
Reiko Heckel
Gabriele Taentzer (Eds.)

Graph Transformation,
Specifications, and Nets

Fe
st

sc
hr

ift
LN

CS
 1

08
00

In Memory of Hartmut Ehrig

 123

Lecture Notes in Computer Science 10800

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zurich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7407

Reiko Heckel • Gabriele Taentzer (Eds.)

Graph Transformation,
Specifications, and Nets
In Memory of Hartmut Ehrig

123

Editors
Reiko Heckel
Department of Informatics
University of Leicester
Leicester
UK

Gabriele Taentzer
Fachbereich Mathematik und Informatik
Philipps-Universität Marburg
Marburg
Germany

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-75395-9 ISBN 978-3-319-75396-6 (eBook)
https://doi.org/10.1007/978-3-319-75396-6

Library of Congress Control Number: 2018931888

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

© Springer International Publishing AG, part of Springer Nature 2018
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by the registered company Springer International Publishing AG
part of Springer Nature
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Foreword

This volume is dedicated to the memory of Hartmut Ehrig, who passed away on March
17, 2016, at the age of 71. Hartmut was my special friend and collaborator, and so I felt
honored when I was asked to write the foreword to this volume.

Hartmut was a great scientist who substantially influenced developments of several
research areas. His mathematical tools, the methods he used, and the models that he
created were mostly rooted in category theory and algebra.

He is in fact the father of the algebraic approach to graph transformation (graph
grammars, graph rewriting). He was a co-founder of the double-pushout approach,
which laid the foundations for this research area and, moreover, most of the crucial
developments of the algebraic approach were either directly or indirectly influenced by
him. He was also responsible for some of the most significant developments in the area
of algebraic specifications. His books on algebraic specifications became the main
references for both researchers and students.

A characteristic feature of Hartmut’s research was the fact that, although he used and
pursued very abstract (for computer science) tools and techniques, such as category
theory, he was genuinely interested in and motivated by applications, especially those
related to software development.

His contributions to science were not restricted to his huge scientific output. He was
also very involved in developing the organizational framework for the computer sci-
ence community. Here are some examples:

– He was a co-founder of the International Conference on Graph Transformations
(which originated as the International Workshop on Graph Grammars and Their
Applications to Computer Science).

– Because of his strong interest in connecting theoretical research with applications,
he organized the first TAPSOFT conference, and was behind transforming
TAPSOFT into the very prestigious European Joint Conference on Theory and
Practice of Software (ETAPS).

– He also played an important role in the development of the European Association of
Theoretical Computer Science (EATCS) — he was its vice president from 1997
until 2002.

Hartmut was a passionate scientist always involved in either solving technical
problems or in inventing new, often pioneering, research directions. His passion and
enthusiasm were contagious — working with Hartmut was always an intense
experience.

I was fortunate to have Hartmut as my friend and collaborator for over 40 years.
I surely miss him — I have many fond memories of the times we spent together. I am
really pleased to see how his scientific ideas are still pursued today.

November 2017 Grzegorz Rozenberg

Preface

In October 2016 we held a symposium at TU Berlin commemorating the life and work
of Hartmut Ehrig. This book pays tribute to Hartmut's scientific achievements. It
contains contributions based on the presentations at the symposium as well as other
invited papers in the areas that Hartmut was active in.

These areas include:

– Graph transformation
– Model transformation
– Concurrency theory, in particular Petri nets
– Algebraic specification
– Category theory in computer science

The editors would like to thank all authors and reviewers for their thorough and
timely work, Grzegorz Rozenberg for his advice throughout the process, and Alfred
Hofmann at Springer for his encouragement and support for this project.

November 2017 Gabriele Taentzer
Reiko Heckel

Organization

Program Committee

Paolo Bottoni Sapienza University of Rome, Italy
Andrea Corradini Dipartimento di Informatica, Università di Pisa, Italy
Zinovy Diskin McMaster University/University of Waterloo, Canada
Dominique Duval LJK, University of Grenoble, France
Fabio Gadducci Università di Pisa, Italy
Annegret Habel University of Oldenburg, Germany
Reiko Heckel University of Leicester, UK
Berthold Hoffmann Universität Bremen, Germany
Dirk Janssens University of Antwerp, Belgium
Timo Kehrer Humboldt-Universität zu Berlin, Germany
Alexander Knapp Universität Augsburg, Germany
Hans-Joerg

Kreowski
University of Bremen, Germany

Sabine Kuske University of Bremen, Germany
Barbara König Universität Duisburg-Essen, Germany
Harald König FHDW Hannover, Germany
Leen Lambers Hasso-Plattner-Institut, Universität Potsdam, Germany
Michael Löwe FHDW Hannover, Germany
Ugo Montanari Università di Pisa, Italy
Till Mossakowski University of Magdeburg, Germany
Fernando Orejas Universitat Politècnica de Catalunya, Spain
Julia Padberg HAW Hamburg, Germany
Francesco

Parisi-Presicce
Sapienza University of Rome, Italy

Detlef Plump University of York, UK
Arend Rensink University of Twente, The Netherlands
Leila Ribeiro Universidade Federal do Rio Grande do Sul, Brazil
Donald Sannella The University of Edinburgh, UK
Andy Schürr TU Darmstadt, Germany
Pawel Sobocinski University of Southampton, UK
Daniel Strüber University of Koblenz and Landau, Germany
Gabriele Taentzer Philipps-Universität Marburg, Germany
Andrzej Tarlecki Institute of Informatics, Warsaw University, Poland
Daniel Varro Budapest University of Technology and Economics, Hungary
Uwe Wolter University of Bergen, Norway

Contents

On the Essence of Parallel Independence for the Double-Pushout
and Sesqui-Pushout Approaches . 1

Andrea Corradini, Dominique Duval, Michael Löwe,
Leila Ribeiro, Rodrigo Machado, Andrei Costa,
Guilherme Grochau Azzi, Jonas Santos Bezerra,
and Leonardo Marques Rodrigues

Integration of Graph Constraints into Graph Grammars 19
Annegret Habel, Christian Sandmann, and Tilman Teusch

Multi-view Consistency in UML: A Survey . 37
Alexander Knapp and Till Mossakowski

A Simple Notion of Parallel Graph Transformation and Its Perspectives. 61
Hans-Jörg Kreowski, Sabine Kuske, and Aaron Lye

A Tutorial on Graph Transformation . 83
Barbara König, Dennis Nolte, Julia Padberg, and Arend Rensink

Initial Conflicts and Dependencies: Critical Pairs Revisited 105
Leen Lambers, Kristopher Born, Fernando Orejas, Daniel Strüber,
and Gabriele Taentzer

Towards a Navigational Logic for Graphical Structures 124
Leen Lambers, Marisa Navarro, Fernando Orejas, and Elvira Pino

Model Transformations as Free Constructions . 142
Michael Löwe

The Verigraph System for Graph Transformation . 160
Guilherme Grochau Azzi, Jonas Santos Bezerra, Leila Ribeiro,
Andrei Costa, Leonardo Marques Rodrigues, and Rodrigo Machado

Decomposition Structures for Soft Constraint Evaluation Problems:
An Algebraic Approach . 179

Ugo Montanari, Matteo Sammartino, and Alain Tcheukam

Overview of Reconfigurable Petri Nets . 201
Julia Padberg and Laid Kahloul

A Category of “Undirected Graphs”: A Tribute to Hartmut Ehrig 223
John L. Pfaltz

Modular Termination of Graph Transformation . 231
Detlef Plump

Graph Attribution Through Sub-Graphs . 245
Harmen Kastenberg and Arend Rensink

On Normal Forms for Structured Specifications
with Generating Constraints . 266

Donald Sannella and Andrzej Tarlecki

Towards the Automated Generation of Consistent, Diverse,
Scalable and Realistic Graph Models . 285

Dániel Varró, Oszkár Semeráth, Gábor Szárnyas, and Ákos Horváth

Graph Operations and Free Graph Algebras . 313
Uwe Wolter, Zinovy Diskin, and Harald König

Author Index . 333

XIV Contents

On the Essence of Parallel Independence for the
Double-Pushout and Sesqui-Pushout Approaches

Andrea Corradini1(B) , Dominique Duval2, Michael Löwe3, Leila Ribeiro4,
Rodrigo Machado4(B), Andrei Costa4, Guilherme Grochau Azzi4 ,

Jonas Santos Bezerra4 , and Leonardo Marques Rodrigues4

1 Università di Pisa, Pisa, Italy
andrea@di.unipi.it

2 Université Grenoble-Alpe, Grenoble, France
dominique.duval@imag.fr

3 Fachhochschule für die Wirtschaft Hannover, Hannover, Germany
michael.loewe@fhdw.de

4 Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
{leila,rma,acosta,ggazzi,jsbezerra,lmrodrigues}@inf.ufrgs.br

Abstract. Parallel independence between transformation steps is a
basic notion in the algebraic approaches to graph transformation, which
is at the core of some static analysis techniques like Critical Pair Analy-
sis. We propose a new categorical condition of parallel independence and
show its equivalence with two other conditions proposed in the literature,
for both left-linear and non-left-linear rules. Next we present some pre-
liminary experimental results aimed at comparing the three conditions
with respect to computational efficiency. To this aim, we implemented
the three conditions, for left-linear rules only, in the Verigraph system,
and used them to check parallel independence of pairs of overlapping
redexes generated from some sample graph transformation systems over
categories of typed graphs.

1 Introduction

Graph transformation is a well-developed computational model suited to
describe the evolution of distributed systems. System states are represented by
graphs, and rules typically describe local changes of some part of the state. One
central topic in the theory of graph transformation, first addressed in [12,21],
has been the identification of conditions that guarantee that two transformation
steps from a given state are independent, and thus can be applied in any order
generating the same result. This is known as the Local Church-Rosser Problem,
that is presented in the following way in [8]:

Find a condition, called parallel independence, such that two alternative
transformation steps H1

ρ1⇐= G
ρ2=⇒ H2 are parallel independent if and

only if there are transformation steps H1
ρ2=⇒ X and H2

ρ1=⇒ X such that
G

ρ1=⇒ H1
ρ2=⇒ X and G

ρ2=⇒ H2
ρ1=⇒ X are equivalent.

c© Springer International Publishing AG, part of Springer Nature 2018
R. Heckel and G. Taentzer (Eds.): Ehrig Festschrift, LNCS 10800, pp. 1–18, 2018.
https://doi.org/10.1007/978-3-319-75396-6_1

http://orcid.org/0000-0001-6123-4175
http://orcid.org/0000-0002-3740-7002
http://orcid.org/0000-0002-8089-3691
http://orcid.org/0000-0002-5894-9070

2 A. Corradini et al.

The “equivalence” just mentioned informally means that the rules ρ1 and ρ2
consume the same items of G in the two transformation sequences. A formal
definition, based on the classical shift equivalence, can be found in Sect. 3.5 of [8].
The above statement fixes a standard pattern for addressing the Local Church-
Rosser Problem in the various approaches to algebraic graph transformation:
first, a definition of parallel independence for transformation steps has to be
provided, next a Local Church-Rosser Theorem proves that given two parallel
independent transformation steps from a given graph, they can be applied in
both orders obtaining the same result (up to isomorphism).

The efficient verification of parallel independence is important for the anal-
ysis of graph transformation systems. It is needed for example in Critical Pair
Analysis, a static analysis technique originally introduced in term rewriting sys-
tems [15] and, starting with [20], widely used also in graph transformation and
supported by some tools [9,22]. It relies on the generation of all possible critical
pairs, i.e. pairs of transformation steps in minimal context that are not paral-
lel independent, which can be used to prove local confluence or to provide the
modeler with all possible conflicts between transformation rules. Efficient paral-
lel independence verification could also be exploited by partial-order reduction
techniques in tools supporting model checking of graph transformation systems,
like groove [14].

In the first part of the paper we discuss three definitions of parallel indepen-
dence proposed for the classical Double-Pushout Approach (dpo) [11], and also
applicable to the richer setting of the Sesqui-Pushout Approach (sqpo) [7], which
extends dpo by allowing also the specification of cloning or copying of items.
The third of such definitions is new, and we claim that it captures the essence of
parallel independence, being simpler than the other ones. We exploit the third
condition as a pivot in proving that all presented conditions are equivalent.

In the second part of the paper we report on some experimental evaluations of
the complexity of verifying parallel independence according with the three condi-
tions. They have been implemented in Verigraph, a framework for the specifica-
tion and verification of graph transformation systems written in Haskell, under
development at the Universidade Federal do Rio Grande do Sul [9]. Since the
current version of Verigraph does not support Sesqui-Pushout transformation,
only left-linear rules are considered in the evaluation. After describing the basic
data structures used in Verigraph to model categorical constructions, we discuss
the implementation of the three equivalent conditions and compare the time
efficiency of verifying them on a collection of test cases. The newly proposed
condition turns out to be the in most cases the most efficient.

The reader is assumed to be familiar with the dpo approach and with typed
graphs [8]. Some background notions are introduced in Sect. 2. In Sect. 3 we
introduce the three conditions for parallel independence, and Sect. 4 is devoted
to the proof of their equivalence. The Verigraph system is presented in Sect. 5,
which also describes how the parallel independence conditions were imple-
mented. Experimental results are described and analysed in Sect. 6. Finally,
Sect. 7 presents concluding remarks.

On the Essence of Parallel Independence 3

2 Background

In order to fix the terminology, let us recall the standard definition of Double-
Pushout [11] and Sesqui-Pushout transformation [7] in a generic category C.
Conditions on C will be introduced when needed.

Definition 1 (Double-Pushout transformation). A rule ρ=(L l←K
r→R)

is a span of arrows in C. Rule ρ is left-linear if l is mono, right-linear if r is
mono, and linear if both l and r are monos. A match for rule ρ in an object G
is an arrow m : L → G. If the diagram in (1) exists in C, where both squares
are pushouts, then we say that there is a dpo transformation step from G to H

via (ρ,m), and we write G
ρ,m
=⇒ H. In this case we call the pair (ρ,m) a redex in

G, and K
n→ D

g→ G a pushout complement (poc) of K
l→ L

m→ G. We write
G

ρ
=⇒ H if G

ρ,m
=⇒ H for some match m for ρ in G.

L

m
��

Kl�� r ��

n
��

R

q
��

G Dg�� h �� H

(1)

Therefore if (ρ,m) is a redex in G we know that ρ can be applied to match m
in G. In Diagram (1), K is called the interface and D the context.

In most presentations of the dpo approach, suitable conditions are imposed
to guarantee a form of determinism, i.e. that if G

ρ,m
=⇒ H and G

ρ,m
=⇒ H ′ then H

and H ′ are isomorphic. This is often achieved by requiring rules to be left-linear,
because in several categories of interest (as in adhesive categories [16]) if l is
mono then the pushout complement of K

l→ L
m→ G is uniquely determined

(up to isomorphism) if it exists, and thus also object H is unique up to iso by
the universal property of the right-hand side pushout.1

Sesqui-Pushout transformations were proposed in [7] as a little variation of
dpo ones, able to guarantee the above form of determinism by the very definition.
The only difference with respect to dpo is the property that the left square of
(1) has to satisfy. We first recall the definition of final pullback complement.

1 In non-adhesive categories stronger conditions might be necessary. For example, in
the category of term graphs (which is not adhesive but just quasi-adhesive [6]), two
non-isomorphic pushout complements may exist for a monic l, while uniqueness is
ensured by requiring l to be a regular mono, i.e. the equalizer of a pair of parallel
arrows. It is worth recalling here that every adhesive category is quasi-adhesive, and
that in an adhesive category all monos are regular [16].

4 A. Corradini et al.

Definition 2 (final pullback complement) In Diagram (2), K
n→

D
g→ G is a final pullback complement (fpbc) of K

l→ L
m→ G if

1. the resulting square is a pullback, and
2. for each pullback G

m← L
d← K ′ e→ D′ f→ G

and arrow K ′ h→ K such that l ◦ h = d,
there is a unique arrow D′ a→ D such that
g ◦ a = f and a ◦ e = n ◦ h.

L

m
��

Kl��

n
��

K ′
h��

e
��

d
��

G Dg�� D′a
��� � � �

f

��

(2)

Definition 3 (Sesqui-Pushout transformation). Under the premises of
Definition 1, we say that there is a sqpo transformation step from G to H
via (ρ,m) if the diagram in (1) can be constructed in C, where the left square is
a final pullback complement of K

l→ L
m→ G and the right square is a pushout.

The final pullback complement of two arrows is characterised by a universal
property, and thus it is unique up to isomorphism, if it exists. Therefore sqpo
transformation is deterministic in the above sense also for non-left-linear rules.
Furthermore, as discussed in [7], in an adhesive category every dpo transforma-
tion for a left-linear rule is also an sqpo transformation, and thus sqpo rewriting
can be considered as a conservative extension of dpo transformation.

Along the paper we shall often use some well-known properties of pullbacks:

Fact 1 (composition and decomposition of pullbacks)

1. In the diagram on the left if squares (a) and (b) are pullbacks, so is the com-
posed square:

2. In the diagram made of solid arrows above on the right, if square (d) and the
outer square are pullbacks, then there is a unique arrow (the dotted one) such
that the top triangle commutes and square (c) is a pullback.

The following definition will be useful in the following.

Definition 4 (reflection). Given objects X, Y , Z and arrows f : X → Z, g :

Y → Z we say that f is reflected along g if the pullback object of Y
g→ Z

f← X is
isomorphic to X, as in square 1© or, equivalently, if there is an arrow h : X → Y

such that Y
h← X

id→ X is the pullback of Y
g→ Z

f← X, as in square 2©.

X ′

��
∼= ��

��

1©
X

f

��

Y g �� Z

X
��

id ��

h
��

2©
X

f
��

Y g �� Z

Note that such an arrow h : X → Y , if it exists, is necessarily unique. In this
case we also say that f is reflected along g by h.

On the Essence of Parallel Independence 5

Intuitively, this means that g is an isomorphism when restricted to the image
of f . If objects are concrete structures like graphs, then every item of the image
of f in Z has exactly one inverse image along g in Y . The following facts are
easy to check by properties of pullbacks.

Fact 2 (some properties of reflection)

1. Arrow f : X → Z is reflected along g : Y → Z iff there exists an arrow
h : X → Y such that for all pairs of arrows m : W → Y and n : W → X, if
g ◦ m = f ◦ n then h ◦ n = m.

2. If g is mono, then f is reflected along g iff there exists an arrow h : X → Y
such that f = g ◦ h.

We will use as running example the following sqpo graph grammar, based
on the category of graphs typed over the left graph of Fig. 1.

Type Graph

Nat

1

2

3

4

Initial Graph Send

GetDataReturn

LoadClone

Fig. 1. Graph grammar for clients and servers

Example 1 (sqpo graph grammar for clients and servers). The graph gram-
mar of Fig. 1 represents clients (computers) obtaining data (documents) from
servers via messages (envelopes). In the model, data nodes represent subsets of
{1, 2, 3, 4} (elements of type Nat), which are initially stored in servers. Arrows
represent locations and references. Loops in messages are used to ensure that
only one data node is loaded at each time. Clients transmit messages to servers
via rule Send. Messages are loaded with a cloned version of a data node via
rule LoadClone, with a dotted line being used to represent the cloning effect.
It is worth recalling that all edges from the cloned data node to numbers are
also cloned as a side-effect of sqpo rewriting. Rule Return transmits messages
with data back to clients. Finally, rule GetData deletes a message, placing the
data node directly into the client node. Rules are presented by showing only
the left- and right-hand sides: the interface is their intersection for all rules but
LoadClone, which is shown in detail in Fig. 2.

3 Conditions for Parallel Independence

Parallel independence is a property that can be satisfied or not by two (dpo
or sqpo) transformation steps from the same object G, like in the situation

6 A. Corradini et al.

depicted in Diagram (3), where we have two redexes (ρ1,m1) and (ρ2,m2) and
transformation steps G

ρ1,m1=⇒ H1 and G
ρ2,m2=⇒ H2.

R1

q1
��

K1
r1��

l1 ��

n1

��

L1

m1
���

��
��

��
�

L2

m2
����
��
��
��

K2
l2��

r2 ��

n2

��

R2

q2
��

H1 D1
h1

��
g1

�� G D2g2
��

h2

�� H2

(3)

In the framework of the classical dpo approach, parallel independence was
formulated in a categorical way [8,11,12] by requiring that each match factorizes
through the context of the other transformation step. That is, there must exist
the two dotted arrows of Diagram (4) so that the resulting triangles commute,
i.e., g1 ◦ m2d = m2 and g2 ◦ m1d = m1. However, as shown explicitly with a
counterexample in [4], this condition only works for dpo and sqpo with left-
linear rules. For sqpo with non-left-linear rules the commutativity of the two
triangles is not sufficient, but it is necessary to require the stronger condition
that m1 is reflected along g2 by m1d, and symmetrically for m2.

R1

q1
��

K1
r1��

l1 ��

n1

��

L1

m1
���

��
��

��
�

m1d

		

� � � � 	
 � �
 � � � �

L2

m2
����
��
��
��m2d

��

�������������

K2
l2��

r2 ��

n2

��

R2

q2
��

H1 D1
h1

��
g1

�� G D2g2
��

h2

�� H2

(4)

Indeed, this is the condition of parallel independence that arose by addressing
the Local Church-Rosser Problem in more general approaches where rules can
be non-left-linear, like Reversible Sesqui-Pushout [10] and Rewriting in Span
Categories [19]. We call this condition the standard one.

Definition 5 (Standard Condition). Two redexes (ρ1,m1) and (ρ2,m2) as
in Diagram (3) satisfy the Standard Condition of parallel independence (std-
pi for short) if the matches are reflected along the contexts, that is, if there
are arrows m1d : L1 → D2 and m2d : L2 → D1 such that the two squares in
Diagram (5) are pullbacks.

L1
�� idL1

m1

��

L1

m1d

��

��

G D2g2��

L2 idL2
��

m2d

��

��
L2

m2

��

D1 g1 �� G

(5)

Note that in most categories of interest, if the rules are left-linear then also
morphisms g1 : D1 → G and g2 : D2 → G are mono. This holds either by Lemma
2.2 of [7] for the sqpo approach or, for the dpo approach in (quasi-)adhesive
categories, because in such categories pushouts preserve (regular) monos [16].

On the Essence of Parallel Independence 7

Therefore in these cases by Fact 2(2) two redexes satisfy condition std-pi if and
only if they satisfy the more familiar condition of Diagram (4), i.e., there are
arrows m1d and m2d making the two triangles commute.

Example 2 (the standard condition for parallel independence). Figure 2 shows a
pair of parallel dependent redexes with rules LoadClone and Send, detected by
the standard condition. Here and in the following, as a convention, we denote a
pullback object (like D1L2) by concatenating the names of the cospan sources
(D1 and L2 in this case), leaving implicit their morphisms to the common target
(G). The conflict arises because the node cloned by LoadClone is used by Send,
so the effect of Send after the application of LoadClone could differ depending
on which of the clones is chosen by the match.

Fig. 2. Standard condition exposing a conflict between rules LoadClone and Send.

The condition of parallel independence for left-linear rules presented in [11]
and shown in Diagram (4), being formulated in categorical terms, is very conve-
nient for the proof of the Local Church-Rosser Theorem which is heavily based
on diagrammatic constructions. But also a different, set-theoretical condition
was proposed in [11] for dpo in the category of graphs, requiring that:

m1(L1) ∩ m2(L2) = m1(l1(K1)) ∩ m2(l2(K2)). (6)

That is, each item needed by both redexes (in the image of both matches) must
be preserved by both redexes (is also in the image of both interfaces).

K1K2

��
πK
2

��

πK
1

��

l

��

�
� 2©

K2

l2
��

L1L2

πL
2 ��

πL
1
��

��
1©

L2

m2

��

K1 l1 �� L1 m1 �� G

(7)

8 A. Corradini et al.

As discussed in [4], the classical condition of Diagram (4) is not a direct trans-
lation of this set-theoretical one, as the categorical counterpart of intersections
are pullbacks. Diagram (7) shows the two pullbacks corresponding to the left
side (1©) and to the right side (2©) of Eq. (6). The pullback objects are related
by a unique mediating morphism l : K1K2 → L1L2 such that πL

1 ◦ l = l1 ◦ πK
1

and πL
2 ◦ l = l2 ◦ πK

2 , by the universal property of pullback 1©.
By exploiting these pullbacks, the following condition of parallel indepen-

dence was proposed in [4] as a direct categorical translation of Eq. (6).

Definition 6 (Pullback Condition). Redexes (ρ1,m1) and (ρ2,m2) as in
Diagram (3) satisfy the Pullback Condition of parallel independence (pb-pi for
short) if in Diagram (7) mediating arrow l : K1K2 → L1L2 is an isomorphism.

Next, we propose a third condition. To our opinion, it is simpler than the two
previous ones and it captures the essence of parallel independence. It works for
general rules, and it can be simplified in the left-linear case.

Definition 7 (Essential Condition). Let (ρ1,m1) and (ρ2,m2) be two
redexes in an object G, as in Diagram (3), and let (L1L2, π

L
1 , πL

2) be the pull-
back defined by 1© in Diagram 7. Then (ρ1,m1) and (ρ2,m2) satisfy the Essen-
tial Condition of parallel independence (ess-pi) if the pullback of the matches is
reflected along the left-hand sides. That is, if there exist arrows α1 : L1L2 → K1

and α2 : L1L2 → K2 such that the two squares of Diagram (8) are pullbacks.

L1L2 id ��

α1

��

��
L1L2

πL
1
��

K1 l1 �� L1

L1L2 id ��

α2

��

��
L1L2

πL
2
��

K2 l2 �� L2

(8)

Example 3 (the pullback and the essential conditions). The rule LoadClone is in
conflict with itself when it tries to load a clone of the same data node in two

Fig. 3. Conditions pb-pi and ess-pi show a conflict between two redexes of LoadClone.

On the Essence of Parallel Independence 9

distinct messages. Figure 3 shows how this conflict is captured by the pullback
(pb-pi) and essential (ess-pi) conditions of parallel independence.

4 Equivalence of Conditions for Parallel Independence

We present here explicit proofs of the equivalence of the three conditions intro-
duced in the previous section for dpo and sqpo rewriting. The equivalence
between the Standard and the Pullback Conditions was proved in an indirect
way in [4], by exploiting some results of [5]. The proofs that follow are complete
and in a way simpler than those in [4], by reducing both conditions to the new
one. In fact, we first prove the equivalence of conditions pb-pi and ess-pi, and
next the equivalence of conditions std-pi and ess-pi. The proofs are presented
for sqpo rewriting with possibly non-left-linear rules. They also apply to dpo
rewriting with left-linear rules under mild conditions recalled in Proposition 1.

Theorem 1 (Equivalence of the Pullback and Essential Conditions).
Let C be a category with all pullbacks, and let (ρ1,m1) and (ρ2,m2) be two sqpo
redexes in an object G of C, as in Diagram (3). Then they satisfy condition
pb-pi of Definition 6 if and only if they satisfy condition ess-pi of Definition 7.

Proof. [If part]. Consider the following diagram:

L1L2

1©
��

id ��

id

��

L1L2

2©
��

α2
��

id

��

K2

l2

��

L1L2

3©
��

id ��

α1

��

L1L2

4©

πL
2 ��

πL
1

��

��
L2

m2

��

K1 l1 �� L1 m1 �� G

(9)

All squares are pullbacks (4© by construction, 2© and 3© by condition ess-pi,
and 1© trivially). Thus by uniqueness of pullbacks up to a unique isomorphism
commuting with the projections, we can deduce that the mediating arrow l :
K1K2 → L1L2 of (7) is an isomorphism.

(10)

10 A. Corradini et al.

[Only if part]. In Diagram (10) the outer diagram and 4© are pullbacks by
construction, and their mediating arrow l : K1K2 → L1L2 is an isomorphism by
condition pb-pi. Let 2© and 3© be built as pullbacks: we have to show that b and
c are isomorphism. Since 3© is a pullback and πL

1 ◦ l = l1 ◦ πK
1 , there is a unique

arrow f : K1K2 → X such that b ◦ f = l and a ◦ f = πK
1 and, symmetrically,

there is a unique arrow e : K1K2 → Y such that d ◦ e = πK
2 and c ◦ e = l. The

resulting square 1© is a pullback: in fact, the outer square and 2© + 4© (by Fact
1(1)) are pullbacks, thus 1© + 3© is a pullback by Fact 1(2); in turn since 3© is
a pullback, also 1© is, again by Fact 1(2). Since b ◦ f = l = c ◦ e and l is an
isomorphism, f and e are sections (that is, they have a left-inverse) and b and c
are retractions (i.e., they have a right-inverse).
But pullbacks preserve retractions,
as shown in the diagram to the right.
If b is a retraction then there is a b′

such that b◦b′ = id. Since 1© is a pull-
back and the outer square commutes,
there is an e′ such that e ◦ e′ = id,
thus e is a retraction as well.

Y

id

��

c

��

e′�� �� K1K2 e ��

f

��

��
1©

Y

c

��

L1L2

id

��b′ �� X b �� L1L2

Thus f and e are also retractions, and therefore they are isomorphisms. This
implies that b and c are isomorphisms as well, as desired. 	

Theorem 2 (Equivalence of the Standard and Essential Conditions).
Let C be a category with all pullbacks, and let (ρ1,m1) and (ρ2,m2) be two sqpo
redexes in an object G of C, as in Diagram (3). Then they satisfy condition
std-pi of Definition 5 if and only if they satisfy condition ess-pi of Definition 7.

Proof. [Only if part]. Consider the following diagram:

(11)

The back-left face is a pullback by construction, the bottom face is a pullback by
condition std-pi, and the front-right face is also trivially a pullback. Therefore
since the front-left face commutes, by Fact 1(2) there is a unique arrow L1L2 →
K2 making the upper face (i.e., the right square of Diagram (8)) a pullback. For
the left square of Diagram (8) the proof is analogous.

On the Essence of Parallel Independence 11

[If part]. Consider the cube in Diagram (12), ignoring for the time being objects
X, Y , and the arrows starting from them. By Definition 3 the back-left face
K2

n2→ D2
g2→ G is a final pullback complement of K2

l2→ L2
m2→ G. Therefore, since

the square made of the front-left and front-right faces is obviously a pullback
and the top face commutes by the essential condition, there is a unique arrow
m1d : L1 → D2 such that the bottom and the back-right face commute.

(12)

In order to show that condition std-pi holds, i.e. that the bottom face is a
pullback, by Fact 2(1) it is sufficient to show that for each object X and arrows
x : X → D2, y : X → L1 such that g2◦x = m1◦y, it holds (†) m1d◦y = x. In order
to show this, let K2

h← Y
k→ X be the pullback of K2

n2→ D2
x← X. By composing

this pullback with the back-left face we get a pullback with vertices Y,L2,X and
G, and therefore since the back-left face is a final pullback complement, there is
a unique arrow f : X → D2 such that (a) f ◦ k = n2 ◦ h and (b) g2 ◦ f = g2 ◦ x.
Thus (†) will follow by showing that both x and m1d ◦ y satisfy properties (a)
and (b). For x, (a′) x ◦ k = n2 ◦ h holds by construction, and (b′) is obvious. For
m1d ◦ y, we have (b′′) g2 ◦ m1d ◦ y = m1 ◦ id ◦ y = m1 ◦ y = g2 ◦ x. In order to
show (a′′) m1d ◦y ◦k = n2 ◦h, observe that the composition of the top face (that
is a pullback by the essential condition) and of the front-left face is a pullback,

and that the outmost square commutes (Y h→ K2
m2◦l2→ G = Y

y◦k→ L1
m1→ G),

therefore there is a unique arrow z : Y → L1L2 such that (c) α2 ◦ z = h and

(d) πL
1 ◦id◦z = y◦k. Thus we have m1d◦y◦k

(d)
= m1d◦πL

1 ◦z = n2◦α2◦z
(c)
= n2◦h,

as desired. 	

Proposition 1 (Equivalence of Conditions for dpo rewriting). If cate-
gory C is quasi adhesive and the left-hand sides of the rules are regular monos
(i.e. they are equalizers of pairs of parallel arrows), then Theorems 1 and 2 also
apply to dpo redexes.

Proof. By Proposition 12 of [7], the pushout complement of a regular-mono left-
hand side and a match is also a final pullback complement. Therefore a dpo
redex is also a sqpo redex. 	

12 A. Corradini et al.

5 Implementation in the Verigraph System

Parallel independence is important for practical applications involving graph
transformation, in particular for static analysis techniques. The equivalence of
conditions std-pi, ess-pi and pb-pi means that tools are free to implement
any of them. In this context, time is usually the most critical resource, thus
it should guide the choice of the algorithm. Here and in the next section we
compare the performance of the three conditions based on their implementation
in the Verigraph system and on their use, in various scenarios, for some concrete
grammars defined in categories of typed graphs.

Verigraph [9] is implemented in Haskell, exploiting its abstraction mecha-
nisms to promote separation between abstract and concrete code. This allows the
algorithms for checking parallel independence to be implemented at an abstract
level (based on arrows and composition) as an almost direct translation of cat-
egorical diagrams and definitions. Clearly, when such an abstract algorithm is
applied to a concrete category of structures like (possibly typed) graphs, unary
algebras, Petri nets, etc., its efficiency depends on the data structures and algo-
rithms that implement the concrete structures, their morphisms and the primi-
tive categorical operations on them. In general one cannot expect an instantia-
tion of an abstract algorithm to be more efficient than an algorithm specifically
designed for the concrete structures. This is why we compare only the algorithms
as implemented in Verigraph, while we defer to future work a comparison with
algorithms for parallel independence developed in other frameworks.

Verigraph supports the definition and analysis of dpo graph transformation
systems, while the support for sqpo is under development. For this reason the
experimental evaluation presented in the next section will consider left-linear
rules only. Without loss of generality, we also assume that rules are right-linear,
because the right-hand sides don’t play a role in the conditions for parallel
independence considered in this paper.

5.1 Data Structures

We briefly describe now the data structures used to represent typed graphs and
related concepts. Graphs are directed and unlabeled, and nodes and edges are
identified by unique integers. Each graph is made of a list of node identifiers
and a list of tuples (e, s, t), which are identifiers for the edge, its source and
its target, respectively. This representation is convenient as most operations on
graphs will traverse all its elements. Graph morphisms are represented as pairs
of finite maps. We use the datatypes provided by the standard library of Haskell,
which implements finite maps using balanced binary trees. A typed graph over
a type graph T is a graph morphism GT : G → T . A typed graph morphism
f : GT → HT is just a graph morphism f : G → H which commutes with the
morphisms to T . Rules are spans LT � KT � RT of injective typed graph
morphisms.

On the Essence of Parallel Independence 13

5.2 Primitive Categorical Operations

Verigraph provides many categorical operations as primitives for algorithm con-
struction. For reasons of space, we only present a brief explanation of how the
most relevant operations for testing parallel independence were implemented in
the category of typed graphs. For more details, we refer to the source code [1].

Pullback. Let P(X) = {S | S ⊆ X} and, given f : X → Y , let the inverse
f−1 : Y → P(X) be defined as f−1(y) = {x | f(x) = y}. The pullback of a

cospan (X
f→ Z

g← Y) is obtained by taking the inverses f−1 : Z → P(X)
and g−1 : Z → P(Y), then creating the disjoint union of the product of the
preimages for each element of Z, that is,

⊎
z∈Z f−1(z) × g−1(z). This is done

independently for edges and nodes in order to construct the pullback graph
and associated projection morphisms.

Pushout Complement. The pushout complement (see Definition 1) of (K
l�

L
m→ G) in the category of typed graphs exists iff the gluing conditions are

satisfied [11]. These conditions are checked set-theoretically, before the actual
construction. To construct the pushout complement of l and m when it exists,
we compute the elements present in the image of m but not in that of m◦l, and
remove them from G obtaining the subgraph D. The morphism g : D � G
is the inclusion, while n : K → D is obtained by restricting the codomain of
m ◦ l.

Isomorphism Check. To check whether a morphism f : X → Y is an iso, we
build the inverse f−1 : Y → P(X) and then check that the image of each
element of Y is a singleton.

Factorization Check. Given a cospan (X
f→ Z

g
� Y) with g mono, to search

for morphisms h : X → Y such that g ◦ h = f , we first take the inverse
g−1 : Z → P(Y). Then we determine the existence of a morphism h by
computing g−1 ◦ f and checking if ∀x ∈ X. g−1(f(x)) �= ∅ holds.

5.3 Parallel Independence Test

Given the primitive operations just described, testing parallel independence can
be achieved by constructing the required diagram elements and testing them for
desired properties, for example, if a calculated morphism is iso. In the case of
left-linear rules, there are two variants for conditions std-pi and ess-pi: as a
consequence of Lemma 2, the reflection of f along g may either be tested by (i)
constructing a pullback and checking for the isomorphism of one of its compo-
nents, or (ii) by checking if f factorizes through g. We refer to the former by
their regular names, and to the latter by std-f-pi and ess-f-pi. Figure 4 summa-
rizes diagrammatically these five conditions: the left column contains the variants
based on factorization and the right one those based on isomorphism tests. They
are also categorized on whether they test the diagram elements statically (based
on the rules and the matches only) or dynamically (using the construction of the
fpbc/poc as part of the test). For readability, Fig. 4 shows only the left part of

14 A. Corradini et al.

Fig. 4. Conditions for verifying parallel independence of transformations.

the conditions, although the implemented routines test both sides. The complete
source code together with the tested grammars are available as a Verigraph spe-
cial release [1], in file src/library/Analysis/ParallelIndependent.hs. Since
Haskell is a lazy language, strict evaluation was enforced to provide a better
measure of the overall computational effort required in each test.

0

 500

 1,000

 1,500

 2,000

 2,500

JE IG

17,401

M
ea

n
tim

e
pe

r
pa

ir
 (

m
ic

ro
se

co
nd

s)

ELEV

ESS−PI
ESS−F−PI
PB−PI
STD−PI
STD−F−PI

0

 200

 400

 600

 800

 1,000

 1,200

JE IG

M
ea

n
tim

e
pe

r
pa

ir
 (

m
ic

ro
se

co
nd

s)

MED1

0

 500

 1,000

 1,500

 2,000

 2,500

 3,000

JE IG

M
ea

n
tim

e
pe

r
pa

ir
 (

m
ic

ro
se

co
nd

s)

MED2

0

 1,000

 2,000

 3,000

 4,000

 5,000

 6,000

JE IG

M
ea

n
tim

e
pe

r
pa

ir
 (

m
ic

ro
se

co
nd

s)

MED3

Fig. 5. Mean runtime of each algorithm, per pair of redexes, over all input sets. elev
contains one outlier whose bar was truncated, with its numeric value written above it.

On the Essence of Parallel Independence 15

6 Experimental Evaluation

The performance of evaluating these conditions should be sensitive to character-
istics of the rules, of the instance graphs to which they are applied, and of the
matches. The size of the instance graph G, for example, should strongly affect
the dynamic conditions. The static conditions, on the other hand, should be less
sensitive to the size of G, since the elements outside the matches are filtered
out by the first pullback, leaving smaller graphs for the subsequent operations.
Conversely, the presence of non-injective matches should affect the static con-
ditions more than the dynamic ones, because the size of the pullback of the
matches grows with the number of elements identified by them. We expect that
considering non-left-linear rules this multiplicative effect may be reinforced.

To compare the performance of the five algorithms, two scenarios were used:

Elevator [17]: A grammar with 9 rules that models the behaviour of an elevator
system. It will be referred to as elev.

Medical guidelines [2]: Three grammars that model guidelines for a medical
procedure, containing 36 rules in total. These grammars are referred to as
med1, med2 and med3.

These grammars are made of linear dpo rules. The files used to perform the
benchmark and the obtained results are available at https://verites.github.io/
parallel-independence-benchmarks/. The experiment compares the execution
time needed to evaluate the five conditions over eight sets of inputs (pairs of
redexes), two for each grammar, generated in the following ways.

Jointly epic pairs: Given a grammar gr, the input set gr-je is obtained by
considering for each pair of rules (L1 ← K1 → R1, L2 ← K2 → R2), all
possible partitions of L1 � L2 (i.e. all epimorphisms e : L1 � L2 � G), and
adding the pair (m1 = e ◦ in1,m2 = e ◦ in2) to gr-je iff both matches satisfy
the gluing conditions. This is the standard approach when performing critical
pair analysis.

Fixed instance graph: Given a grammar gr, a fixed instance graph G con-
siderably larger than the left-hand sides of the rules of gr is constructed.
Then for each pair of rules of gr all possible pairs of matches (m1 : L1 →
G,m2 : L2 → G) such that both matches satisfy the gluing conditions are
added to set gr-ig. This represents testing parallel independence during con-
crete rewritings. For the grammars considered in the experimentation, graph
G contains approximately 20 nodes.

For each input set, the five variants of the parallel independence test were exe-
cuted ten times, the execution time was measured and the average time per
pair of matches was calculated. The benchmark was executed on an Intel(R)
Core(TM) i5-3330 machine with a 3.00GHz CPU and 16GB of RAM. Figure 5
presents the results.

From the observed results, we conclude that the static variants (ess-pi, ess-
f-pi and pb-pi) outperform the dynamic variants (std-pi and std-f-pi) in most

https://verites.github.io/parallel-independence-benchmarks/
https://verites.github.io/parallel-independence-benchmarks/

16 A. Corradini et al.

cases, particularly with large instance graphs. One important exception was the
case elev-je, where pb-pi performed much worse than all other alternatives.
We conjectured that this occurs due to the multiplicative effect of pullbacks in
presence of non-injective matches. To confirm this, we repeated the experiment
considering only the inputs with injective matches. In this case, the mean time
per pair of pb-pi was 146µs, slower than ess-pi (114µs) and ess-f-pi (99µs)
but faster than std-pi (265µs) and std-f-pi (211µs).

Regarding the comparison of using factorization (ess-f-pi, std-f-pi) or iso-
morphism test (ess-pi, std-pi), we observed that factorization seems consis-
tently more efficient than pullback calculation, although in some cases the results
were similar, as in med3-je. Thus, the factorization-based algorithms can be rec-
ommended when rules are left-linear.

In general, the essential conditions (ess-pi and ess-f-pi) presented very good
performance in all situations. ess-f-pi was in many cases the fastest for test-
ing parallel independence. On the other hand, ess-pi had an overall good per-
formance, and often the difference between it and ess-f-pi was insignificant.
Therefore, the essential conditions can be recommended for all cases.

7 Conclusions

In this paper we have considered some definitions of parallel independence pro-
posed for the Double-Pushout and the Sesqui-Pushout Approaches to graph
transformation, and we proposed a new condition, that we called the Essential
Condition (ess-pi). We presented explicit proofs of equivalence of condition ess-
pi with the Standard (std-pi) and the Pullback (pb-pi) Conditions previously
proposed in the literature at an abstract categorical level. Next we have imple-
mented five variants of the parallel independence test (two being optimized ver-
sions of std-pi and ess-pi for left-linear rules) for grammars based on categories
of typed graphs in the Verigraph system. We evaluated the runtime efficiency
of each condition over a collection of test cases based on dpo transformation
with linear rules only, because the support of sqpo by Verigraph is still under
development. Our experiments led to the conclusion that the essential condition
has the best performance in most cases.

We foresee several developments of the work presented in this paper. From the
more theoretical side we intend to investigate how the intuition behind condition
ess-pi could be exploited in other frameworks. For example, it should be possible
to define a stronger version of ess-pi equivalent to, but simpler than, the strong
parallel independence considered in [13] for dpo transformations with injective
matchings. We also intend to exploit condition ess-pi for defining and comput-
ing efficiently minimal conflict reasons between redexes, as studied for example
in [3,18], and to evaluate to what extent ess-pi can be exploited to improve
existing algorithms for Critical Pair Analysis. This is not obvious, because sev-
eral optimization techniques have been developed (see e.g. [18]) that should be
adapted to our condition for independence. In this context, we also intend to
check formally under which assumptions condition ess-pi is equivalent to the

On the Essence of Parallel Independence 17

definition of parallel independence based on an initial pushout for the left-hand
side of a rule, as proposed in [17,18]

Concerning the comparison of efficiency of the various conditions for paral-
lel independence, the initial evaluations presented here should be completed to
encompass non-left-linear rules as well. Next we intend to extend the compari-
son to algorithms for checking independence developed in other frameworks, like
agg [22].

References

1. Bezerra, J.S., Costa, A., Azzi, G., Rodrigues, L.M., Machado, R., Ribeiro, L.:
Verites/verigraph: parallel independence benchmarks, June 2017. https://doi.org/
10.5281/zenodo.814246

2. Bezerra, J.S., Costa, A., Ribeiro, L., Cota, É.F.: Formal verification of health
assessment tools: a case study. Electr. Notes Theor. Comput. Sci. 324, 31–50
(2016). https://doi.org/10.1016/j.entcs.2016.09.005

3. Born, K., Lambers, L., Strüber, D., Taentzer, G.: Granularity of conflicts and
dependencies in graph transformation systems. In: de Lara, J., Plump, D. (eds.)
ICGT 2017. LNCS, vol. 10373, pp. 125–141. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-61470-0 8

4. Corradini, A.: On the definition of parallel independence in the algebraic
approaches to graph transformation. In: Milazzo, P., Varró, D., Wimmer, M. (eds.)
STAF 2016. LNCS, vol. 9946, pp. 101–111. Springer, Cham (2016). https://doi.
org/10.1007/978-3-319-50230-4 8

5. Corradini, A., Duval, D., Prost, F., Ribeiro, L.: Parallelism in AGREE transforma-
tions. In: Echahed, R., Minas, M. (eds.) ICGT 2016. LNCS, vol. 9761, pp. 37–53.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-40530-8 3

6. Corradini, A., Gadducci, F.: On term graphs as an adhesive category. Electr. Notes
Theor. Comput. Sci. 127(5), 43–56 (2005). https://doi.org/10.1016/j.entcs.2005.
02.014

7. Corradini, A., Heindel, T., Hermann, F., König, B.: Sesqui-pushout rewriting. In:
Corradini, A., Ehrig, H., Montanari, U., Ribeiro, L., Rozenberg, G. (eds.) ICGT
2006. LNCS, vol. 4178, pp. 30–45. Springer, Heidelberg (2006). https://doi.org/10.
1007/11841883 4

8. Corradini, A., Montanari, U., Rossi, F., Ehrig, H., Heckel, R., Löwe, M.: Algebraic
approaches to graph transformation - Part I: basic concepts and double pushout
approach. In: Handbook of Graph Grammars and Computing by Graph Trans-
formations. Foundations, vol. 1, pp. 163–246. World Scientific Publishing Co., Inc
(1997). http://www.worldscientific.com/doi/abs/10.1142/9789812384720 0003

9. Costa, A., Bezerra, J., Azzi, G., Rodrigues, L., Becker, T.R., Herdt, R.G., Machado,
R.: Verigraph: a system for specification and analysis of graph grammars. In:
Ribeiro, L., Lecomte, T. (eds.) SBMF 2016. LNCS, vol. 10090, pp. 78–94. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-49815-7 5

10. Danos, V., Heindel, T., Honorato-Zimmer, R., Stucki, S.: Reversible sesqui-pushout
rewriting. In: Giese, H., König, B. (eds.) ICGT 2014. LNCS, vol. 8571, pp. 161–176.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-09108-2 11

11. Ehrig, H.: Introduction to the algebraic theory of graph grammars (a survey). In:
Claus, V., Ehrig, H., Rozenberg, G. (eds.) Graph-Grammars and Their Application
to Computer Science and Biology. LNCS, vol. 73, pp. 1–69. Springer, Heidelberg
(1979). https://doi.org/10.1007/BFb0025714

https://doi.org/10.5281/zenodo.814246
https://doi.org/10.5281/zenodo.814246
https://doi.org/10.1016/j.entcs.2016.09.005
https://doi.org/10.1007/978-3-319-61470-0_8
https://doi.org/10.1007/978-3-319-61470-0_8
https://doi.org/10.1007/978-3-319-50230-4_8
https://doi.org/10.1007/978-3-319-50230-4_8
https://doi.org/10.1007/978-3-319-40530-8_3
https://doi.org/10.1016/j.entcs.2005.02.014
https://doi.org/10.1016/j.entcs.2005.02.014
https://doi.org/10.1007/11841883_4
https://doi.org/10.1007/11841883_4
http://www.worldscientific.com/doi/abs/10.1142/9789812384720_0003
https://doi.org/10.1007/978-3-319-49815-7_5
https://doi.org/10.1007/978-3-319-09108-2_11
https://doi.org/10.1007/BFb0025714

18 A. Corradini et al.

12. Ehrig, H., Kreowski, H.-J.: Parallelism of manipulations in multidimensional infor-
mation structures. In: Mazurkiewicz, A. (ed.) MFCS 1976. LNCS, vol. 45, pp.
284–293. Springer, Heidelberg (1976). https://doi.org/10.1007/3-540-07854-1 188

13. Habel, A., Müller, J., Plump, D.: Double-pushout graph transformation revis-
ited. Math. Struct. Comput. Sci. 11(5), 637–688 (2001). https://doi.org/10.1017/
S0960129501003425

14. Kastenberg, H., Rensink, A.: Model checking dynamic states in GROOVE. In:
Valmari, A. (ed.) SPIN 2006. LNCS, vol. 3925, pp. 299–305. Springer, Heidelberg
(2006). https://doi.org/10.1007/11691617 19

15. Knuth, D.E., Bendix, P.B.: Simple word problems in universal algebras.
In: Leech, J. (ed.) Computational Problems in Abstract Algebra, pp.
263–297. Pergamon (1970). http://www.sciencedirect.com/science/article/pii/
B978008012975450028X

16. Lack, S., Sobocinski, P.: Adhesive and quasiadhesive categories. Theor. Inform.
Appl. 39(3), 511–545 (2005). https://doi.org/10.1051/ita:2005028

17. Lambers, L.: Certifying rule-based models using graph transformation. Ph.D. the-
sis, Technische Universität Berlin (2010). https://doi.org/10.14279/depositonce-
2348

18. Lambers, L., Ehrig, H., Orejas, F.: Efficient conflict detection in graph transfor-
mation systems by essential critical pairs. ENTCS 211, 17–26 (2008). https://doi.
org/10.1016/j.entcs.2008.04.026

19. Löwe, M.: Graph rewriting in span-categories. In: Ehrig, H., Rensink, A.,
Rozenberg, G., Schürr, A. (eds.) ICGT 2010. LNCS, vol. 6372, pp. 218–233.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15928-2 15

20. Plump, D.: Evaluation of functional expressions by hypergraph rewriting. Ph.D.
thesis, University of Bremen, Germany (1993). http://d-nb.info/940423774

21. Rosen, B.K.: A Church-Rosser theorem for graph grammars. ACM SIGACT News
7(3), 26–31 (1975). https://doi.org/10.1145/1008343.1008344

22. Taentzer, G.: AGG: a graph transformation environment for modeling and valida-
tion of software. In: Pfaltz, J.L., Nagl, M., Böhlen, B. (eds.) AGTIVE 2003. LNCS,
vol. 3062, pp. 446–453. Springer, Heidelberg (2004). https://doi.org/10.1007/978-
3-540-25959-6 35

https://doi.org/10.1007/3-540-07854-1_188
https://doi.org/10.1017/S0960129501003425
https://doi.org/10.1017/S0960129501003425
https://doi.org/10.1007/11691617_19
http://www.sciencedirect.com/science/article/pii/B978008012975450028X
http://www.sciencedirect.com/science/article/pii/B978008012975450028X
https://doi.org/10.1051/ita:2005028
https://doi.org/10.14279/depositonce-2348
https://doi.org/10.14279/depositonce-2348
https://doi.org/10.1016/j.entcs.2008.04.026
https://doi.org/10.1016/j.entcs.2008.04.026
https://doi.org/10.1007/978-3-642-15928-2_15
http://d-nb.info/940423774
https://doi.org/10.1145/1008343.1008344
https://doi.org/10.1007/978-3-540-25959-6_35
https://doi.org/10.1007/978-3-540-25959-6_35

Integration of Graph Constraints
into Graph Grammars

Annegret Habel, Christian Sandmann, and Tilman Teusch(B)

Universität Oldenburg, Oldenburg, Germany
{habel,sandmann,teusch}@informatik.uni-oldenburg.de

Abstract. We investigate the integration of graph constraints into
graph grammars and consider the filter problem: Given a graph gram-
mar and a graph constraint, does there exist a “goal-oriented” grammar
that generates all graphs of the original graph language satisfying the
constraint. We solve the filter problem for specific graph grammars and
specific graph constraints. As an intermediate step, we construct a con-
straint automaton accepting exactly the graphs in the graph language
that satisfy the constraint.

1 Introduction

In meta-modelling, a general problem is how to generate instances of a meta-
model. There are several approaches to instance generation: most of them are
logic-oriented, some are rule-based (for an overview see, e.g., [RAB+15]). Our
approach to instance generation is rule-based:

(1) Translate the meta-model without OCL constraints into a graph grammar
GG and the OCL constraints into a graph constraint [Tae12,RAB+15].

(2) Integrate the graph constraint c into the graph grammar GG yielding a
graph grammar GGc generating the graphs satisfying the graph constraints.

(3) Generate instances I ∈ L(GGc).

In Radke et al. [RAB+15], the integration of a graph constraint c into a
graph grammar GG is done by replacing the rules � of the grammar by the
corresponding c-guaranteeing rules. Unfortunately, this yields a grammar GGc

generating a subset of all graphs satisfying the constraint c, i.e., L(GGc) ⊆
L(GG) ∩ �c�, and the inclusion is usually proper.

In this paper, we look for a construction of a graph grammar GGc that gen-
erates exactly the set of all graphs of the original graph grammar that satisfy
the constraint c: L(GGc) = L(GG) ∩ �c�. We look for a “goal-oriented” gram-
mar that “filters” exactly those graphs of the graph language that satisfy the
constraint. In the following, we talk about the filter problem.

This work is partly supported by the German Research Foundation (DFG), Grants
HA 2936/4-2 and TA 2941/3-2 (Meta-Modeling and Graph Grammars: Generating
Development Environments for Modeling Languages).

c© Springer International Publishing AG, part of Springer Nature 2018
R. Heckel and G. Taentzer (Eds.): Ehrig Festschrift, LNCS 10800, pp. 19–36, 2018.
https://doi.org/10.1007/978-3-319-75396-6_2

20 A. Habel et al.

Structure
& typing

OCL
constraints

Graph
grammar

ac
Graph
grammar

Graph
constraints

Instances

translate

[Tae12]

translate

[RAB+15] [RAB+15]

generate

in
te
gr
at
e

M
et
a
m
od

el
conform to

Filter Problem

Given: A graph grammar GG and a graph constraint c.
Question: Does there exist a goal-oriented graph grammar GGc such that

L(GGc) = L(GG) ∩ �c�?

We solve the filter problem for specific graph grammars GG and specific
graph constraints c. The construction is done in two steps.

(1) Construct a goal-oriented constraint automaton Ac with L(Ac)=L(GG)∩�c�.
(2) Construct a goal-oriented graph grammar GGc with L(GGc) = L(Ac).

We illustrate our approach with Petri nets as the modeling language. We
consider a graph grammar for generating Petri-nets and graph constraints for
restricting Petri-nets. The example is a simplification of the one in [RAB+15]
for typed attributed graphs. Due to space restrictions, we do not consider types
and attributes here.

Example 1. The Petri-net grammar and Petri-net constraints are given below.

Start graph S = PN
Insert a new place: AddP = PN ⇒ PN Plplace

Insert a new transition: AddT = PN ⇒ PN Trtrans

Insert a token in a given place: AddTok = Pl ⇒ Pl tktoken

Connect a transition to a place: . . .
Connect a place to a transition: . . .

The net has at least one transition: tr = ∃ (Tr)
The net has at least one place: place = ∃ (Pl)
There is a place with token: tok = ∃ (Pl tktoken)
There is a place with two tokens: 2tok = ∃ (tk Pl tktoken token)
There is a place with a token, but
every place has at most one token:

rtok = tok ∧ ¬2tok

The structure of the paper is as follows. In Sect. 2, we review the definitions
of graphs, graph conditions, and graph grammars. In Sect. 3, we sketch some
basics on weakest liberal preconditions, guaranteeing rules, containments, and

Integration of Graph Constraints into Graph Grammars 21

minimizations. In Sect. 4, we introduce so-called constraint automata, present a
backward construction, sketch some closure properties, consider the termination
of the backward construction, and derive a goal-oriented graph grammar from
the constraint automaton. In Sect. 5, we present some related concepts. In Sect. 6,
we give a conclusion and mention some further work.

2 Preliminaries

In the following, we recall the definitions of directed, labelled graphs, graph con-
ditions and graph grammars [EEPT06,HP09] and so-called goal-oriented gram-
mars, essentially equivalent to the ones in [Bec16].

Definition 1 (graphs & morphisms). A (directed, labeled) graph (over a label
alphabet L) is a system G = (VG,EG, sG, tG, lG,V, lG,E) where VG and EG are
finite sets of nodes (or vertices) and edges. sG, tG : EG → VG are total functions
assigning source and target to each edge, lV,G : VG → L, lE,G : EG → L are
labeling functions. If VG = ∅, then G is the empty graph, denoted by ∅. Given
graphs G and H, a (graph) morphism g : G → H consists of total functions
gV : VG → VH and gE : EG → EH that preserve sources, targets and labels, that
is, gV ◦ sG = sH ◦ gE, gV ◦ tG = tH ◦ gE, lG,V = lH,V ◦ gV, lG,E = lH,E ◦ gE. The
morphism g is injective (surjective) if gV and gE are injective (surjective), and
an isomorphism if it is injective and surjective. In the latter case, G and H are
isomorphic, which is denoted by G ∼= H.

Definition 2 (graph conditions). A (graph) condition over a graph P is of
the form (a) true or (b) ∃(a, c) where a : P ↪→ C is an injective morphism and c
is a condition over C. For conditions c, ci (i ∈ I for some index set I) over P , ¬c
and ∧i∈Ici are conditions over P . Conditions over the empty graph ∅ are called
constraints. In the context of rules, conditions are called application conditions.

Notation. Graph conditions may be written in a more compact form: ∃ a
abbreviates ∃ (a, true). ∀(a, c) abbreviates � (a,¬c). The expressions ∨i∈Ici,
and c → c′ are defined as usual. For an injective morphism a : P ↪→C in a
condition, we just depict the codomain C, if the domain P can be unambigu-
ously inferred, e.g., ∀(Pl ,∃ (Pl TPArcpreArc)∨∃ (Pl PTArcpostArc) abbreviates
∀(∅ ↪→ Pl ,∃ (Pl ↪→ Pl TPArcpreArc)∨∃ (Pl ↪→ Pl PTArcpostArc). Intuitively,
the constraint means “There are no isolated places.”

Any injective morphism p : P ↪→ G satisfies true. p satisfies ∃ (a, c) if there
exists an injective morphism q : C ↪→ G such that q ◦ a = p and q satisfies c.
p satisfies ¬c if p does not satisfy c, and p satisfies ∧i∈Ici if p satisfies each
ci (i ∈ I). We write p |= c if p satisfies the condition c (over P). A graph G
satisfies a constraint c, G |= c, if the morphism p : ∅ ↪→ G satisfies c. �c� denotes
the class of all graphs satisfying c.

Two conditions c and c′ over P are equivalent, denoted by c ≡ c′, if for all
injective morphisms p : P ↪→ G, p |= c iff p |= c′. A condition c implies a
condition c′, denoted by c ⇒ c′, if for all injective morphisms p : P ↪→ G, p |= c
implies p |= c′.

22 A. Habel et al.

Definition 3 (rules and transformations). A rule � = 〈p, ac〉 consists of a
plain rule p = 〈L ←↩ K ↪→ R〉 with injective morphisms K ↪→ L and K ↪→ R
and an application condition ac over L and is p-restricting. A rule 〈p, true〉
is abbreviated by p. Rhs(�) = R denotes the right-hand side of �. A direct
transformation from a graph G to a graph H applying rule � at an injective
morphism g consists of two pushouts1 (1) and (2) as below where g |= ac. We
write G ⇒�,g,h H or G ⇒�,g H if there exists such a direct transformation.

L K R

DG H

g d h(1) (2)

ac

=|

Given graphs G, H and a set R of rules, G derives H by R (w ∈ R∗) if G ∼= H
or there is a sequence of direct transformations G = G0 ⇒�1 . . . ⇒�n

Gn = H
with �1, . . . , �n ∈ R (w = �1 . . . �n). In this case we write G ⇒∗

R H or G ⇒∗
w H.

Definition 4 (graph grammars). A graph grammar GG = (N ,R, S) consists
of a finite set N of nonterminal symbols, a finite set R of rules, and a start graph
S. In the case of N = ∅, we write GG = (R, S) instead of GG = (∅,R, S). The
graph language generated by GG consists of all graphs derivable from S by R:
L(GG) = {G ∈ G | S ⇒∗

R G} where G denotes the class of all graphs without
nonterminal symbols. The grammar GG is goal-oriented if there is a terminating2

rule set Rt ⊆ R such that, for all derivable graphs, there is a transformation to
a terminal graph using rules form Rt.

3 Weakest Liberal Preconditions

In this section, we sketch the prerequisites for our backward construction in
Sect. 4: existential weakest liberal preconditions, similar to (universal) weakest
liberal preconditions. Moreover, we introduce the syntactic operations contain-
ment and minimization which imply implication and equivalence, respectively.

Definition 5 (guaranteeing rule, weakest liberal precondition). Given a
constraint d, a rule � is d-guaranteeing if for all direct transformations G ⇒� H,
the result H satisfies d. Given a constraint d and a rule �, a condition c is an
(existential) liberal precondition of a rule � relative to a condition d, if, for all
G satisfying c, there exists some G ⇒� H such that H |= d and an (existen-
tial) weakest liberal precondition of � relative to d, if any (existential) liberal
precondition of � relative to d implies c.

Fact 1 (characterization). A condition c is an existential weakest liberal pre-
condition of � relative to d if, for all G, G |= c iff there exists some G ⇒� H
such that H |= d.

1 For definition & existence of pushouts in the category of graphs see e.g. [EEPT06].
2 A rule set R is terminating if there is no infinite transformation G0 ⇒

R
G1 ⇒

R
G2

Integration of Graph Constraints into Graph Grammars 23

Proof. Analogously to universal weakest liberal preconditions [HP09] ��
Proposition 1 (gua and Wlp∃ [HP09]). There are constructions gua and Wlp∃
such that, for every rule � and every constraint d,

1. gua(�, d) is a �-restricting3 and d-guaranteeing rule and
2. Wlp∃(�, d) is an existential liberal weakest precondition of � relative to d.

The guaranteeing rule and the weakest precondition of a rule and a con-
straint are constructed by the basic transformations from graph constraints to
right application conditions (Shift), right to left application conditions (L), and
application conditions to constraints (C∃).

Construction 1. For a rule � = 〈p, ac〉, gua(�, d) := 〈p,L(�,Shift(b, d)〉 with
b : ∅ ↪→ Rhs(�) and Wlp∃(�, d) := C∃(gua(�, d) ∧ Appl(�)) where Shift,L,C∃,
and Appl are defined as follows.

∅

C

R

R′

a a′(0)

b

b′

c

Shift(b, true) := true.
Shift(b,∃ (a, c)) :=

∨
(a′,b′)∈F ∃ (a′,Shift(b′, c)) where

F = {(a′, b′) | b′ ◦ a = a′ ◦ b, a′, b′ inj, (a′, b′) jointly surjective}
Shift(b,¬c) := ¬Shift(b, c), Shift(b,∧i∈Ici) := ∧i∈IShift(b, ci).

R K L

K ′R′ L′

a a′(1) (2)

ac

L(p, true) := true.
L(p,∃ (a, ac)) := ∃ (a′,L(p′, ac)) if p−1 is applicable
w.r.t. the morphism a, p′ := 〈L′ ←↩ K ′ ↪→ R′〉 is the
derived rule, and false, otherwise.
L(p,¬ac) := ¬L(p, ac), L(p,∧i∈Iaci) := ∧i∈IL(p, aci).

For application conditions ac over L, C∃(ac) := ∃ (∅ ↪→ L, ac)4.
Appl(�) = Dang(p)∧ac and Dang(p) = ∧a∈A� a where A ranges over all min-

imal morphisms a : L ↪→ L′ such that 〈K ↪→ L, a〉 has no pushout complement.
The latter condition expresses the dangling condition (e.g., see [EEPT06])5.

Example 2. For the rule AddTok and the constraint 2tok in Example 1, the
constraint Wlp∃(AddTok, 2tok) is constructed as follows: Shift the constraint 2tok
over the morphism b from the empty graph to the right-hand side of AddTok,
shift the obtained right application condition over the rule 2tok to the left (L),
and transform the obtained left application condition to a constraint (C∃).

(1) Shift(b, 2tok) = ∃ (Pl tktoken tk Pl tktoken token) ∨ . . .

∨∃ (tk Pl tktoken token)=acR

(2) L(AddTok, acR) = ∃ (Pl tktoken) = acL

(3) C∃(acL) = ∃ (Pl ,∃ (Pl tktoken) ≡ ∃ (Pl tktoken)
= Wlp∃(AddTok, 2tok)

3 For a rule � = 〈p, ac〉, �′ = 〈�, ac′〉 denotes the rule 〈p, ac ∧ ac′〉.
4 A pair (a′, b′) is jointly surjective if, for each x ∈ C′, there is a preimage y ∈ P ′ with

a′(y) = x or z ∈ C with b′(z) = x.
5 For a rule p = 〈L ←↩ K ↪→ R〉, p−1 = 〈R ←↩ K ↪→ L〉 denotes the inverse rule. For

L′ ⇒p R′ with intermediate graph K′, 〈L′ ←↩ K′ ↪→ R′〉 is the derived rule.

24 A. Habel et al.

The conditions mean that there exists (1) a place with a token (the comatch
of the rule) and a place with two tokens or . . . or a place with two tokens, (2)
a place (the match of the rule) with one token, and (3) a place with one token,
respectively.

Definition 6 (normal form6). A condition c is in normal form (NF), if every
negation symbol is innermost, i.e. every negated subcondition is positive, i.e.,
of the form ∃ C, every Boolean subcondition is in normal form, and there is
no subcondition true or false in c, unless c is true or false. A condition is in
disjunctive normal form (DNF) if it is a Boolean formula over positive conditions
in DNF.

Fact 2. For every condition, an equivalent condition in NF can be effectively
constructed. In general, there must not exist an equivalent condition in DNF.

Example 3. The condition ∀(P,∨i∈I∃ Ci) is in NF, but there is no equivalent
condition in DNF.

Remark. While a condition in normal form is a disjunction of arbitrary condi-
tions in normal form, a condition in disjunctive normal form is a disjunction of
conjunctions of atomic conditions of the form ∃ C and � C.

Containment of conditions is based on the existence of an injective morphism.

Definition 7 (containment). The containment of conditions d1 and d2 over P ,
denoted d1 � d2, is defined as follows. For every condition d2, true � d2. For
di = ∃ (P

ai
↪→ Ci, ci) (i = 1, 2), d1 � d2 if there is an injective morphism b : C1 ↪→

C2 such that b ◦ a1 = a2 and Shift(b, c1) � c2. For di = ¬ci (i = 1, 2), d1 � d2
if c2 � c1. For di = ∧j∈Iicij (i = 1, 2), d1 � d2 if there is an injective function
f : I1 ↪→ I2 such that c1j � c2f(j) for all j ∈ I1. A constraint c2 subsumes c1,
c2 � c1, if c1 contains c2. A constraint c1 properly contains in c2 (c2 properly
subsumes c1), c1 � c2 (c2 � c1), if the injective morphism is not an isomorphism.

Lemma 1. For conditions d1, d2, if d1 � d2, then d2 ⇒ d1.

Proof. By induction over the size of nested conditions. ��

Definition 8 (minimization). Let c =
∨

i∈I ci be a finite disjunction of con-
ditions. Then Min(c) =

∨
i∈I′ ci where I ′ = {i ∈ I | � cj . cj�ci for all j ∈ I}.

Lemma 2. For disjunctive conditions c, Min(c) ≡ c.

Proof. “⇒”. Let p |= Min(c) = ∨i∈I′ci. Then p |= ∨i∈Ici since I ′ ⊆ I.
“⇐”. Let p |= ¬Min(c) = ∧i∈I′¬ci. By definition of the semantics, p |= ¬ci for
all i ∈ I ′. It remains to show p |= ¬ci for all i �∈ I ′. For i �∈ I ′, there is some
index j ∈ I ′ such that cj � ci. By Lemma 1, we have ci ⇒ cj ≡ ¬cj ⇒ ¬ci.
Now p |= ¬cj implies p |= ¬ci. Thus, p |= ¬ci for all i ∈ I. Consequently,
Min(c) ≡ c. ��
6 Karl-Heinz Pennemann. Generalized constraints and application conditions for graph

transformation systems. Diploma thesis, University of Oldenburg, 2004.

Integration of Graph Constraints into Graph Grammars 25

4 Filtering Through Constraints

In this section, we investigate the filter problem for graph grammars and con-
straints. We introduce so-called constraint automata, present a backward con-
struction for constraint automata, sketch some closure properties closely related
to the ones in formal-language theory, consider the termination of the backward
construction, and derive a goal-oriented graph grammar from the constraint
automaton. The section is concluded by a Filter Theorem, summarizing the
result.

4.1 Constraint Automata

In the following, we introduce constraint automata based on finite automata
having constraints as states. Given a graph grammar, a constraint automaton
consists of a finite automaton, with constraints as states and rules as input
symbols. The graph language of the automaton is the set of all graphs derived
from the start graph by applying the sequences of rules accepted by the finite
automaton.

Definition 9 (constraint automaton). The (constraint) automaton for a
graph grammar GG = (R, S) is a tuple A = (A,S) where A = (C,R′,→, C0, F)
is a (finite) automaton, C a set of states (constraints), R′ a finite set of R-
restricting rules7, → a transition relation, C0, F ⊆ C sets of initial and final
states, respectively, and S a start graph. The automaton is goal-oriented if there
is a terminating transition relation →t ⊆ → such that, for all initial states and
all reachable states, a final state is reachable using transitions from →t. The
graph language of A is L(A) = {G | ∃S ⇒w G for some w ∈ L(A)} where L(A)
is the set of all strings accepted by the finite automaton A.

4.2 Backward Construction

a1

...
am

b1

b2

...
bn

c

π′

π′
�′

�′

�′

We construct a constraint automaton based on the
construction of existential weakest liberal precondi-
tions. Intuitively, the constraint automaton is con-
structed as follows. Starting with a constraint c, for
every rule �, we construct the existential weakest
liberal precondition Wlp∃(�, c), bring it into normal
form (which may be seen as a disjunction of con-
straints), minimize it, and, for each constraint b in
the disjunction, add b to the constraint (and state)
set and b →�′ c with �′ = gua(�, c) to the transition
relation. We ignore constraints b subsuming some
constraint in C. The constructed constraints become the states of the automa-
ton, the constraint c the final state, and the constraints which are satisfied for
the start graph S become the initial states.
7 A rule � is R-restricting if �′ is �-restricting for some � ∈ R.

26 A. Habel et al.

Assumption. By Fact 2 and Lemma 2, we may assume that the existential
weakest liberal preconditions are in normal form and are minimized.

For a constraint set C, Max(C) denotes the set of constraints b in C that are
maximal with respect to →, i.e., there is no constraint b′ ∈ C such that b → b′.

Construction 2 (backward construction with containment test). Given
a grammar GG and a constraint c, we construct constraint automata as follows.

(1) Construct a sequence C0, C1, . . . of constraint or state sets by C0 = {c} and
Ci+1 = Ci ∪ {b in Wlp∃(�, c′) | � ∈ R, c′ ∈ Max(Ci) ∧ � b′ ∈ Ci.b � b′} (For
a rule and a maximal constraint of the set Ci, we construct the existential
weakest liberal precondition, bring it into normal form, minimize it, and
add the components of the disjunction to the set Ci+1 provided that they
do not subsume another constraint of Ci.) For a disjunction c′ = ∨i∈Ici,
b in c′ abbreviates b ∈ {ci | i ∈ I}.

(2a) For i ≥ 0, let Ac,i = (Ai, S) be the automaton with Ai = (Ci,R′,→,
C0, {c}), R′ = {gua(�, b) | � ∈ R, b ∈ Ci}. For � ∈ R, c′ ∈ Ci, if
b in Wlp∃(�, c′) and b � b′ ∈ Max(Ci), then b′ →gua(�,c′) c′ is in →. (If
the constraint b is a component of the existential weakest liberal precon-
dition of a rule � relative to the constraint c′ and b subsumes a maxi-
mal constraint of Ci, then there is a transition from b′ to c′ labelled with
gua(�, c′).) C0 = Max({c0 ∈ C | S |= c0}) and {c} are the sets of initial
and final states, respectively.

(2b) If Ci = Ci+1 for some i ≥ 0, let C = Ci and Ac = Ac,i.

Remark

1. A constraint b ∈ C represents the class �b� of all graphs satisfying b.
2. By the Wlp∃(�, c)-construction, we obtain the existence of a direct transfor-

mation G ⇒� H such that H |= c. By the gua(�, c)-construction, we filter
all those direct transformations that guarantee c: G ⇒gua(�,c) H such that
H |= c. In this way, for all direct transformations G ⇒gua(�,c) H ∧ H |= c.

3. An essential step for restricting the state exploration
is the following. Whenever a constraint c′ is in the
constraint set and b ∈ Wlp∃(�, c′) is a constraint such
that b subsumes a maximal constraint b′ in the con-
straint set, then the constraint b and an edge from b

b

b′

c′

gua(�, c ′)/

�

gua(
�, c

′)

to c′ with label gua(�, c′) is not inserted; instead an
edge from b′ to c′ with label gua(�, c′) is inserted.

4. The set of initial states may be empty; in this case, L(Ac) is empty.
5. For i ≥ 0, Ac,i ⊆ Ac,i+1 and L(Ac,i) ⊆ L(Ac,i+1).
6. In general, the sequence C0, C1, . . . need not become stationary, hence the

procedure need not terminate, but we can show that it terminates for our
specific cases.

Example 4. Consider the grammar with the rules AddP, AddT, and AddTok in
Example 1 and the positive constraint 2tok = ∃ (tk Pl tktoken token) meaning

Integration of Graph Constraints into Graph Grammars 27

that there exists a place with two tokens. Then the backward construction with
containment test yields a finite automaton A2tok given below.

netstart place tok 2tok

AddP

AddT

AddP

AddTok

AddT

AddTok
AddP

AddT

AddP

AddT

AddTok AddTok
gtoks

A2tok

The automaton A2tok is constructed as follows. Start with the constraint 2tok,
construct, for every rule p in the grammar and every constraint b′, the weakest
liberal precondition Wlp∃(p, b′), and subsume constraints. Continue with the new
constraints in the constraint set. The construction terminates. The components
of the weakest liberal preconditions build the set C = {net,place, tok, 2tok}
where net = ∃ (PN), place = ∃ (Pl), and tok = ∃ (Pl tktoken). The constraint
Wlp∃(AddTok,net) = ∃ (PN Pl) is ignored because it is subsumed by place.

The construction of the guaranteeing application condition Gua(AddTok,
2tok) yields gtoks = ∃ (Pl tk Pl tktoken token) ∨ ∃ (Pl tktoken)8, meaning that
outside of the match of AddTok, there is a place with two tokens or at the place
in consideration, there is one token. The initial state is net because PN |= net
and the final state is 2tok.

Proposition 2. For arbitrary graph grammars GG and arbitrary constraints c,
the constraint automata Ac,i and Ac are goal-oriented and

1. L(Ac,i) ⊆ L(GG) ∩ �c� (i ≥ 0) and
2. L(Ac) = L(GG) ∩ �c� in case of termination.

The proof is based on the following lemma which relates paths in the con-
straint automaton Ac,i and transformations in the graph grammar GG.

Lemma 3 (correctness & completeness). Let GG be a graph grammar, c a
graph constraint, and Ac,i the constructed automaton. Let w′ ∈ R′∗ and w ∈ R∗

be the sequences of restricted and underlying rules, respectively.

1. For all paths g →w′ h in Ac,i (i ≥ 0) and all graphs G |= g, there is a graph
H and a transformation G ⇒w H in GG such that H |= h.

2. In the terminating case, for all transformations G ⇒w H in GG such that
H |= h ∈ Max(C), there is a path g →w′ h in Ac such that G |= g ∈ Max(C).

Proof. By induction on the length of the path/transformation.

1. By induction on the structure of w′. Let f →w′ h and F |= f .
Induction basis. For w′ = ε, let h = f . Then F ⇒0 H |= h.
Induction step. For w′ = v′�′, f →v′�′ h can be decomposed into

8 The match of the rule is marked in a blue color.

28 A. Habel et al.

f →v′ g →�′ h where �′ = gua(�, h). By induction hypothesis, there is a
transformation F ⇒v G such that G |= g. By g ∈ Wlp∃(�, h), we have
G |= Wlp∃(�, h). By Fact 1, there is a direct transformation G ⇒� H such
that H |= h. Composing the transformations, we obtain a transformation
F ⇒v� H such that H |= h.

2. By induction on the structure of w. Let Construction 2 be terminating and
Ac the resulting constraint automaton. Let F ⇒w H and H |= h ∈ Max(C).
Induction basis. For w = ε, F ∼= H, F ⇒ε H and F |= f = h ∈ Max(C).
Induction step. For w = v�, the transformation F ⇒v� H can be decom-
posed into F ⇒v G ⇒� H. By Fact 1 and Lemma 2, G ⇒� H.H |= h implies
G |= Wlp∃(�, h). Consequently, there is some g′ ∈ Wlp∃(�, h).G |= g′.
By Construction 2, there is some g ∈ Max(C).g′ � g and, by Lemma 1,
g′ ⇒ g. By the definition of ⇒, G |= g′ implies G |= g. By Con-
struction 2 and g ∈ Max(C), there is a transition g →�′ h in Ac. By
F ⇒v G.G |= g ∈ Max(C), the induction hypothesis can be applied yielding
a path f →v′ g in Ac such that F |= f ∈ Max(C). Composing the paths, we
obtain a path f →w′ h such that F |= f ∈ Max(C).

f g h

F G H

v′ �′

v �

|= |= |=hyp Wp

F G H

f g h
v′ �′

v �

|= |= |=

hyp Wp

��

Proof (of Proposition 2). The statements follow immediately from Lemma 3:

1. If G ∈ L(Ac,i), then S ⇒w G for some w′ ∈ L(Ai). Then there is a path
c0 →w′ c from c0 ∈ C0,i to c. Since w′ = ε (S ∼= G and c0 = c) or the last
rule in w is c-guaranteeing, we have G |= c. Thus, G ∈ L(GG) ∩ �c�.

2. In case Construction 2 terminates, the first inclusion follows from the first
statement. The second inclusion is as follows. If G ∈ L(GG)∩ �c�, then there
is a transformation S ⇒w G in GG such that G |= c. By Lemma 3, there is
a path c0 →w′ c in Ac such that S |= c0. By construction, c0 ∈ C0. Thus,
w ∈ L(A) and G ∈ L(Ac).

3. The constraint automata are goal-oriented: By the backward construction,
the automata are connected and all directed paths end in the final state.
Let now T be a spanning-tree, i.e. a subautomaton which is both a tree and
which contains all the states of the automaton. Then the transition relation
→t:=→T is terminating and, for all reachable states, there is a path to the
final state. ��

4.3 Closure Properties

Similar to formal-language theory, we define deterministic constraint automata
and transform nondeterministic constraint automata into deterministic ones.
Moreover, it can be shown that constraint automata are closed with respect to
the Boolean operations complementation and product construction.

Integration of Graph Constraints into Graph Grammars 29

Definition 10 (deterministic automata). A constraint automaton A =
(A,S) is deterministic if for each constraint b ∈ C and each rule � in the automa-
ton, the application conditions in b →〈�,aci〉 bi are disjoint9.

Proposition 3. For every constraint automaton A, a deterministic automaton
A′ can be effectively constructed such that L(A) = L(A′).

Construction 3. By a refined power-set construction. Let AC be the set of
application conditions occurring in the automaton and AC′ the refined set such
that all application conditions are disjoint. Then the original application con-
ditions can be seen as a conjunction of non-nested application conditions over
AC′. Refine each transition b →〈�,ac〉 b′ by the transitions b →〈�,aci〉 b′ with
ac =

∧
aci, aci ∈ AC′ and apply the power-set construction.

Remark. In most of our examples, we have an unrestricted rule and a rule
restricted by an application condition ac. By the refined power-set construction,
we get the following.

b b′

�

〈�, ac〉
Refine=⇒

b b′

〈�, ac〉
〈�, ¬ac〉

〈�, ac〉
Power set=⇒

{b} {b, b′}

〈�, ¬ac〉 �

〈�, ac〉

Different transitions between the same constraints are drawn by one line.

Example 5 (power-set construction). By the power-set construction, the
automaton A2tok can be transformed into an equivalent deterministic automa-
ton A′

2tok.

netstart place tok 2tokAddP

AddT AddP, AddT
AddP, AddT

AddTok, ¬gtoks

AddTok AddTok
gtoks

AddP, AddT
AddTok

A′
2tok

The automation A′
2tok is deterministic: the restricted rules 〈AddTok, gtoks〉

and 〈AddTok,¬gtoks〉 are distinct because the application conditions gtoks and
¬gtoks are distinct.

Proof. The refinement step and the power-set construction do not change
the semantics of the constraint automaton. By the power-set construction, the
automaton is deterministic. ��
9 Two application conditions ac and ac′ are disjoint if the sets �ac� and �ac′� are

disjoint. �ac� = {g | g |= ac} denotes the semantics of the application condition ac.

30 A. Habel et al.

Proposition 4. Given deterministic constraint automata Ac and Ac,i (i ∈ I),
constraint automata A¬c and A∧i∈Ici can be constructed, respectively.

Proof idea. By the complement and a slightly modified product construction.

Example 6 (complement construction). For the constraint ¬2tok, the con-
straint automaton A¬2tok is constructed from the deterministic automaton A′

2tok

according to the complement construction.

netstart place tok 2tokAddP

AddT

AddP

AddT
AddP, AddT

AddTok, ¬gtoks

AddTok AddTok
gtoks

AddP, AddT
AddTok

A¬2tok

Example 7 (product construction). Let A′
tok be the deterministic automa-

ton obtained from the automaton A′
2tok by deleting the state 2tok and all incident

edges. For the constraint rtok = tok∧¬2tok, the automaton Artok is constructed
from the automata A′

tok and A′
¬2tok according to the product construction.

netstart place tok 2tokAddP

AddT

AddP

AddT

AddTok

AddP, AddT
AddTok, ¬gtoks

AddTok
gtoks

AddP, AddT
AddTok

Artok

4.4 Termination

The question remains, under which assumptions the backward construction ter-
minates. Unfortunately, in general, for non-deleting graph grammars and posi-
tive constraints, the construction does not terminate. Adding the requirement
“n-bounded path”, a slightly modified backward construction terminates.

Definition 11. A graph grammar is non-deleting if all underlying rules are non-
deleting, i.e., for 〈L ←↩ K ↪→ R〉, L ∼= K. A graph grammar is n-bounded path if
all generated graphs are n-bounded path, i.e. all paths have length less than or
equal to n. A graph constraint of the form ∃ C is positive and n-bounded path,
if C is n-bounded path.

Proposition 5 (termination).

1. For non-deleting graph grammars GG and positive constraints c, the back-
ward construction, in general, does not terminate.

2. If, additionally, GG is n-bounded path, there exists a terminating, slightly
modified backward construction.

Integration of Graph Constraints into Graph Grammars 31

Construction 4 (backward construction with bounded-path test).
Modify Construction 2 by replacing step (1) by step (1’): Construct a sequence
C0, C1, . . . of constraint or state sets by C0 = {c} and Ci+1 = Ci∪{b ∈ Wlp∃(�, c′) |
� ∈ R, c′ ∈ Ci ∧ �b′ ∈ Ci.b � b′, b is n-bounded path}.

Example 8 For the 1-bounded path grammar with the rule AddTrans =
• • • ⇒ • • • and the constraint , Construction 2
does not terminate: Starting with the constraint c, it produces an infinite
sequence of positive constraints ∃ Cn requiring the existence of a path of length
n with two loops at the start and end node. Since there does not exist an injec-
tive morphism from Cn to Cn+1, the constraint ∃ Cn+1 is not contained in ∃ Cn.
In contrast, Construction 4 terminates.

Proof. 1. The statement follows immediately from the undecidability of the
coverability problem for non-deleting graph grammars [BDK+12]10.
The Coverability Problem is as follows. Given a graph grammar GG = (R, S)
and a graph C, is there a graph H such that S ⇒∗

R H and C � H, i.e. there
is an injective morphism from C to H. Assume the automaton construction
terminates for non-deleting graph grammars GG and positive constraints
c = ∃ C with automaton Ac. Then, the coverability problem for GG and
final graph C is decidable: If, in Ac, there is a path from an initial state to
the final state c, then the output is yes, and no, otherwise. Contradiction
[BDK+12, Proposition 13].

2. Correctness and completeness of Construction 4 follows from the correct-
ness and completeness of Construction 2. Termination follows from the well-
known fact, that the subgraph relation for n-bounded path graphs is a well-
quasi-order11 for n-bounded path graphs [Din92] and the constraint system
is monotone12 with respect to the subgraph relation [AJ01].
We use the subgraph relation � on graphs with C1 � C2 if there exists an
injective morphism from C1 to C2. This corresponds directly to the con-
tainment relation on positive constraints. Since the subgraph relation is a
well-quasi-order for n-bounded path graphs, the containment relation is.
Let G,H be graphs, p be a rule and G is a subgraph of H. Let p be applicable
on G, then there exists an injective morphism g : L → G from the left-hand
side of p to G. Since G is a subgraph of H there exists an injective morphism
m : G → H. Composing g and m, we obtain the morphism h from L to H.
The application of p replaces L by R in both graphs G and H resulting in G′

10 In [BDK+12], a slight extension of the single-pushout approach is considered, but
the simulation of a deterministic Turing machine is done by a non-deleting double-
pushout graph transformation system, see, e.g., [EHK+97].

11 A binary relation 	 defined on a set Q is a quasi-ordering [Din92] if it is reflexive
and transitive. A sequence q1, q2, . . . of members of Q is called a good sequence (with
respect to) if there exist i < j such that qi 	 qj . It is a bad sequence if otherwise.
We call (Q,) a well-quasi-ordering (or a wqo) if there is no infinite bad sequence.

12 Let T be a transition system with a preorder 	 defined on its states. T is monotone
wrt. to 	 if, for any states c1, c2 and c3, with c1 	 c2 and c1 → c3, there exists a
state c4 such that c3 	 c4 and c2 → c4.

32 A. Habel et al.

and H ′, respectively. Since p is non-deleting, it follows that G′ is a subgraph
of H ′, thus the constraint system is monotone wrt. the subgraph relation. ��

4.5 Filtering

We construct a graph grammar from a constraint automaton and derive our
main theorem: the Filter Theorem for graph grammars and constraints.

Proposition 6 (from constraint automata to graph grammars [Bec16]).
For every (goal-oriented) constraint automaton Ac, a (goal-oriented) graph
grammar GGc can be constructed effectively such that L(GGc) = L(Ac).

Construction 5. For simplicity, we give the construction for deterministic
automata. For non-deterministic automata, the construction is similar.
Let Ac = (A,S) be a deterministic constraint automaton with the underlying
automaton A = (C,R′, δ, C0, {c}). Then the graph grammar GGc = (C,R′

c, S)
is constructed as follows. The nonterminals of the grammar are the constraints
in C. The rule set R′

c is induced by the transition function δ: for instruction
δ(c1, �) = c2 with rule � = 〈L ⇒ R, ac〉, we create a new rule 〈L′ ⇒ R′, ac′〉
where the states c1 and c2 are integrated into the left- and the right-hand side,
respectively, and the constraint ac is shifted to L′. In more detail, let R′

c = {S ⇒
S + c0 | c0 ∈ C0} ∪ {〈c1, �, c2〉 | δ(c1, �) = c2} ∪ { c ⇒ ∅} where the start rules
add an initial state c0, the simulating rules 〈c1, �, c2〉 = 〈L + c1 ⇒ R + c2 , ac′〉
with ac′ = Shift(L ↪→ L + c1 , ac) simulate the working in the automaton, and
the deleting rule allows to terminate.

Remark. Since Ac is a goal-oriented automaton, the resulting grammar is, too.

Theorem 1 (Filter Theorem). For arbitrary graph grammars GG, arbitrary
graph constraints c, and i ≥ 0, goal-oriented graph grammars GGc,i (GGc) can
be constructed such that

1. L(GGc,i) ⊆ L(GG) ∩ �c� and
2. in case of termination, L(GGc) = L(GG) ∩ �c�.

Proof. The theorem follows immediately from Propositions 2, 5, and 6. ��
Example 9 (from automaton to grammar). The graph grammar GGrtok

can easily be derived from Artok. The states net,pl, tok, 2tok become the nonter-
minal symbols of the grammar, pl abbreviates place. The rules are as follows.

PN =⇒ PN net

PN net =⇒ PN Trtrans
net

PN net =⇒ PN Plplace
pl

PN pl =⇒ PN Trtrans
pl

PN pl =⇒ PN Plplace
pl

Pl pl =⇒ Pl tktoken
tok

PN tok =⇒ PN Trtrans
tok

PN tok =⇒ PN Plplace
tok

〈 Pl tok =⇒ Pl tktoken
tok ,¬gtoks〉

〈 Pl tok =⇒ Pl tktoken
2tok , gtoks〉

PN 2tok =⇒ PN Trtrans
2tok

PN 2tok =⇒ PN Plplace
2tok

Pl 2tok =⇒ Pl tktoken
2tok

tok =⇒ ∅

Integration of Graph Constraints into Graph Grammars 33

General Remark (typed attributed graphs).All results in this paper can
be obtained for typed attributed graphs: For the construction of existential
weakest liberal preconditions, E ′ − M pair factorization and the existence of
M-pushout is used. Typed attributed graphs and morphisms form a category
that has these properties where E ′ and M are the classes of all jointly surjective
pairs of all type-strict injective morphisms, respectively [RAB+15].

5 Related Concepts

Model generation. Most approaches to instance generation are logic-oriented,
e.g., [CCR07,KG12]. They translate class models with OCL constraints into
logical facts and formulas, such as Alloy [Jac12]. Then, an instance can be gen-
erated or it can be shown that no instances exist.

Alternatively, graph grammars have been shown to be suitable and natural
to specify (domain-specific) visual languages in a constructive way. In [AHRT14,
RAB+15], we translate OCL constraints to graph constraints. To formally treat
meta-models (without OCL constraints) they are translated to instance and type
graphs. Hence, we follow the graph-based approach keeping the graph structure
of models as units of abstraction where graph axioms are satisfied by default.
Meanwhile, Bergmann [Ber14] has implemented a translator of OCL constraints
to graph patterns. which is rather an efficient implementation, than a formal
translation.

In [DVH16], instances of meta-models are generated by refining a partial
instance model in multiple steps. For that, the meta-model is pruned and the
constraints are approximated to evaluate them on partial meta-models. The
partial instances for the pruned meta-model are stepwise extended, where each
step is a call to an underlying logic solver.

In [SLO17], a parallelizable symbolic model generation algorithm delivering
a set of symbolic models is given. For the grammar generating all graphs, the
algorithm can be used to generate all graphs satisfying the constraint.

Integration of constraints. In Radke et al. [RAB+15], the integration of a graph
constraint c into a graph grammar is done by replacing the rules of the grammar
by the corresponding c-guaranteeing rules. In this paper, we refine this approach,
construct a set of auxiliary constraints by backward construction and, in the case
of termination, obtain a c-filtering grammar.

In Becker [Bec16, Theorem 1], it is shown that the filter problem is solv-
able for arbitrary graph grammars GG and arbitrary graph constraints: The
used method is generate & test: first, generate a graph and, then, test whether
the constraint is satisfied. Unfortunately, the grammar is not goal-oriented. In
[Bec16, Theorems 2 and 3], it is shown that the filter problem is solvable by
a goal-oriented grammar. The statement is based on a backward construction
similar to ours. [Bec16, Algorithm 1] assumes the existence of a “disjunctive
normal form” for constraints. In general, for arbitrary constraints, there is only
a normal form respecting Definition 6. Algorithm 1 makes use of equivalence and

34 A. Habel et al.

implication, i.e., it is not effective. In this paper, we use of minimization and con-
tainment which can be easily constructed and checked and implies equivalence
and implication, respectively.

Grammar Constraint Relation Comments

[RAB+15] arb arb ⊆ Weakest precond

[Bec16, Theorem 1] arb arb = Generate & Test

[Bec16, Theorems 2 and 3] arb arb ⊆ / = Goal-oriented

This paper arb arb ⊆ / = Goal-oriented

This paper non-del & bp pos = Goal-oriented

where arb stands for arbitrary, non-del for plain, non-deleting, bp for bounded
path and pos for positive.

6 Conclusion

The backward construction works for arbitrary graph grammars and arbitrary
constraints. If the existential weakest liberal precondition Wlp∃(�, c) = ∨i∈Ibi

is a disjunction of several constraints, there is a proper decomposition into the
smaller components bi which can be handled in the same way. If Wlp∃(�, c) is
not a disjunction of several constraints, e.g. ∧i∈Ibi, then the complex constraint
∧i∈Ibi has to be handled.

b1

∨

bn

c

Gua(p, c)

Gua(
p, c

)

b1∧. . .∧bn c
Gua(p, c)

1. For plain, non-deleting grammars and positive constraints, Wlp∃(p, d) is a
disjunction of positive constraints and the states in constraint automata are
positive constraints.

2. For Boolean formulas over positive conditions, in general, the backward
construction yields an automaton with complex constraints. By the closure
results in Subsect. 4.3, we obtain automata with positive constraints.

Further topics
We will investigate constraints of the form ∀(P,∃ C), e.g. the constraint

alltok = ∀(Pl ,∃ (Pl tktok)), meaning that all places possess a token. We will
generalize constraint automata to program automata (the edges are decorated
by graph programs) and the backward construction, we obtain a finite program
automaton instead of an “infinite” constraint automaton.

Integration of Graph Constraints into Graph Grammars 35

Acknowledgements. We are grateful to Jan Steffen Becker, Berthold Hoffmann, Jens
Kosiol, Nebras Nassar, Christoph Peuser, Lina Spiekermann, and Gabriele Taentzer and
the anonymous reviewers for their helpful comments to this paper.

References

[AHRT14] Arendt, T., Habel, A., Radke, H., Taentzer, G.: From core OCL invariants
to nested graph constraints. In: Giese, H., König, B. (eds.) ICGT 2014. LNCS,
vol. 8571, pp. 97–112. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
09108-2 7

[AJ01] Abdulla, P.A., Jonsson, B.: Ensuring completeness of symbolic verification
methods for infinite-state systems. Theor. Comput. Sci. 256(1–2), 145–167 (2001)

[BDK+12] Bertrand, N., Delzanno, G., König, B., Sangnier, A., Stückrath, J.: On the
decidability status of reachability and coverability in graph transformation systems.
In: Rewriting Techniques and Applications (RTA 2012). LIPIcs, vol. 15, pp. 101–116
(2012)

[Bec16] Becker, J.S.: An automata-theoretic approach to instance generation. In:
Graph Computation Models (GCM 2016), Electronic Pre-Proceedings (2016)

[Ber14] Bergmann, G.: Translating OCL to graph patterns. In: Dingel, J., Schulte, W.,
Ramos, I., Abrahão, S., Insfran, E. (eds.) MODELS 2014. LNCS, vol. 8767, pp.
670–686. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11653-2 41

[CCR07] Cabot, J., Clarisó, R., Riera, D.: UMLtoCSP: a tool for the formal verifi-
cation of UML/OCL models using constraint programming. In: 22nd IEEE/ACM
International Conference on Automated Software Engineering (ASE), pp. 547–548
(2007)

[Din92] Ding, G.: Subgraphs and well-quasi-ordering. J. Graph Theor. 16(5), 489–502
(1992)

[DVH16] Semeráth, O., Vörös, A., Varró, D.: Iterative and incremental model gener-
ation by logic solvers. In: Stevens, P., W ↪asowski, A. (eds.) FASE 2016. LNCS, vol.
9633, pp. 87–103. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-
49665-7 6

[EEPT06] Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic
Graph Transformation. EATCS Monographs of Theoretical Computer Science.
Springer, Heidelberg (2006). https://doi.org/10.1007/3-540-31188-2

[EHK+97] Ehrig, H., Heckel, R., Korff, M., Löwe, M., Ribeiro, L., Wagner, A., Cor-
radini, A.: Algebraic approaches to graph transformation. Part II: single-pushout
approach and comparison with double pushout approach. In: Handbook of Graph
Grammars and Computing by Graph Transformation, vol. 1, pp. 247–312. World
Scientific, River Edge (1997)

[HP09] Habel, A., Pennemann, K.-H.: Correctness of high-level transformation systems
relative to nested conditions. Math. Struct. Comput. Sci. 19, 245–296 (2009)

[Jac12] Jackson, D.: Alloy Analyzer website (2012). http://alloy.mit.edu/
[KG12] Kuhlmann, M., Gogolla, M.: From UML and OCL to relational logic and back.

In: France, R.B., Kazmeier, J., Breu, R., Atkinson, C. (eds.) MODELS 2012. LNCS,
vol. 7590, pp. 415–431. Springer, Heidelberg (2012). https://doi.org/10.1007/978-
3-642-33666-9 27

[RAB+15] Radke, H., Arendt, T., Becker, J.S., Habel, A., Taentzer, G.: Translating
essential OCL invariants to nested graph constraints focusing on set operations.
In: Parisi-Presicce, F., Westfechtel, B. (eds.) ICGT 2015. LNCS, vol. 9151, pp.
155–170. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21145-9 10

https://doi.org/10.1007/978-3-319-09108-2_7
https://doi.org/10.1007/978-3-319-09108-2_7
https://doi.org/10.1007/978-3-319-11653-2_41
https://doi.org/10.1007/978-3-662-49665-7_6
https://doi.org/10.1007/978-3-662-49665-7_6
https://doi.org/10.1007/3-540-31188-2
http://alloy.mit.edu/
https://doi.org/10.1007/978-3-642-33666-9_27
https://doi.org/10.1007/978-3-642-33666-9_27
https://doi.org/10.1007/978-3-319-21145-9_10

36 A. Habel et al.

[SLO17] Schneider, S., Lambers, L., Orejas, F.: Symbolic model generation for graph
properties. In: Huisman, M., Rubin, J. (eds.) FASE 2017. LNCS, vol. 10202, pp.
226–243. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-54494-
5 13

[Tae12] Taentzer, G.: Instance generation from type graphs with arbitrary multiplici-
ties. Electron. Commun. EASST 47 (2012)

https://doi.org/10.1007/978-3-662-54494-5_13
https://doi.org/10.1007/978-3-662-54494-5_13

Multi-view Consistency in UML: A Survey

Alexander Knapp1(B) and Till Mossakowski2

1 Universität Augsburg, Augsburg, Germany
knapp@informatik.uni-augsburg.de

2 Otto-von-Guericke Universität Magdeburg, Magdeburg, Germany

Abstract. We study the question of consistency of multi-view models in
UML and OCL. We critically survey the large amount of literature that
already exists. We find that only limited subsets of the UML/OCL have
been covered so far and that consistency checks mostly only cover struc-
tural aspects, whereas only few methods also address behaviour. We also
give a classification of different techniques for multi-view UML/OCL con-
sistency: consistency rules, the system model approach, dynamic meta-
modelling, universal logic, and heterogeneous transformation. Finally, we
briefly outline a possible comprehensive distributed semantics approach
to consistency.

1 Introduction

Hartmut Ehrig was a researcher whose broad scope of interests ranged from
category and automata theory through algebraic specifications and graph gram-
mars to models of concurrency, and in all these fields he achieved fundamental
results and contributed far-reaching and novel ideas. It is sad that such a great
researcher passed away far too early after his retirement.

One of the many themes of Hartmut Ehrig’s research has been the multi-
viewpoint integration in the specification of complex systems [16,19]. We here
address this problem more specifically in the context of the “Unified Modeling
Language” (UML [42]). UML is a complex visual language featuring 14 dif-
ferent diagram types which may be complemented by textual annotations in
the “Object Constraint Language” (OCL [41]); both languages are standardised
by the Object Management Group (OMG). Already for UML 1.1 van Emde
Boas observed “that UML is not a single language but a hybrid of several lan-
guages” [18] and Cook et al. [10] coined the notion of UML as “a family of
languages”. The multitude of diagram types and sub-languages offered by the
UML/OCL allows the modeller to reduce the complexity of a model by specify-
ing a system from different viewpoints: data, behaviour, interaction, component
architecture, etc. Such “multi-view modelling” or “multi-modelling” and the
necessity to integrate views devised from different viewpoints has been inten-
sively discussed in the literature in general by Ehrig et al. [16,19] and others [5],
in the software architecture community [11,26,27], in the UML community [7],
in the SysML community [39,48], and also in other communities [3,22,43].

c© Springer International Publishing AG, part of Springer Nature 2018
R. Heckel and G. Taentzer (Eds.): Ehrig Festschrift, LNCS 10800, pp. 37–60, 2018.
https://doi.org/10.1007/978-3-319-75396-6_3

38 A. Knapp and T. Mossakowski

A central question in multi-view modelling is whether such a family of
UML/OCL diagrams and annotations is still consistent, i.e., conjointly realis-
able such that all views from all viewpoints are satisfied w.r.t. their (well-defined)
semantics [c50]1. This consistency problem has already been stated in the early
UML days [7,20,21], and has been addressed quite broadly in the literature. In
particular, several categorisations for partitioning the consistency problem have
been designed: Engels et al. [c28] suggest to distinguish between horizontal (or
intra-model) and vertical (or inter-model) consistency, i.e., whether the views are
on the same level of abstraction; as well as syntactic (structural well-formedness
of the abstract syntax) and semantic consistency (compatibility of behaviour).
Mens et al. [35] focus more on the intention of sub-languages and give a classifi-
cation into structural vs. behavioural diagrams and their use on the specification
vs. instance level. Allaki et al. [2] combine these schemes into a typological frame
of mono- vs. multi-diagram, specification vs. instance, and syntactic vs. seman-
tic, and furthermore add a taxonomy of consistency problems in a terminological
dimension, mentioning incompleteness, ambiguity, contradiction, incompatibil-
ity, and anomaly. From a verification perspective, Hilken et al. [23] present a
list of structural and behavioural verification tasks for UML models considering
besides consistency the categories of consequence, independence, executability,
and reachability. A structural verification task considers a single (integrated)
system state only, whereas a behavioural task pertains to a sequence of states.
In contrast to [c50], here “[c]onsistency problems are structural problems and do
not involve behaviour” [23, p. 122].

The large number of approaches to multi-view consistency in the literature
has also been reviewed and summarised [1,4,17,25,34,49–51] from different per-
spectives. In particular, Torre et al. [49,50] systematically survey existing consis-
tency rules. They find that most rules are syntactic (88.21% in [49] and 81.89%
according to the more comprehensive [50]), and that most of the rules are related
to class (71.58%), sequence (47.37%), and state machine diagrams (42.11%).
Moreover, they deplore that “it appears that researchers tend to discuss very
similar consistency rules, over and over again”, and conclude that “much more
work is needed to develop consistency rules for all 14 UML diagrams, in all
dimensions of consistency (e.g., semantic and syntactic on the one hand, hori-
zontal, vertical and evolution on the other hand)” [49].

In this paper, we first give a comprehensive overview over the existing
approaches to multi-view UML/OCL consistency in the literature both for
UML 1 and UML 2 starting from the surveys mentioned above. We list which
diagram types and sub-languages of UML/OCL are covered by each app-
roach, which consistency technique it applies, whether it tackles structural or
behavioural consistency, and which formalism and tool it uses. Our main con-
tribution here is to point out and survey the variety of techniques to a grip on
consistency for a heterogeneous, multi-view language like UML/OCL, ranging
from syntactic consistency rules over an overarching, semantic system model to

1 References prefixed with a ‘c’ refer to the multi-view UML/OCL consistency bibli-
ography assembled in a separate list.

Multi-view Consistency in UML: A Survey 39

heterogeneous transformations. We find that structural consistency is considered
more often by far and that either structural, syntactic consistency rules or an
encoding into a system model or some universal logic prevails.

Purely syntactic approaches, in fact, do not help in ensuring behavioural con-
sistency. Also for the semantics-based, behavioural schemes, however, we think
that not only the system model, but even the heterogeneous approaches still
tend to be too monolithic, not properly reflecting the diversity of UML models.
We therefore, extending our previous work on a truly heterogeneous approach
to UML/OCL semantics [c13, c44, c45], hint at a possible consistency approach
based on so-called distributed heterogeneity.

2 Approaches to Multi-view Consistency in UML

Tables 1 and 2 contain an overview of existing approaches to multi-view con-
sistency both for UML/OCL 1 (up to 2004) and UML/OCL 2 (starting in
2005), roughly ordered by their date of appearance. While the literature on
UML abounds, for our topic this literature review aims at comprehensive-
ness. Our starting points were the surveys [1,4,17,25,34,50,51], the informa-
tion of which we aligned, adapted, and extended by search queries for "UML"
"consistency" on scholar.google.com and dblp.uni-trier.de as well as personal
experiences.

From the 14 different UML diagram types (structural: profile, class, com-
posite structure, component, deployment, object, package; behavioural: activ-
ity, sequence, communication, interaction overview, timing, use case, state
machine [42, p. 681]), we combined, as usual, the sequence, communication, inter-
action overview, and timing diagram into the single type of interaction diagram
for conciseness; and we omitted the profile, deployment, package, and use case
diagram. In fact, package diagrams provide a means for namespace modularisa-
tion and the package structure may most of the time be resolved statically using
fully qualified names without interference with consistency. Still, also the mean-
ing of packages and their relationships has been discussed [12,47]. Use case dia-
grams, though besides class diagrams the most used UML diagram type [14,32],
convey rather little semantics on their own [24,28], and hence their consistency
with other diagrams remains a vague and subjective notion. Deployment dia-
grams, assigning software artefacts to system elements, also show quite lim-
ited semantic content such that only structural consistency checks remain [36].
Finally, profile diagrams are used to define a domain-specific UML extension,
thus every instance would add a viewpoint of its own, such that consistency
cannot be developed in general and a priori.

Our survey thus covers 11 diagram types and sub-languages of the UML/OCL
family, where the entry for interactions condenses the information on four dia-
gram sub-types. The sub-language of the UML for a diagram type is given by
the representable abstract syntax (meta-model) fragment, though a consistency

http://scholar.google.com
http://dblp.uni-trier.de

40 A. Knapp and T. Mossakowski

Table 1. Overview of UML/OCL 1 consistency approaches. CD means class diagrams,
OD object diagrams, SM state machines, ID interaction diagrams (e.g., sequence dia-
grams), AD activity diagrams (as a special case of state machines), and OCL the
Object Constraint Language. A � means support for at least a substantial subset of the
diagram/sub-language type, a �� indicates that the diagram/sub-language is supported
but only for a limited subset. The consistency technique of the approach is indicated
by an S for “system model”, D for “dynamic meta-modelling”, U for “universal logic”,
or T for “heterogeneous transformation”. An entry “s” in the class(ification) column
means that structural, static consistency checks are supported, a “b” that behavioural,
dynamic consistency is checked; if the indicator is set into parentheses, the consistency
support is quite restricted. The last column shows the used formalisms and tools. An
asterisk in front of the reference indicates that more information is given in Sect. 3.

Reference CD OD SM ID AD OCL Cons. Class. Form./Tool

* Egyed [c20, c21] �� �� �� �� T s ViewIntegra

Krishnan [c47] �� �� �� U (b) PVS

Tsiolakis [c77] �� �� U (s/b) Graph transformation

* Große-Rhode [c34, c35] �� �� �� U b Transformation systems

Reggio et al. [c72] �� �� U (s/b) CASL-LTL

McUmber, Cheng [c60] �� �� U b SPIN

* krtUML [c16] �� �� �� S s/b Symbolic transition systems

Bernardi et al. [c9] �� �� U (b) Petri nets

* xUML [c61] � � �� �� �� S (s) Executable UML

* Küster et al. [c25, c28] �� �� �� �� U b CSP/FDR

* Hausmann et al. [c27] �� �� D b Graph transformation

Spanoudakis, Kim [c76] �� �� U s Dempster-Shafer

Litvak et al. [c55] � �� U b BVUML

Rasch, Wehrheim [c70] �� �� U s/b Z, CSP/FDR

* Wirsing, Knapp [c82] �� �� �� T s/b Universal algebra

Kyas et al. [c51] �� �� �� U s/b PVS

van der Straeten [c78, c79] �� �� �� U s Description logic

Amálio et al. [c3] �� �� �� U s Z

Kim, Carrington [c43] �� �� U s Object-Z

Diethers, Huhn [c18] �� �� U b UPPAAL

Yang et al. [c83] �� � U s rCOS

Yeung [c85] �� �� U b CSP, B

approach may not cover it fully. Since we aim at multi-view consistency involv-
ing several viewpoints, we do not list approaches here that only consider a single
diagram type. In particular, we leave out the consistency of class diagrams,
possibly accompanied by object diagrams (see [8] for an overview) or state
machines [33,44,45]. Class diagrams have, however, been the first instance of
UML consistency investigations [20,21,29]. For (structural) consistency checks
for a homogeneous set of views, like a set of class diagrams, model merging
(“consistency-checking-by-merging”) is a popular technique [46].

We now first review the variety of techniques enabling consistency checking
in the listed multi-view approaches, and then report on our general observations
and findings.

Multi-view Consistency in UML: A Survey 41

Table 2. Overview of UML/OCL 2 consistency approaches. The abbreviations are as
in Table 1 extended by CMP for component diagrams and CSD for composite structure
diagrams. Activity diagrams (AD) have an independent semantics in UML 2. Protocol
state machines are not equipped with a diagram type of their own in UML 2; still, [c31]
considers them independently.

Reference CD OD CMP CSD SM ID AD OCL Cons. Class. Form./Tool

Lam, Padget [c53] �� �� U b π-calculus

Long et al. [c58] �� �� U s rCOS

Lucas et al. [c59] �� �� U s Maude

Okalas et al. [c67] �� �� U s/b B

Rasch, Wehrheim [c71] �� �� �� �� U s/b Z, CSP/FDR

Wang et al. [c81] �� �� U b LTSA

Bellur, Vallieswaran [c8] �� �� �� �� U s Meta-model

Li et al. [c54, c57] �� � �� � U s/(b) UTP

O’Keefe [c68] �� �� �� U b Dynamic logic

Shinkawa [c74] �� �� �� �� U b CPN

Yao, Shatz [c84] �� �� U b Petri nets

Zhao et al. [c86] �� �� U b SPIN

Anastasakis et al. [c4] � �� U s/(b) Alloy

* Gogolla et al. [c31] � � �� �� � U s/(b) USE

Knapp, Wuttke [c46] �� � � U b Hugo/RT

Sapna, Mohanty [c73] �� �� �� �� U s SQL

Brændshøi [c10] �� �� U b Impl.

Banerjee et al. [c5, c6] �� � U b Rhapsody/LTL

* Cengarle et al. [c13] � �� �� T s/b Institutions

* Alanazi [c2] �� �� U (b) Impl.

Hammal [c36] �� �� U (b) Petri nets

Laleau, Polack [c52] �� �� �� U s Meta-model

* Broy et al. [c11, c12] � � � � S s/b Set theory

* Kuske et al. [c48] �� �� �� �� U (s/b) Graph. transf.

* Grönniger [c33] �� �� �� �� �� S s/b Isabelle/HOL

Nimiya et al. [c62] �� �� U b Alloy

Abdelhalim et al. [c1] �� �� U b CSP

Khai [c41] �� �� U s Prolog

Ober, Dragomir [c63] � � �� U s/b OMEGA2

Puczynski [c69] �� �� �� U s/b Impl.

Baresi et al. [c7] �� �� �� �� U b TRIO

Gerlinger et al. [c30] � � � U s Common logic

El Miloudi et al. [c23, c24] �� �� �� U s Z

Khan, Porres [c42] � � �� �� U s Desc. logic

* fUML [c64, c65, c66] � � � � S s/b Common logic

3 Consistency Techniques

The most immediate and direct approach to consistency checking of UML dia-
grams and models uses consistency rules, mostly on the concrete or abstract
syntax [15]. These rules extend the well-formedness rules of the UML specifica-
tion given in OCL [c15]. Another option for such rules is to use other kinds of
logics, like description logics [c42, c78, c79]. Many modelling tools incorporate
their own rule sets [c19, c22, c56, c80]. Torre et al. [c50] list 116 consistency

42 A. Knapp and T. Mossakowski

rules studied in the literature, where 95 are syntactic (structural), 97 horizontal
(intra-model), and 60 heterogeneous (involving several diagram types).

Syntactic checks are indispensable in any approach to consistency, but they
do not suffice to uncover the more intricate behavioural consistency problems,
e.g., whether a network of state machines admits a trace specified by an inter-
action. Advanced consistency approaches thus have to develop and rely on a
behavioural semantics of the UML/OCL diagrams and sub-languages of dis-
course. The degree of integration of these semantics varies considerably with the
proposed approaches in the literature. Though the borders can not be always
drawn with full accuracy, we suggest a categorisation w.r.t. the emphasis which
is given to the semantic heterogeneity of UML/OCL. In the “system model” app-
roach a uniform realisation frame is built, into which all sub-language aspects are
encoded. “Dynamic meta-modelling” dispenses with the encoding, but enriches
the meta-model, i.e., UML’s abstract syntax, by semantic information. The “uni-
versal logic” approaches still use an encoding, though now to a uniform for-
malism. Finally, “heterogeneous transformation” approaches aim at employing
families of translations for relating sub-languages.

3.1 System Model

The “system model” approach, best exemplified by Broy, Groenniger et al. [c11,
c12, c33], builds on a uniform semantic basis for covering all aspects of state and
state change present in any UML sub-language to be considered. By representing
every facet of a model, expressed in various diagrams, in one and the same
instance of the system model, static as well as dynamic checks can be performed.
The “Executable UML” (xUML [c61]) as well as the “Foundational Subset of the
UML” (fUML [c66]) use such system models for comprehensive and integrated
execution. The fUML, based on Common Logic (a standardised dialect of first-
order logic), currently serves as basis for an endeavour to arrange an executable,
programming language-based precise semantics of composite structures [c64] as
well as state machines [c65].

For states, the system model in [c11, c12] contains a data store built from
classes, their attributes, and the inheritance relationship as well as the instances;
a control store consisting of operations and stacked method calls; and an event
store holding also messages. For state changes, it comprises control-flow and
event-based state transition systems enriched by time. This system model,
though with some modifications, e.g., specialising the event store to a message
store, has later on been encoded in Isabelle/HOL and parts of UML class and
object diagrams, state machines, and sequence diagrams, as well as a subset of
OCL have been represented in this system model [c33]. With the help of the
Isabelle prover then both static consistency checks, like whether an inheritance
relationship is acyclic, and dynamic consistency checks, like whether a sequence
diagrams is realisable by a state machine, can be done.

The manual effort to write down these checks and perform them in an inter-
active theorem prover seems quite substantial, however. Not to the least part,
this is owed to the necessary complexity of the system model. Automation of

Multi-view Consistency in UML: A Survey 43

various consistency checks has not been the primary goal of the approach. Still,
the approach supports a certain degree of variability by exchanging sub-theories
of the encoded system model, and other languages, a programming language, for
instance, can be integrated [c33] if they can also be represented adequately in
the system model.

The “krtUML” approach by Damm et al. [c16] uses symbolic transition sys-
tems as its system model for a comprehensive semantics. Their choice of class
diagrams and state machines targets real-time systems. Consistency checks are
not the main goal but behavioural consistency may be added on the basis of
this system model. Damm et al. stress that “[b]ecause all diagrams are only
views on one and the same model, the attempts to give semantics for separated
UML diagrams fail in producing the right semantics for the entire UML” (p. 94),
though this valid observation somewhat neglects the possibility to integrate the
relations between the UML diagrams and sub-languages as done, e.g., in the
heterogeneous transformation approaches.

3.2 Dynamic Meta-modelling

Inspired by attribute grammars extending the abstract syntax tree of a (tex-
tual) language by synthesised and inherited attributes for semantic and contex-
tual analysis, the “dynamic meta-modelling” approach by Hausmann, Engels,
et al. [c14, c26, c27, c29, c37, c75] extends the abstract syntax of the UML,
i.e., its meta-model, by semantic concepts on this very meta-level. In fact, the
UML meta-model already shows several concepts that serve as links between the
various sub-languages, like Event originating from, e.g., operation calls, used in
state machines and activities for triggering behavioural effects or Message used
in interactions for referring to operations and signals. By adding extra semantic
concepts, the linkage between the sub-languages can be enhanced and, in partic-
ular, lifted to the behavioural, dynamic level. For example, the UML meta-class
StateMachine is extended by a new meta-class EventPool for holding instances of
the already existing meta-class Event that the instance of StateMachine then can
react to; or the meta-class ControlFlow of activities is extended by a new meta-
class ControlToken representing the possibility that a control flow activity edge
may carry a control token. Using the extensions, an operational semantics based
on the extended meta-model and thus covering several UML sub-languages in
concert is defined using (typed) graph transformations with negative applica-
tion conditions, most prominently in the Groove tool [c37, c75] applying state
space exploration. The transformations are separated into local small-step rules
and transactional big-step rules that call the local rules. (A similar approach,
though not targeted specifically at the UML and replacing graph transformations
by programming, is used in the GEMOC initiative for “globalising modelling
languages” supporting arbitrary domain-specific modelling languages [9].)

This intriguing idea of combining attribute grammars, structural operational
semantics, and graph transformations has mainly been applied to activities [c37]
and to a limited degree to state machines [c75] and OCL [c14]. For consis-
tency checks proper, the dynamic relation between sequence diagrams and state

44 A. Knapp and T. Mossakowski

machines has been considered as an example, though without tool support [c27].
The overall design of dynamic meta-modelling somewhat resembles the “system
model” approach as it builds a single domain of interpretation. By contrast, how-
ever, dynamic meta-modelling does not rely on an external semantic domain, but
reuses the existing UML concepts and adds those features directly to the meta-
model that are missing for behavioural interpretation. The use of a reference
model for relating views that are then embedded and integrated into a system
model has already been advocated by Ehrig et al. [19]; the use of graph transfor-
mations on the meta-model level has also been used by Kuske et al. [c48]. Still,
the complexity of the UML meta-model itself, let alone the necessary extensions,
and respecting all semantic interconnections in local and global graph transfor-
mation rules present a major obstacle for the use of dynamic meta-modelling in
comprehensive multi-view consistency checking.

3.3 Universal Logic

The system model approach builds a uniform semantic domain offering the nec-
essary mechanism to interpret the different UML sub-languages and diagrams.
By contrast, a “universal logic” approach does not rely on a single domain of
interpretation, but just uses a uniform logical technique, like transition systems,
for expressing the semantics of all UML diagrams to be checked for consistency.
However, as in the system model approach, having to use a single encoding
technique may sometimes yield unnecessary and unnatural complexity.

Große-Rhode [c34, c35] uses “transformation systems”, i.e., extended labelled
transition systems, where both states and transitions are labelled. The (control)
states offer observations and synchronisation points, the transitions model the
atomic steps of an entity and may be executed synchronously with other system
parts. The semantics of class diagrams, state machines as well as their compo-
sition, and sequence diagrams are represented as classes of such transformation
systems. Consistency can then be expressed by checking that the intersection of
model classes (modulo some projections for adapting labels) are not empty. In a
similar vein, though not as elaborated, the “super-state analysis” of Alanazi [c2]
relies on nets of transition systems which allows to check the consistency of state
machines and interactions.

The “Consistency Workbench” by Küster, Engels, et al. [c25, c28, c49] is
based on a “partial translation of models into a formal language (called seman-
tic domain) that provides a language and tool support to formulate and verify
consistency conditions” [c25, p. 158]. In principle, the employed semantic domain
is not fixed for all instalments of the general approach and may vary with the
consistency checks and the information extracted from the models by partial
translation. The Consistency Workbench itself relies exclusively on the algebraic
process language CSP and failure-divergence refinement (FDR). Still, it does
not aim to construct an overarching system model, but is parameterised in the
consistency problem type. In this sense, it is bordering at an approach using
heterogeneous transformation.

Multi-view Consistency in UML: A Survey 45

In the “film-stripping” approach by Gogolla et al. [c32, c38] a uniform tech-
nique for representing behavioural system evolution is used: System behaviour
is captured by sequences of snapshots of system states, i.e., object diagrams,
linked together by change information in particular recording how the objects
evolve. Consistency checks could then be performed, e.g., in the USE tool [c31].
Even for automated analysis, like model checking, however, the general scaling
of the technique without appropriate compression or abstraction of the snap-
shots remains unclear. The approach is complemented by model transformations
from full-fledged UML to a simpler “base model” [c39, c40]: Complex modelling
constructs, like association classes, are replaced with simpler modelling expres-
sions, though possibly at the expense of having to use OCL. This technique is
mainly exemplified by transformations on class diagrams and OCL itself, though,
ultimately “[a]ll diagrams conjoined are transformed and combined into a base
model” [c40, p. 60]. Thus, there are quite some similarities with the system model
approach.

3.4 Heterogeneous Transformation

Approaches based on “heterogeneous transformation” (coined by [c21]) focus on
the several sub-languages and diagrams of the UML used in different forms at
different development stages, from different viewpoints by different stakehold-
ers [26,27], and their accompanying relations. Such an approach has in particu-
lar been advocated by Derrick et al. [c17] for UML from their experiences with
“Open Distributed Processing” (ODP) using Z and LOTOS, though not elabo-
rated in detail. In their terminology a set of viewpoint specifications is consistent
“if there exists a specification that is a refinement of each of the viewpoint spec-
ifications with respect to the identified refinement relations and the correspon-
dences between viewpoints” (p. 35). Here, the refinement and correspondence
relations play the role of “transformations”.

Egyed’s ViewIntegra [c20, c21] defines transformations between the differ-
ent UML diagram types on the very diagram level. In principle, all eleven diagram
types of UML 1 could be covered, but only class diagrams, object diagrams, state
machines, and interaction diagrams, i.e., sequence and collaboration diagrams
(which, as in UML 2, are mere visual variants), are discussed in [c21]. The trans-
formations are categorised into generalisation, e.g., object to class diagram; struc-
turalisation, e.g., state machine to class diagram; translation, e.g., sequence into
collaboration diagram; and abstraction, e.g., class diagram to class diagram. The
last class of transformations, abstraction, is employed to relate diagrams at differ-
ent development and refinement stages. Since the transformations map diagrams
to diagrams, the supported consistency checks are structural; neither a static nor a
dynamic semantics are provided. The classification of transformations is also used
to reduce the number of necessary comparison transformations, which for eleven
diagram types would otherwise be 55. However, when employing this design, not
all transformations are possible any more, and a common denominator sometimes
is needed, e.g., for comparing an object diagram with a state machine both are,
perhaps somewhat arbitrarily, transformed into a class diagram.

46 A. Knapp and T. Mossakowski

We have started an effort to formalise the relation of views and viewpoints
on a semantic level in [c82], where viewpoints are captured by a formal lan-
guage category equipped with a model functor to a semantic domain category
and views are language expressions in a viewpoint. Consistency is expressed
by translations on the syntactic and semantic level; for semantic consistency a
“viewpoint of comparison” has to be given. Consistency checks, though only pair-
wise, are exemplified for class diagrams, state machines, and sequence diagrams.
The scheme that we have used in [c13] is similar, but uses the established theory
of institutions as its foundation where the linkage between viewpoints, expressed
as institutions, is represented by (co-)spans of institution (co-)morphisms. We
have developed a vision how this can be extended to almost all UML diagrams
in [c45], some initial results can be found in [c44].

Though it has not been directly applied to the UML/OCL family of languages
yet, the work of Diskin et al. [13,30,31] on “heterogeneous multi-modelling”
and “consistency-checking-by-merging” introduces another rather general and
advanced approach to multi-view consistency along the lines of heterogeneous
transformations. It is also inspired by the theory of institutions [13, p. 175].
Based on meta-models for expressing viewpoints, overlaps of viewpoints are rep-
resented by spans of meta-models, and the overall, global consistency of views
can be expressed via a categorical colimit construction. Currently, the main focus
lies on structural consistency, though also behavioural consistency is abstractly
discussed in [13] using the example of traces of sequence diagrams and state
machines.

4 Observations and Results

The 57 approaches listed in Tables 1 and 2 greatly differ in their quality w.r.t.
elaboration and comprehensiveness, where this spectrum spreads from a kind of
feasibility study [c36, c62] at the one end to detailed accounts involving compre-
hensive semantics, tools, and larger case studies [c31, c46, c51, c63] on the other.
Tool support is similarly diverse and ranges from prototypical proprietary imple-
mentation over model checking and model finders to interactive theorem proving.
About half of the approaches only support structural or very limited behavioural
consistency checks (26), though the inclusion of at least some behavioural prop-
erties by 42 approaches demonstrates the necessity to integrate behaviour for
true consistency.

In line with the survey results by Torre et al. [49], we also find that the
diagram types most often covered are the class diagram (42 out of 57), the
state machine diagram (47), and the interaction diagram (in one of its forms,
41); that according to our survey state machines have been considered more
frequently than class diagrams may be accounted by our judicious choice of
omitting single-view consistency approaches. Activity diagrams have rarely been
integrated (7), but this may change with the broader adoption of fUML [c66].
The combination of state machines and interactions is considered most often
(34). Both are mainly considered in the context of class diagrams, rarely in
combination with component diagrams and composite structure diagrams (4).

Multi-view Consistency in UML: A Survey 47

Among the approaches listed covering many different diagram types, the top
four are the following ones:

– xUML [c61] covers five diagram types. However, for three of them, only a
limited subset is covered, and only syntactic, structural checks are provided.

– Gogolla et al. [c31] cover six diagram types, three of them to a substantial
portion, and at least partially semantic, behavioural checks are provided.

– Broy et al. [c11, c12] define a comprehensive, though complex system model
capturing substantial subsets of four diagram types of UML; however, tool
support is not provided.

– Grönniger [c33], based on [c11, c12], integrates a fragment of the UML (par-
tially covering class diagrams, object diagrams, interactions, state machines,
and OCL) semantically by an encoding in the interactive theorem prover
Isabelle/HOL; however, the degree of coverage is considerably lower than
in [c11, c12].

All these either follow the system model or the universal logic approach. In
accordance with the survey by Lucas et al. [34] we also find, that these encoding
techniques (system model: 5, universal logic: 48) are currently by far prevailing
for consistency. This may be explained by the fact that the ultimate question
of overall, global consistency is whether there is a single implementing system
or “realisation” simultaneously satisfying all views, and that the quest for such
a realisation may become simpler when everything is represented or encoded
uniformly. The major drawback of the encoding approaches, which may have
prevented the further integration of other UML/OCL diagram types and sub-
languages into them, is their lack of extensibility: A new viewpoint really extend-
ing the realm of expressivity inevitably calls for a considerable amount of work
in expanding and adapting the already established semantic or logical domain.
Other disadvantages, already pointed out by Derrick et al. [c17], are traceability
problems, as reported inconsistencies generally can only be partially translated
back into the language of the original models, and the difficulty of incremental
consistency checks.

5 Distributed Semantics for Multi-view Consistency

The most comprehensive current UML/OCL multi-view consistency frameworks
are based on the system model or the universal logic approach and thus show
disadvantages w.r.t. extensibility, traceability, and incrementality. The hetero-
geneous transformation approach has been introduced to mitigate these prob-
lems by taking different viewpoints and views as entities in their own right and
relating them by transformations. Still, the integration of behavioural aspects
beyond meta-modelling and the resulting problem of obtaining global consis-
tency for such heterogeneous multi-view models have been considered only to a
rather limited degree.

Based on our previous work on formalising several UML/OCL sub-languages
and their behavioural semantics as institutions and relating them by institution

48 A. Knapp and T. Mossakowski

(co-)morphisms [c13, c44, c45], we in the following briefly suggest a heteroge-
neous transformation approach that takes a distributed view to heterogeneous
consistency: In [38], we have already provided a classification of approaches for
handling semantic heterogeneity in the domain of formal specification that is
in close correspondence to the present categorisation of multi-view consistency
frameworks for UML/OCL:

– encoding of heterogeneous languages into some “universal” language. This is
applied by the system model, the dynamic meta-modelling, and the universal
logic approaches.

– focused heterogeneity, i.e., languages are not per se encoded into some “uni-
versal” language, and complex models may involve parts written in different
languages. Still, via translations, the end result is formulated in one language.
This roughly corresponds to the heterogeneous transformation approach.

– distributed heterogeneity, i.e., truly decentralised networks of models formu-
lated in different languages and linked by transformations and refinements.

The classical approach to multi-view semantics and consistency using focused
heterogeneity is illustrated in Fig. 1(a) (taken from [6]). An important feature
there is that consistency means the existence of a single global realisation that
satisfies all the different viewpoints. In particular, if the individual viewpoints
are formulated in different formalisms, the existence of a single global realisation
assumes their translatability to a single formalism or semantic domain serving
as “lingua franca” and hosting the global realisation. In Derrick et al.’s app-
roach [c17] a common refining specification is required, in Diskin et al.’s work [13]
a colimit is constructed on which consistency is checked. (Egyed’s [c21] and our
own previous approach [c82] mainly focus on pairwise consistency.) By contrast,
in distributed heterogeneity, a realisation of a distributed network of models is a
family of realisations of the individual models that is compatible with the links,
see Fig. 1(b); and a network is consistent if it has such a realisation. Under suit-
able amalgamation conditions, a single global realisation of the network can be
constructed from such a compatible family in a particular viewpoint; however,
these conditions are not always satisfied [37]. Moreover, in a system of systems
that has truly distributed implementations only, a single global realisation may
be conceptually unwanted and overly complex.

Altogether, the distributed heterogeneity approach that we suggest for
addressing UML/OCL multi-view consistency is more flexible than the assump-
tion of a single global realisation, but it still enforces a global compatibility of
all constraints, unlike a mere pairwise consistency (cf. Fig. 1(c)). Thus, consis-
tency for distributed heterogeneity could be characterised as “global consistency
without the need of a global realisation”. The distributed heterogeneity app-
roach in general is supported by the Heterogeneous Tool Set (Hets [37]) and the
Distributed Ontology, Model, and Specification Language (DOL [40]), the latter
extending the algebraic specification language CASL. However, specific instan-
tiation of this approach to UML/OCL has only started and is subject of future
research.

Multi-view Consistency in UML: A Survey 49

Fig. 1. Multi-view consistency approaches

50 A. Knapp and T. Mossakowski

6 Conclusion and Future Work

UML/OCL is a language for multi-view and multi-viewpoint models, and the
detection of view inconsistencies at an early stage of the development is impor-
tant for avoiding costly redesign. We have classified 57 existing approaches to
UML/OCL multi-view consistency. Even the most comprehensive approaches
currently cover only five of the 14 UML diagram types, and most of these
only partially. Moreover, a “universal logic” approach is predominant, where
all UML/OCL diagram types and sub-languages are embedded into one system
model or one logic. We have argued that this is not suitable for handling the
involved complexity. This would become even more palpable if also extensions
of the UML, like SysML or MARTE, or even the integration of domain-specific
modelling languages are considered.

We propose a new approach to UML/OCL multi-view consistency, following
a “distributed heterogeneous transformation” paradigm. We use institutions for
formalising the different UML diagram types and their semantics, and institution
(co-)morphisms for formalising transformations between them. Then UML/OCL
multi-viewpoint models can be formalised as so-called networks in the OMG-
standardised Distributed Ontology, Model, and Specification Language (DOL).
This provides a framework where eventually all semantically relevant diagram
types and sub-languages can be covered.

In order to use this framework for checking consistency of UML/OCL multi-
viewpoint models, there is still a considerable way to go: while some UML dia-
gram types have been formalised as institutions, this needs to be completed to
a more comprehensive treatment of both diagram types and their features. For-
malisation of transformations as institution (co-)morphisms has just started. In
order to make this practically useful in connection with DOL, all the institu-
tions and (co-)morphisms need to be integrated into the Heterogeneous Tool Set
(Hets) and interfaced with suitable proof and realisation finding tools. Finally,
suitable consistency strategies need to be developed and implemented.

Of course, writing down DOL expressions for large families of UML/OCL
diagrams and specifications will be tedious. Hence, we aim at some graphical
interface that can generate the needed DOL expressions automatically from a
user’s selection of those UML/OCL diagrams and specifications that should be
interlinked to a network, plus a specification of the involved refinements. Such
a specification of both networks and refinements adds the extra information to
a given family of UML/OCL diagrams and specifications that is needed when
checking multi-view consistency.

Multi-view UML Consistency Approaches

c1. Abdelhalim, I., Schneider, S., Treharne, H.: Towards a practical approach to check
UML/fUML models consistency using CSP. In: Qin, S., Qiu, Z. (eds.) ICFEM
2011. LNCS, vol. 6991, pp. 33–48. Springer, Heidelberg (2011). https://doi.org/
10.1007/978-3-642-24559-6 5

https://doi.org/10.1007/978-3-642-24559-6_5
https://doi.org/10.1007/978-3-642-24559-6_5

Multi-view Consistency in UML: A Survey 51

c2. Alanazi, M.N.: Consistency checking in multiple UML state diagrams using super
state analysis. Ph.D. thesis. Kansas State University (2008)

c3. Amálio, N., Stepney, S., Polack, F.: Formal proof from UML models. In: Davies,
J., Schulte, W., Barnett, M. (eds.) ICFEM 2004. LNCS, vol. 3308, pp. 418–433.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30482-1 35

c4. Anastasakis, K., Bordbar, B., Georg, G., Ray, I.: UML2Alloy: a challenging model
transformation. In: Engels, G., Opdyke, B., Schmidt, D.C., Weil, F. (eds.) MOD-
ELS 2007. LNCS, vol. 4735, pp. 436–450. Springer, Heidelberg (2007). https://
doi.org/10.1007/978-3-540-75209-7 30

c5. Banerjee, A., Ray, S., Dasgupta, P., Chakrabarti, P.P., Ramesh, S., Ganesan,
P.V.V.: A dynamic assertion-based verification platform for validation of UML
designs. In: Cha, S.S., Choi, J.-Y., Kim, M., Lee, I., Viswanathan, M. (eds.)
ATVA 2008. LNCS, vol. 5311, pp. 222–227. Springer, Heidelberg (2008). https://
doi.org/10.1007/978-3-540-88387-6 18

c6. Banerjee, A., Ray, S., Dasgupta, P., Chakrabarti, P.P., Ramesh, S., Ganesan,
P.V.V.: A dynamic assertion-based verification platform for validation of UML
designs. ACM SIGSOFT Softw. Eng. Notes 37(1), 1–14 (2012)

c7. Baresi, L., Morzenti, A., Motta, A., Rossi, M.: A logic-based semantics for the
verification of multi-diagram UML models. ACM SIGSOFT Softw. Eng. Notes
37(4), 1–8 (2012)

c8. Bellur, U., Vallieswaran, V.: On OO Design Consistency in Iterative Development.
In: Proceedings of 3rd International Conference on Information Technology: New
Generations (ITNG 2006), pp. 46–51. IEEE (2006)

c9. Bernardi, S., Donatelli, S., Merseguer, J.: From UML sequence diagrams and
statecharts to analysable petri net models. In: Proceedings of 3rd International
Workshop on Software and Performance (WSOP 2002), pp. 35–45. ACM (2002)

c10. Brændshøi, B.: Consistency checking UML interactions and state machines. Mas-
ter thesis. Universitetet i Oslo (2008)

c11. Broy, M., Cengarle, M.V., Grönniger, H., Rumpe, B.: Considerations and ratio-
nale for a UML system model. In: Lano, K. (ed.) UML 2 – Semantics and Appli-
cations, chap. 3, pp. 43–60. Wiley (2009)

c12. Broy, M., Cengarle, M.V., Grönniger, H., Rumpe, B.: Definition of the system
model. In: Lano, K., (ed.) UML 2 – Semantics and Applications, chap. 4, pp.
61–93. Wiley (2009)

c13. Cengarle, M.V., Knapp, A., Tarlecki, A., Wirsing, M.: A heterogeneous approach
to UML semantics. In: Degano, P., De Nicola, R., Meseguer, J. (eds.) Concurrency,
Graphs and Models. LNCS, vol. 5065, pp. 383–402. Springer, Heidelberg (2008).
https://doi.org/10.1007/978-3-540-68679-8 23

c14. Chiarad́ıa, J.M., Pons, C.: Improving the OCL semantics definition by apply-
ing dynamic meta modeling and design patterns. In: Chiorean, D., Demuth,
B., Gogolla, M., Warmer, J., (eds.) Proceedings of 6th OCL Workshop on OCL
for (Meta-)Models in Multiple Application Domains (OCL 2006) (2006). Electr.
Comm. EASST 5

c15. Chiorean, D., Paşca, M., Cârcu, A., Botiza, C., Moldovan, S.: Ensuring UML
models consistency using the OCL environment. In: Schmitt, P.H., (ed.) Pro-
ceedings of 3rd OCL Workshop on OCL 2.0 (OCL 2003). Elsevier (2004). Electr.
Notes Theo. Comp. Sci. 102, 99–110

https://doi.org/10.1007/978-3-540-30482-1_35
https://doi.org/10.1007/978-3-540-75209-7_30
https://doi.org/10.1007/978-3-540-75209-7_30
https://doi.org/10.1007/978-3-540-88387-6_18
https://doi.org/10.1007/978-3-540-88387-6_18
https://doi.org/10.1007/978-3-540-68679-8_23

52 A. Knapp and T. Mossakowski

c16. Damm, W., Josko, B., Pnueli, A., Votintseva, A.: Understanding UML: a formal
semantics of concurrency and communication in real-time UML. In: de Boer,
F.S., Bonsangue, M.M., Graf, S., de Roever, W.-P. (eds.) FMCO 2002. LNCS,
vol. 2852, pp. 71–98. Springer, Heidelberg (2003). https://doi.org/10.1007/978-
3-540-39656-7 3

c17. Derrick, J., Akehurst, D., Boiten, E.: A Framework for UML consistency. In:
Proceedings Workshop on Consistency Problems in UML-based Software Devel-
opment, pp. 30–45 (2002)

c18. Diethers, K., Huhn, M.: Vooduu: verification of object-oriented designs using
UPPAAL. In: Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp.
139–143. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24730-
2 10

c19. Dubauskaite, R., Vasilecas, O.: Method on specifying consistency rules among
different aspect models, expressed in UML. Elektr. Elektrotechn. 19(3), 77–81
(2013)

c20. Egyed, A.: Heterogenous view integration and its automation. Ph.D. thesis. Uni-
versity of Southern California (2000)

c21. Egyed, A.: Scalable consistency checking between diagrams – the viewintegra
approach. In: Proceedings of 16th IEEE International Conference on Automated
Software Engineering (ASE 2001), pp. 387–390. IEEE (2001)

c22. Egyed, A.: UML/Analyzer: a tool for the instant consistency checking of UML
models. In: Proceedings of 29th International Conference on Software Engineering
(ICSE 2007), pp. 793–796. IEEE (2007)

c23. El Miloudi, K., Amrani, Y.E., Ettouhami, A.: An automated translation of UML
class diagrams into a formal specification to detect UML inconsistencies. In:
Proceedings of 6th International Conference on Software Engineering Advances
(ICSEA 2011), pp. 432–438 (2011)

c24. El Miloudi, K., Ettouhami, A.: A multi-view approach for formalizing UML state
machine diagrams using Z notation. WSEAS Trans. Comp. 14, 72–78 (2015)

c25. Engels, G., Heckel, R., Küster, J.M.: The consistency workbench: a tool for con-
sistency management in UML-based development. In: Stevens, P., Whittle, J.,
Booch, G. (eds.) UML 2003. LNCS, vol. 2863, pp. 356–359. Springer, Heidelberg
(2003). https://doi.org/10.1007/978-3-540-45221-8 30

c26. Engels, G., Hausmann, J.H., Heckel, R., Sauer, S.: Dynamic meta modeling: a
graphical approach to the operational semantics of behavioral diagrams in UML.
In: Evans, A., Kent, S., Selic, B. (eds.) UML 2000. LNCS, vol. 1939, pp. 323–337.
Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-40011-7 23

c27. Engels, G., Hausmann, J.H., Heckel, R., Sauer, S.: Testing the consistency of
dynamic UML diagrams. In: Proceedings of 6th World Conference on Integrated
Design & Process Technology (IDPT 2002) (2002)

c28. Engels, G., Heckel, R., Küster, J.M.: Rule-based specification of behavioral con-
sistency based on the UML meta-model. In: Gogolla, M., Kobryn, C. (eds.) UML
2001. LNCS, vol. 2185, pp. 272–286. Springer, Heidelberg (2001). https://doi.
org/10.1007/3-540-45441-1 21

c29. Engels, G., Soltenborn, C., Wehrheim, H.: Analysis of UML activities using
dynamic meta modeling. In: Bonsangue, M.M., Johnsen, E.B. (eds.) FMOODS
2007. LNCS, vol. 4468, pp. 76–90. Springer, Heidelberg (2007). https://doi.org/
10.1007/978-3-540-72952-5 5

https://doi.org/10.1007/978-3-540-39656-7_3
https://doi.org/10.1007/978-3-540-39656-7_3
https://doi.org/10.1007/978-3-540-24730-2_10
https://doi.org/10.1007/978-3-540-24730-2_10
https://doi.org/10.1007/978-3-540-45221-8_30
https://doi.org/10.1007/3-540-40011-7_23
https://doi.org/10.1007/3-540-45441-1_21
https://doi.org/10.1007/3-540-45441-1_21
https://doi.org/10.1007/978-3-540-72952-5_5
https://doi.org/10.1007/978-3-540-72952-5_5

Multi-view Consistency in UML: A Survey 53

c30. Gerlinger Romero, A., Schneider, K., Gonçalves Vieira Ferreira, M.: Integrat-
ing UML composite structures and fUML. In: Geffert, V., Preneel, B., Rovan,
B., Štuller, J., Tjoa, A.M. (eds.) SOFSEM 2014. LNCS, vol. 8327, pp. 269–280.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-04298-5 24

c31. Gogolla, M., Büttner, F., Richters, M.: USE: a uml-based specification environ-
ment for validating UML and OCL. Sci. Comput. Program. 69(1–3), 27–34 (2007)

c32. Gogolla, M., Hamann, L., Hilken, F., Kuhlmann, M., France, R.B.: From appli-
cation models to filmstrip models: an approach to automatic validation of model
dynamics. In: Fill, H.-G., Karagiannis, D., Reimer, U., (eds.) Proceedings of Mod-
ellierung 2014. Lecture Notes in Informatics, vol. 225, pp. 273–288. GI (2014)

c33. Grönniger,
H.: Systemmodell-basierte Definition objektbasierter Modellierungssprachen mit
semantischen Variationspunkten. Ph.D. thesis. RWTH Aachen (2010)

c34. Große-Rhode, M.: Integrating semantics for object—oriented system models. In:
Orejas, F., Spirakis, P.G., van Leeuwen, J. (eds.) ICALP 2001. LNCS, vol. 2076,
pp. 40–60. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-48224-5 4

c35. Große-Rhode, M.: Semantic Integration of Heterogeneous Software Specifications.
Monographs in Theoretical Computer Science. Springer, Heidelberg (2004)

c36. Hammal, Y.: A modular state exploration and compatibility checking of UML
dynamic diagrams. In: Proceedings of 6th ACS/IEEE International Conference
Computer Systems and Applications (AICCSA 2008), pp. 793–800. IEEE (2008)

c37. Hausmann, J.H.: Dynamic meta modeling. a semantics description technique for
visual modeling languages. Ph.D. thesis. Universität Paderborn (2005)

c38. Hilken, F., Niemann, P., Gogolla, M., Wille, R.: Filmstripping and unrolling: a
comparison of verification approaches for UML and OCL behavioral models. In:
Seidl, M., Tillmann, N. (eds.) TAP 2014. LNCS, vol. 8570, pp. 99–116. Springer,
Cham (2014). https://doi.org/10.1007/978-3-319-09099-3 8

c39. Hilken, F., Niemann, P., Gogolla, M., Wille, R.: From UML/OCL to base models:
transformation concepts for generic validation and verification. In: Kolovos, D.,
Wimmer, M. (eds.) ICMT 2015. LNCS, vol. 9152, pp. 149–165. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-21155-8 12

c40. Hilken, F., Niemann, P., Wille, R., Gogolla, M.: Towards a base model for UML
and OCL verification. In: Boulanger, F., Famelis, M., Ratiu, D., (eds.) Proceed-
ings of 11th Workshop Model-Driven Engineering, Verification and Validation
(MoDEVVA 2014), vol. 1235, pp. 59–68. CEUR-WS Proceedings (2014)

c41. Khai, Z., Nadeem, A., Lee, G.: A prolog based approach to consistency checking
of UML class and sequence diagrams. In: Kim, T., Adeli, H., Kim, H., Kang, H.,
Kim, K.J., Kiumi, A., Kang, B.-H. (eds.) ASEA 2011. CCIS, vol. 257, pp. 85–96.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-27207-3 10

c42. Khan, A.H., Porres, I.: Consistency of UML class, object and statechart diagrams
using ontology reasoners. J. Vis. Lang. Comp. 26, 42–65 (2015)

c43. Kim, S.-K., Carrington, D.: A formal object-oriented approach to defining consis-
tency constraints for UML models. In: Proceedings of 15th Australian Software
Engineering Conference (ASWEC 2004), pp. 87–94. IEEE (2004)

c44. Knapp, A., Mossakowski, T.: UML interactions meet state machines - an institu-
tional approach. In: Bonchi, F., König, B., (eds.) Proceedings of 7th International
Conference on Algebra and Coalgebra in Computer Science (CALCO 2017). Leib-
niz International Proceedings in Informatics, pp. 15:1–15:15 (2017)

https://doi.org/10.1007/978-3-319-04298-5_24
https://doi.org/10.1007/3-540-48224-5_4
https://doi.org/10.1007/978-3-319-09099-3_8
https://doi.org/10.1007/978-3-319-21155-8_12
https://doi.org/10.1007/978-3-642-27207-3_10

54 A. Knapp and T. Mossakowski

c45. Knapp, A., Mossakowski, T., Roggenbach, M.: Towards an institutional frame-
work for heterogeneous formal development in UML. In: De Nicola, R., Hennicker,
R. (eds.) Software, Services, and Systems. LNCS, vol. 8950, pp. 215–230. Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-15545-6 15

c46. Knapp, A., Wuttke, J.: Model checking of UML 2.0 interactions. In: Kühne, T.
(ed.) MODELS 2006. LNCS, vol. 4364, pp. 42–51. Springer, Heidelberg (2007).
https://doi.org/10.1007/978-3-540-69489-2 6

c47. Krishnan, P.: Consistency checks for UML. In: Proceedings of 7th Asia Pacific
Software Engineering Conference (APSEC 2000), pp. 162–171. IEEE (2000)

c48. Kuske, S., Gogolla, M., Kreowski, H.-J., Ziemann, P.: Towards an integrated
graph-based semantics for UML. Softw. Syst. Model. 8(3), 403–422 (2009)

c49. Küster, J.M.: Consistency management of object-oriented behavioral models.
Ph.D. thesis. Universität Paderborn (2004)

c50. Küster, J.M., Engels, G.: Consistency management within model-based object-
oriented development of components. In: de Boer, F.S., Bonsangue, M.M., Graf,
S., de Roever, W.-P. (eds.) FMCO 2003. LNCS, vol. 3188, pp. 157–176. Springer,
Heidelberg (2004). https://doi.org/10.1007/978-3-540-30101-1 7

c51. Kyas, M., Fecher, H., de Boer, F.S., Jacob, J., Hooman, J., van der Zwaag, M.,
Arons, T., Kugler, H.: Formalizing UML models and OCL constraints in PVS.
In: Lüttgen, G., Mendler, M., (eds.) Proceedings of Workshop on Semantic Foun-
dations of Engineering Design Languages (SFEDL 2004). Electronic Notes in
Theoretical Computer Science, vol. 115, pp. 39–47. Elsevier (2005)

c52. Laleau, R., Polack, F.: Using formal metamodels to check consistency of functional
views in information systems specification. J. Inf. Softw. Techn. 50(7–8), 797–814
(2008)

c53. Lam, V.S.W., Padget, J.: Consistency checking of sequence diagrams and stat-
echart diagrams using the π-calculus. In: Romijn, J., Smith, G., van de Pol, J.
(eds.) IFM 2005. LNCS, vol. 3771, pp. 347–365. Springer, Heidelberg (2005).
https://doi.org/10.1007/11589976 20

c54. Li, X.: A characterization of UML diagrams and their consistency. In: Proceedings
of 11th IEEE International Conference on Engineering of Complex Computer
Systems (ICECCS 2006), pp. 67–76. IEEE (2006)

c55. Litvak, B., Tyszberowicz, S.S., Yehudai, A.: Behavioral consistency validation
of UML diagrams. In: Proceedings of 1st International Conference on Software
Engineering and Formal Methods (SEFM 2003), pp. 118–125. IEEE (2003)

c56. Liu, W., Easterbrook, S., Mylopoulos, J.: Rule-based detection of inconsistency in
UML models. In: Proceedings Workshop on Consistency Problems in UML-Based
Software Development, pp. 106–123 (2002)

c57. Liu, Z., He, J., Li, X.: Towards a rigorous approach to UML-based development.
In: Mota, A., Moura, A., (eds.) Proceedings of 7th Brazilian Symposium on For-
mal Methods (SBMF 2004). Electronic Notes in Theoretical Computer Science,
vol. 130, pp. 57–77. Elsevier (2005)

c58. Long, Q., Liu, Z., Li, X., He J.: Consistent code generation from UML models.
In: Proceedings of 16th Australian Software Engineering Conference (ASWEC
2005), pp. 23–30. IEEE (2005)

c59. Mart́ınez, F.J.L., Álvarez, A.T.: A precise approach for the analysis of the UML
models consistency. In: Akoka, J., Liddle, S.W., Song, I.-Y., Bertolotto, M.,
Comyn-Wattiau, I., van den Heuvel, W.-J., Kolp, M., Trujillo, J., Kop, C., Mayr,
H.C. (eds.) ER 2005. LNCS, vol. 3770, pp. 74–84. Springer, Heidelberg (2005).
https://doi.org/10.1007/11568346 9

https://doi.org/10.1007/978-3-319-15545-6_15
https://doi.org/10.1007/978-3-540-69489-2_6
https://doi.org/10.1007/978-3-540-30101-1_7
https://doi.org/10.1007/11589976_20
https://doi.org/10.1007/11568346_9

Multi-view Consistency in UML: A Survey 55

c60. McUmber, W.E., Cheng, B.H.: A general framework for formalizing UML with
formal languages. In: Proceedings of 23rd International Conference on Software
Engineering (ICSE 2001), pp. 433–442. IEEE (2001)

c61. Mellor, S.J., Balcer, M.J.: Executable UML: A Foundation for Model-driven
Architecture. Addison-Wesley, Boston (2002)

c62. Nimiya, A., Yokogawa, T., Miyazaki, H., Amasaki, S., Sato, Y., Hayase, M.: Model
checking consistency of UML diagrams using Alloy. WASET Intl. J. Comp. Electr.
Autom. Contr. Inf. Eng. 4(11), 1696–1699 (2010)

c63. Ober, I., Dragomir, I.: Unambiguous UML composite structures: the OMEGA2
experience. In: Černá, I., Gyimóthy, T., Hromkovič, J., Jefferey, K., Králović,
R., Vukolić, M., Wolf, S. (eds.) SOFSEM 2011. LNCS, vol. 6543, pp. 418–430.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-18381-2 35

c64. Object Management Group. Precise Semantics of UML Composite Structures
(PSCS). Standard formal/2015-10-02. Version 1.0. OMG. http://www.omg.org/
spec/PSCS/1.0

c65. Object Management Group. Precise Semantics of UML State Machines (PSSM).
Report ptc/2017-04-04. Version 1.0 Beta. OMG. http://www.omg.org/spec/
PSSM/1.0/Beta1

c66. Object Management Group. Semantics of a Foundational Subset for Executable
UML Models (fUML). Standard formal/2016-01-05. Version 1.2.1. OMG. http://
www.omg.org/spec/FUML/1.2.1

c67. Ossami, D.D.O., Jacquot, J.-P., Souquières, J.: Consistency in UML and B multi-
view specifications. In: Romijn, J., Smith, G., van de Pol, J. (eds.) IFM 2005.
LNCS, vol. 3771, pp. 386–405. Springer, Heidelberg (2005). https://doi.org/10.
1007/11589976 22

c68. O’Keefe, G.: Dynamic logic semantics for UML consistency. In: Rensink, A.,
Warmer, J. (eds.) ECMDA-FA 2006. LNCS, vol. 4066, pp. 113–127. Springer,
Heidelberg (2006). https://doi.org/10.1007/11787044 10

c69. Puczynski, P.J.: Checking consistency between interaction diagrams and state
machines in UML models. Master thesis. Danmarks Tekniske Universitet (2012)

c70. Rasch, H., Wehrheim, H.: Checking consistency in UML diagrams: classes and
state machines. In: Najm, E., Nestmann, U., Stevens, P. (eds.) FMOODS 2003.
LNCS, vol. 2884, pp. 229–243. Springer, Heidelberg (2003). https://doi.org/10.
1007/978-3-540-39958-2 16

c71. Rasch, H., Wehrheim, H.: Checking the validity of scenarios in UML models. In:
Steffen, M., Zavattaro, G. (eds.) FMOODS 2005. LNCS, vol. 3535, pp. 67–82.
Springer, Heidelberg (2005). https://doi.org/10.1007/11494881 5

c72. Reggio, G., Cerioli, M., Astesiano, E.: Towards a rigorous semantics of UML
supporting its multiview approach. In: Hussmann, H. (ed.) FASE 2001. LNCS,
vol. 2029, pp. 171–186. Springer, Heidelberg (2001). https://doi.org/10.1007/3-
540-45314-8 13

c73. Sapna, P.G., Mohanty, H.: Ensuring consistency in relational repository of UML
models. In: Proceedings of 10th International Conference on Information Tech-
nology (ICIT 2007), pp. 217–222. IEEE (2007)

c74. Shinkawa, Y.: Inter-model consistency in UML based on CPN formalism. In:
Proceedings of 13th Asia Pacific Software Engineering Conference (APSEC 2006),
pp. 411–418. IEEE (2006)

c75. Soltenborn, C.: Quality assurance with dynamic meta modeling. Ph.D. thesis.
Universität Paderborn (2013)

https://doi.org/10.1007/978-3-642-18381-2_35
http://www.omg.org/spec/PSCS/1.0
http://www.omg.org/spec/PSCS/1.0
http://www.omg.org/spec/PSSM/1.0/Beta1
http://www.omg.org/spec/PSSM/1.0/Beta1
http://www.omg.org/spec/FUML/1.2.1
http://www.omg.org/spec/FUML/1.2.1
https://doi.org/10.1007/11589976_22
https://doi.org/10.1007/11589976_22
https://doi.org/10.1007/11787044_10
https://doi.org/10.1007/978-3-540-39958-2_16
https://doi.org/10.1007/978-3-540-39958-2_16
https://doi.org/10.1007/11494881_5
https://doi.org/10.1007/3-540-45314-8_13
https://doi.org/10.1007/3-540-45314-8_13

56 A. Knapp and T. Mossakowski

c76. Spanoudakis, G., Kim, H.: Diagnosis of the significance of inconsistencies in
object-oriented designs: a framework and its experimental evaluation. J. Syst.
Softw. 64(1), 3–22 (2002)

c77. Tsiolakis, A.: Consistency analysis of UML class and sequence diagrams based
on attributed typed graphs and their transformation. In: Ehrig, H., Taentzer,
G., (eds.) Proceedings Workshop on Graph Transformation Systems (GRATRA
2000), pp. 77–86 (2000)

c78. van der Straeten, R.: Inconsistency detection between UML models using RACER
and nRQL. In: Bechhofer, S., Haarslev, V., Lutz, C., Moeller, R., (eds.) Proceed-
ings of 3rd International Workshop on Applications of Description Logics (KI
2004), vol. 115. CEUR-WS Proceedings (2004)

c79. van der Straeten, R., Simmonds, J., Mens, T.: Detecting inconsistencies between
UML models using description logic. In: Calvanese, D., Giacomo, G.D., Fran-
coni, E., (eds.) Proceedings of International Workshop on Description Logics (DL
2003), vol. 81. CEUR-WS Proceedings (2003)

c80. Wagner, R., Giese, H., Nickel, U.A.: A plug-in for flexible and incremental con-
sistency management. In: Kuzniarz, L., Reggio, G., Sourrouille, J.-L., Huzar,
Z., Staron, M., (eds.) Proceedings of 3rd Workshop on Consistency Problems
in UML-based Software Development. Blekinge Inst. Techn. Research Report
2003:06 (2003)

c81. Wang, H., Feng, T., Zhang, J., Zhang, K.: Consistency check between behaviour
models. In: Proceedings 5th IEEE International Symposium on Communications
and Information Technology (ISCIT 2005), pp. 486–489. IEEE (2005)

c82. Wirsing, M., Knapp, A.: View consistency in software development. In: Wirsing,
M., Knapp, A., Balsamo, S. (eds.) RISSEF 2002. LNCS, vol. 2941, pp. 341–357.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24626-8 24

c83. Yang, J., Long, Q., Liu, Z., Li, X.: A predicative semantic model for integrating
UML models. In: Liu, Z., Araki, K. (eds.) ICTAC 2004. LNCS, vol. 3407, pp.
170–186. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-31862-
0 14

c84. Yao, S., Shatz, S.M.: Consistency checking of UML dynamic models based on petri
net techniques. In: Proceedings of 15th International Conference on Computing
(CIC 2006). IEEE (2006)

c85. Yeung, W.L.: Checking consistency between UML class and state models based
on CSP and B. J. Univ. Comp. Sci. 10(11), 1540–1559 (2004)

c86. Zhao, X., Long, Q., Qiu, Z.: Model checking dynamic UML consistency. In: Liu,
Z., He, J. (eds.) ICFEM 2006. LNCS, vol. 4260, pp. 440–459. Springer, Heidelberg
(2006). https://doi.org/10.1007/11901433 24

References

1. Ahmad, M.A., Nadeem, A.: Consistency checking of UML models using description
logics: a critical review. In: Proceedings of the 6th International Conference on
Emerging Technologies (ICET 2010), pp. 310–315. IEEE (2010)

2. Allaki, D., Dahchour, M., En-Nouaary, A.: A new taxonomy of inconsistencies in
UML models with their detection methods for better MDE. Int. J. Comput. Sci.
Appl. 12(1), 48–65 (2015)

3. Amaya, P., Gonzalez, C., Murillo, J.M.: Towards a subject-oriented model-driven
framework. In: Aksit, M., Roubtsova, E. (eds.) Proceedings of the 1st Workshop
on Aspect-Based and Model-Based Separation of Concerns in Software Systems
(ABMB 2005). Electronic Notes in Theoretical Computer Science, pp. 31–44 (2006)

https://doi.org/10.1007/978-3-540-24626-8_24
https://doi.org/10.1007/978-3-540-31862-0_14
https://doi.org/10.1007/978-3-540-31862-0_14
https://doi.org/10.1007/11901433_24

Multi-view Consistency in UML: A Survey 57

4. Bashir, R.S., Lee, S.P., Khan, S.U.R., Farid, S., Chang, V.: UML models consis-
tency management: guidelines for software quality manager. Int. J. Inf. Manag.
Part A 36(6), 883–899 (2016)

5. Boronat, A., Knapp, A., Meseguer, J., Wirsing, M.: What Is a Multi-modeling
Language? In: Corradini, A., Montanari, U. (eds.) WADT 2008. LNCS, vol. 5486,
pp. 71–87. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03429-
9 6

6. Braatz, B., Klein, M., Schröter, G.: Semantical Integration of Object-Oriented
Viewpoint Specification Techniques. In: Ehrig, H., Damm, W., Desel, J.,
Große-Rhode, M., Reif, W., Schnieder, E., Westkämper, E. (eds.) Integration of
Software Specification Techniques for Applications in Engineering. LNCS, vol.
3147, pp. 602–626. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-
540-27863-4 32

7. Breu, R., Grosu, R., Huber, E., Rumpe, B., Schwerin, W.: Systems, views and
models of UML. In: Schader, M., Korthaus, A. (eds.) The Unified Modeling Lan-
guage. Physica-Verlag HD, Heidelberg (1998). https://doi.org/10.1007/978-3-642-
48673-9 7

8. Cabot, J., Clarisó, R., Riera, D.: On the verification of UML/OCL class diagrams
using constraint programming. J. Syst. Softw. 93, 1–23 (2014)

9. Combemale, B., Deantoni, J., Baudry, B., France, R.B., Jézéquel, J.-M., Gray, J.:
Globalizing modeling languages. IEEE Comput. 47(6), 68–71 (2014)

10. Cook, S., Kleppe, A., Mitchell, R., Rumpe, B., Warmer, J., Wills, A.C.: Defining
UML family members using prefaces. In: Mingins, C., Meyer, B. (eds.) Proceedings
of the 32nd International Conference on Technology of Object-Oriented Languages
(TOOLS 1999), pp. 102–114. IEEE (1999)

11. Dijkman, R.M.: Consistency in multi-viewpoint architectural design. Ph.D. thesis.
Universiteit Twente (2006)

12. Dingel, J., Diskin, Z., Zito, A.: Understanding and improving UML package merge.
Softw. Syst. Model. 7(4), 443–467 (2008)

13. Diskin, Z., Xiong, Y., Czarnecki, K.: Specifying Overlaps of Heterogeneous Models
for Global Consistency Checking. In: Dingel, J., Solberg, A. (eds.) MODELS 2010.
LNCS, vol. 6627, pp. 165–179. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-21210-9 16

14. Dobing, B., Parsons, J.: Dimensions of UML diagram use: practitioner survey
and research agenda. In: Siau, K., Erickson, J. (eds.) Principle Advancements
in Database Management Technologies: New Applications and Frameworks, pp.
271–290. IGI Publishing (2010)

15. Dragomir, I., Graf, S., Karsai, G., Noyrit, F., Ober, I., Torre, D., Labiche, Y.,
Genero, M., Elaasar, M. (eds.): Joint Proceedings of the 8th International Work-
shop on Model-Based Architecting of Cyber-physical and Embedded Systems
(ACES-MB 2015) and 1st International Workshop on UML Consistency Rules
(WUCOR 2015). CEUR WS, vol. 1508 (2015)

16. Ehrig, H., Damm, W., Desel, J., Große-Rhode, M., Reif, W., Schnieder, E.,
Westkämper, E. (eds.): Integration of Software Specification Techniques for Appli-
cations in Engineering. LNCS, vol. 3147. Springer, Heidelberg (2004). https://doi.
org/10.1007/b100778

17. Elaasar, M., Briand, L.C.: An overview of UML consistency management. Technical
report SCE-04-18. Carleton University (2004)

18. van Emde Boas, P.: Formalizing UML: mission impossible? In: Andrade, L.,
Moreira, A., Deshpande, A., Kent, S. (eds.) Proceedings of the OOPSLA 1998
Workshop on Formalizing UML: why? How? (1998)

https://doi.org/10.1007/978-3-642-03429-9_6
https://doi.org/10.1007/978-3-642-03429-9_6
https://doi.org/10.1007/978-3-540-27863-4_32
https://doi.org/10.1007/978-3-540-27863-4_32
https://doi.org/10.1007/978-3-642-48673-9_7
https://doi.org/10.1007/978-3-642-48673-9_7
https://doi.org/10.1007/978-3-642-21210-9_16
https://doi.org/10.1007/978-3-642-21210-9_16
https://doi.org/10.1007/b100778
https://doi.org/10.1007/b100778

58 A. Knapp and T. Mossakowski

19. Engels, G., Heckel, R., Taentzer, G., Ehrig, H.: A combined reference model - and
view-based approach to system specification. Intl. J. Softw. Eng. Knowl. Eng. 7(4),
457–477 (1997)

20. Evans, A., Lano, K., France, R., Rumpe, B.: Meta-modeling semantics of UML. In:
Kilov, H., Rumpe, B., Simmonds, I. (eds.) Behavioral Specifications of Businesses
and Systems, pp. 45–60. Kluver Academic Publisher, Dordrecht (1999). Chapter 4

21. Evans, A., France, R., Lano, K., Rumpe, B.: The UML as a Formal Modeling
Notation. In: Bézivin, J., Muller, P.-A. (eds.) UML 1998. LNCS, vol. 1618, pp.
336–348. Springer, Heidelberg (1999). https://doi.org/10.1007/978-3-540-48480-
6 26

22. von Hanxleden, R., Lee, E.A., Motika, C., Fuhrmann, H.: Multi-view Modeling
and Pragmatics in 2020. In: Calinescu, R., Garlan, D. (eds.) Monterey Workshop
2012. LNCS, vol. 7539, pp. 209–223. Springer, Heidelberg (2012). https://doi.org/
10.1007/978-3-642-34059-8 11

23. Hilken, F., Niemann, P., Gogolla, M., Wille, R.: Towards a catalog of structural and
behavioral verification tasks for UML/OCL models. In: Oberweis, A., Reussner,
R.H. (eds.) Proceedings of Modellierung 2016. Lecture Notes in Informatics, pp.
117–124. GI, Bonn (2016)

24. Hoffmann, V., Lichter, H., Nyßen, A., Walter, A.: Towards the integration of UML
and textual use case modeling. J. Object Technol. 8(3), 85–100 (2009)

25. Huzar, Z., Kuzniarz, L., Reggio, G., Sourrouille, J.L.: Consistency problems in
UML-based software development. In: Nunes, N.J., Selic, B., da Silva, A.R.,
Alvarez, A.T. (eds.) UML 2004. LNCS, vol. 3297, pp. 1–12. Springer, Heidelberg
(2005). https://doi.org/10.1007/978-3-540-31797-5 1

26. IEEE Standards Association: Recommended practice for architectural descrip-
tion for software-intensive systems. Standard 1471–2000. IEEE Computer Society
(2000)

27. International Organization for Standardization: Systems and software engineering
– architecture description. Standard 42010:2011. ISO/IEC/IEEE (2011)

28. Kholkar, D., Krishna, G.M., Shrotri, U., Venkatesh, R.: Visual specification and
analysis of use cases. In: Naps, T.L., Pauw, W.D. (eds.) Proceedings of the ACM
Symposium on Software Visualization (SOFTVIS 2005), pp. 77–85. ACM (2005)

29. Kim, S.-K., David, C.: Formalizing the UML Class Diagram Using Object-Z. In:
France, R., Rumpe, B. (eds.) UML 1999. LNCS, vol. 1723, pp. 83–98. Springer,
Heidelberg (1999). https://doi.org/10.1007/3-540-46852-8 7

30. König, H., Diskin, Z.: Advanced Local Checking of Global Consistency in Hetero-
geneous Multimodeling. In: W ↪asowski, A., Lönn, H. (eds.) ECMFA 2016. LNCS,
vol. 9764, pp. 19–35. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
42061-5 2

31. König, H., Diskin, Z.: Efficient Consistency Checking of Interrelated Models. In:
Anjorin, A., Espinoza, H. (eds.) ECMFA 2017. LNCS, vol. 10376, pp. 161–178.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-61482-3 10

32. Langer, P., Mayerhofer, T., Wimmer, M., Kappel, G.: On the usage of UML: initial
results of analyzing open UML models. In: Fill, H.-G., Karagiannis, D., Reimer,
U. (eds.) Proceedings of Modellierung 2014. Lecture Notes in Informatics, vol. 225,
pp. 289–304. GI, Bonn (2014)

33. Latella, D., Majzik, I., Massink, M.: Automatic verification of a behavioural sub-
set of UML statechart diagrams using the SPIN model-checker. Form. Aspects
Comput. 11(6), 637–664 (1999)

34. Lucas, F.J., Molina, F., Toval, A.: A systematic review of UML model consistency
management. J. Inf. Softw. Technol. 51(12), 1631–1645 (2009)

https://doi.org/10.1007/978-3-540-48480-6_26
https://doi.org/10.1007/978-3-540-48480-6_26
https://doi.org/10.1007/978-3-642-34059-8_11
https://doi.org/10.1007/978-3-642-34059-8_11
https://doi.org/10.1007/978-3-540-31797-5_1
https://doi.org/10.1007/3-540-46852-8_7
https://doi.org/10.1007/978-3-319-42061-5_2
https://doi.org/10.1007/978-3-319-42061-5_2
https://doi.org/10.1007/978-3-319-61482-3_10

Multi-view Consistency in UML: A Survey 59

35. Mens, T., van der Straeten, R., Simmonds, J.: A framework for managing consis-
tency of evolving UML models. In: Yang, H. (ed.) Software Evolution with UML
and XML, pp. 1–30. Idea Group (2005). Chapter 1

36. Mohammadi, R.G., Barforoush, A.A.: Enforcing component dependency in UML
deployment diagram for cloud applications. In: Proceedings of the 7th International
Symposium on Telecommunications (IST 2014), pp. 412–417. IEEE (2014)

37. Mossakowski, T.: Heterogeneous specification and the heterogeneous tool set.
Habilitation thesis. Universität Bremen (2005)

38. Mossakowski, T., Tarlecki, A.: Heterogeneous Logical Environments for Distributed
Specifications. In: Corradini, A., Montanari, U. (eds.) WADT 2008. LNCS, vol.
5486, pp. 266–289. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-
642-03429-9 18

39. Munker, F., Albers, A., Wagner, D., Behrendt, M.: Multi-view modeling in SysML:
thematic structuring for multiple thematic views. In: Madni, A.M., Boehm, B.,
Sievers, M., Wheaton, M. (eds.) Proceedings of the Conference on Systems Engi-
neering Research (CSER 2014). Procedia Computer Science, vol. 28, pp. 531–538.
Elsevier (2014)

40. Object Management Group. Distributed Ontology, Modeling, and Specification
Language (DOL). In Process ptc/2016-02-37. Version 1.0 - Beta1. OMG (2016).
http://www.omg.org/spec/DOL/1.0/Beta1

41. Object Management Group. Object Constraint Language: Standard formal/2014-
02-03. Version 2.4. OMG (2014). http://www.omg.org/spec/OCL/2.4

42. Mouheb, D., Debbabi, M., Pourzandi, M., Wang, L., Nouh, M., Ziarati, R.,
Alhadidi, D., Talhi, C., Lima, V.: Unified Modeling Language. Aspect-Oriented
Security Hardening of UML Design Models. LNCS, pp. 11–22. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-16106-8 2

43. Paige, R.F., Brooke, P.J., Ostroff, J.S.: Metamodel-based model conformance and
multiview consistency. ACM Trans. Softw. Eng. Methodol. 16(3), 11 (2007)

44. Pap, Z., Majzik, I., Pataricza, A., Szegi, A.: Completeness and consistency analysis
of UML statechart specifications. In: Proceedings of the IEEE Workshop on Design
and Diagnostics of Electronic Circuits and Systems (DDECS 2001), pp. 83–90.
IEEE (2001)

45. Pap, Z., Majzik, I., Pataricza, A., Szegi, A.: Methods of checking general safety
criteria in UML statechart specifications. Reliab. Eng. Syst. Saf. 87(1), 89–107
(2005)

46. Sabetzadeh, M., Nejati, S., Liaskos, S., Easterbrook, S.M., Chechik, M.: Consis-
tency checking of conceptual models via model merging. In: Sutcliffe, A., Jalote,
P. (eds.) Proceedings of the 15th IEEE International Conference on Requirements
Engineering, pp. 221–230. IEEE (2007)

47. Schürr, A., Winter, A.J.: Formal definition and refinement of UML’s mod-
ule/package concept. In: Bosch, J., Mitchell, S. (eds.) ECOOP 1997. LNCS, vol.
1357, pp. 211–215. Springer, Heidelberg (1998). https://doi.org/10.1007/3-540-
69687-3 43

https://doi.org/10.1007/978-3-642-03429-9_18
https://doi.org/10.1007/978-3-642-03429-9_18
http://www.omg.org/spec/DOL/1.0/Beta1
http://www.omg.org/spec/OCL/2.4
https://doi.org/10.1007/978-3-319-16106-8_2
https://doi.org/10.1007/3-540-69687-3_43
https://doi.org/10.1007/3-540-69687-3_43

60 A. Knapp and T. Mossakowski

48. Shah, A.A., Kerzhner, A.A., Schaefer, D., Paredis, C.J.J.: Multi-view Modeling to
Support Embedded Systems Engineering in SysML. In: Engels, G., Lewerentz, C.,
Schäfer, W., Schürr, A., Westfechtel, B. (eds.) Graph Transformations and Model-
Driven Engineering. LNCS, vol. 5765, pp. 580–601. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-17322-6 25

49. Torre, D., Labiche, Y., Genero, M.: UML consistency rules: a systematic mapping
study. In: Proceedings of the 18th International Conference on Evaluation and
Assessment in Software Engineering (EASE 2014). ACM (2014)

50. Torre, D., Labiche, Y., Genero, M., Elaasar, M.: A systematic identification of con-
sistency rules for UML diagrams. Technical report SCE-15-01. Carleton University
(2016)

51. Usman, M., Nadeem, A., Kim, T.-H., Cho, E.-S.: A survey of consistency checking
techniques for UML models. In: Proceedings of the Advanced Software Engineering
and Its Applications (ASEA 2008), pp. 57–62. IEEE (2008)

https://doi.org/10.1007/978-3-642-17322-6_25

A Simple Notion of Parallel Graph
Transformation and Its Perspectives

Hans-Jörg Kreowski, Sabine Kuske, and Aaron Lye(B)

Department of Computer Science, University of Bremen,
P.O. Box 33 04 40, 28334 Bremen, Germany

{kreo,kuske,lye}@informatik.uni-bremen.de

Abstract. In this paper, we reconsider an old and simple notion of par-
allel graph transformation and point out various perspectives concerning
the parallel generation of graph languages, the parallelization of graph
algorithms, the parallel transformation of infinite graphs, and parallel
models of computation.

1 Introduction

In 1976, Hartmut Ehrig and the first author introduced an approach to parallel
graph transformation in [1]. Parallel computation is obtained by the application
of parallel rules which are composed of component rules by means of disjoint
union. This is a particular simple and intuitive operation on graphs (and the
graphs within graph transformation rules) because it places graphs – in our case
directed edge-labeled graphs – next to each other without overlap and extra con-
nections. The application of parallel rules has some significant properties. The
component rules can be applied in arbitrary order yielding the same result as a
given application of a parallel rule (sequentialization theorem). Conversely, if the
component rules can be applied and their applications are independent of each
other in a certain sense, then their parallel rule can also be applied (paralleliza-
tion theorem). Parallel graph transformation has been one of the major research
topics within the area of graph transformation in the last four decades. In Sect. 3,
we revisit the starting point by recalling the basic notions and results introduced
in 1976. In the rest of the paper, we point out how parallel graph transforma-
tion can be used in the context of some significant issues of parallelism: parallel
modes of language generation, parallelization of algorithm, infinite graph theory,
and transformation of other parallel models into graph transformation models.
In all cases, the sequentialization and parallelization theorems play an important
role. All explicit examples are new. The parallelization of algorithm and the use
of graph transformation in the theory of infinite graphs are novel attempts as
far as we know. In more detail, the aspects considered in the Sects. 4 to 7 are
the following.

In proper context, parallel generation may provide more generative power
than sequential generation. Consider, for example, Lindenmeyer systems with

c© Springer International Publishing AG, part of Springer Nature 2018
R. Heckel and G. Taentzer (Eds.): Ehrig Festschrift, LNCS 10800, pp. 61–82, 2018.
https://doi.org/10.1007/978-3-319-75396-6_4

62 H.-J. Kreowski et al.

context-free rules applied with maximum parallelism. If one requires in addi-
tion that in each step one set of rules out of several possibilities is used, then
these TOL-systems can generate languages that are not context-free. In Sect. 4,
we consider hyperedge replacement grammars as a counterpart to context-free
grammars and show that they behave in the same way if they are used in the
TOL-mode of transformation.

Frequently and in many contexts, parallelism is expected to allow more effi-
cient computations than sequential ones. In Sect. 5, we demonstrate that this
idea works also in the framework of graph transformation by analyzing and
parallelizing a shortest-path algorithm.

In contrast to the usual approaches, our notion of parallel rules is not
restricted to a finite number of component rules. In Sect. 6, we discuss the effect
of the application of infinite parallel rules and exemplify that infinite graph
transformation may contribute to infinite graph theory.

Parallel graph transformation provides a suitable framework for the mod-
eling and analysis of parallel and concurrent processes. In particular, other
approaches to parallel processing can be transformed into and interpreted as
graph-transformational parallelism. This is demonstrated for the well-known cel-
lular automata in Sect. 7.

Related work is discussed in the respective sections.

2 Preliminaries

In this section, we recall some basic notions and notations of graphs and graph
transformation. In particular, we define the disjoint union of sets and graphs
and consider its elementary properties as prerequisites for the introduction of
parallel rules.

2.1 Disjoint Union of Sets

Let F = (Xi)i∈I be a family of sets for some index set I. Then a set X together
with injective mappings ini : Xi → X for all i ∈ I is a disjoint union of F if
ini(Xi) ∩ inj(Xj) = ∅ for all i �= j and

⋃

i∈I

ini(Xi) = X. X may be denoted

by
∑

i∈I

Xi. For I = {1, 2}, one may denote X also by X1 + X2. A disjoint union

can be constructed as
⋃

i∈I

({i} × Xi) with ini : Xi → ⋃

i∈I

({i} × Xi) defined by

ini(x) = (i, x) for all i ∈ I and x ∈ Xi.
A disjoint union X with (ini)i∈I of F = (Xi)i∈I has the following (universal)

property: If Y is a set and (fi : Xi → Y)i∈I is a family of mappings, then there
is a unique mapping f : X → Y with f ◦ ini = fi for all i ∈ I. It is defined
by f(x) = fi(x) for the unique x ∈ Xi with ini(x) = x. It may be denoted by
〈fi〉i∈I . The property means that a disjoint union of F is a categorial coproduct
in the category of sets. Using the property, one can easily show that Y with
(fi)i∈I is a disjoint union of F if and only if 〈fi〉i∈I is bijective. Given a set Y

A Simple Notion of Parallel Graph Transformation and Its Perspectives 63

and a bijection f : X → Y , then Y with the injections (f ◦ ini)i∈I is a disjoint
union of F provided that X with (ini)i∈I is one. In other words, the construction
of disjoint unions of sets is unique up to bijection.

We use two further nice properties of disjoint unions. The first property is
a (de-)composition property:

∑

i∈I

Xi =
∑

i∈I′
Xi +

∑

i∈I\I′
Xi for I ′ ⊆ I. This means

in particular that the +-operator is commutative and associative. The second
property is that inclusions are preserved. Let F = (Xi)i∈I and F ′ = (Yi)i∈I be
two families of sets and Y with (inY

i)i∈I a disjoint union of F ′. Let (gi : Xi →
Yi)i∈I be a family of mappings. Then 〈inY

i ◦ gi〉i∈I is also denoted by
∑

i∈I

gi. It

is injective if all gi are injective. It can be chosen as inclusion of
∑

i∈I

Xi into

Y =
∑

i∈I

Yi if the gi are inclusions, i.e. Xi ⊆ Yi for all i ∈ I.

2.2 Basic Notions of Graphs

Let Σ be a set of labels. A (directed edge-labeled) graph over Σ is a system
G = (V,E, s, t, l) where V is a set of nodes, E is a set of edges, s, t : E → V
are mappings assigning a source s(e) and a target t(e) to every edge in E, and
l : E → Σ is a mapping assigning a label to every edge in E. An edge e with
s(e) = t(e) is also called a loop. The components V , E, s, t, and l of G are also
denoted by VG, EG, sG, tG, and lG, respectively. The set of all graphs over Σ is
denoted by GΣ .

This notion of graphs is flexible enough to cover other types of graphs. Simple
graphs form a subclass consisting of those graphs two edges of which are equal
if their sources and their targets are equal respectively. A label of a loop can be
interpreted as a label of the node to which the loop is attached so that node-
labeled graphs are covered. We assume a particular label ∗ which is omitted in
drawings of graphs. In this way, graphs where all edges are labeled with ∗ may
be seen as unlabeled graphs. Moreover, undirected graphs can be represented
by directed graphs if one replaces each undirected edge by two directed edges
attached to the same two nodes, but in opposite directions. Finally, hypergraphs
can be handled by the introduced type of graphs as done explicitly in Sect. 4.

A graph G ∈ GΣ is a subgraph of a graph H ∈ GΣ , denoted by G ⊆ H, if
VG ⊆ VH , EG ⊆ EH , sG(e) = sH(e), tG(e) = tH(e), and lG(e) = lH(e) for all
e ∈ EG. In drawings of graphs and subgraphs, shapes, colors, and names are
used to indicate the identical nodes and edges.

Given a graph, a subgraph is obtained by removing some nodes and edges
subject to the condition that the removal of a node is accompanied by the removal
of all its incident edges. More formally, let G = (V,E, s, t, l) be a graph and
X = (VX , EX) ⊆ (V,E) be a pair of sets of nodes and edges. Then G \ X =
(V \ VX , E \ EX , s′, t′, l′) with s′(e) = s(e), t′(e) = t(e), and l′(e) = l(e) for
all e ∈ E \ EX is a subgraph of G if and only if there is no e ∈ E \ EX with
s(e) ∈ VX or t(e) ∈ VX . This condition is called dangling condition of X in G.

For graphs G,H ∈ GΣ a graph morphism g : G → H is a pair of map-
pings gV : VG → VH and gE : EG → EH that are structure-preserving, i.e.

64 H.-J. Kreowski et al.

gV (sG(e)) = sH(gE(e)), gV (tG(e)) = tH(gE(e)), and lH(gE(e)) = lG(e) for all
e ∈ EG. We may write g(v) and g(e) for nodes v ∈ VG and edges e ∈ EG since
the indices V and E can be reconstructed easily from the type of the argument.
If gV and gE of a graph morphism g : G → H are bijective, then g is called a
graph isomorphism. In this case G and H are isomorphic, denoted by G � H.

For a graph morphism g : G → H, the image of G in H is called a match
of G in H, i.e. the match of G with respect to the morphism g is the subgraph
g(G) ⊆ H which is induced by (g(V), g(E)).

Given F ⊆ G, then the two inclusions of the sets of nodes and edges define
a graph morphism. It is also easy to see that the (componentwise) sequential
composition of two graph morphisms f : F → G and g : G → H yields a graph
morphism g ◦ f : F → H. Consequently, if f is the inclusion w.r.t. F ⊆ G, then
g(F) is the match of F in H w.r.t. g restricted to F .

Instead of removing nodes and edges, one may add some nodes and edges to
extend a graph such that the given graph is a subgraph of the extension. The
addition of nodes causes no problem at all, whereas the addition of edges requires
the specification of their labels, sources, and targets, where the latter two may be
given or new nodes. Let G1 = (V1, E1, s1, t1, l1) be a graph and (V2, E2, s2, t2, l2)
be a structure consisting of two sets V2 and E2 and three mappings s2 : E2 → V1+
V2, t2 : E2 → V1+V2, and l2 : E2 → Σ. Then H = G1+(V2, E2, s2, t2, l2) = (V1+
V2, E1 + E2, 〈ŝ1, s2〉, 〈t̂1, t2〉, 〈l1, l2〉) is a graph with G1 ⊆ H where ŝ1, t̂1 : E1 →
V1 + V2 with ŝ1(e) = s1(e), t̂1(e) = t1(e) for all e ∈ E1.

Let G = (Gi)i∈I be a family of graphs. Then the disjoint union of G is
defined by

∑

i∈I

Gi = (
∑

i∈I

VGi
,
∑

i∈I

EGi
,
∑

i∈I

sGi
,
∑

i∈I

tGi
, 〈lGi

〉i∈I). The construction

has all the properties summarized in Sect. 2.1 for the disjoint union of sets if one
replaces the term set by graph (with the exception of the index set), subset by
subgraph and mapping by graph morphism.

2.3 Rule-Based Graph Transformation

Formally, a rule r = (L ⊇ K ⊆ R) consists of three graphs L,K,R ∈ GΣ such
that K is a subgraph of L and R. The components L, K, and R of r are called
left-hand side, gluing graph, and right-hand side, respectively.

The application of a graph transformation rule to a graph G consists of
replacing a match of the left-hand side in G by the right-hand side such that the
match of the gluing graph is kept. Hence, the application of r = (L ⊇ K ⊆ R)
to a graph G = (V,E, s, t, l) comprises the following three steps.

First, a graph morphism g : L → G called matching morphism is chosen
to establish a match of L in G subject to the gluing condition consisting of two
parts: (a) the dangling condition of g(L)\g(K) = (g(VL)\g(VK), g(EL)\g(EK))
in G; and (b) the identification condition requesting that two nodes or edges of
L must be in K if they are identified in the match of L.

Second, the match of L up to g(K) is removed from G, resulting is the
intermediate graph Z = G \ (g(L) \ g(K)).

A Simple Notion of Parallel Graph Transformation and Its Perspectives 65

Third, the right-hand side R is added to Z by gluing Z with R in g(K)
yielding the graph H = Z + (R \ K, g) where (R \ K, g) = (VR \ VK , ER \
EK , s′, t′, l′) with s′(e′) = sR(e′) if sR(e′) ∈ VR \ VK and s′(e′) = g(sR(e′))
otherwise, t′(e′) = tR(e′) if tR(e′) ∈ VR \ VK and t′(e′) = g(tR(e′)) otherwise,
and l′(e′) = lR(e′) for all e′ ∈ ER \ EK .

The extension of Z to H is properly defined because s′ and t′ map the edges
of ER \ EK into nodes of VR \ VK or g(VK) which is part of VZ . As the disjoint
union is only unique up to isomorphism, the resulting graph is only unique up to
isomorphism. Due to the construction, g can be restricted to d : K → Z, and d
can be extended to a right matching morphism h : R → H by the identity on
R \ K.

Hence a rule application of r can be depicted by the following diagram.

L ⊇ K ⊆ R

G ⊇ Z ⊆ H

g d h

It is worth noting that both squares of the diagram are pushouts in the cate-
gory of graphs if the subgraph relations in the diagram are interpreted as inclu-
sion morphisms. Therefore, an equivalent definition based on double pushouts
in category theory can be found in, e.g., [2]. Here the identification condition
is significant because the left diagram is not a pushout if g does not obey the
identification condition.

The application of a rule r to a graph G is denoted by G=⇒
r

H. A rule
application is called a direct derivation, and an iteration of direct derivations
G � G0 =⇒

r1
G1 =⇒

r2
· · · =⇒

rn

Gn � H (n ∈ N) is called a derivation from G to H.

As usual, the derivation from G to H can also be denoted by G
n=⇒
P

H where

{r1, . . . , rn} ⊆ P , or by G
∗=⇒
P

H if the number of direct derivations is not of

interest. The subscript P may be omitted.
As the disjoint union is only uniquely defined up to isomorphism, derived

graphs are also only uniquely constructed up to isomorphism. But without loss
of generality, one can assume that nodes and edges, which are not removed, keep
their identity. We make use of this fact in all our explicit examples.

A graph class expression may be any syntactic entity X that specifies a class
of graphs SEM (X) ⊆ GΣ like expressions or formula. A control condition may
be any syntactic entity that restricts the derivation process. Explicit examples
are introduced where they are needed.

A graph transformation unit is a system gtu = (I, P, C, T) where I and T
are graph class expressions to specify the initial and the terminal graphs respec-
tively, P is a set of rules, and C is a control condition. Such a transformation
unit specifies a binary relation SEM (gtu) ⊆ GΣ ×GΣ that contains a pair (G,H)
if and only if (G,H) ∈ SEM (I) × SEM (T) and there is a derivation G

∗=⇒
P

H

permitted by C.

66 H.-J. Kreowski et al.

1

4

3

1
2 2

1 3

4

3

1
2 2

1 3

3

1
2 2

4
3

1 3

3

3

1
2 2

1 3

3

3

1
2 2

4

=⇒
sum

=⇒
sum

=⇒
sum

=⇒
min

r1 r2

Fig. 1. A derivation based on the shortest paths(max) graph transformation unit

Example 1. For some max ∈ N, consider all rules of the form:

sum: x y ⊇ x y ⊆ x y

x + y
for all x, y ∈ N with x+y ≤ max, and

min:
x
y ⊇ x ⊆ x for all x, y ∈ N with x ≤ y ≤ max.

Given a graph with labels in N, the application of a sum-rule adds an edge
bridging a path of length 2 and summing up the labels of the path. A min-rule is
applicable to each two parallel edges, keeping the edge with the smaller label or
one of the two if the labels are equal. A sample derivation can be seen in Fig. 1.
(The derivation applying r1 and r2 is explained in Sect. 3.1.) If the two edges
of the left-hand side match a single edge, then the identification condition is
not satisfied. The dangling condition is always satisfied because nodes are never
removed. But if one modifies the sum–rule in such a way that the middle node
and the edges of the gluing graph are omitted, then the dangling condition is
not satisfied whenever the middle node is attached to more than two edges.

The sum–rule can be applied to each path of length 2 arbitrarily often. This
can be avoided if one requires that there is no bridging edge with a label z ≤ x+y
in the accessed graph. Such a negative context condition is an example of a con-
trol condition. The rules together with this control condition specify a graph
transformation unit if one chooses proper initial and terminal graphs in addi-
tion. The constant expressions loop-free, strictly-simple and max-labeled denote
the classes of graphs without loops; with at most one edge between every two
nodes; and with labels in N whose sum does not exceed max, respectively. Com-
bined by &, one gets the intersection of the three classes. Then the expression
0-looped(max-labeled & strictly-simple & loop-free) defines the graphs in the
intersection with a 0-loop at each node in addition. Starting with these graphs
as initial graphs and applying the rules according to the control condition as long
as possible, results in graphs where each edge between nodes v and v′ is labeled
with the shortest distance between v and v′ in the respective initial graph, i.e.
the minimum label sum of all paths from v to v′. The terminal graphs can be
specified by the expressions {sum,min}-reduced . In summary, it is justified to
call the unit shortest paths(max). It is schematically given in Fig. 2. The com-
ponents of the unit are preceded with respective keywords, the negative context
condition of the sum-rule is denoted by the dashed edge.

The example is further discussed in Sect. 5.

A Simple Notion of Parallel Graph Transformation and Its Perspectives 67

shortest paths(max)
initial: 0-looped(max-labeled & strictly-simple & loop-free)
rules: sum,min

control: x y

z
with z ≤ x+ y wrt sum

terminal: {sum,min}-reduced

Fig. 2. The graph transformation unit shortest paths(max)

3 Parallel Graph Transformation

In this section, we recall the notion of parallel graph transformation and its
fundamental properties of sequentialization and parallelization as introduced
in [1] only slightly modified. Our rules consist of two inclusions each while a rule
in [1] consists of an injective graph morphism from the gluing graph to the left-
hand side graph and an arbitrary graph morphism from the gluing graph into
the right-hand side graph. Moreover, the parralel rule in [1] is a disjoint union
of two rules while we consider parallel rules composed of an arbitrary family of
component rules.

Definition 1. Let F = (ri)i∈I = (Li ⊇ Ki ⊆ Ri)i∈I be a family of rules. Then
the parallel rule of F is defined by r(F) =

∑

i∈I

ri = (
∑

i∈I

Li ⊇ ∑

i∈I

Ki ⊆ ∑

i∈I

Ri).

Due to the properties of disjoint unions, the parallel rule is an ordinary rule
so that parallel derivations are just derivations applying parallel rules.

3.1 Sequentialization and Parallelization Theorems

Let G =⇒
r1+r2

X be a direct parallel derivation, let g : L1 + L2 → G be the corre-

sponding matching morphism, and let in1 : L1 → L1 + L2 be the inclusion of
L1 into L1 + L2. Then g1 = g ◦ in1 defines a matching morphism of L1 into G.
It is easy to see that g1 satisfies the gluing condition using the satisfaction of
the gluing condition of g. This yields a direct derivation G=⇒

r1
H1. Let Z1 be

its intermediate graph. Then the identification condition satisfied by g yields
g(L2) ⊆ Z1. This allows one to define a matching morphism g′

2 of L2 into H1

by g′
2(x) = g(x) for all x of L2. Using again the gluing condition satisfied by

g, it turns out that g′
2 satisfies the gluing condition and yields a direct deriva-

tion H1 =⇒
r2

X1. Finally, one can show by the construction of direct derivations

and some basic properties of union and difference of sets that X and X1 are
isomorphic. Altogether, the reasoning yields the following result.

Theorem 1 (Sequentialization of parallel derivations). Let r1, r2 be rules
and G =⇒

r1+r2
X be a direct derivation. Then there is a derivation G=⇒

r1
H1 =⇒

r2
X.

68 H.-J. Kreowski et al.

The resulting derivation is called the sequentialization of G =⇒
r1+r2

X. We also

get G=⇒
r2

H2 =⇒
r1

X as r1 + r2 = r2 + r1. The identification condition satisfied

by the given matching morphism g : L1 + L2 → G implies for the two match-
ing morphims g1 and g2 which restrict g to the components L1 and L2 that
g1(L1) ∩ g2(L2) ⊆ g1(K1) ∩ g2(K2), i.e. the two matches may overlap, but only
in common gluing elements. A further analysis yields for the right matching
morphism h1 : R1 → H1 of G=⇒

r1
H1 and the matching morphism g′

2 : L2 → H1

constructed above: h1(R1) ∩ g′
2(L2) ⊆ h1(K1) ∩ g′

2(K2). The two properties are
called parallel and sequential independence respectively. Independence refers to
the fact that the application of one of the two rules does not prevent or influence
the application of the other one. Nicely enough, independence is sufficient for
parallelization.

Definition 2. Let ri = (Li ⊇ Ki ⊆ Ri) for i = 1, 2 be rules.

1. Two direct derivations G=⇒
ri

Hi with the matching morphism gi : Li → G

respectively are parallel independent if g1(L1) ∩ g2(L2) ⊆ g1(K1) ∩ g2(K2).
2. Successive direct derivations G=⇒

r1
H1 =⇒

r2
X with the right matching mor-

phism h1 : R1 → H1 and the (left) matching morphism g′
2 : L2 → H1 are

sequentially independent if h1(R1) ∩ g′
2(L2) ⊆ h1(K1) ∩ g′

2(K2).

Theorem 2 (Parallelization of independent direct derivations). Let ri =
(Li ⊇ Ki ⊆ Ri) for i = 1, 2 be rules.

1. Let G=⇒
ri

Hi for i = 1, 2 be parallel independent direct derivations with

matching morphisms gi : Li → G. Then there is a direct parallel derivation
G =⇒

r1+r2
X for some X ∈ GΣ with matching morphism 〈g1, g2〉 : L1 + L2 → G.

2. Let G=⇒
r1

H1 =⇒
r2

X be sequentially independent direct derivations. Then there

is a parallel derivation G =⇒
r1+r2

X.

The first direct derivations of the two possible sequentializations of the con-
structed direct parallel derivation in Point 1 coincide with the given direct deriva-
tions.

Let g1 : L1 → G and g′
2 : L2 → H1 be the matching morphisms of the given

direct derivation in Point 2. Then the sequential independence and the construc-
tion of direct derivations yield g′

2(L2) ⊆ G. This allows to define a matching
morphism g2 : L2 → G. Then the direct derivation G =⇒

r1+r2
X is given by the

matching morphims 〈g1, g2〉 : L1 + L2 → G. G =⇒
r1+r2

X is called parallelization of

G=⇒
r1

H1 =⇒
r2

X.

Example 2. Look at the derivation in Fig. 1. The first two steps are sequentially
independent as the second step does not match the edge generated by the first
step. Moreover, the last two steps are also sequentially independent so that the
two possible parallelizations yield the derivation applying r1 = sum + sum and
r2 = min + sum in Fig. 1.

A Simple Notion of Parallel Graph Transformation and Its Perspectives 69

The sequentialization and parallelization theorems involve the following
derivations from G to X where the two direct derivations G=⇒

r1
H1 and

G=⇒
r2

H2 are parallel independent and both derivations G=⇒
r1

H1 =⇒
r2

X and

G=⇒
r2

H2 =⇒
r1

X are sequentially independent.

G X
r1 + r2

H1

r1 r2

H2

r2 r1

The whole diagram is obtained (a) from the direct parallel derivation G =⇒
r1+r2

X,

(b) from the two parallel independent direct derivations G=⇒
r1

H1 and G=⇒
r2

H2,

or (c) from each of the sequentially independent derivations from G to X.
As pointed out in, e.g., [3], the diagram reflects the concurrency of two events:

One may happen after the other or the other way round or both may happen
simultaneously. All three ways to move from G to X are equally possible. There
is neither a causal dependence nor any mutual influence.

The results are particularly significant with respect to the construction of
matching morphisms which is the most time-consuming part of a rule appli-
cation. Whether a graph morphism from L to G exists, is a well-known NP-
complete problem if L and G are finite input graphs of arbitrary size. Hence,
all known algorithms that find graph morphisms for finite, but arbitrary large L
and G are exponential. In contrast to that, the search for matching morphisms
becomes polynomial in the size of G if L is fixed or the size of L is bounded by a
constant. This is the case if one assumes finite sets of finite rules. The number of
mappings from a set with k elements to a set with n elements is nk so that one
can check all possible matchings in polynomial time even in an exhaustive search.
This applies in particular to the case of finite sets of finite rules. But it does not
apply to parallel rules because their left-hand sides may become arbitrary large
so that one would have to face the problem of NP-completeness without fur-
ther knowledge. Fortunately, we know that the matching morphism of a parallel
rule is composed of matching morphisms of the atomic component rules so that
matching morphism for parallel rules can be found in polynomial time if the
number of components is polynomial or the components can be processed in
parallel.

3.2 Shifts and Canonical Derivations

The three derivations from G to X in the diagram above may be considered as
equivalent from a concurrency point of view. Further, this view can be extended
to arbitrary derivations so that the equivalence classes represent concurrent pro-
cesses. But the equivalence classes may be exponentially large. In order to give
an efficient representation a shift operation can be defined as a certain combina-
tion of sequentialization and parallelization such that shifting as long as possible
yields unique canonical representatives.

70 H.-J. Kreowski et al.

Let s = G0
∗=⇒Gi =⇒

r1+r2
Gi+2

∗=⇒Gn and s′ = G0
∗=⇒Gi =⇒

r1
Gi+1 =⇒

r2
Gi+2

∗=⇒Gn be two derivations where Gi =⇒
r1

Gi+1 =⇒
r2

Gi+2 is a sequentialization of

Gi =⇒
r1+r2

Gi+2. Then s is seq-related to s′ denoted by s →
seq

s′. The equivalence

closure is denoted by ∼.
Let us restrict the consideration to parallel derivations where only parallel

rules with a finite number of component rules are applied. Then the equivalence
classes are always finite, but they may have an exponential number of elements.
Let s, s′ and s′′ be three derivations with s →

seq
s′ and s′′ →

seq
s′ of the form

G0 Gi−1 Gi Gi+1 Gi+2 Gnr1 r2 r3

∗ ∗r1 + r2

r2 + r3

where s is the derivation with r1 + r2, s′′ is the derivation with r2 + r3, and s′ is
the derivation in the middle. Then s′′ is shift-related to s, denoted by s′′ →

shift
s.

Moreover, if only s and s′ are given with s →
seq

s′, then s′ is also shift-related to s,

denoted by s′ →
shift

s. A rule applied in step i + 1 can only be shifted if its direct

derivation is sequentially independent of the preceding direct derivation, and it
can be shifted i times at most. Therefore, shift-sequences are never longer than
n(n − 1)/2 if n is the number of applications of atomic rules. In particular, one
gets always shift-reduced derivations if one shifts as long as possible. These shift-
reduced derivations are called canonical because they are unique representatives
of their equivalence classes.

Theorem 3. Let s and s′ be two canonical derivations with s ∼ s′, then s = s′.

The proof is based on the fact, that the shift-relation is locally Church-Rosser:
Given s →

shift
s′ and s →

shift
s′′, then there is s with s′ ∗→

shift
s and s

∗→
shift

s.

Example 3. The derivation applying r1 and r2 in Fig. 1 is canonical.

3.3 Related Work

In [1] and in the present paper, the proofs of the stated results are only roughly
sketched. The full proofs can be found in [2,4]. In the last 40 years, the topic of
parallel graph transformation has been further studied by many researchers in
various respects modifying and generalizing the approach. As it is impossible to
refer to all related publications – there are too many – the reader may consult
Volume 3 of the Handbook of Graph Grammars and Computing by Graph Trans-
formation [5] and the two monographs [6,7] where much of the work is systemati-
cally presented in the context of the double-pushout approach, and the important
references are given in the introductions of the books and of the respective chap-
ters. This covers nicely typed attributed graphs, high-level replacement systems
in adhesive categories as well as concurrent and amalgamated rules. Concerning
the single- and the sesqui-pushout approaches, the reader is referred to [8,9].

A Simple Notion of Parallel Graph Transformation and Its Perspectives 71

v1 1

v2
2 A

vk(A)k(A)

(a) Hyperedge

1v1

2

v2

A
k(A) vk(A)

(b) Its graph representation

Fig. 3. The graph representation of a hyperedge

4 Parallelism of Hyperedge Replacement

Hyperedge replacement (see, e.g., [10–13]) is a kind of context-free hyper-
graph transformation. Hyperedges of hypergraphs may be incident to arbitrary
sequences of nodes rather than to two nodes as ordinary edges. But there is
a straightforward way to formulate hyperedge replacement within the graph
setting introduced in Sect. 2 (cf. [14]). With respect to parallelism, hyperedge
replacement is of interest in at least two ways.

First, the context-freeness lemma provides a decomposition of derivations
into a set of fibers that corresponds to the decomposition of a direct parallel
derivation into direct derivations applying the rule components.

Second, due to the sequentialization theorem, sequential and parallel hyper-
edge replacement have the same generative power. But if one applies hyperedge
replacement rules in the mode of TOL-systems, then one can get quite different
languages.

4.1 Hyperedge Replacement and Its Context-Freeness Lemma

We assume some subset N ⊆ Σ of nonterminals which are typed, i.e. there is
an integer k(A) ∈ N for each A ∈ N . Moreover, we assume that Σ contains
the numbers 1, . . . ,max for some max ∈ N with k(A) ≤ max for all A ∈ N . A
hyperedge with label A ∈ N is meant to be an atomic item which is attached to a
sequence of nodes v1 · · · vk(A). It can be represented by a node with an A-labeled
loop and k(A) edges the labels of which are 1, . . . , k(A), respectively, and the
targets of which are v1, . . . , vk(A), respectively, as depicted in Fig. 3. Accordingly,
we call such a node with its incident edges an A-hyperedge. A graph is said to
be N -proper if each occurring nonterminal and each occuring number between 1
and max belong to some hyperedge. Each A ∈ N induces a particular N -proper
graph A• with the nodes {0, . . . , k(A)} and a single hyperedge where the A-loop
is attached to 0 and i is the target of the edge labeled with i for i = 1, . . . , k(A).
Let [k(A)] denote the discrete graph with the nodes {1, . . . , k(A)}. Using these
notations, a rule of the form A• ⊇ [k(A)] ⊆ R for some N -proper graph R
is a hyperedge replacement rule, which can be denoted by A ::= R for short. A
hyperedge replacement grammar is a system HRG = (N,T, P, S) with S ∈ N ,
T ⊆ Σ with T ∩ N = ∅, and a set of hyperedge replacement rules P with finite
right-hand sides. Its generated language contains all terminal graphs that are
derivable from S•, i.e. L(HRG) = {H ∈ GT | S• ∗=⇒

P
H}.

72 H.-J. Kreowski et al.

In this way, hyperedge replacement is just a special case of graph transfor-
mation, but with some very nice properties.

1. Let r = (A ::= R) be a hyperedge replacement rule and G an N -proper graph
with an A-hyperedge y. Then there is a unique graph morphism g : A• → G
mapping A• to the A-hyperedge y such that the gluing condition is satisfied
and therefore r is applicable to G.

2. The directly derived graph H is N -proper and is obtained by removing y, i.e.
by removing the node with the A-loop and all other incident edges, and by
adding R up to the nodes 1, . . . , k(A) where edges of R incident to 1, . . . , k(A)
are redirected to g(1), . . . , g(k(A)), respectively. Due to this construction, H
may be denoted by G[y/R].

3. Two direct derivations G=⇒
r1

H1 and G=⇒
r2

H2 are parallel independent if and

only if they replace distinct hyperedges.
4. A parallel rule r =

∑

i∈I

ri of hyperedge replacement rules ri = (Ai ::= Ri) for

i ∈ I is applicable to G if and only if there are pairwise distinct Ai-hyperedges
yi for all i ∈ I. In analogy to the application of a single rule, the resulting
graph may be denoted by G[yi/Ri | i ∈ I].

5. If I = I1 + I2, then G[yi/Ri | i ∈ I] = (G[yi/Ri | i ∈ I1])[yi/Ri | i ∈ I2].
6. Two successive direct derivations G=⇒

r1
G1 =⇒

r2
H are sequentially indepen-

dent if and only if the hyperedge replaced by the second step is not created
by the first one.

Altogether, the direct derivations through hyperedge replacement rules can
be ordered arbitrarily as long as they deal with different hyperedges. This obser-
vation leads to the following result.

Theorem 4 (Context-Freeness Lemma). Let HRG = (N,T, P, S) be a
hyperedge replacement grammar and let A• n+1=⇒

P
H be a derivation. Then there

are some rule A ::= R and a derivation A(y)• n(y)
=⇒

P
H(y) for each hyperedge y of

R with label A(y) such that H = R[y/H(y) | y ∈ YR] and
∑

y∈YR

n(y) = n, where

YR is the set of hyperedges of R.

A derivation A• n+1=⇒H has A• =⇒R as the first step. The tail R
n=⇒H can

be decomposed into fibers A(y)• ni=⇒H(y) for y ∈ YR. The fibres induce rules
A(y) ::= H(y) for y ∈ YR. They can be applied to R in parallel yielding R =⇒H.
In this way, hyperedge replacement allows to generalize the sequentialization and
parallelization of direct derivations to derivations.

4.2 Maximum Parallel Hyperedge Replacement

Given a hyperedge replacement grammar HRG = (N,T, P, S) and H ∈ L(HRG).
Then there is a derivation S• ∗=⇒H which can be transformed into a canonical
derivation. As the replacements of two hyperedges are parallel independent and

A Simple Notion of Parallel Graph Transformation and Its Perspectives 73

as H is terminal, each direct derivation of the canonical derivation replaces
all hyperedges in parallel. This means that canonical derivations are maximum
parallel normal forms to generate L(HRG), but maximum parallelism does not
extend or vary the generative power.

This changes if the set of rules is partitioned into subsets P1, . . . , Pk for some
k ≥ 1 and each direct derivation takes one of them and applies the rules with
maximum parallelism, i.e. in the style of TOL- and ETOL-systems (see, e.g.,
Chap. 5 in [15]). The TOL-mode of hyperedge replacement is a further example
of a control condition. It allows to generate all languages that are generated by
ordinary hyperedge replacement grammars because one can choose P1 = P . But
it also increases the generative power which is proved by a separating example.

Example 4. Consider the hyperedge replacement grammar KOCHTREE =
({S}, {∗}, P, S) where S has type 5 and P contains two rules:

branch : S ::=

3

4

2

1

S S
52 3

4

5
1

3
1

5
4

2

terminate : S ::=

3

4

2

1

5

If one decomposes P into {branch} and {terminate} and applies one or the
other with maximum parallelism, one gets very regular finite approximations
of the Koch tree (depicted in Fig. 4a). If one applies the rules arbitrarily, then
one can also get asymmetric trees (like the one depicted in Fig. 4b). As long as
the rule branch is used, the number of hyperedges doubles and each hyperedge
replacement produces 4 (undirected) edges such that the language of regular
Koch trees grows exponentially. On the other hand, it is a well-known fact that
the languages generated by ordinary hyperedge replacement grammars have a
sublinear growth so that they cannot generate regular Koch trees. Altogether,
this shows that hyperedge replacement grammars with a TOL-mode of transfor-
mation are more powerful than without.

(a) Regular Koch trees (b) Asymmetric Koch tree

Fig. 4. Approximations of the Koch tree

4.3 Related Work

While hyperedge replacement is a well-studied area of graph transformation, we
are not aware of much work on parallel generation of graph languages. But we

74 H.-J. Kreowski et al.

would like to mention that we introduced recently fusion grammars in [16] that
display quite strong parallelization properties and extend the generative power
of hyperedge replacement grammars.

5 Parallelization of Graph Algorithms

A major promise of parallelism is that parallel computation can be faster than
sequential computation. Consider, for example, a totally balanced binary tree of
height n. It has 2n leaves, and therefore, a full traversal needs at least this many
steps whereas traversing the tree from the root to the leaves with maximum
parallelism takes n steps. So it seems worthwhile to look into graph transfor-
mation whether the use of parallel derivations can produce similar effects. To
demonstrate the potential of this line of research, we look into the well-known
search for shortest paths.

5.1 The Case of Shortest Paths

Most shortest-path algorithms like the prominent ones by Floyd/Warshall [17,18]
and by Dijkstra [19] are based on two elementary operations: the sequential com-
position of paths summing up the distances and keeping the path with minimum
distance out of some parallel paths (i.e. paths with the same source and target
nodes). The algorithms differ from each other by the order in which the two
basic operations are applied.

Let us reconsider the graph transformation unit shortest paths(max) in
Example 1. To make sure that the unit computes shortest distances, the fol-
lowing correctness properties can be proved. The distance of a path p in a graph
G is the sum of the distances of the edges on p and is denoted by distG(p).

Proposition 1 (Correctness). Let G
∗=⇒H be a derivation where G is initial

and H is terminal. Then the following hold:

1. For every shortest path p from v to v′ in G, there is some e ∈ EH with
sH(e) = v, tH(e) = v′, and lH(e) = distG(p).

2. For every e ∈ EH , there is a shortest path p from sH(e) to tH(e) in G with
lH(e) = distG(p).

The first statement can be proved by induction on the length of shortest
paths, the second one by induction on the length of derivations. The details are
omitted for reasons of space limitations.

Now we consider the parallelization of the algorithm. The graph transforma-
tion unit shortest paths in parallel(max) extends the unit shortest paths(max)
by the control condition

(sum[double−free maxpar];min[largest maxpar])∗.

It requires that, repeatedly, the sum-rule is applied with double-free maximum
parallelism followed by the largest maximum parallel application of the min-rule.

A Simple Notion of Parallel Graph Transformation and Its Perspectives 75

In a double-free parallel rule application of sum, no two matches of left-hand
sides may overlap entirely. A largest parallel rule application of min must involve
as many min-rules as possible.

As the left-hand side of the sum-rule coincides with the gluing graph, each
two applications of sum are parallel independent. Therefore, there are at most
n ·(n−1) ·(n−2) double-free applications of sum where n is the number of nodes
in the initial graph. The following largest maximum parallel min-step makes
sure that no two parallel edges are left. More precisely, two min-applications
are parallel independent if they match four different edges or intersect in the
edge that is kept. Therefore, whenever there are m parallel edges between two
nodes, the largest parallel step removes m − 1 of them, and this happens if all
applications of min choose the same edge to be kept.

That the unit computes the shortest distances between each two nodes can
be seen as follows. The initial and terminal graphs are the same as in the unit
shortest paths(max) above. A parallel derivation from an initial to a termi-
nal graph can be sequentialized due to the sequentialization theorem. In this
sequential derivation, a sum-application may occur that does not obey the neg-
ative application condition. But then there is already an edge as good as or
better than the edge generated by sum. Hence, this step as well as the min-step
that removes this superfluous edge later on can be omitted without changing
the result. If the sequential derivation is modified in this way as long as pos-
sible, then we end up with a derivation from an initial to a terminal graph in
shortest paths(max). Hence the correctness of shortest paths in parallel(max)
follows from the correctness of shortest paths(max).

A closer look reveals that the edges after k rounds of a parallel sum-step
followed by a parallel min-step represent the shortest paths of the initial graph
of lengths up to 2k. This implies that after a logarithmic number of parallel steps
the terminal graph is reached.

Proposition 2 (Correctness and derivation length). Let G
2k=⇒H be a

derivation in shortest paths in parallel(max) from an initial graph to a terminal
graph with alternating parallel sum- and min-steps according to the control
condition. Then Points 1 and 2 of Proposition 1 hold as well, and the length of
the derivation has a logarithmic bound, i.e., 2k ≤ n − 1 where n is the number
of nodes in G.

In a similar way, well-known shortest paths algorithms can be parallelized.
For example, the parallelization of Mahr’s algorithm [20] (which originally is of
the order n3 · log n) yields a logarithmic number of parallel steps and the paral-
lelization of the Floyd/Warshall algorithm (which originally is a cubic algorithm)
yields a linear number of parallel steps. But it should be noted that the short
parallel derivations do not improve the complexity automatically, but only if the
matching of the parallel rules can be found in a time bound that is – multiplied
by the logarithmic length of the derivations – still smaller than the complexity
of the corresponding sequential algorithms.

76 H.-J. Kreowski et al.

5.2 Related Work

There is not much work on parallel and distributed algorithms employing graph
transformation. A noteworthy exception is the modeling of distributed algo-
rithms by means of graph relabelling (see, e.g., [21]). Moreover, we would like
to mention graph-multiset transformation (see [22]) that can be interpreted as
a special case of the parallel graph transformation of Sect. 3 and allows to solve
NP-complete graph problems by parallel computations of polynomial lengths.
On the other hand, there is a realm of literature on parallel graph algorithm
and very much interest in this topic so that the area seems to invite further and
deeper studies by means of graph transformation.

6 Infinity

The definition of parallel graph transformation in Sect. 3 includes the case of
parallel rules of an infinite family of component rules. In this section, we indicate
that such infinite parallel rules may have some potential in the context of infinite
graph theory (see, e.g., [23]) but only if one applies them to infinite graphs.

6.1 Application to Finite Graphs

Let F = (ri)i∈I = (Li ⊇ Ki ⊆ Ri)i∈I be a family of rules for an infinite index
set I. Let G be a finite graph and G =⇒

r(F)
H be an application of the parallel

rule of F to G with the matching morphism g = 〈gi〉i∈I :
∑

i∈I

Li → G. Then the

definition of rule application reveals the following facts:

1. Let I ′ = {i ∈ I | Ki �= Li} be the set of indices of erasing rules. Then
I ′ is finite because otherwise g would not obey the identification condition.
Therefore, Ki = Li for almost all i ∈ I.

2. Let I ′′ = {i ∈ I | Ki �= Ri} be the set of indices of adding rules. Then H is
finite if and only if I ′′ is finite.

3. Let I ′′ be infinite. Then H contains an infinite number of finite subgraphs
that are pairwise disjoint or H has a node with infinite degree or both is the
case.

Infinite graphs consisting of infinitely many finite disjoint components or with
nodes of infinite degree are considered as less interesting in finite graph theory.
Therefore, the application of parallel rules of an infinite family of rules can make
more sense only if one applies them to infinite graphs.

6.2 Application to Infinite Graphs

We are not going to study the application of parallel rules of an infinite family
of rules to infinite graphs in any depth. But we would like to give an example
that displays an interesting property and nourishes the hope that infinite graph
transformation may be of interest.

A Simple Notion of Parallel Graph Transformation and Its Perspectives 77

...

. . .

...

. . .

...

. . .

...

. . .

...

. . .

...
. . .

(a) A finite section of GRID

...

. . .

...

. . .

...

. . .

...

. . .

...

. . .

...
. . .

(b) A finite section of GRID◦

Fig. 5. Infinite plane grids

Example 5. Consider the infinite plane grid a finite section of which looks like
the structure in Fig. 5a. Nodes are the points in the plane with integer coordi-
nates. Each node has four outgoing edges to its Northern, Eastern, Southern,
and Western neighbor respectively. As each node is neighbor of its four neigh-
bors, the edges can be drawn as undirected edges. Formally, it can be defined
as follows: GRID = (Z × Z,Z × Z × {N,E, S,W}, sGRID , tGRID , lGRID) with
sGRID((x, y,D)) = (x, y), tGRID((x, y,N)) = (x, y + 1), tGRID((x, y,E)) =
(x + 1, y), tGRID((x, y, S)) = (x, y − 1), tGRID((x, y,W)) = (x − 1, y), and
lGRID((x, y,D)) = ∗ for all (x, y) ∈ Z × Z and D ∈ {N,E, S,W}.

Consider the rule edgesplit : ⊇ ⊆ that splits an edge into a
path of length 2. Each two applications of the rule are parallel independent if
they match different edges. Therefore, one can apply the rules to all edges in
parallel. A finite section of the result GRID◦ is drawn in Fig. 5b.

Consider now the rule squaresplit : ⊇ ⊆ . Each two applica-

tions of this rule are parallel independent as the rule is non-erasing. Hence, one
can apply the rule to all smallest squares (the cycles of length 8) of GRID◦ in
parallel – one rule per square. Then the result is obviously isomorphic to GRID .

This kind of self-replication is remarkable as the applied rules are strictly
monotonously growing in that they add more than they erase. Such a property
is impossible in the context of finite graphs. Hence it may be worthwhile to study
infinite graph transformation in more detail and depth.

7 Parallel Models of Computation

Parallel graph transformation is well-suited for modeling and analyzing parallel
processes and, in particular, as a domain into which other visual approaches to
parallel processing can be transformed. To demonstrate this, we model the well-
known cellular automata as graph transformation units with massive parallelism.

78 H.-J. Kreowski et al.

7.1 The Case of Cellular Automata

Cellular automata are computational devices with massive parallelism known for
many decades (see, e.g., [24–27]). A cellular automaton is a network of cells where
each cell has got certain neighbor cells. A configuration is given by a mapping
that associates a local state with each cell. A current configuration can change
into a follow-up configuration by the simultaneous changes of all local states. The
local transitions are specified by an underlying finite automaton where the local
states of the neighbor cells are the inputs. If the network is infinite, one assumes
a particular sleeping state that cannot change if all input states of neighbor cells
are also sleeping. Consequently, all follow-up configurations have only a finite
number of cells that are not sleeping if one starts with such a configuration.

To keep the technicalities simple, we consider 2-dimensional cellular
automata the cells of which are the unit squares in the Euclidean plane GRID
and can be identified by their left lower corner. The neighborhood is defined by a
vector N = (N1, . . . , Nk) ∈ (Z×Z)k where the neighbor cells of (i, j) are given by
the translations (i, j)+N1, . . . , (i, j)+Nk. If one chooses the local states as colors,
a cell with a local state can be represented by filling the area of the cell with the
corresponding color. Accordingly, the underlying finite automaton is specified by
a finite set of colors, say COLOR, and its transition d : COLOR × COLORk →
COLOR. Without loss of generality, we assume white ∈ COLOR and use it as
sleeping state, i.e. d(white,whitek) = white. Under these assumptions, a config-
uration is a mapping S : Z×Z → COLOR and the follow-up configuration S′ of
S is defined by S′((i, j)) = d(S((i, j)), (S((i, j) + N1)), . . . , S((i, j) + Nk))).

If one starts with a configuration S0 which has only a finite number of cells
the colors of which are not white, then only these cells and those that have them
as neighbors may change the colors. Therefore, the follow-up configuration has
again only a finite number of cells with other colors than white. Consequently,
the simultaneous change of colors of all cells can be computed. Moreover there
is always a finite area of the Euclidean plane that contains all changing cells. In
other words, a sequence of successive follow-up configurations can be depicted
as a sequence of pictures by filling the cells with their colors.

Example 6. The following instance of a cellular automaton may illustrate the
concept. It is called SIER, has two colors, COLOR = {white, black}, and the
neighborhood vector is N = ((−1, 0), (0, 1)) meaning that each cell has the cell
to its left and the next upper cell as neighbors. The transition of SIER changes
white into black if exactly one neighbor is black, i.e. d : COLOR × COLOR2 →
COLOR with d(white, (black, white)) = d(white, (white, black)) = black and
d(c, (c1, c2)) = c otherwise. Let S0 be the start configuration with S0((0, 0)) =
black and S0((i, j)) = white otherwise. Then one gets the configuration S30

in Fig. 6 after 30 transitions. The drawing illustrates that SIER iterates the
Sierpinski gadget (see, e.g., [28]) if one starts with a single black cell.

Cellular automata can be transformed into graph transformation units.
Let CA be a cellular automaton with the neighborhood vector N =
(N1, . . . , Nk) ∈ (Z × Z)k, the set of colors COLOR and the transition function

A Simple Notion of Parallel Graph Transformation and Its Perspectives 79

Fig. 6. A pictorial representation of the configuration S30 of SIER

d : COLOR × COLORk → COLOR. Then a configuration S : Z × Z → COLOR
can be represented by a graph gr(N,S) with the cells as nodes, with k edges
from each cell to its neighbors labeled with 1, . . . , k in the order of the neigh-
borhood, and a loop at each cell labeled with the color of the cell. The set
of all these graphs is denoted by G(CA). If the color of a cell (i, j) changes,
i.e. d(S((i, j)), (S((i, j) + N1), . . . , S((i, j) + Nk))) �= S(i, j), then the following
rule with positive context c ...

c1

ck

1

k
⊇ c ⊇ ⊆ d(c, (c1, . . . , ck))

can be applied to the node (i, j) in gr(N,S) provided that c = S(i, j) and
cp = S((i, j) + Np) for p = 1, . . . , k. Here the rule consists of the two inclusions
to the left. The inclusion to the right is the positive context which serves as a
control condition: The rule is applicable if the left-hand size is matched and the
matching can be extended to the context. The set of all those rules is denoted
by R(CA). A rule application removes a loop so that two rule applications are
independent if and only if their matches do not overlap. Consequently, all appli-
cable rules can be applied in parallel yielding gr(N,S′) where S′ is the follow-up
configuration of S. In other words, gr(N,S)=⇒ gr(N,S′) with maximum paral-
lelism is a direct derivation in the graph transformation unit gtu(CA) = (G(CA),
R(CA), maxpar, G(CA)).

Conversely, a derivation step gr(N,S)=⇒ H in gtu(CA) changes a c-loop
into a d(c, (c1, . . . , ck))-loop at the node (i, j) if and only if, for l = 1, . . . , k, the
neighbor (i, j) + Nl has a cl-loop. All other c-loops are kept. This means that
H = gr(N,S′). Summarizing, each cellular automaton can be transformed into
a graph transformation unit such that the following correctness result holds.

Theorem 5. Let CA be a cellular automaton with neighborhood vector N and
let gtu(CA) be the corresponding graph transformation unit. Then there is a
transition from S to S′ in CA if and only if gr(N,S))=⇒ gr(N,S′) in gtu(CA).

Therefore, cellular automata behave exactly as their corresponding graph
transformation units up to the representation of configurations as graphs. We
have considered cellular automata over the 2-dimensional space Z × Z. It is not
difficult to see that all our constructions also work for the d-dimensional space

80 H.-J. Kreowski et al.

Z
d in a similar way. One may even replace the quadratic cells by triangular or

hexagonal cells or use completely other networks.

7.2 Related Work

Like cellular automata, other approaches to parallel processing have been
transformed into parallel graph transformation like Petri nets (cf. [3,29,30]),
production networks (cf. [31]), artificial-ant colonies and particle swarms
(cf. [32]). Moreover, parallel graph transformation provides a semantic domain
for the graph-transformational modeling of various kinds of parallelism like
for autonomous units (cf. [33]) and graph-transformational swarm computing
(cf. [32]). Besides these examples that are closely related to the kind of par-
allel graph transformation considered in this paper, one encounters many fur-
ther subjects in the literature where parallel rule application on and parallel
evaluation of graph-like structures play an important rule like interaction nets,
multi-agent systems, parallel and reversible circuits, various kinds of diagrams
and networks. It may be worthwhile to look into the diverse research topics from
a graph-transformational point of view.

8 Conclusion

In this paper, we have recalled the approach to parallel graph transformation that
was introduced in [1], and have discussed some of its perspectives including the
parallel generation of graph languages, the parallelization of graph algorithms,
the infinite parallel graph transformation, and parallel graph transformation as
a framework for the modeling of parallel processes. Further research on these
topics can shed more light on their significance.

The theory of graph languages and those obtained by parallel generation in
particular is not at all far developed. It may be worthwhile to study decidability
and closure properties and to compare the various classes.

Given a specification of a graph algorithm by sequential graph transforma-
tion, one can always analyze the independence of rule applications to get a
parallelized solution. The use of proper control conditions may lead to further
improvement. Alternatively, graph algorithms may be modeled directly by means
of parallel graph transformation. So far, not much work is done in this direc-
tion, but it may help to prove correctness and to analyze the complexity in a
systematic way.

One can handle infinite graphs by the application of parallel rule with
infinitely many finite component rules. There is a good chance that this machin-
ery can contribute to infinite graph theory.

Parallel graph transformation has proven to provide a framework for the
modeling of parallel processes and a domain into which other approaches to
parallel-process modeling can be transformed. Therefore, it may be desirable to
develop parallel graph transformation further into a visual modeling languages
with suitable tool support.

A Simple Notion of Parallel Graph Transformation and Its Perspectives 81

Acknowledgment. We are grateful to the four reviewers for their helpful comments
that lead to various improvements.

References

1. Ehrig, H., Kreowski, H.-J.: Parallelism of manipulations in multidimensional infor-
mation structures. In: Mazurkiewicz, A. (ed.) MFCS 1976. LNCS, vol. 45, pp.
284–293. Springer, Heidelberg (1976). https://doi.org/10.1007/3-540-07854-1 188

2. Corradini, A., Ehrig, H., Heckel, R., Löwe, M., Montanari, U., Rossi, F.: Algebraic
approaches to graph transformation part I: basic concepts and double pushout
approach. In: Rozenberg [34], pp. 163–245

3. Baldan, P., Corradini, A., Ehrig, H., Löwe, M., Montanari, U., Rossi, F.: Concur-
rent semantics of algebraic graph transformations. In: Ehrig et al. [5], pp. 107–185

4. Kreowski, H.-J.: Manipulationen von Graphmanipulationen. Ph.D. thesis, Tech-
nische Universität Berlin (1978). Fachbereich Informatik

5. Ehrig, H., Kreowski, H.-J., Montanari, U., Rozenberg, G. (eds.): Handbook of
graph grammars and computing by graph transformation, concurrency, parallelism,
and distribution, vol. 3. World Scientific, Singapore (1999)

6. Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of algebraic graph
transformation. monographs in theoretical computer science. An EATCS Series.
Springer, Heidelberg (2006). https://doi.org/10.1007/3-540-31188-2

7. Ehrig, H., Ermel, C., Golas, U., Hermann, F.: Graph and model transformation:
general framework and applications. monographs in theoretical computer science.
An EATCS Series. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-
662-47980-3

8. Löwe, M.: Algebraic approach to single-pushout graph transformation. Theor.
Comput. Sci. 109, 181–224 (1993)

9. Corradini, A., Heindel, T., Hermann, F., König, B.: Sesqui-pushout rewriting. In:
Corradini, A., Ehrig, H., Montanari, U., Ribeiro, L., Rozenberg, G. (eds.) ICGT
2006. LNCS, vol. 4178, pp. 30–45. Springer, Heidelberg (2006). https://doi.org/10.
1007/11841883 4

10. Habel, A., Kreowski, H.-J.: Some structural aspects of hypergraph languages gener-
ated by hyperedge replacement. In: Brandenburg, F.J., Vidal-Naquet, G., Wirsing,
M. (eds.) STACS 1987. LNCS, vol. 247, pp. 207–219. Springer, Heidelberg (1987).
https://doi.org/10.1007/BFb0039608

11. Habel, A.: Hyperedge Replacement: Grammars and Languages. LNCS, vol. 643.
Springer, Berlin (1992)

12. Drewes, F., Habel, A., Kreowski, H.-J.: Hyperedge replacement graph grammars.
In: Rozenberg [34], pp. 95–162

13. Engelfriet, J.: Context-free graph grammars. In: Rozenberg, G., Salomaa, A. (eds.)
Handbook of Formal Languages, vol. 3, pp. 125–213. Springer, Heidelberg (1997).
https://doi.org/10.1007/978-3-642-59126-6 3

14. Kreowski, H.-J., Klempien-Hinrichs, R., Kuske, S.: Some essentials of graph trans-
formation. In: Esik, Z., Martin-Vide, C., Mitrana, V. (eds.) Recent Advances in
Formal Languages and Applications. Studies in Computational Intelligence, vol.
25, pp. 229–254. Springer, Heidelberg (2006). https://doi.org/10.1007/978-3-540-
33461-3 9

15. Rozenberg, G., Salomaa, A.: The Mathematical Theory of L Systems. Pure and
Applied Mathematics: A Series of Monographs and Textbooks, vol. 90. Academic
Press, Orlando (1980)

https://doi.org/10.1007/3-540-07854-1_188
https://doi.org/10.1007/3-540-31188-2
https://doi.org/10.1007/978-3-662-47980-3
https://doi.org/10.1007/978-3-662-47980-3
https://doi.org/10.1007/11841883_4
https://doi.org/10.1007/11841883_4
https://doi.org/10.1007/BFb0039608
https://doi.org/10.1007/978-3-642-59126-6_3
https://doi.org/10.1007/978-3-540-33461-3_9
https://doi.org/10.1007/978-3-540-33461-3_9

82 H.-J. Kreowski et al.

16. Kreowski, H.-J., Kuske, S., Lye, A.: Fusion grammars: a novel approach to the
generation of graph languages. In: de Lara, J., Plump, D. (eds.) ICGT 2017. LNCS,
vol. 10373, pp. 90–105. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
61470-0 6

17. Floyd, R.W.: Algorithm 97 (shortest path). Commun. ACM 5(6), 345 (1962)
18. Warshall, S.: A theorem on Boolean matrices. J. ACM 9(1), 11–12 (1962)
19. Dijkstra, E.W.: A note on two problems in connexion with graphs. Numer. Math.

1(1), 269–271 (1959)
20. Mahr, B.: Algebraic complexity of path problems. RAIRO Theor. Inf. Appl. 16(3),

263–292 (1982)
21. Litovski, I., Métivier, Y., Sopena, É.: Graph relabelling systems and distributed

algorithms. In: Ehrig et al. [5], pp. 1–56
22. Kreowski, H.-J., Kuske, S.: Graph multiset transformation - a new framework for

massively parallel computation inspired by DNA computing. Nat. Comput. 10(2),
961–986 (2011). https://doi.org/10.1007/s11047-010-9245-6

23. Diestel, R. (ed.): Directions in Infinite Graph Theory and Combinatorics. Topics
in Discrete Mathematics, vol. 3. Elsevier, North Holland (1992)

24. Codd, E.F.: Cellular Automata. Academic Press, New York (1968)
25. Kari, J.: Theory of cellular automata: a survey. Theoret. Comput. Sci. 334, 3–33

(2005)
26. von Neumann, J.: The General and Logical Theory of Automata, pp. 1–41. Wiley,

Pasadena (1951)
27. Wolfram, S.: A New Kind of Science. Wolfram Media Inc., Champaign (2002)
28. Peitgen, H.-O., Jürgens, H., Saupe, D.: Chaos and Fractals: New Frontiers of Sci-

ence. Springer, New York (1992). https://doi.org/10.1007/978-1-4757-4740-9
29. Kreowski, H.-J.: A comparison between Petri nets and graph grammars. In: Nolte-

meier, H. (ed.) WG 1980. LNCS, vol. 100, pp. 306–317. Springer, Heidelberg (1981).
https://doi.org/10.1007/3-540-10291-4 22

30. Corradini, A., Montanari, U., Rossi, F.: Graph processes. Fundam. Inform.
26(3/4), 241–265 (1996)

31. Dashkovskiy, S., Kreowski, H.-J., Kuske, S., Mironchenko, A., Naujuk, L., von
Totth, C.: Production networks as communities of autonomous units and their
stability. Int. Electron. J. Pure Appl. Math. 2, 17–42 (2010)

32. Abdenebaoui, L., Kreowski, H.-J., Kuske, S.: Graph-transformational swarms. In:
Bensch, S., Drewes, F., Freund, R., Otto, F., (eds.) Proceedings of the Fifth Work-
shop on Non-Classical Models for Automata and Applications (NCMA 2013), pp.
35–50. Österreichische Computer Gesellschaft (2013)

33. Hölscher, K., Kreowski, H.-J., Kuske, S.: Autonomous units to model interacting
sequential and parallel processes. Fundam. Inform. 92, 233–257 (2009)

34. Rozenberg, G. (ed.): Handbook of Graph Grammars and Computing by Graph
Transformation. Foundations, vol. 1. World Scientific, Singapore (1997)

https://doi.org/10.1007/978-3-319-61470-0_6
https://doi.org/10.1007/978-3-319-61470-0_6
https://doi.org/10.1007/s11047-010-9245-6
https://doi.org/10.1007/978-1-4757-4740-9
https://doi.org/10.1007/3-540-10291-4_22

A Tutorial on Graph Transformation

Barbara König1 , Dennis Nolte1(B) , Julia Padberg2, and Arend Rensink3

1 Universität Duisburg-Essen, Duisburg, Germany
dennis.nolte@uni-due.de

2 Hochschule für Angewandte Wissenschaften Hamburg, Hamburg, Germany
3 University of Twente, Enschede, Netherlands

Abstract. Graph transformation or graph rewriting has been developed
for nearly 50 years and has become a mature and manifold formal tech-
nique. Basically, rewrite rules are used to manipulate graphs. These rules
are given by a left-hand side and a right-hand side graph and the appli-
cation comprises matching the left-hand side and replacing it with the
right-hand side of the rule.

In this contribution we give a tutorial on graph transformation that
explains the so-called double-pushout approach to graph transformation
in a rigorous, but non-categorical way, using a gluing construction. We
explicate the definitions with several small examples.

We also introduce attributes and attributed graph transformation in
a lightweight form. The paper is concluded by a more extensive example
on a leader election protocol, the description of tool support and pointers
to related work.

1 Introduction

A substantial part of computer science is concerned with the transformation
of structures, the most well-known example being the rewriting of words via
Chomsky grammars, string rewriting systems [9] or transformations of the tape
of a Turing machine. We focus on systems where transformations are rule-based
and rules consist of a left-hand side (the structure to be deleted) and a right-hand
side (the structure to be added).

If we increase the complexity of the structures being rewritten, wse next
encounter trees or terms, leading to term rewriting systems [2]. The next level is
concerned with graph rewriting [42], which – as we will see below – differs from
string and term rewriting in the sense that we need a notion of interface between
left-hand and right-hand side, detailing how the right-hand side is to be glued
to the remaining graph.

Graph rewriting is a flexible and intuitive, yet formally rigorous, framework
for modelling and reasoning about dynamical structures and networks. Such
dynamical structures arise in many contexts, be it object graphs and heaps, UML
diagrams (in the context of model transformations [13]), computer networks,
the world wide web, distributed systems, etc. They also occur in other domains,

c© Springer International Publishing AG, part of Springer Nature 2018
R. Heckel and G. Taentzer (Eds.): Ehrig Festschrift, LNCS 10800, pp. 83–104, 2018.
https://doi.org/10.1007/978-3-319-75396-6_5

http://orcid.org/0000-0002-4193-2889
http://orcid.org/0000-0002-6170-6600
http://orcid.org/0000-0002-1714-6319

84 B. König et al.

where computer science methods are employed: social networks, as well as chem-
ical and biological structures. Specifically concurrent non-sequential systems are
well-suited for modelling via graph transformation, since non-overlapping occur-
rences of left-hand sides can be replaced in parallel. For a more extensive list of
applications see [12].

Graph rewriting has been introduced in the early 1970’s, where one of the
seminal initial contributions was the paper by Ehrig et al. [17]. Since then, there
have been countless articles in the field: many of them are foundational, describ-
ing and comparing different graph transformation approaches and working out
the (categorical) semantics. Others are more algorithmic in nature, describing
for instance methods for analysing and verifying graph transformation. Further-
more, as mentioned above, there have been a large number of contributions on
applications, many of them in software engineering [12], but in other areas as
well, such as the recent growing interest from the area of biology in connection
with the Kappa calculus (see for instance [7]).

Naturally, there are many other formalisms for describing concurrent systems,
we just mention a few: Petri nets [38] can be viewed as a special case of graph
transformation, missing the ability to model dynamic reconfigurations. There
are however extensions such as reconfigurable Petri nets that extend nets with
additional rules so that the net structure can be changed. An overview can be
found in this collection [35]. Graph transformation is similar in expressiveness
to process algebra [19,32,43], but is often more flexible, since a different choice
of rules leads to different behaviours. Furthermore, behavioural equivalences,
well-known from process algebra, can also be defined for graph transformation
[14,24,29].

The aim of this paper is not to give a full overview over all possible approaches
to graph transformation and all application scenarios. Instead, we plan to do
quite the opposite: in the wealth of papers on graph transformation it is often
difficult to discover the essence. Furthermore, readers who are not familiar with
the categorical concepts (especially pushouts) used in the field can get easily
intimidated. This is true for basic graph rewriting and is even more pronounced
for enriched forms, such as attributed graph rewriting [11,18,34].

To solve this, in this paper we give a condensed version that can be easily
and concisely defined and explained. For basic graph rewriting, we rely on the
double-pushout (DPO) approach [4,17], which is one of the most well-known
approaches to graph transformation, although clearly not the only one. In the
definition we do not use the notion of pushouts, although we will afterwards
explain their role.

For attributed graphs, we chose to give a lightweight, but still expressive
version, which captures the spirit of related approaches.

Apart from spelling out the definitions, we will also motivate why they have
a specific form. Afterwards, we will give an application example and introduce
tool support.

Note that in the context of this paper we use the terms graph rewriting and
graph transformation interchangeably. We will avoid the term graph grammar,

A Tutorial on Graph Transformation 85

since that emphasizes the use of graph transformation to generate a graph lan-
guage, here the focus is just on the rewriting aspect.

2 A Formal Introduction to Graph Transformation

We start by defining graphs, where we choose to consider directed, edge-labelled
graphs where parallel edges are allowed.

Other choices would be to use hypergraphs (where an edge can be connected
to any number of nodes) or to add node labels. Both versions can be easily
treated by our rewriting approach.1

Throughout the paper, we assume the existence of a fixed set Λ from which
we take our labels.

Definition 1 (Graph). A graph G is a tuple G = (V,E, s, t, �), where

– V is a set of nodes,
– E is a set of edges,
– s : E → V is the source function,
– t : E → V is the target function and
– � : E → Λ is the labelling function.

Given a graph G, we denote its components by VG, EG, sG, tG, �G. Given an
edge e ∈ EG, the nodes sG(e), tG(e) are called incident to e.

A central notion in graph rewriting is a graph morphism. Just as a function
is a mapping from a set to another set, a graph morphism is a mapping from a
graph to a graph. It maps nodes to nodes and edges to edges, while preserving
the structure of a graph. This means that if an edge is mapped to an edge,
there must be a mapping between the source and target nodes of the two edges.
Furthermore, labels must be preserved.

Graph morphisms are needed to identify the match of a left-hand side of
a rule in a (potentially larger) host graph. As we will see below, they are also
required for other purposes, such as graph gluing and graph transformation rules.

Definition 2 (Graph morphism). Let G, H be two graphs. A graph mor-
phism ϕ : G → H is a pair of mappings ϕV : VG → VH , ϕE : EG → EH such
that for all e ∈ EG it holds that

– sH(ϕE(e)) = ϕV (sG(e)),
– tH(ϕE(e)) = ϕV (tG(e)) and
– �H(ϕE(e)) = �G(e).

1 Note that considerable part of graph transformation theory is concerned with making
the results independent of the specific graph structure under consideration (see [28,
30]). This however depends on the use of category theory and we will not follow this
path here.

86 B. König et al.

A graph morphism ϕ is called injective (surjective) if both mappings ϕV , ϕE

are injective (surjective). Whenever ϕV and ϕE are bijective, ϕ is called an
isomorphism. In this case we say that G1, G2 are isomorphic and write G1

∼= G2.
Graph morphisms are composed by composing both component mappings.

Composition of graph morphisms is denoted by ◦.
In the following we omit the subscripts in the functions ϕV , ϕE and simply

write ϕ.

Example 1. Consider the following graphs G and H. Note that the numbers
written at the nodes are not part of the graph: they are just there to indicate
the morphism from G to H.

G =
1 2 3 4

A B

B

C ϕ
−→

1

2

3,4

A
B

D

C = H

Here the edges of G are mapped with respect to their corresponding source and
target node mappings. Note that the graph morphism ϕ is not surjective, since
the D-labelled edge in H is not targeted. Furthermore, the morphism ϕ is not
injective since the nodes 3 and 4 of the graph G are mapped to the same node
in H and the two B-labelled edges in G are mapped to the same edge in H.

Now we come to another central concept that we here call graph gluing, but
which is more conventionally called pushout in the literature. We will stick with
the name graph gluing for now and will later explain the relation to categorical
pushouts.

An intuitive explanation for the following construction is to think of two
graphs G1, G2 with an overlap I. Now we glue G1 and G2 together over this
common interface I, obtaining a new graph G1 +I G2. This intuition is adequate
in the case where the embeddings of I into the two graphs (called ϕ1, ϕ2 below)
are injective, but not entirely when they are not. In this case one can observe
some kind of merging effect that is illustrated in the examples below.

Graph gluing is described via factoring through an equivalence relation. We
use the following notation: given a set X and an equivalence ≡ on X, let X/ ≡
denote the set of all equivalence classes of ≡. Furthermore [x]≡ denotes the
equivalence class of x ∈ X.

Definition 3 (Graph gluing). Let I,G1, G2 be graphs with graph morphisms
ϕ1 : I → G1, ϕ2 : I → G2, where I is called the interface. We assume that all
node and edge sets are disjoint.

Let ≡ be the smallest equivalence relation on VG1 ∪ EG1 ∪ VG2 ∪ EG2 which
satisfies ϕ1(x) ≡ ϕ2(x) for all x ∈ VI ∪ EI .

A Tutorial on Graph Transformation 87

The gluing of G1, G2 over I (written as G = G1 +ϕ1,ϕ2 G2, or G = G1 +I G2

if the ϕi morphisms are clear from the context) is a graph G with:

VG = (VG1 ∪ VG2)/ ≡ EG = (EG1 ∪ EG2)/ ≡

sG([e]≡) =
{

[sG1(e)]≡ if e ∈ EG1

[sG2(e)]≡ if e ∈ EG2

tG([e]≡) =
{

[tG1(e)]≡ if e ∈ EG1

[tG2(e)]≡ if e ∈ EG2

�G([e]≡) =
{

�G1(e) if e ∈ EG1

�G2(e) if e ∈ EG2

where e ∈ EG1 ∪ EG2 .

Note that the gluing is well-defined, which is not immediately obvious since
the mappings sG, tG, �G are defined on representatives of equivalence classes.
The underlying reason for this is that ϕ1, ϕ2 are morphisms.

Example 2. We now explain this gluing construction via some examples.

– Let the two graph morphisms
ϕ1 : I → G1 and ϕ2 : I → G2 to the
right be given, where both ϕ1 and ϕ2 are
injective. Since the interface I is present
in both graphs G1 and G2, we can glue
the two graphs together to construct a
graph G1 +I G2 depicted on the bottom
right of the square.

1 2

B

1 2

B
C

1 2

B

A

1 2

B

A

C

ϕ1

ϕ2

I G1

G2 G1 +I G2

1 2 1,2
B

1 2

A

1,2

A

B

ϕ1

ϕ2

I G1

G2 G1 +I G2

– Now let the graph morphisms
ϕ1 : I → G1 and ϕ2 : I → G2 to the
left be given, where only ϕ2 is injective.
In the graph G1, the interface nodes of
I are merged via ϕ1. The gluing graph
G1 +I G2 is constructed by merging
all nodes in G1, G2, resulting in an A-
labelled loop, together with the original
B-labelled loop. This graph is depicted
at the bottom right of the square.

We are now ready to define graph transformation rules, also called produc-
tions. Such a rule consists of a left-hand side graph L and a right-hand side graph
R. However, as indicated in the introduction, this is not enough. The problem
is that, if we simply removed (a match of) L from a host graph, we would typi-
cally have dangling edges, i.e., edges where either the source or the target node
(or both) have been deleted. Furthermore, there would be no way to specify how
the right-hand side R should be attached to the remaining graph.

88 B. König et al.

Hence, there is also an interface graph I related to L and R via graph mor-
phisms, which specify what is preserved by a rule.

Definition 4 (Graph transformation rule). A (graph transformation) rule
r consists of three graphs L, I,R and two graph morphisms L

ϕL← I
ϕR→ R.

Given a rule r, all nodes and edges in L that are not in the image of ϕL are
called obsolete. Similarly, all nodes and edges in R that are not in the image of
ϕR are called fresh.

After finding an occurrence of a left-hand side L in a host graph (a so-called
match), the effect of applying a rule is to remove all obsolete elements and add
all fresh elements. As indicated above, the elements of I are preserved, providing
us with well-defined attachment points for R.

While this explanation is valid for injective matches and rule morphisms, it
does not tell the full story in case of non-injective morphisms. Here rules might
split or merge graph elements. Using the graph gluing defined earlier, it is easy
to give a formal semantics of rewriting.

The intuition is as follows: given a rule as in Definition 4 and a graph G, we
ask whether G can be seen as a gluing of L and an (unknown) context C over
interface I, i.e., whether there exists C such that G ∼= L+I C. If this is the case,
G can be transformed into H ∼= R +I C.

Definition 5 (Graph transformation). Let r = (L
ϕL← I

ϕR→ R) be a rule. We
say that a graph G is transformed via r into a graph H (symbolically: G

r⇒ H)
if there is a graph C (the so-called context) and a graph morphism ψ : I → C
such that:

G ∼= L +ϕL,ψ C H ∼= R +ϕR,ψ C

This situation can be depicted by the diagram to the
right (also called double-pushout diagram).
The morphism m is called the match, n the co-
match.

L

m

��

I
ϕL�� ϕR ��

ψ

��

R

n

��
G C

ηL

��
ηR

�� H

Depending on the morphisms ϕL and ϕR one can obtain different effects:
whenever both ϕL and ϕR are injective, we obtain standard replacement. When-
ever ϕL is non-injective we specify splitting, whereas a non-injective ϕR results
in merging.

We now consider some examples. First, we illustrate the straightforward case
where indeed the obsolete items are removed and the fresh ones are added, see
Fig. 1a. Somewhat more elaborate is the case when the right leg ϕR of a rule is
non-injective, which causes the merging of nodes, see Fig. 1b.

Different from string or term rewriting, in graph rewriting it may happen that
we find a match of the left-hand side, but the rule is not applicable, because no
context as required by Definition 5 exists. There are basically two reasons for

A Tutorial on Graph Transformation 89

1 21 2
A

1 2
B

1

2A

C
1

2

C
1

2B

C

ϕL ϕR

m ψ

ηRηL

n

L I R

G C H

(a) Application of a GTS rule

1 21 2 1,2

1 2
A

1 2
A

1,2
A

ϕL ϕR

m ψ

ηRηL

n

L I R

G C H

(b) Non-injective right leg ϕR

Fig. 1. GTS rule examples

11
A

1A

C

1

C

ϕL

m ψ

ηL

L I

G C

(a) Dangling edge condition example

11
A

1
A ?

ϕL

m ψ

ηL

L I

G C

(b) Identification condition example

Fig. 2. Gluing condition examples

this: either the rule removes a node, without removing all edges connected to
that node (dangling edge condition, see Fig. 2a), or the match identifies two
graph elements which are not preserved (identification condition) (see Fig. 2b).

The following proposition [10] states under which circumstances the context
exists.

Proposition 1 (Existence of a context, gluing condition). Let L
ϕL← I

ϕR→
R be a graph transformation rule and let m : L → G be a match. Then a context
C and a morphism ψ : I → C such that G ∼= L +ϕL,ψ C exist if and only if the
following holds:

– Every node v ∈ VL, whose image m(v) is incident to an edge e ∈ EG which
is not in the image of m, is not obsolete (i.e. in the image of ϕL).

– Whenever two elements x, y ∈ VL ∪EL with x
= y satisfy m(x) = m(y), then
neither of them is obsolete.

However, even if the context exists, there might be cases where it is non-
unique. This happens in cases where ϕL, the left leg of a rule, is non-injective.
In this case one can for instance split nodes (see the rule in Fig. 3a) and the

90 B. König et al.

question is what happens to the incident edges. By spelling out the definition
above, one determines that this must result in non-determinism. Either, we do
not split (Fig. 3b) or we split and each edge can non-deterministically “choose”
to stay either with the first or the second node (Fig. 3c and d). Each resulting
combination is a valid context and this means that a rule application may be
non-deterministic and generate several (non-isomorphic) graphs. In many papers
such complications are avoided by requiring the injectivity of ϕL.

1

2
3

A

1,2 3
A 1

2
3

A

A

ϕL ϕR

L
I R

(a) Rule with non-injective left leg ϕL

1

2
3

A

1,2 3
A

1,2
3

A

B 1,2
3

A

B

ϕL

m ψ

ηL

L
I

G C

(b) Valid context (i)

1

2
3

A

1,2 3
A

1,2
3

A

B

1 3

2

A

B

ϕL

m ψ

ηL

L
I

G C

(c) Valid context (ii)

1

2
3

A

1,2 3
A

1,2
3

A

B

1 3

2

A

B

ϕL

m ψ

ηL

L
I

G C

(d) Valid context (iii)

Fig. 3. Non-injective left leg rule with three valid contexts

Note that the specifics such as the dangling edge condition are typical to
the double-pushout (or DPO) approach that we are following here. In other
approaches (such as SPO, which we only discuss briefly in Sect. 7.2), whenever
a node is deleted, all its incident edges are deleted as well (deletion in unknown
contexts).

Finally, we can introduce the notion of a graph transformation system that
is frequently used. Here we fix a start graph and a set of rules. This enables us
to ask questions such as: Which graphs are reachable from the start graph via
the given rules?

A Tutorial on Graph Transformation 91

Definition 6 (Graph transformation system). A graph transformation
system is a tuple G = (G0,R) where

– G0 is an arbitrary graph, the so-called initial graph or start graph, and
– R is a set of graph transformation rules.

3 Attributed Graph Transformation

For many applications one requires more than graphs labelled over a finite alpha-
bet that we considered up to now. For instance, in Sect. 4 we will consider leader
election on a ring where edges, representing processes, are labelled with natural
numbers as Ids. Hence graphs should be attributed with elements of given data
types (e.g. integer, string, boolean) and it should be possible to perform compu-
tations (e.g. add two integers) and define guards that restrict the applicability
of rules (e.g. apply the rule only if a certain attribute is above some threshold).

In order to achieve this aim we now introduce attributed graph transforma-
tion. Choosing data types (also called sorts), carrier sets and operations amounts
to defining a signature and a corresponding algebra [16,46] and we will start by
introducing these concepts.

Definition 7 (Signature, Algebra). A signature Σ is a pair (S,F) where S
is a set of sorts and F is a set of function symbols equipped with a mapping
σ : F → S∗ × S. Sorts are also called types. We require that S contains the sort
bool .

A Σ-algebra A consists of carrier sets (As)s∈S for each sort and a function
fA : As1 ×· · ·×Asn

→ As for every function symbol f with σ(f) = (s1 . . . sn, s).
By T (Σ,X) we denote the Σ-term algebra, where X is a set of variables,

each equipped with a fixed sort. That is, the carrier sets of the term algebra
consist of all terms of the corresponding sort.

For an algebra A we denote by AS the set AS =
⊎

s∈S As, i.e., the union of
all carrier sets (under the implicit assumption that they are all disjoint).

Example 3. As a typical example for an algebra assume that we have two sorts
S = {int , bool} and function symbols add , mult , eq with σ(add) = σ(mult) =
(int int , int) and σ(eq) = (int int , bool) (representing addition, multiplication
and the equality predicate).

The carrier sets in an algebra A could be Aint = Z, Abool = {true, false} and
functions would be interpreted in the usual way, e.g. addA(z1, z2) = z1 + z2 and
eqA(z1, z2) = true whenever z1 = z2 and false otherwise.

On the other hand, in the term algebra T (Σ,X) the carrier sets consist
of terms, for instance T (Σ,X)int contains add(mult(x, y), y) and T (Σ,X)bool
contains eq(add(x, x), y), where x, y ∈ X are variables of sort int .

Algebras come equipped with their notion of morphism, so-called algebra
homomorphisms. These are mappings between the carrier sets that are compat-
ible with the operations.

92 B. König et al.

Definition 8 (Algebra homomorphism). Let A,B be two Σ-algebras. An
algebra homomorphism h : A → B is a family of maps (hs : As → Bs)s∈S such
that for each f ∈ F with σ(f) = (s1 . . . sn, s) we have

hs(fA(a1, . . . , an)) = fB(hs1(a1), . . . , hsn
(an)).

The next step is straightforward: add attributes, i.e., elements of a carrier
set, to (the nodes or edges of) a graph. In the following we add attributes only
to edges, however nothing prevents us from adding attributes also to nodes. In
order to have a clean separation, we require that the edge label determines the
sort of the corresponding attribute.

Definition 9 (Attributed graph). Let A be a Σ-algebra with Abool =
{true, false}. Let type : Λ → S be a function that assigns a sort to every edge
label. An attributed graph over A (G, att) consists of a graph G = (V,E, s, t, �),
together with a function att : EG → AS such that att(e) ∈ Atype(�(e)).

We first define the notion of attributed graph transformation rule, where left-
hand side and right-hand side are attributed over the term algebra. Furthermore
there is a guard condition of sort bool . We require that in the left-hand side terms
are always single unique variables, which can then be used in terms in the right-
hand side and in the guard.

Definition 10 (Attributed graph transformation rule). Let Σ be a sig-
nature and let X be a set of variables. An attributed rule is a graph transforma-
tion rule L

ϕL← I
ϕR→ R with two functions attL : EL → T (Σ,X)S , attR : ER →

T (Σ,X)S and a guard g ∈ T (Σ,X)bool . These attribution functions must respect
sorts, i.e., for every e ∈ EL it holds that attL(e) ∈ T (Σ,X)type(�L(e)) and ana-
logusly for e ∈ ER.

We require that each term attL(e) for e ∈ EL is a single variable and all these
variables occurring in the left-hand side are pairwise different. Furthermore, each
variable in attR(e) for e ∈ ER and each variable in g occurs in the left-hand side.

Now we are ready to define attributed graph transformation: while the rule
graphs L and R are attributed with elements from the term algebra, the graphs
to be rewritten are attributed with elements from a carrier set that represents a
primitive data type (such as integers or booleans).

Then a match determines the evaluation of the variables in the left-hand
side, giving us a corresponding algebra homomorphism. This homomorphism is
then used to evaluate the terms in the right hand sides and to generate the
corresponding values. All other edges keep their attribute values.

Definition 11 (Graph transformation with attributed rules). Given an
attributed rule L

ϕL← I
ϕR→ R with functions attL, attR and guard g, it can be

applied to a graph (G, attG) attributed over A as follows: G is transformed to
H as described in Definition 5. The match m : L → G induces an algebra homo-
morphism hm : T (Σ,X) → A by defining hm(x) = attG(m(e)) if e ∈ EL and
attL(e) = x. For each variable y not occurring in L the value hm(y) is arbitrary.

A Tutorial on Graph Transformation 93

The rule can be applied whenever hm(g) = true. In this case we define

attH(e′) =
{

hm(attR(e)) if e′ = n(e), e ∈ ER

attG(ηL(e)) otherwise, if e′ = ηR(e), e ∈ EC

where e′ ∈ EH . Whenever attH is not well-defined, the rule can not be applied.2

Note that the algebra homomorphism hm above is well-defined due to the
requirement that each occurrence of a variable in the left-hand side is unique.

We start with a straightforward case where we apply an attributed graph
transformation rule, see Fig. 4. The given rule shifts a B-labelled loop (which
has an attribute y) over an A-labelled edge with corresponding attribute x.
After the rule application the edge is attributed with the sum add(x, y) and the
loop inherits the former attribute x. (Note that in order to have a more compact
notation we slightly abuse notation and write x + y instead of add(x, y).)

1 2
A

1 2
A:xB:y

1 2

A:x+y
B:x

1 2
A:7

A:5

B:6
1 2

A

A
1 2
A:13

A:5

B:7

ϕL ϕR

m ψ

ηRηL

n

L I R

G C H

guard:x>y

Fig. 4. Attributed graph transformation rule application example

Note that in the definition above, we have to require that the attribution
function attH of H is well-defined, here is an example that illustrates why:
imagine a rule with two (equally labelled) edges in the left-hand side, which
have attributes x, y. The edges are preserved and in the right-hand side they are
attributed with the sum add(x, y) and the product mult(x, y) (see Fig. 5). Now,
since we allow non-injective matches, such a rule can be applied to a single edge
with attribute value 1 in the host graph.

The (preserved) edge has two different preimages under the co-match n. The
first preimage would require to set the value attH(e) to addA(1, 1) = 2, the
second to multA(1, 1) = 1.

Here, the straightforward solution is to say that the rule is not applicable,
since it would create an inconsistent situation. Such issues can be avoided by
requiring that all morphisms (rule morphisms, match, etc.) are injective.
2 The morphism n need not be injective, hence an edge e might have several preimages

under n. In this case, it is possible that the new attribute of an edge cannot be
uniquely determined.

94 B. König et al.

1 2

3 4
A

A

1 2

3 4

A:y

A:x
1 2

3 4

A:x+y

A:x·y

1,3 2,4
A:1

1,3 2,4
A

1,3 2,4

A:2|1?

ϕL ϕR

m ψ

ηRηL

n

L I R

G C H

Fig. 5. Example for a non-applicable rule

4 Example: Leader Election

We now demonstrate the modelling power of attributed graph transformation
systems, by modelling a variation of the leader election protocol. The protocol
(according to Chang and Roberts [3]) works as follows: there is a set of processes
arranged in a ring, i.e., every process has a unique predecessor and a unique
successor. Furthermore, each process has a unique Id and there exists a total
order on the Ids (which is easily achieved by assuming that Ids are natural
numbers).

The leader will be the process with the smallest Id, however no process knows
what is the smallest Id at the start of the protocol. Hence every process generates
a message with its own Id and sends it to its successor. A received message with
content MId is treated as follows by a process with Id PId :

– if MId < PId , then the message is forwarded to the successor
– if MId = PId , then the process declares itself the leader
– If MId > PId , then the message is not passed on (or alternatively discarded).

Whenever the Ids are unique, it can be shown that the protocol terminates
with the election of a unique leader.

In this example we additionally assume that the topology of the ring changes.
We extend the protocol allowing processes to enter and to leave the ring. Pro-
cesses entering the ring obtain a unique Id via a central counter, larger than all
other Ids existing so far in the ring. This additional feature does not interfere
with the election of the leader, since we elect the process with the minimal Id.
As any process might be deleted, we can not resort to the simplistic (and non-
distributed) solution of choosing the first process that is created and has thus
the lowest Id.

We now model this protocol as a graph transformation system (see Fig. 6).
The start graph S consists of a single node and a loop labelled count which
represents the counter, the current counter value 0 is stored in the attribute
(where all attributes are natural numbers). In a first step, modelled by rule

A Tutorial on Graph Transformation 95

first proc, if the counter attribute count satisfies the rule’s guard i=0, then the
first process labelled proc:i+1 is created and the counter is set to count:i+1.
Remember, only the edges are equipped with labels and corresponding terms.
As required in Definition 10 the left-hand side is attributed only by variables.
Again, the numbers in the nodes denote the morphisms from the interface to the
left-hand and right-hand side. Then, in subsequent steps (rule add proc) other
processes are created (incrementing the current counter and using it as the Id of
the process) and are inserted after an arbitrary existing process. Processes may
leave the ring, provided at least one other process is present, see rule del proc.

Fig. 6. Leader election in dynamic ring

96 B. König et al.

Processes can create messages as described above, represented by msg-labelled
loops (rule create msg). The attribute of the msg-loop is the Id of the sending
process. The message is forwarded if its Id is less than the Id of the receiving
process (rule forward) and if it is greater the message is discarded (rule discard).
If a process receives a message with its own Id, it declares itself the leader (rule
leader). Once the leader has been chosen, it cannot be deleted any longer since
the rule del proc requires the label proc. Moreover, all subsequent messages
arriving at the leader are discarded as well (rule discard2).

The application of rules may yield a graph G as given in Fig. 7. The match
morphism m induces the algebra homomorphism hm : T (Σ,X) → A with
hm(i) = 2 and hm(j) = 2. Obviously the guard is satisfied, so the edges
with label msg:2 and prc:2 are deleted, yielding the graph C. The graph H
is obtained by gluing an edge with label leader:2 between the two nodes.

Fig. 7. Transformation step: declaring the leader process

The state space of this system is infinite, due to the capability of creating new
processes with ever higher numbers, as well as unbounded numbers of messages.
There are techniques for verifying infinite-state graph transformation systems
(see for instance [26] where a similar system is analysed), but those are out of
scope for this tutorial. Alternatively, if we restrict the number of processes to a
fixed bound, then model checking becomes available as a technique, for instance
as implemented in the tool groove (see Sect. 5.1). Here are some example desir-
able properties, expressed in Computation Tree Logic (CTL) respectively Linear
Temporal Logic (LTL):

1. Safety (CTL): AG ! twoLeaders
2. Reachability (CTL): AG EF hasLeader
3. Termination (LTL): G F hasLeader

A Tutorial on Graph Transformation 97

Here, twoLeaders and hasLeader are propositions that are fulfilled by a given
state graph if it contains, respectively, at least two leader-edges or at least one
leader-edge. Those propositions can themselves be formulated as transformation
rules that do not actually change the graph, but only check for applicability.
Property 1 expresses the crucial safety property that there can never be two or
more leaders elected; property 2 expresses that from every state, a future state is
reachable in which a leader has been elected. Finally, property 3 expresses that
all paths will eventually actually reach a point where a leader has been elected.

The protocol encoded in the rule system at hand satisfies properties 1 and 2,
but not 3. Two reasons why termination fails to hold are that the process with
the lowest number may forever be deleted before it receives back its own message
and so is elected leader, or one process creates an infinite number of messages
which are never forwarded.

The protocol satisfies the reachability property 2 even in the case of changes
in topology. This can be reasoned out as follows: Since the added processes have
higher Ids than already inserted processes, the message which the new process
sends, will be discarded by the subsequent process. Another consequence of the
changing topology could be that the process proc:min1 with the minimal Id
min1 sends its message and is deleted before becoming leader. Then its message
is forwarded along the ring as it always satisfies the condition of rule forward.
But at some point the next minimal Id min2 is sent by some other process and
leads to the leader with Id min2. Then the message with min1 will be eventually
discarded with discard2.

5 Tools

Here, we merely hint at some of graph transformation tools that are available
for many different purposes and describe two of them in more detail. We intro-
duce AGG and GROOVE, since both of them can be considered to be general
purpose graph transformation tools. Other graph transformation tools that are
actively maintained are, Atom3 [8], Viatra [6], Fujaba [33] and Augur [25].

5.1 GROOVE: Graphs for Object-Oriented Verification

The tool groove3 was originally created to support the use of graphs for mod-
elling the design-time, compile-time, and run-time structure of object-oriented
systems [39], but since then has grown to be a full-fledged general-purpose graph
transformation tool. The emphasis lies on the efficient exploration of the state
space, given a particular graph transformation system; see, for instance, [20].
While doing so, groove recognises previously visited graphs modulo (graph)
isomorphism, avoiding duplication during their exploration. groove has a built-
in model checker that can run temporal logic queries (LTL or CTL) over the
resulting state space.

3 http://groove.cs.utwente.nl/.

http://groove.cs.utwente.nl/

98 B. König et al.

groove has a very rich set of features to enable the powerful and flexible
specification of transformation rules, including quantified rules [41] (so that a
single rule may be applied in one shot to all subgraphs that satisfy a given
property) and an extensive language to schedule rule applications (so that the
default strategy of applying every rule to all reachable graphs can be modified).

groove graphs do not conform precisely to the definition in this paper. Some
important differences are:

– groove graphs are typed; that is, all nodes have one of a set of types from
a user-defined type graph (and so do all edges, but an edge type essentially
corresponds to its label).

– More importantly, in groove attributes are associated with nodes rather
than edges; moreover, they are always named. Thus, rather than an edge
proc:1 between two untyped process nodes, one would have an unnumbered
edge next (say) between two Proc-type nodes, in combination with a named
attribute nr = 1 on its target node.

However, the graphs of this paper can be easily mimicked. A rule system for
leader election that corresponds to Sect. 4 is provided together with this paper.4

The results reported in the previous section on the safety, reachability and
termination properties 1–3 can easily be checked on this rule system by disabling
the rule add proc and starting with a graph that already has a given number of
processes (so that the state space is finite), and then invoking the LTL or CTL
model checker with the formulas given above. As stated before, the outcome is
that properties 1 and 2 are satisfied, whereas 3 is violated.

5.2 AGG: The Attributed Graph Grammar System

The Attributed Graph Grammar System (AGG) [45] is a development environ-
ment for attributed graph transformation systems and aims at specifying and
rapidly prototyping applications with complex, graph structured data. AGG5

supports the editing of graphs and rules that can be attributed by Java objects
and types. Basic data types as well as object classes already available in Java
class libraries may be used. The graph rules may be attributed by Java expres-
sions which are evaluated during rule applications. Additionally, rules may have
attribute conditions that are boolean Java expressions. AGG provides simula-
tion and analysis techniques, namely critical pair analysis and consistency check-
ing. The application of rules can be manipulated using control structures such
as negative application conditions to express requirements for non-existence of
substructures. Further control over the rules is given by rule layers that fix the
order in which rules are applied. The interpretation process applies rules of lower
layers first, which means applying the rules of a layer as long as possible before
applying those of the next layer. These rule layers allow the specification of a
simple control flow.
4 http://groove.cs.utwente.nl/wp-content/uploads/leader-electiongps.zip.
5 http://www.user.tu-berlin.de/o.runge/agg/.

http://groove.cs.utwente.nl/wp-content/uploads/leader-electiongps.zip
http://www.user.tu-berlin.de/o.runge/agg/

A Tutorial on Graph Transformation 99

6 Some Remarks on the Categorical Background

In this section, we explain the name double-pushout approach. It gives some
background information that is useful for understanding papers on the topic, but
is not required for the formal definition of graph transformation given earlier.

Graph gluing as in Definition 3 can alternatively be characterized via the cate-
gorical notion of pushout. Category theory relies on so-called universal properties
where, given some objects, one defines another object that is in some relation
to the given object and is – in some sense – the most general object which is in
this relation. The prototypical example is the supremum or join, where – given
two elements x, y of a partially ordered set (X,≤) – we ask for a third element
z with x ≤ z, y ≤ z and such that z is the smallest element which satisfies both
inequalities. There is at most one such z, namely z = x ∨ y, the join of x, y.

In the case of graphs, the order relation ≤ is replaced by graph morphisms.

Proposition 2. Let I,G1, G2 be graphs with graph morphisms ϕ1 : I → G1,
ϕ2 : I → G2 as in Definition 3. Assume further that G = G1 +ϕ1,ϕ2 G2 is the
gluing and that ψi : G1 → G, i = 1, 2, are graph morphisms that map each
element x ∈ VGi

∪ EGi
to its equivalence class ψi(x) = [x]≡.

The gluing diagram consisting of the morphisms
ϕ1, ϕ2, ψ1, ψ2 commutes, i.e., ψ1 ◦ ϕ1 = ψ2 ◦ ϕ2

and it has the following universal property: for
any two morphisms ψ′

1 : G1 → H, ψ′
2 : G2 → H

satisfying ψ′
1 ◦ ϕ1 = ψ′

2 ◦ ϕ2, there exists a unique
morphism η : G1+I G2 → H such that η◦ψ1 = ψ′

1

and η ◦ ψ2 = ψ′
2.

Squares which commute and satisfy the univer-
sal property spelled out above are called pushouts.
The graph G is unique up to isomorphism.

I
ϕ1

����
��
��
�� ϕ2

���
��

��
��

�

G1

ψ1

���
��

��
��

�

ψ′
1

��

G2

ψ2

����
��
��
��

ψ′
2

��

G

η

��
H

Intuitively, the pushout characterization says that G should be a graph where
the “common” parts of G1, G2 must be merged (since the square commutes), but
it should be obtained in the most general way by merging only what is absolutely
necessary and adding nothing superfluous. This corresponds to saying that for
any other merge H, G is more general and H can be obtained from G by further
merging or addition of graph elements (expressed by a morphism from G to H).

7 Literature Overview

7.1 Introductory Papers

This paper is by no means the first introductory paper to graph transformation.
It was our aim to write a paper that fills a niche and gives precise formal defi-
nitions, but does not rely on category theory. At the same time, we wanted to
treat general rules and not restrict to injective matches or rule spans, which is
often done in tutorial papers.

100 B. König et al.

Since not all introductory papers are well-known, it is worth to make a meta-
survey and to provide a list.

Of the original papers, the survey paper by Ehrig [10] is in any case worth a
read, however the notation has evolved since the seventies.

A standard reference is of course the “Handbook of Graph Grammars and
Computing by Graph Transformation”, which appeared in three volumes (foun-
dations [42] – applications, languages and tools [12] – concurrency, parallelism
and distribution [15]). Strongly related to our exposition is the chapter on DPO
rewriting by Corradini et al. [4], which is based on categorical definitions.

The well-known book by Ehrig et al. [11] revisits the theory of graph rewriting
from the point of view of adhesive categories, a general categorical framework for
abstract transformations. In an introductory section it defines the construction
of pushouts via factorization, equivalent to our notion of graph gluing.

Nicely written overview papers that however do not give formal definitions
are by Heckel [23] and by Andries et al. [1]. The paper by Giese et al. [21] is
aimed towards software engineers and gives a detailed railcab example.

The habilitation thesis by Plump [36] and the introductory paper by Kreowski
et al. [27] give very clear formal, but non-categorical, introductions. Both make
injectivity requirements, either on the rule spans or on the match.

The paper by Löwe and Müller [31] makes a non-categorical, but slightly
non-standard, introduction to graph transformation, while the introduction by
Schürr and Westfechtel [44] is very detailed and treats set-theoretical, categorical
and logical approaches. Both articles are however written in German.

7.2 Further Issues

Deletion in unknown contexts: In the DPO approach that was treated in this
note, it is forbidden to remove a node that is still attached to an edge, which
is not deleted. In this case, the rule is not applicable. In the single-pushout (or
SPO) approach [30] however, the deletion of a node to which an undeleted edge
is attached, is possible. In this case all incident edges are deleted as well. In
contrast to DPO, SPO is based on partial graph morphisms.

Attributed graph rewriting: Our way of defining attributed graph rewriting was
inspired by [26,37]. We provide some remarks on alternative approaches to
attributed graph transformation: in an ideal world one would like to extend all
the notions that we introduced previously (graph morphisms, gluing, rules, etc.)
to this new setting. This would mean to extend graph morphisms to attributed
graph morphisms by requiring algebra homomorphisms on the attributes.

This has been done [11,18,34], but unfortunately there are some complica-
tions. The first problem is that, as explained above, we want to work with two
different algebras: the term algebra and an algebra representing primitive data
types. This means that in the double-pushout diagrams, we would need alge-
bra homomorphisms between different algebras on the vertical axis and identity
algebra homomorphisms on the horizontal axis.

A Tutorial on Graph Transformation 101

But this causes another problem: nodes or edges that are preserved by a
rule, i.e., items that are in the interface usually should not keep their attribute
value. Otherwise it would be impossible to specify attribute changes. (Note that
it is possible to delete and recreate an edge, but not a node, since it is usually
connected to unknown edges and the dangling condition would forbid this.) But
this is contrary to the idea of having identity homomorphisms horizontally.

Hence, as announced above, we here opted for a lightweight approach where
we do not define a new notion of attributed graph morphism, but only add alge-
bra homomorphisms as required (for the match and co-match). Other options,
which we do not pursue here, is to add the carrier sets to the graphs and add
pointers from edges to the attribute values [18]. However, this formally turns
graphs into infinite objects.

As a side remark, we would also like to mention that graphs themselves are
two-sorted algebras with sorts node and edge and two function symbols (source
and target). This view has been exploited in order to generalize the structures
that can be transformed [30].

Application conditions: As we saw in the section on attributed graph transfor-
mation (Sect. 3) and in the example (Sect. 4), it is often useful to specify guards
that restrict the applicability of rules. So far our guards talked about attributes,
but it is also very useful to consider guards that refer to the structural properties
of a graph, so-called application conditions [11,22].

A special case are negative applications conditions that inhibit the application
of a rule whenever a certain structure is present in the vicinity of the left-hand side.
This can for instance be used to specify rules for computing the transitive closure
of a graph: whenever there exists an edge from node s to v and from v to t, add a
direct edge from s to t, but only if such an edge is not already present. In order to
gain expressiveness, application conditions can be nested and it has been shown
that such conditions are equal in expressiveness to first-order logic [40].

8 Conclusion

Naturally, there are many topics related to graph transformation that we did
not treat in this short tutorial. For instance, there exists a substantial amount
of work on theory, generalizing graph transformation by means of category the-
ory [11,28]. Furthermore, confluence or Church-Rosser theorems, in connection
with critical pair analysis have been extensively studied. Other verification and
analysis techniques have been studied as well (termination analysis, reachability
analysis, model checking, etc.). Work on graph transformation is also closely con-
nected to work on specification languages on graphs, such as nested application
conditions [22] and monadic second-order logic [5].

Acknowledgements. We would like to thank all the participants of the North
German GraTra Day in February 2017 in Hamburg for the discussion about this
paper. Especially, we would like to acknowledge Berthold Hoffmann, Leen Lambers
and Hans-Jörg Kreowski who contributed by commenting on our paper and giving
valuable suggestions and hints.

102 B. König et al.

References

1. Andries, M., Engels, G., Habel, A., Hoffmann, B., Kreowski, H.-J., Kuske, S.,
Plump, D., Schürr, A., Taentzer, G.: Graph transformation for specification and
programming. Sci. Comput. Program. 34(1), 1–54 (1999)

2. Bezem, M., Klop, J.W., de Vrijer, R. (eds.): Term Rewriting Systems. Cambridge
University Press, Cambridge (2003)

3. Chang, E.J.H., Roberts, R.: An improved algorithm for decentralized extrema-
finding in circular configurations of processes. Commun. ACM 22(5), 281–283
(1979)

4. Corradini, A., Montanari, U., Rossi, F., Ehrig, H., Heckel, R., Löwe, M.: Algebraic
approaches to graph transformation–part I: basic concepts and double pushout
approach. In: Rozenberg, G. (ed.) Handbook of Graph Grammars and Comput-
ing by Graph Transformation, Volume 1: Foundations. World Scientific (1997).
Chapter 3

5. Courcelle, B., Engelfriet, J.: Graph Structure and Monadic Second-Order Logic, A
Language-Theoretic Approach. Cambridge University Press, New York (2012)

6. Csertán, G., Huszerl, G., Majzik, I., Pap, Z., Pataricza, A., Varró, D.: VIATRA
- visual automated transformations for formal verification and validation of UML
models. In: 17th IEEE International Conference on Automated Software Engineer-
ing, pp. 267–270. IEEE Computer Society (2002)

7. Danos, V., Feret, J., Fontana, W., Harmer, R., Hayman, J., Krivine, J., Thompson-
Walsh, C.D., Winskel, G.: Graphs, rewriting and pathway reconstruction for rule-
based models. In: Proceedings of the FSTTCS 2012. LIPIcs, vol. 18. Schloss
Dagstuhl - Leibniz Center for Informatics (2012)

8. Lara, J., Vangheluwe, H.: AToM3: a tool for multi-formalism and meta-modelling.
In: Kutsche, R.-D., Weber, H. (eds.) FASE 2002. LNCS, vol. 2306, pp. 174–188.
Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45923-5 12

9. Dershowitz, N., Jouannaud, J.-P.: Rewrite systems. In: van Leeuwen, J. (eds.)
Formal Models and Semantics. Handbook of Theoretical Computer Science, vol.
B, pp. 243–320. Elsevier (1990). Chapter 6

10. Ehrig, H.: Introduction to the algebraic theory of graph grammars (a survey). In:
Claus, V., Ehrig, H., Rozenberg, G. (eds.) Graph Grammars 1978. LNCS, vol. 73,
pp. 1–69. Springer, Heidelberg (1979). https://doi.org/10.1007/BFb0025714

11. Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic Graph
Transformation. Monographs in Theoretical Computer Science. Springer, Heidel-
berg (2006). https://doi.org/10.1007/3-540-31188-2

12. Ehrig, H., Engels, G., Kreowski, H.-J., Rozenberg, G. (eds.): Handbook of Graph
Grammars and Computing by Graph Transformation. Applications Languages and
Tools. World Scientific, Singapore (1999)

13. Ehrig, H., Ermel, C., Golas, U., Hermann, F.: Graph and Model Transformation -
General Framework and Applications. Monographs in Theoretical Computer Sci-
ence. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-47980-3

14. Ehrig, H., König, B.: Deriving bisimulation congruences in the DPO approach to
graph rewriting with borrowed contexts. Math. Struct. Comput. Sci. 16(6), 1133–
1163 (2006)

15. Ehrig, H., Kreowski, H.-J., Montanari, U., Rozenberg, G. (eds.): Handbook of
Graph Grammars and Computing by Graph Transformation. Concurrency, Paral-
lellism, and Distribution. World Scientific, Singapore (1999)

https://doi.org/10.1007/3-540-45923-5_12
https://doi.org/10.1007/BFb0025714
https://doi.org/10.1007/3-540-31188-2
https://doi.org/10.1007/978-3-662-47980-3

A Tutorial on Graph Transformation 103

16. Ehrig, H., Mahr, B.: Fundamentals of Algebraic Specification 1, Equations and Ini-
tial Semantics. Monographs in Theoretical Computer Science. Springer, Heidelberg
(1985). https://doi.org/10.1007/978-3-642-69962-7

17. Ehrig, H., Pfender, M., Schneider, H.: Graph grammars: an algebraic approach. In:
Proceedings of the 14th IEEE Symposium on Switching and Automata Theory, pp.
167–180 (1973)

18. Ehrig, H., Prange, U., Taentzer, G.: Fundamental theory for typed attributed graph
transformation. In: Ehrig, H., Engels, G., Parisi-Presicce, F., Rozenberg, G. (eds.)
ICGT 2004. LNCS, vol. 3256, pp. 161–177. Springer, Heidelberg (2004). https://
doi.org/10.1007/978-3-540-30203-2 13

19. Fokkink, W.: Introduction to Process Algebra. Springer, Heidelberg (2000).
https://doi.org/10.1007/978-3-662-04293-9

20. Ghamarian, A.H., de Mol, M.J., Rensink, A., Zambon, E., Zimakova, M.V.: Mod-
elling and analysis using groove. Int. J. Soft. Tools Technol. Transf. 14(1), 15–40
(2012)

21. Giese, H., Lambers, L., Becker, B., Hildebrandt, S., Neumann, S., Vogel, T.,
Wätzoldt, S.: Graph transformations for MDE, adaptation, and models at run-
time. In: Bernardo, M., Cortellessa, V., Pierantonio, A. (eds.) SFM 2012. LNCS,
vol. 7320, pp. 137–191. Springer, Heidelberg (2012). https://doi.org/10.1007/978-
3-642-30982-3 5

22. Habel, A., Pennemann, K.-H.: Nested constraints and application conditions for
high-level structures. In: Kreowski, H.-J., Montanari, U., Orejas, F., Rozenberg,
G., Taentzer, G. (eds.) Formal Methods in Software and Systems Modeling. LNCS,
vol. 3393, pp. 293–308. Springer, Heidelberg (2005). https://doi.org/10.1007/978-
3-540-31847-7 17

23. Heckel, R.: Graph transformation in a nutshell. In: Bezivin, J., Heckel, R. (eds.)
Language Engineering for Model-Driven Software Development, number 04101 in
Dagstuhl Seminar Proceedings (2005)

24. Høgh Jensen, O., Milner, R.: Bigraphs and mobile processes (revised). Technical
report UCAM-CL-TR-580, University of Cambridge (2004)

25. König, B., Kozioura, V.: Augur - a tool for the analysis of graph transformation
systems. Bull. EATCS 87, 126–137 (2005)

26. König, B., Kozioura, V.: Towards the verification of attributed graph transforma-
tion systems. In: Ehrig, H., Heckel, R., Rozenberg, G., Taentzer, G. (eds.) ICGT
2008. LNCS, vol. 5214, pp. 305–320. Springer, Heidelberg (2008). https://doi.org/
10.1007/978-3-540-87405-8 21

27. Kreowski, H.-J., Klempien-Hinrichs, R., Kuske, S.: Some essentials of graph trans-
formation. In: Ésik, Z., Martin-Vide, C., Mitrana, V. (eds.) Recent Advances in
Formal Languages and Applications, pp. 229–254. Springer, Heidelberg (2006).
https://doi.org/10.1007/978-3-540-33461-3 9

28. Lack, S., Sobociński, P.: Adhesive and quasiadhesive categories. RAIRO - Theor.
Inf. Appl. 39(3), 511–545 (2005)

29. Leifer, J.J., Milner, R.: Deriving bisimulation congruences for reactive systems.
In: Palamidessi, C. (ed.) CONCUR 2000. LNCS, vol. 1877, pp. 243–258. Springer,
Heidelberg (2000). https://doi.org/10.1007/3-540-44618-4 19

30. Löwe, M.: Algebraic approach to single-pushout graph transformation. Theor.
Comput. Sci. 109, 181–224 (1993)

31. Löwe, M., Müller, J.: Algebraische Graphersetzung: mathematische Modellierung
und Konfluenz. Forschungsbericht des Fachbereichs Informatik, TU Berlin, Berlin
(1993)

https://doi.org/10.1007/978-3-642-69962-7
https://doi.org/10.1007/978-3-540-30203-2_13
https://doi.org/10.1007/978-3-540-30203-2_13
https://doi.org/10.1007/978-3-662-04293-9
https://doi.org/10.1007/978-3-642-30982-3_5
https://doi.org/10.1007/978-3-642-30982-3_5
https://doi.org/10.1007/978-3-540-31847-7_17
https://doi.org/10.1007/978-3-540-31847-7_17
https://doi.org/10.1007/978-3-540-87405-8_21
https://doi.org/10.1007/978-3-540-87405-8_21
https://doi.org/10.1007/978-3-540-33461-3_9
https://doi.org/10.1007/3-540-44618-4_19

104 B. König et al.

32. Milner, R. (ed.): A Calculus of Communicating Systems. LNCS, vol. 92. Springer,
Heidelberg (1980). https://doi.org/10.1007/3-540-10235-3

33. Nickel, U., Niere, J., Zündorf, A.: The FUJABA environment. In: Ghezzi, C.,
Jazayeri, M., Wolf, A.L. (eds.) Proceedings of the 22nd International Conference
on on Software Engineering, pp. 742–745. ACM (2000)

34. Orejas, F.: Symbolic graphs for attributed graph constraints. J. Symbolic Comput.
46(3), 294–315 (2011)

35. Padberg, J., Kahloul, L.: Overview of reconfigurable Petri nets. In: Heckel, R.,
Taentzer, G. (eds.) Ehrig Festschrift. LNCS, vol. 10800, pp. 201–222. Springer,
Cham (2018)

36. Plump, D.: Computing by Graph Rewriting. Habilitation thesis, Universität Bre-
men (1999)

37. Plump, D., Steinert, S.: Towards graph programs for graph algorithms. In: Ehrig,
H., Engels, G., Parisi-Presicce, F., Rozenberg, G. (eds.) ICGT 2004. LNCS, vol.
3256, pp. 128–143. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-
540-30203-2 11

38. Reisig, W.: Petri Nets: An Introduction. EATCS Monographs on Theoretical Com-
puter Science. Springer, Heidelberg (1985). https://doi.org/10.1007/978-3-642-
69968-9

39. Rensink, A.: The GROOVE simulator: a tool for state space generation. In: Pfaltz,
J.L., Nagl, M., Böhlen, B. (eds.) AGTIVE 2003. LNCS, vol. 3062, pp. 479–485.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-25959-6 40

40. Rensink, A.: Representing first-order logic using graphs. In: Ehrig, H., Engels, G.,
Parisi-Presicce, F., Rozenberg, G. (eds.) ICGT 2004. LNCS, vol. 3256, pp. 319–335.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30203-2 23

41. Rensink, A., Kuperus, J.-H.: Repotting the geraniums: on nested graph transfor-
mation rules. In: Boronat, A., Heckel, R. (eds.) Graph Transformation and Visual
Modelling Techniques (GT-VMT). Electronic Communications of the EASST, vol.
18 (2009)

42. Rozenberg, G. (ed.): Handbook of Graph Grammars and Computing by Graph
Transformation, Volume 1: Foundations. World Scientific, Singapore (1997)

43. Sangiorgi, D., Walker, D.: The π-calculus-A Theory of Mobile Processes. Cam-
bridge University Press, Cambridge (2001)

44. Schürr, A., Westfechtel, B.: Graph grammars and graph rewriting systems (in
German). Technical report AIB 92–15, RWTH Aachen (1992)

45. Taentzer, G.: AGG: a tool environment for algebraic graph transformation. In:
Nagl, M., Schürr, A., Münch, M. (eds.) AGTIVE 1999. LNCS, vol. 1779, pp. 481–
488. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-45104-8 41

46. Wirsing, M.: Algebraic specification. In: van Leeuwen, J. (ed.) Formal Models
and Semantics. Handbook of Theoretical Computer Science, vol. B, pp. 675–788.
Elsevier (1990). Chapter 13

https://doi.org/10.1007/3-540-10235-3
https://doi.org/10.1007/978-3-540-30203-2_11
https://doi.org/10.1007/978-3-540-30203-2_11
https://doi.org/10.1007/978-3-642-69968-9
https://doi.org/10.1007/978-3-642-69968-9
https://doi.org/10.1007/978-3-540-25959-6_40
https://doi.org/10.1007/978-3-540-30203-2_23
https://doi.org/10.1007/3-540-45104-8_41

Initial Conflicts and Dependencies:
Critical Pairs Revisited

Leen Lambers1(B) , Kristopher Born2, Fernando Orejas3 ,
Daniel Strüber4 , and Gabriele Taentzer2

1 Hasso-Plattner-Institut, Potsdam, Germany
leen.lambers@hpi.de

2 Philipps-Universität Marburg, Marburg, Germany
{born,taentzer}@informatik.uni-marburg.de

3 Technical University of Catalunia, Barcelona, Spain
orejas@lsi.upc.edu

4 Universität Koblenz-Landau, Koblenz, Germany
strueber@uni-koblenz.de

Abstract. Considering a graph transformation system, a critical pair
represents a pair of conflicting transformations in a minimal context. A
conflict between two direct transformations of the same structure occurs
if one of the transformations cannot be performed in the same way after
the other one has taken place. Critical pairs allow for static conflict and
dependency detection since there exists a critical pair for each conflict
representing this conflict in a minimal context. Moreover it is sufficient
to check each critical pair for strict confluence to conclude that the whole
transformation system is locally confluent. Since these results were shown
in the general categorical framework of M-adhesive systems, they can be
instantiated for a variety of systems transforming e.g. (typed attributed)
graphs, hypergraphs, and Petri nets.

In this paper, we take a more declarative view on the minimality of
conflicts and dependencies leading to the notions of initial conflicts and
initial dependencies. Initial conflicts have the important new characteris-
tic that for each given conflict a unique initial conflict exists representing
it. We introduce initial conflicts for M-adhesive systems and show that
the Completeness Theorem and the Local Confluence Theorem still hold.
Moreover, we characterize initial conflicts for typed graph transforma-
tion systems and show that the set of initial conflicts is indeed smaller
than the set of essential critical pairs (a first approach to reduce the
set of critical pairs to the important ones). Dual results hold for initial
dependencies.

1 Introduction

Graph transformations are often affected by conflicts and dependencies
between the included rules. To improve their transformation specifications, users
may require a list of all potential conflicts and dependencies occurring between
the contained rules. Critical pair analysis (CPA) is a static analysis to enable
c© Springer International Publishing AG, part of Springer Nature 2018
R. Heckel and G. Taentzer (Eds.): Ehrig Festschrift, LNCS 10800, pp. 105–123, 2018.
https://doi.org/10.1007/978-3-319-75396-6_6

http://orcid.org/0000-0001-6937-5167
http://orcid.org/0000-0002-3023-4006
http://orcid.org/0000-0002-5969-3521

106 L. Lambers et al.

Fig. 1. Overview of critical pair kinds with their formal foundations. Characterizations
are given in the category of typed graphs.

the automated computation of such a list. The notion of critical pair was coined
in the domain of mathematical logic, where it was first introduced for term
rewriting systems [1]. More recently, it turned out to be useful for graph trans-
formation systems as well. Plump [2] and Heckel et al. [3] introduced critical pair
notions for term graph rewriting and typed attributed graphs, respectively. It
was Ehrig who, together with his colleagues, came up with a generalized theory
of critical pairs for adhesive high-level replacement systems [4]. A remarkable
feature that CPA inherits from graph transformations is its versatility. CPA has
been used in many scenarios, including conflict detection in functional system
requirements [5], detection of product-line feature interactions [6], verification of
model transformations [7], and numerous other software engineering scenarios.
In these settings, CPA was used to show the correctness of a specification, to
improve a rule set by fostering the independent application of its rules, and to
support developers during design decisions.

The original critical-pair notion was focused on delete-use conflicts, i.e., situ-
ations where a rule deletes an element required by the second one, and the dual
counterpart of produce-use dependencies. To consider produce-forbid conflicts as
well, the notion of critical pair was extended to rules with negative application
conditions in [8]. Each critical pair represents one such conflict situation in a
minimal context : It comprises a graph specifying an overlap of the two consid-
ered rules, together with two jointly surjective match morphisms embedding the
rules’ left-hand sides into this graph.

Essential critical pairs [9] were introduced to optimize static conflict detec-
tion and local confluence analysis. They specify a well-defined subset of the set of
critical pairs between a pair of rules to support a more “compact” representation
of potential conflicts and dependencies, while providing the same main benefits
as regular critical pairs: completeness, i.e. each potential conflict or dependency
is represented by a critical pair in a minimal context, and analyzibility of local
confluence, i.e., strict confluence of each critical pair implies local confluence.
However, we shall see that essential critical pairs do not provide the most com-
pact representation of potential conflicts and dependencies.

Initial Conflicts and Dependencies: Critical Pairs Revisited 107

In this paper, we consider the following question: Can the set of essential
critical pairs be reduced even further without losing completeness and local con-
fluence? To answer this question, we introduce the notion of initial conflicts. As
shown in Fig. 1, initial conflicts further reduce the set of critical pairs, in the sense
that the same initial conflict represents multiple essential critical pairs. More
precisely, the initial conflict is obtained from these essential critical pairs by
“unfolding” them, i.e., reducing the overlap of the conflicting rules. A similar
relationship between essential and regular critical pairs was shown in [9]. In con-
trast to essential critical pairs, initial critical pairs are defined declaratively and
generically in a categorical way, rather than constructively and restricted to the
category of typed graphs. In sum, we make the following contributions:

– We define the notion of initial conflicts in a purely category-theoretical way,
using the framework of M-adhesive categories.

– We provide results to show that the set of initial conflicts still enjoys the com-
pleteness property and the local confluence theorem. Moreover, we introduce
M-initial conflicts and show that they are equivalent to critical pairs.

– We characterize initial conflicts for typed graph transformation systems and
show that the set of initial conflicts is effectively smaller than the set of essen-
tial critical pairs.

– Dually to initial conflicts, we introduce initial dependencies.

The rest of this paper is structured as follows. Section 2 introduces a running
example, whereas Sect. 3 revisits the necessary preliminaries. Section 4 intro-
duces the notion of initial conflicts for M-adhesive systems and its relationship
with critical pairs. Readers mainly interested in initial conflicts for graph trans-
formation systems may skip this section. Section 5 formally characterizes initial
conflicts in the category of typed graphs. Section 6 outlines how new results can
be transferred to dependencies. Section 7 discusses related work and concludes
our work.

2 Motivating Example

Throughout this paper, we illustrate the new concepts with an example, which
specifies the operational semantics of finite automata by graph transformation.
Finite automata are mainly used to recognize words that conform to regular
expressions. A finite automaton consists of a set of states, a set of labeled tran-
sitions running between states, a start state, and a set of end states. If the whole
word can be read by the automaton such that it finally reaches an end state,
the word is in the language of this automaton. In the literature, deterministic
automata are distinguished from non-deterministic ones. An automaton is deter-
ministic if, for every state and symbol, there is at most one transition starting in
that state and being labeled with that symbol. We will see that the specification
of non-deterministic automata shows conflicts.

In the upper left corner of Fig. 2, a simple type graph for finite automata
and input words is shown. A Transition has a (s)ource and a (t)arget edge to

108 L. Lambers et al.

Fig. 2. Type graph and rules for executing transitions in finite automata

two States and has a Label. The Cursor points to the (c)urrent state. An input
word is given by a Queue of Elements corresponding to labels. The queue points
to the (n)ext symbol to be recognized.

Additionally, Fig. 2 depicts two rules specifying the execution of automata.
Rule execute executes a transition which is not a loop. The cursor is set to the
next state and the input queue cursor points to the next element. For the last
symbol we use rule executeLast which just consumes the last symbol and sets
the cursor to the next state. Finally, all queue elements may be deleted.

Figure 3 shows an example automaton A in concrete and abstract syntax.
This automaton recognizes the language L(A) = {abnc|n ≥ 0}. An example
input word is abbc. The abstract syntax graph in Fig. 3 shows an instance graph
conforming to the type graph in Fig. 2. It contains the abstract syntax informa-
tion for both the example automaton and the input word, glued at all Label-
nodes. Note that n-typed edges define the order of symbols in the input word.

concrete syntaxabstract syntax

B
 b

a c CA

Fig. 3. An example automaton with an example input word

To recognize label a, rule execute is applied at its only possible match. As
the result, the cursor points to B:State, the first n-edge is deleted, and the queue
points to the first element containing label b. To recognize the whole word three
further rule applications are needed.

The execute-rules cause many potential conflicts; for example, the pair (exe-
cute, execute) has 49 essential critical pairs. It will turn out that most of them

Initial Conflicts and Dependencies: Critical Pairs Revisited 109

just show variants of basically the same conflicts. Their set of initial conflicts,
however, contains just 7 pairs. (By the way, AGG [10] runs out of memory
when computing all critical pairs after checking over 12,000 rule overlaps. Veri-
graph [11] found 51,602 overlaps with monomorphic matches, where 21,478 of
them represent critical pairs.)

3 Preliminaries

In this section, we give a short introduction to M-adhesive categories [4,12] and
M-adhesive systems to define the setting for the categorical results in Sect. 4.
Moreover, we recall the classical notions of conflict and critical pair as well as
the corresponding results Completeness Theorem and Local Confluence Theorem
within this categorical framework [4,13].

By considering M-adhesive categories it is possible to avoid similar investi-
gations for different instantiations like e.g. attributed graphs, Petri nets, hyper-
graphs, and algebraic specifications. An M-adhesive category 〈C,M〉 is a cate-
gory C with a distinguished class M of monomorphisms satisfying certain prop-
erties. The most important one is the van Kampen (VK) property stating a
certain kind of compatibility of pushouts and pullbacks along M-morphisms. In
[13] it is proven that the category of typed graphs 〈GraphsTG,M〉 with the
class M of all injective typed graph morphisms is M-adhesive. In Sect. 5 we will
instantiate the idea of initial conflicts to this category.

Within this categorical framework we introduce our notion of rule, direct
transformation, and M-adhesive system following the so-called DPO app-
roach [13]. Note that these definitions can be instantiated to the case of typed
graph transformation by replacing each object with a typed graph and each mor-
phism with a typed graph morphism. In the category GraphsTG, M-adhesive
systems are then called typed graph transformation systems.

Definition 1 (Rule, direct transformation, M-adhesive system). Given
an M-adhesive category 〈C,M〉, then we define the following:

– A rule p : L l← K
r→ R is a span of morphisms l, r ∈ M. We call L (resp.

R), the left-hand side (LHS) (resp. right-hand side (RHS)) of rule p.
– A direct transformation G

p,m⇒ H from G to H via a rule p : L ← K → R
and a morphism m : L → G, called match, consists of the double pushout
(DPO) [14] as depicted in Fig. 4. Since pushouts along M-morphisms in an
M-adhesive category always exist, the DPO can be constructed if the pushout
complement of m ◦ l exists. Then, the match m satisfies the gluing condition
of rule p.

– A transformation, denoted as G0
∗⇒ Gn, is a sequence G0 ⇒ G1 ⇒ · · · ⇒ Gn

of direct transformations. For n = 0, we have the identical transformation
G0 ⇒ G0. Moreover, for n = 0 we also allow isomorphisms G0

∼= G′
0, because

pushouts, and hence also direct transformations, are only unique up to iso-
morphism.

– Given a set of rules R, triple (C,M,R) is an M-adhesive system.

110 L. Lambers et al.

Fig. 4. Direct transformation as DPO, deletion graph constructed by initial pushout

The classical definitions for transformation pairs in conflict and critical pairs
are recalled in [13]. The latter represent conflicts in a minimal context material-
ized by a pair of matches being jointly epimorphic. In particular, for the critical
pair definition it is assumed that the M−adhesive category comes with a so-
called E ′-M pair factorization, generalizing the classical epi-mono factorization
to a pair of morphisms with the same codomain. It is proven in [13] that the cat-
egory GraphsTG of typed graphs has a unique E ′-M pair factorization, where
E ′ is the class of jointly surjective typed graph morphism pairs. Note that we
stick to the notation E ′ for jointly epimorphic morphisms as in [13], where E on
the other hand is used to denote a class of epimorphisms.

Definition 2 (conflict, critical pair). A pair of direct transformations t1 :
G

p1,m1⇒ H1 and t2 : G
p2,m2⇒ H2 is in conflict if �h12 : L1 → D2 : d2 ◦ h12 = m1

or �h21 : L2 → D1 : d1 ◦ h21 = m2.

R1

m′
1

��

K1
l1 ��r1��

��

L1

h12

��
m1

���
��

��
��

� L2

h21

��
m2

����
��
��
��

K2

��

l2�� r2 �� R2

m′
2

��
H1 D1

d1

��
e1

�� G D2
d2

��
e2

�� H2

Given an E ′-M pair factorization, a critical pair is a pair of direct transfor-
mations K

p1,m1⇒ P1 and K
p2,m2⇒ P2 in conflict with (m1,m2) in E ′.

Now, we recall the Completeness Theorem for critical pairs, where we need
the notion of extension morphism and extension diagram as presented in [4,13].

Definition 3 (Extension diagram). An extension diagram is a diagram (1)
as shown on the left of Fig. 5 where f : G′ → G is a morphism, called extension
morphism, and t : G

p
=⇒ H as well as t′ : G′ p

=⇒ H ′ are two direct transforma-
tions via the same rule p with matches m′ and f ◦m′ respectively, defined by the
four pushouts in the middle of Fig. 5.

Transformations are actually extended by extending their context D′ to D.
Morphisms f : G′ → G and f ′ : H ′ → H are the resulting pushout morphisms. In
the category GraphsTG, this means that the context graph D′ may be embedded
into a larger one and/or elements of it may be glued together. Corresponding
actions are reflected in f and f ′ but no additional actions may happen.

Initial Conflicts and Dependencies: Critical Pairs Revisited 111

Fig. 5. Extension diagram (overview and more detailed), extension diagram for trans-
formation pair

The Completeness Theorem [4,13] for critical pairs states that each potential
conflict can be represented in a minimal context by some critical pair. For con-
ciseness reasons in the following we sometimes write that the M-adhesive system
comes with an E ′-M pair factorization (or some other additional requirement)
if the corresponding M adhesive category does.

Theorem 4 (Completeness Theorem). Let an M-adhesive system with an
E ′-M pair factorization be given. For each pair of direct transformations H1

p1⇐=
G

p2=⇒ H2 in conflict, there is a critical pair P1
p1⇐= K

p2=⇒ P2 with extension
diagrams (1) and (2) and m ∈ M as depicted on the right of Fig. 5.

The Local Confluence Theorem [4,13] states that, by checking each crit-
ical pair for strict confluence, one can conclude local confluence of the overall
transformation system. Strict confluence ensures that the largest subobject of K
preserved by both t1 and t2 is preserved by the transformations establishing local
confluence. Note that for this result the M-adhesive category needs to fulfill an
additional requirement: The category needs so-called initial pushouts describing
the existence of a “smallest” pushout over a morphism [13]. It is proven in [13]
that the category GraphsTG of typed graphs has initial pushouts.

Theorem 5 (Local Confluence Theorem). Given an M-adhesive system
with an E ′-M pair factorization and initial pushouts over M-morphisms, it is
locally confluent if all its critical pairs are strictly confluent.

For a closer look at conflicts we have to identify the following two rule parts:
the deletion object comprising the part to be deleted and its boundary specifying
how the deletion object is connected to the preserved rule part.

Definition 6 (Boundary and deletion objects). Let an M-adhesive system
with initial POs [13] over M and a rule p : L l← K

r→ R as well as an initial
pushout (IPO) (see Fig. 4) over morphism l be given. Then we say that B is the
boundary object for rule p and the context object C in this IPO is the deletion
object for rule p.

112 L. Lambers et al.

4 Initial Conflicts

The original idea of critical pairs consists of considering all possible conflicting
transformations in a minimal context. In the classical critical pair definition
this minimal context is materialized by a pair of jointly epimorphic matches
from a special set E ′ arising from the E ′-M pair factorization as additional
requirement to the M-adhesive category. We propose here a more declarative
view on a pair of direct transformations in conflict to be minimal resulting in
the subsequent definition of initial conflicts. In categorical terms, one can use
actually the notion of initiality of transformation pairs to obtain this new view
on critical pairs. Interestingly, it will turn out that each initial conflict is a critical
pair but not the other way round. We will show however at the end of this section
that all initial conflicts still satisfy the Completeness Theorem as well as the
Local Confluence Theorem. Consequently, we have found an important subset
within the set of classical critical pairs for performing static conflict detection
as well as local confluence analysis for M-adhesive systems. Finally, we will see
also that the notion of M-initiality allowing merely M-morphisms as extension
morphisms leads to the notion of M-initial conflicts, representing an equivalent
characterization of critical pairs provided that the E ′-M pair factorization for
building them is unique. We will see that by definition (M-)initial conflicts
have the important new characteristic that for each given pair of conflicting
transformations there exists a unique (M-)initial conflict representing it.

Definition 7 ((M-)Initial transformation pair). Given a pair of direct

transformations (t1, t2) : H1
p1,m1⇐= G

p2,m2=⇒ H2, then (tI1, t
I
2) : HI

1

p1,m
I
1⇐= GI p2,m

I
2=⇒

HI
2 is an initial transformation pair (resp. M-initial transformation pair) for

(t1, t2) if it can be embedded into (t1, t2) via extension diagrams (1) and (2) and
extension morphism f I (resp. f I ∈ M) as in Fig. 6 such that for each transfor-

mation pair (t′1, t
′
2) : H ′

1
p1,m

′
1⇐= G′ p2,m

′
2=⇒ H ′

2 that can be embedded into (t1, t2)
via extension diagrams (3) and (4) and extension morphism f (resp. f ∈ M) as
in Fig. 6 it holds that (tI1, t

I
2) can be embedded into (t′1, t

′
2) via unique extension

diagrams (5) and (6) and unique vertical morphism f ′I (resp. f ′I ∈ M) s.t.
f ◦ f ′I = f I .

Fig. 6. (M-)initial transformation pair HI
1

p1,m
I
1⇐= GI p2,m

I
2=⇒ HI

2 for H1
p1,m1⇐= G

p2,m2=⇒ H2

Initial Conflicts and Dependencies: Critical Pairs Revisited 113

Lemma 8 (Uniqueness of (M-)initial transformation pair). Given a pair

of direct transformations (t1, t2) : H1
p1,m1⇐= G

p2,m2=⇒ H2 then, if (tI1, t
I
2) : HI

1

p1,m
I
1⇐=

GI p2,m
I
2=⇒ HI

2 is an initial pair of transformations (resp. M-initial pair of trans-
formations) for (t1, t2), any other initial transformation pair (resp. M-initial
transformation pair) for (t1, t2) is isomorphic to (tI1, t

I
2).

Proof. Consider some other initial pair (t′I1 , t
′I
2) : H ′I

1

p1,m
I
1⇐= G′I p2,m

I
2=⇒ H ′I

2 for
(t1, t2). Then the extension diagrams in Fig. 7 can be built by definition of (M)-
initial pairs. Now consider for (tI1, t

I
2) trivial extension diagrams via the identity

extension morphism id : GI → GI . The extension morphism of the extension
diagrams (7) + (5) and (8) + (6) w.r.t. (t1, t2) needs to be equal to the identity
extension morphism by definition. Analogously, one can argue for (5) + (7) and
(6) + (8). Therefore both initial pairs are isomorphic. �

Fig. 7. Uniqueness of (M-)initial transformation pair

Our key notion of initial conflicts is based on the existence of initial trans-
formation pairs for conflicting transformation pairs. It describes the “smallest”
conflict that can be embedded into a given conflict. It is an open issue to come
up with a constructive categorical characterization in the context of M-adhesive
systems, which is the reason for having it as an additional requirement (formu-
lated in Definition 9) for now. It is possible, however, to constructively charac-
terize M-initial transformation pairs for conflicts provided that a unique E ′-M
pair factorization is given (see Lemma 10). The key difference between initiality
and M-initiality is that the extension morphism used to embed the “smallest”
conflict into a given conflict is general or needs to be in M, respectively.

Definition 9 (Existence of initial transformation pair for conflict). An
M-adhesive system has initial transformation pairs for conflicts if, for each
transformation pair in conflict (t1, t2), the initial transformation pair (tI1, t

I
2)

exists.

Lemma 10 (Existence of M-initial transformation pair for conflict).
In an M-adhesive system with unique E ′-M pair factorization, for each pair of
transformations (t1, t2) in conflict, there exists an M-initial transformation pair
(tI1, t

I
2). In particular, it corresponds to the classical critical pair as constructed

in Theorem4.

114 L. Lambers et al.

Proof. Consider the critical pair (tI1, t
I
2) as given by Theorem 4. We show that this

is indeed an M-initial transformation pair for (t1, t2). Given matches (m1,m2)
of transformation pair (t1, t2) and matches (mI

1,m
I
2) for the pair (tI1, t

I
2) built

via the pair factorization (as on the left of Fig. 6). Then (mI
1,m

I
2) ∈ E ′ and the

extension morphism f I from (tI1, t
I
2) to (t1, t2) is in M and f I ◦ mI

1 = m1 and
f I ◦mI

2 = m2. Consider some other pair (t′1, t
′
2) that can be embedded via some

extension morphism f : G′ → G ∈ M into (t1, t2) (as on the right of Fig. 6).
According to Theorem 4 we again have a critical pair with matches in E ′ that can
be embedded into (t′1, t

′
2) via some extension morphism f ′I in M. Since the E ′-

M pair factorization is unique and M-morphisms are closed under composition,
this will actually be indeed the same critical pair (tI1, t

I
2) as for (t1, t2). �

Now we are ready to introduce our notion of (M-)initial conflicts representing
the set of all possible “smallest” conflicts. Like for classical critical pairs they
are defined for a given M-adhesive system allowing for static conflict detection.

Definition 11 ((M-)Initial conflict). Given an M-adhesive system with ini-
tial transformation pairs for conflicts, a pair of direct transformations in conflict
(t1, t2) : H1

p1⇐= G
p2=⇒ H2 is an initial conflict if it is isomorphic to the initial

transformation pair for (t1, t2).
Given an M-adhesive system with unique E ′-M-pair factorization, a pair of

direct transformations in conflict (t1, t2) : H1
p1⇐= G

p2=⇒ H2 is an M-initial
conflict if it is isomorphic to the M-initial transformation pair for (t1, t2).

It follows quite straightforwardly that the set of M-initial conflicts corre-
sponds to the classical set of critical pairs for an M-adhesive system with unique
E ′-M pair factorization.1 Moreover, it follows that each initial conflict is an M-
initial conflict (or critical pair), in particular. A counterexample for the reverse
direction will be given in the next section.

Theorem 12 (M-Initial conflict = critical pair). In an M-adhesive system
with unique E ′-M pair factorization, each M-initial conflict is a critical pair and
vice versa.

Proof. Given some M-initial conflict (tI1, t
I
2) : HI

1
p1⇐= GI p2=⇒ HI

2 . Then it
follows directly from Definitions 2, 11 and Lemma 10 that (tI1, t

I
2) is a critical

pair because it is in conflict and its matches are in E ′.
Given a critical pair (tI1, t

I
2) : HI

1
p1⇐= GI p2=⇒ HI

2 , we need to show that it
is an M-initial conflict. When constructing the initial transformation pair for
(tI1, t

I
2) according to Lemma 10, a pair of isomorphic transformations w.r.t. (tI1, t

I
2)

would be constructed because of the E ′-M pair factorization being unique and
the fact that one could choose alternatively as extension morphism the identity
morphism on GI (being in M), since the matches are already in E ′. �

1 Classical critical pairs are slightly more general since they do not require uniqueness
of the E ′-M pair factorization.

Initial Conflicts and Dependencies: Critical Pairs Revisited 115

Theorem 13 (Initial conflict is M-Initial conflict). In an M-adhesive
system with initial transformation pairs for conflicts and a unique E ′-M pair
factorization, each initial conflict is an M-initial conflict.

Proof. Given some initial conflict (tI1, t
I
2) : HI

1
p1⇐= GI p2=⇒ HI

2 , then because
of Lemma 10 we can construct an M-initial transformation pair for it. By defi-
nition, each M-initial transformation pair is also an initial transformation pair
since each morphism in M is a regular morphism. Because of Lemma 8, such an
initial pair is unique and, for an initial conflict, isomorphic to (tI1, t

I
2) in partic-

ular, such that the initial transformation pair is indeed an M-initial pair. �

To decide if initial conflicts can replace critical pairs for detecting conflicts
and analyzing local confluence statically, we investigate now if the Complete-
ness Theorem and Local Confluence Theorem hold. The Completeness Theorem
for initial conflicts can indeed be formulated in a slightly modified way w.r.t.
Theorem 4. This is because the extension morphism is not necessarily in M any-
more. Informally speaking, we are able to represent several critical pairs by one
initial conflict by unfolding elements that were overlapped unnecessarily (i.e.
without having importance for the described conflict). Note also that, instead
of requiring an E ′-M pair factorization as in the classical Completeness Theo-
rem for critical pairs, we assume the existence of initial transformation pairs for
conflicts.

Lemma 14 (Conflict inheritance). Given a pair of direct transformations
(t1, t2) : H1

p1⇐= G
p2=⇒ H2 in conflict and another pair of direct transformations

(t′1, t
′
2) : H ′

1
p1⇐= G′ p2=⇒ H ′

2 that can be embedded into (t1, t2) via extension
morphism f and corresponding extension diagrams as depicted in Fig. 8, then
(t′1, t

′
2) is also in conflict.

Fig. 8. Conflict inheritance

Proof. Assume that (t′1, t
′
2) : H ′

1

p1,m
′
1⇐= G′ p2,m

′
2=⇒ H ′

2 are parallel independent.
This means that some morphism h′

12 (and h′
21) exists such that d′

1 ◦ h′
12 = m′

2

(and d′
2 ◦ h′

21 = m′
1). Then (t1, t2) : H1

p1,m1⇐= G
p2,m2=⇒ H2 with f ◦ m′

1 = m1 and
f ◦m′

2 = m2 would be parallel independent as well, which is a contradiction. This

116 L. Lambers et al.

is because a morphism h12 = f ′
1◦h′

12 would exist such that d1◦h12 = d1◦f ′
1◦h′

12 =
f ◦ d′

1 ◦ h′
12 = f ◦m′

2 = m2 and similarly, a morphism h21 = f ′
2 ◦ h′

21 would exist
such that d2 ◦ h21 = m1. �

Theorem 15 (Completeness theorem for initial conflicts). Consider an
M-adhesive system with initial transformation pairs for conflicts. For each pair
of direct transformations (t1, t2) : H1

p1⇐= G
p2=⇒ H2 in conflict, there is an

initial conflict (tI1, t
I
2) : P1

p1⇐= K
p2=⇒ P2 with extension diagrams (1) and (2).

Proof. We can assume the existence of the initial transformation pair (tI1, t
I
2) for

the given pair (t1, t2) in conflict. It remains to show that the initial transforma-
tion pair (tI1, t

I
2) for (t1, t2) is indeed an initial conflict according to Definition 11.

Firstly, the transformation pair (tI1, t
I
2) is in conflict according to Lemma 14. Sec-

ondly, each initial conflict for (tI1, t
I
2) needs to be isomorphic to (tI1, t

I
2) since we

would have found a non-isomorphic initial transformation pair for (t1, t2) by
composition of extension diagrams otherwise. This contradicts Lemma 8. �

The Local Confluence Theorem can be formulated for initial conflicts similarly
to the one for classical critical pairs because its proof actually does not need the
requirement that extension morphisms should be in M.

Theorem 16 (Local confluence theorem for initial conflicts). Given an
M-adhesive system with initial pushouts and initial transformation pairs for
conflicts, an M-adhesive system is locally confluent if all its initial conflicts are
strictly confluent.

Proof. The proof runs completely analogously to the proof of the regular Local
Confluence Theorem (Theorem 5 in [13]). The only difference is that for this
proof, we need initial pushouts over general morphisms whereas in Theorem5
initial pushouts over M-morphisms are sufficient. The proof requires initial
pushouts over the extension morphism m embedding a critical pair (or initial
conflict) into a pair of conflicting transformations. This extension morphism
belongs to the special subset M of monomorphisms for classical critical pairs,
but it is a general morphism in the case of initial conflicts. �

In summary, given an M-adhesive system, we obtain the Completeness and
Local Confluence Theorem in slightly different flavors. For Completeness of M-
initial conflicts (or classical critical pairs) we assume to have a unique E ′-M
pair factorization and for Local Confluence we in addition require initial POs
over M. For Completeness of initial conflicts we assume the existence of initial
transformation pairs for conflicts (*) and for Local Confluence we in addition
require initial POs. For the category of typed graphs it is shown in [13] that all
these requirements hold apart from requirement (*) proven in the next section.

5 Initial Conflicts for Typed Graph Transformation

In this section, we discuss how initial conflicts look like in graph transforma-
tion systems, i.e., in the category GraphsTG. Moreover, we clarify how they are

Initial Conflicts and Dependencies: Critical Pairs Revisited 117

related to essential critical pairs which were introduced in [9] as a first optimiza-
tion of critical pairs in graph transformation systems. Essential critical pairs
form a subset of critical pairs for which the Completeness Theorem as well as
the Local Confluence Lemma still hold. Therefore, an obvious question is the fol-
lowing: Does the set of initial conflicts correspond to the set of essential critical
pairs in the case of typed graph transformation systems? It turns out that, in
general, the set of initial conflicts is a proper subset of the set of essential critical
pairs here. First, we show an initial conflict occurring in our running example.

Fig. 9. Example for an initial conflict (Color figure online)

Example 17 (Initial conflict). In a non-deterministic automaton there may be a
state with two subsequent transitions, both triggered by the same label. This sit-
uation is described symbolically by the (excerpt of the) initial conflict in Fig. 9.2

Both transitions can be executed, i.e., the rule execute is applicable with different
results at two different matches. These matches lead to transformations in con-
flict since they are both triggered and therefore change the current queue pointer
as well as the current cursor position. The corresponding edges are highlighted
in the overlap graph (green) at the bottom of the figure. Together with their

2 Note that this situation is somewhat unrealistic, since in principle it allows a symbol
to be connected to two different labels. However, graph G is supposed to be embedded
into realistic situations to check if a pair of transformations is conflicting. It is part of
future work to integrate the notion of constraints into our theory of initial conflicts,
leading – if possible – to realistic situations already in initial conflicts.

118 L. Lambers et al.

adjacent nodes they form the actual overlap of both matches. Note that apply-
ing rule execute at these matches leads to an initial conflict since the overlap is
in deleted elements and their adjacent boundary nodes only. (See also Lemma21
below.) If the overlap is so small, no other transformation pair is embeddable
since unfoldings can occur in preserved elements only.

In the category GraphsTG, a critical pair is essential if two injective matches
overlap in deleted elements and boundary nodes only [9]. The following example
illustrates that indeed not each essential critical pair is an initial conflict.

Fig. 10. Example for an essential critical pair not being an initial conflict

Example 18 (Essential critical pair not being an initial conflict). A parallel
automaton may have several transitions that can be executed in the current
states. Such a situation is described by the (excerpt of the) critical pair in Fig. 10.
There exist two different current states with outgoing transitions both recogniz-
ing the same label. In this case, both transitions could be executed, i.e., the rule
execute can be applied at two different matches. Since the matches overlap in
deleted elements and isolated boundary nodes (as highlighted in green) only, the
critical pair shown in Fig. 10 is essential. In particular, the isolated boundary
node 5:Cursor occurs in the overlap (and not the adjacent edges that are to be
deleted). The same conflict would be specified if the cursor nodes of both LHSs
were not overlapped. Hence, this essential critical pair is not an initial conflict. A
similar critical pair with two cursors is embeddable into the depicted one. Since
that cannot be further unfolded, it represents the corresponding initial conflict.

The following lemma shows that the category GraphsTG has initial trans-
formation pairs for conflicts and hence, initial conflicts. As a preparatory work,

Initial Conflicts and Dependencies: Critical Pairs Revisited 119

we define matches that do not overlap in isolated boundary nodes. If they would,
then it would be possible to unfold the matches at these isolated boundary nodes.

Definition 19 (No isolated boundary node). Given two rules p1 and p2
with LHSs L1 and L2, boundary graphs B1 and B2 as well as deletion graphs C1

and C2 as in Definition 6. Morphisms m1 : L1 → G and m2 : L2 → G do not
overlap in isolated boundary nodes if ∀x ∈ m1(c1(b1(B1))) ∩ m2(L2) :

∃e ∈ m1(c1(C1)) ∩ m2(L2) : x = src(e) ∨ x = tgt(e) and
∀x ∈ m2(c2(b2(B2))) ∩ m1(L1) :
∃e ∈ m2(c2(C2)) ∩ m1(L1) : x = src(e) ∨ x = tgt(e)

Lemma 20 (Existence of initial transformation pairs in GraphsTG).
Given a pair of direct transformations (t1, t2) in conflict, there is an initial trans-
formation pair for (t1, t2), in the category GraphsTG.

Proof. Due to the Completeness Theorem for critical pairs [13] there is a crit-
ical pair cp : H1

p1,m1⇐= G
p2,m2=⇒ H2 for (t1, t2). By the critical pair definition

the matches m1 and m2 are jointly surjective. If O = m1(L1) ∩ m2(L2) con-
tained some graph elements preserved by both rules, cp is tried to be unfolded
at these nodes and edges, i.e., a critical pair cp′ is searched which does not map
these elements to the same one in O. This is always possible for edges. It is also
possible for nodes if they do not have incident edges to be deleted, also being
in O. The dangling edge condition for unfolded nodes cannot be violated after
unfolding if it was not violated before since the same amount or fewer incident
edges per unfolded node arise. The identification condition is also fulfilled after
unfolding if it was fulfilled before since fewer elements are identified afterwards.
Unfolding a critical pair as much as possible in this way yields the transfor-

mation pair itp : HI
1

p1,m
I
1⇐= GI p2,m

I
2=⇒ HI

2 where the only preserved elements in
mI

1(L1) ∩ mI
2(L2) are boundary nodes with incident edges to be deleted. A fur-

ther unfolding is not possible since we would not find a corresponding extension
diagram. Remember that an extension morphism can only unfold elements that
are commonly preserved by both transformations. Preserved nodes with at least
one incident edge to be deleted being overlapped as well cannot be unfolded
since this edge would have to be unfolded as well.

We have to show now that itp is an initial transformation pair for (t1, t2).
It is obvious that itp can be embedded into cp, which can be embedded into
(t1, t2) via extension diagrams and extension morphisms. Given any other trans-
formation pair tp that can be embedded into (t1, t2), tp may differ from (t1, t2)
just by having fewer commonly preserved elements or by unfolding of preserved
elements. itp can be embedded into tp since it contains the minimal number of
preserved elements and the minimal overlap of preserved elements. The unique-
ness of the corresponding extension diagrams and morphism follows from the
construction of itp, i.e., the construction of critical pairs uses a unique E ′-M
pair factorization and the unfolding is canonical. �

As Lemma 20 suggests an initial conflict is a transformation pair in conflict with
minimal context and maximal unfolding of preserved elements.

120 L. Lambers et al.

Theorem 21 (Initial conflict in GraphsTG). In the category GraphsTG,
a transformation pair ic : H1

p1,m1⇐= G
p2,m2=⇒ H2 is an initial conflict iff ic has the

following properties:

1. Minimal context: m1 and m2 are jointly surjective.
2. At least one element in delete-use conflict:

m1(L1) ∩ m2(L2) �⊆ m1(l1(K1)) ∩ m2(l2(K2)).
3. Overlap in deletion graphs only:

m1(L1) ∩ m2(L2) ⊆ (m1(c1(C1) ∩ m2(L2)) ∪ (m1(L1) ∩ m2(c2(C2))) with
c1 : C1 → L1 and c2 : C2 → L2 being defined as in Definition 6.

4. No isolated boundary node in overlap graph: m1,m2 as given in Definition 19.

Proof. Given the initial conflict ic, we show that it fulfills items 1. to 4.: Accord-
ing to Definition 11, ic is isomorphic to the initial transformation pair for ic.
This transformation pair can be constructed as in Lemma 20 and it is unique
due to Lemma 8. Hence, we follow this construction and deduce the properties ic
has to satisfy. The first step yields a critical pair which fulfills items 1. and 2. as
shown in e.g. [13]. After the maximal unfolding of this critical pair, items 1. and
2. are still fulfilled since unfolding does not add context (item 1.) and does not
unfold elements to be deleted (item 2.). In addition, items 3. and 4. are fulfilled.

Given the transformation pair ic fulfilling items 1. to 4., we show that ic
is an initial conflict. When constructing the initial transformation pair for ic
according to Lemma 20, a pair of isomorphic transformations to ic would be
constructed since items 1. and 2. lead to an isomorphic critical pair and items
3. and 4. ensure that no more unfoldings can be made. �

The theorem above shows in particular that each initial conflict is an essential
critical pair satisfying properties 1. to 3. Example 18 shows, however, that not
each essential critical pair is an initial conflict.

6 Initial Dependencies

To reason about initial dependencies for a rule pair (p1, p2), we consider the
dual concepts and results that we get when inverting the left transformation of

a conflicting pair. This means that we check if G
p−1
1 ,m′

1⇐= H1
p2,m2=⇒ H2 is paral-

lel dependent, which is equivalent to the sequence G
p1,m1=⇒ H1

p2,m2=⇒ H2 being
sequentially dependent. Rule p−1 is the inverse of rule p obtained by exchanging
morphisms l and r (Definition 1). This exchange is possible since a transforma-
tion is symmetrically defined by two pushouts. They ensure in particular that
morphisms m : L → G as well as m′ : R → H fulfill the gluing condition.

Initial transformation sequences and dependencies can then be defined anal-
ogously to Definitions 7 and 11. Initial dependencies show dependencies in such
a way that there is no other dependency that can be extended to it. In the cat-
egory GraphsTG this means that each initial dependency is characterized by a
jointly surjective pair of morphisms, consisting of the co-match of p1 and match

Initial Conflicts and Dependencies: Critical Pairs Revisited 121

of p2, which overlap in at least one graph element produced by p1 and used
by p2, the overlap consists of produced elements and boundary nodes only, and
none of these boundary nodes is isolated. Results presented for conflicts above
can be formulated and proven for dependencies in an analogous way.

7 Related Work and Conclusion

The critical pair analysis (CPA) has developed into the standard technique
for detecting potential conflicts and dependencies in graph transformation sys-
tems [3] and more generally, of M-adhesive systems [4,12]. We introduced the
notions of initial conflict and dependency as a new yardstick to present poten-
tial conflicts and dependencies in graph transformation systems in a minimal
way. These notions are defined in a purely category-theoretical way within the
framework of M-adhesive systems. While each initial conflict is a critical pair, it
turns out that this is not true vice versa. Actually, our running example shows
that, given a rule pair, the set of initial conflicts can be considerably smaller
than the set of critical pairs and even than the set of essential critical pairs. We
characterized initial conflicts in graph transformation systems as transformation
pairs with minimal context and maximal unfolding of preserved graph elements.

The CPA is offered by the graph transformation tools AGG [10] and Veri-
graph [11] and the graph-based model transformation tool Henshin [15]. All of
them provide the user with a set of (essential) critical pairs for each pair of
rules as analysis result at design time. Since initial conflicts turned out to be
a real subset of essential critical pairs, we intend to optimize the conflict and
dependency analysis (CDA) in AGG and Henshin by prioritizing the initial ones.
We also intend to investigate how far we can speed up this analysis by our new
results. It would be interesting to come up with some results on the amount of
reduction of critical pairs, maybe w.r.t. a particular characterization of the rules.

Novel conflict and dependency concepts at several granularity levels are pre-
sented in [16]. It is up to future work to investigate the relation of this work with
initial conflicts and dependencies. The CPA is not only available for plain rules
but also for rules with application conditions (ACs) [17]. Due to their definition
in a purely category-theoretical form, we are quite confident that the theory for
initial conflicts and dependencies can be extended to rules with ACs.

Acknowledgements. Many thanks to Leila Ribeiro and Jonas Santos Bezerra for
providing us with support to CPA of our running example in Verigraph [11].

This work was partially funded by the German Research Foundation, Priority Pro-
gram SPP 1593 “Design for Future – Managed Software Evolution”. This research was
partially supported by the research project Visual Privacy Management in User Cen-
tric Open Environments (supported by the EU’s Horizon 2020 programme, Proposal
number: 653642).

122 L. Lambers et al.

References

1. Huet, G.: Confluent reductions: abstract properties and applications to term rewrit-
ing systems: abstract properties and applications to term rewriting systems. J.
ACM (JACM) 27(4), 797–821 (1980)

2. Plump, D.: Critical pairs in term graph rewriting. In: Pŕıvara, I., Rovan, B.,
Ruzička, P. (eds.) MFCS 1994. LNCS, vol. 841, pp. 556–566. Springer, Heidelberg
(1994). https://doi.org/10.1007/3-540-58338-6 102

3. Heckel, R., Küster, J.M., Taentzer, G.: Confluence of typed attributed graph trans-
formation systems. In: Corradini, A., Ehrig, H., Kreowski, H.-J., Rozenberg, G.
(eds.) ICGT 2002. LNCS, vol. 2505, pp. 161–176. Springer, Heidelberg (2002).
https://doi.org/10.1007/3-540-45832-8 14

4. Ehrig, H., Habel, A., Padberg, J., Prange, U.: Adhesive high-level replacement
categories and systems. In: Ehrig, H., Engels, G., Parisi-Presicce, F., Rozenberg,
G. (eds.) ICGT 2004. LNCS, vol. 3256, pp. 144–160. Springer, Heidelberg (2004).
https://doi.org/10.1007/978-3-540-30203-2 12

5. Hausmann, J.H., Heckel, R., Taentzer, G.: Detection of conflicting functional
requirements in a use case-driven approach: a static analysis technique based on
graph transformation. In: 22rd International Conference on Software Engineering
(ICSE), pp. 105–115. ACM (2002)

6. Jayaraman, P., Whittle, J., Elkhodary, A.M., Gomaa, H.: Model composition in
product lines and feature interaction detection using critical pair analysis. In:
Engels, G., Opdyke, B., Schmidt, D.C., Weil, F. (eds.) MODELS 2007. LNCS,
vol. 4735, pp. 151–165. Springer, Heidelberg (2007). https://doi.org/10.1007/978-
3-540-75209-7 11

7. Baresi, L., Ehrig, K., Heckel, R.: Verification of model transformations: a case study
with BPEL. In: Montanari, U., Sannella, D., Bruni, R. (eds.) TGC 2006. LNCS,
vol. 4661, pp. 183–199. Springer, Heidelberg (2007). https://doi.org/10.1007/978-
3-540-75336-0 12

8. Lambers, L.: Certifying rule-based models using graph transformation. Ph.D thesis.
Berlin Institute of Technology (2010)

9. Lambers, L., Ehrig, H., Orejas, F.: Efficient conflict detection in graph transfor-
mation systems by essential critical pairs. Electr. Notes Theor. Comput. Sci. 211,
17–26 (2008)

10. Taentzer, G.: AGG: a graph transformation environment for modeling and valida-
tion of software. In: Pfaltz, J.L., Nagl, M., Böhlen, B. (eds.) AGTIVE 2003. LNCS,
vol. 3062, pp. 446–453. Springer, Heidelberg (2004). https://doi.org/10.1007/978-
3-540-25959-6 35

11. Verigraph: Verigraph. https://github.com/Verites/verigraph
12. Ehrig, H., Golas, U., Hermann, F.: Categorical frameworks for graph transforma-

tion and HLR systems based on the DPO approach. Bull. EATCS 102, 111–121
(2010)

13. Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic
Graph Transformation. Monographs in Theoretical Computer Science. Springer,
Heidelberg (2006)

14. Corradini, A., Montanari, U., Rossi, F., Ehrig, H., Heckel, R., Löwe, M.: Algebraic
approaches to graph transformation I: basic concepts and double pushout approach.
In: Rozenberg, G. (ed.) Handbook of Graph Grammars and Computing by Graph
Transformation, Volume 1: Foundations, pp. 163–245. World Scientific, Singapore
(1997)

https://doi.org/10.1007/3-540-58338-6_102
https://doi.org/10.1007/3-540-45832-8_14
https://doi.org/10.1007/978-3-540-30203-2_12
https://doi.org/10.1007/978-3-540-75209-7_11
https://doi.org/10.1007/978-3-540-75209-7_11
https://doi.org/10.1007/978-3-540-75336-0_12
https://doi.org/10.1007/978-3-540-75336-0_12
https://doi.org/10.1007/978-3-540-25959-6_35
https://doi.org/10.1007/978-3-540-25959-6_35
https://github.com/Verites/verigraph

Initial Conflicts and Dependencies: Critical Pairs Revisited 123

15. Arendt, T., Biermann, E., Jurack, S., Krause, C., Taentzer, G.: Henshin: advanced
concepts and tools for in-place EMF model transformations. In: Petriu, D.C.,
Rouquette, N., Haugen, Ø. (eds.) MODELS 2010. LNCS, vol. 6394, pp. 121–
135. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-16145-2 9.
http://www.eclipse.org/henshin/

16. Born, K., Lambers, L., Strüber, D., Taentzer, G.: Granularity of conflicts and
dependencies in graph transformation systems. In: de Lara, J., Plump, D. (eds.)
ICGT 2017. LNCS, vol. 10373, pp. 125–141. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-61470-0 8

17. Ehrig, H., Golas, U., Habel, A., Lambers, L., Orejas, F.: M-adhesive transforma-
tion systems with nested application conditions. Part 2: embedding, critical pairs
and local confluence. Fundam. Inform. 118(1–2), 35–63 (2012)

https://doi.org/10.1007/978-3-642-16145-2_9
http://www.eclipse.org/henshin/
https://doi.org/10.1007/978-3-319-61470-0_8
https://doi.org/10.1007/978-3-319-61470-0_8

Towards a Navigational Logic for Graphical
Structures

Leen Lambers1 , Marisa Navarro2 , Fernando Orejas3 ,
and Elvira Pino3(B)

1 Hasso Plattner Institut, University of Potsdam, Potsdam, Germany
Leen.Lambers@hpi.de

2 Universidad del Páıs Vasco (UPV/EHU), San Sebastián, Spain
marisa.navarro@ehu.es

3 Universitat Politècnica de Catalunya, Barcelona, Spain
{orejas,pino}@cs.upc.edu

Abstract. One of the main advantages of the Logic of Nested Condi-
tions, defined by Habel and Pennemann, for reasoning about graphs, is
its generality: this logic can be used in the framework of many classes of
graphs and graphical structures. It is enough that the category of these
structures satisfies certain basic conditions.

In a previous paper [14], we extended this logic to be able to deal with
graph properties including paths, but this extension was only defined for
the category of untyped directed graphs. In addition it seemed difficult to
talk about paths abstractly, that is, independently of the given category
of graphical structures. In this paper we approach this problem. In par-
ticular, given an arbitrary category of graphical structures, we assume
that for every object of this category there is an associated edge relation
that can be used to define a path relation. Moreover, we consider that
edges have some kind of labels and paths can be specified by associating
them to a set of label sequences. Then, after the presentation of that
general framework, we show how it can be applied to several classes of
graphs. Moreover, we present a set of sound inference rules for reasoning
in the logic.

1 Introduction

Graphs and graphical structures play a very important role in most areas of
computer science. For instance, they are used for modeling problems or systems
(as done, e.g., with the UML or with other modeling formalisms). Or they are
also used as structures to store data in many computer science areas. In partic-
ular, in the last few years, in the database area, graph databases are becoming
relevant in practice and partially motivate our work. A consequence of this graph

This work has been partially supported by funds from the Spanish Ministry for
Economy and Competitiveness (MINECO) and the European Union (FEDER funds)
under grant COMMAS (ref. TIN2013-46181-C2-1-R, TIN2013-46181-C2-2-R) and
from the Basque Project GIU15/30, and grant UFI11/45.

c© Springer International Publishing AG, part of Springer Nature 2018
R. Heckel and G. Taentzer (Eds.): Ehrig Festschrift, LNCS 10800, pp. 124–141, 2018.
https://doi.org/10.1007/978-3-319-75396-6_7

http://orcid.org/0000-0001-6937-5167
http://orcid.org/0000-0002-7937-0236
http://orcid.org/0000-0002-3023-4006
http://orcid.org/0000-0003-3376-5096

Towards a Navigational Logic for Graphical Structures 125

ubiquity is that being able to express properties about graphical structures may
be interesting in many areas of computer science.

We can use two kinds of approaches to describe graph properties. Obviously,
we may use some standard logic, after encoding some graph concepts in the logic.
For instance, this is the approach of Courcelle (e.g., [3]), who studied a graph
logic defined in terms of first-order (or monadic second-order) logic. The second
kind of approach is based on expressing graph properties in terms of formulas
that include graphs (and graph morphisms). The most important example of this
kind of approach is the logic of nested graph conditions (LNGC), introduced by
Habel and Pennemann [9] proven to be equivalent to the first-order logic of
graphs of Courcelle. A main advantage of LNGC is its genericity, since it can be
used for any category of graphical structures, provided that this category enjoys
certain properties. This is not the case of approaches like [3] where, for each class
of graphical structures, we would need to define a different encoding.

A main problem of (first-order) graph logics is that it is not possible to
express relevant properties like “there is a path from node n to n′”, because
they are not first-order. As a consequence, there have been a number of proposals
that try to overcome this limitation by extending existing logics (like [7,10,20]).
Along similar lines, in [14] we extended the work presented in [12], allowing us to
state properties about paths in graphs and to reason about them. Unfortunately,
the work in [14] applies only to untyped unattributed directed graphs. As a
continuation, in this paper we show how to overcome this limitation, extending
some of the ideas in [14] to deal with arbitrary categories of graphical structures.
Moreover, we allow for a more expressive specification of paths, assuming that
edges have some kinds of labels and specifying paths using language expressions
over these labels. Since this new generic logic allows one to describe properties
of paths in graphical structures, we have called it a navigational logic.

The paper is organized as follows. In Sect. 2 we present some examples for
motivation. In Sect. 3 we introduce the basic elements to define our logic and in
the Sect. 4 we see how these elements can be defined in some categories of graphs,
implicitly showing that our logic can be used in these categories. In Sect. 5 we
introduce the syntax and semantics of our logic, including some proof rules that
are shown to be sound. Completeness is not studied, because in our framework
we implicitly assume that paths are finite, which means that our inference rules
can not be complete [22]. However we conjecture that our rules will be complete
in a more complex framework, where graphs may be infinite. Finally, in Sect. 6
we present some related and future work.

2 Motivation

In this section, we present and motivate the basic concepts required to introduce
our navigational logic, that is, patterns with paths, and graph properties. In order
to give some intuition and motivation, in Subsect. 2.1, we consider a toy example
consisting of a network of airports connected by airline companies that operate
between them, that is, a graph where nodes are airports and edges are direct

126 L. Lambers et al.

flights from an airport to another. The example follows the framework presented
in [14]. Then, in Subsect. 2.2 an example of a social network is introduced to
motivate the extension of that framework, including labels in paths and edges,
allowing us to specify the form of paths.

2.1 A First Navigational Logic Example

The graph in Fig. 1 represents a network with four airports: Barcelona (BCN),
Paris (CDG), New York (JFK) and Los Angeles (LAX) and the six directed edges
represent the existing direct flights between these airports. In this scenario, a
path (i.e. a concatenation of one or more edges) represents a connection from
an airport to another by a sequence of, at least, one direct flight. For instance,
BCN is connected to CDG and JFK by direct flights, whereas it is required to
concatenate at least two flights to arrive to LAX from BCN. To express basic
properties we use patterns, which are graphs extended with a kind of arrows that
represent “paths” between nodes. For instance, in Fig. 2, we have two patterns
that are present in the airport network in Fig. 1: The first pattern represents a
connection from BCN to LAX, and, the second one a direct flight from BCN to
CDG followed by a connection from CDG to LAX.

Fig. 1. A graph of connected airports Fig. 2. Two connection patterns

Imagine that we want to state that there should be a connection from BCN
to LAX with a stopover either in Paris or in New York and, moreover, that, in
the former case, there should be a direct flight from BCN to CDG, whereas in
the latter, the flight from JFK to LAX must be direct. The first graph condition
in Fig. 3 states those requirements.

Fig. 3. Properties on airports networks

The second graph condition in Fig. 3 states that if there is a connection from
an airport 1 to an airport 3 with a first stopover at an airport 2, it must be

Towards a Navigational Logic for Graphical Structures 127

possible to go back from 3 to 1 with a similar flight plan that also stops at 2
but as the last stopover. Our network in Fig. 1 does not satisfy this requirement,
since there is a connection from BCN to LAX with a first stopover in CDG but
there are no direct flights from CDG to BCN.

2.2 Path Expressions

In the framework described in the previous subsection [14], we can specify the
existence of a path between two nodes, but we cannot provide any description
of such path. For instance, suppose that edges are labelled with the name of the
airline company operating that flight. In the described framework it is impossible
to specify that there is a connection between BCN and LAX consisting of flights
from the same company.

A simple way of dealing with this situation is to label paths with language
expressions over an alphabet of edge labels. For instance, in most approaches
(e.g., [1,2,4,13,23]), paths are labeled by regular expressions. The idea is that,
if a pattern includes a path from node 1 to node 2 labelled with a language
expression denoting a language L, then if a graph G includes that pattern, it must
include some sequence of edges labelled with l1, . . . , lk, such that l1·l2·. . .·lk ∈ L.

Fig. 4. A social network type graph Fig. 5. Patterns of labeled connections

For example, in Fig. 4 we depict the type graph of a social network including
nodes of type person and edges of type friend, enemy, and colleague. Then, in
Fig. 5 we depict some conditions over this type graph. In the first two conditions
we (implicitly) assume that edges are labeled with the name of their types. So,
the first condition describes the existence of a path, consisting only of a sequence
of edges of type friend between nodes having Alan and Brenda as their name
attributes, while the second condition describes the existence of a path between
Alan and Brenda, consisting of edges of type friend or two consecutive edges of
type enemy. In the third condition, we implicitly assume that edges are labeled
not only with types, but also with the values of their attributes and it describes
the existence of a path between Alan and Brenda consisting of edges of type
friend, whose friendship attribute is greater or equal to 2.

128 L. Lambers et al.

3 Patterns with Paths for Arbitrary Graphical Structures

In this paper our aim is to define a general framework that will allow us to
express properties about arbitrary graphical structures and their paths, and to
reason about them. A main problem is how to cope with this level of generality.
In particular, given a specific class of graphs, like directed graphs (as in [14])
the notion of a path is clear. However, when working with an arbitrary category,
that is supposed to represent any kind of graphical structure (e.g. graphs, Petri
Nets or automata), we need some abstract notion of path that can accommodate
the notion of path that we would have in each of these categories.

In principle, a path is a sequence of edges, but not all kinds of categories that
we may consider have a proper notion of edge, although they may have something
that we may consider to be similar. For instance, in a Petri Net we may consider
that transitions play the role of edges1. So our first step is to consider that we
can associate to every category of graphical structures an associated category
including an explicit edge relation. Then, it will be simple to define paths in
these categories.

We assume that edges are labelled, so that we can use these labels to describe
paths, as seen above. Moreover, we will assume that all edges in our graphical
structures are defined over a universal set of nodes and a universal set of labels.

Definition 1 (Edges). Given a set of labels Σ and a set of nodes V , the set of
all possible Σ-labeled edges over V is EdgesΣ,V = V × Σ × V .

Definition 2 (Edge-Labelled Structures). Given a set of labels Σ and a set
of nodes V , and given a category of graphical structures Struct with pushouts
and initial objects, we say that StructEdges

Σ,V
is its associated category of

edge-labeled structures over V and Σ, EL-structures in short, if the following
conditions hold:

1. The objects in StructEdges
Σ,V

are pairs (S,E), where S is an object in
Struct and E is a set of Σ-labeled edges over V .

2. A morphism f : (S,E) → (S′, E′) in StructEdges
Σ,V

, consists of functions
f = (fs, fv, fe) such that
– fs : S → S ′ is a morphism in Struct, and
– fv : V → V and fe : E → E ′ satisfy for every 〈n, l, n′〉 ∈ E that

fe(〈n, l, n′〉) = 〈fv(n), l, fv(n′)〉.
3. Struct and StructEdges

Σ,V
are isomorphic. Specifically, there must exist an

isomorphism ψ : Struct → StructEdges
Σ,V

.

We will write just Edges and StructEdges whenever Σ and V are clear.

1 But in Petri Nets we may also consider that both places and transitions play the
role of the nodes in a graph and that the edges in a Petri Net are the arrows in
the graphical representation of the net going from places to transitions or from
transitions to places.

Towards a Navigational Logic for Graphical Structures 129

Intuitively, the idea is that for each object S of an arbitrary category of
graphical structures, we can associate a set of labelled edges that we assume
that are implicit in S. Notice that if S is a graph this does not mean that it is
a labelled graph. It only means that we can associate some kind of labels to its
edges. For instance, if S is a typed graph, then we may consider that edges are
labeled by their types. Similarly, as said above, if S is not a graph, like in the
case of Petri Nets, this does not mean that S must include a proper notion of
edge, but that we may consider that its edges are some of its elements.

Now, before defining the notion of pattern, we must first define the notion of
path expressions, that is, the specification of a set of paths between two nodes.
Moreover, we also define the notion of closure of a set of path expressions under
composition and decomposition. Intuitively, a path is in the closure of a set of
path expressions if its existence is a consequence of these expressions.

Definition 3 (Paths, Path Expressions and their Closure). We define
the set of path expressions over Σ, V , PathExprΣ,V = V × 2Σ∗ × V .2

A path specified by a path expression pe = 〈n,L,m〉, is any triple 〈n, s,m〉 ∈
V × Σ+ × V such that s ∈ L. Then, paths(pe) denotes the set of paths specified
by pe.

If R ⊆ PathExprΣ,V is a set of path expressions, then the closure of R,
written R+, is the set of path expressions defined inductively:

1. R ⊆ R+.
2. Empty paths: For every node n, 〈n, ε, n〉 ∈ R+.
3. Composition: If 〈n,L1,m〉, 〈m,L2, n

′〉 ∈ R+ then 〈n,L1L2, n
′〉 ∈ R+.

Now, we can define what patterns are:

Definition 4 (Patterns). Given a category StructEdges
Σ,V

of EL-structures,
its associated category of patterns, StructPatternsΣ,V , is defined as follows:

1. Objects are triples P = (S,E, PE) where
– (S,E) is in StructEdges

Σ,V
and

– PE ⊆ PathExprΣ,V .
2. A pattern morphism f : (S,E, PE) → (S′, E′, PE′), is a morphism f :

(S,E) → (S′, E′) in StructEdges
Σ,V

such that, for every 〈n,L,m〉 ∈ PE,
there is a path expression 〈fv(n), L′, fv(m)〉 ∈ (E′ ∪ PE′)+ with L′ ⊆ L.

We will write just PathExpr and StructPatterns whenever Σ, and V are clear.

Notice that a Σ-labeled edge 〈n, l, n′〉 ∈ Edges can be considered a special
kind of unit path expression 〈n, {l}, n′〉. As we may see in the definition above,
even if there is an abuse of notation, given a set of edges E we will consider that
E also denotes its associated set of unit path expressions.
2 Even if we may consider that empty paths are not really paths, assuming that

every node is connected to itself through an empty path provides some technical
simplifications.

130 L. Lambers et al.

Intuitively, a structure S can be considered a trivial pattern that is always
present in S itself. However, technically, following the above definition S is not
a pattern, but we can define a pattern, Pattern(S), that intuitively represents
S. Given S and its associated set of edges E, Pattern(S) = (S,E,E+), i.e. the
path expressions in Pattern(S) are precisely the paths defined by the edges in
E. Conversely, any pattern (S,E, PE) where PE = E+ can be considered equiv-
alent to the structure S3. As a consequence, even if it is an abuse of notation, we
will identify structures with their associated patterns. For instance, if we write
that there is a pattern morphism f : P → S, we really mean f : P → (S,E,E+).

As we will see in Sect. 5.3, an (important) inference rule for reasoning in our
logic is the unfolding rule that roughly says that if a pattern in a given condition
includes the path expression 〈n,L, n′〉, then we may replace this pattern by
another one that includes some of its possible decompositions. For instance,
if 〈n, a(c∗), n′〉 is a path expression in P , we should be able to infer that the
structures that satisfy the pattern either have an edge 〈n, a, n′〉, or an edge
〈n, a, n0〉 followed by a path from n0 to n′ consisting of edges labelled by c.
More precisely, from the condition ∃P we should be able to infer ∃P1 ∨∃P2, with
P1 = P + {〈n, a, n′〉} and P2 = P + {〈n, a, n0〉, 〈n0, c

+, n′〉}, where n0 is a node
that is not present in P and P + s denotes the pattern obtained adding to P the
paths and edges in the set s. The problem is how can we define formally P1 and
P2. If P = (S,E, PE), it would be wrong to define P1 = (S,E∪{〈n, a, n′〉}, PE),
because E is the set of edges (implicitly) included in S, and E ∪ {〈n, a, n′〉} can
not also be the set of edges of S (unless S already included 〈n, a, n′〉, which
in general will not be the case). Instead, we will assume that every specific
framework is equipped with a procedure to define the structure S′ that includes
S and whose set of edges is E∪{〈n, a, n′〉}. This procedure is the mapping called
Unfold in Definition 6, which actually does not return S′, but the morphism
u : S → S′ that represents the inclusion of S in S′.

Before defining the unfolding construction, we define the decompositions that
are associated to these unfoldings. First, a subdecomposition sd of a path expres-
sion pe = 〈n,L, n′〉 can be seen as a refinement of pe, in the sense that we
may consider that sd defines a path expression 〈n,L′, n′〉, where L′ ⊆ L. For
instance, in the example above {〈n, a, n′〉} and {〈n, a, n0〉, 〈n0, c

+, n′〉} are sub-
decompositions of 〈n,L, n′〉. In the former case L′ = {a} and in the later case
L′ = {ac, acc, accc, . . . }. Then, a decomposition of 〈n,L, n′〉 is a set of subde-
compositions such that L coincides with the union of the languages associated
to its subdecompositions. For, instance {〈n, a, n′〉} and {〈n, a, n0〉, 〈n0, c

+, n′〉}
are a decomposition of 〈n,L, n′〉, since ac∗ ≡ a|ac+.

Definition 5 (Path Expression Decomposition). If pe = 〈n,L, n′〉 is a
path expression, a subdecomposition sd of pe is a pair (L′, s), where L′ ⊆ L and
s is a set of edges and path expressions such that one of the following conditions
holds:

1. s = {〈n, l, n′〉} and L′ = {l}.
3 That is Struct is embedded in Patterns via the functor Pattern.

Towards a Navigational Logic for Graphical Structures 131

2. s = {〈n,L1, n1〉, 〈n1, l, n2〉, 〈n2, L2, n
′〉} and L′ = L1{l}L2, with L1,L2 ⊆ Σ∗4.

A decomposition d of pe = 〈n,L, n′〉 is a finite set of subdecompositions,
d = {sd1, . . . , sdk}, with sdi = (Li, si), for i ∈ {1, . . . , k}, such that (L1 ∪ · · · ∪
Lk) = L.

Definition 6 (Unfolding Morphisms). We say that the category
StructPatterns has unfolding morphisms if it is equipped with a function Unfold
that given a pattern P = (S,E, PE), a path expression pe = 〈n,L, n′〉 ∈ PE, and
a subdecomposition sd = (L′, s) of pe, it returns a morphism u : P → P ′, where
P ′ = (S′, E′, PE′), such that:

1. E′ = E ∪ {〈n1, l, n2〉} if 〈n1, l, n2〉 ∈ s, with l ∈ Σ, and
2. PE′ = PE ∪ {〈n1, Li, n2〉|〈n1, Li, n2〉 ∈ s}.
3. For every morphism f : P → P0, with P0 = (S0, E0, PE0), if there is a path

expression 〈f(n), L0, f(n′)〉 ∈ PE0, with E′ ⊆ E0 and PE′ ⊆ PE0, then there
is a morphism h : P ′ → P0, such that f = h ◦ u.

That is, if u : P → P ′ = Unfold(P, 〈n,L, n′〉, sd) then P ′ contains an unfold-
ing of 〈n,L, n′〉 in P , built by adding new edges and paths to P . Notice that
the component us : S → S′ of every u = Unfold(P, 〈n,L, n′〉, sd) must build
the proper unfolded version S′ of S so that the isomorphism ψ : Struct →
StructEdges is preserved.

From now on, we assume that our categories of patterns have unfolding mor-
phisms.

4 Instantiation to Different Classes of Graphs

In this section we present how our general framework works in the context of
some classes of graphs. We assume that the reader knows the (more or less)
standard definitions in the literature of these classes of graphs (see, e.g., [5]).
For simplicity, we assume that the languages used to label paths are defined
by means of a regular expression. It should be clear that the three categories
of graphs have pushouts and an initial object (the empty graph). Moreover, it
is trivial to define Unfold for the three classes of graphs. In particular, given a
pattern P = (G,E, PE) where G is a graph of any of the three classes considered
below, Unfold(P, pe, sd) would return the inclusion (G,E, PE) ↪→ (G′, E′, PE′),
where G′ is the graph obtained after adding to G the edges and new nodes in
sd, E′ is E plus these edges and PE′ is PE plus the path expressions in sd. In
all cases, V will be the class of all nodes of the given class of graphs.

4 Notice that L1 or L2 may just consist of the empty string, in which case n = n1 or
n′ = n2, respectively.

132 L. Lambers et al.

4.1 Untyped Directed Graphs

The category of untyped directed graphs can be seen as an instance of our general
framework, where:

– Σ is a set with a single label l.
– The isomorphism ψ between this category and StructEdges that defines how

a graph G is seen as an object in StructEdges is defined as follows:
• For every graph G = (VG,EG, sG, tG), ψ(G) is the EL-graph (G,E) where

E is the set implicitly defined by EG, that is, E = {〈n, l,m〉 | n,m ∈ VG,
such that there exists e ∈ EG with sG(e) = n and tG(e) = m}.

• For every morphism fs : G → G′, the corresponding EL-morphism ψ(fs)
is defined as (fs, fv, fe) with fe(〈n, l,m〉) = 〈fv(n), l, fv(m)〉 for each
〈n, l,m〉 ∈ E.

In this context, the only path expressions PE ⊆ PathExpr are of the form
〈n,L,m〉, where L is a regular expression over the single label l. In particular,
〈n, l+,m〉 would mean that there is a path from node n to node m formed by
a non specified number of edges. For instance, the patterns in Fig. 2 could be
seen as patterns in our framework if we consider that the paths depicted in those
patterns are labeled with l+.

4.2 Typed Graphs

To see that the category of typed graphs over a given type graph TG is an
instance of our general framework, we assume that types have unique names.

– Σ = {t1, t2, . . . } is a set of names for the types in TG .
– The isomorphism ψ between this category and StructEdges, that defines

how a typed graph (G, typeG) is seen as an object in StructEdges, is defined
as follows:

• For every typed graph (G, typeG), with G = (VG,EG, sG, tG),
ψ((G, typeG)) is the EL-graph (G,E) where E = {〈n, t,m〉 | n,m ∈ VG,
and t = typeG(e) for some edge e ∈ EG with sG(e) = n and tG(e) = m}.

• For every morphism f , the corresponding EL-morphism ψ(f) is defined
as (fs, fv, fe) with fe(〈n, t,m〉) = 〈fv(n), t, fv(m)〉 for each 〈n, t,m〉 in E.

For instance, the first two conditions in Fig. 5 include examples of patterns
for the given type graph.

We may notice that a different category StructEdges (and consequently a
different category StructPatterns) can be associated to typed graphs, if we
consider that an edge e is labeled not by the name of its type, but by the pair
(t1, t2) where t1 and t2 are the names of the types of the source and target nodes
of e, respectively.

Towards a Navigational Logic for Graphical Structures 133

4.3 Attributed Graphs

Roughly, an attributed graph can be seen as some kind of labelled graph whose
labels (the values of attributes) consist of values from a given data domain. There
are several approaches to formalize this kind of graphs. In this paper we use the
notion of symbolic graph ([15,16]), because it is the most adequate approach to
define patterns that include conditions on the attribute values. Symbolic graphs
are defined using the notion of E-graphs, introduced in [5] as a first step to
define attributed graphs. Intuitively, an E-graph is a kind of labelled graph,
where both nodes and edges may be decorated with labels from a given set E.
Being more precise, a symbolic graph G consists of an E-graph EGG whose labels
are seen as variables that represent the values of the given attributes, together
with a formula ΦG over these variables, used to constrain the possible values
of the associated attributes. In general, a symbolic graph G can be considered
a specification of a class of attributed graphs, since every model of ΦG can be
considered a graph specified by G. However, we can identify attributed graphs
with grounded symbolic graphs, i.e. symbolic graphs G, where ΦG is satisfied by
just one graph (up to isomorphism).5

Then the category of attributed graphs (grounded symbolic graphs) can be
seen as an instance of our general framework, where:

– Labels in Σ consist of the types of the edges together with their attributes
and the variables associated to these attributes, i.e. labels are tuples
〈t, x1 : att1, . . . , xk : attk〉, where att1, . . . , attk are the attributes of type t
and x1, . . . , xk are their associated variables.

– The isomorphism ψ between this category and StructEdges is defined as
follows.

• For every symbolic graph G, ψ(G) is the EL-graph (G,E) where E =
{〈n, 〈t, x1 : att1, . . . , xk : attk〉,m〉 | there is an edge from n to m of type
t with attributes att1, . . . , attk and x1, . . . , xk are their associated vari-
ables}.

• For every attributed morphism fs : G → G′, the correspond-
ing EL-morphism ψ(fs) is defined as (fs, fv, fe) with fe(〈n, l,m〉) =
〈fv(n), l, fv(m)〉 for each label l and each 〈n, l,m〉 in E.

In this case, if we want to put conditions on paths, as in the third pattern in
Fig. 5, a path expression pe could be a triple pe = 〈n, (exp,Φpe),m〉, where exp
could be a regular expression over labels of the form 〈t, x1 : att1, . . . , xk : attk〉
and Φpe would be a formula on the variables in exp. In this case, the third
pattern in Fig. 5, the path from Alan to Brenda would be labelled with the
regular expression 〈friend,X : friendship〉+ together with the condition X > 2.

5 In particular, we may consider that in a grounded symbolic graph G we have ΦG ≡
(x1 = v1 ∧ · · · ∧ xk = vk), for some values v1, . . . , vk .

134 L. Lambers et al.

5 Reasoning About Navigational Properties

In this section we introduce in detail our logic. In the first subsection, we define
its syntax and semantics. In the next one we show some properties that are used
in the third subsection to define our inference rules and to show their soundness.

5.1 Nested Pattern Conditions, Models and Satisfaction

For our convenience, we express our properties using a nested notation [9] and
avoiding the use of universal quantifiers.

Definition 7 (Conditions over Patterns, Satisfaction of Conditions).
Given a pattern P in StructPatterns, a condition over P is defined inductively
as follows:

– true is a condition over P . We say that true has nesting level 0.
– For every morphism a : P → Q in StructPatterns, and every condition cQ

over Q with nesting level j ≥ 0, ∃(a, cQ) is a condition over P , called literal,
with nesting level j + 1.

– If cP is a condition over P with nesting level j, then ¬cP is a condition over
P with nesting level j.

– If cP and c′
P are conditions over P with nesting level j and j′, respectively,

then cP ∧ c′
P is a condition over P with nesting level max(j, j′).

Given a structure S, we inductively define when the pattern morphism f :
P → S satisfies a condition cP over P , denoted f |= cP :

P
a ��

f ���
��

��
��

� Q � cQ

f ′|=cQ����
��
��
��
�

S

– f |= true.
– f |= ∃(a, cQ) if there exists f ′ : Q → S such

that f ′ ◦ a = f and f ′ |= cQ.
– f |= ¬cP if f �|= cP
– f |= cP ∧ c′

P if f |= cP and f |= c′
P .

If cP is a condition over P , we also say that P is the context of cP .

Definition 8 (Navigational Logic: Syntax and Semantics). The language
of our Navigational Logic (NL) consists of all conditions over the initial pattern,
∅, in the category of patterns. Given a literal ∃(a : ∅ → P, cP) of NL, we also
denote it by ∃(P, cP). A structure S satisfies a property c of NL if the unique
morphism i : ∅ → S satisfies c.

5.2 Transformation by Lift and Unfolding

In this section we introduce some constructions that are used in our inference
rules. The first one is the shift construction (introduced in [18,19]) that allows
us to translate conditions along morphisms.

Towards a Navigational Logic for Graphical Structures 135

Lemma 1 (Shift of Conditions over Morphisms). Let Shift be a transfor-
mation of conditions inductively defined as follows:

– Shift(b, true) = true.
– Shift(b,∃(a, cQ)) = ∃(a′, cQ′) with cQ′ = Shift(b′, cQ)

such that (1) is a pushout.
– Shift(b,¬cP) = ¬Shift(b, cP)
– Shift(b, cP ∧ c′

P) = Shift(b, cP) ∧ Shift(b, c′
P).

Then, for each condition cP over P and each morphism b : P → P ′, cP ′ =
Shift(b, cP) is a condition over P ′ with smaller or equal nesting level, such that
for each morphism f : P ′ → S we have that f |= Shift(b, cP) ⇔ f ◦ b |= cP .

Proof. The proof uses double induction on the structure and the nesting level
of conditions. The base case is trivial since Shift(b, true) = true, so they have
the same nesting level j = 0, and every morphism satisfies true.

If cP is not true, we proceed by induction on the nesting level of conditions.
The base case is proven. Let cP be ∃(a, cQ) of nesting level j + 1 and suppose
there is a morphism f : P ′ → S such that f |= Shift(b,∃(a, cQ)). That is,
f |= ∃(a′,Shift(b′, cQ)), according to the definition and diagram (1) below. This
means there exists a morphism g : Q′ → S such that g |= Shift(b′, cQ) and
f = g ◦a′. Then, since (1) is a pushout, we know that f ◦ b = g ◦a′ ◦ b = g ◦ b′ ◦a
and, by induction, we have that g ◦ b′ |= cQ. Therefore, f ◦ b |= cP .

Conversely, if f ◦ b |= cP there exists h : Q → S
such that f ◦ b = h ◦ a and h |= cQ. By the uni-
versal property of pushouts, there exists g : Q′ → S
such that f = g ◦ a′ and h = g ◦ b′ and, by induc-
tion, g |= Shift(b′, cQ). Hence, f |= Shift(b,∃(a, cQ)). In
addition, ∃(a′,Shift(b′, cQ)) has nesting level smaller or
equal to j+1 since, again as a consequence of the induc-
tion hypothesis Shift(b′, cQ) has nesting level smaller or
equal to j.

The rest of the cases easily follow from the induction hypothesis and the
satisfaction and nesting level definitions. �

In [18,19], it is proved that, given two literals �1 and �2, a new literal �3 can
be built (pushing �2 inside �1) that is equivalent to the conjunction of �1 and �2.
Again, the following lemma is our version of that result:

Lemma 2 (Lift of Literals). Let �1 = ∃(a1, c1) and �2 be literals with mor-
phisms ai : P → Qi, for i = 1, 2. We define the lift of literals as follows:

Lift(∃(a1, c1), �2) = ∃(a1, c1 ∧ Shift(a1, �2))

Then, f |= �1 ∧ �2 if, and only if, f |= Lift(�1, �2).

136 L. Lambers et al.

Proof. Assume f : P → S such that f |= ∃(a1, c1 ∧ Shift(a1, �2)). That is, there
exists a morphism g : Q1 → S such that f = g ◦ a1 and g |= c1 ∧ Shift(a1, �2).
Then, this is equivalent to f |= �1 and f |= �2, since by Lemma 1 we have that
g ◦ a1 |= �2. �

Note that when pushing �2 inside �1, the literal �2 can be positive or negative.
But we will also need a special way of pushing a negative literal �2 inside a
positive one �1 under some conditions, as shown in next lemma. In this case, the
literal resulting from the lifting is just a consequence of the conjunction of �1
and �2.

Lemma 3 (Partial Lift of Literals). Let �1 = ∃(a1 : P → Q1, c1) and �2 =
¬∃(a2 : P → Q2, c2) such that there exists a morphism g : Q2 → Q1 satisfying
a1 = g ◦ a2. We define the partial lift of literals as follows:

PLift(∃(a1, c1), �2) = ∃(a1, c1 ∧ Shift(g,¬c2))

Then, f |= �1 ∧ �2 implies f |= PLift(�1, �2).

Proof. On the one hand, since f |= �1, there exists a morphism h1 : Q1 → S such
that f = h1 ◦ a1 = h1 ◦ g ◦ a2, and h1 |= c1. On the other hand, since f |= �2,
it cannot exist a morphism h2 : Q2 → S satisfying both conditions f = h2 ◦ a2,
and h2 |= c2. Now, we consider the morphism h1 ◦ g : Q2 → S, which satisfies the
first condition. Then necessarily h1 ◦ g |= ¬c2 which implies h1 |= Shift(g,¬c2) by
Lemma 1. Since h1 |= c1 ∧ Shift(g,¬c2) we conclude that f |= PLift(�1, �2). �

Moreover, in addition to the lifting and partial lifting rules based on the Shift
operation, we also need a rule that allows us to unfold the paths occurring in
the contexts of conditions. For this purpose, in the rest of this subsection, we
formalize the unfolding mechanism that we will use in the rest of the paper.

The following proposition establishes a key tautology in our logic with paths:

Proposition 1 (Unfolding Tautology). Given a pattern P = (S,E, PE), a
pattern expression pe = 〈n,L, n′〉 ∈ PE, and a decomposition d of pe, we have
that the condition

∨
sd∈d ∃(Unfold(P, 〈n,L, n′〉, sd), true) is a tautology over P .

Towards a Navigational Logic for Graphical Structures 137

Proof. We have to prove that every f : P → S |= ∨
sd∈d ∃(Unfold(P, 〈n,L,

n′〉, sd), true), where S is a structure. That is, we have to prove that there
exist sd ∈ d and g : P ′ → S such that g ◦ u = f , where u : P → P ′ =
Unfold(P, 〈n,L, n′〉, sd).

P
u ��

f ���
��

��
��

� P ′

g
����
��
��
��

S

Since f is a pattern morphism and S is a structure, we have that
〈fv(n), L0, fv(n′)〉 ∈ E+

S , where L0 includes only the sequence of labels of the
path from fv(n) to fv(n), i.e., L0 = {l1 . . . lk} ⊆ L. Then, since d is a decom-
position of 〈n,L, n′〉, there is a subdecomposition sd ∈ d, with sd = (L′, s) such
that L0 ⊆ L′. This means there exists u = Unfold(P, 〈n,L, n′〉, sd) and, as a
consequence of (3) in Definition 6, we have that the morphism g exists, such
that g ◦ u = f . �

5.3 Inference Rules

We consider the following set of rules, where �2 means any (positive or negative)
literal condition, cP is any condition over P = (S,E, PE), and d ∈ D(pe) denotes
that d is a decomposition of pe. Without loss of generality6, we will assume that
our conditions are in clausal form, that is, they are sets of disjunctions of literals,
where a literal is either true or a condition ∃(a, cQ) or ¬∃(a, cQ), where cQ is
again in clausal form.7

(Lift)
∃(a1, c1) �2

∃(a1, c1 ∧ Shift(a1, �2))

(Partial Lift)
∃(a1, c1) ¬∃(a2, c2)

∃(a1, c1 ∧ Shift(g,¬c2))
if a1 = g ◦ a2

(Unfolding)
cP∨

sd∈d ∃(Unfold(P, pe, sd), true)
if d ∈ D(pe) for pe = 〈n,L, n′〉 ∈ PE

(Split Introduction)
¬∃(a, c)

∃(a, true)
if a is a split mono

(False)
∃(a1, false)

false
Let us prove the soundness of the inference rules.

6 In [18,19] it is proved that we can transform any condition into a clausal form.
7 Split Introduction rule may seem not very useful, however in [14] it was needed to

achieve completeness. A morphism a : P → Q is a split mono if it has a left inverse,
that is, if there is a morphism a−1 such that a−1 ◦ a = idP .

138 L. Lambers et al.

Theorem 1 (Soundness of Rules). The above rules are sound.

Proof. Let S be a structure and f : P → S be a pattern morphism. We need to
prove that whenever f is a model of the premise(s) of a rule, it is also a model
of the conclusion.

Lemmas 2 and 3 respectively prove the soundness of the Lift and Partial Lift
rules, whereas soundness of the Unfolding rule is obtained from Proposition 1.

Soundness of Split Introduction is a consequence of the following property:
If a : P → Q is a split mono then ∃(a, true) is equivalent to true. The reason
is that every morphism h : P → S satisfies ∃(a : P → Q, true), because the
morphism h ◦ a−1 : Q → S satisfies (h ◦ a−1) ◦ a = h ◦ (a−1 ◦ a) = h, and h ◦ a−1

trivially satisfies true.
Finally, soundness of False is trivial, because there is no structure that sat-

isfies ∃(a1, false). �

As a very simple example, let us now show that the set of three conditions in
Fig. 6 is unsatisfiable.

Fig. 6. Example of insatisfiable properties

Applying the Lift rule to conditions 1 and 2 we get condition 4 in Fig. 7, and
applying again Lift to condition 4 and condition 3 we get condition 5 also in
Fig. 7. Now, let us consider the inner conditions in condition 5, i.e. conditions 6
and 7 in Fig. 7. Applying Unfolding to the path expression labelled with a+ in
condition 6, we get condition 8, and applying unfolding to the path expression
labelled with b+ in condition 8, we get condition 9. Now, applying Partial Lift
to condition 7 and, successively, to the four conditions in the disjunction in
condition 9, we get condition 10. Then applying four times the rule False to
condition 10, we get false, which means that if we replace the inner conditions
of condition 5, we get condition 11. Finally, if we apply the rule False to that
condition we get false.

Towards a Navigational Logic for Graphical Structures 139

Fig. 7. Example of inferences

6 Related Work, Conclusion and Future Work

The idea of expressing graph properties by means of graphs and graph morphisms
has its origins in the notions of graph constraints and application conditions
[6,8,11]. In [21], Rensink presented a logic for expressing graph properties, closely
related with the Logic of Nested Graph Conditions (LNGC) defined by Habel
and Penneman [9]. First approaches to provide deductive methods to this kind
of logics were presented in [17] for a fragment of LNGC, and by Pennemann
[18,19] for the whole logic. Among the extensions allowing us to state path
properties, in [10], Habel and Radke presented a notion of HR+ conditions with
variables that allowed them to express properties about paths, but no deduction
method was presented. Also, in [20], Poskitt and Plump proposed an extension of
nested conditions with monadic second-order (MSO) properties over nodes and
edges. Within this extension, they can define path predicates that allow for the
direct expression of properties about paths between nodes, but without defining
any deduction method. Finally, in [7], Flick extended the LNGC with recursive
definitions using a μ notation and presented a proof calculus showing its partial
correctness.

In [14] we presented an extension of LNGC, restricted to the case of directed
graphs, including the possibility of specifying the existence of paths between
nodes, together with a sound and complete tableau proof method for this logic.

140 L. Lambers et al.

The specification of paths by means of language expressions (in particular,
regular expressions) is a usual technique in query languages for graph databases
(e.g., [1,2,4,13,23]), but no associated logic is defined.

In this paper we have shown how to generalize the approach presented in
[14] to arbitrary categories of graphical structures, including attributed typed
graphs. In this sense, the results presented in this paper can be seen as a first
step to define a logic underlying graph databases. The next obvious step will be
showing the completeness of our inference rules.

Acknowledgements. We are grateful to the anonymous reviewers for their comments
that have contributed to improve the paper.

References

1. Barceló, P.: Querying graph databases. In: Proceedings of the 32nd ACM
SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems,
PODS 2013, New York, 22–27 June 2013, pp. 175–188 (2013), https://doi.org/
10.1145/2463664.2465216

2. Barceló, P., Libkin, L., Reutter, J.L.: Querying graph patterns. In: Proceedings of
the 30th ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database
Systems, PODS 2011, 12–16 June 2011, Athens, pp. 199–210 (2011). https://doi.
org/10.1145/1989284.1989307

3. Courcelle, B.: The expression of graph properties and graph transforma-
tions in monadic second-order logic. In: Rozenberg, G. (ed.) Handbook
of Graph Grammars, pp. 313–400. World Scientific, River Edge (1997).
https://dl.acm.org/citation.cfm?id=278918.278932

4. Cruz, I.F., Mendelzon, A.O., Wood, P.T.: A graphical query language supporting
recursion. In: Proceedings SIGMOD 1987 Annual Conference, San Francisco, 27–29
May 1987, pp. 323–330 (1987). https://doi.org/10.1145/38713.38749

5. Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic Graph
Transformation. Springer, Heidelberg (2006)

6. Ehrig, H., Habel, A.: Graph grammars with application conditions. In: Rozenberg,
G., Salomaa, A. (eds.) The Book of L, pp. 87–100. Springer, Heidelberg (1986)

7. Flick, N.E.: On correctness of graph programs relative to recursively nested con-
ditions. In: Workshop on Graph Computation Models (GCM 2015), vol. 1403, pp.
97–112 (2015). http://ceur-ws.org/Vol-1403/

8. Habel, A., Heckel, R., Taentzer, G.: Graph grammars with negative applica-
tion conditions. Fundamenta Informaticae 26, 287–313 (1996). https://doi.org/
10.3233/FI-1996-263404

9. Habel, A., Pennemann, K.H.: Correctness of high-level transformation systems
relative to nested conditions. Math. Struct. Comput. Sci. 19(2), 245–296 (2009).
https://doi.org/10.1017/S0960129508007202

10. Habel, A., Radke, H.: Expressiveness of graph conditions with variables. ECE-
ASST, 30 (2010) https://doi.org/10.14279/tuj.eceasst.30.404

11. Heckel, R., Wagner, A.: Ensuring consistency of conditional graph rewriting - a con-
structive approach. Electr. Notes Theor. Comput. Sci. 2, 118–126 (1995). https://
doi.org/10.1016/S1571-0661(05)80188-4

https://doi.org/10.1145/2463664.2465216
https://doi.org/10.1145/2463664.2465216
https://doi.org/10.1145/1989284.1989307
https://doi.org/10.1145/1989284.1989307
https://dl.acm.org/citation.cfm?id=278918.278932
https://doi.org/10.1145/38713.38749
http://ceur-ws.org/Vol-1403/
https://doi.org/10.3233/FI-1996-263404
https://doi.org/10.3233/FI-1996-263404
https://doi.org/10.1017/S0960129508007202
https://doi.org/10.14279/tuj.eceasst.30.404
https://doi.org/10.1016/S1571-0661(05)80188-4
https://doi.org/10.1016/S1571-0661(05)80188-4

Towards a Navigational Logic for Graphical Structures 141

12. Lambers, L., Orejas, F.: Tableau-Based Reasoning for Graph Properties. In: Giese,
H., König, B. (eds.) ICGT 2014. LNCS, vol. 8571, pp. 17–32. Springer, Cham
(2014). https://doi.org/10.1007/978-3-319-09108-2 2

13. Libkin, L., Vrgoc, D.: Regular path queries on graphs with data. In: 15th Interna-
tional Conference on Database Theory, ICDT 2012, Berlin, 26–29 March 2012, pp.
74–85 (2012). https://doi.org/10.1145/2274576.2274585

14. Navarro, M., Orejas, F., Pino, E., Lambers, L.: A logic of graph conditions extended
with paths. In: Workshop on Graph Computation Models (GCM 2016), Vienna
(2016)

15. Orejas, F.: Attributed graph constraints. In: Ehrig, H., Heckel, R., Rozenberg, G.,
Taentzer, G. (eds.) ICGT 2008. LNCS, vol. 5214, pp. 274–288. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-87405-8 19

16. Orejas, F.: Symbolic graphs for attributed graph constraints. J. Symb. Comput.
46(3), 294–315 (2011). https://doi.org/10.1016/j.jsc.2010.09.009

17. Orejas, F., Ehrig, H., Prange, U.: Reasoning with graph constraints. Formal Asp.
Comput. 22(3–4), 385–422 (2010). https://doi.org/10.1007/s00165-009-0116-9

18. Pennemann, K.-H.: Resolution-like theorem proving for high-level conditions. In:
Ehrig, H., Heckel, R., Rozenberg, G., Taentzer, G. (eds.) ICGT 2008. LNCS, vol.
5214, pp. 289–304. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-
540-87405-8 20

19. Pennemann, K.H.: Development of Correct Graph Transformation Systems, PhD
Thesis. Department of Computing Science, University of Oldenburg (2009)

20. Poskitt, C.M., Plump, D.: Verifying monadic second-order properties of graph pro-
grams. In: Giese, H., König, B. (eds.) ICGT 2014. LNCS, vol. 8571, pp. 33–48.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-09108-2 3

21. Rensink, A.: Representing first-order logic using graphs. In: Ehrig, H., Engels, G.,
Parisi-Presicce, F., Rozenberg, G. (eds.) ICGT 2004. LNCS, vol. 3256, pp. 319–335.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30203-2 23

22. Trakhtenbrot, B.A.: The impossibility of an algorithm for the decision problem
on finite classes (In Russian). Doklady Akademii Nauk SSSR, 70:569–572, 1950.
English translation. In: Nine Papers on Logic and Quantum Electrodynamics, AMS
Transl. Ser. 2(23), 1–5 (1963)

23. Wood, P.T.: Query languages for graph databases. SIGMOD Rec. 41(1), 50–60
(2012). https://doi.org/10.1145/2206869.2206879

https://doi.org/10.1007/978-3-319-09108-2_2
https://doi.org/10.1145/2274576.2274585
https://doi.org/10.1007/978-3-540-87405-8_19
https://doi.org/10.1016/j.jsc.2010.09.009
https://doi.org/10.1007/s00165-009-0116-9
https://doi.org/10.1007/978-3-540-87405-8_20
https://doi.org/10.1007/978-3-540-87405-8_20
https://doi.org/10.1007/978-3-319-09108-2_3
https://doi.org/10.1007/978-3-540-30203-2_23
https://doi.org/10.1145/2206869.2206879

Model Transformations as Free Constructions

Michael Löwe(B)

FHDW Hannover, Freundallee 15, 30173 Hannover, Germany
michael.loewe@fhdw.de

Abstract. Hartmut Ehrig was an active researcher in Algebraic Speci-
fications on the one hand and Graph and Model Transformations on the
other hand. We demonstrate that these two research fields are closely
connected, if we consider generating graph transformations only and use
partial algebras instead of total algebras as the underlying category.

1 Introduction

In the last two decades, algebraic graph transformations became popular as
a visual specification method for model transformations [8,9]. There are two
major reasons for that: Graph transformations use a graphical notation and
are rule-based. A graphical notation is adequate, since many modern modelling
techniques are graphical themselves, like for example use case, class, state, or
activity diagrams in the Unified Modelling Language UML [15] or process speci-
fications in Business Process Model and Notation BPMN [14]. And a rule-based
mechanism avoids explicit control structures. Thus, it opens up the chance for
massively parallel transformations.

Model transformations define the mapping between artefacts in possibly dif-
ferent modelling languages. Examples are the mapping of Petri-Nets [20] to State
Charts [17], entity relationship diagrams [4] to relational database schemata,
XML-schemata [6] to UML class diagrams [15], or arbitrary UML class diagrams
to UML class diagrams without symmetric associations and multiple inheri-
tance1. In all these situations, model transformations are generators: given a
model in the source language, the transformation process step by step generates
a model in the target language together with a mapping that records the corre-
spondence between the original items in the source to the generated items. Every
model generation of this type must satisfy the following general requirements:

Termination. The generation process terminates for every finite source model.
Uniqueness. It produces a uniquely determined target for every source model.2

Persistence. The target generation does not change the source model.

These three requirements suggest that model transformations can be under-
stood as some sort of (persistent) free construction from a suitable category of
1 This transformation can serve as a prerequisite for the “compilation” of UML class

diagrams to object-oriented programming languages like Java.
2 Up to isomorphism, if the semantics of transformations is using category theory.

c© Springer International Publishing AG, part of Springer Nature 2018
R. Heckel and G. Taentzer (Eds.): Ehrig Festschrift, LNCS 10800, pp. 142–159, 2018.
https://doi.org/10.1007/978-3-319-75396-6_8

Model Transformations as Free Constructions 143

source models to a suitable category of target models.3 In this paper, we provide
such an interpretation. For this purpose, we do not have to introduce any new
definitions or results in terms of theorems and mathematical proofs. Instead, we
interpret the available results in a slightly adjusted environment:

1. We restrict the well-known algebraic graph transformations to generating
rules, i.e. to rules that do not delete or copy any items.

2. For the underlying category, we pass from total unary algebras4 to arbitrary
partial algebras.

The first adjustment leads to a special case of graph transformations, in which
the three different algebraic approaches to graph transformation, namely the
double-pushout [12], the single-pushout [18], and the sesqui-pushout approach [7]
coincide. This is due to the fact that generating rules are simple morphisms
L

r→ R. For rules of this format, the direct derivation at a match m : L → G is
a simple pushout construction of r and m in all three algebraic approaches.

The second adjustment provides a simple encoding of a “growing” corre-
spondence between items in the source model and generated items in the target
model, namely by partial mappings that are getting more and more defined
within the transformation process.5 And, in partial algebras, the generation of
elements, the creation of definedness for predicates, and the production of equiv-
alences can be controlled by the same simple mechanism, namely Horn-type
formulae.6

The rest of the paper is structured as follows. Section 2 introduces a typical
example of a model transformation scenario, namely the generation of relational
database schemata for object-oriented class diagrams. This example has also
been used as a running example in [9].7 We show by the example, that even
complex model transformation tasks can be modelled by purely generating rules.
Section 3 presents the rich theory of generating transformations in a very general
categorical framework. Especially, we show in Sect. 3.2 that special generating
transformation systems can be interpreted as specifications defining epi-reflective
sub-categories of the underlying category. Section 4 presents the basic theory for
algebraic specifications of partial algebras as a concrete syntax for transformation
rules. In this framework, the sample transformation rules in Sect. 2 obtain a
formal semantics, which allows a detailed review of all samples in Sect. 5. The
analysis results in substantial improvements that, on the one hand, simplify the
transformations from the practical point of view and, on the other hand, turn
all of them into free constructions.

3 For persistent free construction between abstract data types compare [5,10,11].
4 Like graphs, hypergraphs, graph structures [18], or general functor categories from

a finite category to the category of sets and mappings.
5 Possibly without becoming total at last.
6 Alfred Horn, American mathematician, 1918 – 2011.
7 Compare [9], Example 3.6 on page 54.

144 M. Löwe

Fig. 1. Handling of classes, attributes, and associations in ST and CT

2 Sample Transformations – from Classes to Relations

A typical model transformation scenario is the generation of relational schemata
for object-oriented class diagrams. In this section, we present transformation
rules for all three patterns that are useful to cope with inheritance, namely Single
Table Inheritance (ST), Class Table Inheritance (CT), and Concrete Class Table
Inheritance (CCT) [13].8 The presentation in this section stays on the intuitive
level and trusts in the suggestive power of the rule visualisations as graphs
with significant icons. Section 4 presents the necessary formal underpinning for
a precise semantics which is described in Sect. 5.

In this section, we use the same mapping from class diagrams to relational
schemata which has been used in Example 3.6 of [9]: Classes are mapped to
tables, attributes are mapped to columns, and associations are mapped to junc-
tion tables. The corresponding three rules for Single Table Inheritance and Class
Table Inheritance are depicted in Fig. 1.9 For each class, the rule c2t generates
a new table together with a column of numeric type (int) that is marked as
key column10. That a class has been mapped is stored by a (partial) map indi-
cated by the dotted arrow. The rule that generates columns in tables for class
attributes is at2co. It is applicable to each attribute the class of which possesses
an assigned table, possibly generated by an application of rule c2t. In order to
simplify the presentation in this paper, we suppose that the set of base types (int,
bool, string etc.) is identical in class models and relational schemata. Finally,
associations between classes are mapped to junction tables by rule as2jt. This
rule presupposes that the two classes at the ends of the association possess an

8 This section uses material from [21].
9 The correspondence of the items in the left hand side of the rule to items in the

right-hand side is always indicated by the visual correspondence in the layouts. In
Fig. 1, we give an additional explicit definition of the mapping from left to right by
index numbers. In most cases, this explicit indication is superfluous. Since mappings
must be type-conform, i.e. classes can only be mapped to classes, attributes can only
be mapped to attributes etc., and the mapping must respect the graphical structure,
the mapping is uniquely determined for all rules that are depicted below. Thus, we
do not use the index numbers in the following.

10 Standard key columns are unique and not null.

Model Transformations as Free Constructions 145

Fig. 2. Handling of inheritance in ST and CT

assigned table with a primary key column each, which have possibly been gen-
erated by two applications of rule c2t. To each association, it assigns (dotted
arrow) a new table with two columns that both are marked as foreign keys.11

The foreign keys reference the keys that have been found by the match. For the
sake of simplicity, we suppose that the type of a foreign key column is implicitly
set to the type of the referenced key column.

The handling of inheritance relations between classes is different in ST and
CT. Figure 2 depicts the corresponding rules i4ST respectively i4CT which have
the same left-hand side. The ST-pattern puts a complete inheritance hierarchy
into a single table. This effect is implemented by the rule i4ST which merges the
tables and keys for the super- and the sub-class of an inheritance relation and
maps the relation itself to the same table, compare upper part of Fig. 2.12,13

Figure 3 depicts a sample transformation sequence for a small composite class
diagram in the single-table scenario. In the first step, rule c2t is applied three
times and produces a table with primary key column for each class in the start
object. The second step (2 × at4co) handles the column generation for the two
given attributes. The third step (2× i4ST) merges the three tables that have
been generated before and ensures that there is only one table for the complete
inheritance hierarchy. Finally, the fourth step applies the rule as2jt once which
adds the junction table for the given association.

The CT-pattern realises inheritance relations by foreign key references.
Therefore, the rule i4CT maps an inheritance relation to a foreign key, com-
pare lower part of Fig. 2. The key column of the table for the sub-class is

11 Standard foreign key columns are not null.
12 Merging of objects is expressed by non-injective rules.
13 Due to the merging, some of the generated junction tables for association may no

longer accurately model the association’s semantics.

146 M. Löwe

Fig. 3. Sample transformation sequence

simultaneously used as a foreign key reference to the key of the table for the
super-class. This strategy requires coordinated key value generation for all tables
“in an inheritance hierarchy” but provides unique object identity for all “parts”
of the same object in different tables.

The CCT-pattern generates tables for all concrete classes only and “copies”
all inherited attributes and associations to these tables. For the control of this
copying process, we need a relation that provides all direct and indirect (transi-
tive) sub-classes for a super-class. Figure 4 shows the rules, that “compute” the
reflexive (t0) and transitive (t∗) closure of the given inheritance relation (t1).

Fig. 4. Reflexive/transitive closure of inheritance

Since tables are generated for concrete classes only, we distinguish between
abstract and concrete classes. Concrete classes are visualised by the annotation
{c}. The rule cc2t in Fig. 5 generates tables and keys in the CCT-pattern.14

A single attribute can result in several columns, compare rule cat2co in
Fig. 5: For an attribute a of type T in class c, a column of type T is gener-
ated into every table for a concrete class c′ that is a sub-class of c. Thus, the
attribute mapping gets indexed by the concrete sub-classes of the owner class

14 The rule cc2t is a simple modification of rule c2t in Fig. 1. Here, the class-to-table
mapping is partial, since abstract classes are never mapped in CCT.

Model Transformations as Free Constructions 147

Fig. 5. Handling of classes, attributes, and associations in CCT

of the attribute, compare dotted circle in the visualisation of rule cat2co in
Fig. 5.15

The handling of associations in CCT is even more complex. They cannot be
mapped to one foreign key pair, since rows from several “unconnected” tables
can be linked by instances of an association in this pattern. For an accurate map-
ping of the class model semantics, we need orthogonal combinations of foreign
keys into the tables for all concrete sub-classes of the association’s source class
with foreign keys into the tables for all concrete sub-classes of the association’s
target class. The generation of these foreign keys is prepared by rule as2t in
Fig. 5. It provides the table for all foreign key columns that are generated for an
association.

The rules s2co and t2co in Fig. 6 generate these columns together with the
foreign key references to the corresponding tables. These two rules are almost
identical; s2co handles all concrete sub-classes of the association’s source and
t2co all concrete sub-classes of the association’s target class. As in the case of
the attribute mapping, the two mappings that store the correspondence between
items in the class model and items in the relational schema are indexed by the
concrete sub-class either on the source or the target side, compare the two dotted
circles in Fig. 6.

Fig. 6. Foreign keys for associations in CCT

For an accurate representation of the semantics of the class model, in each
row of the “multi-junction table” exactly one foreign key on the source side and
exactly one foreign key on the target side must be not null.16 Thus, we need

15 Rule cat2co also works for the own attributes of a concrete class due to the reflexivity
rule t0 in Fig. 4. This situation requires non-injective matches!

16 For the sake of simplicity of the presentation we do not generate a suitable check

constraint in the relational schema.

148 M. Löwe

foreign key columns that allow null values. This sort of foreign keys is depicted
by a foreign key icon that is decorated by a ⊥-symbol in Fig. 6.

3 Generating Transformations and Epi-Reflections

The samples in the preceding section show that model transformations can be
specified by generating rules. This special case of transformation rules and trans-
formation systems is presented in this section. We show that there is a rich theory
especially wrt. parallel and sequential independence and parallel rule application.
We assume an underlying category C with all small co-limits.17,18

3.1 Generating Transformation Systems

A rule is a morphism r : L → R, a match for rule r : L → R in object G
is a morphism m : L → G, and a direct transformation with rule r at match
m is defined by the pushout (r 〈m〉 : G → r@m,m 〈r〉 : R → r@m) of the pair
(r,m).19 The derivation result is denoted by r@m, the morphisms r 〈m〉 is called
the trace of the direct derivation, and the morphism m 〈r〉 the co-match.20 The
result r@m is unique up to isomorphism, since pushouts are.

A transformation system R is a set of rules. The class R
→ of R-

transformations is the least class of morphisms which (i) contains all isomor-
phisms, (ii) contains all traces r 〈m〉 for all rules in r ∈ R and all suitable matches
m, and (iii) is closed under composition. By R

→
G = {h ∈ R

→ | domain(h) = G},
we denote the R-transformations starting at object G. An object G is final wrt. a
transformation system R, if all h ∈ R

→
G are isomorphisms.21 A system R is

terminating if, for any infinite sequence (ti : Gi → Gi+1 ∈ R
→)i∈N, there is

n ∈ N, such that Gn is final,
confluent if, for any two R-transformation t1 : G → H1 and t2 : G → H2, there

are R-transformations t′1 : H2 → K and t′2 : H1 → K, and
functional if it is terminating and confluent.

Every generating transformation system is strongly confluent as the follow-
ing argument demonstrates. Consider Fig. 7 which depicts two arbitrary direct

17 A category has all small co-limits, if it has all co-limits for small diagram categories.
A category is small if its collection of objects is a sets. As in [1], the family of
morphisms in a category is a family of sets anyway.

18 Examples for such categories are all total or partial Σ-algebras for a given signature
Σ or every epi-reflective sub-category of such categories of Σ-algebras, see below.

19 Neither rules nor matches are required to be monomorphisms. Rules and matches
can be arbitrary morphisms.

20 Sub-diagram (1) in Fig. 7 denotes a direct derivation with rule r1 at match m1.
21 Object G being final wrt. system R does not mean that there are no matches for rules

in R into G. But all these matches produce traces that are isomorphisms, i.e. do not
have any effect.

Model Transformations as Free Constructions 149

L1 R1

L2 G r1@m1

R2 r2@m2 r1@m′
1 = r2@m′

2

r1

m1

m′
1〈r1〉

m1〈r1〉(1)

m2

r2 r2〈m2〉

r1〈m1〉

r2〈m′
2〉

m′
2 = r1〈m1〉◦m2

m′
2〈r2〉

m2〈r2〉

(2)

m′
1 = r2〈m2〉◦m1

r1〈m′
1〉

(3)

Fig. 7. Strong confluence

derivations with rules r1 and r2 at matches m1 and m2 respectively, i.e. sub-
diagrams (1) and (2) are pushouts. Composing the original match of one rule
with the trace induced by the other rule provides the two residual matches m′

1 =
r2 〈m2〉◦ m1 and m′

2 = r1 〈m1〉◦ m2. Applying rule r1 at that residual match m′
1

leads to the pushout (r1 〈m′
1〉 : r2@m2 → r1@m′

1,m
′
1 〈r1〉 : R1 → r1@m′

1). Since
sub-diagram (1) is a pushout and (r1 〈m′

1〉 ◦ r2 〈m2〉) ◦ m1 = r1 〈m′
1〉 ◦ m′

1 =
m′

1 〈r1〉 ◦ r1, we obtain the unique morphism from r1@m1 to r1@m′
1, which

we call r2〈m′
2〉, satisfying r2〈m′

2〉 ◦ m1 〈r1〉 = m′
1 〈r1〉 and r2〈m′

2〉 ◦ r1 〈m1〉 =
r1 〈m′

1〉 ◦ r2 〈m2〉. Since pushouts decompose, the sub-diagram (3) in Fig. 7 is
a pushout, i.e. the pair (r2〈m′

2〉, r1〈m′
1〉) is pushout of (r1〈m1〉, r2〈m2〉). Since

pushouts compose, the sub-diagrams (2) and (3) together constitute a pushout,
i.e. the pair (r1〈m′

1〉 ◦ m2〈r2〉, r2〈m′
2〉) is pushout of r2 and r1〈m1〉 ◦ m2 = m′

2.
Therefore r2〈m′

2〉 is the trace of the direct derivation with rule r2 at match m′
2

and r1〈m′
1〉◦m2〈r2〉 is the co-match m′

2〈r2〉. Combining these results, we obtain:

r1@ (r2〈m2〉 ◦ m1) = r2@ (r1〈m1〉 ◦ m2) and
r2〈m′

2〉 ◦ r1〈m1〉 = r1〈m′
1〉 ◦ r2〈m2〉.

Thus, the system is strongly confluent, which implies that it is confluent and,
furthermore, that it is functional, iff it is terminating. That every generating
transformation system is strongly confluent has some further direct positive con-
sequences, especially wrt. sequential independence and parallel transformations.

Two composable traces r2 〈m2〉 ◦ r1 〈m1〉 are sequentially independent, if
there is a match m′

2 for the rule r2 such that m2 = r1 〈m1〉 ◦ m′
2. In the case

of sequential independence, the order of rule application can be interchanged,

150 M. Löwe

Algorithm 1. Calculation of final objects
(1) Set the current object c to the start object o.
(2) Find all matches for all R-rules in c
(3) Produce trace t : c → c′ for corresponding parallel rule at induced parallel match.
(4) If t is an isomorphism stop and return c.
(5) Otherwise set the current object c to c′ and continue at (2).

i.e. r2 〈m2〉 ◦ r1 〈m1〉 = r1 〈r2 〈m′
2〉 ◦ m1〉 ◦ r2 〈m′

2〉. The proof for this result is a
simple reduction to strong confluence, compare Fig. 7.

Given two rules r1 : L1 → R1 and r2 : L2 → R2, we can construct the par-
allel rule r1+r2 : L1+L2 → R1+R2 as the unique co-product morphism, where
(iL1 : L1 → L1+L2, iL2 : L2 → L1+L2) is the co-product of the rule’s left-hand
sides, (iR1 : R1 → R1+R2, iR2 : R2 → R1+R2) is the co-product of the rule’s
right-hand sides, and r1+r2 satisfies iR1◦ (r1+ r2) = r1 ◦ iL1 and iR2◦ (r1+ r2) =
r2 ◦ iL2 . Having two matches m1 and m2 in the same object for r1 and r2 respec-
tively, the parallel match m1+m2 is uniquely determined by (m1+ m2)◦iL1 = m1

and (m1+ m2) ◦ iL2 = m2. Since any co-limit construction of the same situa-
tion in any order results in the same object (up to isomorphism), we immediately
obtain: r1+r2 〈m1+ m2〉 = r2〈r1 〈m1〉◦ m2〉◦r1〈m1〉 = r1〈r2 〈m2〉◦ m1〉◦r2〈m2〉.

This result provides a good (maximal parallel) strategy for the search of a
final object for a start object o in a system R, compare Algorithm 1. If the system
is terminating, the algorithm finds the final object for all start objects. Unfor-
tunately, most systems are not terminating as the following argument shows.

The application of a rule r at a match m is idempotent, i.e. r 〈r 〈m〉 ◦ m〉
is an isomorphism, if and only if the trace r 〈m〉 is an epimorphism. For the
proof, consider Fig. 7 again and let r1 = r2 as well as m1 = m2. For the if-part,
let r1 〈m1〉 as well as r2 〈m2〉 be epic. Then r1 〈m′

1〉, and r2 〈m′
2〉 are epic, since

pushouts preserve epimorphisms. Since pushouts are unique up to isomorphism,
there is an isomorphism i : r1@m1 → r2@m2 such that i ◦ r1 〈m1〉 = r2 〈m2〉.
Since (3) is pushout, we obtain j : r1@m′

1 → r2@m2 with j ◦ r1 〈m′
1〉 = id

and j ◦ r2 〈m′
2〉 = i. Thus, r1 〈m′

1〉 is section and epic, which means that it is
isomorphism. For the only-if-part, suppose the application is idempotent, i.e.
r1 〈m′

1〉 is isomorphism and r2 〈m′
2〉 is isomorphism with inverse morphism j.

Then r1 〈m1〉 is epic: h◦ r1 〈m1〉 = k ◦ r1 〈m1〉 implies h◦ r1 〈m1〉 = k ◦ r1 〈m1〉 =
k ◦ j ◦ r2 〈m′

2〉 ◦ r1 〈m1〉 = (k ◦ j ◦ r1 〈m′
1〉) ◦ r2 〈m2〉. Since (r1 〈m′

1〉 , r2 〈m′
2〉) is

pushout, there is unique morphism u such that u ◦ r1 〈m′
1〉 = k ◦ j ◦ r1 〈m′

1〉 and,
since r1 〈m′

1〉 is isomorphism, (i) u = k ◦ j as well as u ◦ r2 〈m′
2〉 = h and, since j

is inverse of r2 〈m′
2〉, (ii) h ◦ j = u ◦ r2 〈m′

2〉 ◦ j = u. Now (i) and (ii) imply that
h ◦ j = k ◦ j and h = k since j is isomorphism.

Therefore, a single non-epic trace r 〈m〉 in a system prevents termination,
since the rule r can be applied over and over again at residuals of m with
“new results”. Thus, a necessary condition for termination is that all traces in
the system are epic. Since pushouts preserve epimorphisms, this property can
be guaranteed, if we restrict rules to epimorphisms. Such systems consisting
of epic rules only possess another important property as the next sub-section
demonstrates.

Model Transformations as Free Constructions 151

3.2 Transformation Systems as Epi-Reflections

Every generating transformation system R in the sense of Sect. 3.1 which consists
of epic rules only, can be interpreted as a specification of an epi-reflective sub-
category of the underlying category C. This section recapitulates the construction
of this epi-reflection.22

Every epic transformation rule r : L � R can be interpreted as a con-
structive axiom.23 It is finite or of Horn-type, if it satisfies the following con-
dition: For every chain of morphisms (mi : Oi → Oi+1)i∈N

with the co-limit(
C, (ci : Oi → C)i∈N

)
, every morphism p : L → C into the co-limit object factors

through an object in the chain, i.e. there is i ∈ N and a morphism pi : L → Oi

with ci ◦ pi = p.
A morphism m : L → A solves axiom r : L � R in object A, written m |= r,

if there is morphism mr : R → A such that mr ◦ r = m.24 An object A satisfies
axiom r, written A |= r, if every morphism m : L → A solves r. An object A
satisfies a transformation system R of epic rules, written A |= R, if A |= r for
all r ∈ R. The full sub-category of C which contains all objects satisfying R is
denoted by CR. Every such sub-category turns out to be an epi-reflection of C.

Given an object A and a transformation system R of epic rules,

AR =
{

A
m←− Lm

rm−→ Rm | (r : L � R) ∈ R,m : L → A
}

denotes the diagram of all occurrences of the left-hand sides of all rules in the
transformation system in A.25 In that diagram, for every morphism m : L → A,
the morphism rm : Lm→Rm is a “copy” of r : L � R. The co-limit of AR

is denoted by AR =
(

AR, r∗
A : A → AR,

(
mrm : Rm → AR

)(
A

m←−Lm
rm−→Rm

)
∈AR

)

and we have r∗
A ◦ m = mrm ◦ rm for all

(
A

m←− Lm
rm−→ Rm

)
∈ AR. The mor-

phism r∗
A is an epimorphism, since the equation (i)h◦r∗

A = k ◦r∗
A implies, for all(

A
m←− Lm

rm−→ Rm

)
∈ AR, h◦mrm ◦rm = h◦r∗

A ◦m = k◦r∗
A ◦m = k◦mrm ◦rm

and, since rules are epimorphisms, (ii) h ◦ mrm = k ◦ mrm . Since AR is co-limit,
(i) and (ii) imply h = k.

For given object A and transformation system R, consider (r∗
Ai

:
Ai � Ai+1)i∈N as the chain of epimorphisms starting at A1 = A and having
Ai+1 = AR

i . We denote the co-limit of this chain by
(
R(A), (ai : Ai � R(A))i∈N

)

and obtain
(
ai+1 ◦ r∗

Ai
= ai

)
i∈N

. All these co-limit morphism are epimorphisms,
since all morphisms in the chain are epic.

Furthermore R(A) ∈ CR: Let (r : L � R) ∈ R and let m : L → R(A). Since
r is finite, there is i ∈ N and mi : L → Ai with ai ◦ mi = m. Since Ai+1 = AR

i ,
we obtain morphism mr

i : R → Ai+1 with mr
i ◦ r = r∗

Ai
◦ mi. Putting all parts

22 The principle set-up follows [1], page 278 ff.
23 In this context, the objects L and R are called premise and conclusion respectively.
24 The morphism mr is unique, if it exists, since r is epic.
25 AR is a small diagram, since the family of morphisms in a category is a family of

sets, compare definition of categories in [1].

152 M. Löwe

together provides: (ai+1 ◦ mr
i) ◦ r = ai+1 ◦ r∗

Ai
◦ mi = ai ◦ mi = m, such that we

found ai+1 ◦ mr
i as the desired morphism mr : R → R(A) with mr ◦ r = m.

Finally, we get the following result: For a transformation system R and object
A, a1 : A � R(A) is the epi-reflector for A into CR. The proof is straightforward:
If X ∈ CR and f : A → X are given, we show by induction on i that there
are morphisms (fi : Ai → X)i∈N

for all (Ai)i∈N
in the chain

(
r∗
Ai

: Ai � AR

i

)
i∈N

constructed above. Since A1 = A, the induction can start with f1 : A1 → X :=
f : A → X. Now let, as induction hypothesis, fi : Ai → X be given. By
construction Ai+1 = AR

i and AR

i is a co-limit object. Let (r : L � R) ∈ R and
m : L → Ai be a morphism to Ai, then fi◦m : L → X is a morphism to X. Since
X |= R, there is (fi ◦ m)r : R → X with (fi ◦ m)r ◦ r = fi ◦m. Thus, fi together
with the family of these morphisms are a co-cone for the diagram that has been
used to construct Ai+1 = AR

i from Ai. Since AR

i is the co-limit of this diagram,
we obtain the unique morphism fi+1 : AR

i → X that satisfies fi+1◦r∗
Ai

= fi. This
completes the induction. Now

(
X, (fi : Ai → X)i∈N

)
is a co-cone for the chain(

r∗
Ai

: Ai � AR

i

)
i∈N

. Since R(A) is the limit of this chain, we get a morphism
f∗ : R(A) → X that satisfies (f∗ ◦ ai = fi)i∈N

and, especially, f∗ ◦ a1 = f1 = f .
Uniqueness of f∗ follows from a1 being epic.

The co-limit construction for the chain
(
r∗
Ai

: Ai � Ai+1

)
i∈N

is superfluous,
if r∗

Ak
is an isomorphism for some k ∈ N. In this case, (i) Ak ∈ CR, (ii) r∗

k+j

is isomorphism for all j ∈ N, (iii) Ak+1 is the limit of the chain, and (iv) the
reflector for A is given by r∗

AK
◦ · · · ◦ r∗

A1
: A � Ak+1.

The presented approximation of the epi-reflector for a transformation sys-
tem R with epic rules is an instance of Algorithm1. Each approximation step
r∗
A : A � AR is the trace of an application of a maximal parallel rule, com-

pare diagram AR above. And the approximation stops after finitely many steps,
if and only if the computed object is final wrt. R, i.e. admits isomorphic R-
transformations only. Thus, Algorithm1 calculates the epi-reflector in CR for
every start object o in a terminating transformation system R with epic rules.

4 Partial Algebras

Section 3.2 shows that all generating transformation systems in which all rules
are epimorphisms induce free constructions and possess useful properties like
idempotent rule applications that facilitates the analysis with respect to termina-
tion. Unfortunately, all epimorphisms in categories of total algebras, which usu-
ally constitute the underlying category for most (graph) transformation frame-
works, are surjective, i.e. are just able to generate new equalities. Therefore,
frameworks based on total algebras must live with non-epic rules and need an
additional machinery for termination, like negative application conditions [16],
source consistence derivations in triple graph grammars [2], or artificial trans-
lation attributes as in [9], Sect. 7.4. The situation stays simple, if we pass from
total to partial algebras [3,19] as we recapitulate in this section.

A signature Σ = (S,O) consists of a set of sorts S and a family of oper-
ations O = (Od,c)d,c∈S∗ . For d, c ∈ S∗ and f ∈ Od,c, d is called the domain

Model Transformations as Free Constructions 153

specification of f and c is called the co-domain specification. An (algebraic)
system A =

(
AS , OA

)
for a given signature Σ = (S,O) consists of a family

AS = (As)s∈S of carrier sets, and a family OA =
(
fA : Ad → Ac

)
f∈Od,c,d,c∈S∗

of partial functions.26

This set-up allows functions that provide several results simultaneously, since
co-domain specifications are taken from the free monoid over the sort set. Espe-
cially, operations with an empty co-domain specification are possible. They are
interpreted as predicates in algebraic systems: If p ∈ Od,ε for d ∈ S∗, the function
pA : Ad → {∗} maps to the one-element-set in every system A. Thus pA singles
out the elements in Ad for which it is defined, i.e. for which it is “true”.

Given two systems A and B with respect to the same signature Σ = (S,O),
a homomorphism h : A → B, is given by a family of total mappings h =
(hs : As → Bs)s∈S such that the following condition is satisfied:27

∀d, c ∈ S∗, f ∈ Od,c, x ∈ Ad : if fA (x) is defined, fB
(
hd(x)

)
= hc

(
fA (x)

)
. (1)

The condition (1) means for the special case where f ∈ Od,ε, that fB must
be defined for hd(x), if fA is defined for x. The concrete value of these functions
is irrelevant, since there is a single value in {∗} and hε = id{∗}. By Sys(Σ),
we denote the category of all Σ-systems and all Σ-homomorphisms. For every
signature Σ, Sys(Σ) has all small limits and co-limits for each signature Σ.28

The most important property of Sys(Σ) for the purposes of this paper is, that
epimorphisms are not necessarily surjective. This fact can be demonstrated by
a simple example using the signature with one sort N and one unary operation
s∈ ON,N, the system K =

(
KN = {x}, sK = ∅)

, the system of natural numbers
N =

(
NN = N0, sN :: i �→ i + 1

)
, and the morphism k : K → N defined by

x �→ 0. This morphism is epic, since N is generated by the function sN starting
at value 0 = k(x).29 However, the morphism k′ : K → N with x �→ 1 is not epic,
since the value 0 is not reachable by function calls of sN starting at 1.30

For a general characterisation of epimorphisms in Sys(Σ = (S,O)), we need
the following closure operations for a family of subsets (Bs ⊆ As)s∈S of a system
A. For all sorts s ∈ S:

B0
s = Bs ∪ {

y ∈ As :: fA(∗) = (p, y, q), f ∈ Oε,v

}

Bi+1
s = Bi

s ∪
{

y ∈ As :: fA(x) = (p, y, q), f ∈ Ow,v, x ∈ (
Bi

)w
, |w| ≥ 1

}

B∗
s =

⋃

i∈N0

Bi
s

26 Given a family of sets A=(As)s∈S , k ≥ 0, and s1 . . . sk ∈ S∗, As1...sk = As1×· · ·×Ask .
27 For a family of mappings f = (fs :As →Bs)s∈S , k ≥ 0, and w = s1 . . . sk ∈ S∗, fw :

Aw →Bw is defined by fw(x1, . . . , xk)=(fs1(x1), . . . , fsk(xk)) for all (x1, . . . xk)∈Aw.
28 Compare [19].
29 Any two morphisms p, q : N → M with p(k(x)) = q(k(x)) must coincide on all

natural numbers due to the homomorphism condition (1).
30 It is easy to construct p, q : N → M with p(k′(x)) = q(k′(x)) that differ at value 0.

154 M. Löwe

A Σ -morphism h : A → B is epic, if and only if h(A)∗
s = Bs for all sorts

s ∈ S, i.e. if and only if the system B is function-generated starting at the h
-image of A in B.31 Therefore, a constructive axiom in the sense of Sect. 3.2 in
a category Sys(Σ) of algebraic systems can generate new elements in the carriers
(as long as they are operation generated), can generate new “truths” by defining
new predicate instances, and can generate new equalities if it is not injective.

Constructive axioms are usually presented as finite implications, the elemen-
tary building blocks of which are formulae. Given signature Σ = (S,O) and
variable set X = (Xs) s∈S , the set of formulae FΣ,X =

(
TΣ,X

s

)
s∈S

∪ FΣ,X is
defined by:

x ∈ TΣ,X
s if x ∈ Xs (2)

fi(t) ∈ TΣ,X
si

if f ∈ Ow,s1...sk
, t ∈ (

TΣ,X
)w

, 1 ≤ i ≤ k, k ≥ 1 (3)

f(t) ∈ FΣ,X if f ∈ Ow,ε, t ∈ (
TΣ,X

)w
(4)

l = r ∈ FΣ,X if l, r ∈ TΣ,X
s , s ∈ S (5)

A syntactical presentation PX =
(
X,P ⊆ FΣ,X

)
of a Σ-system consists of

a variable set X and a set of formulae P ; it is finite, if X and P are finite
sets. The presented system APX = TPX/≡ is constructed as follows. The carriers(
TPX

s

)
s∈S

are inductively defined by:

x ∈ TPX
s if x ∈ Xs or

(
x ∈ P and x ∈ TΣ,X

s

)
(6)

fj(x) ∈ TPX
sj

if fi(x) ∈ TPX
si

, f ∈ Ow,s1...sk
, 1 ≤ i, j ≤ k (7)

tj ∈ TPX
sj

if fi(t1, . . . tm) ∈ TPX

s′
i

, f ∈ Os1...sm,s′
1...s′

n
, 1 ≤ j ≤ m, i ≤ n (8)

tj ∈ TPX
sj

if p(t1, . . . tk) ∈ P, p ∈ Os1...sk,ε, 1 ≤ j ≤ k, k ≥ 1 (9)

l, r ∈ TPX
s if (l = r) ∈ P and l, r ∈ TΣ,X

s (10)

For an operation f ∈ Ow,s1...sk
(k ≥ 1) and a possible argument x ∈ (

TPX
)w,

fTPX(x) = (f1(x), . . . , fk(x)), if fj(x) ∈ TPX
sj

for all 1 ≤ j ≤ k. For a predicate

p ∈ Ow,ε and a possible argument x ∈ (
TPX

)w, pT
PX(x) is defined, if p(x) ∈ P .

And the quotient relation ≡ ⊆ TPX×TPX is the smallest congruence containing
{(l, r) | (l = r) ∈ P}.32

Since TPX is closed wrt. sub-terms, compare Eq. (8), and ≡: TPX → APX is
surjective, APX is generated by X which means, that there is an epimorphism
xPX : X � APX mapping x to [x]≡.33 If we have two syntactical presentations
PX =

(
X,P ⊆ FΣ,X

)
and CX =

(
X,C ⊆ FΣ,X

)
with the same variable set X

31 Here, h(A) = (hs(As))s∈S and hs(As) = {y ∈ Bs | y = hs(x), x ∈ As}. For a proof
of the proposition, compare [19].

32 An equivalence ≡ on a Σ-System A is a congruence, if fA(x1, . . . xm) = (y1, . . . yn),
fA(x′

1, . . . x
′
m) = (y′

1, . . . y
′
n) and xi ≡ x′

i for all 1 ≤ i ≤ m implies yj ≡ y′
j for all

1 ≤ j ≤ n for all operations f ∈ O.
33 Every variable set is a Σ-system with completely undefined operations!

Model Transformations as Free Constructions 155

Specification 1. Formalisation of class models
CM:= sorts C(lass), B(asetype), At(tribute), As(sociation), I(nheritance)

opns int: −→ B, conc: C

o(wner): At−→ C, t(arget) :At−→ B

o(wner): As−→ C, t(arget) :As−→ C

sub: I−→ C, sup(er) : I−→ C,

<= : C,C

axms x:C :: ==> <=(x,x) (a1)

x:I;l,u:C :: sub(x) = l, sup(x) = u ==> <=(l,u) (a2)

x,y,z:C :: <=(x,y), <=(y,z) ==> <=(x,z) (a3)

x,y:C :: <=(x,y), <=(y,x) ==> x = y (a4)

such that P ⊆ C, then the kernel of xPX is contained in the kernel of xCX and
we obtain an epimorphism =⇒

PXC : APX � ACX with =⇒
PXC ◦ xPX = xCX .34

A Horn-type presentation H =
(
X,P ⊆ C ⊆ FΣ,X

)
of an axiom consists of

a finite variable set X, a finite syntactical presentation C ⊆ FΣ,X , called the
conclusion, and a sub-presentation P of C, called the premise. The presented
axiom is the uniquely determined epimorphism =⇒

PXC . A system satisfies H, if it
satisfies =⇒

PXC , compare Sect. 3.2.
Specification 1 presents a formalisation CM of the class diagrams that we used in

Sect. 2, i. e. class diagrams are CM-algebras. As an example, consider the class dia-
gram which is the start object in Fig. 3. It is modelled by the following CM-algebra
S: SC = {1, 3, 4}; SB = {int,bool,string}; SAt = {2, 5}; SAs = {6}; SI = {7, 8};
intS :: ∗ �→ int; concS ={1, 3, 4}; oS

At :: 2 �→ 1, 5 �→ 4; tS
At :: 2 �→ bool, 5 �→ string;

oS
As :: 6 �→ 3; tS

As :: 6 �→ 1; subS :: 7 �→ 3, 8 �→ 4; supS :: 7 �→ 1, 8 �→ 1;
<=S ={(1, 1), (3, 3), (4, 4), (3, 1), (4, 1)}.

All underlined operation are implicitly required to be total. This requirement
can be explicitly specified by very simple axioms. For example, the axiom for the
operation o(wner):At→C is: x:At :: ==> o(x). The axioms (a1) – (a4) spec-
ify that inheritance is hierarchical, i.e. induces a partial order <=. The rules t0,
t1, and t∗ in Fig. 4 are picturesque visualisations of the epimorphisms presented
by axioms (a1), (a2), and (a3) respectively.

Specification 2. Formalisation of relational schemata
RS:= sorts T(able), B(asetype), Co(lumn), K(ey), F(oreign)K(ey)

opns int: −→ B

ta(ble): Co−→ T, t(ype): Co−→ B, n(ullable): Co

c(olumn): K −→ Co, c(olumn): FK−→ C, r(efers): FK−→ K

34 Compare for example Theorem 99 (Homomorphism Theorem 1) in [19].

156 M. Löwe

Specification 3. Formal basis for Single Table Inheritance (ST)
ST:= CM +Basetype RS + ST’ := CM +Basetype RS +

opns C2T: Class−→ Table opns C2K: Class−→ Key

At2Co: Attribute−→ Column At2Co: Attribute−→ Column

As2JT: Association−→ Table As2FKP: Association−→ FK,FK

I2T: Inheritance−→ Table I2K:Inheritance−→ Key

5 Sample Transformations – Revisited

The informally introduced model transformation rules in Sect. 2 can be precisely
formalised on the basis of the definitions in Sect. 4. Specifications 1 and 2 specify
class models and relational schemata respectively. For the model transforma-
tion pattern “Single Table Inheritance (ST)”, we devise the partial operations
depicted in the specification ST in the left part of Specification 3.35 With this
interpretation all rules in Fig. 1 and the rule i4ST in Fig. 2 depict morphisms
in Sys(ST). As an example, consider the rule c2t in Fig. 1. Its left-hand side L
is the following ST-algebra: LC = {1}; LB = {int,bool,string}; intL :: ∗ �→ int;
concL ={1}; <=L ={(1, 1)}; and all other components of L are empty. Its right-
hand side is represented by the ST-algebra R: RC={1}; RB={int,bool,string};
intR :: ∗ �→ int; concR = {1}; <=R = {(1, 1)}; RT = {2}; RCo = {3}; RK = {4};
taL :: 3 �→ 2; tL

Co :: 3 �→ int; cL
K :: 4 �→ 3; C2TL :: 1 �→ 2; and all other components

of R are empty. The rule morphism r : L → R maps as follows: rC :: 1 �→ 1;
rB ::int�→int,bool�→bool,string�→string; and all other components of the mor-
phism are empty.

Unfortunately, the corresponding transformation system is not terminating
for almost all class models. This is due to the fact, that the rules c2t and as2jt
are not epic and induce non-epic traces. Therefore, they are not idempotent.

This defect can be avoided by a simple reengineering of ST to the specification
ST’ in the right part of Specification 3 together with the adapted rules in Fig. 8
and the adapted rule i4ST’ in Fig. 9 which are epimorphism and guarantee
termination of the transformation system for finite class models, since all rules
are idempotent and the specification ST’ does not contain any recursive function.

Fig. 8. Epic handling of classes, attributes, and associations in ST (and CT)

35 The notation indicates that we assume the same carrier for Basetype in CM and RS.

Model Transformations as Free Constructions 157

Fig. 9. Epic handling of inheritance in ST and CT

From the practical point of view, ST’ allows more compact rules (com-
pare Figs. 2 and 9.) and is a more precise description for the mapping of class
model items to elements in a relational schema than ST: Classes are mapped to
keys, since the only feature classes provide for their objects is object identity.
Attributes are mapped to columns as before. And associations are mapped to
foreign key pairs, since it is the key pair that enforces type conformance of the
association’s links in the relational model.

From the theoretical point of view, ST’ and the corrected, now epic rules are
better than the rules in Sect. 2, since they induce an epi-reflection, are idempo-
tent, and, therefore, can easily be analysed wrt. termination.

The two other patterns CT and CCT, discussed in Sect. 2, can also be turned
into epi-reflections. The pattern CT differs from ST just by the handling of inher-
itance. The corresponding transformation rule is i4CT’ in Fig. 9. The necessary
mapping of inheritance relations to relational schemata can be provided by a
partial operation I2FK : Inheritance−→ ForeignKey.

Specification 4. CCT as parametric specification
Source := CM; Target := Source +Basetype RS +

opns C2K: Class−→ Key

At2Co: Attribute,Class−→ Column

As2T: Association−→ Table [x:As :: ==> As2T(x)]

AS2FK,AT2FK: Association,Class−→ ForeignKey

axms x:C :: conc(c) ==> t(c(C2K(x))) = int (a5)

x:At;y:C;z:T :: z = ta(c(C2K(y))), <=(y,o(x)) ==>

ta(At2Co(x,y)) = z, t(At2Co(x,y)) = t(x) (a6)

x:As,y:C,z:K :: <=(y,o(x)), z = C2K(y) ==> r(AS2FK(x,y)) = z,

n(c(AS2FK(x,y))), ta(c(AS2FK(x,y))) = As2T(x) (a7)

x:As,y:C,z:K :: <=(y,t(x)), z = C2K(y) ==> r(AT2FK(x,y)) = z,

n(c(AT2FK(x,y))), ta(c(AT2FK(x,y))) = As2T(x) (a8)

Specification 4 presents CCT as a parametric specification in the sense of [10].36

The five rules for the transformation of class models into relation schemata
are specified by the total operation As2T and the axioms (a5) – (a8). The
semantics of such a specification is the free construction from Sys(Source) to

36 Again, Source and Target share sort Basetype with defined constant int.

158 M. Löwe

Fig. 10. Epic generation of foreign keys for associations in CCT

Sys(Target) wrt. the obvious forgetful functor in the opposite direction. The
point-wise construction of these free objects is described in Sect. 3.2.

It is obvious that the presentation of constructive axioms as Horn-formulae
is not as suggestive as the presentation as visual transformation rules, compare
for example Fig. 10 which graphically depicts the axioms (a7) and (a8) by rules
s2co’ and t2co’ respectively. But as we have shown in this paper both variants
are semantically equivalent, if the presented morphisms are epic.

6 Summary

In this paper, we discussed the close connection between generating graph rules
and the point-wise construction of epi-reflectors for finite constructive axioms.
Constructive axioms turned out to be special cases of arbitrary generating rules.
And a finite transformation from an arbitrary object o to a final one can be inter-
preted as the calculation of the epi-reflector of o, if all rules are epimorphisms.

In categories of partial algebras, constructive axioms can (operation-) gen-
erate new elements (e.g. rules in Fig. 10), can add new predicate definitions
(e.g. rules in Fig. 4) and are able to identify items (e.g. rule i4ST’ in Fig. 9).
Therefore, constructive axioms in categories of partial algebras are suitable for
the application area of model transformations for two reasons.

First of all, model transformation rules are typically generating rules, com-
pare for example Triple Graph Grammars (TGG) [2,9], which have been pro-
posed as a standard framework for model transformation. All rules in TGG are
generating, especially all sets of derived rules that can be used for model trans-
formation, i.e. forward, backward, source/target, and integration rules. Future
research will investigate the connection between TGG and the framework pro-
posed here.

Secondly, a model transformation produces the derived target model for a
given source model, i.e. the target shall be uniquely determined (possibly up to
isomorphism) for each source model and it shall be computable in a finite number
of steps. If the computation is a calculation of an epi-reflector, uniqueness is for
free. And, as we showed above, constructive axioms show better termination
behaviour than arbitrary rules. We demonstrated these features in this paper
by some typical examples. Future research, especially the elaboration of more
and bigger transformation examples, will show, if epimorphisms are sufficient for
model transformation.

Model Transformations as Free Constructions 159

References

1. Adámek, J., Herrlich, H., Strecker, G.E.: Abstract and Concrete Categories - The
Joy of Cats (2004). http://katmat.math.uni-bremen.de/acc

2. Anjorin, A., Leblebici, E., Schürr, A.: 20 years of triple graph grammars: a roadmap
for future research. ECEASST, 73 (2015)

3. Burmeister, P.: Introduction to theory and application of partial algebras - Part I.
Mathematical Research, vol. 32. Akademie-Verlag, Berlin (1986)

4. Chen, P.P.: The entity-relationship model - toward a unified view of data. ACM
Trans. Database Syst. 1(1), 9–36 (1976)

5. Claßen, I., Ehrig, H., Wolz, D.: Algebraic specification techniques and tools for
software development: the act approach. AMAST Series in Computing, vol. 1.
World Scientific, River Edge (1993)

6. World Wide Web Consortium. Xml Schema, W3C (2012). https://www.w3.org/
standards/techs/xmlschema

7. Corradini, A., Heindel, T., Hermann, F., König, B.: Sesqui-pushout rewriting. In:
Corradini, A., Ehrig, H., Montanari, U., Ribeiro, L., Rozenberg, G. (eds.) ICGT
2006. LNCS, vol. 4178, pp. 30–45. Springer, Heidelberg (2006). https://doi.org/10.
1007/11841883 4

8. Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic Graph
Transformation. Springer, Heidelberg (2006)

9. Ehrig, H., Ermel, C., Golas, U., Hermann, F.: Graph and Model Transformation -
General Framework and Applications. Springer, Monographs in Theoretical Com-
puter Science. An EATCS Series (2015)

10. Ehrig, H., Mahr, B.: Fundamentals of algebraic specification 1: equations and initial
semantics. EATCS Monographs on Theoretical Computer Science., vol. 6. Springer,
Heidelberg (1985)

11. Ehrig, H., Mahr, B.: Fundamentals of algebraic specification 2. EATCS Mono-
graphs on Theoretical Computer Science, vol. 21. Springer, Heidelberg (1990)

12. Ehrig, H., Pfender, M., Schneider, H.J.: Graph-grammars: an algebraic approach.
In: FOCS, pp. 167–180. IEEE (1973)

13. Fowler, M.: Patterns of Enterprise Application Architecture. Addison-Wesley,
Boston (2003)

14. Object Management Group: Business Process Model and Notation 2.0.2. OMG
(2013). http://www.omg.org/spec/BPMN/index.htm

15. Object Management Group: Unified Modeling Language 2.5. OMG (2015). http://
www.omg.org/spec/UML/

16. Habel, A., Heckel, R., Taentzer, G.: Graph grammars with negative application
conditions. Fundam. Inform. 26(3/4), 287–313 (1996)

17. Harel, D.: Statecharts: a visual formalism for complex systems. Sci. Comput. Pro-
gram. 8(3), 231–274 (1987)

18. Löwe, M.: Algebraic approach to single-pushout graph transformation. Theor.
Comput. Sci. 109(1&2), 181–224 (1993)

19. Löwe, M., Schulz, C.: Algebraic Systems. May 2017. http://ux-02.ha.bib.de/daten/
Löwe/Master/TheorieInformationssystem/Algebra20170523.pdf

20. Petri, C.A., Reisig, W.: Petri net. Scholarpedia 3(4), 6477 (2008)
21. Tempelmeier, M., Löwe, M.: Single-Pushout Transformation partieller Algebren.

Technical Report 2015/1, FHDW-Hannover (2015) (in German)

http://katmat.math.uni-bremen.de/acc
https://www.w3.org/standards/techs/xmlschema
https://www.w3.org/standards/techs/xmlschema
https://doi.org/10.1007/11841883_4
https://doi.org/10.1007/11841883_4
http://www.omg.org/spec/BPMN/index.htm
http://www.omg.org/spec/UML/
http://www.omg.org/spec/UML/
http://ux-02.ha.bib.de/daten/L{\unhbox \voidb@x \bgroup \let \unhbox \voidb@x \setbox \@tempboxa \hbox {o\global \mathchardef \accent@spacefactor \spacefactor }\accent 127 o\egroup \spacefactor \accent@spacefactor }we/Master/TheorieInformationssystem/Algebra20170523.pdf
http://ux-02.ha.bib.de/daten/L{\unhbox \voidb@x \bgroup \let \unhbox \voidb@x \setbox \@tempboxa \hbox {o\global \mathchardef \accent@spacefactor \spacefactor }\accent 127 o\egroup \spacefactor \accent@spacefactor }we/Master/TheorieInformationssystem/Algebra20170523.pdf

The Verigraph System for Graph Transformation

Guilherme Grochau Azzi , Jonas Santos Bezerra , Leila Ribeiro,
Andrei Costa, Leonardo Marques Rodrigues , and Rodrigo Machado(B)

Instituto de Informática, Universidade Federal do Rio Grande do Sul,
Porto Alegre, RS, Brazil

{ggazzi,jsbezerra,leila,acosta,lmrodrigues,rma}@inf.ufrgs.br

Abstract. Graph transformation (GT) is a rule-based framework, suit-
able for modelling both static and dynamic aspects of complex systems in
an intuitive yet formal manner. The algebraic approach to GT is based
on category theory, allowing the instantiation of theoretical results to
multiple graph-like structures (e.g. labelled or attributed graphs, Petri
nets, even transformation rules themselves). There exists a rich theory
of algebraic GT which underlies verification techniques such as static
analysis. Current tools based on GT are implemented in a very concrete
way, unlike the theory, making them hard to extend with novel theoret-
ical results. Thus a new software system called Verigraph was created,
with the goal of implementing the theory as closely as possible, while
maintaining a reasonable execution time. In this paper we present the
architecture of Verigraph, which enabled an almost direct implementa-
tion of the theory. We also provide a step-by-step guide to implementing
a new graph model within the system, using second-order graph transfor-
mation as an example. Finally, we compare the performance of Verigraph
and AGG.

Keywords: Graph transformation · Software system · Static analysis

1 Introduction

Graph transformation is a rule-based framework, suitable for modelling both
static and dynamic aspects of complex systems in an intuitive yet formal man-
ner [8,24]. The main idea is to use graphs to specify the states of a system,
describing existing entities and their relations at each time of execution, and to
model the transitions between such states as graph rewriting rules, also called
productions. These rules describe precisely how the states can be modified.
Besides having an intuitive and visual representation, graph transformation has
a solid formal background, which enables several analysis techniques.

There are several approaches to describe Graph Transformation (GT) [24],
differing on the kinds of graphs that are used and how rules and their application
are defined. In some approaches, these notions are defined using set theory. The
algebraic approach to graph transformation [8] uses notions of category theory
to describe graph transformation rules and rule application. Category theory
c© Springer International Publishing AG, part of Springer Nature 2018
R. Heckel and G. Taentzer (Eds.): Ehrig Festschrift, LNCS 10800, pp. 160–178, 2018.
https://doi.org/10.1007/978-3-319-75396-6_9

http://orcid.org/0000-0002-3740-7002
http://orcid.org/0000-0002-8089-3691
http://orcid.org/0000-0002-5894-9070

The Verigraph System for Graph Transformation 161

provides a language to describe and reason about complex situations at a high
level of abstraction. An advantage of this approach is that great part of the rich
algebraic GT theory is applicable not only to a particular kind of graph, but also
to several different structures such as labelled graphs, typed graphs, attributed
graphs [8] and even transformation rules themselves [16]. This is possible since
most of the theory is developed at the categorial level, as high-level replacement
systems [11] or M-adhesive categories [10]. The main idea is that theory is
developed at a very abstract level assuming that the concrete category to which
the theory should hold has particular properties. Then, by showing that specific
graph categories have these properties, the theory immediately applies to them.

Although most of the algebraic GT theory is done at this abstract level,
existing GT tools (AGG [26], Groove [22], among others), are implemented at
a rather concrete level: each tool supports only a fixed set of concrete graph
models, operations and analysis techniques. Furthermore, their implementation
is very far from the formal definitions, hindering arguments about correctness
and the construction of extensions to deal with novel approaches.

This led to the creation of the Verigraph System [7], which is open source1

and implemented in Haskell. It has a current focus on static analysis techniques
and the following design goals:

G1. Quick prototyping and experimentation of novel theory
G2. Easy integration of different graph models
G3. Direct implementation of formal concepts at a high level of abstraction,

making it easier to reason about correctness
G4. Reasonable execution time.

In this paper we detail the architecture of Verigraph, explaining how the
separation of applications (e.g. simulation, static analysis techniques) from con-
crete graph models (e.g. simple directed graphs, typed graphs, attributed graphs)
allows us to achieve goals G1–G3. We also provide a step-by-step guide to imple-
menting custom graph models within the framework, using second-order graph
transformation as an example, and provide further evaluation of Verigraph’s
performance as evidence that goal G4 was achieved.

This paper is organized as follows. Section 2 reviews the theory of algebraic
graph transformation. Section 3 presents Verigraph’s architecture. To illustrate
the flexibility of the system, Sect. 4 provides a step-by-step guide to implement-
ing a graph model within Verigraph. Section 5 provides an overview of cur-
rently implemented applications and graph models. Section 6 lists related tools.
Section 7 compares the performance of static analysis techniques in Verigraph
and AGG. Section 8 provides final remarks and discusses features that are cur-
rently under development.

2 Algebraic Graph Transformation

In this section we briefly review the basic definitions of algebraic graph trans-
formation, according to the Double-Pushout (dpo) approach [9]. We follow the
1 Source code available at https://github.com/Verites/verigraph/.

https://github.com/Verites/verigraph/

162 G. G. Azzi et al.

generalization of dpo to work with objects of any M-adhesive category [10],
which include variations of graphs (typed, labelled, attributed), Petri nets and
algebraic specifications. The reader is assumed to be familiar with basic concepts
of Category Theory. A more detailed introduction to algebraic graph transfor-
mation is available in [8].

We begin by reviewing the notion of M-adhesive category, which underlies
the other definitions.

Definition 1 (M-adhesive Category). A category C is called M-adhesive,
where M is a suitable [10] class of monomorphisms, if

(i) C has pushouts along M-morphisms;
(ii) C has pullbacks along M-morphisms;
(iii) pushouts along monomorphisms are van Kampen (VK) squares [14].

These properties ensure that C has well-behaved pushouts. This equips the cat-
egory with natural notions for union and intersection of M-subobjects, since it
ensures for all objects of C that their M-subobjects form a distributive lattice.
Furthermore, it ensures uniqueness of pushout complements, as described below.

Definition 2 (Pushout Complement)

Given the morphisms (A
f→ B

g→ C) of a category C, a

pushout complement of (f, g) is a pair of morphisms (A
f ′
→

B′ g′
→ C) making the square on the right a pushout.

A B

B′ C

f

g′ g

f ′

Fact 1 (Uniqueness of Pushout Complements). In an M-adhesive cat-
egory C, pushout complements along M-morphisms (i.e. when f ∈ M in the
square above) are unique up to isomorphism, when they exist.

We proceed by reviewing the basic concepts of dpo rewriting for any
M-adhesive category C.

Definition 3 (Negative Condition)
A negative condition has the form nc(a), where a :
P → C is an arbitrary morphism. We say that a mor-
phism m : P → G satisfies the condition when there is no
monomorphism q : C � G with q ◦ a = m, i.e. factor-
ing m through a. We denote by nc(A) a set of negative
conditions, where A is a set of morphisms.

C

G P

q

m

a

Definition 4 (Double-Pushout Rule). A rule, also called production, ρ =

(L
l� K

r� R, nc(N)) contains a span in C with l, r ∈ M, as well as a set of
negative conditions N = {ni : L → Ni}i∈I . We call L and R the left- and right-
hand sides, respectively, while K is called the interface. The conditions nc(N)
are referred to as Negative Application Conditions (nacs).

The Verigraph System for Graph Transformation 163

Definition 5 (Match and Transformation Step). A match for the rule

ρ = (L
l� K

r� R, nc(N)) in the object G is any morphism m : L → G. A
match is applicable if it satisfies all nacs and (l,m) has a pushout complement

(K k→ D
l′→ G).

Given an applicable match m : L → G for rule ρ,
we obtain the transformation step or derivation
G

ρ,m
=⇒ H by the diagram on the right, where both

squares are pushouts.

L K R

G D H

m

l r

k m′

l′ r′

Definition 6 (Double-Pushout Transformation System). A dpo
transformation system (TS) in the M-adhesive category C is a tuple G =
(G0, P) where G0 is a C-object, representing the initial state, and P a set of
rewriting rules.

The categorial foundation for dpo has enabled the definition of multiple anal-
yses that are also applicable to any M-adhesive category. In particular, critical
pair analysis helps understand the control flow that emerges from interacting
rules [11]. It is based on parallel independence.

Parallel independence captures the notion that two transformation steps do
not interfere with each other, being applicable in any order while still reaching
the same result. When they are not parallel-independent, at least one of the steps
disables the application of the other, which is called a conflict. In the following
discussion, we omit the treatment of nacs due to limited space.

Definition 7 (Parallel Independence). Given two transformation steps
G

ρ1,m1=⇒ H1 and G
ρ2,m2=⇒ H2, they are parallel-independent if there exist

morphisms q12 : L1 → D2 and q21 : L2 → D1 making the following diagram com-
mute. The rules are said to be in conflict when they are not parallel-independent.

R1 K1 L1 L2 K2 R2

H1 D1 G D2 H2

r1 l1

m1
q12m2

q21

l2 r2

l′1 l′2

Remark 1. The conflicts characterized by the definition above are called delete-
use conflicts, because in the context of graphs they detect elements that are
deleted by one rule and used by the other. The complete notion of parallel
independence in the presence of nacs is more involved, including other kinds of
conflicts. A thorough treatment of these notions may be found in [15].

The notion of critical pair captures conflicts in a minimal context. By enu-
merating all critical pairs, we get an account of all possible interference between
two rules. Their formal definition and a thorough discussion is provided in [11].

The categories of graphs and of typed graphs, which are now introduced,
are M-adhesive. Thus, the generalized theory of dpo transformation applies to
those categories.

164 G. G. Azzi et al.

Definition 8 (Graph, Graph Morphism). A graph G = (V,E, s, t) con-
tains a set V of nodes, a set E of edges and two functions s, t : E → V
mapping each edge into its source and target node, respectively. Given graphs
G1 = (V1, E1, s1, t1) and G2 = (V2, E2, s2, t2), a graph morphism f : G1 → G2

is a pair of functions f = (fV : V1 → V2, fE : E1 → E2) that preserve incidence,
that is, fV ◦ s1 = s2 ◦ fE and fV ◦ t1 = t2 ◦ fE.

Definition 9 (T -typed Graph, T -typed Graph Morphism). Given a
graph T , called the type graph, a T -typed graph is a pair (G, t) where G
is the instance graph and t : G → T the typing morphism. Given two T -typed
graphs (G1, t1) and (G2, t2), any graph morphism f : G1 → G2 that preserves
typing, i.e. with t2 ◦ f = t1 is a T -typed graph morphism.

Definition 10 (Categories of Graphs). Graphs along with graph morphisms
form the category Graph. T -typed graphs along with their morphisms form the
category GraphT . Note that GraphT is the slice category Graph ↓ T .

Fact 2. The categories Graph and GraphT are M-adhesive, taking as M the
class of all monomorphisms [10].

2.1 Example: Pacman

In this paper we will use the Pacman game as a running example, adapted
from [24], especially to discuss second-order graph transformation in Sect. 4.
The example is depicted in Fig. 1. We use a typed graph transformation system
having 4 types of nodes and 5 types of edges (graph T). Rules describe how
Pacman and the ghosts may move (rules movePacman and moveGhost); how
a ghost may kill Pacman (rule killPacman, that has a nac – graph with gray
background – stating that Pacman may only be killed if it does not carry a
berry); how Pacman may kill a ghost (rule killGhost); and how Pacman may get
and drop berries (rules getBerry and dropBerry). Note that only the left- and
right-hand sides of rules are shown since in these examples all items that are
shown in both sides are preserved (thus graph K is their intersection and rule
morphisms are obvious).

3 Architecture

Verigraph was implemented in Haskell [19], a purely functional programming
language with mathematical foundations. We exploit its abstraction mechanisms
and functional style to reduce the mismatch between theory and code as much
as possible.

The core of the system is organized into three layers: The Abstract layer is
the central part of the architecture, providing high-level categorial and rewrit-
ing APIs. The Application layer provides a series of analysis techniques mainly
implemented over the abstract APIs. Finally, the Concrete layer encapsulates the
realisation of those APIs for specific categories, such as Graph and GraphT .

The Verigraph System for Graph Transformation 165

Fig. 1. Pacman transformation system

Figure 2 summarizes the architecture of Verigraph. Folders represent Haskell
modules, while simple boxes represent data types or, when text is in italic,
type classes. Dashed arrows indicate dependencies between modules. A thorough
documentation of Verigraph’s modules is available online2.

In the remainder of this section, we explain the design of each layer in detail,
and how they are used to achieve a generic and extensible architecture that is
also very close to theory.

3.1 The Abstract Layer

The abstract layer is responsible for defining basic constructions and operations
for category theory and rewriting systems. This is mainly accomplished by a
series of contracts, in the form of Haskell type classes, that specify abstract cat-
egorial operations. The application layer can then be largely generic with respect
to the category, depending only on these contracts. The actual implementation
of most operations is left for the concrete layer, though some operations have a
default implementation in terms of other categorial constructs (e.g. pushout as
coproduct and coequalizer).

Being the layer that directly expresses categorial concepts, its operations
closely reflect categorial definitions. In Verigraph, a category is described by the
type class Category, shown in Fig. 3. It defines the basic structure and operations
that any category implemented in Verigraph must provide. We omit some details
of the type classes due to space restrictions.

2 API documentation available at https://verites.github.io/verigraph-docs/.

https://verites.github.io/verigraph-docs/

166 G. G. Azzi et al.

Fig. 2. Verigraph architecture

Essentially, a category must have an object type3, a morphism composition
operation (<&>), a function that returns the identity morphism of an object,
together with functions that return the domain and codomain objects of a
morphism.

However, not all categories are suitable for all purposes. In general, the theory
of rewriting assumes that categories have enough structure to enable particular
constructions. This is also specified by type classes, such one for M-adhesive
categories, which have pushouts and pullbacks along monomorphisms, as shown
in Fig. 3.

The categorial portion of this module provides further type classes. For exam-
ple, FindMorphism defines the operations for finding all morphisms between a
pair of objects, possibly restricting to a specific class or satisfying restrictions
(e.g. make a span or a cospan commute). Similarly, E’PairCofinitary deals
with enumerating jointly epic pairs of morphisms with given domains.

Besides the high-level categorial framework, the abstract layer also contains
APIs for each rewriting approach. This is kept in a different submodule to decou-
ple categorial operations from the rewriting approaches.

Currently, the only rewriting approach implemented in the stable version of
Verigraph is dpo, although new approaches are being studied and have ongoing
implementation, particularly Sesqui-Pushout [6] and AGREE [5].

3 We use an extension of Haskell’s type system enabling type families to associate a
type of object to each type of morphism.

The Verigraph System for Graph Transformation 167

Fig. 3. Type classes for categories and M-adhesive categories.

Fig. 4. Data type for dpo productions (see Definition 4)

Fig. 5. Implementation of dpo rewriting steps (see Definition 5)

Similar to the categorial APIs, those for rewriting provide basic data struc-
tures and operations of their underlying approaches, often defined in terms of
categorial operations. Examples are data types for rules and transformation sys-
tems, along with functions for checking if matches are applicable, performing
rewritings, etc. Figure 4 shows the data definition for productions in the dpo
approach and Fig. 5 shows a function that, given a production and an applicable
match, calculates the transformation step.

3.2 The Application Layer

The application layer provides a collection of analysis techniques, mainly based
on the categorial and rewriting APIs. An example is critical pair analysis,

168 G. G. Azzi et al.

described in Sect. 2. It is implemented at a high level of abstraction, directly
depending only on the DPO and E’PairCofinitary type classes (which in turn
depend on FindMorphism).

Thus, critical pair analysis is available for any category that conforms to the
aforementioned type classes. Figure 6 shows the main functions that implement
critical pair analysis. Once again, we omit the treatment of nacs due to limited
space. The code also has been slightly simplified for readability and space.

Fig. 6. Functions that calculate critical pairs for delete-use (see Definition 7 and
Remark 1)

In the code snippet shown in Fig. 6, the function findJointSurjections
enumerates all jointly epic pairs of morphisms that have the left-hand
sides of either rule as domain. Function satisfyRewritingConditions tests
the existence of pushout complements for a pair of matches. Function
findCospanCommuter finds all morphisms q21 : L2 → D1 such that g1◦q21 = m2.

Although the main focus of this layer is to be generic and based on the
abstract layer, there exist analyses that are tied to the internal structure of a
particular category and/or its objects. For such situations, Verigraph allows the
application layer to directly access features of the concrete layer, at the cost that
these particular analyses will not be available to other categories. Some examples
are given in Sects. 4 and 5.

3.3 The Concrete Layer

The concrete layer deals with the implementation of particular categories, i.e. the
data structures and category-specific operations for objects and morphisms (e.g.

The Verigraph System for Graph Transformation 169

applying a morphism to a node or edge), as well as the realisation of contracts
from the abstract layer, such as operations for finding and composing morphisms,
pushouts and pullbacks.

This layer is split into three modules, as shown in Fig. 2. The Data mod-
ule provides basic data structures, while the Category and Rewriting modules
provide instantiations of the appropriate type classes for those data structures.

Currently, there are three main categories implemented in Verigraph: Graph,
GraphT (see Definition 10) and GraphRuleT (which will be described in
Sect. 4). A category for typed attributed graphs is under development. Figure 7
shows data structures representing objects and morphisms of the first two cate-
gories.

In order to use the existing generic analyses with a different category, this
is the only layer that needs to be changed, as explained in Sect. 4. One of the
main advantages is that new programmers do not have to worry about too many
categorial details, as long as they implement the basic operations defined in the
upper layers. Figure 8 shows the instantiation of category GraphT .

Another advantage of this architecture is that optimizations dependent on
the internal representation of objects and morphisms can be done here without

Fig. 7. Implementation of typed graphs and their morphisms

Fig. 8. Category instance for GraphT

170 G. G. Azzi et al.

compromising the clarity of the abstract operations or tying them to a particular
category. An example are optimized search procedures for morphisms that satisfy
particular restrictions, such as commuting with a particular span or cospan.

Finally, despite being focused on graphs, Verigraph is not necessarily limited
to them. Therefore, any category with the necessary properties can be imple-
mented in the system, such as sets, Petri nets, algebraic specifications, etc.

4 Implementing a Graph Model in Verigraph

In this section, we provide a step-by-step guide to implementing a new graph
model in Verigraph. Note that all implementations shown in this section belong
to the concrete layer. Each step will be illustrated by describing the implemen-
tation of Second-Order Graph Grammars (SOGGs), which allow the transfor-
mation of graph rewriting rules using dpo transformation [17]. In the context of
Model-Driven Engineering, SOGGs are well-suited to analyse changes introduced
during the evolution or maintenance phase of development.

4.1 Step 1: Define the Graph Model as an M-adhesive Category

In order to integrate a graph model into Verigraph’s architecture, it must be
defined as an M-adhesive category. The notions of object and morphism must
be clear, as well as constructions such as (co)limits, initial pushouts, E-M fac-
torization and E ′-M pair factorization.

Note that most of the implemented categories are finitary, that is, each object
has a finite number of subobjects. In this case, M-adhesiveness guarantees E-
M factorization and the existence of initial pushouts, and a strict initial object
additionally guarantees finite coproducts and E ′-M pair factorization [4].

Second-order graph transformations are defined in the category of typed
graph spans, which is M-adhesive under certain assumptions [16].

Graph rewriting rules, in the dpo approach, are spans L � K � R in
GraphT . Thus, the following category is appropriate to model the rewriting of
graph rules.

Definition 11. The category GraphRuleT has,
as objects, monic spans L � K � R of GraphT .
A rule morphism f : α → β is then a triple of
graph morphisms (fL, fK , fR) between the graphs of
both rules making the diagram on the right com-
mute.

Lα Kα Rα

Lβ Kβ Rβ

fL fK

lα rα

fR

lβ rβ

Fact 3. GraphRuleT is M-adhesive [16]. Its limits, colimits and pushout com-
plements can be constructed componentwise in GraphT .

Since GraphRuleT is M-adhesive, the framework of dpo rewriting can be
instantiated for it. Thus, second-order rules, also called 2-rules, are spans of

The Verigraph System for Graph Transformation 171

rule morphisms. Figure 9 shows two examples of 2-rules for the Pacman transfor-
mation system. Note that the interfaces are omitted from first- and second-order
rules, since all items shown in both sides are preserved (thus the interfaces are
the intersection of the left- and right-hand sides). The 2-rule noViolence trans-
forms a deletion of Pacman into its preservation, maintaining the deletion of the
edge linking Pacman to a block. The 2-rule fastGhost adds a new preserved block
in a rule that moves a ghost, allowing it to move two blocks at a time instead of
just one.

Fig. 9. Pacman second-order rules

4.2 Step 2: Implement Data Structures for Objects and Morphisms

The building blocks for dpo transformation are the objects and morphisms of
the category. Thus, the design of data structures that represent them is crucial
to ensure reasonable runtime and memory consumption.

The category GraphRuleT is particularly simple, since it can reuse the
data structures that implement GraphT . The types of graph rules and their
morphisms are show in Fig. 10, and they directly reflect Definition 11.

Fig. 10. RuleMorphism implementation

4.3 Step 3: Instantiate the Appropriate Type Classes

According to the constructions available in the category, the type classes of
the abstract layer should be instantiated, that is, their operations should be

172 G. G. Azzi et al.

implemented for the objects and morphisms of this category. The instantiated
type classes will define which applications are available to the implemented graph
model. The correspondence between each type class and the categorial concepts
it embodies are explained in the API documentation4.

Many of the type classes provide default implementations for some of the
operations, which are correct but inefficient. These are useful for early proto-
types, but careful implementation of all operations is important to ensure rea-
sonable runtime and memory consumption.

In the case of GraphRuleT all of the aforementioned type classes are instan-
tiated. Indeed, most of the algorithms are constructed over GraphT primitives
since limits, colimits and other constructions on GraphRuleT can be calcu-
lated componentwise. An example is the implementation of pushout comple-
ments, shown in Fig. 11. The function receives two RuleMorphisms f : α → β

Fig. 11. Implementation of Pushout Complement for RuleMorphism

4 API documentation available at https://verites.github.io/verigraph-docs/.

https://verites.github.io/verigraph-docs/

The Verigraph System for Graph Transformation 173

and g : β → γ, returning its pushout complement (f ′ : α → β′, g′ : β′ → γ) (see
Definition 2). The first part of the function performs pushout complements in
GraphT , shown in orange in the previous diagram. This implicitly constructs the
typed graphs of rule β′ as codomains of g′

L, g′
K and g′

R. The second part searches
for graph morphisms lβ′ and rβ′ that make the diagram commute. Finally, the
rule β′ and the rule morphisms f ′ and g′ are assembled from their components.

The complete realisation of MAdhesive, DPO and E’PairCofinitary type
classes for RuleMorphism enables the usage of many generic applications of
Verigraph with 2-rules, including critical pair analysis and the calculation of
concurrent rules.

4.4 Step 4 (Optional): Implement Category-Specific Applications

There are often applications that depend on details of the graph model, and
cannot or were not generalized categorially. These may be still be implemented
within Verigraph, although they may not profit from the separation of the
abstract layer.

In the case of SOGGs, inter-level critical pair analysis detects situations
where the applicability of first-order rules is changed after applying a second-
order rule. This operation is inherent to the transformation of graph rules, and
was implemented in Verigraph.

4.5 Step 5: Adapt the Command-Line Interface

In order for end users to execute applications over the new graph model, some
functionality must still be implemented, such as: reading files that define trans-
formation systems of the graph model, writing files that describe the results,
interpreting configuration options. This needs to be implemented separately for
each graph model, since the syntax of input/output files and the available options
vary greatly. It also needs to be integrated into the executable providing the
command-line interface. This step is unrelated to the theory of algebraic graph
transformation, so it is beyond the scope of this paper.

5 Overview of Implemented Techniques

Verigraph already provides several applications for end users. It allows the exe-
cution of first- and second-order rewriting rules over typed graphs (i.e. trans-
formation of typed graphs and of graph rules). Its current main focus, however,
are static analysis techniques. Attributed graphs are not yet supported. At the
present time, Verigraph provides a Command Line Interface, using AGG [26]
.ggx and .cpx files as input/output formats.

Many of the implemented features are not specific to first- and second-order
graph transformation, being implemented generically with respect to the trans-
formed structure. This includes the execution of second-order rules, which may
be applied to first-order transformation of any structure. Other generic applica-
tions are the following static analysis techniques described in [8].

174 G. G. Azzi et al.

Critical Pair Analysis: Captures all possibilites of conflicts between rules in
a minimal context.

Critical Sequence Analysis: Similar to critical pair analysis, captures all
possibilites of dependencies between rules in a minimal context.

Concurrent Rules Calculation: Generates rules that summarize the appli-
cation of several rules in a single step.

As for the applications available to a single kind of structure, Verigraph
provides:

Inter-level Critical Pairs Analysis (GraphRuleT) [17]: Detects conflicts
between first- and second-order graph rules, i.e. whether and how the appli-
cation of second-order rules affects the applicability of first-order rules. This
is useful for analysing software evolution.

Occurrence Grammar Calculation (GraphT) [23]: Generates doubly-typed
graph grammars that describe the semantics of typed graph grammars and
their application history. These can be used for the generation of test cases.

Another important aspect of dpo transformation systems are Graph Con-
straints, which are also supported by Verigraph. They are not described in this
paper due to lack of space.

6 Related Work

Existing tools based on graph transformation (GT) vary according to the sup-
ported graph models, transformation approaches, execution models and analy-
sis techniques. Unlike Verigraph, most of them are domain-specific, but other
domain-neutral tools based on the algebraic approach include the following.

AGG [26] supports typed attributed graphs, allowing execution of transforma-
tion rules, critical pair analysis and calculation of concurrent rules.

GROOVE [22] supports a model of labelled graphs with types and attributes,
allowing execution of transformation rules, state space exploration and model
checking.

GrGEN.NET [12] supports typed attributed graphs, allowing the compilation
of transformation rules into C# for efficient execution. It also provides a
domain-specific language for controlling the application of rewrite rules.

Graph Programs [18] is a programming language containing transformation
rules of labeled graphs as primitive statements. A compiler is available, gen-
erating bytecode for the York abstract machine. Although a reasoning system
based on Hoare logic was proposed for verifying Graph Programs [21], tool
support is not yet available.

A particular application domain where many transformation tools are avail-
able is Model-Driving Engineering (MDE). In this setting, transformation rules
generally manipulate graph-based models such as those from the Unified Model-
ing Language (UML) or the Eclipse Modeling Framework (EMF). Besides dpo

The Verigraph System for Graph Transformation 175

rewriting, Triple Graph Grammars (TGG) [25] are often used to define bidirec-
tional model transformations. EMorF [13] supports in-place model modifica-
tion rules (based on dpo), as well as model transformation and synchronization
(based on TGG) for EMF models, allowing execution of transformation rules.
eMoflon [1] supports Story Driven Modeling (a combination of UML Activity
Diagrams and dpo) as well as TGG for EMF models, allowing compilation into
Java code. Henshin [2] supports transformation rules for EMF models, along
with control-flow constructs to guide their execution. It allows execution of rules,
compilation into Java, state space exploration integrated with model-checking
tools and critical pair analysis (using AGG as a component).

7 Performance Evaluation

One of the design goals of Verigraph was a reasonable execution time. In order
to validate the satisfaction of this goal, we have performed some experiments
comparing the execution time of static analysis techniques on Verigraph and
AGG [26].

We have selected five transformation systems (TS) to use as inputs of the
experiment. PACMAN is the TS presented in Fig. 1. ELEV models the behaviour
of an elevator system with 9 rules, adapted from [15]. MED1, MED2 and MED3
model guidelines for a medical procedure, containing 36 rules in total [3]. PAC-
MAN and MED1 contain only relatively small graphs, with at most 5 nodes, and
at most 2 of the same type. ELEV contains slightly larger graphs, with up to 7
nodes and 3 of the same type. MED2 and MED3 have even larger graphs, with
up to 8 nodes and 2 of the same type.

The experiment consisted of running critical pair and sequence analysis over
the TSs, that is, calculating all critical pairs and sequences for each pair of rules
in each TS. The analysis was executed 10 times for each TS, with each tool,
in an Intel I5-3330 processor running at 3 GHz with 16 GiB of RAM. The total
time and peak memory usage was measured for each execution using GNU time.
Although the measurements include reading and writing XML files, this overhead
should be similar for both tools, and both execution time and memory usage
should be dominated by the analysis itself. Furthermore, the results directly
reflect the experience of end users. It is also important to note that both AGG
and Verigraph parallelize the analysis. All input files and the scripts used for
running the tests are available at https://github.com/Verites/verigraph/tree/
critical-pairs-benchmarks.

Table 1 presents the number of critical pairs and sequences found for each TS,
and Table 2 presents the measured execution times. For the TSs PACMAN, MED1
and ELEV, Verigraph’s performance was slightly better than AGG. On MED2
and MED3 AGG’s performance degraded substantially, and it was significantly
outperformed by Verigraph. This indicates that AGG is more sensitive to the
size of the graphs contained in rewriting rules, since the last two TSs contained
the largest graphs. Memory usage is shown in Table 3, and followed a similar
pattern.

https://github.com/Verites/verigraph/tree/critical-pairs-benchmarks
https://github.com/Verites/verigraph/tree/critical-pairs-benchmarks

176 G. G. Azzi et al.

Table 1. Number of critical pairs and sequences for each transformation system.

PACMAN ELEV MED1 MED2 MED3

Rules 6 9 9 11 12

Critical pairs 135 328 85 858 1462

Critical sequences 146 242 16 229 272

Table 2. Average and standard deviation for execution times of critical pair and
sequence analysis, in seconds.

Tool PACMAN ELEV MED1 MED2 MED3

avg dev avg dev avg dev avg dev avg dev

Verigraph 3.82 0.07 13.21 0.09 3.55 0.06 14.94 0.18 35.84 0.30

AGG 4.90 0.05 15.16 0.12 5.49 0.05 1233.10 12.91 1375.62 16.43

Table 3. Average and standard deviation for peak memory usage of critical pair and
sequence analysis, in MiB.

Tool PACMAN ELEV MED1 MED2 MED3

avg dev avg dev avg dev avg dev avg dev

Verigraph 65.50 2.27 157.88 4.12 47.37 2.02 434.34 15.70 764.60 23.52

AGG 180.70 7.66 287.00 4.74 112.65 1.10 8660.15 299.06 8739.41 229.26

8 Conclusion

Verigraph is a new system for Graph Transformation (GT) that exploits the use
of category theory to promote flexibility and extensibility. The use of category
theory as a basis allows not only for flexibility, but also provides a framework
in which formal definitions of algebraic GT can be implemented in a rather
straightforward way. Conceptually, this idea is similar to the use of institutions
as a basis for the HETS tool [20].

The flexibility of Verigraph was demonstrated by the implementation
of second-order graph transformation: by instantiating a categorial API for
GraphRuleT , existing applications like critical pair analysis are automatically
available for second-order graph rewriting. Moreover, we have shown that it is
also possible to develop category-specific applications, like Interlevel Conflict
Analysis (which requires at least two levels of rewriting rules).

Despite flexibility and extensibility, a reasonable execution time can be
achieved by an efficient implementation of the categorial API. This was demon-
strated by comparing execution time of critical pair analysis on Verigraph and
AGG, having Verigraph outperform AGG in realistic test cases.

Currently Verigraph implements rewriting under the dpo approach using
the categories GraphT and GraphRuleT , as well as critical pair/sequence

The Verigraph System for Graph Transformation 177

analysis and calculation of concurrent rules. We are working on support for
(typed) attributed graphs, as well as the Sesqui-Pushout and AGREE trans-
formation approaches. Research is also being done on applying Verigraph to
generate test cases for software that is modeled with graph transformation.

The existing version of Verigraph uses AGG files for input and output via a
Command Line Interface. Nonetheless, Verigraph’s own Graphical User Interface
is under development, following a web-based approach completely decoupled
from the system’s code.

A flexible architecture makes Verigraph suitable as a platform for testing new
ideas in Graph Transformation. The system is free and open source, currently
available online at GitHub5, which allows collaborative development and discus-
sion. Extensive automated testing helps maintain its correctness, and its API is
thoroughly documented. All these aspects could enable the use and development
of Verigraph by the community of researchers.

References

1. Anjorin, A., Lauder, M., Patzina, S., Schürr, A.: eMoflon: leveraging EMF and
professional CASE tools. Informatik 192, 281 (2011)

2. Arendt, T., Biermann, E., Jurack, S., Krause, C., Taentzer, G.: Henshin: advanced
concepts and tools for In-Place EMF model transformations. In: Petriu, D.C.,
Rouquette, N., Haugen, Ø. (eds.) MODELS 2010. LNCS, vol. 6394, pp. 121–135.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-16145-2 9

3. Bezerra, J.S., Costa, A., Ribeiro, L., Cota, É.F.: Formal verification of health
assessment tools: a case study. Electron. Notes Theor. Comput. Sci. 324, 31–50
(2016)

4. Braatz, B., Ehrig, H., Gabriel, K., Golas, U.: Finitary M-adhesive categories. In:
Ehrig, H., Rensink, A., Rozenberg, G., Schürr, A. (eds.) ICGT 2010. LNCS, vol.
6372, pp. 234–249. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
642-15928-2 16

5. Corradini, A., Duval, D., Echahed, R., Prost, F., Ribeiro, L.: AGREE – algebraic
graph rewriting with controlled embedding. In: Parisi-Presicce, F., Westfechtel, B.
(eds.) ICGT 2015. LNCS, vol. 9151, pp. 35–51. Springer, Cham (2015). https://
doi.org/10.1007/978-3-319-21145-9 3

6. Corradini, A., Heindel, T., Hermann, F., König, B.: Sesqui-pushout rewriting. In:
Corradini, A., Ehrig, H., Montanari, U., Ribeiro, L., Rozenberg, G. (eds.) ICGT
2006. LNCS, vol. 4178, pp. 30–45. Springer, Heidelberg (2006). https://doi.org/10.
1007/11841883 4

7. Costa, A., Bezerra, J., Azzi, G., Rodrigues, L., Becker, T.R., Herdt, R.G.,
Machado, R.: Verigraph: a system for specification and analysis of graph gram-
mars. In: Ribeiro, L., Lecomte, T. (eds.) SBMF 2016. LNCS, vol. 10090, pp. 78–94.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49815-7 5

8. Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic
Graph Transformation. Monographs in Theoretical Computer Science. Springer,
Heidelberg (2006). https://doi.org/10.1007/3-540-31188-2

5 https://github.com/Verites/verigraph/.

https://doi.org/10.1007/978-3-642-16145-2_9
https://doi.org/10.1007/978-3-642-15928-2_16
https://doi.org/10.1007/978-3-642-15928-2_16
https://doi.org/10.1007/978-3-319-21145-9_3
https://doi.org/10.1007/978-3-319-21145-9_3
https://doi.org/10.1007/11841883_4
https://doi.org/10.1007/11841883_4
https://doi.org/10.1007/978-3-319-49815-7_5
https://doi.org/10.1007/3-540-31188-2
https://github.com/Verites/verigraph/

178 G. G. Azzi et al.

9. Ehrig, H., Pfender, M., Schneider, H.J.: Graph-grammars: an algebraic approach.
In: Switching and Automata Theory, pp. 167–180 (1973)

10. Ehrig, H., Golas, U., Hermann, F., et al.: Categorical frameworks for graph trans-
formation and HLR systems based on the DPO approach. Bull. EATCS 102, 111–
121 (2010)

11. Ehrig, H., Habel, A., Padberg, J., Prange, U.: Adhesive high-level replacement
categories and systems. In: Ehrig, H., Engels, G., Parisi-Presicce, F., Rozenberg,
G. (eds.) ICGT 2004. LNCS, vol. 3256, pp. 144–160. Springer, Heidelberg (2004).
https://doi.org/10.1007/978-3-540-30203-2 12

12. Geiß, R., Batz, G.V., Grund, D., Hack, S., Szalkowski, A.: GrGen: a fast SPO-
based graph rewriting tool. In: Corradini, A., Ehrig, H., Montanari, U., Ribeiro, L.,
Rozenberg, G. (eds.) ICGT 2006. LNCS, vol. 4178, pp. 383–397. Springer,
Heidelberg (2006). https://doi.org/10.1007/11841883 27

13. Klassen, L., Wagner, R.: EMorF - a tool for model transformations. Electron.
Commun. EASST 54, 1–6 (2012)

14. Lack, S., Sobociński, P.: Adhesive and quasiadhesive categories. RAIRO - Theor.
Inf. Appl. 39(3), 511–545 (2005)

15. Lambers, L.: Certifying rule-based models using graph transformation. Ph.D. the-
sis, Elektrotechnik und Informatik der Technischen Universität Berlin (2010)

16. Machado, R.: Higher-order graph rewriting systems. Ph.D. thesis, Instituto de
Informática - Universidade Federal do Rio Grande do Sul (2012)

17. Machado, R., Ribeiro, L., Heckel, R.: Rule-based transformation of graph rewriting
rules: towards higher-order graph grammars. Theor. Comput. Sci. 594, 1–23 (2015)

18. Manning, G., Plump, D.: The GP programming system. Electron. Commun.
EASST 10, 1–13 (2008)

19. Marlow, S.: Haskell 2010 language report (2010). https://www.haskell.org/
onlinereport/haskell2010/

20. Mossakowski, T., Maeder, C., Lüttich, K.: The heterogeneous tool set, Hets.
In: Grumberg, O., Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424, pp. 519–522.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-71209-1 40

21. Poskitt, C.M.: Verification of graph programs. Ph.D. thesis, University of York
(2013)

22. Rensink, A.: The GROOVE simulator: a tool for state space generation. In: Pfaltz,
J.L., Nagl, M., Böhlen, B. (eds.) AGTIVE 2003. LNCS, vol. 3062, pp. 479–485.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-25959-6 40

23. Ribeiro, L.: Parallel composition and unfolding semantics of graph grammars.
Ph.D. thesis, Technical University of Berlin (1996)

24. Rozenberg, G.: Handbook of Graph Grammars and Computing by Graph Transfor-
mation: Volume 1, Foundations. World Scientific Publishing Co., Inc., River Edge
(1997)

25. Schürr, A.: Specification of graph translators with triple graph grammars. In: Mayr,
E.W., Schmidt, G., Tinhofer, G. (eds.) WG 1994. LNCS, vol. 903, pp. 151–163.
Springer, Heidelberg (1995). https://doi.org/10.1007/3-540-59071-4 45

26. Taentzer, G.: AGG: a tool environment for algebraic graph transformation. In:
Nagl, M., Schürr, A., Münch, M. (eds.) AGTIVE 1999. LNCS, vol. 1779, pp. 481–
488. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-45104-8 41

https://doi.org/10.1007/978-3-540-30203-2_12
https://doi.org/10.1007/11841883_27
https://www.haskell.org/onlinereport/haskell2010/
https://www.haskell.org/onlinereport/haskell2010/
https://doi.org/10.1007/978-3-540-71209-1_40
https://doi.org/10.1007/978-3-540-25959-6_40
https://doi.org/10.1007/3-540-59071-4_45
https://doi.org/10.1007/3-540-45104-8_41

Decomposition Structures for Soft Constraint
Evaluation Problems: An Algebraic Approach

Ugo Montanari1, Matteo Sammartino2(B), and Alain Tcheukam3

1 University of Pisa, Pisa, Italy
2 University College London, London, UK

m.sammartino@ucl.ac.uk
3 New York University, Abu Dhabi, United Arab Emirates

Abstract. (Soft) Constraint Satisfaction Problems (SCSPs) are expres-
sive and well-studied formalisms to represent and solve constraint-
satisfaction and optimization problems. A variety of algorithms to tackle
them have been studied in the last 45 years, many of them based on
dynamic programming. A limit of SCSPs is its lack of compositionality
and, consequently, it is not possible to represent problem decompositions
in the formalism itself. In this paper we introduce Soft Constraint Eval-
uation Problems (SCEPs), an algebraic framework, generalizing SCSPs,
which allows for the compositional specification and resolution of (soft)
constraint-based problems. This enables the systematic derivation of effi-
cient dynamic programming algorithms for any such problem.

1 Introduction

(Soft) Constraint Satisfaction Problems (SCSPs) are expressive and well-studied
formalisms [20,24] to represent and solve constraint-satisfaction and optimiza-
tion problems [4]. A CSP consists of a network of hyperedges, interpreted as
predicates on (variables associated to) the adjacent vertices. A solution is a
variable assignment satisfying all the predicates (or providing a “best” level of
satisfaction, in the soft version).

Finding a solution for an SCSP is in general an NP-complete problem. A
variety of algorithms have been studied in the last 45 years, many of them based
on dynamic programming [2]. Dynamic programming is a well-known method
for solving optimization problems. It consists in: (a) decomposing repeatedly
the problem into smaller subproblems; (b) solving subproblems in a bottom-up
order, by combining solutions of smaller problems into those of bigger problems.

Key to the approach is the fact that repeated subproblems are only solved
once. Different decompositions can have substantially different computational
costs, and choosing a best one is known as secondary optimization problem
of dynamic programming [3]. This is also an NP-complete problem. When the
problem has a graphical representation, as in the case of CSPs, a class of tree-
shaped structures, called tree decompositions [19,22], have been used to repre-
sent dynamic programming hierarchies. The solution process corresponds to a
c© Springer International Publishing AG, part of Springer Nature 2018
R. Heckel and G. Taentzer (Eds.): Ehrig Festschrift, LNCS 10800, pp. 179–200, 2018.
https://doi.org/10.1007/978-3-319-75396-6_10

180 U. Montanari et al.

bottom-up visit of the tree decomposition (see e.g. [12] for algorithms for CSPs
based on tree decompositions).

A limit of SCSPs is the lack of compositionality and, consequently, of mech-
anisms to represent problem decompositions for dynamic programming in the
formalism itself. In this paper we introduce a new, compositional framework
for a wide class of constraint-based problems, which we call Soft Constraint
Evaluation Problems (SCEPs), generalizing SCSPs. In this framework, both the
structure and the solution process can be represented at the same time, with
a formal connection between the two. This provides a correct-by-construction
mechanism to decompose and solve SCEPs via dynamic programming.

SCEPs are specified via a simple syntax inspired by process algebras, with a
natural interpretation in terms of constraints. As an example, the term:

p = (y)((x)A(x, y) ‖ (z)B(y, z))

represents a problem made of two constraints A and B, over x, y and y, z respec-
tively, where () precedes ‖ . Notice that y is shared.

The syntax is expressive enough to represent both the structure of the prob-
lem and a decomposition into subproblems. For instance, A(x, y) being in the
scope of (x) means that it must be solved w.r.t. x, which will produce a solution
parametric in y. A fundamental role is played by the axiom of scope extension

(x)(p ‖ q) = (x)p ‖ q (x not free in q)

which allows for the manipulation of the subproblem structure of terms.
Given an SCEP, represented as the term p defined above, its solution is just

the evaluation of p in a given SCEP algebra, i.e., an algebra providing an inter-
pretation of basic constraints and operations. In other words, the solution can
be computed via structural recursion on terms, using the interpreted operations.
For instance, in a typical optimization problem, ‖ is interpreted as summing
up each subproblem’s contribution, e.g., cost, and (x) as minimizing w.r.t. the
variable x.

A key challenge here is achieving structural recursion in the presence of vari-
able binding, such as the restriction operator (x) described above. In fact, if
treated naively, variable binding leads to possibly ill-defined recursive defini-
tions, where notions such as “free/bound variable” and “variable capture” need
to be consistently taken into account. To tackle this, SCEP algebras are per-
mutation algebras [15], including explicit variable permutations that enable a
proper treatment of free and bound variables. This approach is equivalent to
abstract syntax with binding via nominal sets (see, e.g., [21]).

The main contributions of this paper are as follows:

– In Sect. 3 we propose a strong axiomatization of SCEPs, and we present one of
the main results of the paper: soundness and completeness of constraint net-
works w.r.t. our strong specification, namely networks form its initial algebra.
Then we introduce a weak specification, where each term describes a specific
decomposition. This enables decomposing and solving SCEPs, and in partic-
ular traditional constraint networks, in a unified framework.

Decomposition Structures for Soft Constraint Evaluation Problems 181

– In Sect. 4 we show how SCSPs are an instance of SCEPs.
– In Sect. 5 we introduce the notion of complexity of term evaluation, and we

characterize terms that are local optima w.r.t. complexity.
– In Sect. 6 we give a formal translation from tree decompositions to weak terms,

which enables applying algebraic techniques to the former, and improving
their complexity via the results of Sect. 5.

– In Sect. 7 we give a simple algorithm, inspired by bucket elimination [23,
Sect. 5.2.4]. We show that our algorithm can achieve better decompositions
than the latter one.

– Finally, in Sect. 8 we give a non-trivial example of a problem which can be
represented and solved as an SCEP, but not as an SCSP.

2 Background

We recall some basic notions. A ranked alphabet E is a set equipped with an
arity function ar : E → N. A labelled hypergraph over a ranked alphabet E is a
tuple G = (VG, EG, aG, labG), where: VG is the set of vertices; EG is the set of
(hyper)edges; aG : EG → V �

G assigns to each hyperedge e the tuple of vertices
attached to it (V �

G is the set of tuples over VG); labG : EG → E is a labeling
function, assigning a label to each hyperedge e such that |aG(e)| = ar(labG(e)).

Given two hypergraphs G1 and G2 over E , a homomorphism between them
is a pair of functions h = (hV : VG1 → VG2 , hE : EG1 → EG2) preserving con-
nectivity and labels, namely: hV ◦ aG1 = aG2 ◦ hE and labG2 ◦ hE = labG1 . It is
an isomorphism whenever hV and hE are bijections. We write G1 � G2 for the
component-wise disjoint union of G1 and G2.

2.1 Soft Constraint Satisfaction Problems

Let V be a denumerable set of variables and let EC be a ranked alphabet of
soft constraints (or just constraints). We assume that EC also has a function
var : EC → V

� (with ar(A) = |var(A)|, for all A ∈ EC), assigning a tuple of
distinct canonical variables to each constraint. Canonical variables are such that
var(A) ∩ var(B) = ∅ if A �= B. The structure of soft constraint problems can
be described as a particular kind of hypergraphs labelled over EC .

Definition 1 (Concrete network). A concrete network (of constraints) is a
pair I � N , where:

– N = (VN , EN , aN , labN) is a labelled hypergraph over EC such that VN ⊆ V

and there are no isolated vertices, i.e., vertices v such that v /∈ aN (e), for all
e ∈ EN ;

– I ⊆ VN is a finite set of interface variables.

In a concrete network, for every edge e ∈ EN we define a substitution of variables
σe mapping component-wise the tuple of canonical variables var(labN (e)) to
the actual variables aN (e) e is connected to. Hyperedges can be understood as

182 U. Montanari et al.

instances of constraints, where canonical variables are replaced by concrete ones,
describing how subproblems are connected. Interface variables are “external”, in
the sense that they allow networks to interact when composed.

Example 1. Let A and B be two constraints with ar(A) = ar(B) = 2 and
var(A) = 〈x1, x2〉, var(B) = 〈x3, x4〉. Consider the labelled hypergraph N , with
VN = {x, y, z}, EN = {e1, e2}, aN (e1) = 〈x, y〉, aN (e2) = 〈y, z〉, labN (e1) = A,
labN (e2) = B. The concrete network {y} � N is depicted below:

x

A B

y z

x1 x2 x3 x4

Labels are placed inside the corresponding edge and connections to vertices are
labelled with the corresponding canonical variable. Canonical variables will be
often omitted in pictures of networks. Interface vertices, namely y, have solid out-
line, and non-interface ones, namely x and z, have dashed outline. As instantia-
tions of the canonical to the concrete variables, we have σe1 = {x1 �→ x, x2 �→ y},
σe2 = {x3 �→ y, x4 �→ z}.

We now introduce Soft Constraint Satisfaction Problems (SCSPs in short)
[4]. They are based on c-semirings, which are semirings (S,+,×, 0, 1) such that
the additive operation + is idempotent, 1 is its absorbing element and the mul-
tiplicative operation × is commutative.

Definition 2 (SCSP). An SCSP is a tuple (I �N, D, S, val) of a concrete net-
work I�N , a finite set D, a c-semiring S and a set of functions valA : (var(A) →
D) → S, one for each constraint A occurring in the network.

In an SCSP, every constraint A is assigned a value valA, that is a function
giving a cost in S to every assignment in D of canonical variables of A. As a
shorthand, for e ∈ EN and A = labN (e), we write vale : (aN (e) → D) → S for
the function vale = valA(− ◦ σe), giving a cost to every assignment to variables
e is attached to, according to var(A). Variables I are those of interest, i.e.,
those of which we want to know the possible assignments compatible with all
the constraints. Values for each constraint are used to compute the solution for
the SCSP, using the semiring operations, plus an operation of projection over
variable assignments: given ρ : X → D and Y ⊆ X, ρ ↓Y is the restriction of ρ
to Y .

The solution is a function sol : (I → D) → S: for each ρ : I → D

sol(ρ) =
∑

{ρ′ : VN→D | ρ′↓I=ρ}

(
vale1(ρ

′ ↓aN (e1)) × · · · × valen
(ρ′ ↓aN (en))

)

where EN = {e1, . . . , en}. Notice that the function sol is computed via the
point-wise application of semiring operations: each value function is applied to
the (relevant part of the) variable assignment ρ, and then × is used on the results.

Decomposition Structures for Soft Constraint Evaluation Problems 183

In other words, × can be lifted to value functions, giving a natural interpretation
of composition of two constraint networks N1 and N2:

valN1 ⊗ valN2 = (λρ : (VN1 ∪ VN2 → D) → S).valN1(ρ ↓VN1
) × valN2(ρ ↓VN2

)

Example 2. SCSPs can be used to model and solve optimization problems where
the goal is to minimize the total cost. Suppose we have two cost functions
A,B : D

2 → R
+
∞, assigning a (possibly infinite) cost to pairs of values from a

finite set D. We want to find the minimum of A(x, y) + B(y, z). This problem
can be represented as a SCSP as follows. We introduce a constraint for each
function, and we connect constraints to form the concrete network ∅�N , where
N is the hypergraph of Example 1. The interface is empty because we want to
minimize w.r.t. all variables. In order to capture sums and minimization of con-
straints, we use the weighted c-semiring SW = (R+,min,+,+∞, 0). Then, the
problem corresponds to the SCSP (∅�N, D, SW , val), where val(A) and val(B)
act as the functions A and B. The solution sol is a function (∅ → D) → R

+, i.e.,
a single value in R

+, given by:

sol = min
d1,d2,d3∈D

(A(d1, d2) + B(d2, d3))

which precisely computes the minimum of A(x, y) + B(y, z).

In SCSPs the solution does not depend on the identity of non-interface vari-
ables, and this will also be true in our framework. We can then abstract away
from those variables and take networks up to isomorphism. We say that two con-
crete networks I1 � N1 and I2 � N2 are isomorphic, written I1 � N1

∼= I2 � N2,
whenever I1 = I2 and there is an isomorphism ϕ : N1 → N2 such that ϕ(x) = x,
for all x ∈ I1.

Definition 3 (network). A(n abstract) network I �C is an isomorphism class
of concrete networks. We also write I � N to mean that I � N is a canonical
representative of its class.

In the following, we will depict abstract networks in the same way as concrete
networks (see Example 1), implicitly assuming the choice of a canonical repre-
sentative.

2.2 Tree Decomposition

A decomposition of a graph can be represented as a tree decomposition [19,22],
i.e., a tree where each vertex is a piece of the graph. We introduce a notion
of rooted tree decomposition. Recall that a rooted tree T = (VT , ET) is a set of
vertices VT and a set of edges ET ⊆ VT × VT , such that there is a root, i.e. a
vertex r ∈ VT :

– with no ingoing edges: there are no edges (v, r) in ET ;
– such that, for every v ∈ VT , v �= r, there is a unique path from r to v, i.e., a

unique sequence of edges (r, u1), (u1, u2), . . . , (un, v), n ≥ 0.

184 U. Montanari et al.

Definition 4 (Rooted tree decomposition of a hypergraph). A rooted
tree decomposition of a hypergraph G is a pair T = (T,X), where T is a rooted
tree and X = {Xt}t∈VT

is a family of subsets of VG, one for each vertex of T ,
such that:

1. for each vertex v ∈ VG, there exists a vertex t of T such that v ∈ Xt;
2. for each hyperedge e ∈ EG, there is a vertex t of T such that aG(e) ⊆ Xt;
3. for each vertex v ∈ VG, let Sv = {t | v ∈ Xt}, and Ev = {(x, y) ∈ ET | x, y ∈

Sv}; then (Sv, Ev) is a rooted tree.

We gave a slightly different definition of tree decomposition: the original one
refers to a non-rooted, undirected tree. All tree decompositions in this paper are
rooted, so we will just call them tree decompositions, omitting “rooted”.

Tree decompositions are suited to decompose networks: we require that inter-
face variables are located at the root.

Definition 5 (Decomposition of a network). The decomposition of a net-
work I � N is a decomposition of N rooted in r, such that I ⊆ Xr.

2.3 Dynamic Programming via Tree Decompositions

The general issue of assigning a tree-like structure to graphs and networks in
order to efficiently solve optimization problems is an issue of paramount impor-
tance in optimization theory. It is known as the dynamic programming secondary
optimization problem [3].

The dynamic programming strategy of reducing problems to subproblems
needs to express optimal solutions in terms of parameters, which represent shared
variables between subproblems. Such a decomposition can be formalized via a
tree decomposition T of the graph, where each node t is a problem, its children
are subproblems, and Xt are the problem’s variables. The dynamic programming
algorithm then is based on a bottom-up visit of the tree.

Usually, time and space requirements for computing parametric solutions
are at least exponential in the number of variables. Thus the complexity of a
problem is defined as the maximal number of parameters in its reductions, called
width. Formally, we have width(T) = maxt∈T {|Xt|}. The treewidth of a graph is
the minimal width among all of its tree decompositions1. If graphs in a certain
class have bounded treewidth, then their complexity becomes linear in their
size – possibly with a big coefficient which depends on the treewidth bound
– usually a tremendous achievement. Finding the treewidth, which involves a
minimization over all the decomposition of a graph, is NP-complete. Even if
expensive, an efficient solution of the secondary optimization problem may be
essential whenever the original problem must be solved many times with different
data and thus several approaches have been proposed for solving the secondary
problem approximately.

1 Width is conventionally defined as maxt∈T {|Xt|}− 1. We drop “−1” so that it gives
the actual number of parameters.

Decomposition Structures for Soft Constraint Evaluation Problems 185

3 Soft Constraint Evaluation Problems (SCEPs)

In this section we introduce Soft Constraint Evaluation Problems (SCEPs). They
are problems involving soft constraints, generalizing SCSPs. We work in an alge-
braic setting: elements of the initial algebra describe the structure of SCEPs, and
evaluations of such structure can be given in any other algebra satisfying the
SCEP specification.

We write Perm(V) for the set of permutations over V, i.e., bijective functions
π : V → V. A permutation algebra is an algebra for the signature comprising all
permutations and the formal equations x id = x and (x π1) π2 = x (π2 ◦π1) (the
application of a permutation is written in postfix notation). The SCEP signature
equips permutation algebras with additional operators and equations.

Definition 6 (SCEP signature). Recall that EC is the ranked alphabet of
constraints. The SCEP signature (s-signature in short) is given by the following
grammar

p, q := p ‖ q | (x)p | p π | A(x̃) | nil

where A ∈ EC , π ∈ Perm(V), {x} ∪ x̃ ⊆ V and |x̃| = ar(A).

The parallel composition p ‖ q represents the problem consisting of two subprob-
lems p and q, possibly sharing some variables. The restriction (x)p represents
the fact that p has been solved w.r.t. x. The permutation pπ is p where variables
have been renamed according to π. The atomic SCEP A(x̃) only involves an
instance of the constraint A over variables x̃ (notice that the same variable may
occur more than once in x̃). The constant nil represents the empty problem.

The free variables fv(p) of p are

fv(p ‖ q) = fv(p) ∪ fv(q) fv(x)p) = fv(p) \ {x} fv(pπ) = π(fv(p))
fv(A(x̃)) = x̃ fv(nil) = ∅

We write v(p) for the set of all the variables occurring in p.

Definition 7 (Strong SCEP specification). The strong SCEP specification
(s-specification, in short) is formed by the signature in Definition 6 and the
axioms in Fig. 1.

The operator ‖ forms a commutative monoid, meaning that problems in par-
allel can be solved in any order (AX‖). Restrictions can be α-converted (AXα),
i.e., the name of the variable w.r.t. which we solve the problem is irrelevant.
Restrictions can also be swapped, i.e., we can solve w.r.t. variables in any order,
and can be removed, whenever their scope is nil (AX(x)). The scope of restricted
variables can be narrowed to terms where they occur free (AXSE). Notice that
restriction is idempotent, namely (x)(x)p ≡s (x)p. Axioms regarding permuta-
tions say that identity and composition behave as expected (AXπ) and that
permutations distribute over syntactic operators (AXp

π). Permutations behave

186 U. Montanari et al.

(AX‖)

p ‖ q ≡s q ‖ p (p ‖ q) ‖ r ≡s p ‖ (q ‖ r) p ‖ nil ≡s p

(AX(x) XA() α)

(x)(y)p ≡s (y)(x)p (x)nil ≡s nil (x)p ≡s (y)p[x �→ y] (y /∈ fv(p))

(AXSE) (AXπ)

(x)(p ‖ q) ≡s (x)p ‖ q (x /∈ fv(q)) p id ≡s p (pπ′)π ≡s p(π ◦ π′)

(AXp
π)

A(x1, . . . , xn)π ≡s A(π(x1), . . . , π(xn)) nilπ ≡s nil (p ‖ q)π ≡s pπ ‖ qπ

((x)p)π ≡s (π(x))(pπ)

Fig. 1. Axioms of the strong SCEP specification.

in a capture avoiding way, by replacing all names bijectively, including the bound
one x. This can be understood as applying, at the same time, α-conversion and
renaming of free variables on (x)p.

We assume a standard operation of definition P (x1, . . . , xn) def= p where
x1, . . . , xn is a sequence of distinct variables including fv(p). We write
P (y1, . . . , yn) for p[x1 �→ y1, . . . , xn �→ yn], where the substitution (not just
a permutation) on p acts syntactically in a capture avoiding way. In this paper,
we are interested in non-recursive (but well founded) definitions only. Definitions
respect permutations, namely P (x1, . . . , xn)π ≡s P (π(x1), . . . , π(xn)).

We call s-algebras the algebras of the s-specification. Given an operation op
in the s-specification, opA denotes the interpretation of op in the s-algebra A.
We consider terms freely generated, modulo axioms of Fig. 1, in the style of [13],
and we call them s-terms. They form an initial s-algebra Ts. By initiality, for any
s-algebra A and p ∈ Ts, there is a unique interpretation �p�A of p as an element
of A, inductively defined as follows:

�p ‖ q�A = �p�A ‖A �q�A �(x)p�A = (x)A�p�A �pπ�A = �p�AπA

�A(x̃)�A = A(x̃)A �nil�A = nilA

Here we use infix, prefix or postfix notation for functions opA to reflect the
syntax of s-terms. We use the expression concrete terms to indicate syntactic
terms that are not considered up to axioms.

Permutations in the specification allow computing the set of “free” variables,
called (minimal) support, in any s-algebra.

Definition 8 (Support). Let A be an s-algebra. We say that a finite X ⊂ V

supports a ∈ A whenever, for all permutations π acting as the identity on X,
we have aπA = a. The minimal support supp(a) is the intersection of all sets
supporting a.

Decomposition Structures for Soft Constraint Evaluation Problems 187

For instance, given an s-term p ∈ Ts, pπTs applies π to all free names of p in a
capture avoiding way. It is easy to verify that supp(p) = fv(p).

An important property of SCEP algebras, following from the theory of per-
mutation algebras, is that �p�A depends on (at most) the free variables of p,
formally:

Lemma 1. supp(�p�A) ⊆ supp(p), for all s-terms p and s-algebras A.

3.1 Weak Specification

Our syntax is expressive enough to describe both the problem’s structure and
its decomposition into subproblems. For instance, the structurally congruent
concrete terms

(y)(x)(z)(A(x, y) ‖ B(y, z)) (y)((x)A(x, y) ‖ (z)B(y, z))

are equivalent s-terms, and so they describe the same problem, but the infor-
mation about which subproblems to solve w.r.t. x and z, represented as the
subterms in the scope of (x) and (z), is different. To distinguish different decom-
positions, we introduce a weak SCEP specification where (AXSE) is dropped to
avoid the rearrangement of restrictions.

Definition 9 (Weak SCEP specification). The weak SCEP specification
(w-specification, in short), is the s-specification without (AXSE), and where the
axiom (x)nil ≡s nil is replaced with

(AXw
(x)) (x)p ≡w p (x /∈ fv(p)).

The axiom (AXw
(x)) is needed to discard “useless” variables. In the

s-specification, it can be derived using other axioms, including (AXSE). This is
not possible in the w-specification, so we need to state it explicitly.

Algebras of the w-specification are called w-algebras and the terms modulo its
axioms are called w-terms, forming the initial w-algebra; w-terms can be under-
stood as networks having a hierarchical structure, made of scopes determined by
restrictions. We are interested in two forms of w-terms.

Definition 10 (Normal and canonical forms). A w-term is said to be in
normal form whenever it is of the form (x̃)(A1(x̃1) ‖ A2(x̃2) ‖ · · · ‖ An(x̃n)),
where x̃ ⊆ x̃1 ∪ · · · ∪ x̃n. It is in canonical form whenever it is obtained by the
repeated application of the directed version of (AXSE): (x)(p ‖ q) → (x)p ‖
q (x /∈ fv(q)) until termination. For both forms, we assume that subterms of the
form (x̃)nil (where x̃ may be empty) are removed using (AX(x)) and (AX‖).

Normal and canonical forms exist in both concrete (no axioms) and abstract
(up to weak axioms) versions. Normal and canonical forms are somewhat dual:
normal forms have all restrictions at the top level, whereas in canonical forms
every restriction (x) is as close as possible to the atomic terms where x occurs.
Notice that an s-term may have more than one canonical form, whereas normal
forms are unique (both up to w-specification axioms).

188 U. Montanari et al.

3.2 Soundness and Completeness of Networks

We now show that networks form an s-algebra, and that this algebra is isomor-
phic to Ts. In other words, we show that the s-specification is sound and complete
w.r.t. networks.

Theorem 1. Let N be the smallest algebraic structure defined as follows. Con-
stants are:

and operations are:

(I � N)πN = π(I) � Nπ (x)N (I � N) = I \ {x} � N
I1 � N1 ‖N I2 � N2 = I1 ∪ I2 � N1 �I1,I2 N2

where: Nπ is N where each vertex v is replaced with π(v); N1 �I1,I2 N2 is the
disjoint union of N1 and N2 where vertices in I1 ∪ I2 with the same name are
identified; and 1N is the network with no vertices and edges. Then N is an
s-algebra.

Even if not depicted, when the same variable x occurs twice in
A(x1, x2, . . . , xn), the corresponding hyperedge has two tentacles connected to
the same vertex x. Theorem 1 implies that there is a unique evaluation of s-
terms: given p, the corresponding network �p�N can be computed by structural
recursion. We show that any network is the evaluation of an s-term. In order
to do this, we first give translations between concrete networks and s-terms in
normal forms over the same set of variables, which will also be useful later.

Definition 11 (Translation functions). Let I �N be a concrete network. Let
e1, . . . , en be its edges, and let Ai = labN (ei), x̃i = aN (ei). Then we define

term(I � N) = (VN \ I)(A1(x̃1) ‖ · · · ‖ An(x̃n))

Vice versa, given a concrete term in normal form p = (x̃)(A1(x̃1) ‖ · · · ‖ An(x̃n))
we define net(p) = fv(p) � Np, where:

– VNp
= v(p);

– ENp
= {e

(i)
Ai(x̃i)

| Ai(x̃i) is an atomic subterm of p};
– aNp

and labNp
map e

(i)
Ai(x̃i)

to x̃i and Ai, respectively.

Notice that we assume an indexing on atomic subterms of p. This allows net to
map two identical subterms to different edges.

Example 3. Consider the term in normal form p = (x)(z)(A(x, y) ‖ B(y, z)),
then net(p) is the concrete network depicted in Example 1.

Decomposition Structures for Soft Constraint Evaluation Problems 189

Completeness is a consequence of the following theorem.

Theorem 2. Given two s-terms in normal form n1 and n2, if net(n1) ∼=
net(n2) then n1 ≡s n2. As a consequence, �p1�

N = �p2�
N implies p1 ≡s p2,

for any two s-terms.

4 SCSPs as SCEPs

We now show how SCSPs are represented and solved as SCEPs. Consider the
SCSPs definable over a fixed c-semiring S, a fixed domain of variable assignments
D and a fixed family of value functions valA, one for each atomic constraint.
SCEPs for such SCSPs can be defined as follows: networks are the underlying
ones of SCSPs, and the SCEP algebra for evaluations is formed by value func-
tions. Here by value function we mean functions of the form (V → D) → S.
This is different from Sect. 2.1, where the domain of value functions are variable
assignments I → D, with I a finite set. We will see that the new formulation
is equivalent, and allows for simpler algebraic operations, because they do not
depend on the “types” of assignments.

Theorem 3. Let V be the smallest algebraic structure defined as follows. For
any ρ : V → D, constants are:

AV(x1, x2, . . . , xn)ρ = valA(ρ ↓{x1,x2,...,xn} ◦ σ̂) nilVρ = 1

and operations are:

((x)Vφ)ρ =
∑

d∈D

φ(ρ[x �→ d]) (φπV)ρ = φ(ρ ◦ π) (φ1 ‖V φ2)ρ = φ1ρ × φ2ρ

where σ̂ maps var(A) to 〈x1, x2, . . . , xn〉, component-wise. Then V is an
s-algebra.

Notice that ‖V is the extension of the ⊗ operator of Sect. 2.1 to arbitrary value
functions, but it is simpler: projections are not needed here, because variable
assignments all have the same type, namely V → D.

Now we show that the evaluation function �−�V , applied to a network I �N ,
gives the solution of the SCSP defined over that network. Notice that �I � N�V

has type (V → D) → S, but its domain should be of the form I → D. However,
�I � N�V has the following property.

Property 1 (Compactness). We say that φ : (V → D) → S is compact if
ρ ↓supp(φ)= ρ′ ↓supp(φ) implies φρ = φρ′, for all ρ, ρ′ : V → D.

Now, by Lemma 1, we have supp(�I � N�V) ⊆ supp(I � N) = I. Therefore
compactness means that �I � N�V only depends on assignments to interface
variables. The interpretation of constants is clearly compact and, by structural
induction, we can show that compound terms are. We have our main result.

Theorem 4. Given an SCSP with underlying network I�N and value functions
valA, we have that I � N evaluated in V, namely �I � N�V , is its solution.

We stress that SCEPs are more general than SCSPs: an example will be shown
in Sect. 8.

190 U. Montanari et al.

5 Evaluation Complexity

Although all the s-terms corresponding to the same network have the same
evaluation in any algebra A, different ways of computing such an evaluation,
represented as different w-terms, may have different computational costs. As
already mentioned, finding the best one amounts to giving a solution for the
secondary optimization problem.

We introduce a notion of complexity of w-terms to measure the computa-
tional costs of such evaluations.

Definition 12. Given a w-term p, its complexity 〈〈p〉〉 is defined as follows:

〈〈p ‖ q〉〉 = max {〈〈p〉〉, 〈〈q〉〉, |fv(p ‖ q)|} 〈〈(x)p〉〉 = 〈〈p〉〉 〈〈pπ〉〉 = 〈〈p〉〉
〈〈A(x̃)〉〉 = |set(x̃)| 〈〈nil〉〉 = 0

The complexity of p is the maximum “size” of elements of A computed while
inductively constructing �p�A, the size being given by the number of variables
in the support. Notice that all the concrete terms corresponding to the same
abstract w-term have the same complexity.

Example 4. Consider the w-terms from Sect. 3.1

p = (y)(x)(z)(A(x, y) ‖ B(y, z)) q = (y)((x)A(x, y) ‖ (z)B(y, z)).

Even though they are s-congruent, and thus represent the same problem, we
have 〈〈p〉〉 = 3 and 〈〈q〉〉 = 2. In fact, in order to evaluate p in any algebra,
one has to evaluate A(x, y) ‖ B(y, z), and then solve it w.r.t. all its variables.
Intuitively, A(x, y) ‖ B(y, z) is the most complex subproblem one considers in
p, with 3 variables, hence 〈〈p〉〉 = 3. Instead, the evaluation of q requires solving
A(x, y) and B(y, z) w.r.t. x and z, which are problems with 2 variables, and
then putting the resulting partial solutions in parallel. The solution process for
q never considers subproblems with more than 2 variables, hence 〈〈q〉〉 = 2.

The soundness of this definition follows from Lemma 1: if �p′�A is com-
puted while constructing �p�A, we have supp(�p′�A) ⊆ supp(p′), and this rela-
tion among supports does not depend on the choice of A. The interesting cases
are (x)p and p ‖ q: the computation of �(x)p�A relies on that of �p�A, whose
support may be bigger, so we set the complexity of (x)p to that of p; computing
�p ‖ q�A requires computing �p�A and �q�A, but the support of the resulting
element of A is (at most) the union of those of p and q, so we have to find the
maximum value among 〈〈p〉〉, 〈〈q〉〉 and the overall number of free variables.

Complexity is well-defined only for w-terms, because applying (AXSE) may
change the complexity. Indeed, we have the following results for w-terms.

Lemma 2. Given (x)(p ‖ q), with x /∈ fv(q), we have 〈〈(x)p ‖ q〉〉 ≤ 〈〈(x)
(p ‖ q)〉〉.

As an immediate consequence, all the canonical forms of a term always have
lower or equal complexity than the normal form.

Decomposition Structures for Soft Constraint Evaluation Problems 191

Theorem 5. Given a term p, let n be its normal form. Then, for all canonical
forms c of p we have 〈〈c〉〉 ≤ 〈〈n〉〉.

Of course, different canonical forms may have different complexities. However,
due to Lemma 2, canonical forms may be considered as local minima of com-
plexity w.r.t. the application of axioms of the strong specification.

6 Tree Decompositions as w-terms

In this section we provide a translation from tree decompositions to w-terms.
This enables applying algebraic techniques to tree decompositions, and improv-
ing their complexity by bringing the corresponding w-terms in canonical form.

Given a network I � N , let T = (T,X) be one of its tree decompositions.
Its completed version CT = (T , {tx}x∈EN∪VN

) explicitly associates components
of N to vertices of T : for each v ∈ VN (resp. e ∈ EN), tv (resp. te) is the vertex
closest to the root of T such that v ∈ Xtv (resp. aN (e) ⊆ Xte). By the definition
of rooted tree decomposition (Definition 4), such vertices tx exist (properties 1
and 2), and can be characterized as the roots of the subtrees of T induced by x
(by aN (x), if x is an edge), according to property 3.

We now translate CT into a w-term. Given a vertex t of T , let

V (t) = {v ∈ VN | tv = t} E(t) = {e ∈ EN | te = t}.

Suppose t has children t1, . . . , tn and E(t) = {e1, . . . , ek}, with n, k ≥ 0. Let
x̃ = V (t) \ I. The w-term χ(t) is inductively defined as follows:

χ(t) = (x̃)(A1(x̃1) ‖ · · · ‖ Ak(x̃k) ‖ χ(t1) ‖ · · · ‖ χ(tn))

where Ai = labN (ei) and x̃i = aN (ei). When k = 0 and/or n = 0, the corre-
sponding part of the parallel composition degenerates to nil. We assume that
subterms of the form (x̃)nil are removed via (AX(x)) and (AX‖).

Example 5. Consider the network in Fig. 2a, whose underlying graph is taken
from [6]. A tree decomposition for it is shown in Fig. 2b. Recall that interface
variables have solid outline, namely they are a and c. Its completed version has:
ta = tc = tf = t1, tb = t2, te = td = t3, th = t5 and tg = t4, t(a,b) = t2,
t(a,c) = t1, t(a,g) = t4, t(b,c) = t2, t(c,d) = t3, t(c,e) = t3, t(c,f) = t1, t(d,e) = t3,
t(f,g) = t4, t(g,h) = t5. Therefore we have

χ(t1) = (f)(C(a, c) ‖ H(c, f) ‖ χ(t2) ‖ χ(t3) ‖ χ(t4))
χ(t2) = (b)(A(a, b) ‖ B(b, c))
χ(t3) = (e)(d)(D(c, d) ‖ E(d, e) ‖ F (c, e))
χ(t4) = (g)(I(f, g) ‖ G(a, g) ‖ χ(t5))
χ(t5) = (h)L(g, h)

Again, notice that interface variables a and c are not restricted in χ(t1).

192 U. Montanari et al.

Fig. 2. Example network and tree decomposition.

Definition 13 (wterm). Given a tree decomposition T rooted in r, the corre-
sponding w-term wterm(T) is χ(r) computed on the completed version of T .

We have that wterm(T) correctly represents the network T decomposes.

Proposition 1. Let T be a rooted tree decomposition for I � N . Then
�wterm(T)�N = I � N .

We now have one of our main results, relating the width of T and the complexity
of the corresponding w-term.

Proposition 2. Given a tree decomposition T , 〈〈wterm(T)〉〉 ≤ width(T).

7 Computing Canonical Decompositions

We now give a simple algorithm to compute canonical term decompositions. The
algorithm is shown in Fig. 3. It is based on bucket elimination [23, Sect. 5.2.4],
also known as adaptive consistency. However, we will show that bucket elimi-
nation may also produce non-canonical decompositions, whereas our algorithm
produces all and only canonical terms.

Bucket elimination works as follows. Given a CSP network of constraints,
its variables are ordered, and constraints are partitioned into buckets: each con-
straint is placed in the bucket of its last variable in the order. At any step the
bucket of the last variable, say x, is eliminated by synthesising a new constraint
involving all and only the variables in the bucket different than x. This con-
straint is put again in the bucket of its last variable. The solution is produced
when the last bucket is eliminated. Notice that one can also eliminate a subset
of the variables, and obtain a solution parametric in the remaining variables.

In our algorithm, putting a constraint in the bucket of its last variable cor-
responds to applying the scope extension axiom. The algorithm takes an s-term
in normal form as input, represented as (R)A, where A is a multiset of atomic
terms and R is the set of variables to be eliminated. This notation amounts
to taking the term up to weak axioms. A total order on R is given as input
as well. The algorithm operates as follows. It picks the max variable (line 3)
and partitions the input w-term into subterms according to whether the chosen

Decomposition Structures for Soft Constraint Evaluation Problems 193

Inputs: s-term (R)A in normal form; a total order OR over R.
Output: w-term P in canonical form.

1 P ← (R)A
2 while OR 	= ∅
3 x ← extract maxOR

4 OR ← OR \ {x}
5 find all terms A′ ⊆ A such that x ∈ fv(A′)
6 if A′ = {(R′)P ′} where P ′ has no top-level restriction
7 Q ← call the algorithm on (x)P ′ with order {(x, x)}
8 P ′′ ← (R′)Q
9 else P ′′ ← (x)A′

10 P ← (R \ {x})A \ A′ ∪ {P ′′}
11 return P

Fig. 3. Algorithm to compute canonical w-terms: P, P ′, P ′′ and Q denote w-terms, R
and R′ are sets of restricted variables, and A, A′ are multisets of atomic or restriction-
rooted w-terms.

variable occurs free or not (line 5). When line 5 returns a singleton {(R′)P ′},
the algorithm attempts at pushing the variable x further inside P ′, achieving
the same effect as (AXSE). This is done by first calling the algorithm on (x)P ′

and then restricting R′ in the resulting term. This operation can be understood
as a sequence of restriction swaps that bring x closer to P ′. We have that the
algorithm returns all and only the canonical forms of (R)A.

Theorem 6. C is a canonical form of (R)A if and only there is OC
R such that

the algorithm in Fig. 3 with inputs (R)A and OC
R outputs C.

It is easy to see that the worst case complexity for the algorithm is given by the
product of the number of variables by the number of atomic terms. In fact, this is
the maximal number of times the test x ∈ fv(A′) is executed in line 5. The same
worst case complexity holds for the ordinary bucket algorithm. However, for
every total ordering assigned to variables, the complexity of the canonical form
produced by our algorithm is lower or equal than that of the bucket elimination
algorithm.

Example 6. Let us apply the algorithm to the following term in normal form:

P = ({x1, x2, x3, x4}){A(x1, x2), B(x1, x4), C(x1, x3),D(x3, x4)}

with OR = x4 < x3 < x2 < x1. Line 3 picks x1 and line 5 gives A′ =
{A(x1, x2), B(x1, x4), C(x1, x3)}. As A′ is not a singleton, P becomes

({x2, x3, x4}){D(x3, x4), (x1){A(x1, x2), B(x1, x4), C(x1, x3)}}.

In the next iteration x2 is picked from OR, and we have A′ =
(x1){A(x1, x2), B(x1, x4), C(x1, x3)}. Now A′ is a singleton, so the algorithm
is called on

194 U. Montanari et al.

(x2){A(x1, x2), B(x1, x4), C(x1, x3)}

with {(x2, x2)} order. The restriction (x2) is pushed further inside, and the term

{(x2)A(x1, x2), {B(x1, x4), C(x1, x3)}}

is returned. Line 8 will prepend (x1) to the term above, and line 9 will construct
the following term

({x3, x4}){D(x3, x4), (x1){(x2)A(x1, x2), {B(x1, x4), C(x1, x3)}}}.

which is then returned. The next two iterations will pick x3 and x4, and the
then and else cases of line 6 are executed respectively. In the end we get the
term (in usual notation):

C = (x4)(x3)(D(x3, x4) ‖ (x1)((x2)A(x1, x2) ‖ B(x1, x4) ‖ C(x1, x3)))

Bucket elimination corresponds to always executing line 9, even when A′ is
a singleton. In this case the result would be:

P ′ = (x4)(x3)(D(x3, x4) ‖ (x2)(x1)(A(x1, x2) ‖ B(x1, x4) ‖ C(x1, x3)))

which is not in canonical form and has worse complexity. In fact, we have 〈〈C〉〉 =
3 < 〈〈P ′〉〉 = 4.

8 Example

In this section we present an example of an optimization problem which is an
SCEP and cannot be represented as an SCSP.

Consider a social network, based on an overlay network, where certain meet-
ing activities for a group of sites require the existence of routing paths between
every pair of collaborating sites. Under the assumption that the network is com-
posed of end-to-end two-way connections with independent probabilities of fail-
ure, we want to find the probability of a given group of sites staying connected.

We formalize the problem as an SCEP as follows. We consider networks that
are undirected, binary graphs with no loops (but possibly with circuits), mod-
elling the overlay network. Each edge has an associated probability of failure.
The solution of the problem is the probability of some interface vertices stay-
ing connected. To achieve this, the idea is evaluating networks I � N into an
algebra of probability distributions P on the partitions Part(I) of I. Thus every
partition of I, characterizing a certain level of connectivity, is assigned a proba-
bility. Consequently, if J is the group of sites we are interested in and N is the
hypergraph for the whole network, then the solution is obtained by computing
the probability distribution P for J � N and by selecting P ({J}). Notice that
the size of the values of our algebra grows very rapidly with the cardinality n of
I. In fact, the number of possible partitions for a set of n elements is the Bell
number, inductively given by B0 = 1, Bn+1 =

∑n
k=0

(
n
k

)
Bk. Thus if a vector

Decomposition Structures for Soft Constraint Evaluation Problems 195

representation is chosen, the amount of memory needed to represent a value of
the algebra grows very rapidly with the number of interface vertices.

We now define the evaluation from networks and we show that it induces an
s-algebra. For the case of constants, we assume for simplicity that we have two
kinds of edges: A-labelled ones (more reliable) and B-labelled ones (less reliable),
both with two vertices x, y. Given Π1 = {{x}, {y}} and Π2 = {{x, y}}, we have

�I � NA�DΠ1 = qA �I � NA�DΠ2 = 1 − qA

�I � NB�DΠ1 = qB �I � NB�DΠ2 = 1 − qB

where NA (resp. NB) is a network with a single A-labelled (resp. B-labelled)
hyperedge, and qA (resp. qB) is the probability of the former (resp. latter)
hyperedge failing, i.e., of x and y being in different sets of the partition. We
have nilD∅ = 1. Permutations are defined straightforwardly:

�I � Nπ�DΠ = �I � N�DΠπ−1,

where Π ∈ Part(Iπ). Permutations are applied to sets and partitions in the
obvious way. Parallel composition is more complicated:

�I1 � N1 ‖ I2 � N2�
DΠ =

∑

{(Π1,Π2)|Π1∪Π2=Π}
�I1 � N1�

DΠ1 × �I2 � N2�
DΠ2.

where Π ∈ Part(I1∪I2), and each Π1, Π2 must belong to Part(I1) and Part(I2),
respectively. Here the union operation ∪ produces the finest partition coarser
than the two components and × is the multiplication on reals. The last operation
is restriction:

�(x)I � N�DΠ =
∑

{Π′∈Part(I∪{x})|Π′−x=Π}
�I � N�DΠ ′

where Π ′ − x removes x from its set in Π ′. Here probability values are accumu-
lated for all the cases where a certain partition of interface vertices is guaranteed,
independently of the set where variable x is located.

Theorem 7. The image of �−�D is an s-algebra.

As a family of overlay networks we choose wheels of N vertices where each vertex
is also connected to a central control vertex. Accordingly, connections in the ring
have low failure probability (label A), while the connections to the center have
high failure probability (label B). We want to find out how much the connection
probability between two adjacent vertices in the ring deteriorates when the direct
link between them breaks down.

The formal definition of our networks is given in Fig. 4. They consist of radius
elements Ri, recursively composed in parallel; rings are closed (Wk(v, x)) by
connecting the last (v) and the first (x) radius; the failed network is FWk(v, x)
where the ring is interrupted because A(v, x) is missing. Figure 4 shows W2(v, x).

196 U. Montanari et al.

R0(x, y, z) = A(x, y) ‖ B(x, z)

Ri+1(x, y, z) = (v)(Ri(x, v, z) ‖ Ri(v, y, z))

Wk(v, x) = (z)(Rk(x, v, z) ‖ A(v, x) ‖ B(v, z))

FWk(v, x) = (z)(Rk(x, v, z) ‖ B(v, z))

Fig. 4. Formal specification of a wheel network and depiction of W2.

It is easy to see that Wk(v, x) is a wheel with N = 2k + 1 radii, which is
specified by a number of simple well-founded non-recursive defining equations
linear in k. The top-down recursive evaluation of Wk(v, x) is clearly exponential
in k. The complexity of bucket elimination is the same. However, the bottom-up
dynamic programming evaluation is much more efficient: its complexity is linear
in k and logarithmic in the size N of the problem, thanks to the presence of
repetitive subterms.

8.1 Non-existence of a SCSP Formulation

As mentioned, the problem does not fit the SCSP format. To show why, given
the SCEP defined above, let us try to construct an equivalent SCSP.

We can safely assume that the network I �N is the same in both cases. The
carrier of our algebra consists of the probability distributions on the partitions
Part(I) of the interface variables I of the network. To fit the SCSP definition,
a partition in Part(I) can be represented as (the kernel of) an assignment of
variables I. Thus the solution function sol : D(Part(I)) computes the proba-
bility sol(Π) associated to a given partition Π of interface variables. Without
discussing how to impose a semiring structure on probabilities, notice that the
solution in the SCSP case, for any two networks N1 and N2 whose union is N , is
given by valN1(Π1) ⊗ valN2(Π2), where Π1 and Π2 are the restrictions (projec-
tions) of Π to the vertices of N1 and N2, respectively. The solution only examines
the probabilities caused by the same Π on the two sub-networks. This limita-
tion is incompatible with the definition of parallel composition in our example,
where to compute the outcome of a resulting partition in the composed network,
the probabilities must be considered computed by all pairs of partitions in the
component networks whose union (as described earlier when defining ‖D) is the
given partition.

8.2 Implementation

The main issue in the implementation is how to represent the values of the
domain and how to implement the operations. Probability distributions can be
represented as vectors indexed by the partitions of the set of the interface ver-
tices, which grow very rapidly with the number of vertices. To allow for fast

Decomposition Structures for Soft Constraint Evaluation Problems 197

insertion and retrieval, it is convenient to represent partitions as strings and to
order them. A simple representation starts ordering the vertices within the sets
of vertices, and eventually the sets of vertices in the partitions according to their
first element. It is interesting to observe that it is convenient not to represent
sets of vertices which are singletons. Omitting them makes partitions untyped,
and thus simplifies the computation of parallel composition.

A natural way to compute parallel composition takes all pairs (Π1,Π2) of
partitions, determines Π1 ∪ Π2 = Π and increments by p1Π1 × p2Π2 the entry
of Π in the result. The union can be computed efficiently with merge-find-like
algorithms, thus the cost of multiplication is essentially quadratic with the num-
ber of partitions. Similarly, the cost of (x)p is essentially linear with the number
of partitions of p: every value pΠ increments the entry Π − x of the result.

Table 1. Example values.

k N A B F msec W msec A B F msec W msec

1 3 0.01 0.1 0.00217 17 0.00002 22 0.1 0.3 0.07043 17 0.00704 19

2 5 0.01 0.1 0.03154 78 0.00031 105 0.1 0.3 0.30817 74 0.03081 80

3 9 0.01 0.1 0.0697 183 0.00069 190 0.1 0.3 0.54609 172 0.00546 184

4 17 0.01 0.1 0.14157 409 0.00141 426 0.1 0.3 0.8046 435 0.00804 452

5 33 0.01 0.1 0.26908 620 0.00269 623 0.1 0.3 0.96379 625 0.09637 661

We ran experiments on a 2.2 GHz Intel Core i7 with 4 GB RAM. In Table 1 we
see the connection probability between v and x with and without failure (i.e. for
Fk and Wk) for various values of k, together with the corresponding computing
time. Each case is computed for failure probabilities qA = 0.01, qB = 0.1, and
qA = 0.1, qB = 0.3. Notice that it is always the case that failure probability
for Wk equals the product of the failure probability for Fk and of qA. This is
obvious, since the edge A and the network Fk are composed in parallel to obtain
Wk, and thus their failure probabilities should be multiplied.

9 Conclusion

We have presented a class of constraint algebras, which generalize SCSPs. Ver-
tices of constraint networks are implicitly represented as support elements of
a permutation algebra. This allows for the evaluation of terms of the algebras
in rather abstract domains. Applying directionally the scope extension axiom
until termination yields terms for efficient dynamic programming strategies. An
example has also been shown about computing the connection probability of
communication networks. This problem can be represented using our algebras,
but not as an SCSP.

Our framework is a significant step towards the use of existing techniques and
tools for algebraic specifications in the context of constraint-based satisfaction

198 U. Montanari et al.

and optimization. While some evidence of the approach we foresee are given
in the paper (improved bucket elimination and doubly exponential speed up in
a recursive, well-founded definition), further results are left for future work. A
direction to explore is using more sophisticated term substitutions (e.g., second
order substitutions, in the line of [14]) for defining complex networks inductively.
In this paper definitions are restricted to deterministic, non-recursive instances:
dropping these restrictions would lead us to the realm of DATALOG constraint
programming, with tabling, possibly suggestive in the presence of programmable
evaluation strategies.

Related Work. Other compositional constraint definitions have been proposed
in the literature: in [7] constraints are modeled in a named semiring, and in [4]
the semiring operations are extended point-wise to functions mapping variable
assignments to semiring values. However, in the former case no explicit eval-
uation is performed, while in the latter no restriction operation is considered.
Other approaches are: [5], where compositionality is achieved via complex cate-
gorical structures, and [25], where compositionality is not tackled. In a previous
workshop paper [18], some early results were given by two of the authors. How-
ever, while the algebraic specification is essentially the same, the interpretation
domain was restricted to SCSPs for optimization, without reference to SCEPs.
Moreover, no proof was given that SCSPs actually satisfy the specification. Fur-
thermore, the connection with the classical tree decomposition was just hinted.

The problem of how to represent parsing trees for (hyper)graphs has been
studied in depth in the literature. In particular, we mention the notion of Cour-
celle graph algebras [9] and of graph grammars for hyperedge replacement [8],
which assign a complexity value to the parsing steps. Typical results are about
classes of graphs with parsings of bound complexity, having properties that can
be proved or computed in linear time. While these results are analogous to ours
for some aspects, they do not apply specifically to SCSPs or SCEPs. Instead, tree
decomposition and secondary optimization problems have been studied for CSP
in [16]. However our approach has a simpler and more effective compositional
structure and an up-to-date foundation for name handling.

The role of bounded treewidth CSP has been studied also in connection with
the general area of computing homomorphisms between relational structures [10,
11,17] and k-consistency [1].

Acknowledgements. We thank Nicklas Hoch and Giacoma Valentina Monreale for
their collaboration in an earlier version of this work. We also thank an anonymous
reviewer for suggesting the example where bucket elimination does not produce a
canonical term.

Decomposition Structures for Soft Constraint Evaluation Problems 199

References

1. Atserias, A., Bulatov, A., Dalmau, V.: On the power of k -consistency. In: Arge, L.,
Cachin, C., Jurdziński, T., Tarlecki, A. (eds.) ICALP 2007. LNCS, vol. 4596, pp.
279–290. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-73420-
8 26

2. Bellman, R.: The theory of dynamic programming. Bull. Am. Math. Soc. 60(6),
503–516 (1954)

3. Bertelè, U., Brioschi, F.: On non-serial dynamic programming. J. Comb. Theory,
Ser. A 14(2), 137–148 (1973)

4. Bistarelli, S., Montanari, U., Rossi, F.: Semiring-based constraint satisfaction and
optimization. J. ACM 44(2), 201–236 (1997)

5. Blume, C., Sander Bruggink, H.J., Friedrich, M., König, B.: Treewidth, pathwidth
and cospan decompositions with applications to graph-accepting tree automata. J.
Vis. Lang. Comput. 24(3), 192–206 (2013)

6. Bodlaender, H.L., Koster, A.M.C.A.: Combinatorial optimization on graphs of
bounded treewidth. Comput. J. 51(3), 255–269 (2008)

7. Buscemi, M.G., Montanari, U.: CC-Pi: a constraint-based language for specifying
service level agreements. In: De Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421, pp.
18–32. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-71316-6 3

8. Chiang, D., Andreas, J., Bauer, D., Hermann, K.M., Jones, B., Knight, K.: Parsing
graphs with hyperedge replacement grammars. In: ACL, pp. 924–932 (2013)

9. Courcelle, B., Mosbah, M.: Monadic second-order evaluations on tree-
decomposable graphs. Theor. Comput. Sci. 109(1–2), 49–82 (1993)

10. Dalmau, V., Jonsson, P.: The complexity of counting homomorphisms seen from
the other side. Theor. Comput. Sci. 329(1–3), 315–323 (2004)

11. Dalmau, V., Kolaitis, P.G., Vardi, M.Y.: Constraint satisfaction, bounded
treewidth, and finite-variable logics. In: Van Hentenryck, P. (ed.) CP 2002. LNCS,
vol. 2470, pp. 310–326. Springer, Heidelberg (2002). https://doi.org/10.1007/3-
540-46135-3 21

12. Dechter, R.: Constraint Processing. Morgan Kaufmann Series. Elsevier, New York
(2003)

13. Ehrig, H., Mahr, B.: Fundamentals of Algebraic Specification 1: Equations und
Initial Semantics. EATCS Monographs on Theoretical Computer Science, vol. 6.
Springer, Heidelberg (1985). https://doi.org/10.1007/978-3-642-69962-7

14. Fiore, M., Mahmoud, O.: Second-order algebraic theories. In: Hliněný, P., Kučera,
A. (eds.) MFCS 2010. LNCS, vol. 6281, pp. 368–380. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-15155-2 33

15. Gadducci, F., Miculan, M., Montanari, U.: About permutation algebras,
(pre)sheaves and named sets. High. Order Symbol. Comput. 19(2–3), 283–304
(2006)

16. Gogate, V., Dechter, R.: A complete anytime algorithm for treewidth. In: UAI, pp.
201–208 (2004)

17. Grohe, M.: The complexity of homomorphism and constraint satisfaction problems
seen from the other side. J. ACM 54(1), 1:1–1:24 (2007)

18. Hoch, N., Montanari, U., Sammartino, M.: Dynamic programming on nominal
graphs. In: GaM 2015, pp. 80–96 (2015)

19. Kloks, T. (ed.): Treewidth: Computations and Approximations. LNCS, vol. 842.
Springer, Heidelberg (1994). https://doi.org/10.1007/BFb0045375

https://doi.org/10.1007/978-3-540-73420-8_26
https://doi.org/10.1007/978-3-540-73420-8_26
https://doi.org/10.1007/978-3-540-71316-6_3
https://doi.org/10.1007/3-540-46135-3_21
https://doi.org/10.1007/3-540-46135-3_21
https://doi.org/10.1007/978-3-642-69962-7
https://doi.org/10.1007/978-3-642-15155-2_33
https://doi.org/10.1007/BFb0045375

200 U. Montanari et al.

20. Montanari, U.: Networks of constraints: fundamental properties and applications
to picture processing. Inf. Sci. 7, 95–132 (1974)

21. Pitts, A.M.: Nominal Sets: Names and Symmetry in Computer Science. Cambridge
Tracts in Theoretical Computer Science. Cambridge University Press, Cambridge
(2013)

22. Robertson, N., Seymour, P.D.: Graph minors. III. Planar tree-width. J. Comb.
Theory, Ser. B 36(1), 49–64 (1984)

23. Rossi, F., van Beek, P., Walsh, T. (eds.): Handbook of Constraint Programming.
Foundations of Artificial Intelligence, vol. 2. Elsevier, New York (2006)

24. Rossi, F., van Beek, P., Walsh, T.: Constraint programming. In: Handbook of
Knowledge Representation, pp. 181–211 (2008)

25. Schiendorfer, A., Knapp, A., Steghöfer, J.-P., Anders, G., Siefert, F., Reif, W.:
Partial valuation structures for qualitative soft constraints. In: De Nicola, R., Hen-
nicker, R. (eds.) Software, Services, and Systems. LNCS, vol. 8950, pp. 115–133.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-15545-6 10

https://doi.org/10.1007/978-3-319-15545-6_10

Overview of Reconfigurable Petri Nets

Julia Padberg1(B) and Laid Kahloul2

1 Hamburg University of Applied Sciences, Hamburg, Germany
julia.padberg@haw-hamburg.de

2 LINFI Laboratory, Computer Science Department,
Biskra University, Biskra, Algeria

l.kahloul@univ-biskra.dz

Abstract. The evolution in software and hardware systems from clas-
sical systems with rigid structures to open, dynamic, and flexible struc-
tures has inspired the extension of Petri nets to reconfiguration. The
idea of reconfiguring Petri nets was launched in the early nineties and
since then has been developed by several researchers at different levels
of formalization. Researchers in this field have achieved a large amount
of theoretical results and of practical applications. The aim of this paper
is to present an overview of reconfigurable Petri nets dealing with sev-
eral aspects including: the fundamental, theoretical basis, application
domains, results at the verification/analysis level as well as practical
tools. The paper finally discusses some future research directions.

Keywords: Reconfigurable Petri nets · Petri net transformations
Dynamic infrastructures

1 Introduction

The characteristic feature of reconfigurable Petri nets, consisting of a Petri net
and a set of rules that can modify it, is the possibility to discriminate between dif-
ferent levels of change. They provide powerful and intuitive formalisms to model
dynamic software or hardware systems that are executed in dynamic infrastruc-
tures. These infrastructures are dynamic since they are subject to change as well
and since they support various applications that may share some resources. Such
dynamic software or hardware systems have become increasingly more common
but are difficult to handle. Modelling and simulating dynamic systems require
both the representation of their processes and of the system changes within
one model. As the underlying type of Petri net can vary (for example being
place/transition nets, object nets, timed and/or stochastic nets, or high-level
nets) this approach can be considered a family of formal modelling techniques.
Reconfigurable Petri nets are an instantiation of abstract transformation systems
that are formulated in category theory. The fundamental idea is to characterize
those categories that allow double-pushout transformations: therefore only the
diagrammatic descriptions are needed. This has the advantage of a thorough
theory that yields a vast amount of results concerning the transformation part.
c© Springer International Publishing AG, part of Springer Nature 2018
R. Heckel and G. Taentzer (Eds.): Ehrig Festschrift, LNCS 10800, pp. 201–222, 2018.
https://doi.org/10.1007/978-3-319-75396-6_11

202 J. Padberg and L. Kahloul

Reconfigurable Petri nets have been applied in various application areas
where complex coordination and structural adaptation at run-time are required
(e.g. mobile ad-hoc networks [62], communication spaces [21,51], ubiquitous com-
puting [10,24], concurrent systems [45], workflows in dynamic infrastructures
[29], flexible manufacturing systems [71], reconfigurable manufacturing systems
[31]). They improve the expressiveness of Petri nets as they increase flexibility
and change while allowing the transitions to fire. This greater expressiveness
yields rich models with very large state spaces. The state space of the model
is even more complex because states are not capturing only the change of the
markings but also structure and connectivity changes [2,57]. The reachability
graph is composed of several subgraphs [57], each representing the state space
of each accessible configuration in the modelled reconfigurable system. To deal
with such growing complexity there are two main ideas: relying on invariant
properties or to check the state space for such properties. The first idea is fol-
lowed mainly in a more informal approach, the second leads to explicit model
checking of reconfigurable Petri nets, both are discussed in Sect. 5.

The paper is organized as follows: The next section sketches related work,
followed by the section introducing reconfigurable Petri nets. Section 3 gives
their formal definition as well as an ongoing example and in Sect. 4 this notion
is extended to several different types of Petri nets. Subsequently, we illustrate
various application areas and concentrate on modelling reconfigurable manufac-
turing systems in Sect. 6. Then we discuss two tools that have been developed
explicitly as tools for reconfigurable Petri nets (see Sect. 7). Finally we discuss
some ideas concerning future work in the conclusion.

This paper overlaps with previously published papers, it presents and struc-
tures their results.

2 Related Work

The work in this area started in the beginning of the nineties [20] with
transformation of various Petri net types as a refinement concept. In several
papers [20,54,60] the use of net transformations in algebraic high-level nets
had been investigated and a rule-based refinement concept had been developed
that ensured safety and liveness properties under specific conditions (e.g. in
[55,61,63]). Moreover, based on a categorical framework, namely abstract Petri
nets [56] that comprises various low- and high-level types of Petri nets, the
results on horizontal and vertical structuring had been made available for these
net types. At the turn of the century the idea of adaptation of dynamic systems
became an important research topic. The notion “reconfigurable Petri nets” had
been coined at INRIA [3] where the reconfiguration had first been the replace-
ment of places.

Zero-safe nets are place-transition nets [12] that allow the distinction between
observable and hidden states. In [11] reconfigurable nets are defined as a special
case of zero-safe nets. In this approach the post-domain of a transition is not
static, but depends on the colours of the consumed tokens.

Overview of Reconfigurable Petri Nets 203

In [2] net rewriting systems have introduced rules based on a partial mor-
phism between left-hand and right-hand side of the rule. In [47] marked-
controlled net rewriting system have been based on a place/transition nets and
a graph rewriting for changing configurations. In [4] open nets (a generalisa-
tion of place/transition nets suited to model open systems interacting with the
surrounding environment) are equipped with suitable classes of reconfiguration
rules whose application preserves the observational semantics of the net. The
“nets-within-nets” formalism was introduced by Valk in [74] and was combined
with workflow Petri nets [67] to develop an approach for the specification and
code generation of dynamically reconfigurable embedded systems in [75].

Another approach, called “improved net rewriting systems” (INRS) [41–
43] concentrates on preserving important Petri net properties, namely liveness,
boundedness and reversibility. It is based on a set of fixed building blocks and
rewrite rules with fixed interfaces for the left-hand and the right-hand side. INRS
is the basis for the application we investigate in Sect. 6.1, namely Reconfigurable
Manufacturing Systems (RMSs) [39]. RMSs allow changeable structures at run-
time for various kinds of industrial production systems. To model explicitly the
reconfiguration of RMSs several variants of reconfigurable Petri have been pro-
posed and applied. The different proposals can be classified into three principal
classes: graph transformation based approaches, approaches based on rewrit-
ing net systems, and finally hybrid approaches. Based on [19] formalisms and
methods have been developed to design, simulate and verify RMSs [75]. Recon-
figurable Object Nets (RON) [8,68] have been used to propose an approach for
the design, simulation and verification of RMSs [31–34].

Besides graph transformation based approaches and the INRSs based app-
roach there are proposals that combine Petri nets with rewriting logics, π-
calculus, or algebraic specifications to define reconfigurable models. In [35,36]
rewriting logic is combined with a variant of the recursive Petri nets [26] to
describe the reconfigurability through the ability to model dynamic creation of
threads. In [77] object Petri nets are combined with π-calculus, where object-
oriented Petri net are employed to depict the static structure and behaviours of
the RMS while the π-calculus is used to describe the dynamic structure of the
system. In [15] adaptive Petri nets are proposed to specify self-adaptive systems.
The adaptation is achieved by the learning ability of neural networks. In [13] the
authors deal with transformations over Petri nets as algebraic specifications, thus
they developed a tool to set up a basic set of transformation primitives, including
adding/removal of nodes, changing the marking and setting connections.

3 Reconfigurable Petri Nets

We now define place/transition nets formally, to have a basis for the definition
of rules and transformations later on. Subsequently, we present an example from
dynamic hardware reconfiguration.

204 J. Padberg and L. Kahloul

3.1 Basic Concepts

We use the algebraic approach to Petri nets, where the pre- and post-domain
functions pre, post : T → P⊕ map the transitions T to a multiset of places
P⊕ given by the set of all linear sums over the set P . A marking is given by
m ∈ P⊕ with m =

∑
p∈P kp · p. The multiplicity of a single place p is given

by (
∑

p∈P kp · p)|p = kp. The ≤ operator can be extended to linear sums: For
m1,m2 ∈ P⊕ with m1 =

∑
p∈P kp · p and m2 =

∑
p∈P lp · p we have m1 ≤ m2 if

and only if kp ≤ lp for all p ∈ P . The operations “+” and “–” can be extended
accordingly.

Definition 1 (Place/transition nets). A (marked place/transition) net is
given by N = (P, T, pre, post, cap, labP , labT ,m) where P is a set of places, T
is a set of transitions. pre : T → P⊕ maps a transition to its pre-domain and
post : T → P⊕ maps it to its post-domain. Moreover cap : P → N

ω
+ assigns to

each place a capacity (either a natural number or infinity ω), labP : P → AP is a
label function mapping places to a name space, labT : T → AT is a label function
mapping transitions to a name space and m ∈ P⊕ is the marking denoted by a
multiset of places.
A transition t ∈ T is m-enabled for a marking m ∈ P⊕ if we have pre(t) ≤ m
and ∀p ∈ P : (m + post(t))|p ≤ cap(p). The follower marking m′ is computed by
m′ = m − pre(t) + post(t) and represents the result of a firing step m[t > m′.

Net morphisms are given as a pair of mappings for the places and the tran-
sitions preserving the structure, the decoration and the marking. Given two
nets N1 and N2 as in Definition 1 a net morphism f : N1 → N2 is given
by f = (fP : P1 → P2, fT : T1 → T2), so that pre2 ◦ fT = f⊕

P ◦ pre1 and
post2 ◦ fT = f⊕

P ◦ post1 and m1(p) ≤ m2(fP (p)) for all p ∈ P1. The labels
and the capacity need to remain the same when mapping one net to another.
Moreover, the morphism f is called strict if both fP and fT are injective and
m1(p) = m2(fP (p)) holds for all p ∈ P1. A rule in the algebraic transformation
approach is given by three nets called left-hand side L, interface K and right-
hand side R, respectively, and a span of two strict net morphisms K → L and
K → R. Then an occurrence morphism o : L → N is required that identifies the
relevant parts of the left hand side in the given net N .

Fig. 1. Net transfor-
mation

A transformation step N
(r,o)
=⇒ M via rule r can be con-

structed in two steps by the commutative squares (1) and
(2) in Fig. 1. Given a rule with an occurrence o : L → N
the gluing condition has to be satisfied in order to apply
a rule at a given occurrence. Its satisfaction requires that
the deletion of a place implies the deletion of the adjacent
transitions, and that the deleted place’s marking does not
contain more tokens than the corresponding place in L. In this collection [37]
such double-pushout transformations are explained in more detail for attributed
graphs.

Reconfigurable place/transition nets exhibit dynamic behaviour using the
token game of place/transition nets and using net transformations by applying

Overview of Reconfigurable Petri Nets 205

rules. So, a reconfigurable net as in Definition 2 combines a net with a set of
rules that modify the net [18,19].

Definition 2 (Reconfigurable place/transition nets). A reconfigurable
place/transition net RN = (N,R) is given by a net N and a set of rules R.

Fig. 2. Cyclic net with rules

Example 1 (Modifying a cyclic process). As an abstract example of a dynamic
system we model a cyclic process that can either be executed or modified using
the reconfigurable Petri net (N, {r1, r2}). Fig. 2 depicts a simple place/transition
net N and the rules r1 and r2. The net describes a cyclic process that executes
one step and then returns to the start. The modifications in rule r1 change the
process by inserting additional sequential steps. Rule r2 deletes an intermediate
step. In Fig. 3 the application of rule r1 to N is given. First a match of the left

Fig. 3. Application of rule r1 to N

hand side of the rule
is given by the occur-
rence morphism indi-
cated by the light grey
colour of the places
and transitions in L
and N. The gluing con-
dition holds since the
occurrence morphism
preserves the token.

In the first step the transition, which is coloured light grey, is deleted by the
construction of the net D and in the second step the intermediate place and its
adjacent transitions (coloured dark grey) are added.

3.2 Reconfigurable Computing

Here we give a realistic example that illustrates the use of reconfigurable
place/transition nets in dynamic hardware reconfiguration. Reconfigurable com-
puting allows performing several functions on the same hardware with only few
modifications. This economic solution avoids the re-fabrication of new hard-
ware when new functions are required. Reconfigurable computing replaces clas-
sical fixed digital circuits by FPGA (Field Programmable Gate Array) tech-
nologies. An FPGA is a matrix of interconnected logic blocs and it is charac-
terized by its flexibility on both interconnections and logic blocs levels. This
flexibility is ensured by programming bits which can be updated rapidly, thus

206 J. Padberg and L. Kahloul

Fig. 4. Reconfigurable computing using LUT

enabling the implementation of several functions in a short time. Usually, the
routing mechanism is implemented through programmable gates and the com-
putation exploits lookup-tables (LUTs). A programmable gate is closed or
opened due to the value of the programming bit P. A lookup-table is a small
circuit which can compute any basic logic function of n inputs by program-
ming its 2n programming bits. The values of the set of programming bits are
saved in an SRAM (Static Random Access Memory). Modifying the values of
these programming bits in the SRAM reconfigures the FPGA at two levels:

Fig. 5. Petri net models for the
“Or gate” and the “And Gate”

routing connections and computational struc-
ture, thus the behaviour of the FPGA is
reconfigured. We present in Fig. 4(a) a first
configuration which implements the logic
function: F = (A × B × ¬C) + D + E (known
as seat-belt warning light system) as an exam-
ple. The realisation of this circuit using a
LUT table is made using two 3-LUTs (with
8 programming bits) connected as shown in
Fig. 4(b). The first LUT uses A, B and C
as inputs and generates F ′. F ′, D and E
will be the inputs for the second 3-LUT.
Figure 4(a′) shows the circuit after a reconfig-
uration and how this reconfiguration is made
through LUT is Fig. 4(b′). In the approach proposed by [38,76] modelling digital
circuit (as digital gates) using Petri nets is based on the modelling of signals.
The behaviour of a signal x is modelled using two places denoted x0 and x1
(representing respectively the two signal states 0 and 1) and two transitions +x

Overview of Reconfigurable Petri Nets 207

and −x (which model respectively the rising of the signal x from 0 to 1 and the
falling of the signal x from 1 to 0).
If there are many transitions which rise (resp. fall) the signal x then we denote
these transitions as +xi (resp. −xi). The signal y rises through the transition
+y when the signal x is in a 0 level (place x0). Then, the signal y will fall by
firing the transition −y when the signal x is in the level 1 (place x1). The signal
x is the input of the gate which will be controlled, eventually, by another circuit.

Fig. 6. Net models for the configurations in Fig. 4

Using the previous method,
the Fig. 5 presents the
Petri net models for the
AND and OR gates. Hence,
we depict in Fig. 6 the
models of the two con-
figurations presented in
Fig. 4. The formalisation
of reconfiguration using
the double-pushout (see
Fig. 7) requires the defini-
tion of a transformation
rule from the net TN1

representing the model of
Fig. 6(a) toward the net
TN2 representing the net
of Fig. 6(b).

4 Types of Reconfigurable Petri Nets

4.1 Reconfigurable Low-level Nets

Place/transition nets as given in Sect. 3 are well-known and widely used. Various
types of reconfigurable place/transition nets have been proposed, mostly differing
in the additional control structures. In [57] new features have been added to gain
an adequate modelling technique where transition labels have been introduced
that may change, when the transition is fired. This allows a better coordination of
transition firing and rule application, for example one can ensure that a transition
has fired (repeatedly) before a transformation may take place. This last extension
is conservative with respect to Petri nets as it does not change the net behaviour,
but it is crucial for the coordination of rule application and transition firing.

Reconfigurable place/transition nets with individual tokens [51] have tokens
that can be identified as individual objects. Hence, markings are multi-sets of
distinguished elements rather than amounts of indistinguishable black tokens.
This notion of token facilitates the definition of net processes and hence yields a
process semantics [21]. Petri nets do not inherently provide a way to model time
but various approaches have been suggested to extend Petri nets by notions of
time, as for example [6] or [30]. In [22] timed Petri nets extend place/transition
nets attaching time durations to transitions and timestamps to tokens and are

208 J. Padberg and L. Kahloul

Fig. 7. Double pushout for the example

equipped with rules and transformations. Elementary nets have been shown to
be a special case of abstract nets [56]. Hence reconfigurable elementary nets can
be considered as well, but they have not be used explicitly.

The above mentioned Petri net types have been proven to yield M-adhesive
categories, this means that the results given in Sect. 5.1 are valid for each of
these net types.

4.2 Reconfigurable Stochastic Nets

Stochastic Petri nets (SPN) are high level Petri nets that have been proposed
to model stochastic and random systems. The most used variant are SPNs in
the sense of [48]. They are an extension of timed transition Petri nets where the
duration is no longer deterministic but stochastic with a predefined probabilis-
tic law. The Generalised Stochastic Petri Nets (GSPN) [5] are an extension of
SPNs where transitions can be of two kinds: stochastic or immediate. The use of
GSPNs allows designers to evaluate performance for the modelled systems and to
study several quantitative parameters. Introducing reconfiguration into GSPNs
is an ambitious issue which will yield a new reconfigurable stochastic Petri net
formalism. A first approach has been developed in some recent work [69,70].
There GSPNs have been extended to reconfigurable GSPN using the Improved
Net Rewriting Systems [43] to provide a new formalism called INRS-GSPN. This
approach has been used to design Stochastic RMSs and to allow performance

Overview of Reconfigurable Petri Nets 209

evaluation of configurations. Based on the INRS approach the reconfiguration of
GSPN is expected to preserve specific required qualities as: liveness, boundedness
and reversibility.

4.3 Reconfigurable High-level Nets

Algebraic high-level (AHL) nets are Petri nets combined with algebraic specifi-
cations [60]. In contrast to low-level nets AHL nets comprise a data type part,
so that the tokens are values in an underlying algebra of the given signature
rather than indistinguishable black tokens. The arcs are inscribed by terms over
the signature and firing of a transition requires the assignment of these vari-
ables to the values of the available tokens. Moreover, transitions are provided
with guards, called firing conditions and given by equations. Guards allow the
firing of a transition only if the tokens that are to be consumed satisfy the firing
conditions of that transition. The operational behaviour of AHL nets is given
analogously to the operational behaviour of low-level nets. The activation of a
transitions requires an assignment of the variables in the environment of the
transition, such that the assigned pre-domain is included in the marking and the
firing conditions of the transition hold. This assignment is then used to com-
pute the follower marking, obtained by decreasing the marking by the assigned
pre-domain and increasing the result by the assigned post-domain. Algebraic
higher-order (AHO) net are high-level nets where tokens can be place/transition
nets and net transformation rules. Thus AHO nets follow the paradigm “nets as
tokens”, introduced by Valk in [73] but extend this paradigm to “nets and rules
as tokens”. AHO nets are used for controlling firing steps and transformations
of low-level nets that has been introduced in [28] with AHL nets that contain
place/transition nets and transformation rules as tokens. Reconfigurable Object
Nets (RONs) as given in [28] are a restriction of AHO nets, so that firing of
RON-transitions may only involve firing of object net transitions, transporting
object net tokens through the high-level net, or applying net transformation
rules to object nets. Net transformation rules model net modifications such as
merging or splitting of object nets, and net refinements. Both AHL nets as well
as AHO nets are available with individual tokens [21,51].

The above mentioned high-level net types have also been proven to yield
M-adhesive categories, so the results given in Sect. 5.1 hold for each of them.

5 Results

First, we sketch the basics for abstract transformation systems and the results
obtained in that way. We now discuss some of the results concerning control
structures and verification of reconfigurable nets.

5.1 Results for Abstract Transformation Systems

The basic idea of transforming Petri nets is the same as transforming graphs
in the algebraic approach, e.g. in [16]. The theoretical backbone of these

210 J. Padberg and L. Kahloul

transformations are M-adhesive transformation systems that yield the abstract
transformation system. They are formulated in terms of category theory and can
be considered as a unifying framework for graph and Petri net transformations pro-
viding enough structure that most notions and results from algebraic graph trans-
formation systems hold. Such a categorical approach has the advantage that the
results in this frameworkhold for anycategorywhich satisfies the set of assumptions
for specific classes of morphisms. M-adhesive transformation systems have been
instantiated with various types of graphs, as hypergraphs, attributed and typed
graphs, structures, algebraic specifications, various Petri net classes, elementary
nets, place/transition nets, Colored Petri nets, or algebraic high-level nets, and
more (see [16]). M-adhesive transformation systems allow a uniform description
of the different notions and results based on a class M of specific monomorphisms
that have to be PO-PB-compatible, that is:

– Pushouts along M-morphisms exist and M is stable under pushouts.
– Pullbacks along M-morphisms exist and M is stable under pullbacks.
– M contains all identities and is closed under composition.

The fundamental construct for M-adhesive cat-
egories and systems are van Kampen squares of M-
morphisms.

Definition 3 (M-Adhesive Category). Given
a class M of PO-PB compatible monomorphisms
in a category C, then (C,M) is called M-adhesive
category, if pushouts along M-morphisms are M-
van Kampen squares, that is for any commutative
cube (2) with (1) in the bottom and back faces being
pullbacks, the following holds: the top is pushout ⇔
the front faces are pullbacks.

An M-adhesive transformation system AHS =
(C,M,R) consists of an adhesive M-category
(C,M) and a set of rules R.

Based on this categorical framework we have
the following results for those Petri net types that have been shown to be adhesive
categories:

– Negative application conditions [25] allow specifying undesired context. The
rules are equipped with additional nets that show the context in which the
rule should not be applied, see Fig. 12 in Sect. 7.2.

– Confluence and independency results as parallel and sequential independence,
local Church-Rosser, conflict and causal dependency describe how rules behave
in specific contexts. Indepenency conditions are given for two direct transfor-
mations being applied to the same net, so that they can be applied in arbitrary
order leading to the same result. Properties of dependent transformations have
been investigated as well (see e.g. [16]).

Overview of Reconfigurable Petri Nets 211

– Critical pair analysis as known from term rewriting are used to check for con-
fluence. Critical pairs specify the minimal instance of a conflicting situation.
From the set of all critical pairs the items causing conflicts or dependencies are
extracted. Local confluence can be shown for abstract transformation systems
using the concept of critical pairs (see e.g. [17]).

– Net transformation units have been instantiated from HLR units [9] that are
a generalisation of graph transformation units (e.g. [40]). Net transformation
units [27] provides syntactic and semantic means for structuring net trans-
formations. They regulate the application of rules to nets encapsulating the
rules and control expressions, see also Fig. 12 in Sect. 7.2.

5.2 Control Structures

Control structures to reconfigurable Petri nets are required due to the expres-
sive power of the interplay between rule application and firing behaviour. The
available control structures can be differentiated into those that arise from Petri
nets, as transition priorities, inhibitor arcs or capacities and those that arise
from graph transformation systems as negative application conditions or trans-
formation units.

In [58] priorities for transitions and inhibitor arcs – both well-known concept
in Petri nets – have been introduced to reconfigurable Petri nets. The results of
M-adhesive transformation system for reconfigurable Petri nets with priorities
are ensured by proving the corresponding category to be M-adhesive. Moreover,
it was shown that Petri nets with inhibitor arcs yield an M-adhesive category
as well.

Other control structures determine the application of rules. They concern the
situation that may or may not be given or they concern the order of the rules
to be applied. Net transformation units are the transfer of graph transformation
units (see [40]) to reconfigurable Petri nets and have been achieved using the
abstract formulation of HLR units [9]. Control conditions can be given by regular
expressions, describing in which order and how often the rules and imported units
are to be applied. For an example see Sect. 7.2.

Negative application conditions for reconfigurable Petri nets have been intro-
duced in [66] and provide the possibility to forbid certain rule applications. These
conditions restrict the application of a rule forbidding a certain structure to be
present before or after applying a rule in a certain context. Such a constraint
influences thus each rule application or transformation and therefore changes
significantly the properties of the net transformation system, again see Sect. 7.2.

5.3 Verification

Ensuring that relevant properties as liveness, reachability of specific states or
boundedness hold, is central for the adequate use of a modelling technique.
Since the classical analysis techniques fail there are two main possibilities for
reconfigurable Petri nets that we discuss subsequently: either these properties
are preserved during the transformation or they are proven explicitly.

212 J. Padberg and L. Kahloul

Invariants. Invariant properties can be achieved if the rules preserve the corre-
sponding properties. Conditions for rules have been formulated so that the rule
application ensures safety properties [61] and liveness [72] in the resulting net
provided that the original net satisfies these properties.

Although Net Rewriting Systems (NRSs) allow the formalisation of dynamics
in Petri nets, they do not preserve properties such as liveness, boundedness (or
safeness), and reversibility. Based on the approach of NRSs developed in [2,45],
the authors of [42–44] propose Improved Net Rewriting Systems (INRS). The
INRS can not only change dynamically the structure of a Petri net but also
preserve important behavioural properties. In fact, preserving liveness, bound-
edness (or safeness), and reversibility is important in several systems such as
Reconfigurable Manufacturing Systems (RMSs), where the previous properties
are vital to guarantee that the RMS is free from deadlocks, has finite states, and
behaves cyclically, respectively. Reconfiguration in INRS replaces some subnet
from the source net by another subnet yielding a new net. The approach defines
net block class libraries (well-formed net blocks) and the reconfiguration process
substitutes a well-formed subnet of any live bounded reversible net with another
well-formed net block of the same interface type. The INRS approach was applied
in [43] to design reconfigurable Petri net controllers for the supervision of RMSs.

Model Checking. The non-deterministic and concurrent behaviour of reconfig-
urable Petri nets inhibit the determination of emerging properties. In [64] model
checking of reconfigurable place/transition nets has been developed, imple-
mented and proven to be correct. Maude is a mature theory of rewriting logic
and is feasible for modelling reconfigurable Petri nets, e.g. [14]. Model-checking
of reconfigurable Petri nets [64] is achieved by a conversion of a net and a set
of rules into a Maude specification. This specification can be model-checked for
properties expressed in linear temporal logic (LTL) using the Maude module
LTLR with extensions for rewrite rules and properties such as fairness. The
model-checking of reconfigurable nets allows the verification of reachability of
states or the absence of deadlocks.

6 Applications

In this section we introduce some of the application areas for reconfigurable Petri
nets. First we investigate the use reconfigurable nets for manufacturing systems
in some detail. Subsequently, other application areas are merely sketched.

6.1 Reconfigurable Manufacturing Systems

Reconfigurable Manufacturing Systems (RMSs) [39] represent a new innovative
approach providing “production systems” with a changeable structure at run-
time. Changing the structure can be a solution to satisfy dynamic customers
requirement as well as to resolve unpredictable system failures. The use of recon-
figurable Petri nets in the design of RMSs offers high level specification, simu-
lation, verification, performance analysis, and code generation at the software

Overview of Reconfigurable Petri Nets 213

level. Using Reconfigurable Object Nets (RONs) [8] a formal approach [31] for
the design, simulation, and verification of RMSs is proposed.

Fig. 8. Designing RMSs using RONs based-approach

Fig. 9. (a) Manufacturing of product A, (b) Flow in MC1,
(c) Flow in MC2, (d) Reconfiguration 1: a new product B,
(e) Reconfiguration 2: introducing MC3.

It starts with an infor-
mal or semi-formal
description of the RMS,
builds a RON model
for simulation or for-
mal verification. The
semi-formal descrip-
tion of RMSs is often
given as bloc-diagrams
describing tasks and
the flow control in the
RMS. Figure 8 depicts
how the approach is
applied by the designer.
As a demonstration
of the depicted app-
roach in Fig. 8, let’s
consider the following
RMS inspired from
[50]. This RMS con-
tains two manufac-
turing cells (MC1,
MC2), a storage AS/AR
(automated storage and
retrieval system), and
an AGV (automated
guided vehicle). The
system requires two
raw materials R1 and
R2 and it produces
one final product A
(see Fig. 9(a)). The
production process
passes respectively by
MC1 (Fig. 9(b)) then
MC2 (Fig. 9(c)). The
MC1 is composed of a
CNC lathe machine, a
CNC milling machine,
a robot and a buffer. In MC1, R1 and R2 are processed firstly by the lathe
machine before the milling machine. The MC2 is composed by an assembly
machine (which assembles the two products into one product A), a robot and
a buffer. During the life cycle of the system, the production process meets

214 J. Padberg and L. Kahloul

two reconfigurations. The first reconfiguration is triggered by a new customers’
requirement for a product B (see Fig. 9(d)). To produce B the flow must be
converted (i.e. the assembly is done before the lathe and the milling). The sec-
ond reconfiguration (see Fig. 9(e)) is triggered by the inspection team of the
production process requiring the introduction of a new manufacturing cell MC3

(inspection cell). The inspection cell MC3 is composed of a coordinate measuring
machine (CMM) and a set of buffers. Using the RON formalism the three con-
figurations are considered as token nets and the reconfigurations are considered
as token rules. Figure 10(a) and (b) represent the two first configurations. The
reconfiguration is described as a double-pushout (See Fig. 10(c)). As an example,
the Fig. 10(d) shows the production (L, I,R) used in the double-pushout.

Fig. 10. (a) Initial configuration, (b) Second configuration, (c) Double Pushout, (d)
The production rule (L, I, R).

By determining the set of token nets and the set of rules the whole RMS
behaviour can be modelled by a RON model as shown in Fig. 11 in Sect. 7.1. This
RON model can be used to visualise, simulate, and verify the RMS behaviour.

6.2 Other Applications

Communication Platforms. A general modelling framework for communi-
cation platforms and scenarios has been presented in [21] using reconfigurable
algebraic high-level nets. This framework employs an integration of Petri nets,
algebraic data types and net transformation techniques. It allows the analysis
of the evolution of communication platforms, the analysis of scenario evolutions
and the investigation of user interactions on communication platforms. Recon-
figurable AHL nets have also been used in [51,52] for a case study on modelling a
concrete communication platform – namely Skype. The behaviour of the Skype
clients has been modelled in detail and the whole system specification has been
demonstrated for concrete use case scenarios. For these scenarios model proper-
ties have been formulated and validated.

Overview of Reconfigurable Petri Nets 215

Ubiquitous Computing Systems (UCSs). Lets computing appear to occur
using any device, in any location, and in any format. Underlying technologies
comprise the internet, advanced middleware, mobile devices, constantly avail-
able networked sensors and microprocessors, and so on. USCs penetrates almost
imperceptibly in everyday life. To ensure a solid operation, a UCS needs reliable
and efficient communication between its distributed computing components. [24]
presents a formal approach based on reconfigurable algebraic higher order nets
with individual tokens (AHOI) nets [51]. This approach allows modelling the
synchronous and asynchronous communication in UCSs and is used for mod-
elling a smart home. Emergency scenarios using mobile ad-hoc networks have
been investigated extensively [10,23,62]. In emergency scenarios, we can obtain
an effective coordination among team members constituting a mobile ad-hoc
network through the use of net system and rule tokens. From an abstract point
of view, mobile ad-hoc networks consist of mobile nodes which communicate
with each other independent of a stable infrastructure, while the topology of
the network constantly changes depending on the current position of the nodes
and their availability. The net structure can be adapted to new requirements
of the environment during run time by a set of rules, i.e. token firing and net
transformation can be interleaved with each other.

7 Tools

Since the rewriting in reconfigurable Petri nets is in most cases given as a kind
of graph transformation, general purpose graph transformation tools as AGG [1]
that supports the modelling, the simulation and the analysis of typed attributed
graph transformation systems, are likely candidates. But specific tools have been
developed as well. In Sects. 7.1 and 7.2 we introduce tools that are in use at
this point. The MCReNet-tool [49] is a tool for the modelling and verification of
marked-controlled reconfigurable Petri nets [46] and was the first implementation
that has explicitly dealt with reconfigurable Petri nets.

7.1 RON-Editor

One of the tools concerned with reconfigurable Petri nets is RON-Editor [7]. The
RON-editor is based on reconfigurable object nets [28]. It is an open source and
free tool [68]. The RON-editor supports users to create, delete and edit parts
of the model like object nets, net transformations rules and a top-level RON.
The RON-editor makes several checks (e.g. for correct typing of tokens on RON
places, to guarantee that mappings in rules satisfy net morphism properties)
that help the user to obtain consistent RONs. Additionally, the editor comprises
a simulator using the AGG engine to simulate the application of rules and thus
firing of high-level transitions in the RONs created with the editors. The set of
visual editors have been realized as Eclipse plug-ins using the Eclipse Modelling
Framework (EMF) and Graphical Editor Framework (GEF) plug-ins. As an
example, the simulation of the RON model presented in Sect. 6.1 is depicted

216 J. Padberg and L. Kahloul

in Fig. 11. There the top-right window depicts the system level net (the RON
model), the top-left window depicts the object net TN1 in the place np1 and the
lower window shows the transformation rule (token-rule r1) which is applied to
the object net TN1. The RON-editor can simulate the behaviour of the system
level net as well as the behaviour of the object nets. The transition “transform-
transition 1” is green which means that it is enabled.

Fig. 11. An example of reconfigurable object nets with RON-Editor. (Color figure
online)

7.2 ReConNet

ReConNet [59,65] is an open source project that has been initiated at the HAW
Hamburg developing a tool for editing and simulating reconfigurable decorated
nets. It provides an intuitive graphic-based user interface that allows the user to
create, modify and simulate reconfigurable nets. It facilitates non-deterministic
application of rules and firing steps. There are different simulation options exe-
cuting a definable amount of steps: only transitions are fired, only rules are
applied, or both may happen. Control structures that are available comprise
negative application conditions, transformation units and dynamic transition
labels (see Sect. 5). In Fig. 12 the net N from Example 1 in Sect. 3 is depicted
together with a third rule r3 that reverts (various instances and derivations)
the arrows of the net. The requirement “the arrows only may be turned if there
is no token on the second place” ensures that token do not directly go back.
This rule is shown in four windows: the first presents the negative application
condition that ensures the requirement. The next three windows present a rule
where the intermediate transition is deleted and then a transition with a new
label is inserted so that the arrow point in the other direction. Note, that in
this illustration the interface’s window does not show a net explicitly. The trans-
formation unit’s control structure tu1: (r1 | r2)*;(r3!) guarantees that r1
and r2 (as given in Example 1) are executed arbitrarily often, subsequently they

Overview of Reconfigurable Petri Nets 217

Fig. 12. GUI of ReConNet

are followed by rule r3. The exclamation mark ! denotes that this expression
is repeated as long as possible. Hence, once the turning has started, it goes on
until all arrows have been turned around.

8 Conclusion

In this contribution we have given a comprehensive compilation of the results
that have been achieved for various types of reconfigurable Petri nets in the
last two decades. Reconfiguration is a topic that is quite virulent in very differ-
ent areas. For some of these modelling the dynamic change with reconfigurable
Petri nets seems to be very promising. We have sketched some application areas
and have given examples how to tackle the issue with reconfigurable nets. The
theoretical research in reconfigurable Petri nets has provided important results
on several types of nets. However, the proposed case studies are often academic
ones illustrated only to explain the feasibility of the proposed formal approaches.
In order to tackle with these limits, future work has to focus on the following
aspects:

– Enlarge the application domain of reconfigurable Petri nets to handle new tech-
nologies, for example cloud computing systems and the internet of things. These
later are the most suitable systems where mobility, flexibility, and dynamics are
inherent characteristics. These systems require new reliable hardware devices
and new reliable software protocols and drivers, thus reconfigurable Petri nets
should be suggested as a validation and verification technique.

218 J. Padberg and L. Kahloul

– Invest in the automatic tools for modelling, simulation, and verification of
reconfigurable Petri nets. The current tools remain at the prototypic and
academic level.

– Extend reconfigurable Petri nets to performance analysis. Most verification
results for reconfigurable Petri nets concern qualitative verification. How-
ever, in real systems the designer expects often performance evaluation and
quantitative measurements. Such analysis is well developed in stochastic
Petri nets and stochastic automata with some improved tools like Great-
SPIN or UPPAAL. Stochastic graph transformations [4] provide attributed
typed graph transformations systems for analysing transformation systems
with stochastic methods and is a good basis for Future work to integrate
stochastic features to reconfigurable Petri nets more formally.
This comprises work on the integration of the INRS approach and the abstract
transformation systems. We want to achieve the strong theoretical basis of the
abstract transformation systems also for the INRS approach. The formulation
of building blocks used in INRS independently of the underlying net types
(similar to [53]) is the basis for a formal correctness proof.

– Integrate optimisation problems. Another, new application of reconfigurable
Petri nets is the optimal configuration in reconfigurable systems. These use
often evolutionary algorithms that find the optimal configuration after several
reconfigurations of a random initial configuration. Combining reconfigurable
Petri nets with evolutionary processing can yield new hybrid methods where
both objectives are captured: optimisation and formal verification.

References

1. AGG. http://www.user.tu-berlin.de/o.runge/agg/index.html. Accessed 02 June
2017

2. Badouel, E., Llorens, M., Oliver, J.: Modeling concurrent systems: reconfigurable
nets. In: Arabnia, H.R., Mun, Y. (eds.) International Conference on Parallel and
Distributed Processing Techniques and Applications, pp. 1568–1574 (2003)

3. Badouel, E., Oliver, J.: Reconfigurable Nets, a Class of High Level Petri Nets
Supporting Dynamic Changes within Workflow Systems. Research Report RR-
3339. INRIA (1998)

4. Baldan, P., Corradini, A., Ehrig, H., Heckel, R., König, B.: Bisimilarity and
behaviour-preserving reconfigurations of open Petri nets. Log. Methods comput.
Sci. 4, 126–142 (2008)

5. Bause, F., Kritzinger, P.S.: Stochastic Petri Nets: An Introduction to the Theory.
Vieweg+Teubner Verlag, Cape Town (2002)

6. Berthomieu, B., Diaz, M.: Modeling and verification of time dependent systems
using time Petri nets. IEEE Trans. Softw. Eng. 17(3), 259–273 (1991)

7. Biermann, E., Ermel, C., Hermann, F., Modica, T.: A visual editor for reconfig-
urable object nets based on the ECLIPSE graphical editor framework. In: 14th
Workshop on Algorithms and Tools for Petri Nets (2007)

8. Biermann, E., Modica, T.: Independence analysis of firing and rule-based net trans-
formations in reconfigurable object nets. Electron. Commun. EASST 10, 1–13
(2008)

http://www.user.tu-berlin.de/o.runge/agg/index.html

Overview of Reconfigurable Petri Nets 219

9. Bottoni, P., Hoffmann, K., Parisi-Presicce, F., Taentzer, G.: High-level replace-
ment units and their termination properties. J. Vis. Lang. Comput. 16(6), 485–507
(2005)

10. Bottoni, P., Rosa, F.D., Hoffmann, K., Mecella, M.: Applying algebraic approaches
for modeling workflows and their transformations in mobile networks. Mob. Inf.
Syst. 2(1), 51–76 (2006)

11. Bruni, R., Melgratti, H., Montanari, U.: Extending the zero-safe approach to
coloured, reconfigurable and dynamic nets. In: Desel, J., Reisig, W., Rozenberg,
G. (eds.) ACPN 2003. LNCS, vol. 3098, pp. 291–327. Springer, Heidelberg (2004).
https://doi.org/10.1007/978-3-540-27755-2 7

12. Bruni, R., Montanari, U.: Transactions and zero-safe nets. In: Ehrig, H., Padberg,
J., Juhás, G., Rozenberg, G. (eds.) Unifying Petri Nets. LNCS, vol. 2128, pp.
380–426. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45541-8 12

13. Capra, L.: A pure SPEC-inscribed PN model for reconfigurable systems. In: 2016
13th International Workshop on Discrete Event Systems (WODES), pp. 459–465,
May 2016

14. Clavel, M., Durán, F., Eker, S., Lincoln, P., Mart́ı-Oliet, N., Meseguer, J., Quesada,
J.F.: Maude: specification and programming in rewriting logic. Theor. Comput. Sci.
285(2), 187–243 (2002)

15. Ding, Z., Zhou, Y., Zhou, M.: Modeling self-adaptive software systems with learn-
ing Petri nets. IEEE Trans. Syst. Man Cybern. Syst. 46(4), 483–498 (2016)

16. Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic
Graph Transformation. EATCS Monographs in TCS. Springer, Heidelberg (2006).
https://doi.org/10.1007/3-540-31188-2

17. Ehrig, H., Golas, U., Habel, A., Lambers, L., Orejas, F.: M-adhesive transforma-
tion systems with nested application conditions. part 2: embedding, critical pairs
and local confluence. Fundam. Inform. 118(1–2), 35–63 (2012)

18. Ehrig, H., Hoffmann, K., Padberg, J., Prange, U., Ermel, C.: Independence of Net
Transformations and Token Firing in Reconfigurable Place/Transition Systems.
In: Kleijn, J., Yakovlev, A. (eds.) ICATPN 2007. LNCS, vol. 4546, pp. 104–123.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-73094-1 9

19. Ehrig, H., Padberg, J.: Graph grammars and Petri net transformations. In: Desel,
J., Reisig, W., Rozenberg, G. (eds.) ACPN 2003. LNCS, vol. 3098, pp. 496–536.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-27755-2 14

20. Ehrig, H., Padberg, J., Ribeiro, L.: Algebraic high-level nets: Petri nets revisited.
In: Ehrig, H., Orejas, F. (eds.) ADT/COMPASS -1992. LNCS, vol. 785. Springer,
Heidelberg (1994). https://doi.org/10.1007/3-540-57867-6

21. Gabriel, K., Ehrig, H.: Modelling of communication platforms using algebraic high-
level nets and their processes. In: Heisel, M. (ed.) Software Service and Application
Engineering. LNCS, vol. 7365, pp. 10–25. Springer, Heidelberg (2012). https://doi.
org/10.1007/978-3-642-30835-2 2

22. Gabriel, K., Lingnau, P., Ermel, C.: Algebraic approach to timed Petri nets. Elec-
tron. Commun. EASST 47, 1–14 (2012)

23. Golas, U., Hoffmann, K., Ehrig, H., Rein, A., Padberg, J.: Functorial analysis of
algebraic higher-order net systems with applications to mobile ad-hoc networks.
ECEASST 40, 1–24 (2010)

24. Gottmann, S., Nachtigall, N., Hoffmann, K.: On modelling communication in ubiq-
uitous computing systems using algebraic higher order nets. ECEASST 51, 1–12
(2012)

25. Habel, A., Heckel, R., Taentzer, G.: Graph grammars with negative application
conditions. Fundam. Inform. 26(3/4), 287–313 (1996)

https://doi.org/10.1007/978-3-540-27755-2_7
https://doi.org/10.1007/3-540-45541-8_12
https://doi.org/10.1007/3-540-31188-2
https://doi.org/10.1007/978-3-540-73094-1_9
https://doi.org/10.1007/978-3-540-27755-2_14
https://doi.org/10.1007/3-540-57867-6
https://doi.org/10.1007/978-3-642-30835-2_2
https://doi.org/10.1007/978-3-642-30835-2_2

220 J. Padberg and L. Kahloul

26. Haddad, S., Poitrenaud, D.: Recursive Petri nets. Acta Informatica 44(7), 463–508
(2007)

27. Hoff, C.: Transformationseinheiten als Kontrollstruktur für rekonfigurierbare
Petrinetze in ReConNet. Master’s thesis, University of Applied Sciences Hamburg
(2016)

28. Hoffmann, K., Ehrig, H., Mossakowski, T.: High-level nets with nets and rules as
tokens. In: Ciardo, G., Darondeau, P. (eds.) ICATPN 2005. LNCS, vol. 3536, pp.
268–288. Springer, Heidelberg (2005). https://doi.org/10.1007/11494744 16

29. Hoffmann, K., Ehrig, H., Padberg, J.: Flexible modeling of emergency scenarios
using reconfigurable systems. ECEASST 12, 1–20 (2008)

30. Jensen, K., Kristensen, L.M.: Coloured Petri Nets - Modelling and Validation of
Concurrent Systems. Springer, Heidelberg (2009). https://doi.org/10.1007/b95112

31. Kahloul, L., Bourekkache, S.: Djouani, K: Designing reconfigurable manufacturing
systems using reconfigurable object Petri nets. Int. J. Comput. Integr. Manuf. 29,
1–18 (2016)

32. Kahloul, L., Bourekkache, S., Djouani, K., Chaoui, A., Kazar, O.: Using high level
Petri nets in the modelling, simulation and verification of reconfigurable manufac-
turing systems. Int. J. Softw. Eng. Knowl. Eng. 24(03), 419–443 (2014)

33. Kahloul, L., Chaoui, A., Djouani, K., Bourekkache, S., Kazar, O.: Using high level
nets for the design of reconfigurable manufacturing systems. In: 1st International
Workshop on Petri Nets for Adaptive Discrete-Event Control Systems, pp. 1–19
(2014)

34. Kahloul, L., Djouani, K., Chaoui, A.: Formal study of reconfigurable manufacturing
systems: a high level Petri nets based approach. In: Mař́ık, V., Lastra, J.L.M.,
Skobelev, P. (eds.) HoloMAS 2013. LNCS (LNAI), vol. 8062, pp. 106–117. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-40090-2 10

35. Kheldoun, A., Barkaoui, K., Zhang, J.F., Ioualalen, M.: A high level net for model-
ing and analysis reconfigurable discrete event control systems. In: Amine, A., Bel-
latreche, L., Elberrichi, Z., Neuhold, E.J., Wrembel, R. (eds.) CIIA 2015. IAICT,
vol. 456, pp. 551–562. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
19578-0 45

36. Kheldoun, A., Zhang, J., Barkaoui, K., Ioualalen, M.: A high-level nets based
approach for reconfigurations of distributed control systems. In: ADECS Petri
Nets, pp. 36–51 (2014)

37. König, B., Nolte, D., Padberg, J., Rensink, A.: A tutorial on graph transformation.
In: Festschrift in Memory of Hartmut Ehrig. Springer (2018, accepted)

38. Kondratyev, A., Cortadella, J., Kishinevsky, M., Lavagno, L., Taubin, A.: The use
of Petri nets for the design and verification of asynchronous circuits and systems.
J. Circuits Syst. Comput. 8(1), 67–118 (1998)

39. Koren, Y., Shpitalni, M.: Design of reconfigurable manufacturing systems. J.
Manuf. Syst. 29(4), 130–141 (2010)

40. Kreowski, H.-J., Kuske, S., Rozenberg, G.: Graph transformation units – an
overview. In: Degano, P., De Nicola, R., Meseguer, J. (eds.) Concurrency, Graphs
and Models. LNCS, vol. 5065, pp. 57–75. Springer, Heidelberg (2008). https://doi.
org/10.1007/978-3-540-68679-8 5

41. Li, J., Dai, X., Meng, Z.: Improved net rewriting systems-based rapid reconfig-
uration of Petri net logic controllers. In: 31st 2005 Annual Conference of IEEE
Industrial Electronics Society, 6 pp. IEEE (2005)

42. Li, J., Dai, X., Meng, Z.: Improved net rewriting system-based approach to model
reconfiguration of reconfigurable manufacturing systems. Int. J. Adv. Manuf. Tech-
nol. 37(11–12), 1168–1189 (2008)

https://doi.org/10.1007/11494744_16
https://doi.org/10.1007/b95112
https://doi.org/10.1007/978-3-642-40090-2_10
https://doi.org/10.1007/978-3-319-19578-0_45
https://doi.org/10.1007/978-3-319-19578-0_45
https://doi.org/10.1007/978-3-540-68679-8_5
https://doi.org/10.1007/978-3-540-68679-8_5

Overview of Reconfigurable Petri Nets 221

43. Li, J., Dai, X., Meng, Z.: Automatic reconfiguration of Petri net controllers for
reconfigurable manufacturing systems with an improved net rewriting system-
based approach. IEEE Trans. Autom. Sci. Eng. 6(1), 156–167 (2009)

44. Li, J., Dai, X., Meng, Z., Xu, L.: Improved net rewriting system-extended Petri net
supporting dynamic changes. J. Circuits Syst. Comput. 17(06), 1027–1052 (2008)

45. Llorens, M., Oliver, J.: Structural and dynamic changes in concurrent systems:
reconfigurable Petri nets. IEEE Trans. Comput. 53(9), 1147–1158 (2004)

46. Llorens, M., Oliver, J.: MCReNet: a tool for marked-controlled reconfigurable nets.
In: International Conference on Quantitative Evaluation of Systems, pp. 255–256
(2005)

47. Llorens, M., Oliver, J.: A basic tool for the modeling of marked-controlled recon-
figurable Petri nets. ECEASST 2, 1–13 (2006)

48. Marsan, M.A.: Stochastic Petri nets: an elementary introduction. In: Rozenberg,
G. (ed.) APN 1988. LNCS, vol. 424, pp. 1–29. Springer, Heidelberg (1990). https://
doi.org/10.1007/3-540-52494-0 23

49. MCReNet. http://users.dsic.upv.es/∼mllorens/MCReNet.htm. Accessed 14 May
2017

50. Meng, X.: Modeling of reconfigurable manufacturing systems based on colored
timed object-oriented Petri nets. J. Manuf. Syst. 29(2–3), 81–90 (2010)

51. Modica, T., Gabriel, K., Hoffmann, K.: Formalization of Petri nets with individual
tokens as basis for DPO net transformations. ECEASST 40, 1–21 (2010)

52. Modica, T., Homann, K.: Formal modeling of communication platforms using
reconfigurable algebraic high-level nets. ECEASST 30, 1–24 (2010)

53. Murata, T.: Petri nets: properties, analysis and applications. Proc. IEEE 77(4),
541–580 (1989)

54. Padberg, J.: Algebreic high-level net transformation systems: a survey over theory
and applications. Bull. EATCS 51, 102–110 (1993)

55. Padberg, J.: Categorical approach to horizontal structuring and refinement of high-
level replacement systems. Appl. Categ. Struct. 7(4), 371–403 (1999)

56. Padberg, J.: Classification of Petri nets using adjoint functors. In: Salomaa, A.,
Gheorghe, P., Rozenberg, G. (eds.) Current Trends in Theoretical Computer Sci-
ence, pp. 171–179. World Scientific, Singapore (2001)

57. Padberg, J.: Abstract interleaving semantics for reconfigurable Petri nets. ECE-
ASST 51, 1–14 (2012)

58. Padberg, J.: Reconfigurable Petri nets with transition priorities and inhibitor arcs.
In: Parisi-Presicce, F., Westfechtel, B. (eds.) ICGT 2015. LNCS, vol. 9151, pp.
104–120. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21145-9 7

59. Padberg, J., Ede, M., Oelker, G., Hoffmann, K.: Reconnet: a tool for modeling and
simulating with reconfigurable place/transition nets. ECEASST 54, 1–11 (2012)

60. Padberg, J., Ehrig, H., Ribeiro, L.: Algebraic high-level net transformation systems.
Math. Struct. Comput. Sci. 5(2), 217–256 (1995)

61. Padberg, J., Gajewsky, M., Ermel, C.: Rule-based refinement of high-level nets
preserving safety properties. Sci. Comput. Program. 40(1), 97–118 (2001)

62. Padberg, J., Hoffmann, K., Ehrig, H., Modica, T., Biermann, E., Ermel, C.: Main-
taining consistency in layered architectures of mobile ad-hoc networks. In: Dwyer,
M.B., Lopes, A. (eds.) FASE 2007. LNCS, vol. 4422, pp. 383–397. Springer, Hei-
delberg (2007). https://doi.org/10.1007/978-3-540-71289-3 29

63. Padberg, J., Hoffmann, K., Gajewsky, M.: Stepwise introduction and preservation
of safety properties in algebraic high-level net systems. In: Maibaum, T. (ed.) FASE
2000. LNCS, vol. 1783, pp. 249–265. Springer, Heidelberg (2000). https://doi.org/
10.1007/3-540-46428-X 18

https://doi.org/10.1007/3-540-52494-0_23
https://doi.org/10.1007/3-540-52494-0_23
http://users.dsic.upv.es/~mllorens/MCReNet.htm
https://doi.org/10.1007/978-3-319-21145-9_7
https://doi.org/10.1007/978-3-540-71289-3_29
https://doi.org/10.1007/3-540-46428-X_18
https://doi.org/10.1007/3-540-46428-X_18

222 J. Padberg and L. Kahloul

64. Padberg, J., Schulz, A.: Model checking reconfigurable Petri nets with maude. In:
Echahed, R., Minas, M. (eds.) ICGT 2016. LNCS, vol. 9761, pp. 54–70. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-40530-8 4

65. ReConNet. https://reconnetblog.wordpress.com/. Accessed 16 May 2017
66. Rein, A., Prange, U., Lambers, L., Hoffmann, K., Padberg, J.: Negative application

conditions for reconfigurable place/transition systems. ECEASST 10, 1–14 (2008)
67. Richta, T., Janousek, V., Koćı, R.: Petri nets-based development of dynamically

reconfigurable embedded systems. PNSE+ ModPE 989, 203–217 (2013)
68. RON-Editor. http://www.user.tu-berlin.de/o.runge/tfs/projekte/roneditor/.

Accessed 24 May 2017
69. Tigane, S., Kahloul, L., Bourekkache, L.: Net rewriting system for GSPN: A RMS

case study. In: 2016 International Conference on Advanced Aspects of Software
Engineering (ICAASE), pp. 38–45. IEEE (2016)

70. Tigane, S., Kahloul, L., Bourekkache, S.: Reconfigurable stochastic Petri nets for
reconfigurable manufacturing systems. In: Borangiu, T., Trentesaux, D., Thomas,
A., Leitão, P., Barata Oliveira, J. (eds.) Service Orientation in Holonic and Multi-
Agent Manufacturing. SCI, vol. 694, pp. 383–391. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-51100-9 34

71. Târnauc, B., Puiu, D., Comnac, V., Suciu, C.: Modelling a flexible manufacturing
system using reconfigurable finite capacity Petri nets. In: 13th International Con-
ference on Optimization of Electrical and Electronic Equipment, pp. 1079–1084,
May 2012

72. Urbášek, M.: Preserving properties in system redesign: rule-based approach. In:
Wirsing, M., Pattinson, D., Hennicker, R. (eds.) WADT 2002. LNCS, vol. 2755, pp.
442–456. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-40020-
2 26

73. Valk, R.: Petri nets as token objects. In: Desel, J., Silva, M. (eds.) ICATPN 1998.
LNCS, vol. 1420, pp. 1–24. Springer, Heidelberg (1998). https://doi.org/10.1007/
3-540-69108-1 1

74. Valk, R.: Object Petri nets. In: Desel, J., Reisig, W., Rozenberg, G. (eds.) ACPN
2003. LNCS, vol. 3098, pp. 819–848. Springer, Heidelberg (2004). https://doi.org/
10.1007/978-3-540-27755-2 23

75. Van Der Aalst, W., Van Hee, K.M.: Workflow Management: Models, Methods, and
Systems. MIT press, Cambridge (2004)

76. Yakovlev, A., Koelmans, A., Semenov, A., Kinniment, D.: Modelling, analysis and
synthesis of asynchronous control circuits using Petri nets. Integr. VLSI J. 21(3),
143–170 (1996)

77. Yu, Z., Guo, F., Ouyang, J., Zhou, L.: Object-oriented Petri nets and π-calculus-
based modeling and analysis of reconfigurable manufacturing systems. Adv. Mech.
Eng. 8(11), 1–11 (2016). https://doi.org/10.1177/1687814016677698

https://doi.org/10.1007/978-3-319-40530-8_4
https://reconnetblog.wordpress.com/
http://www.user.tu-berlin.de/o.runge/tfs/projekte/roneditor/
https://doi.org/10.1007/978-3-319-51100-9_34
https://doi.org/10.1007/978-3-319-51100-9_34
https://doi.org/10.1007/978-3-540-40020-2_26
https://doi.org/10.1007/978-3-540-40020-2_26
https://doi.org/10.1007/3-540-69108-1_1
https://doi.org/10.1007/3-540-69108-1_1
https://doi.org/10.1007/978-3-540-27755-2_23
https://doi.org/10.1007/978-3-540-27755-2_23
https://doi.org/10.1177/1687814016677698

A Category of “Undirected Graphs”

A Tribute to Hartmut Ehrig

John L. Pfaltz(B)

Department of Computer Science, University of Virginia, Charlottesville, USA
jlp@virginia.edu

Abstract. In this paper, a category of undirected graphs is introduced
where the morphisms are chosen in the style of mathematical graph the-
ory rather than as algebraic structures as is more usual in the area of
graph transformation.

A representative function, ω, within this category is presented. Its
inverse, ω−1, is defined in terms of a graph grammar, ε.

1 The Abstract Category

Hartmut Ehrig was one who helped introduce the graph grammar community
(GraGra) to the concept of categories [6]. In this short paper we apply some of his
vision to develop a category of undirected graphs. A graph (V,E) is undirected
if its edge set E consists of sets {x, y}, not ordered pairs. It is not hard to
characterize one version of this category. It consists of obj = UG, the collection
of all finite undirected graphs, together with hom = all functions, f : G → G′,
where G,G′ ∈ UG, with composition, that is f : G → G′, g : G′ → G′′ implies
f ·g : G → G′′ ∈ hom. Let G = (V,E) and G′ = (V ′, E′). By f : G → G′ we
actually mean f : 2V → 2V ′

subject to appropriate constraints with respect to
the edge sets E and E′.1 But, without specifying these constraints this kind of
category conveys little information.

More interesting is the subcategory whose functions f, g are continuous (see
below). Continuity in the familiar continuous manifolds, such as R or C, is
defined in terms of open sets. With discrete, or finite, graphs it can be better
defined in terms of closed sets.

Let ϕ denote an arbitrary closure operator on an arbitrary collection, 2V , of
sets, that is for all subsets X,Y,∈ 2V , ϕ is expansive (Y ⊆ Y.ϕ), monotone (X ⊆
Y implies X.ϕ ⊆ Y.ϕ) and idempotent (Y.ϕ.ϕ = Y.ϕ).2 Such closure systems
(2V , ϕ) are rather well studied, since they include matroids and antimatroids
[2–5,8]. More importantly, we can now define what we mean by a continuous,

1 The codomain 2V ′
of f need not be 2V , and its edge set E′ need not have the same

structure as E. Therefore, elements of the codomain are denoted with a prime.
2 We use suffix notation to denote the application of set-valued operators and

functions.

c© Springer International Publishing AG, part of Springer Nature 2018
R. Heckel and G. Taentzer (Eds.): Ehrig Festschrift, LNCS 10800, pp. 223–230, 2018.
https://doi.org/10.1007/978-3-319-75396-6_12

224 J. L. Pfaltz

discrete, set-valued function f . A function f : (2V , ϕ) → (2V ′
, ϕ′) is said to be

continuous [11,12] if for all Y ⊆ V ,

Y.ϕ.f ⊆ Y.f.ϕ′

We observe that the closure operator, ϕ′ on V ′ need not be the same as ϕ on
V . To obtain a category, we must now show that the composition of continuous
functions f ·g is continuous. But, they need not be. The composition f ·g of
continuous, set-valued functions will be continuous provided f and g are also
monotone [12]. To create a subcategory, we need both properties.

Suppose the functions f and g are also “closure preserving”, that is the image
of any set Y , closed with respect to ϕ will be closed with respect to ϕ′. In this
case,

Y.f.ϕ′ ⊆ Y.ϕ.f

so Y.ϕ.f = Y.f.ϕ′, yielding the categorical diagram.

Y

Y’

Y. ϕ
ϕ

ϕ
Y.f. ’ϕ

’

f f

Fig. 1. A typical categorical diagram

The preceding discussion creates a subcategory of continuous set-valued func-
tions. But as yet, it has nothing to do with undirected graphs!

As before, let obj be the set of all undirected graphs, G = (V,E) where V
is a set of vertices, points, or nodes and E is a symmetric binary relation on
V , commonly called the edge set. Now, we consider hom to be the collection
of all continuous, monotone, set-valued functions mapping subsets of the vertex
(point, node) set, V of G into subsets of the vertex set V ′ of G′. We expect,
somehow, that the closure operator on these graphs should reflect their edge
structure. Let η be an operator on 2V such that y ∈ {x}.η and x ∈ {y}.η if and
only if {x, y} is an edge in G. It is convenient if η, a neighbor operator is reflexive,
that is x ∈ {x}.η. We, now, extend η to subsets Y ⊆ V by Y.η = ∪y∈Y {y}.η.
Some texts call these “closed neighborhoods”.3 In the case of undirected graphs
we prefer to use neighborhood closure ϕη, defined below

Y.ϕη = {z|{z}.η ⊆ Y.η} (1)

Because η is reflexive, ϕη is expansive; it is monotone by construction; and
idempotency is not hard to prove [14,15].
3 This is a common terminology, but unfortunately such “closed neighborhoods” are

not “closed”. The intersection of closed sets must be closed, but it easy to show that
this is seldom true with “closed neighborhoods”.

A Category of “Undirected Graphs” 225

Now we have the makings of a category, UG, of undirected graphs consisting
of obj = the collection of all undirected graphs, and hom = all monotone, set-
valued functions f : 2V → 2V ′

that are continuous with respect to ϕη. It is worth
observing that this development allows us to continuously enlarge graphs by a
function f : 2V → 2V ′

in which Ø.f = X ′ ⊆ V ′4 and to contract graphs with
g : 2V ′ → 2V ′′

where Y.g = Ø ⊆ V ′′. It is convenient to employ the notation
f : G → G′ with the understanding that f is really defined on the power sets of
V and V ′ and that f is continuous with respect to a closure operator ϕ on the
edge set/relation E.

Is UG anything more than an abstract category? Are there really functions
in hom?

In the next section we present two graph transformations which define
ω ∈ hom and ε ∈ hom. Both have been implemented as algorthmic computer
programs.

2 Two Functions in hom(UG)

Let G be a graph (V,E), with a neighborhood operator η. Suppose z ∈ {y}.ϕη,
implying by (1) that {z}.η ⊆ {y}.η. Since {z}.ϕη = {y}.ϕη, the set {z} con-
tributes nothing to the closure structure of G; it can be removed from G with lit-
tle loss of information. We define the transformation ωz : G → G′ by {z}.ωz = Ø
where ωz is the identity map on V − {z}, Y ⊆ V , and {u′, v′} ∈ E′ if and only
if {u, v} ∈ E, u, v �= z. We say z has been subsumed by y. It is not hard to show
that ωz is both monotone and continuous since z ∈ {y}.ϕη.

2.1 Reduction, ω

A computer procedure, reduce implements ω. It repeatedly sweeps through all
vertices y ∈ V , deleting any vertices zi ∈ {y}.ϕη, together with all edges incident
to zi, until no such z remain in V .5 That is, ω = ωz1 ·ωz2 · . . . ·ωzn

. Since each ωzi

is monotone and continuous, ω is as well, that is Y.ϕη.ω ⊆ Y.ω.ϕη
′. The process

terminates when every singleton subset {y} ⊆ V is closed. Such a graph is said
to be irreducible.

It can be shown that G′ = G.ω is unique (up to isomorphism) regardless of the
order in which the vertices y ∈ V are visited by ω or the order in which vertices
z ∈ {y}.ϕη are deleted [14–16]. So ω is a well defined function in hom(UG).
Because every singleton set (vertex) in G′ is closed, ω must also be closure
preserving, with Y.ω.ϕη

′ ⊆ Y.ϕη.ω, so the diagram of Fig. 1 is applicable when
f = ω.

In Fig. 2, the graph G of 18 vertices is reduced to G′ = G.ω with 10 remaining
vertices. In G, the dashed lines encircle the vertices that were subsumed by
2′, 3′, 15′ and 17′.
4 We modify the usual definition of monotonicity to read: X ⊆ Y implies X.f ⊆ Y.f ,

provided X �= Ø.
5 This procedure has been quite effective reducing large graphs |V | ≥ 1, 000, with at

worst 6 iterative sweeps of V .

226 J. L. Pfaltz

ω

G G’

2’

15’

1’

3’

10’

4’

17’

2

15

1

3

10

18

9

7

8
4

17

12

16

14

11

5

13

6

18’

16’
11’

Fig. 2. Reduction, ω, of a graph G

Irreducible graphs, such as G′, have a number of interesting properties. It is
not hard to show that G′ consists of a collection of chordless cycles of length ≥ 4.
By a “chordless cycle” we mean a sequence of vertices < y1, y2, . . . yn, y1 >, where
{yi, yi+1} ∈ E, 1 ≤ i ≤ n − 1, and where {yi, yi+k} �∈ E for k ≥ 2. Of course,
we also require {yn, y1} ∈ E. It’s a “pearl necklace” without cross connections.
Because there can be no cross connecting edges of the form {yi, yi+k}, k ≥ 2,
each cycle Cα, when considered strictly as a “set” of vertices, is a member of
a Sperner set [7]. That is, given a ground set V , for all cycles Cα, Cβ ⊂ V ,
Cα �⊆ Cβ . Besides the interesting combinatorics associated with Sperner sets,
this permits various computer algorithms to process irreducible graphs solely as
set systems without regard to individual edges. This reduction, G.ω, of G to an
irreducible graph G′ has a number of other intriguing properties [16], such as
the preservation of paths, of the graph “centers”, but this is not relevant to this
paper.

2.2 Expansion, ε

It is fairly easy to define the treatment of edges in a function, such as ω, that
contracts a graph. If Y

f−→ Ø, then all edges {y, z} such that y ∈ Y, z ∈ Y.η can
be deleted. Expanding a graph, Ø

g−→ Y ′, presents more problems. How is Y ′ to
be embedded in G′? One option is to employ an expansion grammar ε, such as
explored in [13]. Expansion grammars are quite different from phrase-structured
grammars in which a non-terminal symbol A is expanded with a rewrite rule of
the form A → σ [19]. The problematic aspect of a phase-structured grammar,
explored by Ehrig in [6], is how will the right side σ of the rewrite rule be
embedded in the growing, non-linear structure.

In an expansion grammar, a subset Y of a growing structure is first identified
to be the neighborhood of a new element p′. That is {p′}.η′ = Y ⊆ V in the
rewritten structure. More precisely, εi : (Vi, Ei) → (Vi+1, Ei+1) where Vi+1 =
Vi ∪ {p′

i}, Ei+1 = Ei ∪ {{yk, p′
i}, yk ∈ Y ⊂ Vi} and εi : Ø = {p′

i}.

A Category of “Undirected Graphs” 227

The set-valued procedure, ε can then be defined as a graph grammar with
any set of specified rewrite rules, or productions. The following example of an
expansion grammar is also given in [13]. Consider the rewrite rule r1 below,

r1 : Kn
ε−→ : p′ n ≥ 1

which specifies that any complete subgraph, Kn, (or clique) of order n in V can
serve as the neighborhood of a new point p′ provided n ≥ 1.6 Every point in
K ′

n will be adjacent to p′ in G′. Call the application of a rewrite rule a step, εi,
in the process ε. It is a well defined operation in which Ø.εi = {p′}. The left
side of the rewrite rule defines its embedding neighborhood. The right-most part
defines any conditions on this neighborhood.

Fig. 3. A sequence of neighborhood expansions generating chordal graphs

Application of r1 is illustrated in Fig. 3. Each expanded neighborhood (in
this case clique) has been made bold; and the expansion point, p′, circled. The
dashed edges indicate those links which define the clique as the neighborhood
of the expansion point p′. It is not hard to see that any graph generated in this
fashion must be chordal.7

A more relaxed version of the rewrite rule r1 above, will allow Y , the new
neighborhood of p′, to be any subset of the neighborhood of an existing vertex
y ∈ Vi. Specified as a rewrite rule r2 it is,

r2 : Y
ε−→ : p′ ∃y ∈ Vi, Y ⊆ {y}.η

6 A graph, Kn is complete if all n nodes are mutually connected by an edge.
7 Because extreme points are simplicial (neighborhood is a clique), and because every

chordal graph must have at least two extreme points [8,9], every chordal graph can
be so generated.

228 J. L. Pfaltz

ε

G’ G’.ε

a

e
g

h
d

b

c

f

2

15

1

3

10

18

4

17

16
11

2

15

1

3

10

18

4

17

11
16

Fig. 4. A member of G′.ε where G′ = G.ω in Fig. 2.

Fig. 4 shows one possible application of this expansion grammar ε to the
graph G′ of Fig. 2. Here, the rewrite rule r2 has been used 8 times, to create
a, b, . . . h. The vertex d is generated by r2 using the neighborhood {17}.η =
{15, 17, 18} = {d}.η′. The new vertex c was attached to {1, 15} ⊂ {1, 2, 3, 15} =
{1}.η; and f was later attached to {1, c} ⊂ {1}.η.

2.3 The Inverse Set, ω−1

The two procedures ω and ε are intertwined. The requirement in the second
rewrite rule r2 that {p′}.η = Y ⊆ {y}.η ensures that if ω is applied to G′.ε, p′

will at some iteration be subsumed by y. Thus, if G′ is irreducible, G′.ε.ω = G′

This characteristic is evident in Fig. 4 where b will be subsumed by 3, etc. It is also
true for the graph G′.ε of Fig. 5 as well. Consequently, ω is a right-inverse of ε over
the subspace of irreducible undirected graphs. The inverse of ω, that is G.ω.ω−1

is the collection of all undirected graphs {Gk} such that Gk.ω = G′ = G.ω. Each
invocation of the non-deterministic procedure ε is single-valued; but ε is not a
function. The execution of ε will yield a graph, Gk ∈ G.ω.ω−1.

d

c

a

h

e

g

b

f

2

15

1

3

10

18

4

17

11
16

Fig. 5. Another graph G′.ε in G′.ω−1.

A Category of “Undirected Graphs” 229

In the rewrite rule r2 the choice of y ∈ Vi and the choice of Y ⊆ {yi}.η
are completely arbitrary. Given different choices for y and Y yields Fig. 5 which
seems to be a far more interesting graph. Both Figs. 4 and 5 were generated by
a computer version of ε using a random number generator.

This is not the only category of undirected graphs, but it is a promising one
[17]. Unfortunately, undirected graphs, and mappings between such graphs, have
little of the regular structure seen in the different abstract algebras that gave
rise to the categorical approach of [1,10,18], or that of [2] which was applied
to general closure operators. Yet, the rudiments are there, as this short treatise
shows. In the early 70’s, Hartmut Ehrig urged us to view graph grammars and
graph manipulation through a categorical lens. He was ahead of his time.

References

1. Arbib, M., Manes, E.: Arrows, Structures, and Functors: The Categorical Imper-
ative. Academic Press, New York (1975)

2. Castellini, G.: Categorical Closure Operators. Birkhauser, Boston (2003)
3. Chvátal, V.: Antimatroids, betweenness, convexity. In: László, W.C., Vygen,

J. (eds.) Research Trends in Combinatorial Optimization, pp. 57–64. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-540-76796-1 3

4. Edelman, P.H.: Abstract convexity and meet-distributive lattices. In: Combina-
torics and Ordered Sets, Arcata, CA, pp. 127–150 (1986)

5. Edelman, P.H., Jamison, R.E.: The theory of convex geometries. Geom. Dedicata
19(3), 247–270 (1985)

6. Ehrig, H., Pfender, M., Schneider, H.J.: Graph grammars: an algebraic approach.
In: IEEE Conference on SWAT (1973)

7. Engle, K.: Sperner theory. In: Hazewinkle, M. (ed.) Encyclopedia of Mathematics.
Springer, Heidelberg (2001)

8. Farber, M., Jamison, R.E.: Convexity in graphs and hypergraphs. SIAM J. Algebra
Discrete Methods 7(3), 433–444 (1986)

9. Golumbic, M.C.: Algorithmic Graph Theory and Perfect Graphs. Academic Press,
New York (1980)

10. MacLane, S.: Categories for the Working Mathematician, 2nd edn. Springer,
New York (1998). https://doi.org/10.1007/978-1-4612-9839-7

11. Ore, O.: Mappings of closure relations. Ann. Math. 47(1), 56–72 (1946)
12. Pfaltz, J., Šlapal, J.: Transformations of discrete closure systems. Acta Math. Hung.

138(4), 386–405 (2013)
13. Pfaltz, J.L.: Neighborhood expansion grammars. In: Ehrig, H., Engels, G.,

Kreowski, H.-J., Rozenberg, G. (eds.) TAGT 1998. LNCS, vol. 1764, pp. 30–44.
Springer, Heidelberg (2000). https://doi.org/10.1007/978-3-540-46464-8 3

14. Pfaltz, J.L.: Finding the mule in the network. In: Alhajj, R., Werner, B. (eds.)
International Conference on Advances in Social Network Analysis and Mining,
ASONAM 2012, Istanbul, Turkey, pp. 667–672, August 2012

15. Pfaltz, J.L.: Mathematical continuity in dynamic social networks. Soc. Netw. Anal.
Min. (SNAM) 3(4), 863–872 (2013)

16. Pfaltz, J.L.: The irreducible spine(s) of undirected networks. In: Lin, X.,
Manolopoulos, Y., Srivastava, D., Huang, G. (eds.) WISE 2013. LNCS, vol.
8181, pp. 104–117. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-
642-41154-0 8

https://doi.org/10.1007/978-3-540-76796-1_3
https://doi.org/10.1007/978-1-4612-9839-7
https://doi.org/10.1007/978-3-540-46464-8_3
https://doi.org/10.1007/978-3-642-41154-0_8
https://doi.org/10.1007/978-3-642-41154-0_8

230 J. L. Pfaltz

17. Pfaltz, J.L.: Computational processes that appear to model human memory. In:
Figueiredo, D., Mart́ın-Vide, C., Pratas, D., Vega-Rodŕıguez, M.A. (eds.) AlCoB
2017. LNCS, vol. 10252, pp. 85–99. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-58163-7 6

18. Pierce, B.C.: Basic Category Theory for Computer Scientists. MIT Press,
Cambridge (1991)

19. Rozenberg, G. (ed.): The Handbook of Graph Grammars. World Scientific,
Singapore (1997)

https://doi.org/10.1007/978-3-319-58163-7_6
https://doi.org/10.1007/978-3-319-58163-7_6

Modular Termination of Graph Transformation

Detlef Plump(B)

University of York, York, UK
detlef.plump@york.ac.uk

Abstract. We establish a machine-checkable condition which ensures
that the union of two terminating hypergraph transformation systems is
terminating. The condition is based on so-called sequential critical pairs
which represent consecutive rule applications that are not independent.
In contrast to a corresponding modularity result for term rewriting, no
restrictions on the form of rules are required. Our result applies to both
systems with injective rules and systems with rules that merge nodes or
edges.

1 Introduction

In the area of graph transformation, the problem of proving that a system will
terminate (admit only a finite number of rule applications) on arbitrary host
graphs has received surprisingly little attention. This is in contrast to the central
role of termination research in the area of term rewriting [1,2].

Work on proving termination of general graph transformation systems by var-
ious methods includes [3–5,16]. There are also some papers on termination in the
specialised settings of term graph rewriting [14,15,17] and cycle rewriting [21,23].

In this paper, we are interested in the problem of finding conditions that guar-
antee that the combination of terminating (hyper-)graph transformation systems
yields again a terminating system. The corresponding problem for term rewriting
systems received considerable attention after Toyama showed that even the com-
bination of systems with disjoint function symbols need not preserve termination
[22]. Interestingly, the latter phenomenon vanishes into thin air for acyclic term
graph rewriting [14,15] because rewrite steps create shared subgraphs instead of
copying subterms.

We prove in this paper that the union of two general hypergraph transforma-
tion systems preserves termination if there are no critical overlaps between the
right-hand sides of one system and the left-hand sides of the other system. This
idea is inspired by a result of Dershowitz [7] which shows that the corresponding
property for term rewriting systems holds if one of the systems is left-linear and
the other system is right-linear. In the case of graph transformation, it turns out
that no restrictions on the form of rules are needed.

The rest of this paper is organized as follows. In Sect. 2, we review the basics
of hypergraph transformation. In particular, we recall the concept of sequential
independence which is crucial for our main result. Sequential critical pairs are

c© Springer International Publishing AG, part of Springer Nature 2018
R. Heckel and G. Taentzer (Eds.): Ehrig Festschrift, LNCS 10800, pp. 231–244, 2018.
https://doi.org/10.1007/978-3-319-75396-6_13

http://orcid.org/0000-0002-1148-822X

232 D. Plump

introduced in Sect. 3, in analogy to standard critical pairs for graph transfor-
mation. Our main result is proved in Sect. 4 where we also give examples to
demonstrate the application of the modularity criterion. We conclude in Sect. 5.

2 Hypergraph Transformation

In this section, we recall some definitions and results of the double-pushout
approach to graph transformation which can be found, for example, in [11]. For
generality, we use here the setting of hypergraphs.

2.1 Hypergraphs

Our hypergraphs are directed and labelled. We use a type system where the
label of a hyperedge can restrict the number of incident nodes and their labels.
A signature Σ = 〈ΣV, ΣE,Type〉 consists of a set ΣV of node labels, a set ΣE of
hyperedge labels and a function Type assigning to each l ∈ ΣE a set of strings
Type(l) ⊆ Σ∗

V. This kind of typing allows to “overload” hyperedge labels by
specifying different admissible attachment sequences. Typing regimes covered
by this approach include the case of a singleton set Type(l) for each label l (as
in [6]) and the case of “untyped” hypergraphs given by Type(l) = Σ∗

V for each
l (as in [10]). Unless stated otherwise, we denote by Σ an arbitrary but fixed
signature over which all hypergraphs are labelled.

A hypergraph over Σ is a system G = 〈VG,EG,markG, labG, attG〉 consisting
of two finite sets VG and EG of nodes (or vertices) and hyperedges, two labelling
functions markG : VG → ΣV and labG : EG → ΣE, and an attachment function
attG : EG → V∗

G such that mark∗
G(attG(e)) ∈ Type(labG(e)) for each hyperedge

e. (The extension f∗ : A∗ → B∗ of a function f : A → B maps the empty string
to itself and a1 . . . an to f(a1) . . . f(an).)

In pictures, nodes and hyperedges are drawn as circles and boxes, respec-
tively, with labels inside. Lines represent the attachment of hyperedges to nodes,
where numbers specify the left-to-right order in the attachment string. For exam-
ple, Fig. 1 shows a hypergraph with four nodes (all labelled with •) and three
hyperedges (labelled with B and S).

S
1

2

1

B
2 3

S
1

2

Fig. 1. A hypergraph

Modular Termination of Graph Transformation 233

A hypergraph G is a graph if each hyperedge e is an ordinary edge, that is,
if attG(e) has length two. Ordinary edges may be drawn as arrows with labels
written next to them.

Given hypergraphs G and H, a hypergraph morphism (or morphism for short)
g : G → H consists of two functions gV : VG → VH and gE : EG → EH that
preserve labels and attachment to nodes, that is, markH ◦ gV = markG, labH ◦
gE = labG and attH ◦ gE = g∗

V ◦ attG. A morphism incl : G → H is an inclusion
if inclV(v) = v and inclE(e) = e for all v ∈ VG and e ∈ EG. In this case G
is a subhypergraph of H which is denoted by G ⊆ H. Morphism g is injective
(surjective) if gV and gE are injective (surjective). If g is both injective and
surjective, then it is an isomorphism. In this case G and H are isomorphic,
which is denoted by G ∼= H.

The composition of two morphisms g : G → H and h : H → M is the mor-
phism h ◦ g : G → M consisting of the composed functions hV ◦ gV and hE ◦ gE.
The composition is also written as G → H → M if g and h are clear from
the context.

2.2 Rules and Derivations

A rule r : 〈L ← K → R〉 consists of two hypergraph morphisms with a common
domain, where K → L is an inclusion. The hypergraphs L and R are the left- and
right-hand side of r, and K is the interface. The rule is injective if the morphism
K → R is injective.

Let G and H be hypergraphs, r : 〈L ← K → R〉 a rule and g : L → G an
injective morphism. Then G directly derives H by r and g, denoted by G ⇒r,g H,
if there exist two pushouts as in Fig. 2. Given a set of rules R, we write G ⇒R H
to express that there exist r ∈ R and a morphism g such that G ⇒r,g H.

L K R

G D H

g

Fig. 2. A double-pushout

We refer to [20] for the definition and construction of hypergraph pushouts.
Intuitively, the left pushout corresponds to the construction of D from G by
removing the items in L − K, and the right pushout to the construction of H
from D by merging items according to K → R and adding the items in R that
are not in the image of K.

A double-pushout as in Fig. 2 is called a direct derivation from G to H and
may be denoted by G ⇒r,g H or just by G ⇒r H or G ⇒ H. A derivation from
G to H is a sequence of direct derivations G0 ⇒ . . . ⇒ Gn, n ≥ 0, such that

234 D. Plump

seq:

x

y

⇒
y

x

while: y

x

⇒
y

x

dec1:

y

x

⇒
y

x

dec2: y

z

x

⇒
y z

x

Fig. 3. Hypergraph transformation system for flow-graph reduction

G ∼= G0 and Gn
∼= H. We write G ⇒∗ H for such a derivation or G ⇒∗

R H if all
rules used in the derivation are from R.

Given a rule r : 〈L ← K → R〉, an injective morphism g : L → G satisfies
the dangling condition if no hyperedge in EG − gE(EL) is incident to a node in
gV(VL − VK). It can be shown that, given r and f , a direct derivation as in
Fig. 2 exists if and only if g satisfies the dangling condition [11].

Definition 1 (Hypergraph transformation system). A hypergraph trans-
formation system 〈Σ,R〉 consists of a signature Σ and a finite set R of rules
over Σ. The system is injective if all rules in R are injective. It is a graph
transformation system if for each label l in ΣE, all strings in Type(l) are of
length two.

Note that since graph transformation systems are special hypergraph trans-
formation systems, results for the latter usually apply to the former, too.

Example 1. Figure 3 shows hypergraph transformation rules for reducing
control-flow graphs [20]. The associated signature contains a single node label
• and two hyperedge labels which are graphically represented by hyperedges
formed as squares and rhombs. Instead of using numbers to represent the attach-
ment function, we use an arrow to point to the second attachment node of a
square and define the order among the links of a rhomb to be “top-left-right”.
The rules are shown in a shorthand notation where only the left- and right-hand
sides are depicted, the interface and the morphisms are implicitly given by the
node names x, y, z. �

2.3 Sequential Independence

Given injective rules r1 and r2, consecutive direct derivations G ⇒r1 H ⇒r2 M
do not interfere with each other if the intersection of the right-hand side of r1

Modular Termination of Graph Transformation 235

with the left-hand side of r2 in H consists of common interface items. In the
presence of non-injective rules, however, independence needs to be defined in
terms of the existence of certain morphisms. We give the general definition first
and then consider a simpler condition for the case of injective rules. For i = 1, 2,
let ri denote a rule 〈Li ← Ki → Ri〉.
Definition 2 (Sequential independence). Direct derivations G ⇒r1 H ⇒r2

M as in Fig. 4 are sequentially independent if there are morphisms R1 → D2 and
L2 → D1 such that the following holds.

Commutativity: R1 → D2 → H = R1 → H and L2 → D1 → H = L2 → H.
Injectivity: R1 → D2 → M is injective.

L1 K1 R1 L2 K2 R2

G D1 H D2 M

Fig. 4. Sequentially independent direct derivations

The injectivity requirement for R1 → D2 → M is needed in case r2 is non-
injective. See [11] for an example that the steps G ⇒r1 H ⇒r2 M may not be
interchangeable without this condition.

If r1 and r2 are injective, the direct derivations of Fig. 4 are independent if
and only if the intersection of R1 and L2 in H coincides with the intersection of
K1 and K2. Moreover, the injectivity condition of Definition 2 is automatically
satisfied.

Lemma 1 (Independence for injective rules). Let rules r1 and r2 in Fig. 4
be injective. Then the following are equivalent:

(1) G ⇒r1 H ⇒r2 M are sequentially independent.
(2) There are morphisms R1 → D2 and L2 → D1 such that R1 → D2 → H =

R1 → H and L2 → D1 → H = L2 → H.
(3) h(R1) ∩ g(L2) = h(b(K1)) ∩ g(K2) where h : R1 → H, g : L2 → H and

b : K1 → R1. (Note that K2 → L2 is an inclusion.)

Proof. The equivalence of (1) and (2) is an easy consequence of the fact that
with injective rules, all morphisms in Fig. 4 are injective. The equivalence of (2)
and (3) is shown in [9,19]. �

The following theorem was originally proved in [8], in the setting of graph
transformation with arbitrary, possibly non-injective matching morphisms. This
proof was adapted in [19] to the setting of hypergraph transformation with injec-
tive matching.

236 D. Plump

Theorem 1 ([11,19]). Given sequentially independent direct derivations G ⇒r1

H ⇒r2 M , there exist direct derivations of the form G ⇒r2 H ′ ⇒r1 M .

For instance, Fig. 5 shows applications of the rules seq and dec2 from Exam-
ple 1. The steps are independent because the occurrences of the right-hand side
of seq and the left-hand side dec2 share only nodes y and z, which are inter-
face nodes in both rules. Hence the steps can be interchanged, leading to the
same result.

⇒
seq

y

z

⇒
dec2

Fig. 5. Sequentially independent rule applications

3 Sequential Critical Pairs

Standard critical pairs represent conflicts between rule applications to the same
graph and are used to analyse graph transformation systems for local confluence
[20]. In the context of verifying termination, we adapt this concept to represent
conflicts between consecutive direct derivations.

Sequential critical pairs are minimal derivations of length two whose steps
are not independent. Due to the minimality, the set of critical pairs induced by
two hypergraph transformation rules is finite and can be constructed. We will
see that if this set is empty, then any pair of direct derivations with these rules
is sequentially independent. In the proof of the main result, this will enable us
to re-order the rule applications of infinite derivations.

Definition 3 (Sequential critical pair). Let ri : 〈Li ← Ki → Ri〉 be rules,
for i = 1, 2. A pair of direct derivations S ⇒r1 T ⇒r2 U as in Fig. 6 is a sequential
critical pair if the following holds.

Minimality: T = h1(R1) ∪ g2(L2).
Conflict: The steps are not sequentially independent.

L1 K1 R1 L2 K2 R2

S D1 T D2 U

h1 g2

Fig. 6. A sequential critical pair

Modular Termination of Graph Transformation 237

Sequential critical pairs S ⇒r1,g1 T ⇒r2,g2 U and S′ ⇒r1,g′
1

T ′ ⇒r2,g′
2

U ′

are isomorphic if there are isomorphisms i1 : S → S′ and i2 : T → T ′ such that
g′
1 = i1 ◦ g1 and g′

2 = i2 ◦ g2. (This implies that U and U ′ are isomorphic, too.)
From now on we equate isomorphic critical pairs. With the minimality condition
of Definition 3 it follows that every hypergraph transformation system has only
finitely many critical pairs.

Example 2. Figure 7 shows two sequential critical pairs of the rules of Fig. 3.

x y

w

z

⇒
while

w

y

z

⇒
seq

w

z

x y

w

z

⇒
dec2

x z

w

⇒
while

w

z

Fig. 7. Two sequential critical pairs of the system of Fig. 3

Lemma 2. For every pair of direct derivations G ⇒r1 H ⇒r2 M that are not
sequentially independent, there exists a critical pair of the form S ⇒r1 T ⇒r2 U .

Proof Sketch. The steps G ⇒r1 H ⇒r2 M can be restricted to a critical pair by
removing all nodes and edges that are not used by r1 or r2. That is, S is the
subhypergraph of G consisting of all items in the occurrence of the left-hand side
of r1 and all items that are preserved by G ⇒r1 H and are in the occurrence of
the left-hand side of r2. See [19] for the precise construction. It is not difficult
to check that the restricted steps are minimal and in conflict. �

4 Modular Termination

A hypergraph transformation system 〈Σ,R〉 is terminating if there exists no
infinite derivation G0 ⇒R G1 ⇒R G2 ⇒R . . . The problem to decide whether a
system 〈Σ,R〉 is terminating is undecidable in general, even for graph transfor-
mation systems with injective rules [18].

Theorem 2 (Modular termination). Let 〈Σ,R〉 and 〈Σ,S〉 be terminating
hypergraph transformation systems. If there are no sequential critical pairs of
shape S ⇒R T ⇒S U , then the combined system 〈Σ,R ∪ S〉 is terminating.

238 D. Plump

Note the symmetry in the statement of Theorem 2: it is sufficient that there
are no critical pairs of shape S ⇒R T ⇒S U or no critical pairs of shape
S ⇒S T ⇒R U .
Proof of Theorem 2. Let 〈Σ, R〉 and 〈Σ, S〉 be terminating hypergraph trans-
formation systems such that there are no critical pairs of shape S ⇒R T ⇒S U .
We proceed by contradiction. Suppose there exists an infinite derivation

G1 ⇒
R∪S

G2 ⇒
R∪S

G3 ⇒
R∪S

. . .

Because ⇒R and ⇒S are terminating, the derivation must contain infinitely
many steps of both kinds. By Lemma 2, any two steps Gk ⇒R Gk+1 ⇒S Gk+2

in the sequence are sequentially independent because there are no critical pairs
of shape S ⇒R T ⇒S U . By Theorem 1, the steps can be swapped such that
Gk ⇒S G′

k+1 ⇒R Gk+2. Thus all ⇒S -steps can be pushed back to the beginning
of the derivation, resulting in an infinite sequence of ⇒S -steps. This contradicts
the fact that 〈Σ, S〉 is terminating. �

Figure 8 illustrates the infinite swapping process used to prove Theorem 2.
Any infinite derivation with R∪S must contain infinitely many S-steps and hence
pushing them to the beginning ad infinitum will build up an infinite derivation
of S-steps.

G0 ⇒R G1 ⇒R G2 ⇒S G3 ⇒R G4 ⇒S G5 ⇒ . . .

↓
G0 ⇒R G1 ⇒S G2 ⇒R G3 ⇒R G4 ⇒S G5 ⇒ . . .

↓
G0 ⇒S G1 ⇒R G2 ⇒R G3 ⇒R G4 ⇒S G5 ⇒ . . .

↓
G0 ⇒S G1 ⇒R G2 ⇒R G3 ⇒S G4 ⇒R G5 ⇒ . . .

↓
G0 ⇒S G1 ⇒R G2 ⇒S G3 ⇒R G4 ⇒R G5 ⇒ . . .

↓
G0 ⇒S G1 ⇒S G2 ⇒R G3 ⇒R G4 ⇒R G5 ⇒ . . .

↓
...

Fig. 8. Infinite swapping process to create an infinite S-derivation

We now present a sequence of examples which demonstrate the application
of Theorem 2.

Modular Termination of Graph Transformation 239

Example 3. Consider the following graph transformation system from [16]:

r1 :
x

a

y

b ⇒
x

a

y

c

r2 :
x

c

y

d ⇒
x

d
y

b

It is not obvious that this system is terminating because r1 reduces the number
of b-labels in a graph while r2 increases this number. Similarly, r2 reduces the
number of c-labels while r1 increases this number.

We can prove that this system is terminating by showing termination of
r1 and r2 separately and then applying Theorem 2. Each rule individually is
terminating because r1 reduces the number of b’s and r2 reduces the number
of c’s. Moreover, there are no critical pairs of shape S ⇒r2 T ⇒r1 U . This
is because the middle node in the right-hand side of r2 is created by the rule
and hence cannot have an incoming a-edge. Thus, by Theorem 2, the combined
system is terminating.

Note that the system does have a critical pair of shape S ⇒r1 T ⇒r2 U :
a b d ⇒

r1

a c d

⇒
r2

a d b

Moreover, if we replace rule r2 with r′
2 by swapping labels d and b in the right-

hand side, then there is also a critical pair of shape S ⇒r′
2

T ⇒r1 U . Indeed,
this change makes the system non-terminating as the new critical pair is cyclic:

a c d ⇒
r2

a b d

⇒
r1

a c d

�

It is worth pointing out the mechanical nature of the termination proof in

Example 3. Combining a simple label counting algorithm with a generator for
sequential critical pairs would automatically determine that both rules are ter-
minating and that there are no critical pairs of shape S ⇒r2 T ⇒r1 U . Based
on Theorem 2, this method would then report that the combined system is
terminating.

Example 4. The graph transformation system in Fig. 9 is shown to be terminat-
ing in [5]. The technique used is to first simplify the system by removing rules r3
and r4, obtaining a system that is terminating if and only if the original system is
terminating. The argument is as follows: rule r3 decreases the number of B-labels
while no other rule increases this number. Hence any infinite derivation contains
only finitely many applications of r3 and thus 〈Σ, {r1, . . . , r4}〉 is terminating if

240 D. Plump

r1 :
x

0

y

L ⇒
x

L 1

y

1

r2 :
x

R

y

1 ⇒
x

0

y

R

r3 :
x

B

y

L ⇒
x y

R

r4 :
x

R

y

B ⇒
x

L

y

B

Fig. 9. A terminating graph transformation system [5]

and only if 〈Σ, {r1, r2, r4}〉 is terminating. After removing r3, one can observe
that rule r4 reduces the number of R-labels while neither r1 nor r2 increase this
number. Hence r4 can be removed, too.

For the simplified system 〈Σ, {r1, r2}〉, a so-called weighted type graph over
the tropical semiring is constructed [5] which provides a decreasing measure for
both rules. We can give a simpler termination argument for this system by using
the approach of Example 3: r1 is terminating as it reduces the number of 0’s
and r2 is terminating as it reduces the number of 1’s. Also, it is easy to check
that there are no critical pairs of shape S ⇒r1 T ⇒r2 U or S ⇒r2 T ⇒r1 U .
Hence Theorem 2 guarantees that 〈Σ, {r1, r2}〉 is terminating. �

Similar to Example 3, our termination proof could be found automatically by
a tool that counts labels, eliminates rules that decrease label counts not increased
by the other rules, and finally generates sequential critical pairs.

Example 5. The hypergraph transformation system in Fig. 10 checks, when
applied as long as possible, whether a host graph is 2-colourable (bipartite).
If this is the case, the rules colour the graph accordingly. We assume that the
initial hypergraph is a loop-free connected graph in which each node has exactly
one “colour flag” attached to it (a hyperedge e with |attG(e)| = 1). Moreover,
exactly one flag should be labelled r (or b) and all other flags should be blank.
To save space, we deviate from our usual drawing convention in that all ordinary
edges shown in the rules are interface edges.

If the initial graph is 2-colourable, the system of Fig. 10 will terminate with
a coloured version of the graph in which each node is coloured r or b. (A graph
is 2-colourable if its underlying undirected graph has no cycles of odd length.)
If the graph is not 2-colourable, this will eventually be detected by the Invalid
rules. The Propagate rules then make sure that all colour flags are black in the
final graph.

As in the previous examples, we can prove termination of the system by
label counting and Theorem 2. Subsystem Colour is terminating because all

Modular Termination of Graph Transformation 241

Colour:
x

r

y
⇒

x

r

y

b

x

r

y
⇒

x

r

y

b

x

b

y
⇒

x

b

y

r

x

b

y
⇒

x

b

y

r

Invalid:
x

r

y

r

⇒
x y x

b

y

b

⇒
x y

Propagate:
x y

r

⇒
x y x y

b

⇒
x y

x y
⇒

x y

Fig. 10. Hypergraph transformation system for generating a 2-colouring

rules reduce the number of blank flags. On the other hand, Invalid ∪ Propagate
is terminating as all rules decrease the number of non-black flags. It is easy to
see that there are no critical pairs of shape S ⇒Invalid∪Propagate T ⇒Colour U
(since all ordinary edges are interface edges) and thus the combined system is
terminating. �

We remark that termination of the system of Fig. 10 can alternatively be
proved by removing the Colour rules and observing that the Invalid and Propa-
gate rules reduce the number of non-black flags. This works because the Colour
rules reduce the number of blank flags while the Invalid and Propagate rules do
not increase this number. However, the point of Example 5 is to demonstrate
that a non-trivial system can be decomposed into subsystems such that Theorem
2 is applicable, and where the components are proved terminating with different
measures.

Example 6. Our final example is about jungle evaluation, a framework in which
hypergraphs representing functional expressions are evaluated by transformation
rules [12]. Figure 11 shows the non-injective evaluation rule corresponding to the
term rewriting rule y + 0 → y, where the notation x=y means that interface
nodes x and y are merged by the right-hand morphism. This rule is clearly
terminating as it reduces the size of any hypergraph it is applied to. Rule copy
in Fig. 12, on the other hand, enlarges any hypergraph it is applied to. The rule
copies an occurrence of the constant 0 that is shared by two s-functions. The rule

242 D. Plump

eval:
y

0

z

+

x

←
y

0

z

x

→
0

z

x=y

Fig. 11. Jungle evaluation rule for y + 0 → y

is terminating because each application reduces the measure

#G =
∑

v∈VG

indegree(v)2.

For, consider a step G ⇒copy H and let n be the indegree of node z in G.
Then #H = (#G−n2)+ (n− 1)2 +1 < #G where the inequality holds because
(n − 1)2 + 1 < n2 for n ≥ 2, and n = indegree(z) ≥ 2.

copy:

x y

s s

0

z
←

x y

s

0

z
→

x y

s s

z

0 0

Fig. 12. Rule for copying a shared constant 0

It is not difficult to check that there are no sequential critical pairs of shape
S ⇒eval T ⇒copy U , and thus the combined system {eval, copy} is terminating
by Theorem 2. Note that it is not obvious how to combine graph size and the #
value into a measure that decreases under rule applications of the combined rule
set. This is because copy always increases graph size and eval increases the # value
when applied to certain hypergraphs. To see the latter, consider a step G ⇒eval H
where indegree(x) = 2, indegree(y) = 3 and indegree(z) = 1. Then #H = #G −
(4 + 9 + 1) + (42 − 1) = #G + 1. �

5 Conclusion and Future Work

Termination is an undecidable property of graph transformation systems. We
have established a criterion based on the absence of certain sequential critical
pairs which guarantees that the union of two terminating systems is terminating.
This allows to split systems into component systems whose termination is then
verified separately, possibly using different techniques, and to conclude that the
combination of the components is terminating if the critical pair-criterion is
satisfied. The criterion is syntactic and can be machine-checked by generating
all critical pairs between rules from different component systems. Moreover, the

Modular Termination of Graph Transformation 243

method is a black-box approach in that the termination proofs of the component
systems need not be inspected.

An obvious topic for future work is to implement a tool that given a hyper-
graph transformation system, generates all sequential critical pairs and calculates
all possible partitions of the system into smaller components such that the con-
dition of Theorem 2 is satisfied. For each partition, the components can then be
proved to be terminating with whatever method seems suitable resp. has been
implemented. The tool could be used together with a termination prover such as
Grez, described in [5], which allows to choose different proof methods, including
weighted type graphs, label counting and node counting.

Future research may also attempt to generalize Theorem 2 in various ways. It
may be possible to allow critical pairs S ⇒R T ⇒S U and formulate conditions
under which arbitrary steps G ⇒R H ⇒S M can still be swapped. A naive try is
to require that there exits a graph T ′ such that S ⇒S T ′ ⇒R U , which however
is insufficient as the dangling condition may prevent embedding the steps into
context. The situation has some similarity with the analysis of conventional
critical pairs to verify confluence: the mere joinability of all critical pairs does
not guarantee local confluence of a set of rules [20].

Finally, it would be desirable to extend the approach of this paper such that
rules with application conditions (of some form) can be handled. Even more
challenging is an extension to attributed graph transformation on which graph
programming languages such as GP 2 are based. This is because finite sets of
attributed rules typically induce infinite sets of sequential critical pairs in the
sense of this paper (see [13] for the corresponding problem with conventional
critical pairs).

References

1. Baader, F., Nipkow, T.: Term Rewriting and All That. Cambridge University Press,
Cambridge (1998)

2. Bezem, M., Klop, J.W., de Vrijer, R. (eds.): Term Rewriting Systems. Cambridge
University Press, Cambridge (2003)

3. Bruggink, H.J.S.: Towards a systematic method for proving termination of graph
transformation systems. Electron. Notes Theor. Comput. Sci. 213(1), 23–38 (2008).
https://doi.org/10.1016/j.entcs.2008.04.072

4. Bruggink, H.J.S., König, B., Nolte, D., Zantema, H.: Proving termination of graph
transformation systems using weighted type graphs over semirings. In: Parisi-
Presicce, F., Westfechtel, B. (eds.) ICGT 2015. LNCS, vol. 9151, pp. 52–68.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21145-9 4

5. Bruggink, H.J.S., König, B., Zantema, H.: Termination analysis for graph trans-
formation systems. In: Diaz, J., Lanese, I., Sangiorgi, D. (eds.) TCS 2014. LNCS,
vol. 8705, pp. 179–194. Springer, Heidelberg (2014). https://doi.org/10.1007/978-
3-662-44602-7 15

6. Courcelle, B.: Graph rewriting: an algebraic and logic approach. In: van Leeuwen, J.
(ed.) Handbook of Theoretical Computer Science, vol. B, Chap. 5. Elsevier (1990)

7. Dershowitz, N.: Termination of linear rewriting systems (preliminary version). In:
Even, S., Kariv, O. (eds.) ICALP 1981. LNCS, vol. 115, pp. 448–458. Springer,
Heidelberg (1981). https://doi.org/10.1007/3-540-10843-2 36

https://doi.org/10.1016/j.entcs.2008.04.072
https://doi.org/10.1007/978-3-319-21145-9_4
https://doi.org/10.1007/978-3-662-44602-7_15
https://doi.org/10.1007/978-3-662-44602-7_15
https://doi.org/10.1007/3-540-10843-2_36

244 D. Plump

8. Ehrig, H., Kreowski, H.-J.: Parallelism of manipulations in multidimensional infor-
mation structures. In: Mazurkiewicz, A. (ed.) MFCS 1976. LNCS, vol. 45, pp.
284–293. Springer, Heidelberg (1976). https://doi.org/10.1007/3-540-07854-1 188

9. Ehrig, H., Rosen, B.K.: Commutativity of independent transformations on com-
plex objects. Research Report RC 6251. IBM Thomas J. Watson Research Center,
Yorktown Heights (1976)

10. Habel, A.: Hyperedge Replacement: Grammars and Languages. LNCS, vol. 643.
Springer, Heidelberg (1992). https://doi.org/10.1007/BFb0013875

11. Habel, A., Müller, J., Plump, D.: Double-pushout graph transformation revis-
ited. Math. Struct. Comput. Sci. 11(5), 637–688 (2001). https://doi.org/10.1017/
S0960129501003425

12. Hoffmann, B., Plump, D.: Implementing term rewriting by jungle evaluation.
RAIRO Theor. Inform. Appl. 25(5), 445–472 (1991). https://doi.org/10.1051/ita/
1991250504451

13. Hristakiev, I., Plump, D.: Towards critical pair analysis for the graph programming
language GP 2. In: James, P., Roggenbach, M. (eds.) WADT 2016. LNCS, vol.
10644, pp. 153–169. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
72044-9 11

14. Krishna Rao, M.R.K.: Modular aspects of term graph rewriting. Theor. Comput.
Sci. 208(1–2), 59–86 (1998). https://doi.org/10.1016/S0304-3975(98)00079-6

15. Plump, D.: Implementing term rewriting by graph reduction: termination of com-
bined systems. In: Kaplan, S., Okada, M. (eds.) CTRS 1990. LNCS, vol. 516, pp.
307–317. Springer, Heidelberg (1991). https://doi.org/10.1007/3-540-54317-1 100

16. Plump, D.: On termination of graph rewriting. In: Nagl, M. (ed.) WG 1995. LNCS,
vol. 1017, pp. 88–100. Springer, Heidelberg (1995). https://doi.org/10.1007/3-540-
60618-1 68

17. Plump, D.: Simplification orders for term graph rewriting. In: Pŕıvara, I.,
Ružička, P. (eds.) MFCS 1997. LNCS, vol. 1295, pp. 458–467. Springer,
Heidelberg (1997). https://doi.org/10.1007/BFb0029989

18. Plump, D.: Termination of graph rewriting is undecidable. Fundam. Inform. 33(2),
201–209 (1998). https://doi.org/10.3233/FI-1998-33204

19. Plump, D.: Computing by Graph Rewriting. Habilitation thesis, Universität
Bremen, Fachbereich Mathematik und Informatik (1999)

20. Plump, D.: Confluence of graph transformation revisited. In: Middeldorp, A., van
Oostrom, V., van Raamsdonk, F., de Vrijer, R. (eds.) Processes, Terms and Cycles:
Steps on the Road to Infinity. LNCS, vol. 3838, pp. 280–308. Springer, Heidelberg
(2005). https://doi.org/10.1007/11601548 16

21. Sabel, D., Zantema, H.: Termination of cycle rewriting by transformation and
matrix interpretation. Log. Methods Comput. Sci. 13(1), 38 (2017). https://doi.
org/10.23638/LMCS-13(1:11)2017

22. Toyama, Y.: Counterexamples to termination for the direct sum of term rewrit-
ing systems. Inf. Process. Lett. 25, 141–143 (1987). https://doi.org/10.1016/0020-
0190(87)90122-0

23. Zantema, H., König, B., Bruggink, H.J.S.: Termination of cycle rewriting. In:
Dowek, G. (ed.) RTA-TLCA 2014. LNCS, vol. 8560, pp. 476–490. Springer, Cham
(2014). https://doi.org/10.1007/978-3-319-08918-8 33

https://doi.org/10.1007/3-540-07854-1_188
https://doi.org/10.1007/BFb0013875
https://doi.org/10.1017/S0960129501003425
https://doi.org/10.1017/S0960129501003425
https://doi.org/10.1051/ita/1991250504451
https://doi.org/10.1051/ita/1991250504451
https://doi.org/10.1007/978-3-319-72044-9_11
https://doi.org/10.1007/978-3-319-72044-9_11
https://doi.org/10.1016/S0304-3975(98)00079-6
https://doi.org/10.1007/3-540-54317-1_100
https://doi.org/10.1007/3-540-60618-1_68
https://doi.org/10.1007/3-540-60618-1_68
https://doi.org/10.1007/BFb0029989
https://doi.org/10.3233/FI-1998-33204
https://doi.org/10.1007/11601548_16
https://doi.org/10.23638/LMCS-13(1:11)2017
https://doi.org/10.23638/LMCS-13(1:11)2017
https://doi.org/10.1016/0020-0190(87)90122-0
https://doi.org/10.1016/0020-0190(87)90122-0
https://doi.org/10.1007/978-3-319-08918-8_33

Graph Attribution Through Sub-Graphs

Harmen Kastenberg and Arend Rensink(B)

Department of Computer Science, University of Twente, Enschede, The Netherlands
arend.rensink@utwente.nl

Abstract. We offer an alternative to the standard way of formalis-
ing attributed graphs. We propose to represent them as graphs with
a marked sub-graph that represents the data domain, rather than as
tuples of graph and algebra. This is a general construction which can
be shown to preserve adhesiveness of categories; it has the advantage of
uniformity and gives more flexibility in defining data abstractions. We
show equivalence of our formalisation with the standard one, under a
suitable encoding of algebras as graphs.

1 Introduction

Graph transformation has many strengths and pleasant characteristics, but the
treatment of data values, such as integers, booleans and strings, is not among
them. In fact, the core idea of graph-based modelling is that concrete node and
edge identities are irrelevant, and so graphs can be regarded up to isomorphism;
this, however, is simply no longer true if the nodes stand for data values.

Nevertheless, the large majority of systems for which graph-based modelling
is appropriate do include primitive data, in the form of attributes. There is
therefore no question but that graph transformation has to cope with data in
order to be practically useful in modelling real-world applications. And so, a
model for attributed graphs has been worked out by Ehrig et al. [3], which we
will refer to as the standard model.

The standard model explicitly combines the world of graphs and that of
algebras; the manipulation of the data is deferred to the second, whereas the
data values appear as nodes in the graphs, to which it is possible to define
edges from ordinary nodes. Such edges then stand for attributes. Although this
is theoretically satisfactory, in that the model allows us to use attributes, and
is, moreover, a “nice” category for graph transformation (meaning that it is
adhesive HLR — more about this later), we feel that the standard model leaves
some things to be desired.

– Due to the presence of both graphs and algebras in the standard model, some
things are solved twice. In particular, in transformation rules, the algebra
component uses variables, terms and (in)equations, whereas the graph com-
ponent uses nodes, edges and (non)injectivity constraints, for essentially the
same functionality. This means that users have two different formalisms to

c© Springer International Publishing AG, part of Springer Nature 2018
R. Heckel and G. Taentzer (Eds.): Ehrig Festschrift, LNCS 10800, pp. 245–265, 2018.
https://doi.org/10.1007/978-3-319-75396-6_14

http://orcid.org/0000-0002-1714-6319

246 H. Kastenberg and A. Rensink

cope with, and the visual presentation of rules needs to combine graphical
and textual parts. Moreover, an implementation also needs to contain distinct
algorithms for matching the graph and algebra parts.

– We are studying abstraction in graph transformation, in particular also data
abstraction. A very limited form of abstraction is possible using algebras,
by moving from the standard algebra of a given signature (for instance, the
integers with successor, addition and multiplication) by a surjective homo-
morphism to another algebra (for instance, the integers modulo an upper
bound). However, many interesting abstractions cannot be formulated as alge-
bra homomorphisms. For instance, the classical abstraction of the integers into
the three-valued set of “strict negative”, “zero” and “strict positive” either
does not give rise to an algebra (the operations are not deterministic); or, if
we add the joined elements “negative”, “positive” and “all”, then there is no
homomorphism from the standard algebra to this one.

The first of these issues has prompted us to consider a version of attributed
graphs in which the algebras are entirely encoded as sub-graphs. In particular,
the operations are also coded up, by adding corresponding nodes and edges. A
preliminary version of this idea was presented in [7]. Since (at need) these sub-
graphs are easily distinguishable from the surrounding “real” graphs by typing,
in most circumstances we can proceed as if we were dealing with standard graphs.

A side benefit is that this sub-graph arrangement can be understood as a
general categorical construction: namely, it gives rise to a category of reflected
monos, in which the objects are monos (corresponding to embedded graphs) and
the arrows are pullbacks. The proof of adhesiveness of the resulting category can
therefore be established on a more general level than for the standard model.

It turns out that this also provides a solution to the second issue. By extend-
ing the set of “algebra graphs” allowed as sub-graphs with graphs in which the
algebraic operations are not deterministic (and so are no longer truly operations),
we can easily cope with data abstractions such as the one mentioned above. Our
proof of adhesiveness carries over to the extended category without any changes.
Now the embedding theorem implies that the abstract graphs over-approximate
the behaviour of the concrete graphs. We also extend the embedding theorem
to rules with negative application conditions, provided that these do not test
(negatively) for the data part.
The paper is structured as follows: in Sect. 2 we define our attributed graph
category and establish equivalence with the standard model. In Sect. 3 we give
an independent proof that the construction gives rise to an adhesive category. In
Sect. 4 we discuss data abstraction, and we show that the embedding theorem
still holds in the presence of NACs which do not test for data. In Sect. 5 we
briefly discuss the implementation of these concepts in the graph transformation
tool groove. Section 6 concludes the paper.

Almost all of the proofs are silently omitted from this version of the paper.
For the full technical report, including all proofs, see [8].

Graph Attribution Through Sub-Graphs 247

2 The Model

In this section, we show how the structure of any algebra can be encoded as a
graph. We then combine these algebra graphs with the graphs that need attri-
bution, giving rise to larger graphs of which the algebra graphs are sub-graphs;
attributes then take the form of edges from the surrounding graph into the alge-
bra sub-graph.

Some general notational conventions: if s ∈ A∗ is a sequence, say s = s1 · · · sn,
then |s| denotes the length (n), [s] denotes the set of elements in s ({s1, . . . , sn}),
and for all 1 ≤ i ≤ n, s|i denotes the ith element (si). The empty sequence is
denoted ε.

2.1 Algebra Graphs

Let us first recall the standard definitions of signatures and algebras. We assume
a global set Name of names, which are symbols that are of themselves uninter-
preted; the interpretation is given by their use.

Definition 1 (signature). A signature is a tuple Σ = 〈S,O, σ, τ〉 where S ⊆
Name is a set of sorts, O ⊆ Name is a set of operators, disjoint from S,
σ : O → S∗ is the source typing of the operators, and τ : O → S is the target
typing of the operators.

We call a sort s of a given signature spurious if there is no operator that uses
it, i.e., s /∈ [σ(o)] for all o ∈ O. In this paper we assume that signatures have no
spurious sorts.

Given a signature, the arity of an operator o ∈ O is given by α(o) = |σ(o)|.
We call a signature unary if α(o) = 1 for all o ∈ O.

Example 2. As a running example we use the algebra of booleans and integers
with a few operations. This is given by the signature Prim with S = {Int,Bool}
and O, σ and τ given by the following table. (lt stands for lesser than.)

O zero succ pred add lt pos true false not
σ ε Int Int Int Int Int Int Int ε ε Bool
τ Int Int Int Int Bool Bool Bool Bool Bool

Definition 3 (algebra). An algebra over a signature Σ is a tuple A = 〈D,F 〉
where

– D = (Ds)s∈S is an S-indexed family of disjoint data sets;
– F = (fo)o∈O is an O-indexed family of functions typed by the signature; i.e.,

for all o ∈ O, if σ(o) = s1 · · · sn then fo : Ds1 × · · · × Dsn → Dτ(o).

Given two algebras Ai = 〈Di, Fi〉 over Σ (i = 1, 2), an algebra morphism is a
family of functions h = (hs : Ds

1 → Ds
2)s∈S such that for all o ∈ O with σ(o) =

s1 · · · sn and for all dj ∈ D
sj

1 (j = 1, . . . , n):

hs(fo
1 (d1, . . . , dn)) = fo

2 (hs1(d1), . . . , hsn(dn)) .

248 H. Kastenberg and A. Rensink

We commonly use DA and FA to denote the data sets and functions of an algebra
A; we omit the subscript A if it is clear from the context. The algebras over a
signature Σ together with the algebra morphisms form a category, which we call
Alg(Σ).

Example 4. For the signature of Example 2, one may consider the following
algebras:

– The initial or term algebra ATerm, where all terms built over Prim denote
distinct elements. The data sets of this algebra consist of the (syntax trees of
the) terms themselves.

– The natural or standard algebra AStd, consisting of the “real” integers and
booleans.

– The final or point algebra APoint, where the data sets are all singletons, i.e.,
all values are collapsed to a single one.

There are unique algebra morphisms from ATerm to AStd and from AStd to APoint;
for instance, if h : ATerm → AStd then hInt(succ(zero())) = 1 and hBool(true()) =
hBool(not(false())) = true.

The encoding of algebras as graphs is essentially straightforward:

– The data values (i.e., the elements of the carrier sets) are represented by nodes
– The functions are interpreted as sets of pairs of elements from the function

domain, respectively codomain; these pairs are then represented by edges.

The only complication is that, for operators with arity > 1, the domain of
the corresponding function is a cartesian product; in order to interpret such a
function as a set of edges we need to introduce nodes for the elements of the
domain, i.e., nodes that stand for tuples of data values. For unary signatures, this
complication does not arise, hence we concentrate on these first; we then show
a way to transform algebras over arbitrary signatures into equivalent algebras
over unary signatures.

Definition 5 (graph). A graph is a tuple G = 〈N,E, src, tgt , lab〉 where N is
a set of nodes, E is a set of edges, src : E→N is a source function, tgt : E→N
is a target function, and lab : E → Name is a labelling.

Given two graphs Gi = 〈Ni, Ei, srci, tgt i, labi〉 for i = 1, 2, a graph morphism
from G1 to G2 is a pair h = (hN : N1 → N2, h

E : E1 → E2) such that, for all
e ∈ E1,

src2(hE(e)) = hN (src1(e))
tgt2(h

E(e)) = hN (tgt1(e))
lab2(hE(e)) = lab1(e).

We commonly use NG, EG etc. to denote the components of a graph G; we omit
the subscript G if it is clear from the context. Graphs and graph morphisms form
a category, which we call Graph (identity arrows are pairs of identity functions

Graph Attribution Through Sub-Graphs 249

over the node and edge sets, and arrow composition is component-wise compo-
sition of the node and edge functions). We call a graph G discrete if EG = ∅,
i.e., the graph consists of nodes only. The full sub-category of Graph consisting
of discrete graphs will be denoted dGraph. Note that a unary signature Σ can
be seen as a graph where the nodes are sorts and the edges are operators. For
edge labels we can use the operators themselves. This gives rise to the signature
graph GΣ = 〈S,O, σ, τ, idO〉.
Definition 6 (algebra graph). Let Σ be a unary signature. An algebra graph
over Σ is a graph G with a morphism t to GΣ such that for all n ∈ NG and
o ∈ O, if tN (n) = σ(o) then there is an edge e ∈ EG such that src(e) = n and
tE(e) = o. G is called deterministic if this edge e is always unique.

For a given unary signature Σ, we use AlgGraph+(Σ) to denote the full sub-
category of Graph consisting of all algebra graphs over Σ, and AlgGraph(Σ)
for the full (further) sub-category of deterministic algebra graphs.

(The upshot of the above definition is that t acts as a typing morphism
from G to GΣ ; the additional conditions on the existence and, in the case of
determinism, uniqueness of edges can be understood as multiplicity constraints
in the type graph GΣ : all edges have outgoing multiplicity 1..∗ or, in the case of
determinism, 1.)

Example 7. Figure 1 shows an algebra graph for a variation on Prim, viz., the
unary signature Σ with SΣ = SPrim and OΣ = {succ, odd, not}. Here, odd tests
if a number is odd; it has σ(odd) = Int and τ(odd) = Bool.

Fig. 1. Algebra graph with typing into the signature graph. Italic node labels stand
for algebra values.

The following proposition is important in that it implies that it is enough
to know that a graph is in AlgGraph+(Σ) (for a given unary signature Σ) in
order to reconstruct the actual typing morphism. This relies on our assumption
that Σ has no spurious sorts.

Proposition 8. For any Σ and G ∈ AlgGraph+(Σ), there exists exactly one
(typing) morphism t : G → GΣ.

250 H. Kastenberg and A. Rensink

The following theorem essentially states that our encoding of algebras as graphs
works.

Theorem 9. For any unary Σ, Alg(Σ) and AlgGraph(Σ) are equivalent.

This is proved by two functors, one of which turns data values into nodes and
codes up the operations as edges, and the other of which undoes this by recon-
structing the operations from the edges. The full proof can be found in [8].

For non-unary signatures, the situation is more complicated: first we have to
flatten the signatures and algebras, but we also have to impose some additional
constraints on the flattened algebras in order to get an equivalent category.

Definition 10 (product sorts).

1. A signature with products is a pair Σ|π where Σ = 〈S,O〉 is a unary signa-
ture and π : S ⇀ O∗ is a partial function that assigns to some of the sorts
(called the product sorts) a sequence of distinct projection operators, such
that src(o) = s for all o ∈ [π(s)]. For product sorts p ∈ dom(π) we use
w(p) = |π(p)| to denote the width of p, and πp,i (1 ≤ i ≤ w(p)) to denote the
individual elements of π(p) (hence π(p) = πp,1 · · · πp,w(p)).

2. An algebra over Σ|π is an algebra over Σ such that, in addition, for all sorts
p ∈ dom(π) and all combinations of data values (di ∈ Dtgt(πp,i))1≤i≤w(p)

from the target sorts of the projection operators, there is a unique d ∈ Dp

with fπp,i(d) = di for all 1 ≤ i ≤ w(p).
3. An algebra graph G over Σ|π is an algebra graph over Σ, with typing t, such

that, in addition, for all product sorts p ∈ dom(π) and all combinations of
nodes (ni ∈ tN,−1(tgt(πp,i)))1≤i≤w(p) typed by the target sorts of the projection
operators, there is an n ∈ N and a family of edges (ei ∈ E)1≤i≤w(p) such that
for all 1 ≤ i ≤ w(p), tE(e) = πp,i, src(e) = n and tgt(e) = ni. G is called
deterministic if, in addition to the conditions of Definition 6, this n is unique.

The underlying intuition is as follows: if p is a product sort with projection
operators π(p) = o1 · · · on, and respective target sorts s1 · · · sn, then Clause 10.2
above guarantees that Dp is essentially the cartesian product Ds1 × · · · Dsn and
the oi project the values of Dp to their ith components; and analogously for
algebra graphs.

If Σ|π is a signature with products, we use Alg(Σ|π) to denote the category
of algebras over Σ|π and AlgGraph+(Σ|π) [resp. AlgGraph(Σ|π)] to denote
the category of [deterministic] algebra graphs over Σ|π. The following extends
Theorem 9 to signatures with products.

Theorem 11. For any Σ|π, Alg(Σ|π) and AlgGraph(Σ|π) are equivalent.

The following result states that we can indeed flatten arbitrary signatures
into signatures with products, and obtain equivalent categories of algebras.

Theorem 12. For any Σ, there is a signature with products flat(Σ) such that
Alg(Σ) and Alg(flat(Σ)) are equivalent.

Graph Attribution Through Sub-Graphs 251

To construct flat(Σ), we need to add product sorts and projection operators.
For this purpose, assume disjoint subsets of product sort names and projection
operator names, which are also disjoint from S and O. For all z ∈ S∗, let sz

denote a distinct fresh product sort name corresponding to z, and for all 1 ≤
i ≤ |z|, let pz,i denote a distinct fresh projection operator name from sz-values
to their ith components. Now flat(Σ) is defined as Σ1|π, where Σ1 consists of1

S1 = S ∪ {sσ(o) | o ∈ O}
O1 = O ∪ {pσ(o),i | o ∈ O, 1 ≤ i ≤ α(o)}
σ1 = {(o, sσ(o)) | o ∈ O} ∪ {(pσ(o),i, sσ(o)) | o ∈ O, 1 ≤ i ≤ α(o)}
τ1 = τ ∪ {(pσ(o),i, σ(o)|i) | o ∈ O, 1 ≤ i ≤ α(o)}
π = {(sσ(o), pσ(o),1 · · · pσ(o),α(o)) | o ∈ O}.

By combining the above results, we get

Corollary 13. For any Σ, Alg(Σ) and AlgGraph(flat(Σ)) are equivalent.

2.2 Reflected Graph Embeddings

To achieve graph attribution, we embed algebra graphs into larger graphs. To
define the necessary constructs, let ⊆ define the component-wise subset relation
over graphs.

Definition 14 (graph embedding). Let G be a sub-category of Graph. A
graph embedding over G is a pair (G−, G) such that G− ∈ G and G− ⊆
G ∈ Graph. If (G−, G), (H−,H) are graph embeddings, then a reflection from
(G−, G) to (H−,H) is a graph morphism h : G → H such that for all n ∈ NG,
hN (n) ∈ NH− implies n ∈ NG− , and for all e ∈ EG, hE(e) ∈ EH− implies
e ∈ EG− . REmb(G) denotes the category of graph embeddings over G with
reflections as arrows.

A graph embedding (G−, G) is said to be glued over a discrete graph G−− ⊆
G−, if for all e ∈ EG \ EG− and incident nodes n ∈ {src(e), tgt(e)}, n ∈ NG−

implies n ∈ NG−− . An embedding functor is a functor E : G → dGraph such
that E(G) ⊆ G for all G-graphs G and E(f) = f � E(G) for all G-morphisms
f : G → H. REmb(E) denotes the full sub-category of REmb(G) consisting of
embeddings (G−, G) glued over E(G−).

The term reflection is chosen to stress that the structure of the subgraph H− is
reflected (as the dual of preserved) in G−.

1 It should be noted that Σ1 has a bipartite signature graph (and hence bipartite
algebra graphs) as every operation is redefined to have a product sort as its source;
even the operations that were already unary to start with. This is not at all necessary
for the results in this paper: other constructions for flat(Σ) may be more intuitive
in practice.

252 H. Kastenberg and A. Rensink

Thus, if an embedding (G−, G) is glued over a graph G−−, this means that
only nodes in G−− may be connected (by G-edges) to nodes outside G−. For
instance, in this paper we do not want to allow attribute edges to point to
product nodes as these are meant only as auxiliaries,2 so our embeddings will
be glued over the sub-graph of the algebra graph with only non-product nodes.
Very often we just use G to denote graph embeddings (G−, G).

Based on this, we can define our category of attributed graphs. In this defini-
tion, EΣ|π : AlgGraph(Σ|π) → dGraph (for an arbitrary signature with prod-
ucts Σ|π) is the embedding functor mapping every Σ|π-algebra graph G to the
discrete sub-graph with nodes {n ∈ NG | t(n) ∈ SΣ \ dom(π)}, where t is the
typing of G into GΣ .

AttGraph(Σ) = REmb(Eflat(Σ)). (1)

Although the formal definition may appear complicated (partially because we
have set it up so that it is a special case of the general framework introduced in
the next section), the basic idea is still conceptually simple: an attributed graph
is a graph with an embedded deterministic algebra graph. This means that there
are three types of edges in the overall graph:

– Edges within the algebra graph. These encode the algebra, as discussed above.
– Edges entirely outside the algebra graph, i.e., with end nodes also outside the

algebra graph. These represent the “ordinary” graph structure.
– Edges not in the algebra graph, but with one or more end nodes in the algebra

graph. These are attribute edges, i.e., they provide the kind of information that
we introduced attributed graphs for in the first place.

Example 15. Figure 2 shows an example attributed graph for the signature Prim
of Example 2, using the standard algebra, encoded into the graph structure.
(Obviously the algebra graph is only partially shown.) Examples of algebra-only
edges are the succ- and π-labelled edges; A, B and next are ordinary graph edges;
and x and y are attribute edges. The italic inscriptions 0, 1 and true represent
the algebra values and are formally not part of the actual graph. Note that only
non-product nodes are used as glue between the algebra graph to the “real”
graph.

For arbitrary signatures, we first have to construct the algebra graph with prod-
uct sorts; an attributed graph is then a graph with this algebra graph embedded,
such that, moreover, only the non-product sorts are eligible as end nodes of the
attribute edges.

With a fairly light discipline on the choice of labels, we can in fact make the
definitions even easier. Namely, if we assume that operators of the signature Σ
are never used to label edges in EG \ EG− , then G− can be constructed from G
by restricting to the O-labelled edges.

2 This is a choice, not a necessity: one might actually want to have sorts that stand
for tuples in the original, unflattened signature.

Graph Attribution Through Sub-Graphs 253

Fig. 2. Example attributed graph; rectangular nodes are ordinary graph nodes, ellip-
soid ones represent algebra values.

We now show that this category is essentially equivalent to the standard
model of [3]. We reformulate their definition so as to make the equivalence proof
easier.

Definition 16. Let D : C → dGraph be a functor to discrete graphs. The cat-
egory of D-attributed graphs SAttGraph(D) is defined by

– Objects 〈G,C〉 where G is a graph and C an object of C, such that D(C) ⊆ G.
– Arrows (f : G → H, g : B → C), where f is a graph morphism and g an arrow

from C, such that D(g) = f � D(dom(g)) — in other words, f and g agree
upon the discrete graph.

Examples of functors D that can be “plugged in” here are:

– AΣ : Alg(Σ) → dGraph for an arbitrary signature Σ, mapping every Σ-
algebra A to the discrete graph with N =

⋃
s∈S Ds;

– AΣ|π : Alg(Σ|π)→dGraph for a signature with product sorts Σ|π, mapping
every Σ|π-algebra A to the discrete graph with N =

⋃
s∈S\dom(π) Ds;

– The functor EΣ|π : AlgGraph(Σ|π) → dGraph defined above.

The standard category of node-attributed graphs, as defined in [3], is essen-
tially given by SAttGraph(AΣ) — where “essentially” means that we ignore
some differences:

– In the standard model, attributed graphs are typed. We leave out typing
because we find it complicates the presentation; moreover, enriching graphs
with typing is a standard construction — see, e.g., [10].

– In the standard model, the only connections allowed between the non-attribute
part of the graph and attribute (i.e., algebra) values are edges with non-data
nodes as sources. We find that this constraint unnecessarily complicates the
presentation and does not affect the formalism in any way; moreover, we
believe that attribute edges starting in data nodes may be useful as well.
Furthermore, this constraint can always be imposed on top of our definition,
if so desired.

254 H. Kastenberg and A. Rensink

– The standard model includes edge attributes, which are essentially edges whose
sources are edges. These present a technical complication which we have omit-
ted, but which could be catered for by extending the category Graph with
such edges in general.3

Definition 17. Two functors Di : Ci→dGraph (i = 1, 2) are source equivalent
if there are functors F : C1→C2 and U : C2→C1 which establish an equivalence
between C1 and C2, and such that, moreover, the following diagram of functors
commutes:

For instance, the functors AΣ , Aflat(Σ) and Eflat(Σ) introduced above are pairwise
source equivalent for arbitrary Σ, due to (respectively) Theorems 11 and 12.

The reason for introducing source equivalence is the following theorem, which
states that replacing the “data component” in the standard model by a source
equivalent one does not change the category.

Theorem 18. If Di : Ci →dGraph for i = 1, 2 are two source equivalent func-
tors, then SAttGraph(D1) and SAttGraph(D2) are equivalent categories.

This is shown by functors between SAttGraph(D1) and SAttGraph(D2) that
coincide with D1 and D2 on the algebra component and with the identity functor
on the graph component. Note that the source equivalence precisely guarantees
that the part of the algebra used in the graph remains untouched when replacing
D1 by D2, and hence the identity functor can be used.

The final auxiliary result on the road to proving equivalence between the
standard model and our formalisation is the following.

Theorem 19. For anyΣ|π,SAttGraph(EΣ|π) andREmb(EΣ|π) are equivalent.

This results in the following corollary, which is the first main result of this
paper:

Corollary 20. For anyΣ, SAttGraph(AΣ) andAttGraph(Σ) are equivalent.

Proof. This follows from a chain of equivalences sketched in the following
diagram.

3 Methodologically, we believe that edge attributes are not a useful concept, since
they can always be encoded by using attributed nodes instead. In a context where
the increase in expressiveness is felt to be worth the price of a more complicated
formalism, we believe that an extension to hyper-edges is typically more appropriate
than edges over edges.

Graph Attribution Through Sub-Graphs 255

SAttGraph(AΣ)

SAttGraph(Aflat(Σ))

SAttGraph(Eflat(Σ))

AttGraph(Σ)

Alg(Σ)

Alg(flat(Σ))

AlgGraph(flat(Σ))

dGraph
(Th. 18)

(Th. 18)

(Th. 19)

(Th. 12)

(Th. 11)

AΣ

Aflat(Σ)

Eflat(Σ)

Here, ↔ denotes equivalence of categories and → denotes a functor. The vertical
chain on the left contains the actual steps of the proof; the diagram on the right
is the justification for applying Theorem 18.

3 Adhesiveness

In this section we reformulate the core construction above, that of graph embed-
dings (Definition 14), in a more general way, getting away from the precise
choice of graph category. For this, we adopt the setting of adhesive HLR cat-
egories, developed by Ehrig et al. [5] based on the adhesive categories of Lack
and Sobocińsky [11]. One of the advantages is that, in this setting, many the-
orems come “for free;” an example is the embedding theorem used in the next
section. We show that our embedding construction, generalised as the category of
reflected monos, preserves adhesiveness, or can give rise to particular HLR adhe-
sive categories. Among other things, this essentially constitutes an alternative
proof strategy for the HLR adhesiveness of SAttGraph.

•
• •

•

•
• •

•
For lack of space, we have to omit the definitions of the basic

categorical concepts. In addition we need the more involved con-
cept of Van Kampen squares. A Van Kampen square in a given
category is a commuting square which, if used as the bottom
square in a “cube” diagram of which the back faces are pullbacks
(see right), guarantees that the front faces are pullbacks if and
only if the top square is a pushout.

Definition 21 (adhesive HLR category, [5]). Let C be a category. A class
of morphisms M in C is called suitable if it satisfies the following properties:

– M consists of monomorphisms;
– M is closed under isomorphisms and composition;
– M is closed under pushout and pullback.

C is called an adhesive HLR category for a suitable class of morphisms M if it
satisfies the following properties for all f ∈ M:

– Each cospan • f→ • ← • has a pullback;
– Each span • f← • → • has a pushout, such that the pushout diagram is a Van

Kampen square.

256 H. Kastenberg and A. Rensink

A category is adhesive in the sense of [11, Definition 5], if it is adhesive HLR
for the class M of all monomorphisms, and moreover, all pullbacks exist. The
conditions on adhesive categories essentially ensure that such categories are “set-
like”; that is, the pushout is “union-like” and the pullback is “intersection-like”.

For instance, our example category, Graph, is adhesive, as shown in [11,
Proposition 8]; and so is AlgGraph+, due to the fact (not proved here) that
AlgGraph+ is closed under Graph-pushouts and -pullbacks. On the other
hand, AlgGraph is not adhesive, and indeed could not be, given that it is
equivalent to Alg (see Theorem 9) which is well known not to be adhesive.
Another observation is that in any category C the class of isomorphisms is suit-
able in the sense of Definition 21; since, moreover, pushouts and pullbacks over
isomorphisms always trivially exist, the following is easy to show:

Proposition 22. Every category is adhesive HLR for the class M of isomor-
phisms.

3.1 Reflected Monos

We now define a categorical construction generalising reflected embeddings
(Definition 14).

Definition 23 (reflected monos). Let C be an arbitrary category. The cate-
gory of reflected monos in C, denoted RMon(C), is defined as follows:

– Objects are monos a : A ↪→ B of C; we write a− and a+ for the inner object
A and outer object B, respectively;

– Arrows f : a→b are pairs of arrows (f− : a− →b−, f+ : a+ →b+) from C such
that the resulting square is a pullback diagram:

Identities and arrow composition are defined component-wise.

Note that this indeed gives rise to a category; in particular, arrow composition
is correct due to the pullback composition property.

The intuition behind the definition of RMon is that monos a, in set-like
categories, are essentially embeddings of the inner object a− into the outer object
a+. We will refer to the part of a+ that is “disjoint” from a− as the rim of a;
this may be thought of as the largest sub-object of a+ which, when taking the
coproduct with a−, is still a sub-object of a+. The pullback property of the
morphisms f : a→ b ensures that none of the rim of a “spills over” into the inner
object b−; or in other words, b− is reflected in a−. Some more observations:

– If C has an initial object 0, then monos 0 ↪→ A have an “empty inner object”;
essentially, the entire object A is rim. We call such objects closed.

Graph Attribution Through Sub-Graphs 257

– Intuitively, the outer object a+ consists of the rim, the inner object, and
some additional structure connecting the inner object to the rim. We infor-
mally refer to this connecting structure as “glue.” For instance, in the case of
attributed graphs, the glue is the set of attribute edges.

– In general, arrows f incorporate changes to both the rim, the inner object and
the glue. Arrows f that completely preserve the inner object are characterised
by the fact that f− is an isomorphism; we call such arrows inner isomorphisms.
Preservation of the rim, on the other hand, can be captured by requiring that
the pullback diagram of f is also a pushout diagram (in C). Finally, if C has
an initial object, then the simultaneous preservation of the inner object and
the glue can also be captured; see Definition 35.

– Due to the well-definedness of pullbacks up to isomorphism, every arrow
f : a → b in RMon is essentially determined by its outer component, f+.

The following is another core result of this paper. To prove it, we first need
to establish that monos in RMon(C) are pairs of (outer and inner) monos in
C; pushouts over monos in RMon(C) consist of outer pushouts and inner VK
squares in C; and pullbacks in RMon(C) consist of outer and inner pullbacks
in C.

Theorem 24. If C is an adhesive category, then so is RMon(C).

Unfortunately, reflected monos do not yet capture the category AttGraph(Σ)
defined in (1), since for AttGraph(Σ) we had the following further constraints:

– Inner graphs were restricted to the sub-category of algebra graphs over flat(Σ);
– Embeddings were restricted to those glued over a further sub-graph.

We will show how to lift the first kind of restriction to reflected monos, and
very briefly hint on how to achieve the second. For a full sub-category D of C,
let RMon(D,C) denote the full sub-category of RMon(C) such that all inner
objects are in D.

Proposition 25. For any full subcategory G of Graph, REmb(G) is equiva-
lent with RMon(G,Graph).

For example, REmb(AlgGraph) is equivalent to RMon(AlgGraph,Graph).
The reason why this equivalence is not an isomorphism is that there are many
monos that correspond to a single graph embedding. Now let us call D closed
under M-pushouts/pullbacks where M is a suitable class of morphisms if, for
every [co]span in D with one of the morphisms in M, the corresponding C-
pushout object [C-pullback object] is also in D.

Theorem 26. If C is an adhesive category, D is a full sub-category of C, M is a
suitable class of morphisms in D, and D is closed under M-pushouts/pullbacks,
then D is adhesive HLR for the class M, and RMon(D,C) is adhesive HLR
for the class N of all monomorphisms with inner arrow in M.

258 H. Kastenberg and A. Rensink

Proof. This follows from the fact that the constructions of the pushouts and pull-
backs in RMon(C) entirely rely on the corresponding C-constructions over the
inner and outer parts of the objects and arrows. We have assumed D to be closed
under these constructions, hence the resulting objects are in RMon(D,C);
moreover, D is a full sub-category, hence the constructed objects also satisfy
the necessary universal properties. It follows that all required pushouts and
pullbacks exist.

An application of this result is the following.

Corollary 27. Let Σ be an arbitrary signature.

1. REmb(AlgGraph+(Σ|π)) is adhesive.
2. REmb(AlgGraph(Σ|π)) is adhesive HLR for inner isomorphic monos.

To also lift the “gluing over”-construction of Definition 14 to reflected monos,
instead of just a sub-category D, we need a functor E : D→RMon(E,D), with
E a further full sub-category of D, such that E(G)+ = G and E(f)+ = f for all
objects G and arrows f of D. We can then define RMon(E ,C) as the full sub-

category of RMon(D,C) with objects a such that the diagram • ε(a)→ • a→ •
has a pushout complement.

Fig. 3. Partial non-deterministic algebra graph for Prim of Example 2.

4 Data Abstraction

One of the most powerful analysis techniques for dynamic behaviour is abstrac-
tion. This involves discarding information from a model in order to make it
more tractable, and over-approximating the original system by (where neces-
sary) “guessing” what the discarded information may have been.

In a graph-based setting, a very natural kind of abstraction is obtained by
taking a non-injective image of the start graph and applying the rules to that.
The (standard) embedding theorem then implies that, under a certain consis-
tency condition (Definition 30 below), all transformations on the original graph

Graph Attribution Through Sub-Graphs 259

can be applied to the abstract graph. (Other studies of abstraction for graph
transformation are reported in [1,16,18].)

In this section, we show how data abstraction, i.e., where only the data domain
and not the “proper” graph structure is abstracted, can be formulated in the
framework of reflected monos. In this regard, our framework is more powerful
than the standard attributed graph model, due to the ability to deal with non-
determinism. The embedding theorem automatically holds due to adhesiveness;
we show that this abstraction also automatically fulfills consistency, and that it
is still valid in the presence of negative application conditions that only constrain
the rim (i.e., the proper graph part).

Example 28. Figure 3 shows a partial abstract algebra graph G for flat(Prim),
with Prim as in Example 2. There is a non-injective morphism h from the natural
algebra graph H for flat(Prim) (partially displayed in Fig. 2) to G, with especially,
for all i ∈ N Int

H ,

h : i
→
⎧
⎨

⎩

ltz if i < 0
eqz if i = 0
gtz if i > 0.

As can be seen from Fig. 3, G is not deterministic: for instance, from the tuple
element (ltz , gtz) there are three outgoing add-arrows, reflecting the fact that
adding a negative to a positive number might give a negative, zero, or positive
result.

In contrast, the only non-injective algebra morphism from the natural algebra
over Prim is to the point algebra, in which every sort has exactly one element.
This abstraction loses all data distinctions and is therefore much too coarse for
almost all uses.

Definition 29 (inner abstraction morphism). An inner abstraction mor-
phism is an arrow in RMon(C) that is a pushout in C.

As discussed in Sect. 3, an arrow in RMon(C) that is a pushout in C essentially
does not modify the outer object — except to accommodate changes in the inner
object.

To recall the embedding theorem, first we need the following consistency condi-
tion.

Definition 30 (consistency, cf. [4,6,12]). A morphism a : G → H is called

consistent with a span G
d← D

d′
→G′ if a commuting diagram of the following

shape exists:

B G D G′

C H

b

b′

PO a

d d′

260 H. Kastenberg and A. Rensink

Intuitively, consistency comes down to the requirement that none of the items
of G that are deleted by the span (meaning that they are not in d-image of D)
are “modified” by a — where modification means (node or edge) merging or
addition of incident edges. The embedding theorem refers to the derived span
of a transformation sequence, which we will not formally define; however, in an
adhesive HLR category with a class M of monos, the morphisms of derived spans
are always in M.

Theorem 31 (embedding, cf. [4,6,14]). For any transformation t : G0 =∗⇒
Gn and morphism a0 : G0 → H0 that is consistent with the derived span of t,
there is a transformation H0 =∗⇒ Hn consisting of the same rules as t, and a
morphism an : Gn → Hn.

The following lemma implies a sufficient condition for consistency.

Lemma 32. Let C be an adhesive category. If G
d← D

d′
→G′ is a span of

inner isomorphic monos and a : G → H is an inner abstraction in a category
RMon(C), then there is a diagram of the following shape, where e and a′ are
also inner abstractions:

G D G′

H E H ′

a

d d′

ePO PO a′

c c′

This means that, for categories where all the rule morphisms are inner iso-
morphic monos, inner abstractions are always consistent.

Corollary 33 (abstraction embedding). Consider a sub-category of RMon
which is adhesive HLR for a class M of inner isomorphisms. For any transfor-
mation t : G0 =∗⇒ Gn and any inner abstraction a0 : G0 → H0, there is a trans-
formation H0 =∗⇒ Hn consisting of the same rules as t, with an inner abstraction
an : Gn → Hn.

Negative application conditions. Negative application conditions (NACs) in com-
bination with abstraction pose a problem: structures forbidden by a NAC may
very well (appear to) exist on the abstract level, whereas they do not occur
in the corresponding concrete graph. In general, to cope with this we can only
“switch off” the evaluation of NACs on the abstract level; however, this makes
the resulting over-approximation very coarse. The last result of this paper is
to extend abstraction embedding to rules with NACs that do not constrain the
inner objects. We first have to recall how NACs work.

Definition 34 (negative application condition). A negative application
condition is a morphism n : L → N . n is said to be satisfied by a matching
m : L → G if m does not factor through n, i.e., there is no f : N → G such that
m = f ◦ n.

Graph Attribution Through Sub-Graphs 261

To avoid the problem of false positives after abstraction, it not enough to restrict
the NACs to inner isomorphisms: they should also not introduce any new con-
nections between the inner object and the rim. To formulate this as a general
requirement, we have to assume that the base category has an initial object.

Definition 35. Let C be an adhesive category with an initial object. A mor-
phism h in RMon(C) is said to avoid the inner object if h is part of a pushout
diagram of the following form, where a and b are closed objects (meaning that
a− and b− are empty):

• •

a b

h

POf g

The intuition is that a NAC avoids the inner object if it does not constrain the
inner object itself, nor the glue between the inner object and the rim. If a NAC
avoids the inner object, then inner abstractions do not cause false negatives.

Theorem 36. Assume C is an adhesive category with an initial object; let
n : L → N be a NAC in RMon(C) that avoids the inner object, m : L → G
a matching, and a : G → H an inner abstraction. If m satisfies n, then a ◦ m
satisfies n.

It follows that Corollary 33 continues holding for rules with NACs that avoid
the inner object.

5 Implementation

Here we show how the ideas exposed above have been partially implemented in
the tool groove (see [17]). groove supports a basic signature Σ consisting of
four sorts: whole (integer) numbers, floating point numbers, boolean and strings,
with the typical operations found in programming languages.

As an example we take a graph transformation system that models the
behaviour of an indexed stack, which is a stack modelled using an indexed list
(rather than a linked list, as is more common for this particular data structure)
for the elements. That is, elements on the stack have an order, which is 1 for
the bottom element and increases for every next element on top of it. Figure 4
shows the graphs for an empty stack and a stack with three elements, using the
natural algebra graphs for the sorts at hand (actually, in this example only inte-
gers). The node labels Stack and Cell are notational conventions for self-edges
with those labels, which in practice serve as node types. The Stack-node has a
length-edge to the number of elements currently contained in the stack; every
Cell-node has an order-edge to its index. groove supports single-pushout rules
in general, but can also be restricted to double-pushout. Rules are thus spans of

262 H. Kastenberg and A. Rensink

Fig. 4. Empty stack and 3-element stack

morphisms over rule graphs, in which the algebra subgraphs consist only of the
constants from the signature and typed variable nodes for the four basic sorts;
the values for the product sorts correspond to tuples of the above.

Typical operations on indexed stacks are pushing and popping elements.
These are modelled by the rules shown in Fig. 5. The figure only shows the
left hand side and right hand side graphs of both rules, leaving out the middle
(interface) graph and suggesting the morphisms though the positioning of the
nodes. For demonstration purposes, the push rule has been enriched with a
condition that is satisfied only if the length of the stack is smaller than 5. The
following graphical notational conventions are used:

– Only the relevant algebra graph nodes are shown in the figures. In particular,
in host graphs, none of the auxiliary product nodes are ever included.

– Pure data nodes, i.e., elements of the data sets of the four basic sorts, are
represented as ellipses labelled or by their values, by their types if they are
variable nodes.

– Product nodes are represented as diamonds. The projection edges are labelled
πi for index i starting at 0. The operator edges in Fig. 5 are add and lt in push,
for addition and less-than, and sub in pop for subtraction.

In groove, only part of the potential power of this paper’s approach has been
realised, in that non-deterministic algebra graphs such as the one in Fig. 3 are
not supported. What is supported, on the other hand, are several (families) of
algebras, namely

– Point algebras, where every value set consists of a single data value; i.e., all
distinctions between data values are lost. If we interpret our indexed stacks
under the point algebra, for instance, all order-edges point to the single inte-
ger representative, and rule push remains forever enabled because the lt-edge
always points to the single Boolean value that represents both true and false.

– Java algebras, where every value set corresponds to its natural Java type, e.g.,
int for integers. This means that integer overflow is treated as Java does, by
ignoring any significant bits above 31.

– Big algebras, where the most precise Java types available are chosen as value
sets instead; e.g., BigInteger for integers.

Graph Attribution Through Sub-Graphs 263

– Term algebras, where every value set is given by the set of syntactic terms of
the corresponding sort. Interpreted under the term algebra, for instance, rule
push is not applicable to either of the graphs in Fig. 4, as in the term algebra
graph the lt-edge leading from the tuple 〈0, 5〉 does not point to true but to
the term lt(0, 5), which is (in that algebra) distinct from true.

6 Evaluation and Conclusion

In this paper we have proposed a new approach to model attributed graphs,
which is more uniform than the standard model of [3] in that it stays entirely
within a single (graph) category. Rather than resorting to a separate category
of algebras to model the data, we encode the entire algebra structure into a
sub-graph. This removes the need for additional algebraic equations specified
outside the graph formalism and a corresponding satisfaction engine; thus, both
tool implementers and users may benefit.

Contributions of the paper are:

– Equivalence of our model with the standard model (Corollary 20);
– An alternative proof of the adhesiveness of our construction (Theorem 26);
– Embedding theorems for data abstraction, without consistency condition

(Corollary 33) and in the presence of negative application conditions
(Theorem 36).

We have chosen a very common graph category in this paper: labelled binary
graphs. The use of hyper-graphs instead would probably ease the encoding of
the algebras. In particular, this would obviate the need for the product sorts,
removing one important source of complexity. As a consequence, for instance,
we would not have to flatten the signatures, and we would not have to resort to
the “gluing over”-construction.

Fig. 5. Push and pop rules for the indexed stack

264 H. Kastenberg and A. Rensink

It should be noted that we have more or less silently restricted ourselves to
node attributes. To support edge attributes as well, an extension of the standard
notion of graph would be required in which (some) edges can have edges as their
source, instead of nodes, just like in the standard model.

As we have briefly shown in Sect. 5, the setup described in this paper has
been partially implemented in the tool groove. It should be said, however, that
the setup is not very appealing in terms of readability: for instance, already
the fairly simple rules in Fig. 5 are non-trivial to read and write. In the newer
versions of the tool, therefore, a lot of syntactic sugar has been added that allows
the use of terms rather than product nodes, bringing it visually much closer to
the standard model.

Related work. We have at several places referred to the “standard model” of
representing attributes developed by Ehrig and al, but there are a number of
other alternatives approaches. For instance, in the language GP for Graph Pro-
grams (e.g., [15]), attributes are encoded in labels: rules are able to compose and
decompose such labels into their constituent values. In [2], the authors propose
to associate exactly one attribute to every node and edge which may however
be a tuple and so carry as many primitive values as one might wish. Morphisms
have, apart from a structural backbone, a λ-term for each target graph ele-
ment that expresses how its attribute is computed from the morphisms source.
Refinements on the theme of adhesiveness that improve the way attributes fit
have been studied and proposed in [6,14]. Another recent approach has been
proposed in [13], using the symbolic graphs also studied in [12]. However, as the
onderlying models are still algebras, and hence deterministic, we believe that
symbolic graphs are not able to offer data abstraction in the sense of Sect. 4.

In related work of another type, an idea very similar to the one worked out in
this paper has been used in [9] to extend a technique that was only available for
graphs without attributes. This supports the point, made in the introduction,
that there is a benefit to stick to the framework of graphs to encode the world
of algebras.

Acknowledgement. For the proof of adhesiveness of RMon, we are very grateful
for help from Andrea Corradini, Tobias Heindel, and Ulrike Prange.

References

1. Bauer, J.,Wilhelm,R.: Static analysis of dynamic communication systemsbypartner
abstraction. In:Nielson,H.R., Filé,G. (eds.) SAS2007. LNCS, vol. 4634, pp. 249–264.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74061-2 16

2. Boisvert, B., Féraud, L., Soloviev, S.: Typed lambda-terms in categorical attributed
graph transformation. In: Durán, F., Rusu, V. (eds.) Algebraic Methods in Model-
based Software Engineering (AMMSE). Electr. Notes Theor. Comput. Sci., vol. 56,
pp. 33–47 (2011)

3. Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamental theory for typed
attributed graphs and graph transformation based on adhesive HLR categories.
Fund. Inf. 74(1), 31–61 (2006)

https://doi.org/10.1007/978-3-540-74061-2_16

Graph Attribution Through Sub-Graphs 265

4. Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic
Graph Transformation. Springer, Heidelberg (2006). https://doi.org/10.1007/3-
540-31188-2

5. Ehrig, H., Padberg, J., Prange, U., Habel, A.: Adhesive high-level replacement
systems: a new categorical framework for graph transformation. Fund. Inf. 74(1),
1–29 (2006)

6. Golas, U.: A general attribution concept for models in M-adhesive transformation
systems. In: Ehrig, H., Engels, G., Kreowski, H.-J., Rozenberg, G. (eds.) ICGT
2012. LNCS, vol. 7562, pp. 187–202. Springer, Heidelberg (2012). https://doi.org/
10.1007/978-3-642-33654-6 13

7. Kastenberg, H.: Towards attributed graphs in GROOVE: Work in progress. In:
Heckel, R., König, B., Rensink, A. (eds.) Graph Transformation for Verification
and Concurrency (GT-VC). Electr. Proc. Theor. Comput. Sci., vol. 154, pp. 47–54
(2006)

8. Kastenberg, H., Rensink, A.: Graph attribution through sub-graphs. CTIT Techni-
cal report TR-CTIT-12-27, Department of Computer Science, University of Twente
(2012)

9. Kehrer, T., Alshanqiti, A., Heckel, R.: Automatic inference of rule-based specifica-
tions of complex in-place model transformations. In: Guerra, E., van den Brand, M.
(eds.) ICMT 2017. LNCS, vol. 10374, pp. 92–107. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-61473-1 7

10. König, B.: A general framework for types in graph rewriting. Acta Inf. 42(4–5),
349–388 (2005)

11. Lack, S., Sobociński, P.: Adhesive categories. In: Walukiewicz, I. (ed.) FoSSaCS
2004. LNCS, vol. 2987, pp. 273–288. Springer, Heidelberg (2004). https://doi.org/
10.1007/978-3-540-24727-2 20

12. Orejas, F.: Symbolic graphs for attributed graph constraints. J. Symb. Comput.
46(3), 294–315 (2011)

13. Orejas, F., Lambers, L.: Symbolic attributed graphs for attributed graph trans-
formation. In: Graph and Model Transformation (GraMoT). Electr. Comm. of the
EASST., vol. 30 (2010)

14. Peuser, C., Habel, A.: Composition of m, n-adhesive categories with application
to attribution of graphs. In: Plump, D. (ed.) Graph Computation Models (GCM).
Electr. Comm. of the EASST, vol. 73 (2015)

15. Plump, D., Steinert, S.: Towards graph programs for graph algorithms. In: Ehrig,
H., Engels, G., Parisi-Presicce, F., Rozenberg, G. (eds.) ICGT 2004. LNCS, vol.
3256, pp. 128–143. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-
540-30203-2 11

16. Rensink, A.: Canonical graph shapes. In: Schmidt, D. (ed.) ESOP 2004. LNCS,
vol. 2986, pp. 401–415. Springer, Heidelberg (2004). https://doi.org/10.1007/978-
3-540-24725-8 28

17. Rensink, A.: The GROOVE simulator: a tool for state space generation. In: Pfaltz,
J.L., Nagl, M., Böhlen, B. (eds.) AGTIVE 2003. LNCS, vol. 3062, pp. 479–485.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-25959-6 40

18. Rensink, A., Distefano, D.: Abstract graph transformation. Electr. Notes Theor.
Comput. Sci. 157(1), 39–59 (2006)

https://doi.org/10.1007/3-540-31188-2
https://doi.org/10.1007/3-540-31188-2
https://doi.org/10.1007/978-3-642-33654-6_13
https://doi.org/10.1007/978-3-642-33654-6_13
https://doi.org/10.1007/978-3-319-61473-1_7
https://doi.org/10.1007/978-3-319-61473-1_7
https://doi.org/10.1007/978-3-540-24727-2_20
https://doi.org/10.1007/978-3-540-24727-2_20
https://doi.org/10.1007/978-3-540-30203-2_11
https://doi.org/10.1007/978-3-540-30203-2_11
https://doi.org/10.1007/978-3-540-24725-8_28
https://doi.org/10.1007/978-3-540-24725-8_28
https://doi.org/10.1007/978-3-540-25959-6_40

On Normal Forms for Structured Specifications
with Generating Constraints

Donald Sannella1(B) and Andrzej Tarlecki2

1 Laboratory for Foundations of Computer Science, University of Edinburgh,
Edinburgh, UK

dts@inf.ed.ac.uk
2 Institute of Informatics, University of Warsaw, Warsaw, Poland

tarlecki@mimuw.edu.pl

Abstract. Hartmut Ehrig and others in [EWT83] studied normal form
results for complex generating constraints imposed on basic specifica-
tions. Since then this work has been followed by subsequent results con-
cerning normal forms for structured specifications, typically built from
basic specifications using union, translation and hiding. We consider gen-
erating constraints as additional specification-building operations and
follow and extend the results concerning normal forms for the resulting
specifications with various forms of generating constraints.

1 Introduction

Hartmut Ehrig and others in [EWT83] studied normal form results for complex
generating constraints imposed on basic specifications. Although from today’s
point of view the results were somewhat restricted in their generality, they
spurred a line of work on normal forms of structured specifications, notably
in [BHK90] and in the current general version in [Bor02], which turned out to
be crucial in the study of proof systems for consequences of structured specifica-
tions, and in the analysis of completeness properties of such proof systems. But
the more recent normal form results largely disregarded generating (or reacha-
bility) properties as imposed by the constraints studied in [EWT83]. Our aim
here is to fill this gap, by generalising the results of [EWT83] as follows.

First, as has been standard since the introduction of institutions [GB84,
GB92] to free algebraic specifications from dependency on a specific logical sys-
tem, we abstract away from the specifics of the underlying logical system and
present our results in the framework of a rather arbitrary logical system for-
malised as an institution with minimal extra structure and assumed properties.

Then, we consider a normal form of specifications that is somewhat more
restrictive than the canonical constraints in [EWT83], giving a normal form
result that is a bit sharper than the corresponding result in [EWT83].

This work has been partially supported by the (Polish) National Science Centre,
grant 2013/11/B/ST6/01381 (AT).

c© Springer International Publishing AG, part of Springer Nature 2018
R. Heckel and G. Taentzer (Eds.): Ehrig Festschrift, LNCS 10800, pp. 266–284, 2018.
https://doi.org/10.1007/978-3-319-75396-6_15

http://orcid.org/0000-0003-4520-8924
http://orcid.org/0000-0002-7788-2991

On Normal Forms for Structured Specifications with Generating Constraints 267

Finally, and most crucially, Ehrig et al. [EWT83] studied generating con-
straints that impose generation requirements within models of a “flat” basic
specification (presentation) only. We study generating constraints imposed by a
more general specification building operation, which may be mixed with other
specification-building operations in an arbitrary way, so that generating require-
ments may be imposed in multiple “layers” within models of an arbitrarily com-
plex specification. This makes the study more delicate, and in fact the normal
form result one might expect does not carry over to this more general case.

Dedication: This study is dedicated to the memory of Hartmut Ehrig. We are
grateful to Hartmut for his kindness and generosity over the years. We repre-
sented different “schools” of thought on algebraic specification, but Hartmut was
always friendly and willing to explain his ideas and to try to understand our
point of view.

2 Constraints in the Standard Algebraic Framework

We begin with a summary of [EWT83].
As was usual at the time, the investigation was carried out in the context

of the standard algebraic framework [EM85]. Specifications are presentations
〈Σ,Φ〉 where Σ is a standard many-sorted signature and Φ is a set of Σ-axioms,
usually equations. The category of Σ-algebras Alg(Σ) is defined as usual, with
the notion of satisfaction between algebras and axioms yielding the obvious
semantics of presentations: [[〈Σ,Φ〉]] = {A ∈ |Alg(Σ)| | A |= Φ}.

The category of algebraic signatures AlgSig with standard signature mor-
phisms σ : Σ → Σ′ is cocomplete. For each signature morphism σ : Σ → Σ′,
we have a σ-reduct functor Uσ : Alg(Σ′) → Alg(Σ). A signature morphism
σ : Σ → Σ′ is a presentation morphism σ : 〈Σ,Φ〉 → 〈Σ′, Φ′〉 if Uσ([[〈Σ′, Φ′〉]]) ⊆
[[〈Σ,Φ〉]]. Colimits lift from the category of signatures to the category of presen-
tations. The crucial satisfaction condition and amalgamation properties hold as
expected—see Sect. 3 for more general formulations, or check for instance [ST12].

For each presentation PRES , the authors of [EWT83] introduce constraints
on PRES , which are built from the empty constraint ∅, with semantics [[∅]] =
[[PRES]], using union, with [[C1+C2]] = [[C1]]∩ [[C2]], and the following construc-
tors, for any presentation morphisms σ : PRES ′ → PRES , σ′ : PRES → PRES ′

and constraint C ′ on PRES ′:

– translation TRAσ: [[TRAσ(C ′)]] = {A ∈ [[PRES]] | Uσ(A) ∈ [[C ′]]}
– reflection REFσ′ : [[REFσ′(C ′)]] = {Uσ′(A′) | A′ ∈ [[C ′]]}
– generating constraint GENσ: [[GENσ(C ′)]] = {A ∈ [[PRES]] | Uσ(A) ∈ [[C ′]]

and A is Uσ-generated in [[PRES]]}, where A ∈ [[PRES]] is Uσ-generated in
[[PRES]] if in [[PRES]] there is no proper subalgebra of A with the same
σ-reduct as A.

268 D. Sannella and A. Tarlecki

A constraint on PRES of the form REFσ3(TRAσ2(GENσ1(∅))) is called
canonical. Such constraints might be easier to read in the diagrammatic notation
of [EWT83]:

PRES 1
σ1−→

GEN
PRES 2

σ2−→
TRA

PRES 3
σ3←−

REF
PRES

for presentations PRES i and presentation morphisms σi, i = 1, 2, 3.
The key result in [EWT83] is the following normal form theorem:

Theorem 2.1 ([EWT83]). For each constraint on PRES an equivalent canon-
ical constraint may be constructed.
�

We found the result very interesting and analysed it in detail already at the
time [Tar83]. One observation was that the above form of canonical constraints is
the only one possible for Theorem 2.1 to hold—that is, no other order of generat-
ing constraints, translation and reflection would work. Another was that some of
the assumptions in [EWT83] are either misleading or unnecessary. For instance,
the authors require reduct functors to lift isomorphisms, which in the standard
algebraic framework excludes presentation morphisms that are not injective on
sorts. Even if we could accept this as a reasonable restriction, it turns out that
this property cannot be maintained under the constructions used in the proof of
Theorem 2.1. Fortunately, such details did not prove to be crucial for the correct-
ness of the proof, and the paper and the above theorem influenced subsequent
developments, most notably the simpler normal form results for specifications
without generating constraints in [BHK90,Bor02] and much work based in turn
on those results.

3 Institutions with Model Inclusions

To capture in a very general way the concept of a submodel, we will require our
model categories to come with inclusions.

A class of morphisms in a category is called a class of inclusions if it imposes
a partial order on the objects of the category; to be precise, we require that

– all identities are inclusions
– inclusions are closed under composition
– between any two objects there is at most one inclusion (in either direction,

i.e., for objects A, B, either there is no inclusion between A and B, or there
is a unique inclusion from A to B, or from B to A, but not both unless A
and B coincide).

In other words, a category with inclusions is a pair C = 〈C, I〉 such that C is
a category and I is a wide thin skeletal subcategory of C; the morphisms of I
are called inclusions. If there is an inclusion ι : A → B then we say that A is a
subobject of B and write A ⊆ B.

When no confusion may arise, we use the standard categorical terminology
and notation in C to refer to the corresponding concepts in C. So, for instance,

On Normal Forms for Structured Specifications with Generating Constraints 269

we write |C| for the class |C| of objects in C, by a diagram in C we mean a
diagram in C, by (co)limits in C we mean (co)limits in C, etc.

A functor between categories with inclusions F : 〈C, I〉 → 〈C′, I ′〉 is a functor
F : C → C′ that preserves inclusions, F (I) ⊆ I ′. Clearly, such functors compose,
and so this yields the (quasi-)category ICat of categories with inclusions.

These are extremely mild requirements concerning the subcategory of inclu-
sions. For instance, in contrast to some other work, e.g. [DGS93,CR97,GR04,
CMST17], we have no need to assume that inclusions form part of a (strict)
factorisation system for C, or that they admit intersections and unions, etc.

An institution with model inclusions INS consists of:

– a category SignINS of signatures;
– a functor SenINS : SignINS → Set, giving a set SenINS(Σ) of Σ-sentences

for each signature Σ ∈ |SignINS|; and a function SenINS(σ) : SenINS(Σ) →
SenINS(Σ′) which translates Σ-sentences to Σ′-sentences for each signature
morphism σ : Σ → Σ′;

– a functor ModINS : Signop
INS → ICat, giving a category ModINS(Σ) of Σ-

models with model inclusions for each signature Σ ∈ |SignINS|; and a functor
ModINS(σ) : ModINS(Σ′) → ModINS(Σ) which translates Σ′-models to Σ-
models and Σ′-morphisms to Σ-morphisms, preserving model inclusions, for
each signature morphism σ : Σ → Σ′; and

– a family 〈|=INS,Σ ⊆ |ModINS(Σ)| × SenINS(Σ)〉Σ∈|SignINS| of satisfaction
relations

such that for any signature morphism σ : Σ → Σ′ the translations ModINS(σ)
of models and SenINS(σ) of sentences preserve the satisfaction relation, that
is, for any ϕ ∈ SenINS(Σ) and M ′ ∈ |ModINS(Σ′)| the following satisfaction
condition holds:

M ′ |=INS,Σ′ SenINS(σ)(ϕ) iff ModINS(σ)(M ′) |=INS,Σ ϕ

Note that institutions with model inclusions are not “inclusive institutions” in
the sense of [DGS93,GR04,CMST17]: we require inclusion structure on models,
not on signatures.

Examples of institutions with model inclusions abound. The institution EQ
of equational logic has many-sorted algebraic signatures as signatures, many-
sorted algebras as models with the usual notion of subalgebra determining the
model inclusions and (explicitly quantified) equations as sentences. The insti-
tution FOPEQ of first-order predicate logic with equality has signatures that
add predicate names to many-sorted algebraic signatures, models that extend
algebras by interpreting predicate names as relations with inclusions that are
required to preserve these relations, and sentences that are all closed (no free
variables) formulae of first-order logic with equality. See [ST12] for detailed def-
initions of these and many other institutions, which often can be enriched with
the obvious concept of a submodel, to yield institutions with model inclusions.

We will freely use standard terminology, and say that a Σ-model M satisfies
a Σ-sentence ϕ, or that ϕ holds in M , whenever M |=INS,Σ ϕ. We will omit the

270 D. Sannella and A. Tarlecki

subscript INS, writing INS = 〈Sign,Sen,Mod, 〈|=Σ〉Σ∈|Sign|〉. Similarly, the
subscript Σ on the satisfaction relations will often be omitted. For any signature
morphism σ : Σ → Σ′, the translation function Sen(σ) : Sen(Σ) → Sen(Σ′) will
be denoted by σ : Sen(Σ) → Sen(Σ′), the coimage function w.r.t. Sen(σ) by
σ−1 : P(Sen(Σ′)) → P(Sen(Σ)), and the reduct functor Mod(σ) : Mod(Σ′) →
Mod(Σ) by _ σ : Mod(Σ′) → Mod(Σ). Thus, the satisfaction condition may
be re-stated as: M ′ |= σ(ϕ) iff M ′

σ |= ϕ.
An institution with inclusions INS is (finitely) exact if its category Sign of

signatures is (finitely) cocomplete, and the functor Mod : Signop → ICat maps
(finite) colimits of signatures to limits of model categories with inclusions in
ICat. This adjusts the usual notion of exactness [ST12] to the framework where
model inclusions are considered. In particular, the following stronger form of the
amalgamation property [EM85] holds:

Lemma 3.1. Given a finitely exact institution with model inclusions INS, con-
sider a pushout of signatures

Then, for any M1 ∈ |Mod(Σ1)| and M2 ∈ |Mod(Σ2)| such that M1 σ1 =
M2 σ2 , there exists a unique M ′ ∈ |Mod(Σ′)| such that M ′

σ′
1

= M1 and
M ′

σ′
2

= M2. Moreover, for any submodels N1 ⊆ M1 and N2 ⊆ M2 such
that N1 σ1 = N2 σ2 (hence N1 σ1 = N2 σ2 ⊆ M1 σ1 = M2 σ2) the unique
N ′ ∈ |Mod(Σ′)| such that N ′

σ′
1

= N1 and N ′
σ′
2

= N2 is a submodel of M ′,
N ′ ⊆ M ′.
�
The standard institutions with model inclusions mentioned above (EQ,
FOPEQ, etc.) are exact, hence enjoy the amalgamation property captured by
Lemma 3.1.

Given a signature morphism σ :Σ → Σ′ and class M′ ⊆|Mod(Σ′)| of models,
we say that a model M ′ ∈ |Mod(Σ′)| is σ-generated in M′ if M ′ ∈ M′ and it has
no proper submodels in M′ with the same σ-reduct: for any submodel M ′′ ⊆ M ′

if M ′′ ∈ M′ and M ′′
σ = M ′

σ then M ′′ = M ′. By taking M′ = |Alg(Σ′)| we
obtain the standard definition of σ-generated model, which requires M ′ to be
generated by the set of all its elements in the carriers of M ′

σ. But note that
when M′

� |Alg(Σ′)|—in particular, when M′ is not closed under submodels—
models that are generated in M′ need not be generated in the standard sense,
exactly as in [EWT83]. For this reason a better terminology might be “minimal”,
as in [ST88], but we retain the terminology of [EWT83] to avoid confusion.

On Normal Forms for Structured Specifications with Generating Constraints 271

4 Structured Specifications in Institutions with Model
Inclusions

Taking an institution as a starting point for talking about specifications, each
signature Σ captures static information about the interface of a software system
with each Σ-model representing a possible realisation of such a system, and with
Σ-sentences used to describe properties that a realisation is required to satisfy.
As a consequence, it is natural to regard the meaning of any specification SP
built in an institution INS = 〈Sign,Sen,Mod, 〈|=Σ〉Σ∈|Sign|〉 as given by its
signature Sig [SP] ∈ |Sign| together with a class Mod [SP] of Sig [SP]-models.
Specifications SP with Sig [SP] = Σ are referred to as Σ-specifications.

The semantics of specifications yields the obvious notion of specification
equivalence: two specifications SP1 and SP2 are equivalent, written SP1 ≡ SP2,
if Sig [SP1] = Sig [SP2] and Mod [SP1] = Mod [SP2].

Specifications we will consider are built from basic specifications (presenta-
tions in INS) using specification-building operations [ST12]. Specification for-
malisms differ in the choice of these operations, but typically all share a ker-
nel introduced in ASL [SW83,ST88], where specifications are built from basic
specifications using union, translation, and hiding. Following [EWT83], we add
generating constraints to this repertoire, to capture constraints as studied there
via a more general specification-building operation. We use a syntax inspired by
that of Casl [BM04].

basic specifications: For any signature Σ ∈ |Sign| and set Φ ⊆ Sen(Σ) of
Σ-sentences, a basic specification 〈Σ,Φ〉 is a specification with:

Sig [〈Σ,Φ〉] = Σ
Mod [〈Σ,Φ〉] = {M ∈ Mod(Σ) | M |= Φ}

union: For any signature Σ ∈ |Sign|, given Σ-specifications SP1 and SP2,
their union SP1 ∪ SP2 is a specification with:

Sig [SP1 ∪ SP2] = Σ
Mod [SP1 ∪ SP2] = Mod [SP1] ∩ Mod [SP2]

translation: For any signature morphism σ : Σ → Σ′ and Σ-specification SP ,
SP with σ is a specification with:

Sig [SP with σ] = Σ′

Mod [SP with σ] = {M ′ ∈ |Mod(Σ′)| | M ′
σ ∈ Mod [SP]}

hiding : For any signature morphism σ : Σ → Σ′ and Σ′-specification SP ′,
SP ′ hide via σ is a specification with:

Sig [SP ′ hide via σ] = Σ
Mod [SP ′ hide via σ] = {M ′

σ | M ′ ∈ Mod [SP ′]}
generating constraints: For any signature morphism σ : Σ → Σ′, Σ-specifi-

cation SP and Σ′-specification SP ′, generate by σ from SP in SP ′ is a
specification with:

Sig [generate by σ from SP in SP ′] = Σ′

Mod [generate by σ from SP in SP ′] =
{M ′ ∈|Mod(Σ′)| | M ′ is σ-generated in Mod [SP ′],M ′

σ ∈Mod [SP]}

272 D. Sannella and A. Tarlecki

The above specification-building operations may be arbitrarily combined to
derive additional specification-building operations that capture some common
patterns of their use. For instance:

enrichment : For any specification SP and a set Φ ⊆ Sen(Sig [SP]) of sentences,
SP then Φ abbreviates SP ∪ 〈Sig [SP], Φ〉.

5 Algebraic Properties of Specification-Building
Operations

We start by recalling some easy facts concerning the standard specification-
building operations [ST12]:

Proposition 5.1. In any institution, under the obvious requirements on speci-
fication signatures, sentences and signature morphisms involved to ensure well-
formedness of the specifications concerned:

1. 〈Σ,Φ1〉 ∪ 〈Σ,Φ2〉 ≡ 〈Σ,Φ1 ∪ Φ2〉
2. 〈Σ,Φ〉 with σ : Σ → Σ′ ≡ 〈Σ′, σ(Φ)〉
3. SP with idSig[SP] ≡ SP ≡ SP hide via idSig[SP]

4. (SP with σ) with σ′ ≡ SP with σ;σ′
5. (SP hide via σ) hide via σ′ ≡ SP hide via σ′;σ
6. (SP ∪ SP ′) with σ ≡ (SP with σ) ∪ (SP ′ with σ)
�

The following easy fact follows directly from Proposition 5.1(4 and 6):

Proposition 5.2. In any institution INS, consider the following commuting
diagram of signatures:

Then for any Σ1-specification SP1 and Σ2-specification SP2,

(SP1 with σ1) ∪ (SP2 with σ2) ≡ ((SP1 with i1) ∪ (SP2 with i2)) with σ

�
Proposition 5.3. In any finitely exact institution INS, given a pushout of sig-
natures

On Normal Forms for Structured Specifications with Generating Constraints 273

1. (SP1 hide via σ1) with σ2 ≡ (SP1 with σ′
1) hide via σ′

2, for any Σ1-
specification SP1, and

2. (SP1 hide via σ1) ∪ (SP2 hide via σ2) ≡
((SP1 with σ′

1) ∪ (SP2 with σ′
2)) hide via σ1;σ′

1,
for any Σ1-specification SP1 and Σ2-specification SP2.

Proof. See Propositions 5.6.5 and 5.6.7 in [ST12].
�
We can also derive algebraic properties for derived specification-building oper-

ations; for instance the following property follows directly from Proposition 5.1(6
and 2):

Proposition 5.4. For any specification SP, set Φ ⊆ Sen(Sig [SP]) of sentences
and signature morphism σ : Sig [SP] → Σ′,

(SP then Φ) with σ ≡ (SP with σ) then σ(Φ)
�
In generate by σ from SP in SP ′ , both the “source” specification SP and

the “target” specification SP ′ may be arbitrarily complex, built using any com-
bination of specification-building operations, including generating constraints.
This is considerably more general than the constraints considered in [EWT83],
where in particular the “target” specification, within which we select the gener-
ated models, was taken to be a basic specification.

To begin with, let us note that the complexity of the source specification in a
generating constraint may easily be removed. The source specification does not
affect the generation property of the models within the target specification, and
so it may be moved out of the scope of the constraint and imposed separately:

Proposition 5.5. In any institution with model inclusions INS, for any signa-
ture morphism σ : Σ → Σ′, Σ-specification SP and Σ′-specification SP ′,

generate by σ from SP in SP ′ ≡
(generate by σ from 〈Σ, ∅〉 in SP ′) ∪ (SP with σ)

Proof. From the definition of the semantics of the specification-building opera-
tions involved.
�

The following property will be used to combine generating constraints:

Lemma 5.6. Consider two constraints generate by σ1 from SP1 in SP ′
1

and generate by σ2 from SP2 in SP ′
2 , where Sig [SP1] = Σ1, Sig [SP ′

1] = Σ′
1,

Sig [SP2] = Σ2, Sig [SP ′
2] = Σ′

2. Let Σ0 be a coproduct of Σ1 and Σ2 with injec-
tions i1 : Σ1 → Σ0 and i2 : Σ2 → Σ0, and Σ′

0 be a coproduct of Σ′
1 and Σ′

2 with
injections i′1 : Σ′

1 → Σ′
0 and i′2 : Σ′

2 → Σ′
0, and let σ0 : Σ0 → Σ′

0 be the unique
signature morphism such that i1;σ0 = σ1;i′1 and i2;σ0 = σ2;i′2.

274 D. Sannella and A. Tarlecki

Then for any model M ′ ∈|Mod(Σ′
0)|, M ′ is σ0-generated in Mod [(SP ′

1with i′1)∪
(SP ′

2 with i′2)] iff both M ′
i′
1

is σ1-generated in Mod [SP ′
1] and M ′

i′
2

is σ2-
generated in Mod [SP ′

2].

Proof. For the “only if” part, consider a model M ′ ∈ |Mod(Σ′
0)| such that M ′

is σ0-generated in Mod [(SP ′
1 with i′1) ∪ (SP ′

2 with i′2)]. Consider a submodel
N ′

1 ⊆ M ′
i′
1

such that N ′
1 ∈ Mod [SP ′

1] and N ′
1 σ1 = (M ′

i′
1
) σ1 . Let N ′ ∈

|Mod(Σ′
0)| be (the unique model) such that N ′

i′
1

= N ′
1 and N ′

i′
2

= M ′
i′
2
. Then

N ′ ⊆ M ′ (by Lemma 3.1), N ′ ∈ Mod [(SP ′
1 with i′1) ∪ (SP ′

2 with i′2)] (from
the definition of the semantics of structured specifications), and N ′

σ0 = M ′
σ0

(since (N ′
σ0) i2 = (N ′

i′
2
) σ2 = (M ′

i′
2
) σ2 = (M ′

σ0) i2 , and (N ′
σ0) i1 =

(N ′
i′
1
) σ1 = (M ′

i′
1
) σ1 = (M ′

σ0) i1). Hence N ′ = M ′, and so N ′
1 = M ′

i′
1
,

which shows that M ′
i′
1

is σ1-generated in Mod [SP ′
1]. By symmetry, M ′

i′
2

is
σ2-generated in Mod [SP ′

2].
For the opposite implication, suppose both M ′

i′
1

is σ1-generated in Mod [SP ′
1]

and M ′
i′
2

is σ2-generated in Mod [SP ′
2]. Consider a submodel N ′ ⊆ M ′ such

that N ′ ∈ Mod [(SP ′
1 with i′1) ∪ (SP ′

2 with i′2)] and N ′
σ0 = M ′

σ0 . Then
N ′

i′
1

∈ Mod [SP ′
1] is a submodel of M ′

i′
1

such that (N ′
i′
1
) σ1 = (N ′

σ0) i1 =
(M ′

σ0) i1 = (M ′
i′
1
) σ1 . Therefore N ′

i′
1

= M ′
i′
1
. By symmetry, N ′

i′
2

= M ′
i′
2
.

Hence N ′ = M ′, which shows M ′ is indeed σ0-generated in Mod [(SP ′
1 with i′1)∪

(SP ′
2 with i′2)].
�

Corollary 5.7. Under the notation of Lemma 5.6:((
(generate by σ1 from SP1 in SP ′

1) with i′1
) ∪(

(generate by σ2 from SP2 in SP ′
2) with i′2

)
)

≡

generate by σ0 from
(

(SP1 with i1) ∪
(SP2 with i2)

)
in

(
(SP ′

1 with i′1) ∪
(SP ′

2 with i′2)

)

Proof. Let SP l be the specification on the left-hand side of the equivalence, and
let SPr be the specification on its right-hand side.

Consider M ′
0 ∈ Mod [SP l]. Then M ′

0 i′
1

is σ1-generated in Mod [SP ′
1] and

M ′
0 i′

2
is σ2-generated in Mod [SP ′

2]. Hence, by Lemma 5.6, M ′
0 is σ0-generated

in Mod [(SP ′
1 with i′1) ∪ (SP ′

2 with i′2)]. Moreover, (M ′
0 i′

1
) σ1 = (M ′

0 σ0) i1 ∈
Mod [SP1] and (M ′

0 i′
2
) σ2 = (M ′

0 σ0) i2 ∈ Mod [SP2], hence we have M ′
0 σ0 ∈

Mod [(SP1 with i1) ∪ (SP2 with i2)]. Thus, M ′
0 ∈ Mod [SPr].

Consider now M ′
0 ∈ Mod [SPr]. M ′

0 is σ0-generated in Mod [(SP ′
1 with i′1) ∪

(SP ′
2 with i′2)], hence by Lemma 5.6, M ′

0 i′
1

is σ1-generated in Mod [SP ′
1] and

On Normal Forms for Structured Specifications with Generating Constraints 275

M ′
0 i′

2
is σ2-generated in Mod [SP ′

2]. Moreover, M ′
0 σ0 ∈ Mod [(SP1 with i1) ∪

(SP2 with i2)], hence (M ′
0 i′

1
) σ1 = (M ′

0 σ0) i1 ∈ Mod [SP1] and (M ′
0 i′

2
) σ2 =

(M ′
0 σ0) i2 ∈Mod [SP2]. Thus M ′

0 i′
1
∈Mod [generate by σ1 from SP1 in SP ′

1]
and M ′

0 i′
2

∈ Mod [generate by σ2 from SP2 in SP ′
2], which shows that M ′

0 ∈
Mod [SP l].
�

6 Normal Form Results

We now come to the presentation of so-called normal-form results for struc-
tured specifications, whereby we show that all specifications of a certain kind
are equivalent to a specification in a certain simple “normal form”.

The first such result is easy:

Theorem 6.1. In any institution INS, for every specification SP built from
basic specifications using union and translation, there is an equivalent (basic)
specification of the form 〈Σ,Φ〉 (where Φ is finite provided the basic specifications
involved in SP are finite).

Proof. By induction on the structure of specifications, using Proposition 5.1
(1 and 2).
�

Then, using Propositions 5.1 and 5.3, one can show the following normal
form result by an easy induction on the structure of specifications:

Theorem 6.2. Let INS be a finitely exact institution. For every specification
SP built from flat specifications using union, translation and hiding, there is an
equivalent specification of the form 〈Σ,Φ〉 hide via σ (where Φ is finite provided
the basic specifications involved in SP are finite).

Proof. See Theorem 5.6.10 in [ST12].
�
The above key result may be derived from the normal form result for constraints
in [EWT83] (see Theorem 2.1 above). It was given in a very similar form in
[BHK90] for the standard institution of first-order logic, and then generalised in
[Bor02] to an arbitrary exact institution. The result proved crucial for a number
of further foundational developments, notably in the study of completeness of
standard logical systems for proving consequences of structured specifications.

However, unlike the normal form result in [EWT83], Theorem 6.2 does not
address specifications with generating constraints. The key problem is to reduce
the complexity of the specifications involved in the generating constraints.

A generating constraint generate by σ from SP in SP ′ is source-trivial
if SP is a basic specification with no axioms, i.e., is of the form 〈Sig [SP], ∅〉.
A constraint generate by σ from SP in SP ′ is basic if SP ′ is a basic specifi-
cation.

276 D. Sannella and A. Tarlecki

As already mentioned, the complexity of the source specifications in gener-
ating constraints is not a problem:

Corollary 6.3. In any institution INS with model inclusions, any structured
specification built from basic specifications using union, translation, hiding and
generating constraints is equivalent to a specification built from basic specifica-
tions using union, translation, hiding and source-trivial generating constraints.

Proof. Follows from Proposition 5.5 by induction on the structure of specifica-
tions.
�

We are now ready for a direct generalisation of Theorem 2.1, the main normal
form result in [EWT83].

As recalled in Sect. 2, the canonical constraints of [EWT83] are of the form:

〈Σ1, Φ1〉 σ1−→
GEN

〈Σ2, Φ2〉 σ2−→
TRA

〈Σ3, Φ3〉 σ3←−
REF

〈Σ,Φ〉

In terms of the specification-building operations introduced in Sect. 4, this may
be written as follows:

((((generate by σ1 from 〈Σ1, Φ1〉 in 〈Σ2, Φ2〉) with σ2) then Φ3)
hide via σ3) then Φ

with further requirements to ensure that the signature morphisms involved are
in fact presentation morphisms. We will show below that the above form may
be considerably simplified, by collecting all of the axioms involved in one place:

〈Σ1, ∅〉 σ1−→
GEN

〈Σ2, Φ2〉 σ2−→
TRA

〈Σ3, ∅〉 σ3←−
REF

〈Σ, ∅〉

A specification is in basic normal form if it has the form:

((generate by σ from 〈Σ, ∅〉 in 〈Σ′, Φ′〉) with σ′) hide via δ

where the signatures and signature morphisms are as in the following diagram:

Σ
σ−→ Σ′ σ′

−→ Σ′′ δ←− Σ̂

This makes Theorem 6.4 below stronger, even in the standard algebraic frame-
work, than Theorem 2.1.

Theorem 6.4. In any finitely exact institution INS with model inclusions, any
structured specification built from basic specifications using union, translation,
hiding and basic generating constraints is equivalent to a specification in basic
normal form.

Proof. First, by Corollary 6.3 (and Proposition 5.5) it is enough to consider
structured specifications built from basic specifications using union, translation,
hiding and source-trivial basic generating constraints. For those, we proceed
by induction on the structure of specifications concerned, considering the last
specification-building operation involved and assuming that its arguments, if any,
are in basic normal form:

On Normal Forms for Structured Specifications with Generating Constraints 277

basic specifications:

〈Σ,Φ〉
≡ (directly by the semantics)

((generate by idΣ from 〈Σ, ∅〉 in 〈Σ,Φ〉) with idΣ) hide via idΣ

union: The following diagram in Sign may help to follow the equivalences
below:

(((generate by σ1 from 〈Σ1, ∅〉 in 〈Σ′
1, Φ′

1〉) with σ′
1) hide via δ1)

∪
(((generate by σ2 from 〈Σ2, ∅〉 in 〈Σ′

2, Φ′
2〉) with σ′

2) hide via δ2)

≡ (by Proposition 5.3(2), taking a pushout Σ′′
1

δ′
1−→ Σ′′

0

δ′
2←− Σ′′

2 of the span

Σ′′
1

δ1←− ̂Σ
δ2−→ Σ′′

2 and δ0 = δ1;δ′
1 = δ2;δ′

2)
⎛

⎝

(((generate by σ1 from 〈Σ1, ∅〉 in 〈Σ′
1, Φ′

1〉) with σ′
1) with δ′

1)
∪
(((generate by σ2 from 〈Σ2, ∅〉 in 〈Σ′

2, Φ′
2〉) with σ′

2) with δ′
2)

⎞

⎠

hide via δ0
≡ (by Proposition 5.1(4))

⎛

⎝

((generate by σ1 from 〈Σ1, ∅〉 in 〈Σ′
1, Φ′

1〉) with σ′
1;δ

′
1)

∪
((generate by σ2 from 〈Σ2, ∅〉 in 〈Σ′

2, Φ′
2〉) with σ′

2;δ
′
2)

⎞

⎠ hide via δ0

≡ (by Proposition 5.2, taking a coproduct Σ′
1

i′
1−→ Σ′

0

i′
2←− Σ′

2 and σ′
0 :Σ

′
0 → Σ′′

0

such that i′1;σ
′
0 = σ′

1;δ
′
1 and i′2;σ

′
0 = σ′

2;δ
′
2)

⎛

⎝

⎛

⎝

((generate by σ1 from 〈Σ1, ∅〉 in 〈Σ′
1, Φ′

1〉) with i′1)
∪
((generate by σ2 from 〈Σ2, ∅〉 in 〈Σ′

2, Φ′
2〉) with i′2)

⎞

⎠ with σ′
0

⎞

⎠

hide via δ0

≡ (by Corollary 5.7, taking a coproduct Σ1
i1−→ Σ0

i2←− Σ2 and σ0 : Σ0 → Σ′
0

such that i1;σ0 = σ1;i′1 and i2;σ0 = σ2;i′2, and by Proposition 5.1(2 and 1))
((

(generate by σ0 from 〈Σ0, ∅〉 in 〈Σ′
0, i′1(Φ

′
1) ∪ i′2(Φ

′
2)〉)

)

with σ′
0

)

hide via δ0

278 D. Sannella and A. Tarlecki

translation:

(((generate by σ from 〈Σ, ∅〉 in 〈Σ′, Φ′〉) with σ′) hide via δ) with τ

≡ (by Proposition 5.3(1), taking a pushout Σ′ τ ′
−→ • δ′

←− ̂Σ′of the span

Σ′ δ←− ̂Σ
τ−→ ̂Σ′)

(((generate by σ from 〈Σ, ∅〉 in 〈Σ′, Φ′〉) with σ′) with τ ′) hide via δ′
≡ (by Proposition 5.1(4))

((generate by σ from 〈Σ, ∅〉 in 〈Σ′, Φ′〉) with σ′;τ ′) hide via δ′

hiding :

(((generate by σ from 〈Σ, ∅〉 in 〈Σ′, Φ′〉) with σ′) hide via δ) hide via δ′
≡ (by Proposition 5.1(5))

((generate by σ from 〈Σ, ∅〉 in 〈Σ′, Φ′〉) with σ′) hide via δ′;δ

source-trivial basic generating constraints:

generate by σ from 〈Σ, ∅〉 in 〈Σ′, Φ′〉
≡ (by Proposition 5.1(3))

((generate by σ from 〈Σ, ∅〉 in 〈Σ′, Φ〉) with idΣ′) hide via idΣ′

�
One might expect that Theorem 6.4 can be generalised to cover arbitrary

specifications built from basic specifications using union, translation, hiding and
(not necessarily basic) generating constraints. Unfortunately, in general this need
not be the case, as the following counterexample shows.

Counterexample 6.5. Consider a very simple institution INS0 with three sig-
natures Σ∅, Σ1 and Σ2, and signature morphisms σ : Σ∅ → Σ1, δ : Σ1 → Σ2 (and
identities and the composition σ;δ). This defines the signature category, which is
finitely cocomplete. Let Mod0(Σ∅) be a singleton. Then let Mod0(Σ1) contain
three distinct models K1, N1 and M1 such that K1 ⊆ N1 ⊆ M1. Let Mod0(Σ2)
have two distinct models N2 and M2 with no inclusions other than identities.
We also put N2 δ = N1 and M2 δ = M1. Finally, let Sen(Σ∅) = Sen0(Σ1) =
Sen0(Σ2) = ∅.

Consider

generate by σ from 〈Σ0, ∅〉 in (〈Σ2, ∅〉 hide via δ)

Clearly, N1 is the only model of the above specification. By a simple analysis of
all possible cases, no Σ-specification in basic normal form has N1 as the only
model: {N1} cannot be the model class of a specification without generating
constraints, since N1 and M1 cannot be distinguished in such a specification. All
basic generating constraints here admit all models of their target specifications,
except for the following one:

generate by σ from 〈Σ∅, ∅〉 in 〈Σ1, ∅〉

On Normal Forms for Structured Specifications with Generating Constraints 279

which does not have N1 as a model, since it has a proper submodel K1. Hence,
no specification in basic normal form built on this constraint has N1 as a model.

Unfortunately, the above construction is not quite right: the institution we
defined does not satisfy our assumptions, since the model functor is not continu-
ous. For instance, the coproduct of Σ1 and Σ2 is Σ2, but the class of its models
is not a product of the model classes of Σ1 and Σ2. The overall idea of the
counterexample works, but the following more complex construction is needed.

Consider a category C0 with two objects Σ1 and Σ2 and a morphism δ : Σ1 →
Σ2, with model categories, reduct functor, and sets of sentences defined as above.

Let the category of signatures in INS′
0 be the category Set→ of morphisms

in Set, i.e. signatures now consist of two sets and a function between them,

written X2
f→X1, and signature morphisms σ : (X2

f→X1) → (X ′
2

f ′
→X ′

1) are pairs
of functions σ1 : X1 → X ′

1 and σ2 : X2 → X ′
2 such that f ;σ1 = σ2;f ′. It is well-

known that Set→ is cocomplete. In fact, this is a special case of the construction
of a free cocomplete category generated by any category C, given by the Yoneda
embedding of C into the category SetCop

of presheaves on C, see e.g. [Awo06]
(Example 9.15 and Proposition 9.16). This also justifies the following choice of
representation of the original signatures here: we identify Σ1 with ∅→{idΣ1}
and Σ2 with {idΣ2}→{δ}, and δ with the unique morphism between them. We
may write Σ∅ for the initial signature ∅→∅.

In Set→, the signature X2
f→X1 is a colimit of a diagram with nodes X2�X1,

where Σ2 is the object in each node in X2 and Σ1 is the object in each node
in X1, with edges from f(s) to s labelled by δ for each node s ∈ X2. Now,

extend the model functor so that the category Mod′
0(X2

f→X1) is the limit in
ICat of the image of this diagram w.r.t. Mod0 (as defined above on Σ1, Σ2

and δ). This means in particular that a model P over a signature X2
f→X1 is

a pair of functions P1 : X1 → {K1, N1,M1} and P2 : X2 → {N2,M2} such that
for x2 ∈ X2, P1(f(x2)) = P2(x2) δ. Such a model P is a submodel of P ′ iff
P2(x2) = P ′

2(x2) for x2 ∈ X2, and P1(x1) ⊆ P ′
1(x1) for x1 ∈ X1. Model reducts

are given by (pre)composition with signature morphisms. Then for the sentence

functor we set Sen0(X2
f→X1) = ∅.

Now, the institution so sketched is exact, and the counterexample works: the
specification

generate by σ from 〈Σ∅, ∅〉 in (〈Σ2, ∅〉 hide via δ)

has no equivalent Σ1-specification in basic normal form. To see this, just note
that for any basic generating constraint C with Sig [C] = (X2

f→X1), for any P ∈
Mod [C], if for x1 ∈ (X1 \ f(X2)), P (x1) = N1 then there are P ′, P ′′ ∈ Mod [C]
such that P ′(x1) = K1 and P ′′(x1) = M1, and if for x2 ∈ X2, P (x2) = N2

then there is P ′ ∈ Mod [C] such that P ′(x2) = M2. Moreover, this property of
specifications is preserved under translation w.r.t. any signature morphism. It
follows then that no Σ1-specification in basic normal form has N1 (or rather, P
such that P1(idΣ1) = N1) as its unique model.
�

280 D. Sannella and A. Tarlecki

The source of the trouble is the use of hiding within the target specifications
for generating constraints. One might suppose that when hiding is forbidden,
the normal form result holds even if other specification-building operations are
permitted within the target specifications used in generating constraints. Unfor-
tunately, this is not the case: nested generating constraints may yield a similar
effect as captured by Counterexample 6.5.

Counterexample 6.6. Consider a very simple institution INS1 with three
signatures Σ, Σ1 and Σ2 and non-identity morphisms σ1 : Σ1 → Σ and
σ2 : Σ2 → Σ. Mod1(Σ1) has three distinct models K1, LN 1 and M1 with
K1 ⊆ LN 1 ⊆ M1, Mod(Σ2) has two distinct models KL2 and NM 2 with
KL2 ⊆ NM 2, and Mod(Σ) has four distinct models K, L, N and M with
K ⊆ L ⊆ N ⊆ M . We put K σ1 = K1, L σ1 = N σ1 = LN 1 and M σ1 = M1,
and K σ2 = L σ2 = KL2 and N σ2 = M σ2 = NM 2. Finally, we assume that
there are no sentences in INS1, i.e., Sen1(Σ) = Sen1(Σ1) = Sen1(Σ2) = ∅.

Then Mod [generate by σ1 from 〈Σ1, ∅〉 in 〈Σ, ∅〉] = {K,L,M}, and so
the constraint

generate by σ2 from 〈Σ2, ∅〉 in (generate by σ1 from 〈Σ1, ∅〉 in 〈Σ, ∅〉)

has K and M as its only models. It is easy to check though that no basic
generating constraint, and no specification in basic normal form, has {K,M} as
its model class.

As in Counterexample 6.5, the above does not quite give a counterexample:
the defined institution is not exact. Therefore, a construction of a new institution
INS′

1 analogous to that in Counterexample 6.5 has to be carried out.
Let C1 be the category with three signatures and morphisms as defined

above. Take its free cocomplete closure via the Yoneda embedding into the
category of presheaves over C1, Y : C1 → SetCop

1 . More explicitly, the result-
ing new category of signatures has objects of the form X1

f1←X
f2→X2, where

X1, X and X2 are sets and f1 : X → X1 and f2 : X → X2 are functions.

A morphism h : (X1
f1←X

f2→X2) → (X ′
1

f ′
1←X ′ f ′

2→X ′
2) consists of three functions

h1 : X1 → X ′
1, h0 : X → X ′ and h2 : X2 → X ′

2 such that h0;f ′
1 = f1;h1 and

h0;f ′
2 = f2;h2. We identify Σ1 with {idΣ1}←∅→∅, Σ2 with ∅←∅→{idΣ2}, Σ

with {σ1}←{idΣ}→{σ2}, and the morphisms σ1 : Σ1 → Σ and σ2 : Σ2 → Σ
with unique morphisms between them. We do not add any sentences, so that
the sentence functor Sen′

1 yields the empty set on every signature.

A signature X1
f1←X

f2→X2 is a colimit of a diagram with nodes X1 � X � X2,
where nodes in X1 carry Σ1, nodes in X carry Σ and nodes in X2 carry Σ2, and
edges from f1(x) to x are labelled by σ1 and from f2(x) to x are labelled by σ2,

for all x ∈ X. We define the model functor Mod′
1 so that Mod′

1(X1
f1←X

f2→X2)
is the limit in ICat of the image of this diagram under Mod1 (as defined above

for C1). That is, any model P ∈ |Mod′
1(X1

f1←X
f2→X2)| consist of three functions

P1 : X1 → {K1,LN 1,M1}, P0 : X → {K,L,N,M} and P2 : X2 → {KL2,NM 2}

On Normal Forms for Structured Specifications with Generating Constraints 281

such that for x ∈ X, P0(x) σ1 = P1(f1(x)) and P0(x) σ2 = P2(f2(x)). Such a

model is a submodel of P ′ ∈ |Mod(X1
f1←X

f2→X2)| if for all x1 ∈ X1, P1(x1) ⊆
P ′
1(x1), and similarly for X and X2. Model reducts are given by (pre)composition

with signature morphisms. For a class of models P ⊆ |Mod′
1(X1

f1←X
f2→X2)| and

x ∈ X, we write P(x) = {P0(x) | P ∈ P}.

Consider now a signature morphism h : (X1
f1←X

f2→X2) → (X ′
1

f ′
1←X ′ f ′

2→X ′
2) and

constraint C ′ = generate by h from 〈X1
f1←X

f2→X2, ∅〉 in 〈X ′
1

f ′
1←X ′ f ′

2→X ′
2, ∅〉 .

We analyse the class of the models of C ′. Let x′ ∈ X ′.

– For some x ∈ X, x′ = h0(x) (and so f ′
1(x

′) = h1(f1(x)) and f ′
2(x

′) =
h2(f2(x))). Then Mod [C ′](x′) = {K,L,N,M}, since informally, the corre-
sponding component of the signature morphism is the identity on this “occur-
rence” of Σ.

– x′ is not in the image of h0; then we have the following subcases.

• For some x1 ∈ X1 and x2 ∈ X2, h1(x1) = f ′
1(x

′) and h2(x2) = f ′
2(x

′). Then
Mod [C ′](x′) = {K,L,N,M}, since informally, the corresponding component
of the signature morphism is the map from the coproduct of Σ1 and Σ2 to
this “occurrence” of Σ given by σ1 and σ2, and the reducts w.r.t. σ1 and σ2

do not jointly identify any models from {K,L,N,M}.
• For some x1 ∈ X1, h1(x1) = f ′

1(x
′) but f ′

2(x
′) is not in the image of h2. Then

Mod [C ′](x′) = {K,L,M}, since informally, the corresponding component of
the signature morphism is σ1, and the reduct w.r.t. σ1 glues L and N together.

• For some x2 ∈ X2, h2(x2) = f ′
2(x

′) but f ′
1(x

′) is not in the image of h1. Then
Mod [C ′](x′) = {K,N}, since informally, the corresponding component of the
signature morphism is σ2, and the reduct w.r.t. σ2 glues K and L as well as
N and M together.

• Neither is f ′
1(x

′) in the image of h1 nor is f ′
2(x

′) in the image of h2. Then
Mod [C ′](x′) = {K}, since informally, the corresponding component of the
signature morphism is the unique morphism from the initial signature to Σ,
and the reduct w.r.t. this morphism glues all models together.

Consequently, for any basic generation constraint C ′ as above, for x′ ∈ X ′, the
class Mod [C](x′) is in the family F = {{K,L,N,M}, {K,L,M}, {K,N}, {K}}.
Moreover, this property is preserved under translation of specifications, since the
family F is closed under intersection, and under hiding (reducts w.r.t. signature
morphisms). Therefore, no specification in basic normal form may have {K,M}
is its class of models.
�

The above counterexamples show that in general we cannot avoid nesting of
structured specifications within generation constraints. We say that a specifica-
tion is in nested normal form if either it is a basic specification, or it is built as
follows:

((generate by σ from 〈Σ, ∅〉 in SP ′) with σ′) hide via δ

where SP ′ is a specification in nested normal form.

282 D. Sannella and A. Tarlecki

Corollary 6.7. In any finitely exact institution INS with model inclusions, any
structured specification built from basic specifications using union, translation,
hiding and generating constraints is equivalent to a specification in nested normal
form.

Proof. As in the proof of Theorem 6.4, we first use Corollary 6.3 to allow us to deal
with source-trivial generating constraints only. Then the proof proceeds by double
induction, on the maximal depth of nesting of generating constraints in the speci-
fications, and then on the structure of specifications. When the depth of nesting is
at most 1, the result follows by Theorem 6.4. Otherwise, we proceed by induction
on the structure of specification, assuming the thesis for all specifications with a
smaller depth of nesting of generating constraints. The case of basic specifications
is trivial. The cases for translation and hiding follow much as in the proof of Theo-
rem 6.4. For generating constraints, the thesis follows by the inductive assumption,
since the specification used within the generating constraint has a smaller depth of
nesting of generating constraints. For the case of union, we get by an argument
analogous to that in the proof of Theorem 6.4 for the case of union:

(((generate by σ1 from 〈Σ1, ∅〉 in SP ′
1) with σ′

1) hide via δ1)
∪
(((generate by σ2 from 〈Σ2, ∅〉 in SP ′

2) with σ′
2) hide via δ2)

≡((
(generate by σ0 from 〈Σ0, ∅〉 in ((SP ′

1 with i′1) ∪ (SP ′
2 with i′2)))

)
with σ′

0) hide via δ0

Now, the thesis follows by the inductive assumption, since the depth of nesting
of generating constraints in (SP ′

1 with i′1) ∪ (SP ′
2 with i′2) is lower than in the

original specification.
�

7 Final Remarks

We started with the normal form result for constraints as studied in [EWT83] in
the standard algebraic framework. We have shown that this result carries over
to the more general setting of an arbitrary institution with some minimal extra
structure: the notion of a submodel needed to capture the definition of generated
model used in [EWT83]. Moreover, we sharpened the result somewhat via the
use of a more restrictive definition of normal form.

We then considered the more general problem of normalising specifications
where generating constraints are imposed in a class of models of an arbitrary
specification, not just a presentation as in [EWT83]. Unfortunately, two coun-
terexamples show that the normal form result does not carry over to this more
general situation. Some nesting of generating constraints must be allowed, lead-
ing to a considerably weaker normal form result for this more general case.

The difficulties we encountered are linked to the definition of generated model
in [EWT83], which we retained here. A standard alternative would be to free
the concept of generated model from its dependency on the class of models of

On Normal Forms for Structured Specifications with Generating Constraints 283

the specification at hand, and consider generation in the class of all models over
the given signature. In the standard algebraic framework this leads to the usual
notion of generated algebra, where all elements are values of terms with variables
taking values in the indicated carriers, with the usual connection to structural
induction, as in Casl [BCH+04]. For specifications with generating constraints
of this special form, by easy adaptation of Theorem 6.4 and its proof one can
build an equivalent normal form of the following shape:

(((generate by σ from 〈Σ, ∅〉 in 〈Σ′, ∅〉) then Φ) with σ′) hide via δ

Restricting to this special case would considerably limit the power of generat-
ing constraints as considered here. For instance, in AI applications, McCarthy’s
notion of circumscription [McC80] used to impose a “closed world assumption”
could not be captured in general, since no predicate ever holds in generated
models over a first-order signature without any axioms or constraints imposed
on the class of models considered. It is worth mentioning that a similarly gen-
eral construct was introduced in DOL, the Distributed Ontology, Modeling and
Specification Language [MCNK15].

One issue we did not touch on here at all is the development of proof systems for
structured specifications. This is well-studied in the context of specifications built
from basic specifications using union, translation and hiding, with a standard com-
positional proof system for consequences of specifications given in the framework of
an arbitrary institution already in [ST88]. Completeness results follow under addi-
tional assumptions about the institution (most notably, interpolation is needed)
where the proof of completeness heavily relies on the normal form result [Bor02]. It
is well-known that once generating constraints are added, there is no hope for com-
pleteness [MS85]. However, in [ST14] we showed that the compositional proof sys-
tem for structured specification built from basic specifications using union, trans-
lation and hiding is the best sound compositional proof system possible. It would
be interesting to see how to carry this over to specifications with generating con-
straints, with some sound approximate techniques for proving consequences of gen-
erating constraints. Perhaps the normal form results studied here could be used to
“concentrate” the necessary incompleteness at specific points in the structure of
specifications, linked to the use of generating constraints in the normal forms.

Acknowledgements. Thanks to the anonymous referees for their constructive com-
ments.

References

[Awo06] Awodey, S.: Category Theory. Oxford University Press, New York (2006)
[BCH+04] Baumeister, H., Cerioli, M., Haxthausen, A., Mossakowski, T., Mosses,

P.D., Sannella, D., Tarlecki, A.: Casl semantics. In: [Mos04] (2004)
[BHK90] Bergstra, J.A., Heering, J., Klint, P.: Module algebra. J. Assoc. Comput.

Mach. 37(2), 335–372 (1990)
[BM04] Bidoit, M., Mosses, P.D. (eds.): CASL User Manual. LNCS, vol.

2900. Springer, Heidelberg (2004). https://doi.org/10.1007/b11968.
http://www.informatik.uni-bremen.de/cofi/index.php/CASL

https://doi.org/10.1007/b11968
http://www.informatik.uni-bremen.de/cofi/index.php/CASL

284 D. Sannella and A. Tarlecki

[Bor02] Borzyszkowski, T.: Logical systems for structured specifications. Theor.
Comput. Sci. 286(2), 197–245 (2002)

[CMST17] Codescu, M., Mossakowski, T., Sannella, D., Tarlecki, A.: Specification
refinements: calculi, tools, and applications. Sci. Comput. Program. 144,
1–49 (2017)

[CR97] Căzănescu, V.E., Roşu, G.: Weak inclusion systems. Math. Struct. Com-
put. Sci. 7(2), 195–206 (1997)

[DGS93] Diaconescu, R., Goguen, J.A., Stefaneas, P.: Logical support for modular-
isation. In: Huet, G., Plotkin, G. (eds.) Logical Environments, pp. 83–130.
Cambridge University Press, Cambridge (1993)

[EM85] Ehrig, H., Mahr, B.: Fundamentals of Algebraic Specification 1. EATCS
Monographs on Theoretical Computer Science, vol. 6. Springer, Heidelberg
(1985). https://doi.org/10.1007/978-3-642-69962-7

[EWT83] Ehrig, H., Wagner, E.G., Thatcher, J.W.: Algebraic specifications with gen-
erating constraints. In: Diaz, J. (ed.) ICALP 1983. LNCS, vol. 154, pp. 188–
202. Springer, Heidelberg (1983). https://doi.org/10.1007/BFb0036909

[GB84] Goguen, J.A., Burstall, R.M.: Introducing institutions. In: Clarke, E.,
Kozen, D. (eds.) Logic of Programs 1983. LNCS, vol. 164, pp. 221–256.
Springer, Heidelberg (1984). https://doi.org/10.1007/3-540-12896-4 366.
Many revised versions were widely circulated, with [GB92] as the endpoint

[GB92] Goguen, J.A., Burstall, R.M.: Institutions: abstract model theory for spec-
ification and programming. J. Assoc. Comput. Mach. 39(1), 95–146 (1992)

[GR04] Goguen, J.A., Roşu, G.: Composing hidden information modules over inclu-
sive institutions. In: Owe, O., Krogdahl, S., Lyche, T. (eds.) From Object-
Orientation to Formal Methods. LNCS, vol. 2635, pp. 96–123. Springer,
Heidelberg (2004). https://doi.org/10.1007/978-3-540-39993-3 7

[McC80] McCarthy, J.: Circumscription – a form of non-monotonic reasoning. Artif.
Intell. 13(1–2), 27–39 (1980)

[MCNK15] Mossakowski, T., Codescu, M., Neuhaus, F., Kutz, O.: The distributed
ontology, modeling and specification language – DOL. In: Koslow, A.,
Buchsbaum, A. (eds.) The Road to Universal Logic. SUL, pp. 489–520.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-15368-1 21

[Mos04] Mosses, P.D. (ed.): Casl Reference Manual. LNCS, vol. 2960. Springer,
Heidelberg (2004). https://doi.org/10.1007/b96103

[MS85] MacQueen, D., Sannella, D.: Completeness of proof systems for equational
specifications. IEEE Trans. Softw. Eng. SE–11(5), 454–461 (1985)

[ST88] Sannella, D., Tarlecki, A.: Specifications in an arbitrary institution. Inf.
Comput. 76(2–3), 165–210 (1988)

[ST12] Sannella, D., Tarlecki, A.: Foundations of Algebraic Specification and For-
mal Software Development. Monographs in Theoretical Computer Science.
An EATCS Series. Springer, Heidelberg (2012)

[ST14] Sannella, D., Tarlecki, A.: Property-oriented semantics of structured spec-
ifications. Math. Struct. Comput. Sci. 24(2), e240205 (2014)

[SW83] Sannella, D., Wirsing, M.: A kernel language for algebraic specification
and implementation: extended abstract. In: Karpinski, M. (ed.) FCT 1983.
LNCS, vol. 158, pp. 413–427. Springer, Heidelberg (1983). https://doi.org/
10.1007/3-540-12689-9 122

[Tar83] Tarlecki, A.: Remarks on [EWT83]. Unpublished note, Department of
Computer Science, University of Edinburgh (1983)

https://doi.org/10.1007/978-3-642-69962-7
https://doi.org/10.1007/BFb0036909
https://doi.org/10.1007/3-540-12896-4_366
https://doi.org/10.1007/978-3-540-39993-3_7
https://doi.org/10.1007/978-3-319-15368-1_21
https://doi.org/10.1007/b96103
https://doi.org/10.1007/3-540-12689-9_122
https://doi.org/10.1007/3-540-12689-9_122

Towards the Automated Generation
of Consistent, Diverse, Scalable and Realistic

Graph Models

Dániel Varró1,2,3 , Oszkár Semeráth1,2(B) , Gábor Szárnyas1,2 ,
and Ákos Horváth1,4

1 Budapest University of Technology and Economics, Budapest, Hungary
{varro,semerath,szarnyas,ahorvath}@mit.bme.hu

2 MTA-BME Lendület Research Group on Cyber-Physical Systems,
Budapest, Hungary

3 Department of Electrical and Computer Engineering,
McGill University, Montreal, Canada

4 IncQuery Labs Ltd., Budapest, Hungary

Abstract. Automated model generation can be highly beneficial for
various application scenarios including software tool certification, vali-
dation of cyber-physical systems or benchmarking graph databases to
avoid tedious manual synthesis of models. In the paper, we present a
long-term research challenge how to generate graph models specific to a
domain which are consistent, diverse, scalable and realistic at the same
time.

We provide foundations for a class of model generators along a refine-
ment relation which operates over partial models with 3-valued repre-
sentation and ensures that subsequently derived partial models preserve
the truth evaluation of well-formedness constraints in the domain. We
formally prove completeness, i.e. any finite instance model of a domain
can be generated by model generator transformations in finite steps and
soundness, i.e. any instance model retrieved as a solution satisfies all
well-formedness constraints. An experimental evaluation is carried out
in the context of a statechart modeling tool to evaluate the trade-off
between different characteristics of model generators.

Keywords: Automated model generation · Partial models
Refinement

1 Introduction

Smart and safe cyber-physical systems [16,54,69,93] are software-intensive
autonomous systems that largely depend on the context in which they operate,
and frequently rely upon intelligent algorithms to adapt to new contexts on-the-
fly. However, adaptive techniques are currently avoided in many safety-critical
systems due to major certification issues. Automated synthesis of prototypical
c© Springer International Publishing AG, part of Springer Nature 2018
R. Heckel and G. Taentzer (Eds.): Ehrig Festschrift, LNCS 10800, pp. 285–312, 2018.
https://doi.org/10.1007/978-3-319-75396-6_16

http://orcid.org/0000-0002-8790-252X
http://orcid.org/0000-0002-3592-5105
http://orcid.org/0000-0001-8233-4431
http://orcid.org/0000-0003-3545-3694

286 D. Varró et al.

test contexts [58] aims to systematically derive previously unanticipated contexts
for assurance of such smart systems in the form of graph models. Such prototype
contexts need to be consistent, i.e. they need to fulfill certain well-formedness
(consistency) constraints when synthesizing large and realistic environments.

In many design and verification tools used for engineering CPSs, system
models are frequently represented as typed and attributed graphs. There has
been an increasing interest in model generators to be used for validating, test-
ing or benchmarking design tools with advanced support for queries and trans-
formations [4,6,42,92]. Qualification of design and verification tools is necessi-
tated by safety standards (like DO-178C [89], or ISO 26262 [43]) in order to
assure that their output results can be trusted in safety-critical applications.
However, tool qualification is extremely costly due to the lack of effective best
practices for validating the design tools themselves. Additionally, design-space
exploration [47,57,66] necessitates to automatically derive different solution can-
didates which are optimal w.r.t. certain objectives for complex allocation prob-
lems. For testing and DSE purposes, diverse models need to be synthesized where
any pairs of models are structurally very different from each other in order to
achieve high coverage or a diverse solution space.

Outside the systems engineering domain, many performance benchmarks for
advanced relational databases [26], triple stores and graph databases [13,60,80],
or biochemical applications [36,99] also rely on the availability of extremely large
and scalable generators of graph models.

Since real models created by engineers are frequently unavailable due to the
protection of intellectual property rights, there is an increasing need of realistic
models which have similar characteristics to real models. However, these models
should be domain-specific, i.e. graphs of biomedical systems are expected to be
very different from graphs of social networks or software models. An engineer
can easily distinguish an auto-generated model from a manually designed model
by inspecting key attributes (e.g. names), but the same task becomes more chal-
lenging if we abstract from all attributes and inspect only the (typed) graph
structure. While several graph metrics have been proposed [10,12,44,68], the
characterization of realistic models is a major challenge [91].

As a long-term research challenge, we aim at automatically generating
domain-specific graph models which are simultaneously scalable, realistic, consis-
tent and diverse. In the paper, we precisely formulate the model generation chal-
lenge for the first time (Sect. 2). Then in Sect. 3, we revisit the formal foundations
of partial models and well-formedness constraints captured by graph patterns.
In Sect. 4, we propose a refinement calculus for partial models as theoretical
foundation for graph model generation, and a set of specific refinement opera-
tions as novel contributions. Moreover, we precisely formulate certain soundness
and completeness properties of this refinement calculus.1 In addition, we carry
out an experimental evaluation of some existing techniques and tools in Sect. 5

1 The authors’ copy of this paper is available at https://inf.mit.bme.hu/research/
publications/towards-model-generation together with the proofs of theorems pre-
sented in Sect. 4.

https://inf.mit.bme.hu/research/publications/towards-model-generation
https://inf.mit.bme.hu/research/publications/towards-model-generation

Towards the Automated Generation of Graph Models 287

to assess the trade-off between different characteristics (e.g. diverse vs. realis-
tic, consistent vs. diverse, diverse vs. consistent and consistent vs. scalable) of
model generation. Finally, related work is discussed w.r.t. the different properties
required for model generation in Sect. 6.

2 The Graph Model Generation Challenge

A domain specification (or domain-specific language, DSL) is defined by a meta-
model MM which captures the main concepts and relations in a domain, and
specifies the basic graph structure of the models. In addition, a set of well-
formedness constraints WF = {φ1, . . . , φn} may further restrict valid domain
models by extra structural restrictions. Furthermore, we assume that editing
operations of the domain are also defined by a set of rules OP .

Informally, the automated model generation challenge is to derive a set of
instance models where each Mi conforms to a metamodel MM . A model gen-
erator Gen �→ {Mi} derives a set (or sequence) of models along a derivation
sequence M0

op1,...,opk−−−−−−→ Mi starting from (a potentially empty) initial model M0

by applying some operations opj from OP at each step. Ideally, a single model
Mi or a model generator Gen should satisfy the following requirements:

– Consistent (CON): A model Mi is consistent if it satisfies all constraints
in WF (denoted by Mi |= WF). A model generator Gen is consistent, if it
is sound (i.e. if a model is derivable then it is consistent) and complete (i.e.
all consistent models can be derived).

– Diverse (DIV): The diversity of a model Mi is defined as the number of
(direct) types used from its MM : Mi is more diverse than Mj if more types
of MM are used in Mi than in Mj . A model generator Gen is diverse if
there is a designated distance between each pairs of models Mi and Mj :
dist(Mi,Mj) > D.

– Scalable (SCA): A model generator Gen is scalable in size if the size of
Mi is increasing exponentially #(Mi+1) ≥ 2 · #(Mi), thus a single model Mi

can be larger than a designated model size #(Mi) > S. A model generator
Gen is scalable in quantity if the generation of Mj (of similar size) does
not take significantly longer than the generation of any previous model Mi:
time(Mj) < max0≤i<j{time(Mi)} · T (for some constant T).

– Realistic (REA): A generated model is (structurally) realistic if it cannot
be distinguished from the structure of a real model after all text and values
are removed (by considering them irrelevant). A model generator is realistic
w.r.t. some graph metrics [91] and a set of real models {RMi} if the evaluation
of the metrics for the real and the generated set of models has similar values:
|metr({RMi}) − metr({Mi})| < R.

Note that we intentionally leave some metrics metr and distance functions
dist open in the current paper as their precise definitions may either be domain-
specific or there are no guidelines which ones are beneficial in practice.

288 D. Varró et al.

Each property above is interesting in itself, i.e. it has been addressed in
numerous papers, and used in at least one industrial application scenario. More-
over, similar properties might be defined in the future. However, the grand chal-
lenge is to develop an automated model generator which simultaneously satisfies
multiple (ideally, all four) properties. For instance, a model generator for bench-
marking purposes needs to be scalable, realistic and consistent, while a test
model generator needs to be diverse, consistent (or intentionally faulty), and
scalable in quantity. However, existing model generation approaches developed
in different research areas usually support one (or rarely at most two) of these
properties.

Such a multi-purpose model generator is out of scope also for the current
paper. In fact, as a novel contribution, we provide precise theoretical foundations
for a graph model generator that is scalable and consistent based on a refinement
calculus. Our specific focus is motivated by a novel empirical evaluation to be
reported in Sect. 5 which states that consistency is a prerequisite for the synthesis
of both diverse and realistic models.

3 Preliminaries

We illustrate automated model generation in the context of Yakindu Statecharts
Tools [101], which is an industrial DSL developed by Itemis AG for the develop-
ment of reactive, event-driven systems using statecharts captured in a combined
graphical and textual syntax. Yakindu supports validation of WF constraints,
simulation and code generation from statechart models. We first revisit the for-
malization of the partial models and WF-constraints as defined in [85].

3.1 Metamodels and Instance Models

Formally, a metamodel defines a vocabulary Σ = {C1, . . . , Cn, R1, . . . , Rm,∼}
where a unary predicate symbol Ci (1 ≤ i ≤ n) is defined for each class (node
type), and a binary predicate symbol Rj (1 ≤ j ≤ m) is defined for each reference
(edge type). The index of a predicate symbol refers to the corresponding meta-
model element. The binary ∼ predicate is defined as an equivalence relation over
objects (nodes) to denote if two objects can be merged. For space considerations,
we omit the precise handling of attributes from this paper as none of the four
key properties depend on attributes. For metamodels, we use the notations of
the Eclipse Modeling Framework (EMF) [90], but our concepts could easily be
adapted to other frameworks of typed and attributed graphs such as [21,28].

An instance model is a 2-valued logic structure M = 〈ObjM , IM 〉 over Σ
where ObjM = {o1, . . . , on} (n ∈ Z

+) is a finite set of individuals (objects) in
the model (where #(M) = |ObjM | = n denotes the size of the model) and IM

is a 2-valued interpretation of predicate symbols in Σ defined as follows (where
ok and ol are objects from ObjM with 1 ≤ k, l ≤ n):

– Type predicates: the 2-valued interpretation of a predicate symbol Ci in M
(formally, IM (Ci) : ObjM → {1, 0}) evaluates to 1 if object ok is instance of
class Ci (denoted by [[Ci(ok)]]

M = 1), and evaluates to 0 otherwise.

Towards the Automated Generation of Graph Models 289

– Reference predicates: the 2-valued interpretation of a predicate sym-
bol Rj in M (formally, IM (Rj) : ObjM × ObjM → {1, 0}) evaluates to 1
if there exists an edge (link) of type Rj from ok to ol in M denoted as
[[Rj(ok, ol)]]

M = 1, and evaluates to 0 otherwise.
– Equivalence predicate: the 2-valued interpretation of a predicate symbol

∼ in M (formally, IM (∼) : ObjM × ObjM → {1, 0}) evaluates to 1 for any
object ok, i.e. [[ok ∼ ok]]

M = 1, and evaluates to 0 for any different pairs of
objects, i.e. [[ok ∼ ol]]

M = 0, if ok
= ol. This equivalence predicate is rather
trivial for instance models but it will be more relevant for partial models.

3.2 Partial Models

Partial models [31,46] represent uncertain (possible) elements in instance mod-
els, where one partial model represents a set of concrete instance models. In this
paper, 3-valued logic [48] is used to explicitly represent unspecified or unknown
properties of graph models with a third 1/2 value (beside 1 and 0 which stand
for true and false) in accordance with [76,85].

A partial model is a 3-valued logic structure P = 〈ObjP , IP 〉 of Σ where
ObjP = {o1, . . . , on} (n ∈ Z

+) is a finite set of individuals (objects) in the model,
and IP is a 3-valued interpretation for all predicate symbols in Σ defined below.
The 3-valued truth evaluation of the predicates in a partial model P will be
denoted respectively as [[Ci(ok)]]

P , [[Rj(ok, ol)]]
P , [[ok ∼ ol]]

P .

– Type predicates: IP gives a 3-valued interpretation for each class symbol
Ci in Σ: IP (Ci) : ObjP → {1, 0, 1/2}, where 1, 0 and 1/2 means that it is true,
false or unspecified whether an object is an instance of a class Ci.

– Reference predicates: IP gives a 3-valued interpretation for each reference
symbol Rj in Σ: IP (Rj) : ObjP × ObjP → {1, 0, 1/2}, where 1, 0 and 1/2
means that it is true, false or unspecified whether there is a reference of type
Rj between two objects.

– Equivalence predicate: IP gives a 3-valued interpretation for the ∼ relation
between the objects IP (∼) : ObjP × ObjP → {1, 0, 1/2}.
A predicate ok ∼ ol between two objects ok and ol is interpreted as follows:

• If [[ok ∼ ol]]
P = 1 then ok and ol are equal and they can be merged;

• If [[ok ∼ ol]]
P = 1/2 then ok and ol may be equal and may be merged;

• If [[ok ∼ ol]]
P = 0 then ok and ol are different objects in the instance

model, thus they cannot be merged.
A predicate ok ∼ ok for any object ok (as a self-edge) means the following:

• If [[ok ∼ ok]]
P = 1 then ok is a final object which cannot be further split

to multiple objects;
• If [[ok ∼ ok]]

P = 1/2 then ok is a multi-object which may represent a set
of objects.

The traditional properties of the equivalence relation ∼ are interpreted as:
• ∼ is a symmetric relation: [[ok ∼ ol]]

P = [[ol ∼ ok]]
P ;

• ∼ is a reflexive relation: [[ok ∼ ok]]
P

> 0;

290 D. Varró et al.

• ∼ is a transitive relation: [[ok ∼ ol ∧ ol ∼ om ⇒ ok ∼ om]]P > 0 which
prevents that [[ok ∼ ol]]

P = 1, [[ol ∼ om]]P = 1 but [[ol ∼ om]]P = 0.

Informally, this definition of partial models is very general, i.e. it does not
impose any further restriction imposed by a particular underlying metamodeling
technique. For instance, in case of EMF, each object may have a single direct type
and needs to be arranged into a strict containment hierarchy while graphs of the
semantic web may be flat and nodes may have multiple types. Such restrictions
will be introduced later as structural constraints. Mathematically, partial models
show close resemblance with graph shapes [75,76].

If a 3-valued partial model P only contains 1 and 0 values, and there is no
∼ relation between different objects (i.e. all equivalent nodes are merged), then
P also represents a concrete instance model M .

Example 1. Figure 1 shows a metamodel extracted from Yakindu statecharts
where Regions contain Vertexes and Transitions (leading from a source ver-
tex to a target vertex). An abstract state Vertex is further refined into States
and Entry states where States are further refined into Regions.

Fig. 1. Metamodel extract of Yakindu statecharts Fig. 2. Partial models

Figure 2 illustrates two partial models: P4, P12 (to be derived by the refine-
ment approach in Sect. 4). The truth value of the type predicates are denoted
by labels on the nodes, where 0 values are omitted. Reference predicate values
1 and 1/2 are visually represented by edges with solid and dashed lines, respec-
tively, while missing edges between two objects represent 0 values for a predicate.
Finally, uncertain 1/2 equivalences are marked by dashed lines with an ∼ symbol,
while certain equivalence self-loops on objects are omitted.

Partial model P4 contains one (concrete) Region r, one State s, and some
other objects collectively represented by a single node new3. Object s is both
of type State and Vertex, while new3 represents objects with multiple possible
types. Object s is linked from r via a vertices edge, and there are other possible
references between r and new3. Partial model P12, which is a refinement of P4,
has no uncertain elements, thus it is also a concrete instance model M .

Towards the Automated Generation of Graph Models 291

3.3 Graph Patterns as Well-Formedness Constraints

In many industrial modeling tools, complex structural WF constraints are cap-
tured either by OCL constraints [70] or by graph patterns (GP) [11,49,67]. Here,
we use a tool-independent first-order graph logic representation (which was influ-
enced by [76,98] and is similar to [85]) that covers the key features of several
existing graph pattern languages and a first-order logic (FOL) fragment of OCL.

Syntax. A graph pattern (or formula) is a first order logic (FOL) formula
ϕ(v1, . . . , vn) over (object) variables. A graph pattern ϕ can be inductively con-
structed (see Fig. 3) by using atomic predicates of partial models: C(v), R(v1, v2),
v1 ∼ v2, standard FOL connectives ¬, ∨, ∧, and quantifiers ∃ and ∀. A simple
graph pattern only contains (a conjunction of) atomic predicates.

Semantics. A graph pattern ϕ(v1, . . . , vn) can be evaluated on partial model
P along a variable binding Z, which is a mapping Z : {v1, . . . , vn} → ObjP
from variables to objects in P . The truth value of ϕ can be evaluated over a
partial model P and mapping Z (denoted by [[ϕ(v1, . . . , vn)]]PZ) in accordance
with the semantic rules defined in Fig. 3. Note that min and max takes the
numeric minimum and maximum values of 0, 1/2 and 1 with 0 ≤ 1/2 ≤ 1, and
the rules follow 3-valued interpretation of standard FOL formulae as defined in
[76,85].

A variable binding Z is called a match if the pattern ϕ is evaluated to 1
over P , formally [[ϕ(v1, . . . , vn)]]PZ = 1. If there exists such a variable bind-
ing Z, then we may shortly write [[ϕ]]P = 1. Open formulae (with one or
more unbound variables) are treated by introducing an (implicit) existential
quantifier over unbound variables to handle them similarly to graph formu-
lae for regular instance models. Thus, in the sequel, [[ϕ(v1, . . . , vn)]]PZ = 1 if
[[∃v1, . . . ,∃vn : ϕ(v1, . . . , vn)]]P = 1 where the latter is now a closed formula
without unbound variables. Similarly, [[ϕ]]P = 1/2 means that there is a poten-
tial match where ϕ evaluates to 1/2, i.e. [[∃v1, . . . ,∃vn : ϕ(v1, . . . , vn)]]P = 1/2,
but there is no match with [[ϕ(v1, . . . , vn)]]PZ = 1. Finally, [[ϕ]]P = 0 means that
there is surely no match, i.e. [[∃v1, . . . ,∃vn : ϕ(v1, . . . , vn)]]P = 0 for all vari-
able bindings. Here ∃v1, . . . ,∃vn : ϕ(v1, . . . , vn) abbreviates ∃v1 : (. . . ,∃vn :
ϕ(v1, . . . , vn)).

The formal semantics of graph patterns defined in Fig. 3 can also be evalu-
ated on regular instance models with closed world assumption. Moreover, if a
partial model is also a concrete instance model, the 3-valued and 2-valued truth
evaluation of a graph pattern is unsurprisingly the same, as shown in [85].

Proposition 1. Let P be a partial model which is simultaneously an instance
model, i.e. P = M . Then the 3-valued evaluation of any ϕ on P and its 2-valued
evaluation on M is identical, i.e. [[ϕ]]PZ = [[ϕ]]MZ along any variable binding Z.

292 D. Varró et al.

Fig. 3. Semantics of graph patterns (predicates) Fig. 4. Malformed model

Graph Patterns as WF Constraints. Graph patterns are frequently used for
defining complex structural WF constraints and validation rules [96]. Those con-
straints are derived from two sources: the metamodel (or type graph) defines core
structural constraints, and additional constraints of a domain can be defined by
using nested graph conditions [40], OCL [70] or graph pattern languages [96].

When specifying a WF constraint φ by a graph pattern ϕ, pattern ϕ cap-
tures the malformed case by negating φ, i.e. ϕ = ¬φ. Thus a graph pattern match
detects a constraint violation. Given a set of graph patterns {ϕ1, . . . , ϕn} con-
structed that way, a consistent instance model requires that no graph pattern
ϕi has a match in M . Thus any match Z for any pattern ϕi with [[ϕi]]

M
Z = 1 is a

proof of inconsistency. In accordance with the consistency definition M |= WF
of Sect. 2, WF can defined by graph patterns as WF = ¬ϕ1 ∧ . . . ∧ ¬ϕn.

Note that consistency is defined above only for instance models, but not for
partial models. The refinement calculus to be introduced in Sect. 4 ensures that,
by evaluating those graph patterns over partial models, the model generation
will gradually converge towards a consistent instance model.

Example 2. The violating cases of two WF constraints checked by the Yakindu
tool can be captured by graph patterns as follows:

– incomingToEntry(v) : Entry(v) ∧ ∃t : target(t, v)
– noEntryInRegion(r) : Region(r) ∧ ∀v : ¬(vertices(r, v) ∧ Entry(v))

Both constraints are satisfied in instance model P12 as the corresponding
graph patterns have no matches, thus P12 is a consistent result of model gen-
eration. On the other hand, P10 in Fig. 4 is a malformed instance model that
violates constraint incomingToEntry(v) along object e:

[[incomingToEntry(v)]]P10
v �→e = 1 and [[noEntryInRegion(r)]]P10 = 0

While graph patterns can be easily evaluated on concrete instance models,
checking them over a partial model is a challenging task, because one partial
model may represent multiple concretizations. It is shown in [85] how a graph
pattern ϕ can be evaluated on a partial model P with 3-valued logic and open-
world semantics using a regular graph query engine by proposing a constraint

Towards the Automated Generation of Graph Models 293

rewriting technique. Alternatively, a SAT-solver based approach can be used as
in [24,31] or the general or initial satisfaction can be defined for positive nested
graph constraints as in [41,82].

4 Refinement and Concretization of Partial Models

Model generation is intended to be carried out by a sequence of refinement
steps which starts from a generic initial partial model and gradually derives a
concrete instance model. Since our focus is to derive consistent models, we aim
at continuously ensuring that each intermediate partial model can potentially
be refined into a consistent model, thus a partial model should be immediately
excluded if it cannot be extended to a well-formed instance model.

4.1 A Refinement Relation for Partial Model Generation

In our model generation, the level of uncertainty is aimed to be reduced step by
step along a refinement relation which results in partial models that represent
a fewer number of concrete instance models than before. In a refinement step,
predicates with 1/2 values can be refined to either 0 or 1, but predicates already
fixed to 1 or 0 cannot be changed any more. This imposes an information ordering
relation X � Y where either X = 1/2 and Y takes a more specific 1 or 0, or
values of X and Y remain equal: X � Y := (X = 1/2) ∨ (X = Y).

Refinement from partial model P to Q (denoted by P � Q) is defined as a
function refine : ObjP → 2ObjQ which maps each object of a partial model P to
a non-empty set of objects in the refined partial model Q. Refinement respects
the information ordering of type, reference and equivalence predicates for each
p1, p2 ∈ ObjP and any q1, q2 ∈ ObjQ with q1 ∈ refine(p1), q2 ∈ refine(p2):

– for each class Ci: [[Ci(p1)]]
P � [[Ci(q1)]]

Q;
– for each reference Rj : [[Rj(p1, p2)]]

P � [[Rj(q1, q2)]]
Q;

– [[p1 ∼ p2]]
P � [[q1 ∼ q2]]

Q.

At any stage during refinement, a partial model P can be concretized into an
instance model M by rewriting all class type and reference predicates of value
1/2 to either 1 or 0, and setting all equivalence predicates with 1/2 to 0 between
different objects, and to 1 on a single object. But any concrete instance model
will still remain a partial model as well.

Example 3. Figure 5 depicts two sequences of partial model refinement steps
deriving two instance models P10 (identical to Fig. 4) and P12 (bottom of Fig. 2):
P0 � P4 � P5 � P6 � P7 � P8 � P9 � P10 and P0 � P4 � P5 � P6 � P7 �
P8 � P11 � P12.

Taking refinement step P4 � P5 as an illustration, object new3 (in P4) is
refined into e and new4 (in P5) where [[e ∼ new4]]P5 = 0 to represent two different
objects in the concrete instance models. Moreover, all incoming and outgoing
edges of new3 are copied in e and new4. The final refinement step P11 � P12

concretizes uncertain source and target references into concrete references.

294 D. Varró et al.

Fig. 5. Refinement of partial models

A model generation process can be initiated from an initial partial model
provided by the user, or from the most generic partial model P0 from which
all possible instance models can be derived via refinement. Informally, this P0 is
more abstract than regular metamodels or type graphs as it only contains a single
node as top-level class. P0 contains one abstract object where all predicates are
undefined, i.e. P0 = 〈ObjP0

, IP0〉 where ObjP0
= {new} and IP0 is defined as:

1. for all class predicates Ci: [[Ci(new)]]P0 = 1/2;
2. for all reference predicates Rj : [[Rj(new ,new)]]P0 = 1/2;
3. [[new ∼ new]]P0 = 1/2 to represent multiple objects of any instance model.

Our refinement relation ensures that if a predicate is evaluated to either 1 or
0 then its value will no longer change during further refinements as captured by
the following approximation theorem.

Theorem 1. Let P,Q be partial models with P � Q and ϕ be a graph pattern.

– If [[ϕ]]P = 1 then [[ϕ]]Q = 1; if [[ϕ]]P = 0 then [[ϕ]]Q = 0 (called under-
approximation).

– If [[ϕ]]Q = 0 then [[ϕ]]P ≤ 1/2; if [[ϕ]]Q = 1 then [[ϕ]]P ≥ 1/2 (called over-
approximation).

Towards the Automated Generation of Graph Models 295

If model generation is started from P0 where all (atomic) graph patterns
evaluate to 1/2, this theorem ensures that if a WF constraint ϕ is violated in a
partial model P then it can never be completed to a consistent instance model.
Thus the model generation can terminate along this path and a new refinement
can be explored after backtracking. This theorem also ensures that if we evaluate
a constraint ϕ on a partial model P and on its refinement Q, the latter will be
more precise. In other terms, if [[ϕ]]P = 1 (or 0) in a partial model P along
some sequence of refinement steps, then under-approximation ensures that its
evaluation will never change again along that (forward) refinement sequence, i.e.
[[ϕ]]Q = 1 (or 0). Similarly, when proceeding backwards in a refinement chain,
over-approximation ensures monotonicity of the 3-valued constraint evaluation
along the entire chain. Altogether, we gradually converge to the 2-valued truth
evaluation of the constraint on an instance model where less and less constraints
take the 1/2 value. However, a refinement step does not guarantee in itself that
exploration is progressing towards a consistent model, i.e. there may be infinite
chains of refinement steps which never derive a concrete instance model.

4.2 Refinement Operations for Partial Models

We define refinement operations Op to refine partial models by simultaneously
growing the size of the models while reducing uncertainty in a way that each
finite and consistent instance model is guaranteed to be derived in finite steps.

– concretize(p, val): if the atomic predicate p (which is either Ci(o), Rj(ok, ol)
or ok ∼ ol) has a 1/2 value in the pre-state partial model P , then it can be
refined in the post-state Q to val which is either a 1 or 0 value. As an effect
of the rule, the level of uncertainty will be reduced.

– splitAndConnect(o,mode): if o is an object with [[o ∼ o]]P = 1/2 in the pre-
state, then a new object new is introduced in the post state by splitting o in
accordance with the semantics defined by the following two modes:

• at-least-two: [[new ∼ new]]Q = 1/2, [[o ∼ o]]Q = 1/2, [[new ∼ o]]Q = 0;
• at-most-two: [[new ∼ new]]Q = 1, [[o ∼ o]]Q = 1, [[new ∼ o]]Q = 1/2;

In each case, ObjQ = ObjP ∪ {new}, and we copy all incoming and outgo-
ing binary relations of o to new in Q by keeping their original values in P .
Furthermore, all class predicates remain unaltered.

On the technical level, these refinement operations could be easily captured
by means of algebraic graph transformation rules [28] over typed graphs. How-
ever, for efficiency reasons, several elementary operations may need to be com-
bined into compound rules. Therefore, specifying refinement operations by graph
transformation rules will be investigated in a future paper.

Example 4. Refinement P4 � P5 (in Fig. 5) is a result of applying refinement
operation splitAndConnect(o,mode) on object new3 and in at-least-two mode,
splitting new3 to e and new4 copying all incoming and outgoing references. Next,
in P6, the type of object e is refined to Entry and Vertex, the 1/2 equivalence is

296 D. Varró et al.

refined to 1, and references incompatible with Entry or Vertex are refined to 0.
Note that in P6 it is ensured that Region r has an Entry, thus satisfying WF con-
straint noEntryInRegion. In P7 the type of object new4 is refined to Transition,
the incompatible references are removed similarly, but the 1/2 self equivalence
remain unchanged. Therefore, in P8 object new4 can split into two separate
Transitions: t1 and t2 with the same source and target options. Refinement
P8 � P9 � P10 denotes a possible refinement path, where the target of t1 is
directed to an Entry, thus violating WF constraint incomingToEntry . Note that
this violation can be detected earlier in an unfinished partial model P9. Refine-
ment P11 � P12 denotes the consecutive application of six concretize(p, val)
operations on uncertain source and target edges leading out of t1 and t2 in
P11, resulting in a valid model.

Note that these refinement operations may result in a partial model that is
unsatisfiable. For instance, if all class predicates evaluate to 0 for an object o of
the partial model P , i.e. [[C(o)]]P = 0, then no instance models will correspond
to it as most metamodeling techniques require that each element has exactly or
at least one type. Similarly, if we violate the reflexivity of ∼, i.e. [[o ∼ o]]P = 0,
then the partial model cannot be concretized into a valid instance model. But at
least, one can show that these refinement operations ensure a refinement relation
between the partial models of its pre-state and post-state.

Theorem 2 (Refinement operations ensure refinement). Let P be a par-
tial model and op be a refinement operation. If Q is the partial model obtained
by executing op on P (formally, P

op−→ Q) then P � Q.

4.3 Consistency of Model Generation by Refinement Operations

Next we formulate and prove the consistency of model generation when it is
carried out by a sequence of refinement steps from the most generic partial model
P0 using the previous refinement operations. We aim to show soundness (i.e. if
a model is derivable along an open derivation sequence then it is consistent),
finite completeness (i.e. each finite consistent model can be derived along some
open derivation sequence), and a concept of incrementality.

Many tableaux based theorem provers build on the concept of closed branches
with a contradictory set of formulae. We adapt an analogous concept for closed
derivation sequences over graph derivations in [28]. Informally, refinement is not
worth being continued as a WF constraint is surely violated due to a match
of a graph pattern in case of a closed derivation sequence. Consequently, all
consistent instance models will be derived along open derivation sequences.

Definition 1 (Closed vs. open derivation sequence). A finite derivation
sequence of refinement operations op1; . . . ; opk leading from the most generic
partial model P0 to the partial model Pk (denoted as P0

op1;...;opk−−−−−−→ Pk) is closed
w.r.t. a graph predicate ϕ if ϕ has a match in Pk, formally, [[ϕ]]Pk = 1.

A derivation sequence is open if it is not closed, i.e. Pk is a partial model
derived by a finite derivation sequence P0

op1;...;opk−−−−−−→ Pk with [[ϕ]]Pk ≤ 1/2.

Towards the Automated Generation of Graph Models 297

Note that a single match of ϕ makes a derivation sequence to be closed,
while an open derivation sequence requires that [[ϕ]]Pk ≤ 1/2 which, by definition,
disallows a match with [[ϕ]]Pk ≤ 1.

Example 5. Derivation sequence P0
...−→ P9 depicted in Fig. 5 is closed for ϕ =

incomingToEntry(v) as the corresponding graph pattern has a match in P9, i.e.
[[incomingToEntry(v)]]P9

v �→e = 1. Therefore, P10 can be avoided as the same match
would still exist. On the other hand, derivation sequence P0

...−→ P11 is open for
ϕ = incomingToEntry(v) as incomingToEntry(v) is evaluated to 1/2 in all partial
models P0, . . . , P11.

As a consequence of Theorem 1, an open derivation sequence ensures that
any prefix of the same derivation sequence is also open.

Corollary 1. Let P0
op1;...;opk−−−−−−→ Pk be an open derivation sequence of refinement

operations w.r.t. ϕ. Then for each 0 ≤ i ≤ k, [[ϕ]]Pi ≤ 1/2.

The soundness of model generation informally states that if a concrete model
M is derived along an open derivation sequence then M is consistent, i.e. no
graph predicate of WF constraints has a match.

Corollary 2 (Soundness of model generation). Let P0
op1;...;opk−−−−−−→ Pk be a

finite and open derivation sequence of refinement operations w.r.t. ϕ. If Pk is a
concrete instance model M (i.e. Pk = M) then M is consistent (i.e. [[ϕ]]M = 0).

Effectively, once a concrete instance model M is reached during model gen-
eration along an open derivation sequence, checking the WF constraints on M
by using traditional (2-valued) graph pattern matching techniques ensures the
soundness of model generation as 3-valued and 2-valued evaluation of the same
graph pattern should coincide due to Proposition 1 and Theorem 1.

Next, we show that any finite instance model can be derived by a finite
derivation sequence.

Theorem 3 (Finiteness of model generation). For any finite instance
model M , there exists a finite derivation sequence P0

op1;...;opk−−−−−−→ Pk of refinement
operations starting from the most generic partial model P0 leading to Pk = M .

Our completeness theorem states that any consistent instance model is deriv-
able along open derivation sequences where no constraints are violated (under-
approximation). Thus it allows to eliminate all derivation sequences where an
graph predicate ϕ evaluates to 1 on any intermediate partial model Pi as such
partial model cannot be further refined to a well-formed concrete instance model
due to the properties of under-approximation. Moreover, a derivation sequence
leading to a consistent model needs to be open w.r.t. all constraints, i.e. refine-
ment can be terminated if any graph pattern has a match.

Theorem 4 (Completeness of model generation). For any finite and con-
sistent instance model M with [[ϕ]]M = 0, there exists a finite open derivation
sequence P0

op1;...;opk−−−−−−→ Pk of refinement operations w.r.t. ϕ starting from the
most generic partial model P0 and leading to Pk = M .

298 D. Varró et al.

Unsurprisingly, graph model generation still remains undecidable in general
as there is no guarantee that a derivation sequence leading to Pk where [[ϕ]]Pk =
1/2 can be refined later to a consistent instance model M . However, the graph
model finding problem is decidable for a finite scope, which is an a priori upper
bound on the size of the model. Informally, since the size of partial models is
gradually growing during refinement, we can stop if the size of a partial model
exceeds the target scope or if a constraint is already violated.

Theorem 5 (Decidability of model generation in finite scope). Given
a graph predicate ϕ and a scope n ∈ N, it is decidable to check if a concrete
instance model M exists with |ObjM | ≤ n where [[ϕ]]M = 0.

This finite decidability theorem is analogous with formal guarantees provided
by the Alloy Analyzer [94] that is used by many mapping-based model generation
approaches (see Sect. 6). Alloy aims to synthesize small counterexamples for a
relational specification, while our refinement calculus provides the same for typed
graphs without parallel edges for the given refinement operations.

However, our construction has extra benefits compared to Alloy (and other
SAT-solver based techniques) when exceeding the target scope. First, all candi-
date partial models (with constraints evaluated to 1/2) derived up to a certain
scope are reusable for finding consistent models of a larger scope, thus search
can be incrementally continued. Moreover, if a constraint violation is found with
a given scope, then no consistent models exist at all.

Corollary 3 (Incrementality of model generation). Let us assume that no
consistent models Mn exist for scope n, but there exists a larger consistent model
Mm of size m (where m > n) with [[ϕ]]M

m

= 0. Then Mm is derivable by a finite
derivation sequence Pn

i

opi+1;...;opk−−−−−−−−→ Pm
k where Pm

k = Mm starting from a partial
model Pn

i of size n.

Corollary 4 (Completeness of refutation). If all derivation sequences are
closed for a given scope n, but no consistent model Mn exists for scope n for
which [[ϕ]]M

n

= 0, then no consistent models exist at all.

While these theorems aim to establish the theoretical foundations of a model
generator framework, it provides no direct practical insight on the exploration
itself, i.e. how to efficiently provide derivation sequences that likely lead to con-
sistent models. Nevertheless, we have an initial prototype implementation of such
a model generator which is also used as part of the experimental evaluation.

5 Evaluation

As existing model generators have been dominantly focusing on a single challenge
of Sect. 2, we carried out an initial experimental evaluation to investigate how
popular strategies excelling in one challenge perform with respect to another
challenge. More specifically, we carried out this evaluation in the domain of
Yakindu statecharts to address four research questions:

Towards the Automated Generation of Graph Models 299

RQ1 Diverse vs. Realistic: How realistic are the models which are derived by
random generators that promise diversity?

RQ2 Consistent vs. Realistic: How realistic are the models which are derived by
logic solvers that guarantee consistency?

RQ3 Diverse vs. Consistent: How consistent are the models which are derived
by random generators?

RQ4 Consistent vs. Scalable: How scalable is it to evaluate consistency con-
straints on partial models?

Addressing these questions may help advancing future model generators by
identifying some strength and weaknesses of different strategies.

5.1 Setup of Experiments

Target Domain. We conducted measurements in the context of Yakindu state-
charts, see [2] for the complete measurement data. For that purpose, we extracted
the statechart metamodel of Fig. 1 directly from the original Yakindu metamodel.
Ten WF constraints were formalized as graph patterns based on the real valida-
tion rules of the Yakindu Statechart development environment.

Model Generator Approaches. For addressing RQ1-3, we used two different
model generation approaches: (1) the popular relational model finder Alloy Ana-
lyzer [94] which uses Sat4j [53] as a back-end SAT-solver, and (2) the Viatra
Solver, graph-based model generator which uses the refinement calculus presented
in the paper. We selected Alloy Analyzer as the primary target platform as it has
been widely used in mapping based generators of consistent models (see Sect. 6).

We operated these solvers in two modes: in consistent mode (WF), all derived
models need to satisfy all WF constraints of Yakindu statecharts, while in
metamodel-only mode (MM), generated models need to be metamodel compli-
ant, but then model elements are selected randomly. As such, we expect that this
set of models is diverse, but the fulfillment of WF constraints is not guaranteed.
To enforce diversity, we explicitly check that derived models are non-isomorphic.

Since mapping based approaches typically compile WF constraints into logic
formulae in order to evaluate them on partial models, we set up a simple measure-
ment to address RQ4 which did not involve model generation but only constraint
checking on existing instance models. This is a well-known setup for assessing
scalability of graph query techniques used in a series of benchmarking papers
[92,98]. So in our case, we encoded instance models as fully defined Alloy spec-
ifications using the mapping of [86], and checked if the constraints are satisfied
(without extending or modifying the statechart). As a baseline of comparison,
we checked the runtime of evaluating the same WF constraints on the same
models using an industrial graph query engine [97] which is known to scale well
for validation problems [92,98]. All measurements were executed on an average
desktop computer2.

2 CPU: Intel Core-i5-m310M, MEM: 16 GB, OS: Windows 10 Pro.

300 D. Varró et al.

Real Instance Models. To evaluate how realistic the synthetic model generators
are in case of RQ1-2, we took 1253 statecharts as real models created by under-
graduate students for a homework assignment. While they had to solve the same
modeling problem, the size of their models varied from 50 to 200 objects. For
RQ4, we randomly selected 300 statecharts from the homework assignments,
and evaluated the original validation constraints. Real models were filtered by
removing inverse edges that introduce significant noise to the metrics [91].

Generated Instance Models. To obtain comparable results, we generated four
sets of statechart models with a timeout of 1 min for each model but without
any manual domain-specific fine-tuning of the different solvers. We also check
that the generated models are non-isomorphic to assure sufficient diversity.

– Alloy (MM): 100 metamodel-compliant models with 50 objects using Alloy.
– Alloy (WF): 100 metamodel- and WF-compliant models with 50 objects using

Alloy (which was unable to synthesize larger models within 1 min).
– Viatra Solver (MM): 100 metamodel-compliant instance models with 100

objects using Viatra Solver.
– Viatra Solver (WF): 100 Metamodel- and WF-compliant instance models

with 100 objects using Viatra Solver.

Two multi-dimensional graph metrics are used to evaluate how realistic a
model generator is: (1) the multiplex participation coefficient (MPC) measures
how the edges of nodes are distributed along the different edge types, while (2)
pairwise multiplexity (Q) captures how often two different types of edges meet in
an object. These metrics were recommended in [91] out of over 20 different graph
metrics after a multi-domain experimental evaluation, for formal definitions of
the metrics, see [91]. Moreover, we calculate the (3) number of WF constraints
violated by a model as a numeric value to measure the degree of (in)consistency
of a model (which value is zero in case of consistent models).

5.2 Evaluation of Measurement Results

We plot the distribution functions of the multiple participation coefficient met-
ric in Fig. 6, and the pairwise multiplexity metric in Fig. 7. Each line depicts the
characteristics of a single model and model sets (e.g. “Alloy (MM)”, “Viatra
Solver (WF)”) are grouped together in one of the facets including the charac-
teristics of the real model set. For instance, the former metric tells that approx-
imately 65% of nodes in real statechart models (right facet in Fig. 6) have only
one or two types of incoming and outgoing edges while the remaining 35% of
nodes have edges more evenly distributed among different types.

Towards the Automated Generation of Graph Models 301

VIATRA Solver (MM) VIATRA Solver (WF)

Alloy (MM) Alloy (WF) Real

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00

0.00 0.25 0.50 0.75 1.00
0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

 M
ul

tip
le

x
Pa

rti
ci

pa
tio

n
C

oe
ffi

ci
en

t

category
Alloy (MM)
Alloy (WF)
Real
VIATRA Solver (MM)
VIATRA Solver (WF)

Fig. 6. Measurement results: Multiplex participation coefficient (MPC)

VIATRA Solver (MM) VIATRA Solver (WF)

Alloy (MM) Alloy (WF) Real

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00

0.00 0.25 0.50 0.75 1.00
0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

 P
ai

rw
is

e
M

ul
tip

le
xi

ty

category
Alloy (MM)
Alloy (WF)
Real
VIATRA Solver (MM)
VIATRA Solver (WF)

Fig. 7. Measurement results: Pairwise multiplexity (Q)

0

50

100

150

200

250

300

350

0 50 100 150 200 250

Ti
m

e
(s

)

Model Size (#Objects)

Valida�on by Alloy Valida�on by Graph Query Engine

Fig. 8. Measurement results: Time of consistency checks: Alloy vs. Viatra Solver

302 D. Varró et al.

Comparison of Distribution Functions. We use visual data analytics techniques
and the Kolmogorov-Smirnov statistic (KS) [55] as a distance measure of models
(used in [91]) to judge how realistic an auto-generated model is by comparing
the whole distributions of values (and not only their descriptive summary like
mean or variance) in different cases to the characteristics of real models. The
KS statistics quantifies the maximal difference between the distribution function
lines at a given value. It is sensitive to both shape and location differences: it
takes a 0 value only if the distributions are identical, while it is 1 if the values of
models are in disjunct ranges (even if their shapes are identical). For comparing
model generation techniques A and B we took the average value of the KS
statistics between each (A,B) pair of models that were generated by technique
A and B, respectively. The average KS values are shown in Fig. 9,3 where a
lower value denotes a more realistic model set.

Diverse vs. Realistic: For the models that are only metamodel-compliant, the
characteristics of the metrics for “Viatra Solver (MM)” are much closer to the
“Real” model set than those of the “Alloy (MM)” model set, for both graph
metrics (KS value of 0.27 vs. 0.95 for MPC and 0.38 vs. 0.88 for Q), thus more
realistic results were generated in the “Viatra Solver (MM)” case. However,
these plots also highlight that the set of auto-generated metamodel-compliant
models can be more easily distinguished from the set of real models as the plots of
the latter show higher variability. Since the diversity of each model generation
case is enforced (i.e. non-isomorphic models are dropped), we can draw as a
conclusion that a diverse metamodel-compliant model generator does not provide
any guarantees in itself on the realistic nature of the output model set. In fact,
model generators that simultaneously ensure diversity and consistency always
outperformed the random model generators for both solvers.

model set MPC Q
Alloy (MM) 0.95 0.88
Alloy (WF) 0.74 0.60
Viatra Solver (MM) 0.27 0.37
Viatra Solver (WF) 0.24 0.30

Fig. 9. Average Kolmogorov-Smirnov
statistics between the real and gener-
ated model sets.

Consistent vs. Realistic: In case of mod-
els satisfying WF constraints “Viatra
Solver (WF)” generated more realistic
results than “Alloy (WF)” according to
both metrics. The plots show mixed
results for differentiating between gener-
ated and realistic models. On the posi-
tive side, the shape of the plot of auto-
generated models is very close to that of
real models in case of the MPC metric
(Fig. 6) – statistically, they have a relatively low average KS value of 0.24. How-
ever, for the Q metric (Fig. 7), real models are still substantially different from
generated ones (average KS value of 0.3). Thus further research is needed to
investigate how to make consistent models more realistic.

3 Due to the excessive amount of homework models, we took a uniform random sample
of 100 models from that model set.

Towards the Automated Generation of Graph Models 303

Diverse vs. Consistent: We also calculated the average number of WF constraint
violations, which was 3.1 for the “Alloy (MM)” case and 9.75 for the “Viatra
Solver (MM)” case, while only 0.07 for real models. We observe that a diverse
set of randomly generated metamodel-compliant instance models do not yield
consistent models as some constraints will always be violated – which is not the
case for real statechart models. In other terms, the number of WF constraint
violations is also an important characteristic of realistic models which is often
overseen in practice. As a conclusion, a model generator should ensure consis-
tency prior to focusing on increasing diversity. Since humans dominantly come
up with consistent models, ensuring consistency for realistic models is a key
prerequisite.

Consistent vs. Scalable: The soundness of consistent model generation inherently
requires the evaluation of the WF constraints at least once for a candidate solu-
tion. Figure 8 depicts the validation time of randomly selected homework models
using Alloy and the VIATRA graph query engine w.r.t. the size of the instance
model (i.e. the number of the objects). For each model, the two validation tech-
niques made the same judgment (as a test for their correctness). Surprisingly, the
diagram shows that the Alloy Analyzer scales poorly for evaluating constraints
on medium-size graphs, which makes it unsuitable for generating larger models.
The runtime of the graph query engine was negligible at this scale as we expected
based on detailed previous benchmarks for regular graph pattern matching and
initial experiments for matching constraints over partial models [85].

While many existing performance benchmarks claim that they generate real-
istic models, most of them ignore WF constraints of the domain. According to our
measurements, it is a major drawback since real models dominantly satisfy WF
constraints while randomly generated models always violate some constraint.
This way, those model generators can hardly be considered realistic.

Threats to Validity. We carried out experiments only in the domain of stat-
echarts which limits the generalizability of our results. Since statecharts are a
behavioral modeling language, the characteristics of models (and thus the graph
metrics) would likely differ from e.g. static architectural DSLs. However, since
many of our experimental results are negative, it is unlikely that the Alloy gen-
erator would behave any better for other domains. It is a major finding that
while Alloy has been used as a back-end for mapping-based model generator
approaches, its use is not justified from a scalability perspective due to the lack
of efficient evaluation for complex structural graph constraints. It is also unlikely
that randomly generated metamodel-compliant models would be more realistic,
or more consistent in any other domains.

Concerning our real models, we included all the statecharts created by stu-
dents, which may be a bias since students who obtained better grades likely
produced better quality models. Thus, the variability of real statechart models
created by engineers may actually be smaller. But this would actually increase
the relative quality of models derived by Viatra Solver which currently differs

304 D. Varró et al.

Table 1. Characteristics of model generation approaches; +: feature provided, −:
feature not provided, 0: feature provided in some tools/cases

Logic
solvers

Random
generators

Network
graphs

Performance
benchmarks

Real
dataset

CON Model + − − + +

Complete 0 − − − −
DIV Model − + − − −

Set − + − − −
SCA In Size − + + + +

In Quantity − 0 + + −
REA Model − − − − +

Set − − − 0 +

from real models by providing a lower level of diversity (i.e. plots of pairwise
multiplicity are thicker for real models).

6 Related Work

We assess and compare how existing approaches address each challenge (Table 1).

Consistent Model Generators (CON): Consistent models can be synthesized as
a side effect of a verification process when aiming to prove the consistency of
a DSL specification. The metamodel and a set of WF constraints are captured
in a high-level DSL and logic formulae are generated as input to back-end logic
solvers. Approaches differ in the language used for WF constraints, OCL [18–20,
23,35,50–52,73,87,100], graph constraints [84,86], Java predicates [14] or custom
DSLs like Formula [46], Clafer [8] or Alloy [45]. They also differ in the solver
used in the background : graph transformation engines as in [100], SAT-solvers
[53] are used in [51,52], model finders like Kodkod [94] are target formalisms in
[5,23,50,87], first-order logic formulae are derived for SMT-solvers [65] in [73,84]
while CSP-solvers like [1] are targeted in [18,19] or other techniques [59,74].

Solver-based approaches excel in finding inconsistencies in specifications,
while the generated model is a proof of consistency. While SAT solvers can han-
dle specifications with millions of Boolean variables, all these mapping-based
techniques still suffer from severe scalability issues as the generated graphs may
contain less than 50–100 nodes. This is partly due to the fact that a Boolean
variable needs to be introduced for each potential edge in the generated model,
which blows up the complexity. Moreover, the output models are highly similar
to each other and lack diversity, thus they cannot directly be applied for testing
or benchmarking purposes.

Towards the Automated Generation of Graph Models 305

Diverse Model Generators (DIV): Diverse models play a key role in testing model
transformations and code generators. Mutation-based approaches [6,25,61] take
existing models and make random changes on them by applying mutation rules.
A similar random model generator is used for experimentation purposes in [9].
Other automated techniques [15,29] generate models that only conform to the
metamodel. While these techniques scale well for larger models, there is no guar-
antee whether the mutated models satisfy WF constraints.

There is a wide set of model generation techniques which provide cer-
tain promises for test effectiveness. White-box approaches [37,38,62,83] rely on
the implementation of the transformation and dominantly use back-end logic
solvers, which lack scalability when deriving graph models. Black-box approaches
[17,34,39,56,63] can only exploit the specification of the language or the trans-
formation, so they frequently rely upon contracts or model fragments. As a
common theme, these techniques may generate a set of simple models, and while
certain diversity can be achieved by using symmetry-breaking predicates, they
fail to scale for larger model sizes. In fact, the effective diversity of models is
also questionable since corresponding safety standards prescribe much stricter
test coverage criteria for software certification and tool qualification than those
currently offered by existing model transformation testing approaches.

Based on the logic-based Formula solver, the approach of [47] applies stochas-
tic random sampling of output to achieve a diverse set of generated models by
taking exactly one element from each equivalence class defined by graph isomor-
phism, which can be too restrictive for coverage purposes. Stochastic simulation
is proposed for graph transformation systems in [95], where rule application is
stochastic (and not the properties of models), but fulfillment of WF constraints
can only be assured by a carefully constructed rule set.

Realistic Model Generators (REA): The igraph library [22] contains a set of
randomized graph generators that produce one-dimensional (untyped) graphs
that follow a particular distribution (e.g. Erdős-Rényi, Watts-Strogatz). The
authors of [64] use Boltzmann samplers [27] to ensure efficient generation of
uniform models. GSCALER [102] takes a graph as its input and generates a
similar graph with a certain number of vertices and edges.

Scalable Model Generators (SCA): Several database benchmarks provide scal-
able graph generators with some degree of well-formedness or realism. The Berlin
SPARQL Benchmark (BSBM) [13] uses a single dataset that scales in model size
(10 million–150 billion tuples), but does not vary in structure. SP 2Bench [80]
uses a data set, which is synthetically generated based on the real-world DBLP
bibliography. This way, instance models of different sizes reflect the structure
and complexity of the original real-world dataset.

The Linked Data Benchmark Council (LDBC) recently developed the Social
Network Benchmark [30], which contains a social network generator module [88].
The generator is based on the S3G2 approach [72] that aims to generate non-
uniform value distributions and structural correlations. gMark [7] generates

306 D. Varró et al.

graphs driven by a pre-defined schema that allows users to specify vertex/edge
types and degree distributions in the graph, which provides some level of realism.

The Train Benchmark [92] uses a domain-specific generator that is able to
generate railway networks, scalable in size and satisfying a set of well-formedness
constraints. The generator is also able to inject errors to the models during
generation (thus intentionally violating the WF property).

Transformations of Partial Models. Uncertain models [31] document semantic
variation points generically by annotations on a regular instance model. Poten-
tial concrete models compliant with an uncertain model can be synthesized by
the Alloy Analyzer and its back-end SAT solvers [78,79], or refined by graph
transformation rules [77].

Transformations over partial models [32,33] analyse possible matches and
executions of model transformation rules on partial models by using a SAT
solver (MathSAT4) or by automated graph approximation called “lifting”, which
inspects possible partitions of a finite concrete model, i.e. regular graph trans-
formation rules are lifted, while in this paper, we attempt to introduce model
generator rules directly on the level of partial models.

Regular graph transformation rules are used for model generation is carried
out in [29,100] where output models are metamodel compliant, but they do not
fulfill extra WF constraints of the domain [29] or (a restricted set of) constraints
need to be translated first to rule application conditions [100].

Symbolic Model Generation. Certain techniques use abstract (or symbolic)
graphs for analysis purposes. A tableau-based reasoning method is proposed for
graph properties [3,71,81], which automatically refine solutions based on well-
formedness constraints, and handle state space in the form of a resolution tree.
As a key difference, our approach refines possible solutions in the form of partial
models, while [71,81] resolves the graph constraints to a concrete solution.

7 Conclusion and Future Work

In this paper, we presented the challenge of automated graph model generation
where models are consistent, diverse, scalable and realistic at the same time. In
an experimental evaluation, we found that traditional model generation tech-
niques which excel in one aspect perform poorly with respect to another aspect.
Furthermore, consistent models turn out to be a prerequisite both for the real-
istic and diverse cases. As the main conceptual contribution of this paper, we
presented a refinement calculus based on 3-valued logic evaluation of graph pat-
terns that could drive the automated synthesis of consistent models. We proved
soundness and completeness for this refinement approach, which also enables
to incrementally generate instance models of a larger scope by reusing partial
models traversed in a previous scope. As such, it offers stronger consistency
guarantees than the popular Alloy Analyzer used as a back-end solver for many
mapping-based model generation approaches.

Towards the Automated Generation of Graph Models 307

While an initial version of a model generator operating that way was included
in our experimental evaluation, our main ongoing work is to gradually address
several model generation challenges at the same time. For instance, model gen-
erators which are simultaneously consistent, diverse and realistic could help in
the systematic testing of the Viatra transformation framework [97] or other
industrial DSL tools.

Acknowledgements. The authors are really grateful for the anonymous reviewers
and Szilvia Varró-Gyapay for the numerous constructive feedback to improve the cur-
rent paper. This paper is partially supported by MTA-BME Lendület Research Group
on Cyber-Physical Systems, and NSERC RGPIN-04573-16 project.

References

1. Choco. http://www.emn.fr/z-info/choco-solverp
2. Complete measurement setup and results of the paper (2017). https://github.

com/FTSRG/publication-pages/wiki/Towards-the-Automated-Generation-of-
Consistent,-Diverse,-Scalable,-and-Realistic-Graph-Models/

3. Al-Sibahi, A.S., Dimovski, A.S., Wasowski, A.: Symbolic execution of high-level
transformations. In: Proceedings of the 2016 ACM SIGPLAN International Con-
ference on Software Language Engineering, Amsterdam, 31 October–1 November
2016, pp. 207–220 (2016). http://dl.acm.org/citation.cfm?id=2997382

4. Ali, S., Iqbal, M.Z.Z., Arcuri, A., Briand, L.C.: Generating test data from OCL
constraints with search techniques. IEEE Trans. Softw. Eng. 39(10), 1376–1402
(2013)

5. Anastasakis, K., Bordbar, B., Georg, G., Ray, I.: On challenges of model trans-
formation from UML to Alloy. Softw. Syst. Model. 9(1), 69–86 (2010)

6. Aranega, V., Mottu, J.M., Etien, A., Degueule, T., Baudry, B., Dekeyser, J.L.:
Towards an automation of the mutation analysis dedicated to model transforma-
tion. Softw. Test. Verif. Reliab. 25(5–7), 653–683 (2015)

7. Bagan, G., Bonifati, A., Ciucanu, R., Fletcher, G.H.L., Lemay, A., Advokaat,
N.: gMark: schema-driven generation of graphs and queries. IEEE Trans. Knowl.
Data Eng. 29(4), 856–869 (2017)

8. Bak, K., Diskin, Z., Antkiewicz, M., Czarnecki, K., Wasowski, A.: Clafer: unifying
class and feature modeling. Softw. Syst. Model. 15(3), 811–845 (2016)

9. Batot, E., Sahraoui, H.: A generic framework for model-set selection for the unifi-
cation of testing and learning MDE tasks. In: MODELS. pp. 374–384. ACM Press
(2016)

10. Battiston, F., Nicosia, V., Latora, V.: Structural measures for multiplex networks.
Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 89(3), 032804 (2014)

11. Bergmann, G., Ujhelyi, Z., Ráth, I., Varró, D.: A graph query language for EMF
models. In: Cabot, J., Visser, E. (eds.) ICMT 2011. LNCS, vol. 6707, pp. 167–182.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21732-6 12

12. Berlingerio, M., et al.: Multidimensional networks: foundations of structural anal-
ysis. World Wide Web 16(5–6), 567–593 (2013)

13. Bizer, C., Schultz, A.: The Berlin SPARQL benchmark. Int. J. Sem. Web Inf.
Syst. 5(2), 1–24 (2009)

http://www.emn.fr/z-info/choco-solverp
https://github.com/FTSRG/publication-pages/wiki/Towards-the-Automated-Generation-of-Consistent,-Diverse,-Scalable,-and-Realistic-Graph-Models/
https://github.com/FTSRG/publication-pages/wiki/Towards-the-Automated-Generation-of-Consistent,-Diverse,-Scalable,-and-Realistic-Graph-Models/
https://github.com/FTSRG/publication-pages/wiki/Towards-the-Automated-Generation-of-Consistent,-Diverse,-Scalable,-and-Realistic-Graph-Models/
http://dl.acm.org/citation.cfm?id=2997382
https://doi.org/10.1007/978-3-642-21732-6_12

308 D. Varró et al.

14. Boyapati, C., Khurshid, S., Marinov, D.: Korat: automated testing based on
Java predicates. In: International Symposium on Software Testing and Analy-
sis (ISSTA), pp. 123–133. ACM Press (2002)

15. Brottier, E., Fleurey, F., Steel, J., Baudry, B., Le Traon, Y.: Metamodel-based
test generation for model transformations: an algorithm and a tool. In: ISSRE,
pp. 85–94, November 2006

16. Bures, T., et al.: Software engineering for smart cyber-physical systems - towards
a research agenda. ACM SIGSOFT Softw. Eng. Notes 40(6), 28–32 (2015)

17. Büttner, F., Egea, M., Cabot, J., Gogolla, M.: Verification of ATL transformations
using transformation models and model finders. In: Aoki, T., Taguchi, K. (eds.)
ICFEM 2012. LNCS, vol. 7635, pp. 198–213. Springer, Heidelberg (2012). https://
doi.org/10.1007/978-3-642-34281-3 16

18. Cabot, J., Clarisó, R., Riera, D.: On the verification of UML/OCL class diagrams
using constraint programming. J. Syst. Softw. 93, 1–23 (2014)

19. Cabot, J., Teniente, E.: Incremental integrity checking of UML/OCL conceptual
schemas. J. Syst. Softw. 82(9), 1459–1478 (2009)

20. Clavel, M., Egea, M., de Dios, M.A.G.: Checking unsatisfiability for OCL con-
straints. ECEASST, vol. 24 (2009)

21. Corradini, A., König, B., Nolte, D.: Specifying graph languages with type graphs.
In: de Lara, J., Plump, D. (eds.) ICGT 2017. LNCS, vol. 10373, pp. 73–89.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-61470-0 5

22. Csardi, G., Nepusz, T.: The igraph software package for complex network research.
InterJournal Complex Syst. 1695 (2006). http://igraph.sf.net

23. Cunha, A., Garis, A., Riesco, D.: Translating between alloy specifications and
UML class diagrams annotated with OCL. Softw. Syst. Model. 14(1), 5–25 (2015)

24. Czarnecki, K., Pietroszek, K.: Verifying feature-based model templates against
well-formedness OCL constraints. In: 5th International Conference on Genera-
tive Programming and Component Engineering, GPCE 2006, pp. 211–220. ACM
(2006)

25. Darabos, A., Pataricza, A., Varró, D.: Towards testing the implementation of
graph transformations. In: GTVMT. ENTCS. Elsevier (2006)

26. DeWitt, D.J.: The Wisconsin benchmark: past, present, and future. In: The
Benchmark Handbook, pp. 119–165 (1991)

27. Duchon, P., Flajolet, P., Louchard, G., Schaeffer, G.: Boltzmann samplers for the
random generation of combinatorial structures. Comb. Probab. Comput. 13(4–5),
577–625 (2004)

28. Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic Graph
Transformation. Monographs in Theoretical Computer Science. An EATCS
Series. Springer, Heidelberg (2006). https://doi.org/10.1007/3-540-31188-2

29. Ehrig, K., Küster, J.M., Taentzer, G.: Generating instance models from meta
models. Softw. Syst. Model. 8(4), 479–500 (2009)

30. Erling, O., et al.: The LDBC social network benchmark: interactive workload. In:
SIGMOD, pp. 619–630 (2015)

31. Famelis, M., Salay, R., Chechik, M.: Partial models: towards modeling and rea-
soning with uncertainty. In: ICSE, pp. 573–583. IEEE Press (2012)

32. Famelis, M., Salay, R., Chechik, M.: The semantics of partial model transforma-
tions. In: MiSE at ICSE, pp. 64–69. IEEE Press (2012)

33. Famelis, M., Salay, R., Di Sandro, A., Chechik, M.: Transformation of models
containing uncertainty. In: Moreira, A., Schätz, B., Gray, J., Vallecillo, A., Clarke,
P. (eds.) MODELS 2013. LNCS, vol. 8107, pp. 673–689. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-41533-3 41

https://doi.org/10.1007/978-3-642-34281-3_16
https://doi.org/10.1007/978-3-642-34281-3_16
https://doi.org/10.1007/978-3-319-61470-0_5
http://igraph.sf.net
https://doi.org/10.1007/3-540-31188-2
https://doi.org/10.1007/978-3-642-41533-3_41

Towards the Automated Generation of Graph Models 309

34. Fleurey, F., Baudry, B., Muller, P.A., Le Traon, Y.: Towards dependable model
transformations: qualifying input test data, appears to be published only in a
technical report by INRIA (2007). https://hal.inria.fr/inria-00477567

35. Gogolla, M., Büttner, F., Richters, M.: USE: a UML-based specification envi-
ronment for validating UML and OCL. Sci. Comput. Program. 69(1–3), 27–34
(2007)

36. Goldberg, A.P., Chew, Y.H., Karr, J.R.: Toward scalable whole-cell modeling of
human cells. In: SIGSIM-PADS, pp. 259–262. ACM Press (2016)

37. González, C.A., Cabot, J.: ATLTest: a white-box test generation approach for
ATL transformations. In: France, R.B., Kazmeier, J., Breu, R., Atkinson, C.
(eds.) MODELS 2012. LNCS, vol. 7590, pp. 449–464. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-33666-9 29

38. González, C.A., Cabot, J.: Test data generation for model transformations com-
bining partition and constraint analysis. In: Di Ruscio, D., Varró, D. (eds.) ICMT
2014. LNCS, vol. 8568, pp. 25–41. Springer, Cham (2014). https://doi.org/10.
1007/978-3-319-08789-4 3

39. Guerra, E., Soeken, M.: Specification-driven model transformation testing. Softw.
Syst. Model. 14(2), 623–644 (2015)

40. Habel, A., Pennemann, K.-H.: Nested constraints and application conditions for
high-level structures. In: Kreowski, H.-J., Montanari, U., Orejas, F., Rozenberg,
G., Taentzer, G. (eds.) Formal Methods in Software and Systems Modeling.
LNCS, vol. 3393, pp. 293–308. Springer, Heidelberg (2005). https://doi.org/10.
1007/978-3-540-31847-7 17

41. Habel, A., Pennemann, K.: Correctness of high-level transformation systems rel-
ative to nested conditions. Math. Struct. Comput. Sci. 19(2), 245–296 (2009)

42. Härtel, J., Härtel, L., Lämmel, R.: Test-data generation for Xtext. In: Combemale,
B., Pearce, D.J., Barais, O., Vinju, J.J. (eds.) SLE 2014. LNCS, vol. 8706, pp.
342–351. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11245-9 19

43. ISO: Road vehicles - functional safety (ISO 26262) (2011)
44. Izsó, B., Szatmári, Z., Bergmann, G., Horváth, Á., Ráth, I.: Towards precise

metrics for predicting graph query performance. In: ASE, pp. 421–431 (2013)
45. Jackson, D.: Alloy: a lightweight object modelling notation. ACM Trans. Softw.

Eng. Methodol. 11(2), 256–290 (2002)
46. Jackson, E.K., Levendovszky, T., Balasubramanian, D.: Automatically reasoning

about metamodeling. Softw. Syst. Model. 14(1), 271–285 (2015)
47. Jackson, E.K., Simko, G., Sztipanovits, J.: Diversely enumerating system-level

architectures. In: EMSOFT, p. 11. IEEE Press (2013)
48. Kleene, S.C., De Bruijn, N., de Groot, J., Zaanen, A.C.: Introduction to Meta-

mathematics, vol. 483. van Nostrand, New York (1952)
49. Kolovos, D.S., Paige, R.F., Polack, F.A.C.: On the evolution of OCL for capturing

structural constraints in modelling languages. In: Abrial, J.-R., Glässer, U. (eds.)
Rigorous Methods for Software Construction and Analysis. LNCS, vol. 5115, pp.
204–218. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-11447-
2 13

50. Kuhlmann, M., Gogolla, M.: From UML and OCL to relational logic and back. In:
France, R.B., Kazmeier, J., Breu, R., Atkinson, C. (eds.) MODELS 2012. LNCS,
vol. 7590, pp. 415–431. Springer, Heidelberg (2012). https://doi.org/10.1007/978-
3-642-33666-9 27

https://hal.inria.fr/inria-00477567
https://doi.org/10.1007/978-3-642-33666-9_29
https://doi.org/10.1007/978-3-319-08789-4_3
https://doi.org/10.1007/978-3-319-08789-4_3
https://doi.org/10.1007/978-3-540-31847-7_17
https://doi.org/10.1007/978-3-540-31847-7_17
https://doi.org/10.1007/978-3-319-11245-9_19
https://doi.org/10.1007/978-3-642-11447-2_13
https://doi.org/10.1007/978-3-642-11447-2_13
https://doi.org/10.1007/978-3-642-33666-9_27
https://doi.org/10.1007/978-3-642-33666-9_27

310 D. Varró et al.

51. Kuhlmann, M., Gogolla, M.: Strengthening SAT-based validation of UML/OCL
models by representing collections as relations. In: Vallecillo, A., Tolvanen, J.-P.,
Kindler, E., Störrle, H., Kolovos, D. (eds.) ECMFA 2012. LNCS, vol. 7349, pp.
32–48. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31491-9 5

52. Kuhlmann, M., Hamann, L., Gogolla, M.: Extensive validation of OCL models
by integrating SAT solving into USE. In: Bishop, J., Vallecillo, A. (eds.) TOOLS
2011. LNCS, vol. 6705, pp. 290–306. Springer, Heidelberg (2011). https://doi.org/
10.1007/978-3-642-21952-8 21

53. Le Berre, D., Parrain, A.: The Sat4j library, release 2.2. J. Satisf. Boolean Model.
Comput. 7, 59–64 (2010)

54. Lee, E.A., et al.: The swarm at the edge of the cloud. IEEE Des. Test 31(3), 8–20
(2014)

55. Lehmann, E.L., D’Abrera, H.J.: Nonparametrics: Statistical Methods Based on
Ranks. Springer, New York (2006)

56. López-Fernández, J.J., Guerra, E., de Lara, J.: Combining unit and specification-
based testing for meta-model validation and verification. Inf. Syst. 62, 104–135
(2016)

57. Meedeniya, I., Aleti, A., Grunske, L.: Architecture-driven reliability optimization
with uncertain model parameters. J. Syst. Softw. 85(10), 2340–2355 (2012)

58. Micskei, Z., Szatmári, Z., Oláh, J., Majzik, I.: A concept for testing robustness
and safety of the context-aware behaviour of autonomous systems. In: Jezic, G.,
Kusek, M., Nguyen, N.-T., Howlett, R.J., Jain, L.C. (eds.) KES-AMSTA 2012.
LNCS (LNAI), vol. 7327, pp. 504–513. Springer, Heidelberg (2012). https://doi.
org/10.1007/978-3-642-30947-2 55

59. Misailovic, S., Milicevic, A., Petrovic, N., Khurshid, S., Marinov, D.: Parallel test
generation and execution with Korat. In: ESEC-FSE 2007, pp. 135–144. ACM
(2007)

60. Morsey, M., Lehmann, J., Auer, S., Ngonga Ngomo, A.-C.: DBpedia SPARQL
benchmark – performance assessment with real queries on real data. In: Aroyo,
L., Welty, C., Alani, H., Taylor, J., Bernstein, A., Kagal, L., Noy, N., Blomqvist,
E. (eds.) ISWC 2011. LNCS, vol. 7031, pp. 454–469. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-25073-6 29

61. Mottu, J.-M., Baudry, B., Le Traon, Y.: Mutation analysis testing for model trans-
formations. In: Rensink, A., Warmer, J. (eds.) ECMDA-FA 2006. LNCS, vol. 4066,
pp. 376–390. Springer, Heidelberg (2006). https://doi.org/10.1007/11787044 28

62. Mottu, J.M., Sen, S., Tisi, M., Cabot, J.: Static analysis of model transformations
for effective test generation. In: ISSRE, pp. 291–300. IEEE, November 2012

63. Mottu, J.M., Simula, S.S., Cadavid, J., Baudry, B.: Discovering model transfor-
mation pre-conditions using automatically generated test models. In: ISSRE, pp.
88–99. IEEE, November 2015

64. Mougenot, A., Darrasse, A., Blanc, X., Soria, M.: Uniform random generation
of huge metamodel instances. In: Paige, R.F., Hartman, A., Rensink, A. (eds.)
ECMDA-FA 2009. LNCS, vol. 5562, pp. 130–145. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-02674-4 10

65. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3 24

66. Neema, S., Sztipanovits, J., Karsai, G., Butts, K.: Constraint-based design-space
exploration and model synthesis. In: Alur, R., Lee, I. (eds.) EMSOFT 2003. LNCS,
vol. 2855, pp. 290–305. Springer, Heidelberg (2003). https://doi.org/10.1007/978-
3-540-45212-6 19

https://doi.org/10.1007/978-3-642-31491-9_5
https://doi.org/10.1007/978-3-642-21952-8_21
https://doi.org/10.1007/978-3-642-21952-8_21
https://doi.org/10.1007/978-3-642-30947-2_55
https://doi.org/10.1007/978-3-642-30947-2_55
https://doi.org/10.1007/978-3-642-25073-6_29
https://doi.org/10.1007/11787044_28
https://doi.org/10.1007/978-3-642-02674-4_10
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-45212-6_19
https://doi.org/10.1007/978-3-540-45212-6_19

Towards the Automated Generation of Graph Models 311

67. Nickel, U., Niere, J., Zündorf, A.: The FUJABA environment. In: ICSE, pp. 742–
745. ACM (2000)

68. Nicosia, V., Latora, V.: Measuring and modeling correlations in multiplex net-
works. Phys. Rev. E 92, 032805 (2015)

69. Nielsen, C.B., Larsen, P.G., Fitzgerald, J.S., Woodcock, J., Peleska, J.: Systems of
systems engineering: basic concepts, model-based techniques, and research direc-
tions. ACM Comput. Surv. 48(2), 18 (2015)

70. The Object Management Group: Object Constraint Language, v2.0, May 2006
71. Pennemann, K.-H.: Resolution-like theorem proving for high-level conditions. In:

Ehrig, H., Heckel, R., Rozenberg, G., Taentzer, G. (eds.) ICGT 2008. LNCS, vol.
5214, pp. 289–304. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-
540-87405-8 20

72. Pham, M.-D., Boncz, P., Erling, O.: S3G2: a scalable structure-correlated social
graph generator. In: Nambiar, R., Poess, M. (eds.) TPCTC 2012. LNCS, vol.
7755, pp. 156–172. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-
642-36727-4 11

73. Przigoda, N., Hilken, F., Peters, J., Wille, R., Gogolla, M., Drechsler, R.: Inte-
grating an SMT-based ModelFinder into USE. In: Model-Driven Engineering,
Verification and Validation (MoDeVVa) at MODELS, vol. 1713, pp. 40–45 (2016)

74. Queralt, A., Artale, A., Calvanese, D., Teniente, E.: OCL-Lite: finite reasoning
on UML/OCL conceptual schemas. Data Knowl. Eng. 73, 1–22 (2012)

75. Rensink, A., Distefano, D.: Abstract graph transformation. Electr. Notes in The-
oret. Comp. Sci. 157(1), 39–59 (2006)

76. Reps, T.W., Sagiv, M., Wilhelm, R.: Static program analysis via 3-valued logic.
In: Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS, vol. 3114, pp. 15–30. Springer,
Heidelberg (2004). https://doi.org/10.1007/978-3-540-27813-9 2

77. Salay, R., Chechik, M., Famelis, M., Gorzny, J.: A methodology for verifying
refinements of partial models. J. Object Technol. 14(3), 3:1–3:31 (2015)

78. Salay, R., Chechik, M., Gorzny, J.: Towards a methodology for verifying partial
model refinements. In: ICST, pp. 938–945. IEEE (2012)

79. Salay, R., Famelis, M., Chechik, M.: Language independent refinement using par-
tial modeling. In: de Lara, J., Zisman, A. (eds.) FASE 2012. LNCS, vol. 7212, pp.
224–239. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28872-
2 16

80. Schmidt, M., Hornung, T., Lausen, G., Pinkel, C.: SP2Bench: a SPARQL perfor-
mance benchmark. In: ICDE, pp. 222–233. IEEE (2009)

81. Schneider, S., Lambers, L., Orejas, F.: Symbolic model generation for graph prop-
erties. In: Huisman, M., Rubin, J. (eds.) FASE 2017. LNCS, vol. 10202, pp. 226–
243. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-54494-5 13

82. Schölzel, H., Ehrig, H., Maximova, M., Gabriel, K., Hermann, F.: Satisfaction,
restriction and amalgamation of constraints in the framework of M-adhesive cat-
egories. In: Proceedings Seventh ACCAT Workshop on Applied and Computa-
tional Category Theory, ACCAT 2012, Tallinn, 1 April 2012. EPTCS, vol. 93,
pp. 83–104 (2012)

83. Schonbock, J., Kappel, G., Wimmer, M., Kusel, A., Retschitzegger, W.,
Schwinger, W.: TETRABox - a generic white-box testing framework for model
transformations. In: APSEC, pp. 75–82. IEEE, December 2013

84. Semeráth, O., Barta, Á., Horváth, Á., Szatmári, Z., Varró, D.: Formal valida-
tion of domain-specific languages with derived features and well-formedness con-
straints. Softw. Syst, Model. 16(2), 357–392 (2017)

https://doi.org/10.1007/978-3-540-87405-8_20
https://doi.org/10.1007/978-3-540-87405-8_20
https://doi.org/10.1007/978-3-642-36727-4_11
https://doi.org/10.1007/978-3-642-36727-4_11
https://doi.org/10.1007/978-3-540-27813-9_2
https://doi.org/10.1007/978-3-642-28872-2_16
https://doi.org/10.1007/978-3-642-28872-2_16
https://doi.org/10.1007/978-3-662-54494-5_13

312 D. Varró et al.

85. Semeráth, O., Varró, D.: Graph constraint evaluation over partial models by con-
straint rewriting. In: Guerra, E., van den Brand, M. (eds.) ICMT 2017. LNCS,
vol. 10374, pp. 138–154. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-61473-1 10

86. Semeráth, O., Vörös, A., Varró, D.: Iterative and incremental model generation
by logic solvers. In: Stevens, P., W ↪asowski, A. (eds.) FASE 2016. LNCS, vol.
9633, pp. 87–103. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-
662-49665-7 6

87. Sen, S., Baudry, B., Mottu, J.M.: On combining multi-formalism knowledge to
select models for model transformation testing. In: ICST, pp. 328–337. IEEE
(2008)

88. Spasic, M., Jovanovik, M., Prat-Pérez, A.: An RDF dataset generator for the
social network benchmark with real-world coherence. In: BLINK (2016)

89. RTCA: DO-178C, software considerations in airborne systems and equipment
certification (2012). Technical report

90. Steinberg, D., Budinsky, F., Paternostro, M., Merks, E.: EMF: Eclipse Modeling
Framework 2.0, 2nd edn. Addison-Wesley Professional, Reading (2009)

91. Szárnyas, G., Kővári, Z., Salánki, Á., Varró, D.: Towards the characterization
of realistic models: evaluation of multidisciplinary graph metrics. In: MODELS,
87–94 (2016)

92. Szárnyas, G., Izsó, B., Ráth, I., Varró, D.: The train benchmark: cross-technology
performance evaluation of continuous model queries. Softw. Syst. Model. (2017).
https://doi.org/10.1007/s10270-016-0571-8

93. Sztipanovits, J., Koutsoukos, X., Karsai, G., Kottenstette, N., Antsaklis, P.,
Gupta, V., Goodwine, B., Baras, J.: Toward a science of cyber-physical system
integration. Proc. IEEE 100(1), 29–44 (2012)

94. Torlak, E., Jackson, D.: Kodkod: a relational model finder. In: Grumberg, O.,
Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424, pp. 632–647. Springer, Heidelberg
(2007). https://doi.org/10.1007/978-3-540-71209-1 49

95. Torrini, P., Heckel, R., Ráth, I.: Stochastic simulation of graph transformation sys-
tems. In: Rosenblum, D.S., Taentzer, G. (eds.) FASE 2010. LNCS, vol. 6013, pp.
154–157. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-12029-
9 11

96. Ujhelyi, Z., Bergmann, G., Hegedüs, Á., Horváth, Á., Izsó, B., Ráth, I., Szatmári,
Z., Varró, D.: EMF-IncQuery: an integrated development environment for live
model queries. Sci. Comput. Program. 98, 80–99 (2015)

97. Varró, D., Bergmann, G., Hegedüs, Á., Horváth, Á., Ráth, I., Ujhelyi, Z.: Road
to a reactive and incremental model transformation platform: three generations
of the VIATRA framework. Softw. Syst. Model. 15(3), 609–629 (2016)

98. Varró, D., Balogh, A.: The model transformation language of the VIATRA2
framework. Sci. Comput. Program. 68(3), 214–234 (2007)

99. Waltemath, D., et al.: Toward community standards and software for whole-cell
modeling. IEEE Trans. Bio-med. Eng. 63(10), 2007–2014 (2016)

100. Winkelmann, J., Taentzer, G., Ehrig, K., Küster, J.M.: Translation of restricted
OCL constraints into graph constraints for generating meta model instances by
graph grammars. Electr. Notes Theor. Comput. Sci. 211, 159–170 (2008)

101. Yakindu Statechart Tools: Yakindu. http://statecharts.org/
102. Zhang, J.W., Tay, Y.C.: GSCALER: synthetically scaling a given graph. In:

EDBT, pp. 53–64 (2016). https://doi.org/10.5441/002/edbt.2016.08

https://doi.org/10.1007/978-3-319-61473-1_10
https://doi.org/10.1007/978-3-319-61473-1_10
https://doi.org/10.1007/978-3-662-49665-7_6
https://doi.org/10.1007/978-3-662-49665-7_6
https://doi.org/10.1007/s10270-016-0571-8
https://doi.org/10.1007/978-3-540-71209-1_49
https://doi.org/10.1007/978-3-642-12029-9_11
https://doi.org/10.1007/978-3-642-12029-9_11
http://statecharts.org/
https://doi.org/10.5441/002/edbt.2016.08

Graph Operations and Free Graph Algebras

Uwe Wolter1(B) , Zinovy Diskin2, and Harald König3

1 University of Bergen, Bergen, Norway
Uwe.Wolter@uib.no

2 McMaster University, Hamilton, Canada
diskinz@mcmaster.ca

3 FHDW Hannover, Hannover, Germany
Harald.Koenig@fhdw.de

Abstract. We introduce a concept of graph algebra that generalizes the
traditional concept of algebra in the sense that (1) we use graphs rather
than sets as carriers, and (2) we generalize algebraic operations to dia-
grammatic operations over graphs, which we call graph operations.

Our main objective is to extend the construction of term algebras, i.e.,
free algebras, for the new setting. The key mechanism for the construc-
tion of free graph algebras are pushout-based graph transformations for
non-deleting injective rules. The application of rules, however, has to be
controlled in such a way that “no confusion” arises. For this, we introduce
graph terms and present a concrete construction of free graph algebras
as graph term algebras.

As the main result of the paper, we obtain for any graph signature
Γ an adjunction between the category Graph of graphs and the category
GAlg(Γ) of graph Γ -algebras. In such a way, we establish an “integrating
link” between the two areas Hartmut Ehrig contributed most: algebraic
specifications with initial/free semantics and pushout-based graph trans-
formations.

Keywords: Universal Algebra · Term · Term algebra
Free algebra · Graph operation · Graph algebra · Graph term
Graph term algebra · Free graph algebra · Kleisli morphism

1 Introduction

Graph operations have been a key ingredient of the generalized sketch framework,
developed in the 90s by a group around the second author and motivated by
applications in databases and data modeling [1,3,5]. What was missing, until
now, is a proper formal substantiation of the “Kleisli mapping” construct heavily
employed in those papers. When we re-launched, ten years later, generalized
sketches under the name Diagrammatic Predicate Framework (DPF) [6,12–14],
we dropped operations due to the lack of a proper formalization appropriate for
our applications in Model Driven Software Engineering. Finally, during his period
in Hartmut’s group in 1991-00, the first author had always been wondering if one
c© Springer International Publishing AG, part of Springer Nature 2018
R. Heckel and G. Taentzer (Eds.): Ehrig Festschrift, LNCS 10800, pp. 313–331, 2018.
https://doi.org/10.1007/978-3-319-75396-6_17

http://orcid.org/0000-0002-7553-9858

314 U. Wolter et al.

should look for a uniform mechanism to create names for new items produced
by injective graph transformation rules via pushouts.

In the paper, we present a concept of graph algebra that generalizes the
traditional concept of algebra in the sense that (1) we use graphs as carriers,
instead of sets, and (2) we generalize algebraic operations to graph operations.
We introduce graph terms and present a concrete construction of free graph
algebras as graph term algebras. As a side effect, graph terms provide a uniform
mechanism for the new names problem mentioned above.

As the main result of the paper we obtain for any graph signature Γ an
adjunction between the category Graph of graphs and the category GAlg(Γ)
of graph Γ -algebras. These adjunctions generalize the traditional adjunctions
between the category Set and categories Alg(Σ) of Σ-algebras. The Kleisli cat-
egories of the new adjunctions provide the necessary substantiation of the idea
of “Kleisli morphisms” of the second author, we have been looking for.

As a pleasant surprise, we realized that the new setting of graph algebras
establishes an “integrating link” between the two areas Hartmut Ehrig con-
tributed most - algebraic specifications with initial semantics and graph trans-
formations.

To keep technicalities simple, and to meet the space limitations, we only con-
sider unsorted/untyped signatures and algebras, and leave the straightforward
generalization for the many-sorted/typed case for future work. As a running
example for a graph signature Γ , we have chosen Γ consisting of arrow compo-
sition, identity, initial object, and pullback, which hopefully most of the readers
are familiar with.

The paper is organized as follows. In Sect. 2 we recapitulate the basic alge-
braic concepts signature, operation, algebra, variable, term and term algebra,
and we discuss the characterization of term algebras as free algebras. In Sect. 3
we analyze algebraic operations and “diagrammatic” operations, like composi-
tion and pullbacks, in the light of graphs, and develop the new concepts graph
signature, graph operation and graph algebra. We define corresponding cate-
gories GAlg(Γ) of graph algebras for given graph signatures Γ . In Sect. 4, we
analyse the construction of terms in the light of graph transformations, and
develop the new concepts of a graph term and a graph term algebra. We show
that graph term algebras are free graph algebras and discuss applications of
this main result. Finally, we discuss related work in Sect. 5 and Sect. 6 outlines
different dimensions of further research.

2 Background: Algebras and Term Algebras

An (algebraic) signature Σ = (F, ar) is given by a finite set F of operation
symbols and an arity function ar : F → N. A Σ-algebra A = (A,FA) is provided
by a (carrier) set A, also denoted by |A|, and a family FA = (ωA : Aar(ω) →
A | ω ∈ F) of operations. For n ∈ N we denote by An the set of all n-tuples ā =
(a1, . . . , an) of elements in A. For n = 0 we obtain, in such a way, the singleton
set A0 = {()} containing the empty tuple. A symbol c ∈ F with ar(c) = 0 is

Graph Operations and Free Graph Algebras 315

also called a constant symbol. The corresponding operation cA : A0 → A in a
Σ-algebra A is a “pointer” with the only element () in A0 pointing to the element
cA() in A.

A Σ-algebra A is a subalgebra of a Σ-algebra B if, and only if, A ⊆ B and
ωA(ā) = ωB(ā) for all ω ∈ F and all ā ∈ Aar(ω) ⊆ Bar(ω). This means that
the subset A of the carrier of B has to be closed under the operations in B.
Specifically, A has to contain all the constants cB() from B.

A Σ-homomorphism f : A → B between two Σ-algebras A and B is a map f :
A → B such that for every ω ∈ F, ar(ω) = n we have f ◦ωA = ωB ◦fn where the
n’th power fn : An → Bn of the map f is defined by fn(ā) = (f(a1), . . . , f(an))
for all ā = (a1, . . . , an) ∈ An. That is, for each ω ∈ F, ar(ω) = n we require

f(ωA(a1, . . . , an)) = ωB(f(a1), . . . , f(an)) for all (a1, . . . , an) ∈ An. (1)

f0 : A0 → B0 is the identity on {()}. Note that requirement (1) for constants
c ∈ F means that constants are mapped to constants: f(cA()) = cB(f0()) = cB().

The composition g ◦ f : A → C of two Σ-homomorphisms f : A → B and
g : B → C is given by the composition g ◦ f : A → C of the underlying maps
f : A → B and g : B → C. In such a way, Σ-algebras and Σ-homomorphisms
constitute a category Alg(Σ), and the assignments A �→ |A| and (f : A → B) �→
(f : |A| → |B|) define a forgetful functor | | : Alg(Σ) → Set.

Example 1 (Natural numbers). We consider the signature Σ = (F, ar) with F =
{z, s, p} consisting of a constant symbol z, ar(z) = 0, a unary operation symbol
s, ar(s) = 1, and a binary operation symbol p, ar(p) = 2. As sample Σ-algebra
N = (N, FN) we consider the natural numbers with a zero, a successor, and a
plus operation: zN () = 0, sN = + 1 : N → N, pN = + : N2 → N.

Let be given an algebraic signature Σ and a set X of variables. Σ-terms on X
are strings build of three kinds of symbols: operation symbols from F , variables
from X and three auxiliary symbols “,”, “〈”, “〉”. The inductive definition of
terms goes traditionally as follows (compare [8], p. 18):

Definition 1 (Terms). The set TΣ(X) of all Σ-terms on a set X of variables
is the smallest set of strings of symbols such that:
(Variables). X ⊆ TΣ(X),
(Constants). c〈〉′ ∈ TΣ(X) for all c ∈ F with ar(c) = 0,
(Operations). ω〈t1, . . . , tn〉 ∈ TΣ(X) for all operation symbols ω ∈ F with
ar(ω) = n ≥ 1 and all Σ-terms t1, . . . , tn ∈ TΣ(X).

A simple, but crucial, observation is, that the generation of terms can be
interpreted as operations in special Σ-algebras (compare [8], p. 67):

Definition 2 (Term algebra). For a given set X of variables we denote by
TΣ(X) = (TΣ(X), F TΣ(X)) the Σ-algebra of Σ-terms on X with:
(Constants). cTΣ(X)() = c〈〉 ∈ TΣ(X) for all c ∈ F with ar(c) = 0,
(Operations). ωTΣ(X)(t1, . . . , tn) = ω〈t1, . . . , tn〉 ∈ TΣ(X) for all operation sym-
bols ω ∈ F with ar(ω) = n ≥ 1 and all n-tuples (t1, . . . , tn) ∈ TΣ(X)n.

316 U. Wolter et al.

That any term is generated in a unique way, is abstractly reflected by the char-
acterization of term algebras as free algebras (compare [8], p. 68):

Proposition 1 (Free algebras). For each set X of variables the Σ-algebra
TΣ(X) = (TΣ(X), F TΣ(X)) has the following universal property: For any Σ-
algebra A and any variable assignment α : X → |A| there exists a unique Σ-
homomorphism α∗ : TΣ(X) → A such that: α∗ ◦ inX = α.

X
� � inX ��

α
���

��
��

��
��

TΣ(X)

α∗

��

TΣ(X)

α∗

��
Set |A| A Alg(Σ)

Proposition 1 can be shown by structural induction according to the inductive
definition of terms in Definition 1: For the basic case of variables the defining
condition forces α∗(x) = α(x) for all x ∈ X. For the basic case of constant
symbols the definition of operations in TΣ(X) and the homomorphism condition
entail α∗(c〈〉) = α∗(cTΣ(X)()) = cA() for all c ∈ F with ar(c) = 0. And, for
the induction step the definition of operations in TΣ(X) and the homomorphism
condition provide the necessary induction/recursion scheme

α∗(ω〈t1, . . . , tn〉) = α∗(ωTΣ(X)(t1, . . . , tn)) = ωA(α∗(t1), . . . , α∗(tn)) (2)

for all operation symbols ω ∈ F with ar(ω) = n ≥ 1 and all t1, . . . , tn ∈ TΣ(X).
The universal property determines TΣ(X) up to isomorphism in Alg(Σ). A

Σ-algebra A is isomorphic to TΣ(X) iff the following conditions are satisfied:

1. Generators: There is an injective mapping em : X → |A|.
2. No confusion: em(x)
= ωA(ā) for any x ∈ X, any operation symbol ω ∈ F

and any tuple ā ∈ Aar(ω) . For any operation symbols ω1, ω2 ∈ F and any
tuples ā1 ∈ Aar(ω1), ā2 ∈ Aar(ω2) we have

ωA
1 (ā1)
= ωA

2 (ā2) iff ω1
= ω2 or ā1
= ā2.

3. No junk: A has no proper Σ-subalgebra containing em(X).

As any free construction [10], the universal property in Proposition 1 ensures
that we can extend the assignments X �→ TΣ(X) to a functor TΣ() : Set →
Alg(Σ) that is left-adjoint to the forgetful functor | | : Alg(Σ) → Set. The
adjunction

Set
TΣ()

⊥
��
Alg(Σ)

| |
��

is the fundament for the area of algebraic specifications as the two volumes [8,9]
exemplify. Just to mention, that any variant of equational and/or first-order
specifications is syntactically based on terms while the semantics relies on the

Graph Operations and Free Graph Algebras 317

uniqueness of the evaluation of terms w.r.t. variable assignments. And, not to
forget, the Kleisli category of this adjunction provides us a substitution calculus:
A substitution of terms for variables is a morphism in the Kleisli category, i.e.,
a map σ : X → TΣ(Y). The corresponding extended map σ∗ : TΣ(X) → TΣ(Y)
describes the simultaneous substitution of all variables x in Σ-terms on X by
the corresponding terms σ(x) ∈ TΣ(Y). The composition of two substitutions
σ : X → TΣ(Y) and δ : Y → TΣ(Z) is given by δ∗ ◦ σ : X → TΣ(Z).

3 From Algebras to Graph Algebras

As graphs we consider “directed multigraphs” [7]. A graph G =
(GV , GE , srG, tgG) consists of a set GV of vertices, a set GE of edges, and
two maps srG, tgG : GE → GV . A homomorphism ϕ = (ϕV , ϕE) between two
graphs G = (GV , GE , srG, tgG) and H = (HV ,HE , srH , tgH) consists of two
maps ϕV : HV → GV and ϕE : HE → GE such that ϕV ◦ srG = srH ◦ ϕE and
ϕV ◦ tgG = tgH ◦ ϕE .

The identity graph homomorphism on a graph G is the pair idG =
(idGV

, idGE
) of identity maps and graph homomorphisms are composed com-

ponentwise. By Graph we denote the category with graphs as objects and graph
homomorphisms as morphisms. To establish the concept of graph algebras, we
need, first, an adequate concept of signature.

Definition 3 (Graph signature). A graph signature Γ = (OP, I,R) is given
by a finite set OP of operation symbols and two maps I and R assigning to
each operation symbol ω ∈ OP a finite graph I(ω), its input arity, and a finite
graph R(ω), its result arity, respectively. Moreover, we assume that there is an
inclusion ιω : I(ω) ↪→ R(ω) between the two arity graphs.

To substantiate this definition, we discuss, in more detail, the transition from
algebraic signatures to graph signatures.

Let In = {in1, . . . , inn} be a set of indices. We can consider an n-tuple
ā = (a1, . . . , an) of elements from a set A as a representation of a map a : In → A
where ai = a(ini) for all 1 ≤ i ≤ n. The empty tuple () represents, in this view,
the unique map from the empty set I0 = ∅ into A.

For any n ∈ N there is a bijection between An and the set AIn of all maps
from In into A, thus we can consider maps a ∈ AIn as inputs for operations in
a Σ-algebra A. What about the output? Algebraic operations give only a single
value as output thus we can consider the codomain of an operation in A as the set
AO of all maps from a singleton O = {out} into A. From this viewpoint, we can
consider the declaration of an operation symbol ω with ar(ω) = n as declaring
a span In ←↩ ∅ ↪→ O of set inclusions, where the corresponding operation in a
Σ-algebra A would be a map from AIn into AO.

Operations are assumed, however, to have no side effects. This means that
the input is neither deleted nor changed. In such a way, we can consider the
declaration of the arity of an operation symbol ω as declaring a set inclusion

318 U. Wolter et al.

ιω : In ↪→ In ∪ O (obtained by pushing out the above span of inclusions). The
corresponding operation in A becomes then a map

ωA : AIn −→ AIn∪O such that a = ωA(a) ◦ ιω for all a ∈ AIn . (3)

In
ιω ��

a
���

��
��

��
=

In ∪ O

ωA(a)
����
��
��
��
�

A

We can recognize the same pattern in “graph operations”, like composition
of morphisms and limit/colimit constructions in categories, for example. There
are, however, three essential differences to the case of algebraic operations:

1. There are two different kinds of input items, namely vertices and edges.
2. Operations can produce arbitrary many output items instead of exactly one.
3. To relate output edges in an appropriate way to the input, we have to work

with non-empty “boundary graphs” instead of just the empty set.

As an example we consider the construction of pullbacks. Let a category C
with pullbacks be given and let |C| denote the underlying graph of C. To turn
the existence of pullbacks into an operation, we have to choose for any cospan
A

f→ C
g← B in C one of the existing pullbacks, i.e., we have to choose an object

D and morphisms g∗ : D → A, f∗ : D → B such that the resulting square is a
pullback in C.

The input arity of a corresponding operation symbol pb can be described
by the graph Cospan = (iv1

ie1−→ iv3
ie2←− iv2), i.e., a cospan in C is a graph

homomorphism from Cospan into |C|. Here, “iv” stands for input vertex while
“ie” refers to input edge. We will often use the term binding for these graph
homomorphisms. The output arity of the operation could be described by the
graph Span = (iv1

oe2←− ov
oe1−→ iv2), where “ov” stands for output vertex while

“oe” refers to output edge. The “boundary graph” 2, consisting of the two vertices
iv1 and iv2, connects the output items with the input items. Instead of a span
of graph inclusions Cospan ←↩ 2 ↪→ Span we consider, however, the inclusion
ιpb of the graph Cospan into the graph Square,

iv3 iv1
ie1��

iv2

ie2

��

ov
oe1��

oe2

��

obtained by pushing out the above span of graph inclusions, as the declaration
of the arity of the operation symbol pb.

Graph Operations and Free Graph Algebras 319

Convention 4 (Graph signature). For notational convenience we use canon-
ical names for input vertices and edges. For a given operation symbol ω ∈ OP ,
we denote the elements of I(ω)V by {iv1, . . . , ivnvω

} and the elements of I(ω)E

by {ie1, . . . , ieneω
}, where nvω and neω are the numbers of vertices and edges in

I(ω) resp. Output vertices and edges will be denoted by ovi and oej.

Example 2 (Graph signature). We consider a graph signature Γ = (OP, I,R)
with OP = {pb, comp, id, ini}. For the operation symbol pb we declare I(pb) =
Cospan and R(pb) = Square. The arity of the composition operation symbol
comp is given by the following inclusion of graphs

iv1
ie1 �� iv2

ie2 �� iv3
� � ιcomp �� iv1

ie1

��

oe

		
iv2

ie2

�� iv3

The input arity of id is the graph 1 with exactly one vertex iv and the result
arity is the graph Loop with exactly one vertex iv and one edge oe. Finally, the
input arity of ini is the empty graph ∅, and the result arity is a graph 1 with
exactly one vertex ov. That is, ini is a constant symbol with a trivial result arity,
but in general the result arity of a constant could be any finite graph!

For graphs G and H we denote by GH the set of all graph homomorphisms
from H into G. A fixed choice of pullbacks in category C gives rise to a map

pbC : |C|Cospan −→ |C|Square

such that b = pbC(b) ◦ ιpb for all bindings b : Cospan → |C|.

Cospan
ιpb ��

b

�
��

��
��

��
=

Square

pbC(b)
�����

��
��
��

|C|

Generalizing the pullback example, we coin now the new concept of graph
algebra.

Definition 5 (Graph algebra). For a graph signature Γ = (OP, I,R) a
Γ -algebra G = (G,OPG) is given by a (carrier) graph G = (GV , GE , srG, tgG),
also denoted by |G|, and a family OPG = (ωG : GI(ω) → GR(ω) | ω ∈ OP) of
maps such that b = ωG(b) ◦ ιω for all ω ∈ OP and all b ∈ GI(ω). These maps
will be called graph operations.

I(ω)
ιω ��

b ���
��

��
��

�
=

R(ω)

ωG(b)
����
��
��
��

G

For a vertex v ∈ R(ω)V and edge e ∈ R(ω)E, we write ωG
V (b)(v) and ωG

E(b)(e)
rather than ωG(b)V (v) and ωG(b)E(e). This eases reading formulas with b defined
by long tuples. We will also omit V,E subindices if it eases reading formulas.

320 U. Wolter et al.

For any graph G there is exactly one graph homomorphism ∅G : ∅ → G, i.e.,
G∅ = {∅G} is a singleton, thus for any constant symbol c ∈ OP , i.e., I(c) = ∅, the
corresponding graph operation in a graph Γ -algebra G just points at a subgraph
of G, namely the image of R(c) w.r.t. cG(∅G).

Example 3 (Graph algebra). The composition in a category C can be presented
as a graph operation compC : |C|I(comp) → |C|R(comp) where the only output of
the graph operation is given by compC

E(b)(oe) = b(ie2) ◦ b(ie1) for all bindings
b : I(comp) → |C|. Note, that compC is a total operation. The identity in C gives
another graph operation idC : |C|1 → |C|Loop such that idC

E(b)(oe) = idb(iv).
If C has pullbacks, we can define a graph operation pbC : |C|Cospan →

|C|Square, in such a way, that for any binding b : Cospan → |C| the result
pbC(b) : Square → |C| is a chosen pullback diagram. And, if C has initial objects,
we can define a constant iniC : |C|∅ → |C|1, in such a way, that iniCV (∅G)(ov) is
a (chosen) initial object in C.

A Γ -algebra G is a subalgebra of a Γ -algebra H if G is a subgraph of H and
in ◦ ωG(b) = ωH(in ◦ b) for all ω ∈ OP and all b ∈ GI(ω), where in : G → H is
the corresponding inclusion graph homomorphism (compare Definition 6). This
means that the subgraph G of the carrier of H has to be closed under the
operations in H in the sense that for all ω ∈ OP and all b ∈ GI(ω) the image
ωH(in ◦ b)(R(ω)) is a subgraph of G. Especially, G has to contain the image
graph cH(∅H)(R(c)) for any constant symbol c in OP .

A functor F : C → D between two categories C and D is a graph homo-
morphism F : |C| → |D| compatible with composition, i.e., for all morphisms
f : A → B, g : B → C in C we have F(g ◦ f) = F(g) ◦ F(f). We can reformulate
this condition in terms of the corresponding graph operations compC and compD

by requiring that the following diagram commutes:

|C|I(comp) compC

��

F◦
��

=

|C|R(comp)

F◦
��

|D|I(comp) compD

�� |D|R(comp)

That is, for any binding b : I(comp) → |C| we require (compare (1))

F ◦ compC(b) = compD(F ◦ b).

This example motivates our concept of homomorphisms between graph algebras.

Definition 6. A Γ -homomorphism ϕ : G → H between two Γ -algebras G =
(G,OPG) and H = (H,OPH) is a graph homomorphism ϕ : G → H such that

ϕ ◦ ωG(b) = ωH(ϕ ◦ b) for all ω ∈ OP and all b ∈ GI(ω). (4)

Graph Operations and Free Graph Algebras 321

I(ω)
ιω ��

b

��

R(ω)

ωG(b)

���
���

���
���

��

ωH(ϕ◦b)

��

GI(ω) ωG
��

ϕ◦
��

=

GR(ω)

ϕ◦
��

G
ϕ �� H HI(ω) ωH

�� HR(ω)

Example 4. Given two categories C and D with pullback operations, a functor
F : C → D, that preserves pullbacks, establishes a graph algebra homomorphism
only if it maps chosen pullbacks in C to chosen pullbacks in D.

The composition ψ ◦ϕ : G → K of Γ -homomorphisms ϕ : G → H and ψ : H → K
is given by the composition ψ ◦ ϕ : G → K of the underlying graph homomor-
phisms ϕ : G → H and ψ : H → K. For any graph Γ -algebra G the identity
Γ -homomorphism idG : G → G is given by the identity graph homomorphism
idG : G → G. In such a way, Γ -algebras and Γ -homomorphisms constitute a cate-
gory GAlg(Γ) where the assignments G �→ |G| and (ϕ : G → H) �→ (ϕ : |G| → |H|)
define a forgetful functor | | : GAlg(Γ) → Graph.

We conclude this section with a discussion how algebras can be transformed
into corresponding graph algebras. Any set A can be transformed into a graph
V(A) with an empty set of edges, and any map f : A → B provides trivially a
graph homomorphism V(f) : V(A) → V(B) thus the assignments A �→ V(A)
and (f : A → B) �→ (V(f) : V(A) → V(B)) define a functor V : Set → Graph.

Turning back to the discussion, at the beginning of this section, it becomes
obvious that we can transform any algebraic signature Σ = (F, ar) into a
graph signature ΓΣ = (F, IΣ , RΣ) with IΣ(ω) = V(Iar(ω)) and RΣ(ω) =
V(Iar(ω) ∪ {ov}). It is easy to see that any Σ-algebra can be transformed into a
ΓΣ algebra G(A), and any Σ-algebra homomorphism f : A → B gives rise to a
ΓΣ-homomorphism V(f) : G(A) → G(B).

Finally, the assignments A �→ G(A) and (f : A → B) �→ (V(f) : G(A) →
G(B)) define an embedding G : Alg(Σ) → GAlg(ΓΣ) where we have, by con-
struction, that | |◦G = V◦| | (see Fig. 1). Note, that Alg(Σ) and GAlg(ΓΣ) are,
in general, neither isomorphic nor equivalent since the carrier of a ΓΣ-algebra
can have edges even if the operations only work on vertices.

Fig. 1. Two compatible adjunctions

322 U. Wolter et al.

In the next section we will discuss the construction of free Γ -algebras for
arbitrary graph signatures Γ providing a functor TΓ () : Graph → GAlg(Γ) to
be shown to be left adjoint to the forgetful functor | | : GAlg(Γ) → Graph. This
construction should generalize the construction of term algebras, in the sense,
that for any algebraic signature Σ there is a natural isomorphism between the
two functors G ◦ TΣ() and TΓΣ

() ◦ V from Set into GAlg(ΓΣ).

4 From Terms to Graph Terms

To have a guideline how to define terms in the setting of graph algebras, we
analyze the construction of terms in Definition 1 in the light a graph signatures.
As example we consider the algebraic signature Σ in Example 1.

Fig. 2. Term construction as pushout

For the corresponding graph signature ΓΣ the graph inclusion ιp : IΓΣ
(p) →

RΓΣ
(p) is depicted in the upper part of the diagram in Fig. 2. In the left lower

corner we depict the set of terms that have been constructed until now. Applying
rule 3 in Definition 1 for ω = p and two already constructed terms t1, t2 means to
apply ιp, considered as a graph transformation rule, for the binding b = (in1 �→
t1, in2 �→ t2) and to construct a pushout, i.e., to produce exactly one new vertex
new, as depicted in the lower right corner in Fig. 2. Denoting this new item by
the term p〈t1, t2〉, solves two problems:

1. The term notation provides a uniform mechanism to create identifiers for
new graph items introduced by applying non-deleting injective graph trans-
formation rules (at least for graphs without edges). This problem is seldom
addressed in the graph transformation literature.

2. The term p〈t1, t2〉 codes all the information about the pushout that has been
creating the new item:
(a) The symbol “p” identifies the rule that has been applied and, by consult-

ing the signature, we find the necessary information about the input and
result arity, respectively.

(b) The string “t1, t2” codes the actual binding (match) b = (in1 �→ t1, in2 �→
t2) for the input arity.

(c) Since there is exactly one new item, we do have all information to identify
uniquely the new item, and thus to define the resulting binding b∗.

Graph Operations and Free Graph Algebras 323

In such a way, the term notation offers two possibilities to deal with the problem
of applying the same rule twice for the same binding:

1. A priori: Before we apply a rule for a certain binding, we check the term
denotations of all the items that have already been constructed. In such a
way, we can find out, if the rule had already been applied for this binding. If
this is the case, we do not apply the rule. Note, that the idea to use a rule as
its own negative application condition [7], would be too rigid here. In case of
the operation p, e.g., we couldn’t apply ιp to any graph with more than two
vertices.

2. A posteriori: After applying a rule another time for a certain binding we
repair the mistake silently by identifying the newly generated items with the
“same” already existing items by the assumption that sets are extensional.

We like to adapt the silent a posteriori reparation mechanism and extend
the term notation correspondingly. To deal with the rules arising from declaring
arities of graph operations (see Definition 3) we have to address two problems:
(1) An item can be of two different kinds - vertex or edge, and (2) there can
be any finite number of output items instead of exactly one. To tackle problem
(1), we will use for each kind a separate string of given terms, instead of just
one string. And, by using output items as additional parts of terms, we solve
problem (2).

In the context of graph algebras, we consider a collection of variables to
be a graph rather than a set. Given a graph signature Γ = (OP, I,R) and a
graph X of variables, we will define (graph) Γ -terms over X using the following
symbols/names: operation symbols from OP , names of output vertices and edges
in R(ω) \ I(ω) for all ω ∈ OP , and auxiliary symbols like commas and brackets.

Convention 7. For a graph G, operation symbol ω ∈ OP , and binding b :
I(ω) → G, we write the strings “b(iv1) . . . b(ivnvω

)” and “b(ie1) . . . b(ieneω
)” of,

resp., vertices and edges in G without commas and brackets, denote them by bV

and bE resp., and write b for bV ; bE. Extensionality ensures that b1 = b2 iff
b1 = b2 so that we can omit the overline bar.

Now we are prepared to define graph terms in parallel to the traditional definition
of terms in Definition 1.

Definition 8 (Graph terms). Let be given a graph signature Γ = (OP, I,R)
and a graph X of variables. The graph TΓ (X) of all graph Γ -terms on X is the
smallest graph, which satisfies the following three conditions:
(Variables). TΓ (X) contains the graph of variables, X � TΓ (X);
(Constants). For all c ∈ OP with I(c) = ∅, graph TΓ (X) contains

– for each ov ∈ R(c)V , tuple 〈ov, c, 〈〉〉 as a vertex,
– for each oe ∈ R(c)E, tuple 〈oe, c, 〈〉〉 as an edge, where

scTΓ (X)(〈oe, c, 〈〉〉) = 〈scR(c)(oe), c, 〈〉〉 and tgTΓ (X)(〈oe, c, 〈〉〉) = 〈tgR(c)(oe)c〈〉〉;
(Operations) For all ω ∈ OP with I(ω)
= ∅ and any b : I(ω) → TΓ (X), graph
TΓ (X) contains

324 U. Wolter et al.

– for each ov ∈ R(ω)V \ I(ω)V , tuple 〈ov, ω, b〉 as a vertex1,
– for each oe ∈ R(ω)E \ I(ω)E, tuple 〈oe, ω, b〉 as an edge2, whose source and

target vertices are defined as follows:

srTΓ (X)(〈oe, ω, b〉) =
{

b(srR(ω)(oe)) if srR(ω)(oe) ∈ I(ω)V

〈srR(ω)(oe), ω, b〉 if srR(ω)(oe) /∈ I(ω)V

tgTΓ (X)(〈oe, ω, b〉) =
{

b(tgR(ω)(oe)) if tgR(ω)(oe) ∈ I(ω)V

〈tgR(ω)(oe), ω, b〉 if tgR(ω)(oe) /∈ I(ω)V

Example 5. As an example we consider the graph signature Γ from Example 2
and the graph X depicted in the last line in the following diagram.

tv0 tv1
te1

��		
		
		
		 te2

���
��

��
��

�

te9
��

te10
��

tv3
te5�� te6 �� tv2

te3

��		
		
		
		 te4

���
��

��
��

� tv4
te7

�� te8��
xv1 xe1

�� xv2 xv3xe2
��

xe3
�� xv4 xv5xe4

��

Vertex tv0 is generated by the rule ιini, i.e., tv0 = 〈ov, ini, 〈〉〉. Vertices
tv1, . . . , tv4 and edges te1, . . . , te8 are generated by the following four applica-
tions bi, i = 1..4 of the rule ιpb (as there are no isolated vertices in the arity of
pb, it’s sufficient to specify the values of bindings on edges):

b1 b2 b3 b4
ie1 xe1 xe3 te2 xe4
ie2 xe2 xe4 te3 xe4

which produce

tv1 = 〈ov, pb, b1〉 te1 = 〈oe2, pb, b1〉 te2 = 〈oe1, pb, b1〉
tv2 = 〈ov, pb, b2〉 te3 = 〈oe2, pb, b2〉 te4 = 〈oe1, pb, b2〉
tv3 = 〈ov, pb, b3〉 te5 = 〈oe2, pb, b3〉 te6 = 〈oe1, pb, b3〉
tv4 = 〈ov, pb, b4〉 te7 = 〈oe2, pb, b4〉 te8 = 〈oe1, pb, b4〉

Note, that the edge pair te7 and te8 could be declared as kernel of edge
xe4. Finally, edges te9 and te10 are obtained by two applications of rule ιcomp:
b5(ie1) = te1, b5(ie2) = xe1, and b6(ie1) = te2, b5(ie2) = xe2, which produce
te9 = 〈oe, comp, b5〉, te10 = 〈oe, comp, b6〉.

Analogously, to the case of terms, we can interpret the construction of graph
terms as operations in special Γ -algebras:

1 To show analogy with Definition 1 clearer, we could denote such tuples as
ωov〈b(iv1), . . . , b(ivnvω); b(ie1), . . . , b(ieneω)〉.

2 Dito for ωoe〈b(iv1), . . . , b(ivnvω); b(ie1), . . . , b(ieneω)〉.

Graph Operations and Free Graph Algebras 325

Definition 9 (Graph term algebra). For a graph X of variables we denote
by TΓ (X) = (TΓ (X), OP TΓ (X)) the Γ -algebra of graph Γ -terms on X with:
(Constants). For all c ∈ OP with I(c) = ∅

c
TΓ (X)
V (∅G)(ov) = 〈ov, c, 〈〉〉 for all ov ∈ R(c)V ,

c
TΓ (X)
E (∅G)(oe) = 〈oe, c, 〈〉〉 for all oe ∈ R(c)E ;

(Operations). For all ω ∈ OP with I(ω)
= ∅ and all b ∈ TΓ (X)I(ω)

ω
TΓ (X)
V (b)(v) =

{
bV (v) , if v ∈ I(ω)V

〈v, ω, b〉, if v ∈ R(ω)V \ I(ω)V

ω
TΓ (X)
E (b)(e) =

{
bE(e) , if e ∈ I(ω)E

〈e, ω, b〉, if e ∈ R(ω)E \ I(ω)E

The definitions ensure that all resulting bindings ωTΓ (X)(b) ∈ TΓ (X)R(ω) are
indeed graph homomorphisms and that b = ωTΓ (X)(b) ◦ ιω, as required.

The condition “the smallest graph” in Definition 8 ensures that TΓ (X) has
“no junk”, i.e., no proper subalgebra containing X, and the graph term notation
ensures that there is “no confusion”, i.e., variables are not identified with items
introduced by operation applications. Moreover, items, introduced by different
operation applications, are not identified either.

More structurally, “no confusion” means, especially, that for any ω ∈ OP
and any b ∈ TΓ (X)I(ω), the commutative triangle below (on the left) factorizes,
by epi-mono-factorization b = bm ◦ be and ωTΓ (X)(b) = ωTΓ (X)(b)m ◦ωTΓ (X)(b)e,
into a pushout square and a commutative triangle (below on the right).

I(ω) �
� ιω ��

b

��

=

R(ω)

ωTΓ (X)(b)

����
��
��
��
��
��
��
��

I(ω) �
� ιω ��

be

��
PO

R(ω)

ωTΓ (X)(b)e

��
b(I(ω)) �

� ιb
ω ��

bm

���
��

��
��

��

=

ωTΓ (X)(b)(R(ω))

ωTΓ (X)(b)m

TΓ (X) TΓ (X)

Proposition 2 (Free graph algebras). For each graph X the graph term
Γ -algebra TΓ (X) = (TΓ (X), OP TΓ (X)) has the following universal property: For
any Γ -algebra G and any variable assignment α : X → |G| there exists a unique
Γ -homomorphism α∗ : TΓ (X) → G such that: α∗ ◦ inX = α.

X � � inX ��

α
���

��
��

��
��

TΓ (X)

α∗

��

TΓ (X)

α∗

��
Graph |G| G GAlg(Γ)

326 U. Wolter et al.

Proof. We prove by structural induction according to Definition 8:
(Variables). In this basic case the defining condition forces α∗

V (xv) = αV (xv)
for all xv ∈ XV and α∗

E(xe) = αE(xe) for all xe ∈ XE .
(Constants). In this basic case the definition of operations in TΓ (X) and the
desired homomorphism condition for α∗ forces for all ov ∈ R(c)

α∗
V (〈ov, c, 〈〉〉) = α∗

V (cTΓ (X)
V (∅TΓ (X))(ov)) = cG

V (α∗ ◦ ∅TΓ (X))(ov) = cG
V (∅G)(ov)

and for all oe ∈ R(c)E we get, analogously, α∗
E(〈oe, c, 〈〉〉) = cG

E(∅G)(oe).
(Operations). The definition of operations in TΓ (X) and the desired homomor-
phism condition forces α∗ to be defined according to a corresponding recursion
scheme for all ω ∈ OP with I(ω)
= ∅ and all b ∈ TΓ (X)I(ω): The induction
hypothesis is that α∗ is already defined on the subgraph b(I(ω)) � TΓ (X). We
denote the restriction of α∗ to b(I(ω)) by α∗

b . In the induction step we extend
α∗ to the subgraph ωTΓ (X)(b)(R(ω)) � TΓ (X) (that contains b(I(ω))), i.e., to
all graph terms that have been constructed exactly by applying rule ιω for the
binding b: For all ov ∈ R(ω)V we get

α∗
V (〈ov, ω, b〉) = α∗

V (ωTΓ (X)
V (b)(ov)) = ωG

V (α∗
b ◦ be)(ov)

and for all oe ∈ R(ω)E we get α∗
E(〈oe, ω, b〉) = ωG

E(α∗
b ◦ be)(oe).

More structurally considered, the induction step constructs the unique medi-
ating morphism from ωTΓ (X)(b)(R(ω)) into G in the following diagram (Keep in
mind that α∗ ◦ be = ωG(α∗

b ◦ be) ◦ ιω since ωG is a graph operation.):

I(ω) �
� ιω ��

be

��
PO

R(ω)

ωTΓ (X)(b)e

��

ωG(α∗
b ◦be)

��
b(I(ω)) �

� ιb
ω ��

α∗
b

��ωTΓ (X)(b)(R(ω)) �������� G

A more traditional presentation of the induction step, analogously to (2), can
be given if we use for the binding b ∈ TΓ (X)I(ω) the abbreviations tvj = b(ivj),
1 ≤ j ≤ nvω and tek = b(iek), 1 ≤ k ≤ neω (compare Convention 7), consider
tuples as presentations of finite maps, as discussed at the beginning of Sect. 3,
and represent the two maps constituting a binding for I(ω) in G as a sequence
of vertices and edges of length nvω + neω in G: For all ov ∈ R(ω)V , we get

α∗
V (〈ov, ω, tv1 . . . tvnvω

te1 . . . teneω
〉)

= ωG
V (α∗

V (tv1) . . . α∗
V (tvnvω

)α∗
E(te1) . . . α∗

E(teneω
))(ov).

The universal property in Proposition 2 ensures that we can extend the
assignments X �→ TΓ (X) to a functor TΓ () : Graph → GAlg(Γ) that is left-
adjoint to the forgetful functor | | : GAlg(Γ) → Graph (see Fig. 1). That the
adjunction TΓ () � | | generalizes the construction of term algebras, in the sense,
that for any algebraic signature Σ there is a natural isomorphism between the

Graph Operations and Free Graph Algebras 327

two functors G ◦ TΣ() and TΓΣ
() ◦ V from Set into GAlg(ΓΣ)(see Fig. 1) can

be shown straightforwardly.
Establishing the adjunctions TΓ () � | | is the main result of the paper. Since

the new adjunctions generalize the adjunctions TΣ() � | |, we will be able to
transfer smoothly many concepts, constructions, and results from the area of
algebraic specifications to the new setting of graph algebras (see Sect. 6).

Equations, for example, can be defined as pairs of graph terms and can be
used to formulate properties of graph operations. Associativity of composition,
e.g., can be expressed by the equation (we recall Convention 7 about denotations
of binding mappings)

〈oe, comp, 〈oe, comp, xe1xe2〉xe3〉 = 〈oe, comp, xe1〈oe, comp, xe2xe3〉〉

where X is the graph (xv1
xe1→ xv2

xe2→ xv3
xe3→ xv4). Since there are no isolated

vertices in the arities of our sample operations we list only edge variables in the
sample equations. We may also require that our choice of pullbacks is symmetric
in the sense that the following equations are satisfied:

〈ov, pb, xe1xe2〉 = 〈ov, pb, xe2xe1〉
〈oe1, pb, xe1xe2〉 = 〈oe2, pb, xe2xe1〉
〈oe2, pb, xe1xe2〉 = 〈oe1, pb, xe2xe1〉,

where X is the graph (xv1
xe1→ xv3

xe2← xv2). Note, that we can not summarize
the three equations by a single (hypothetical) equation between bindings

pb〈xe1xe2〉 = pb〈xe2xe1〉

since oe1 and oe2 are interchanged in the last two equations above.
The Kleisli category of the new adjunction provides an appropriate substi-

tution calculus. A substitution is an arrow in the Kleisli category, i.e., a graph
homomorphism σ : X → TΓ (Y). The corresponding extended graph homo-
morphism σ∗ : TΓ (X) → TΓ (Y) describes the simultaneous substitution of all
variable vertices xv and variable edges xe in graph Γ -terms on X by the corre-
sponding graph terms σV (xv) ∈ TΓ (Y)V or σE(xe) ∈ TΓ (Y)E , respectively. The
composition of two substitutions σ : X → TΓ (Y) and δ : Y → TΓ (Z) is given
by δ∗ ◦ σ : X → TΓ (Z). Substitutions σ : X → TΓ (Y) allow us, for example, to
formalize the concepts of queries and views in databases [3].

Remark 1 (Universal properties). For a categorically minded reader, considering
such operations as pullback and pushout without their universal properties does
not make too much sense. Below we will show how to include universal proper-
ties into our framework of diagram operations. We will consider universality of
pullbacks, but the method is quite general and applicable for any limit/colimit
operation over graphs.

Commutativity of a pullback square can be expressed by the following equation

〈oe, comp, 〈oe1, pb, ie1ie2〉ie2〉 = 〈oe, comp, 〈oe2, pb, ie1ie2〉ie1〉

328 U. Wolter et al.

where operations pb and comp are defined in Example 3. Universal properties,
however, are conditional statements thus we need a kind of implication to express
them. The implications, we are looking for, are a further development of the
sketch axioms in [11] (see also Sect. 5). Those implications are based on graph
homomorphisms. To express the existence of mediating morphisms we consider,
in case of pullbacks, the following inclusion of graphs:

xv1 xv2
xe1�� � � ι �� xv1 xv2

xe1��

xv3

xe2

��

xv4
xe4��

xe3

��

xv3

xe2

��

tv
te1��

te2

��

xv4
m��

xe3
��

xe4

��

where tv = 〈ov, pb, xe1xe2〉, te1 = 〈oe2, pb, xe1xe2〉 and te2 = 〈oe1, pb, xe1xe2〉.
We denote the graph on the left-hand side by X and the graph on the right-hand
side by Y . Since, m is the only item in Y , that is not in X or generated by X,
respectively, the inclusion homomorphism allows us to formulate a conditional
existence statement of the form

∀X.(prem1
ι⇒ ∃m. concl1) where

prem1 := 〈oe, comp, xe4xe2〉 = 〈oe, comp, xe3xe1〉
concl1 := 〈oe, comp,m te1〉 = xe4 ∧ 〈oe, comp,m te2〉 = xe3.

A graph operation pbC : |C|Cospan → |C|Square, as in Example 3, satisfies this
implication iff every binding b : X → |C|, that makes the premise prem1 true,
can be extended to a binding b̄ : Y → |C| with b̄ ◦ ι = b such that the following
two conditions hold: (a) b̄(te1) = 〈oe1, pb, xe1xe2〉 and b̄(te2) = 〈oe2, pb, xe1xe2〉
and (b) the conclusion concl1 becomes true. Note, that condition (a) ensures
that only an appropriate match for the edge m needs to be found.

X � � ι ��

b |= prem1
���

��
��

��
�

=

Y

∃ b̄ |= concl1����
��
��
��

|C|

To express the uniqueness of mediating morphisms we exploit a non-injective
but surjective graph homomorphism ϕ : Y ′ → Y where Y ′ is Y plus an additional
edge m′ from xv4 to tv. ϕ is the identity except that it maps m and m′ in Y ′

to m in Y . The premise prem2 is given by two corresponding copies of concl1
above and the conclusion concl2 is just true. A graph operation pbC satisfies the
implication ∀Y ′.(prem2

ϕ⇒ true) iff every binding b : Y ′ → |C|, that makes the
premise prem2 true, can be extended to a binding b̄ : Y → |C| with b̄ ◦ ϕ = b.
In other words, there is no binding b : Y ′ → |C| with b̄(m)
= b̄(m) that makes
the premise prem2 true.

Graph Operations and Free Graph Algebras 329

5 Related Work

An abstract diagrammatic approach to logic, including a general notion of
diagram predicates and their models (generalized sketches), and implications
between diagram predicates (sketch axioms), was pioneered by Makkai in [11]
(see also historical remarks in our paper [6]). However, Makkai did not work
with diagram operations and algebras. Formal definitions of a (diagrammatic)
graph operation and a graph algebra were introduced by the second author in
[4], and many examples and discussions in the database context can be found
in [3]. The latter paper also describes the construction of what they call sketch
parsing. The idea is that any operation signature Γ gives rise to a predicate
signature Γ ∗ by forgetting the input arity parts in the entire operation arities.
Then any Γ -term becomes a Γ ∗-sketch [6]. Parsing does the inverse: given an
Γ ∗-sketch, it tries to convert it into an Γ -term. In these papers, graph terms are
defined as trees labeled by diagrams respecting operation arities. In the present
paper, we are more interested in the entire object of graph term algebra and
its universal properties rather than in the notion of a single graph term. Nei-
ther of the papers above formally defined the graph term algebra and proved its
universal properties.

Injective graph transformation rules have been studied extensively by
Hartmut Ehrig and his co-authors (see [7]). The special feature of injective rules,
elucidated in the paper, may shed new light on the “nature” of those rules.

6 Conclusion and Future Work

In the paper, we extended the classical construction of term algebra for opera-
tions over sets to the case of diagrammatic operations over graphs. We showed
that any graph term algebra freely generated by applying graph operations to
a given graph of variables is indeed free: it possesses the respective universal
property in the category of graph algebras. This basic result shows that our
definitions of graph operations and graph algebras work as we wanted, i.e., in
parallel with the ordinary algebra case. Moreover, this result hopefully paves a
way to a wider generalization of the core Universal Algebra framework for graph
operations and graph algebras. In more detail, we aim at defining congruence
relations, quotients and epi-mono factorizations for graph algebras, thus building
what we could call Graph-based Universal Algebra. More abstractly, it would also
be interesting to extend our result in [6] concerning institutions of generalized
sketches to any of the envisaged logical extensions.

We see other interesting and useful extensions of the framework.

Typing. The step from unsorted to many-sorted algebras is relatively straight-
forward. In the same way, we see no principle problems to extend the framework,
presented in this paper, to typed graphs [7]. This extension will be necessary to
meet the situations in applications (compare [3,12–14]).

Term Language. In the paper we considered two roles of ordinary terms and
their extension for graph algebras. These two roles are (a) to denote elements in

330 U. Wolter et al.

free algebras and (b) to provide induction/recursion schemes for evaluating the
elements of free algebras in arbitrary algebras. However, terms are also used (c)
to denote composed/derived operations in algebras. This role provides the foun-
dation for functorial semantics and thus for a categorical approach to Universal
Algebra. By extending the approach in [2], we plan to specify this role in the
setting of graph algebras too.

From Graphs to Presheaf Toposes. To meet the spirit of the Festschrift,
in the paper we focused on graph-based structures, which have been the basis
for research on graph transformations in Hartmut’s group for decades [7]. The
category of graphs, however, is a very simple instance of a quite general concept
of a presheaf topos that encompasses 2-graphs, Petri nets, attributed graphs
[7], and many other structures employed in computer science. There should be
no principle problems to extend the definitions and results of the paper to the
broader class of presheaf topoi.

References

1. Cadish, B., Diskin, Z.: Heterogeneous view integration via sketches and equations.
In: Raś, Z.W., Michalewicz, M. (eds.) ISMIS 1996. LNCS, vol. 1079, pp. 603–612.
Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-61286-6 184

2. Claßen, I., Große-Rhode, M., Wolter, U.: Categorical concepts for parameterized
partial specifications. Math. Struct. Comput. Sci. 5(2), 153–188 (1995). https://
doi.org/10.1017/S0960129500000700

3. Diskin, Z.: Databases as diagram algebras: specifying queries and views via the
graph-based logic of sketches. Technical report 9602, Frame Inform Systems, Riga,
Latvia (1996).http://www.cs.toronto.edu/zdiskin/Pubs/TR-9602.pdf

4. Diskin, Z.: Towards algebraic graph-based model theory for computer science. Bull.
Symb. Log. 3, 144–145 (1997)

5. Diskin, Z., Cadish, B.: A graphical yet formalized framework for specifying view
systems. In: First East-European Symposium on Advances in Databases and Infor-
mation Systems, pp. 123–132. Nevsky Dialect (1997)

6. Diskin, Z., Wolter, U.: A diagrammatic logic for object-oriented visual modeling.
ENTCS 203(6), 19–41 (2008). https://doi.org/10.1016/j.entcs.2008.10.041

7. Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic Graph
Transformations. EATCS Monographs on Theoretical Computer Science. Springer,
Heidelberg (2006). https://doi.org/10.1007/3-540-31188-2

8. Ehrig, H., Mahr, B.: Fundamentals of Algebraic Specification 1: Equations and
Initial Semantics. EATCS Monographs on Theoretical Computer Science, vol. 6.
Springer, Heidelberg (1985). https://doi.org/10.1007/978-3-642-69962-7

9. Ehrig, H., Mahr, B.: Fundamentals of Algebraic Specification 2: Module Specifi-
cations and Constraints. EATCS Monographs on Theoretical Computer Science,
vol. 21. Springer, Heidelberg (1990). https://doi.org/10.1007/978-3-642-61284-8

10. Mac Lane, S.: Categories for the Working Mathematician, 2nd edn. Springer,
New York (1978). https://doi.org/10.1007/978-1-4757-4721-8

11. Makkai, M.: Generalized sketches as a framework for completeness theorems. J.
Pure Appl. Algebra 115, 49–79, 179–212, 214–274 (1997)

https://doi.org/10.1007/3-540-61286-6_184
https://doi.org/10.1017/S0960129500000700
https://doi.org/10.1017/S0960129500000700
http://www.cs.toronto.edu/zdiskin/Pubs/TR-9602.pdf
https://doi.org/10.1016/j.entcs.2008.10.041
https://doi.org/10.1007/3-540-31188-2
https://doi.org/10.1007/978-3-642-69962-7
https://doi.org/10.1007/978-3-642-61284-8
https://doi.org/10.1007/978-1-4757-4721-8

Graph Operations and Free Graph Algebras 331

12. Mantz, F., Taentzer, G., Lamo, Y., Wolter, U.: Co-evolving meta-models and their
instance models: a formal approach based on graph transformation. Sci. Comput.
Program. 104, 2–43 (2015). https://doi.org/10.1016/j.scico.2015.01.002

13. Rossini, A., Rutle, A., Lamo, Y., Wolter, U.: A formalisation of the copy-modify-
merge approach to version control in MDE. J. Log. Algebraic Programm. 79(7),
636–658 (2010). https://doi.org/10.1016/j.jlap.2009.10.003

14. Rutle, A., Rossini, A., Lamo, Y., Wolter, U.: A formal approach to the specification
and transformation of constraints in MDE. J. Log. Algebraic Programm. 81(4),
422–457 (2012). https://doi.org/10.1016/j.jlap.2012.03.006

https://doi.org/10.1016/j.scico.2015.01.002
https://doi.org/10.1016/j.jlap.2009.10.003
https://doi.org/10.1016/j.jlap.2012.03.006

Author Index

Azzi, Guilherme Grochau 1, 160

Bezerra, Jonas Santos 1, 160
Born, Kristopher 105

Corradini, Andrea 1
Costa, Andrei 1, 160

Diskin, Zinovy 313
Duval, Dominique 1

Habel, Annegret 19
Horváth, Ákos 285

Kahloul, Laid 201
Kastenberg, Harmen 245
Knapp, Alexander 37
König, Barbara 83
König, Harald 313
Kreowski, Hans-Jörg 61
Kuske, Sabine 61

Lambers, Leen 105, 124
Löwe, Michael 1, 142
Lye, Aaron 61

Machado, Rodrigo 1, 160
Montanari, Ugo 179
Mossakowski, Till 37

Navarro, Marisa 124
Nolte, Dennis 83

Orejas, Fernando 105, 124

Padberg, Julia 83, 201
Pfaltz, John L. 223
Pino, Elvira 124
Plump, Detlef 231

Rensink, Arend 83, 245
Ribeiro, Leila 1, 160
Rodrigues, Leonardo Marques 1, 160

Sammartino, Matteo 179
Sandmann, Christian 19
Sannella, Donald 266
Semeráth, Oszkár 285
Strüber, Daniel 105
Szárnyas, Gábor 285

Taentzer, Gabriele 105
Tarlecki, Andrzej 266
Tcheukam, Alain 179
Teusch, Tilman 19

Varró, Dániel 285

Wolter, Uwe 313

	Foreword
	Preface
	Organization
	Contents
	On the Essence of Parallel Independence for the Double-Pushout and Sesqui-Pushout Approaches
	1 Introduction
	2 Background
	3 Conditions for Parallel Independence
	4 Equivalence of Conditions for Parallel Independence
	5 Implementation in the Verigraph System
	5.1 Data Structures
	5.2 Primitive Categorical Operations
	5.3 Parallel Independence Test

	6 Experimental Evaluation
	7 Conclusions
	References

	Integration of Graph Constraints into Graph Grammars
	1 Introduction
	2 Preliminaries
	3 Weakest Liberal Preconditions
	4 Filtering Through Constraints
	4.1 Constraint Automata
	4.2 Backward Construction
	4.3 Closure Properties
	4.4 Termination
	4.5 Filtering

	5 Related Concepts
	6 Conclusion
	References

	Multi-view Consistency in UML: A Survey
	1 Introduction
	2 Approaches to Multi-view Consistency in UML
	3 Consistency Techniques
	3.1 System Model
	3.2 Dynamic Meta-modelling
	3.3 Universal Logic
	3.4 Heterogeneous Transformation

	4 Observations and Results
	5 Distributed Semantics for Multi-view Consistency
	6 Conclusion and Future Work
	References

	A Simple Notion of Parallel Graph Transformation and Its Perspectives
	1 Introduction
	2 Preliminaries
	2.1 Disjoint Union of Sets
	2.2 Basic Notions of Graphs
	2.3 Rule-Based Graph Transformation

	3 Parallel Graph Transformation
	3.1 Sequentialization and Parallelization Theorems
	3.2 Shifts and Canonical Derivations
	3.3 Related Work

	4 Parallelism of Hyperedge Replacement
	4.1 Hyperedge Replacement and Its Context-Freeness Lemma
	4.2 Maximum Parallel Hyperedge Replacement
	4.3 Related Work

	5 Parallelization of Graph Algorithms
	5.1 The Case of Shortest Paths
	5.2 Related Work

	6 Infinity
	6.1 Application to Finite Graphs
	6.2 Application to Infinite Graphs

	7 Parallel Models of Computation
	7.1 The Case of Cellular Automata
	7.2 Related Work

	8 Conclusion
	References

	A Tutorial on Graph Transformation
	1 Introduction
	2 A Formal Introduction to Graph Transformation
	3 Attributed Graph Transformation
	4 Example: Leader Election
	5 Tools
	5.1 GROOVE: Graphs for Object-Oriented Verification
	5.2 AGG: The Attributed Graph Grammar System

	6 Some Remarks on the Categorical Background
	7 Literature Overview
	7.1 Introductory Papers
	7.2 Further Issues

	8 Conclusion
	References

	Initial Conflicts and Dependencies: Critical Pairs Revisited
	1 Introduction
	2 Motivating Example
	3 Preliminaries
	4 Initial Conflicts
	5 Initial Conflicts for Typed Graph Transformation
	6 Initial Dependencies
	7 Related Work and Conclusion
	References

	Towards a Navigational Logic for Graphical Structures
	1 Introduction
	2 Motivation
	2.1 A First Navigational Logic Example
	2.2 Path Expressions

	3 Patterns with Paths for Arbitrary Graphical Structures
	4 Instantiation to Different Classes of Graphs
	4.1 Untyped Directed Graphs
	4.2 Typed Graphs
	4.3 Attributed Graphs

	5 Reasoning About Navigational Properties
	5.1 Nested Pattern Conditions, Models and Satisfaction
	5.2 Transformation by Lift and Unfolding
	5.3 Inference Rules

	6 Related Work, Conclusion and Future Work
	References

	Model Transformations as Free Constructions
	1 Introduction
	2 Sample Transformations – from Classes to Relations
	3 Generating Transformations and Epi-Reflections
	3.1 Generating Transformation Systems
	3.2 Transformation Systems as Epi-Reflections

	4 Partial Algebras
	5 Sample Transformations – Revisited
	6 Summary
	References

	The Verigraph System for Graph Transformation
	1 Introduction
	2 Algebraic Graph Transformation
	2.1 Example: Pacman

	3 Architecture
	3.1 The Abstract Layer
	3.2 The Application Layer
	3.3 The Concrete Layer

	4 Implementing a Graph Model in Verigraph
	4.1 Step 1: Define the Graph Model as an M-adhesive Category
	4.2 Step 2: Implement Data Structures for Objects and Morphisms
	4.3 Step 3: Instantiate the Appropriate Type Classes
	4.4 Step 4 (Optional): Implement Category-Specific Applications
	4.5 Step 5: Adapt the Command-Line Interface

	5 Overview of Implemented Techniques
	6 Related Work
	7 Performance Evaluation
	8 Conclusion
	References

	Decomposition Structures for Soft Constraint Evaluation Problems: An Algebraic Approach
	1 Introduction
	2 Background
	2.1 Soft Constraint Satisfaction Problems
	2.2 Tree Decomposition
	2.3 Dynamic Programming via Tree Decompositions

	3 Soft Constraint Evaluation Problems (SCEPs)
	3.1 Weak Specification
	3.2 Soundness and Completeness of Networks

	4 SCSPs as SCEPs
	5 Evaluation Complexity
	6 Tree Decompositions as w-terms
	7 Computing Canonical Decompositions
	8 Example
	8.1 Non-existence of a SCSP Formulation
	8.2 Implementation

	9 Conclusion
	References

	Overview of Reconfigurable Petri Nets
	1 Introduction
	2 Related Work
	3 Reconfigurable Petri Nets
	3.1 Basic Concepts
	3.2 Reconfigurable Computing

	4 Types of Reconfigurable Petri Nets
	4.1 Reconfigurable Low-level Nets
	4.2 Reconfigurable Stochastic Nets
	4.3 Reconfigurable High-level Nets

	5 Results
	5.1 Results for Abstract Transformation Systems
	5.2 Control Structures
	5.3 Verification

	6 Applications
	6.1 Reconfigurable Manufacturing Systems
	6.2 Other Applications

	7 Tools
	7.1 RON-Editor
	7.2 ReConNet

	8 Conclusion
	References

	A Category of ``Undirected Graphs''
	1 The Abstract Category
	2 Two Functions in hom(UG)
	2.1 Reduction,
	2.2 Expansion,
	2.3 The Inverse Set, -1

	References

	Modular Termination of Graph Transformation
	1 Introduction
	2 Hypergraph Transformation
	2.1 Hypergraphs
	2.2 Rules and Derivations
	2.3 Sequential Independence

	3 Sequential Critical Pairs
	4 Modular Termination
	5 Conclusion and Future Work
	References

	Graph Attribution Through Sub-Graphs
	1 Introduction
	2 The Model
	2.1 Algebra Graphs
	2.2 Reflected Graph Embeddings

	3 Adhesiveness
	3.1 Reflected Monos

	4 Data Abstraction
	5 Implementation
	6 Evaluation and Conclusion
	References

	On Normal Forms for Structured Specifications with Generating Constraints
	1 Introduction
	2 Constraints in the Standard Algebraic Framework
	3 Institutions with Model Inclusions
	4 Structured Specifications in Institutions with Model Inclusions
	5 Algebraic Properties of Specification-Building Operations
	6 Normal Form Results
	7 Final Remarks
	References

	Towards the Automated Generation of Consistent, Diverse, Scalable and Realistic Graph Models
	1 Introduction
	2 The Graph Model Generation Challenge
	3 Preliminaries
	3.1 Metamodels and Instance Models
	3.2 Partial Models
	3.3 Graph Patterns as Well-Formedness Constraints

	4 Refinement and Concretization of Partial Models
	4.1 A Refinement Relation for Partial Model Generation
	4.2 Refinement Operations for Partial Models
	4.3 Consistency of Model Generation by Refinement Operations

	5 Evaluation
	5.1 Setup of Experiments
	5.2 Evaluation of Measurement Results

	6 Related Work
	7 Conclusion and Future Work
	References

	Graph Operations and Free Graph Algebras
	1 Introduction
	2 Background: Algebras and Term Algebras
	3 From Algebras to Graph Algebras
	4 From Terms to Graph Terms
	5 Related Work
	6 Conclusion and Future Work
	References

	Author Index

