal or semi-formal
description of the RMS,
builds a RON model
for simulation or for-
mal verification. The
semi-formal descrip-
tion of RMSs is often
given as bloc-diagrams
describing tasks and
the flow control in the
RMS. Figure 8 depicts
how the approach is
applied by the designer.
As a demonstration
of the depicted app-
roach in Fig. 8, let’s
consider the following
RMS inspired from
[50]. This RMS con-
tains two manufac-
turing cells (MC1,
MC2), a storage AS/AR
(automated storage and
retrieval system), and
an AGV (automated
guided vehicle). The
system requires two
raw materials R1 and
R2 and it produces
one final product A
(see Fig. 9(a)). The
production process
passes respectively by
MC1 (Fig. 9(b)) then
MC2 (Fig. 9(c)). The
MC1 is composed of a
CNC lathe machine, a
CNC milling machine,
a robot and a buffer. In MC1, R1 and R2 are processed firstly by the lathe
machine before the milling machine. The MC2 is composed by an assembly
machine (which assembles the two products into one product A), a robot and
a buffer. During the life cycle of the system, the production process meets
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two reconfigurations. The first reconfiguration is triggered by a new customers’
requirement for a product B (see Fig. 9(d)). To produce B the flow must be
converted (i.e. the assembly is done before the lathe and the milling). The sec-
ond reconfiguration (see Fig. 9(e)) is triggered by the inspection team of the
production process requiring the introduction of a new manufacturing cell MC3

(inspection cell). The inspection cell MC3 is composed of a coordinate measuring
machine (CMM) and a set of buffers. Using the RON formalism the three con-
figurations are considered as token nets and the reconfigurations are considered
as token rules. Figure 10(a) and (b) represent the two first configurations. The
reconfiguration is described as a double-pushout (See Fig. 10(c)). As an example,
the Fig. 10(d) shows the production (L, I,R) used in the double-pushout.

Fig. 10. (a) Initial configuration, (b) Second configuration, (c) Double Pushout, (d)
The production rule (L, I, R).

By determining the set of token nets and the set of rules the whole RMS
behaviour can be modelled by a RON model as shown in Fig. 11 in Sect. 7.1. This
RON model can be used to visualise, simulate, and verify the RMS behaviour.

6.2 Other Applications

Communication Platforms. A general modelling framework for communi-
cation platforms and scenarios has been presented in [21] using reconfigurable
algebraic high-level nets. This framework employs an integration of Petri nets,
algebraic data types and net transformation techniques. It allows the analysis
of the evolution of communication platforms, the analysis of scenario evolutions
and the investigation of user interactions on communication platforms. Recon-
figurable AHL nets have also been used in [51,52] for a case study on modelling a
concrete communication platform – namely Skype. The behaviour of the Skype
clients has been modelled in detail and the whole system specification has been
demonstrated for concrete use case scenarios. For these scenarios model proper-
ties have been formulated and validated.
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Ubiquitous Computing Systems (UCSs). Lets computing appear to occur
using any device, in any location, and in any format. Underlying technologies
comprise the internet, advanced middleware, mobile devices, constantly avail-
able networked sensors and microprocessors, and so on. USCs penetrates almost
imperceptibly in everyday life. To ensure a solid operation, a UCS needs reliable
and efficient communication between its distributed computing components. [24]
presents a formal approach based on reconfigurable algebraic higher order nets
with individual tokens (AHOI) nets [51]. This approach allows modelling the
synchronous and asynchronous communication in UCSs and is used for mod-
elling a smart home. Emergency scenarios using mobile ad-hoc networks have
been investigated extensively [10,23,62]. In emergency scenarios, we can obtain
an effective coordination among team members constituting a mobile ad-hoc
network through the use of net system and rule tokens. From an abstract point
of view, mobile ad-hoc networks consist of mobile nodes which communicate
with each other independent of a stable infrastructure, while the topology of
the network constantly changes depending on the current position of the nodes
and their availability. The net structure can be adapted to new requirements
of the environment during run time by a set of rules, i.e. token firing and net
transformation can be interleaved with each other.

7 Tools

Since the rewriting in reconfigurable Petri nets is in most cases given as a kind
of graph transformation, general purpose graph transformation tools as AGG [1]
that supports the modelling, the simulation and the analysis of typed attributed
graph transformation systems, are likely candidates. But specific tools have been
developed as well. In Sects. 7.1 and 7.2 we introduce tools that are in use at
this point. The MCReNet-tool [49] is a tool for the modelling and verification of
marked-controlled reconfigurable Petri nets [46] and was the first implementation
that has explicitly dealt with reconfigurable Petri nets.

7.1 RON-Editor

One of the tools concerned with reconfigurable Petri nets is RON-Editor [7]. The
RON-editor is based on reconfigurable object nets [28]. It is an open source and
free tool [68]. The RON-editor supports users to create, delete and edit parts
of the model like object nets, net transformations rules and a top-level RON.
The RON-editor makes several checks (e.g. for correct typing of tokens on RON
places, to guarantee that mappings in rules satisfy net morphism properties)
that help the user to obtain consistent RONs. Additionally, the editor comprises
a simulator using the AGG engine to simulate the application of rules and thus
firing of high-level transitions in the RONs created with the editors. The set of
visual editors have been realized as Eclipse plug-ins using the Eclipse Modelling
Framework (EMF) and Graphical Editor Framework (GEF) plug-ins. As an
example, the simulation of the RON model presented in Sect. 6.1 is depicted
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in Fig. 11. There the top-right window depicts the system level net (the RON
model), the top-left window depicts the object net TN1 in the place np1 and the
lower window shows the transformation rule (token-rule r1) which is applied to
the object net TN1. The RON-editor can simulate the behaviour of the system
level net as well as the behaviour of the object nets. The transition “transform-
transition 1” is green which means that it is enabled.

Fig. 11. An example of reconfigurable object nets with RON-Editor. (Color figure
online)

7.2 ReConNet

ReConNet [59,65] is an open source project that has been initiated at the HAW
Hamburg developing a tool for editing and simulating reconfigurable decorated
nets. It provides an intuitive graphic-based user interface that allows the user to
create, modify and simulate reconfigurable nets. It facilitates non-deterministic
application of rules and firing steps. There are different simulation options exe-
cuting a definable amount of steps: only transitions are fired, only rules are
applied, or both may happen. Control structures that are available comprise
negative application conditions, transformation units and dynamic transition
labels (see Sect. 5). In Fig. 12 the net N from Example 1 in Sect. 3 is depicted
together with a third rule r3 that reverts (various instances and derivations)
the arrows of the net. The requirement “the arrows only may be turned if there
is no token on the second place” ensures that token do not directly go back.
This rule is shown in four windows: the first presents the negative application
condition that ensures the requirement. The next three windows present a rule
where the intermediate transition is deleted and then a transition with a new
label is inserted so that the arrow point in the other direction. Note, that in
this illustration the interface’s window does not show a net explicitly. The trans-
formation unit’s control structure tu1: (r1 | r2)*;(r3!) guarantees that r1
and r2 (as given in Example 1) are executed arbitrarily often, subsequently they
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Fig. 12. GUI of ReConNet

are followed by rule r3. The exclamation mark ! denotes that this expression
is repeated as long as possible. Hence, once the turning has started, it goes on
until all arrows have been turned around.

8 Conclusion

In this contribution we have given a comprehensive compilation of the results
that have been achieved for various types of reconfigurable Petri nets in the
last two decades. Reconfiguration is a topic that is quite virulent in very differ-
ent areas. For some of these modelling the dynamic change with reconfigurable
Petri nets seems to be very promising. We have sketched some application areas
and have given examples how to tackle the issue with reconfigurable nets. The
theoretical research in reconfigurable Petri nets has provided important results
on several types of nets. However, the proposed case studies are often academic
ones illustrated only to explain the feasibility of the proposed formal approaches.
In order to tackle with these limits, future work has to focus on the following
aspects:

– Enlarge the application domain of reconfigurable Petri nets to handle new tech-
nologies, for example cloud computing systems and the internet of things. These
later are the most suitable systems where mobility, flexibility, and dynamics are
inherent characteristics. These systems require new reliable hardware devices
and new reliable software protocols and drivers, thus reconfigurable Petri nets
should be suggested as a validation and verification technique.
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– Invest in the automatic tools for modelling, simulation, and verification of
reconfigurable Petri nets. The current tools remain at the prototypic and
academic level.

– Extend reconfigurable Petri nets to performance analysis. Most verification
results for reconfigurable Petri nets concern qualitative verification. How-
ever, in real systems the designer expects often performance evaluation and
quantitative measurements. Such analysis is well developed in stochastic
Petri nets and stochastic automata with some improved tools like Great-
SPIN or UPPAAL. Stochastic graph transformations [4] provide attributed
typed graph transformations systems for analysing transformation systems
with stochastic methods and is a good basis for Future work to integrate
stochastic features to reconfigurable Petri nets more formally.
This comprises work on the integration of the INRS approach and the abstract
transformation systems. We want to achieve the strong theoretical basis of the
abstract transformation systems also for the INRS approach. The formulation
of building blocks used in INRS independently of the underlying net types
(similar to [53]) is the basis for a formal correctness proof.

– Integrate optimisation problems. Another, new application of reconfigurable
Petri nets is the optimal configuration in reconfigurable systems. These use
often evolutionary algorithms that find the optimal configuration after several
reconfigurations of a random initial configuration. Combining reconfigurable
Petri nets with evolutionary processing can yield new hybrid methods where
both objectives are captured: optimisation and formal verification.
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