
Chapter 9
Dielectrics and Ferroelectrics

Despite the fact that the concept of the dielectric constant is often taught in
introductory physics—because, e.g., of its applications to capacitors—the concept
involves subtle physics. The purpose of this chapter is to review the important
dielectric properties of solids without glossing over the intrinsic difficulties.

Dielectric properties are important for insulators and semiconductors. When a
dielectric insulator is placed in an external field, the field (if weak) induces a polar-
ization that varies linearly with the field. The constant of proportionality determines
the dielectric constant. Both static and time-varying external fields are of interest, and
the dielectric constant may depend on the frequency of the external field. For typical
dielectrics at optical frequencies, there is a simple relation between the index of
refraction and the dielectric constant. Thus, there is a close relation between optical
and dielectric properties. This will be discussed in more detail in the next chapter.

In some solids, below a critical temperature, the polarization may “freeze in.”
This is the phenomena of ferroelectricity, which we will also discuss in this chapter.
In some ways ferroelectric and ferromagnetic behavior are analogous.

Dielectric behavior also relates to metals particularly by the idea of “dielectric
screening” in a quasifree-electron gas. In metals, a generalized definition of the
dielectric constant allows us to discuss important aspects of the many-body prop-
erties of conduction electrons. We will discuss this in some detail.

Thus, we wish to describe the ways that solids exhibit dielectric behavior. This
has practical as well as intrinsic interest and is needed as a basis for the next chapter
on optical properties.

9.1 The Four Types of Dielectric Behavior (B)

1. The polarization of the electronic cloud around the atoms: When an external
electric field is applied, the electronic charge clouds are distorted. The resulting
polarization is directly related to the dielectric constant. There are “anomalies”
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in the dielectric constant or refractive index at frequencies in which the atoms
can absorb energies (resonance frequencies, or in the case of solids, interband
frequencies). These often occur in the visible or ultraviolet. At lower frequen-
cies, the dielectric constant is practically independent of frequency.

2. The motion of the charged ions: This effect is primarily of interest in ionic
crystals in which the positive and negative ions can move with respect to one
another and thus polarize the crystal. In an ionic crystal, the resonant frequencies
associated with the relative motion of the positive and negative ions are in the
infrared and will be discussed in the optics chapter in connection with the
restrahlen effect.

3. The rotation of molecules with permanent dipole moments: This is perhaps the
easiest type of dielectric behavior to understand. In an electric field, the dipoles
tend to line up with the electric fields, while thermal effects tend to oppose this
alignment, and so, the phenomenon is temperature dependent. This type of
dielectric behavior is mostly relevant for liquids and gases.

4. The dielectric screening of a quasifree electron gas: This is a many-body
problem of a gas of electrons interacting via the Coulomb interaction. The
technique of using the dielectric constant with frequency and wave-vector
dependence will be discussed. This phenomena is of interest for metals.

Perhaps we should mention electrets here as a fifth type of dielectric behavior in
which the polarization may remain, at least for a very long time after the removal of
an electric field. In some ways an electret is analogous to a magnet. The behavior of
electrets appears to be complex and as yet they have not found wide applications.
Electrets occur in organic waxes due to frozen in disorder that is long lived but
probably metastable.1

J. D. Stranathan—“Benevolent Director”

b. Missouri, USA (1898–1981).

Book, Particles of Modern Physics; Electrets and Dielectric Properties of
Liquids and Solids; Administration.

Perhaps some would disagree with our including him here. However, J. D.
was dedicated to the University of Kansas for 44 years, and was head of the
physics department there for a good portion of that time. He rode out the bad
and the good times of physics funding and attracted for the most part good
professors (e.g. Max Dresden) and students (e.g. Martin Gutzwiller) who
were active and knowledgeable in physics and research. He can represent one
strength of USA physics in that it can occur in places that are not so famous

1See Gutmann [9.9]. See also Bauer et al. [9.1].
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or as well known as for example, Harvard and Berkeley. Among areas of his
research was that of electrets, which are, in some ways, electrical analogs of
magnets. He was best known for his book, which was a good summary of
many active areas in physics before WW II.

9.2 Electronic Polarization and the Dielectric Constant (B)

The ideas in this Section link up closely with optical properties of solids. In the
chapter on the optical properties of solids, we will relate the complex index of
refraction to the absorption and reflection of electromagnetic radiation. Now, we
remind the reader of a simple picture, which relates the complex index of refraction
to the dynamics of electron motion. We will include damping.

Our model considers matters only from a classical point of view. We limit
discussion to electrons in bound states, but for some solids we may want to consider
quasifree electrons or both bound and quasifree electrons. For electrons bound by
Hooke’s law forces, the equation describing their motion in an alternating electric
field E = E0exp(−ixt) may be written (e > 0)

m
d2x
dx2

þ m
s
dx
dt

þmx2
0x ¼ �eE0 exp �ixtð Þ: ð9:1Þ

The term containing s is the damping term, which can be due to the emission of
radiation or the other frictional processes. x0 is the natural oscillation frequency of
the elastically bound electron of charge −e and mass m. The steady-state solution is

x tð Þ ¼ � e
m

E0 exp �ixtð Þ
x2

0 � x2 � ix=s
: ð9:2Þ

Below, we will assume that the field at the electronic site is the same as the
average internal field. This completely neglects local field effects. However, we will
follow this discussion with a discussion of local field effects, and in any case, much
of the basic physics can be done without them. In effect, we are looking at atomic
effects while excluding some interactions.

If N is the number of charges per unit volume, with the above assumptions, we
write:

P ¼ �Nex ¼ e
e0

� 1
� �

e0E ¼ NaE; ð9:3Þ

where e is the dielectric constant and a is the polarizability. Using E = E0exp(−ixt),
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a ¼ � ex
E

¼ e2

m
1

x2
0 � x2 � ix=s

: ð9:4Þ

The complex dielectric constant is then given by

e
e0

¼ 1þ N
e0

e2

m
1

x2
0 � x2 � ix=s

� er þ iei; ð9:5Þ

where we have absorbed the e0 into er and ei for convenience. The real and the
imaginary parts of the dielectric constant are then given by:

er ¼ 1þ Ne2

m e0

x2
0 � x2

x2
0 � x2

� �2 þx2=s2
; ð9:6Þ

ei ¼ Ne2

me0

x=s

x2
0 � x2

� �2 þx2=s2
: ð9:7Þ

In the chapter on optical properties, we will note that the connection (10.8) between
the complex refractive index and the complex dielectric constant is:

n2c ¼ nþ i nið Þ2¼ er þ ieið Þ: ð9:8Þ

Therefore,

n2 � n2i ¼ er; ð9:9Þ

2nni ¼ ei: ð9:10Þ

Thus, explicit equations for fundamental optical constants n and ni are:

n2 � n2i ¼ 1þ Ne2

me0

x2
0 � x2

x2
0 � x2

� �2 þx2=s2
ð9:11Þ

2nni ¼ Ne2

me0

x=s

x2
0 � x2

� �2 þx2=s2
: ð9:12Þ

Quantum mechanics produces very similar equations. The results as given by
Moss2 are

2See Moss [9.13]. Note ni refers to the imaginary part of the dielectric constant on the left of these
equations and in fij, i refers to the initial state, while j refers to the final state.
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n2 � n2i ¼ 1þ
X
j

Ne2 fij=me0
� �

x2
ij � x2

� �
x2

ij � x2
� �2

þx2=s2j

; ð9:13Þ

2nni ¼
X
j

Ne2fij=me0
� �

x=sj

x2
ij � x2

� �2
þx2=s2j

; ð9:14Þ

where the fij are called oscillator strengths and are defined by

fij ¼ 2xji
m wi xj jwj

� 	

 

2
�h

; ð9:15Þ
where

xij ¼ Ei � Ej

�h
; ð9:16Þ

with Ei and Ej being the energies corresponding to the wave functions wi and wj. In
a solid, because of the presence of neighboring dipoles, the local electric field does
not equal the applied electric field.

Clearly, dielectric and optical properties are not easy to separate. Further dis-
cussion of optical-related dielectric properties comes in the next chapter.

We now want to examine some consequences of local fields. We also want to
keep in mind that we will be talking about total dielectric constants and total
polarizability. Thus in an ionic crystal, there are contributions to the polarizabilities
and dielectric constants from both electronic and ionic motion.

The first question we must answer is, “If an external field, E, is applied to a
crystal, what electric field acts on an atom in the crystal?” See Fig. 9.1. The slab is
maintained between two plates that are connected to a battery of constant voltage V.
Fringing fields are neglected. Thus, the electric field, E0, between the plates before
the slab is inserted, is the same as the electric field in the solid-state after insertion
(so, E0d = V). This is also the same as the electric field in a needle-shaped cavity in
the slab. The electric field acting on the atom is

Fig. 9.1 Geometry for local field. (The external electric field in the dielectric is from right to left.)
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Eloc ¼ E0
0 þEa þEb þEc; ð9:17Þ

where, E0
0 is the electric field due to charge on the plates after the slab is inserted, Ea

is the electric field due to the polarization charges on the faces of the slab, and Eb is
the electric field due to polarization charges on the surface of the spherical cavity
(which exists in our imagination), and Ec is the polarization due to charges interior
to the cavity that we assume (in total) sums to zero.

It is, of course, an approximation to write Eloc in the above form. Strictly
speaking, to find the field at any particular atom, we should sum over the contri-
butions to this field from all other atoms. Since this is an impossible task, we treat
macroscopically all atoms that are sufficiently far from A (and outside the cavity).

By Gauss’ law, we know the electric field due to two plates with a uniform
charge density (±r) is E = r/e. Further, r due to P ending on the boundary of a slab
is r = P (from electrostatics). Since the polarization charges on the surface of the
slabs will oppose the electric field of the plate and since charge will flow to
maintain constant voltage.

e0E0 ¼ e0E
0
0 � P; ð9:18Þ

or

E0
0 ¼ E0 þ P

e0
: ð9:19Þ

Clearly, Ea ¼ �P=e0 (see Fig. 9.2), and for all cubic crystals, Ec = 0. So,

Eloc ¼ E0 þEb: ð9:20Þ

Using Fig. 9.3, since rq = P � n (n is outward normal), the charge on an annular
region of the surface of the cavity is

Fig. 9.2 The polarized slab. (Here the external electric field in the dielectric is from left to right.)

Fig. 9.3 Polarized charges around the cavity
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dq ¼ �P cos h � 2pa sin h � adh; ð9:21Þ

dEb ¼ 1
4pe0

dq
a2

� cos h; ð9:22Þ

Eb ¼ � P
2e0

Zp
0

cos2 h � d cos h: ð9:23Þ

Thus Eb = P/3e0, and so we find

Eloc ¼ E0 þ P
3e0

: ð9:24Þ

Since E0 is also the average electric field in the solid, the dielectric constant is
defined as

e ¼ D
E0

¼ e0E0 þP
E0

¼ e0 þ P
E0

: ð9:25Þ

The polarization is the dipole moment per unit volume, and so, it is given by

P ¼
X

i atomsð Þ
Ei
locNiai; ð9:26Þ

where Ni is the number of atoms per unit volume of type i, and ai is the appropriate
polarizability (which can include ionic, as well as electronic motions). Thus,

P ¼ E0 þ P
3e0

� �X
i

Niai; ð9:27Þ

or

P
E0

¼
P

i Niai

1� 1
3e0

X
i
Niai

; ð9:28Þ

or

e
e0

¼ 1þ 1
e0

P
i Niai

1� 1
3e0

X
i
Niai

� � ; ð9:29Þ

which can be arranged to give the Clausius–Mossotti equation
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e=e0ð Þ � 1
e=e0ð Þþ 2

¼ 1
3e0

X
i

Niai: ð9:30Þ

In the optical range of frequencies (the order of but less than 1015 cps), n2 = e/e0,
and the equation becomes the Lorentz–Lorenz equation

n2 � 1
n2 þ 2

¼ 1
3e0

X
i

Niai: ð9:31Þ

Finally, we show that when one resonant peak dominates, the only effect of the
local field is to shift the dormant resonant (natural) frequency. From

e
e0

¼ 1þ 1
e0

Na
1� Na=3e0ð Þ ; ð9:32Þ

and

a ¼ e2

m
1

x2
0 � x2 � ix=s

; ð9:33Þ

we have

e=e0ð Þ � 1
e=e0ð Þþ 2

¼ Na
3e0

¼ x2
p

3
1

x2
0 � x2 � ix=s

; ð9:34Þ

where

xp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ne2=me0

p
ð9:35Þ

is the plasma frequency. From this, we easily show

e
e0

¼ 1þ x2
p

x02
0 � x2 � ix=s

; ð9:36Þ

where

x02
0 ¼ x2

0 �
1
3
x2

p; ð9:37Þ

which is exactly what we would have obtained in the beginning [from (9.32) and
(9.33)] if x0 ! x0

0, and if the term Na/3e0 had been neglected.
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9.3 Ferroelectric Crystals (B)

All ferroelectric crystals are polar crystals.3 Because of their structure, polar crystals
have a permanent electric dipole moment. If qðrÞ is the total charge density, we
know for polar crystals

Z
rq rð ÞdV 6¼ 0: ð9:38Þ

Pyroelectric crystals have a polarization that changes with temperature. All polar
crystals are pyroelectric, but not all polar crystals are ferroelectric. Ferroelectric
crystals are polar crystals whose polarization can be reversed by an electric field.
All ferroelectric crystals are also piezoelectric, in which stress changes the polar-
ization. Piezoelectric crystals are suited for making electromechanical transducers
with a variety of applications.

Ferroelectric crystals often have unusual properties. Rochelle salt
NaKC4H4O6⋅4H2O, which was the first ferroelectric crystal discovered, has both an
upper and lower transition temperature. The crystal is only polarized between the
two transition temperatures. The “TGS” type of ferroelectric, including triglycine
sulfate and triglycine selenate, is another common class of ferroelectrics and has
found application to IR detectors due to its pyroelectric properties. Ferroelectric
crystals with hydrogen bonds (e.g. KH2PO4, which was the second ferroelectric
crystal discovered) undergo an appreciable change in transition temperature when
the crystal is deuterated (with deuterons replacing the H nuclei). BaTiO3 was the
first mechanically hard ferroelectric crystal that was discovered. Ferroelectric
crystals are often classified as displacive, involving a lattice distortion (i.e. barium
titinate, BaTiO3, see Fig. 9.4), or order–disorder (i.e. potassium dihydrogen
phosphate, KH2PO4, which involves the ordering of protons).

Fig. 9.4 Unit cell of barium titanate. The displacive transition is indicated by the direction of the
arrows

3Ferroelectrics: The term ferro is used but iron has nothing to do with it. Low symmetry causes
spontaneous polarization.
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In a little more detail, displacive ferroelectrics involve transitions associated with
the displacement of a whole sublattice. How this could arises is discussed in
Sect. 9.3.3 where we talk about the soft mode model. The soft mode theory,
introduced in 1960, has turned out to be a unifying principle in ferroelectricity (see
Lines and Glass [9.12]). Order–disorder ferroelectrics have transitions associated
with the ordering of ions. We have mentioned in this regard KH2PO4 as a crystal
with hydrogen bonds in which the motion of protons is important. Ferroelectrics
have found application as memories, their high dielectric constant is exploited in
making capacitors, and ferroelectric cooling is another area of application.

Other examples include ferroelectric cubic perovskite (PZT) PbZr(x)Ti(1−x)O3,
Tc = 670 K. The ferroelectric BaMgF4 (BMF) does not show a Curie T even up to
melting. These are other familiar ferroelectrics as given below.

The central problem of ferroelectricity is to be able to describe the onset of
spontaneous polarization. Spontaneous polarization is said to exist if, in the absence
of an electric field, the free energy is minimum for a finite value of the polarization.
There may be some ordering involved in a ferroelectric transition, as in a ferro-
magnetic transition, but the two differ by the fact that the ferroelectric transition in a
solid always involves the creation of dipoles.

Just as for ferromagnets, a ferroelectric crystal undergoes a phase transition from
the paraelectric phase to the ferroelectric phase, typically, as the temperature is
lowered. The transition can be either first order (with a latent heat, i.e. BaTiO3) or
second order (without latent heat, i.e. LiTaO3). Just as for ferromagnets, the fer-
roelectric will typically split into domains of varying size and orientation of
polarization. The domain structure forms to reduce the energy. Ferroelectrics show
hysteresis effects just like ferromagnets. Although we will not discuss it here, it is
also possible to have antiferroelectrics that one can think of as arising from
anti-parallel orientation of neighboring unit cells. A simple model of spontaneous
polarization is obtained if we use the Clausius–Mossotti equation and assume
(unrealistically for solids) that polarization arises from orientation effects. This is
discussed briefly in a later section.

Another similar crystal to barium titanate is strontium titanate. Both have per-
ovskite structure. SrTiO3 (STO) was originally synthesized and then found in
nature. For a while STO enjoyed popularity as a diamond like material in jewelry,
but not being as hard as diamond it scratched much easier. It has been described as
showing a quantum like (due to quantum fluctuations) paraelectric behavior at low
temperature. It also shows a transition at 110 K due to soft phonon mode behavior.
It becomes superconductive when electron doped and in certain cases has been
shown to be useful as a substrate material. A very interesting material which bares
watching. For a start see for example; Lev P. Gor’kov, “Back to mechanisms of
superconductivity in low-doped strontium titanate,” arXiv:1610.02062 [cond-mat.
supr-con].
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9.3.1 Thermodynamics of Ferroelectricity by Landau
Theory (B)

For both first-order (c < 0, latent heat, G continuous) and second-order (c > 0, no
latent heat, G′ (first derivatives) are continuous and we can choose d = 0), we
assume for the Gibbs free energy G′ [9.6 Chap. 3, generally assumed for displacive
transitions],

G ¼ G0 þ 1
2
b T � T0ð ÞP2 þ 1

4
cP4 þ 1

6
dP6; b; d[ 0: ð9:39Þ

(By symmetry, only even powers are possible. Also, in a second-order transition,
P is continuous at the transition temperature Tc, whereas in a first-order one it is
not.) From this we can calculate

E ¼ @G
@P

¼ b T � T0ð ÞPþ cP3 þ dP5; ð9:40Þ

1
v
¼ @E

@P
¼ b T � T0ð Þþ 3cP2 þ 5dP4: ð9:41Þ

Notice in the paraelectric phase, P = 0 so E = 0 and v ¼ 1=bðT�T0Þ, and therefore
Curie–Weiss behavior is included in (9.39). For T < Tc and E = 0 for second order
where d = 0, b(T − T0)P + cP3 = 0, so

P2 ¼ � b
c

T � T0ð Þ; ð9:42Þ

or

P ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b
c

T0 � Tð Þ
s

; ð9:43Þ

which again is Curie–Weiss behavior (we assume c > 0). For T = Tc = T0, we can
show the stable solution is the polarized one.

For first order set E = 0, solve for P and exclude the solution for which the free
energy is a maximum. We find (where we assume c < 0)

PS ¼ � � c
2d

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4db

c2
T � T0ð Þ

s !" #1=2
:

Now, G(PSC) = Gpolar = Gnonpolar = G0 at the transition temperature. Using the
expression for G (9.39) and the expression that results from setting E = 0 (9.40), we
find
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Tc ¼ T0 � c
4b

P2
SC: ð9:44Þ

By E = 0, we find [using (9.44)]

3c
4
P3
SC þ dP5

SC ¼ 0; ð9:45Þ
so

P2
SC ¼ � 3c

4d
: ð9:46Þ

Putting (9.46) into (9.44) gives

Tc ¼ T0 þ 3c2

16bd
: ð9:47Þ

Figures 9.5, 9.6, and 9.7 give further insight into first- and second-order transitions.

(a) (b)

Fig. 9.5 Sketch of (a) first-order and (b) second-order ferroelectric transitions

Fig. 9.6 Sketch of variation of Gibbs free energy G(T, p) for first-order transitions

624 9 Dielectrics and Ferroelectrics



Josiah Willard Gibbs

b. New Haven, Connecticut, USA (1839–1903).

Ensembles; Phase rule; Vector Calculus; Applications of Maxwell’s equations
to Optics.

Gibbs was another giant of statistical mechanics and introduced the idea of
vectors (this work was similar to and independent of the work of Oliver
Heaviside). Gibbs approached statistical mechanics through ensembles. For a
canonical ensemble, the Partition Function Z ¼ Tr(e−bH), Tr is trace, b is 1/kT,
H is the Hamiltonian operator. The derivation of Thermodynamics from state
functions can be done from the partition function. Gibbs never married and had
a most reserved personality. He graduated from Yale and after travels,
including extensive studying in Europe, he returned to Yale and worked in
isolation. As suggested above he was noted7 for several contributions besides
statistical mechanics.

9.3.2 Further Comment on the Ferroelectric
Transition (B, ME)

Suppose we have N permanent, noninteracting dipoles P per unit volume, at tem-
perature T, in an electric field E. At high temperature, simple statistical mechanics
shows that the polarizability per molecule is

Fig. 9.7 Sketch of variations of Gibbs free energy G(T, p) for second-order transitions
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a ¼ P2

3kT
: ð9:48Þ

Combining this with the Clausius–Mossotti equation (9.29) gives

e
e0

¼ 1þ Np2

3ke0 T � Tcð Þ : ð9:49Þ

As T ! Tc, we obtain the “polarization catastrophe”. For a real crystal, even if this
were a reasonable approach, the equation would break down well before T = Tc,
and at T = Tc, we would assume that permanent polarization had set in. Near
T = Tc, the 1 is negligible, and we have essentially a Curie–Weiss type of behavior.
However, this derivation should not be taken too seriously, even though the result is
reasonable.

Another way of viewing the ferroelectric transition is by the Lyddane–Sachs–
Teller (LST) relation. This is developed in the next chapter, see (10.204). Here an
infinite dielectric constant implies a zero-frequency optical mode. This leads to
Cochran’s theory of ferroelectricity arising from “soft” optic modes. The LST
relation can be written

x2
T

x2
L
¼ e 1ð Þ

e 0ð Þ ; ð9:50Þ

where xT is the transverse optical frequency, xL is the longitudinal optical fre-
quency (both at low wave vector), e(∞) is the high-frequency limit of the dielectric
constant and e(0) is the low-frequency (static) limit. Thus a Curie–Weiss behavior
for e(0) as

1
e 0ð Þ / T � Tcð Þ ð9:51Þ

is consistent with

x2
T / T � Tcð Þ: ð9:52Þ

Cochran has pioneered the approach to a microscopic theory of the onset of
spontaneous polarization by the soft mode or “freezing out” (frequency going to
zero) of an optic mode of zero wave vector. The vanishing frequency appears to
result from a canceling of short-range and long-range (Coulomb) forces between
ions. Not all ferroelectric transitions are easily associated with phonon modes. For
example, the order–disorder transition is associated with the ordering of protons in
potential wells with double minima above the transition. Transition temperatures for
some typical ferroelectrics are given in Table 9.1.
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9.3.3 One-Dimensional Model of the Soft Model
of Ferroelectric Transitions (A)

In order to get a better picture of what the soft mode theory involves, we present a
one-dimensional model below that is designed to show ferroelectric behavior.
Anderson and Cochran have suggested that the phase transition in certain ferro-
electrics results from an instability of one of the normal vibrational modes of the
lattice. Suppose that at some temperature Tc

(a) An infinite-wavelength optical mode is accompanied by the condition that the
vibrational frequency x for that mode is zero.

(b) The effective restoring force for this mode for the ion displacements equals
zero. This condition has prompted the terminology, “soft” mode ferroelectrics.

If these conditions are satisfied, it is seen that the static ion displacements would
give rise to a “frozen-in” electric dipole moment–that is, spontaneous polarization.
The idea is shown in Fig. 9.8.

We now consider a one-dimensional lattice consisting of two atoms per unit cell, see
Fig. 9.9. The atoms (ions) have, respectively, mass m1 and m2 with charge e1 = e and
e2 = −e. The equilibrium separation distance between atoms is the distance a/2.

Table 9.1 Selected ferroelectric crystals

Type Crystal Tc (K)

KDP KH2PO4 123

TGS Triglycine sulfate 322

Perovskites BaTiO3 406

PbTiO3 765

LiNbO3 1483

From Anderson HL (ed), A Physicists Desk Reference 2nd edn, American
Institute of Physics, Article 20: Frederikse HPR, p.314, Table 20.02.C.1.,
1989, with permission of Springer-Verlag. Original data from Kittel C,
Introduction to Solid State Physics, 4th edn, p.476, Wiley, NY, 1971

Fig. 9.9 One-dimensional model for ferroelectric transition (masses mi, charges ei)

Fig. 9.8 Schematic for ferroelectric mode in one dimension
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It should be pointed out that in an ionic, one-dimensional model, a unit cell
exhibits a nonzero electric polarization—even when the ions are in their equilibrium
positions. However, in three dimensions, one can find a unit cell that possesses zero
polarization when the atoms are in equilibrium positions. Since our interest is to
present a model that reflects important features of the more complicated
three-dimensional model, we are interested only in the electric polarization that
arises because of displacements away from equilibrium positions. We could pro-
pose for the one-dimensional model the existence of fixed charges that will cancel
the equilibrium position polarization but that have no other effect. At any rate, we
will disregard equilibrium position polarization.

We define xkb as the displacement from its equilibrium position of the bth atom
(b = 1, 2) in the kth unit cell. For N atoms, we assume that the displacements of the
atoms from equilibrium give rise to a polarization, P, where

P ¼ 1
N

X
k0;b0

xk0b0eb: ð9:53Þ

The equation of motion of the bth atom in the kth unit cell can be written

mb€xkb þ
X
k0;b0

Jbb0 k � k0ð Þxk0b0 ¼ cebP; ð9:54Þ

where

Jbb0 k � k0ð Þ ¼ @2V
@xkb@xk0b0

: ð9:55Þ

This equation is, of course, Newton’s second law, F = ma, applied to a particular
ion. The second term on the left-hand side represents a “spring-like” interaction
obtained from a power series expansion to the second order of the potential energy,
V, of the crystal. The right-hand side represents a long-range electrical force rep-
resented by a local electric field that is proportional to the local electric field
Eloc = cP, where c is a constant.

As a further approximation, we assume the spring-like interactions are nearest
neighbors, so

V ¼ c
2

X
k00

xk002 � xk001ð Þ2 þ c
2

X
k00

xk00 þ 1;1 � xk002
� �2

; ð9:56Þ

where c is the spring constant. By direct calculation, we find for the Jbb′

J11 k0 � kð Þ ¼ 2cdk
0
k ¼ J22 k0 � kð Þ;

J12 k0 � kð Þ ¼ �c dk
0
k þ dk

0 þ 1
k

� �
;

J21 k0 � kð Þ ¼ �c dk
0
k þ dk

0�1
k

� �
:

ð9:57Þ
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We rewrite our dynamical equation in terms of h = k′ − k

mb€xkb þ
X
h;b0

Jbb0 hð Þxhþ k;b0 ¼ ceb
N

X
h;b0

xhþ k;b0eb0 : ð9:58Þ

Since this equation is translationally invariant, it has solutions that satisfy Bloch’s
theorem. Thus, there exists a wave vector k such that

xkb ¼ exp ikqað Þxob; ð9:59Þ
where xob is the displacement of the bth atom in the cell chosen as the origin for the
lattice vectors. Substituting, we find

mb€xkb þ
X
h;b0

Jbb0 kð Þ exp ihqað Þxob0 ¼ ceb
N

X
h;b0

exp ihqað Þxob0eb0 : ð9:60Þ

We simplify by defining

Gbb0 qð Þ ¼
X
h

Jbb0 hð Þ exp ihqað Þ: ð9:61Þ

Using the results for Jbb0 , we find

G11 ¼ 2c ¼ G22;

G12 ¼ �c 1þ exp iqað Þ½ �;
G21 ¼ �c 1� exp �iqað Þ½ �:

ð9:62Þ

In addition, since X
h

exp ihqað Þ ¼ Nd0q; ð9:63Þ

we finally obtain,

mb€xob þ
X
b0

Gbb0 qð Þxob0 ¼ ceb
X
b0

d0qxob0eb0 : ð9:64Þ

As in the ordinary theory of vibrations, we assume xob contains a time factor
exp(ixt), so

€xob ¼ �x2xob: ð9:65Þ

The polarization term only affects the q ! 0 solution, which we look at now.
Letting q = 0, and e1 = −e2 = e, we obtain the following two equations:

�m1x
2xo1 þ 2cxo1 � 2cxo2 ¼ ce xo1e� xo2eð Þ; ð9:66Þ
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and

�m2x
2xo2 � 2cxo1 þ 2cxo2 ¼ �ce xo1e� xo2eð Þ: ð9:67Þ

These two equations can be written in matrix form:

�m1x2 þ d �d
�d �m1x2 þ d

� 
xo1
xo2

� 
¼ 0; ð9:68Þ

where d = 2c − ce2. From the secular equation, we obtain the following:

x2 m1m2x
2 � m1 þm2ð Þd� � ¼ 0: ð9:69Þ

The solution x = 0 is the long-wavelength acoustic mode frequency. The other
solution, x2 = d/l with 1/l = 1/m1 + 1/m2, is the optic mode long-wavelength
frequency. For this frequency

�m1xo1 ¼ m2xo2: ð9:70Þ

So,

P ¼ xo1e 1þ m1

m2

� �
; ð9:71Þ

and P 6¼0 if xo1 6¼ 0. Suppose

lim
T!Tc

2c Tð Þ � ce2
� � ¼ 0; ð9:72Þ

then

x2 ¼ d
l
! 0 at T ¼ Tc; ð9:73Þ

and

F1 ¼ m1€xo1 ¼ d xo1 þ xo2ð Þ ! 0 as T ! Tc: ð9:74Þ

So, a solution is xo1 = constant 6¼ 0. That is, the model shows a ferroelectric
solution for T ! Tc.

9.3.4 Multiferroics (A)

We consider the simultaneous situation of magnetic and dielectric order. That is, we
consider situations in which magnetic fields may control electric effects and con-
versely electric fields may affect magnetic effects. A simple definition of the kind of
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multiferroic that is of most interest nowadays is a material that shows both ferro-
electric and ferromagnetic behavior. Although this behavior was considered by
Pierre Curie in the late 19th century, it was only found in the mid 20th century, and
then in only a material with very weak coupling. More recently, materials have been
found which show much stronger coupling and the interest in them has conse-
quently grown. Generally, multiferroic materials need some asymmetry in the
crystal structure. However, recently they have been found surprisingly in cubic
perovskite LaMn3Cr4O12 (X. Wang et al., Phys. Rev. Lett. 115, 087601, 2015). For
a review of somewhat older work see S. W. Cheong and M. Mostovoy, Nature
Mater. 6, 13–20 (2007). Multiferroics seem to have possible applications to spin-
tronics as well as memory devices in multiferroics. Multiferroics also have con-
nections with topological insulators (see Sect. 12.7.4), and are a very hot topic.

9.4 Dielectric Screening and Plasma Oscillations (B)

We begin now to discuss more complex issues. We want to discuss the nature of a
gas of interacting electrons. This topic is closely related to the occurrence of
oscillations in gas-discharge plasmas and is linked to earlier work of Langmuir and
Tonks.4 We begin by considering the subject of plasma oscillations. The general
idea can be presented from a classical viewpoint, so we start by assuming the
simultaneous validity of Newton’s laws and Maxwell’s equations.

Let n0 be the number density of electrons in equilibrium. We assume an equal
distribution of positive charge that remains uniform and, thus, supplies a constant
background. We will consider one dimension only and, thus, consider only lon-
gitudinal plasma oscillations.

Let u(x, t) represent the displacement of electrons whose equilibrium position is
x and refer to Fig. 9.10 to compute the change in density Let e represent the

Fig. 9.10 Schematic used to discuss plasma vibration

4See Tonks and Langmuir [9.19].
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magnitude of the electronic charge. Since the positive charge remains at rest, the
total charge density is given by q = −(n − n0)e. Since the same number of electrons
is contained in the new volume as the old volume.

n ¼ n0Dx
DxþDuð Þ ffi n0 1� du

dx

� �
: ð9:75Þ

Thus,

q ¼ n0e
du
dx

: ð9:76Þ

In one-dimension, Gauss’ law is

dEx

dx
¼ q

e0
¼ n0e

e0

du
dx

: ð9:77Þ

Integrating and using the boundary condition that (Ex)n=0 = 0, we have

Ex ¼ n0e
e0

u: ð9:78Þ

A simpler derivation is discussed in the optics chapter (see Sect. 10.9). Using
Newton’s second law with force −eEx, we have

m
d2u
dt2

¼ � n0e2

e0
u; ð9:79Þ

with solution

u ¼ u0 cos xptþ const:
� �

; ð9:80Þ

where

xp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n0e2=me0

p
ð9:81Þ

is the plasma frequency of electron oscillation. The quanta associated with this type
of excitation are called plasmons. For a typical gas in a discharge tube,
xP ≅ 1010 s−1, while for a typical metal, xP ≅ 1016 s−1.

More detailed discussions of plasma effects and electrons can be made by using
frequency- and wave-vector-dependent dielectric constants. See Sect. 9.5.3 for
further details where we will discuss screening in some detail. We define e(q, x) as
the proportionality constant between the space and time Fourier transform com-
ponents of the electric field and electric displacement vectors. We generally assume
e(x) = e(q = 0, x) provides an adequate description of dielectric properties when
q−1� a, where a is the lattice spacing. It is necessary to use e(q, x) when spatial
variations not too much larger than the lattice constant are important.
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The basic idea is contained in (9.82) and (9.83). For electrical interactions, if the
actual perturbation of the potential is of the form

V 0 ¼
Z Z

m0 q;xð Þ exp iq � rð Þ exp ixtð Þdq � dx: ð9:82Þ

Then, the perturbation of the energy is given by

e0 ¼
Z Z

m0 q;xð Þ
e q;xð Þ exp iq � rð Þ exp ixtð Þdq � dx: ð9:83Þ

eðq;xÞ is used to discuss (a) plasmons, (b) the ground-state energy of a
many-electron system, (c) screening and Friedel oscillation in charge around a
charged impurity in a sea of electrons, (d) the Kohn effect (a singularity in the
dielectric constant that implies a change in phonon frequency), and (e) even other
elementary energy excitations, provided enough physics is included in eðq;xÞ.
Some of this is elaborated in Sect. 9.5.

We now discuss two kinds of waves that can occur in plasmas. The first kind
concerns waves that propagate in a region with only one type of charge carrier, and
in the second we consider both signs of charge carrier. In both cases we assume
overall charge neutrality. Both cases deal with electromagnetic waves propagating
in a charged media in the direction of a constant magnetic field. Both cases only
relate somewhat indirectly to dielectric properties through the Coulomb interaction.
They seem to be worth discussing as an aside.

9.4.1 Helicons (EE)

Here we consider electrons as the charge carriers. The helicons are low-frequency
(much lower than the cyclotron frequency) waves of circularly polarized electro-
magnetic radiation that propagate, with little attenuation, along the direction of the
external magnetic field. They have been observed in sodium at high field (*2.5 T)
and low temperatures (*4 K). The existence of these waves was predicted by
P. Aigrain in 1960. Since their frequency depends on the Hall coefficient, they have
been used to measure it in solids. Their dispersion relation shows that lower fre-
quencies have lower velocities. When high-frequency helicons are observed in the
ionosphere, they are called whistlers (because of the way their signal sounds when
converted to audio).

For electrons (charge −e) in E and B fields with drift velocity v, relaxation time
s, and effective mass m, we have

m
d
dt

þ 1
s

� �
m ¼ �e Eþ m 	 Bð Þ: ð9:84Þ
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Assuming B ¼ Bk̂ and low frequencies so xs 
 1, we can neglect the time
derivatives and so

mx ¼ � esEx

m
� xcsmy;

my ¼ � esEy

m
þxcsmx;

mz ¼ � esEz

m
;

ð9:85Þ

where xc = eB/m is the cyclotron frequency. Letting, r0 = m/ne2s, where n is the
number of charges per unit volume, and the Hall coefficient RH = −1/ne, we can
write (noting j = −nev, j = v/RH):

mx ¼ r0RH Ex þBmy
� �

; ð9:86Þ

my ¼ r0RH Ey � Bmx
� �

: ð9:87Þ

Neglecting the displacement current, from Maxwell’s equations we have:

r	 B ¼ l0 j;

r	 E ¼ � @B
@t

:

Assuming ∇ � E = 0 (overall neutrality), these give

r2E ¼l0
@ j
@ t

: ð9:88Þ

If solutions of the form E = E0exp[i(kx − xt)] and v = v0exp[i(kx − xt)] are
sought, we require:

�k2E ¼ �ixl0
m

RH
;

Ex ¼ i
xl0
k2

mx
RH

;

Ey ¼ i
xl0
k2

my
RH

:

Thus

1� ir0
xl0
k2

� �
mx � r0RHBmy ¼ 0;

r0RHBmx þ 1� ir0
xl0
k2

� �
my ¼ 0:

ð9:89Þ
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Assuming large conductivity, r0xl0/k
2 � 1, and large B, we find:

x ¼ k2

l0
RHj jB ¼ k2

l0ne
B; ð9:90Þ

or the phase velocity is

mp ¼ x
k
¼

ffiffiffiffiffiffiffiffiffiffi
xB
l0ne

s
; ð9:91Þ

independent of m. Note the group velocity is just twice the phase velocity. Since the
plasma frequency xp is (ne

2/me0)
1/2, we can write also

mp ¼ c

ffiffiffiffiffiffiffiffiffi
xxc

x2
p

s
: ð9:92Þ

Typically vp is of the order of sound velocities.

9.4.2 Alfvén Waves (EE)

Alfvén waves occur in a material with two kinds of charge carriers (say electrons
and holes). As for helicon waves, we assume a large magnetic field with
electro-magnetic radiation propagating along the field. Alfvén waves have been
observed in Bi, a semimetal at 4 K. The basic assumptions and equations are:

1. ∇ 	 B = l0j, neglecting displacement current.
2. r	 E ¼ �@B=@t, Faraday’s law.
3. q _v ¼ j	 B; where v is the fluid velocity, and the force per unit volume is

dominated by magnetic forces.
4. E = −(v 	 B), from the generalized Ohm’s law j/r = E + v 	 B with infinite

conductivity.
5. B ¼ Bx̂iþBŷj, where Bx = B0 and is constant while By = B1 (t).
6. Only the jx, Ex, and vy components need be considered (vy is the velocity of the

plasma in the y direction and oscillates with time).
7. _v ¼ @v=@t, as we neglect (v � ∇)v by assuming small hydrodynamic motion.

Also we assume the density q is constant in time.

Combining (1), (3), and (7) we have

l0q
@my
@t

¼ r	 Bð Þ 	 B½ �yffi
@B1

@x
B0: ð9:93Þ
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By (4)

Ez ¼ �B0my;

so

� l0q
B0

@Ez

@t
¼ B0

@B1

@x
: ð9:94Þ

By (2)

@Ez

@x
¼ � @B1

@t
;

so

@2Ez

@t2
¼ � B2

0

l0q
@2B1

@x@t
¼ þ B2

0

l0q
@2Ez

@x2
: ð9:95Þ

This is the equation of a wave with velocity

mA ¼ Bffiffiffiffiffiffiffiffi
l0q

p ; ð9:96Þ

the Alfvén velocity. For electrons and holes of equal number density n and effective
masses me and mh,

mA ¼ Bffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l0n me þmhð Þp ; ð9:97Þ

Notice that vA = (B2/l0q)
1/2 is the velocity in a string of tension B2/l0 and density

q. In some sense, the media behaves as if the charges and magnetic flux lines move
together.

A unified treatment of helicon and Alfvén waves can be found in Elliot and
Gibson [9.5] and Platzman and Wolff [9.15]. Alfvén waves are also discussed in
space physics, e.g. in connection with the solar wind.

9.4.3 Plasmonics (EE)

Light waves incident on a metal dielectric interface can, under appropriate cir-
cumstances, induce surface plasmon waves of the same frequency as the light. The
surface plasmons have wavelengths much less than the wavelengths of the light. In
effect, this allows the optical signal to be squeezed into nanowires that carry much
more information than an electronic wire. Thus, plasmonics may combine the

636 9 Dielectrics and Ferroelectrics



virtues of fiber optics (high frequencies and high bandwidths) and electronics (very
small wire interconnects). Plasmonics does have a limitation in that the amplitude
of the plasmons tends to die out in a short distance (of order perhaps millimeters,
more or less, depending on the device). Kittel [23, p. 302] has a couple of problems
that illustrate surface and interface plasmons (for a single metallic surface, not a thin
film, the surface plasmon frequency is (1/√2) times the volume plasmon frequency).
For further details on how thin film metals can be used to change the plasmon
frequency, as well as a discussion of other ideas and applications see, H.
A. Atwater, “The Promise of Plasmonics,” Sci. Am., April 2007, pp. 56–63, and
references cited therein.

9.5 Free-Electron Screening

9.5.1 Introduction (B)

If you place one charge in the midst of other charges, they will redistribute
themselves in such a way as to “damp out” the long-range effects of the original
charge. This long-range damping is an aspect of screening. Its origin resides in the
Coulomb interactions of charges. This phenomenon was originally treated classi-
cally by the Debye–Huckel theory. A semiclassical form is called the Thomas–
Fermi Approximation, which also assumes a free-electron gas. Neither the Debye–
Huckel Theory nor the Thomas–Fermi model treats screening accurately at small
distances. To do this, it is necessary to use the Lindhard theory.

We begin with the linearized Thomas–Fermi and Debye–Huckel methods and
show how to use them to calculate the screening due to a single charged impurity.
Perhaps the best way to derive this material is through the dielectric function and
derive the Lindhard expression for it for a free-electron gas. The Lindhard
expression for e(x ! 0, q) for small q then gives us the Thomas–Fermi expression.
Generalization of the dielectric function to band electrons can also be made. The
Lindhard approach follows in Sect. 9.5.3.

9.5.2 The Thomas–Fermi and Debye–Huckel
Methods (A, EE)

We assume an electron gas with a uniform background charge (jellium). We assume
a point charge of charge Ze (e > 0) is placed in the jellium. This will produce a
potential u(r), which we assume to be weak and to vary slowly over a distance of
order 1/kF where kF is the wave vector of the electrons whose energy equals the
Fermi energy. For distances close to the impurity, where the potential is neither
weak nor slowly varying our results will not be a very good approximation.
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Consistent with the slowly varying potential approximation, we assume it is valid to
think of the electron energy as a function of position.

Ek ¼ �h2k2

2m
� eu rð Þ; ð9:98Þ

where ħ is Planck’s constant (divided by 2p), k is the wave vector, and m is the
electronic effective mass.

In order to exhibit the effects of screening, we need to solve for the potential u.
We assume the static dielectric constant is e and q is the charge density. Poisson’s
equation is

r2u ¼ �q
e

; ð9:99Þ

where the charge density is

q ¼ eZd rð Þþ n0e� ne; ð9:100Þ

where eZd(r) is the charge density of the added charge. For the spin 1/2 electrons
obeying Fermi–Dirac statistics, the number density (assuming local spatial equi-
librium) is

n ¼
Z

1
exp b Ek � lð Þ½ � þ 1

dk
4p3

; ð9:101Þ

where b = 1/kBT and kB is the Boltzmann constant. When u = 0, then n = n0, so

n0 ¼ n0 lð Þ ¼
Z

1

exp b �h2k2=2m
� �� l
� �� �þ 1

dk
4p3

: ð9:102Þ

Note by (9.98) and (9.102), we also have

n ¼ n0 lþ eu rð Þ½ �: ð9:103Þ

This means the charge density can be written

q ¼ eZd rð Þþ qind rð Þ; ð9:104Þ

where

qind rð Þ ¼ �e n0 lþ eu rð Þð Þ � n0 lð Þ½ �: ð9:105Þ

We limit ourselves to weak potentials. We can then expand n0 in powers of u and
obtain:
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qind rð Þ ¼ �e2
@n0
@l

u rð Þ: ð9:106Þ

The Poisson equation then becomes

r2u ¼ � 1
e

Zed rð Þ � e2
@n0
@l

u rð Þ
� 

: ð9:107Þ

A convenient way to solve this equation is by the use of Fourier transforms. The
Fourier transform of the potential can be written

u qð Þ ¼
Z

u rð Þ exp �iq � rð Þdr; ð9:108Þ

with inverse

u rð Þ ¼ 1

2pð Þ3
Z

u qð Þ exp �iq � rð Þdq; ð9:109Þ

and the Dirac delta function can be represented by

d rð Þ ¼ 1

2pð Þ3
Z

exp iq � rð Þdq: ð9:110Þ

Taking the Fourier transform of (9.107), we have

q2u qð Þ ¼ 1
e

Ze� e2
@n0
@l

u qð Þ
� 

: ð9:111Þ

Defining the screening parameter as

k2S ¼
e2

e
@n0
@l

; ð9:112Þ

we find from (9.111) that

u qð Þ ¼ Ze
e

1
q2 þ k2S

: ð9:113Þ

Then, using (9.109), we find from (9.113) that

u rð Þ ¼ Ze
4per

exp �kSrð Þ: ð9:114Þ

Equations (9.112) and (9.114) are the basic equations for screening.
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For the classical nondegenerate case, we have from (9.102)

n0 lð Þ ¼ exp blð Þ
Z

exp �b�h2k2=2m
� � dk

4p3
; ð9:115Þ

so that by (9.112)

k2S ¼
e2

e
n0
kBT

; ð9:116Þ

we get the classical Debye–Huckel result. For the degenerate case, it is convenient
to rewrite (9.102) as

n0 lð Þ ¼
Z

DðEÞf ðEÞdE; ð9:117Þ

so

@n0
@l

¼
Z

DðEÞ @f
@l

dE; ð9:118Þ

where D(E) is the density of states per unit volume and f(E) is the Fermi function

f Eð Þ ¼ 1
exp b E � lð Þ½ � þ 1

: ð9:119Þ

since

@f Eð Þ
@l

ffi d E � lð Þ; ð9:120Þ

at low temperatures when compared with the Fermi temperature; so we have

@n0
@l

ffi D lð Þ: ð9:121Þ

Since the free-electron density of states per unit volume is

D Eð Þ ¼ 1
2p2

2m

�h2

� �3=2 ffiffiffiffi
E

p
; ð9:122Þ

and the Fermi energy at absolute zero is

l ¼ �h2

2m
3p2n0
� �2=3

; ð9:123Þ
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where n0 = N/V, we find

D lð Þ ¼ 3n0
2l

; ð9:124Þ

which by (9.121) and (9.112) gives the linearized Thomas–Fermi approximation. If
we further use

l ¼ 3
2
kBTF ; ð9:125Þ

we find

k2S ¼
e2

e
n0

kBTF
; ð9:126Þ

which looks just like the Debye–Huckel result except T is replaced by the Fermi
temperature TF. In general, by (9.112), (9.118), (9.119), and (9.122), we have for
free-electrons,

k2S ¼
e2n0
ekBTF

F0
1=2 gð Þ

F1=2 gð Þ ; ð9:127Þ

where η = l/kBT and

F1=2 gð Þ ¼
Z1
0

ffiffiffi
x

p
dx

exp x� gð Þþ 1
ð9:128Þ

is the Fermi integral. Typical screening lengths 1/kS for good metals are of order 1
Å, whereas for typical semiconductors 60 Å is more appropriate. For η 
 –1,
F0
1=2 gð Þ=F1=2 gð Þ � 1, which corresponds to the classical Debye–Huckel theory, and

for η � 1, F0
1=2 gð Þ=F1=2 gð ÞÞ ¼ 3= 2gð Þ is the Thomas–Fermi result.

9.5.3 The Lindhard Theory of Screening (A)

Here we do amore general discussion that is self-consistent.5We start with the idea of
an external potential that determines a set of electronic states. Electronic states in turn
give rise to a charge density from which a potential can be determined. We wish to

5This topic is also treated in Ziman JM [25, Chap. 5], and Grosso and Paravicini [55 p 245ff].
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show how we can determine a charge density and a potential in a self-consistent way
by using the concept of a frequency- and wave-vector-dependent dielectric constant.

The specific problem we wish to solve is that of the self-consistent response to
an applied field. We will assume small applied fields and linear responses. The
electronic response to the applied field is called screening, and it arises from the
interaction of the electrons with each other and with the external field. Only
screening by a free-electron gas will be considered.

Let a charge qext be placed in jellium, and let it produce a potential uext (by
itself). Let u be the potential caused by the extra charge, the free-electrons, and the
uniform background charge (i.e. extra charge plus jellium). We also let be the
corresponding charge density. Then

r2uext ¼ � qext

e
; ð9:129Þ

r2u ¼ � q
e
: ð9:130Þ

The induced charge density qind is then defined by

qind ¼ q� qext: ð9:131Þ

We Fourier analyze the equations in both the space and time domains:

q2uext q;xð Þ ¼ qext q;xð Þ
e

; ð9:132aÞ

q2u q;xð Þ ¼ q q;xð Þ
e

; ð9:132bÞ

q q;xð Þ ¼ qext q;xð Þþ qind q;xð Þ: ð9:132cÞ

Subtracting (9.132a) from (9.132b) and using (9.132c) yields:

eq2 u q;xð Þ � uext q;xð Þ½ � ¼ qind q;xð Þ: ð9:133Þ

We have assumed weak field and linear responses, so we write

qind q;xð Þ ¼ g q;xð Þu q;xð Þ; ð9:134Þ

which defines g(q, x). Thus, (9.133) and (9.134) give this as

eq2 u q;xð Þ � uext q;xð Þ½ � ¼ g q;xð Þu q;xð Þ: ð9:135Þ

Thus,
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u q;xð Þ ¼ uext q;xð Þ
e q;xð Þ ; ð9:136Þ

where

e q;xð Þ ¼ 1� g q;xð Þ
eq2

: ð9:137Þ

To proceed further, we need to calculate e(q, x) directly. In the process of doing
this, we will verify the correctness of the linear response assumption. We write the
Schrödinger equation as

H0 ki ¼ Ekj jki: ð9:138Þ

We assume an external perturbation of the form

dV r; tð Þ ¼ V exp i q � rþxtð Þð ÞþV exp �i q � rþxtð Þð Þ½ � exp atð Þ: ð9:139Þ

The factor exp(at) has been introduced so that the perturbation vanishes as t = −∞,
or in other words, as the perturbation is slowly turned on. V is assumed real. Let

H ¼ H0 þ dV : ð9:140Þ

We then seek an approximate solution of the time-dependent Schrödinger wave
equation

Hw ¼ i�h
@w
@t

: ð9:141Þ

We seek solutions of the form

wj i ¼
X

k0
Ck0 tð Þ exp �iEk0 t=�hð Þ k0j i: ð9:142Þ

Substituting, X
k0

H0 þ dVð ÞCk0 tð Þexp �iEk0 t=�hð Þjk0i

¼ i�h
@

@t

X
k0

Ck0 tð Þexp �iEk0 t=�hð Þjk0i:
ð9:143Þ

Using (9.138) to cancel two terms in (9.143), we haveX
k0

dVCk0 tð Þexp �iEk0 t=�hð Þjk0i ¼ i�h
X
k0

_Ck0 tð Þexp �iEk0 t=�hð Þjk0i: ð9:144Þ
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Using

k00jk0h i ¼ dk
00

k0 ; ð9:145Þ

k00 dVj jk0h i ¼ k00 dVj jk0þq
� 	

d
k00þq
k0 ; ð9:146Þ

_Ck00 tð Þ ¼ 1
i�h
Ck00 þ q exp �iEk00 þ qt=�h

� �
k00 dVj jk00 þ qh i exp iEk00 t=�hð Þ

þ 1
i�h
Ck00�q exp �iEk00�qt=�h

� �
k00 dVj jk00 � qh i exp iEk00 t=�hð Þ:

ð9:147Þ

Using (9.139), we have

_Ck00 tð Þ ¼
1
i�h
Ck00 þ q exp �i Ek00 þ q � Ek00

� �
t=�h

� �
V exp �ixtð Þ exp atð Þ

þ 1
i�h
Ck00�q exp �i Ek00�q � Ek00

� �
t=�h

� �
V exp ixtð Þ exp atð Þ:

ð9:148Þ

We assume a weak perturbation, and we begin in the state k with probability f0(k),
so we have

Ck00 tð Þ ¼
ffiffiffiffiffiffiffiffiffiffi
f0 kð Þ

p
dk00;k þ kC 1ð Þ

k00 tð Þ: ð9:149Þ

We write out (9.147) to first order for two interesting cases:

_Ckþ q tð Þ ¼ k _C 1ð Þ
kþ q tð Þ

¼ 1
i�h

� � ffiffiffiffiffiffiffiffiffiffi
f0 kð Þ

p
exp �i Ek � Ekþ q

� �
t=�h

� �
V exp ixtð Þ exp atð Þ;

ð9:150Þ

_Ck�q tð Þ ¼ k _C 1ð Þ
k�q tð Þ

¼ 1
i�h

� � ffiffiffiffiffiffiffiffiffiffi
f0 kð Þ

p
exp �i Ek � Ek�q

� �
t=�h

� �
V exp �ixtð Þ exp atð Þ:

ð9:151Þ

Integrating, we find, since Ck±q(∞) = 0

Ckþ q tð Þ ¼
ffiffiffiffiffiffiffiffiffiffi
f0 kð Þ

p exp �i Ek � Ekþ q
� �

t=�h
� �

V exp ixtð Þ exp atð Þ
Ek � Ekþ q � �hxþ i�ha

; ð9:152Þ

Ck�q tð Þ ¼
ffiffiffiffiffiffiffiffiffiffi
f0 kð Þ

p exp �i Ek � Ek�q
� �

t=�h
� �

V exp �ixtð Þ exp atð Þ
Ek � Ek�q þ �hxþ i�ha

: ð9:153Þ

We write (9.142) as
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w kð Þ ¼
X
k0

Ck0 tð Þ exp �iEk0 t=�hð Þwk0 ; ð9:154Þ

where

wk0 rð Þ ¼ 1ffiffiffiffi
X

p eik
0 �r; ð9:155Þ

and X is the volume. We put a superscript on w because we assume we start in the
state k. More specifically, (9.153) can be written as

w kð Þ ¼ exp �iEkt=�hð Þ
ffiffiffiffiffiffiffiffiffiffi
f0 kð Þ

p
wk

þCkþ q tð Þ exp �iEkþ qt=�h
� �

wkþ q þCk�q tð Þ exp �iEk�qt=�h
� �

wk�q:

ð9:156Þ

Any charge density in jellium is an induced charge density (in equilibrium, jellium
is uniform and has a net density of zero). Thus,

qind ¼ eN
X

� e
X
k

w kð Þ



 


2: ð9:157Þ

Now, note

w kð Þ



 


2¼ 1

X
and

X
all k

f0 kð Þ ¼ N; ð9:158Þ

so putting (9.155) into (9.156) and retaining no terms beyond first order,

qind ¼ eN
X

� e
X

X
k

f0ðkÞ 1þ V expðiq � rÞ exp ixtð Þ exp atð Þ
Ek � Ekþ q � �hxþ i�ha

�

þV expð�iq � rÞ exp �ixtð Þ expðatÞ
Ek � Ekþ q þ �hxþ i�ha

þ c:c.
�
;

ð9:159Þ

or

qind ¼ � e
X

X
k

f0 kð Þ � f0 kþ qð Þ½ �V exp iq � rð Þ exp ixtð Þ exp atð Þ
Ek � Ekþ q � �hxþ i�ha

þ c:c:

� �
:

ð9:160Þ

Using
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V q;xð Þ ¼ �eu q;xð Þ; ð9:161Þ

and identifying qind(q, x) as the coefficient of exp(iq � r)exp(i xt), we have

qind q;xð Þ ¼ � e2

X

X
k

f0 kð Þ � f0 k� qð Þ
Ek�q � Ek � �hxþ i�ha

� �
u q;xð Þ: ð9:162Þ

By (9.134) we find g(q, x) and by (9.137), we thus find

e q;xð Þ ¼ 1þ e2

eXq2
X
k

f0 kð Þ � f0 k� qð Þ
Ek�q � Ek � �hxþ i�ha

: ð9:163Þ

Finally, a few notes are provided on notation. We can redefine the Fourier com-
ponents so as to change the sign of q. For example, we can say

u rð Þ ¼ 1

2pð Þ2
Z

exp �iq � rð Þu qð Þdq: ð9:164Þ

Then defining

mq ¼ e2

eXq2
; ð9:165Þ

gives e(q, x) in the form given in many textbooks:

e q;xð Þ ¼ 1� mq
X
k

f0 kþ qð Þ � f0 kð Þ
Ekþ q � Ek � �hxþ i�ha

: ð9:166Þ

The limit as a ! 0 is tacitly implied in (9.166). In the limit as q becomes small,
(9.165) gives, as we will show below, the Thomas–Fermi approximation (when
x = 0). Two notable effects follow from (9.165), but they are not included in the
small q limit. An expression for e(q, 0) at large q is readily obtained for our
free-electron case. The result for x = 0 is

e q;xð Þ ¼ 1þ constantð ÞD EFð Þ 1
2
þ 1� x2

4x
ln

1þ x
1� x












� 
; ð9:167Þ

where D(EF) is the density of states at the Fermi energy and x = q/2kF with kF being
the wave vector at the Fermi energy. This expression has a singularity at q = 2kF,
which causes the screening of a charged impurity to have a weakly decaying
oscillating term (beyond the Fermi–Thomas potential). This is the origin of Friedel
oscillations. The Friedel oscillations damp out with distance due to electron scat-
tering. At finite temperature, the singularity disappears causing the Friedel oscil-
lation to damp out.
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Further, since ion–ion interactions are screening by e(q), the singularity at
q = 2kF is reflected in the phonon spectrum. Kinks in the phonon spectrum due to
the singularity in e(q) are called Kohn anomalies.

Finally, we look at (9.165) for small q, x = 0 and a = 0. We find

e q;xð Þ ¼ 1� e2

eXq2
X
k

@f0=@k
@Ek=@k

¼ 1� e2

eq2
X
k

D Eð Þ @f
@E

dE ¼ 1þ k2S
q2

:

ð9:168Þ

and hence comparing to previous work, we get exactly the Thomas–Fermi
approximation.

Jacques Friedel

b. Paris, France (1921–2014)

Dislocations; Friedel Oscillations and Friedel Sum Rule; Many insights into
metals and alloys and physical metallurgy

Friedel, while best known for the oscillation of charge around a charged
impurity, worked in many areas, including the effect of dislocations on
materials. He was a co-founder of the Laboratory of Solid State Physics at
Orsay, France and one of founders of the discipline of Materials Science. He
was noted for simple models used to explain complex phenomena.

Problems

9:1 Show that E0
0 ¼ E0 þP=e0, where E0 is the electric field between the plates

before the slab is inserted (9.19).
9:2 Show that E1 = −P/e0 (see Fig. 9.2).
9:3 Show that E2 = P/3e0 (9.23).
9:4 Show for cubic crystals that E3 = 0 (chapter notation is used).
9:5 If we have N permanent free dipoles p per unit volume in an electric field E,

find an expression for the polarization. At high temperatures show that the
polarizability (per molecule) is a = p2/3kT. What magnetic situation is this
analogous to?

9:6 Use (9.30) and (9.48) to show (9.49)
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e
e0

¼ 1þ Np2

3ke0 T � Tcð Þ :

Find Tc. How likely is this to apply to any real material?
9:7 Use the trial wave function w = w100 (1 + pz) (where p is the variational

parameter) for a hydrogen atom (in an external electric field in the z direction)
to show that we obtain for the polarizability 16pe0a30. (w100 is the ground-state
wave function of the unperturbed hydrogen atom, a0 is the radius of the first
Bohr orbit of the hydrogen atom, and the exact polarizability is 18pe0a30.)

9:8 (a) Given the Gibbs free energy6

G ¼ G0 þ 1
2 b T � T0ð ÞP2 þ 1

4 cP
4 þ 1

6 dP
6;

b; d[ 0; c\0 first orderð Þ;

derive an expression for Tc in terms of Psc where G(Psc) = G0 and E = 0.
(b) Put the expression for Tc in terms without Psc. That is, fill in the details of
Sect. 9.3.1.

6See e.g. Fatuzzo and Merz [9.6, Chap. 9] or Kittel and Kroemer [10, Subject References] pp. 298–
304, i.e. the section called “Landau Theory of Phase Transitions.”
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