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Chapter 1
Introduction: Coral Bleaching–Patterns,
Processes, Causes and Consequences

J. M. Lough and M. J. H. van Oppen

Since the first edition of this book (van Oppen and Lough 2009), the global climate
system has continued to change (Stocker et al. 2013; Blunden and Arndt 2017).
Global land and sea temperatures (HadCRUT4; https://crudata.uea.ac.uk/cru/data/
temperature/; Morice et al. 2012) had warmed byþ0.79 �C between 1880 and 2009.
Warming through 2016 was þ0.90 �C—an additional warming of þ0.11 �C. 2017
was the third warmest year in the instrumental record period since 1880 after 2016
and 2015 (https://www.ncdc.noaa.gov/sotc/global/201710). In 2009 the global
atmospheric concentration of carbon dioxide, the main greenhouse gas, as measured
at Mauna Loa, Hawaii (www.esrl.noaa.gov/gmd/ccgg/trends/data.html) was
387.4 ppm. By 2017 the concentration was 406.5 ppm, an increase of 19 ppm and
a 45% increase above pre-industrial levels of 280 ppm (WMO 2017). As the global
climate system responds to increasing levels of atmospheric greenhouse gases, the
tropical oceans are warming at ~70% of the global average rate (Lough 2012), and
this is bad news for tropical coral reef ecosystems.

At the heart of these complex ecosystems is an obligate symbiosis between the
coral animal and single-celled photosynthetic algae (Symbiodinium spp. aka zoo-
xanthellae) living in the coral tissue. Photosynthetic products provide the coral host
with cheap energy. The zooxanthellae also play a role in light-enhanced calcification
of scleractinian corals (Barnes and Chalker 1990), allowing the rapid calcification
necessary to form reef structures. In return the algae obtain protection and essential
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nutrients (e.g. nitrogen, inorganic carbon; Davies 1984) from their coral host. The
photosynthetic pigments within the algae give the corals their deep brown colour.

Coral bleaching is the term used to describe the loss by the coral animal of all or
some of their symbiotic algae and photosynthetic pigments—with the result that the
white calcium carbonate skeleton becomes visible through the now translucent tissue
layer. Coral bleaching is not a new phenomenon. Corals are known to bleach in
response to a range of environmental stresses (e.g. low salinity, pollution, unusually
high or low water temperatures). In the past, however, such occurrences of bleaching
were only observed on small spatial scales in response to localized stresses. What is
new since the 1980s (e.g. Glynn 1983), and now clearly related to human-induced
global warming, is an increase in frequency and extent of large-scale, mass coral
bleaching events where entire reef systems are affected. At the time of the first
edition of this book, mass bleaching on nearly every reef system in 1997–1998 had
been a wake-up call for reef scientists regarding the sensitivity and vulnerability of
these ecosystems to a warming climate (Wilkinson 1998). Since then, regional-scale
bleaching events have affected many coral reef ecosystems, such as the Great Barrier
Reef, Australia in 2002 (Berkelmans et al. 2004), the Caribbean in 2005 (Eakin et al.
2010) and Western Australian reefs in 2011 (Moore et al. 2012). Significantly,
global-scale events assaulting many of the world’s reefs as happened in
1997–1998 occurred again in 2010 and from 2014 to 2017 (Eakin et al. 2017;
Hughes et al. 2018). Also, some locations such as Hawaii and the Great Barrier
Reef experienced consecutive years of bleaching (Eakin et al. 2017)—an occurrence
foreshadowed by Hoegh-Guldberg (1999).

The phenomenon of coral bleaching is clearly here to stay and inextricably linked
to global climate change due to human activities. The first (1990), second (1995),
third (2001) and fourth (Solomon et al. 2007; Parry et al. 2007) Assessment Reports
of the Intergovernmental Panel on Climate Change provided mounting evidence of a
changing world climate with the IPCC-AR4 (IPCC 2007) concluding that the
evidence for a human influence on global climate was considered very likely. The
most recent report IPCC-AR5 concluded that the human influence on the climate
system is now clear (IPCC 2013). We have entered a new era for the world and
tropical coral reef ecosystems which were identified as unique and threatened
ecosystems as early as IPCC-AR3 (McCarthy et al. 2001) and reaffirmed in the
most recent assessment (IPCC 2014). Human activities since the late eighteenth
century have, unwittingly, led to already observable biological responses (coral
bleaching) on one of the world’s most charismatic ecosystems—coral reefs. This
is in addition to the coral reef crisis, where direct local and regional human pressures
on coral reef environments (such as overfishing, destructive fishing, decline in water
quality due to land-use changes, nutrient and chemical pollution and development on
coasts, mining of coral, etc.) have caused declines in the health of many of the
world’s coral reef ecosystems (e.g. Wilkinson and Buddemeier 1994; Hughes et al.
2003, 2017a, b; Buddemeier et al. 2004; Veron et al. 2009). Human activities,
including climate change, have had such profound impacts on planet Earth that a
new geological period, the Anthropocene, has been proposed (Zalasiewicz et al.
2017). The suggested start of this new epoch is the mid-twentieth century, when a
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range of socioeconomic and earth system indicators increased rapidly, known as the
Great Acceleration (Stefan et al. 2015). The challenge is to enable coral reefs to
survive this new environment, though recognizing that reefs of the future are
unlikely to be the same as those of the past (Hughes et al. 2017b).

The Paris Agreement (UNFCC 2015) has provided some cause for optimism,
albeit over 25 years after the majority of countries agreed, under Article 2 of the 1992
UN Framework Convention on Climate Change (http://www.globelaw.com/Cli
mate/fcc.htm), to stabilization of greenhouse gas concentrations in the atmosphere
at a level that would prevent dangerous anthropogenic interference with the climate
system. Such a level should be achieved within a time frame sufficient to allow
ecosystems to adapt naturally to climate change. The historic Paris Agreement
(currently signed by 195 members of the United Nations Framework Convention
on Climate Change, unfccc.int/paris_agreement/items/9444.php) committed the
world’s countries to keeping the increase in global average temperatures above
pre-industrial levels to well below 2 �C whilst pursuing efforts to limit the temper-
ature increase to 1.5 �C (UNFCC 2015). It should be recognized, however, that these
limits include the global warming of nearly 1.0 �C that has already occurred since
pre-industrial times. Even the 1.5 �C target is likely to result in continued bleaching
impacts on the majority of the world’s coral reefs (Frieler et al. 2012; Gattuso et al.
2015). Time is, however, rapidly running out for constraining the magnitude of global
warming to the Paris targets of 2.0 �C or anything close to 1.5 �C given current rates of
CO2 emissions (Jackson et al. 2017), though rapid decarbonization of the world is still
considered possible (Figueres et al. 2017; Millar et al. 2017). This will, however,
require accelerated short-term action and enhanced long-term ambition if the goals of
the Paris Agreement are to remain achievable—and that practical and cost-effective
options are available to make this possible (UNEP 2017).

Tropical coral reefs are the most biologically diverse of marine ecosystems
equalling in beauty and excelling in grandeur the most favourite parterre of the
curious florist (Matthew Flinders, October 1802). They are complex ecosystems at
all levels from their geological history, growth and structure, biological adaptation,
evolution and biogeography, community structure, organisms and ecosystem metab-
olism and physical regimes. Coral reefs lay down enormous amounts of calcium
carbonate to form massive reef structures that are able to withstand the forces of
erosion and create diverse habitats for many organisms. Despite their relatively small
area (estimated at only 0.1–0.5% of the ocean floor), coral reefs contain about
one-third of the world’s marine fish and reef fish account for ~10% of fish consumed
by humans. Tens of millions of people in over 100 countries with coral reefs along
their coastline depend on the economic and social goods and services provided by
these rich ecosystems (Moberg and Folke 1999), valued at US$375 � 1012/year
(Pandolfi et al. 2003).

Warming ocean temperatures in the vicinity of coral reefs are already having
observable consequences for coral reef ecosystems. Other aspects of projected
climate change will also impact coral reefs. Although in some cases less certain
(see Hoegh-Guldberg et al. 2007; Lough 2008; Stocker et al. 2013) these include
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maybe fewer but more intense tropical cyclones which are a source of localized
physical destruction on reefs (e.g. De’ath et al. 2012); changes in regional rainfall
and river flow regimes with likely more extreme rainfall events that could affect the
periodic extent of freshwater onto reefs (e.g. Lough et al. 2015); gradual rise in sea
level that will affect light penetration and also the availability of suitable areas for
corals to live; changes in large-scale and regional atmospheric (e.g. El Niño–
Southern Oscillation events, Cai et al. 2015) and ocean circulation patterns that
will affect connectivity between reefs; and changes in ocean chemistry (ocean
acidification) due to about one-third of the excess atmospheric CO2 being absorbed
by the oceans, which can have substantial direct and indirect impacts on corals and
reef-associated organisms (e.g. Fabricius et al. 2011). These rapid climate changes
are occurring against a backdrop of near-worldwide reef degradation due to local
human activities (Hughes et al. 2003; Kleypas and Eakin 2007). In an ideal world,
these localized sources of stress to coral reefs should be minimized to enhance the
resilience of these remarkable ecosystems to global climate change (Hughes et al.
2017b).

In this book we bring together available scientific information on coral bleaching
at different space and time scales from the deep geological record through to future
projections and from the cellular to ecosystem levels. The focus is on the many facets
of the coral bleaching phenomenon, and this 2nd edition, with over 50% new
references (2009–2017), illustrates how much more we have learned about coral
bleaching since the original publication. All but one of the original chapters have
been updated and three new chapters added. The geological history and evolution of
the critical coral–algal symbiosis at the heart of coral reefs is introduced by Stanley
and van de Schootbrugge (Chap. 2). Oliver et al. (Chap. 3) assess the quality of
observations of coral bleaching events in space and time and how the reliability of
such observations (in the absence of globally widespread and standardized observa-
tions) can compromise our ability to determine significant changes in the frequency
and occurrence of coral bleaching events. The observational record of the physical
environment of coral reefs (particularly sea surface temperatures, SST) is much
better than the biological record of coral bleaching events. Eakin et al. (Chap. 4)
demonstrate how tropical SST are warming, the links between unusual warming and
ENSO events and the now sophisticated remote-sensing products that allow identi-
fication of oceanic ‘hotspots’ and conditions conducive to coral bleaching in near
real time. The various tools available for detecting and observing coral bleaching are
discussed by Cantin and Spalding (Chap. 5). These range from remote sensing to the
detail necessary in the field extending from whole reefs to individual colonies and,
most importantly, the necessity for follow-on surveys to determine the consequences
of a coral bleaching event. The possible role that the now recognized diversity of
algal symbionts play in conferring thermal resilience on corals is considered by
Quigley et al. (Chap. 6). This also highlights the developing application of genetic
analyses to determine algal symbiont diversity and their spatial patterns. A new
chapter by Morrow et al. (Chap. 7) explores the role in coral bleaching of the many
prokaryote symbionts which we now know are an important component of the ‘coral
microbiome’. Another new chapter (Chap. 8) by Oakley and Davy explores what we

4 J. M. Lough and M. J. H. van Oppen



know about the molecular and cellular pathways that underpin the bleaching
response of the coral host. Having undergone several bleaching events, is it possible
that corals can increase their thermal tolerance? This is addressed by Berkelmans
(Chap. 9) who also considers the relationship between thermal bleaching thresholds
and the threshold that draws the line between coral recovery and mortality.
McClanahan et al. (Chap. 8) consider the range of consequences of coral bleaching
events for corals. They tease out the observed range of responses that vary between
taxa and also through longer-term effects on reproduction, growth and the incidence
of disease, etc. The complex structure of tropical coral reefs, built as a result of the
coral–algal symbiosis, provides a habitat for many other motile reef organisms.
Pratchett et al. (Chap. 10) assess the consequences of coral bleaching events for
the most-studied motile reef organisms, fishes, and how these effects operate on both
short and long time scales. Warming SST is just one aspect of human interference in
the global climate system affecting coral reefs. An additional global-scale problem is
acidification of the oceans as they absorb about 30% of the additional CO2 that
human activities have injected into the atmosphere—without this oceanic (and
terrestrial) sink of CO2, the amount of global warming to date would have been
greater. In a new chapter, Albright (Chap. 12) reviews how ocean acidification and
nutrients can influence bleaching responses and their interactions with rising water
temperatures. Predicting what might happen to coral reefs in the future depends on
understanding coral reef processes and reliably estimating how coral reef climates
may change as global climate continues to warm. Donner et al. (Chap. 13) discuss
how well current large-scale climate models can provide such information and the
possible range of future climates for coral reefs. The findings of the various chapters
are synthesized in Chap. 14, which also considers novel interventions that may assist
tropical coral reef transition through the Anthropocene.
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Chapter 2
The Evolution of the Coral–Algal Symbiosis
and Coral Bleaching in the Geologic Past

George Stanley and B. van de Schootbrugge

2.1 Introduction

Scleractinians extract calcium (Ca2+) and carbonate (CO3
2�) from seawater to

construct aragonite skeletons, and they have come to dominate well-lit, shallow-
water coral reefs, evolving into a diverse array of growth forms with complicated
corallum morphologies. Dinoflagellate algae (zooxanthellae) invade the tissues of
corals and a wide variety of other calcified and non-calcified marine invertebrates.
These symbionts have developed abilities to avoid the host’s immune system to
develop close mutualistic associations with their hosts. Scleractinian reef corals offer
a spectacular example of zooxanthellae symbiosis. Azooxanthellate corals without
this symbiosis may be found in shallow-water reefs, but given adequate nutrients,
they are best developed in cold- and deep-water settings. Most shallow-water reef
corals have a successful partnership with these endosymbiotic dinoflagellates
belonging to the genus Symbiodinium. Prospering in warm, well-lit, tropical to
subtropical settings, the symbiosis is astonishingly successful, resulting in huge
colonies and massive framework. Growth rates of corals on reefs far exceed the
ability of physical erosion and boring organisms to break them down. Thanks to
rapid reef growth conferred by the symbiotic relationship, they create spectacular
ecosystems with calcified and non-calcified algae, other invertebrates, and fish. The
symbiosis also provides efficient unparalleled nutritional advantages, enabling reefs
to flourish in low-nutrient, oligotrophic waters of the tropics (Hallock 1997, 2001).
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The capacity of so many living shallow-water corals for rapid and sustained
skeletal growth is linked to light-enhanced calcification (Goreau and Goreau 1959).
The physiochemical processes and pathways by which the symbionts increase
calcification have received intensive study (Marshall 1996; Goreau et al. 1996;
Gattuso et al. 1999). Although precise mechanisms by which calcification occurs
are not fully resolved, photosymbiosis is closely linked to calcification, and the topic
has great relevance to global warming and coral bleaching. There seems little doubt
that photosymbiosis is and was the driving force behind both recent and ancient reef
building (Stanley and Lipps 2011). Although we have a rich fossil record of
scleractinian corals beginning some 240 Ma (million years ago), we have precious
little information about the nature and evolution of their symbionts. This chapter
summarizes from a geological perspective the early evolution of scleractinian corals,
their photosymbionts, and their relationship to mass extinction and coral bleaching.

The dinoflagellate Symbiodinium, partnering with corals today, likely evolved
from a single adaptive radiation (Wood 1999; Pochon et al. 2006), and molecular
studies confirm that this symbiont forms a monophyletic group. However, today it is
a genetically diverse complex, inhabiting corals as well as foraminifers, sponges,
mollusks, and other unrelated taxa (Stat et al. 2006). Early molecular studies of
Symbiodinium microadriaticum in corals and other hosts revealed a number of
distinct clades (Blank and Trench 1985; Rowan 1998; Rowan and Powers 1991).
With continued molecular study, many clades and subclades are known (LaJeunesse
2002; LaJeunesse et al. 2010; van Oppen et al. 2009), and with new investigations,
their numbers are increasing (Chap. 6). Regarded as “holosymbionts,” different
clades inhabit different corals, and many have distinct preferences for depth, tem-
perature, and light intensity. The composition of these clades may change through
time, and even clade competition may be at play. Some associations of symbionts
appear to confer resistance to corals, and these discoveries challenge the simplistic
assumption of single symbiont–host coevolution. Reshuffling of algal symbionts in
response to global warming and bleaching is hypothesized to have produced inno-
vative adaptive responses to bleaching (Fautin and Buddemeier 2004). This hypoth-
esis has not gone without challenge (Goulet 2006), but other studies render support
for reshuffling (Mieog et al. 2007). The mechanism of shuffling among coral
symbionts is complex, but the adaptive significance for corals is high. Important
aspects appear to be the present ecological environment, the severity of bleaching,
and the recovery environment (Cunning et al. 2015). Fertile research in this direction
has great potential for better understanding coral bleaching (Chap. 6).

Coral bleaching, global climate change, and ocean acidification portend a bleak
future, but the fossil record has many lessons to teach us. Mass extinctions have
toppled whole marine ecosystems and virtually decimated reefs of the past. Ancient
ecosystem collapse and recovery have relevance to photosymbiosis and the increas-
ingly severe episodes of coral bleaching today. Reef building in the fossil record was
not limited to corals but included a variety of other ancient calcifying metazoans
which successfully exploited the photosymbiotic way of life (Lipps and Stanley
2016a). Photosymbiosis explains the success of coral reefs today, and it was a
pervasive and unifying theme among reefs extending back 430 million years to
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Silurian time when extinct tabulate corals and stony sponges built reefs (Copper
1989).

In addition to dinoflagellates, a variety of other symbionts (diatoms, nitrogen-
fixing cyanobacteria, etc.) partner with calcifying organism today, but dinoflagel-
lates bestow the most benefits and likely evolved in association with corals of the
Mesozoic (Stanley and Lipps 2011). When did the coral–symbiont relationship
evolve among the ancestors of modern corals, and how did it change through time,
especially during mass extinctions? Wells (1956) assumed the original condition for
the first corals of the Triassic was zooxanthellate. Stanley (1981) proposed an
alternative idea that the earliest scleractinians were initially azooxanthellate but,
later in the Triassic, coevolved a symbiosis with zooxanthellate symbionts. The
timing of this event was based, in part, on an absence of reef building in Middle
Triassic corals and the adaptive radiation among Late Triassic corals. Massive, platy
corals of the Middle Triassic did not build reefs yet show evidence of being
photosymbiotic (Stanley and Helmle 2010). The Late Triassic (Norian–Rhaetian)
was a time of major reef building by corals, and carbonate rocks show volumetric
increases in reef complexes in a warm, shallow Tethys seaway extending from
Western Europe across what is now Eurasia. It was questioned whether Triassic
and Jurassic corals of this time were ecologically comparable to living
zooxanthellate counterparts (Flügel 2002; Stanton 2006). Clearly reef corals that
emerged later in the Cenozoic (Rosen 2000) were more direct ancestors of modern
corals and were efficient at constructing reefs (Perrin 2002).

2.2 Detecting Photosymbiosis in the Fossil Record

There is a problem in identifying photosymbiosis among fossils which do not
preserve their algal symbionts. Paleobiologists must assess their former presence
by a variety of indirect methods (Stanley and Lipps 2011). For corals such criteria
include colony size, indicative of massive hypercalcifiers, shape (the solar panel
effect), corallite size and level of integration, as well as the presence of the edge zone
(Coates and Jackson 1987; Rosen 2000; Stanley 2003; Lipps and Stanley 2016a).
Since scleractinian corals and other rapidly growing hypercalcifiers produce dis-
crete, periodic (annual) skeletal growth bands, their measurement in the ancient
organisms provides rates of growth. Comparisons with modern counterparts can be
used to indicate photosymbiotic growth rates (Copper 2002; Stanley and Helmle
2010). Microfeatures in the skeletons of corals also can be useful. Stolarski (2003)
suggested that the regularity of mineral/organic phase alternations in thickening
deposits among nanostructural aspects of the skeleton might distinguish
zooxanthellate species from azooxanthellate counterparts. It is well known that
colony shape, corallite size, and corallite complexity correlate with living
photosymbiotic corals as well as some other hypercalcifying organisms. This is
true of the platy growth habit to maximize light capture in corals (Rosen et al. 2000).
Thin tissue syndrome in the coral skeleton was discussed as indicative of
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photosymbiosis (Wood 1999). Cowen (1988) inferred by such indirect methods that
many extinct reef organisms, extending back over 500 million years, were
photosymbiotic. These included large calcified sponges (stromatoporoids) and Cre-
taceous rudistid bivalves. These conclusions led to confirmation of the
photosymbiotic hypothesis and that photosymbiosis evolved very early in Paleozoic
time, opening new metabolic pathways as well as enhancing calcification rates.

A different approach to the detection of ancient photosymbiosis lies in geochem-
istry and stable isotopes. Stable isotopes 13C and 18O fractionated in the skeletons of
living corals were detected and used to differentiate azooxanthellate from
zooxanthellate species (Swart 1983). The photosymbiosis hypothesis was success-
fully tested and confirmed with stable isotopes in Late Triassic corals (Stanley and
Swart 1995). Similar stable isotope signals were detected in Paleozoic corals
(Zapalski 2014), but diagenetic alteration of these signals remains a major problem
for such ancient samples. In other geochemical approaches, an analysis of micro-
structure in Late Triassic corals using 13C/12C and 18O/16O, as well as
intracrystalline 15N/14N (Frankowiak et al. 2016), confirmed the prevalence of
photosymbiosis in the ancient past, supporting also the conclusion reached by
Muscatine et al. (2005) based on the isotopic composition of the organic matrix in
the skeleton.

2.3 Mesozoic Reef History and Coral Evolution

Following the world’s greatest mass extinction at the end of the Permian (Erwin
2015), there was a lengthy Early Triassic interval marked by an absence of metazoan
reefs and general suppression of carbonate production, a notable exception coming
from South China (Lehrmann 1999). The Early Triassic was thus a whole geologic
epoch, 8–10 million years in duration, devoid of corals and significant metazoan
reefs. The Middle Triassic appearance of modern corals occurred in the Tethys Sea,
coinciding with an interval of warm climate and expanded carbonate shelves
(Fig. 2.1). Shallow-water calcified organisms of the Middle Triassic, including
corals, were part of a delayed recovery following the largest mass extinction at the
end of the Permian (Chen and Benton 2012). The first reef-like features were
constructed by sponges, bryozoans, calcified algae, and non-colonial invertebrates.
Scleractinians appeared around the world in the Middle Triassic interval (Fig. 2.1)
and were unrelated to ancient orders of Paleozoic corals, all of which perished in the
end-Permian extinction. Scleractinians are thus separated from the last Paleozoic
corals by a considerable time gap. They also differ in composition (Paleozoic corals
secreted calcite rather than aragonite), with a different symmetry, and different
patterns of septal insertion. Morphologic differences and the temporal separation
of scleractinians from Paleozoic corals led to the idea of existence as soft-bodied,
anemone-like forms that left no fossil record during the Early Triassic interval. This
was the “naked coral” hypothesis (Stanley and Fautin 2001). It was supported by
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molecular analyses (Medina et al. 2006) and by decalcification experiments in living
corals (Fine and Tchernov 2007; Stanley 2007).

Although diverse and complex in corallum morphologies, the first calcified
scleractinians of the Middle Triassic interval might have been photosymbiotic, but
surprisingly they did not build reefs. These appear abruptly worldwide and with
calcareous algae, foraminifers, bryozoans, and non-colonial invertebrates contribut-
ing to reef mounds and carbonate buildups. The Late Triassic witnessed sea-level
rise, climatic warming, the emergence of large platform complexes, and an adaptive
radiation among corals (Fig. 2.1). The emergence of scleractinian corals and their
potential as framework builders of reefs have been discussed extensively (Flügel
2002; Stanley 2003). Prior to the Late Triassic, scleractinians were merely reef
dwellers and did not participate as the primary constructors of reefs.

Following a Late Triassic (Carnian–Norian) turnover and a smaller-scale extinc-
tion, the early ancestors of modern corals experienced major changes in taxonomy
and dominance (Stanley 1988; Roniewicz 2011). These took place within the great
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expanses of the shallow-water Tethys seaway, now represented by deposits in
mountain ranges widespread through Central Europe across Eurasia. During a
subsequent Norian–Rhaetian “reef bloom,” large colonial corals increased in impor-
tance and evolved more complex structure. This correlates with the start of the long
prevalence of platy coral growth, likely indicating a photosymbiotic response (Rosen
et al. 2000). Coral-dominated reefs of this age are well known from reef complexes
of the Tethys (Flügel 2002). During this Triassic reef bloom, the latitudinal range of
reefs expanded. Photosymbiosis was assessed by Kiessling et al. (2009) to have been
a “key driver” of Triassic coral evolution and reef expansion.

The major mass extinction of the end-Triassic (Fig. 2.1) affected not only corals
of the shallow Tethys but the Americas as well (Hodges and Stanley 2015). The
cause of this end-Triassic mass extinction, one of the “big five” of the Phanerozoic,
has been variously related to the eruption of flood basalts and release of aerosols and
greenhouse gases and carbon dioxide (CO2) and a sudden release of methane
hydrates (Tanner et al. 2004). This triggered major perturbations of the marine
environment as well as severe ocean acidification. Although an Early Jurassic
coral recovery began soon after, the extinction diversity remained low. Compared
to other calcified biotas after the extinction, reef-building corals and sponges expe-
rienced proportionately greater losses (corals, 96.1%; sponges 91.4%), possibly
related to their reduced physiological control of calcification and changes in arago-
nite saturation in seawater (Hautmann et al. 2008).

The first two stages of the succeeding Early Jurassic record a time of global reef
reduction followed by recovery. They represent an interval of some 4–5 � 106 years
when a vast number of Triassic coral species died out and reefs collapsed, save for a
few in isolated locations in the Tethys (Kiessling et al. 2009; Gretz et al. 2013). In the
following stages of the Lower Jurassic, despite an anoxic event at the end of the
Early Jurassic (Toarcian), there is evidence of recovery and biotic turnover leading to
a renewal of coral and reef diversity during the Middle to Late Jurassic (Lathuilière
and Marchal 2009). During the Middle and Late Jurassic, coral, sponge, and
microbial reefs are known, but it was during this period that corals again became
principal builders of shallow reefs, while siliceous sponges and microbial deposits
predominated in deeper water settings (Leinfelder 2001). Some deeper water coral
biostromes show evidence of an ecology quite different from the nutrient-limited
model of coral reefs (Insalaco 1996). The end of the Jurassic was marked by a small-
scale biotic extinction, but it was only slightly felt among reef communities.

During much of Cretaceous time, tropical shallow-water reefs became occupied
by rudistid bivalves (Johnson 2002). Rudists were gregarious bivalves exploiting
bizarre adaptive morphologies. They were ecologically successful and by the Late
Cretaceous were remarkably diverse, forming reefs or large-scale buildups. Rudists
mimicked colonial corals in their shapes, close packing, and interlocking margins,
and many taxa show evidence of photosymbiosis. For nearly 30 million years of the
Early Cretaceous, these uniquely reef-adapted bivalves coexisted alongside corals,
sponges, and other organisms. From the Middle to Late Cretaceous time, they
became more predominant in reef construction, inhabiting carbonate platforms of
the warm tropical Tethys. This rudistid dominance coincided with global warming
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during a super greenhouse interval of high sea surface temperature (Johnson et al.
2001). Interestingly, throughout the latest Cretaceous interval of maximum rudistid
development, corals were present and actually increased in diversity. Although
corals lost their former dominance on the reef and their ability for reef construction,
they nevertheless remained diverse and continued to prosper, especially in deeper,
downslope settings.

The highly modified rudists show good evidence for photosymbiosis (Lipps and
Stanley 2016a, b). Photosymbiosis likely was widespread at this time, and the
presence of symbionts was even detected with stable isotopes in Late Cretaceous
planktonic foraminifers (Houston and Huber 1998). The end of the Cretaceous at the
Cretaceous/Paleogene boundary (K/Pg mass extinction) clearly led to severe extinc-
tions of marine life, including the demise of all rudistids. This occurred during a
warm greenhouse supercycle. Corals suffered great extinction but survived the
devastating K/Pg mass extinction while rudistids did not. Relative to azooxanthellate
taxa, Cretaceous zooxanthellate corals were most severely affected, but both
zooxanthellate and azooxanthellate corals died out with 33% of all families and
70% of species removed (Veron 2008).

There was a decidedly latitudinal effect to coral extinction with better survival of
azooxanthellate taxa at cooler, higher latitudes (Kiessling and Baron-Szabo 2004). In
addition to the well-known meteorite impact at the K/Pg boundary, extinction also
was induced by mass volcanism underway during K/Pg time. These events produced
surface ocean acidification (D’Hondt et al. 1994; Hautmann et al. 2008), but the full
impact on corals is not known in detail. Many causes have been posited for this
extinction, but cogent arguments were made for ocean acidification as cause for the
collapse of Cretaceous and other reef ecosystems in geologic time (Veron 2008;
Kiessling and Simpson 2011).

The recovery after the K/Pg mass extinction has been studied intensively, but not
many investigations have focused on corals. Danian corals found in the immediately
succeeding Paleogene interval were all azooxanthellate species and some built deep-
water mounds in the aphotic zone (Bernecker and Weidlich 1990). Data shows that
preferentially more azooxanthellate than zooxanthellate taxa survived to mark the
start of the Cenozoic (Kiessling and Baron-Szabo 2004). Scleractinians diversified
soon after the extinction, but reefs took considerably longer to return.

Not long after the K/Pg event, the late Paleocene to early Eocene is well known as
a time of great global warming. Within this time a marine perturbation called the
Paleocene–Eocene Thermal Maximum (PETM) occurred. It has been cited as an
analogy of what could happen in the near future for today’s marine ecosystem. The
PETM was an unprecedented 100,000-year interval of warming brought about by
sudden carbon release. Surface seawater temperature during that time was calculated
to have risen 5–6 �C (Wright and Schaller 2013). Deep ocean water heated and sea
surface temperatures are estimated to have reached 38–40 �C. Also ocean acidifica-
tion was pervasive. Coral diversity responded to the initial warming by bleaching
and subsequently retreating to cooler, northerly latitudes, and during the PETM,
coral reefs vanished altogether (Scheibner and Speijer 2008). Following this event,
corals and reefs slowly recovered. The remaining Cenozoic record of corals and
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reefs reveals the persistence of coral reef framework, starting in the Middle Eocene
with an Oligocene diversity plateau after which more coral extinctions occurred
(Perrin 2002). The Neogene offers cases of reef collapse and expansion. At the end
of the Neogene corals survived a number of ecologic shocks such as the rising of the
Central American Seaway, now separating taxa of the Pacific and Caribbean realms
and the major Ice Age glaciation events of the Pleistocene.

Reef gaps are clearly following most if not all mass extinctions. They ranged from
a few to as much as 8 million years in duration. These gaps have been equated with
the breakdown of photosymbiosis and used to explain the repetitive pattern of reef
collapse and recovery throughout much of geologic history (Talent 1988). Some
believe we are headed for another major mass extinction of similar magnitude and
with a similar reef collapse (Payne et al. 2016).

2.4 Late Triassic Dinoflagellate Symbionts?

Although the dinoflagellate Symbiodinium is the dominant photosymbiont today,
other groups such as diatoms, chlorophytes, and cyanobacteria are photosynthetic
and are known to inhabit living foraminifers, sponges, and bivalves (Wood 1999). In
terms of greatest metabolism and calcification benefits, dinoflagellates today clearly
are the most efficient, and their presence seems evident during Triassic times
(Stanley and Swart 1995; Lipps and Stanley 2016a; Tornabene et al. 2017). Meso-
zoic dinoflagellate symbionts may not have belonged to the same taxon as modern
Symbiodinium, which according to molecular analyses of living corals most likely
evolved over 60 million years ago during the Paleocene epoch (Pochon et al. 2006).
Interestingly, the radiation of scleractinian reef corals during the Late Triassic,
Carnian–Norian interval (230–210 Ma) coincided with a comparable radiation of
modern dinoflagellates (MacRae et al. 1996). In the following we briefly discuss the
evidence for a possible evolutionary relationship between Triassic dinoflagellates
and corals.

In a seminal paper on the recognition of animal–algal symbiosis in the fossil
record, Cowen (1983) was adamant that: “Direct evidence of symbiosis (discovery
of the symbionts themselves) is highly unlikely in the fossil record. No symbionts
are embedded in hard tissues of [the] host.” Symbiodinium can exist in both a
vegetative encysted form in a host and as a free-living zoospore. A possible, and
surely not the only, exception may be observed in the Late Triassic to Early Jurassic
interval, where we find fossilized dinoflagellate cysts that belong to the family
Suessiaceae, order Suessiales (Fig. 2.2). The evolution of the family Suessiaceae
closely relates to the evolution of corals. This is based on similarities of their
evolutionary patterns and geographical palaeodistributions. Fossil dinoflagellate
cysts are distinguished and classified based on the number and arrangement of
para-plates on the cyst wall that are known to reflect the plate tabulation on the
cell wall in the motile stage (Fensome et al. 1999). Apart from being practically the
oldest unequivocal dinoflagellate body fossils, members of the Suessiaceae share a
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unique para-tabulation of seven to ten latitudinal and two cingular para-plate series
(Bucefalo Palliani and Riding 2000), which is strikingly similar to plate tabulation
patterns observed in present-day Symbiodinium. Based on this similarity, it has been
suggested that Triassic Suessiaceae were symbionts of the earliest scleractinian
corals (Bucefalo Palliani and Riding 2000).

Although it is tempting to attribute the proliferation of scleractinian corals during
the Late Triassic to coevolution with dinoflagellate symbionts, many questions
remain. Cowen (1983) noted that: “Symbionts escape or decay or are ingested on
the death of the host and would in any case be impossible to distinguish from free-
living species even if preserved.” The fossil record of Triassic suessiacean dinofla-
gellate species is reconstructed from the encysted life-cycle stage that must have
developed independently from their coral hosts, during a free-living stage in the
water column. Extant Symbiodinium is known to survive in the water column, where

Fig. 2.2 (a) Late Triassic to Early Jurassic timescale with range chart showing most important
Suessiales and scleractinian coral diversity. Coral data from Stanley and Beauvais (1994) and
Flügel (2002). Stages: CAR Carnian, NOR Norian, RH Rhaetian, HET Hettangian, SI Sinemurian,
PLI Pliensbachian, TOA Toarcian. (b) Late Triassic paleogeography showing the one-world
continent of Pangea (modified after Scotese Paleomap Project 2000; www.scotese.com/earth.
htm). Map shows reef sites with suessiacean dinoflagellate cysts: 1 Austria, 2 Libya, 3 NW
Australia. Note the co-occurrence of reefs and Suessiaceae dinoflagellates between 30 �N and
30 �S and along the edges of the Tethys Ocean. (c) Beaumontella langii. Beaumontellawas the only
genus that survived the end-Triassic mass-extinction event. This dinoflagellate cyst was obtained
from the earliest Jurassic in the Mingolsheim core, SW Germany (van de Schootbrugge,
unpublished data). Bar 20 μm. (d) Suessia swabiana. This specimen is from the latest Triassic in
the FFC-1 core from southern Sweden. Photograph from Lindström and Erlström (2006), reprinted
with permission of the authors and Elsevier Science. Bar 20 μm
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it does “reinfect” the embryos of coral species that do not transmit their symbionts
vertically (Smith and Douglas 1987). However, in contrast to Triassic suessiacean
dinoflagellates, Symbiodinium does not produce cysts that would allow it to become
fossilized. Even though it will be virtually impossible to tie individual Triassic
Suessiaceae to single Triassic coral species, there is much indirect evidence to
suggest a link existed between Suessiaceae and early modern corals of the Triassic.
Paleogeography may also hold a key (Fig. 2.2). A good match exists between the
paleobiogeographic distribution of Late Triassic reefs and suessiacean dinoflagel-
lates (Bucefalo Palliani and Riding 2000). For most of the Late Triassic, coral reefs
were bimodally distributed across the equator from 40 �N to 40 �S (Kiessling 2001).
This reef distribution is mimicked by the distribution of suessiacean cysts (Fig. 2.2),
which are most abundant from Austria (Morbey and Dunay 1978) to Australia
(Backhouse et al. 2002). Nearly all reported occurrences of Suessiaceae cysts are
from sediments interbedded with reef limestones. The oldest suessiacean genus
Noricysta has been found in shales interbedded with Upper Carnian reef limestones
in the Swiss Alps (Hochuli and Frank 2000). The best example, however, has been
described from Ocean Drilling Program cores (ODP Leg 122) obtained from the
Wombat Plateau, off the northwestern coast of Australia (Fig. 2.2). There, Suessia
and Wanneria are the dominant dinoflagellate species occurring in massive
Astraeomorpha–Retiophyllia reef buildups (Brenner 1992; Stanley 1994).

The genus Beaumontella (Fig. 2.2) occurs abundantly in the uppermost Triassic
of Northwest Europe and is the only suessiacean genus that survived the end-Triassic
mass-extinction event (200 Ma). The Triassic–Jurassic boundary mass-extinction
event wiped out more than 95% of all scleractinian coral species (Flügel and
Senowbari-Daryan 2001; Flügel 2002), and coral reef buildups are extremely rare
during the beginning of the Jurassic (Stanley 2001, 2003). Beaumontella also occurs
abundantly in Lower Jurassic shallow marine sediments (van de Schootbrugge et al.
2007), and it may thus be hypothesized that Beaumontella thrived in response to
severe environmental stress. Interestingly, the highly spinose cysts of Beaumontella
resemble Polarella glacialis, the only extant suessialean dinoflagellate known to
build cysts (Montresor et al. 1999).

The last suessiacean cyst genus, Umbriadinium, is known from the Early Jurassic
in the latest Pliensbachian (185 Ma) sediments in Italy (Bucefalo Palliani and Riding
1997). By this time scleractinian corals which survived the end-Triassic extinction
had started a renewed radiation (Fig 2.1). Suessiacean dinoflagellate cysts have not
been identified from the earliest Jurassic (Bucefalo Palliani and Riding 2003),
leaving a lengthy gap in our knowledge of the group. One explanation for the
disappearance of the Suessiaceae from the fossil record is that they lost the ability
to produce fossilizable cysts or stopped making cysts altogether. An alternative,
more easily testable, hypothesis is that scleractinian corals during the Jurassic and
Cretaceous did not rely on symbiosis with dinoflagellates (i.e., Symbiodinium), and
this was reinvented during the Cenozoic. There are independent lines of evidence to
suggest that Late Triassic photosymbiosis between corals and dinoflagellates
evolved in response to oligotrophic conditions (Riedel 1991). Middle Jurassic
scleractinian corals that appeared after the Toarcian bottleneck are markedly
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different in taxonomic composition from those of the Late Triassic. According to
Leinfelder (2001), Jurassic reef corals in the central Tethys lived mostly in meso-
trophic waters of high siliciclastic influx, and, as previously mentioned, it was
speculated that their zooxanthellate symbiosis was not as “effective” for metabolism
and calcification as in modern reef corals. Molecular phylogenetic analyses indicate,
as previously mentioned, that Symbiodinium taxa evolved after the end-Cretaceous
(Shaked and de Vargas 2006) and that they diversified rapidly during the Miocene
(LaJeunesse 2005). At this time the modern ecologic structure of coral reefs took
shape (Perrin 2002).

2.5 Geological Perspectives on Photosymbiosis and Coral
Bleaching

Present-day coral reefs exist within narrow limits of temperature, light, and seawater
aragonite saturation states. In the broader, longer-term perspective of geologic time,
we are nearing the end of an icehouse supercycle with an ocean favoring the
precipitation of aragonite. Current climate change induced by rising levels of CO2

may be prematurely moving us into greenhouse conditions and is subjecting
photosymbiotic corals and living reefs to major stresses (Hoegh-Guldberg 2005).
It has been known that the atmospheric partial pressure of CO2 relates to the
calcification process. Woodridge (2017) proposed that zooxanthellae density and
atmospheric partial pressure of CO2 (pCO2) are critical to preventing breakdown of
the coral–zooxanthellae relationship. Radical changes in the carbon cycle affecting
the optimal threshold (pCO2 260 ppmv) could adversely affect corals and trigger
extinctions. This idea should be further explored by experiments with modern corals
and tested against the fossil record of corals and reefs.

Thermal stress in recent times, caused by rising levels of CO2, has triggered mass
bleaching events among living photosymbiotic reef corals (Chap. 3). In addition to
warming, rising CO2 levels are resulting in ocean acidification known as carbon
dioxide’s “evil twin,” and with continued projected increases in greenhouse gases,
the prediction for reefs is dire (Kleypas et al. 2001). It was calculated, for example,
that in the immediate future, one-third of reef corals face imminent extinction
(Carpenter et al. 2008). Global bleaching events signal a breakdown of symbiosis.
Long-term repercussions for reefs, their capacity for adaptation, and possible speed
of recovery into the future can only be estimated. The rich fossil record of coral reefs
is, therefore, a valuable key to better understand and predict possible future changes.

Modern tropical coral reefs are considered both fragile and robust (Lipps and
Stanley 2016b), but the geologic record shows repetitive examples of global reef
collapse followed by millions of years of reef eclipse (Fig. 2.3). Phanerozoic patterns
of collapse are followed by extended harsh conditions inimical to reefs. During this
time algal/bacteria associations surged, and metazoan reef mounds and carbonate
sediments were greatly reduced. This is succeeded by reef recoveries, eventually
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leading to new reef ecosystems. The geologically “sudden” response of many reef
ecosystems to mass extinction and the extended post-extinction reef eclipse follow-
ing collapse have direct relevance to current problems of coral bleaching. While
difficult to detect bleaching in the fossil record, crises recorded when reef ecosys-
tems collapse certainly would have terminated photosymbiosis, and global mass
bleaching must have been a consequence. This appears to have been the case for
corals during several mass extinctions: the end-Triassic when 96% of coral species
became extinct (Hautmann et al. 2008; Hodges and Stanley 2015), when most or all
of which were judged to have been photosymbiotic; during the Cretaceous–Paleo-
gene event when an estimated 45% of coral species were extinguished (Kiessling
and Baron-Szabo 2004); and during lengthy warm intervals of the Cenozoic. During
Cenozoic warming brought on by rise in greenhouse gases, some photosymbiotic
corals survived by migrating to higher paleolatitudes, and during the sudden event of
the PETM, reefs disappeared altogether. During the highest levels of extinction and
ocean acidification, such as the end-Permian and end-Triassic, coral skeletons may
have survived in naked form to calcify much later when sea chemistry improved
(Stanley 2011; Kvitt et al. 2015). Another theory is that corals survived by moving
offshore, becoming solitary and non-photosymbiotic in deeper water refuges.
Molecular findings support this idea, suggesting that loss of symbiosis occurred
multiple times with repeated loss of coloniality (Barbeitos et al. 2010). The conclu-
sions of Kitahara et al. (2010) and Stolarski et al. (2011), that modern shallow-water
corals had multiple independent origins from deep-water (azooxanthellate and
solitary) ancestors, would support this.

Although paleoecological changes within ancient reefs cannot be resolved as
precisely as for their Holocene counterparts, stresses associated with global mass
extinction on ancient reefs most certainly caused bleaching and major disruption of
photosymbiosis. Several workers were quick to equate the sudden collapse of
ancient reef ecosystems following mass extinctions to the breakdown of symbiosis
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(Talent 1988; Copper 1989; Rosen and Turnšek 1989; Stanley 1992; Perrin 2002;
Stanley and Lipps 2011).

Compared with their Mesozoic ancestors, late Cenozoic reef-building corals are
enigmatic in terms of their apparent fragility. More geologically recent
photosymbiotic corals in comparison with their more ancient ancestors reveal
resilience in the face of major climate change and other upheavals. A solution to
this conundrum could be the discovery that clades of Symbiodinium have adaptations
to different temperature regimes (Little et al. 2004). Shuffling or switching of stress-
tolerant symbionts, in concert with physiological resistance of the host, could
account for the amazing adaptive potential (LaJeunesse et al. 2010; Chap. 6). This
mechanism could be a driving force explaining the resilience and evolutionary
success of Cenozoic to Holocene corals (Stanley 2006). The conclusions presented
above, regarding the lower efficiency of Mesozoic corals for reef building relative to
younger corals (Leinfelder 2001; Flügel 2002), might be explained by a lack of
genetic diversity among their symbionts, resulting in limitations to adapt to change
and, with their hosts, to build reefs. Perhaps these ancient symbionts had not yet
evolved the modern adaptive repertoire with coral hosts. Finally, an alternate
hypothesis is that after the devastating end-Triassic extinction, the coral–dinoflagel-
late symbiosis was not reinvented until the start of the Cenozoic when modern reefs
took shape.

The fossil record chronicles the rise, fall, and recovery of reefs. It is a sobering
record because of the longevity of post-extinction global reef gaps and the length of
time before reef recovery. Intervals when reefs were essentially absent ranged from a
few to more than 10 million years in duration (Fig. 2.3). The length of time for
recovery has implications for the current environmental crisis. Put into perspectives
of the current biotic marine crisis, in which humans are involved, the implications
are bleak for the future evolution of coral reefs (Myers and Knoll 2001; Carpenter
et al. 2008). Although evolution is not predictable, meaningful estimates on diversity
loss and rates of recovery following mass extinction should come from the fossil
record. A study of the role of zooxanthellate photosymbiosis in the geologic past
provides new insight into both success and failure of living coral reefs. The integra-
tion of biology and the fossil record, especially ecology, molecular biology, and the
life history of corals and symbionts, offers potential to better understand the current
coral reef problems, including the bleaching phenomenon.
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Chapter 3
Coral Bleaching in Space and Time

J. K. Oliver, R. Berkelmans, and C. M. Eakin

3.1 Introduction

Coral reefs face a range of serious anthropogenic threats that may significantly alter
their ecological composition and reduce their capacity to deliver essential ecosystem
services. Human influences such as destructive and overfishing, terrestrial runoff,
pollution, and uncontrolled coastal development have a direct and immediately
apparent impact on reefs. However, the impacts of human-induced climate change
are a more pernicious and intractable problem to resolve, and this requires concerted
social action at a global scale and over many generations (Hoegh-Guldberg 1999;
Gattuso et al. 2015; Hughes et al. 2003, 2017; Spalding and Brown 2015). Large-
scale bleaching of reef corals, resulting in mass mortality, is now a critical global
threat to coral reefs and is clearly attributable to thermal stress (Baker et al. 2008;
Heron et al. 2016) with excess light playing a key additional role (Brown 1997; Fitt
et al. 2001). Thermal stress on coral reefs has clearly increased over the past century
(Heron et al. 2016; Chap. 4). As global temperatures continue to rise, due to
anthropogenic greenhouse gas emissions, the threat to coral reefs is increasing
significantly.

Predictions based on climate models and thermal tolerance of corals suggest
regular widespread catastrophic bleaching within the next 15–25 years (Hoegh-
Guldberg 1999; Donner et al. 2005; Logan et al. 2014; van Hooidonk et al. 2016;
Chap. 13). However, climate models deal with large-scale atmospheric and oceanic
processes, which in themselves are highly complex with many parameters and
feedback loops that are difficult to quantify. There is additional uncertainty in

J. K. Oliver (*) · R. Berkelmans
Australian Institute of Marine Science, Townsville MC, QLD, Australia

C. M. Eakin
U.S. National Oceanic and Atmospheric Administration, Coral Reef Watch, College Park, MD,
USA

© Springer International Publishing AG, part of Springer Nature 2018
M. J. H. van Oppen, J. M. Lough (eds.), Coral Bleaching, Ecological Studies 233,
https://doi.org/10.1007/978-3-319-75393-5_3

27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-75393-5_3&domain=pdf


foreseeing human trajectories of resource use and change. Predictions of the impacts
of climate change are thus uncertain even over large (ocean basin) scales. Even
satellite-based observations, while improving both in spatial and temporal resolution
and in accuracy of prediction, only measure the heat stress to which corals are
exposed, not the response of the corals (Heron et al. 2016). At the scale of coral reefs,
this uncertainty is compounded further by the physical and biological complexity of
coral reef environments. Physical complexities include currents, tides, bathymetry,
depth, water quality, 3D habitat structure, and weather, all of which can affect the
temperature and light environment and hence the susceptibility of corals to
bleaching. Biological complexities include the variable responses of coral species,
the interaction of corals with their diverse and differentially susceptible microbial
symbionts, interactions with pathogens, acclimatisation, and adaptation processes
(Chap. 9). Coral mortality and reef recovery depend on numerous local factors,
human use, and conservation status. It follows then that the degree of destruction and
the permanence of the impacts are uncertain over large spatial scales and that the
extent and severity of coral bleaching actually observed may not be as simple as
predicted from climate models. These uncertainties increase as scales become
smaller. Many of these complexities may never be fully understood, and in any
case each bleaching event is a unique case with its own suite of causal factors.
However, much can be learnt from studying spatial and temporal patterns in
bleaching records. An analysis of past records is, therefore, useful in identifying
large-scale spatial and temporal patterns in coral bleaching and identifying key data
gaps and data deficiencies which can be addressed in the future.

In this chapter, we investigate the spatial and temporal patterns of coral bleaching
that can be detected in the global database of bleaching records published by Donner
et al. (2017) and supplemented by additional records from the recent literature. In
particular we address the following questions:

1. Can discrete global bleaching events be identified from the records of bleaching?
2. How many global events have occurred in the past three decades?
3. Are major bleaching events increasing in frequency and intensity?
4. Is background (low-level) bleaching increasing in frequency and extent?
5. Are there any clear spatial patterns of coral bleaching at global, regional, and

subregional scales?
6. Do the observed periods of significant global bleaching correspond with the

periodic occurrence of El Niño-Southern Oscillation (ENSO) events and, if so,
where?

3.1.1 Early Bleaching Records (Pre-1982)

There is a total of 26 records of coral bleaching before the first well-documented
global-scale coral bleaching event of 1982–1983. The earliest confirmed record of
reef-wide bleaching due to thermal stress is probably that of Yonge and Nicholls
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(1931). They mention that, during a period of high summertime temperatures at Low
Isles (Great Barrier Reef; GBR) in 1929, many corals died, and several corals
(particularly Goniastrea spp., Favia spp.) were observed to have lost their zooxan-
thellae and turned white. Some weeks later these corals were observed to be
recovering their colouration, and histological inspection revealed that they had lost
and then started to recover their zooxanthellae populations.

Shinn (1966) notes that Acropora cervicornis that had been transplanted to an
inshore site in the Florida Keys bleached on their upper surfaces during periods of
maximum summertime temperatures. This was not, however, a normal habitat for
these corals, and no observations of bleaching in normal populations were recorded.
Goreau (1964) is probably the first person to publish a specific report on mass
bleaching of corals in the reefs around Port Royal, Jamaica, during the aftermath
of Hurricane Flora in 1963. He concluded, however, that the main cause of this
bleaching was low salinity following heavy rains and floodwaters, rather than the
high temperatures associated with current mass bleaching events. It is also possible
that the report by Mayer (1914), in which he refers to corals not exposed to the air
being “injured” after exposure to several hot calm days, represents a bleaching event.
There is no mention, however, in his paper of loss of colour or bleaching.

Coffroth et al. (1990), Williams and Bunkley-Williams (1990), Glynn (1991,
1993), and Goreau and Hayes (1994) have compiled records of much earlier mass
coral mortality, dating back to 1876. These earlier reports provide details for specific
sites in terms of the pattern and extent of mortality and the probable causes. Factors
other than high temperatures (e.g. aerial exposure, freshwater, “dark water”) are
most often used to explain the mortality, and in these cases there is no firm evidence
to suggest that the cause of the mortality was high temperatures and that corals had
bleached prior to dying.

3.1.2 Bleaching Records from 1982 Onwards

It was not until the global bleaching event of 1982–1983, first documented by Glynn
(1983, 1984) and Coffroth et al. (1990), that widespread bleaching and mortality
were recognised as a major phenomenon that could impact coral reef status and
health at regional and global scales. The interest generated by Glynn’s early papers
on bleaching in the Eastern Pacific led to anecdotal reports from a wide range of sites
across the world in subsequent years. These early reports were compiled by Brown
(1987), Glynn (1990, 1991, 1993), Williams and Bunkley-Williams (1990), and
Goreau and Hayes (1994). More recent summaries of coral bleaching records were
published by a number of authors (Wilkinson 1998, 2000, 2002; Wellington and
Glynn 2007).

In the late 1990s, the World Conservation Monitoring Centre and the WorldFish
Center (then called ICLARM) both developed databases that compiled published
and unpublished records of coral bleaching from throughout the world. In 2001 these
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datasets were combined and updated into a single database within ReefBase. More
recently, Donner et al. (2017) have comprehensively revised the ReefBase bleaching
database, nearly doubling the number of observations and including records up until
2010. This new database is available online and, with some revisions, is used as the
basis for the present analysis.1

Many available bleaching records consist of descriptive accounts of the location
of bleaching and, with varying degrees of detail, an assessment of the extent and
severity of bleaching. Water depth and coral species affected are often not recorded.
In a growing number of cases, formal surveys using quantitative or semi-quantitative
measurements provide estimates of the percentage of coral that bleached.

The minimum information in each bleaching record in the current database is the
date of observation, location, bleaching severity, and source of the information.
Bleaching severity is a categorical variable. Table 3.1 shows the different categories,
their descriptions, and notes on how verbal reports have been translated into one of
the categories.

For the global analysis conducted here, a total of 9005 records in the bleaching
database were included, up to 2010. Only a small number of records (<1%) did not
include information on bleaching severity. Most of these were reports for early
bleaching events prior to the major bleaching event of 1997–1998. For the purpose
of the analysis, these records were reclassified as “moderate bleaching” since it is
most likely that these early reports related to bleaching of more than 10% of coral
cover. Very few (<3%) reports of mild bleaching were recorded in the database prior
to 1997.

Table 3.1 Coral bleaching categories used in ReefBase and Donner et al. (2017) and adopted here

Code Category Description Notes

0 No bleaching No bleaching
observed

For quantitative surveys, no bleaching is
recorded if the percentage of live coral cover
bleached is less than 1%

�1 Bleaching
(unknown
severity)

Bleaching recorded Bleaching observed but no information on
severity. For the purposes of analysis, this cate-
gory is converted to 2—moderate bleaching

1 Mild
bleaching

1–10% of coral
cover bleached

If no estimate of % of bleached corals or coral
cover is provided, then terms such as “light”,
“mild”, “scattered”, and “occasional” are used to
identify this category

2 Moderate
bleaching

11–50% of coral
cover bleached

If no estimate of % of bleached corals or coral
cover is provided, then terms such as “signifi-
cant”, “common”, “frequent”, and “moderate”
are used to identify this category

3 Severe
bleaching

More than 50% of
coral cover
bleached

If no estimate of % of bleached corals or coral
cover is provided, then terms such as “heavy”,
“abundant”, and “severe” are used to identify
this category

1simondonner.com/bleachingdatabase/
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While the Donner et al. (2017) bleaching database contains the most comprehen-
sive archive of coral bleaching records and all records are referenced either to a
publication or a formal source, analysis of these records is hampered by the presence
of multiple records at a single location. Donner et al. (2017) addressed this issue by
grouping all records into 0.04� grid cells. For our analysis at a global scale, we chose
a 1� grid scale to concentrate the bleaching phenomena at a subregional scale and to
minimise the distorting influence of highly concentrated monitoring at some loca-
tions, especially the Great Barrier Reef (GBR), Australia. A further issue is that the
number of reports received can vary both as a function of the severity and extent of
bleaching and as a result of increased numbers of observers with an interest in
bleaching. This “reporting effect” represents an important potential sampling bias
that cannot be discounted or completely eliminated. While there are no data on the
extent of this reporting effect, it is likely that the total number of potential observers
of bleaching and the proportion of these who would be motivated to report on
bleaching have increased over the past two decades as field-based coral studies
have increased, media attention on the destruction of coral reefs from bleaching and
climate change has grown, and easier systems for online reporting have been
provided. Despite these sources of bias, we believe that a cautious and conservative
analysis of the bleaching records can yield important insights into the extent of coral
bleaching in space and time and the relationship between bleaching and climate
variability and change at regional and global scales.

For our detection of bleaching at a regional scale through time, 1098 records were
added to the Donner et al. (2017) database from the following sources: (1) Reef
Check,2 new ReefBase data,3 and additional records obtained from the literature.
These records (from 2011 to 2016) are not a comprehensive list for all locations, but
the data were sufficiently detailed to allow a more comprehensive determination of
the presence/absence of bleaching in each of seven regions4 up to 2016:

1. Caribbean
2. Eastern Pacific
3. Central and western Pacific
4. Southeast Asia
5. Eastern Indian Ocean
6. Gulf Region
7. Central and Western Indian Ocean

2Online data from data.reefcheck.us
3www.reefbase.org
4These correspond to the regions in Burke et al. (2011) but divide the Pacific into east (east of
longitude 120 �E) and central west (including eastern Australia) and the Indian Ocean into east (east
of the Andaman’s & Christmas I. including Western Australia) and west. The Australian region is
not used.
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Since this extended dataset (up to 2016) included observations based only on a
named location rather than geographic coordinates, the records were grouped by
named location rather than 1� grid cell.

3.2 Global Patterns of Coral Bleaching

3.2.1 Temporal Patterns

3.2.1.1 Location Records

This analysis was restricted to the period 1979–2010 due to the lack of comprehen-
sive quantitative records for later years. Two very clear patterns emerge when
examining all levels of bleaching severity (Fig. 3.1). First, there is a clear increase
in the number of grid cells for which bleaching has been reported from 1998 to 2010
compared with prior years. Second, several clear peaks show the episodic nature of
bleaching through time.

The trend of increasing bleaching occurrence is driven to some extent by mild
bleaching records, but all years since 1991 have reports of bleaching in all severity
categories. From 1998 there has been a minimum of 36 grids with bleaching (median
64), while prior to 1998 the minimum is 2 (median 12). While this increase in
bleaching could be due to an increase in chronic stress to corals or an increase in
small outbreaks at different locations, it is also possible that the increased awareness
of coral bleaching is due to increased reporting of small amounts of bleaching that
largely went unreported before then. Also apparent (Fig. 3.1) is the increase in the
number of reports of zero bleaching since 1998. This has been driven by a significant
increase in the number of formal monitoring programmes, such as Atlantic and Gulf
Rapid Reef Assessment (AGRRA) and Reef Check, and systematic bleaching
surveys that formally report the absence as well as the presence of bleaching.

Peaks of varying magnitude can be clearly identified (Fig. 3.1): 1998 is by far the
dominant feature, with 2002, and 2005 also clearly distinguishable, but there is some
suggestion of peaks in 1983, 1987, and 2010. In 1998 and 2002, a very large number
of sites were surveyed on the GBR, using aerial survey techniques, while in 2005
additional survey effort to document the Caribbean bleaching event also occurred,
and this has contributed to the disproportionately large peaks for these years. If the
GBR and Caribbean records are eliminated from the graph, then the 2002 and 2005
peaks nearly disappear (Fig. 3.1b). The early peaks in 1983 and 1987 are less
distinct, and 2010 remains as a fairly discrete peak. In summary, the data on
frequency of bleaching reports per 1� grid cell indicate only major peaks (1998
and 2010). While the above analysis was restricted to the period 1979–2010, in the
next section, we extend the analysis period up to 2016 by considering only the
presence or absence at the regional level rather than actual counts of bleaching
reports.
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3.2.1.2 Identification of Global Bleaching Events

The detection of peaks in the frequency of bleaching over time described above does
not necessarily demonstrate global extent. One way of dealing with this problem is to
further group records into geographic regions and test for bleaching presence in each
region. Recent publications from the US National Oceanic and Atmospheric Admin-
istration’s (NOAA) Coral Reef Watch (Eakin et al. 2016, 2017; Heron et al. 2016)
suggested that there had been two global bleaching events (prior to the 2014–2017
event) based on the occurrence of widespread bleaching in all three major oceans
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Fig. 3.1 (a) Yearly coral bleaching records by 1� grid cell. (b) The same graph with records from
the GBR and Caribbean removed
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(Atlantic, Pacific, Indian) in 1998 and 2010. This criterion is further enhanced here
by examining bleaching at a more detailed geographic scale across seven regions and
specifying that a region must have at least five locations with moderate or severe
bleaching levels before bleaching is considered to be “present” and contribute to a
global event over the period 1979–2016 (Fig. 3.2).

The two dominant peaks over the period 1979–2016 (Fig. 3.2) correspond to the
two major El Niño events in 1997–1998 and 2015–2016 affecting all or all but one of
the regions. These two events have also been associated with major, widespread
coral mortality (Wilkinson 1998; Hughes et al. 2017). A smaller peak (five of seven
regions affected) in 2010 is also clearly distinguishable. Unfortunately, a decline in
global coral reef monitoring and reporting programmes in 2009–2010 may have
contributed to the lower level of reports during 2010. Interestingly, 1983 and 1987,
while exhibiting bleaching in only three regions, still stand out compared to adjacent
years with much lower bleaching occurrence. It is plausible that lack of reporting
effort masked more significant bleaching in 1983 and 1987. While only three regions
had five or more bleaching events in these years, five regions reported bleaching in
two or more locations in 1983 and 1987, suggesting that these years could also be
considered to have been global events of at least moderate severity.

A clear feature is the increase in the global extent of bleaching from 1997
onwards (Fig. 3.2). During these two recent decades, only 1 year showed bleaching
restricted to just 1 region, while 16 years (80%) had bleaching in at least 3 regions,
and in 13 of these, some bleaching occurred in all 3 ocean basins. This may indicate
the development of chronic albeit scattered bleaching of the world’s reefs
since 2007.

Overall, the evidence from the analysis of bleaching frequency at the 1� grid scale
and regional presence/absence at the global scale suggest that two major and one
moderate global bleaching events have occurred over the last two decades. Prior to
that, low reporting effort may have masked major global events, but the relative
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frequencies of bleaching at grid and regional levels suggest that there may have been
two widespread bleaching events during the two decades leading up to 1997. There
is good evidence that major regional bleaching events occurred in the GBR and the
Caribbean in 2002 and 2005, respectively, and this is backed up by separate detailed
studies (Berkelmans et al. 2004; Eakin et al. 2010).

3.2.2 Spatial Patterns in Bleaching Reports

Temporal analysis at the grid and regional level indicates that there were three
significant bleaching events between 1997 and 2016 and possibly two others prior
to that. Detailed and comprehensive spatial records for the 2014–2017 event are still
being assembled (Eakin et al. 2017), but the prior events are mapped in Fig. 3.3. The
1998 map clearly shows the high frequency of moderate to severe bleaching in most
regions5 and this year stands out as the most severe and extensive event up to 2010.
The 2010 event also shows multiple occurrences of major bleaching in most regions,
although there is an almost complete lack of bleaching on the GBR. In 1987
bleaching was mostly reported from the Caribbean and the GBR but still included
some records in other regions and all oceans. In 1982–1983 multiple bleaching
records predominate in the Caribbean, the Eastern Pacific, and the GBR (in 1982),
but a few records (<5) occur in the Indian Ocean and Southeast Asia.

3.2.3 Trends in Bleaching Severity

There are several ways of addressing the question of whether bleaching severity is
increasing over time. The first would be to examine only significant bleaching events
to determine if the proportion of severe bleaching records increases in more recent
events. However, the data for the 2014–2017 bleaching event are still not fully
compiled, and earlier bleaching events (prior to 1998) were not well documented,
making this type of analysis unfeasible. Another approach is to examine the fre-
quency of severe bleaching across all years since 1979 (with the exception of
2014–2017) and look for increases in the frequency of severe records and a
corresponding decrease in mild records (Fig. 3.4). While both severe and mild
bleaching show a small positive correlation with year and frequency (r ¼ 0.32 and
0.26, respectively), neither of these is significant ( p > 0.05). These two weak
positive trends may be explained by the fact that the proportion of records with
unknown severity has significantly decreased (r¼ 0.57, p< 0.01) during this period.

5While the Andaman and Nicobar Islands appear to be severely affected, subsequent reports of
impacts in the region by Rajasuriya et al. (2004) suggest that these two areas escaped major
mortality and that the reports of bleaching during the event may have been an overestimate.
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It can be concluded that there is little, if any, evidence that bleaching is becoming
more severe over time, at least up until 2010. The recent bleaching in 2014–2017 is
widely referred to as the worst ever, and further analysis of this event may change
our conclusions. Finally, the severity of a bleaching event might also be determined
by its ecological impact. Unfortunately, the database does not contain enough
information on ecological impacts, such as mortality, to allow this analysis. In
general, given the low number of global bleaching events so far, analysis of trends
in their severity is not realistic from bleaching reports alone.

a) 1982-83

c) 1998

d) 2010

b) 1987

Fig. 3.3 Distribution and intensity of bleaching from records in the Donner et al. (2017) database
for the global bleaching years: (a) 1982–1983, (b) 1987, (c) 1998, and (d) 2010. Red dots severe
bleaching, yellow dots moderate bleaching, blue dots mild bleaching, green dots no bleaching
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3.3 Great Barrier Reef

3.3.1 Time Series

The GBR is the largest contiguous reef system in the world, and much of it has been
intensively and continuously monitored for over 30 years. As such it represents a
useful case study for a more detailed analysis of spatial and temporal patterns of
bleaching than is possible at a global scale. Analysis of GBR records is based on four
data sources: Donner et al. (2017), GBRMPA (2017), Reef Check (2017), and
COECRS (2017a, b). Because some data did not contain specific coordinates, the
data were grouped by named location, and an additional bleaching category of
moderate/severe was included to enable the summaries of aerial surveys in 2016 to
be included (COECRS 2017a,b). Over the past 25 years, there were three major
peaks in bleaching on the GBR, corresponding to the bleaching events of 1998,
2002, and 2016 (Fig. 3.5). These peaks are disproportionately high compared to
other years due to the intensive surveys conducted by Berkelmans and Oliver (1999),
Berkelmans et al. (2004), and COECRS (2017a, b; Hughes et al. 2017). Although no
quantitative data are available at the time of writing, severe bleaching also occurred
in 2017 (Fig. 3.7). While the number of records is very low in the early years, there
appear to be periods when significant bleaching was observed as early as 1980.
Anecdotal reports suggest that there may also have been a bleaching event sometime
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in the 1970s, but the year, extent, and intensity are unknown (Oliver 1985).6 A
further feature is that small bleaching events of moderate to severe intensity occur
almost every year since 2006 (Fig. 3.5). This parallels a similar pattern already noted
in the global time series (starting from the mid-1990s; see Fig. 3.1).

3.3.2 Spatial Patterns

The spatial distribution of bleaching at named sites on the GBR is shown for years of
significant bleaching in Figs. 3.6 and 3.7. Overall there is a pattern of more severe
bleaching in inner shelf regions, although in the most severe events of 2016–2017
bleaching extended across the entire shelf in some areas. Bleaching was recorded
across more than two thirds of the length of the GBR in all bleaching years, but for
years when comprehensive aerial surveys were conducted (1998, 2002, 2016, 2017),
different latitudinal regions were affected in each year. The northern GBR has only
shown severe bleaching during the 2016 event, and the far southern offshore reefs
have only rarely recorded bleaching, and this has never been widespread. The
specific spatial patterns for each of these years have been demonstrated to be highly
correlated to elevated sea surface temperatures (SST, Berkelmans et al. 2004;
Hughes et al. 2017).
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6Oliver (1985) also states that “bleaching at Magnetic Island was not nearly as extensive in 1983
compared with 1982”. This indirect reference to a bleaching event in 1983 is in fact a typographical
error. It should have been a reference to the 1980 bleaching event.
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a) 1982 b) 1987

c) 1998 d) 2002

Fig. 3.6 Great Barrier Reef bleaching records. The maps for 1998 and 2002 include aerial survey
data. Colours as in Fig. 3.4
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3.4 Relationships Between Global Bleaching and El Niño
Events

It is clear that the link between moderate to severe bleaching and powerful El Niño
events is fairly strong at a global scale (Fig. 3.8). All five global bleaching events
identified above (1983, 1987, 1998, 2010, 2016) occurred during or just after
moderate or major El Niño years. Based on a classification of El Niño years by
Null (2017), the two most severe bleaching events (1998 and 2016) occurred during
the second year (year þ1) of strong El Niño events (1997–1998, 2015–2016). The
1982–1983 El Niño also resulted in widespread, and perhaps global, bleaching as
summarised in Coffroth et al. (1990), although records are too sparse to firmly
classify this as a major event. The 2010 global bleaching and less well-defined
bleaching event of 1987 both occurred during or just after moderate El Niños. Years
in which regional bleaching occurred (2002 in the GBR and 2005 in the Caribbean)
also coincided with moderate or weak El Niños. Additionally, some regions, partic-
ularly the western Pacific, and also southern Western Australia have bleached during
the first year of La Niña events, although the quick transition from the 1997–1998 El
Niño to the 1998–1999 La Niña can make such distinctions challenging.

Fig. 3.7 Great Barrier Reef bleaching records for 2016 and 2017 (source: COECRS 2017b). Not all
data are shown, only reefs at either end of the bleaching spectrum: red circles indicate reefs
undergoing most severe bleaching (60% or more of visible corals bleaching), and green circles
indicate reefs with no or only mild or no bleaching (10% or less of corals bleaching)
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3.5 Discussion

The spatial distribution and frequency of bleaching over time are both continuous
variables which allow bleaching events to vary from singular minor events to ones
that are spread densely across the globe over extended periods. This makes the
identification of global bleaching events a somewhat subjective issue, even though
there is value, from both an ecological and environmental management perspective,
in distinguishing discrete severe events that have had major impacts on reef systems.

The identification of global bleaching events is predicated on a clear definition of
the term, but this has not been explicitly addressed in the literature. An implicit
definition in many treatments of global bleaching is that it occurs with moderate to
high impact in many countries throughout the world, but this leaves questions
regarding the required frequency, severity, extent, and uniformity unanswered. A
more specific implicit definition, which refers to widespread bleaching in all three
ocean basins, was used by NOAA’s Coral Reef Watch (Eakin et al. 2016, 2017;
Heron et al. 2016). They identified two global events in 1998 and 2010. Eakin et al.
(2016) suggested an earlier global event may have occurred in 1983 based on work
by Coffroth et al. (1990). Here we present bleaching frequency across 1� grid cells
and regional presence/absence data for seven regions and visually identified peaks in
the frequency distribution as a first approximation of discrete major bleaching years.
This analysis suggests that over the last two decades, during which reporting efforts
at a global scale have been high, 1998 and 2016 can be classified as severe global
bleaching events and that 2010 is more usefully classified as a moderate global
event. Prior to 1998 reporting efforts were lower, but there are discrete peaks
suggesting that 1983 and 1987 experienced global-scale bleaching of at least mod-
erate severity (Table 3.2).

Heron et al. (2016) have carried out a similar type of analysis using satellite SST
data to plot the incidence of bleaching-level thermal stress (�4 �C-weeks) over time
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Fig. 3.8 Global bleaching events and the Oceanic Niño Index (ONI, NOAA 2017). The shaded
bars at the top indicate moderate (orange), strong (pink), and very strong (red) El Niño events
[categories from Null (2017)]. Solid boxes indicated years of near-global or global bleaching with
numbers of regions affected or areas of regional bleaching in the Caribbean (C) or Great Barrier
Reef (G)
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for different regions during 1985–2012. At the global scale, their analysis shows
peaks in bleaching-level stress, corresponding to the 1998 and 2010 events described
in Table 3.2. There is also an indistinct peak around 1987–1988 which approxi-
mately matches the possible moderate event for 1987 (Table 3.2). Newer analyses by
NOAA (Eakin, pers. obs.) find that the extent of heat stress in 1983 and 1987 may
have been less than half that seen in 2010. It is possible that other stressors such as
light or water motion played a role in bleaching during these periods, but given the
doubt surrounding the adequacy of the reporting effort on coral bleaching, and the
importance of thermal stress in the development of mass bleaching events, the lack
of a major bleaching-level stress peak for 1987 in Heron et al. (2016), comparable to
2010 or 1998, suggests that if there was a global bleaching event in 1987, it was not a
major one. The same may also be true for 1983.

Donner et al. (2017) have recently conducted a comprehensive analysis of
bleaching records based on a major revision of the ReefBase database. Their analysis
of bleaching records over time differs from ours in grouping records to a much finer
0.4� grid and by excluding records with no bleaching or unknown bleaching
severity. In general, our analysis agrees with Donner et al. (2017); however in our
analysis the peaks for years 2000, 2007, and 2009 are much lower, probably due to
less extensive spatial coverage of bleaching in those years.

The proximate cause of virtually all mass bleaching events is widely acknowl-
edged to be thermal stress, with light, water motion, and ocean circulation acting as
important modifiers (Brown 1997; Wilkinson 1998; Glynn 1993; Hoegh-Guldberg
1999; Mumby et al. 2001; Hughes et al. 2003, 2017). These reviews and others

Table 3.2 Classification of global bleaching events since 1979

Year Global event Comments

2014–
2017

Severe • Data still being compiled
• Very high frequency of bleaching reports at 1� grid and regional
scale
• Bleaching reports extend from 2014 to 2017 with peak in 2016
• Major mortality impacts already reported in some areas

2010 Moderate • Lower frequency of bleaching at 1� grid and regional scale compared
to 2016 and 1998
• Mortality impacts also reported

1998 Severe • Highest frequency of bleaching at 1� grid and regional scale
• Extensive well-documented mortality

1987 Possible
moderate?

• Discrete peak in bleaching frequency at 1� grid and regional scale
• Absolute frequencies lower than later years that have not been
classified as bleaching, but this could be due to lower reporting effort
• Heat stress reached critical levels in a small percentage of global
reefs

1983 Possible
moderate?

• Discrete peak in bleaching frequency at 1� grid and regional scale
• Absolute frequencies lower than other years not classified as
bleaching, but this could be due to lower reporting effort
• Bleaching on GBR occurred in 1982—well-documented mortality
• Heat stress may have reached critical levels in a small percentage of
global reefs
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(Glynn 1984, 2000, 2002; Wellington and Glynn 2007) have stressed the role of El
Niño as one of the higher-level causes, especially for major events in 1983, 1998,
and now 2016. The comparison of major El Niño events with the five global and
possible global events identified here (Figs. 3.2 and 3.8) indicates that each one was
associated with one of the eight most severe El Niño events in the last half century
(NOAA 2017). Even the two significant but more regionally restricted bleaching
events in the GBR and the Caribbean (2002 and 2005, respectively) were associated
with weak or moderate El Niño events. The only exception to the close relationship
between moderate to strong El Niño years and global bleaching is the extended
moderate El Niño of 1991–1993, during which no major bleaching occurred. Not all
teleconnections between the core canonical events of El Niño and thermal anomalies
on coral reef areas have been clearly identified. Huppert and Stone (1998) suggest
that additional stochastic triggering events may explain records of bleaching in
non-El Niño years. The role of the Indian Ocean Dipole and the Madden-Julian
Oscillation as modulators of ocean basin-scale heat stress has also been noted by
Heron et al. (2016) and Zhang et al. (2017).

On the GBR, the records show a less direct correlation between El Niño strength
(positive ONI, NOAA 2017) and bleaching events, although the proximity of major
bleaching to these deviations is very suggestive. The ONI may, therefore, be a poor
direct indicator of the impacts of ENSO events at a local or subregional scale even
though it is possible that many of the GBR bleaching events are indirectly caused by
ENSO-related climate anomalies. The reversals of normal ocean current directions,
particularly in the equatorial Pacific during ENSO events, have a profound but
indirect influence on local weather conditions. The nature and timing of the effects
may be highly variable in different locations and from one event to another. For
example, the western Pacific is generally cooler during an El Niño event which in
theory suggests a low chance of bleaching (Chap. 4). In contrast, the western Pacific
is generally warmer during strong La Niña years, increasing the chance of bleaching.
However, El Niño conditions in Australia generally bring drought and long periods
of cloud-free, doldrum-like conditions. When this coincides with the austral sum-
mer, local heating of shallow inshore waters occurs. This would explain the observed
inshore-offshore bleaching pattern during major bleaching events. El Niño weather
patterns operate at regional scales and affect reef provinces only when they coincide
with the regional summer. The GBR probably avoided a major bleaching event in
2005 only because ocean current anomalies returned to normal just before the austral
summer.

At the global scale, identification of detailed spatial bleaching patterns is ham-
pered by the lack of detailed records for the most recent events, which have not yet
been published, and probable under-reporting of events prior to 1998. In general,
records are more likely to be complete in areas where there are concentrations of
research activity and programmes of regular monitoring, especially in the GBR and
parts of the Caribbean. In this respect 2010 stands out. Despite the presence of
bleaching in five regions, very little bleaching occurred in the central and western
Pacific and almost none on the GBR (Fig. 3.3). In the analysis of bleaching-level
thermal stress carried out by Heron et al. (2016), the Pacific (excluding Australia) is
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the only region that does not show a peak for 2010. However, the Australian region
(mostly comprising the GBR) has a peak in thermal stress for 2010 that is equal to
that of the major bleaching year of 1998. The GBR may have been subject to
localised influences independent of SST that prevented significant bleaching in
2010, although the lack of major tropical cyclones at this time rules out cyclonic
cooling (Carrigan and Puotinen 2014) as a mitigating factor. Outside the GBR and
much further south, however, Lord Howe Island reported severe bleaching in 2010
(Harrison et al. 2011).

Spatial bleaching patterns within the GBR (Figs. 3.6 and 3.7) show distinctive
longitudinal and cross-shelf patterns that vary between years. In general, more
frequent and severe bleaching is seen on inshore reefs and on reefs in the central
GBR. The primary driver for these patterns is SST (Berkemans et al. 2004, Hughes
et al. 2017). A number of factors, singly or in combination, may contribute to the
observed effect. First, inshore shallow waters have a smaller volume and hence a
reduced thermal capacity compared with deeper offshore waters. Second, inshore
waters may have a reduced ability to mix with cooler deeper water simply because
the waters are warm for the full depth of the water column. Third, inshore corals are
generally more darkly pigmented compared with their offshore relatives due to
reduced light availability (higher turbidity) and higher nutrient loadings. The higher
pigment density has been shown to increase solar absorption and raise the effective
temperature experienced by corals by up to 1.5 �C, exacerbating the bleaching risk
for inshore coral communities (Fabricius 2006). More recently Wiedenmann et al.
(2013), Wooldridge (2016), and Pogoreutz et al. (2017) have suggested that
increased nutrients can lead to an imbalance between the metabolic activities and
zooxanthellae and the coral host, leading to bleaching. Since anthropogenic impacts
are also concentrated inshore, the clear management imperative to mitigate against
additional stresses is doubly important in inshore environments. Good land manage-
ment practices (river catchment, coastal development) and prudent fisheries man-
agement, especially for herbivorous fisheries, are particularly important priorities for
management in these areas (Salm and Coles 2001; Marshall and Shuttenberg 2006).
However, at times of severe heat stress, such management may be insufficient to
protect corals (Hughes et al. 2017).

Apart from the strong inshore-offshore effect, bleaching in the most recent severe
bleaching event on the GBR was patchy over scales of tens of kilometres, reflecting
patterns in local weather and oceanography. Specific oceanographic features have
also been shown to explain some of the detailed patterns of bleaching. The unusual
bleaching of northern GBR reefs in 2016, for instance, has been explained by
Wolanski et al. (2017) by a combination of a shutdown in the North Queensland
Coastal Current, sea level-mediated transport of warm water from the Gulf of
Carpentaria into the Torres Strait, and local solar heating. The lower levels of
bleaching in the central and southern GBR compared to previous sever events can
also be explained in terms of local weather events: ex-Tropical Cyclone Winston
brought increased cloudiness and cooler temperatures to the region (Hughes et al.
2017). These local to subregional processes make prediction and scenario modelling
particularly challenging at local scales and highlight the need for a detailed
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understanding of the oceanographic environment and appropriate tools to draw
inferences from diverse data sets (Wooldridge and Done 2004; Skirving et al.
2006; Wooldridge et al. 2006). A positive implication from this patchiness is that
there is likely to be a proportion of reefs that will not bleach in successive events,
giving some affected reefs longer to recover. Unfortunately, climate change may
disrupt some circulation patterns eliminating past “protection” in future years.

Our results clearly show an increase in the number of bleaching reports between
1983 and 2017, with a major increase in the past decade after the 1998 event. In
addition to three major global events, there has been a low level of bleaching in all
years and in multiple regions (Figs. 3.1 and 3.2). While this may be partly due to an
increase in the level of reporting, the level of scientific research and monitoring,
together with the dedicated efforts of key institutions to record all bleaching events
since 1983, makes it likely that this is a real trend. This confirms the analyses of
Heron et al. (2016) and Donner et al. (2017) who found, respectively, a threefold
increase in the frequency of bleaching-level stress and an eightfold increase in the
number of reefs with a greater than 50% probability of bleaching. When we look
only at major peaks in bleaching records, then at a global level we can clearly
differentiate three to five global events. This is too small a number to quantitatively
determine whether the frequency of severe events is increasing. However, the two
lesser events preceded 1990, and the more severe events occurred in 1998, 2010, and
2014–2017. While there is insufficient evidence in the global database of bleaching
records to statistically support or refute the hypothesis that major bleaching events
are increasing in frequency, there is growing evidence that low-level background
bleaching has increased to the point where most regions and ocean basins are
reporting some level of bleaching every year. This is most likely linked to the rise
in ocean temperatures.

A separate, but related, issue is whether the intensity of bleaching is increasing.
As discussed above, our results (Fig. 3.4) do not support this notion based on the
relative frequency of the severe bleaching category in the database. This finding
contrasts with data that show clear increases in both the frequency and intensity of
bleaching-level thermal stress (Heron et al. 2016; Chap. 4). It is possible that a real
increase in severity is not discernable from an analysis of bleaching categories but
would require more information on subsequent mortality impacts. If the lack of a
trend is real, one potential reason is that the corals that survive severe events, such as
1998, are more capable of surviving subsequent thermal stress. Studies on this
hypothesis have reported mixed results so far (Carilli et al. 2012; Guest et al.
2012; Pratchett et al. 2013; Hughes et al. 2017). A corollary is that severe bleaching
events reduce diversity, removing the more thermally sensitive corals.

The revised global database of Donner et al. (2017) represents an important
resource for documenting and understanding the impacts of coral bleaching. Its
utility could be greatly increased if monitoring and reporting effort could be
standardised. This would enable smaller-scale patterns of milder bleaching events
to be reliably detected, thus providing early verification of predicted increases in
bleaching frequency due to climatic temperature increases. It would also provide
much needed ground truth data for the bleaching HotSpots detected by satellite data
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(Chap. 4). Two key improvements in bleaching reporting are standardisation in the
measurement of bleaching intensity and standardisation in the number, location, and
timing of bleaching surveys. The first issue was addressed by Oliver et al. (2004) and
Marshall and Schuttenberg (2006). The adoption and use of a standard reporting
protocol would greatly increase the reliability of bleaching records. The second issue
will require a much greater level of coordinated effort by coral reef scientists and reef
users. Existing global networks such as Reef Check and the currently semi-operative
Global Coral Reef Monitoring Network, together with major regional monitoring
programmes such as the AGRRA and National Coral Reef Monitoring Program
(NCRMP) and the programmes in Australia by the Australian Institute of Marine
Science (AIMS) and the Great Barrier Reef Marine Park Authority (GBRMPA), are
well placed to promote the regular reporting of bleaching conditions (both presence
and absence) from standard locations; and we hope that these can encourage greater
monitoring and reporting as a priority.

Overall, we conclude that the existing observations of coral bleaching enable us
to confirm that severe bleaching events occurred at a global level on three recent
occasions and possibly on two other occasions prior to 1998. Also, we have
demonstrated that each of these events occurred in close temporal proximity to a
strong El Niño event. While no clear increase in the frequency or intensity of major
global bleaching events is so far discernable using bleaching records alone, the
observed and predicted increase in ocean temperatures to which El Niños add extra
warming throughout much of the tropical oceans (Chap. 4) has been predicted to
dramatically increase the frequency and severity of bleaching events. In addition, the
frequency and extent of annual bleaching records have clearly increased over the
period 1979–2016 to the point where bleaching is now reported at various sites
around the world every year. If trends in global ocean warming continue, reefs may
be faced with a combination of both chronic bleaching and more frequent and highly
destructive events.
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Chapter 4
Climate Variability and Change:
Monitoring Data and Evidence
for Increased Coral Bleaching Stress

C. M. Eakin, J. M. Lough, S. F. Heron, and G. Liu

4.1 Introduction

Coral reefs live within a fairly narrow envelope of environmental conditions
constrained by water temperatures, light, salinity, nutrients, bathymetry, and the
aragonite saturation state of seawater (Buddemeier and Kinzie 1976; Kleypas et al.
1999; Hoegh-Guldberg 2005). Their natural environment, at the interface of land,
sea, and the atmosphere, can vary quickly and potentially be stressful. Reef organ-
isms have, over millions of years, evolved strategies to cope with occasional
environmental disturbances (such as tropical cyclones). Given sufficient time
between disturbances, damage or destruction would normally be followed by recov-
ery and regrowth (Buddemeier et al. 2004). As documented in numerous scientific
studies and reports, the world’s coral reefs are “in crisis” as a result of direct local-
and regional-scale human impacts on their environment. These impacts include
overfishing; destructive fishing practices; changed land use that increases sediment,
nutrient, and pollutant flows into reef waters; and poorly designed coastal develop-
ment. Such local impacts were, in the past, the primary ecosystem degradation in
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those tropical countries whose increasing populations are heavily dependent on coral
reefs yet have insufficient resources to develop appropriate, sustainable management
practices (Wilkinson 2004). Now, the greatest threat to coral reefs are destructive
global-scale stresses due to the accumulation of anthropogenic greenhouse gases in
the atmosphere that are rapidly changing coral reefs’ environmental envelopes
through both ocean acidification and increased heat stress due to climate change
(Hoegh-Guldberg et al. 2007; Heron et al. 2016a).

There are several aspects of global climate change that are already impacting the
environments of coral reef ecosystems (Chap. 1). The most immediate is rising sea
surface temperature (SST) that is correlated with an increased frequency of mass
coral bleaching reports since the early 1980s (Glynn 1993; Chap. 3). Pioneering
studies in the 1970s demonstrated just how close (within 1–2 �C) reef-building
corals usually live to their upper thermal tolerance limits and further how subtle
elevation in temperature often led to bleaching (Coles et al. 1976; Jokiel and Coles
1977; Glynn and D’Croz 1990). These studies and others have identified that
temperature thresholds at which corals bleach vary with the ambient water temper-
atures on each reef, such that corals have adapted to their local environmental
conditions over long timescales (Chap. 9).

Alarming first reports of mass coral bleaching events were not immediately linked
with unusually warm global SSTs until a connection eventually was made with El
Niño warming (Glynn 1983, 1984; Coffroth et al. 1990). This was largely due to
limited availability of reliable, long-term records of SSTs and other environmental
variables in the vicinity of coral reefs. Gradually, as more mass bleaching events
occurred and observations improved, the link was made with unusually warm SSTs
(Brown 1987; Glynn 1990, 1991, 1996). Unfortunately, the reporting of bleaching
events is still incomplete in many parts of the world, and the ability to tease out
causal relationships between bleaching and environmental conditions is confounded
by two simultaneous factors: (1) the rising heat stress and (2) the recent increase in
monitoring and reporting (Chap. 3). Nevertheless, the evidence linking mass
bleaching of coral reefs to global climate change due to increased anthropogenic
greenhouse gas emissions (Smith and Buddemeier 1992; Brown 1997), which was
considered unconvincing in the early 1990s (Glynn 1993), is now considered
incontrovertible (Hughes et al. 2003, 2017a, b; Heron et al. 2016a).

This chapter focuses on the changing physical environment of coral reef ecosys-
tems and especially SSTs that are responsible for most mass coral bleaching events.
We use long-term climatic datasets to document SST changes near coral reefs over
the past 146 years (future scenarios are considered in Chap. 13). SST conditions
conducive to coral bleaching are considered in the context of observed global-scale
ocean warming and climatic variability [e.g., El Niño-Southern Oscillation (ENSO)].
Since the 1980s, satellite-based observations of the oceans have dramatically
increased our capability to observe ocean variations globally and synoptically and
provide the basis for identifying bleaching conditions in near-real-time. We describe
the application of satellite-based SST and other products to detect and monitor
environmental conditions related to coral bleaching events.
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4.2 Data for Understanding Heat Stress and Bleaching
Patterns Worldwide

To date, no dataset provides continuous coverage spanning modern satellite and
instrumental observations back through multiple decades or centuries. However,
good data do exist at various temporal and spatial scales. Two general types of
primary datasets are available: (1) century-length reconstructions generated from
available instrumental observations of global SST and (2) modern (post-1980), near-
real-time satellite observations and reanalyses of these records. Because both of
these data are calibrated from similar instrumental datasets for recent years, both are
considered to accurately represent large-scale patterns of thermal conditions that
influence coral reefs. The datasets used for this study are described below.

4.2.1 Century-Length Global SST Reconstructions from
Instrumental and Paleoclimatic Data

Unfortunately, continuous observations of physical parameters have been taken at
only a limited number of reef sites and for less than 30 years. Observations from
other parts of the global ocean are not much more complete and largely consist of
open ocean measurements. The need for long records of SSTs has driven the
development of new local to global ocean observing systems, satellite observations,
and algorithms to reconstruct past SSTs from instrumental data that are heteroge-
neous in space and time. Two organizations have developed such reanalyses that are
widely used. The Hadley Centre Sea Ice and Sea Surface Temperature Version
1 (HadISST1) dataset was developed at the Hadley Centre of the UKMeteorological
Office (available at http://www.metoffice.gov.uk/hadobs/hadisst). It provides
monthly, globally replete fields of SST and sea ice concentration on a one-degree
latitude-longitude grid from 1870 to present (Rayner et al. 2003). Two separate
reanalyses were developed at the National Centers for Environmental Information of
the US National Oceanic and Atmospheric Administration (NOAA), the Optimum
Interpolation Sea Surface Temperature analysis (OISST) dataset providing¼-degree
daily, globally complete fields of SST from 1981 to present and the Extended
Reconstructed Sea Surface Temperature (ERSST) dataset providing two-degree
monthly, globally complete fields of SST from 1854 to present (both available at
https://www.ncdc.noaa.gov) (Reynolds and Smith 1994; Reynolds et al. 2002;
Smith and Reynolds 2003, 2004). While the methods used in developing these
datasets are similar, users should examine each one to select the best dataset for
their application (e.g., Huang et al. 2017).

Paleoclimatic data also extend our understanding of climate patterns into the past
before routine instrumental measurements (Jones and Mann 2004; Jones et al. 2009).
Certain annually banded massive coral skeletons contain a rich archive of past
climatic and environmental conditions in coral reef environments (Lough 2010;
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McGregor 2011), which can be extracted, for example, using the ratios of stable
isotopes (δ18O/16O) or trace metals (Sr/Ca) in annual growth bands (Felis and
Patzold 2003; Gagan and Abram 2011). Although there are problems with the sparse
array of available data from long coral cores (Evans et al. 2002) and, until recently, a
lack of replication (Lough 2004), it is now possible to reliably reconstruct regional
tropical SST for most of the past 400 years (Tierney et al. 2015). These reconstruc-
tions show that tropical SST was cooling prior to the mid-1800s but has significantly
warmed in the Indian, western Pacific, and Atlantic Oceans since 1850 by ~0.04 �C
per decade. Coral cores have also revealed disruptions in growth and slowing of
growth rates in response to coral bleaching events (Carilli et al. 2009; Cantin and
Lough 2014; Manzello et al. 2015; Barkley and Cohen 2016) and that these
bleaching-growth anomalies appear to be a recent phenomenon (Carilli et al.
2010). There is also evidence from several reef locations for a recent slowing in
the growth rates of massive corals (e.g., De’ath et al. 2009, 2013; D’Olivo et al.
2013; Manzello 2010; Tanzil et al. 2009, 2013)—the primary driver of these declines
appears to be the local rate of ocean warming (Cooper et al. 2012). This results in
setbacks to growth due to heat stress and a general decline in growth due to water
temperatures persistently exceeding optimum values (Lough and Cantin 2014).

4.2.2 Satellite Observations of SST and Heat Stress

NOAA Coral Reef Watch’s (CRW) original 50-km (“heritage”) products used only
data from polar-orbiting satellites, which provide near-real-time observations across
the globe. Global 0.5� (approx. 50 km) nighttime SSTs and SST-based products were
delivered at a twice-weekly time step. As higher spatial resolution was the product
improvement most requested by users, CRW developed new daily products at global
0.05� (approx. 5 km) resolution, again using only nighttime SSTs. This increase in
both spatial and temporal resolution was accomplished by using both polar-orbiting
and geostationary satellite sensors for SST (NOAA’s Geo-Polar Blended SST Anal-
ysis, Maturi et al. 2017, Fig. 4.1a). Geostationary satellites provide more frequent
sampling and better measures of variability and patterns throughout the day, but with
coverage limited to part of one hemisphere. International data sharing agreements
have provided access to geostationary data for most coral reef areas and hopefully
will soon cover all coral reef areas globally.

CRW’s current product suite includes 5-km SST, SST anomaly, coral bleaching
HotSpot, coral bleaching Degree Heating Week (DHW), and Bleaching Alert Area
updated daily (Fig. 4.1; Liu et al. 2014, 2017). These satellite data products are
available online in graphical formats and as data files for the period from 2013 to the
present (CRW 2017; http://coralreefwatch.noaa.gov). Animations of all product
charts over the most recent 30 and 60 days are also available. Other products, such
as the Regional Virtual Stations, SST time series, and automated Satellite Bleaching
Alert emails provide needed information to coral reef resource managers and
scientists (Heron et al. 2016b). The current suite of near-real-time products were
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Fig. 4.1 NOAA Coral Reef
Watch near-real-time
satellite global 5-km
nighttime product suite for
17 October 2014: (a) sea
surface temperature (SST),
(b) SST anomaly, (c) coral
bleaching HotSpot, (d) coral
bleaching Degree Heating
Week (DHW), and (e)
Bleaching Alert Area
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developed based on algorithms derived from earlier monthly analyses of satellite and
in situ SST data (Montgomery and Strong 1994; Gleeson and Strong 1995; Strong
et al. 1997; Goreau et al. 2000) and are direct descendants of the 50-km products
CRW has produced for two decades (Liu et al. 2006).

The near-real-time geo-polar blended SST dataset, a geo-polar blended SST
reanalysis from earlier satellite data, and other high-resolution satellite-based SST
records have been combined to provide a single SST dataset, Coral Reef Watch’s
CoralTemp, that spans 1985–present (Skirving et al. 2018). Based on CoralTemp, a
full suite of 1985–present Coral Reef Watch daily 5-km coral bleaching heat stress
product suite, including all of the 5-km products described above (see Sect. 4.2.2.5),
will come online in 2018. CRW continues to evaluate and improve products with
respect to both input datasets and product algorithms.

4.2.2.1 SST Anomaly

The SST anomaly (Fig. 4.1b) is the positive, negative, and zero departure of
temperature from the expected value (i.e., climatology or long-term mean) for
each location at the specific time of year, identifying where temperature is warmer
or cooler than usual. SST anomaly has been instrumental in visualizing the effects of
ENSO across the Pacific and with applications beyond coral reefs including ocean
front analyses and whale migrations. To compute the SST anomaly, as well as other
anomaly-based products, the expected value for each day at each data pixel is
calculated using a time series of SST data spanning 1985–2012. For the first release
of the 5-km product suite, the climatology was derived from the Pathfinder record of
Advanced Very High Resolution Radiometer (AVHRR) nighttime SSTs (Heron
et al. 2015). However, spatially and temporally variant errors were found in the
products derived using the Pathfinder-based climatology, especially in regions with
significant and persistent seasonal cloud cover (i.e., monsoonal regions). This was
especially apparent during the 2014–2017 global coral bleaching event. In 2017, a
new climatology (CRW version 3) was derived from the Operational SST and Sea
Ice Analysis (OSTIA) reanalysis from 1985 to 2002 (Roberts-Jones et al. 2012) and
a new NOAA National Environmental Satellite and Data Information Service
(NOAA/NESDIS) reanalysis of geo-polar blended SSTs from 2002 to 2012 (Maturi
et al. 2017; A. Harris pers. comm.). This new version 3 climatology was used for the
production of the SST anomaly and all subsequent CRW products provided in this
chapter.

For all of the anomaly-based 5-km products, the 12 monthly mean
(MM) climatologies for each pixel (Jan, Feb, etc.) were based on the period
1985–2012 and de-trended to the temperature at the midpoint of the heritage
50-km climatology previously used by CRW (Heron et al. 2015; Liu et al. 2017).
This process of de-trending provided datasets that include the full variability seen in
the 1985–2012 record but retain the point in time to be consistent with CRW’s
original 50-km products. Thus, despite the obviously rising temperatures during
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1985–2012, these datasets provide bleaching predictions that do not assume any
acclimation or adaptation to higher temperatures on the part of the corals since 1985.

4.2.2.2 HotSpot

The coral bleaching HotSpot (Fig. 4.1c) is the positive anomaly of temperatures that
exceed the maximum monthly mean (MMM) climatology for each 5-km pixel, thus
identifying regions that are currently exposed to heat stress. For each pixel, the
MMM climatology is the warmest among the 12 MM climatologies described in the
previous section, representing the expected summertime maximum. CRW originally
released the 50-km satellite coral bleaching HotSpot product in 1997 based on the
“ocean hot spots” concept introduced by Goreau and Hayes (1994) from analyses by
Atwood et al. (1992) and experiments by Glynn and D’Croz (1990). The 50-km
HotSpot was produced experimentally over 1997–2002 and became CRW’s first
operational product in September 2002. This was replaced by the initial 5-km version
in 2013 (Liu et al. 2014) and subsequent 5-km version 3 in 2017 (Liu et al. 2017).

4.2.2.3 Degree Heating Week

While the HotSpot product is extremely useful, it only provides an instantaneous
measure of heat stress. Corals respond to the cumulative heat stress to which they are
exposed. The NOAA Degree Heating Week (DHW) index is a highly reliable
predictor of impacts on corals from sustained heat stress. By accumulating the
positive anomalies of SST above the MMM, CRW’s DHW index provides a
measure of the cumulative heat stress that corals experience (Fig. 4.1d). The
50-km DHW product was produced experimentally starting in 2000 and became
operational in September 2003. Like the HotSpot, the original DHWwas replaced by
the initial 5-km version in 2013 (Liu et al. 2014) and subsequent 5-km version 3 in
2017 (Liu et al. 2017). Following Glynn and D’Croz (1990) and Atwood et al.
(1992), the threshold for bleaching was established to be 1 �C above the expected
summer maximum temperature; and the DHW is calculated by summing all HotSpot
values �1 �C in each pixel over a 12-week period (Liu et al. 2003; Skirving et al.
2006a). In most cases, HotSpot values <1 �C do not result in cumulative heat stress
leading to widespread coral bleaching. This high-pass clipping filter reduces run-
away accumulations that can result when SSTs remain very close to the MMM for
long periods of time, a condition often encountered in equatorial mid-Pacific regions.
A DHW value of 2 �C-weeks is equivalent to 2 weeks of HotSpot values of 1 �C and
also to 1 week of HotSpot values of 2 �C and so forth. CRW issues a coral bleaching
alert via email to registered users when values at or near a reef reach DHW values
�4 �C-weeks (Alert Level 1; see the next section for bleaching heat stress catego-
ries). Significant coral bleaching is expected to occur 1–3 weeks after the heat stress
reaches this level. Mass bleaching and the onset of coral mortality are expected after
reefs experience DHW values �8 �C-weeks (Alert Level 2). The DHW index has
predicted bleaching of corals around the world (Eakin et al. 2017), including recently
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in the Commonwealth of the Northern Mariana Islands (2013, 2014; Heron et al.
2016b), the Hawaiian archipelago (2015; Couch et al. 2017), and the Great Barrier
Reef (2016, 2017; Hughes et al. 2017b; Hughes and Kerry 2017).

4.2.2.4 Bleaching Alert Area

Both HotSpot and DHW products provide information needed to predict the likeli-
hood of coral bleaching. However, the Bleaching Alert Area product was added in
2009 (Liu et al. 2013) to provide a single collective product where reef managers and
others could quickly reference the information they needed most. The Bleaching
Alert Area is a semiquantitative product that combines current and accumulated heat
stress conditions into five categories: No Stress, Bleaching Watch, Bleaching Warn-
ing, Alert Level 1, and Alert Level 2. No Stress indicates the SST is below the
MMM. A Bleaching Watch is issued once HotSpots are present (SST above MMM).
A Bleaching Warning is issued once DHW accumulation begins (SST at or above
bleaching threshold, MMM + 1 �C). At DHW values of 4 �C-weeks or above,
significant bleaching is expected and an Alert Level 1 is issued. Finally, at 8 �C-
weeks or above, widespread bleaching and significant mortality are expected and an
Alert Level 2 is issued. Importantly, the three highest alert levels (Warning, Alert
1, and Alert 2) are only sustained when HotSpots reach or exceed the level at which
heat stress is accumulated (i.e., HotSpot � 1 �C).

4.2.2.5 Reprocessed and Heritage Satellite Observations of SST

In addition to the operational near-real-time satellite observations, retrospective
analyses of satellite SST data have been produced and periodically updated. CRW
has created multiple products based on the Pathfinder ver. 5.0–5.3 datasets (NOAA
2007; http://www.nodc.noaa.gov/sog/pathfinder4km/). Pathfinder provides daily
global SST data at approximately 4-km resolution (Global Area Coverage) covering
the period 1981–2014 (Kilpatrick et al. 2001). From the Pathfinder source data, SST
archives were produced at 0.5� (50-km) and half-weekly resolution and 4-km and
weekly resolution. These archives were applied to develop CRW historical product
suites mimicking the methods for the near-real-time products (see Sects. 4.2.2.1–
4.2.2.4) and were used to both support the development of earlier versions of CRW’s
near-real-time products (Heron et al. 2014; Liu et al. 2013, 2014) and examine coral
impacts (e.g., Eakin et al. 2009; Heron et al. 2010, 2016b).

While these Pathfinder-based products have been valuable, the Pathfinder dataset
has a very large percentage (87%) of data of too poor quality for use. This has limited
the application of Pathfinder-based data to temporally or spatially composited
applications and has resulted in significant and spatially variable biases. Such issues
were especially large in tropical areas with monsoonal climates due to persistent high
cloud cover. For this reason, CRW developed a new, long-term dataset at daily
resolution from 1985 to present. The first version of this dataset, named CoralTemp
(Skirving et al. 2018), was created in 2017 and merged together the OSTIA
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reanalysis from 1985 to 2002 (Roberts-Jones et al. 2012), a new NOAA/NESDIS
reanalysis of geo-polar blended SSTs from 2002 to 2016 (A. Harris pers. comm.),
and the geo-polar blended near-real-time data used in CRW’s current operational
products. CRW has already used a prototype of the CoralTemp dataset to compute
the climatology for its latest near-real-time v3 products (see Sect. 4.2.2.1) and is
currently recomputing all other historical data products formerly computed using
Pathfinder-based SST.

4.2.2.6 Bleaching Prediction Using Climate Models

While CRW’s satellite-based products have been very valuable to scientists and
resource managers, most action to protect reef corals from bleaching required more
lead time. In 2008 CRW, in collaboration with the Physical Sciences Division of the
NOAA Earth System Research Laboratory (ESRL), released the world’s first pre-
diction tool for forecasting coral bleaching weeks to months in advance (Liu et al.
2009). That first system was based on a statistical global SST forecast model, the
Linear Inverse Model (LIM) (Penland and Matrosova 1998), limiting the system to a
single, deterministic subseasonal-to-seasonal-scale bleaching outlook. The
Australian Bureau of Meteorology (BOM) released the first dynamical, ensemble-
based coral bleaching prediction system built from their Predictive Ocean Atmo-
sphere Model for Australia (POAMA) (Spillman et al. 2011). Simultaneously, CRW
had partnered with the NOAA National Centers for Environmental Prediction
(NCEP) to develop its next-generation global subseasonal-to-seasonal-scale
bleaching outlook by applying SST predictions from NOAA’s operational Climate
Forecast System (CFS) in an ensemble prediction system. An example of CRW’s
Four-Month Bleaching Outlook and observed Bleaching Alert Area for the Pacific
Ocean in 2015 is shown in Fig. 4.2 (CRW 2017; https://coralreefwatch.noaa.gov/
satellite/bleachingoutlook_cfs/outlook_cfs.php).

These new systems from BOM and CRW provide dynamical, probabilistic
subseasonal-to-seasonal-scale coral bleaching heat stress outlooks delivering
advance warning to coral reef managers, scientists, stakeholders, and the public.
Efforts at BOM and CRW have continued to advance, providing enhancements such

Fig. 4.2 NOAA Coral Reef Watch Pacific Ocean (a) 60% probability Four-Month Bleaching
Outlook for July–October 2015 and (b) 5-km maximum Bleaching Alert Area for 2015 (full year)
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as increased ensemble numbers, greater spatial resolution, skill assessments, and
improved model physics (Griesser and Spillman 2016; Liu et al. 2017). High
confidence in systems such as these provides assurance to managers to effectively
undertake costly and/or controversial actions to protect corals when mass bleaching
is anticipated (Maynard et al. 2009). Additional work has taken the same approach
described here for seasonal outlooks to understand the impact a warming climate will
have on coral reefs in future decades (Donner et al. 2005; IPCC 2014a; van
Hooidonk et al. 2013, 2014, 2016).

4.2.2.7 Bleaching Weather: The Doldrums Product

While basin-scale coral bleaching occurs as a result of large-scale climatic phenom-
ena, local weather patterns greatly influence heat stress and bleaching variability
among sites within the basin. Three related factors that influence local bleaching
patterns are temperature, light, and water-column mixing. One parameter that exerts
a common influence on all of these is wind. When wind speeds drop, reductions in
vertical mixing, evaporative cooling, and sensible heat transfer all increase the
likelihood of higher temperatures and increased light penetration through the water
column (Dunne and Brown 2001; Mumby et al. 2001a; Skirving and Guinotte 2001;
Obura 2005). Additionally, low winds can increase stratification in the water col-
umn, resulting in enhanced photodegradation of colored dissolved organic material
and, thereby, reducing shading (Manzello et al. 2006). CRW has developed an
experimental Doldrums product using the NOAA/NESDIS Blended Sea Winds
product derived from multiple satellites that provides 0.25� (approx. 25 km) resolu-
tion wind fields for the Earth’s ocean surface (10-m height) every 6 hours (Zhang
et al. 2006). The current experimental product identifies regions where mean daily
wind speeds have remained below 3 m/s and records the persistence (doldrums-days)
of such conditions (Fig. 4.3; http://coralreefwatch.noaa.gov/satellite/doldrums/).
NOAA expects to use this product to augment SST- and light-based algorithms to
help detect conditions conducive to coral bleaching.

4.2.2.8 Additional Products

To further refine its satellite product suite, CRW is developing products to monitor
additional parameters that influence bleaching and coral reef health. Some parame-
ters that further address the needs described above include ocean surface solar
insolation, cloud cover, ocean color, and turbidity. These will directly address
parameters that influence the quantity and quality of light that reaches reef corals
at depth. Most of these products use both geostationary and polar-orbiting satellite
data. Other products include SST-based indices to predict outbreaks of coral disease
and connectivity among reefs estimated using oceanographic and hydrodynamic
models.
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Also, CRW continues to work on improving the spatial and temporal resolution
of its products. However, finer resolution in both space and time comes at a price,
including an increased need to gap-fill cloudy regions and the greater influence of
chaotic variability in coastal SST. Blended geostationary-polar-orbiting satellite data
have provided the capacity for this in the global products at 5-km resolution, and
higher-resolution regional products are currently being pursued, especially as new
geostationary satellites with a higher spatial resolution of 2-km come online. These
efforts complement regional collaborative developments, two of which are currently
available for the Great Barrier Reef (GBR, Australia) and Florida regions. In 2007, a
joint project between the Great Barrier Reef Marine Park Authority (GBRMPA) and
the Australian Commonwealth Scientific and Industrial Research Organization
(CSIRO) released an experimental 2-km polar-orbiting-satellite-based product
suite for the GBR, ReefTemp, that includes SST, positive SST anomaly, Heating
Rate, and Degree Heating Day products (Maynard et al. 2008; CSIRO at http://www.
cmar.csiro.au/remotesensing/gbrmpa/ReefTemp.htm). More recently, the ReefTemp
Next Generation system (Garde et al. 2014; http://www.bom.gov.au/environment/
activities/reeftemp/reeftemp.shtml) expanded the suite of products and is now hosted
by the Australian Bureau of Meteorology (BOM) with full operational support. The
Institute for Marine Remote Sensing at the University of South Florida has devel-
oped 1-km polar-orbiting-satellite SST and Degree Heating Week products for
Florida and the Caribbean (Vega-Rodriguez et al. 2015). These efforts will help
define the requirements and limitations to developing global high-resolution SST-
based monitoring products.
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Fig. 4.3 NOAA Coral Reef Watch near-real-time satellite 25-km doldrums product for 24 April
2005 in the Eastern Hemisphere. The color scale indicates the number of consecutive days over
which daily mean wind speed remained below 3 m/s

4 Climate Variability and Change: Monitoring Data and Evidence for. . . 61

http://www.cmar.csiro.au/remotesensing/gbrmpa/ReefTemp.htm
http://www.cmar.csiro.au/remotesensing/gbrmpa/ReefTemp.htm
http://www.bom.gov.au/environment/activities/reeftemp/reeftemp.shtml
http://www.bom.gov.au/environment/activities/reeftemp/reeftemp.shtml


4.3 Tropical SST Trends Since the Nineteenth Century

The SST maxima reached during recent mass coral bleaching events were unprec-
edented in the available instrumental records at a range of coral reef sites (Hoegh-
Guldberg and Salvat 1995; Brown et al. 1996; Winter et al. 1998; Lough 2000;
Mumby et al. 2001b; Wellington et al. 2001; Eakin 2007; Wilkinson and Souter
2008; Lough et al. 2018). A number of correlated indices of local heat stress and
other contributors to bleaching have been identified: absolute SST maximum, SST
maximum anomaly, Mean Positive Summer Anomaly (MPSA), number of days
above particular thresholds, etc. (Podesta and Glynn 1997; Liu et al. 2006; Strong
et al. 2006; Maynard et al. 2008).

Here we used global compilations of 1871–2016 monthly HadISST1 SSTs with
1� spatial resolution (Rayner et al. 2003) to assess large-scale variations and trends in
the tropical oceans and typical patterns associated with ENSO events. Such data are
extremely useful for providing long-term perspectives on the changing tropical
ocean climate in relation to coral bleaching events (Sheppard and Rayner 2002;
Barton and Casey 2005; Sheppard and Rioja-Nieto 2005). It should, however, be
recognized that data with such a coarse spatial resolution can disguise the consider-
able small-scale thermal variability on coral reefs (Potts and Swart 1984) and can
significantly underestimate the real water temperature ranges experienced by corals.
For example, monthly HadISST1 data in the vicinity of offshore Myrmidon Reef in
the central GBR indicate an annual range of 5–6 �C, matching the 5 �C annual range
of daily-average SSTs recorded by an automatic weather station (http://www.aims.
gov.au/docs/data-centre/weatherstations.html); however, diurnal variation was
observed to reach ~9.5 �C (Lough 2001). Furthermore, the modeling inherent within
reconstructed SST datasets can also introduce errors in seasonal signals—a prede-
cessor of the HadISST1 data (GISST 2.2) indicated an annual range of 2–3 �C in
monthly SSTs for the same location.

4.3.1 Tropical SST and Global Temperature Trends

The instrumental record of global land and sea temperatures (Fig. 4.4a) illustrates the
significant warming that has occurred since the end of the nineteenth century
(Morice et al. 2012). Average temperatures for the most recent 30-year period,
1987–2016, are 0.7 �C warmer than the first 30-year period of the record,
1871–1900—a significant change in climate. This warming also has occurred in
the coral reef regions of the tropical oceans (see Lough 2012) with maximum SSTs
(Fig. 4.4b) averaging 0.5 �C warmer in the most recent 30-year period compared
with the late nineteenth century. Paleoclimatic data from a pantropically distributed
set of 57 coral records confirmed that the twentieth-century tropical oceans have
significantly warmed and that 2016 was the warmest year in at least the past four
centuries (Fig. 4.5; Tierney et al. 2015). There is also evidence from 32 coral isotopic
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Fig. 4.4 (a) Global annual land and sea temperature (HadCRUT4, Morice et al. 2012). (b) Tropical
coral reef (1670 1� boxes, see Lough 2012) annual maximum SST (HadISST1, Rayner et al. 2003).
Both (a) and (b) show annual values, 1871–2016, as anomalies from 1961 to 1990 mean; thick line
is 10-year Gaussian filter emphasizing decadal variability; linear trend is also shown
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records that the tropical oceans have become fresher (less saline) than the previous
two centuries at most sites (Grottoli and Eakin 2007).

Using an 18-year satellite time series, Strong et al. (2006) observed a pattern shift
in decade-long SST trends during the latter half of the 1990s. Generally neutral
trends across the Pacific Ocean transitioned to warming in the western Pacific and to
cooling in the eastern Pacific; the tropical Indian Ocean moved from neutral to
warming conditions; and warming trends in the northern and tropical Atlantic Ocean
were enhanced. This pattern shift is likely a reflection of the superposition of short-
and long-term climate variability.

Based on linear trend analysis (as used by IPCC 2013) over the period 1880–2016,
the global surface land and sea temperature record (Fig. 4.4a) has significantly warmed
by 0.9 �C andmaximum annual SST at tropical reef sites (Fig. 4.4b) by 0.5 �C. For both
series, 2016 was the warmest year on record. For maximum SST on coral reefs, the
first, second, and third warmest years on record were 2016, 1998, and 2010—each
associated with global mass coral bleaching events (Eakin et al. 2016, 2017; Hughes
et al. 2018). Each of these bleaching events was associated with an El Niño which is
typically linked with warmer than usual waters throughout much of the tropical oceans
(Deser et al. 2010). Due to warming of baseline SST, however, the level of heat stress
during these recent El Niño events wasmore than three times that of the “preindustrial,”
1878 El Niño (Lough et al. 2018). Recent warming of the tropical oceans, home to the
world’s coral reefs, is inextricably linked to warming of the global climate system in

Fig. 4.5 Reconstructed annual tropical SST anomaly, 1622–1997 (bars), based on four regional
SST reconstructions from coral δ18O, Sr/Ca, and growth records that are significantly correlated
with SST (Tierney et al. 2015), and observed SST, 1871–2016 (black line) for tropical coral reef
sites (HadISST1, Rayner et al. 2003). Annual values are based on April–March averages (dated by
April year) and expressed as anomalies from 1961 to 1990 average. Over the period 1871–1997, the
reconstructed and observational SST series are significantly correlated (at 1% level), r ¼ 0.75
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response to increasing concentrations of greenhouse gases in the atmosphere. The
human imprint on the global climate system was assessed as “clear” in the most recent
IPCC report (Stocker et al. 2013). Analysis of the HadISST1 dataset indicated that
warming of the tropical oceans alone represented ~70–80% of the total warming found
in the global average land and sea data (Lough 2012). A rise in maximum SSTs has
occurred throughout the tropical oceans, with greatest warming in the southern Atlan-
tic, Indian Ocean, and parts of the northwestern and southwestern tropical Pacific and
with less warming in the north-central and south-central Pacific (Fig. 4.5).

Evidence from reef cores covering the past three millennia (Aronson et al. 2002)
and observations of the bleaching-induced death of centuries-old, slow-growing, and
thermally more resistant Porites corals (Mumby et al. 2001b) strongly suggest that
we have reached unprecedented thermal environmental conditions on coral reefs.
Additionally, bleaching mortality of branching corals allowed corallivorous crown-
of-thorns starfish, Acanthaster planci, to reach unprotected massive corals in Pan-
ama in 1983 for the first time in almost 200 years. The age of these massive corals
was then used to estimate the return frequency of El Niño events to reefs in Pacific
Panama (Glynn 1985). All of these data sources point to the likelihood that the recent
severe El Niño events and the ocean temperature increases of the past 50 years are
unique in at least the past few centuries (Tierney et al. 2015; Fig. 4.6).

4.3.2 Regional Trends in Heat Stress

The new 32-year CoralTemp satellite record (1985–2016; see Sect. 4.2.2.5) was
used to examine the global and regional trends in SST anomalies at 100 coral reef
sites with reliable coral bleaching histories (Hughes et al. 2018). SST anomaly
values were averaged across reef-containing 5-km pixels for each 1� � 1� site,
using reef locations as described in Heron et al. (2016a). Grouping these 100 sites
into five geographic regions, annual average SST anomalies for each region are
shown in Fig. 4.7. The 3 years of global coral beaching events (1998, 2010, 2016)
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stand out as having the highest SST anomalies within the record period. The slopes
of trend lines (Table 4.1) for each region over the 32-year record consistently range
within 0.170–0.183 �C/decade, with the exception of reef sites in the Caribbean and
Atlantic for which the trend is 0.211 �C/decade. The global rate of increase in SSTs
since 1985 is significantly higher than the 1950–2009 average rate (IPCC 2014a) and
has already reached the rate predicted for the twenty-first century by global climate
models under Representative Concentration Pathway (RCP) 6.0 (average 2.2 �C/

Fig. 4.7 Annual average SST anomalies and trends, 1985–2016, for the indicated sets of coral reef
sites from the CoralTemp 32-year satellite record: 100 global coral reef sites with reliable coral
bleaching histories (black plus, solid line), 28 sites in the Indian Ocean and Middle East (green
circle, dashed line), 14 sites in Southeast Asia (blue diamond, dash-dot line), 36 sites in the Pacific
Ocean (purple triangle, dash-dot-dot line), and 22 sites in the Caribbean and Atlantic Ocean
(orange square, dotted line). The black thin-dash line shows the zero trend. Trend values for
each line listed in Table 4.1

Table 4.1 Trends (and standard errors; S.E.) in SST anomalies from the CoralTemp 32-year
satellite record, 1985–2016, at 100 global coral reef sites with reliable coral bleaching histories
grouped into five geographic regions (as displayed in Fig. 4.7)

Region
Number of reef
pixels

Trend in SST anomaly (�C/
decade)

S.E. in trend (�C/
decade)

Global 100 0.183 0.032

Indian Ocean and Mid-
dle East

28 0.179 0.037

Southeast Asia 14 0.177 0.055

Pacific Ocean 36 0.170 0.025

Caribbean and Atlantic
Ocean

22 0.211 0.029

The SST anomaly values are averaged across specific reef pixels within each region and for each
year
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century; IPCC 2013). Further considerations of the impacts of future climate change
on the bleaching of corals are discussed in Chap. 13. Comparing the annual global
and regional average SST anomalies (Fig. 4.7) shows that, while the values are fairly

Fig. 4.8 Annual Degree Heating Week (DHW) indices, 1985–2016, averaged over the coral reef
sites from the CoralTemp 32-year satellite record: (a) 100 global coral reef sites with reliable coral
bleaching histories, (b) 28 sites in the Indian Ocean and Middle East, (c) 14 sites in Southeast Asia,
(d) 36 sites in the Pacific Ocean, and (e) 22 sites in the Caribbean and Atlantic Ocean. Moderate
bleaching has been shown to occur at DHW � 4 �C-weeks; severe bleaching occurs at
DHW � 8 �C-weeks. Black bar shows most extreme year in 32-year record
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consistent across the globe within each year, there are important spatial patterns of
SST anomaly that change through time. The role of large-scale patterns in regional
bleaching events is discussed in Sect. 4.3.3.

Typical SST conditions that result in coral bleaching include high maximum SST
sustained over a number of weeks, as measured by the DHW index. The record of
CRW’s DHWs over the 1985–2016 CoralTemp record (Sect. 4.2.2.5) for these
100 coral reef sites shows increasing heat stress throughout the 32-year period
(Fig. 4.8). In this record, 2016 stands out as the year with the greatest cumulative reef
heat stress both globally (Fig. 4.8a) and in the Indian Ocean, Southeast Asia, and the
Pacific Ocean (Fig. 4.8b, c, d). The exception to this pattern is the Caribbean/Atlantic
(Fig. 4.8e)where heat stress in 2010 greatly exceeded that of other years. The year 2016
was the peak of the continuous 2014–2017 global coral bleaching event (Eakin et al.
2017), the longest, most widespread, and perhaps most damaging bleaching event yet
seen. Annual DHW values, and therefore the warming trends, were near identical for
both the spatial average (as shown in Fig. 4.8) and for the 90th percentile value within
each region (as used in CRW’s Regional Virtual Stations), indicating the independence
of the observed patterns with respect to the spatial statistic used.

The longer-term context of the increasing cumulative heat stress on coral reefs
shown by the satellite data can be determined using a degree heating month index

Fig. 4.8 (continued)
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developed from multi-century records of reconstructed SST data. Similar to CRW’s
DHWs, degree heating months sum the monthly anomalies above the long-term
average monthly maximum and have been used to analyze climate model outputs for
future bleaching potential (Lough 2000; Donner et al. 2005). Using the HadISST1-
based anomaly data (vs a 1961–1990 climatology), indices were created for the same
100 coral reef sites discussed above for the period January 1871–December 2016.
With the exception of the 1877–1878 El Niño event, the regionally averaged degree-
month values show very low heat stress until the latter half of the twentieth century
(Fig. 4.9a). The heat stress in 2016 was the most extreme in terms of cumulative reef
heat stress when averaged over all 100 reef locations, followed in magnitude by 1998
and 2010. Heat stress in 2016 equaled that in the previous record year, 1998, in the
Indian Ocean and was the highest on record in Southeast Asia and the Pacific Ocean
(Fig. 4.9a–d), consistent with CRW’s satellite-based near-real-time record. Heat
stress in the Caribbean region (Fig. 4.9e) showed significant heat stress beginning
decades earlier than the other regions (c.f., Lough 2000; Lough et al. 2018; Barton
and Casey 2005). It is unclear how much of the severe degradation of coral reefs in
the Caribbean over recent decades resulted from this early increase in heat stress
(Gardner et al. 2003).

4.3.3 Role of El Niño-Southern Oscillation and Other
Large-Scale Patterns

ENSO events are the major source of short-term climatic variability within the
tropical ocean-atmosphere system (McPhaden 2004). It was the major 1982–1983
El Niño event that first triggered warnings of a link between ENSO and mass coral
bleaching events (Glynn 1983; Coffroth et al. 1990; Williams and Bunkley-Williams
1990). The 1997–1998 El Niño event (coinciding with what was then the warmest
year on record; Fig. 4.4a) was one of the two most extreme El Niño events on record
(Wolter and Timlin 1998; McPhaden 1999) and coincided with the greatest heat
stress at many coral reef sites up to that time (Figs. 4.8a and 4.9a). It was estimated
that over 15% of the world’s reefs died and many reefs suffered over 90% bleaching
in 1998 (Wilkinson 2000). Global bleaching was again seen in 2010 and most
recently in 2014–2017 (Eakin et al. 2017).

ENSO events do not cause mass coral bleaching but instead increase the likeli-
hood of anomalously warm SSTs in particular regions that result in coral bleaching.
Major and minor ENSO years can be seen in the increased temperature anomalies in
Fig. 4.7 (i.e., 1987–1988, 1994–1995, 1997–1998, 2002–2003, 2009–2010,
2015–2016; but note the absence of signal for the 1991–1992 event). Mass coral
bleaching can occur in the absence of strong ENSO extremes when other climate
anomalies cause regional warming, e.g., GBR in early 1982 (Coffroth et al. 1990),
Moorea in 1994 (Hoegh-Guldberg and Salvat 1995), Hawaii in 1996 (Jokiel and
Brown 2004), and the Caribbean in 2005 (Eakin 2007; Wilkinson and Souter 2008).
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Fig. 4.9 Annual degree heating month indices (sum of anomalies above the long-term maximum;
�C-month), 1871–2016 (HadISST1, Rayner et al. 2003) for: (a) 100 coral reef sites, (b) 28 sites in the
Indian Ocean andMiddle East, (c) 14 sites in Southeast Asia, (d) 36 sites in the Pacific Ocean, and (e)
22 sites in the Caribbean and Atlantic Ocean. Black bar shows most extreme year in 146-year record
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Here we define the phases of ENSO by the Oceanic Niño 3.4 SST index (ONI),
calculated as the average SST anomaly for the near-equatorial central Pacific region
(5 �N–5 �S, 170�–120 �W; obtained from http://www.cpc.ncep.noaa.gov/data/indi
ces/ and extended back to 1871 using HadISST1). This index was used to identify
20 El Niño events, 20 La Niña events, and 20 years of ENSO-neutral conditions
from the upper, lower, and middle percentiles, respectively, of the annual May–April
values over the period 1871–2016. Monthly maxima were then averaged for each set
of 20 years for both the target year and the following year (year t and year t + 1, e.g.,
1982 and 1983) for the tropical oceans. For each 1� latitude-longitude box, the
average values for the 20 El Niño years and 20 La Niña years were tested for
significant difference from the average of the 20 ENSO-neutral years.

The two extreme phases of ENSO, El Niño and La Niña, typically evolve over
12–18 months and are associated with distinct and different ocean-atmosphere

Fig. 4.9 (continued)
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circulation patterns in the core region of the central and eastern equatorial Pacific
(McPhaden 2004). Typically for the 2 years spanning an El Niño event (e.g.,
1982–1983, 1987–1988, 1997–1998, 2009–2010, 2015–2016), large areas of the
tropical oceans have significantly warmer maximum SSTs than in ENSO-neutral
years (Fig. 4.10a, b).

Figure 4.10b shows why, for example, many Caribbean bleaching events occur in
the second year of an El Niño event. Conversely during the 2 years spanning a La
Niña event, large areas of the tropical oceans have significantly cooler maximum
SSTs than in ENSO-neutral years (Fig. 4.10c, d). An interesting exception is the
region in the western equatorial Pacific lying under the South Pacific Convergence
Zone where waters tend to be warmer during La Niña years and coral reefs
experienced mass bleaching not in 1997–1998 but during the ensuing 1998–1999
La Niña (Wilkinson 2002). Reefs in the southeastern Indian Ocean off Western
Australia are also more likely to be warmer than normal during the La Niña phase
(Zhang et al. 2017), and this region experienced mass bleaching during the major
2010–2011 La Niña event (Moore et al. 2012; Wernberg et al. 2012). SST
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Fig. 4.10 Significantly (at 5% level) warmer (red) or cooler (blue) annual maximum SST differ-
ence: (a) El Niño year t, (b) El Niño year t + 1, (c) La Niña year t, and (d) La Niña year t + 1.
Average values calculated for 20 El Niño events and 20 La Niña events and tested for significant
differences from 20 ENSO-neutral years. The groups of years were identified from the Niño 3.4
SST ENSO index (http://www.cpc.ncep.noaa.gov/data/indices/). Black dots show 1� boxes
containing coral reefs
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reconstructions from Western Australian corals highlight how these “marine heat
waves” have become more frequent in recent decades (Zinke et al. 2015). From a
global perspective, the risk of warmer than normal maximum SSTs and thus
bleaching is greater during El Niño events for many of the world’s coral reefs, and
this risk is much lower during La Niña and ENSO-neutral years. Some studies have
indicated that El Niño events are projected to become more frequent and more severe
as the world continues to warm (Power et al. 2013; Cai et al. 2014). The important
point for future mass bleaching on coral reef ecosystems is that even if temperature
anomalies resulting from ENSO events remain within the range observed during the
past 150 years, the warming of baseline maximum SSTs (Figs. 4.4b, 4.5, and 4.7)
increases the probability that waters overlying reefs will reach or exceed critical
temperature thresholds for bleaching.

The ENSO system is not the only climatic pattern that influences ocean temper-
atures and, accordingly, the risk of coral bleaching. Oceanic SST variations also
result from other longer-term modes including the Interdecadal Pacific Oscillation
(Folland et al. 2002) and the Atlantic Multidecadal Oscillation (AMO; Schlesinger
and Ramankutty 1994), which vary on timescales of 25 years and 65 years, respec-
tively. These oscillations have typically been observed in periodic variations of
temperature anomalies in the northern parts of their respective oceans. The Indian
Ocean Dipole (Saji et al. 1999) is considered an aperiodic variation of SST anom-
alies between the eastern and western tropical Indian Ocean that has been found to be
often intertwined with ENSO (Luo et al. 2010). Especially during times that ENSO
and the Indian Ocean Dipole are in phase, bleaching across much of the Indian
Ocean can be severe (McClanahan 2004). However, patterns of bleaching across the
Indian Ocean can be spatially variable with different portions of the region
influenced by different climatic forcing (Lix et al. 2016; Zhang et al. 2017).

Many authors have suggested that SST increases due to global climate change,
especially in combination with natural variability such as ENSO, have and will
continue to increase the frequency and severity of coral bleaching events (Williams
and Bunkley-Williams 1990; Hoegh-Guldberg 1999; Eakin 2007). However, as
global temperatures have increased, major bleaching during non-ENSO years also
has also increased. Global temperatures in 2005 were the first to surpass 1998 as the
warmest year on record (Shein 2006). This resulted in the most severe and wide-
spread coral bleaching and mortality ever seen in the Caribbean despite only mild El
Niño conditions the preceding winter (Eakin 2007; Wilkinson and Souter 2008).
Trenberth and Shea (2006) found that 0.45 �C of the 0.9 �C warming during the
boreal summer of 2005 was due to the monotonic rise in global SSTs, 0.2 �C due to
after effects of the 2004–2005 mild El Niño and 0.1 �C due to AMO. Donner et al.
(2007) suggest that twentieth-century anthropogenic warming, on top of the natural
modes of variability, increased the probability that the Caribbean would experience
the level of heat stress observed in 2005 by an order of magnitude, compared with
the natural modes alone. Their projections of future SST (including anthropogenic
warming) suggest that, in the absence of acclimatization or adaptation by coral
organisms, stress levels like those seen in 2005 will be experienced almost biennially
by the 2030s.
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These warming trends have continued, with the 12 warmest years on record
occurring since 1998, and the five warmest since 2010. Most importantly for corals
was the series of three warmest years in a row from 2014 to 2016 (and global
temperature during the first three-quarters of 2017 was comparable with these
3 years). These contributed to the longest, most widespread, and probably most
damaging coral bleaching event on record, which lasted from June 2014 to May
2017 (Eakin et al. 2017). This global bleaching began before the onset of the
2015–2016 El Niño and lasted for a full year after it collapsed. The heat of these
warmest years now resides in the upper ocean, pushing baseline temperatures for
corals that are now much closer to their upper thermal limits.

4.4 Local Environmental Variables

Large-scale oceanic temperature anomalies in the tropical oceans (Sect. 4.3.1) are the
principal drivers of conditions that result in mass coral bleaching. At the local scale,
the occurrence and intensity of bleaching can be highly variable both within a coral
colony, between coral colonies, within a reef, and between reefs in a region (Hoegh-
Guldberg 1999). These variations are in addition to the differential susceptibility of
different coral species to heat stress (Marshall and Baird 2000). Other physical
factors that operate locally can either enhance or suppress the impacts of higher-
than-normal regional SSTs and thus the intensity of coral bleaching. Observations
that corals often bleach more on their upper surface than at the sides clearly implicate
light as an additional factor, and frequently the local weather conditions that cause
intense warming of the water column (low winds, low cloud amount, still waters;
Skirving et al. 2006a) allow increased light penetration to the coral’s surface (Coles
and Jokiel 1978; Salm and Coles 2001). Increased cloudiness can mitigate bleaching
even when SSTs are unusually warm (Mumby et al. 2001a). Lowered salinity due to
a major flood event appeared to increase the intensity of coral bleaching on nearshore
reefs of the central GBR in 1998 (Berkelmans and Oliver 1999). There can also be
considerable local-scale variations in SSTs within and between reefs that can affect
bleaching occurrence and intensity (Nadaoka et al. 2001; Berkelmans 2002;
Berkelmans et al. 2004). Such local-scale SST variations can be related to water
movements such as upwelling, mixing, tidal range and wave energy, shading, and
exposure that reduce the local heat stress (Salm and Coles 2001; Skirving and
Guinotte 2001; Skirving et al. 2006b). Although often small in scale, identification
and enhanced protection of such bleaching-resistant sites may be critical for recovery
of adjacent bleaching-damaged coral populations (Marshall and Schuttenberg 2006;
Skirving et al. 2006b).

Many characteristic features of coral locations have been identified as increasing
the capacity of corals to resist and/or recover from disturbance impacts. While the
importance of these “resilience factors”may vary from site to site, 11 were identified
as key factors to support and inform management decisions, including the presence
of heat-tolerant coral taxa, coral recruitment, and the level of nutrients (McClanahan
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et al. 2012). For example, those Seychelles coral reefs that recovered from the severe
bleaching in 1998 were associated with complex reef structures that had high density
of juvenile corals and were located in relatively deep water with plentiful herbivore
populations and low nutrient loads (Graham et al. 2015). In addition to the variability
across sites as to which factors are most important to support resilience is the
variation in tools available to enhance resilience. A framework to support
resilience-based management by Anthony et al. (2015) describes opportunities to
effectively influence the level of resilience. Guiding principles with respect to
resilience continue to be developed to assist reef managers in translating the ideals
of resilience into conservation planning, monitoring, and management strategies.

4.5 Summary

We now have strong evidence of how global climate change due to the increased
concentration of atmospheric greenhouse gases already has caused significant coral
bleaching. This threat of future warming is so strong that coral bleaching has been
highlighted among the greatest threats to ecosystems brought about by anthropo-
genic climate change (IPCC 2014a, b). Warming of the tropical oceans has raised the
baseline SSTs where coral reefs live much closer to their upper thermal limits, so that
weather conditions and interannual variability are more likely to raise SSTs above
these limits than similar weather conditions did 100, or even 30, years ago. The risk
of unusually warm maximum SSTs also varies with the ENSO cycle, so that the risk
of conditions conducive to bleaching further increases for much of the tropical
oceans during ENSO events. This has allowed us to use El Niño conditions as an
analogue for potential future climatic conditions. However, in recent years mass
bleaching events have occurred in all phases of ENSO—fulfilling earlier projections
(e.g., Hoegh-Guldberg 1999; Hughes et al. 2018). What remains is to determine if
corals are capable of evolving physiological adaptations to heat stress rapidly
enough to cope with the combination of natural variability and climate change—a
now ongoing, uncontrolled experiment that could result in the extinction of many
coral species and destruction of many of the world’s reefs.

Our ability to identify, monitor, and predict SST conditions that can lead to coral
bleaching has improved dramatically since the first reports of mass bleaching events
in the early 1980s. This allows near-real-time monitoring and identification of
potential bleaching conditions throughout the world’s coral reefs. Of course, mon-
itoring alone cannot prevent coral bleaching or mortality. However, monitoring,
combined with recent advances in bleaching forecasting, enables scientists and
managers to be alert to bleaching and to document the extent, intensity, impact,
and follow-on effects more comprehensively than was possible 10–20 years ago
(Chap. 5). It also allows managers to take actions to help protect reefs at times when
bleaching makes them more vulnerable to other stressors (Marshall and
Schuttenberg 2006; Obura et al. 2006). Understanding linkages between the physical
environment and biological processes on coral reefs improves our knowledge of the
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bleaching phenomenon, its ramifications, and potential management responses. This
helps managers develop and test management approaches, even controversial or
“high-risk” actions, to protect corals from mortality at the time of bleaching events. It
also allows identification of “bleaching-resistant” corals, reefs, and regions that
should be targeted for enhanced protection. Resilient reefs may provide important
refugia for coral reef organisms as climate continues to change and increasingly
stress the world’s reefs.

Many of the world’s coral reefs already have been severely degraded by local
human-induced impacts, and most conservation practitioners used to believe reduc-
ing local impacts was all that was needed to preserve reefs. Unfortunately, a lack of
local stressors on reefs, often through sustained conservation efforts, has repeatedly
proven insufficient to save reefs from the extreme impacts of heat stress in many
locations around the globe (Graham et al. 2015; Obura and Mangubhai 2011; Couch
et al. 2017; Hughes et al. 2017b). Climate change impacts now have surpassed these
local impacts and have been seen to overwhelm even the most comprehensive
conservation efforts. In addition to the other consequences of a rapidly warming,
increased greenhouse world (ocean acidification, more intense tropical storms, etc.),
the observed increase in mass coral bleaching events does not bode well for the near-
and long-term future of these vital ecosystems.
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Chapter 5
Detecting and Monitoring Coral Bleaching
Events

N. E. Cantin and M. Spalding

5.1 Introduction

Over the past 30 years, mass coral bleaching has become a widespread phenomenon
and is now considered as one of the most distinct visual manifestations of climate
change impacts on tropical coral reef ecosystems. Oliver et al. (Chap. 3) provide
evidence that the global occurrence of widespread coral bleaching and mortality
events has increased since the 1980s. This was most dramatically illustrated for the
first time in 1998, linked to a major El Niño event, which led to bleaching in almost
every coral reef region and to widespread coral mortality in some areas (Chap. 3).
Since 2014, the three warmest years on record have been observed throughout most
tropical coral reef regions, and, as a result, the most severe coral bleaching event
impacted most of the world’s reefs from 2014 to 2017 (Heron et al. 2017).

Quantifying the scale of such events presents particular challenges. In situ
underwater observation is clearly limited by the magnitude of observations
required—few reefs are within striking distance of research institutions and remote
research stations. Significant planning and preparation are required to document
coral bleaching events across large regional coral reef ecosystems and remote,
distant coral reefs.

As an extreme example of the problem, the 1998 coral bleaching event caused
mass mortality throughout the Seychelles (Spencer et al. 2000) and the Maldives
(McClanahan 2000; Edwards et al. 2001). The Chagos Archipelago (British Indian
Ocean Territory) consists of a vast area of coral reefs in the same broad vicinity as
these island groups, but no underwater observations were made in 1998. Almost a
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year later the UK government and their senior fisheries advisors (who have a boat on
permanent patrol in the islands) suggested that the Chagos reefs had not bleached. It
was only the observation of a bleached coral in the background of a photograph
taken by an engineer undertaking work on a military base that enabled the case to be
made for a post hoc assessment (pers. obs. M. Spalding). The subsequent survey
noted “near-total”mortality of hard corals down to 15 m in the northern atolls and to
>35 m in the central and southern atolls throughout the Chagos Archipelago
(Sheppard et al. 2002).

Due to the increased frequency and severity of widespread coral bleaching events
over the past three decades, researchers and reef managers are better prepared to
respond to ocean heat waves to document the response and impacts of thermal stress
on local, regional and remote coral reef locations. While detailed and frequent
observations are necessary to fully document the impacts of a bleaching event,
well-planned and co-ordinated response efforts are necessary to assess the full spatial
severity of widespread coral bleaching events as heat waves unfold throughout coral
reef ecosystems. Integration of coral reef researchers with local communities is
important to accurately assess the extent of bleaching in populated and remote
locations. For example, the severe bleaching in the remote central Pacific Phoenix
Islands group of the Republic of Kiribati was fully documented in 2002–2005
through repeated surveys over time to detect a 60% decline in live coral cover and
then again with observations at the peak of severe bleaching in 2015 (Obura and
Mangubhai 2011).

There remains a need, however, for remote and, ideally, near-continuous obser-
vation of tropical coral reefs to increase the spatial assessment capability and to
ensure that an event as dramatic as the near-total loss of reef corals in 1998
throughout the Chagos Archipelago, a region the size of England, cannot pass
unnoticed in the future. At the same time, finer-scale observations of bleaching
events across space and time will always prove to be of critical value in understand-
ing mechanisms of thermal tolerance and susceptibility and in determining manage-
ment responses (West and Salm 2003). Fine-scale observations can clarify patterns
of differential survival (deep versus shallow, lagoon or sheltered bays versus current-
swept reef slopes) and support a better understanding of bleaching processes within
coral communities. At even finer resolutions, the patterns of survival and recovery
also require observation at levels right down to the individual colony, the polyp and
indeed within the cell.

In this chapter we discuss current approaches for monitoring bleaching events
which have been used by coral reef researchers. We highlight the importance of
consistent, comparable observations to synthesise the global impacts of coral
bleaching for coral reef communities. As technology develops, remote-sensing
applications from satellite platforms will enhance our capacity to monitor remote
coral reef locations. We review advances in these remote-sensing applications as
well as the aerial and in-water survey methods that have rapidly advanced to
document the spatial impacts and severity of coral bleaching in recent years.
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5.2 Broad-Scale Approaches

5.2.1 Remote Sensing of Bleaching Events

At the broadest scales, there is a need to be able to observe coral bleaching over very
wide areas, across all tropical coral reef ecosystems. The only effective means of
“seeing” reefs at these broad scales is using remote sensing with satellite platforms or
aerial surveys from fixed-wing aircraft and helicopters and possibly long-range,
fixed-wing drones in the future. Bleached corals can hardly be mistaken in the
field, but this also translates to a very distinctive spectral signature that, theoretically,
should be visible from remote platforms (Holden and LeDrew 1998; Call et al.
2003).

The practical challenges of remote detection of coral bleaching remain consider-
able. Coral reefs present highly heterogeneous substrates—even up close, most are a
complex patchwork of coral, algae, sponges, sand, reef rock and other surface cover.
Thus, all but the highest resolution remote-sensing platforms are sampling areas
(pixels) that include a very broad mix of reflecting surfaces. This challenge is further
compounded by the influence of differing depths of the water column—in clear
waters it is possible to differentiate marine features and detect coral bleaching to
depths as deep as 15 m (Elvidge et al. 2004), but it is a challenge to differentiate
many features beyond that depth. In addition, as most reef corals grow on sloping
substrates, considerable variation in depth and reflectance can occur even within the
space of individual pixels. Current satellite imagery capability is largely restricted to
the upper reef slopes and reef flat regions. The descriptive resolution derived from a
remote-sensing platform can range from broad benthic community cover categories
(e.g. coral, sand, rubble, reef matrix) to benthic types (e.g. branching coral, tabulate
coral, massive coral).

Historically the most widely used remote platforms for general reef mapping are
those that allow coverage of relatively large areas relatively cheaply. The most
commonly used was Landsat 8 (USGS and NASA), while the recently launched
Sentinel-2A and Sentinel-2B (ESA) continue this family of sensors. In the last
10 years, commercial higher-resolution satellite data (pixel sizes less than 10 m)
from IKONOS, GeoEye, Quickbird, WorldView 2 and 3 and Pleiades clearly enable
more accurate feature assessment and classification from pixel scales more closely
related to reef substrate patch sizes (Andréfouët et al. 2003; Mumby et al. 2004a).
This is, however, at the increased cost of image acquisition and pre- and post-
processing corrections and remains challenging to apply consistently across large
spatial scales (Hedley et al. 2016).

Coral bleaching can be a short-lived phenomenon, and its spatial distribution can
vary considerably across broad latitudinal spatial scales and as the thermal stress
progresses throughout the warm season. Conversely, many bleaching events are
becoming more extensive and tightly synchronised (i.e. more species are fully
bleached at the same time) and these are likely to be easier to detect with remote-
sensing techniques, particularly in areas of high coral cover. For reef locations where
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a low proportion of colonies are bleached, or where the loss of colour in bleached
colonies is only partial, or reefs that have low live coral cover, detection of bleaching
occurrence from remote-sensing platforms remains challenging.

High spatial resolution is undoubtedly the most critical factor in helping to
disaggregate the complex patchwork of substrate which typifies most coral reefs
(Hedley et al. 2012a). The successful detection of coral bleaching from remote-
sensing satellites can be limited by several environmental factors such as cloud
cover, wave action, solar glint and satellite path over particular reefs of interest
(i.e. reefs with in-water survey data). Temporal return is also critical: corals can shift
from bleached to recovered in just a few weeks, and dead corals can become
overgrown with algae in even shorter timeframes. Differential susceptibilities of
different coral species or at different depths mean that the “peak” of a bleaching
event may only last a few days, although more typically it will be from 2 to 4 weeks.
With regular cloud cover in the tropics, a return of, say, 2–3 weeks for a sensor may
be insufficient to capture a bleaching event at particular reefs. The Sentinel-2 satellite
pair has short re-visit times and will eventually resample each location around the
globe every 5 days, which will enable the use of image time series analysis, making
this platform better suited to detect spectral changes in the benthic community at
scales of 10 m or more due to mass coral bleaching, but only where coral cover is
sufficiently high.

The challenges of using satellite platforms to detect and map bleaching events,
even high-resolution systems, are thus considerable. Andréfouët et al. (2002) tried to
assess the optimum resolution for remote sensing of bleached corals using aerial
photographs taken during the 1998 bleaching event and subjecting these to interpre-
tation at varying resolutions. They noted a rapid, linear decrease in the detection
capability at coarser pixel resolution, with as much as 50% of the 10 cm resolution
signal lost at 1 m resolution. As a general guide, resolution closest to that of the mean
colony size will be most accurate (40–80 cm), but resolution up to 1 m may still give
some ability both to detect bleaching and estimate variance between locations. At
their seven reef locations in the central and southern Great Barrier Reef (GBR),
Andréfouët et al. (2002) also compared satellite-derived images taken before, during
and after the 1998 bleaching using 20 m and 10 m resolution imagery, but showed a
complete inability to detect the fairly major bleaching event of 1998.

Philipson and Lindell (2003) showed at least a basic detection of a very large-
scale bleaching event in Belize using the 24 m resolution IRS LISS-III platform and
suggested that much better detection should be possible with higher-resolution
sensors (e.g. IKONOS 4 m resolution). Elvidge et al. (2004) showed very good
detection with IKONOS imagery on the GBR, but point to the need for
pre-bleaching reference images. Yamano and Tamura (2004) were also able to
show detection of severe bleaching at Ishigaki Island in Japan, using 30 m resolution
imagery from Landsat TM, but only in shallow, coral rich areas. Mumby et al.
(2004b) were able to distinguish living massive Porites and branching Pocillopora
colonies from various stages of recently dead and old dead colonies (>6 months).
They used multispectral (10 bands) imagery from an airborne sensor (CASI) at 1 m
resolution and concluded that the precision of sampling benthic cover was similar
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between the remote-sensing and field-based quadrat surveys, provided that bathym-
etry is known independently, water is shallow and clear and brown fleshy
macroalgae are scarce (Mumby et al. 2004b). Prelaunch tests of Sentinel-2 capabil-
ities suggested that detection of bleaching signals was a possibility in shallow water
(2–3 m; Hedley et al. 2012b) and, through further development, bleaching signatures
were detected by Sentinel-2a on the GBR in 2017 (Fig. 5.1).

The overall conclusion from these efforts is that bleaching detection at regional to
global scales from satellite platforms and hyperspectral airborne sensors remains
limited and challenging due to the poor temporal availability of quality data that is
often compromised by cloud and sea state optical distortions at the air-water
interface during the peak bleaching window. New technologies called fluid lensing
on unmanned aerial vehicle (UAV) drone platforms are under development. These
appear capable of reducing surface wave distortion and producing high-resolution
2D and 3D reconstructions of the reef at centimetre scales to a depth of ~10 m
(Chirayath and Earle 2016). This technique offers a new option for large-scale

Fig. 5.1 Images from the Copernicus Sentinel-2A satellite captured visual signs of widespread
community-level coral bleaching and increased bottom reflectance signatures at Adelaide Reef from
the Great Barrier Reef on 23 February 2017, through time series comparisons of frequent
geo-located images (Hedley and Roelfsema 2017)
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surveys of shallow reef environments, if the imaging and high-performance com-
puting technologies can be made widely available. However, UAV platforms will
still restrict the spatial scale over which observations are consistently acquired.
Improvements in availability of high-resolution imagery, notably reduction in the
costs, have helped. However, unless mass bleaching is widespread across hundreds
of metres of reef, detection of change in the benthic community due to coral
bleaching through time series image comparisons remains limited and an avenue
that requires further development.

Under current development is a programme called Sen2Coral, by the European
Space Agency (www.sen2coral.org). Sen2Coral is aimed at using the open data
policy of the Sentinel-2 Copernicus programme and the improved capabilities of
Sentinel-2A and 2B (multispectral, high-resolution, near-global coverage and fre-
quent return times) to develop and implement a suite of practical tools that will likely
lead to better detection capabilities of coral bleaching from satellite remote-sensing
platforms. Tools under development that are crucial to the detection of bleaching
signals and benthic classification from multispectral imagery relate to the visual
interpretation and data processing of time series and detecting pixel-based differ-
ences. These include a combination of accessible algorithms that can process
sequences of images that are spatially aligned, exclude land, clouds, cloud shadows
and breaking waves (white caps) and atmospheric corrections and proprietary algo-
rithms related to solar surface glint removal, water column corrections and bathym-
etry. Studying Sentinel-2 images captured over the GBR between January and April
2017, the Sen2Coral science team captured clear visual evidence of widespread
bleaching and increasing bottom reflectance from a series of images (Fig. 5.1; Hedley
and Roelfsema 2017). While the resolution of these observations does not replace
in-water survey assessments, this technological advance certainly has significant
implications for documenting the presence or absence of community-scale bleaching
and will enable wide spatial assessments of the early onset of the heat stress response.
Collaboration between reef ecologists documenting bleaching and remote-sensing
teams following the recent coral bleaching events in 2014–2017 will certainly drive
effective developments in remote sensing of coral bleaching in the coming years.
Clearly the capability for detecting the early onset and presence of bleached and
non-bleached reef communities is becoming available with targeted approaches.

The finer spatial resolution of aerial photography offers increased pixel resolution
down to the scale of individual coral colonies, at similar costs to remote satellite data
acquisition and processing: however, considerable challenges in surveying more
remote reef systems remain. Some of the most extensive aerial survey work has been
conducted along the length of the GBR in 1998 and 2002 (Berkelmans and Oliver
1999; Berkelmans et al. 2004) and in 2016 (Hughes et al. 2017) and 2017 (https://www.
coralcoe.org.au/for-managers/coral-bleaching-and-the-great-barrier-reef). These sur-
veys were able to document bleaching at a total of 25–35% of the >3000 individual
reefs that make up the GBR during four mass bleaching events. This work was
undertaken from a combination of fixed-wing aircraft and helicopters flying at an
altitude of 150 m. This aerial survey approach covered over 2000 km of coastline
and provided critical information to compare spatial patterns of recent mass bleaching
events (Hughes et al. 2017). Broad categories are used to score the bleaching severity
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by a pair of observers. The categories match in-water transect-based bleaching catego-
ries [0, no bleaching (<1%); 1, minor (1–10%); 2, moderate (10–30%); 3, major
(30–60%) and 4, severe (>60%)], based on the percentage of live coral that appears
bleached and is visible to the observer. Bleached coral colonies and early mortality are
easily differentiated from reef substrate within high-resolution images captured with
telephoto digital camera systems (e.g. single lens reflex (SLR) or mirrorless options)
during flight (Fig. 5.2). Paired observers simultaneously score the bleaching severity.

Fig. 5.2 Aerial images of
the 2017 Great Barrier Reef
bleaching event, clearly
showing the difference
between a reef that is not
bleached [Category 0, (a)]
and reefs suffering severe
bleaching [Category
4, >60% corals bleached,
pale or fluorescent (b)] and
recent stages of mortality of
staghorn and tabulate
Acropora colonies [patches
of green and brown algae
forming on white coral
skeletons (c)]. Image credit:
R. Berkelmans (a) and
N. Cantin (b and c) AIMS
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Aerial surveys provide a rapid assessment of coral bleaching severity across wide
spatial scales that, to date, has not been gathered either from satellite or field-based
in-water observations.

Timing of aerial bleaching surveys is critical (Berkelmans et al. 2004). Aerial
surveys should be planned for when bleaching is at its peak (most intense) but before
major mortality sets in. This will be informed by early warning systems
(e.g. satellite-derived temperature or bleaching products (Chap. 4), real-time tem-
perature monitoring, bleaching thresholds, etc.), in-water surveys by researchers,
tourism and industry partners, and anecdotal reports from the general public. Wind,
weather (rain, storms and cloud cover) and tides are also key attributes that should be
considered in planning the schedule of aerial bleaching surveys. Clear skies, calm
winds (<10–15 knots) and low tides that coincide with midday direct overhead
sunlight (10a.m.–3p.m.) provide the best water clarity conditions for aerial imagery
and observations.

Aerial surveys are a cost-effective approach to assess the severity of widespread
mass coral bleaching across wide spatial areas. Data gathered provides a categorical
assessment of community-level bleaching severity in the upper 4–6 m of the reef flat,
back reef and slope habitats. In-water surveys are still required to assess the
taxonomic spectrum of bleaching responses, to quantify bleaching-related mortality
and to assess bleaching depth distributions.

5.2.2 Remote Sensing of Indicators of Bleaching Likelihood

Proxy measures of likelihood of bleaching have been available since the 1990s using
both low- and now high-resolution sea surface temperatures (SST) data. Originally,
these products were produced from night-time only SST records at 50 km resolution,
gathered twice weekly by the National Oceanic and Atmospheric Administration’s
(NOAA) Coral Reef Watch (CRW) programme (Strong et al. 1997, 2004; NOAA-
NESDIS 2006). Using data generated from an AVHRR (Advanced Very High
Resolution Radiometer) satellite, SST measurments were gathered twice weekly in
near real time. NOAA CRW has since developed a daily global 5 km product suite
derived from a combination of satellite SST data from US, Japanese and European
geostationary infrared imagers and low-earth orbiting infrared SST data (Liu et al.
2014; Chap. 4). The new version 3 climatology combines the NOAA/NESDIS
2002–2015 daily 5 km geo-polar blended night-only SST analysis and the UK
Met Office Operational SST and Sea Ice Analysis (OSTIA) 1985–2007 daily global
5 km SST reanalysis and employs a rigorous multi-scale optimal interpolation
(OI) methodology to improve the resolution of SST features in areas of persistent
cloud cover. The increased resolution of the new product suite provides service at
near reef scales and preserves oceanographic features (e.g. eddies) that the previous
50 km product could not. These product suites have been used to generate a range of
coral bleaching predictive risk tools which include Doldrums (persistent low wind
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regions), HotSpots (areas where SST are at least 1 �C above the mean maximum
summer temperature) and Degree Heating Weeks (DHW)—an index of accumulated
heat stress that summarises both longevity of an SST anomaly and its magnitude
(size of temperature deviation) over a 12-week period (Chap. 4).

It must be recognised that real-time monitoring of SST, SST anomalies, HotSpots
and DHWwill only ever provide an approximate estimate highlighting locations that
are exceeding the normal summer maximum to guide where coral bleaching is likely.
Based on the severity and duration of the anomaly, typically when alert level 1 is
reached (DHW> 4), bleaching and mortality of some species are likely. The NOAA
Coral Reef Watch set of bleaching alert tools have shown themselves to be valuable
predictors. Numerous studies have shown their general validity (Sheppard 1999;
Spencer et al. 2000) and a number of more extensive observations during the recent
2014–2017 bleaching events to assess the DHW thresholds and improve and refine
the predictive capacity of the Coral Reef Watch products (pers. comm. N. Cantin),
and experimental products incorporating the influence of light on the bleaching
response are under development (https://coralreefwatch.noaa.gov/satellite/lsd/
index.php; http://coralreefwatch.noaa.gov/satellite/publications.html). As our
knowledge of the thresholds for bleaching in different areas improves, the predictive
capacity of such measures is also likely to improve.

During thermal stress events, the occurrence and/or intensity of bleaching will
also be influenced by a range of other factors such as solar insolation, wind strength,
tidal mixing and sea state. The important role of solar insolation was further
corroborated by observations of near-continuous cloud cover during critical periods
of high temperature, which may have prevented bleaching in the Society Islands
(Mumby et al. 2001) and in Mauritius (Turner 1999). Different coral taxa also
typically show different susceptibilities to bleaching (Marshall and Baird 2000;
McWilliams et al. 2005), although recent widespread bleaching observations indi-
cate that the disparity in taxonomic bleaching resistance diminishes as the severity of
heat stress increases (Hughes et al. 2017). This trend in bleaching severity could
mean that detection of coral bleaching with remote-sensing platforms could become
easier in a warming ocean, as the spatial footprint of white reef tops from coral
bleaching becomes more widespread and uniform with increasingly extreme thermal
anomalies. However, this will only remain true if coral cover is high prior to the
thermal anomaly and will vary regionally with habitat complexity.

SST data at 50 km resolution were clearly insufficient to show the fine-scale
patterns of variation in bleaching which certainly occur. The aerial surveys of
Berkelmans et al. (2004) observed changes at scales of ~10s of km, indicating
local-scale variance, perhaps related to oceanographic mixing or weather patterns
(e.g. upwelling and tidal mixing or persistent cloud cover adjacent to islands).
Proximity to land can also further influence water temperatures and bleaching
likelihood—runoff and water circulation—but these will not be picked up in very
low-resolution SST data, which highlights the need to incorporate in situ tempera-
ture measurements with satellite-based SST products. Other studies have noted even
finer-scale variance in bleaching tolerance or survivorship linked to shading, aspect
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or water flows (Spencer et al. 2000; West and Salm 2003). Analyses of recent
bleaching observations will advance the predictive capacity of SST anomalies and
bleaching stress indicators.

At very broad scales, satellite-derived SST data provide a useful indicator of
bleaching likelihood, and the various refinements that have been made in the past
decade have further improved this suite of predictive tools (Chap. 4). At the same
time, however, the finer-scale variance in bleaching severity during thermal stress
events needs to be documented and understood to determine how coral reefs will
respond in a warming ocean. Current thresholds for bleaching response may change
as the frequency of thermal stress events increases in the future.

5.2.3 Summary of Remote-Sensing Tools

• There are considerable challenges in using current satellite sensors to document
bleaching. Generally, very fine spatial resolution is critical, and detection is better
in areas where coral cover and water clarity are both high. There are no broadly
accepted tools as yet, but advances are under development.

• Detection of bleaching from satellites is more likely in the near future due to
technological developments and increased return times of current satellite sensors
which have increased the capability to detect the early onset of community-scale
coral bleaching.

• Low-level (~150 m altitude) aerial observations and photography have been
highly successful in detection of bleaching and also in rapidly quantifying and
mapping bleaching impacts across large spatial scales (>2000 km).

• Co-ordinated planning and the availability of archived metadata records have
enabled comparisons of recent bleaching events on the GBR (2016 and 2017) to
prior ones (1998 and 2002)—a detailed approach that has only been conducted
along the GBR.

• SST anomalies from satellite sensors continue to be the most reliable and widely
applied remote-sensing tools to predict coral bleaching risk across global spatial
scales. NOAA’s Coral Reef Watch bleaching HotSpots and Degree HeatingWeek
products have proved powerful predictive tools that are consistent and compara-
ble between regions and over time.

• Satellite-derived SST data sets have also been used in post hoc studies as a proxy
measure of thermal stress and possible impacts.

• Ground-truthing remote-sensing platforms against recent in-water and aerial
observations from the 2015 to 2017 bleaching event will likely lead to progress
in the analytical techniques required to detect and quantify coral bleaching from
remote-sensing platforms.
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5.3 Field-Based Observations

Almost all bleaching monitoring is based on in situ observations by scientists and
trained observers through volunteer citizen science programmes (e.g. Reef Check;
www.reefcheck.org, Done et al. 2017). Standardised reef monitoring techniques
provide the basis for most assessments to document how much coral within the
community has bleached, which species, the severity level of each individual
colony’s response and the reef location where bleaching observations are recorded.
Such in situ surveys are also important for validating remote-sensing bleaching
assessments.

More challenging, but at least as important as documenting the severity of a
bleaching event, are differential survivorship among coral taxa in the community;
the identification of resistant locations, species or colonies; and the gathering of
sufficient environmental information to understand the processes and mechanisms of
bleaching, subsequent survival and bleaching tolerance in a warming ocean. These
questions cannot be addressed through today’s remote-sensing tools, and thus the
need for field-based, underwater observation remains.

Good resources describing the broad array of coral reef monitoring techniques are
widely available (e.g. English et al. 1997; Hill and Wilkinson 2004), while subtle
themes and variations are devised for almost every study that is published. Broadly,
it can be seen that approaches span a spectrum of broad to narrow spatial coverage
which is countered by a reverse spectrum of low to high accuracy and level of
taxonomic detail:

1. Rapid semi-quantitative assessment. This might be gathered on directed or
undirected swims or using manta tows. These enable assessments of large areas
and the wider patterns of bleaching versus non-bleaching. This approach enables
detection of low-level bleaching and for obtaining a general picture with respect
to the onset of a bleaching event in early summer, but it is inadequate for
numerical studies and spatial or temporal comparisons.

2. Fixed transects. Fixed permanent transects (recommended length of 100–500 m)
offer some key advantages of relatively large spatial coverage while allowing
more accurate quantification of bleaching and mortality following the peak of the
event. Accuracy of quantification is greatly increased using video or photo-based
transects although processing time is increased. A disadvantage of this approach
is that the initial deployment and maintenance of fixed transects increase the time
investment per reef and will reduce the spatial coverage during a field campaign.
However, the gains acquired by following a standardised, long-term approach
that follows permanently marked transect locations or at the very least strictly
controlled fixed depths and reef zones with GPS co-ordinates will enable com-
parison over time to document bleaching mortality and recovery processes.

3. Quadrats, photo quadrats and line-point intercept approaches. These give
highest levels of accuracy, but there are considerable costs in terms of reductions
in sampling area.
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In developing a monitoring protocol, researchers must consider available
resources and funding (over time) while keeping in mind repeatability and ease of
integrating observations with other programmes and researchers. Ideally a nested
sampling approach may be devised with some elements of monitoring across a range
of spatial and temporal scales. This would allow more qualitative statements to be
made about the timing and onset of bleaching and the overall impacts on the entire
reef system while allowing more quantitative rigour in fixed localities.

As with all monitoring, there is a requirement for repeat surveys, and researchers
must build continuing observation into their plans. Repeat surveys after peak
bleaching and before the next summer season can be critical for ascertaining levels
of recovery and or mortality, but ongoing mortality may continue even longer from
associated coral disease impacts. Monitoring should be designed to assess not only
immediate bleaching impacts but also ongoing recovery processes following major
bleaching events, including coral recruitment and growth.

The development of fixed sampling sites is essential to assess trends over time
following the initial bleaching event. As the frequency of coral bleaching events is
likely to increase in a warming ocean (Donner et al. 2005; Frieler et al. 2013;
Chap. 13), initial design of the survey locations should consider the need to return
to permanent transects in the near future. Representative, broad spatial coverage of
sites across an entire reef system is always important to reliably assess the full extent
of the impact of coral bleaching for each coral reef region; thus co-ordinated
collaboration should be of particular concern to ensure reliable observations capture
the full picture of the event.

5.3.1 Describing Bleaching

During a bleaching event, a coral’s colours will fade gradually as the summer
progresses, but severe bleaching responses within the community can escalate
rapidly with just 5–10 days of thermal stress. A diver’s visual perception of coral
bleaching and the loss in colour due to stress, generally, is not detectable until
60–80% of the Symbiodinium cells and chlorophyll have been lost by the coral host
(Enriquez et al. 2005; Siebeck et al. 2006). As a result the timing of bleaching
observations is critical. Early in the development of a mass bleaching event or at
reefs exposed to less severe accumulation of heat stress, individual colonies will
show variation in bleaching intensity across their surface; for example, those sur-
faces receiving higher exposure to solar irradiance often show more bleaching on the
upper surfaces than on the shaded side of the colony which may be unbleached
(Hoegh-Guldberg 1999). Depending on the magnitude and duration of the heat
stress, a bleaching event may end with the gradual recovery of the coral, with subtle
increases in colour over time. In other cases, when the anomaly is severe in
magnitude and/or prolonged over time, part or all of the colony may die due to
either oxidative stress and cell death or insufficient energy reserves to sustain the
coral host for prolonged periods without the algal symbiosis (Chap. 8). In the field it
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can be challenging to identify the subtle differences in colour and texture between a
very recently dead coral due to bleaching stress, with a fine haze of filamentous
algae, and a recovering coral or a dead coral due to predators such as the crown-of-
thorns starfish. Consistent categories need to be maintained to properly identify
bleaching-related mortality. Ubiquitous bleaching of similar taxa within the com-
munity and signs of bleached sections of the colony that are becoming overgrown
with filamentous algae (Fig. 5.3) should be observed when attributing mortality to
bleaching.

During the 2016–2017 bleaching event on the GBR, the Australian National
Bleaching Taskforce used transect-based 1 m belt survey approaches and categorised
the bleaching severity of every colony within 1 m � 1 m photo-based quadrats
(Fig. 5.3) or with in-water observations only. Bleaching severity categories were
based on the categories used historically on the GBR (Baird and Marshall 2002) and
severity of the bleaching response scored in relation to the total area of bleached
tissue for individual colonies. Categories were 1, no bleaching; 2, pale; 3, 1–50%
(mostly upper surfaces); 4, 51–99%, 5, 100% completely white and fluorescent; and
6, early partial or full mortality (Fig. 5.4).

In describing the bleaching response at the community level, the most common
metric is simply the total percentage of the benthic community that has bleached. In
contrast to remotely sensed studies, this term almost always refers to the proportion
of the hard and soft coral cover which is bleached rather than the proportion of the
total substrate. Comparison between studies is sometimes challenged by poor
reporting and inconsistency in categorising the variation in levels of individual
bleaching responses. Such problems may be avoided by differentiating and quanti-
fying the proportion of bleaching across the entire colony from patchy bleaching

Fig. 5.3 (a) Tabulate and digitate Acropora colonies and (b) staghorn Acropora colonies; both
displaying severe levels of bleached and fluorescent host tissue and early signs of bleaching-related
mortality as the skeleton becomes overgrown with green and brown filamentous algae. Image
credit: N. Cantin AIMS
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(including evidence of photosensitivity, which is captured by the upper surface
bleaching Category 3, Fig. 5.4) and partial bleaching where some symbiont colour
is still maintained. Employing the broad five-category scale of colony bleaching
severity described here captures the severity of bleaching responses and can help to
standardise observations and allow for comparisons between geographic loca-
tions and to historical datasets.

Attention is typically focused on scleractinian corals; however, many
zooxanthellate invertebrates have shown bleaching responses to thermal stress, and
it is worth including observations of bleaching in other benthic groups (Millepora,
Heliopora, soft corals, giant clams, sponges and sea anemones). Since these taxa will
contribute to the overall aerial white appearance of the reef, they should be included
in more general estimates of percentage bleaching when linking in-water estimates
of community bleaching responses with aerial and remote-sensing indicators of coral
reef community bleaching.

Finally, it is worth noting that as heat stress intensifies with record-breaking
summer thermal anomalies, partial and severe bleaching in some species
(e.g. Platygyra) can be prolonged (Lang et al. 1992, Fig. 5.5). Continued monitoring
and repeat surveys prior to the next summer should highlight this phenomenon and
document the full extent of mortality resulting from annual bleaching events.

Fig. 5.4 Individual colony bleaching severity based on percent area of the colony bleached. (a) No
bleaching, Category 1; (b) 1–50% (mostly upper surfaces), Category 3; (c) 50–99%, Category 4;
(d) >95% completely white and/or fluorescent, Category 5; and (e) early mortality, Category
6. Image credit: N. Cantin AIMS
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5.3.2 Assessing Mortality

Patterns of community-level responses have shown that coral mortality during the
peak of the heat stress has become an important component of recent bleaching
events to assess the potential for adaptive responses and shifts in susceptibility
among taxa (Guest et al. 2012). Recent studies have differentiated bleaching severity
among reefs based not only on the proportion of bleached corals within the com-
munity but also on the extent of coral mortality and if these patterns are shifting
during subsequent repetitive bleaching stress (Guest et al. 2012). Bleaching-related
mortality should be incorporated into bleaching response monitoring programmes to
clearly differentiate the minor impacts of coral bleaching (i.e. recovery) from the
severe impacts of coral bleaching (i.e. mortality) that may result in a shift in the
community composition of the reef.

Mortality may also be important in determining the extent of the bleaching
impact, especially in locations where it may be difficult to time a survey to coincide
with peak bleaching. There is a risk that mortality assessed after peak bleaching may
be non-bleaching related, and here the contextual framework of the surrounding reef
environment, presence of widespread bleaching responses and evidence of recently
bleached sections within the colony (Fig. 5.6), coupled with the experience of the
observer, are critical. Dead corals can be rapidly overgrown within a matter of weeks
(Lang et al. 1992). In the context of an ongoing bleaching event, it is, therefore,
relatively simple to differentiate recently dead corals due to bleaching from corals

Fig. 5.5 (a) Long-lived century-old, massive Platygyra sp. from the Great Barrier Reef exhibiting
prolonged periods of severe bleaching in June 2016, 3 months after the peak of the heat stress. (b)
The same massive Platygyra sp. colony suffering complete mortality in September 2016, highlight-
ing the delayed progression of final mortality or survivorship outcomes throughout the winter.
Image credit: N. Cantin AIMS
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that have been dead for some months or years, and there are many instances when it
may be reasonable to attribute recent death to bleaching-related heat stress.

Bleaching-related mortality can be estimated even some time after the event in the
more extreme cases, as was the case in the Chagos Archipelago, which was only
surveyed 1 year after a suspected major bleaching event—here the context was
provided both by SST observations and the impacts in adjacent reef systems
including the Maldives and Seychelles. It was clear that the “near-total” loss of
living hard corals on these reefs was directly related to an unobserved massive
bleaching event (Sheppard et al. 2002).

Semi-quantitative approaches may also be important, and the semi-quantitative
categorisation of bleaching severity and mortality results gathered from different
surveys is, in many areas, the only means available to place bleaching and other
impacts into a historical context (Winter et al. 1998). As bleaching events become
more frequent in a warming ocean, records of mortality after the peak of the thermal
heat stress will become a critical data set for assessments of bleaching impacts.

5.3.3 Broader Patterns Across the Reef

Many of the traditional coral monitoring approaches give little space for a
standardised approach to documenting patterns of survival over broader scales
than can be provided by the transect or quadrat methods. This problem is exacer-
bated by the otherwise quite sensible desire among reef ecologists to standardise
sampling techniques. This has led to most ongoing reef monitoring programmes,
many of which have been usefully adapted to look at bleaching, remaining fixed on

Fig. 5.6 Comparison of signs of long dead coral colonies, likely from crown-of-thorns starfish, that
would not be attributed to bleaching (a) and to recently dead coral colonies due to bleaching (b).
Image credit: N. Cantin AIMS
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“standard” reef zones, at fixed (usually quite shallow) depths down the reef front.
Sampling in channels, on isolated or lagoon bommies, on current-swept “head-
lands”, on deeper reef slope areas (below 30 m) or on coral patches across the reef
flat remains the exception. A growing number of anecdotal reports suggest that there
are indeed differential patterns of impact in these locations and that these may offer
critical refugia or places for adaptation and recovery. Effort should thus be made to
incorporate such locations into monitoring systems, and even post hoc descriptions
of differential bleaching patterns can be valuable. Researchers should be encouraged
to note any variance in bleaching intensity (“although not quantified, bleaching
appeared to be more or less severe in lagoons vs. reef channels vs. deeper waters
vs. close to land, etc.”) or even the lack of such variance (“patterns of bleaching
appeared to be very similar in. . .”). Such information may provide a valuable guide
to future research and to managers. Such issues can be solved with the advancement
of remote-sensing, aerial drone and autonomous underwater video-/photo-based
survey technologies combined with the necessary automated image analysis capa-
bility to expand the spatial scale over which reefs can be rapidly surveyed during a
brief bleaching response research monitoring campaigns.

5.3.4 Summary of In Situ Field Protocols to Document Coral
Bleaching

• Qualitative broad-scale methods are effective to document the early onset of a
widespread bleaching event and to inform large-scale coral bleaching research
response efforts.

• Quantitative approaches which document community composition, bleaching
severity and mortality are recommended for major regional bleaching events.

• Line intercept transects (LIT) provide assessments of coral cover, taxonomic
composition and colony size demographics.

• Photo-based quadrats conducted along with the LIT transect as a belt survey
assessment provide broad community detail of bleaching severity.

• Bleaching severity (ranging from no bleaching to 100% white and fluorescent)
should be assessed based on the percent area of the colony bleached.

• Bleaching-related mortality should be carefully included using key indicators that
include the presence of widespread bleaching responses, intact corallites and
evidence of recently bleached sections within the colony.

5.3.5 Colony Scale and Finer

At the level of the coral colony, there can be variation in the intensity of bleaching.
At these scales it may be important to establish repeat sampling of colonies, and
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tagging of individual colonies is thus required. Baird and Marshall (2002) used a
simple categorisation of degree of colony bleaching as follows: no bleaching,
1–10%, 11–50%, 51–99%, 100% bleached, and dead and placed all pale colonies
into the 1–10% category. Such a system should be more widely applied to enable
comparison between coral reef regions, although it may need some revision for
Caribbean reefs where partial loss of colour appears to be much more widespread.
Siebeck et al. (2006) provide a useful tool for describing the degree of colour change
which may improve consistency of monitoring through time; it should be noted that
this has so far only been used on five species and there was some degree of
interobserver error.

Describing patterns across a colony can also be important and can lead to
advances in understanding processes and patterns of resilience. Patchy bleaching
responses throughout individual colonies are quite common and can often be linked
to exposure to solar radiation. Typically, bleaching may commence on those coral
surfaces receiving the highest levels of solar radiation. More complex patterns have
been observed, notably by Brown et al. (2002), where faces of corals that had
undergone prior exposure to high solar insolation were subsequently resilient to a
high temperature-related bleaching event.

At the level of colonies, it is also possible to measure and assess recovery,
including sublethal impacts on growth and reproduction. Baird and Marshall
(2002) examined growth rates in four coral species, by regular return sampling to
over 100 separate colonies during and after a bleaching event. They also assessed the
reproductive potential, taking coral samples for laboratory analysis both before and
after the known spawning period and assessing development of gametes and pres-
ence of fertilised eggs. Long-term impacts of bleaching stress on the fecundity of the
survivors remain an unanswered question, but this study showed that 12 and 55% of
Acropora millepora and A. hyacinthus colonies, respectively, failed to develop eggs
in the following year after bleaching stress in 1998, highlighting the long-term
energetic impacts of coral bleaching for the coral host.

Measurements of photosynthetic activity [of photosystem II (PSII)] can be
undertaken with relatively non-invasive techniques. Although many studies still
involve the removal of specimens to adjacent laboratories to quantify symbiont
densities or to run photosynthesis/respiration (P/R) incubations (Brown et al.
2000), submersible diving pulse-amplitude-modulated (PAM) fluorometers have
been used (Ralph et al. 1999; Warner et al. 1999; Fitt et al. 2001) for in situ
measurement of PSII before, during and after bleaching events. Lombardi et al.
(2000) used a fast repetition rate fluorometer to show variability in fluorescence
yields from corals at different stages of bleaching or recovery. The PAM fluorometer
is capable of detecting the photoinhibition processes of the algal symbiont within the
coral host that lead to widespread coral bleaching. Coral bleaching on regional scales
is caused primarily by thermal heat stress and amplified by high light exposure
(Jones et al. 1998). As the enzymes degrade that drive the dark reactions of carbon
fixation in PSI, the light-harvested energy in PSII builds up at the Qa binding site
prior to entering the plastoquinone pool and generates an increase in fluorescence
and toxic reactive oxygen (Jones et al. 1998; Hoegh-Guldberg 1999). The PAM
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fluorometer detects this process of photoinhibition during thermal stress by measur-
ing the increased fluorescence emitted and quantifies the decrease in the photosyn-
thetic efficiency (Fv/Fm) and the photoinhibitory damage to the D1 protein of PSII as
prolonged decreases in dark-adapted yields at night for hours to days depending on
the level of damage and rate of repair of the D1 protein (Hill and Ralph 2005).

Working at the scale of polyps, cells and algal symbionts always require a shift of
effort from the field to the laboratory, and here we only provide a brief review of
typical methods used on wild-sampled corals. Considerably more work of this nature
has been developed in laboratory-cultured corals, and this work is clearly important
in refining techniques, but it does not constitute monitoring of natural bleaching
events.

Assessing Symbiodinium densities can be undertaken on tissue prepared for
microscope counts. Some studies have used a water pik to remove soft tissue, with
the subsequent isolation of Symbiodinium cells by centrifugation (Warner et al.
1999). Others have assessed chlorophyll content from frozen samples and symbiont
densities from preserved tissue in 10% formalin and seawater (Le Tissier and Brown
1996) based on small cores collected from massive coral colonies.

Histological examination enables further investigation of the distribution of
Symbiodinium cells within a polyp and provides some picture of the internal
mechanisms of bleaching, with differential patterns of Symbiodinium loss and
degradation typically observed in different tissues and at different stages of
bleaching. Such patterns (e.g. the existence of a reservoir of algae in the base of
the polyp) may give some indication of the ability of polyps to recover when
environmental conditions improve (Brown et al. 1995; Le Tissier and Brown 1996).

Assessing chlorophyll concentrations is another useful measure, and field studies
have used both spectrophotometry (Le Tissier and Brown 1996) and high-
performance liquid chromatography (HPLC) (Ambarsari et al. 1997; McDougall
et al. 2006; Apprill et al. 2007). Unlike HPLC, spectrophotometry cannot discern
chlorophyll-a-like compounds and can thus lead to higher chlorophyll readings than
would be expected (McDougall et al. 2006).

It is now clear that different types of Symbiodinium offer differing levels of
thermal tolerance to their coral host and hence influence bleaching resistance
(Rowan et al. 1997; Baker et al. 2004; Chap. 6). Identification and quantification
of different symbiont types requires extraction of Symbiodinium DNA and sequence
analysis (Chap. 6). The genotype of the coral host itself also plays a role in
determining the relative thermal tolerance of a colony (Bay and Palumbi 2014;
Dixon et al. 2015; Jin et al. 2016).

From an environmental perspective, the monitoring of these different algal types
may provide critical understanding of existing resistance to future bleaching events
and ongoing patterns of adaptation/acclimatisation in recovering corals (LaJeunesse
2002; Baker et al. 2004; Thornhill et al. 2006; Boulotte et al. 2016). Such work
requires not only very fine-scale molecular techniques in assessing Symbiodinium
diversity, but also broad-scale sampling to understand the distribution of types
between species, across the reef profile, between adjacent reefs and across much
wider spatial scales (van Oppen et al. 2005; Garren et al. 2006; Chap. 6).

5 Detecting and Monitoring Coral Bleaching Events 103



5.3.6 Temporal Context

Although the primary purpose of this chapter is an overview of monitoring tech-
niques during individual bleaching events, it should be noted that long-term moni-
toring before and after a bleaching event is invaluable especially as repeated
bleaching events are more likely in the future (Chap. 13). Designing bleaching
survey approaches so that the transects or quadrats can be repeated will increase
the ability to detect future impacts of heat stress, recovery of the community and
shifts in bleaching tolerance in a warming ocean. Knowledge of pre-bleaching
state—including reef conditions of coral cover; variation across the reef system;
prior bleaching impacts and severity per reef; “natural”, seasonal or recurring
bleaching observations; and, at finer scales, “natural” backgrounds of Symbiodinium
types—can provide an invaluable reference in understanding thermal tolerance and
susceptibility to coral bleaching. Similar monitoring protocols can and should be
used post hoc in an attempt to document rates of recovery and patterns of recovery
and further to document shifts in community structures or Symbiodinium
communities.

Monitoring changes in calcification, growth and reproductive success (Baird and
Marshall 2002; Cantin and Lough 2014) may identify sublethal impacts of prior
bleaching events or conversely may uncover other processes that could hinder or
expedite recovery. Changes in disease incidence may also provide some measure of
underlying sublethal effects of heat stress events that can be documented with
follow-up surveys after the peak bleaching response effort (Miller et al. 2006;
Bruno et al. 2007). Others have looked at recruitment itself—counting densities of
new coral recruits (<5 cm in size) and identifying (where possible) species
(Sheppard et al. 2002)—as this may provide an indicator of rates and patterns of
recovery in different management areas; the influence of substrate (bare rock, dense
algal cover, loose rubble, etc.) and connectivity to neighbouring non-bleached reefs
on recovery dynamics remain poorly understood and should continue to be a focus
of research efforts following the global bleaching event of 2014–2017, as some
remote isolated reef locations have suffered extensive mortality.

5.4 Summary

We have described the various means of assessing and monitoring bleaching from
global scales to patterns within individual colonies, and each of these approaches is
critical. It is also important, however, to be able to move between scales. Global and
regional patterns are helping to inform the science of global change and are also
strengthening the hands of policy-makers in seeking to address climate change.

Broad scales also help provide context for more localised in-field observations
and support informed extrapolation to areas where there have been no field studies.
Regional field studies provide context to the global patterns, enabling a better
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understanding of patterns of resistance and resilience. These in turn can help with the
wider interpretation of coral reef futures and are also helping policy-makers in
planning for uncertain futures. Clear examples of such applications for planning
and conservation are being provided with the promotion of resilient networks of
marine protected areas (Grimsditch and Salm 2006; Marshall and Schuttenberg
2006; see also http://www.reefresilience.org/). But it is only with the finest scale
studies that we can begin to understand the mechanisms of bleaching and the
variability in responses which will be critical in understanding future impacts.
Once again, connecting across scales provides further evidence to the growing
picture of the many facets of the phenomenon of coral bleaching. Perhaps most
striking in this regard have been the observations of variance in Symbiodinium
community composition over both space and time, providing what may be critical
clues into the future for coral reefs in a warming world (see Chap. 6).

It is also critical to consider patterns across timescales. “Monitoring” implies
ongoing observation, and understanding the temporal component is important in
determining long-term futures both for coral reefs and those who rely on them. It is
important that bleaching events are not seen in isolation. Bleaching impacts appear
to be significantly affected by the location and severity of prior events. There also
appear to be quite significant non-lethal impacts affecting long-term survivorship.
Mortality is a frequent component of bleaching events and must be accurately
assessed, alongside growth and recruitment of remaining corals.

Finally, bleaching as a global phenomenon should not only be reported in one-off
reports in local or national contexts. Although valuable, such reports need to be
given a regional and global context to raise awareness of the scale of the problem.
Researchers should consider existing methodologies before devising new ones and
strive to make survey techniques as comparable as possible to make global assess-
ments more feasible. Should researchers choose to develop or refine their own
approaches, they should at least consider how their bleaching severity and mortality
categories can be directly compared to other previously published research pro-
tocols. In the reporting process they should indeed make such comparisons, provid-
ing a regional and temporal context for their own work. In this chapter we have
provided the bleaching and mortality categories that have been employed on the
GBR in 1998, 2002, 2016 and 2017 bleaching response campaigns. We encourage
monitoring programmes to adopt similar bleaching and mortality categories in the
future to facilitate global comparisons.

The challenges of summarising a vast literature and burgeoning array of methods
into wider regional and global assessments are considerable (Chap. 3), but such
reporting needs to be continued and indeed strengthened, and again researchers
should be encouraged to contribute to global monitoring schemes, such as the
NOAA Coral Reef Watch Bleaching Observations reporting tool (https://
coralreefwatch.noaa.gov/satellite/research/coral_bleaching_report.php), or the
newly developed public historical bleaching observation database and modelling
tools (http://simondonner.com/bleachingdatabase/) (Donner et al. 2017). Such
broader review greatly helps in developing our understanding of the global threats
posed by coral bleaching; it will support more informed considerations of
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management responses; and it will provide yet stronger arguments to governments
and to civil society on the urgent need to aggressively tackle the ultimate causes of
climate change and ocean warming that are driving the patterns of widespread coral
bleaching.
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Chapter 6
Bleaching Resistance and the Role of Algal
Endosymbionts

K. M. Quigley, A. C. Baker, M. A. Coffroth, B. L. Willis,
and M. J. H. van Oppen

6.1 Introduction

Scleractinian corals and octocorals form mutualistic endosymbioses with single-
celled dinoflagellate algae in the genus Symbiodinium. This association is obligate in
most coral species, with the coral host capable of deriving over 90% of its energy
budget from its algal endosymbionts (Muscatine and Porter 1977), although nutri-
tional dependence on Symbiodinium is generally lower in octocorals (Fabricius and
Klumpp 1995). These endosymbionts also play a vital role in the light-enhanced
calcification of scleractinian corals (Barnes and Chalker 1990; Moya et al. 2006). In
healthy corals, Symbiodinium typically occur at extremely high densities (>106 cells
per cm2 coral tissue). During bleaching events, symbiont photosynthetic pathways
become impaired (Chap. 8), leading to a breakdown in the symbiosis resulting in the
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expulsion of Symbiodinium and/or a loss of photosynthetic pigment. Until recently,
it was unclear whether the loss of Symbiodinium was due to death or detachment of
host cells surrounding the symbionts or to expulsion or degradation of the symbionts
themselves. Recent evidence suggests that bleaching is predominantly caused by the
expulsion of intact Symbiodinium (Bieri et al. 2016), likely due to the production of
reactive oxygen species (ROS) in the symbiont (Weis 2008). The production of ROS
and the resulting cellular cascade leads to a breakdown in host–symbiont signalling
and is a key trigger of bleaching responses (Baird et al. 2009a). Episodes of mass
coral bleaching are predominantly driven by elevated temperature and irradiance
(Hoegh-Guldberg 1999) but may also result from a variety of stressors, including
disease (i.e. bacteria; reviewed in Harvell et al. 2007), viral infections (Lohr et al.
2007; Marhaver et al. 2008; van Oppen et al. 2009; Levin et al. 2017a; Weynberg
et al. 2017), ocean acidification (Anthony et al. 2008; Chap. 12), salinity, heavy
metals, cyanide, herbicides and other factors (reviewed in Baker and Cunning 2016).
Severely bleached corals typically starve and die unless symbiont densities recover
sufficiently rapidly to meet minimal phototrophic requirements and/or the coral has
the ability to supplement its energy demands through increased heterotrophy
(Grottoli et al. 2006; Anthony et al. 2009; Hoogenboom et al. 2012).

Mutualisms with Symbiodinium are established via horizontal (i.e. from the
environment), vertical (i.e. maternal), or mixed transmission (a combination of
both mechanisms). Approximately 85% of scleractinian corals are horizontal trans-
mitters that produce gametes free of Symbiodinium (Fadlallah 1983; Babcock and
Heyward 1986; Harrison and Wallace 1990; Baird et al. 2009b). In these cases,
Symbiodiniummust be acquired de novo from the environment in each generation, at
the larval or early juvenile stage. Most broadcast-spawning corals show horizontal
symbiont transmission, although there are some that transmit Symbiodinium directly
to the oocytes (e.g. Montipora spp., Porites spp.). In contrast, the majority of
brooding corals show vertical transmission, releasing internally brooded larvae
that already harbour Symbiodinium. A small proportion of brooding corals have
horizontal symbiont transmission, an example being Isopora palifera and several
surface-brooding octocorals [e.g. Briareum asbestinum, Antillogorgia elisabethae
(Kinzie 1974; Brazeau and Lasker 1990; Gutiérrez-Rodríguez and Lasker 2004;
Poland et al. 2013)]. It is currently unclear how many species have mixed-mode
transmission or if both vertical and horizontal infection occur simultaneously or in
succession. For example, eggs or larvae may first undergo vertical transmission and
then subsequently acquire Symbiodinium horizontally. Mixed-mode transmission
has been documented for the eggs of Montipora digitata (Quigley et al. 2017a)
and Montipora capitata (Padilla-Gamiño et al. 2012) and the planulae of
Seriatopora hystrix (Quigley et al. 2018), and it has been hypothesized to occur in
Stylophora pistillata, Pocillopora damicornis and Porites astreoides (Byler et al.
2013; Boulotte et al. 2016; Reich et al. 2017). Winnowing (i.e. the stepwise
elimination of certain Symbiodinium during ontogeny) occurs in hard (Abrego
et al. 2009a; Dunn and Weis 2009) and soft corals (Poland and Coffroth 2017)
with horizontal transmission and likely also occurs in corals that have strictly vertical
or mixed-mode transmission (Byler et al. 2013). This has led to the notion that some
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Symbiodinium acquired during early ontogeny may be opportunistic or ephemeral,
but these properties may themselves be dependent on environmental or ontogenetic
factors.

Symbiodinium was long considered to be a monospecific genus with a worldwide
distribution (Taylor 1974). However, in the early 1980s, it became evident that the
species Symbiodinium microadriaticum Freudenthal comprises a highly diverse
group of organisms (Schoenberg and Trench 1980; Blank and Trench 1985,
1986). This was confirmed more recently by molecular analyses (for reviews see
Baker 2003; Coffroth and Santos 2005; Stat et al. 2006; Pochon et al. 2012) and
detailed morphological analyses (Trench and Blank 1987; LaJeunesse 2001; Hansen
and Daugbjerg 2009; Jeong et al. 2014; Lee et al. 2014, 2015). Despite the existence
of subtle morphological differences between some Symbiodinium species, most
Symbiodinium are morphologically extremely similar when examined using light
microscopy. Therefore, the identification of Symbiodinium has relied primarily on
genetic methods. These methods have resulted in the relatively recent introduction of
a number of formal taxonomic descriptions of Symbiodinium species that have
resolved substantial diversity within taxa from clades B (Lajeunesse et al. 2012;
Parkinson et al. 2015a), C (Thornhill et al. 2014; Hume et al. 2015), and D (Wham
et al. 2011; LaJeunesse et al. 2014). It is now clear that the original clades of
Symbiodinium first described by Rowan and Powers (1991) represent major phylo-
genetic lineages, each probably deserving its own generic status (with the genus
Symbiodinium being reserved for clade A, which contains the original species
S. microadriaticum first described by Freudenthal in 1962). However this substantial
taxonomic revision has not yet been undertaken.

Early molecular techniques using DNA/DNA hybridization estimated only 36%
homology among symbionts representing S. microadriaticum, S. kawagutii and
S. pilosum extracted from different hosts, highlighting the high diversity present
within Symbiodinium (Blank and Huss 1989). Subsequent restriction fragment
length polymorphism (RFLP) analyses and direct sequencing detected one to two
predominant clades in corals (Rowan and Powers 1991; Baker and Rowan 1997;
Burnett 2002), demonstrating the low resolving and/or sensitivity power of these
early methods (Rowan et al. 1997). Other gel-based fingerprinting methods such as
DGGE (denaturing gradient gel electrophoresis) of the Internal Transcribed Spacer
2 (ITS2) rDNA (LaJeunesse 2002) are still prevalent but are problematic because of
extensive intra-genomic variation within Symbiodinium ITS2 (Thornhill et al. 2007)
and the propensity for co-migration (Fabricius et al. 2004; Stat et al. 2009) and
technical biases (Thornhill et al. 2010) inherent in methods that rely on differences in
electrophoretic movement of distinct sequences (Coffroth and Santos 2005). How-
ever, these methods may still have value in systems where the diversity of
Symbiodinium types is relatively well understood (i.e. controlled experiments
involving well-studied coral species).

Quantitative polymerase chain reaction (qPCR) and next-generation sequencing
(NGS) techniques offer increased sensitivity, especially for low-abundance
Symbiodinium (Ulstrup and van Oppen 2003; Mieog et al. 2007; Correa et al.
2009; Silverstein et al. 2012; Cunning and Baker 2013; Arif et al. 2014; Quigley
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et al. 2014), and have the power to resolve diversity undetected by earlier method-
ologies (Kennedy et al. 2015; Boulotte et al. 2016; Quigley et al. 2017a, b). It was
suggested that the increased detection ability of qPCR and NGS might also increase
the risk of false positives due to the detection of non-symbiotic surface contaminants
(Loram et al. 2007; Boldt et al. 2008; Correa et al. 2009); however, more recently,
rates of false positives have been found to be low (0.07–9%) for both methods
(Silverstein et al. 2012; Quigley et al. 2014). Both techniques may potentially
overestimate genetic diversity if the genetic region quantified is multicopy and/or
displays intra-genomic variation (Thornhill et al. 2007; Stat et al. 2009). Recent
developments in whole genome sequencing (Shoguchi et al. 2013, 2015; Barbrook
et al. 2014; Lin et al. 2015; Aranda et al. 2016) should accelerate the discovery of
single-copy markers, with 261–1792 single-copy orthologs having been identified as
candidates (Levin et al. 2017b). Computational methods can be applied to identify
and account for intra-genomic variation, including identifying clusters of operational
taxonomic units (OTUs) based on co-occurrence and proportionality (Kenkel et al.
2013; Quigley et al. 2014, 2016; Stat et al. 2015), applying 97% clustering across
samples (Cunning et al. 2017a, b) and metahaplotype clustering (Smith et al. 2017).
Another significant advantage of qPCR and NGS approaches, in addition to their
high sensitivity, is the quantitative nature of the data generated, which lend them-
selves to relatively sophisticated analytical methods and statistical modelling
approaches that cannot be applied to earlier, gel-based methods. These approaches
have particularly helped understand the dynamics of mixed communities and their
response to environmental changes (Cunning et al. 2015a, b, 2017a; Silverstein et al.
2017). Microsatellite markers are increasingly used to differentiate diversity within
species and among populations of Symbiodinium (Howells et al. 2013; Prada et al.
2014; Davies et al. 2016; Wham and LaJeunesse 2016), although the interpretation
of microsatellite data to delineate species boundaries is still in dispute (Howells et al.
2016a; Wirshing and Baker 2016).

In the following sections, we review what is currently known about
Symbiodinium taxonomic and physiological diversity and patterns in the genetic
diversity of Symbiodinium, both within individual coral colonies and among
populations. We further discuss patterns in spatial (i.e. biogeographic and bathy-
metric gradients) and temporal (i.e. ontogenetic changes and shifts in response to
environmental change) variability in Symbiodinium communities. We finish with a
summary of recent advances in targeted research areas and identify new research
fronts still to be explored.

6.2 Genetic Diversity of Symbiodinium

Nine phylogenetic lineages or clades (A–I) have been distinguished based on nuclear
small and large subunit ribosomal DNA (nrDNA), as well as chloroplast large
subunit ribosomal DNA (Pochon and Gates 2010). Relationships among seven of
these clades have been verified by analyses of mitochondrial cox1 and chloroplast
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psbA DNA (Baker 2003; Takabayashi et al. 2004; Coffroth and Santos 2005;
Barbrook et al. 2006; Pochon et al. 2006, 2012; Sampayo et al. 2009; Pochon and
Gates 2010). Estimates from molecular clocks calibrated with a “universal” dinofla-
gellate rate of sequence evolution for large subunit nrDNA (Tchernov et al. 2004) or
based on vicariant events and host fossil dating (Pochon et al. 2006) suggest that the
genus originated between 65 and 50 Mya, with subsequent diversification events, at
least within clade C, occurring as recently as 12–13 Mya as the global climate cooled
(Thornhill et al. 2014). Corals mainly associate with a suite of evolutionarily highly
divergent symbionts in six of the nine known clades (A–D, F, G) of Symbiodinium,
including the most basal lineage A and several derived lineages. More limited
records of hard corals associating with members of clade E exist (Lee et al. 2016),
whereas clades H and I associate predominantly with soritid Foraminifera (Pochon
and Gates 2010; Pochon et al. 2012). However, recent genotyping of coral juveniles
with horizontal transmission has revealed symbionts from all known clades, includ-
ing members of E, H and I (Quigley et al. 2017a).

Each of the nine Symbiodinium clades contains some degree of diversity. Some
clades with very distinct phylogenetic structure, such as F and G, have been
subdivided into numbered “subclades”, which themselves also contain further diver-
sity (Pochon et al. 2006; Pochon and Gates 2010; Bo et al. 2011). Here we will use
the term “type” to indicate taxonomic entities below the level of the nine known
clades. Types have been generally characterized as operational taxonomic units
(OTUs) and in some cases have been formally described as distinct species. We
use the term “genotype” to denote genetic diversity within types. Genotypes may
replicate asexually to form clones or genets (strains) within a type.

Diversity below the level of the clade is usually assessed using the internal
transcribed spacers (ITS1, ITS2) of the nrDNA (Hunter et al. 1997; Baillie et al.
2000a; LaJeunesse 2001; van Oppen et al. 2001; Pochon et al. 2012), the chloroplast
rDNA 23S gene (cpDNA) (Santos et al. 2002) or the psbA non-coding region
(Moore et al. 2003; Thornhill et al. 2014) of chloroplast DNA, or microsatellite
flanking regions (Santos et al. 2004). The delineation of species boundaries in
Symbiodinium is much debated and not easily resolved. Initially several authors
proposed that distinct ITS or cpDNA sequences represented different species
(LaJeunesse 2001; Coffroth and Santos 2005); however, more recent studies have
demonstrated that these markers do not resolve all genetic diversity, with types that
share ITS2 or cpDNA sequences sometimes representing distinct taxa based on other
molecular markers (Santos et al. 2004; Parkinson et al. 2015b). Investigations of
genotypic diversity within these types or species have used allozymes (Schoenberg
and Trench 1980), DNA fingerprinting (Goulet and Coffroth 2003a), random ampli-
fied polymorphic DNA (Baillie et al. 2000b) and microsatellites (Santos et al. 2001,
2003; Magalon et al. 2006; Pettay and LaJeunesse 2009; Pinzón et al. 2011; Wham
et al. 2011; Parkinson et al. 2015b), with the most recent papers focusing on
identifying species boundaries but also beginning to point to the functional impor-
tance of different Symbiodinium genotypes in understanding coral performance
(Parkinson et al. 2015a).
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Studies using high-resolution markers to examine the diversity and spatial struc-
ture of Symbiodinium populations have produced very dissimilar results. In the
Caribbean gorgonian Antillogorgia (previously Pseudopterogorgia) elisabethae,
less than 5% of the 575 colonies surveyed in 12 populations harboured more than
one Symbiodinium clone (Santos et al. 2003). Furthermore, distinct population
structure was observed over spatial scales ranging from a few to ~450 km, with
66–100% of colonies within 10 of the 12 surveyed populations harbouring a single
genotype; only in a few cases were genotypes shared among populations. Similarly,
most genotypes found for Gorgonia ventalina were restricted to a single or a few
populations across the entire host range (Kirk et al. 2009; Andras et al. 2011). A
global analysis of clade D Symbiodinium isolated from symbiotic cnidarians also
revealed that a majority of hosts harboured a single genotype (Pettay and LaJeunesse
2009; Wham et al. 2011), as did Acropora palmata from the Caribbean, which
harboured Symbiodinium A3 (S. fitti) (Pinzón et al. 2011), and Orbicella spp.
collected across the Caribbean, which had single clones of C1 and C3 per host
(Thornhill et al. 2007). In contrast to only harbouring a single genotype, up to four
Symbiodinium clones from clade C were found within individual colonies of the
scleractinian coral Pocillopora meandrina from the Tonga and Society archipelagos
in the South Pacific (Magalon et al. 2006), up to 15 clones within type C2 were
associated with Acropora millepora on the Great Barrier Reef (GBR; Howells et al.
2013), and up to six clones were found within Pocillopora type 1 (sensu Pinzón and
LaJeunesse 2011) from the Gulf of California (Pettay et al. 2011). Furthermore,
P. meandrina commonly shared alleles among South Pacific populations, with
significant genetic differentiation detected only at scales greater than ~200 km
(Magalon et al. 2006). Symbiodinium populations harboured by colonies of the
soft coral Sinularia flexibilis from the GBR were comprised of between 2 and
6 clones; and up to 14 clones were found within colonies from Torres Strait
populations, with significant genetic differentiation existing among populations at
scales ranging from 10s to 100s of kilometres (Howells et al. 2009). Single clones of
B1 in two Orbicella species in the Caribbean (~40%) (Thornhill et al. 2009) and of
C3 and C40 in Acropora digitifera and Acropora hyacinthus across Micronesia
(~67% of colonies tested) were less common (Davies et al. 2016).

There appears to be no relationship between the number of Symbiodinium
genotypes present within individual colonies and either the mode of symbiont
transmission, the specificity of the symbiosis or the extent of spatial structure
observed. However, specificity for a symbiont type may be related to either the
transmission mode (Fabina et al. 2012) or a genetically determined host trait
(Quigley et al. 2016, 2017a, b; Poland and Coffroth 2017). For example, strong
symbiont specificity is shown by both Sinularia flexibilis, which has horizontal
transmission, and P. meandrina, which transmits algal symbionts directly to its
offspring and exhibits some symbiont specificity for at least two distinct symbiont
C1 types in the South Pacific (Magalon et al. 2006) and on the GBR (Hirose et al.
2001; LaJeunesse et al. 2004). The pattern emerging is that a single clone per
Symbiodinium type is the most common association in Caribbean hard and soft
corals, but not in Indo-Pacific corals (reviewed in Thornhill et al. 2017), although in
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some instances individual Caribbean colonies may harbour multiple types simulta-
neously. These patterns likely reflect the fact that Caribbean corals commonly host
symbionts across four clades of Symbiodinium (A, B, C and D), whereas
Symbiodinium communities associated with Indo-Pacific corals tend to be dominated
by diverse members of clade C, perhaps driving diversification within this group in
the Indo-Pacific. Genetic diversity within Symbiodinium types in the Caribbean also
appears lower than within types in the Pacific. However, studies of a much wider
range of taxa are required to confirm these patterns.

6.3 Biogeographic Patterns in Symbiodinium Diversity:
In Hospite and Ex Situ

The distributions of Symbiodinium types associated with scleractinian corals vary
considerably between the Caribbean and the Indo-Pacific (Baker and Rowan 1997;
Baker 2003; LaJeunesse et al. 2003; LaJeunesse 2005), and between the Indian
Ocean and western Pacific (LaJeunesse et al. 2010a), as well as within both the
Caribbean (Finney et al. 2010; Kennedy et al. 2015, 2016) and Indo-Pacific (Loh
et al. 2001; LaJeunesse et al. 2004). Scleractinian corals often host multiple symbi-
onts simultaneously (Baker and Romanski 2007), particularly when the
low-abundance background symbionts are included (Silverstein et al. 2012). Nev-
ertheless, clear biogeographic patterns exist. At shallow depths (<7 m) in the
tropical western Atlantic (Caribbean), Symbiodinium clades A–D are common,
with individual coral species typically hosting members of one of these clades, but
sometimes hosting numerous ITS-types from up to three additional clades, although
more often each species is dominated by one specific ITS-type (LaJeunesse et al.
2003; Fabina et al. 2012; Kennedy et al. 2015). In contrast, at similar depths in the
tropical Indo-Pacific, scleractinian corals are dominated by a lower phylogenetic
diversity of ITS-types, mainly in clade C and a few in clade D. Similar patterns are
found in the Red Sea, Sea of Oman and Arabian Gulf, where scleractinian corals are
also dominated by clades C and D (Hume et al. 2015; Ziegler et al. 2017) [Fig. 6.1;
see also online databases of Symbiodinium biogeography: Geosymbio (Franklin
et al. 2012) and SymbioGBR (LaJeunesse et al. 2003; Fabina et al. 2012)]. The
generalist symbiont types within clade C [i.e. the more ancestral ITS2-types C1 and
C3 (sensu LaJeunesse 2002) or ITS1-type C2 (sensu van Oppen et al. 2001, which is
equivalent to ITS2-type C3)] are present in both Caribbean and Pacific hosts,
suggesting that they arose prior to the closure of the Isthmus of Panama (LaJeunesse
2005) (Fig. 6.1). The high diversity within clade C found in both oceans is thought to
have evolved independently through a series of adaptive radiation events driven by
post mid-Miocene cooling (LaJeunesse 2005; Thornhill et al. 2014).

Apparent similarity between tropical Caribbean scleractinian symbioses and their
counterparts from the temperate Indo-Pacific and Mediterranean led to speculation
that the closure of the Isthmus of Panama and subsequent cycles of glaciations in the
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Fig. 6.1 Haplotype networks depicting the variability in in hospite and ex situ diversity detected in
Symbiodinium clades C using ITS2 (red networks) (LaJeunesse 2005; Tonk et al. 2014; Reimer
et al. 2016) and B using cp23S (blue networks) (Takabayashi et al. 2012; Ziegler et al. 2017) within
the Indo-Pacific, Caribbean and Arabian Peninsula (Sea of Oman and Persian/Arabian Gulf). Each
node represents a distinct ITS2 or cp23S sequence and potential variant or “type”. For clarity, not
every node has been labelled. The size of each haplotype reflects the relative abundance of the type
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Northern Hemisphere led to cooler and more variable temperature regimes in the
tropical western Atlantic which, in turn, selected for Symbiodinium that are more
typical of temperate hosts (Baker and Rowan 1997; Baker 2003). A Caribbean
radiation of clade B also dates to this period (LaJeunesse 2005), supporting the
idea that environmental change during the Plio–Pleistocene transition drove these
patterns of association (Baker and Rowan 1997; Baker 2003; LaJeunesse et al. 2003)
(Fig. 6.1). These general hypotheses are somewhat further supported by the unusual
cold tolerance of Symbiodinium B2 in coral hosts from northerly habitats of the
western Atlantic (Thornhill et al. 2008).

As documented in scleractinians, the distributions of Symbiodinium clades and
types associated with octocorals vary between the major ocean basins (van Oppen
et al. 2005a; Goulet et al. 2008). Overall diversity is greatest in the western Pacific
and the GBR, where, at the clade level, the symbiosis is dominated primarily by
Symbiodinium clade C (van Oppen et al. 2005a; Howells et al. 2009; FitzPatrick
et al. 2012), with a substantial number of hosts also having clade D. Clades A, B and
G are also reported from soft corals on the GBR, although occurrences of clade B
and of clade A and G symbionts are rare on the GBR and Caribbean, respectively
(Franklin et al. 2012; Tonk et al. 2013). Within the Red Sea, soft coral symbioses are
dominated by Symbiodinium clade C and, to a lesser extent, clade A (Barneah et al.
2004). In the Caribbean and Bermuda, soft corals harbour predominantly
Symbiodinium clade B, with some species also engaging in symbiosis with
Symbiodinium clade C. Within octocorals, symbiont distribution does not appear
to vary with depth, in contrast to patterns observed in some scleractinians. Both
general reef surveys (LaJeunesse 2002; LaJeunesse et al. 2003; van Oppen et al.
2005a) and studies that specifically examined symbiont diversity over depth (Goulet
and Coffroth 2003a, 2004) failed to detect any depth-related pattern in symbiont
distribution. These patterns suggest that, in contrast to scleractinian corals, many
octocoral species may be less flexible in their associations with Symbiodinium,
perhaps due to their greater dependence on heterotrophy (Baker and Romanski
2007).

Patterns of host and symbiont specificity are influenced by differences in symbi-
ont diversity between the Atlantic and Pacific. LaJeunesse et al. (2003) suggested
that, although the total number of Symbiodinium types may be greater in the Indo-
Pacific than in the Caribbean (due in large part to the enormous diversity of
Symbiodinium in clade C) (Fig. 6.1), the ratio of symbiont diversity to host diversity
may be higher in the Atlantic than in the Pacific. This effect is mostly a result of the

⁄�

Fig. 6.1 (continued) in that region. Clades B and C are the most common clades in the Caribbean
and Indo-Pacific, respectively; and clade C is more diverse compared to clade B (LaJeunesse et al.
2003). The diversity of clade B is also higher in the Caribbean relative to the Indo-Pacific, whereas
the converse is true for clade C (LaJeunesse et al. 2003). Indo-Pacific and Caribbean B haplotypes
were constructed using cp23S sequences with the exception of chvB184, which was translated from
the B1 ITS2 type reported in Ziegler et al. (Santos et al. 2003; Lajeunesse et al. 2012)
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additional diversity found within clades A and B, which both contribute more
commonly to symbiont pools in the Atlantic.

Less is known about the worldwide biogeography of free-living Symbiodinium
(although some locations are well studied: Takabayashi et al. 2012). However,
similar to patterns found for Symbiodinium associated with scleractinians and
octocorals, the distributions of free-living Symbiodinium vary between major
ocean basins. In Florida, water samples and sediments were dominated by clade B,
with clade A types also present in high abundance (Coffroth et al. 2006; Takabayashi
et al. 2012). In Curaçao, sediments, vegetative surfaces, rubble and water column
samples were dominated by clade A, with the water column being particularly
speciose, containing types from clades A, B, C, F, G and H (Granados-Cifuentes
et al. 2015). Clades B, C and D dominated water samples collected from Mexico
(Manning and Gates 2008). An exception to the general dominance of clades A and
B in the Caribbean was observed in Colombian reefs, where clade C was dominant,
although diverse types in clades A and B were also detected in macroalgal beds and
sediments (Porto et al. 2008).

Diversity within the Indo-Pacific region appears to be greater than in the Carib-
bean, with initial surveys reporting clades A, B, C, D, G, H (Huang et al. 2013) and F
(Gou et al. 2003) in the water column around Chinese reefs. Japanese reefs have
been found to have members of clades A, C, D and E in the water column
(Yamashita and Koike 2013) and an array of A types, C types and novel D types
in the sediments (Hirose et al. 2008; Reimer et al. 2010; Yamashita and Koike 2013;
Yamashita et al. 2013). Studies in the southern GBR report that macroalgal thalli,
cyanobacterial mats, crustose coralline algae and water samples were dominated by
clade C, but no Symbiodinium sequences were retrieved from the sediment (Venera-
Ponton et al. 2010). However, later genotyping at the same location discovered clade
A in the sediments, as well as members of clades A, C and E in the water column
(Sweet 2013). The dominance of clade C in the western Pacific also extends to
central Pacific (Hawaiian) waters, which were dominated almost exclusively by
clade C (Manning and Gates 2008). Further sampling also detected types from
clades A, B and D in the water column. Sediment samples were dominated by a
range of types, particularly from clades A and B and, to a lesser extent, C and G
(Carlos et al. 1999; Pochon et al. 2010; Takabayashi et al. 2012).

As with in hospite Symbiodinium, the biogeographical distributions of free-living
Symbiodinium appear to be influenced by temperature and light gradients. In the
water column, clade A was more abundant closer to the shore in American Samoa,
but the opposite trend was documented in sediments (Cunning et al. 2015c),
suggesting A types partition their distributions based on temperature or turbidity
differences. Symbiodinium found in sediments collected from the northern and
central GBR also showed strong partitioning along thermal and water quality
gradients, with types within clades A and C dominating samples from warmer
areas, whereas types within clade D dominated samples from more turbid inshore
sites (Quigley et al. 2017b). Continued sampling is needed to determine the full
extent of niche partitioning among Symbiodinium types, as well as key environmen-
tal drivers of their distributions.
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6.4 Physiological Differences Among Genetically Distinct
Symbiodinium Types

The influence of symbiont identity and diversity on fitness of the coral host has been
increasingly recognized. To a large extent, physiological characteristics of distinct
symbiont types have been inferred from correlative studies. For example, zonation of
Symbiodinium types over light gradients within colonies and between shallow and
deep colonies of Orbicella annularis, O. faveolata and O. franksi suggests that these
symbionts have distinct light sensitivities (Rowan and Knowlton 1995; Rowan et al.
1997; Toller et al. 2001a; Kemp et al. 2008, 2015). Observations of patchy bleaching
within Orbicella colonies during a natural bleaching event further suggest that
bleaching tolerances of different Symbiodinium types within clades A–C differ
substantially (Rowan et al. 1997). For example, bleached patches with lower pho-
tosynthetic values had higher abundances of B17 and C7 compared to non-bleached
patches that harboured A3 and D1a (Kemp et al. 2014). Toppled O. annularis
colonies showing a cline of Symbiodinium types within B and C along an irradiance
gradient re-established their original zonation patterns with respect to light in the
newly oriented colonies over a 6-month period (Rowan et al. 1997). Other environ-
mental factors such as temperature, substrate and water quality also shape distribu-
tions of in hospite Symbiodinium (Toller et al. 2001b; Cooper et al. 2011; Silverstein
et al. 2011; Kemp et al. 2015; Davies et al. 2016; Howells et al. 2016b; Ziegler et al.
2017) but may also depend on the scale of environmental variation across spatial
gradients (Cunning et al. 2017b). In combination, these studies suggest that coral–
algal associations can vary spatially and be controlled by environmental factors (see
also Sect. 6.5).

Similar patterns of depth zonation in Symbiodinium types have been observed for
Caribbean (i.e. Acropora cervicornis, Stephanocoenia intersepta, Porites
astreoides, Diploria strigosa, Acropora lamarcki, Madracis pharensis and
Orbicella faveolata) and GBR (Seriatopora hystrix) scleractinian corals, and for
the Japanese zoanthid Zoanthus sansibaricus (Baker et al. 1997; Baker 2001; Frade
et al. 2008; Bongaerts et al. 2010, 2015a; Kamezaki et al. 2013; Kemp et al. 2015;
Lucas et al. 2016), among others (Bongaerts et al. 2015b), although important
exceptions exist (Agaricia and Madracis spp., Frade et al. 2008; Bongaerts et al.
2015a;Montastraea cavernosa, Serrano et al. 2014). When corals were transplanted
from deep to shallow habitats (Baker 2001) or inversely (Bongaerts et al. 2015a),
changes in light levels (low to high or high to low, respectively) following trans-
plantation caused a portion of the transplanted colonies to bleach. When transplanted
deep to shallow, corals that showed depth zonation in symbiont types recovered with
the symbiont types typical of shallow conspecifics, rather than their original deep-
water types, whereas coral species that showed no depth zonation also showed no
change in symbionts following recovery (changes in transplanted colonies from
shallow to deep were not assessed). These results suggest that bleaching may
provide an opportunity to change Symbiodinium communities inside host tissues in
favour of a community that is better adapted to the changed environmental condi-
tions (Buddemeier and Fautin 1993; Baker 2001; Baker et al. 2004a; Buddemeier
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et al. 2004). However, communities in some colonies may change in the absence of
visible bleaching (Thornhill et al. 2006a). These authors also hypothesized that
certain members of Symbiodinium clade D, such as the Caribbean D1a (also
known as S. trenchi) and other types within clade D, are tolerant of high levels of
light or of high variability in stressors in general (Toller et al. 2001a; Jones et al.
2008; LaJeunesse et al. 2009; Cooper et al. 2011; Oliver and Palumbi 2011; Cunning
et al. 2015d; Bay et al. 2016; Ziegler et al. 2017). Symbionts within clade D were
found to be dominant in corals on a reef flat in Thailand (Brown et al. 2002), in
shallow O. faveolata colonies in Mexico and the Bahamas (Kemp et al. 2015), in the
O. annularis species complex in shallow depths in Panama (Toller et al. 2001a) and
in shallow corals leading up to and during bleaching (LaJeunesse et al. 2009), also
suggesting that at least some Symbiodinium D are relatively tolerant of high light. In
contrast, intra-colony zonation patterns of symbionts within clades C and D in
Acropora valida (Ulstrup and van Oppen 2003), and the high abundance of symbi-
onts within clade D in corals from turbid reef environments on the GBR (van Oppen
et al. 2001, 2005b; LaJeunesse et al. 2010a) led to the hypothesis that some
symbionts within clade D are better adapted to low-light environments (but see
Tonk et al. 2014, 2017). The subtropical coral, Oulastrea crispata, forms a stable
symbiosis with two species of Symbiodinium in clade D (LaJeunesse et al. 2014) in
turbid non-reefal environments of Taiwan, where annual water temperatures vary
between 12 �C and 35 �C (Chen et al. 2003), as does the zoanthid Palythoa
tuberculosa on turbid Singapore reefs (Reimer and Todd 2009). Populations of the
coral Acropora palifera in southern Taiwan harbour a mix of C and D symbionts,
with clade D species decreasing in relative abundance with seasonally increasing
seawater temperatures (Chen et al. 2005). Such distribution patterns suggest that
some Indo-Pacific Symbiodinium species in clade D may be shade-adapted and that
members of this clade can withstand low temperatures (see also Silverstein et al.
2017 for Caribbean D1a/S. trenchi).

In contrast to evidence that many Symbiodinium types within clade D are tolerant
of both low and widely varying temperatures, clade D types are commonly associ-
ated with corals inhabiting warm waters in a variety of regions globally (Baker et al.
2004b; Fabricius et al. 2004; Ulstrup et al. 2006; Oliver and Palumbi 2009; DeBoer
et al. 2012; Ziegler et al. 2017). The observation that C-dominated corals bleached
while D-dominated corals were healthy during the 1997/1998 bleaching event in the
far eastern Pacific (Glynn et al. 2001; Baker et al. 2004a) confirms that at least some
types within Symbiodinium D are tolerant of higher than normal water temperatures.
An apparent increase in the abundance of clade D following major bleaching events
also provides evidence that D-dominated corals are more thermally tolerant com-
pared with other coral–algal associations (Baker et al. 2004a; van Oppen et al.
2005b; Jones et al. 2008; Cunning et al. 2015a; Bay et al. 2016). In summary, corals
harbouring types within clade D appear to be tolerant of a range of stressors, for
example, both high- and low-temperature extremes, or have thermal tolerances that
vary among potentially different types within the clade (Swain et al. 2016;
Silverstein et al. 2017).

Experimentally based studies of the physiological characteristics of distinct
symbiont clades and types are burgeoning (Table 6.1). Cultured symbiont strains
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can differ considerably in physiological characteristics, such as growth rates or
photo-acclimatory responses to changes in irradiance (Iglesias-Prieto and Trench
1994, 1997; Kinzie et al. 2001; McGinty et al. 2012; Karim et al. 2015; Klueter et al.
2015; Suggett et al. 2015; Swain et al. 2016; Grégoire et al. 2017). For example,
S. thermophilum (distinct from another C3 type) and symbiont types A1, A20,
DBer06 and F2 have high thermal tolerances in culture or in hospite, but types
Amie09 and DAbr08 do not (Sawall et al. 2014; Hume et al. 2015; Swain et al.
2016). Infectivity of early life-history stages of corals varies among types, with
types A3, B1 and D1a exhibiting high infectivity compared to types such as A2
(Coffroth et al. 2001; Abrego et al. 2009b; Kuniya et al. 2015; Poland and Coffroth
2017). Further evidence of distinct physiological characteristics conferred on coral
hosts by different Symbiodinium taxa includes variation in transcriptional profiles
(Parkinson et al. 2016; Gierz et al. 2017) and bacterial communities established for
different host–symbiont associations (Littman et al. 2009). However,
photophysiological responses are known to differ significantly between in hospite
and expelled, freshly isolated or cultured Symbiodinium (Ralph et al. 2001; Bhagooli
and Hidaka 2003; Howells et al. 2012; Chakravarti et al. 2017); thus, it is not
completely clear how data from symbiont cultures relate to the natural, symbiotic
situation. Importantly, in hospite variation at the inter- and intra-type level signifi-
cantly impacts host physiology (Parkinson et al. 2015b). For example, experimental
in hospite studies of ITS-type D1 suggest that it is more thermally tolerant than
Symbiodinium ITS1-type C2 (equivalent to ITS2-type C3) or C1 in the Indo-West
Pacific (Rowan 2004; Berkelmans and van Oppen 2006; Abrego et al. 2008, 2012;
Mieog et al. 2009), and the same is true of D1a and C1b–c in the Caribbean
(Silverstein et al. 2015). D1 may also be more light-loving compared to other
Symbiodinium types (Iglesias-Prieto et al. 2004; Abrego et al. 2012). Given that
taxonomic resolution was at the clade level in many of these studies, differences
among them may well be due to physiological variation of D symbionts at the type or
genotype level, where, for example, DBer06, D1–4 (D1a), D1 and D1–11 all have
different thermotolerances (Swain et al. 2016). Therefore, physiological diversity
exists among Symbiodinium clades, types and genotypes, for example, among
different S. fitti-A3 strains, among others (Kinzie et al. 2001; Tchernov et al. 2004;
Baums et al. 2014; Parkinson et al. 2015a, b, 2016; Swain et al. 2016). Furthermore,
either host factors or the interaction between host and symbiont may cause the same
Symbiodinium types to function very differently in different host species (Goulet
et al. 2005; Abrego et al. 2008, 2012; Mieog et al. 2009). Thus, the physiological
responses of corals to environmental change may not be due to plasticity of the coral
or the algal symbiont within the coral but due to plasticity in the holobiont itself,
i.e. the same host may manifest different physiologies and responses depending on
the host–symbiont pairing (Baker 2003; Little et al. 2004; Goulet et al. 2005; Stat
et al. 2006; Parkinson and Baums 2014).
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6.5 Shifts in Symbiont Communities as a Mechanism
to Cope with Environmental Change

Initial uptake of symbionts by juvenile colonies is selective relative to the full
diversity of available free-living Symbiodinium (Poland et al. 2013; Quigley et al.
2017b) but non-selective relative to adult diversity. This relative flexibility may
allow for a mix of symbiont types to establish symbioses with a single host colony in
early ontogeny (Coffroth et al. 2001; Little et al. 2004; Abrego et al. 2009a, b;
Cumbo et al. 2013; Poland et al. 2013; Quigley et al. 2016, 2017a, b; Poland and
Coffroth 2017). Subsequently, one or a few symbionts typically increase in abun-
dance relative to others (Kinzie 1974; Coffroth et al. 2001; Little et al. 2004; Abrego
et al. 2009a; Poland et al. 2013; Poland and Coffroth 2017). Although the host
influences and potentially constrains the earliest Symbiodinium communities to
varying degrees (Quigley et al. 2016, 2017a, b; Poland and Coffroth 2017), the
greater diversity of symbiont types during early ontogeny compared to adults may be
an adaptive trait, as it permits changes in the relative abundance of symbionts with
distinct physiological characteristics within a single coral host (Little et al. 2004).
For example, the initial acquisition of generalist, hardy or stress-tolerant
Symbiodinium types/communities may provide a mechanism for rapid acclimatiza-
tion or adaptation to environmental change (Baker 2003), either during range
expansions of generalist hosts (Grupstra et al. 2017) or by providing options for
enhanced host survival or growth (McIlroy et al. 2016; Quigley et al. 2016), similar
to patterns documented in adults pre- (LaJeunesse et al. 2009) and post-bleaching
(Silverstein et al. 2015). This may be a mechanism for the holobiont to acclimate to
changes in the environment (Buddemeier and Fautin 1993; Ware et al. 1996;
Buddemeier and Smith 1999). Superficially, this hypothesis seems to be contradicted
by the observation that some corals exhibiting strong symbiont specificity and
temporal stability at adulthood also take up a range of symbiont types and clades
shortly after settlement (Coffroth et al. 2001; Goulet and Coffroth 2003a). However,
dissimilarity in symbiont communities between juvenile and adult corals may be
driven by contrasting selective pressures, which necessitate different communities
during early ontogeny (Gómez-Cabrera et al. 2008; Abrego et al. 2009a) to cope
with microhabitat changes in irradiance with colony growth, or the need to increase
in size rapidly to minimize mortality.

It is also feasible that such differences in Symbiodinium communities through
ontogeny are selectively neutral and, therefore, have not been lost through evolution.
Furthermore, this phenomenon may be related to the fact that immunity (including
allorecognition) is suppressed during the first ~2–13 months of a coral’s life (Frank
et al. 1997; Nozawa and Loya 2005; Puill-Stephan et al. 2009, 2012) and the
suppression of immunity itself may have selective advantages during early ontogeny
in corals both with and without symbiont specificity. It is also possible that speci-
ficity does not result in the total exclusion of heterologous symbionts at this early
developmental stage but is expressed as lower densities and/or differing patterns of
localization of heterologous compared with homologous symbionts inside host
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tissues (Rodriguez-Lanetty et al. 2004, 2006). Finally, even though multiple types
are initially acquired, some selectivity is exhibited, as not all symbiont types are
taken up while others are hosted only temporarily (LaJeunesse 2001; Weis et al.
2001; Rodriguez-Lanetty et al. 2006; Dunn and Weis 2009; Coffroth et al. 2010;
Poland et al. 2013). Such selectivity may be governed by host genetic architectures
that are heritable and transmitted maternally (Quigley et al. 2016, 2017a, b; Poland
and Coffroth 2017). For example, a range of mechanisms associated with both innate
and adaptive immune responses has been implicated in shaping invertebrate symbi-
ont communities, including those involving T cells, Nod2, and defensins
(as reviewed in Franzenburg et al. 2013), some of which have been associated
with the establishment of coral–Symbiodinium symbioses (Wood-Charlson et al.
2006; Bay et al. 2011; Davy et al. 2012). Depending on the level to which such
mechanisms are genetically determined, these mechanisms may potentially allow
hosts to exclude some symbiont species, as in B. asbestinum (Poland and Coffroth
2017).

Preliminary findings suggested that most coral colonies are dominated by a single
Symbiodinium type (Goulet 2006), with one or more additional types (from the same
or a different clade) maintained at such low densities that they have generally gone
undetected by the earlier genetic methods applied (LaJeunesse 2001; Santos et al.
2001; Goulet and Coffroth 2003a; Ulstrup and van Oppen 2003; Mieog et al. 2007).
It is now clear that the majority of coral species host Symbiodinium from multiple
clades and types (Baker and Romanski 2007; Silverstein et al. 2012). NGS estimates
suggest that corals typically host at least 3–17 different symbiont types across their
distributions (Kenkel et al. 2013; Green et al. 2014; Pochon et al. 2014; Thomas et al.
2014; Kennedy et al. 2016; Cunning et al. 2017b; Ziegler et al. 2017), with
individual colonies harbouring between 2 and 17 different symbiont types (Arif
et al. 2014; Boulotte et al. 2016; Kennedy et al. 2016; Quigley et al. 2017a) and eggs
and juveniles typically hosting greater diversity (13–31 symbionts) than adults
(Quigley et al. 2017a). These more sensitive methods have confirmed the almost
ubiquitous presence of background Symbiodinium (Silverstein et al. 2012; Arif et al.
2014; Quigley et al. 2014; Boulotte et al. 2016), although the role of these
low-abundance symbionts is controversial (Lee et al. 2016). Scleractinian corals
also exhibit varying degrees of symbiont specificity, with some species establishing
symbioses with a wider range of symbionts but others being relatively specific
(Silverstein et al. 2012). Some corals are able to establish and maintain stable
symbioses with a range of evolutionarily divergent Symbiodinium types (simulta-
neously within a single colony or separately in individual colonies) (Fabina et al.
2012, 2013). Key examples are Orbicella annularis, O. faveolata and O. franksi in
the Caribbean (Rowan and Knowlton 1995; Rowan et al. 1997; Toller et al. 2001a)
and Acropora millepora on the GBR (van Oppen et al. 2001; Berkelmans and van
Oppen 2006). Other corals exhibit high specificity/fidelity to one or a few closely
related Symbiodinium types, at least within a geographic region (populations in
different geographic regions may evolve specificity for different symbiont types).

Changes in the dominant symbiont type harboured by a single coral colony may
occur through changes in the relative abundance of symbiont types that are already
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present in host tissues (a process termed “shuffling”; Baker 2003) or by uptake of
new symbiont types from the environment (a process called “switching”; Baker
2003). For scleractinian corals, recent evidence suggests that the temporal window
for symbiont uptake persists into adulthood, even for vertically transmitting coral
species (Boulotte et al. 2016), although uptake after about 4–6 months may be
greatly reduced (Abrego et al. 2009a; McIlroy and Coffroth 2017). Evidence for
exogenous uptake of new symbiont types by corals is also available for a Caribbean
soft coral and a scleractinian (Lewis and Coffroth 2004; Coffroth et al. 2010),
although in both cases the new symbiont was lost over time.

Despite not knowing the exact mechanism(s) responsible, it has been shown that
the types of symbionts dominating coral tissues can change over time, most com-
monly in response to disturbance. Bleaching was shown to promote symbiont
community changes following transplantation of Caribbean corals from deep to
shallow water, and these changes were found to reduce mortality of corals compared
to reciprocal transplants from shallow to deep, which did not bleach and did not
change their symbionts (Baker 2001). Indeed, changes post-stress may be relatively
routine, although complete turnover in symbiont communities may be rare and
dependent on genetic constraints and the magnitude of the bleaching disturbance
and the recovery environment (Cunning et al. 2015a). For example, some colonies of
Orbicella annularis, O. franksi and, to a lesser extent, O. faveolata displayed
changes in the Symbiodinium types dominating their tissues over a 6-year survey
period in the Florida Keys. As no changes were observed in populations from the
Bahamas, it was suggested that changes in Florida were linked to the greater
environmental fluctuations that occur there (Thornhill et al. 2006b). Similarly, the
longevity of symbiont changes following disturbance may be short-lived. A consid-
erable increase in the occurrence of Symbiodinium trenchi (D1–4 ¼ D1a) after the
1997–1998 and 2005 bleaching events was also detected in populations of
O. annularis, but a reversion to pre-bleaching symbiont community composition
took place over a number of years (Thornhill et al. 2006a; LaJeunesse et al. 2009).

Transplantation of colonies of the GBR coral, Acropora millepora, from two
cooler reefs (a southern GBR and a mid-shelf reef in the central GBR) to a warm
inshore reef was followed by severe bleaching of all transplanted colonies during the
following austral summer ~6–11 months after transplantation (Berkelmans and van
Oppen 2006). The transplants from the mid-shelf reef recovered with the
Symbiodinium type they originally harboured (type C2*), but the transplants from
the southern location recovered with a different symbiont type (clade D) than the one
previously dominating their tissues (van Oppen ITS1 C2 is equivalent to LaJeunesse
ITS2 type C3). With this change from Symbiodinium C2 to a type within clade D, the
thermal tolerance of these corals increased by 1.0–1.5 �C, while transplants from the
mid-shelf reef, which did not change symbiont type, maintained the same thermal
stress response as before. The authors hypothesized that shuffling rather than
switching was the most likely mechanism responsible for the change, as clade D
Symbiodinium occurred at low abundance in the corals from the southern reef.
Indeed, there may be a threshold abundance for symbiont shuffling before different
types can rise to dominance following bleaching or disturbance (perhaps as low as
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0.3%, Bay et al. 2016). In addition, differences in the extent of bleaching between
the two transplanted populations (the transplants from the southern reef, which
changed symbiont type, bleached more severely than the ones from the mid-shelf
reef) may have triggered a change in the one population but not in the other (Toller
et al. 2001b).

Differences in the photochemical dynamics of symbionts can also be excellent
predictors of the tendency of corals to shuffle symbionts in favour of more
thermotolerant symbionts following bleaching. In an experimental study of three
species of Caribbean coral, 92.9% of variation in the degree of symbiont shuffling
could be explained by the time-integrated photochemical advantage of S. trenchi
(D1a) under heat stress (Cunning et al. 2017a, b). This robust empirical relationship
between the performance of different symbionts and their fate in corals following
heat stress shows that the likelihood of symbiont displacement by a thermotolerant
symbiont is not just a function of symbionts that are increasing in dominance but also
of the symbionts that are being displaced.

Similarly, in the Caribbean, shuffling from B1 to D1a was only brought on after
severe bleaching and warmer recovery temperatures in corals with less than 5%
abundance of D1a (Cunning et al. 2015a). Even vertically transmitting species from
the genus Pocillopora shuffle background populations of Symbiodinium in response
to bleaching (McGinley et al. 2012; Boulotte et al. 2016). Populations of the coral
Acropora palifera in southern Taiwan show seasonal variation in the relative
abundance of Symbiodinium species within clades C and D (Chen et al. 2005),
while O. annularis across the Caribbean vary in symbionts hosted from clades B, C
and D (Kennedy et al. 2016), suggesting that the symbiont shuffling response to
environmental changes such as temperature, nutrients and turbidity routinely desta-
bilizes symbiont communities and creates extreme variability. Shifts in
Symbiodinium communities during bleaching may also be attributed to greater
susceptibility of infection by opportunistic Symbiodinium in health-compromised
corals due to stress (Toller et al. 2001b; LaJeunesse et al. 2010b). For example,
dysbiosis may be caused by bleaching, facilitating the proliferation of particular
Symbiodinium (e.g. B1Exaiptasia) that are later replaced by the original dominant taxa
(C1b–c) once conditions return to normal (LaJeunesse et al. 2010b). While a change
in community composition to favour a particular Symbiodinium type (e.g. D1a) is
key to coral thermal tolerance (Silverstein et al. 2015), it is important to note that
thermal tolerance can also be independent of the Symbiodinium community
harboured (Kenkel et al. 2013), and instead reflects the host’s prior thermal history
(Barshis et al. 2013), or the host’s physiological condition post temperature stress, as
mediated by increased plasticity of host gene expression (Kenkel and Matz 2016).

In contrast to patterns of change in response to environmental conditions
described above, temporally stable coral–algal associations have been documented
for both spawning and brooding species. Thornhill et al. (2006b) observed no
significant changes in symbiont communities within individual colonies of the
broadcast spawners Acropora palmata, A. cervicornis and Siderastrea siderea
over a period of 6 years, which included a bleaching event, despite diversity in
symbiont types. The brooding species Agaricia agaricites, Porites astreoides and
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Siderastrea radians showed complete spatial and temporal symbiont fidelity to one
Symbiodinium type over a 3–4 year period, despite significant visual bleaching of
A. agaricites colonies in 2005 (Thornhill et al. 2006b). Symbiodinium types
harboured by colonies of the gorgonian coral, Plexaura kuna, remained unchanged
over a 10-year period, both across different habitats and after transplantation to
deeper water (Goulet and Coffroth 2003b) as did Fungia scutaria colonies
transplanted from the Indo-Pacific to Jamaica 35 years prior (LaJeunesse et al.
2005). The same results were obtained for the scleractinian corals, Pocillopora
verrucosa and Pavona gigantea, 1 year after transplantation to a different depth
(Iglesias-Prieto et al. 2004), for either dominant or background types (Ziegler et al.
2014). The brooding coral, Oulastrea crispata, also showed no change in its
symbiont community over a 1-year survey period (Chen et al. 2003). Reduced
bleaching prevalence can also occur in temporally stable coral–algal associations,
for example, in Caribbean octocorals harbouring various clones within
Symbiodinium type B1 (Lasker et al. 1984; Lasker 2003; Goulet and Coffroth
2004). However, as most shuffling events may be related predominantly to
low-abundance types (Boulotte et al. 2016), it may be important to reassess the
stability of these symbioses using qPCR or NGS methods that are more sensitive to
the detection of low-abundance types that may have been initially overlooked in
previous studies using DNA fingerprinting, DGGE and/or RFLP. It is also important
to assess how stable these partnerships may remain if subjected to repeated episodes
of disturbance, such as predicted under climate change scenarios (Chap. 13).

6.6 Prediction of Changes in Symbiodinium Diversity
and Distribution over the Next Several Decades

The findings summarized above show that changes in the dominant and background
symbiont types within individual coral colonies can occur and that the triggers to
shuffle include the strength of the disturbance, recovery temperature, initial abun-
dances of the constituent symbiont community and differences in their photosyn-
thetic performance. However, there are also clear differences in the ability of
different coral species to readily change their symbiont community and the speed
with which these changes can occur. Moderate to high heritability of the
Symbiodinium community in broadcast-spawning species with both horizontal and
vertical transmission (Poland and Coffroth 2017; Quigley et al. 2017a), as well as in
a planulating, vertically transmitting species (Quigley et al. 2018), demonstrates that
there is ample material for selection. However, brooding, vertically transmitting
species may be more limited in their capacity to change, given larger heritability
estimates (and, therefore, larger host genetic influence) (Quigley et al. 2017a). A
growing body of evidence supports the notion that a change in the dominant
symbiont type is accompanied by a change in the physiological response of the
holobiont (Table 6.1). Goulet et al. (2005) showed that the same clone of Exaiptasia
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pallida (formerly Aiptasia pallida, Grajales and Rodriguez 2014) responds differ-
ently to elevated temperatures with different clades of Symbiodinium. Those
harbouring Symbiodinium ITS-type A4 had higher photosynthetic rates than those
with Symbiodinium minutum (B1) at elevated temperatures. Similarly, McIlroy and
Coffroth (2017) demonstrated that Orbicella faveolata juveniles with
S. microadriaticum increased surface area faster than those harbouring
S. minutum. Berkelmans and van Oppen (2006) showed that shuffling symbionts
from Symbiodinium clade C to clade D in Acropora millepora colonies increased
thermal tolerance by 1.0–1.5 �C. An increase in thermal tolerance by 1.5 �C could
slow the onset of thermal stress by 50–80 years (Chap. 13); however, severe
bleaching conditions are expected to manifest annually in over 75% of reefs world-
wide by 2070, giving coral reefs little time for adaptation (van Hooidonk et al. 2016).
Moreover, shuffling from C symbiont types to D in this coral species comes at a cost
of reduced growth (Little et al. 2004; Jones and Berkelmans 2010; but see Cunning
et al. 2015a), lipid stores and reproduction (Jones and Berkelmans 2011) and is
linked to variable electron transport rates and light absorption capacity (Jones and
Berkelmans 2012) in D and C2 Symbiodinium in both laboratory and field settings.
Indeed, modelling of the ecological trade-offs between growth and thermal tolerance
reveals that the increased abundance of thermally tolerant D1a may detrimentally
affect reef recovery in the Caribbean through significant reductions in growth rate
(Ortiz et al. 2013).

At this stage, it is still difficult to make reliable predictions about future changes
in the composition of symbiont types harboured by reef corals due to the uncer-
tainties involved. In the short term, corals with flexible symbioses may shuffle or
switch symbionts, and an increase in the abundance of thermally tolerant symbiont
types (such as some types within clades C and D) is expected with an increasing
frequency of bleaching conditions. However, coral hosts that are less capable of
switching or shuffling may become (locally) extinct, leading to a loss in the diversity
of both corals and symbionts on many reefs [including changes in community
composition (Ruzicka et al. 2013; Lenz et al. 2015)] unless these holobionts are
able to adapt by other means to the changed environmental conditions. Indeed, the
preferential survival of host and symbiont generalists over specialists accompanied
by high background diversity of symbionts maximizes the probability of community
stability (Fabina et al. 2013, but see Putnam et al. 2012 who found that flexibility
correlated with increased sensitivity). The potential to adapt to increasing sea surface
temperatures depends mainly on the extent of heritable genetic variation for heat
tolerance, the generation times of the coral host and algal endosymbionts and the
strength of selection. Generation times are likely to be long for corals, yet heat
tolerance has been found to be heritable in the coral host, with offspring produced
from parents from warmer regions providing a tenfold increase in thermal tolerance
to offspring (Dixon et al. 2015). However, the coral host exhibited reduced herita-
bility of multiple traits related to thermal tolerance compared to Symbiodinium C2
and D (Császár et al. 2010). Thus, due to the enormous population sizes and rapid
turnover of symbiont populations in hospite, the frequency of somatic mutations in
these algal symbionts may be significant in terms of adaptive evolution (van Oppen
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et al. 2011; Levin et al. 2016; Chakravarti et al. 2017). Selection on genotypes that
differ physiologically (e.g. those that have undergone an advantageous mutation) has
been shown to lead to extremely fast changes in relative abundances of those
genotypes in Chlorella and Emiliania huxleyi (Meyer et al. 2006; Lohbeck et al.
2012). Finally, virtually nothing is known about the population structure and
reproductive dynamics of free-living Symbiodinium, although sexual recombination
in hospite is probable (Baums et al. 2014; Wilkinson et al. 2015). To examine
whether bleaching events represent bottlenecks for symbiont populations and
whether thermally tolerant strains can spread across reef systems, population genetic
approaches should be employed in future research.

6.7 Conclusions, Overview of Recent Progress and New
Questions

• Symbiodinium play an important role in determining the physiological perfor-
mance of corals. Although substantial progress has been made in untangling the
relative contributions of host versus symbiont to the bleaching response, the
molecular mechanisms and feedbacks between host and symbiont that lead to
cell expulsion remain poorly understood. Furthermore, the potential for bacterial
and viral partners to influence the bleaching process is still largely unknown.

• Symbiodinium exhibit significant diversity within phylogenetic clades. Many of
these intra-cladal variants (“types”, and in some cases species) exhibit different
physiological tolerances. Significant progress has been made in understanding the
role of key symbionts (e.g. S. trenchi-D1a) in bleaching response and recovery.
While the development of qPCR, microsatellite and NGS techniques has accel-
erated our understanding of intra-cladal diversity within Symbiodinium and the
ability to link taxonomy to symbiont and holobiont physiology, little information
exists as to the roles that the majority of Symbiodinium types may have in
holobiont physiology and the bleaching response. Current and expanding genome
sequencing efforts will enable the discovery of single-copy markers, further
facilitating the discovery and resolution of Symbiodinium taxonomic diversity.

• Within our range of detection, it is now known that corals typically host many
different symbiont types and that Symbiodinium communities are predominately
made up of a single genotype per Symbiodinium type in the Caribbean but may
comprise multiple genotypes per type in the Indo-Pacific. However, genetically
distinct symbionts have been detected at lower abundance within coral colonies,
and advances in sequencing have led to significant improvements in the detection
and characterization of background types, including their prevalence and roles in
bleaching recovery, as moderated by shuffling and/or uptake of exogenous
symbionts (switching). However, controversy remains as to the role and impor-
tance of the many hundreds of background types and variants that have been
detected to date.
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• Symbiont shuffling is an important mechanism by which some (but likely not all)
coral species can increase their thermal tolerance. On its own, however, this is
insufficient to cope with increasingly higher sea surface temperatures as a result
of global warming, as evidenced by the high thermal bleaching-related coral
mortality seen across the globe in 2014–2016 and on the GBR again in 2017.
However, more work is needed to determine which coral species can shuffle or
switch symbionts and the ecological trade-offs between growth and reproduction
associated with hosting altered symbionts and assess if these changes can keep
pace with the current rate and severity of ocean warming.

• Significant improvements have been made in understanding the adaptive poten-
tial and limits of corals. Although Symbiodinium demonstrate both positive
acclimatory and adaptive potential at the type and community level, further
work is needed to assess if this translates to improvements in holobiont survival
over long timescales. Finally, efforts should also be directed at integrating these
results into initiatives aimed at assisted evolution, including assisted gene flow.
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Chapter 7
How Does the Coral Microbiome Cause,
Respond to, or Modulate the Bleaching
Process?

K. M. Morrow, E. Muller, and M. P. Lesser

7.1 Introduction

Coral holobionts are formed by a dynamic multipartite symbiosis with intracellular
photoautotrophs in the genus Symbiodinium, as well as a consortium of microor-
ganisms that include bacteria, archaea, viruses, fungi, and protists. The coral
holobiont functions as a unit to provide flexible stability in the face of constant
environmental stressors. Coral bleaching, or the loss of Symbiodinium and their
pigments, has caused significant global declines in the percentage cover of reef-
building corals, particularly in recent decades as global sea surface temperatures
continue to rise (Lesser 2004; Hoegh-Guldberg et al. 2007). Bleaching can be caused
by a number of environmental stressors including extreme fluctuations in seawater
temperature (increase or decrease), high solar irradiance, sedimentation, pollution,
herbicides, and reduced salinity. Hyperoxic conditions have been shown to act
synergistically with solar radiation and thermal stress to produce significantly greater
fluxes of reactive oxygen species (ROS) in both host tissues and Symbiodinium spp.
that leads to photosynthetic dysfunction, apoptosis, and bleaching (Lesser 2006,
2011; Oakley et al. 2017). We now understand that different phylotypes of
Symbiodinium sp. within each clade represent multiple phenotypes and potentially
species (Thornhill et al. 2014), and display variable rates of photosynthesis, capacity
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to photoacclimate, stress tolerance, ROS production, superoxide dismutase (SOD)
activity, and metabolic interchange with their hosts (Banaszak et al. 2006; Robison
and Warner 2006; Reynolds et al. 2008; Suggett et al. 2008; Hennige et al. 2009;
Brading et al. 2011; Lesser 2011; Buxton et al. 2012; McGinty et al. 2012; Parkinson
and Baums 2014; Roberty et al. 2014; Krueger et al. 2015; Warner and Suggett
2016; Grégoire et al. 2017).

However, much less attention has been paid to the coral microbiome, which
includes the Symbiodinium, prokaryotes and viruses, and their role in coral bleaching
and the bleaching response. Microbes can exhibit extensive diversity and abilities to
respond to and withstand environmental pressures, and, as with other multipartite
mutualisms (Hussa and Goodrich-Blair 2013), corals may be able to take advantage
of these microbial partnerships by recruiting taxa with distinct environmental toler-
ances that provide a means to adapt and/or acclimate to environmental change. Here,
we provide some context for the importance of the coral microbiome to holobiont
function. We survey what is currently known about the relationship among
Symbiodinium, temperature stress, and the associated prokaryotes and viruses. We
also examine the impact of the coral bleaching response and environmental stressors
conducive to bleaching (e.g., temperature and irradiance) on coral-associated micro-
organisms with particular emphasis on diazotrophic (nitrogen-fixing) bacteria. In
conclusion, we summarize how a shifting and potentially dysbiotic microbiome may
impact the coral host in the context of bleaching.

7.2 The Coral Holobiont

Coral-associated microorganisms form an intimate and often species-specific rela-
tionship with their hosts, aiding in a number of beneficial functions (reviewed in
Bourne et al. 2016) and potentially provide assisted acclimatization in the face of a
changing climate (Webster and Reusch 2017). Recent reviews have proposed the
term “Beneficial Microorganisms for Corals” (BMC), which defines core microbiota
or microbial consortia that maintain coral health and resilience and potentially act as
bioindicators of environmental stress (Peixoto et al. 2017). Coral-associated micro-
organisms are known to provide pathogen resistance through the production of
antimicrobial compounds (Ritchie 2006; Rypien et al. 2010), catabolism of
dimethylsulfoniopropionate (DMSP), and the production of sulfur-based antimicro-
bial compounds and antioxidants (e.g., Raina et al. 2010, 2013; Todd et al. 2010;
Howard et al. 2011), as well as the acquisition and cycling of critical nutrients (i.e.,
carbon, nitrogen, phosphorus, metals, vitamins; Wegley et al. 2007; Raina et al.
2009; Zhang et al. 2015; reviewed in Bourne et al. 2016). Microorganisms also
appear to have evolved with corals at every life history stage (Apprill et al. 2009;
Sharp et al. 2012) and may be critical to their early settlement success and meta-
morphosis onto reef substratum (Negri et al. 2001; Webster et al. 2004; Sneed et al.
2014; Sharp et al. 2015).
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Although the coral microbiome is generally found to be diverse and species
specific (Rohwer et al. 2002), recent literature has demonstrated its flexibility as a
result of host physiology and morphology (Thompson et al. 2015), life history stage
(Sharp et al. 2012), and microhabitat within the coral substructure (i.e., mucus,
tissues, gastric cavity, skeleton; Sweet et al. 2011; Ainsworth et al. 2015). The
composition of the coral microbiome also varies with season, geography, and
environmental influences (e.g., temperature, pollution, macroalgae; Hong et al.
2009; Littman et al. 2009; Zhang et al. 2015; Glasl et al. 2016). Thus, as with
many other multipartite symbioses (reviewed in Hussa and Goodrich-Blair 2013),
we are finding that the composition and function of the community are not static and
appear to be influenced by host physiology, health, and the surrounding environ-
ment, likely fluctuating in time and space. There may be low- or high-abundance
bacterial or archaeal phylotypes that play a core role, as well as consortia of
microorganisms working together to perform critical functions, but many of the
ancillary commensal microbes may simply be filling a niche or providing functional
redundancy.

In comparison to the host, symbiotic microbes divide and evolve more rapidly,
potentially influencing the ability of the holobiont to adapt and/or acclimate to
changing environmental conditions. In this regard, van Oppen et al. (2015) hypoth-
esized that modification of the microbiome may be one way to facilitate
transgenerational acclimatization of coral reef organisms. This concept was further
developed in a commentary by Damjanovic et al. (2017), in which they proposed a
series of manipulative experiments to examine whether microbial mediation could
aid in long-term coral stability. Subsequent perspectives have also examined the
importance of microorganisms to corals as an adaptive mechanism when faced with
climate change stressors such as elevated seawater temperature and pCO2 levels
(Torda et al. 2017; Webster and Reusch 2017). By shuffling community composition
of both the microbiome and Symbiodinium populations, in addition to acquiring new
genetic material through mutation and/or horizontal gene transfer, while interacting
with the surrounding seawater microbiota, the holobiont may or may not transfer
advantageous microbial alterations to new generations that could help them avoid or
withstand future bleaching events (Fig. 7.1; Webster and Reusch 2017). This theory
also feeds into the founder effect, which occurs when a new population (e.g., coral
planula microbiome) is established by a small number of individuals from a larger
population (parent colony microbiome), leading to speciation and subsequent evo-
lution in extreme cases (Barton and Charlesworth 1984). The founder effect origi-
nates in population genetics but has been applied to the study of microbiomes for
some time. For example, founder populations from the human mother may be key to
a more natural ecological succession of the infant gut, leading to stability within
adult immune and metabolic responses (Mueller et al. 2015). In a similar manner,
vertically and horizontally transmitted founder populations from acclimated coral
holobionts may be key to the stability of future generations (Fig. 7.1). Although we
still have much to learn about the function and flexibility of the dynamic relationship
between coral host and microbiome, the theory that holobiont resilience may be
positively influenced by a flexible, and potentially manipulable, multipartite symbi-
osis is met with hesitant optimism.
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7.3 Holobiont Response to Thermal Stress and Bleaching

For over two decades, we have known that coral bleaching events can have signif-
icant and detrimental impacts on microbial community composition (Ritchie et al.
1994), although only a handful of studies have specifically examined the impact of
bleaching and the bleaching response on the coral microbiome (n ¼ 9; Table 7.1).
Most studies have instead focused on the impact of elevated temperature stress rather
than irradiance, sedimentation, or pollution as a bleaching catalyst (n ¼ 15;
Table 7.1). It should be noted that although we do not include studies associated
with the Vibrio-induced bleaching model system, we describe the concepts in
Sect. 7.6.

In general, bleaching-related microbial community shifts are often characterized
by a higher proportion of taxa affiliated with opportunistic bacteria (Mouchka et al.
2010), an increase in genes associated with virulence factors (Littman et al. 2011),
and a shift toward Vibrio dominance (Bourne et al. 2008; Frydenborg et al. 2014;

Healthy Holobiont

Water Column Microbial Community

Dysbiotic/
Unstable

Holobiont

Coral

MicrobesSymbio.

Vertical
Transmission

Horizontal
Transmission

Increase in bacterial abundance, productivity, respiration

Increase in 
Heterotrophic 

and 
Opportunistic 

bacteria

More susceptible
to water column

microbial 
changes

Vertical
Transmission Greater Mortality;

Increase in
alt. dominants 

(e.g. macroalgae, sponges)

Mutations/ HGT within microbes
Symbiont shuffling (+)
Decline in bleaching 

Mutations/ HGT within microbes
Symbiont shuffling (-)

Increase in Diazotrophs
Increase in bleaching/disease

Increasing
Temperatures

Acclimated
Holobiont

Heat tolerant,
more resilient,

next generations

Winners

Losers

Horizontal
Transmission

Fig. 7.1 Illustration depicts how shifts in coral microbiome and Symbiodinium populations,
coupled with acquiring new genetic material through mutation and/or horizontal gene transfer,
may be advantageous (e.g., winners) or disadvantageous (e.g., losers), to future generations of coral
holobionts. Corals may be further impacted by seawater microbial community composition as this
too will shift in response to changing environmental conditions and ecosystem structure resulting
from repeated bleaching events [Concept adapted from Bourne et al. (2016) and Webster and
Reusch (2017)]
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Tout et al. 2015; Table 7.1), although some corals, such as Porites lobata (Hadaidi
et al. 2017) and Orbicella faveolata (Tracy et al. 2015), are still able to maintain
stable microbiomes through bleaching events. More recently, research has specifi-
cally focused on the impact of elevated temperatures on the coral microbiome,
finding that even a single stressor can cause significant shifts in the microbiome,
often increasing diversity (McDevitt-Irwin et al. 2017; Table 7.1), and the abun-
dance of opportunistic bacteria such as Vibrio spp. (Littman et al. 2010; Frydenborg
et al. 2014; Tout et al. 2015; Gajigan et al. 2017).

The coral microbiome itself may have a temperature tolerance threshold, as it was
found that bacterial community changes occurred at temperature elevations >1 �C,
with no evidence of community shifts at lower-temperature changes (Salerno et al.
2011). Other studies have demonstrated a link between temperature stress and
bacteria associated with nitrogen cycling (reviewed in Sect. 7.3.1; Santos et al.
2014; Ziegler et al. 2017). Similar patterns emerge when corals are exposed to the
compounding effects of multiple stressors (i.e., elevated temperatures, dissolved
organic carbon, pH, and/or nutrients), causing shifts in the microbiome community
toward a dysbiotic state, or disturbance of the “normal flora,” which may be
associated with a disease state leading to bleaching and/or mortality (Rosenberg
et al. 2007; Vega Thurber et al. 2009; Zaneveld et al. 2016). Zaneveld et al. (2016),
in a 3-year field study, showed that chronic exposure to eutrophication, algal
overgrowth (e.g., simulated overfishing), and temperature stress destabilized coral
microbiomes making them more susceptible to the effects of future exposures.
Webster et al. (2016) also demonstrated a significant interactive effect of thermal
stress and ocean acidification on the microbial communities of corals and other
important calcifying species on coral reefs. These studies, and others outlined below,
demonstrate that microbiomes can change rapidly in response to moderate to severe
environmental stress, potentially aiding in the adaptability of their host (proposed in
Webster and Reusch 2017; Peixoto et al. 2017) and/or leading to their destabilization
and loss of critical functions (Zaneveld et al. 2016; McDevitt-Irwin et al. 2017;
Fig. 7.1).

A recent meta-analysis found that stress, particularly during climate anomalies, is
implicated in an increase in community diversity and a decline in the relative
abundance of potentially key coral endosymbionts in the genus Endozoicomonas
(class Gammaproteobacteria, order Oceanospirillales; McDevitt-Irwin et al. 2017).
Members of the Endozoicomonas genus are often dominant members of coral
microbiomes (Morrow et al. 2012; Bayer et al. 2013; Rodriguez-Lanetty et al.
2013) and can be found deep within coral tissues (Bayer et al. 2013; Neave et al.
2016a). They are hypothesized to prevent mitochondrial dysfunction and promote
gluconeogenesis (Ding et al. 2016), aid in sulfur cycling (Neave et al. 2016b), and
protect the coral from bleaching pathogens (Pantos et al. 2015), potentially through
the production of quorum-sensing metabolites (Mohamed et al. 2008) or antimicro-
bial compounds (Rua et al. 2014). McDevitt-Irwin et al. (2017) and others (Zaneveld
et al. 2016) provide evidence that suggests the coral microbiome becomes more
diverse (increased richness), more variable (reduced evenness), and less stable when
under stress. Interestingly, a similar pattern has emerged in human microbiome
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studies, where once it was believed that a dysbiotic state was characterized by low
diversity and overabundant opportunistic or pathogenic taxa (Lozupone et al. 2012);
more recent studies show that human microbiomes can also become more variable
under stress (reviewed in Zaneveld et al. 2017). Perhaps this discrepancy has to do
with the time frame in which we are sampling microbiomes, capturing the commu-
nity as it transitions from a healthy equilibrium through a variable dysbiotic state to
an alternate stable state characterized by pathogens and disease symptoms (reviewed
in Bourne et al. 2016). In fact, communities are more often in a transient state of
disturbance than stability, and some have suggested we shift our focus to studying
alternate transient states, rather than alternate stable states, in order to make more
relevant predictions about community assembly (Fukami and Nakajima 2011).
Nevertheless, it would likely be difficult for the coral to return to a healthy equilib-
rium after a stressor is alleviated, leading to a reduction in overall ecosystem
resilience, unless the ability of the coral microbiome to shift and acclimate to
changing environmental conditions confers some adaptive advantage to the
coral host.

One of the best examples that the coral microbiome may actually preadapt a coral
to survive thermal stress is a recent study by Ziegler et al. (2017), which presents
experimental data demonstrating that the microbiome of heat-sensitive and heat-
tolerant corals is significantly different and that heat-tolerant corals exposed to
bleaching temperatures showed no changes in their microbiomes and bleached less
often. In these experiments, corals (Acropora hyacinthus) were exposed to both a
long-term (17-month) reciprocal transplant experiment between two thermally dis-
tinct environments and a short-term heat-stress experiment. Coral microbiomes were
shown to rapidly adjust to new environmental conditions (~20 h), and the thermal
environment from which the corals originated (17-month experiment) predicted their
microbial response to heat stress. These results suggest that long-term exposure to
environmental stress such as thermal variability allows the coral microbiome to
acclimatize, which in turn may play a role in a coral’s resistance to thermal stress
(Fig. 7.1). In an earlier laboratory-based study (Bellantuono et al. 2011), Acropora
millepora corals were exposed to temperatures 3 �C below the bleaching threshold
(generally defined as ~1 �C above summer maximum) in a short-term (10-day)
experiment, which resulted in a significant reduction in bleaching susceptibility.
However, no changes were detected in the Symbiodinium populations based on
internal transcribed spacer region 2 (ITS2) sequencing or bacterial populations
based on denaturing gradient gel electrophoresis (DGGE) results from a single
time point 6-days into the experiment. The authors concluded that rapid temperature
acclimation may be a function of host physiological plasticity rather than shifts in the
symbiont community. In another study, antibiotics were applied every day over the
course of a heat-stress experiment to reduce the bacterial activity associated with
Pocillopora damicornis corals while monitoring the coral holobiont response to
thermal stress (Gilbert et al. 2012). Microbial viability and activity were monitored
with 96-well Biolog EcoPlates™, an assay panel that measures bacterial carbon
metabolism. The heat-stressed and antibiotic-treated holobiont displayed signifi-
cantly depleted host protein levels, chlorophyll a concentrations, and tissue loss in
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comparison to corals with an intact (i.e., unmanipulated) microbiome, again
suggesting that the microbial consortium may provide some resilience against
thermal stress. Thus, although thermal acclimatization has been widely demonstrated
in reef corals (Brown et al. 2002a, b; Middlebrook et al. 2008; Barshis et al. 2010;
Palumbi et al. 2014 among others), these recent studies are the first to demonstrate
the potential role of the microbiome in host stability and thermal tolerance.

7.3.1 Diazotrophy and the Bleaching Response

Nitrogen is a critical and limiting nutrient that corals generally acquire through the
uptake of dissolved inorganic nitrogen or heterotrophic feeding. Several studies have
demonstrated the presence of nitrogen-fixing bacteria (diazotrophs) in the coral
microbiome (e.g., Lesser et al. 2004) and that “new” nitrogen can be obtained
from these members of the coral microbiome (Lesser et al. 2007a). More broadly,
there is evidence suggesting that there is a critical link between coral bleaching and
the availability of environmental nitrogen (Wooldridge 2013; Vega Thurber et al.
2014; Shantz et al. 2016; Pogoreutz et al. 2017). In fact, an increase in the acquisition
of nitrogen through heterotrophy has been shown to reduce post-bleaching
photoinhibition and recovery times (Grottoli et al. 2006; Ferrier-Pagès et al. 2010;
Hoogenboom et al. 2012). To this end, Godinot et al. (2011) demonstrated that
elevated temperatures (33 �C) caused a severe decrease in nitrate and ammonium
uptake rates, even leading to release of nitrogen into seawater. Furthermore, the
combination of high temperature (33 �C) and low pH (7.5) resulted in a significant
decline in phosphate and nitrate uptake rates, although these would be the ecological
extremes for tolerable temperatures and pH (Godinot et al. 2011).

From the perspective of diazotrophy (i.e., bacteria and archaea that fix atmo-
spheric nitrogen gas into a more usable form such as ammonium), daylight
dinitrogen (N2) fixation was shown to significantly increase in corals exposed to a
6 �C temperature increase in comparison to controls (Cardini et al. 2016). Corals
exposed to nitrogen-enriched seawater also demonstrated an increase in
photoprotective pigment concentrations while maintaining rates of photosynthesis
and calcifications at ca. 60% and 100% of rates for unenriched controls that
experienced a significant decrease in photosynthesis and calcification (Beraud
et al. 2013). The authors suggest that inorganic nitrogen availability may be akin
to heterotrophic feeding in maintaining coral metabolism under stressful conditions.

Based on the above experiments, it is, therefore, not surprising that recent
research has also documented an increase in the abundance and diversity of coral-
associated diazotrophic bacteria during thermal stress events. Diazotroph diversity
and richness within Mussismilia harttii corals increased by threefold during both a
2.5 and 4 �C experimental temperature increase (Santos et al. 2014). Pogoreutz et al.
(2017) also documented a significant increase in diazotrophic activity during a
28-day, sugar-induced bleaching experiment with Pocillopora verrucosa corals.
Although the Pogoreutz et al. (2017) study may not be ecologically relevant, they
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demonstrated the impact of bleaching on the diazotrophic community without the
confounding effects of heat and light stress. High temperature and light also increase
rates of organic matter release by corals into seawater which could further enhance
pelagic N2 fixation rates (Böttjer et al. 2016). Ainsworth et al. (2015) identified two
potential N2-fixing bacteria as intracellular within Symbiodinium and within
Symbiodinium-containing coral cells (Actinomycetales and Ralstonia, respectively),
using fluorescent in situ hybridization (FISH) and 16S rRNA gene-targeted sequenc-
ing (454 tag sequencing). Both identified phylotypes can also form diazotrophic
symbiotic associations in other photosynthetic systems (Chen et al. 2003; Sellstedt
and Richau 2013). Finally, although diazotrophs were not specifically examined,
Ziegler et al. (2017) identified bacteria affiliated with the class Alphaproteobacteria
(e.g., Rhodospirillaceae, Rhizobia) as responsible for a large fraction of the func-
tional enrichment within heat-tolerant corals, as opposed to Gammaproteobacteria
(e.g., Hahellaceae, Alteromonadaceae, Vibrionaceae), within heat-sensitive corals.
Similarly, Lee et al. (2016) documented an increase in Alphaproteobacteria,
Verrucomicrobiae, and Cyanobacteria in the mucus of thermally stressed corals
preceding a bleaching event. Members of the Alphaproteobacteria and
Cyanobacteria are often associated with nitrogen cycling in host-associated
microbiomes (Lesser et al. 2004, 2007b; Tsoy et al. 2016).

As noted above, an increase in available nitrogen may benefit corals under
thermal stress; however, too much may interfere with the internal equilibrium
between host and Symbiodinium, potentially contributing to the bleaching response.
Diazotrophy in corals has been shown to increase the in hospite growth rates of
Symbiodinium under normal environmental conditions without an increase in bio-
mass (Lesser et al. 2007a), presumably from a host-controlled increase in symbiont
losses. This was hypothesized to be offset by an increase in daily turnover rates of
Symbiodinium (Lesser et al. 2007a). Higher levels of nitrogen supplied by
diazotrophic bacteria would likely release Symbiodinium completely from
N-limited growth and cause high rates of cell division and reduced translocation of
photosynthates to the coral (Falkowski et al. 1993; Dubinsky and Jokiel 1994;
Suescún-Bolívar et al. 2016). Pogoreutz et al. (2017) theorize that retaining photo-
synthates could result in the energy limitation of coral carbon-concentrating mech-
anisms (CCMs), which would result in carbon (i.e., CO2) limitation within
photosynthetic dark reactions, causing a heightened susceptibility to photodamage
and subsequent bleaching (i.e., sink limitation). Stimulated nitrogenase activity due
to elevated temperatures leading to a further increase in coral-associated
diazotrophic activity is believed to be another mechanism by which the internal
nutrient equilibrium within the coral holobiont becomes imbalanced, disrupting the
N-limited state of Symbiodinium and potentially inducing or prolonging bleaching
events (Rädecker et al. 2015; Fig. 7.2). Pernice et al. (2012) clearly demonstrated the
importance of ammonium (NH4

+) uptake from the surrounding seawater, while
Cardini et al. (2015) demonstrated that on a seasonal basis some corals could become
more dependent on the contribution of fixed N2 for their nitrogen budgets. These
studies suggest that coral-associated nitrogen fixers may be more intimately tied with
Symbiodinium and the coral bleaching response than we currently understand
(Fig. 7.2).
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7.3.2 Coral Mucus and the Mucus Microbiome in Response
to Bleaching

Thermal stress and bleaching can also cause a compositional change in coral mucus
(Wooldridge and Done 2009), which is a protective boundary layer between the
coral tissues and external environment where the majority of the microbiome takes
up residence, in a similar manner to the mucosal community of the human gut
(Smillie et al. 2011). The surface mucus layer is loosely defined as a polysaccharide-
protein-lipid complex secreted by epithelial mucocytes onto the coral surface
(reviewed in Brown and Bythell 2005). Mucus production by corals not only aids
in feeding and self-cleaning but also provides protection against pathogens, desic-
cation, UV radiation, pollutants, and other physical damage (Brown and Bythell
2005; Bythell and Wild 2011; Barr et al. 2013a). Much of the fixed carbon within the
mucus layer originates from the Symbiodinium and serves as a rich food source for
bacteria (Ritchie and Smith 2004). By providing a stable growth medium for both
beneficial and detrimental bacteria, mucus plays a key role in a coral’s innate
immune function, enhancing susceptibility or providing protection from pathogens
(Ducklow andMitchell 1979; Banin et al. 2001; Lipp and Griffin 2004). However, as
the composition of coral mucus is altered by thermal stress events, so will the
stability of the mucus- and tissue-associated microbiome.

Coral bleaching and thermal stress increase organic matter and mucus production
in some corals (Niggl et al. 2009) while decreasing mucus thickness in others (i.e.,
Diploria sp.; Pratte and Richardson 2014). For example, the chemical composition
of Acropora muricata coral mucus was altered in experimentally thermally stressed
corals (26–33 �C), causing a change in the proportion of simple sugars (e.g., fucose,
glucose, and mannose) and a reduction in the proportion of N-acetyl glucosamine
and C6 sugars, which also correlated with a shift in the coral-associated microbial
community (Lee et al. 2016). A drop in the relative abundance of
Gammaproteobacteria was associated with a change in the content of fucose and
mannose sugars, and an increase in Cyanobacteria was correlated with shifts in
arabinose and xylose (Lee et al. 2016). Furthermore, these changes in the composi-
tion of the mucus and microbiome began at 29 �C, prior to visual signs of bleaching,
which occurred at 31 �C, suggesting that mucus composition could be used as a
bioindicator of pre-bleaching conditions.

In a seminal paper describing the coral mucus microbiome, Ritchie (2006)
demonstrated that healthy Acropora palmata mucus selected for bacteria that pro-
duced antibiotics active against a putative coral pathogen (Serratia marcescens
PDL100). Not only was antibiotic activity lost during a summer bleaching event
(i.e., increased temperatures), but coral tissues were dominated by bacteria affiliated
with the genus Vibrio. Since then, several studies have also shown a reduction in
antibacterial activity of mucus-associated bacteria under elevated temperature stress
(Shnit-Orland and Kushmaro 2009; Rypien et al. 2010). Recent work has suggested
additional mechanisms for the suppression of opportunistic pathogens by coral-
associated commensal bacteria. For example, Frydenborg et al. (2014) demonstrated
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that Vibrio spp. were better able to use key substrates found in coral mucus (e.g., α-
D-glucopyranosidase), allowing them to outcompete commensal coral bacteria under
elevated temperatures. Lee et al. (2015) also demonstrated that the relative abun-
dance of Vibrio spp. increased and the putative symbiont, Endozoicomonas spp.,
decreased at pre-bleaching temperatures (29 �C). Interestingly, this declining trend
continued for Endozoicomonas spp., but the abundance of Vibrio-related OTUs also
declined in the tissues but increased in the mucus layer as the coral reached
bleaching temperatures (31 �C; Lee et al. 2015), perhaps avoiding the toxic envi-
ronment developing within the coral tissues.

Thermally bleached corals have also demonstrated a reduced capacity to remove
sediments (Bessell-Browne et al. 2017), which are laden with bacteria and viruses
(Breitbart et al. 2004). Sedimentation and water turbidity can result from both
anthropogenic activities (e.g., dredging, coastal runoff) and weather events. The
removal of sediments is not only energetically costly (Peters and Pilson 1985; Riegl
and Branch 1995) but has also been associated with the transmission of pathogens
(Hodgson 1990) and increased disease prevalence (Haapkylä et al. 2011; Pollock
et al. 2016). Bleaching may further interfere with sediment removal by reducing the
number of epithelial mucocytes (Fitt et al. 2009; Piggot et al. 2009), as well as
reduced mucus within the deeper gastrodermal layers (Fitt et al. 2009). Increased
accumulation of sediments on bleached corals can lead to mucus sheet formation
(Bessell-Browne et al. 2017), necrosis (Weber et al. 2012), and ultimately mortality.
These studies indicate that the structure and composition of coral mucus can change
under thermal stress and bleaching events (see also Krediet et al. 2009; Mao-Jones
et al. 2010), which may lead to an environment that is less stable and more attractive
to opportunistic microorganisms and pathogens than beneficial symbionts (Fig. 7.2).

Bacteriophages (i.e., a virus that infects and replicates within a bacterium) also
play a dynamic and little recognized role in the development and maintenance of
coral mucosal communities and have been shown to shift their community compo-
sition during environmental changes, including disease states (Columpsi et al. 2016;
Soffer et al. 2015). Bacteriophage adherence to mucus (BAM) describes how phage
can directly attach and interact with coral mucins (Barr et al. 2013a), displaying
specific bacterial hunting behavior and potentially aiding in phage-mediated immu-
nity (Barr et al. 2013b). The coral mucus layer is thought to be spatially structured in
a similar manner to other metazoans (Johansson et al. 2011), forming a gradient from
the seawater interface where microbial abundance is highest to the coral epithelium
where microbial abundance is lowest and mucin production is greatest (Fig. 7.2).
Silveira and Rohwer (2016) proposed that this gradient supports greater viral
lysogeny at the mucosal-seawater interface, protecting coral commensals from
superinfection and increasing their fitness, while deeper layers are protected from
invading pathogens via higher levels of phage infection and cell lysis. High lytic
activity within the intermediary mucus layers likely facilitates diversification of the
bacterial community, aiding in the maintenance and assembly of a healthy microbial
community by providing spatial refuges and coexistence stabilization (Schrag and
Mittler 1996; Klimenko et al. 2016). Therefore, shifts in the structure and thickness
of mucus resulting from environmental stress or disease may increase the proximity
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of microbes to the coral epithelium (Earle et al. 2015), shifting the phage-mediated
immunity mechanisms and potentially allowing for invasion by lysogenic pathogens
leading to the onset of infection (Fig. 7.2).

7.4 Microbiome-Symbiodinium Interactions

The control of the composition of the coral microbiome may be dependent on
multiple factors, including host age, genotype and clade, Symbiodinium phylotype,
and/or the environment (Hernandez-Agreda et al. 2016). In particular, the presence
of photosymbionts is believed to influence the composition of host microbiomes
through the release of a complex array of organic exudates (e.g., DMSP, amino
acids, and polysaccharides; Bourne et al. 2013). Habitat-specific environmental
differences have also been shown to drive the composition of the microbiome in
sponges (Morrow et al. 2016) and in corals (Pantos et al. 2015). This may be why
Hernandez-Agreda et al. (2016) identified a distinct group of bacteria associated with
one coral species across multiple habitat types. Other studies have identified addi-
tional features of the host that are deterministic for the community structure of the
coral microbiome (Williams et al. 2015; Apprill et al. 2016).

The growth and density of in hospite Symbiodinium populations are highly
dependent on nitrogen availability; therefore, microorganisms that mediate nitrogen
cycling within the holobiont may have consequences for the stability of these critical
dinoflagellate populations (see Sect. 7.3.1). For example, diazotrophs (N2-fixing
bacteria and archaea) have been estimated to provide as much as 11% of the
Symbiodinium nitrogen requirements (Cardini et al. 2015). Recent research has
also confirmed earlier observations (Lesser et al. 2007a) that the majority of fixed
nitrogen is translocated to the Symbiodinium compartment and is largely driven by
bacteria affiliated with the Alpha- and Gammaproteobacteria, including the orders
Rhizobiales and Rhodobacterales (Olson and Lesser 2013; Lesser et al. 2017).
Members of the Cyanobacteria (Lesser et al. 2007a), fungi (Wegley et al. 2007),
and archaea (Siboni et al. 2012) are also implicated in nitrogen cycling within corals.
Also, common diazotrophs such as Rhizobia are found in early life stages,
suggesting that these relationships develop early and provide critical photosymbiont
stability within the holobiont (Lema et al. 2014).

Additional interactions between Symbiodinium and bacteria have been identified;
for example, bacteria affiliated with the order Roseobacterales (within the class
Alphaproteobacteria) were shown to form obligate associations with Symbiodinium
in laboratory cultures and may increase Symbiodinium growth rates (Ritchie 2012).
The Roseobacterales, along with other coral-associated bacteria (e.g.,
Endozoicomonas, Halomonas), are also affiliated with sulfur cycling in the coral
holobiont (Raina et al. 2009; Todd et al. 2010). Sulfur compounds such as
dimethylsulfoniopropionate (i.e., DMSP) and its breakdown products can act as
antioxidants that may protect Symbiodinium from photosynthesis-derived oxidative
stress (Sunda et al. 2002; Deschaseaux et al. 2014). Furthermore, a strong negative
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correlation has been demonstrated between the abundance of bacterial pathogens
and the abundance of the proposed symbiont Endozoicomonas in bleaching corals
(Pantos et al. 2015). This protective benefit was further alluded to in a study by
Meyer et al. (2014), in which disease lesions on the coral Porites astreoides
correlated with a low relative abundance of bacteria affiliated with Endozoicomonas
spp. rather than with a specific pathogen. Although multiple studies indicate desta-
bilization of the bacterial community is associated with stress (Vega Thurber et al.
2009), pathogen exposure (Welsh et al. 2017), or disease symptoms (Sunagawa et al.
2009), ultimately it is difficult to separate correlation from causation to determine
whether Endozoicomonas spp. are responsible for protecting the coral from patho-
gens (Glasl et al. 2016) or are simply declining in response to stress and/or disease
(Morrow et al. 2015, 2017).

It is clear that very little is known about the specific interactions between the
microeukaryote Symbiodinium and prokaryotic components of the coral
microbiome. The emerging story of the coral microbiome was preceded by theory
and technical approaches pioneered by studies on the human microbiome. Similarly,
the oceanographic community has been intensely interested in metabolic exchanges
between phytoplankton, including dinoflagellates, and bacterioplankton in what has
been called the “phycosphere” (Tang et al. 2010; Hu et al. 2015; Bolch et al. 2017).
These studies have demonstrated that unique metabolic interdependencies exist
within many pelagic eukaryotic-prokaryotic associations that could act as model
systems to guide studies on similar interactions in symbiotic systems such as corals.
One of the most well-studied examples is the Roseobacter-algae interaction,
whereby Roseobacter bacteria supply vitamins, phytohormones, and antibacterial
compounds to the alga (Sharifah and Eguchi 2011). However, when algal
populations decline and release cell wall degradation products (i.e., p-coumaric
acid), the Roseobacter shift from mutualistic partner to opportunistic pathogen,
releasing 11 types of troponoids that eventually kill the alga and switch the
Roseobacter from a sessile lifestyle to a motile, free-living cell (Sule and Belas
2013; reviewed in Ramanan et al. 2016). Thus, there is certainly potential for
bacteria to play a critical role in the growth, stability, and perhaps demise of the
coral-Symbiodinium relationship as was previously suggested in the “bacteria-
induced bleaching” hypothesis (see Sect. 7.6).

7.5 Coral Bleaching in Relation to Coral Disease

While overfishing, pollution, and coastal development have long been drivers of
coral reef degradation, the dominant cause of reef decline is climate change, which
primarily manifests itself as coral bleaching. However, diseases with etiological
agents, either primary or secondary in nature, are largely responsible for a 30%
decline in worldwide coral cover over the past 30 years (Hughes et al. 2003). More
recent research has predicted that coral diseases may cause as much mortality as
bleaching within future decades (Maynard et al. 2015). While the assumptions of the
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model of Maynard et al. (2015) have been questioned (Lesser and vanWoesik 2015),
several other models have revealed that many coral diseases are not infectious (i.e.,
transmissible) and do not fit into a contagious disease model (Yee et al. 2011). Most
studies are more consistent with disease prevalence being secondary to environmen-
tal stress, which leads to opportunistic coral disease outbreaks (Lesser et al. 2007b;
Muller and vanWoesik 2012; Randall and vanWoesik 2015). A disease is defined as
any impairment that interferes with or modifies the performance of normal functions,
including responses to environmental factors, infectious agents, inherent or congen-
ital defects, or combinations of these factors (Wobeser 2006). Identifying disease
within corals is surprisingly difficult as there are very few macroscopic signs
produced by corals to indicate poor physiological functioning. There is still little
agreement on whether coral diseases are infectious or are opportunistic in nature, and
many of the etiological agents still remain elusive (Lesser et al. 2007b; Apprill et al.
2013; Lesser and Jarett 2014).

Environmental stress causes coral bleaching (Fitt et al. 2001; Lesser 2011) and is
also a prerequisite for the occurrence of many coral diseases (Burge et al. 2014).
Indeed, environmental stress mediates the occurrence of coral disease by lowering
host resistance, by increasing pathogen abundance and virulence, or through com-
binations of these responses (Bruno et al. 2007; Brandt and McManus 2009;
Sokolow 2009; Reed et al. 2010; Muller and van Woesik 2014; Randall et al.
2014; Zvuloni et al. 2015). Even apparently healthy corals are often infected with
microbes that may negatively impact health and host physiology (Miller et al. 2014).
Despite improved efforts to identify the primary pathogens responsible for infection,
most studies remain dependent on the macroscopic disease appearance for diagnosis
(Ainsworth et al. 2007), with its associated limitations. Corals may show visual signs
of disease such as bleached tissue, discoloration (darkening or abnormal pigmenta-
tion), abnormal growth, or tissue loss. But, the lack of baseline and basic epizoot-
iological information has hindered our understanding of the relative importance of
specific pathogens and environmental factors in the spread of disease epizootics.
Interestingly, coral bleaching has also been associated with bacterial pathogens (see
Sect. 7.6) and possibly viruses (Lawrence et al. 2015; Levin et al. 2017; see Sect.
7.7). Environmentally induced bleaching events can also increase the prevalence of
infectious disease outbreaks on reefs through immune system suppression (Mydlarz
et al. 2009), which could lead to an increase in disease susceptibility and longevity
once infected. Furthermore, thermal stress conditions that often accompany coral
bleaching can increase pathogen growth rates (Alker et al. 2001; Ward et al. 2007)
and virulence (Ben-Haim et al. 2003; Kimes et al. 2012), changing commensal or
mutualistic bacteria into pathogens.

7.5.1 Bleaching-Induced Disease

Coral bleaching events are often followed by infectious disease outbreaks (Guzman
and Guevara 1998; Harvell et al. 2002; Bruno et al. 2007; Muller et al. 2008; Brandt
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and McManus 2009; Cróquer and Weil 2009; McClanahan et al. 2009; Miller et al.
2009), which may be due to a reduction in immune system function (e.g., Mydlarz
et al. 2009). As discussed above most of the accumulating evidence supports the
compromised host hypothesis, which suggests that the condition of the coral host,
not necessarily the presence of a novel pathogen, is the primary reason for higher
disease prevalence on many contemporary reefs (Lesser et al. 2007b; Muller and van
Woesik 2014; Randall and van Woesik 2015). For example, during the 2005 coral
bleaching event in the US Virgin Islands, Muller et al. (2008) showed that corals that
had previously bleached also exhibited higher disease mortality than those that had
not bleached. Corals that were resistant to high water temperatures were also more
resistant to infectious diseases, which may have been because the immune system of
temperature-tolerant corals was less impacted. Ritchie (2006) showed a significant
reduction in antimicrobial properties within the mucus of bleached Acropora
palmata, which allowed the proliferation of potential pathogens. Pinzón et al.
(2015) also showed that genes that regulate the immune system within corals are
downregulated up to a year after bleaching occurs. Therefore, as corals allocate
resources in order to persist through a bleaching event, the immune system is
suppressed and remains so for many months, likely increasing the probability of
successful disease infection.

Although the host condition may play a critical role in disease dynamics, other
research suggests thermal stress conditions may influence the behavior and patho-
genicity of putative pathogens. Garren et al. (2014) showed that a bacterial pathogen,
Vibrio coralliilyticus, uses chemotaxis and chemokinesis to target heat-stressed
corals, using DMSP solely as a chemical cue to locate potential hosts. General
behavior of coral pathogens also changes under different temperature conditions.
For example, Garren et al. (2016) showed that V. coralliilyticus also increased
chemotactic ability toward coral mucus when temperatures exceeded 23 �C,
denoting an enhanced capability to track host-derived chemical cues. Further ele-
vated temperatures (>30 �C) increased the pathogen’s chemokinetic abilities,
denoted by accelerated cell movement under favorable, mucus-rich, chemical con-
ditions. Thermal stress has also been associated with an increase in virulence genes
(Banin et al. 2003), lysis of coral cells (Ben-Haim et al. 2003), and infection by coral
pathogens (Kushmaro et al. 1998; Ben-Haim and Rosenberg 2002). Thus, coral
bleaching and the environmental parameters that are conducive to bleaching impact
both host physiology and microbial community structure and function, setting the
stage for subsequent and prolonged infections.

7.6 Bacteria-Induced Bleaching

Although region-wide mass coral bleaching events are most commonly attributed to
unusually warm seawater temperatures, bleaching of the coral Oculina patagonica
during the summer in the Mediterranean Sea was previously identified as the result
of an infection with the bacterial pathogen Vibrio shilonii (previously referred to as
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V. shiloi; Kushmaro et al. 1997). This particular Vibrio bacterium produces an
extracellular superoxide dismutase (SOD) at 30 �C, but not at 16 �C, indicating a
temperature-related virulence (Banin et al. 2003). The extracellular production of
SOD protects the pathogen within the coral, allowing it to infect and persist within
host tissue, producing an extracellular peptide toxin that inhibits algal photosynthe-
sis ultimately leading to coral bleaching (Banin et al. 2000, 2003; Rosenberg et al.
2009). Extractions of the proline-rich toxin from V. shilonii also caused a reduction
in the quantum yield of photosystem II (i.e., a sign of impending bleaching) of
O. patagonica and Acropora eurystoma, but not several other Caribbean coral
species, suggesting a regional or species-specific response to this potential phenom-
enon (Gil-Agudelo et al. 2017).

Although bacterial bleaching was documented a number of times prior to 2002,
no additional cases of bacterial bleaching in O. patagonica have been found. This
phenomenon led to the creation of the “probiotic hypothesis” (Reshef et al. 2006),
whereby corals develop resistance to bacterial infection via an innate immune
response or beneficial shift in their microbiome. Thus, the probiotic hypothesis
was proposed as the mechanism of resistance to bacterial bleaching (Rosenberg
et al. 2007), but this has been challenged based on the absence of bacteria-induced
bleaching in O. patagonica after 2002 (Ainsworth et al. 2008). To date, corals have
only been shown to possess a very basic innate immune system, although adaptive-
like properties, reminiscent of higher organisms, have been documented in some
coral species (Reed et al. 2010). For example, both soft and hard corals have shown a
type of immunological memory and specificity for self-/nonself-recognition, with
faster immunological responses after initial exposure (Hildemann et al. 1977; Salter-
Cid and Bigger 1991; Jokiel and Bigger 1994). One study directly tested the
probiotic hypothesis by treating colonies of O. patagonica with a broad-spectrum
antibiotic and then exposing the coral to V. shilonii to determine whether infection
and subsequent bleaching were influenced by the resident microbiome. As hypoth-
esized, antibiotic-treated corals became sensitive to V. shilonii infection and
bleached after 14 days, but non-treated corals remained healthy, presumably because
beneficial members of the microbiome inhibited V. shilonii growth (Mills et al.
2013).

7.7 Virus-Induced Bleaching

Virus-like particles (VLPs) are present in all tissue layers of apparently healthy and
diseased corals including the gastrodermis, mesoglea, and epidermis, as well as in
the coral surface mucus layer (Patten et al. 2008; Leruste et al. 2012; Bettarel et al.
2013; Nguyen-Kim et al. 2014; Pollock et al. 2014; Wood-Charlson et al. 2015). It
has been hypothesized that elevated temperatures and other stress events may trigger
viral infections that contribute to coral bleaching and disease (Vega Thurber et al.
2008; Vega Thurber and Correa 2011; Wilson 2011; Lawrence et al. 2015; Levin
et al. 2017). Wilson et al. (2001) documented VLPs associated with heat-stressed
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anemones, Anemonia viridis, and were the first to suggest that viruses may be
involved in the cellular pathogenesis of bleaching. There is now growing evidence
of specific and dynamic interactions between Symbiodinium cells and viruses or
VLPs. For example, type C1 Symbiodinium cultures have been found to host
multiple intracellular viral infections (Weynberg et al. 2017). In another study,
Symbiodinium cultures exposed to UV demonstrated rapid cellular lysis, postulated
to be from latent viral infections, although this response could also be a result of
photochemical damage (Lawrence et al. 2015). Furthermore, all bleached corals
exhibited large viral loads in a naturally occurring bleaching event, caused by low
tide and heavy rainfall, with some VLPs specifically associated with the
Symbiodinium cells (Correa et al. 2016).

Although our understanding of viruses and their role in host-associated microbial
communities is currently limited, evidence is beginning to suggest that they play a
significant role in bacterial bleaching events. Virulence factors located on chromo-
somal pathogenicity islands exist in some strains of V. coralliilyticus. The presence
of these genetic signatures suggests that V. coralliilyticus virulence is driven by
prophages and other horizontally acquired elements (Weynberg et al. 2015). During
a bleaching event in the Caribbean, Marhaver et al. (2008) documented explicit
changes in the absolute abundance and relative composition of viruses that infect the
coral, Symbiodinium, and bacteria within partially bleached colonies of the massive
coral, Diploria strigosa. More recent work has tested the theory that Symbiodinium
are more susceptible to viral infections when exposed to heat stress. Lawrence et al.
(2017) demonstrated upregulation of virus-like gene expression in cultured
Symbiodinium cells following temperature stress experiments. Therefore,
Symbiodinium cells may host latent or persistent viral infections that are induced
via stress. These results were supported by analysis of host gene expression, which
also showed changes consistent with viral infection after exposure to stress. Further
to these experiments, transcriptomics were used to compare viral gene expression
within thermosensitive and thermotolerant populations of Symbiodinium type C1
cells at ambient and elevated temperatures (+4 �C; Levin et al. 2017). This was the
first study to indicate that the viruses infecting Symbiodinium may also be adversely
affected by heat stress, further contributing to the endosymbiont’s thermal sensitiv-
ity. If these results can be replicated in Symbiodinium cells in hospite, then we may
begin to explain alternative hypotheses for the breakdown of the coral-
Symbiodinium symbiosis that ultimately leads to bleaching.

7.8 Conclusions and Future Directions

Global climate change is currently ongoing and has already had a broad impact
across every ecosystem on Earth (Scheffers et al. 2016). Global average tempera-
tures have increased by 1 �C since preindustrial levels (Chap. 1). Thus, we are seeing
the impact of temperature stress on the physiology and diversity of marine and
terrestrial organisms around the world. Increasing global sea surface temperatures,
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specifically, are having a significant impact on both the macroscopic and micro-
scopic composition of the coral reef benthos (Hughes et al. 2017), carving out space
through bleaching and disease, whereby competitive dominants such as macroalgae
and sponges, as well as opportunistic and heterotrophic microorganisms, will take
over (reviewed in Rohwer and Youle 2010; Garren 2016). As the tropics continue to
experience an increase in both the frequency and severity of high sea surface
temperature events, research efforts aimed at understanding the impact of such
events on both the seawater microbiome and coral-associated microorganisms will
be critical to coral conservation efforts.

Coral bleaching correlates with a number of other triggers, but the combination of
high temperatures and irradiance is thought to be primarily responsible (Lesser 2006,
2011). As discussed in this chapter, the impact of elevated temperature stress has
been the subject of a number of coral microbiome studies, but the impact of
irradiance (i.e., UV radiation; UV-R) independently or coupled with temperature
stress has yet to be examined. UV-R has been demonstrated to suppress the immune
system and immune response to pathogenic microorganisms in humans (Chapman
et al. 1995; reviewed in Patra et al. 2016) and has been known for some time to
trigger and/or exacerbate herpes simplex virus infections (Norval 2006). Studies
conducted with seawater bacterioplankton communities also demonstrate that solar
UV-R can differentially impact microbial activity, with greater sensitivity demon-
strated by Alphaproteobacteria and greater resistance demonstrated by
Gammaproteobacteria and Bacteroidetes (Alonso-Sáez et al. 2006). In one of the
only studies to examine the impact of UV-R on the coral microbiome, solar radiation
was shown to rapidly kill intracellular Vibrio shiloi and prevent bacteria-induced
bleaching in the coral Oculina patagonica (Fine et al. 2002). These studies highlight
the important role UV-R may have in structuring shallow-water microbial commu-
nities, particularly on coral reefs where solar irradiance has had an important
influence on community structure over their evolutionary history (reviewed in
Banaszak and Lesser 2009). However, because of the attenuation of UV-R with
depth, and the differential effects of UV-B (290–320 nm) and UV-A (320–400 nm),
most of the significant effects of UV-R may occur in shallow-reef environments (<
30 m depth; Shick et al. 1996; Banaszak and Lesser 2009). There is, therefore, a need
for comparative studies along depth gradients from 3 to 30 m as well as across the
latitudinal extent of coral reefs, particularly in areas where temperature may remain
elevated while irradiance is low.

A particularly interesting new area of research focuses on the extent to which the
coral microbiome (prokaryotic and eukaryotic partners) can increase or decrease
coral tolerance to specific environmental disturbances. This concept is based on
defining the coral as a polygenomic metaorganism (i.e., hologenome) whereby the
coral phenotype is a product of the transcriptomic, proteomic, and metabolic
responses of all symbiotic partners (Putnam et al. 2017). Thus, a highly flexible
microbiome that confers mechanisms for rapid holobiont acclimatization to envi-
ronmental stressors associated with global climate change is met with hesitant
optimism (van Oppen et al. 2015; Torda et al. 2017; Webster and Reusch 2017).
Ideally, molecular-based omic techniques would be combined with microscopy
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approaches to allow for identification of fundamental symbionts within specific
compartments (Sweet et al. 2011) and cellular microniches within the coral, for
example, identifying whether microbial relationships exist with either coral or
Symbiodinium cells and/or between specific bacterial strains. Mathematical models
and network-based analytical approaches can also aid in identifying these specific
microbial relationships (Sweet and Bulling 2017), followed by validation with
molecular methods. Robust controls should be established for experimental studies
examining the impact of environmental stressors on the coral hologenome, with the
realization that experimental manipulation (e.g., transplantation, aquaria rearing)
may have consequences for the stability of the microbiome leading to ecologically
unrealistic conclusions (Morrow et al. 2017). Corals have demonstrated natural
resilience in the face of extreme bleaching events, whereby some corals retain
their symbionts and others recover their symbionts over time (Cunning et al. 2016;
Hughes et al. 2017). Future research needs to take a holistic perspective, identifying
the mechanisms driving resilience as a function of the coral metaorganism (Boulotte
et al. 2016; Putnam et al. 2017; Torda et al. 2017).
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Chapter 8
Cell Biology of Coral Bleaching

C. A. Oakley and S. K. Davy

8.1 Introduction

The coral-dinoflagellate symbiosis is the energetic foundation of tropical coral reef
ecosystems and depends on the cellular integration of two evolutionarily and
metabolically disparate organisms. The coral host maintains photosynthetic dinofla-
gellates of the genus Symbiodinium within individual cells of its inner gastrodermal
layer. These algal symbionts exist at very high densities, typically at least one
million algal cells per square centimeter of coral tissue. The success of this associ-
ation is based on complementary intercellular nutrient exchange, which requires
tolerance of the symbiont’s presence by the host’s immune mechanisms and the
coordinated growth and reproduction of both partners (Weis et al. 2008; Davy et al.
2012). Corals are highly productive, a result of cellular mechanisms of both host and
symbiont that maximize photosynthetic function in the high irradiances and warm
waters typical of shallow coral reefs. While this symbiosis has been successful for
millions of years, the complex nutritional and immunological interactions between
the animal and algal partners provide many potential points of susceptibility to
external stresses.

Coral bleaching is the result of the disruption of these interactions resulting in the
failure of the symbiosis, primarily due to sustained high sea surface temperatures
(SST) in summer. The physiological impairment of the algal symbionts and their
expulsion is primarily considered to be a result of reactive oxygen species (ROS)
generation from the cnidarian host, the algal symbiont, or both, triggering a host
immune response (Weis 2008). Severe and prolonged elevated SST in 2016 resulted
in a global bleaching event that devastated large regions of the Great Barrier Reef,
Australia (Hughes et al. 2017). Neither local water quality, fishing pressures, nor the
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presence of marine-protected areas had detectable effects on bleaching severity, and
the Great Barrier Reef again suffered extensive bleaching in 2017. Therefore, the
phenomenon of severe, regional-scale mass bleaching is an emergent property of
cellular stress playing out at the ecosystem scale. Predicting the future of coral reefs
under anthropogenic climate change scenarios requires understanding the coral
cellular environment and the mechanisms that maintain the coral-algal symbiosis,
as well as how these functions can be impaired.

8.2 Thermal Response of the Algal Symbiont

The coral-algal symbiosis is dependent on the productivity of the intracellular algal
symbionts and requires photosynthesis to occur in the demanding microhabitat
inside each host cell. This section will detail the cellular mechanisms by which
the dinoflagellate endosymbionts of corals are adapted to these conditions, as well as
the events that occur when these mechanisms are disrupted or overwhelmed. While
the initial cellular triggers of coral bleaching are not completely understood,
bleaching is highly correlated with periods of both high SST and irradiance
(Hoegh-Guldberg et al. 2007; Hughes et al. 2017). As bleaching is the conspicuous
loss of algae from the host, the effects of high temperature on the algal symbionts
have received the most attention, with the direct generation of ROS by algal
photosynthesis being an area of particular focus; see Warner and Suggett (2016)
for a thorough review. The current oxidative theory of coral bleaching proposes that
ROS generation increases during thermal stress and overwhelms host and symbiont
mechanisms to detoxify ROS and repair oxidative damage (Weis 2008, Fig. 8.1).
High temperatures and irradiances result in a large quantity and rate of energy
entering and being processed by the algal photosynthetic apparatus, primarily the
light-harvesting complexes and photosynthetic electron transport chain of the algal
chloroplast. In addition, the surrounding host membranes and tissues constrain the
efflux of photosynthetically generated oxygen (O2) away from the algae and the
import of dissolved inorganic carbon to maintain photosynthetic carbon fixation
(Kuhl et al. 1995; Tansik et al. 2017). These factors impose considerable stress on
the photosynthetic machinery of the algal symbionts and render them potentially
susceptible to oxidative damage (Weis 2008). The failure of mechanisms that
moderate these stresses and the consequences when they are overcome are likely
the initial events in the coral bleaching cascade.

8.2.1 Thermal Effects on Symbiodinium Photosynthesis

The efficient capture of light energy and rapid flow of electrons through the
photosynthetic electron transport chain are essential, not only to support carbon
fixation but also to avoid photodamage, as the light absorbed can frequently surpass
the capacity of the electron transport chain (Warner and Suggett 2016).
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Symbiodinium utilizes the carotenoid peridinin, which possesses a higher absorbance
of green to blue light relative to chlorophyll. Peridinin is characteristic of the
peridinin-containing dinoflagellates, which include Symbiodinium, together with
chlorophylls a and c2 (Brown et al. 1999). These pigments give the algal symbionts
their golden brown color and provide a dark tone to the coral, obscuring the bright

Fig. 8.1 Mechanisms of thermal stress that may initiate or participate in the bleaching cascade.
(A) Inhibition of photosynthetic electron transport between photosystem II (PSII) and photosystem
I (PSI) promotes the generation of superoxide (O2

�) from photosynthetic O2 via the Mehler
reaction. O2

� is converted to peroxide (H2O2) via superoxide dismutase (SOD) and then to O2 by
catalase (Cat). H2O2 released to the host may be decomposed by host SOD. (B) O2 produced by
photosynthesis may react with singlet oxygen sensitizers (Sens.), also released by the endosymbi-
onts, to form the highly reactive singlet oxygen (1O2). (C) Nitric oxide (NO) reacts with O2

� to form
peroxynitrite (ONOO�), which inhibits mitochondrial electron transport. (D) Mitochondrial reac-
tive oxygen species (ROS) generation by the respiratory electron transport chain increases due to
thermally induced high respiration or electron transport inhibition, independently from photosyn-
thesis. (E) Endoplasmic reticulum (ER) stress results in the release of calcium (Ca2+) to the
mitochondria, promoting the release of cytochrome c (Cyt c). (F) High temperatures cause an
increase in protein misfolding in the ER, and the re-folding and repair of these proteins results in
ROS generation and ER stress. (G) The mitochondrial B-cell lymphoma 2 (BCL2) protein regulates
apoptosis by inhibiting the release of Cyt c. This function can be disabled directly by NO, ROS, or
by mitochondrial Ca2+ uptake. Cyt c released into the cytoplasm binds to the apoptosome,
initializing caspase activity and terminating in host cell apoptosis. Caspase signaling pathways
have been greatly simplified for clarity. Figure modified from Weis et al. (2008) and Oakley
et al. (2017)
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white skeleton. These pigments are integrated into the intrinsic membrane-bound
antenna chlorophyll a-chlorophyll c2-peridinin-protein-complex, which transfers
excitation energy directly to the photosystems, as well as the water-soluble
peridinin-chlorophyll a-protein (Niedzwiedzki et al. 2014). Light absorbed by
these light-harvesting complexes enters the conventional photosynthetic electron
transport chain from PSII through PSI to ferredoxin-nicotinamide adenine dinucle-
otide phosphate (NADP+) reductase. The efficiency of the photosynthetic electron
transport chain, and by extension the photosynthetic state of the symbionts, is
assessed by active chlorophyll induction fluorometry (Warner et al. 1996). The
principal metric of interest is the maximal quantum yield of PSII chlorophyll
a fluorescence (Fv/Fm), which reflects the proportion of absorbed light energy that
enters the photosynthetic electron transport chain from PSII (Hill et al. 2004; Warner
and Suggett 2016). Declines in Fv/Fm indicate nonspecific photoinactivation due to
PSII damage and may precede the loss of algal symbionts from the host (Warner
et al. 2002). Multiple studies have demonstrated the relationship between Fv/Fm and
PSII status with cnidarian bleaching (Hill et al. 2004; Hillyer et al. 2017a; Warner
and Suggett 2016).

Symbiodinium, like other photosynthetic organisms, possesses a variety of mech-
anisms to optimize electron flow through the photosynthetic apparatus while
avoiding photodamage (Warner and Suggett 2016). PSII has been shown to be
susceptible to photodamage in Symbiodinium, particularly the reaction center protein
D1, which is potentially a site of functional differentiation between Symbiodinium
types (Warner et al. 1999; Takahashi et al. 2004; Hennige et al. 2008; Hill et al.
2011). The relative rates of PSII repair during thermal stress have been investigated
as a potential source of the variable thermal susceptibility between Symbiodinium
genotypes (McGinley et al. 2012; Buxton et al. 2012). PSII degradation reduces the
capacity of the photosynthetic apparatus to use captured light energy, resulting in
increased pressure on the remaining PSII units. PSII and PSI in dinoflagellates
remain in close physical proximity within the thylakoids, allowing for bidirectional
energy transfer between them via the light-harvesting complexes, particularly during
thermal stress (Slavov et al. 2016). By reorganizing the PSII and PSI complexes
within the thylakoids, Symbiodinium may direct excess absorbed light energy away
from PSII to PSI, where it can be converted to heat and quenched by the reduced
reaction center chlorophyll P700

+. This occurs with a corresponding loss of electron
flow supporting carbon fixation (Slavov et al. 2016). Accessory photosynthetic
pigments may also play a role in photoprotection by regulating photosynthetic
electron flow and dissipating excess absorbed light energy. Nonphotochemical
quenching, the dissipation of photosynthetic electron flow as heat, has been primar-
ily attributed to the xanthophyll cycle (Brown et al. 1999; Kanazawa et al. 2014).
This mechanism operates by the de-epoxidation and conversion of the light-
absorbing xanthophyll pigment diadinoxanthin to the heat-dissipating diatoxanthin
under high irradiance, which is sensed by increases in the pH gradient across the
thylakoid membrane (Gustafsson et al. 2014).

The consequence of failure of these photoprotective mechanisms is unregulated
or impaired energy flow through the photosynthetic apparatus in the high-O2
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environment of coral tissues. Hyperoxic environments greatly increase the rate of
spontaneous and catalyzed ROS production by electron transport chains (Imlay
2013), and illuminated coral tissues may have internal O2 concentrations at 250%
of saturation (Kuhl et al. 1995). The role of ROS in coral bleaching has received
intensive study since the mid-1990s (Lesser 1996; Warner et al. 1996). The release
of ROS or ROS-sensitizing compounds from the algae is primarily a result of
overexcitation of the photosynthetic apparatus (Rehman et al. 2016), and light-
and temperature-stress have independent, but synergistic, effects that initiate this
condition. Saturation of photosynthetic electron transport due to high temperatures
or irradiance results in excitation pressure over PSI and PSII, and increased ROS
production through multiple mechanisms (Roberty et al. 2015; Rehman et al. 2016),
including cyclic electron flow around PSI (McCabe Reynolds et al. 2008), photo-
respiration, and chlororespiration, but the increased ROS production primarily
occurs via the water-water cycle/Mehler reaction (Roberty et al. 2014, 2015). The
water-water cycle involves the direct reduction of O2 by PSI to superoxide (O2

•�),
which is short-lived but highly toxic and must be rapidly degraded by the symbiont’s
antioxidant mechanisms (Fig. 8.1A). In doing so, these mechanisms enhance the
proton gradient across the thylakoid membrane, resulting in enhanced adenine
triphosphate (ATP) production at the expense of NADPH (Roberty et al. 2014).
O2 reduction by the water-water cycle increases due to either high light or combined
high light and temperature in cultured Symbiodinium (Roberty et al. 2015). In
Pocillopora damicornis, light stress resulted in the condensation of thylakoid lamel-
lae, indicative of oxidative damage, while thermal stress caused thylakoid membrane
disorganization (Downs et al. 2013).

Antioxidant mechanisms in Symbiodinium include superoxide dismutase (SOD),
glutathione, ascorbate peroxidase, catalases, and monodehydroascorbate reductase.
SOD is an enzyme produced by both host and alga that catalyzes the conversion of
O2

•� to hydrogen peroxide (H2O2) (Roberty et al. 2015). If the rate of ROS
production exceeds the rate of ROS detoxification, widespread cellular damage
can occur, including the potential leakage of ROS from the algal cell, initiating the
bleaching cascade (Fig. 8.1). SOD and ascorbate peroxidase activities have been
shown to increase during extended periods of elevated temperature in cultured
Symbiodinium coincident with oxidation of the glutathione pool (Krueger et al.
2014). A long-standing puzzle in this model is how highly reactive, short-lived O2
•�, singlet oxygen (1O2), or other ROS are able to pass across multiple membranes to
interact with the host cell (Krueger et al. 2015), with evidence that leakage of ROS is
possible (Saragosti et al. 2010). Moreover, symbionts may play a role in ameliorat-
ing host oxidative stress, as superoxide dismutases and multiple other
ROS-mediating enzymes have been found to be upregulated in the model symbiotic
anemone Exaiptasia pallida (Grajales and Rodríguez 2014, commonly known as
Aiptasia) when it is rendered experimentally aposymbiotic (Nii and Muscatine 1997,
Oakley et al. 2016, but see Richier et al. 2005). The release of algal-derived ROS
into the host cells may vary with symbiont species, corresponding with both
increased photoinhibition and expression of ROS-scavenging genes (Levin et al.
2016). One recent advance is the detection of extracellular 1O2 produced by
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temperature- and light-stressed Symbiodinium cultures that has been attributed to
excreted, but currently unidentified, ROS-sensitizing metabolites (Fig. 8.1B,
Rehman et al. 2016). These findings provide a possible link between the redox
states of the host and symbiont.

Additional evidence for the exchange of metabolites involved in oxidative bal-
ance exists for nitric oxide (NO) and dimethylsulfoniopropionate (DMSP). NO is an
important cellular signaling molecule that is involved in immunity, responses to
endosymbiotic microbes, and the apoptosis pathway (Weis 2008; Hawkins et al.
2013). Symbiodinium constitutively produces NO at a rate that is increased under
elevated temperatures, coincidental with photoinhibition; however, different geno-
types show varying toxicity (Hawkins and Davy 2012). Increased NO production
has also been documented during bleaching (Trapido-Rosenthal et al. 2005). Impor-
tantly, NO is lipophilic and may be capable of crossing membranes into the host cell
(Fig. 8.1C). NO is just one reactive nitrogen species, and reacts with O2

•� to form
peroxynitrite, a highly toxic oxidant and electron transport inhibitor (Hawkins and
Davy 2013). The relative contributions of ROS and reactive nitrogen species to the
bleaching cascade are currently unknown. DMSP is a ROS scavenger, among many
other functions, readily crosses cell membranes, and can be produced by both corals
and Symbiodinium (Hopkins et al. 2016). DMSP production by the holobiont
increases markedly in response to aerial exposure and correspondingly high O2

concentrations (Hopkins et al. 2016), as well as after thermal stress (Jones et al.
2014). Furthermore, DMSP is differentially produced by some coral holobionts in
response to osmotic stress, and may serve as an additional antioxidant system in the
symbiosis (Gardner et al. 2016).

8.2.2 Thermal Effects on the Calvin-Benson Cycle

The high demand for dissolved inorganic carbon (DIC) from seawater by the coral
holobiont to support both photosynthesis and host calcification presents a physio-
logical challenge. DIC in seawater exists overwhelmingly as bicarbonate (HCO3

�),
which is effectively incapable of crossing membranes due to its charge. As a result,
inorganic carbon is frequently limiting to the algal symbionts, in contrast to phyto-
plankton in the water column (Tansik et al. 2017). Ensuring adequate inorganic
carbon supply is essential to the algal symbionts’ productivity and redox state, as
carbon fixation is the ultimate result of photosynthetic electron transport. If there is
insufficient inorganic carbon as carbon dioxide (CO2) available to the chloroplast,
photosynthetic electron transport may be inhibited due to the lack of an energy sink.
The presence of many layers of membranes between the site of carbon fixation and
the external seawater, combined with the high densities of algal symbionts in coral
tissues, requires carbon-concentrating mechanisms by both partners to supply ade-
quate amounts of DIC (Leggat et al. 1999; Tansik et al. 2015). The carbon-
concentrating mechanisms of cultured Symbiodinium have been found to be
enhanced at higher temperatures (Oakley et al. 2014a); however, whether or not
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these are sufficient in hospite under elevated temperatures is unclear. Additionally,
the potential susceptibility of the host’s carbon-concentrating mechanisms to ele-
vated temperatures is currently unknown.

High temperatures have been proposed to have indirect effects on photosynthetic
electron transport via inhibition of the Calvin-Benson cycle, limiting carbon fixation
as an energy sink (Jones et al. 1998; Wooldridge 2009). This hypothesis, while
justified in that the peridinin-containing dinoflagellates are unique among eukaryotes
in their possession of a thermally labile Form II ribulose 1,5-bisphosphate carbox-
ylase/oxygenase (Rubisco), has not been demonstrated in Symbiodinium (Leggat
et al. 1999; Lilley et al. 2010; Oakley et al. 2014a). Form II Rubisco exhibits very
low CO2:O2 specificity relative to the common Form I Rubisco of higher plants
(Tcherkez et al. 2006). The fixation of O2 by Rubisco, termed photorespiration, is
enhanced by high O2:CO2 concentrations and produces the Calvin cycle inhibitor
phosphoglycerate (Badger et al. 1998; Crawley et al. 2010). Photorespiration is not
metabolically useful, except as an energy sink, but it may consume some of the
abundant O2 in illuminated coral tissues and, therefore, limit ROS production (Smith
et al. 2005). Notably, inhibition of phosphoglycolate phosphatase, the enzyme
responsible for recycling phosphoglycolate produced by photorespiration, has been
documented in Symbiodinium in hospite under ocean acidification conditions
(1100 ppm CO2, pH 7.6) (Crawley et al. 2010).

In addition to the photosynthetic apparatus, other algal organelles also possess
mechanisms to absorb and utilize excess energy (Warner and Suggett 2016). Mito-
chondrial respiration constitutively results in a steady rate of ROS generation, and
the same high electron flows and O2 concentrations that challenge photosynthetic
electron transport are prone to increasing ROS generation by the mitochondrial
respiratory electron transport chain. This is also exacerbated during thermal stress,
which can elevate respiration and, potentially, mitochondrial ROS generation as
H2O2. Mitochondrial alternative oxidase competes for electron flow with the con-
ventional cytochrome c oxidase, counteracting the mitochondrial proton gradient
necessary for ATP production (Oakley et al. 2014b). Alternative oxidase activity has
been shown to double under thermal stress and may account for 25–50% of
respiratory O2 consumption by Symbiodinium. The role of the mitochondrion in
oxidative stress is particularly important in the independent thermal response of the
host cell, and is considered in more detail below.

8.2.3 Nutrient Availability and Susceptibility to Bleaching

Beyond the biological activities of host and symbiont, abiotic factors may also
contribute to the resilience of the coral symbiosis to thermal stress, with direct
impacts at the cellular level. Of particular note, recent studies have explored the
relationship between reef eutrophication and bleaching, in an effort to explain the
observed lower bleaching thresholds of inshore reefs exposed to terrestrial sources of
dissolved inorganic nitrogen on the Great Barrier Reef, Australia (Wooldridge
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2009). This ecological phenomenon may be a result of the cellular effects of
imbalanced nitrogen/phosphorus on the stability of the symbiosis (see Rädecker
et al. 2015 for a review). Corals are adapted to oligotrophic conditions by recycling
nitrogen compounds between partners and limiting the availability of nitrogen to the
symbionts to control their growth (Yellowlees et al. 2008). Elevated nitrogen, such
as from anthropogenic outflows, may release this limitation and result in a relative
deficiency of phosphate in the algae (Wiedenmann et al. 2013). Coral phosphate
uptake increases at elevated temperatures while nitrogen uptake generally decreases,
reflecting an active response by the holobiont to resolve the nutrient imbalance
(Ezzat et al. 2016). Corals with high nitrate and low phosphate availabilities
bleached strongly under relatively low light levels, exhibiting greatly reduced Fv/
Fm values, symbiont densities, and significant tissue mortality, while those with high
nitrate and phosphate availability were unharmed (Wiedenmann et al. 2013). The
addition of sugar resulted in increased N2 fixation by the Pocillopora verrucosa
microbiome, and thus a higher N:P ratio, and induced bleaching under non-stressful
irradiance and temperature (Pogoreutz et al. 2017). Symbiodinium cells under
phosphate starvation also exhibit increases in starch, lipid, and uric acid storage
bodies, indicating imbalanced growth (Rosset et al. 2017). Importantly, these effects
are not seen when both nitrogen and phosphorus availability together are either high
or low. The cellular basis of this response may lie in the substitution of sulfolipids for
phospholipids in the photosynthetic membranes during extreme phosphate limitation
(Wiedenmann et al. 2013), resulting in changes to thylakoid membrane fluidity and
integrity (Tchernov et al. 2004). Thylakoid membrane fluidity has been linked to
thermal resilience in Symbiodinium, with thermally susceptible species exhibiting
lower concentrations of saturated polyunsaturated fatty acids, elevated ROS produc-
tion, and greater bleaching (Tchernov et al. 2004). This line of evidence may link the
observed effects of eutrophication on coral health and reef degradation with the
prevailing model of bleaching as a result of algal-derived oxidative stress
destabilizing the symbiosis.

8.3 Thermal Response of the Coral Host

The coral host is also subject to many of the same high-energy pressures and nutrient
demands of the reef environment as its symbionts, and bleaching is not purely a
light-driven process (Nii andMuscatine 1997; Tolleter et al. 2013). The direct effects
of temperature on the coral host prior to bleaching, and the independent role of the
host cell in the production and amelioration of oxidative stress, have been the focus
of recent research, and these may be sufficient to induce coral bleaching even when
the symbionts are not physiologically impaired (Ainsworth et al. 2008; Dunn et al.
2012). ROS and reactive nitrogen species are important signaling molecules in many
symbioses due to their universal nature among aerobic organisms (Moné et al. 2014).
The oxidative states of the host and symbiont are inescapably intertwined, resulting
in considerable difficulty in determining whether the initial point of thermal damage
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lies within the host or symbiont; moreover, given the physiological diversity of
cnidarians and Symbiodinium, it is likely that the relative contribution of host and
symbiont to thermal degradation varies between different pairings (Abrego et al.
2008; Hawkins et al. 2016).

The relative susceptibilities of the host and symbiont to thermal and oxidative
stress are complex. There is mounting evidence that, in many holobionts, the host
may be more heat-susceptible than the symbionts (Baird et al. 2009). Krueger et al.
(2015) demonstrated that host antioxidant activity was elevated in two coral species
during high temperatures, days before thermal impairment of the symbionts was
observed. These observations are supported by measurements of the host mitochon-
drial coenzyme Q and algal plastoquinone pools in experimentally bleached
A. millepora, in which the coenzyme Q pool exhibited an oxidative shift character-
istic of ROS stress days before a shift in the plastoquinone pool (Lutz et al. 2015).
Hillyer et al. (2017b) detected an increased production of antioxidant precursors in
heat-stressed Aiptasia, but not in the symbionts, and Oakley et al. (2017) showed the
induction of a heat shock response from the host in the absence of bleaching or
photoinhibition of the algae. Thermal stress in the host has been proposed to initiate
a complex suite of responses including the elevation of host endogenous oxidative
stress, induction of the host innate immune response against the algal symbionts and,
ultimately, host cell apoptosis (Fig. 8.2, Weis 2008). The generation of, and response
to, ROS are the events that unify our understanding of the host’s and alga’s
responses to elevated temperatures.

The primary source of ROS generation in a non-photosynthetic organism is the
mitochondrion, due to its roles in central metabolism (Dunn et al. 2012). These
activities, as well as its role in calcium storage and apoptosis, make the

Fig. 8.2 Transmission electron micrographs of Aiptasia tentacles under control and elevated
temperatures. (a) Aiptasia under control conditions (24 �C, 50 μmol photons m�2 s�1). (b) Aiptasia
after 48 h temperature and light stress (33 �C, 140 μmol photons m�2 s�1). Asterisks indicate
autophagic host cells. Sym ¼ Symbiodinium cell. APS ¼ autophagic structures. Scale bars ¼ 5 μm.
Images courtesy of Shanna D. Hanes
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mitochondrion a potential locus of host thermal stress. The mitochondrial respiratory
electron transport chain uses O2 as the terminal electron acceptor, and ROS are
constantly generated as a result of normal respiratory electron transport (Turrens
2003). In all aerobic organisms, including cnidarians, this background level of ROS
generation by the mitochondria increases greatly in response to high temperatures
(Nii and Muscatine 1997). Thus, highly elevated respiratory ROS generation ini-
tially impacts the mitochondria (Fig. 8.1D). The Aiptasia host mitochondria undergo
morphological changes after thermal shock, followed by mitochondrial
permeabilization and degradation, host cell apoptosis, and symbiont cell degradation
(Dunn et al. 2012). Further evidence of the mitochondrial role in the host bleaching
response is the reduced mRNA abundance of cytochrome c and ATP synthase,
which are both central components of the respiratory electron transport chain (Dunn
et al. 2012). Inhibited respiration hinders the ability of the host to survive or recover
from sustained thermal stress.

The mitochondrion also stores calcium, a secondary messenger that regulates
many cell functions and is central to sensing cell stress (Orrenius et al. 2003). Under
stress conditions, the calcium pool within the mitochondrion may greatly increase,
resulting in mitochondrial permeabilization and the release of calcium into the cell,
subsequently triggering caspase-mediated apoptosis (Orrenius et al. 2003). The
endoplasmic reticulum (ER) is the primary store of calcium in the cell, and it directly
exchanges calcium ions with the mitochondrion across tight junctions (Fig. 8.1E,
Rainbolt et al. 2014). Multiple studies have described a role for calcium regulation in
the cnidarian symbiosis and thermal response (Fang et al. 1997; Sandeman 2006;
Desalvo et al. 2008; Ganot et al. 2011; Bellantuono et al. 2012; Oakley et al. 2017).
Calumenin, an ER protein that binds calcium, is upregulated in symbiosis (Ganot
et al. 2011) and is further upregulated following exposure to elevated temperatures,
particularly in the gastrodermal layer (Bellantuono et al. 2012; Oakley et al. 2017).
Calcium-binding proteins may be more generally involved in the heat stress
response, given that thermal shock induced an upregulation of multiple calcium-
binding proteins in Acropora microphthalma host cells concurrent with the higher
expression of antioxidant, heat shock, and calcium-binding proteins in the symbiont
population (Weston et al. 2015). Bleaching resistance may, therefore, depend on the
host’s ability to maintain calcium homeostasis during thermal stress.

Beyond its primary role in protein synthesis, folding, and export, the ER is
involved in stress signaling between itself and the Golgi, nucleus, and mitochon-
drion (Chaudhari et al. 2014). Communication between the ER and the mitochon-
drion allows for a coherent cellular response to thermal stress, which directly impacts
the ER’s role in protein synthesis and folding (Fig. 8.1F, Orrenius et al. 2003).
Protein folding is temperature-sensitive and requires the activity of molecular
chaperones that, due to their pronounced upregulation during elevated temperature,
are known as heat shock proteins (Richter et al. 2010). Misfolded proteins are
potentially toxic, and their accumulation in the ER results in the induction of the
unfolded protein response (UPR; Ron and Walter 2007). The UPR is characterized
by decreased overall protein synthesis, increased protein chaperone and degradation
activity, and finally, if the ER stress persists, cell death (Ron and Walter 2007).
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Apoptosis triggered by ER stress is thought to be induced by the leakage of calcium
into the cytoplasm, where it is taken up by the mitochondria, or through caspase
induction (Ron and Walter 2007). Short-term thermal stress in Aiptasia induced an
upregulation of many proteins involved in protein folding, protein degradation, and
calcium binding, and a concurrent downregulation of many cytoskeletal proteins,
consistent with ER stress (Oakley et al. 2017). Roles for the ER and the UPR were
also detected in the coral Acropora hyacinthus when it was exposed to short-term
thermal stress, suggesting that the ER may be one of the initial sites of thermal stress
and cellular acclimation (Ruiz-Jones and Palumbi 2017). Protein degradation and
re-folding in the ER are performed by protein disulfide isomerases, which also
produce ROS as a result of their activity (Tu and Weissman 2004). In this manner
the ER, in addition to the mitochondria, may both generate and ameliorate oxidative
stress.

NO may play a major role in the bleaching cascade, as bleaching followed
the production of significant quantities of NO by the symbiotic anemone Aiptasia
during thermal stress (Perez and Weis 2006). Hawkins et al. (2013) demonstrated
elevated NO synthesis in both the anemone Aiptasia and in Symbiodinium in hospite
under thermal stress co-occurring with the activation of pro-apoptotic host caspases
and bleaching. Caspase activity was also induced by an NO donor and reduced by an
NO scavenger, indicating a strong role for NO-dependent host apoptosis pathways in
the initial stages of bleaching. NO production within symbiont cells was
detected after host NO production, and this may be an alternative or additional
mechanism of algal oxidative stress. These results were extended to and confirmed in
multiple coral species (Hawkins et al. 2014). Importantly, the production of NO
within host tissues prior to algal photoinhibition indicates a host origin of thermal
dysfunction in the cnidarian-dinoflagellate symbiosis. NO also has a role in initiating
apoptosis through the release of mitochondrial cytochrome c (Snyder et al. 2009).
The role of NO in the response to parasites in other systems is particularly interesting
given the intracellular nature of the cnidarian-dinoflagellate symbiosis (Perez and
Weis 2006).

The ultimate result of sustained, uncontrolled oxidative stress in the host cell,
whether it originates from dysfunction of the host or the symbiont, is the induction of
host cell apoptosis. Apoptosis, or programmed cell death, is a highly conserved
process by which extraneous or compromised cells are degraded following a
caspase-mediated signaling cascade (Taylor et al. 2008; Kvitt et al. 2011). Cnidarian
apoptosis pathways are complex and highly conserved, being more similar to those
of vertebrates than those of arthropods or other invertebrate taxa (Moya et al. 2016).
A major checkpoint in the apoptotic signaling cascade is B-cell lymphoma 2 (Bcl-2,
Fig. 8.1G), an anti-apoptotic protein that mediates mitochondrial membrane perme-
ability and has an unknown, likely indirect, antioxidant function (Susnow et al.
2009; Kvitt et al. 2011, 2016). The chemical inhibition of caspase activity is able to
prevent bleaching and apoptosis (Tchernov et al. 2011). When anti-apoptotic mech-
anisms are insufficient, the apoptosis pathway proceeds via the permeabilization of
the mitochondrial outer membrane and the release of cytochrome c into the cyto-
plasm, where it binds to the “apoptosome” containing apoptotic protease-activating

8 Cell Biology of Coral Bleaching 199



factor 1 (Man and Kanneganti 2016). This signals a chain of caspases, principally
caspase-3, to begin the apoptotic process by widespread protein degradation.

The role of caspases in coral bleaching has been established by multiple studies.
In Stylophora pistillata and Acropora millepora, caspase expression increases
rapidly in the gastrodermal tissue during thermal stress, followed by Bcl-2-mediated
stabilization and recovery (Kvitt et al. 2011; Pernice et al. 2011). Moreover, the
addition of the apoptosis-inducing reagent colchicine produces a similar response to
thermal stress (Pernice et al. 2011). Both studies suggest a model in which the host’s
susceptibility to rapid thermal stress is dependent on the relative intensity and timing
of caspase and Bcl-2 upregulation. In this scenario, during the initial phases of the
thermal insult (24–48 hours), a subset of host cells may be lost, but thermally
resistant corals are able to induce anti-apoptotic mechanisms afterward (Kvitt et al.
2016). At the organismal level, host apoptosis has been found to occur during
thermal stress, notably prior to bleaching, in the gastrodermal layer coincidental
with decreases in gastrodermal tissue thickness in Acropora aspera (Ainsworth et al.
2008). Thermal or chemical induction of host apoptosis may be followed by death of
the resident Symbiodinium cells (Paxton et al. 2013). Bleaching is ultimately an
active process on the part of the coral host, and understanding the host’s role in the
early stages of bleaching, prior to visible paling or photoinhibition, may be critical to
understanding coral bleaching susceptibility.

8.4 Mechanisms of Symbiont Loss

The ways in which the coral and its algal symbionts are affected by high tempera-
tures and the initial cellular responses to stress are well-studied, but the downstream
mechanisms that result in the loss of symbionts from host cells once the bleaching
cascade has been initiated are unclear (Weis 2008; Bieri et al. 2016). A multitude of
studies have tracked the fate of the symbionts during the bleaching process, primar-
ily using histology, in a variety of organisms and environmental conditions (Gates
et al. 1992; Dunn et al. 2004, 2007; Ainsworth and Hoegh-Guldberg 2008; Tchernov
et al. 2011; Hanes and Kempf 2013). These studies have attributed the loss of
symbiont cells to several mechanisms (Fig. 8.3); however, the contributions of
each during natural bleaching events are still unclear, and they may act in combina-
tion depending on the intensity and duration of the thermal stress (Gates et al. 1992;
Brown et al. 1995; Bieri et al. 2016).

The first proposed mechanism of coral bleaching is the exocytosis of whole
symbiont cells, whether alive or degraded, in which algal cells are expelled from
the host cells into the gastrovascular cavity and out of the mouth of the animal.
Symbiont expulsion occurs normally on a daily basis as a means to control the
symbiont population in many, though not all, cnidarians (Baghdasarian and Musca-
tine 2000; Davy et al. 2012). Strychar et al. (2004) demonstrated that elevated
temperatures (28 �C) resulted in the expulsion of viable Symbiodinium cells from
tissues of both scleractinian corals and octocorals, but increasing temperatures
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beyond 28 �C resulted in an increasing proportion of the expelled cells being
apoptotic or necrotic (but see Fujise et al. 2013). This contrasts with the previous
study by Ralph et al. (2001), which demonstrated that expelled Symbiodinium cells
in the coral Cyphastreawere expelled from the host at 33 �C but were not themselves
photoinhibited, as measured by PAM fluorometry, until they were heated to 37 �C.
Symbionts may even be released intact during the autophagic degradation of the host
cell (Hanes and Kempf 2013). Using the model cnidarian Aiptasia, Bieri et al. (2016)
determined that bleaching was primarily a result of expulsion of intact algae during
thermal and light stress.

An alternative to symbiont expulsion is the degradation or consumption of the
symbionts within the host cells. Symbiophagy involves the degradation of the
symbiont cells by host autophagic pathways (Downs et al. 2009). The algal
symbiosome is a host-derived late endosome that exists in a state of arrested
phagocytosis, where the normal progression of consumption of foreign materials is
paused indefinitely in a successful symbiosis (Davy et al. 2012). The symbiophagic
process may involve the reactivation of the phagocytic pathway during thermal or
oxidative stress, likely by Rab marker signaling to the symbiosome membrane (Chen
et al. 2005; Downs et al. 2009). Symbiophagy was found to be primarily a function
of thermal, not light, stress in the coral Pocillopora damicornis, suggesting that it
may be a result of thermally induced disruption or activation of the host innate
immune response (Downs et al. 2009). Alternately, algal cells may directly suffer
from thermal or oxidative stress and degrade in situ via either controlled
(programmed cell death) or uncontrolled (necrosis) mechanisms (Weis 2008). In
situ degradation has been determined to be the primary means of symbiont loss in
several natural bleaching events in scleractinian corals (Brown et al. 1995; Ains-
worth and Hoegh-Guldberg 2008), and it has also been noted in Aiptasia under
experimental thermal stress (Dunn et al. 2004). Bleaching via exocytosis or in situ
degradation of symbionts would seem to be a less traumatic and metabolically costly
mechanism of bleaching than host cell degradation.

Fig. 8.3 Mechanisms of
symbiont loss from
cnidarian host cells after the
initiation of bleaching. Sym
¼ Symbiodinium cell. Lys ¼
host lysosome. Adapted
from Gates et al. (1992),
Weis (2008), and Bieri et al.
(2016)
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In contrast to symbiont expulsion or degradation, it is possible that entire host
cells containing Symbiodinium detach from the gastrodermal layer. Host cell release
was first described by Gates et al. (1992) after both severe high- and low-temperature
stress in Aiptasia and Pocillopora, and the cold response has been replicated by Bieri
et al. (2016). This mechanism has also been noted in response to chemically induced
stress (Sawyer and Muscatine 2001). The role of host cell detachment in typical
thermal bleaching events is questionable, however, and may be a transitory, indirect
outcome of more general host degradation and apoptosis mechanisms (Brown et al.
1995; Bieri et al. 2016).

Finally, Symbiodinium cells may be lost as a result of host cell death. Two
controlled host death pathways have been proposed due to thermal or oxidative
stress: apoptosis, as discussed previously, or autophagy, the controlled sequestration
of and destruction of cellular structures (Dunn et al. 2007; Paxton et al. 2013).
Autophagy is a highly conserved mechanism to remove compromised or extraneous
organelles and cells, in which marked target structures are enveloped by phagocytic
vacuoles and broken down by the fusion of the autophagosomes with lysosomes
containing digestive enzymes (Hanes and Kempf 2013). In some cases, entire cells
can be degraded in this way. Autophagic structures were found to greatly increase
following sustained thermal shock in Aiptasia, during which the symbiont cells
remained competent and were released into the gastrovascular cavity (Hanes and
Kempf 2013). Dunn et al. (2007) found simultaneous action of both host apoptosis
and autophagy in thermally stressed Aiptasia. Large organism-scale reductions in
cytoskeletal and structural proteins provide additional suggestive evidence for the
occurrence of autophagy and apoptosis in Aiptasia during heat shock prior to
symbiont dysfunction (Oakley et al. 2016). Both autophagy and apoptosis can be
initiated by ROS stress, but the sequence of each and the relative importance of
autophagy remain unknown. Uncontrolled cell death, or necrosis, has been
documented in cases of severe thermal stress in both host and symbiont cells
(Dunn et al. 2004) and is assumed to occur when the controlled apoptotic or
autophagic pathways are overcome by severe and sustained cellular damage.

8.5 Future Directions

The study of the ecosystem-wide process of coral bleaching is increasingly propelled
by the use of modern “omics” techniques, aided by advances in genetic sequencing
and mass spectrometry, to study the cellular mechanisms of both partners (Davy
et al. 2012). The genomes of multiple coral species, including Acropora digitifera
(Shinzato et al. 2011), are now available, as are those of several Symbiodinium
species (Shoguchi et al. 2013; Lin et al. 2015; Aranda et al. 2016; Levin et al. 2016;
Gierz et al. 2017; Wang et al. 2017) along with transcriptomic datasets of many
species during bleaching (Pinzón et al. 2015). High-resolution genetic data provide
insight into the ways in which symbiosis has molded the evolution and physiology of
the two partners and serve as a means to predict their response to future climate
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change (Bay et al. 2011; Bhattacharya et al. 2016). Genomes of target species permit
mass-spectrometry-based comprehensive identification and quantification of entire
proteomes (Weston et al. 2015; Oakley et al. 2017), allowing for the detection of
fine-scale cellular responses to thermal perturbation. Gene expression information is
increasingly augmented by metabolomics, the analysis of entire classes of com-
pounds, such as lipids, sugars, and secondary metabolites, to gain a finely-detailed
description of the state of the organism under stress (Hillyer et al. 2017a). This is
particularly useful in characterizing the identities and quantities of compounds
exchanged between partners (Burriesci et al. 2012; Hillyer et al. 2017b; Matthews
et al. 2017), which are both central features of the symbiosis and critical to assessing
its health. The contributions of the bacterial consortia to the holobiont during
bleaching, including their potential roles in contributing to and mediating oxidative
stress, are becoming better understood (Ziegler et al. 2017). Novel imaging methods,
such as nanoscale secondary ion mass spectrometry, are also moving from the wider
biological literature into the coral biology field (Pernice et al. 2012).

Given the considerable difficulty in maintaining corals in a laboratory environ-
ment and their slow growth, model systems are increasingly used to study the
cellular response of the symbiosis to thermal and other stresses (Weis et al. 2008;
Meyer and Weis 2012). Due to its tractability and rapid growth, Aiptasia has become
the principal model organism for studies of the cnidarian-dinoflagellate symbiosis
(Lehnert et al. 2012; Baumgarten et al. 2015). Gene expression studies using both
transcriptomics and proteomics of Aiptasia have described the effects of symbiosis
on the cnidarian cell (Lehnert et al. 2014; Oakley et al. 2016). Its ability to associate
with multiple Symbiodinium species in laboratory experiments is invaluable to its
utility (Starzak et al. 2014; Wolfowicz et al. 2016). These models provide the ability
to identify cellular markers and metabolic pathways involved in coral bleaching,
with the goal of direct application to ecologically relevant coral species in the field
(Jin et al. 2016).

Coral bleaching is an ecosystem-scale disaster arising from cellular-scale distress.
“Omics” technologies and model systems are powerful tools to analyze the
bleaching process and will find an increasingly prominent role in the study of
coral cell biology. Our ability to describe, predict, and, perhaps, change the outcome
of bleaching events depends on our ability to describe the cellular mechanisms of
thermal stress and the breakdown of the symbiosis.
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Chapter 9
Bleaching and Mortality Thresholds: How
Much Is Too Much?

R. Berkelmans

9.1 Introduction

A considerable number of studies have investigated the link between coral bleaching
events and environmental factors. Whilst localized bleaching events can have many
causes (Dove and Hoegh-Guldberg 2006), widespread bleaching events have,
almost without fail, been demonstrably linked to unusually warm temperatures
often in conjunction with increased light. Prior to the 1990s, there was a paucity of
representative instrumental temperature data to link with observations of mass coral
bleaching (Chap. 3). However, temperatures beyond the envelope normally experi-
enced by corals have always been implicated as the cause of mass bleaching. For
example, as early as 1914 Alfred Mayer wrote:

Thus on July 21–22, 1911, at Tortugas, Florida, after several hot, calm days, the shallow
water over Bird Key Reef rose to 33 to 38 �C and Dr. L. R. Cary observed that large numbers
of Diadema, Octopus, Fissurella, and other molluscs and small fishes were killed in
considerable numbers over extensive areas, and the corals were injured even when not
exposed to the air. (Mayer 1914)

Finding a suitable metric for temperature, light and other meteorological variables
that adequately predicts bleaching and can be universally applied has proven much
more challenging. In theory, a bleaching threshold for a particular coral species at a
particular location is a function of absolute temperature, light and exposure time (Fitt
et al. 2001). Ideally, it also incorporates possible additional stress factors such as
salinity (Coles and Jokiel 1992) and water quality (Marshall and Schuttenberg 2006)
or mitigating factors such as water motion (Nakamura and van Woesik 2001; van
Woesik and Koksal 2006). However, constructing and applying such a multivariate
model for predicting impending bleaching events is highly problematic and
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impractical. The problems include the difficulty in establishing the model parameters
for each species, the applicability of laboratory-derived values to real-world field
conditions and the availability of representative real-time data for variables such as
underwater light, water motion and water quality parameters. As a result, a more
parsimonious approach needs to be considered. Published papers on bleaching
thresholds and predictors are invariably empirically derived using correlations
between bleaching events and environmental factors. The developed relations
often involve multispecies coral assemblages, use a single parameter and simple
metrics of readily available data and are either location-specific or “best-fit” approx-
imations applied over large spatial scales (from 10s to 1000s of kilometres). Conse-
quently, “bleaching thresholds” have taken many different forms and are not easily
applied to other locations, nor are they comparable between locations. Examples of
the kinds of bleaching indices include satellite-derived sea surface temperature
(SST) metrics such as monthly means (Goreau et al. 1993; Brown et al. 1996),
anomalies above monthly means (e.g. “HotSpots” and “ReefTemp”; Goreau and
Hayes 1994; Strong et al. 1997; Maynard et al. 2008; Chap. 4), “degree heating
weeks” or “degree heating days” (Gleeson and Strong 1995; Maynard et al. 2008;
Chap. 4) and maximum 3-day temperature (Berkelmans et al. 2004). For indices
derived from in situ data, examples include maximum daily SST (Jones et al. 1997;
Winter et al. 1998), monthly means (Podestá and Glynn 2001), weekly means and
anomalies (Vargas-Ángel et al. 2001), degree-days (Podestá and Glynn 2001), days
above certain temperatures (Winter et al. 1998), coefficient of variation of SST
(Sammarco et al. 2006) and time–temperature curves (Berkelmans 2002a; Manzello
et al. 2007). Thus, although highly diverse, each of these indices has merit for its
own application driven by specific research questions, local conditions and
responses, the spatial and temporal scale of interest and using the best locally
available data.

The spatial and temporal scale of interest is an important factor in determining
which metric to use as a bleaching threshold. “HotSpots” and “degree heating
weeks” are operational web-based products produced by NOAA at a global scale
(http://www.osdpd.noaa.gov/PSB/EPS/SST/climohot.html; Chap. 4). One of the
best features of these products is the “global view” of bleaching risk. The downside
is that globally applied algorithms inherently suffer from error (i.e. false positive or
negative bleaching predictions) at local/regional scales (e.g. McClanahan et al.
2007). Regionally applied algorithms for satellite-derived SSTs such as “ReefTemp”
Maynard et al. 2008, which is specific for the Great Barrier Reef (GBR), should
reduce error rates, but this is as yet untested. On the other end of the spectrum, highly
localized (reef-specific) bleaching indices such as time–temperature curves
(Berkelmans 2002a) offer little spatial overview but potentially highly accurate
bleaching predictions. Because these are “calibrated” to local conditions and
responses, they can potentially also be extended to defining mortality thresholds
for selected coral taxa. Used together, the satellite- and in situ-derived products can
offer both locally accurate bleaching and mortality predictions and wider spatial
interpolation of likely thermal stress.
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Time–temperature curves were first developed for 13 reefs on the GBR following
the 1998 bleaching event (Berkelmans and Oliver 1999; Berkelmans 2002a). Since
then there has been another GBR-wide bleaching event in early 2002 and a localized
but intense bleaching event in early 2006, which affected the southern GBR
(GBRMPA 2006). The purpose of this chapter is to:

– Evaluate the appropriateness of in situ temperature in modelling bleaching
thresholds and determine what improvement in predictive capacity could be
gained by incorporating solar radiation and other environmental data into a
model, using Magnetic Island in the central GBR as a case study.

– Review and evaluate the accuracy of the time-integrated bleaching thresholds for
the GBR which were constructed after the 1998 bleaching event, with the benefit
of an additional 7 years of SST data and in light of the 2002 and 2006 bleaching
events.

– Construct mortality thresholds for coral taxa at specific sites which suffered high
mortality (>50%) during the 1998, 2002 and 2006 bleaching events on the GBR.

9.2 Methods

9.2.1 Statistical Modelling

The physiological response of corals to bleaching is, in large part, a function of the
amount of light (photosynthetically active radiation, PAR; ultra violet, UV) received
after high temperatures have damaged the carbon-fixing processes of the zooxan-
thellae (Jones et al. 1998). To determine the relative influence of solar and UV
radiation, SST and a number of other potential weather variables in explaining past
coral bleaching events at Magnetic Island, a statistical exploratory model was
constructed using classification trees. Classification trees examine the effects of
predictor variables one at a time on a categorical response variable (e.g. bleaching)
using a hierarchical system of splits, each one resulting in more homogeneous
groups (De’ath and Fabricius 2000). Trees are an alternative to traditional statistical
methods used with categorical response variables such as logistic regression and
discriminant analysis and are often preferred because they can be used with a variety
of data types and they can handle missing data and have the ability to uncover
patterns and associations missed by traditional linear models (De’ath and Fabricius
2000). The categorical regression trees (CRT) exhaustive search algorithm of com-
puting univariate splits was used since it deals with missing data better than other
algorithms by using surrogates (Breiman et al. 1984). A tenfold cross-validation was
performed on the final tree model with a learning data set to evaluate the robustness
of the model with larger data sets. Statistical analyses were performed using SPSS
software ver. 15.0.
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The onset and intensification (if these occurred in separate months) of bleaching
(dependent variable) were tested against 17 potential explanatory variables. These
included monthly mean, minimum and maximum SST (calculated from daily aver-
ages), total monthly global radiation (measured horizontal and 19� off horizontal—
the angle of maximum quantum exposure for Magnetic Island), total monthly UV-A
radiation, maximum and minimum monthly air temperature, mean monthly relative
humidity and dew point (9 a.m. and 9 p.m.), monthly total rainfall and evaporation
and monthly total wet and sunshine hours. Data covered the summer months from
December to March between 1991 and 2004 and included four bleaching events:
1992, 1994, 1998 and 2002. SST data were obtained from SeaTemps, a long-term
sea temperature monitoring program on the GBR (www. aims.gov.au/pages/facili
ties/adc/seatemps.html). Weather data were obtained from Allunga Exposure Labo-
ratories (global and UV radiation, rain, wet hours), a materials testing facility
~20 km south of Magnetic Island and the Australian Bureau of Meteorology (air
temperature, dew point, humidity, evaporation, sun hours) at the Townsville airport,
~8 km south of Magnetic Island. The efficacy of using weather data 20 km away
from the study site was tested by comparing two related variables: monthly global
radiation (measured at Allunga Exposure Laboratories) and PAR (measured at the
study site) for the period December 1999 to December 2005 when overlapping data
existed. The two variables were significantly correlated (r2 ¼ 0.62, n ¼ 73), indi-
cating that the Allunga radiation data are likely to be reasonably representative of
Magnetic Island.

9.2.2 Bleaching Thresholds

Bleaching thresholds were previously constructed for 13 locations on the GBR using
in situ water temperature records and concurrent observations of coral bleaching
during the anomalously warm summer of 1998 (Berkelmans and Oliver 1999;
Berkelmans 2002a). Bleaching thresholds were reconstructed using the methodol-
ogy outlined in Berkelmans (2002a, b) with a temperature record extended by
7 years and observations of coral bleaching from two more bleaching events,
one that was GBR-wide in 2002 (Berkelmans et al. 2004) and another in 2006 that
predominantly affected reefs in the southern GBR (GBRMPA 2006). For 2 of the
original 13 locations (Wallace Islet and Norman Reef), there was a gap in
the temperature record during the 2002 bleaching event, and these sites were omitted
from the analysis. Agincourt 3 Reef (~51 km north of Norman Reef) was substituted
in place of Norman Reef since its temperature record was complete and, although
it suffered no bleaching in 1998, it bleached extensively in 2002. The bleaching
period for which time–temperature curves were calculated covered the warmest
period during and on the shoulder of each austral summer from 1 November to
30 April.

The accuracy of the bleaching curves was assessed in two ways. First, the
performance of the Magnetic Island curve was evaluated in predicting the 2002
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bleaching event. Seven visits to Magnetic Island were made during the 2001/2002
summer at roughly fortnightly intervals, and for each visit a cumulative exposure
curve was calculated allowing the onset and development of bleaching and the
associated thermal conditions to be assessed in a stepwise fashion. During the field
visits, bleaching was assessed by rapid visual surveys with the severity of bleaching
estimated as a percentage of coral cover white on upper surfaces in the following
bins: 0–1% (no bleaching), 1–10% (mild bleaching), 10–30% (heavy bleaching),
30–60% (very heavy bleaching) and >60% (extreme bleaching). Second, the per-
formance of all original bleaching curves was evaluated in terms of their ability to
accurately separate bleaching from non-bleaching years since 1998. Bleaching was
assessed either by field or aerial surveys as detailed above and in Berkelmans
et al. (2004).

9.2.3 Mortality Thresholds

Mortality thresholds were constructed in a similar manner to the bleaching threshold
curves. During the 1998, 2002 and 2006 bleaching events, a number of locations
suffered high mortality (>50%) of sensitive (and locally dominant) coral taxa. These
were mostly members of the pocilloporid and acroporid families. Table 9.1 shows
the locations and how much mortality was experienced in each species group.
Mortality curves, based on 50% mortality (TL50), were estimated by linear interpo-
lation between the bleaching threshold curve and the time–temperature curve for the
summer in which significant mortality took place. For cases with 100% mortality,
the TL50 curve (for 50% mortality) was assumed to lie halfway between the
bleaching threshold (which in theory should result in little or no mortality) and the
curve which resulted in 100% mortality. This may overestimate the TL50 curve,
particularly if the conditions causing 100% mortality were much warmer and
sustained much longer than the bleaching threshold. In other words, 100% mortality
occurred sooner than the warmest conditions experienced, but no direct observations
were taken at the time. For cases where 50% mortality resulted, no interpolation was
required: the TL50 curve was the final time–temperature curve for the summer. For
cases with mortality levels between 50% and 100%, the position of the TL50 curve
was scaled accordingly. As with the bleaching curves, the number of days’ exposure
does not necessarily represent consecutive days. For the sake of simplicity, it was
assumed that damage to coral tissue continues from where it left off between one hot
period and the next.
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9.3 Results

9.3.1 Is Temperature Appropriate for Modelling Bleaching
Thresholds?

The results of the classification tree show that sea temperature is clearly the most
important variable explaining bleaching events. Of the 17 potential variables inves-
tigated, only 6 contributed significantly to the model, and, of these, the top 3 explan-
atory variables were maximum, average and minimum SST (Fig. 9.1a). Total
monthly UV radiation rated less than 18% of the importance of maximum monthly
SST to the model and total monthly sun hours less than 13%. Total global radiation
did not contribute significantly to the model. Only one split in the decision tree was
required by the final model to accurately predict the seven cases for the onset or
continued development of bleaching, being January and February of 1992, January
of 1994 and January and February of both 1998 and 2002 (Fig. 9.1b). In all cases this
split was on the basis of a maximum monthly temperature >31.46 �C. The risk of
misclassification, or the probability that these data could be classified by chance
alone, was low at 1.3%, as indicated by the cross-validation error (Table 9.2). Thus,
temperature is by far the most important parameter in predicting bleaching events,
and hence temperature-based models remain an appropriate foundation for a
bleaching alert system.

9.3.2 Bleaching Thresholds

A time-series evaluation of the bleaching threshold at Magnetic Island first published
after the 1998 bleaching event on the GBR (Berkelmans 2002a) clearly shows that it
accurately predicted the onset of the 2002 bleaching event (Fig. 9.2). On
21 December 2001, no bleaching was evident, but 2 weeks later on 7 January, the
first signs of bleaching were evident with upper surfaces appearing pale to white on
staghorn and plating Acropora spp. and margins of encrusting Montipora colonies.
At that time, the time–temperature curve had just exceeded the predicted bleaching
curve at temperatures >30.8 �C (Fig. 9.2). Over the ensuing weeks, the bleaching
spread and intensified; and by 8 February ~30% of the hard corals on the reef crest
were bleached white with another 50% pale (Berkelmans et al. 2004). By this time
the bleaching threshold had been exceeded by a considerable margin. Maximum
temperatures and extent and intensity of bleaching were experienced at the time of
the visit on 1 March 2002. After this, temperatures declined, and early signs of
zooxanthella population recovery were evident in individual colonies 3 weeks later.
The Magnetic Island bleaching threshold, therefore, worked well in predicting
bleaching at the same site 4 years after the 1998 bleaching event.

A review of the time-integrated bleaching thresholds for 12 of the 13 reefs in
Berkelmans (2002a) also shows that, for the majority of these locations, the original
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220 R. Berkelmans



bleaching threshold curves still accurately separated the bleaching years from the
non-bleaching years (Fig. 9.3). For all but three locations (Daintree coast, Orpheus
Island, Magnetic Island), the 2002 curve exceeded the curve of the 1998 bleaching
year. Of the three locations that were cooler in 2002 than in 1998, both the Daintree
coast and Orpheus Island did not show widespread bleaching (Berkelmans et al.
2004; T. Ayling, personal communication). The 2002 curve for Orpheus Island was

Table 9.2 Specification criteria and calculated results for a classification trees model which
evaluates the contribution of various environmental variables in predicting bleaching at Magnetic
Island in 1992, 1994, 1998 and 2002

Model specifications

Growing method CRT

Dependent variable Bleach (yes/no)

Independent variables BoM_Sun_hrs, Av_SST, Min_SST, Max_SST, Tmax_air,
Tmin_air, Dew_9am, Dew_9pm, RHumidity_9am,
RHumidity_9pm, Rain, Evaporation, Wet_hrs, A_Sun_hrs,
GlobalRad_hor, GlobRad_19deg, UVR

Model results

Independent variables
included in model

Max_SST, Av_SST, Min_SST, UVR, Tmin_air, A_Sun_hrs

Classification error 0.000

Estimated risk (cross-
validation error)

0.013

Standard error of risk 0.025

The summary of the model results shows that only 6 of the original 17 variables contributed
significantly to the model

60

40

C
um

ul
at

iv
e 

tim
e 

(d
ay

s)

20

30.1 30.3 30.5 30.7 30.9

21-Dec-01: No bleaching

7-Jan-02: First signs of bleaching

24-Jan-02: Bleaching spreads

8-Feb-02: Lots of pale and white coral

20-Feb-02: 50% of corals white

1-Mar-02: Peak of bleaching

23-Mar-02: Some recovery started

predicted threshold

31.1 31.3

Av. daily temperature

31.5 31.7 31.9 32.1 32.3

0

Fig. 9.2 Time-series assessment of the state of bleaching at Magnetic Island during the 2002
bleaching summer with a stepwise view of the time–temperature curve during each visit

9 Bleaching and Mortality Thresholds: How Much Is Too Much? 221



Fig. 9.3 Time–temperature curves for the bleaching summers and three warmest non-bleaching
summers for 12 locations on the Great Barrier Reef (a–l), including the estimated position of
bleaching curves and, where available, mortality curves
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below the bleaching threshold as was the Daintree coast at temperatures above 30 �C
(Fig. 9.3b, f). The 2002 curve at Magnetic Island was below the 1998 curve, and the
bleaching intensity was also lower (Berkelmans et al. 2004).

The 2006 summer was generally warm for many reefs in the northern and central
GBR, but widespread bleaching only occurred in the southern GBR, with inshore
reefs most affected, especially in the Keppel Island group (Keppels). Approximately
87% of reef flat and 98% of reef slope coral bleached in this area with 61% and 78%
of these habitats (respectively) bleached white (Berkelmans and Jones in prep.). The
2006 curve for the Keppels clearly shows the intensity of this event, both in terms of
the record temperatures experienced and the duration of hot conditions (Fig. 9.3k).

A few locations showed anomalies with time–temperature curves exceeding the
bleaching thresholds, but no bleaching reported. For example, conditions at Kelso
Reef in 2005 and 2006 greatly exceeded both the predicted bleaching threshold for
this location and the 2002 curve (Fig. 9.3a), but no reports of bleaching were
received. Access to this location was difficult since a daily tourist operation to this
reef stopped. A visit to Kelso Reef in July 2006 showed that >80% of the coral on
the reef flat and upper reef slope were dead, but since this reef also had an outbreak
of crown-of-thorns starfish over several years, the cause of the mortality may only be
in part bleaching-related. Three more sites had their bleaching thresholds adjusted
slightly in light of warmer non-bleaching years occurring above the predicted
threshold but still below the coolest bleaching year. These include the Daintree
coast, which had its bleaching threshold curve truncated at lower temperatures and
slightly raised, as well as Orpheus Island and Halfway Island. At Halfway Island, in
particular, the estimated position of the 1998 curve was a long way above the coolest
non-bleaching year at that time. The non-bleaching summer of 2004 has since
enabled the bleaching threshold to be better estimated. These are considered minor
refinements of the estimated position of the bleaching threshold curve in light of
more and better data.

More perplexing, however, are four locations where the curve for the 2004
summer exceeded the curves for the known bleaching year of 1998 and yet did not
bleach. These locations included Myrmidon Reef, Chicken Reef, Magnetic Island
and Daydream Island (Fig. 9.3e, h–j). Possible reasons for this are examined in Sect.
9.4. On balance, the original bleaching curves performed well during the 2002
bleaching event, but subsequent repeated warm summers without bleaching may
require a reinterpretation of bleaching thresholds at some sites.

9.3.3 Mortality Thresholds

High mortality (>50%) among sensitive hard coral species at six locations in 1998,
2002 and 2006 gives rise to the possibility of estimating a TL50 time–temperature
curve, effectively a species-specific mortality curve. These locations include
Orpheus Island, which suffered high mortality in 1998; Myrmidon Reef, Davies
Reef and Stone Island, which suffered high mortality in 2002; and the Keppels,
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which suffered high mortality in 2006 (Table 9.1). The position of these curves in
relation to the warmest year and the bleaching threshold is shown in Fig. 9.3.
Replotting these curves in relation to their respective bleaching thresholds revealed
some interesting patterns. First, when the TL50 curves were recalculated as a time
offset from the bleaching threshold (i.e. days above bleaching threshold), there was
no consistent relationship evident (Fig. 9.4a). However, when they were recalculated
as a temperature offset from the bleaching threshold (i.e. �C above bleaching
threshold), there was a suggestion of a linear relationship (Fig. 9.4b). With the
exception of the Keppels, the TL50 curves for the taxa in question were all less
than 1 �C above the bleaching threshold, many only <0.5 �C above the bleaching
threshold. The plating Acropora species on the reef flat in the Davies Reef lagoon
and the pocilloporid, Seriatopora hystrix, at Daydream Island in particular had TL50

curves just 0.2–0.4 �C above their respective bleaching thresholds. In contrast, the
corymbose and staghorn Acropora species in the Keppels were considerably more
resistant to dying after bleaching. Nevertheless, their TL50 curve was still <2 �C
higher than the bleaching threshold (Fig. 9.4b). The mortality curves for these
locations and species groups were, therefore, offset from the bleaching threshold
curve on the temperature axis but were still remarkably close to the bleaching
thresholds.

Fig. 9.4 Relationship of mortality curves to (a) “days above bleaching threshold” and (b) “tem-
perature above bleaching threshold”
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9.4 Discussion

Coral reef managers have come to rely on spatially extensive bleaching alert systems
such as “HotSpots” (Goreau and Hayes 1994; Gleeson and Strong 1995; Chap. 4)
and locally specific systems such as the Coral Reef Early Warning System (Hendee
et al. 2001; Berkelmans et al. 2002) and time-integrated bleaching thresholds
(Berkelmans 2002a) for valuable information on the build-up of stressful conditions
to hard corals, the dominant builders of reefs. Reef managers value such warning
systems because they allow them to be the source of timely and credible information
about bleaching risk for decision-makers, stakeholders and the media (Marshall and
Schuttenberg 2006). It also allows for early management responses to be put in
place, including the instigation of formal monitoring programs to assess the extent
and severity of bleaching and, where appropriate, take local action to ameliorate the
risk of further damage to reefs from such activities as dredging, coastal development
and point-source pollution. The time-integrated bleaching thresholds have been in
use since 2000 as one of the monitoring tools for the Great Barrier Reef Marine Park
Authority. The results of this review show they performed well in the time leading up
to and including the 2002 bleaching even but also that there were some inconsis-
tencies in recent years at some sites. The summer of 2004 in particular exceeded the
bleaching threshold as well as the 1998 curve at Daydream Island, Myrmidon Reef
and Chicken Reef in the central GBR, but, apart from a few pale colonies, no
widespread bleaching occurred. Similarly, the 2005 summer at Magnetic Island
exceeded the bleaching threshold and the conditions during the 1992 and 1994
bleaching events and was almost equivalent to the 2002 bleaching event, but, apart
from pale tops on a few Porites bommies, no bleaching was evident. One plausible
explanation is that the bleaching curves are too simplistic in modelling the bleaching
thresholds because they do not take into consideration any possible recovery by the
corals between intra-seasonal heat waves. This is unlikely since temperatures were
well above the mean at these sites for almost the entire 2004 summer and the week-
to-week fluctuations were smaller than in the 1998 summer and equivalent to the
2002 summer (data not shown). Another plausible explanation is that light levels,
UV or other environmental factors were sufficiently lower in the non-bleaching
2004/2005 summers compared with the bleaching summers and effectively
prevented bleaching. Again, this is unlikely because global radiation near Magnetic
Island was higher during the critical 2005 summer months of January/February
(total ¼ 1403 MJ/m2) than the same period during the bleaching summer of 2002
(total ¼ 1301 MJ/m2) as was total sun hours (546 vs 533 h, respectively). Total
UV-A and B radiation were marginally lower (82.2 vs 86.4 MJ/m2, respectively), but
this difference was not statistically significant [t(2)¼ 1.12, df¼ 116, P¼ 0.27]. The
results of the statistical analysis at Magnetic Island also show that light, UV and
other environmental factors at best only correlate weakly with the bleaching events
and were nowhere near as important as temperature in predicting bleaching at this
site. A more likely explanation is that corals at Magnetic Island, Daydream Island,
Myrmidon Reef and Chicken Reef have undergone some acclimatization after the
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2002 bleaching event, possibly through shuffling zooxanthellae types within the
coral tissue (Baker et al. 2004; Rowan 2004; Berkelmans and van Oppen 2006) or in
part through selection of more thermally resistant coral and symbiont genotypes
among surviving populations.

Since it is likely that a number of reefs have effectively achieved a “stepwise”
increase in thermal tolerance since 2002, the next challenge is to adjust the bleaching
threshold to a new level. For those sites which survived the extra warm summers
without bleaching, this adjustment can be made on the empirical evidence. The
question then becomes how far can these thresholds be moved up and how will other
locations respond to the next warm summer? If the mechanism of acclimatization is
by zooxanthellae shuffling (Baker et al. 2004; Buddemeier et al. 2004), then it is
likely that there is a limit of around 1.0–1.5 �C by which the bleaching threshold can
be increased (Berkelmans and van Oppen 2006). If there is a gradual shifting of
community zooxanthella types over multiple bleaching years or warm events, there
may need to be an equally gradual increment in the empirical bleaching thresholds.
Early warning systems based on these bleaching thresholds may show some false
positive warnings as reef communities acclimatize before their increased thermal
limits are quantified. This may decrease the reliability of time-integrated bleaching
thresholds and other temperature-based early warning systems for some time until
any shift can be adequately taken into account in a refined model. These adjustments
and improvements in early warning systems are inevitable as our understanding of
thermal stress and physiological responses of corals improves and advances in
technology allow relevant parameters to be better monitored and interpreted. In the
meantime a few false positive warnings may be something that reef managers would
rather endure than their counterpart, a false negative.

The results of the classification tree analysis clearly show that temperature is the
most important variable in explaining past bleaching events at Magnetic Island and
that maximum monthly SST (based on daily averages) was the most important
metric. UV (A and B) radiation, sunshine hours and other variables contributed
either a small amount or not at all to the final model. This is not to say that UV and
light are not important in bleaching, only that the field evidence does not support
these factors as explanatory variables for the purpose of bleaching predictions at this
site. Unfortunately, lack of global radiation and UVR data precludes similar analyses
at other GBR sites. Given the importance of light in the bleaching response of corals
as demonstrated experimentally (e.g. Jones et al. 1998) and evidenced in field
situations (e.g. Oliver 1985), it is important that more data sets on light regimes
influencing coral reefs are collected to better understand the role of light in field
conditions and further evaluate its potential in refining early warning systems.

The TL50 curves presented here are the first attempt to quantify mortality thresh-
olds for corals under field conditions. A great deal of experimental work has been
done to determine the upper thermal limits for a range of corals (e.g. Mayer 1914;
Yonge and Nicholls 1931; Coles et al. 1976; Marcus and Thorhaug 1981; Glynn and
D’Croz 1990; Berkelmans and Willis 1999; Ulstrup et al. 2006). However, it is
extremely difficult to replicate field conditions in controlled laboratory experiments,
and hence results are hard to apply in early warning systems or scenario modelling.
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Notwithstanding the fact that there may be some variation in the bleaching thresh-
olds due to acclimatization and, for the same reason, probably also in the mortality
thresholds, these TL50 curves provide a useful starting point for early warning
systems and modelling future effects of climate change on coral reefs
(e.g. Wooldridge et al. 2006; Chap. 13). The proximity of the TL50 curves to the
bleaching threshold curves is clear evidence that there is a fine line between bleached
corals recovering or dying in the communities examined here. The fact that all bar
one of the mortality thresholds were <1 �C and many only <0.5 �C above the
bleaching threshold illustrates the small quantum of increased temperature required
to turn the next big bleaching event into an ecological disaster, the scale of which has
not been seen on the GBR before but has already been experienced in the Indian
Ocean in 1998 (Wilkinson et al. 1999; Goreau et al. 2000). Keppel Island reefs in the
southern GBR were remarkably resilient in comparison with other reefs which
suffered high mortality with a mortality threshold 0.9–1.7 �C higher than their
bleaching threshold. These communities are dominated by the same corymbose
and staghorn Acropora species which died<0.5 �C above their respective bleaching
thresholds at Davies Reef and Stone Island in the central GBR. A possible explana-
tion for the variation in mortality thresholds is an increase in resilience by Keppel
Island corals through switching to heterotrophic feeding whilst bleached (Grottoli
et al. 2006). This notion is supported by long-term chlorophyll monitoring data
which shows that chlorophyll a in the Keppel Island area is up to 3.5 times higher
than in the central offshore GBR (near Davies Reef) and twice the concentration of
the central inshore GBR (near Stone Island, Brodie et al. 2007). It should be
remembered that these mortality curves only relate to the most sensitive coral species
and are not representative of scleractinian corals generally. Nevertheless, the sensi-
tive species including most members of the Acroporidae and Pocilloporidae families
(Marshall and Baird 2000; Loya et al. 2001) on Indo-Pacific reefs generally also
make up the dominant coral cover, contribute most to reef building and provide the
three-dimensional complexity on which fish and invertebrates rely for habitat and
shelter (e.g. Done 1982; Bell and Galzin 1984). The near-linear relationship of
temperature above bleaching threshold with exposure time suggests that the mortal-
ity thresholds simply represent a lateral shift in the bleaching thresholds outwards
along the temperature axis. This makes mortality thresholds an easy metric to work
with and apply in scenario modelling.

In conclusion, time-integrated bleaching thresholds remain an appropriate and
useful method for modelling thermal stress in corals. There is a high likelihood that
bleaching thresholds have increased at a number of locations on the GBR since the
major 2002 bleaching event, potentially as a result of acclimatization. Whilst these
increases may be limited in terms of absolute temperature, there is no doubt that they
are of great ecological significance. Mortality thresholds developed for a limited
number of reefs based on time–temperature curves for 50% mortality of specific taxa
indicate a very narrow margin between the bleaching and mortality thresholds for
sensitive species.
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Chapter 10
Consequences of Coral Bleaching for Sessile
Reef Organisms

T. R. McClanahan, E. Weil, and A. H. Baird

10.1 Introduction

Sessile organisms, such as corals and erect algae, provide a complex reef architecture
that is important for maintaining organic and inorganic (calcium carbonate) forms of
reef productivity (Enriques et al. 2005; Finelli et al. 2006). These sessile organisms
also provide shelter and, in some cases, food for mobile animals such as fishes
(Chap. 11). Corals and sessile algae that deposit their calcium carbonate skeletons
create the geologic reefs that shelter many tropical shorelines from storm damage.
Bleaching, the loss of the coral symbionts and the plant and animal pigments, often
leads to a loss of energy and partial and whole-colony mortality of affected organ-
isms. Higher than normal temperatures affect metabolic reactions that are regulated
by temperature-sensitive enzymes, which can then affect physiological functions.
The loss of zooxanthellae, on the other hand, causes a significant reduction in the
translocation of photosynthetic products to the host cells and is, therefore, expected
to have both immediate and delayed effects on individuals, which cascade to affect
populations, communities, and ecosystems. Zooxanthellae have been estimated to
provide 30% of the total nitrogen and 91% of the carbon needs of the coral host
(Bythell 1988). Consequently, the effect of coral bleaching has major consequences
for reef productivity, reef growth, and biodiversity. Despite the taxonomic extent of

T. R. McClanahan (*)
Wildlife Conservation Society, Marine Programs, Bronx, NY, USA
e-mail: tmcclanahan@wcs.org

E. Weil
Department of Marine Sciences, University of Puerto Rico, Mayaguez, PR, USA

A. H. Baird
ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD,
Australia

© Springer International Publishing AG, part of Springer Nature 2018
M. J. H. van Oppen, J. M. Lough (eds.), Coral Bleaching, Ecological Studies 233,
https://doi.org/10.1007/978-3-319-75393-5_10

231

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-75393-5_10&domain=pdf
mailto:tmcclanahan@wcs.org


bleaching, scleractinian (hard corals) and octocorals (soft corals) have attracted most
research attention and are, therefore, the focus of this chapter.

Mass mortality events on coral reefs due to large-scale environmental distur-
bances have been recorded since the 1870s. From 1876 to 1979, 63 mass coral
mortalities were reported (Glynn 1993; Chap. 3). During this period, only three
minor coral bleaching events were registered. Since 1979, bleaching has continued
(Donner et al. 2017), and bleaching is considered the main global threat to coral reefs
worldwide by many coral reef biologists, with overharvesting, costal development,
and pollution being locally important (McClanahan et al. 2008a; Weil and Rogers
2011; Burge et al. 2014; Maynard et al. 2015). This perception contrasts with coral
reef managers who generally perceive pollution and fishing as the main threats and
manageable at the scales they work at (Jackson et al. 2014; Wear 2016). The fate of
coral reefs at this global scale is dire according to many climate change-coral reef
projection models (Baskett et al. 2010; Frieler et al. 2013; Logan et al. 2014;
Chap. 13). Model projections remain a contentious and important debate among
coral reef scientists because of the uncertain acclimation and adaptive responses of
coral to rapidly warming temperatures (e.g., Buddemeier et al. 2004; van Oppen
et al. 2015).

10.2 Taxa Affected by Bleaching

Almost all photo-symbiotic marine organisms bleach in response to temperature.
Indeed, symbiosis seems to predispose organisms to be susceptible to a broad range
of stressor (Baird et al. 2009). In general, the taxa most affected by bleaching include
the hydrocorals (e.g., Millepora spp.), scleractinians, and octocorals. However,
photo-symbiotic sponges and bivalves also bleach (Table 10.1, Fig. 10.1). Even
some plants, such as the green alga Halimeda, lose pigments in response to thermal
stress (Vicente 1990). The most detailed descriptions of the taxa affected by
bleaching come from the Caribbean where numerous species bleached in response
to higher than usual sea temperature in 2005 and 2010. Five species of hydrozoan
(100% of the species pool), 60 species of scleractinians (90% of the species pool),
and 30 octocoral species (20% of the species pool) bleached along with other
cnidarians and sponges (Prada et al. 2010) (Fig. 10.1). These observations support
the hypothesis that most photo-symbiotic organisms will bleach when exposed to
thermal stress.
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Fig. 10.1 The 2005 bleaching event in the Caribbean. View of bleached reefs in Puerto Rico (a, b)
and Grenada (c, d). Acroporids were hit hard in most shallow habitats in Puerto Rico and other
Caribbean localities (e). Side-by-side bleached and unbleached colonies ofOrbicella faveolata raise
questions about “resistant” zooxanthellae strains (f). Significant numbers of colonies of bleaching-
resistant genera such asMycetophyllia were completely white (g). Many O. faveolata colonies with
on-going yellow band disease bleached completely increasing tissue mortality rates (h). Bleached
Stephanocoenia intersepta with dark spots disease (i) did not show any mortality. Other
zooxanthellate reef organisms like mileporids, crustose and branching octocorals also bleached (j,
k). Significant bleaching-associated mortalities were observed in Mycetophyllia spp., and Undaria
spp. in 2005 (l), and in acroporids in both 2005 and 2010 (m) (Photos E. Weil)
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10.3 Spatial and Temporal Variation in Bleaching
and Mortality

The scale and severity of bleaching mortality are highly correlated with the scale and
severity of thermal stress (Glynn 1984; Hughes et al. 2017). Bleaching mortality is
also habitat-specific. For example, mortality declines with depth and is reduced in
habitats or environments where light intensity is reduced and natural background
temperature variability is high (Brown et al. 1996; McClanahan et al. 2007a; Bridge
et al. 2014). For example, windward habitats have less natural background temper-
ature variability than leeward habitats, and this can result in higher bleaching in
windward habitats when temperatures rise (McClanahan et al. 2005a).

Bleaching at the assemblage level can vary at many spatial scales. For example,
on the Great Barrier Reef (GBR), inshore reefs were more affected than offshore
reefs in both the 1998 and 2002 events (Berkelmans et al. 2004), while the opposite
pattern was observed in the eastern Pacific in 1998 (Glynn et al. 2001) and Puerto
Rico in 2005 (Weil et al. 2009a). Reefs on the GBR also bleached in clusters on a
scale of tens or hundreds of kilometers, which was attributed to local weather
patterns, oceanographic conditions, or both (Berkelmans et al. 2004). Bleaching
was considerably worse in the northern than southern GBR in 2016 (Hughes et al.
2017). Spatial variation in bleaching among sites has also been linked to a habitat’s
coral assemblage, where assemblages dominated by susceptible species were more
likely to have a higher proportion of bleached colonies (Marshall and Baird 2000;
Shuail et al. 2016; Heron et al. 2016). For example, half of the bleaching response in
western Indian Ocean coral assemblages was attributable to the site’s initial species
composition (McClanahan et al. 2007b, c).

Environmental factors that reduce the effects of stressful conditions or create
conditions that promote acclimation to extreme temperatures, irradiation, and UV
levels are expected to minimize the effects of bleaching. In an analysis of sea surface
temperatures (SST) off East Africa, McClanahan et al. (2007a) showed that long-
term temperature variability played a major role in buffering the effects of anoma-
lous SST warming. Locations in northern Kenya and southern Somalia that had SST
distributed narrowly around the mean had higher-degree heating weeks than areas
where SST had wide or flat distributions (Tanzania, Comoros; Fig. 10.2). Many sites
around the central Indian Ocean, such as Lakshadweep, Sri Lanka, Maldives,
Chagos, and Seychelles, that suffered higher mortalities in 1998 also had narrowly
distributed background SST (Ateweberhan and McClanahan 2010). Similarly, a
protective, sub-bleaching stress prior to stronger bleaching-inducing temperatures
can reduce the extent of bleaching in colonies in the laboratory (Ainsworth et al.
2016). In contrast, there was no evidence to suggest that prior low to moderate
bleaching histories reduced the extent of bleaching on reefs on the GBR in 2016
(Hughes et al. 2017). However, repeated strong bleaching temperatures had less
effect on a number of dominant coral taxa in 2016 compared to 1998 on Kenyan
reefs (McClanahan 2017).
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10.4 Patterns of Susceptibility to Bleaching Among Taxa

Earlier work on patterns of susceptibilities and bleaching to thermal stress is
generally consistent among taxa across the Indo-Pacific, at least during the initial
bouts of high temperatures (McClanahan et al. 2004a). Some more recent work
suggests differences in rates of acclimation of the same taxa over time in different
regions, which further complicates efforts to understand changes on the global scale
(McClanahan 2017). Therefore, it is less clear how the bleaching susceptibility
hierarchy changes over time and with temperature severity histories. Mortality
rates are often poorly associated with bleaching intensity, which makes estimates
of natural selection and genetic adaptation rates difficult to determine from bleaching
observations (McClanahan 2004, 2017). It may depend on the past history and
severity of the bleaching, as there are few unaffected taxa during the most severe
events that have been proceeded by less severe events (Hughes et al. 2017). Colonies
of some species bleach readily but recover (Baird and Marshall 2002), while fewer
species may show no symptoms of stress or obvious loss of pigmentation but still
suffer mortality from thermal stress and disease (McClanahan 2004; Weil and
Rogers 2011).

Other patterns associated with bleaching include observations that partial and
whole-colony mortality can be quite different with consequences for estimating
impacts of thermal anomalies. For example, branching colonies typically have
high rates of whole-colony but little partial mortality. Massive taxa, in contrast,
have low rates of whole-colony mortality, and the majority of tissue is lost through
partial mortality. For example, a study of individually tagged colonies of four
species on the GBR following bleaching found 88% of Acropora hyacinthus colo-
nies died while no whole-colony mortality occurred in Porites lobata (Baird and
Marshall 2002). However, the mean loss of tissue per massive colony was 42%. In
contrast, partial mortality was rare among Acropora and colonies either survived

Fig. 10.2 Spatial distribution of the mean, variance (standard deviation), and degree heating
months during 1998 along the East African coast, based on Hadley Centre data for
100 � 100 km grids and monthly SST (1950–2002). Degree heating months is the number of
months that the temperature is 1 �C above the mean for that month
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intact or died. Consequently, estimates of whole-colony mortality alone would
underestimate the effect of bleaching on the massive taxa.

The time taken to respond to warmer water also varies considerably among
species making the ranking of susceptibilities dependent on the time elapsed since
the onset of thermal stress. Massive species take longer to respond to thermal stress,
can stay bleached, and take longer to die than most branching species that bleach
quickly and either quickly recover or die (Brown and Suharsono 1990; McClanahan
et al. 2001; Baird and Marshall 2002). These findings are from macroscopic field
observations, but studies of the Acropora hyacinthus transcriptome found bleaching
involved approximately 20% of the host transcriptome and it was perturbed for more
than 6 months after the disturbance when normal growth returned (Thomas and
Palumbi 2017). In the GBR, the appearance of bleaching in individually tagged
Acropora colonies changed markedly across a single month (Baird and Marshall
2002). In contrast, massive Porites have been shown to bleach slowly over a number
of months but stay bleached many months beyond when warm temperatures passed
(McClanahan et al. 2001). In many cases, bleached or surviving corals are more
susceptible to diseases, predators, and competitors (Figs. 10.3 and 10.4).

The response of individual coral colonies can be also shaped by previous
experience (Brown et al. 2000; Oliver and Palumbi 2011a; Guest et al. 2012;
McClanahan 2017). Individuals can also respond to bleaching by changing the
relative abundance of high-temperature-resistant symbiont strains making individ-
uals less susceptible to subsequent bleaching events (Baker 2003; Baker et al. 2004;
Oliver and Palumbi 2011b, Chap. 9). Consequently, there is increasing evidence that
some corals can adjust to global warming, and, therefore, projections of the future
state of coral reefs need to take adaptation and acclimation into account (Baird et al.
2007; Logan et al. 2014).

10.5 Effect of Bleaching on Individuals

Sublethal effects on individual coral reef organisms following bleaching include
reduced reproductive output, reduced growth, and increased susceptibility to dis-
eases and other disturbances (Lesser et al. 2007).

10.5.1 Effect of Bleaching on Reproduction

Coral reproductive output can be affected by bleaching in a number of ways,
including changes in egg size and quality; reduced polyp fecundity, both in the
number of polyps with eggs and the number of eggs per polyp; and finally in the
number of whole colonies breeding in a given year (Baird and Marshall 2002;
Mendes and Woodley 2002). In contrast, bleaching had no effect on reproductive
output in Montipora capitata, possibly because this species can respond to the loss
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Fig. 10.3 High-temperature-induced bleaching (a, c, d) and tissue mortality (b, e) in the important
and endangered elkhorn scleractinian coral A. palmata in La Parguera during the 2005 thermal
anomaly in the northeastern Caribbean (photos: E. Weil)
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Fig. 10.4 High-temperature-induced bleaching and tissue mortality in the hydrocoral Millepora
alcicornis (a, b), the foliose scleractinians Agaricia agaricites (c, d), Helioceris cucullata (e),
Mycetophyllia ferox (f), A. lamarcki (g, h), and M. lamarckiana (i) during and after the intense
thermal anomaly of 2005 in reefs off La Parguera Natural Reserve in Puerto Rico (Photos: E. Weil)
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of symbionts by increasing heterotrophic feeding (Cox 2007). Egg size and number
of eggs per polyp were both lower in experimentally bleached colonies than in
unbleached colonies of the soft coral Lobophytum compactum (Michalek-Wagner
and Willis 2001a). Egg quality was also affected, with protein, lipid, mycosporine-
like amino acids, and carotenoid concentrations significantly reduced in the eggs of
bleached colonies (Michalek-Wagner and Willis 2001b). The effect of bleaching on
reproduction is also species-specific. For example, the proportion of colonies of
Acropora hyacinthus (45%) breeding after bleaching on the GBR was much lower
than that of A. millepora (88%; Baird and Marshall 2002).

On the GBR, bleaching caused a substantial decrease in reproductive output
primarily as a result of a significant decline in colony abundance (Baird and Marshall
2002). Following the 1998 bleaching event, the number of gravid A. hyacinthus
colonies at Pelorus Island was only 6% and A. millepora colonies 63% of that in
1997. Missing a few reproductive seasons for most long-lived coral species might
not have drastic consequences for their fitness. Nevertheless, an increase in temper-
atures compounded with local anthropogenic disturbances is expected to reduce the
capacity of these species to recovery from repeated disturbances.

10.5.2 Effect of Bleaching on Growth

Bleaching generally reduces coral growth rates (Pratchett et al. 2015). For example,
the unbleached massive coral Orbicella annularis deposited 1.4 mm/year more
aragonite than bleached colonies (Porter et al. 1989). Similarly, moderately affected
colonies of Acropora hyacinthus and A. millepora grew following bleaching,
whereas severely affected colonies did not. Yet, a direct association between
bleaching severity and growth was not statistically significant (Baird and Marshall
2002). Measuring growth precisely in the field is difficult, and, therefore, only a few
field tests are available, and these show high variation in their results.

10.5.3 Size-Specific Mortality Following Bleaching in Corals

Mortality in corals is often size-specific (Madin et al. 2014); however, the effect of
bleaching-related mortality on the size structure of populations has not been fully
resolved. For example, mortality rates following bleaching on the GBR in 1998 were
not size-specific, but patterns were difficult to assess across the whole spectrum of
sizes as only mature colonies were sampled (Baird and Marshall 2002). In contrast,
experimental and theoretical work predicted that large size might actually be dele-
terious when corals are exposed to thermal stress (Nakamura and van Woesik 2001).
Field studies backed up these predictions by showing that coral recruits with
diameters of <20 mm were unbleached compared to large corals (Mumby 1999).
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One predicted consequence of climate change is that it should reduce reproduc-
tion and recruitment and produce coral populations with large colonies (Bak and
Meesters 1999). However, a number of bleaching field studies report high partial
mortality and that small colonies survive better than larger colonies (Loya et al.
2001; Nakamura and van Woesik 2001; Bena and van Woesik 2004; Shenkar et al.
2005). Further, a long-term study of changes in coral size found that bleaching
reduced mean sizes but mortality was not related to the taxa’s mean size on Kenyan
reefs (McClanahan et al. 2008b). This indicates that the size effect is within and
mostly through partial colony mortality rather than higher mortality of taxa with
large maximum sizes. Studies in the Persian Gulf confirmed these predictions in that
reefs stressed by temperature and salinity had smaller colony sizes (Bauman et al.
2013).

10.5.4 Effect of Bleaching on Coral Settlement, Recruitment,
and Recovery

Coral settlement is typically measured as larval recruitment to artificial substrata
(Babcock et al. 2003). The few studies available indicate that coral settlement rates
are reduced following bleaching. For example, Gilmour et al. (2013) recorded a 97%
reduction in settlement following a bleaching event that reduced adult coral cover by
between 75% and 90%. However, the studied reef, Scott Reef (Western Australia), is
highly isolated (Underwood et al. 2009), which might have affected the supply of
new larval recruits. Nonetheless, coral settlement in the more connected reefs of
Maldives was reduced after bleaching in 1998 and continued to decline over time
(McClanahan 2000; Loch et al. 2004). In the eastern Pacific, while gametes became
mature in bleaching years (Glynn et al. 1991, 1996, 2000), subsequent larval
recruitment to the substratum was variable (Guzmán and Cortés 2001, 2007).
Similarly, while larval recruitment of Pavona varians in Panama was significantly
correlated with high seawater temperature, recruitment failed at very high tempera-
tures (Glynn et al. 2000). Post-recruitment survivorship is poorly studied, but
evidence from East Africa and the Caribbean suggests that predation can retard the
recovery of small corals recovering from bleaching (McClanahan et al. 2005b;
Rotjan and Lewis 2005). The loss of coral cover after bleaching can result in more
intense predation as coral predators increase their feeding focus on the surviving
corals.

10.5.5 Diseases

There is a clear synergy between high water temperatures, bleaching, and disease, all
possibly associated with changing environmental conditions linked to global climate
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change (Baird 2000; McClanahan et al. 2004b; Willis et al. 2004; Miller et al. 2006;
Bruno et al. 2007; Weil et al. 2009a, 2017; Cróquer and Weil 2009a, b; Fig. 10.5).
Temperature is the major driver of deadly scleractinian, octocoral, hydrocoral, and
crustose coralline algae disease epizootics. As SST are projected to continue to
increase, it is expected that the number of new diseases, their prevalence, and
virulence will also increase (Rosenberg and Ben-Haim 2002; Lesser et al. 2007;
Weil and Rogers 2011; Weil et al. 2017). There is compelling evidence that high
temperatures affect immune response making corals more susceptible to infections.
The destabilization of the “physiological equilibrium” between the host and resident
bacteria, where the host becomes more susceptible, the vector becomes more
virulent, or both promotes disease virulence (Harvell et al. 1999; Rosenberg and
Ben-Haim 2002; Ritchie 2006; Ward et al. 2007; Weil et al. 2009a; Harvell et al.
2009; Weil and Rogers 2011; Burge et al. 2014; Page et al. 2016; Weil et al. 2017).
Bleaching reduces the antibiotic properties of mucus, making colonies more suscep-
tible to diseases, and also promotes an ecological imbalance among coexisting taxa
in the coral holobiont, such as fungi, causing sublethal and lethal effects (Ritchie
2006; McClanahan et al. 2009; Chap. 7).

Reefs of the Caribbean have seen the greatest proliferation of coral disease, and
the most devastating outbreaks have frequently been associated with high thermal
stress and bleaching events. Caribbean octocorals also lose Symbiodinium, and this
renders them more susceptible to stress and diseases (Couch et al. 2008;
McClanahan et al. 2009; Burge et al. 2013; Kim 2015). The fungi Aspergillus
spp., protozoans, and pathogenic bacteria cause most octocoral diseases. For exam-
ple, Aspergillosis outbreaks have caused widespread mortality of sea fans associated

Fig. 10.5 Time series of surveys in La Parguera, Puerto Rico, over a 22-year period document the
shift from coral- to an algae-dominated community after the disease and bleaching mortalities
associated with the 2005 thermal anomaly. Three previous mild thermal anomalies associated with
coral bleaching events but not associated disease outbreaks did not produce high mortalities
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with high thermal anomalies (Harvell et al. 2009; Burge et al. 2013; Weil et al.
2017). Following the thermal anomaly and bleaching events of 1998–1999,
2005–2006, and 2010, many soft coral species of Briareum polyanthes,
B. asbestinum, and Erythropodium caribaeorum became diseased and died in the
Florida Keys, Puerto Rico, and throughout the Caribbean (Harvell et al. 2001; Weil
et al. 2017) (Fig. 10.1).

The white band disease (WBD) epizootic that wiped out more than 95% of
acroporids region-wide in the Caribbean in the early 1980s was associated with
high water temperatures (Gladfelter 1982). Similarly, during the thermal anomalies
of 2005 and 2010, outbreaks of white plague disease (WPD) and Caribbean yellow
band disease (CYBD) produced coral tissue losses of 60% in northeast and 35% in
the southern Caribbean of the main reef-building genera (Miller et al. 2009; Weil
et al. 2006, 2009b; Bastidas et al. 2012). Therefore, since both bleaching and
diseases are highly correlated with high SST, they are bound to co-occur.
Co-occurrence makes it difficult to assess whether bleaching, disease, or both are
responsible for coral mortalities. It is speculated that bleaching reduces energy
available to resist infections that might otherwise be handled by a healthy immune
system.

10.6 Population and Community Structure

Due to differential susceptibilities of taxa and populations to thermal stress (Jokiel
and Coles 1990; Kayanne et al. 2002), changes in abundance almost always lead to
changes in coral assemblages, including reductions in species richness (Loya et al.
2001; McClanahan and Maina 2003), diversity (Warwick et al. 1990), changing
community composition (McClanahan et al. 2007b; Weil et al. 2009a; Kuo et al.
2012; Harii et al. 2014), and the dominant life history traits of the coral community
(Darling et al. 2013). Some of these changes are short term (Brown 1997;
McClanahan and Maina 2003), whereas others appear to be very persistent (Glynn
1994; Berumen and Pratchett 2006; McClanahan 2014). Population changes have
community-level effects, such as influencing competitive interactions mediated by
the different temperature responses of corals (Alino et al. 1992). Shifting species
composition is expected to lead to large-scale changes in reef communities as the
pace of climate change accelerates (Langmead and Sheppard 2004; van Woesik et al.
2012; Edmunds et al. 2014; McClanahan et al. 2014a).

Some of the early studies of intense bleaching in the eastern Pacific during the
1982–1983 El Niño showed large changes in the abundance of many coral
populations (Glynn et al. 2001), the local or regional extinction of species (Glynn
and Ault 2000; Maté 2003), and the devastation and disappearance of whole reef
structures (Eakin 2001). In other cases, large switches in coral dominance were
evident; for example, in Cocos Island, Panama, Pavona clavus became common
after bleaching, and a species never recorded prior to the 2002 event, Leptoseris
scabra, was observed (Guzmán and Cortés 2007). These early observations were
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alarming because they signaled the potential for major changes in reefs that seem to
follow historical periods of increasing El Niño intensity events in this region (Toth
et al. 2012). Over the long term, however, the main reef builders (i.e., poritids,
pocilloporids) continue to be the dominant species at the study sites (Guzmán and
Cortés 2001).

Similar patterns of change and dominance after bleaching disturbances have been
observed in the Indo-Pacific and Caribbean (McClanahan 2008; Edmunds et al.
2014). Studies in the Indo-Pacific have shown considerable coral losses, but also
recovery and responses have been variable (Ateweberhan et al. 2011; Selig et al.
2012; McClanahan et al. 2014b). For example, on the reef flats of islands in Pulau
Seribu, Indonesia, up to 92% of the coral cover and most of the Acropora were lost
following a 2–3 �C rise in temperatures in 1982 (Brown and Suharsono 1990).
Similarly, the reefs of Sesoko Island, Japan, experienced a 61% reduction in species
richness and an 85% reduction in coral cover following the 1998 bleaching (Loya
et al. 2001). In contrast, recurrent bleaching of corals on intertidal Ko Phuket,
Thailand, reefs had no discernable effect on coral community measures, such as
species richness or diversity over reefs, when studied between 1991 and 1998. The
lack of response is attributed to the dominance of massive corals, with other taxa
acclimated to the extremes of intertidal living, and partial rather than whole-colony
mortality (Brown et al. 2002).

The largest effects of the 1998 bleaching event were documented in the western
Indian Ocean (Ateweberhan et al. 2011; McClanahan et al. 2015). Many high coral
cover reefs, such as Maldives, Chagos, and Seychelles, were dominated by Acropora
and Montipora before 1998, which was reduced to ~10% after 1998 (McClanahan
2000; Sheppard et al. 2002; Graham et al. 2006). In some places, such as the Chagos,
Cocos Islands, and Tanzania, recovery of Acropora and other branching taxa was
rapid (Sheppard et al. 2002; Ateweberhan et al. 2011; Gilmour et al. 2013). At other
locations, the relative dominance of bleaching-resistant taxa, such as massive Porites
or opportunistic taxa such as Pocillopora, increased and largely replaced Acropora
and Montipora (McClanahan et al. 2007b; Darling et al. 2013). Large-scale surveys
of the western Indian Ocean found that the relative covers of Acropora and
Montipora were negatively associated with degree heating weeks in 1998 and
declined over time (McClanahan et al. 2007b, 2014b). Some areas, such as the
granitic islands of the Seychelles, have maintained low cover of all corals and erect
algae since 1998 (Graham et al. 2006). Yet, recovery has occurred in reefs in deeper
water, with high structural complexity, and when juvenile corals and herbivorous
fish numbers were high and nutrient loads low (Graham et al. 2015). Maldives reefs
were dominated by turf and coralline algae after 1998, and recovery has been quite
variable and poorly understood (Tkachenko 2012; McClanahan and Muthiga 2014;
Morri et al. 2015).
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10.7 Changes Over Time

There are many studies on the immediate response of coral assemblages to thermal
stress but fewer on the slower changes over time. While massive losses of coral
cover have been well documented for several localities in the Caribbean (Gardner
et al. 2003; Miller et al. 2009; Weil et al. 2009a; Jackson et al. 2014; Mumby et al.
2014), information from only a few sites have been published in sufficient detail to
understand community change. The compilation by Edmunds et al. (2014) of mostly
unpublished time series studies of common taxa is an exception. They found that of
16 genera with sufficient data, 11 genera declined while 5 increased since the early
1980s. In Puerto Rico, after the high thermal stress and bleaching of 2005,
populations of Millepora squarrosa and M. complanata suffered high mortality or
disappeared from local reefs. Shallow-water habitats were dominated first by algal
lawns and then monopolized by zoanthids, sponges, and weedy corals, such as
Porites astreoides and A. agaricites (Weil et al. 2009b). Other reported changes
were associated with a variety of factors including high thermal anomalies, diseases,
coastal development, and losses of herbivores. These include basin-wide loss of
Acropora species (Greenstein et al. 1998) and localized losses ofMycetophyllia spp.,
Dichocoenia stokesi, Eusmilia fastigiata,Meandrina jacksoni, Colpophyllia natans,
and Pseudodiploria strigosa in Florida (Dustan 1977; Richardson and Voss 2005;
Precht et al. 2016); Agaricia in Belize (Aronson et al. 2002a); and Orbicella spp. in
the US Virgin Islands, Puerto Rico, and Venezuela (Miller et al. 2009; Bruckner and
Hill 2009; Weil et al. 2009a; Bastidas et al. 2012).

Not all demises of coral reef species are always clearly linked to thermal stress
and bleaching. Shorter-term studies comparing the past few millennia have con-
cluded that most of the change in Caribbean coral assemblages occurred very
recently (Aronson et al. 2002b, 2004) but may be locally associated with diseases,
fishing, and the demise of parrotfish (Jackson et al. 2014; Cramer et al. 2017).
Additionally, resistance or susceptibility to high temperatures and temperature-
induced diseases could result in competitive interactions between hard corals and
other sessile taxa. While soft corals bleach and die from thermal stress and diseases,
the overall lower effects compared to hard corals may still cause shifts from hard to
soft corals and algae-dominated reefs in the near future (Ruzicka et al. 2013).

10.8 Changes in Ecological Processes

Potential effects of coral bleaching on ecosystems include a decrease in net rates of
calcium carbonate accretion and changes in primary productivity. Studies of calci-
fication rates suggest that once coral cover declines below 10%, net calcification falls
below zero and reefs stop growing and keeping up with sea-level rise (Perry et al.
2013, 2015). Loss of reef growth is most likely when dominant fast-growing,
thermally sensitive taxa, such as Acropora, decline. Increased organic carbon
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production is expected to follow the loss of inorganic carbon, but this change will
occur at the costs of losing animal refuges and reef growth (Sebastián and
McClanahan 2013a). The effect may, however, not be immediate as one study
from Ishigaki, Japan, found that during a bleaching year, excess organic production
was reduced by 75% when compared with a non-bleaching year (Kayanne et al.
2005). Given that coral cover changed a little, the study suggested that the change
was largely due to reduced productivity of corals, possibly associated with reduced
symbiont densities. Epilithic turf and encrusting coralline algae will increase after
coral mortality and compensate for the loss of some coral productivity and calcifi-
cation, but these taxa lack the structural complexity that corals provide (McClanahan
2008; Alvarez-Filip et al. 2011). Additionally, the recovery rate of coralline algae is
considerably slower than epilithic turf algae. Consequently, after bleaching, there
will be an early peak in organic production followed by a slower recovery of
calcifying algae and calcification after coral losses (Sebastián and McClanahan
2013a). The full consequences of carbon and other nutrient influences associated
with bleaching remain key areas for future investigations.

The coming decades will be a time of unprecedented change and reorganization
of the sessile organisms on coral reefs with consequences for the ecosystem pro-
cesses, including fisheries production (McClanahan 2002, 2008; Chap. 11).
Bleaching may have some positive impacts on herbivores and macro-invertivores
as benthic space is opened up for their feeding while having negative effects on other
small-bodied species and feeding groups that rely on coral for food and refuge in the
absence of heavy fishing (Graham et al. 2008, 2011; McClanahan et al. 2014a).

The bleaching influences of changing production of organic and inorganic carbon
on fisheries yields are not well understood but initially may be different from the
long-term responses and depend greatly on fishing pressure and selectivity (Graham
et al. 2007; McClanahan and Abunge 2014). Empirical studies of fishing are few, but
simulation models indicate that responses will depend on fishing pressure, catch
selection, diets of the fish, and region-specific food web configurations (Sebastián
and McClanahan 2013a; Bozec et al. 2016).

10.9 Interactions with Fisheries Management

Studies of fisheries closures suggest many have been preferentially established in
areas with low-temperature variability that makes them susceptible to temperature
anomalies, bleaching, and death after strong thermal stress events (Selig et al. 2012).
Consequently, reefs affected by these closures should have lower resistance to warm
temperatures; but, because recovery is an important and independent part of overall
resilience, they could still be more resilient than fished reefs (McClanahan et al.
2012). Empirical evidence suggests that corals do recover faster in unfished than
fished reefs in terms of coral cover but not necessarily when the metric is community
composition (McClanahan 2008; Mumby and Harborne 2010; Ateweberhan et al.
2011; Darling et al. 2013). Consequently, the long-term effects of bleaching on
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sessile organisms may be influenced by the state of the fish and fishery, but most
evidence indicates that the geographic context is very important (Ateweberhan et al.
2011).

After the 1998 coral mortality event in the western Indian Ocean, many reefs
began changing based largely on geography and weakly by fisheries management
(McClanahan et al. 2014b). Most reefs were quickly colonized by rapidly growing
turf algae, which was eventually colonized by slower-growing coralline and erect
algae (McClanahan et al. 2001; Graham et al. 2006; McClanahan 2008). Coralline
algae were more prevalent in areas with high fish grazing which should increase the
survival of coral recruits (O’Leary et al. 2013). However, experimental studies found
that after bleaching fishes focused their predation on coral recruits growing on
coralline algae (McClanahan et al. 2005b). Additionally, coral taxa changed the
most in fisheries closures where weedy and stress-resistant taxa fared better than
competitive fast-growing taxa such as Acropora (Darling et al. 2013). Acropora
appeared to do less well in fished than unfished reefs possibly due to lower coralline
algae cover required for recruitment (O’Leary et al. 2012, 2013). Additionally, a
disease outbreak in 2002 swept through the region and killed many susceptible
corals irrespective of the management system (McClanahan et al. 2004b). Eventu-
ally, even stress-resistant taxa began to display stress and declines after 1998,
possibly associated with repeated stressful warm temperatures in 2010 and 2013
(McClanahan 2014, 2017). This generally led to declining coral cover after 2007
(Fig. 10.6). This contrasts with some remote areas where fishing levels were very
low and corals were reported to recover at historically expected rates and to original
composition (Sheppard et al. 2008; Gilmour et al. 2013). Consequently, there may
be other factors, like coastal versus oceanic or wilderness versus small parks in
fished seascapes that are poorly understood but may be influencing recovery dynam-
ics (Humphries et al. 2014).

Reducing fishing pressure on key functional groups, such as herbivorous fishes, is
commonly recommended as a way to increase reef resilience and recovery rates
(Bellwood et al. 2004; Mumby et al. 2006; Hughes et al. 2007; Bozec et al. 2016).
No-take areas generally have higher levels of herbivory by fish that can reduce erect
algal cover and increase coral recruitment and recovery in some locations (Mumby
et al. 2007; Ateweberhan et al. 2011). Yet, some scraping and excavating parrotfish
and other invertebrate-feeders can eat coral and may increase their focus on the
remaining corals, often small recruits, after coral mortality (McClanahan et al.
2005b). Additionally, there can be other food web effects that are not considered,
such as the roles of sea urchin grazing on corals in heavily fished reefs due to a loss
of sea urchin predators (McClanahan and Muthiga 2016a). Sea urchins are often
associated with some negative impacts on coral cover and some suppression of the
recovery of corals that may be associated with their destructive grazing on coral
recruits (O’Leary et al. 2013). From a very large survey on Indian Ocean reefs,
McClanahan and Muthiga (2016b) concluded that the negative effects of sea urchins
grazing on reef calcifiers in many fished reefs were on the same order as stressful
temperature anomalies.
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A simulation model calibrated for East African reefs to study fishing impacts
found that coral recovery after bleaching was slower when predators of sea urchins
were fished using hook and line (Sebastián and McClanahan 2013b). Thus, fishing
other fish groups including herbivores using nets and traps was a better option than
line fishing that focused on predators of sea urchins. These recommendations are
contrary to those of another simulation model calibrated for the Caribbean that
suggested banning traps that capture parrotfish (Bozec et al. 2016). The protect-
herbivore recommendations arise from Caribbean studies where sea urchin grazers
are uncommon and parrotfish are among the main herbivores (Bellwood et al. 2004;
Mumby and Harborne 2010). Consequently, these food web differences indicate that
fisheries management impacts and recommendations may be context dependent.
Models that promote specific gear bans also need to consider trade-offs in terms of
yields and reef ecological services arising from using alternative fishing gears
(McClanahan 1995; McClanahan and Cinner 2008). To emphasize the importance
of context, some studies indicate that the presence of mangroves may influence the
abundance, types, and diversity of herbivores, which may have consequences for
coral recovery (Mumby et al. 2004; Olds et al. 2014).

Stopping fishing is not a solution to the global warming crisis for many coral reefs
(Toth et al. 2012), but it does help with recovery processes in some situations

Fig. 10.6 Change in coral cover across the 1998 bleaching event and recovery on Kenyan reefs
with different management. Four fished reefs (open circles), three old parks (closed circles), and one
new park (diamond) were monitored. The old parks were closed in 1968 (Malindi), 1972 (Watamu),
and 1973 (Kisite). The new park at Mombasa was closed in 1991. Vipingo, Kanamai, Ras Iwatine,
and Diani were the fished reefs
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(Ateweberhan et al. 2011; McClanahan et al. 2012; Olds et al. 2014; Mellin et al.
2016). The specifics and mechanisms require more research as well as how protected
areas should be planned and what they incorporate in their boundaries. One sugges-
tion has been to not just continue establishing protected areas in high diversity reefs
with low temperature variability that makes them susceptible to strong temperature
deviations (Maina et al. 2008; Selig et al. 2012). Rather, protected areas should
include portfolios of environments, including variable temperature and exposure
environments as well as habitats such as shallow- and deep-water reefs and the
inclusion of seagrass and mangrove ecosystems (Olds et al. 2014; McClanahan et al.
2015). In general, protected area designs that increase the between-site diversity are
likely to play important roles in increasing stability by providing a diverse seascape
where many habitats, species, and traits are present and contribute functional roles
after disturbances (Mellin et al. 2014; Maina et al. 2015).

10.10 Conclusions

Reports of coral reef bleaching have been increasing in the past few decades,
overtaking most other human impacts as the most significant threat that interacts
with diseases to threaten reef resilience (Hughes et al. 2017; Weil and Rogers 2011;
Weil et al. 2017). Reports of community-wide bleaching are more frequent during El
Niño, high thermal anomalies, and other strong oceanographic events such as the
Indian Ocean Dipole (Eakin et al. 2010; McClanahan 2017; Chaps. 3 and 4). Aero-
sols (Gill et al. 2006), local water quality (Riegl and Piller 2003; McClanahan et al.
2007c; Hughes et al. 2017), hurricanes (Manzello et al. 2007), and other large-scale
oceanographic processes, such as downwelling, upwelling, and oceanographic
cycles, influence the intensity and extent of bleaching (McClanahan et al. 2007a,
c). These factors are all variations on the main problem, the trend in rising ocean
temperature that is expected to challenge the adaptive potential of coral reefs in the
coming decades (Hughes et al. 2003; Hoegh-Guldberg et al. 2007; McClanahan et al.
2012; Weil et al. 2017). Research to date suggests dire consequences for shallow-
water marine sessile organisms, but the considerable patchiness in taxa, space, and
time responses and the evolutionary history of cnidarians, especially scleractinians,
indicate that refuges from climate change might exist and adaptation to climate
change is possible. Yet, as the rate and impacts of events expand in geographic space
and intensity, even what have been refuges in the past may lose this capacity in the
future. Reducing carbon emissions that are causing global warming is the only truly
long-term global solution for coral reefs.
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Chapter 11
Effects of Coral Bleaching and Coral Loss
on the Structure and Function of Reef Fish
Assemblages

M. S. Pratchett, C. A. Thompson, A. S. Hoey, P. F. Cowman,
and S. K. Wilson

11.1 Introduction

Mass coral bleaching, caused by elevated ocean temperatures, has now emerged as a
major, if not the single most important, contributor to elevated rates of coral
mortality (Hughes et al. 2017; Chaps. 3, 4, and 13), greatly accelerating the degra-
dation of coral reef ecosystems throughout the world. Coral reefs have been subject
to increasing anthropogenic disturbances and threats throughout the last few decades
(if not centuries), resulting in sustained declines in the cover or abundance of
scleractinian corals and corresponding shifts in the structure of reef habitats (Hughes
et al. 2003; Alvarez-Filip et al. 2011). Climate change (specifically resulting in coral
bleaching) is almost always considered, along with a variety of other more localised
anthropogenic disturbances and threats, as a key contributor to sustained and
ongoing coral loss (e.g. De’ath et al. 2012). However, mass coral bleaching has
previously been considered to be a relatively minor, though emerging and increas-
ingly important, contributor to coral loss, especially relative to other major distur-
bances such as severe tropical storms and outbreaks of coral predators (Pratchett
et al. 2011a; De’ath et al. 2012). The extent and severity of the latest (2014–2017)
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global bleaching event (Hughes et al. 2017, 2018), as well as successive years of
severe bleaching in many locations, have firmly heralded in an era where global
climate change is the foremost threat to coral reef ecosystems.

What makes coral reef ecosystems particularly vulnerable to climate change is
that reef-building (scleractinian) corals are both very sensitive to elevated tempera-
tures (Jokiel and Coles 1990; Smith and Buddemeier 1992; Chaps. 2 and 9) and
fundamental to the structure and function of coral reefs (Bellwood et al. 2004;
Pratchett et al. 2015a). Scleractinian corals are the building blocks of coral reefs,
not only contributing to reef accretion (Pratchett et al. 2015a) but also forming
complex habitats which support a high diversity of fishes (Coker et al. 2014) and
other reef-associated organisms (Stella et al. 2011). The importance of scleractinian
corals is particularly apparent given marked declines in the abundance and diversity
of coral reef fishes following acute and extensive coral loss (Jones et al. 2004;
Wilson et al. 2006; Munday et al. 2008; Pratchett et al. 2008a; Cheal et al. 2017)
caused by severe tropical storms (hurricanes, typhoons and tropical cyclones), out-
breaks of coral predators and mass coral bleaching. Such effects are particularly
pronounced when coral cover falls below 10% (Wilson et al. 2006; Holbrook et al.
2008), suggesting that �10% coral cover is necessary to maintain ecological func-
tions that support diverse assemblages of coral reef fishes.

Many coral reef fishes rely on scleractinian corals for food (Cole et al. 2008),
habitat (Coker et al. 2014) and/or settlement (Jones et al. 2004; Coker et al. 2012).
However, the range of coral reef fishes that decline in abundance following extensive
coral depletion (60–75%) far exceeds that which are known to have an explicit and
direct reliance on scleractinian corals (Jones et al. 2004; Graham et al. 2007;
Pratchett et al. 2011b; Cheal et al. 2017). The broadscale ecosystem consequences
of extensive coral loss suggest that we have overlooked some important ecological
benefits of coral-rich habitats for reef fishes (e.g. Dixson et al. 2014; Pratchett et al.
2015b). For example, extensive coral depletion may effectively remove major odour
cues that are used by reef fishes and corals to orientate towards and settle within coral
reef habitats (Dixson et al. 2014). The effects of coral loss on the biodiversity and
abundance of reef-associated organisms may also be compounded by declines in
topographic complexity (Syms and Jones 2000; Wilson et al. 2006; Graham et al.
2009; Coker et al. 2012), which occurs due to erosion and decomposition of dead
coral skeletons (Sheppard et al. 2002) and disproportionate loss of key habitat-
forming corals (Graham et al. 2006; Alvarez-Filip et al. 2011). Importantly, high
levels of structural complexity increase habitat area and moderate key ecological
interactions (e.g. competition and predation) contributing to increased species pack-
ing, as well as facilitating coexistence of large numbers of diverse species
(Gratwicke and Speight 2005).

In this chapter, we revisit the effects of mass coral bleaching (and associated
changes in the structure of tropical reef habitats) on the structure and function of reef
fish assemblages. In particular, this chapter will investigate the ecological and
economic consequences of declines in the abundance of fishes, based on the
selectivity of effects within and among different functional groups, as well as testing
for compensatory dynamics necessary to maintain key ecological functions
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following species declines or losses (Houlahan et al. 2007). It is well established that
extensive coral depletion (whether caused by mass coral bleaching, tropical cyclones
or outbreaks of invertebrate corallivores) results in significant declines in abundance
across a broad range of reef fishes (Pratchett et al. 2011b) and overall declines in
diversity of fish assemblages (Wilson et al. 2006). However, it is still not known
whether far-reaching declines in the abundance of coral reef fishes will compromise
ecological functions and especially those functions that are fundamental in
maintaining ecosystem resilience (Bellwood et al. 2003; Hoey and Bellwood
2009). Importantly, net declines in the abundance or performance of ecologically
important reef fishes may lead to feedbacks that inhibit recovery and reassembly of
coral-dominated habitats (Graham et al. 2015) and/or further exacerbate the degra-
dation of coral reef environments (Hoey and Bellwood 2011).

The extent to which declines in the abundance and diversity of fishes will cause
ecological functions to be lost or compromised depends on the number of species
that can perform a particular function (i.e. functional redundancy) as well as
variation in responses to environmental perturbations among functionally equivalent
fishes (i.e. response diversity) (Elmqvist et al. 2003). Some fishes, particularly
herbivorous or generalist species, actually exhibit increases in abundance following
extensive coral loss (Jones et al. 2004; Bellwood et al. 2006; Pratchett et al. 2008a;
Halford and Caley 2009; Cheal et al. 2017). Intuitively, species that are ecologically
equivalent would be equally or similarly affected by perturbations that lead to loss of
habitat complexity or resource depletion. For example, extensive coral depletion will
lead to declines in coral prey across all species of corallivores, though different
species may be more or less affected depending on their degree of dietary special-
isation (Pratchett et al. 2008a). Functionally equivalent species may also differ in the
extent to which they are adversely affected by small-scale or patchy habitat distur-
bances based on differences in the scales at which they associate with reef habitats
(Nash et al. 2016). To maintain ecosystem function, however, significant declines in
the abundance of key ecological species must be offset by compensatory increases in
the abundance of species that can perform, or contribute to, the same function,
though compensatory dynamics are rarely observed in most ecosystems (Houlahan
et al. 2007). To explicitly test for response diversity and compensatory dynamics
among reef fishes, data were compiled from a variety of studies that have looked at
species-specific declines in abundance of fishes before and then 1–7 years after
distinct episodes of coral loss, following Pratchett et al. (2011b). While we were
primarily interested in the effects of coral depletion caused by climate-induced coral
bleaching, data were taken from all studies that have explored changes in the
abundance of fishes following acute episodes of coral loss, regardless of the cause.
Each species of fish was independently assigned one of four primary functional
groups based on their trophic function (i.e. carnivores, omnivores, corallivores and
herbivores). Species were subsequently assigned to secondary functional groups
based on feeding mode, diet and behaviour to reflect their role in ecosystem
processes and/or differential sources of their prey. Response diversity and compen-
satory dynamics were then assessed based on the distribution of responses (changes
in abundance) for fishes within 19 distinct functional or trophic groups.
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11.2 Coral Bleaching and Changes in the Structure of Reef
Habitats

Coral reefs are among the most vulnerable ecosystems to global climate change
(Walther et al. 2002), owing to the magnitude and severity of habitat loss that occurs
during severe mass bleaching episodes (Hughes et al. 2017, 2018). The scale and
magnitude of coral loss caused by pantropical mass bleaching events eclipse all other
major acute disturbances (e.g. tropical cyclones, outbreaks of coral predators and
coral disease) that have contributed to coral declines around the world. Generally, it
is the cumulative effects of multiple discrete disturbances, which may or may not be
increasing in incidence, that have caused coral declines in major reef regions
(Gardner et al. 2003; De’ath et al. 2012). These disturbances tend to occur at the
scale of individual reefs or reef clusters. However, large-scale mass bleaching is
unequivocally linked to sustained increases in global sea surface temperatures
(Heron et al. 2016), which may be compounded by ocean-scale climatic features
(e.g. El Niño events). In 1998, for example, mass coral bleaching was reported on
coral reefs throughout the Indo-Pacific and in the Caribbean (Wilkinson 2000) and
killed 75–99% of corals across the worst affected regions (Goreau et al. 2000;
Graham et al. 2006). This event contributed greatly to increased recognition of
climate change as a significant threat to coral reef ecosystems (Hoegh-Guldberg
1999) and motivated many of the foremost studies on ecosystem effects of severe
coral bleaching and coral loss (Graham et al. 2006, 2008). Graham et al. (2008)
surveyed fish assemblages at 66 sites across the western Indian Ocean in the
aftermath of the 1998 bleaching and assessed changes in the size structure and
taxonomic composition of fish assemblages by comparing results with surveys
conducted prior to the bleaching (in 1990–1998). The key finding from this study
was that spatial management arrangements provided no protection against mass
coral bleaching and subsequent effects of coral loss on reef fish assemblages. It
was also apparent that mass coral bleaching had disproportionate impacts on small-
bodied (<20 cm total length) reef fishes (Graham et al. 2008). Beyond that, the
effects of the 1998 bleaching event (on both coral and fish assemblages) were highly
variable (Graham et al. 2008), requiring much greater consideration of the specific
changes to coral reef habitats that are caused by mass coral bleaching. It is also
important to realise that mass coral bleaching was even more widespread in
2014–2017 than in 1998 (Hughes et al. 2017, 2018), though the impacts of these
latest pantropical bleaching events are yet to be fully realised.

11.2.1 Bleaching Selectivity and Changes in Coral
Composition

The specific effects of mass coral bleaching on coral reef fishes will depend on the
magnitude (extent and severity) and selectivity of coral loss. All scleractinian corals
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are susceptible to bleaching at some level, but certain genera, such as Stylophora,
Pocillopora, Acropora and Montipora, tend to be much more susceptible, based on
the proportion of colonies and species that bleach (McClanahan et al. 2004; Hoey
et al. 2016) and are also more likely to die once bleached (Baird and Marshall 2002).
The selectivity of mass coral bleaching declines with increasing severity (Hughes
et al. 2017), whereby there are very few corals that can withstand prolonged
exposure to extreme temperatures. During moderate bleaching events, however,
bleaching and mortality may be restricted to a few specific coral taxa (Baird and
Marshall 2002). For the most part, it is branching corals that tend to exhibit higher
rates of bleaching and mortality (Baker et al. 2008), though it is unknown whether
this reflects a taxonomic bias in coral morphology (McCowan et al. 2012) or inherent
physiological properties of massive or robust corals that increase resistance and
resilience to coral bleaching (Loya et al. 2001). Taxonomic differences in suscepti-
bility to bleaching can vary spatially and temporally (Guest et al. 2012; Pratchett
et al. 2013), depending on depth and habitat, the recent thermal history, hydrody-
namics and endosymbiont associations. Moreover, increasing incidence of coral
bleaching will not necessarily favour those coral species that are most resistant to
bleaching (Hughes et al. 2003; Baker et al. 2008). Rather, directional shifts in the
composition of coral assemblages will depend on both rates of colony-level mortal-
ity due to bleaching (relative to normal background rates of whole colony mortality)
and the differential recovery capacity of species. Importantly, corals with rapid
growth and high rates of population turnover may be relatively unaffected by
recurrent bleaching (Linares et al. 2011), compared to slow-growing coral species
that invest significant energy in maintenance and persistence.

Declines in the species richness of coral assemblages can directly impact on
diversity of fish assemblages (Messmer et al. 2011), though there are specific coral
taxa that are particularly important in providing food and habitat resources and also
make disproportionate contributions to topographic complexity of reef habitats
(Coker et al. 2012). Corals vary in the extent to which they provide effective habitat
for reef fishes mainly due to differences in gross morphology (e.g. branching versus
encrusting or massive colonies), though some specialist coral-dwelling fishes only
occupy very specific corals and clearly distinguish within or among coral species
(Munday 2001; Messmer et al. 2011; Noonan et al. 2012). The corals that are most
important in providing habitat for highly specialised coral-dwelling fishes (including
digitate Acropora, Stylophora and Pocillopora corals; Coker et al. 2014) are partic-
ularly susceptible to coral bleaching. Some of the more bleaching-resistant corals,
such as branching Porites spp., are also important in providing habitat for a wide
range of fishes (Richardson et al. 2017), but they tend to be occupied by less-
specialised species that use a wide range of different corals (Gardiner and Jones
2005; Coker et al. 2014). Coral specialists are, by definition, expected to have a
much stronger reliance on live corals and are more vulnerable to any changes in coral
availability (Munday 2004; Pratchett et al. 2012). Given the close association of
many specialist reef fishes with Acropora and Pocillopora corals, selective depletion
of these corals may be just as devastating as a wholesale loss of scleractinian corals,
affecting both the availability of preferred habitats and topographic complexity.
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Even if these corals are generally resilient to recurrent bleaching, temporary declines
in the availability of critical habitats may have devastating effects for fishes that are
directly reliant on specific coral hosts (Munday 2004).

11.2.2 Coral Loss and Increasing Predominance
of Alternative Habitat-Forming Taxa

While moderate bleaching is likely to cause directional shifts in the structure of coral
assemblages (described above), severe episodes of mass bleaching affect a signifi-
cant proportion of scleractinian corals (Hughes et al. 2017) and are likely to lead to
extensive and widespread declines in coral cover. Such reductions in the abundance
or cover of corals within shallow reef environments are often accompanied by
increases in abundance of other alternative habitat-forming organisms, such as
macroalgae (Hughes et al. 2010), though this depends on the specific environmental
settings and relevant constraints on macroalgal growth and coral dynamics (Chong-
Seng et al. 2014). Accordingly, there have been documented increases in the
abundance of herbivorous fishes following widespread coral loss and concomitant
increases in cover and biomass of macroalgae (Jones et al. 2004; Pratchett et al.
2008a; Cheal et al. 2017). In some instances, high densities of herbivores can prevent
proliferation of macroalgae even after extensive coral depletion. However, fisheries
exploitation has reduced the abundance of herbivorous fishes in many reef regions,
compromising their capacity to respond to increasing cover and growth of
macroalgae (Rasher et al. 2013). Once established, shifts from coral to macroalgal
dominance may be reinforced by reduction in grazing and increased production of
algal propagules (Hoey and Bellwood 2011) as well as constraints on recovery and
replenishment of coral assemblages (Hughes et al. 2007). Moreover, the estimated
biomass of herbivorous fishes needed to promote recovery of coral-dominated
habitats (>180 kg per hectare) is much greater than what is required to prevent the
initial proliferation of macroalgae and exceeds the estimated biomass of herbivorous
fishes in most reef regions (Hoey et al. 2016).

Fundamental shifts in the dominant habitat-forming biota within tropical reef
environments will significantly affect the behaviour, abundance and composition of
coral reef fishes. While there are some species of reef-associated fishes that will
benefit from increased cover and biomass of macroalgae (Dahlgren and Eggleston
2000; Wilson et al. 2010, 2017), fishes that feed, shelter or recruit to live corals are
likely to disappear from reefs dominated by macroalgae (Jones et al. 2004). Impor-
tantly, macroalgae do not provide the same level of habitat structure and complexity
as scleractinian corals, and the overall abundance and diversity of fishes on algal-
dominated reefs are much lower, compared with coral-dominated habitats (Sano
2001). In the Seychelles, Graham et al. (2015) showed that the biomass of herbiv-
orous fishes was highest on reefs with high levels of underlying structural complex-
ity and this, in turn, was a major determinant of whether reefs recovered (rather than
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undergoing a regime shift to macroalgae) following the 1998 mass coral bleaching.
While data on overall biomass of fishes was not presented for coral- versus
macroalgae-dominated reefs (Graham et al. 2015), restoration of the functional
integrity of reefs that recovered will likely have significant ecological and economic
benefits, such as increased contribution to local fisheries production.

11.2.3 Coral Loss Versus Declines in Topographic
Complexity

Mass coral bleaching is categorised (along with outbreaks of coral predators and
coral diseases) as a biological or nonstructural disturbance (Wilson et al. 2006)
whereby corals are killed without directly modifying their physical structure, at least
in the short term. Physical or structural disturbances (e.g. tropical cyclones), mean-
while, cause immediate reductions in both live coral cover and topographic com-
plexity of the reef framework by dislodging and/or breaking apart coral skeletons
(e.g. Madin and Connolly 2006). Structural disturbances are generally thought to
have much more pronounced and far-reaching effects on reef fishes compared to
biological disturbances, because coral loss is compounded by declines in structural
complexity (Wilson et al. 2006) and it is sometimes difficult to identify the inde-
pendent contributions of coral loss versus topographic collapse (Pratchett et al.
2008a; Graham and Nash 2013). In at least some cases, coral loss appears to have
greater influence on abundance of fishes than declines in structural complexity
(Komyakova et al. 2013), while loss of coral diversity is the foremost driver of
declines in diversity of reef fishes (Messmer et al. 2011; Holbrook et al. 2015).
Moreover, extensive coral depletion can lead to declines in structural complexity,
regardless of whether it is caused by biological or physical disturbances; coral
colonies that have died due to bleaching (or other biological disturbances) are
immediately subject to physical and biological forces that cause skeletal erosion
and decomposition (Glynn 1997; Sheppard et al. 2002; Ferrari et al. 2017a), leading
to inevitable, though sometimes protracted, declines in structural complexity
(e.g. Sano et al. 1987). There are, however, instances where habitat complexity is
provided by underlying substrate rugosity and is independent of coral loss (Pratchett
et al. 2008a; Emslie et al. 2014), which may actually buffer fish assemblages during
periods of coral loss.

The timing and sequence of decomposition and structural collapse of dead coral
skeletons have only rarely been explicitly studied, but it is increasingly apparent that
this is a gradual and ongoing process (Ferrari et al. 2017a), rather than an acute and
delayed effect of coral mortality. Notably, delayed declines in the abundance and
diversity of fishes, which may be apparent >3 years after extensive coral depletion
(Pratchett et al. 2008a), have been at least partly attributed to lags in declines in
topographic complexity following extensive coral mortality (Graham et al. 2006).
The extent to which coral reef habitats are actually vulnerable to structural collapse

11 Effects of Coral Bleaching and Coral Loss on the Structure and. . . 271



also varies, depending on the extent to which coral assemblages are dominated by
branching species, variation in the structural integrity of corals (even among differ-
ent branching species), localised differences in the factors that promote physical and
biological erosion and the relative contribution of contemporary coral growth versus
underlying reef structure to topographic complexity (Pratchett et al. 2008a; Cheal
et al. 2017).

11.3 Declines in Abundance of Reef Fishes and Loss
of Biodiversity and Function

Much of the current understanding regarding the effects of mass coral bleaching on
coral reef fishes comes from studies that have documented species-specific changes
in abundance of fishes before and after specific bleaching events (e.g. Graham et al.
2008). While the results of such studies are dependent on the specific timing of
surveys and especially the time elapsed following mass coral bleaching (Pratchett
et al. 2009), the magnitude of species losses is broadly comparable to the effects of
coral depletion caused by tropical cyclones, outbreaks of crown-of-thorns starfish
and experimentally imposed disturbances (Fig. 11.1). Where coral mortality was
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Fig. 11.1 Effects of coral loss on biodiversity (species richness) of coral reef fishes. The relation-
ship between change in species richness (%) is plotted against increasing declines (%) in local coral
cover, based on data extracted from 30 independent studies, categorised according to the major (but
not exclusive) cause of localised coral loss. Confidence intervals (~95%) for the general additive
model were calculated using a continuous set of predictor variables (n ¼ 1000), with the MGCV
package in R
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>60%, the number of species recorded along belt transects or within point counts
generally declined, although there was considerable variation among studies, with
some documenting limited or even positive changes in diversity of fishes when coral
mortality was >80%. Notably, extreme levels of species loss (60% decline in species
richness) occurred following near-complete coral loss, regardless of what caused this
coral mortality. However, moderate levels of coral loss had limited or positive
effects on the local diversity of reef fishes (Fig. 11.1) which may reflect increases
in the abundance and diversity of generalist fishes following initial loss of corals and
corresponding increases in habitat heterogeneity (Wilson et al. 2006). It is important,
however, to consider species-specific responses of fishes to mass coral bleaching, to
understand which species are affected and potential impacts on ecosystem function
and fisheries production (e.g. Brandl et al. 2016).

11.3.1 Interspecific Variation in Vulnerability to Coral
Bleaching and Depletion

Fishes vary in their responses to habitat perturbations (and potential resource
depletion) due to varying levels of ecological specialisation and differential reliance
on specific resources (e.g. coral prey), their capacity to use alternative habitats or
resources following changes in resource availability, their distribution relative to
areas of major impacts and variation in the scales at which they associate with coral
reef habitats (Pratchett et al. 2011b). The main group of fishes that consistently
exhibit pronounced and often very rapid declines in abundance following localised
coral depletion are obligate coral-feeding fishes (Wilson et al. 2006, 2014; Emslie
et al. 2011; Fig. 11.2). Declines in the abundance of coral-feeding fishes are directly
attributable to prey depletion and subsequent starvation, reflected in initial declines
in their physiological condition (Pratchett et al. 2004). Coral-feeding fishes are
initially attracted to bleached, diseased or injured corals, though they will preferen-
tially feed on healthy (unbleached corals) in the longer term (McIlwain and Jones
1997; Cole et al. 2009). This suggests that the nutritional quality of corals declines
soon after they bleach. The eventual mortality of bleached corals will then further
constrain prey availability for obligate coral-feeding fishes. Accordingly, virtually
all corallivorous fishes (including soft-coral feeders) exhibit significant declines in
abundance, probably reflecting high rates of mortality, as opposed to movement
among habitats, following localised coral depletion (Emslie et al. 2011; Wilson et al.
2014; Fig. 11.2). While localised declines in the abundance of these fishes may result
from movement, the potential to find more suitable habitats is likely to be very
limited, especially given the spatial extent of major mass bleaching events
(e.g. Hughes et al. 2017). Even if fishes are able to find relatively undisturbed reef
environments, high levels of aggression among coral specialists (e.g. coral-feeding
butterflyfishes, Blowes et al. 2013) are likely to constrain the invasion of new
habitats by displaced individuals. Moreover, individual fishes are likely to persist
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Fig. 11.2 Standardised responses of (a) obligate corallivores and (b) croppers and browsers to
significant (>10%) declines in coral cover. Species-specific responses are calculated based on their
proportional decline in abundance divided by proportional declines in live coral cover and averaged
across multiple studies, where possible. Standard errors are calculated based on variation in
responses among studies
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within their established home ranges for some time after corals have bleached and
died (Pratchett et al. 2004), which would further limit their ability to ultimately
outcompete conspecifics and invade new habitats.

For fishes with an explicit and direct reliance on corals (e.g. for food and habitat),
declines in abundance are often disproportionate to levels of local coral depletion.
For example, Chaetodon trifascialis is often locally extirpated following relatively
low (e.g. 14%) levels of coral depletion. The standardised response (which explicitly
accounts for proportional coral loss) for C. trifascialis is, therefore, as low as −5.
Such disproportionate declines in the abundance of these fishes reflect high selec-
tivity in coral use as well as the sensitivity of preferred coral species to mass coral
bleaching and other major disturbances. Chaetodon trifascialis is among the most
highly specialised of coral reef fishes (Pratchett 2014), feeding almost exclusively on
tabulate Acropora as well as a few other select species (e.g. Acropora florida).
Accordingly, declines in the abundance of C. trifascialis relate to declines in the
abundance of their major prey (tabulate Acropora), rather than overall declines in
live coral cover. Other relatively specialised corallivores (C. plebeius, C. baronessa
and Oxymonacanthus longirostris) also exhibit disproportionate declines in abun-
dance following significant (>10%) reductions in local coral cover (Fig. 11.2). The
only corallivorous fish that has been seen to increase in abundance following coral
depletion is Labropsis xanthonota, for which densities of recruits actually increased
(albeit from very low densities) following mass coral bleaching in Chagos (Graham
et al. 2008).

Concern about the loss of key functional groups on coral reefs mostly centres
around herbivorous fishes, largely due to their role in preventing and potentially
reversing macroalgal overgrowth (Hughes et al. 2007; Hoey and Bellwood 2011).
While all herbivorous fishes ostensibly consume and remove algae, they perform
different and complimentary roles in helping reefs to resist shifts to alternate states
and reassemble following disturbances. Specific differences in the feeding mode of
herbivorous fishes, as well as variation in body size, group size and home ranges,
suggest that each and every species of herbivorous fish may have a subtly different
role in preventing or reversing proliferation of macroalgae following extensive coral
depletion (Mouillot et al. 2014). Certainly, there are some individual species that
contribute disproportionately to specific functions. For example, overfishing of the
excavating parrotfish, Bolbometopon muricatum, has resulted in a near total loss of
external bioerosion on several Indo-Pacific reefs (Bellwood et al. 2003, 2012) even
though there are several other excavating species on these reefs. In many regions,
fisheries exploitation represents the foremost threat to herbivorous fishes (Graham
et al. 2011), though it is also apparent that at least some herbivorous fishes decline in
abundance following extensive coral depletion (Fig. 11.2). While some herbivorous
fishes do increase in abundance following coral depletion, presumably responding to
increases in the areal extent and/or productivity of algae, these responses are not
consistent either within or among species. Most notably, there are several species of
acanthurids (e.g. Acanthurus lineatus and A. tennenti) that have exhibited
contrasting responses (increases versus decreases in abundance) to coral loss in
different studies conducted at different locations. Moreover, apparent declines in
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the abundance of several species of croppers and browsers (Fig. 11.2) are based on
results from just one study location. Such vagaries in responses of herbivorous fishes
to changes in resource availability may reflect the role of irregular larval supply and
recruitment in facilitating population increases. However, rapid increases in the
abundance of some fishes almost certainly reflect the aggregation and movement
of fishes into degraded reef habitats (Hart et al. 1996), which may also be constrained
by local densities and distributions of fishes.

11.3.2 Loss of Biodiversity and Function

The extent to which declines in the abundance of fishes will constrain key ecological
functions depends on the functional identity of component species and the variation
in responses to coral loss among species that contribute to similar functions. For
fishes that are directly reliant on corals for food, it is to be expected that entire
functional groups will respond similarly to the localised depletion of scleractinian
corals (e.g. Pratchett et al. 2011b). However, the responses of other groups are much
less clear. For herbivorous fishes, several studies have reported increases in the
abundance of specific species or groups following large-scale reductions in coral
cover (e.g. Adam et al. 2011; Gilmour et al. 2013), and previous meta-analyses have
shown that the majority of species that respond positively to coral loss are herbiv-
orous fishes, though such effects may be relatively short-lived (Wilson et al. 2006;
Pratchett et al. 2008a). As discussed previously, increases in the abundance of
herbivorous fishes are generally attributed to increased cover and availability of
turfing algae, which rapidly colonise dead coral skeletons (Mumby and Steneck
2008). When large numbers of corals die, there may also be a significant, though
temporary, input of nutrients that actually increase algal productivity and growth.
However, beneficial effects of increased food availability following the loss of live
corals may be more than offset by declines in the availability of preferred settlement
habitats and increased intensity of competition and predation within degraded reef
habitats.

Comparisons of the standardised responses to coral loss for each of 19 distinct
functional (or trophic) groups show that while there was considerable variation in the
response of individual species within each group, the net effect is a decline in
abundance for 18 of the 19 functional groups examined (Fig. 11.3). The only
exception was the macroalgal browsers (Naso spp. and Siganus spp.) that show a
net positive response to coral loss. Interestingly, these browsing fishes do not
associate with live coral or structurally complex areas at settlement, instead settling
to areas of coral rubble (e.g. Naso unicornis, Doherty et al. 2004) or dense
macroalgae, predominantly Sargassum (Siganus spp., Hoey et al. 2013; Evans
et al. 2014). This, coupled with the increased availability of algal resources follow-
ing coral mortality (e.g. Diaz-Pulido and McCook 2002), suggests these species are
not reliant on live coral and may actually prosper in habitats with depauperate coral
cover.
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Fig. 11.3 Variation in standardised responses to coral loss (proportional change in the abundance
of individual species divided by proportional declines in in local coral cover) for 19 functional
(trophic) groups of reef fishes. Responses are predominantly negative showing the broad range of
fishes that decline in abundance following coral loss
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Although the net response of most functional groups to coral loss was negative,
there was considerable variation among species within each group. This variation
likely reflects differences in the intensity and/or nature of the disturbance, the
temporal scale over which the changes were quantified and the longevity of the
species and the reliance of individual species on live coral for settlement, food and/or
shelter. For example, many scraping and excavating parrotfishes settle to macroalgal
(Green 1998) or mangrove habitat (Dorenbosch et al. 2006), yet other species, such
as the bumphead parrotfish Bolbometopon muricatum, settle to branching Acropora
(Hamilton et al. 2017). The reliance of B. muricatum on live coral at settlement is of
particular concern as, when present, it overwhelmingly dominates the process of
external bioerosion on reefs (Bellwood et al. 2003, 2012), and as such the loss of
corals could undermine this ecological process. Similarly, differences in settlement
habitat are evident within other function groups. For example, the piscivorous coral
trout Plectropomus leopardus settles to rubble habitats (Light and Jones 1997),
while the congener P. maculatus settles to branching Acropora (Wen et al. 2013).
Predicting the effects of coral loss on the functional composition of reef fish
assemblages is complex. Despite some fishes appearing to be largely unaffected
by coral loss (Emslie et al. 2017) or even thriving following coral loss (e.g. Adam
et al. 2011), the net effect of extensive coral depletion on almost all functional
groups is negative (Fig. 11.3). Although changes in the abundance do not account for
differences in the functional contribution of individual species, the prevalence of
negative impacts suggests ongoing coral loss is likely to compromise the functioning
and productivity of coral reefs, especially given cumulative effects of multiple
disturbances (Brandl et al. 2016).

11.3.3 Effects of Coral Reef Degradation on Tropical
Fisheries Production

Coral reef ecosystems are a major contributor to tropical coastal fisheries production,
with coral reef fishes accounting for up to 65% of coastal fisheries production in the
tropical Pacific (Bell et al. 2013). Coral reef fisheries typically target multiple species
across almost all trophic levels, including piscivores, invertivores and herbivores
(Dalzell et al. 1996). Differential effects of coral bleaching and depletion across
major functional groups are, therefore, expected to cause changes in catch compo-
sition, if not declines in overall fisheries production. Cheung et al. (2013) showed
that there have been marked shifts in catch composition for tropical fisheries from
the 1970s to 2006. These changes are related to changing thermal regimes, differ-
ential thermal sensitivities of tropical fishes and increasing redistribution of fishes to
match changing climatic envelopes (Cheung et al. 2010). However, significant and
widespread habitat degradation due to increasing incidence and severity of mass
coral bleaching will also have consequences for coral reef fish and fisheries
(Pratchett et al. 2011c; Bell et al. 2013). By 2100, the combined effects of habitat
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degradation and ocean warming, together with ocean acidification, are projected to
cause a 20–50% decline in sustainable fisheries production of demersal fishes from
tropical coastal environments across Pacific island countries and territories (Pratchett
et al. 2011c). These projected declines are mostly linked to ongoing habitat loss
across coral reef, seagrass and mangrove habitats, though the projected rates of
habitat loss (e.g. 50% decline in mean coral cover by 2035) may have been overly
conservative given the habitat loss that is likely to have occurred during recent
pantropical mass coral bleaching events. Projected declines in coral reef fisheries
productivity caused by climate change could equate to losses of up to US$8.4 billion
per annum by the year 2100 (Speers et al. 2016). Given the increasing demand for
fish with significant increases in human population across tropical island nations, the
degradation of coral habitats from bleaching poses a major threat to future food
security (Bell et al. 2017).

The specific effects of coral bleaching on fisheries species and production remain
equivocal (Brander 2007; Cinner et al. 2013), given difficulties in discerning cli-
matic signals against background fluctuations in catch and effort (McClanahan et al.
2002; Grandcourt and Cesar 2003). Graham et al. (2007) found declines in the size
structure of fisheries target species following extensive mass bleaching in the
Seychelles. It is also clear that extensive coral depletion, especially when combined
with declines in topographic complexity, can impact on the abundance of large-
bodied reef fishes and fisheries target species (Pratchett et al. 2011c, 2017). Most
fishes that associate with live coral are small-bodied (Coker et al. 2014) and are not
typically targeted by fishers. Reduced abundance of these small-bodied fish can,
however, impact on prey availability for larger piscivorous species (Wen et al.
2016). For example, reduced abundance of coral-dwelling planktivores following
bleaching resulted in an increased benthic, rather than pelagic, isotopic signature in
the barred-cheek coral trout, Plectropomus maculatus (Hempson et al. 2017a). This
shift in dietary composition was also associated with declines in individual condi-
tion, potentially attributable to declines in resource availability within degraded reef
systems (Hempson et al. 2017b). This may explain why densities of these
P. maculatus covary with fluctuations in live coral cover (Williamson et al. 2014),
though coral habitats are also important for growth and survival of newly settled
individuals (Wen et al. 2013) which feed on benthic invertebrates that are generally
more prevalent in the presence of live corals.

Previous studies (and meta-analyses) on the susceptibility of reef fishes to coral
depletion and changes in the structure of reef habitats emphasised the vulnerability
of small-bodied species (Wilson et al. 2006; Graham et al. 2008), which often have
closer association with benthic habitats and explicitly utilise complex habitats to
moderate exposure to predators. However, more recent analyses show that species
with large body size are equally vulnerable to coral depletion and reef degradation as
their smaller-bodied counterparts (Pratchett et al. 2014), though there may be
significant lags in the time required for such declines to become apparent. The
mean and modal standardised responses to coral loss for all groups of carnivorous
fishes, which include many large-bodied piscivores and macro-invertebrate feeders,
were negative (Fig. 11.3). The mechanistic basis for such declines is likely to be
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complex and vary among species. However, high coral cover and topographic
complexity may be critical to the feeding success of many ambush predators, such
as groupers (Kerry and Bellwood 2012). Some larger-bodied fisheries species
(e.g. Bolbometopon muricatum) may also rely on specific corals or coral-rich
habitats for settlement (Rogers et al. 2014; Hamilton et al. 2017), even though adults
are only loosely associated with coral habitats, which would explain why extensive
coral depletion results in protracted declines in the abundance of these species. The
overall importance of corals (cf. algae or other reef habitats) for inducing settlement
or promoting survival of newly settled fishes is still largely unknown (but may have
been greatly underappreciated, Jones et al. 2004), as habitat requirements for many
juvenile coral reef fish are yet to be established (Wilson et al. 2010).

Dramatic shifts in the species composition, abundance and biomass of reef fishes
are likely to occur following shifts from coral- to macroalgae-dominated systems
(Chong-Seng et al. 2014; Graham et al. 2015; Ainsworth and Mumby 2015), which
may become increasingly common following severe mass coral bleaching and will
have obvious connotations for fisheries production. Most notably, the abundance of
many traditional fisheries species is suppressed on reefs dominated by macroalgae
(Ainsworth andMumby 2015). There are, however, other fishes that are very abundant
on reefs with high cover of macroalgae (Graham et al. 2014), which might still sustain
high fisheries productivity, albeit based on a different suite of species (Ainsworth and
Mumby 2015). Exploring new fishing opportunities and adapting to changes in
resource availability may help to close the gap between productivity of coral reef
fisheries and increasing fisheries demands in tropical island countries (Bell et al.
2017). Embracing such changes must, however, take account of the ecological
importance of some fishes and balance the needs for fisheries production versus
contributions of fishes to ecosystem function. If, for example, fisheries capitalise on
the increased abundance of herbivorous fish that can occur following mass coral
bleaching (Wilson et al. 2006; Pratchett et al. 2008a), this may undermine the capacity
for recovery and reassembly of coral-dominated habitats (Bozec et al. 2016).

11.4 Changes in the Behaviour and Fitness of Reef Fishes

While there are many studies that have documented changes in the abundance and
diversity of fishes on reefs affected by coral bleaching and coral loss (Graham et al.
2008), sublethal effects of such disturbances have often been overlooked. However,
fishes may respond to coral bleaching and coral loss in ways other than absolute
changes in their local abundance (Table 11.1). These differences in feeding rates and
diet, physiological condition and growth may forewarn of longer-term impacts on
individual survival and population viability, but understanding sublethal effects of
coral depletion may also help to elucidate how and why reef fishes associate with
coral-dominated habitats. For example, Chaetodon auriga declines in abundance
following localised coral loss (Bouchon-Navaro et al. 1985; Pratchett et al. 2015b)
despite feeding very little, if at all, on scleractinian corals throughout much of its
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Table 11.1 Sublethal effects of mass coral bleaching and coral depletion on coral reef fishes,
highlighting (A) behavioural shifts associated with declines in the local abundance, cover or
diversity of corals and (B) consequences for individual fitness, such as declines in condition and
growth

(A) Behavioural shifts

Effect Observed change Time frame Species and data source(s)

Feeding on
bleached corals

Preferential feeding on
bleached corals

Hours to
days

Labrichthys unilineatus
(McIlwain and Jones 1997;
Cole et al. 2009)
Chaetodon baronessa
(Cole et al. 2009)

Active avoidance of
bleached corals

9 Days Chaetodon plebeius (Pisapia
et al. 2012)

Overall bite
rates

Increased with increasing
coral cover

Space for
time
comparison

Chaetodon auriga (Pratchett
et al. 2014)

No difference Space for
time
comparison

Chaetodon vagabundus
(Pratchett et al. 2014)

Shifts in dietary
composition

Reduced intake of benthic
invertebrates

1–2 Years Juvenile Plectropomus
maculatus (Wen et al. 2016)

Increased intake of herbivo-
rous fishes

3–7 Years Plectropomus maculatus
(Hempson et al. 2017a)

Increased use of massive
corals

2 Years Chaetodon lunulatus (Pratchett
et al. 2004)

No change despite loss of
preferred prey

1 Year Oxymonacanthus longirostris
(Brooker et al. 2014)

Territoriality
and aggression

Larger territories with
declining coral cover

Space for
time
comparison

Labrichthys unilineatus
(McIlwain and Jones 1997)

Larger territories and
reduced aggression at low
coral cover

Space for
time
comparison

Chaetodon baronessa (Berumen
and Pratchett 2006)

Increased inter- vs intraspe-
cific aggression in degraded
habitats

20 Days Pomacentrus moluccensis (Kok
et al. 2016)

Susceptibility
and exposure to
predators

Failure to respond to preda-
tor odour cues on dead
corals

Immediate Pomacentrus amboinensis
(Lönnstedt et al. 2014)

Failure to respond to con-
specific alarm cues in
degraded habitats

Immediate Pomacentrus moluccensis and
Chromis viridisi (Ferrari et al.
2017b)

Water from dead corals
impedes escape responses

Immediate Pomacentrus amboinensis,
P. chrysurus, P. wardi,
(McCormick and Allan 2017)

Dead coral impedes social
learning and predator
recognition

Immediate Pomacentrus amboinensis,
P. nagasakiensis (Chivers et al.
2016)

Higher strike rates by pred-
ators on prey fishes against
bleached corals

Immediate Pomacentrus moluccensis,
Dascyllus aruanus (Coker et al.
2009)

(continued)
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geographical range. Moreover, C. auriga preferentially settles to near-shore patch
reef habitats with limited cover of live corals (Pratchett et al. 2008b), questioning
why this species would be negatively affected by coral depletion. However, Pratchett
et al. (2015b) showed that feeding rates of C. auriga (on non-coral substrates)
increase with increasing coral cover. This suggests that corals support increased
abundance of prey items (such as small crustaceans and other cryptofauna living
within the algal turfs) consumed by C. auriga. The cryptofauna associated with algal
turfs is an important contributor to the trophic dynamics of shallow reef systems
(Kramer et al. 2013), and though it is unknown whether high coral cover increases
overall productivity of cryptobenthic assemblages or favours only specific species
consumed by C. auriga, this is a potentially important link in understanding the
far-reaching effects of mass coral bleaching and coral depletion on coral reef fishes.

11.4.1 Behavioural Changes

Mass coral bleaching and associated changes in the structure of reef habitats have
important and far-reaching effects on the availability of prey resources and not only
for those fishes that feed directly on live corals (Wen et al. 2013; Pratchett et al.
2015b). Where possible, fishes would be expected to respond to changes in resource
availability by altering their dietary intake and feeding behaviour (e.g. Pratchett et al.

Table 11.1 (continued)

(B) Consequences for individual fitness

Effect Observed change Time frame Species and data source(s)

Physiological
condition

Declines in condition when
feeding on suboptimal prey

2 Years Chaetodon lunulatus
(Pratchett et al. 2004)

No differences between
bleached versus unbleached
corals

Space for
time
comparison

Dascyllus aruanus (Coker
et al. 2015)

No change, despite increased
use of suboptimal habitats

1 Month Chrysiptera parasema,
Dascyllus melanurus (Feary
et al. 2009)

Spawning Lack of spawning for fishes
deprived of access to preferred
prey

3 Weeks Oxymonacanthus
longirostris (Brooker et al.
2013)

Growth rates Limited growth following
extensive depletion of coral prey

1 Year Oxymonacanthus
longirostris (Kokita and
Nakazono 2001)

Growth rates directly related to
tissue cover of coral hosts

1 Month Chrysiptera parasema,
Dascyllus melanurus (Feary
et al. 2009)

No difference when feeding on
bleached versus unbleached
corals

23 Days Chaetodon aureofasciatus,
C. lunulatus (Cole et al.
2014)
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2004). However, diets of some highly specialist species are inflexible (Berumen and
Pratchett 2008; Brooker et al. 2014), making them extremely susceptible to prey
depletion. Even for fishes that can modify dietary intake in accordance with chang-
ing prey availability, this may have significant consequences for individual fitness
and long-term survival. Following mass coral bleaching in the central Great Barrier
Reef, Australia, Pratchett et al. (2004) showed that Chaetodon lunulatus increased
its intake of bleaching-resistant coral species. This shift in diet composition enabled
adult fishes to persist following the bleaching, though it did have consequences for
physiological conditions (Pratchett et al. 2004), which may, in turn, affect longer-
term survival and reproductive output (discussed below). Reductions in live coral
cover also increase the area over which corallivores forage (e.g. McIlwain and Jones
1997; Kokita and Nakazono 2001), potentially increasing competitive encounters
and exposure to predators.

One of the foremost explanations put forward to explain high abundance and
diversity of fishes in coral-rich habitats is the extent to which high levels of habitat
diversity and complexity will moderate outcomes of competition and predation
(Almany 2004). This hypothesis is not readily testable, because the persistence
and coexistence of multiple species depend on the outcomes of numerous biological
interactions over extended time scales, rather than the changes in the absolute
intensity of competition and predation. It would be expected, however, that resource
competition would become more intense (especially among coral-dependent fishes)
following local coral depletion. Similarly, predation rates might be expected to
increase with coral loss and declines in fine-scale topographic complexity of reef
habitats (Almany 2004). Thus far, there has been limited evidence of increased
intensity of competition among reef fishes following coral loss (Table 11.1). One of
the more unexpected consequences of coral loss is that fishes appear to be much
more susceptible to predation when corals bleach and die (Coker et al. 2009; Chivers
et al. 2016; Ferrari et al. 2017b; Table 11.1), attributable to both changes in habitat
structure and apparent changes in the behaviour of fishes in degraded reef environ-
ments. Notably, Chivers et al. (2016) showed that water that has passed over dead
and degraded corals impedes social learning and predator recognition among the
damselfish, Pomacentrus amboinensis. Lönnstedt et al. (2014) suggested that dead
coral masks the odours of potential predators. Accordingly, field experiments
showed that damselfish (P. amboinensis) associated with dead coral hosts did not
exhibit characteristic sheltering within corals when exposed to the odour of a
predator but did so upon seeing the predator. Interestingly, P. amboinensis is one
of the few coral-dwelling damselfishes that is commonly found on dead coral hosts,
especially after major disturbances (Pratchett et al. 2012), and these effects may be
even stronger for obligate coral-dwelling species.

There has been comparatively little research on the specific behavioural responses
of fishes to host coral bleaching or mortality (but see Coker et al. 2009, 2013). It is
implicitly assumed, for example, that declines in the abundance of coral-dwelling
fishes following extensive and widespread coral loss are due to elevated rates of
individual mortality, due to compromised health of the individual fishes and
increased susceptibility to predation (Sano et al. 1984, 1987; Jones et al. 2004;
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Pratchett et al. 2008a), which may be compounded by declines in local settlement
rates (Feary et al. 2007). However, Coker et al. (2009) showed that prey fishes
associated with bleached corals are much more susceptible to predation compared to
conspecifics living on unbleached corals, which was attributed to both visual and
chemical camouflage provided by live coral tissues. Even if predation rates are not
actually any higher for fishes on bleached corals, it is possible that increased
exposure to predators may provide significant motivation for coral-dwelling fishes
to rapidly vacate bleached coral hosts (Sano et al. 1987; Coker et al. 2009). This
might also explain the reluctance of fishes to settle on bleached corals (e.g. Feary
et al. 2007).

11.4.2 Effects of Coral Bleaching Versus Coral Loss
on Individual Fitness of Fishes

Where coral bleaching and/or coral mortality leads to depletion of resources for reef
fishes, species losses are likely to be preceded or accompanied by declines in
individual condition or fitness (Kokita and Nakazono 2001; Pratchett et al. 2006;
Brooker et al. 2013). Kokita and Nakazono (2001) documented localised extirpation
of Oxymonacanthus longirostris over 2 years following coral bleaching in Okinawa,
Japan (see also Brooker et al. 2014). However, even before these fishes disappeared,
growth rates were severely compromised (Kokita and Nakazono 2001), reflecting
limited access to their preferred coral prey, Acropora, which had succumbed to the
bleaching and died. Experimental studies conducted by Brooker et al. (2013) also
showed that constrained access to preferred coral prey by breeding pais of
O. longirostris resulted in reproductive failure. It is also possible that declines in
the nutritional quality of coral prey may occur even during bleaching, due to rapid
depletion of lipid reserves (but see Pisapia et al. 2012). Some coral-feeding fishes
will initially target bleached corals over healthy coral prey, potentially due to
increased mucous production or limited tissue retraction, but preferentially target
healthy corals over colonies subject to prolonged bleaching (Cole et al. 2009). It is
clear that corallivorous fishes will consume bleached corals, but protracted feeding
on bleached corals may constrain nutritional intake. However, Cole et al. (2014)
found no apparent differences in the growth rates of juvenile butterflyfishes that were
restricted to feeding on bleached versus healthy corals for 23 days. The findings
suggest that bleaching per se may have limited effects on corallivorous reef fishes
(see also Bonin et al. 2009; McCormick et al. 2010). Rather, it is the subsequent
mortality of bleached coral colonies that impacts on food availability leading to
declines in the physiological condition and ultimately the survival of corallivorous
fishes.

Aside from coral-feeding fishes (e.g. butterflyfishes), coral-dwelling fishes have
the most direct and explicit reliance on corals (Pratchett et al. 2012) and are
extremely vulnerable to local depletion of their specific coral hosts (Munday
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2004). Many coral-dwelling fishes vacate their coral hosts as soon as they bleach,
let alone die (Feary et al. 2007; Coker et al. 2012). Redistribution of coral-dwelling
fishes among remnant coral hosts may moderate the susceptibility of these fishes to
host coral depletion, though overall densities often decline in approximate accor-
dance with the proportional loss of preferred coral habitats (Wilson et al. 2008;
Pratchett et al. 2012). The proximate causes of declines in the abundance of coral-
dwelling fishes following host coral mortality remain largely unknown. Explicit
comparisons of the physiological condition of several different species of coral-
dwelling damselfishes (Table 11.1) constrained to living on bleached versus healthy
coral hosts reveal little or no differences. This suggests that declines in the abun-
dance of coral-dwelling fishes within habitats subject to host coral depletion are due
to extrinsic processes (e.g. predation) rather than intrinsic factors. However, suble-
thal effects of coral depletion need to be considered across a much wider range of
reef fish species.

11.5 Conclusions

Highly diverse and productive assemblages of coral reef fishes rely on the combi-
nation of high abundance (cover) and diversity of scleractinian corals, as well as high
levels of topographic complexity, which in itself is often provided by high coral
growth. Mass coral bleaching, which can cause extensive coral loss, will, therefore,
have significant effects on the structure and function of reef fish assemblages
(e.g. Wilson et al. 2006; Graham et al. 2006, 2008), with potential consequences
for fisheries production and coral reef resilience. The loss of entire functional groups
that comprise multiple species may appear unlikely. However, biodiversity of coral
reef fishes is not equally apportioned among different functional groups (Mouillot
et al. 2014). There are also entire functional groups that respond similarly to coral
bleaching and coral loss, such that certain ecological functions will be severely
compromised, if not lost altogether (Graham et al. 2011). It is now clear that effects
of coral bleaching and associated coral loss extend well beyond those species
traditionally thought to have specific reliance on corals for food and shelter
(e.g. butterflyfishes, damselfishes, gobies). In extreme cases, the abundance and
species richness of fishes may decline >60% following extensive coral depletion
and topographic collapse of reef habitats, combined with increasing dominance of
non-coral biota. The spatial extent of mass bleaching events is also far greater than
other major disturbances, potentially threatening widespread species with extinction.
This provides significant imperative for reducing greenhouse gas emissions, to
reduce the incidence and severity of future mass coral bleaching while also
addressing other more localised disturbances that contribute to coral loss and reef
degradation.
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Chapter 12
Ocean Acidification and Coral Bleaching

R. Albright

12.1 Introduction

Simultaneous with the increases in global sea surface temperature, increasing atmo-
spheric carbon dioxide (CO2) is driving changes in the chemistry of the oceans—a
process known as ocean acidification. Over the last two decades, reef-related ocean
acidification research has focused primarily on the consequences of elevated CO2 on
calcification. The impacts of ocean acidification on other critical processes such as
coral-algal symbioses and bleaching thresholds are less well known. In this chapter, I
review the available literature on the impacts of ocean acidification on coral
bleaching. I begin by providing context for ocean acidification and its impacts on
coral reefs. I focus primarily on primary literature investigating the effects of CO2 on
photophysiology, coral-algal symbioses, and bleaching responses while shedding
light on information needs and unresolved issues. I also briefly touch on environ-
mental factors other than temperature and ocean acidification that have the potential
to influence coral bleaching responses (e.g., nutrients).

12.1.1 Ocean Acidification

Simultaneous with the increases in global sea surface temperature (SST), increasing
atmospheric carbon dioxide (CO2, the main greenhouse gas) is driving changes in
the seawater chemistry of the oceans. At present, the ocean absorbs about one-third
of fossil fuel CO2 emissions and will eventually sequester up to 90% of anthropo-
genic CO2 (Archer et al. 2009; Sabine et al. 2011), causing measurable shifts in
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seawater carbonate chemistry (Bates et al. 2014; Canadell et al. 2007; Le Quéré et al.
2015). On entry into the ocean, CO2 reacts with seawater via the following net
chemical reaction:

H2Oþ CO2ð Þaqþ CO2�
3 ! 2HCO�

3 ð12:1Þ
As a result, concentrations of aqueous carbon dioxide, [CO2]aq, and bicarbonate

HCO�
3

� �
increase, while the concentration of carbonate CO2�

3

� �
and the pH of

seawater decrease (Broecker et al. 1979; Caldeira and Wickett 2003; Sabine et al.
2004); this process is referred to as ocean acidification (OA). In the last 200 years,
the global average pH of ocean surface waters has declined by about 0.1 units, from
pH ~8.2 to pH 8.1 (Rhein et al. 2013), which equates to an increase in acidity (i.e.,
hydrogen ion concentrations) of approximately 30%. Under a business-as-usual
scenario, a further decrease of 0.3–0.4 units (to pH 7.7–7.8) is expected by the end
of the twenty-first century. Another important outcome of OA for calcifying organ-
isms, such as reef-building corals, is the decrease in the saturation state of calcium
carbonate (Ω), defined as Ω ¼ [Ca2+] CO2�

3

� �
/K0sp, where K0sp is the solubility

product for a particular mineral phase of CaCO3 (e.g., aragonite, calcite). Aragonite
is the dominant biogenic form of CaCO3 secreted by many reef-building organisms,
including corals. If Ω > 1, seawater is supersaturated with respect to CaCO3, and
conditions are favorable for CaCO3 precipitation; conversely, if Ω < 1, seawater is
undersaturated with respect to CaCO3, and the dissolution of CaCO3 is favored. The
surface waters of the tropical oceans are currently supersaturated with respect to
aragonite; however, the saturation state of aragonite (Ωarag) of tropical Pacific
surface waters is estimated to have decreased from values of about 4.5 in
preindustrial times (Kleypas et al. 1999; Cao and Caldeira 2008) to about 3.8 by
1995 (Feely et al. 2009) and is expected to continue declining to approximately 3.0
by the middle of this century and 2.3 by the end of the century (Feely et al. 2009).

12.1.2 Variability in Seawater Carbonate Chemistry of Coral
Reefs

OA projections are based on trends from data collected in open ocean environments
(Doney et al. 2009; Feely et al. 2009; Zeebe 2012), and their implications for
shallow, nearshore environments, such as coral reefs, are poorly understood. In
coastal regions, OA can interact with other natural and anthropogenic environmental
processes to hasten local declines in pH and carbonate mineral saturation states
(Duarte et al. 2013; Feely et al. 2010). In the Great Barrier Reef, Australia, for
example, inshore reefs are subjected to elevated pCO2 levels compared to offshore
reefs, and the rate of increase in inshore pCO2 is faster than offshore and atmospheric
values (Cyronak et al. 2014; Uthicke et al. 2014). Changes in pH in coastal
ecosystems result from a multitude of drivers, including oceanic uptake of
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anthropogenic CO2 emissions, nutrient inputs, changes in metabolism (the balance
between primary production, respiration, and calcification), impacts from watershed
processes, organic matter, and hydrodynamics. For example, organic carbon metab-
olism (photosynthesis and respiration) and inorganic carbon metabolism (calcifica-
tion and dissolution) can drive strong diel and seasonal fluctuations in seawater
chemistry (Ohde and van Woesik 1999; Anthony et al. 2011a; Bates et al. 2010;
Kleypas et al. 2011; Shamberger et al. 2011; Gray et al. 2012; Shaw et al. 2012;
Albright et al. 2013, 2015; Koweek et al. 2015). Characteristic ranges are on the
order of 0.3 pH units (Duarte et al. 2013) but can be as large as 1 pH unit in some
environments [e.g., Lady Elliot Island reef flat, southern Great Barrier Reef (Shaw
et al. 2012)]. The extent to which reef metabolism alters the carbonate chemistry of
the overlying water column is a function of numerous factors, including benthic
community composition (Anthony et al. 2013; Koweek et al. 2014), biological
activity (which can vary with temperature, light, and nutrient availability), physical
forcing (e.g., temperature, salinity), tidal regime, water depth, and residence time
(Falter et al. 2008, 2012).

Changes in the adjacent watershed can also influence alkalinity and CO2 fluxes
that, together with metabolic processes and oceanic dynamics, can yield decadal
changes of up to 0.5 units in coastal pH (Duarte et al. 2013). Within many coastal
ecosystems, anthropogenic nutrient inputs enhance microbial respiration, driving
concurrent acidification and hypoxia (Altieri et al. 2017). These interactions between
OA and local to regional drivers yield complex regulation of pH in coastal waters
that have the capacity to strongly impact ecosystem health and performance.
Accordingly, many reef environments experience variable ocean chemistry that
often differs from open ocean conditions and, over relatively short time scales
(days and months), range more widely than the difference in mean conditions
between preindustrial to future OA scenarios (Hofmann et al. 2011; Shaw et al.
2012; Albright et al. 2013). Understanding the significance of OA projections in the
context of this background variability is central to gauging the susceptibility of reef
ecosystems to projected changes in ocean chemistry.

12.1.3 Impacts of Ocean Acidification on Coral Reefs

Major changes in ocean chemistry can have profound effects on marine ecosystems
(Doney 2010) and have even been implicated in creating conditions leading to past
mass extinction events (Veron 2008; Clarkson et al. 2015). pH plays a key role in
many physiological processes such as ion transport, enzyme activity, and protein
function, and as such, changes in CO2 can influence a wide range of physiological
processes including acid-base regulation, metabolism, energetics, and dependent
processes (Pörtner 2005, 2008). While extracellular and intracellular pH is usually
tightly regulated, the capacity of regulatory mechanisms can be overwhelmed. OA
also has the capacity to alter physiological processes that depend on carbon species
as reactants, including calcification and photosynthesis. Coral reefs are widely
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regarded as one of the most vulnerable marine ecosystems to OA, in part because the
very architecture of the ecosystem is reliant on carbonate-secreting organisms. OA
will lead to variable but predominantly adverse biological and ecological responses
for key species of coral reef organisms (Kroeker et al. 2010, 2013), including slowed
reef growth, altered competitive interactions, and impaired population replenish-
ment. Slower calcification results in slower coral growth, more fragile structures
(Madin et al. 2008), and potentially a shift from net accretion to net dissolution
(Silverman et al. 2009; Andersson and Gledhill 2013; Perry et al. 2013), with
implications for greater susceptibility to storm damage, slower recovery rates
between disturbances, less habitat-forming structures, and overall reduced reef
resilience (Anthony et al. 2011b). Both laboratory and field studies provide evidence
that coral reefs have already lost significant calcification capacity due to OA (Dove
et al. 2013; Albright et al. 2016).

Model results suggest that if CO2 emissions continue to follow a business-as-
usual path, tropical coral reefs are likely to shift toward conditions that are marginal
for reef growth (i.e., net dissolution) this century (Hoegh-Guldberg et al. 2007;
Silverman et al. 2009). In addition to impacting corals, OA lowers the abundance of
crustose coralline algae (Kuffner et al. 2007), a key player in solidifying reef
framework and providing settlement cues for numerous reef invertebrate larvae
(Harrington et al. 2004). Other impacts include shifts in competitive interactions
between corals and macroalgae (Diaz-Pulido et al. 2011), shifts in the competitive
hierarchy of corals (Horwitz et al. 2017), synergistic effects of temperature and OA
on coral mortality (Prada et al. 2017), and impairment of behavioral responses
critical for fish recruitment (Munday et al. 2010, 2014). Coral communities around
natural CO2 seeps show shifts in community composition from highly diverse and
structurally complex systems to those characterized by much lower diversity and
structural complexity (Fabricius et al. 2011, 2014), leading to loss of ecological
function and associated services.

A wide range of impacts are likely on coastal human communities including
reduced food, income, and well-being, as well as longer-term impacts such as
increasing vulnerability as coral reefs become less able to protect coastal areas
from storms and waves (Pendleton 1995; Cooley et al. 2009; Pascal et al. 2016).
While local adaptation over evolutionary time scales (involving genetic isolation and
strong selective pressure) renders certain communities more resistant to low-Ω
seawater (e.g., Golbuu et al. 2016; Barkley et al. 2017), there is little evidence that
coral reef organisms can adapt or acclimate to future OA scenarios (but see Putnam
and Gates 2015). The possibility of OA acting to lower coral bleaching thresholds
has been suggested (e.g., Anthony et al. 2008); however acidification effects on coral
bleaching are highly uncertain. Whether or not OA influences the bleaching response
of corals remains a topic of debate and is the primary focus of this chapter.
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12.2 Ocean Acidification and Coral Bleaching

In reef-building corals, Symbiodinium density and physiology are regulated by host-
and symbiont-driven mechanisms that vary in response to environmental conditions
such as light intensity, temperature, and nutrients (Lesser 2004, 2011). Abrupt
changes in environmental conditions can disrupt coral-algal symbioses and cause
bleaching (i.e., loss of Symbiodinium and/or photosynthetic pigments) (Lesser
2011). While the effects of elevated temperature on coral bleaching are well
known (Fitt et al. 2001; Jokiel 2004; Lesser 2011), the effects of elevated pCO2

on bleaching responses are less clear. Compared to calcification studies, less atten-
tion has been placed on other aspects of holobiont physiology, including symbiont
photophysiology and primary productivity. Where these effects have been investi-
gated, outcomes are equivocal (Table 12.1). To inform our understanding of poten-
tial mechanisms by which changing seawater chemistry could influence coral-algal
symbioses, it is helpful to briefly review proposed bleaching mechanisms and
relationships to dissolved inorganic carbon (DIC).

12.2.1 Bleaching Mechanisms and Dissolved Inorganic
Carbon

The mechanism behind warmwater bleaching is generally accepted to involve
accumulation of oxidative stress at photosystem II (PSII) in the symbiont, a process
known as photoinhibition (Lesser 1996). Photoinhibition occurs when the rate of
photodamage to PSII exceeds the rate of repair and can result in reduced photosyn-
thetic rates and elevated reactive oxygen species (ROS), further damaging the
symbiont and coral. This stress can change the energetic/metabolic demands of the
symbiont, reducing the amount of photosynthate translocated to the host. Physio-
logical changes in the host, such as reduced tissue thickness and apoptosis of
gastrodermal cells, can precede changes in symbionts when corals are exposed to
stress. Various photoprotective mechanisms exist to provide alternate electron
pathways to divert excess excitation energy that may otherwise lead to the formation
of ROS and photooxidative damage of proteins, lipids, and pigments. These include
pathways such as the water-water cycle and photorespiration.

Zooxanthellae use the Calvin-Benson cycle (dark reaction) to fix CO2.
Symbiodinium contain a form II Rubisco (the enzyme ribulose bisphosphate carbox-
ylase/oxygenase), which has a poor ability to discriminate between CO2 and O2

(Rowan et al. 1996). Consequently, maintaining an elevated ratio of CO2:O2 at the
site of photosynthesis benefits overall productivity. In theory, physiological pro-
cesses that depend on carbon species as reactants (e.g., photosynthesis, calcification)
may be directly influenced by acidification-induced changes in the inorganic carbon
supply. For organisms that are CO2 limited, increasing dissolved CO2 and HCO�

3
associated with OA could potentially alter photosynthetic kinetics and “fertilize”
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photosynthesis, with some benefits generally expected for plants and algae.
Seagrasses, for example, which appear carbon limited, respond positively to increas-
ing seawater CO2 (Beer and Koch 1996; Zimmerman et al. 1997; Jiang et al. 2010;
Russell et al. 2013; Ow et al. 2015). For most investigated species, however,
photosynthetic responses to OA are relatively small and are highly variable among
taxa (Mackey et al. 2015). For zooxanthellae, the source and reliability of CO2 is
complicated by their intracellular location. While molecular CO2 can freely diffuse
across cell membranes and lipid bilayers, at typical seawater pH (~8.1), molecular
CO2 represents only a small fraction (<1%) of the available DIC in seawater, with
the majority in the form of HCO�

3 (Zeebe and Wolf-Gladrow 2001), which is largely
inhibited from diffusing into the host cells due to its ionic charge. To enhance the
delivery of CO2 to the endosymbiont, many coral species implement a range of CO2-
concentrating mechanisms (CCMs), which facilitate the dehydration of HCO�

3 into
CO2 in the presence of carbonic anhydrase and H+-ATPase (Furla et al. 2000;
Al-Horani et al. 2003). At low irradiance, respiratory CO2 is sufficient to meet
photosynthetic demand (Muscatine et al. 1989). At high solar irradiance, however,
zooxanthellae rely on the host to supplement the DIC supply by converting HCO�

3
from bulk seawater (Goiran et al. 1996; Marubini et al. 2008). Consequently, CO2

delivery to the symbiont is heavily regulated by host CCM activity. In turn, CCM
activity relies on energy (ATP) that is, in part, derived from photosynthate trans-
ferred from the zooxanthellae (Al-Horani et al. 2003) (though note that many species
utilize heterotrophic carbon to mitigate intracellular CO2 limitation during periods of
autotrophic stress, enhancing bleaching resistance). Feedbacks between host-
regulated DIC delivery to the symbiont and symbiont-regulated energy to the host
complicate our ability to predict effects of increased CO2 on photophysiology.
Present information suggests that Symbiodinium in hospite are DIC limited (e.g.,
Goiran et al. 1996). As CO2(aq) increases with OA, symbiont productivity could
increase due to a release from carbon limitation; however, the effect of elevated CO2

on photosynthesis is likely to be minimal for endosymbiotic Symbiodinium owing to
host regulation of DIC supply and the presence of CCMs (Mackey et al. 2015).

An alternate bleaching mechanism was proposed by Wooldridge (2009a)
whereby the expulsion of zooxanthellae is triggered by CO2 limitation around
Rubisco resulting from a functional breakdown in CCM function such as carbonic
anhydrase and/or Ca2+-ATPase activity (i.e., CO2 demand exceeds available sup-
ply). In this scenario, inadequate CCM activity (due to either direct damage to the
CCM or insufficient energy to fuel CCM activity) limits the ability of the coral host
to maintain a sufficient supply of CO2 for the endosymbiont, particularly during
periods of high photosynthetic demand (e.g., high solar irradiance or thermal stress).
This leads to photoinhibition, oxidative damage, and eventual expulsion of zooxan-
thellae. Whether this model explains the breakdown of coral-algae symbiosis in
response to other known bleaching triggers, such as low temperature, low salinity,
high sedimentation, aerial exposure, etc. is not yet known.
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12.2.2 Evidence of Ocean Acidification-Induced Bleaching

To date, there have been no documented cases of acidification-induced bleaching in
the natural environment; most of what we know has been determined experimentally
and not verified ecologically. Only a few experimental studies have reported coral
bleaching in response to acidification stress. For example, a causal link between CO2

exposure and bleaching response was reported in a symbiotic sea anemone (Pecheux
2002), although these results were not published in the peer-reviewed literature.
Anthony et al. (2008) compared bleaching, productivity, and calcification responses
to acidification (pH 7.6–8.4) and warming (25–29 �C) at ecologically relevant
irradiances (~1000 μmol photons m�2 s�1) and showed that elevated CO2 induced
bleaching (loss of pigmentation) in two key groups of reef-building organisms—
crustose coralline algae (CCA) and branching (Acropora) and massive (Porites)
coral species. These results are often scrutinized because bleaching was evaluated
using a luminance colorimetric scale rather than quantifying algal (Symbiodinium)
densities or pigment content. The mechanism underlying the observed bleaching
response was not explicitly investigated; however the authors hypothesize that
changes in seawater chemistry influence bleaching thresholds by altering the func-
tioning of the carbon-concentrating mechanism, photoprotective mechanisms (e.g.,
photorespiration), and/or direct impacts of acidosis. Kaniewska et al. (2012) inves-
tigated the phenotypic and transcriptional responses of Acropora millepora colonies
exposed to OA and showed that exposure to high CO2 drives major changes in gene
expression, respiration, photosynthesis, and symbiosis. Elevated pCO2

(>1000 μatm) resulted in a loss (>50%) of Symbiodinium cells, an associated
decrease in photosynthesis and respiration, and an increase in transcripts of genes
involved in/responsible for alleviating oxidative stress, suggesting that the photo-
synthetic apparatus of the zooxanthellae was compromised. Changes in gene expres-
sion were consistent with metabolic suppression, an increase in oxidative stress,
apoptosis, and symbiont loss. Based on the transcriptomics results, the authors
suggest that similar cellular events occur during acidosis-induced bleaching as
those reported for thermally induced bleaching (e.g., Weis 2008). These include
increased ROS (and/or reactive nitrogen species, RNS) production, which in turn
disrupts calcium homeostasis, a condition that has been linked to coral bleaching
(DeSalvo et al. 2008). Additional cellular impacts of acidosis included changes to
acid-base regulation and mitochondrial ATPase activity.

In contrast, mounting experimental evidence from laboratory, field, and modeling
studies suggests that the influence of elevated CO2 on coral bleaching may be trivial.
For example, thermal bleaching (loss of Symbiodinium and/or chlorophyll content)
in Seriatopora caliendrum was unaffected by high pCO2 (>800 ppm) in two studies
(Wall et al. 2013; Baghdasarian et al. 2017). Hoadley et al. (2015) report various
physiological impacts in four coral species (Acropora millepora, Pocillopora
damicornis, Montipora monasteriata, Turbinaria reniformis) exposed to increased
temperature (31.5 �C) and pCO2 (~740 ppm), including changes in maximal photo-
chemical efficiency and biochemical composition of the symbionts (e.g., algal
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cellular volume, protein, and lipid content). However, elevated temperature played a
greater role in altering physiological responses than pCO2. Interestingly, the
photophysiological response and biochemical composition of the symbionts differed
among clades and influenced holobiont responses, drawing attention to the need to
understand symbiont, host, and symbiont � host (holobiont) responses (Hoadley
et al. 2015). In the Gulf of Aqaba, Stylophora pistillata colonies showed no signs of
bleaching despite spending 1.5 months at 1–2 �C above long-term summer maxi-
mum SST and a seawater pH of 7.8 (Krueger et al. 2017). Symbiotic dinoflagellates
did, however, show improved photochemistry with higher pigmentation and a
doubling in net oxygen production, leading to a 51% increase in primary produc-
tivity. In a Symbiodinium energetics study, Bedwell-Ivers et al. (2016) found no
significant differences in zooxanthellae density or Chl a content in two Caribbean
coral species (Acropora cervicornis and Porites divaricata) exposed to elevated
pCO2 (~1000 μatm). They did, however, report reductions in the maximum rate of
net photosynthesis (Pmax) and dark respiration (Rd), a response the authors attribute
to metabolic suppression (an adaptive response to conserve energy) as opposed to
bleaching. At natural volcanic CO2 seeps in Papua New Guinea, where corals are
chronically exposed to elevated CO2 up to 800 μatm, the majority of variation in
important biochemical measures such as tissue biomass, energy storage, pigmenta-
tion, cell protection, and cell damage was attributed to species (massive Porites
vs. Acropora millepora) and location, with little effect of pCO2 (Strahl et al. 2016).
At these same CO2 seeps, Noonan and Fabricius (2016) surveyed four common coral
families (Acroporidae, Faviidae, Pocilloporidae, or Poritidae) and a thermally sen-
sitive species Seriatopora hystrix along CO2 gradients during a minor regional
bleaching event and found little indication that elevated pCO2 influenced bleaching
susceptibility of the broader coral community. Concurrent tank experiments also
showed no effect of elevated pCO2 (780 μatm) on bleaching sensitivity in Acropora
millepora or Seriatopora hystrix (Noonan and Fabricius 2016). Finally, a modeling
study assessed the sensitivity of coral bleaching projections under different Ωarag

sensitivities and found that Ωarag exhibits limited influence on bleaching sensitivity
under RCP 2.6 and 4.5 scenarios. By the year 2050, RCP 4.5 results in >95% of
global reefs experiencing annual bleaching regardless of Ωarag sensitivity. Even
under the high mitigation scenario RCP 2.6, >90% of global reefs are projected to
experience annual bleaching by the mid-twenty-first century regardless of Ωarag

sensitivity (Kwiatkowski et al. 2015).

12.2.3 Photoacclimation and Photoprotection

Photoacclimation refers to the physiological acclimation by an organism to a certain
light environment. Similar to plants, corals demonstrate photoacclimatory responses
such as changes in symbiont density and/or chlorophyll content per cell. To date, the
effects of CO2 enrichment on photoacclimation are equivocal. It is well-established
that the coral-algal symbiosis is a dynamic reciprocal relationship, in which the

12 Ocean Acidification and Coral Bleaching 307



symbiotic interaction can change depending on environmental conditions that dif-
ferentially benefit either partner (Wooldridge 2017). It has been suggested that there
is an optimum zooxanthellae density that optimizes autotrophic capacity (P:R) by
maximizing light harvesting and minimizing intraspecific competition for resources
such as intracellular CO2 (Wooldridge 2017). Environmentally triggered increases in
algal density may cause resource limitation and influence photosynthetic capacity
while increasing respiratory and maintenance costs. Nutrient enrichment, for exam-
ple, can inhibit the ability of the coral host to maintain demographic control of its
algal symbionts, resulting in increased algal densities that act as net carbon sinks and
limit energetic resources of the coral (Wooldridge 2013, 2016). While high
Symbiodinium densities have been suggested to buffer corals from thermal stress
(Stimson et al. 2002), Cunning and Baker (2012) showed that increases in symbiont
density actually lowered coral bleaching thresholds. This may be because more
Symbiodinium produce more reactive oxygen species under stressful conditions
(Lesser 1996). Elevated pCO2 promotes enlarged zooxanthellae populations in
some (e.g., Reynaud et al. 2003; Crawley et al. 2010; Anlauf et al. 2011), but not
all (Rodolfo-Metalpa et al. 2010; Bedwell-Ivers et al. 2016) cases (Table 12.1).
While increases in CO2 supply may initially release symbionts from DIC limitation
and facilitate growth, an enlarged endosymbiont population may increase the risk of
CO2 limitation during periods of high irradiance, theoretically making corals more
susceptible to bleaching.

Photorespiration is one of several photoprotective mechanisms that provides
alternate electron pathways to divert excess excitation energy that could otherwise
lead to ROS formation and photooxidative damage of proteins, lipids, and pigments.
Compared to photosynthesis, photorespiration is generally viewed as energetically
wasteful because of its higher consumption of NADPH and ATP per unit of sugar
produced, but it can be an important physiological pathway for mitigating oxidative
stress during periods of excess excitation energy. During photorespiration, Rubisco
binds with O2 (as opposed to CO2), resulting in the production of phosphoglycolate
(PG). Excess PG can inhibit the Calvin cycle, so PGPase breaks down PG to
glycolate, allowing the Calvin cycle to continue. Glycolate is either excreted or
enzymatically broken down, adding to the fixed carbon supply for photosynthesis.
Crawley et al. (2010) investigated the effect of increasing CO2 on photosynthetic
capacity, photoacclimation, and photoprotection in Acropora formosa and found that
CO2 enrichment increased chlorophyll a per cell but did not affect symbiont cell
density. PGPase expression was reduced by 45% at high CO2 (1160–1500 ppm). The
authors suggest that OA has the capacity to influence ROS formation and subsequent
oxidative stress by compromising enzymatic activity of key photoprotective path-
ways. Given that many intracellular enzymes are pH-sensitive, more studies are
needed on the effects of CO2 enrichment on enzymatic pathways that underpin coral-
algal symbioses.
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12.2.4 Phylotype-Specific Responses and Symbiont Shuffling

Thermal stress is known to differentially affect phylotypes of Symbiodinium,
resulting in host-specific responses. Compared to temperature, little work has been
done to assess phylotype-specific responses to CO2. Brading et al. (2011) investi-
gated the effect of pCO2 on the photosynthesis and growth of four coral-associated
phylotypes of Symbiodinium (cultured cells) and found the response to be phylotype-
specific. Whereas certain phylotypes (A1 and B1) were largely unaffected by a
doubling of pCO2, the growth rate (A13) and photosynthetic capacity (A2) of
other phylotypes are doubled. This variability may be linked to differences in carbon
acquisition as well as preference for dissolved inorganic carbon species (CO2 vs.
HCO�

3 ) and may partially explain species-specific responses observed in other
studies (e.g., Bedwell-Ivers et al. 2016). Symbiont shuffling—i.e., increased abun-
dance of heat-tolerant symbionts following thermal bleaching (Buddemeier et al.
2004)—has been shown to reduce coral susceptibility to recurrent warming (e.g.,
Cunning et al. 2015). Whether coral-algal associations respond to changes in pCO2

has not been thoroughly explored; however, Noonan et al. (2013) found that coral-
symbiont associations remained stable regardless of proximity to volcanic CO2 seeps
in Papua New Guinea, indicating that acclimatization through symbiont shuffling
may not be an option to cope with ocean acidification.

12.2.5 Photosynthesis-Respiration

Experiments investigating the effect of elevated CO2 on coral photosynthesis and/or
carbon production show complex and species-specific responses with variable
results (Table 12.1). The vast majority of studies on coral reef organisms (e.g.,
corals and calcified algae) and communities suggest that photosynthetic rate is
relatively unaffected by elevated CO2 (Leclercq et al. 2002; Langdon et al. 2003;
Schneider and Erez 2006; Rodolfo-Metalpa et al. 2010; Dove et al. 2013; Takahashi
and Kurihara 2013; Comeau et al. 2016). A meta-analysis of 11 studies found that
the mean effect size of CO2 on coral photosynthesis was not statistically discernible
from zero (Kroeker et al. 2013). Comeau et al. (2016) used a large range of pCO2

values (280–2000 μatm) and 15 species of common reef calcifiers (eight coral
species and seven calcifying algae) on the shallow reefs of Moorea, to show that
net photosynthesis, dark respiration, light-enhanced dark respiration (LEDR), and
gross photosynthesis of corals and calcified algae are largely insensitive to pCO2

during short-term incubations. The general lack of a “CO2 fertilization” effect on
photosynthesis may be, in part, because zooxanthellae primarily use external HCO�

3
(Goiran et al. 1996; Gattuso et al. 1999; Schneider and Erez 2006). In contrast,
Kaniewska et al. (2012) report net decreases in both photosynthesis and respiration
of Acropora millepora colonies exposed to elevated CO2, and Anthony et al. (2008)
report that high CO2 levels (1000–1300 μatm) induced productivity loss and
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bleaching of Acropora intermedia. Iguchi et al. (2012) report reduced photosynthetic
efficiency of the massive coral Porites australiensis at high CO2 (1175–1439 and
1801–2193 μatm), although zooxanthella density was not affected. Meanwhile,
greater net productivity with elevated CO2 was reported for symbiotic sea anemones
in laboratory experiments and near natural CO2 seeps (Suggett et al. 2012; Towanda
and Thuesen 2012). Langdon and Atkinson (2005) found a 20–50% increase in
carbon production, but not oxygen production, of coral assemblages composed of
Porites compressa and Montipora capitata. It is important to note that CO2 enrich-
ment does not automatically result in increased productivity, as other factors such as
nitrogen, phosphorus, and iron may limit photosynthesis. Consequently, it is valu-
able to understand the interplay between the influence of OA on primary productiv-
ity under different nutrient regimes.

It has been suggested that aerobic respiration in corals will increase under OA to
compensate for increased energetic demands associated with maintaining calcifica-
tion rates in a thermodynamically challenging environment (e.g., McCulloch et al.
2012). However, empirical evidence shows that the effects of elevated pCO2 on
aerobic respiration are ambiguous, with, for example, no effects of high pCO2

reported on dark respiration of Stylophora pistillata (Reynaud et al. 2003), Acropora
eurystoma (Schneider and Erez 2006), and A. formosa (Crawley et al. 2010), while a
decrease in respiration has been reported for massive Porites spp. (Edmunds 2012),
A. millepora (Kaniewska et al. 2012), and larvae of P. astreoides (Albright and
Langdon 2011).

12.3 Ocean Acidification and Coral Reef Resilience

While the link between OA and coral bleaching is tenuous, it is increasingly clear
that OA has the capacity to influence post-bleaching recovery by acting on a variety
of processes that underpin coral reef resilience, namely, population replenishment
and growth.

12.3.1 Reproduction and Recruitment

Ocean acidification has been shown to negatively impact multiple, sequential early
life history stages which may severely compromise sexual recruitment and the
ability of coral reefs to recover from disturbance. For example, laboratory experi-
ments have found negative impacts of OA on three sequential life history phases
necessary for successful coral recruitment: (1) larval availability, by compromising
fertilization (Albright et al. 2010; Albright and Mason 2013) but see Chua et al.
(2013); (2) settlement ecology, by altering the availability of known settlement cues
such as crustose coralline algae (Albright 2011; Albright and Langdon 2011;
Doropoulos et al. 2012; Doropoulos and Diaz-Pulido 2013); and (3) post-settlement
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ecology, by impeding post-settlement growth and survival (Albright et al. 2008,
2010; de Putron et al. 2010; Albright 2011; Albright and Langdon 2011; Anlauf
et al. 2011; Moya et al. 2012; Foster et al. 2015, 2016). Field observations from
volcanic CO2 seeps in Papua New Guinea validate laboratory findings, indicating
altered settlement substrata and reduced coral recruitment at high CO2 (Fabricius
et al. 2017).

12.3.2 Growth and Calcification

Over the last two decades, OA research has focused primarily on the consequences
of shifting ocean chemistry on coral calcification (Kroeker et al. 2010, 2013;
Riebesell and Gattuso 2014; Andersson et al. 2015). While some species appear
insensitive over the range of conditions investigated (Comeau et al. 2013; Takahashi
and Kurihara 2013), the majority of field and laboratory studies show declines in
coral calcification with increasing CO2 (e.g., Gattuso et al. 1998; Langdon et al.
2000, 2003; Marubini et al. 2001, 2003; Reynaud et al. 2003; Langdon and Atkinson
2005; Silverman et al. 2009; Kroeker et al. 2010, 2013; Anthony et al. 2011b;
Pandolfi et al. 2011; Dove et al. 2013; Albright et al. 2016). According to a meta-
analysis of 25 studies, the mean response of coral calcification to a unit change in
Ωarag is approximately 15% (Chan and Connolly 2013). In addition to direct impacts
on reef builders, OA and warming have been shown to accelerate decalcification of
coral communities, with microbial communities (Dove et al. 2013), endolithic algae
(Reyes-Nivia et al. 2013), and excavating sponges (Fang et al. 2013) being the
primary agents of erosion.

Both laboratory and field studies provide evidence that coral reefs have already
lost significant calcification capacity due to OA (Dove et al. 2013; Albright et al.
2016). Model results suggest that if CO2 emissions continue to follow a business-as-
usual path, tropical coral reefs are likely to shift toward conditions that are marginal
for reef growth (i.e., net dissolution) this century (Hoegh-Guldberg et al. 2007;
Silverman et al. 2009). As the reef framework and carbonate balance are
compromised, a wide range of impacts are likely on coastal human communities
(Fabricius 2005; Fabricius et al. 2013; Kroeker et al. 2013; Hoegh-Guldberg 2014;
Wong et al. 2014; Albright et al. 2016; Edmunds et al. 2016). These include reduced
food, income, and well-being, as well as longer-term impacts such as increasing
vulnerability as coral reefs become less able to protect coastal areas from storms and
waves (Pendleton 1995; Hoegh-Guldberg et al. 2007; Cooley et al. 2009; Pascal
et al. 2016).
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12.4 Other Environmental Factors (Nutrients)

While a combination of thermal stress and high irradiance is the primary trigger for
modern mass-bleaching events (e.g., Hoegh-Guldberg 1999), at a local to regional
scale, other environmental stressors can cause bleaching independently and act
synergistically by effectively lowering the threshold temperature at which coral
bleaching occurs (Lesser 2004, 2011). These factors include changes in salinity,
seawater chemistry, disease, sedimentation, cyanide fishing, pollution, unusually
low temperatures, excess ultraviolet (UV) radiation, aerial exposure, bacterial path-
ogens and pollutants, nutrients, and solar radiation (reviewed in Brown 1997; Lesser
2011). Most of these have been determined experimentally in the laboratory and not
verified ecologically. In contrast to the recent global bleaching events associated
with global climate change (Hughes et al. 2017), nonthermal bleaching tends to
occur on smaller spatial scales in response to localized and/or pulsed stress. For this
reason, the majority of these factors are not dealt with here. However, due to the
vulnerability of coastal ecosystems to terrestrial inputs, nutrients have the potential
to operate on chronic and regional scales, thereby influencing bleaching thresholds
in nearshore waters.

The mechanism by which excess nutrients influence bleaching thresholds is not
dissimilar to that proposed for CO2—release from N or C limitation fuel algal
densities and lead to excess ROS under stressful conditions. Symbiodinium are
typically nitrogen-limited at high irradiance (Fabricius 2005). Symbiodinium densi-
ties typically increase in response to elevated DIN, which is preferentially used for
zooxanthellae growth, as opposed to heterotrophically derived nutrients which
increase both algal and host tissue growth (Hoegh-Guldberg and Smith 1989;
Muscatine et al. 1989; Marubini and Davies 1996; Fabricius 2005). Increased
algal populations produce more ROS under stressful conditions (Lesser 1996),
thereby making corals more susceptible to bleaching when sea surface temperatures
rise (Wooldridge 2009b; Cunning and Baker 2012; Wiedenmann et al. 2012). Thus,
the temperature threshold for bleaching has the potential to fluctuate as a function of
nutrient levels and their influence on symbiont densities and/or growth rates
(Wooldridge 2009a; Cunning and Baker 2012; Wiedenmann et al. 2012).

Despite these proposed links between nutrient availability and bleaching thresh-
olds, there is little empirical evidence that nutrients increase bleaching prevalence in
the field. Bleaching severity in inshore environments can be exacerbated relative to
offshore (e.g., Wooldridge (2009b), a phenomenon that is often attributed to envi-
ronmental stress associated with nutrient loading (e.g., Wooldridge 2009b; Wagner
et al. 2010). Using a large-scale dataset from the Great Barrier Reef, Wooldridge and
Done (2009) investigated geographic patterns of coral bleaching in 1998 and 2002
and show a synergism between heat stress and nutrient flux as a causative mecha-
nism for observed bleaching patterns. Wiedenmann et al. (2012) showed that
increased DIN, in combination with limited phosphate concentrations, increases
the susceptibility of corals to temperature- and light-induced bleaching. Using a
manipulative field experiment in the Florida Keys, Vega Thurber et al. (2014)

312 R. Albright



showed that coastal nutrient loading—at levels commonly found on many degraded
reefs worldwide—increases both bleaching severity and disease prevalence. Encour-
agingly, one year after termination of nutrient enrichment, there were no differences
in bleaching or disease prevalence, suggesting that improvements to water quality
may be an effective lever to mitigate some coral bleaching and disease. It is certain
that local processes such as nitrogen pollution and eutrophication exacerbate the
effects of OA, both chemically and physiologically. Changing sediment loads from
terrestrial sources and using controls on nutrient inputs as a policy lever for mitigat-
ing coastal water acidification can also modify the carbonate chemistry of surface
waters by altering the balance between autotrophy and heterotrophy, thereby helping
to alleviate coastal acidification (Bille et al. 2013).

12.5 Conclusions

Overall, our understanding of the impacts of OA on coral-algal symbioses, and
associated bleaching dynamics, is incomplete. While studies yield mixed results,
mounting experimental evidence suggests that bleaching will not be accentuated at
ecologically meaningful levels by the expected increase in pCO2 over the next
century. In theory, changes in CO2 have the capacity to influence a variety of
physiological processes that are integral to host-algal dynamics and photophysiology
with the most obvious avenues being direct impacts on algal population dynamics
(e.g., algal density and chlorophyll concentrations), downstream effects on energy
allocation, and/or impacts on enzymatic pathways that underpin photosynthesis,
oxidative stress, and/or photoprotection. However, empirical evidence is dominated
by mixed responses, suggesting that the influence of OA on bleaching thresholds is
equivocal. Generally, temperature seems to have a greater influence on productivity
and photophysiology than CO2, and intra- and interspecific variation in both host and
symbiont responses outweighs CO2 effects. The lack of a clear signal may, in part, be
due to differences in experimental design (e.g., outdoor/indoor, closed versus flow-
through systems, duration which affects acclimation potential), levels of other abiotic
factors such as light and nutrients, phylotype-specific responses in Symbiodinium,
and species-specific responses. Certainly, comparisons among species and determi-
nation of functional relationships between pCO2 and photophysiology are compli-
cated by the wide range of experimental conditions that dominate the literature.
Studies that couple observations at the phenotypic level with underlying molecular
mechanisms (e.g., Crawley et al. 2010) show promise to elucidate relationships
between CO2 enrichment and bleaching physiology. Specifically, studies evaluating
connections between CO2 and oxidative stress (ROS production), apoptosis,
photoinhibition (and associated repair pathways such as D1 proteins), enzymatic
activity (e.g., antioxidant enzymes, Rubisco), and associated processes such as PSII
function are needed, as are investigations into phylotype-specific responses, host-
symbiont interactions, and the influence on holobiont responses.
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While thermal stress remains the primary concern regarding acute impacts to
coral reefs, it is clear that both temperature and OA act synergistically to erode coral
reef health and performance. As discussed, direct links between OA and bleaching
responses are, at present, tenuous; however, it is certain that OA impedes post-
disturbance recovery by slowing growth and reproduction. Given that warming and
OA share a root cause—increasing atmospheric CO2—it is increasingly clear that
deep and rapid emissions reductions are critical to secure the future of coral reefs.
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Chapter 13
Future Scenarios: A Review of Modelling
Efforts to Predict the Future of Coral Reefs
in an Era of Climate Change

S. D. Donner, S. F. Heron, and W. J. Skirving

13.1 Introduction

Observations of mass coral bleaching and mortality over the past 4 decades are
linked to periods of anomalously warm sea surface temperatures, which have
become more frequent as the climate has warmed (Glynn 1991; Hoegh-Guldberg
1999; Donner et al. 2017; Hughes et al. 2017). Global climate models predict that the
planet’s climate could warm as much as 5 �C by the end of the century, without
substantial effort to reduce greenhouse gas emissions far below current levels (IPCC
2014). This continued climate warming poses a serious threat to the long-term health
of coral reef ecosystems (Hughes et al. 2003). At the same time, roughly a third of
the carbon dioxide emitted by human activity is being absorbed by the oceans
causing ocean acidification, which is expected to reduce the rates of coral calcifica-
tion and reef accretion (Kleypas et al. 1999; Guinotte et al. 2003).

This chapter reviews efforts to predict the effect of future climate change on coral
reefs, focussing on coral bleaching. The chapter includes an introduction to climate
modelling, a review of the application of climate models to coral bleaching, a case
study on the Great Barrier Reef, and a discussion of future research needs.
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13.2 Modelling Future Climates

Global climate models, which can simulate the response of the Earth to the emissions
of greenhouse gases, provide the basis for predictions of the response of coral reefs
to climate change. The earliest climate models were simple representations of
radiative properties of the atmosphere and the earth’s surface, based on the energy
from the sun and the composition of the atmosphere. These simple one-dimensional
models evolved into today’s complex general circulation models (GCMs) that use
physical principles to describe the transfer of heat, moisture, and momentum in a
three-dimensional grid representing the global climate system.

The current generation of GCMs and “earth systems models” used in the Inter-
governmental Panel on Climate Change (IPCC) assessments link the major compo-
nents of the climate system—atmosphere, ocean, land surface, cryosphere, and
biosphere—to best capture the range of physical and biological feedbacks associated
with climate variability and change. The models are continually updated to improve
the representation of important physical and chemical processes and are rigorously
tested against observed data. One generic metric for contrasting GCMs is their
equilibrium “climate sensitivity”, the predicted equilibrium change in global average
temperature caused by a doubling of atmospheric carbon dioxide (CO2) concentra-
tions, compared to the pre-industrial level. The GCMs used in the IPCC Fifth
Assessment Report (AR5) have equilibrium climate sensitivities ranging from 1.5
to 4.5 �C, with a mean of roughly 3 �C (IPCC 2014).

Projections of sea surface temperatures (SSTs) from GCMs are the most reliable
information available for predicting the thermal environment that will influence coral
reefs in the future. However, there are several key limitations to the modelled
representation of future climates that are particularly relevant to the study of coral
reefs. These include (1) the coarse spatial resolution of GCMs, (2) the representation
of natural modes of climate variability, and (3) the uncertainty over future green-
house gas emissions.

First, the coarse spatial resolution of climate models limits their ability to provide
forecasts for coral reefs. For example, many current models have horizontal resolu-
tion of around 1� (~100 km) in the atmosphere and ocean and vertical resolution on
the order of 10–100 m in the surface ocean (i.e. depth of each ocean grid cell).
Without a representation of the complex bathymetry and hydrodynamics of individ-
ual coral reefs, neither of these sets of GCMs can capture processes such as the local
upwelling of cooler deep waters or heating of shallow waters on the reef flat
(Skirving and Guinotte 2001; Wooldridge and Done 2004). The direct GCM output
is better suited to represent the mean temperature of an area of the ocean containing
coral reefs rather than the temperature surrounding an individual coral reef or an
individual coral.

Higher-resolution regional information can be obtained by downscaling GCM
output using dynamical or statistical methods. For example, predictions for an
individual reef could be made by forcing a high-resolution hydrodynamic model
with the coarser output from a GCM (see Sect. 13.5). Alternatively, statistical
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relationships between the average temperature for a region and the temperature at
specific reef locations could be used to translate GCM output to a higher resolution
(Donner et al. 2005; van Hooidonk et al. 2015, 2016). Kwiatkowski et al. (2014),
however, suggest that GCM skill at simulating warm season SST and historically
forced SST trends is currently limited at less than 16� latitude–longitude resolution.
This raises questions about the fidelity of high-resolution bleaching projections
produced using statistical downscaling, rather than dynamic downscaling via hydro-
dynamic models (e.g. van Hooidonk et al. 2015).

Second, the ability to project the variability of future ocean temperatures for many
coral reefs depends on model representation of natural modes of climate variability.
Mass coral bleaching events have been linked to large-scale oscillations in the
atmosphere–ocean system, most notably the El Niño–Southern Oscillation (ENSO;
Hughes et al. 2017), but also the Atlantic Multi-decadal Oscillation (Donner et al.
2007) and other modes of variability. Therefore, the reliability of future projections
for coral reefs will depend on model ability to represent the periodicity, spatial
patterns, and teleconnections of such natural modes of climate variability in the
existing climate and the response of these natural modes of variability to human-
induced climate warming. For example, overestimation of ENSO variability, com-
mon in current models, could lead to overprediction of bleaching frequency in parts
of the Pacific (e.g. see bias correction in Logan et al. 2014).

Third, future climate projections depend on assumptions about future changes in
climate “forcings”, including rates of emission of primary greenhouse gases. In order
to represent a range of possible climate futures, GCM simulations are conducted
with different emission “scenarios” that are developed based on different sets of
assumptions about demographic, economic, and technologic change. The IPCC AR5
employed a set of scenarios called Representative Concentration Pathways (RCPs)
which describe four different pathways for future atmospheric greenhouse gas
concentrations, expressed in units of radiative forcing (IPCC 2014). These include
a fossil fuel-intensive emission scenario (RCP8.5), two intermediate scenarios
(RCP6.0 and RCP 4.5), and a strong mitigation scenario (RCP2.6). RCP4.5 roughly
represents the future emission trajectory if the parties to the Paris Climate Agreement
achieve their national emission reduction targets; RCP2.6 represents a likely (>66%)
change of avoiding 2 �C of global average surface warming above the pre-industrial
level.

The RCPs provide the GCMs with different trajectories of radiative forcing
(caused by changes in atmospheric greenhouse gas and aerosol concentrations)
rather than the emissions themselves (e.g. RCP8.5 depicts 8.5 W m�2 of radiative
forcing in 2100 relative to 1750). The concentration of greenhouse gases in the
atmosphere and the implied radiative forcing depend on the emissions but also the
response of the planet’s ecosystems (e.g. CO2 uptake) and feedback mechanisms
(e.g. melting permafrost leading to methane release). Since the current rate of CO2

emissions exceeds the rate of CO2 uptake by the oceans and terrestrial vegetation,
freezing emissions at today’s rate will cause a continued increase in atmospheric
CO2 concentrations. Due to the long residence time of CO2 and other greenhouse
gases in the atmosphere and the capital lock-in of existing fossil fuel infrastructure, a
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certain level of climate warming is expected to occur because of past emissions and
energy decisions. For example, GCMs indicate a likely “committed” warming of
0.3–0.7 �C for the period 2016–2035 relative to 1985–2005 (IPCC 2014).

13.3 Predicting Coral Bleaching from Climate Models

The heterogeneity of coral response to temperature stress poses a central challenge in
predicting the impact of climate warming on coral reefs. Hughes et al. (2003)
summarised the possible theoretical models describing temperature thresholds for
coral reefs under climate change. The simplest model (Hoegh-Guldberg 1999)
assumes that mass coral bleaching or mortality will occur when the temperature
exceeds some threshold (Fig. 13.1a). An alternative model recognises that different
corals (by taxa, growth form, symbiont community composition, etc.) can have
different thermal tolerances (Fig. 13.1b). An adaptive model envisions thresholds
that might increase over time due to acclimatisation, adaptation, or community
changes (Fig. 13.1c).

Most studies to date have used a single temperature-based threshold of 1–2 �C
above the recent average summer maximum to predict whether mass coral bleaching
or coral mortality will occur under future climate scenarios (Hoegh-Guldberg 1999;
Sheppard 2003; Donner et al. 2005; van Hooidonk et al. 2013). More recent studies
also investigated the effect of possible temperature adaptation on the projected
frequency of bleaching events, a variant of the approach depicted in Fig. 13.1c
(Donner 2009; Logan et al. 2014).

The first group of climate change and coral bleaching studies determined tem-
perature thresholds for individual sites from historical observations of coral
bleaching or mortality (Hoegh-Guldberg 1999; Sheppard 2003; Jones 2004).
Hoegh-Guldberg (1999) did the first major review of the effect of climate change
on the occurrence of mass coral bleaching. In that study, the projected future SSTs
from three different GCMs under a business-as-usual scenario (IS92a) were used to
predict the occurrence of coral bleaching at sites in French Polynesia, Jamaica,
Rarotonga, and Thailand and at three sites on the Great Barrier Reef, Australia
(GBR). For each site, in situ records of monthly SST and observations of mass coral
bleaching were used to determine a monthly averaged temperature threshold. That
study assumed that if the projected future SST1 during a given year exceeded the
temperature threshold for the site, mass coral bleaching would occur that year. The
results suggested that coral bleaching at the level observed during the 1997–1998

1To eliminate systemic differences between modelled and observed temperatures, the future
temperatures are estimated as the sum of model “anomalies” (i.e. modelled January, 2050 SST
minus modelled mean January SST for today’s climate) and observations (i.e. January in today’s
climate).
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mass bleaching event at the seven sites would occur biannually within 20–40 years
under business-as-usual conditions.

Sheppard (2003) used observations from the 1998 bleaching event to define an
“extinction date” for 33 Indian Ocean reefs, the year in which the probability of SST
for the warmest month or 3 months surpassing that of 1998 exceeded 20%. This was
based on evidence that Indian Ocean reefs affected in 1998 had required a minimum
of 5 years to recover. Sheppard (2003) controlled for GCM bias in mean SST and
seasonal SST amplitude in each grid cell by adding GCM anomalies (i.e. future
projection for January 2050 minus the present-day January climatological mean,
from the HadISST 1� � 1� resolution global dataset) to observed climatology and by
fitting the seasonal amplitude to that in the observed data.
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Fig. 13.1 Three models for
describing temperature
thresholds (blue and green
lines) for predicting coral
bleaching: (a) a single
constant threshold across all
species; (b) multiple
constant thresholds,
reflecting either differences
in bleaching susceptibility
(e.g. between species or
growth forms) or severity
(bleaching vs. mortality);
and (c) multiple thresholds
that increase in time, due to
acclimation and/or evolution
by corals and their
symbionts (adapted from
Hughes et al. 2003). The red
line represents sea surface
temperature as it increases
over time
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The study found the extinction date should occur between 2010 and 2030 for
most southern Indian Ocean coral reefs, but not until the latter half of the century for
some coral reefs north of the equator (Fig. 13.2). The date for high-latitude reefs in
the Arabian Sea may be delayed until the end of the century due to cold-water
upwelling. Notably, the projected increase in SSTs suggested that adaptation or
acclimatisation by corals and their symbionts by 2 �C could delay the extinction date
beyond the end of this century.

A second generation of studies modelling future coral bleaching used average
maximum temperatures in observed climate data to determine bleaching thresholds
(Hoegh-Guldberg 2001, 2005; Donner et al. 2005; Donner 2009). The NOAA Coral
Reef Watch satellite-based coral bleaching prediction programme predicts the onset
of bleaching using the degree heating week (DHW), a measure of the accumulated
temperatures in excess of the usual summer maximum (Liu et al. 2006; Skirving
et al. 2006; Chap. 4). Donner et al. (2005) took advantage of these satellite-derived
data products to estimate the frequency of coral bleaching and required rates of
temperature adaptation for thousands of coral reef locations worldwide for upper and
lower business-as-usual climate scenarios (SRES A2, SRES B2). The historical
satellite SST and DHW data provided a reliable way to develop algorithms for
predicting the occurrence of thermal stress that can cause bleaching at sites world-
wide from GCMs.

Algorithms were developed by transforming the observed 36 � 36 km resolution
twice-weekly satellite SST data for 1985–2002 into monthly SSTs at the same
satellite resolution and into monthly SSTs at the resolution of two different GCMs
(HadCM3 from the UK and parallel climate model (PCM) from the USA). From
these, a degree heating month (DHM) index was calculated. Historical data analysis
showed that DHM > 1 �C�month and DHM > 2 �C�month were the best proxies for
the lower and upper bleaching thresholds, DHW > 4 �C�week and
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Fig. 13.2 “Extinction dates” for coral reefs across the Indian Ocean. The data points represent the
year that the probability of exceeding the SST threshold (the warmest 3 months of 1998) reaches
20%, or once every 5 years, for the individual site. The curves are significant fits for the three main
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DHW > 8 �C�week respectively, used by the NOAA Coral Reef Watch programme
(Liu et al. 2006). A statistical downscaling relationship between the maximum
annual SST at the satellite resolution and at the GCM resolution was also developed
for each 36 � 36 km grid cell containing a coral reef.

The results of Donner et al. (2005) showed the variation in thermal stress and the
required temperature adaptation for extended survival of corals under different
climate models and emission scenarios. The annual mean DHMs exceed the upper
bleaching thresholds across much of the tropics by the 2050s in both models and
under either scenario (Fig. 13.3a). Warming is projected to be greatest in the central
equatorial Pacific, as both GCMs predict that ENSO-like conditions prevail in a
warmer climate. The lower (DHM > 1 �C�month) and upper (DHM > 2 �C�month)
bleaching thresholds are surpassed at the majority of the world’s reefs every 2 years
by the 2050s (Fig. 13.3b).

Following a method similar to Sheppard (2003), Donner et al. (2005) estimated
the rate of temperature adaptation or acclimatisation required to avoid surpassing the
coral bleaching thresholds in future decades. The results indicated the majority of the
world’s coral reefs would require adaptation of at least 0.2–0.3 �C per decade to
ensure that low-intensity bleaching events (DHM > 1 �C�month) do not occur more
than once or twice a decade by the 2030s to 2050s (Table 13.1). The required rates of
adaptation vary widely across the tropics, with values of up to 0.5–1.0 �C per decade
in parts of the central Pacific and Polynesia, even in the GCM with low climate
sensitivity.

A different modelling approach is to examine SST or thermal stress indices
averaged over a large region as representative of the extent of bleaching in the
region. In an early example, McWilliams et al. (2005) contrasted historical SSTs in
the Caribbean from the MOHSST6 historical dataset with historical data on the

Fig. 13.3 Projected thermal stress measured as degree heating months (DHM) for 2050–2059
(from Donner et al. 2005): (a) annual mean DHM for 2050–2059 according to HadCM3 and PCM
in the SRES A2 scenario, (b) number of times per decade that thermal stress exceeds the upper
bleaching threshold (DHM > 2 �C�month), expressed as a fraction of world’s coral reefs. Signif-
icant bleaching is expected at DHM > 1 �C�month; mass bleaching and significant mortality are
expected at DHM > 2 �C�month

13 Future Scenarios: A Review of Modelling Efforts to Predict the Future. . . 331



spatial extent of bleaching determined from the reports to ReefBase (http://www.
reefbase.org). Regressions estimated that a 0.1 �C increase in Caribbean-average
SST would cause a 35% increase in the number of 1� � 1� coral reef cells reporting
some bleaching and a 42% increase in the fraction of coral colonies bleached.
Although this type of regional bleaching prediction is less meaningful for individual
coral reefs, it is well-suited to the application of coarse GCM predictions for the
future.

In a study of the role of climate change in the 2005 Caribbean bleaching event,
Donner et al. (2007) also examined the mean thermal stress over the broad affected
region rather than the SSTs at individual sites or grid cells. By using a large region,
the study was able to use historical datasets and GCMs (CM2.0, CM2.1, from the US
Geophysical Fluid Dynamics Laboratory) to examine the probability of the 2005
bleaching event occurring with and without the effect of past greenhouse gas
emissions on the climate. The analysis showed that anthropogenic forcing increased
the chance of a coral bleaching event, such as that observed in the Caribbean in 2005,
by at least an order of magnitude.

The Donner et al. (2007) study and a similar analysis at the global scale (Donner
2009) also provided further insight into the effect of different emission scenarios and
possible adaptation or acclimatisation on the frequency of mass bleaching events in
the future. The GCMs predict that the DHM would exceed 2 �C at least biannually
by the 2020s or 2030s in all regions under both a business-as-usual scenario (SRES
A1b) and a lower emission scenario (SRES B1) in which atmospheric CO2 concen-
trations stabilise at double the pre-industrial levels in the year 2100. However, the
results change if corals and their symbionts are able to adapt or acclimatise by
1.0–1.5 �C. In the business-as-usual scenario, such adjustment would postpone mass
coral bleaching from occurring once every 5 years until the latter half of the century.
The study implied that, in the absence of any adaptation or acclimatisation, danger-
ously frequent mass bleaching events are likely to occur within decades due to
committed warming in the climate system (Donner 2009).

A number of further modelling studies have been undertaken since the first
edition of this book. The global-scale projections in recent studies that employed

Table 13.1 Percentage of reefs requiring thermal adaptation by 2030–2039. Shown is the percent
of coral reef grid cells, in the SRES A2 and B2 emission scenarios that require a 0.5 �C or 1.0 �C
increase in the temperature threshold at which degree heating months begin to accumulate in order
to avoid mass bleaching more than once every 5 years

Ocean region

Coral reefs (%)

HadCM3 PCM

+0.5 �C +1.0 �C +0.5 �C +1.0 �C
Indian Ocean 83–92 46–55 38–57 10–19

SE Asia 58–62 16–17 39–40 6–9

Micronesia 58–79 13–54 58–79 6–7

GBR/Coral Sea 29–67 7–40 17–53 4–6

Polynesia 69–81 24–39 58–82 19–31

Caribbean 75–78 22–30 13–40 0–11
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GCMs used in IPCC-AR5 (Frieler et al. 2013; van Hooidonk et al. 2013, 2014,
2016) resemble those of earlier studies, due in large part to the similarity in global
mean SST projections between the GCMs used in the IPCC AR4 and AR5 assess-
ments. Among the key advances in the recent studies were the use of more GCM
simulations, the treatment of model data, and the inclusion of the possible synergistic
or opposing effects of ocean acidification. Frieler et al. (2013) employed the
relationship between regional and global mean surface temperature change in
GCM output to estimate the effect of different proposed global temperature thresh-
olds on future bleaching frequencies. The study concluded that, in the absence of
adaptation and given potential synergistic effects of ocean acidification, global mean
surface temperature warming would need to be limited to less than 1.5 �C above
pre-industrial levels to avoid degradation of>90% of coral reefs. In another analysis
using a suite of IPCC AR5 models, Van Hooidonk et al. (2014) noted that severe
annual mass bleaching is projected to occur a decade or more later at high-latitude
reefs, yet this benefit may be countered by changes in coral calcification due to the
more rapid projected decline in aragonite saturation state in cooler, high-latitude
waters.

Another key development in recent studies is the use of bleaching prediction
methods that consider other variables such as the historical climate experience and
mechanisms by which corals may adjust to climate warming. For example, Donner
(2011), Teneva et al. (2011), and Logan et al. (2012) used bleaching observations
from ReefBase to test prediction methods in which the threshold or alert level
(i.e. DHW > 4 �C�week) was determined by historical SST variability. Although
such methods may not significantly alter global-scale bleaching projections (Donner
2009), there is evidence that recent thermal history is an important variable for
predicting future bleaching in regions such as the western Pacific with low seasonal
variability in SST (Teneva et al. 2011; Kleypas et al. 2015, 2016).

Logan et al. (2014) tested the effect of algorithms representing different possible
adaptive responses by corals and their symbionts—genetic adaptation to recent
thermal history, symbiont shuffling, and transient community shifts—on bleaching
projections. Adaptation to recent thermal history via genetic directional selection had
a larger effect on future bleaching frequency than temporary changes in bleaching
thresholds due to symbiont shuffling. The thermal history model results also implied
that corals and their symbionts have likely already adapted or acclimated to some
climate warming since the pre-industrial period. Further development of such
mechanistic models may help identify how different coral reef communities will
change as ocean temperatures rise.

13.4 The Great Barrier Reef: A Case Study

The Great Barrier Reef (GBR) is the world’s largest coral reef system, stretching
over 2000 km along the northeast coast of Australia at the edge of the Indo-Pacific
biodiversity hotspot. It comprises over 3000 individual reefs found inshore,
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mid-shelf, and up to 200 km offshore. The reefs are subject to a variety of distur-
bances, including agricultural runoff, riverine flood plumes, crown-of-thorns starfish
outbreaks, severe tropical storms, fishing, tourism, and marine shipping. The GBR is
also one of the world’s most protected reef regions. The Representative Areas
Program and the Reef Water Quality Protection Plan were implemented as part of
a strategy to maintain biodiversity and support the ecosystem’s resilience to aid
survival of the reef through climate change (www.gbrmpa.gov.au). In 2015, national
and state governments released the Reef 2050 Plan to provide a framework for
protecting and managing the GBR through until 2050 (www.environment.gov.au/
marine/gbr/long-term-sustainability-plan) although the plan is focussed on water
quality issues and is relatively silent about climate change impacts.

Prior to 1979, no mass bleaching events were reported for the GBR. Since that
time, several mass bleaching events have been recorded: 1980, 1982, 1987, 1992,
1994, 1998, 2002, 2006, and most recently the back-to-back events of 2016 and
2017 (Chap. 3; Berkelmans and Oliver 1999; Hoegh-Guldberg and Hoegh-Guldberg
2004; Lough et al. 2006; Hughes et al. 2017; Hughes and Kerry 2017). Average SST
decreases to the south (poleward) along the GBR, and, due to localised adaptation,
the threshold temperature at which corals bleach also decreases to the south
(Berkelmans 2002). The bleaching events have generally increased in their intensity
and extent over time. The 1998 event (40% of reefs bleached) and subsequently the
2002 event (50% of reefs bleached) were each described as the most severe
bleaching events then recorded on the GBR (Berkelmans and Oliver 1999;
Berkelmans et al. 2004). These impacts were superseded in 2016, during which
more than 90% of the surveyed shallow-water corals were bleached and an estimated
30% died (Hughes and Kerry 2017). The greatest heat stress and impacts were
observed in the northernmost one-third of the GBR where effects were seen across
all hard coral species, including fast-growing branching species and slow-growing
massive species. Intense heat stress returned in 2017, with the highest levels in the
central sector resulting in an estimated additional coral mortality of 19% (Hughes
and Kerry 2017).

Several studies have specifically examined projected increase in SST on the
GBR. Lough et al. (2006), using historical data and model projections, suggested
that the waters of the GBR will be 1–3 �C warmer than at present by the end of this
century (Fig. 13.4). The Hoegh-Guldberg (1999) study concluded that temperatures
would regularly exceed those observed in 1998 at sites in the northern, central, and
southern GBR by the year 2020 (Fig. 13.5)—consistent with the levels of heat stress
and bleaching in 2016 and 2017 (Hughes et al. 2017; Hughes and Kerry 2017).
Hoegh-Guldberg (1999) and more recent studies concluded such temperature
increases may be sufficient to induce annual bleaching events across the GBR by
2050. For example, the recent van Hooidonk et al. (2016) model study projected that
annual Bleaching Alert Level II conditions (DHW > 8 �C�week) would occur, on
average, across GBR grid cells by the year 2051 in RCP8.5 and the year 2064 in
RCP4.5. Even the most optimistic climate scenario predicts that catastrophic thermal
events are possible at mid- and outer-shelf reefs by 2050 (Done et al. 2003).
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Several studies have examined the impact of temperature-induced bleaching on
coral community structure. For example, using a Bayesian network model linking
key system variables—coral habitat, community type, local SST, climatological
SST, and potential for cooling by upwelling of deep water—Wooldridge and
Done (2004) correctly predicted the coral mortality category (low, medium, high)
for 71% of field observations following the 2002 bleaching event on the GBR.

Fig. 13.4 Observed and projected annual mean SST for the Great Barrier Reef. The thin line is the
annual mean instrumental SST record, 1871–2005 (HadISST and NOAA OI.v2 SST); the thick
black line is the 10-year Gaussian filter. The horizontal lines denote the 1871–1989 mean SST
(25.8 �C) and the observed range (25.2–26.6 �C). Projected SSTs are given for GBR 1990–2100
(ReefClim, Roger Jones, CSIRO) for the B1 (diamonds) and A2 (triangles) middle of the road
climate scenarios. Both scenarios suggest that, by 2035, average GBR SSTs will be outside the
range observed in the instrumental record prior to 1990 (adapted from Lough et al. 2006)

Fig. 13.5 The number of times (per decade) that predicted SSTs will exceed coral bleaching
thresholds for: (a) southern (23.5�S, 149.5�E), (b) central (18.0�S, 147.5�E), and (c) northern
(11.0�S, 143.0�E) sites on the Great Barrier Reef. The models are ECHAM4/OPYC3 (black
squares), ECHAM4/OPYC3 with aerosol effect added (white squares), ECHAM3/LSG (black
triangles), and CSIRO DAR GCM (black dots; from Hoegh-Guldberg 1999)
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A subsequent modelling study that considered two hard coral types, varying con-
straints on algal growth rates, and thermal adaptation by corals, found that natural
(i.e. herbivory) or managed constraint of algal growth would be essential to allow
recovery of coral populations after bleaching episodes, but would not halt long-term
coral reef decline (Wooldridge et al. 2005).

Donner et al. (2005) estimated that 17–67% of the coral reefs across the GBR will
require at least a 0.5 �C increase in their thermal tolerance, while 4–40% will require
an increase of 1.0 �C, by the year 2030 to avoid frequent harmful bleaching events.
Multiple occurrences of bleaching at sites on the GBR are cited as evidence that
corals at these sites are not developing greater thermal tolerance (Hoegh-Guldberg
1999). However, field and laboratory evidence suggest that the common GBR
species Acropora millepora can increase its thermal tolerance level by 1.0–1.5 �C
by shuffling the dominant symbiont in its tissue (Berkelmans and van Oppen 2006;
Chap. 9). Such an increase in thermal tolerance might help GBR corals avoid
predicted bleaching events in the next several decades, but it is insufficient to meet
the larger temperature increase predicted for the latter half of the century (Hoegh-
Guldberg 1999; Done et al. 2003; Berkelmans and van Oppen 2006; Lough et al.
2006). Furthermore, recent analysis has indicated that within-summer temperature
trajectories have conferred short-term tolerance to GBR corals and that with
projected warming their protective mechanism will be lost (Ainsworth et al. 2016).
An increased understanding of adaptation and acclimatisation would aid in
determining management strategies for the GBR (Hoegh-Guldberg and Hoegh-
Guldberg 2004).

13.5 Future Improvements in Physical Modelling

The general projected increase in thermal stress on coral reefs under future emission
scenarios is so rapid and global in scale that it is unlikely to change with future
improvement in GCMs (Donner et al. 2005). This has been evidenced by the recent
fulfilment of the projections by Hoegh-Guldberg (1999) and the global extent of the
2014–2017 bleaching event (NOAA Coral Reef Watch 2017). Future models oper-
ating at high horizontal resolution (<1 km) may be instrumental in making specific
predictions for individual coral reef complexes, which could inform management
strategies to support the capacity of reefs to resist and recover from disturbance
events. While regional climate models are available for a few specific areas (e.g. van
Hooidonk et al. 2015), statistical downscaling techniques have been applied to the
IPCC AR5 GCM output for reefs worldwide to support management efforts (van
Hooidonk et al. 2016). Advances in the application of fluid dynamics theory and
computing power are already increasing the resolution of GCMs and hydrodynamic
models. For example, the Hybrid Coordinate Ocean Model (HYCOM) can presently
operate globally at a horizontal resolution as fine as 2/25� (Metzger et al. 2006) and
regionally at horizontal resolution of 1/25� (Kourafalou and Balotro 2006; Prasad
and Hogan 2007).
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Modelling efforts are being conducted at very high spatial resolutions (<1 km) in
and around coral reefs. Skirving et al. (2004) describe a hydrodynamic model for
Palau with ~250 m resolution. Mapped ocean currents have been used to determine
the vertical mixing of water across the Palau lagoon during periods of low wind
speeds that are characteristic of bleaching events (Skirving and Guinotte 2001).
Skirving et al. (2006) describe the cooling of SST due to vertical mixing and link this
to the capacity of a water column to absorb solar radiation. Well-mixed regions
distribute heat throughout the water column, incurring a small temperature increase
throughout the column. In stratified regions, heat is contained near the surface,
causing a significant rise in SST. This suggests different temperature climates in
which corals exist and, therefore, a different level of acclimatisation to thermal
events. The design of marine protected areas can include the modelled thermal
capacitance to provide protection for corals during climate-induced bleaching events
(Skirving et al. 2006).

Bode et al. (1997) describe a parameterisation scheme for sub-resolution features,
such as those seen in and around coral reefs. This scheme was applied to a tidal
model of the southern GBR with a resolution of ~8 km that successfully simulated
the tidal amplitude and phase throughout the region. Development of such modelling
techniques at various horizontal resolutions will improve the accuracy of forecasts of
the effects of climate change and assist design of marine protected areas for coral reef
ecosystems.

13.6 Conclusions

Various model studies present an overall picture of the effect of climate change on
the frequency and severity of mass coral bleaching and bleaching-induced mortality.
Several studies confirm the original conclusion of Hoegh-Guldberg (1999) that mass
coral bleaching could become a biannual event by the 2020s or 2030s at many coral
reefs without any thermal adaptations by corals and their symbionts, although
important local and regional exceptions have been noted (Sheppard 2003; Donner
et al. 2005; van Hooidonk et al. 2013). Human-induced warming has already
increased the likelihood of mass coral bleaching events in some regions (Donner
et al. 2007).

This result is generally robust across different emission scenarios. Due to time
lags in the climate system (between emissions and climate impact) and in the
economic system (between a decision to reduce emissions and actual emission
reduction), the simulated climate in different RCPs does not diverge until the latter
half of the century. There is a greater range in future projections between different
GCMs, with different climate sensitivities, than between different emission scenar-
ios. Nevertheless, even the lowest estimate of business-as-usual projected ocean
warming from available studies indicates that mass coral bleaching could occur
biannually on the majority of coral reefs worldwide by 2050.
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Corals and their symbionts will have to adapt to rising temperatures to avoid
bleaching events that are too frequent to allow the reef communities to recover. The
rate and magnitude at which corals and their symbionts will have to adapt to
increasing temperatures appears to vary across the globe (Donner et al. 2005; van
Hooidonk et al. 2014). Climate projections for this century indicate that temperature
adaptation might postpone the occurrence of frequent harmful bleaching events and
allow corals to survive, provided that policies and technologies alter the path of
greenhouse gas emissions and magnitude of future warming. However, in that case,
long-term “committed warming” beyond 2100 could still represent a serious threat to
coral reefs (Donner 2009).

An important area for additional research is the effect of climate-induced coral
bleaching and other disturbances on coral reef community structure. More frequent
coral bleaching events, especially when combined with local disturbances such as
fishing, pollution, or sedimentation, are expected to keep coral and fish species
richness low (Wilson et al. 2006; Chap. 11). Ecological models will be instrumental
in describing the effect of higher bleaching frequencies and other disturbances on
coral and macroalgal cover (e.g. Baskett et al. 2009, 2010; Ortiz et al. 2014). As
more field data have become available, these models have begun to include multiple
coral taxa with different temperature tolerances, growth rates, and reproduction
rates. Combined physical and ecological models will be critical in estimating the
ability of reefs to adapt or acclimatise to warmer ocean temperatures, as well as other
local (e.g. fishing pressure) and global (e.g. rising pCO2) stressors.

In recent years, projected impacts of climate change on coral reefs have been
incorporated into local-to-regional management strategies and have begun to influ-
ence the policy sphere (e.g. Heron et al. 2017). In an era when the projected impacts
articulated two decades ago are already being seen, response actions that include the
best available information on future impacts will be essential to support the ongoing
maintenance of coral reefs and the myriad goods and services they provide in the
face of predicted increases to both the intensity and frequency of disturbance events.
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Chapter 14
Synthesis: Coral Bleaching: Patterns,
Processes, Causes and Consequences

M. J. H. van Oppen and J. M. Lough

There is no doubt that ocean temperatures have increased as a result of human
activities that began with the industrial revolution (Chap. 4). These rapidly rising
temperatures are subjecting the world’s biota to unprecedented levels of stress, with
many species experiencing negative impacts. Coral reef organisms are no exception,
and thermal stress is causing a breakdown of the close association between two
groups of organisms of key importance to coral reefs, scleractinian corals and
microalgae in the genus Symbiodinium. This breakdown of symbiosis results in the
expulsion of Symbiodinium from, and a paling of the coral tissues, a phenomenon
called coral bleaching. Reef-building corals are responsible for the three-
dimensional framework that provides habitat to many other reef dwellers and are
also the main primary producers of these beautiful biomes; both functions are only
possible through the symbiosis between coral and Symbiodinium. Disruption of the
symbiosis thus has consequences for ongoing maintenance of these structurally
complex, biologically diverse, charismatic and both economically and socially
important ecosystems. This volume brings together various aspects of coral
bleaching, ranging from the genes involved in the bleaching response to global
patterns of bleaching and the evolution of symbiosis over geological time frames.
Topics covered are the evolution of photosymbiosis in corals (Chap. 2), a review of
spatial and temporal patterns of past coral bleaching events (Chap. 3), an explanation
of how coral bleaching is monitored (Chap. 5), an analysis of the environmental
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factors involved in bleaching (Chap. 4, temperature; Chap. 12, ocean acidification
and eutrophication) and the cellular causes underpinning bleaching (Chap. 8), the
roles of microbial symbionts in coral bleaching and acclimatisation to climate
change and the consequences of thermal stress on microbial communities
(Chaps. 6 and 7), the consequences of bleaching for hard and soft corals
(Chap. 10) and fish assemblages (Chap. 11), how well bleaching can be predicted
from accumulated thermal stress (Chap. 9) and projecting the incidence of coral
bleaching over this century using climate models (Chap. 13).

Climate models based on unmitigated greenhouse gas emissions predict that most
coral reefs will experience thermal anomalies that cause mass coral bleaching
annually by the middle of this century. But even under the most stringent emission
scenarios, oceans will continue to warm and corals will decline further unless they
can acclimatise or adapt to the rapidly changing environmental conditions. While a
small number of instances of increased bleaching tolerance over repeated bleaching
events have been reported (Chap. 9; Maynard et al. 2008; Guest et al. 2012; Penin
et al. 2013), the generally rapid decline of coral cover and diversity across the globe
indicates natural rates of acclimatisation and adaptation are too slow for corals to
keep up with the fast pace of global climate warming. The challenge for managers,
scientists and policy makers, therefore, is to find innovative solutions that will ensure
the persistence of coral reefs into the future (Hughes et al. 2017).

14.1 Climate Change Refuges and Assisted Evolution

As extensively discussed in this volume, mass bleaching events have already caused
devastation on many coral reefs across the world. Patterns of thermal stress and coral
bleaching are almost always spatially patchy, suggesting “climate change refuges”
may exist (Chap. 10). Such refuges are likely to be located either in areas with stable
cool water or in those that show historically large fluctuations in sea surface
temperatures (and pCO2) and have comparatively high temperature maxima
(McClanahan et al. 2007; Carilli et al. 2012; Barshis et al. 2013; Kenkel and Matz
2016; Camp et al. 2017). It is important to understand which corals and coral reefs
are most resistant to bleaching (Camp et al. 2016; Jin et al. 2016; Camp et al. 2017)
and which reefs have a relatively lower probability of experiencing thermal anom-
alies (https://50reefs.org/). Degraded reefs may be reseeded from such “climate
change refuges”, and it is therefore also critical to understand the potential pathways
of dispersal of corals and other coral reef organisms over ecological time scales (van
Oppen and Gates 2006; Hellberg 2007).

Additionally, coral stock with enhanced climate resilience may be developed
using a variety of bioengineering strategies (van Oppen et al. 2015, 2017; Anthony
et al. 2017). The use of such stock for restoration of degraded reefs may increase the
chances that corals and coral reefs will survive this century while actions are taken to
halt ocean warming. Assisted evolution (AE), the enhancement of certain traits by
accelerating naturally occurring evolutionary processes, is one such intervention
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(van Oppen et al. 2015, 2017). AE includes a set of approaches targeted at both the
coral host animal and its microbial symbionts, i.e. selective breeding and assisted
gene flow (AGF), conditioning or epigenetic programming and the (genetic) manip-
ulation and laboratory evolution of the coral microbiome.

Selective breeding in the context of AE is defined sensu lato and includes both the
crossing of conspecific colonies selected based on their genotypes or phenotypes,
and the formation of interspecific hybrids which have increased genetic diversity and
new gene combinations compared to their parents, which serve as new substratum
for selection. Coral hybrids can be as fit as or fitter than their parents in certain
environments (Willis et al. 2006; Fogarty 2012) and may have gene combinations
that perform better under predicted future ocean conditions. AGF is the managed
movement of individuals with favourable traits (alleles/genotypes) into populations
(unidirectional) to reduce local maladaptation to climate or other environmental
change (either current or future change) (Aitken and Whitlock 2013). To increase
climate resilience, corals would be moved from comparatively warm environ-
ments—to which they have adapted—to cooler reefs where they are expected to
propagate and interbreed with the native corals. In this manner, thermal tolerance
could be bolstered in the regional hybrid offspring compared to the native purebred
corals. As a variation on AGF sensu stricto, warm-adapted corals may be crossed
with cold-adapted conspecifics ex situ, followed by deployment of the regional
hybrid offspring at the cooler location, thus combining the principles of AGF and
selective breeding. The motivation for this alternative approach is that transplanted
adult colonies may be maladapted to the transplant environment (Kenkel et al. 2015),
resulting in high rates of mortality post-transplantation (Howells et al. 2013).
Regional hybrids may outperform the native genotypes under conditions of envi-
ronmental change and stress (van Oppen et al. 2014; Dixon et al. 2015). Further,
deployment at the larval or early recruit stage provides an opportunity for develop-
mental acclimatisation to increase survival rates at the target reef.

Conditioning of corals and reef fish using sublethal stress levels may induce
epigenetic changes that increase environmental stress tolerance through develop-
mental and/or transgenerational acclimatisation (Donelson et al. 2012; Putnam and
Gates 2015). This field of research is very much in its infancy, particularly for corals,
and considerable research investment is required to assess whether conditioning can
increase climate resilience across multiple generations (Torda et al. 2017).

The coral microbiome is highly diverse and comprises members from multiple
eukaryotic and prokaryotic phyla, as well as viruses (Chaps. 6 and 7). Analogous to
probiotic methods such as faecal transplantation to treat irritable bowel syndrome or
the inoculation of crops to increase tolerance to temperature and drought, corals can
be inoculated with microbiomes isolated from hardier species (Damjanovic et al.
2017) or with artificial cocktails of culturable microbes (dos Santos et al. 2015), with
the aim to make them more resistant to environmental stress. Such microbes can be
enhanced prior to delivery to the coral via genetic engineering (Levin et al. 2017) or
experimental evolution (Chakravarti et al. 2017).

Innovative approaches for coral reef restoration, such as those discussed above,
were not yet considered when the first edition of this book was published in 2009.
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However, they are now being actively explored due to the urgency of developing
options for coral reef management in an era of rapid environmental change.

14.2 Conclusion

Coral bleaching is a biological response to changes in the physical environment of
present-day coral reefs, and in some instance in response to pathogen infection.
Several mass coral bleaching events in recent years, most notably 1997–1998, 2010
and 2014–2017, have prompted enhanced research efforts into many aspects of this
phenomenon. We now know much more about the causes and consequences of coral
bleaching than we did only two decades ago. However, there is still much more to
learn, and, unfortunately, many of the experiments are happening in real time in the
real world. Changes in the physical environment, in particular warming of the
tropical oceans, are, without drastic greenhouse gas mitigation strategies, set to
continue into the foreseeable future. Continued warming of the tropical oceans,
along with other climate change and ocean acidification impacts on coral reefs, is
an added human-induced burden on already seriously compromised ecosystems due
to direct local and regional stresses. In combination, this panoply of human-induced
pressures does not bode well for the maintenance of the world’s coral reefs into the
future. New interventions, such as shading or cooling of the reef and assisted
evolution, are being explored as possible solutions to mitigate climate change
impacts. Such interventions will buy time, but the ultimate solution for curtailing
ocean warming, acidification and coral bleaching over the next 50–100 years lies in
the reduction of greenhouse gas concentrations in the atmosphere.
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