
Chapter 7
In Situ and Ex Situ Spectrophotometric
Characterization of Single- and
Multilayer-Coatings I: Basics

Olaf Stenzel and Steffen Wilbrandt

Abstract Optical spectrophotometry provides a powerful tool for the characteri-
zation of modern coatings, no matter whether they are manufactured for optical
or non-optical applications. Spectrophotometry of coatings gives primary access to
optical constants and their dispersion as well as to the film thickness. In a second
step, the application of sophisticated Kramers–Kronig-consistent dispersion models
gives further access to related quantities, including density, porosity, but also charge
carrier density, crystalline structure, band structure and possible impurities of the
coating. We will present and discuss the state of the art in spectrophotometry of sin-
gle and multilayer coatings, including their in situ as well as ex situ versions. In situ
spectrophotometry allows re-engineering as well as monitoring the deposition pro-
cess of a growing coating, resulting in excellent specification adherence particularly
in the field of optical coatings.

7.1 Introduction

The present chapter deals with the application of spectrophotometry for characteri-
zation of thin (solid) films. The general idea of spectrophotometric characterization
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Fig. 7.1 Thin film on a thick
substrate, irradiated by light
under an incidence angle ϕ.
For details see text
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is to bring a thin film sample into interaction with electromagnetic radiation. As the
result, certain parameters of the electromagnetic radiation will be modified. In spec-
trophotometry, the focus is on changes in the intensity of the light, which is measured
and further used to judge on specific sample properties.

This general situation is visualized in Fig. 7.1.
The intensity I of the light is defined as the amount of light energy penetrating a

unit surface area per unit time interval. The transmittance T and reflectance R of the
light are defined through the directed transmitted (IT ) or specularly reflected (IR)
light intensities, divided by the intensity of the incident light (IE ):

T ≡ IT
IE

R ≡ IR
IE

(7.1)

As soon as the thin film (system) has been prepared on a transparent substrate,
the spectrally resolved measurement of T and R (at any chosen incidence angle ϕ

and any required polarization state of the incident light) appears as a widely used
straightforward characterization tool. Alternatively, spectrally resolved ellipsometric
measurements become more and more frequently used in coating characterization
practice (compare Chap. 9).

Themeasurement of bothT andR under identical conditions provides information
on the optical loss L, which is composed from total scatter TS and absorptance A. As
a result of energy conservation we have:

1 − T − R � L � T S + A (7.2)

https://doi.org/10.1007/978-3-319-75325-6_9
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7.2 Theory

7.2.1 Basics

As it is evident from Fig. 7.1, a light wave which has penetrated a thin film sample,
will carry information about thematerials which form the sample (i.e. about both film
and substrate material constants), as well as about its geometry (here the thicknesses
of film h and substrate hsub). Generally, the same will be true for the reflected wave,
because all interfaces can principally contribute to the reflectance spectrum. So that
we have to expect, that both T and R will be rather complicated functions of all the
mentioned construction parameters. Thus, measured T and R spectra can be used to
gain information about material properties as well as the sample geometry.

In the model case of optically homogeneous, isotropic, and non-magnetic media,
the linear opticalmaterial propertiesmay be expressed in terms of a scalar frequency-
dependent complex dielectric function ε (ω) with ω - angular frequency of the elec-
tromagnetic radiation [1, 2]. ε is related to the optical constants n and k through the
relationship:

n(ω) + ik(ω)�√
ε(ω) ≡ �

n(ω) (7.3)

Here n̂ is the complex index of refraction; its frequency-dependence is called disper-
sion. The absorption coefficient α is defined as:

α (ω) � 2
ω

c
k (ω) (7.4)

Let us also mention that a positive imaginary part of the dielectric function results in
energy dissipation within a medium. Whenever the dielectric function is purely real,
no energy will be dissipated [3].

For characterization purposes, thin films are usually deposited on a much thicker
substrate with smooth and parallel surfaces. Therefore, it makes sense to discuss the
simplest case of the optical properties of an uncoated substrate first. So we start our
discussion from a simplified system like it is shown in Fig. 7.2.

It is rather straightforward to write down the equations for T and R of a bare thick
substrate. In accordance to Figs. 7.1 and 7.2, let the incidence medium be numbered
as medium 1, while the substrate defines medium 3 (n̂3 � n̂sub – see Fig. 7.1). Let
us further assume, that the incidence (medium 1) and exit media (medium 4) are
identical (n4 � n1). This results in [2]:
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Fig. 7.2 Uncoated substrate

IE IR

medium 1: 
incidence medium

medium 3: substrate

medium 4: exit medium

hsub

IT

Tcalc � |t13|2 |t31|2 e−4πνhsub Im
√

n̂2sub−n21 sin
2 ϕ

1 − |r31|4 e−8πνhsub Im
√

n̂2sub−n21 sin
2 ϕ

Rcalc � |r13|2 + |t13|2 |r31|2 |t31|2 e−8πνhsub Im
√

n̂2sub−n21 sin
2 ϕ

1 − |r31|4 e−8πνhsub Im
√

n̂2sub−n21 sin
2 ϕ

ν ≡ ω

2πc
� λ−1 (7.5)

Here, symbols of the type ti j and ri j represent nothing else than the Fresnel coeffi-
cients for the transmitted and reflected electric field strength at the interface between
the ith and jth media, respectively [1, 2]. ω is the angular frequency. Note that at
oblique incidence, the Fresnel coefficients are sensitive to the polarization state of
the incident light.

Equation (7.5) allow calculating transmittance and reflectance of an uncoated sub-
strate (i.e. a thick slab as shown in Fig. 11.3), taking all internal multiple reflections
into account, as well as possible absorption and any effects arising from oblique inci-
dence. Note that (7.5) are obtained when assuming incoherent superposition of all
multiple internally reflected wave trains. It cannot be applied to the analysis of thin
films, because the latter are usually thin enough to guarantee coherent superposition
of internally reflected wave trains.

In the case of normal incidence, (7.5) can be written as:

Tcalc|ϕ�0 � (1 − R13)
2 e−αsubhsub

1 − R2
13e

−2αsubhsub

R calc|ϕ�0 � R13
[
1 − e−2αsubhsub (2R13 − 1)

]

1 − R2
13e

−2αsubhsub
(7.6)

https://doi.org/10.1007/978-3-319-75325-6_11
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Table 7.1 Overview on substrate materials, often used for film characterization purposes

Material Approximate wavelength
range of transparency (nm)

Refractive index

Crystalline Germanium Ge >2000 nsub ≈ 4.0 (infrared)

Crystalline Silicon Si >1000 nsub ≈ 3.45 (infrared)

BK7, B270 350–4500 nsub ≈ 1.52 (visible)

Fused silica SiO2 200–4500 nsub ≈ 1.45 (visible)

Crystalline Calcium fluoride
CaF2

130–12000 nsub ≈ 1.43 (visible)

Crystalline Magnesium
fluoride MgF2

115−7500 nsub ≈ 1.38 (visible)

Here R13 denotes the normal incidence intensity reflectance of a single substrate
interface:

R13 � R31 � |r13|2 (7.7)

When damping is absent, or even at moderate damping levels, both transmittance
and reflectance may be measured and subsequently used for substrate optical char-
acterization. For strong damping, from (7.5) we obtain:

αsubhsub → ∞ : Tcalc → 0; Rcalc → R13 (7.8)

In this case, substrate transmission is completely suppressed, while we still have a
reflection signal, originating from the first substrate surface. The latter still contains
all information about the substrate optical constants and may therefore be used for
substrate optical characterization aswell. Nevertheless, in thin film spectrophotomet-
ric characterization, it is most convenient to make use of at least semi-transparent
substrates, in order to have both transmission and reflection signals available. Often
used substrate materials are summarized in Table 7.1.

7.2.2 Elaboration of Film Thickness and Optical Constants
from Single Thin Film Spectra

7.2.2.1 Basic Equations for Transmittance and Reflectance of a Single
Thin Film on a Thick Substrate

It is now rather straightforward to write down the equations for T and R of a single
thin film on a thick substrate. Let the film by composed from medium 2, and the
substrate from medium 3 (n̂3 � n̂sub – see Fig. 7.1). Assuming n4 � n1, in analogy
to Sect. 7.2.1, we can write [2]:
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Tcalc � |t123|2 |t31|2 e−4πνhsub Im
√

n̂2sub−n21 sin
2 ϕ

1 − |r321|2 |r31|2 e−8πνhsub Im
√

n̂2sub−n21 sin
2 ϕ

Rcalc � |r123|2 + |t123|2 |r31|2 |t321|2 e−8πνhsub Im
√

n̂2sub−n21 sin
2 ϕ

1 − |r321|2 |r31|2 e−8πνhsub Im
√

n̂2sub−n21 sin
2 ϕ

(7.9)

Moreover, we have [1, 2]:

ti jk � ti j t jkeiδ

1 + ri j r jke2iδ

ri jk � ri j + r jke2iδ

1 + ri j r jke2iδ
(7.10)

Thereby, the superposition of internally reflected light portions within the film is
assumed to be completely coherent. The possibly complex phase δ is essential for
the description of the thin film interference pattern, it is given by [2]:

δ � ω

c
h
√
n̂22 − n21 sin

2 ϕ � 2πν h
√
n̂22 − n21 sin

2 ϕ (7.11)

Note that for h → 0, T and R approach the corresponding values of the uncoated
substrate, hence the spectrophotometric characterization of ultrathin films (h < < λ)
is much more complicated than in the case h ≈ λ (see next section). In such cases, a
spectroellipsometric characterization or even a combination of both approaches may
be clearly of use.

7.2.2.2 Information from the Interference Pattern Observed from
Dielectric Films

In the case of dielectric or even semiconducting thin films, the couple of (7.9)–(7.11)
describes a type of spectra as shown in Fig. 7.3. This figure shows measured spectra
of a 211 nm thick zirconium dioxide (zirconia) single film on a fused silica substrate
with a thickness of 1 mm. For comparison, the corresponding spectra of the bare
(uncoated) substrate are also shown as dashed lines. This is a rather typical thin film
spectrum, and it is worth mentioning some of its specific features:

The spectrum may generally be subdivided into several sections, according to the
value of the optical loss L as defined in (7.2).

• In the wavenumber region between 10000 cm−1 and approximately 35000 cm−1,
the spectrum appears almost free of optical losses, because T and R sum up to 1 in
terms of the spectrophotometric measurement accuracy (compare later Sect. 8.1).
Hence, the dielectric functions of both film and substrate materials are practically
real.

https://doi.org/10.1007/978-3-319-75325-6_8
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Fig. 7.3 symbols: normal
incidence T - and R-spectra
of a zirconium oxide thin
film on a thick fused silica
substrate in the NIR/VIS/UV
spectral regions; dashed
lines: T and R of the bare
substrate

• In such spectral regions, dielectric or semiconductor films of suitable thickness
usually show a pronounced interference pattern, whichmay be identified as a series
of subsequent maxima and minima in T and R, observed at discrete wavenumbers
ν j . Certain extrema appear tangential to the bare substrate spectrum; they define
what we will call the halfwave (HW) points of the spectrum. The other extrema
define quarterwave (QW) points. For normal incidence, the wavenumbers of the
extrema are defined by:

QW − points: n2h � j
λ j

4
; j � 1, 3, 5 . . .

HW − points: n2h � j
λ j

4
; j � 0, 2, 4, . . .

ν j ≡ 1

λ j
(7.12)

• In the case that theQW transmittance appears to be higher than that of the bare sub-
strate (the QW reflectance lower than that of the substrate), the refractive index of
the filmwill be in-between those of the substrate and the ambient. In the practically
relevant case, that the ambient medium is air, and the substrate index nsub > 1,
we can conclude that the film index is certainly lower than that of the substrate:
nsub > n > 1 (low index coating).

• In the opposite case (as it is relevant for the example shown in Fig. 7.3), the
film refractive index is outside the interval spanned by the substrate and ambient
indices. In the practically relevant case, that the ambient medium is air, and the
substrate index nsub > 1, we can conclude that the film index is certainly higher
than that of the substrate (high index coating).

• The dependence of the QW transmittance/reflectance on the refractive indices n
and nsub offers the principle possibility for determining the film refractive index
by inverting (7.9)–(7.11), independently from knowledge of the film thickness.
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On the contrary, when neglecting dispersion, the film thickness may be subse-
quently estimated from (7.13):

h � 1

4n2
(
ν j+1 − ν j

) (7.13)

• This type of approach may be extended to the analysis of weakly absorbing films,
and is in the basis of the so-called envelope methods for film characterization [4,
5]. Note that here knowledge about nsub is usually presumed.

• At oblique incidence, according to (7.11), the interference pattern shifts towards
higher wavenumbers (smaller wavelengths). This so-called angular shift offers an
alternative method for estimating the film refractive index. Let us assume, that at
an angle of incidence ϕa , an interference extremum of arbitrary order j is observed
at the wavelength λa . At another angle ϕb, the same interference extremum will
have shifted to the wavelength λb. When neglecting dispersion, from (7.11) we
find:

n2 � n1

√
λ2
b sin

2 ϕa − λ2
a sin

2 ϕb

λ2
b − λ2

a

(7.14)

Note that this approach does not presume knowledge about nsub.
The mentioned spectral characteristics may be used for a first “quick-and-dirty”

estimation of refractive index and thickness of the coating in spectral regions with
negligible damping. For wavenumbers higher than approximately 35000 cm−1, the
optical loss according to the spectra shown in Fig. 7.3 appears to be no more negli-
gible. In such spectral regions, the above type of discussion is no more applicable in
the strong sense.

Consequently, in the special case that normal incidence T andR spectra of both the
uncoated substrate (Fig. 7.2) and a film-on-substrate system (Fig. 7.1) are available, a
simple straightforward optical dielectric thin film characterization may be performed
adhering to the following recipe:

(i) First measure T and R of the bare substrate at normal incidence, as well as
the substrate thickness hsub. Then, the optical constants of the substrate may
be calculated inverting (7.6) [6]. In the case that the substrate is completely
intransparent, the substrate optical constants can still be deducted from the
reflectance of the substrate surface (see later Sect. 8.2.2).

(ii) Measure T and R of the film-on-substrate system and calculate L according to
(11.2). Identify spectral regions where L is negligible (transparency regions).

(iii) In transparency regions, identifyHWandQWpoints in the interference pattern.
FromQWpoints, make clear whether you deal with a high index or a low index
coating.

(iv) In the case that in the HW points, the T /R-spectra are tangential to those of the
substrate, the filmmay be tackled as a homogeneous film. In this case, calculate

https://doi.org/10.1007/978-3-319-75325-6_8
https://doi.org/10.1007/978-3-319-75325-6_11
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Fig. 7.4 T - and R-spectra
of a gradient index film. Full
lines show measured spectra
of a zirconia sample with a
negative refractive index
gradient (n2 decreases with
growing distance from the
film-substrate interface),
dashed lines correspond to
the spectra of a bare substrate
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the refractive index from theQWpoints (inverting (7.9)–(7.11)), using substrate
data as determined in point ν j . Note that this procedure is ambiguous for a low
index coating, so that one has to identify the physically meaningful solution
from side information obtained otherwise. Estimate the film thickness from
(7.13).

(v) In the case that L ≈ 0 and the T /R-spectra are not tangential to the substrate
spectra in theHWpoints, the film is expected to show a refractive index gradient
(inhomogeneous film) [7]. These effects are no more covered by (7.9)–(7.11).
In this case, the measured T and R-values in the HW points embody impor-
tant information about the so-called degree of inhomogeneity (doi), while the
corresponding values in the QW points correspond to an average refractive
index 〈n〉, while averaging is performed over the film thickness. So that HW
points give information on the doi, while QW points on the average index. This
situation is schematically sketched in Fig. 7.4, which shows measured spectra
of an inhomogeneous zirconium oxide film. Note that in this particular case,
the origin of the refractive index gradient becomes obvious when comparing
with the TEM image shown in Fig. 2.2. It stems from a similar sample and
confirms a depth-dependent porosity as well as a depth-dependent degree of
crystallinity in a real zirconia film, which has a direct impact on the spectrum.

(vi) Having estimated the film thickness as well as the refractive index in the trans-
parency region, the (averaged over the film thickness) extinction coefficient
may be estimated from (7.9)–(7.11) in any spectral region.

https://doi.org/10.1007/978-3-319-75325-6_2
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7.2.2.3 Curve Fit Procedures

Amore precise elaboration of film thickness and optical constants is possible in terms
of so-called curve fit procedures [8]. In this case, measured (exp) spectral curves are
fitted by theoretical (calc) spectra calculated according to (7.9)–(7.11). The sets of
optical constants which result in a sufficiently good fit of experimental spectra form
a set of possible mathematical solutions to the characterization problem. Once the
solution of such fitting attempts is usually ambiguous, side knowledge on the optical
constants behavior (compare later Sect. 7.3.1) as well as on the thickness is highly
welcome to identify the physically meaningful solution from the set of solutions of
the mathematical fitting procedure.

Mathematically, the fit may be performed by minimizing a discrepancy function
DF of the type as defined in (7.15):

DF �
√√√√ 1

N

N∑

l�1

{[
Texp (νl ) − Tcalc

(
νl ; n̂ (νl ) ; h

)]2 +
[
Rexp (νl ) − Rcalc

(
νl ; n̂ (νl ) ; h

)]2}

(7.15)

Here, the choice of {νl} defines a grid of discrete data points which enter into the
discrepancy function (7.15) to be minimized (compare later Sect. 8.1.4). Of course,
one can include more than two spectra (even including ellipsometric data) into the
expression (7.15). Thedata obtained earlier from the interference pattern (if available)
may serve here as a reliable initial approximation for further minimizing (7.15).
Examples of curve fits with different degrees of complexity will be presented in
Sect. 8.2.3.

7.2.3 Multilayer Spectra Evaluation

In the case of multilayer characterization, we have a series of films stacked on the
substrate as shown in Fig. 7.5.

Equation (7.9) nevertheless preserve their general structure, although values like
t123 and r123 have to be replaced by the more general expressions tstack and rstack .
Symbols characterizing reverse light propagation direction (t321 and r321) have to
be replaced by new expressions t ′stack and r ′

stack . The new field transmission and
reflection coefficients tstack , rstack , t ′stack and r ′

stack may be calculated in terms of
the matrix formalism [1, 2]. They carry information about optical constants and
thicknesses of all individual layers which compose the film stack shown in Fig. 7.5.
Correspondingly, instead of (7.9), we now have the expressions (7.16):

https://doi.org/10.1007/978-3-319-75325-6_8
https://doi.org/10.1007/978-3-319-75325-6_8
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Fig. 7.5 Multilayer system IE IR
incidence medium

Film stack

substrate

exit medium

hsub

Σhj

IT

Tcalc �
∣∣tstack

({
n̂ j

}
,
{
h j

})∣∣2 |t31|2 e−4πνhsub Im
√

n̂2sub−n21 sin
2 ϕ

1 − ∣∣r ′
stack

({
n̂ j

}
,
{
h j

})∣∣2 |r31|2 e−8πνhsub Im
√

n̂2sub−n21 sin
2 ϕ

Rcalc � ∣∣rstack
({
n̂ j

}
,
{
h j

})∣∣2

+

∣∣tstack
({
n̂ j

}
,
{
h j

})∣∣2 |r31|2
∣∣t ′stack

({
n̂ j

}
,
{
h j

})∣∣2 e−8πνhsub Im
√

n̂2sub−n21 sin
2 ϕ

1 − ∣∣r ′
stack

({
n̂ j

}
,
{
h j

})∣∣2 |r31|2 e−8πνhsub Im
√

n̂2sub−n21 sin
2 ϕ

(7.16)

Here, the individual layers forming the stack are numbered in terms of the subscript
j.

In the case that T and R have been measured, a fit of these experimental data may
again be performed by minimizing a suitable discrepancy function. Instead of (7.15),
one now has to minimize a discrepancy function of the type (7.17):

DF �

√√√√√
1

N

N∑

l�1

{[
Texp

(
νl

) − Tcalc
(
νl ;

{
n̂ j

(
νl

)}
;
{
h j

})]2 +
[
Rexp

(
νl

) − Rcalc
(
νl ;

{
n̂ j

(
νl

)}
;
{
h j

})]2}

(7.17)

When keeping in mind the tremendous number of unknown values
{
n̂ j (νl)

}
and{

h j
}
, a reliable re-engineering procedure (i.e. determination of the optical constants

and the thicknesses from the measured spectra) appears to be a rather hopeless effort.
There are two basic approaches to facilitate the situation:

(a) Reducing the number of parameters to be determined.
(b) Increasing the number of input data, i.e. measured spectra.

(a): In many situations, optical constants of the materials forming the stack are
known with sufficient accuracy. In this case, the re-engineering task reduces to the
determination of the set of individual layer thicknesses

{
h j

}
. Thismay still be difficult

enough, but a further reduction of unknown valuesmay be achievedwhenmaking use
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Fig. 7.6 Principle of acquisition of in situ transmission spectra duringmultilayer coating deposition

of correlations between individual film thicknesses and/or optical constants, defined
by systematic deposition errors inherent to the specific thickness monitoring strategy
applied during multilayer deposition [9].

(b): On the other hand, the number of measured data entering into (7.17) may be
enhanced. T and Rmeasurements may be performed at different angles of incidence,
compare later Sect. 3.1. Also, spectroellipsometric data may be included into (7.17)
[10].

But the inclusion of more independent ex situ measurement data like oblique inci-
dence spectrophotometry and ellipsometry appears to be both time- and cost consum-
ing because of expansive extra equipment required. An alternative is provided by the
use of in situ spectrophotometry (or spectroellipsometry), where numerous experi-
mental data about T and/or R measured on the not yet finished stack are collected
directly during the film deposition.

The idea is simple (Fig. 7.6). Let us assume that the film deposition chamber is
equipped with a spectrophotometer that allows measuring T and/or R directly during
multilayer coating deposition. This will allow, for example, a spectrum recording
immediately after each of the individual layers (numbered by j) has been deposited.
Typically, a “0th” spectrum is recorded prior to starting deposition, it corresponds to
the spectrum of the bare substrate ( j � 0) and may be used for calibration purposes.
Then, the 1st spectrum is recorded after the first layer has been deposited ( j � 1). It
contains information about the optical constants and thickness of the first layer. Then,
depositionproceedswith the second layer, again followedbya spectra recording.That
second spectrum contains information about optical constants and thicknesses of two
layers, and so on. Finally, wewill obtain asmany spectra as there are individual layers
in the stack. This is a tremendous amount of information, and it is obtained from one
single spectrometer set-up, which can operate automatically without any additional
sample handling. Moreover, when fast spectrometers are used, the amount of extra
time necessary for spectra recording during coating deposition is of no relevance.

https://doi.org/10.1007/978-3-319-75325-6_3
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When fitting in situ spectra onemust keep inmind, that optical constants (and even
layer thicknesses) in a coatingmay principally change when the coating is exposed to
air and heated up or cooled down to its operation temperature. Therefore, one has to
distinguish between in situ and ex situ optical constants. This is particularly relevant
for porous coatings, prepared in vacuum conditions by PVD techniques. We will
not discuss all the corresponding models here (some simple considerations will be
made in Sect. 7.3.3, compare also Sect. 2.3). Instead, we will assume that the in situ
relevant optical constants are well-known, and the only task of in situ spectroscopy
is the reliable determination of the individual layer thicknesses. This task may be
solved by means of a so-called full triangular re-engineering algorithm [11]. In the
following we will give a short explanation of this algorithm. The basic principle is
visualized in Fig. 7.6. The superscript “T ” indicates spectra used in the triangular
algorithm.

Let us assume that a first transmission spectrum T T
meas

(1) (νl) is recorded when
the first layer has been deposited. This spectrum depends only on the thickness of
the first layer h1. The second spectrum T T

meas
(2) (νl) is recorded after the deposition

of the second layer has been completed. It naturally depends on two thickness values
h1 and h2. This process is repeated until the full multilayer coating deposition has
finished. The essence of the full triangular re-engineering algorithm is to determine
all thickness values simultaneously by fitting all those transmission spectra by the
corresponding theoretical spectra T T

calc
( j) (νl). Thickness calculation is thus achieved

by minimizing the triangular discrepancy function DFT [11]:

DFT (h1, . . . , hJ ) �
⎡

⎣ 1

J N

J∑

j�1

N∑

l�1

(
T T
meas

( j)(νl ) − T T
calc

( j)(νl , h1, . . . , h j )

�T T (νl)

)2
⎤

⎦

1
2

(7.18)

Here J is the number of individual layers deposited at the relevant state of the depo-
sition process. �T T (νl) is the in situ transmittance measurement error.

So far, in situ spectroscopy combinedwith the full triangular algorithm is accepted
to be themost reliable tool for individual layer thickness determination in complicated
optical coatings. For different application examples see references [12–14].

7.3 Further Information Gained from Optical Constants

7.3.1 Basic Classical Dispersion Models and Analytic
Properties of the Dielectric Function

As already mentioned, the dielectric function, and consequently the optical con-
stants, appear to be frequency-dependent. This phenomenon is called dispersion. For
selected material systems, this frequency dependence may be reliably modelled in

https://doi.org/10.1007/978-3-319-75325-6_2
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Table 7.2 Optical constants in terms of the oscillator and Drude dispersion models

Bound charge carriers:
Lorentzian Single Oscillator model
Application: bound electrons in dielectrics and
metals

Free charge Carriers:
Drude Model
Application: Free electrons in metals

ε(ω)−1
ε(ω)+2 � n̂2−1

n̂2+2
� Nbound

3
q2

ε0m
1

ω2
0−ω2−2iωγ

ε(ω) � 1 − ω2
p

ω2+2iγω
; ωp �

√
N f reeq2

ε0m

Nbound : concentration of bound charge carriers
m: mass of bound charge carriers
q: their charge
ω0: their resonance frequency
γ : damping constant

N f ree: concentration of free charge carriers
m: mass of free charge carriers
q: their charge
γ : damping constant

terms of rather compact dispersion models. The Lorentzian oscillator model as well
as the Drude model can be regarded as the basic classical dispersion models for
the description of optical properties of dielectrics and metals [1, 2, 15]. Their main
features are summarized in Table 7.2.

When looking on the picture in the left column of Table 7.2, the most striking
feature in the optical response of a system with bound charge carriers is resonance
behavior of the extinction coefficient at ω→ω0, which results in rather strong damp-
ing of the propagating wave. Note that apart from resonance (transparency region),
the refractive index increases with increasing frequency, which is called normal dis-
persion. Close to resonance (strong damping), the refractive index decreases with
increasing frequency (anomalous dispersion).

This type of dispersion is in strong contrast to that described by the Drude model
(right column of Table 7.2). Here the refractive index may be significantly smaller
than the extinction coefficient as long as the light frequency is well below the plasma
frequency. Such a behaviour of the optical constants results in high reflection at the
air-material-interface, as it is typically observed at metal surfaces. When describing
the optical behavior of metals in terms of the Drude model, parameters like the
concentration of free electrons become accessible as well as derived parameters
such like dc conductivity σstat

(
σstat � ε0ω

2
p/ (2γ )

)
and the damping constants or

relaxation times corresponding to the free electrons motion [2].
In rather transparent dielectrics, as a rule, from Table 7.2 we observe that the

condition k � n is fulfilled. Good metals, i.e. metals where the optical response is
dominated by the free electron fraction, show the opposite behavior, namely k � n.
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The obviously correlated behaviour of n and k as visualized in the Table 7.2 can be
tackled as themanifestation of amore general relation between the real and imaginary
parts of the dielectric function as expressed in terms of the Kramers–Kronig relations
[16]:

Re ε (ω) � 1 +
2

π
V P

∞∫

0

Im ε (ξ) ξdξ

ξ 2 − ω2

Im ε (ω) � −2ω

π
V P

∞∫

0

[Re ε (ξ) − 1]

ξ 2 − ω2
dξ +

σstat

ε0ω
(7.19)

VP denotes the Cauchy principal value of the integral. (7.19) is in consistency with
the relations:

Re ε (ω) � Re ε (−ω) ;−Im ε (ω) � Im ε (−ω) (7.20)

It is easily checked, that the dispersion relations given in Table 7.2 are consistent
with these fundamental requirements.

Analogous relations my also be formulated for the optical constants [17]. Here
we have for insulators as well as conductors:

n (ω) � 1 +
2

π
V P

∞∫

0

k (ξ) ξdξ

ξ 2 − ω2

k (ω) � −2ω

π
V P

∞∫

0

[n (ξ) − 1]

ξ 2 − ω2
dξ (7.21)

Kramers-Kronig-consistency is a strong and useful criterion for the physical rele-
vance of any dispersion law used in coating characterization or design practice.

As a direct consequence from (7.19), the following useful relationships are
obtained:

Static dielectric constant of a dielectric:

εstat � ε(ω � 0) � 1 +
2

π

∞∫

0

Im ε (ω)

ω
dω (7.22)

The static dielectric constant of a dielectric is thus always larger than 1.
In the high frequency limit, contrarily, we find (convergence supposed):
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Re ε (ω) � 1 +
2

π
V P

∞∫

0

Im ε (ξ) ξdξ

ξ 2 − ω2

∣∣∣∣∣∣
ω→∞

→ 1 − 2

πω2

∞∫

0

Im ε (ξ) ξdξ < 1

(7.23)

As a rule, in the extreme ultraviolet (EUV) or soft X-ray spectral ranges, the dielectric
function as well as the refractive index are therefore smaller than but close to 1.

An utmost important sum rule interconnects the full concentration of oscillators
N (i.e. oscillating electrons on the background of heavy nuclei) with the integral
energy dissipation:

N � 2ε0m

πq2

∞∫

0

Im ε (ω)ωdω (7.24)

Rewriting (7.24) in terms of the optical constants – see (7.3) and (7.4), one immedi-
ately obtains:

N � 2ε0mc

πq2

∞∫

0

n (ω)α (ω) dω (7.25)

Here we arrive at the fundament of any quantitative spectrophotometric analysis,
where the concentration of any kind of absorption centres (molecules, impurities,
and so on) is obtained from the integral over the measured absorbance. Of course,
in practice, the integration in (7.25) may be performed only over a finite frequency
interval accessible to the measurement.

7.3.2 Often Used Other Dispersion Models

Clearly, the mentioned basic models correspond to rather idealized situations, and in
characterization practice, more complicated dispersion models have to be applied. In
our treatment, we will restrict onmodels relevant for description of optical properties
from the middle infrared up to the ultraviolet spectral regions. This way we include
models relevant for infrared analytics (atomic nuclei vibrations), rather transparent
materials for interference coating applications, modelling the absorption edge(s)
in (selectively) absorbing materials for light blocking, optoelectronics, and solar
energy conversion, as well as metals for reflector optics or light blocking purposes.
A schematic overview on optical constants and single film optical behavior of typical
dielectric, semiconductor and transparent conductive oxide (TCO)materials from the
infrared up to the ultraviolet is presented in Fig. 7.7.

As it is shown in Fig. 7.7, many dielectric or semiconducting materials offer
a broad transparency range, which usually extends from the near infrared to the
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Fig. 7.7 Transparency range in dielectric/undoped semiconducting (on top) or transparent conduc-
tive oxide (TCO) materials (on bottom). The photon energy is given by h̄ω

visible or even the ultraviolet spectral ranges. At the short wavelength (high photon
energy) side, transparency is limited by the onset of valence electron excitations,
which marks the energy position of the fundamental absorption edge. At the long
wavelength (low photon energy) side, it is limited by optical excitation of atomic
nuclei vibrations, which occur in the middle infrared spectral range. However, in
TCOmaterials, optical excitation of free electron movement may result in additional
transparency range shrinking at low photon energies.

Some often used dispersion models useful for describing properties of dielectrics,
metals, and semiconductors from the infrared to the ultraviolet spectral ranges are
summarized in Table 7.3.
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7.3.3 Optical Properties of Material Mixtures

Let us now assume a mixture built up from several constituents, numbered by j. Let
us further assume, that we know the optical constants (or the dielectric function ε j )
of any of the constituents. Let it be our task to determine the optical constants of the
mixture.

We will make the following assumptions:
Let the mixture occupy the full volume V . In the mixture, let us assume that each

of the constituents occupies a certain volume fraction Vj . The corresponding volume
filling factor p j of the jth material in the mixture is then defined as:

p j ≡ Vj

V
(7.26)

Obviously,

∑

j

p j � 1 (7.27)

Traditionally, the mixing partners are tackled as small (compared to the wavelength)
inclusions numbered by the subscript j, embedded in a certain host medium with a
dielectric function εh [23]. This assumption leads to the general mixing formula:

(
εe f f − εh

)

εh +
(
εe f f − εh

)
L

�
∑

j

p j

(
ε j − εh

)

εh +
(
ε j − εh

)
L

(7.28)

Here L is the so-called depolarization factor, and εe f f is the effective dielectric
functionof themixture.Note that 0 ≤ L ≤ 1holds. In the case of spherical inclusions,
set L � 1/3.

Table 7.4 provides a survey of mixing models that represent special cases of the
general formula (7.28).

Knowledge on the optical behavior of mixtures is of extreme practical relevance,
because no real material can be regarded as absolutely pure. Contrarily, it may be
composed from several crystalline and amorphous phases, it may contain stoichio-
metric as well as non-stoichiometric fractions as well as several kinds of impurities.
Even the zirconia film shown in Fig. 2.2 cannot be regarded as a pure film: It is
obviously a mixture of crystalline and amorphous zirconia fractions, and a pore
fraction.

In this sense,mixturemodels even provide a vehicle for understanding the origin of
the difference between in situ and ex situ optical constants asmentioned in Sect. 7.2.3.
Indeed, when a coating is prepared in vacuum conditions, the pores are empty, and
so the pore fraction is characterized by a “pore refractive index” that is equal to 1.
At atmosphere, however, water may penetrate into the pores, changing the pore’s
refractive index to a value of approximately 1.33. The resulting effects in the optical

https://doi.org/10.1007/978-3-319-75325-6_2
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Table 7.4 Survey of mixing models [2]

Model Equation Application/remarks

Parallel nanolaminate εe f f � ∑

j
p jε j Nanolaminate oriented

parallel to the orientation of
the electric field vector.
Obtained from (7.28) when
setting L � 0

Vertical nanolaminate ε−1
e f f � ∑

j
p jε j

−1 Nanolaminate oriented
vertical to the orientation of
the electric field vector.
Obtained from (7.28) when
setting L � 1

Maxwell Garnett (εe f f −εl)
εl+(εe f f −εl)L

�
∑

j ��l
p j

(ε j−εl)
εl+(ε j−εl)L

Guest-host system with the lth
mixing partner acting as the
host. Obtained from (7.28)
when setting εh � εl

Lorentz-Lorenz (εe f f −1)
1+(εe f f −1)L

�
∑

j
p j

(ε j−1)
1+(ε j−1)L

Guest-host system with
vacuum acting as the host.
Obtained from (7.28) when
setting εh � 1

Bruggeman 0 � ∑

j
p j

(ε j−εe f f )
εe f f +(ε j−εe f f )L

Molecular mixtures, obtained
from (7.28) when setting
εh � εe f f . Also known as
effective medium
approximation (EMT or EMA)

properties of the coating may be calculated in terms of suitable mixing models and
are known as the vacuum-to-air shift [15] (compare also Chap. 2, Sect. 2.3).

7.3.4 An Empirical Extension of the Multi-oscillator Model:
The Beta Distributed Oscillator (β_do) Model

As it is indicated in Fig. 7.7, in a limited spectral range, the merger of the Drude and
Lorentzian multioscillator model is well suited for describing the dielectric function
of a large variety of materials. When the spectral range includes the fundamental
absorption edge, the required number of Lorentzian oscillators for accurate mod-
elling the dielectric function increases and the resulting large number of parame-
ters often results in numerical instabilities in the fitting process. A reduction of the
required number of parameters could be achieved when a suitable distribution func-
tion for the oscillator’s strength is used. A prominent example is the Brendel model
(Table 7.3), which makes use of a Gaussian distribution of resonance frequencies.
Another promising approach is given by the Beta distribution:

https://doi.org/10.1007/978-3-319-75325-6_2
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Fig. 7.8 Probability density functions of the beta distribution (left: α � β, right: β � 5, blue:
α � 1, red: α � 2, yellow: α � 5, violet: α � 10, green: α � 15)

fbeta(x, α, β) � Γ (α+β)
Γ (α)Γ (β) x

α−1(1 − x)β−1 � xα−1(1−x)β−1

B(α,β) for 0 ≤ x ≤ 1

fbeta(x, α, β) � 0 for x < 0 or x > 1
(7.29)

where Γ (z) is the gamma function and B(α, β) is the beta function, defined by:

B(α, β) �
∫ 1

0
xα−1(1 − x)β−1dx (7.30)

The beta function can be easily generalized to cover an arbitrary interval
[νmin, νmax ]:

fbeta (ξ, α, β, νmin, νmax ) � (ξ − νmin)
α−1 (νmax − ξ)β−1

B(α, β) (νmax − νmin)
α+β−1 (7.31)

When α � β the distribution will be symmetric (Fig. 7.8 left). For α � β � 1 a
uniform [0,1] distribution and for α � β → ∞ a delta function at the midpoint can
be generated. In the case α �� β the distribution function will be skewed (Fig. 7.8
right).

For practical application of the beta distribution for modelling the oscillator
strength distribution in optical materials a further property seems prospective. Even
the case of normally distributed oscillator strength (Brendel model) can be approxi-
mated quite well by a symmetric beta distribution. In Fig. 7.9 the (truncated) normal
distribution with mean value 0.5 and standard deviation 0.1 is shown (circle). The
shape is very close to a beta distribution with α � β � 13 (solid line).
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Fig. 7.9 Probability density functions of the normal distribution (circle, mean: 0.5, standard devi-
ation: 0.1) and beta distribution (solid line, α � β � 13)

To apply the beta distribution to the Lorentzian multi oscillator model the depen-
dence of the susceptibility χ̂ j (ν) of a jth single oscillator from wavenumber ν can
be used (compare Table 7.3):

χ̂ j (ν) � f j
ν̃2
0 j − ν2 − 2iνΓ j

(7.32)

For compatibility reasons to the current implementation of the oscillator model used
in LCalc software [24], a slightly different formulation will be used:

χ̂ j (ν) � Jj
π

(
1

ν0 j − ν − iΓ j
+

1

ν0 j + ν + iΓ j

)
(7.33)

Let us introduce the complex function X(ξ,ν). It is defined according to:

X (ξ, ν) � Jbeta, j

π

(
1

ξ − ν − iΓbeta, j
+

1

ξ + ν + iΓbeta, j

)
(7.34)

To replace the jth single oscillator by a set of beta distributed oscillators located in
the interval

[
νmin, j , νmax, j

]
, we write:

χ̂beta, j (ν) �
∫ νmax, j

νmin, j

fbeta
(
ξ, α j , β j , νmin, j , νmax, j

)
X (ξ, ν) dξ (7.35)

Instead of the single Lorentzian line, as defined by the imaginary part of (7.32),
expression (7.35) describes an inhomogeneously broadened absorption structure,
which might be used for modelling the absorption edge shape in thin solid films.

Next, the integral functionwill be replaced by a finite sum. Thereby, an equidistant
grid of N wavenumbers can be used
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νs, j � νmin, j + s · �ξ with s ∈ [1, N ] and�ξ � νmax, j − νmin, j

N + 1
(7.36)

Then, the susceptibility of the set of beta distributed oscillators (“β_do”) can be
calculated by

χ̂beta, j (ν) �
N∑

s�1

fbeta
(
νs, j , α, β, νmin, j , νmax, j

)
X

(
νs, j , ν

)
�ξ

� 1

(N + 1)B(α, β)

N∑

s�1

(
νs, j − νmin, j

)α−1 (
νmax, j − νs, j

)β−1

(
νmax, j − νmin, j

)α+β−2 X
(
νs, j , ν

)

(7.37)

Additionally, it is convenient to replace the beta function also by a sum (compare
(7.30)):

B(α, β) � 1

N + 1

N∑

s�1

(
νs, j − νmin, j

)α−1 (
νmax, j − νs, j

)β−1

(
νmax, j − νmin, j

)α+β−2 (7.38)

From (7.31), (7.33)–(7.35), the susceptibility can be calculated by:

χ̂beta, j (ν) �

N∑

s�1
ws, j

Jbeta, j

π

(
1

νs, j−ν−iΓbeta, j
+ 1

νs, j+ν+iΓbeta, j

)

N∑

s�1
ws, j

(7.39)

with weight factors

ws, j �
(
νs, j − νmin, j

)α j−1 (
νmax, j − νs, j

)β j−1

(
νmax, j − νmin, j

)α j+β j−2 �
( s

N + 1

)α j−1
(
N + 1 − s

N + 1

)β j−1

(7.40)

Equations (7.39) and (7.40) essentially define what we will further call the beta
distributed oscillator model (β_do model). In Fig. 7.10 the individual contributions
from a beta distributed oscillator set to real and imaginary part of the susceptibility
are shown.

The impact of the line width to real and imaginary part of susceptibility for a beta
distributed set of oscillators is shown in Fig. 7.11. In trend, the width of the imaginary
part of the susceptibility decreases with the line width of the underlying individual
oscillators. When the line width becomes small in comparison to the width of the
beta distribution, the resulting shape becomes dominated by the beta distribution.
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Fig. 7.10 Real (left) and imaginary part (right) of susceptibility of individual equally spaced
Lorentzian oscillators defined by the β_do model (N � 15, νmin � 5000 cm−1, νmax �
15000 cm−1, Jbeta � 1000 cm−1, Γbeta � 500 cm−1, α � β � 5)

Fig. 7.11 Real (left) and imaginary part (right) of the susceptibility in the β_do model (N � 1000,
νmin � 5000 cm−1, νmax � 15000 cm−1, Jbeta � 1000 cm−1, blue: Γbeta � 1000 cm−1, red:
Γbeta � 500 cm−1, yellow:Γbeta � 200 cm−1, violet:Γbeta � 100 cm−1, green:Γbeta � 50 cm−1)

7.4 Conclusions

In this chapter, basic theoretical concepts and equations necessary for spectrophoto-
metric characterization of thin films and film systems have been introduced. Partic-
ularly the β_do model turns out to be extremely useful in coating characterization
practice, including typical inorganic dielectric coatings, but also metal coatings,
semiconductor films, and even organic molecular films. In Chap. 8, corresponding
examples will be presented and discussed.

https://doi.org/10.1007/978-3-319-75325-6_8
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