
Chapter 9
A Differential Evolution Markov Chain Monte Carlo Algorithm
for Bayesian Model Updating

M. Sherri, I. Boulkaibet, T. Marwala, and M. I. Friswell

Abstract The use of the Bayesian tools in system identification and model updating paradigms has been increased in the last
10 years. Usually, the Bayesian techniques can be implemented to incorporate the uncertainties associated with measurements
as well as the prediction made by the finite element model (FEM) into the FEM updating procedure. In this case, the
posterior distribution function describes the uncertainty in the FE model prediction and the experimental data. Due to the
complexity of the modeled systems, the analytical solution for the posterior distribution function may not exist. This leads
to the use of numerical methods, such as Markov Chain Monte Carlo techniques, to obtain approximate solutions for the
posterior distribution function. In this paper, a Differential Evolution Markov Chain Monte Carlo (DE-MC) method is used
to approximate the posterior function and update FEMs. The main idea of the DE-MC approach is to combine the Differential
Evolution, which is an effective global optimization algorithm over real parameter space, with Markov Chain Monte Carlo
(MCMC) techniques to generate samples from the posterior distribution function. In this paper, the DE-MC method is
discussed in detail while the performance and the accuracy of this algorithm are investigated by updating two structural
examples.

Keywords Bayesian model updating · Markov Chain Monte Carlo · Differential evolution · Finite element model ·
Posterior distribution function

9.1 Introduction

During the last 30 years, the application of the finite element method (FEM) [1–3] has exponentially increased where this
numerical technique has become one of the most popular engineering tools in systems modelling and prediction. In the
domain of structural dynamics, the FEM tools are widely applied to model complex systems where this technique can
produce results with high accuracy, especially when the modelled system is simple. However, the results attained by the
FEM can be relatively inaccurate and the mismatches between the FEM results and the results attained from experimental
studies are relatively significant. This is due to the errors associated with the modelling process as well as the complexity
of modelled structure, which may reduce the accuracy of the modelling process. Consequently, the model obtained by an
FEM needs to be updated to reduce the errors between the experimental and modelled outputs. The procedure of minimizing
the differences between the numerical results and the measured data is known as the finite element model updating (FEMU)
[4, 5], where the FEMU methods can be divided into two main classes. In the first class, which is also known as the direct
methods, the experimental data are directly equated to the FEM outputs resulting in a procedure that constrains the updating
to the FE system matrices (mass, stiffness) only. This kind of approach may produce non-realistic results where the resulting
updating parameters may not have physical meaning. In the second class, which is also known as the iterative (or indirect)
approaches, the FEM outputs are not directly equated to the experimental data, but instead, an objective function is introduced
and iteratively minimised to reduce the errors between the analytical and experiential results. Thus, the system matrices and
the model output are vary during the minimisation process, and realistic results are often expected at the end of the updating
process.
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Generally, several sources of uncertainty are associated with the modelling process, such as the mathematical simpli-
fications made during the modelling, where this kind of uncertainty may affect the accuracy of the modelling process.
Moreover, the noise that contaminates the experimental results may also have a significant impact on the updating process.
To deal with such uncertainty problems, the updating process is accomplished by another class of methods called the
uncertainty quantification methods. The most common uncertainty quantification method is known as the Bayesian approach
in which the unknown parameters and their uncertainty are identified by defining each unknown parameter with a probability
density distribution (PDF). Recently, the use of the Bayesian methodology has massively increased in the domain of system
identification and uncertainty quantification. In this approach, the uncertainties associated with the modelled structure are
expressed in terms of probability distributions where the unknown parameters are defined as a random vector with a multi-
variable probability density function, and the resulting function is known as the posterior PDF. Solving the posterior PDF
helps in identifying the unknown parameters and their uncertainties. Unfortunately, the posterior PDF cannot be solved in an
analytical way for sufficiently complex problems which is the case for the FEMU problems since the search space is usually
nonlinear and high dimensional. In this case, sampling techniques are employed to identify these uncertain parameters. The
most recognised sampling methods are these related to Markov chain Monte Carlo (MCMC) methods.

Generally, the MCMC methods are very useful tools that can efficiently cope with large search spaces and generate
samples from complex distributions. These methods draw samples with an element of randomness while being guided
by the values of the posterior distribution function. Then, the drawn samples are accepted or rejected according to the
Metropolis criterion. Unfortunately, the updated models, with relatively large complexities, may have multiple optimal (or
near optimal) solution, and this cannot be easily identified by simple MCMC algorithms. In this paper, another version of the
MCMC algorithms, known as the Differential Evolution Markov Chain (DE-MC) [6, 7] algorithm, is used to update FEMs
of structural systems. The DE-MC algorithm combines the abilities of the differential evolution algorithm [8, 9], which is
one of the genetic algorithms for global optimization, with the Metropolis-Hastings algorithm. In this algorithm, multiple
chains are run in parallel, and the exploration and exploitation of the search space in the current chain are achieved by the
difference of two randomly selected chains, multiplied by the value of the difference with a preselected factor and then the
result is added to the value of the current chain. The value of the current chain is then accepted or rejected according to
the Metropolis criterion. In this paper, the efficiency, reliability and the limitations of the DE-MC algorithm are investigated
when the Bayesian approach is applied for FEMU. This paper is organized as follows: in the next section, the Bayesian
formulations are introduced. Section 9.3 describes the DE-MC algorithm while Sect. 9.4 presents the results when a simple
mass-spring structure is updated. Section 9.5 presents the updating results of an unsymmetrical H-shaped Structure. The
paper is concluded in Sect. 9.6.

9.2 Bayesian Formulations

In this paper, the Bayesian approach is adopted to compute the posterior distribution function in order to update the FEMs.
The posterior function can be represented by Bayes rule [10–14]:

P .�jD;M/ / P .Dj�;M/ P .�jM/ (9.1)

where M describes the model class for the target system where each model class M is defined by certain updating parameters
� 2 ‚ � Rd. The experimental data D of the structural system, which is represented by the natural frequencies f m

i and
mode shapes �m

i , are used to improve the FEM results. P .�jM/ is the prior probability distribution function (PDF) that
represents the initial knowledge of the uncertain parameters given a specific model M, and in the absence of the measured
data D. The function P .Dj�;M/ is known as the likelihood function and represents the difference between the experimental
data and the FEM results. Finally, the probability distribution function P .�jD;M/is the posterior function of the unknown
parameters given a model class M and the measured data D. The model class M is used only when several classes are
investigated for both model updating and model selection. In this paper, only one model class is considered, and therefore,
the term M is omitted in order to simplify the Bayesian formulations.

In this paper, the likelihood function is given by:
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where Nm is the number of measured modes, ˇc is a constant, f m
i and fi are the ith analytical and measured natural frequencies.

The initial knowledge of the updating parameters � , which is defined by a prior PDF, is given by the following Gaussian
distribution:
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where Q is the number of the uncertain parameters, �0 represents the mean value of the updating parameters, ˛i, iD 1, : : : ,
Q are the coefficients of the updating parameters and the Euclidean norm is given by the notation: k�k.

After substituting Eqs. (9.2) and (9.3) into the Bayesian inference defined by Eq. (9.1), the posterior P .�jD/ of the
unknown parameters � given the experimental data D is characterized by:
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Generally, the complexity of the posterior PDF, which depends on the modal parameters of the analytical model, is
related to the complexity of the analytical model, and for certain relatively complex structural models the analytical results
for the posterior distribution are difficult to obtain due to the high dimensionality of the search space. In this case, sampling
techniques [5, 10, 11, 13, 14] are the only practical approaches in order to approximate the posterior PDF. The main idea of
sampling techniques is to generate a Ns sequence of vectors f�1; �2; : : : ; �Nsg and use these samples to approximate the future
response of the unknown parameters at different time instances. The most recognized sampling techniques are Markov Chain
Monte Carlo (MCMC) methods [5, 13–18]. In this paper, the combination of one of the basic MCMC algorithms, known
as the Metropolis-Hasting algorithm, with one of the genetic algorithms, known as differential evolution (DE), is used to
generate samples from the posterior PDF in order to update structural models.

9.3 The Differential Evolution Markov Chain Monte Carlo (DE-MC) Method

In this paper, the DE and MCMC methods, which are extremely popular methods in several scientific domains, are combined
to improve the convergence of the sampling procedure. In this approach, multiple chains are run in parallel in order to
improve the accuracy of the updating parameters, while these chains learn from each other instead of running all the chains
independently. This may improve the efficiency of the searching procedure and avoid sampling in the vicinity of a local
minimum. The new chains are then accepted or rejected according to the Metropolis-Hastings criterion.

The Metropolis-Hastings (M-H) [18–20] algorithm is one of the common MCMC methods that can be used to draw
samples from multivariate probability distributions. To sample from the posterior PDF P(� jD), where � D f�1, �2, : : : , �dg
is a d-dimensional parameters vector, a proposal density distribution q(�j� t � 1) is used to generate a proposed random vector
�� given the value at the previous accepted vector � t � 1 at the iteration t � 1 of the algorithm. Next, the Metropolis criterion
is used to accept or reject the proposed sample �� as follows:

˛
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On the other hand, the Differential Evolution (DE) [8] is a very effective genetic algorithm in solving various real-
world global optimization problems. As one of the genetic algorithms, the DE algorithm begins by randomly initialising the
population within certain search area, and then these initial values are evolved over the generations in order to find the global
minimum. This can be achieved using genetic operators such as: mutation, selection, and crossover.
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Fig. 9.1 Proposed vector generation in the M-H and DE-MC methods. (a) Metropolis-Hastings. (b) DE-MC

By integrating the Metropolis-Hastings criterion within the search abilities of the DE algorithm, the resulted MCMC
method can be more efficient in determining where other chains can be employed to create the new candidates for the current
chain. In the DE-MC algorithm, the new value of the chain is obtained by a simple mutation operation where the difference
between two randomly selected chains (different from the current chain) is added to the current chain. Thus, the proposal for
each chain depends on a weighted combination of other chains which can be easily defined as [6, 7]:

�� D � i C � .�a � �b/C " (9.7)

where �� represents the new proposed vector, � i is the current state of the i-th chain, �a and �b are randomly selected
chains, � is a tuning factor that always take a positive value and can be set to vary between [0.4, 1]. Note that the vectors:
� i ¤ �a ¤ �b. Finally, the noise ", which is defined as a Gaussian distribution "�Np(0, � 2) with a very small variance vector
� 2, is added to the proposed vector to avoid degeneracy problems. The factor � can be seen as the magnitude that controls
the jumping distribution. The main idea of the DE-MC algorithm can be illustrated in Fig. 9.1b.

Figure 9.1 explains the way to generate proposed vectors for the M-H method (Fig. 9.1a) and for the DE-MC method (Fig.
9.1b). As illustrated, the difference vector between the two randomly selected chains �a and �b represents the direction of the
new proposed vector, where this difference is multiplied by the factor � to define the moving distance. The moving distance
is then added to the current chain � i to create the proposed vector. Note that, the DE-MC method has only one tuning factor
� in comparing to other versions of evolutionary MCMC methods. Finally, the new proposal �� of the i-th chain is accepted
or rejected according to the Metropolis criterion which is given as:

r D min

(
1;

P
�
��jD�

P .� ijD/

)
(9.8)

The steps to update FEMs using the DE-MC algorithm are summarized as follows:

1. Initialize the population � i, o, i 2 f1, 2, : : : , Ng.
2. Set the tuning factor � . In this paper, � D 2.38/

p
2d and d is the dimension of the updating parameters.

3. Calculate the Posterior PDF for all chains.
4. For all chains i 2 f1, 2, : : : , Ng:

4.1 Sample uniformly two random vectors �a,�b where �a ¤ �b ¤ � i.
4.2 Sample the random value " with small variance "�Np(0, � 2).
4.3 Calculate the proposed vector �� D � i C � (�a � �b)C ".
4.4 Calculate the Posterior PDF for the vector �� .

4.5 Calculate the Metropolis ratio r D min

	
1;

P. ��jD/
P.� ijD/




4.6 Accept the proposed vector � i �� with probability min(1, r), otherwise � i is unchanged.

5. Repeat the steps 4.1 to 4.6 until the number of samples required is achieved.

In next two sections, the DE-MC performance is highlighted when two structural examples are updated.
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Fig. 9.2 The five degrees of freedom mass-spring system

Table 9.1 The updating parameters using DE-MC technique

Unknown parameters (N/m)
Initial Nominal values Error (%) DE-MC (�i) Error (%) �i

�i
c.o.v (%)

�1 4600 4010 14.71 4004.4 0.14 1.03
�2 2580 2210 16.74 2197.6 0.56 1.71
�3 1680 2130 21.13 2109.4 0.97 2.07
�4 3100 2595 19.46 2600.9 0.23 2.32
�4 2350 2398 02.00 2410.4 0.52 1.77

Table 9.2 The updated natural frequencies and the errors obtained using the DE-MC

Modes Nominal Frequency (Hz) Initial Frequency (Hz) Error (%) Frequency DE-MC (Hz) c.o.v (%) Error (%)

1 3.507 3.577 1.97 3.507 0.118 0.00
2 5.149 5.371 4.30 5.149 0.126 0.00
3 7.083 7.239 2.21 7.082 0.119 0.02
4 8.892 9.030 1.56 8.894 0.140 0.03
5 9.426 9.412 0.16 9.426 0.117 0.00
TAE _______ _______ 1.98 _______ _____ 0.012

9.4 Application 1: Simple Mass-Spring System

In this section, a five degrees of freedom mass-spring linear system, as presented in Fig. 9.2, is updated using the DE-MC
algorithm.

The system contains 5 masses connected to each other using 10 springs (see Fig. 9.2). The deterministic values of the
masses are: m1 D 2.7 kg, m2 D 1.7 kg, m3 D 6.1 kg, m4 D 5.3 kg and m5 D 2.9 kg. The stiffness of the springs are: k3 D 3200
N/m, k5 D 1840 N/m, k7 D 2200 N/m, k9 D 2800 N/m and k10 D 2000 N/m. The spring stiffnesses k1, k2, k4, k6, and k8 are
considered as the uncertain parameters where the updating vector is: � D f�1, �2, �3, �4, �5g D fk1, k2, k4, k6, k8g.

Since the DE-MC method is used for the updating procedure, the population used by the algorithm is selected to
be N D 10. The updating vectors are bounded by �max and �min which are set to f4800, 2600, 2670, 3400, 2750g and
f3200, 1800, 1600, 1800, 2050g, respectively. The tuning factor is set to � D 2.38/

p
2d while d D 5, the initial vector of

� is set to �0 D f4600, 2580, 1680, 3100, 2350g and the number of generations (number of samples) is set to Ns D 10000.
The obtained samples are illustrated in Fig. 9.3 while the updating parameters, as well as the initial and updated natural
frequencies, are shown in Tables 9.1 and 9.2, respectively.

Figure 9.3 shows the scatter plots of the uncertain parameters using the DE-MC algorithm. The confidence ellipses (error
ellipse) of the samples are also shown in the same figures (in red) where these ellipses visualize the regions that contain
95% of the obtained samples. As expected, the figure shows that the DE-MC algorithm has found the high probability area
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Fig. 9.3 The scatter plots of the samples using the DE-MC algorithm

after only few iterations. Table 9.1 contains the initial values, the nominal values and the updated values of the uncertain
parameters. The coefficient of variation (c.o.v) values, which are estimated by dividing the standard deviations � i by the
updated vectors � i (or �i), are also presented in Table 9.1 and used to measure the errors in the updating. It is clear that the
obtained values of the c.o.v when the DE-MC algorithm is used to update the structure are small and less than 2.5% which
means that the DE-MC algorithm performed well and was able to identify the areas with high probability. This also can be
verified from the same table where the updating parameters are close the nominal values.

Table 9.2 contains the initial, nominal and updated natural frequencies. Furthermore, the absolute errors, which are

estimated by jf m
i �fij
f m
i

, the total average error (TAE), which is computed by TAE D 1
Nm

PNm
iD1

jf m
i �fij
f m
i

, Nm D 5, and the c.o.v
values are also displayed. Obviously, the updated frequencies obtained by the DE-MC are better than the initial frequencies,
and almost equal to the nominal frequencies.

The total average error of the FEM output was reduced from 1.98% to 0.012%. On the other hand, the values of the
c.o.v for all updated frequencies are smaller than 0.15% which indicates that the DE-MC technique efficiently updated the
structural system. Figure 9.4 shows the evaluation of the total average error at each iteration. The TAE in Fig. 9.4 is obtained
as follows: first, the mean value of the samples at each iteration is computed as b� D E .�/

�D 1
Ns

Pi
jD1 � i where i is the

current iteration. Next, the mean value is used to compute the analytical frequencies of the FEM, and then the total average

error is calculated as: TAE.i/ D 1
Nm

PNm
jD1

ˇ̌
ˇf m

j �fj
ˇ̌
ˇ

f m
j

. As a result, it is clear that the DE-MC algorithm converges efficiently after

the first 2000 iterations.
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Fig. 9.4 The evaluation of the TAE using the DE-MC method
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Fig. 9.5 The correlation between the updating parameters

Figure 9.5 illustrates the correlation between the updating parameters where all parameters are correlated (the values are
different from zero). Moreover, the majority of these parameters are weakly correlated (small values <0.3) except the pairs
(�1, �2) and (�4, �5) which are highly correlated (values >0.7).

In the next section, the DE-MC method is used to update an unsymmetrical H-shaped aluminum structure with real
experimental data.

9.5 Application 2: The FEMU of the Unsymmetrical H-Shaped Structural System

In this section, the performance of the DE-MC algorithm is examined by updatintg an unsymmetrical H-shaped aluminum
structure with real measured data. The FEM model of the H-shaped structure is presented in Fig. 9.6 where the structure is
divided into 12 elements, and each element is modelled as an Euler-Bernoulli beam. The location displayed by a double arrow
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Fig. 9.7 The scatter plots of the samples using the DE-MC algorithm

at the middle beam indicates the position of excitation which is produced by an electromagnetic shaker. An accelerometer
was used to measure the set of frequency-response functions. The initial analytical natural frequencies are 53.9, 117.3, 208.4,
254.0 and 445.0 Hz. In this example, the moments of inertia Ixx and the cross-sectional areas Axx of the left, middle and right
subsections of the H-shaped beam are selected to be updated in order to improve the analytical natural frequencies. Thus, the
updating parameters are: � D fIx1, Ix2, Ix3, Ax1, Ax2,Ax3,g.

The rest of the H-shaped structure parameters are given as follows: The Young’s modulus is set to 7.2 � 1010

N/m2 and the density is set to 2785 kg/m3. The updating parameters � are bounded by maximum and mini-
mum vectors given by: [4.73 � 10�8, 4.73 � 10�8, 4.73 � 10�8, 5.16 � 10�4, 5.16 � 10�4, 5.16 � 10�4] and
[0.73 � 10�8, 0.73 � 10�8, 0.73 � 10�8, 1.16 � 10�4, 1.16 � 10�4, 1.16 � 10�4], respectively. These boundaries are
used to ensure that the updating parameters are physically realistic. The number of samples is set to Ns D 5000, the factor
ˇc of the likelihood function is set equal to 10, the coefficients ˛i of the prior PDF are set to 1

�2
i

where �2
i is the variance of

the ith uncertain parameters, and � D [5 � 10�8, 5 � 10�8, 5 � 10�8, 5 � 10�4, 5 � 10�4, 5 � 10�4].
Figure 9.7 illustrates the scatter plots of the updating parameters. The confidence ellipse that contains 95% of

samples are also included in the figure. The updating parameters were normalized by dividing the parameters by
k D [10�8, 10�8, 10�8, 10�4, 10�4, 10�4]. As expected, the DE-MC algorithm was able to find the area with high probably
after a few iterations. The rest of the updating parameters are shown in Table 9.3 as well as the initial values, the c.o.v values
and the updating parameters obtained by the M-H algorithm [20, 21].

The results in Table 9.3 indicate that the updating parameters obtained by the DE-MC and M-H algorithms are different
from the initial values which mean that the uncertain parameters have been successfully updated. Furthermore, the c.o.v
values of the updating parameters obtained by the DE-MC algorithm are relatively small (<2.5%) with verifies that the
algorithm was able to identify the areas with high probability in a reasonable amount of time; however, the c.o.v obtained by
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Table 9.3 The initial parameters, the c.o.v values and the updating parameters using the DE-MC and M-H algorithms

Initial DE-MC (�i)
�i
�i

(%) M-H (�i)
�i
�i

(%)

�1 2.7265 � 10�8 2.8965 � 10�8 5.76 2.31 � 10�8 22.59
�2 2.7265 � 10�8 2.9739 � 10�8 1.91 2.68 � 10�8 15.25
�3 2.7265 � 10�8 1.7676 � 10�8 1.67 2.17 � 10�8 13.96
�4 3.1556 � 10�4 3.8966 � 10�4 0.65 2.85 � 10�4 14.36
�5 3.1556 � 10�4 2.1584 � 10�4 2.93 2.83 � 10�4 14.36
�6 3.1556 � 10�4 2.9553 � 10�4 0.026 2.77 � 10�4 13.08

Table 9.4 Natural frequencies, c.o.v values and errors when DE-MC and M-H techniques are used for FEMU

Modes
Measured
Frequency (Hz)

Initial Frequency
(Hz) Error (%)

Frequency
DE-MC (Hz) c.o.v (%) Error (%)

Frequency
M-H (Hz) c.o.v (%) Error (%)

1 53.90 51.04 5.31 52.56 0.30 2.49 53.92 3.96 0.04
2 117.30 115.79 1.29 119.42 0.35 1.81 122.05 4.28 4.05
3 208.40 199.88 4.09 210.46 0.54 0.99 210.93 4.95 1.22
4 254.00 245.76 3.25 253.37 0.41 0.25 258.94 4.81 1.94
5 445.00 387.53 12.92 435.71 0.63 2.09 410.33 4.74 7.79
TAE _______ _______ 5.37 _______ _____ 1.53 _____ _____ 3.01
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Fig. 9.8 The correlation between the updating parameters

the M-H algorithm are relatively high (>13.08%) which means that the M-H algorithm does not have the efficiency of the
DE-MC algorithm.

Table 9.4 illustrates the updating frequencies using the DE-MC and M-H algorithms, the errors and the c.o.v values.
As expected, the analytical frequencies obtained by the DE-MC algorithm are better than the initial frequencies as well as
the frequencies obtained by the M-H algorithm. The DE-MC method has improved all natural frequencies and reduced the
total average error (TAE) from 5.37% to 1.53%. Also, the c.o.v values obtained by the DE-MC method are relatively small
(<0.65%).

Figure 9.8 shows the correlation of the updating parameters using the DE-MC parameters where the majority of these
parameters are weakly correlated except the pairs (�2, �5) and (�4, �5), where the correlation between these pairs are
relatively high (<0.7%).

The evaluation of total average error after each accepted (or rejected) sample is illustrated in Fig. 9.9. The result indicates
that the DE-MC has a fast convergence rate and was able converge after 500 iterations.
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Fig. 9.9 The evaluation of the TAE using the DE-MC method

9.6 Conclusion

In this paper, the Differential Evolution Markov Chain (DE-MC) algorithm is used to approximate the Bayesian formulations
in order to perform a finite element model updating procedure. In the DE-MC method, multi-chains are run in parallel which
allows the chains to learn from each other in order to improve the sampling process where the jumping step depends on
the difference between randomly selected chains. This method is investigated by updating two structural systems: the first
one is a five DOF mass-spring linear system and the second one is the unsymmetrical H-shaped aluminum structure. In the
first case, the total average error was reduced from 1.98% to 0.012%, while in the second case, the FEM updating of the
unsymmetrical H-shaped structure, the total average error was reduced from 5.37% to 1.53%. Also the DE-MC algorithm
appeared to have better results than the M-H algorithm when the unsymmetrical H-shaped structure is updated. In further
work, the DE-MC algorithm will be modified and improved to include several steps such as the cross over and the exchange
between the parallel chains. These changes may further improve the sampling procedure.
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