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Preface

First, we want to say a bit about solid-state physics, condensed matter, and materials
science. These three names have overlapping meanings, and as far as we under-
stand, there is no universal agreement on what each term signifies. Let us state what
we signify by these terms and why we have decided to use the term solid-state
physics in our title.

Within the American Physical Society (APS), the Division of Solid-State
Physics was formed in 1947 and the Division of Condensed Matter Physics
(DCMP) replaced it in 1978. An outgrowth from DCMP was the eventual formation
of the Division of Materials Physics (DMP) in 1990. According to APS, the
Division of Condensed Matter Physics was formed “to recognize that disciplines
covered in the division included liquids (quantum fluids) as well as solids.” Also the
APS states, “Materials Physics applies fundamental condensed matter concepts to
complex and multiphase media, including materials of technological interest.” An
interesting paper gives some insight as to what has been considered interesting in
the world of materials science in the last fifty years. Johnathan Wood, “The top ten
advances in materials science,” Materials Today, 11, Number 1–2, pp. 40–45,
2008.

What we mean by solid-state physics is essentially defined by chapter titles and
headers in our book (a large part of solid-state physics is the physics of crystalline
matter). Some authors tend to think of condensed matter physics as containing the
fundamental aspects of solid-state physics as well as adding liquids. Some might
even go so far as to say condensed matter physics is “more pure” than materials
physics. Material physicists we believe tend to have a more applied or technological
slant to their field, and I suppose in that sense some might consider it “less pure.”

The names “Condensed Matter,” and “Materials,” are also influenced by fund-
ing. If there are several funding opportunities available in the fundamental under-
pinnings of a solid-state area, a physicist in that field might wish to be considered a
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condensed matter physicist. Similarly, if funding is going to technological areas
more generously, the same physicist might want to be thought of as working in
materials.

All three of the areas are overlapping. In any case, when one is discussing
introductory material, there seems to be little reason to split hairs, however fluids
are not normally part of our considerations, although we added a short appendix on
them.

In recent years, two very instructive books have appeared in this area.

1. Marvin L. Cohen and Steven G. Louie, Fundamentals of Condensed Matter
Physics, Cambridge University Press, Cambridge, UK, 2016. This book is at the
graduate level.

2. Steven H. Simon, The Oxford Solid State Basics, Oxford University Press,
Oxford, UK, 2013. This book is at a modern undergraduate level.

The principle changes to this book from early editions are:

1. An (idiosyncratic) set of very brief mini-biographies of men and women who
have made a major mark in solid-state physics. The mini-biographies are
gathered from a variety of references both on and off the Internet. Every effort
has been made for their accuracy we hope with success. We found the obituaries
in Physics Today as particularly helpful sources. We would also like to feel the
list is representative if not complete. (Note: Whenever the pronoun “I” is used in
the mini-biographies, it refers to the first author of this book—JDP)

2. Several other brief discussions of mostly modern work presented in a condensed
and often qualitative way. These include:
Batteries, BEC-to-BCS evolution, BJT and JFET, Bose–Einstein Condensation,
Polymers, Density Functional Theory, Dirac Fermions, Drude Model, Emergent
Properties, Excitonic Condensates, Five Kinds of Insulators, Fluid Dynamics,
Graphene, Heavy Fermions, High Tc Superconductor, Hubbard and t-J Models,
Invisibility Cloaks, Iron Pnictide Superconductors, Light-Emitting Diodes,
Majorana Fermions, Moore’s Law, N-V Centers, Nanomagnetism, Nanometer
Structures, Negative Index of Refraction, (Carbon) Onions, Optical Lattices,
Phononics, Photonics, Plasmonics, Quantum Computing, Quantum
Entanglement, Quantum Information, Quantum Phase Transitions, Quantum
Spin Liquids, Semimetals, Skyrmions, Solar Cells, Spin Hall Effect, Spintronics,
Strong Correlations, Time Crystals, Topological Insulators, Topological Phases,
Weyl Fermions.

3. A discussion of the recent Nobel Prize-winning work (and related matters) in
Topological Phases and Topological Insulators.

4. A different set of solved problems.
5. Some additional material on magnetism.

vi Preface



In addition to the acknowledgements in the prefaces of previous editions, we
would like to thank Prof. Marvin Cohen of the University of California/Berkeley,
for suggesting some names of female physicists to include in our mini-biographies,
and we continue to appreciate the aid of Dr. Claus Ascheron and the Staff of
Springer.

Rapid City, South Dakota J. D. Patterson
Cape Canaveral, Florida B. C. Bailey
June 2017
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Preface to the Second Edition

It is one thing to read science. It is another and far more important activity to do it.
Ideally, this means doing research. Before that is practical however, we must “get
up to speed.” This usually involves attending lectures, doing laboratory experi-
ments, reading the material, and working problems. Without solving problems, the
material in a physics course usually does not sink in and we make little progress.
Solving problems can also, depending on the problems, mimic the activity of
research. It has been our experience that you never really get anywhere in physics
unless you solve problems on paper and in the lab.

The problems in our book cover a wide range of difficulty. Some involve filling
in only a few steps or doing a simple calculation. Others are more involved, and a
few are essentially open-ended. Thus, the major change in this second edition is the
inclusion of a selection of solutions in an appendix to show you what we expected
you to get out of the problems. All problems should help you to think more about
the material. Solutions not found in the text are available to instructors through
Springer.

In addition, certain corrections to the text have been made. Also very brief
introductions have been added to several modern topics such as plasmonics,
photonics, phononics, graphene, negative index of refraction, nanomagnetism,
quantum computing, Bose–Einstein condensation, optical lattices.

We have also added some other materials in an expanded set of appendices.
First, we have included a brief summary of solid-state physics as garnered from the
body of the text. This summary should, if needed, help you get focused on a
solution. We have also included another kind of summary we call “folk theorems.”
We have used these to help remember the essence of the physics without the
mathematics. A list of handy mathematical results has also been added.

As a reminder that physics is an ongoing process, in an appendix we have listed
those Nobel Prizes in physics and chemistry that relate to condensed matter physics.

ix



In addition to those people we thanked in the preface to the first edition, we
would like to thank again Dr. Claus Ascheron and the Staff at Springer for addi-
tional suggestions to improve the usability of this second edition.

Boa Viagem, as they say in Brazil!

Rapid City, South Dakota J. D. Patterson
Cape Canaveral, Florida B. C. Bailey
July 2010
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Preface to the First Edition

Learning solid-state physics requires a certain degree of maturity, since it involves
tying together diverse concepts from many areas of physics. The objective is to
understand, in a basic way, how solid materials behave. To do this, one needs both
a good physical and mathematical background. One definition of solid-state physics
is that it is the study of the physical (e.g., the electrical, dielectric, magnetic, elastic,
and thermal) properties of solids in terms of basic physical laws. In one sense,
solid-state physics is more like chemistry than some other branches of physics
because it focuses on common properties of large classes of materials. It is typical
that solid-state physics emphasizes how physical properties link to the electronic
structure. In this book, we will emphasize crystalline solids (which are periodic 3D
arrays of atoms).

We have retained the term solid-state physics, even though condensed matter
physics is more commonly used. Condensed matter physics includes liquids and
non-crystalline solids such as glass, about which we have little to say. We have also
included only a little material concerning soft condensed matter (which includes
polymers, membranes, and liquid crystals—it also includes wood and gelatins).

Modern solid-state physics came of age in the late 1930s and early 1940s (see
Seitz [82]) and had its most extensive expansion with the development of the
transistor, integrated circuits, and microelectronics. Most of microelectronics,
however, is limited to the properties of inhomogeneously doped semiconductors.
Solid-state physics includes many other areas of course; among the largest of these
are ferromagnetic materials and superconductors. Just a little less than half of all
working physicists are engaged in condensed matter work, including solid state.

One earlier version of this book was first published 30 years ago (J. D. Patterson,
Introduction to the Theory of Solid State Physics, Addison-Wesley Publishing
Company, Reading, Massachusetts, 1971, copyright reassigned to JDP 13
December, 1977), and bringing out a new modernized and expanded version has
been a prodigious task. Sticking to the original idea of presenting basics has meant
that the early parts are relatively unchanged (although they contain new and
reworked material), dealing as they do with structure (Chap. 1), phonons (2),
electrons (3), and interactions (4). Of course, the scope of solid-state physics has
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greatly expanded during the past 30 years. Consequently, separate chapters are now
devoted to metals and the Fermi surface (5), semiconductors (6), magnetism (7,
expanded and reorganized), superconductors (8), dielectrics and ferroelectrics (9),
optical properties (10), defects (11), and a final chapter (12) that includes surfaces
and brief mention of modern topics (nanostructures, the quantum Hall effect, carbon
nanotubes, amorphous materials, and soft condensed matter). The reference list has
been brought up to date, and several relevant topics are further discussed in the
appendices. The table of contents can be consulted for a full list of what is now
included.

The fact that one of us (JDP) has taught solid-state physics over the course
of these 30 years has helped define the scope of this book, which is intended as a
textbook. Like golf, teaching is a humbling experience. One finds not only that the
students do not understand as much as one hopes, but one constantly discovers
limits to his own understanding. We hope this book will help students to begin a
lifelong learning experience, for only in that way they can gain a deep under-
standing of solid-state physics.

Discoveries continue in solid-state physics. Some of the more obvious ones
during the last 30 years are: quasicrystals, the quantum Hall effect (both integer and
fractional—where one must finally confront new aspects of electron–electron
interactions), high-temperature superconductivity, and heavy fermions. We have
included these, at least to some extent, as well as several others. New experimental
techniques, such as scanning probe microscopy, LEED, and EXAFS, among others
have revolutionized the study of solids. Since this is an introductory book on
solid-state theory, we have only included brief summaries of these techniques. New
ways of growing crystals and new “designer” materials on the nanophysics scale
(superlattices, quantum dots, etc.) have also kept solid-state physics vibrant, and we
have introduced these topics. There have also been numerous areas in which
applications have played a driving role. These include semiconductor technology,
spin-polarized tunneling, and giant magnetoresistance (GMR). We have at least
briefly discussed these as well as other topics.

Greatly increased computing power has allowed many ab initio methods of
calculations to become practical. Most of these require specialized discussions
beyond the scope of this book. However, we continue to discuss pseudopotentials
and have added a section on density functional techniques.

Problems are given at the end of each chapter (many new problems have been
added). Occasionally, they are quite long and have different approximate solutions.
This may be frustrating, but it appears to be necessary to work problems in
solid-state physics in order to gain a physical feeling for the subject. In this respect,
solid-state physics is no different from many other branches of physics.

We should discuss what level of students for which this book is intended. One
could perhaps more appropriately ask what degree of maturity of the students is
assumed? Obviously, some introduction to quantum mechanics, solid-state physics,
thermodynamics, statistical mechanics, mathematical physics, as well as basic
mechanics and electrodynamics is necessary. In our experience, this is most
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commonly encountered in graduate students, although certain mature undergradu-
ates will be able to handle much of the material in this book.

Although it is well to briefly mention a wide variety of topics, so that students
will not be “blind sided” later, and we have done this in places, in general it is better
to understand one topic relatively completely than to scan over several. We caution
professors to be realistic as to what their students can really grasp. If the students
have a good start, they have their whole careers to fill in the details.

The method of presentation of the topics draws heavily on many other solid-state
books listed in the bibliography. Acknowledgment due the authors of these books is
made here. The selection of topics was also influenced by discussion with col-
leagues and former teachers, some of whom are mentioned later.

We think that solid-state physics abundantly proves that more is different, as has
been attributed to P. W. Anderson. There really are emergent properties at higher
levels of complexity. Seeking them, including applications, is what keeps
solid-state physics alive.

In this day and age, no one book can hope to cover all of solid-state physics. We
would like to particularly single out the following books for reference and or further
study. Terms in brackets refer to references listed in the Bibliography.

1. Kittel—7th edition—remains unsurpassed for what it does [23, 1996]. Also
Kittel’s book on advanced solid-state physics [60, 1963] is very good.

2. Ashcroft and Mermin, Solid State Physics—has some of the best explanations of
many topics I have found anywhere [21, 1976].

3. Jones and March—a comprehensive two-volume work [22, 1973].
4. J. M. Ziman—many extremely clear physical explanation [25, 1972], see also

Ziman’s classic Electrons and Phonons [99, 1960].
5. O. Madelung, Introduction to Solid-State Theory—Complete with a very

transparent and physical presentation [4.25].
6. M. P. Marder, Condensed Matter Physics—A modern presentation, including

modern density functional methods with references [3.29].
7. P. Phillips, Advanced Solid State Physics—A modern Frontiers in Physics book,

bearing the imprimatur of David Pines [A.20].
8. Dalven—a good start on applied solid-state physics [32, 1990].
9. Also Oxford University Press has recently put out a “Master Series in

Condensed Matter Physics.” There are six books which we recommend.

a) Martin T. Dove, Structure and Dynamics—An atomic view of Materials
[2.14].

b) John Singleton, Band Theory and Electronic Properties of Solids [3.46].
c) Mark Fox, Optical Properties of Solids [10.12].
d) Stephen Blundell, Magnetism in Condensed Matter [7.9].
e) James F. Annett, Superconductivity, Superfluids, and Condensates [8.3].
f) Richard A. L. Jones, Soft Condensed Matter [12.30].
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A word about notation is in order. We have mostly used SI units (although
Gaussian is occasionally used when convenient); thus E is the electric field, D is the
electric displacement vector, P is the polarization vector,H is the magnetic field, B is
the magnetic induction, and M is the magnetization. Note that the above quantities
are in boldface. The boldface notation is used to indicate a vector. The magnitude of
a vector V is denoted by V. In the SI system, l is the permeability (l also represents
other quantities). l0 is the permeability of free space, e is the permittivity, and e0 is
the permittivity of free space. In this notation, l0 should not be confused with lB,
which is the Bohr magneton ½¼ ej j�h=2m, where e = magnitude of electronic charge
(i.e., e means +|e| unless otherwise noted), �h = Planck’s constant divided by 2p, and
m = electronic mass]. We generally prefer to write

R
Ad3r or

R
Adr instead ofR

A dx dy dz , but they all mean the same thing. Both hijHjji and i Hj jjð Þ are used for
the matrix elements of an operator H. Both mean

R
w�Hwds where the integral over

s means to integrate over whatever space is appropriate (e.g., it could mean an
integral over real space and a sum over spin space). By

P
a summation is indicated

and by
Q

a product. The Kronecker delta dij is 1 when i = j and zero when i 6¼ j. We
have not used covariant and contravariant spaces; thus, dij and d

j
i , for example, mean

the same thing. We have labeled sections by A for advanced, B for basic, and EE for
material that might be especially interesting for electrical engineers, and similarly
MS for materials science, and MET for metallurgy. Also by [number], we refer to a
reference at the end of the book.

There are too many colleagues to thank, to include a complete list. JDP wishes to
specifically thank several. A beautifully prepared solid-state course by Professor
W. R Wright at the University of Kansas gave him his first exposure to a logical
presentation of solid-state physics, while also at Kansas, Dr. R. J. Friauf was very
helpful in introducing JDP to the solid-state. Discussions with Dr. R. D. Redin,
Dr. R. G. Morris, Dr. D. C. Hopkins, Dr. J. Weyland, Dr. R. C. Weger, and others
who were at the South Dakota School of Mines and Technology were always
useful. Sabbaticals were spent at Notre Dame and the University of Nebraska,
where working with Dr. G. L. Jones (Notre Dame) and D. J. Sellmyer (Nebraska)
deepened JDP’s understanding. At the Florida Institute of Technology,
Drs. J. Burns, and J. Mantovani have read parts of this book, and discussions with
Dr. R. Raffaelle and Dr. J. Blatt were useful. Over the course of JDP’s career, a
variety of summer jobs were held that bore on solid-state physics; these included
positions at Hughes Semiconductor Laboratory, North American Science Center,
Argonne National Laboratory, Ames Laboratory of Iowa State University,
the Federal University of Pernambuco in Recife, Brazil, Sandia National
Laboratory, and the Marshal Space Flight Center. Dr. P. Richards of Sandia and
Dr. S. L. Lehoczky of Marshall were particularly helpful to JDP. Brief, but very
pithy conversations of JDP with Dr. M. L. Cohen of the University of California,
Berkeley, over the years, have also been uncommonly useful.
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Dr. B. C. Bailey would like particularly to thank Drs. J. Burns and J. Blatt for the
many years of academic preparation, mentorship, and care they provided at Florida
Institute of Technology. Special thanks to Dr. J. D. Patterson who, while Physics
Department Head at Florida Institute of Technology, made a conscious decision to
take on a coauthor for this extraordinary project.

All mistakes, misconceptions, and failures to communicate ideas are our own.
No doubt some sign errors, misprints, incorrect shading of meanings, and perhaps
more serious errors have crept in, but hopefully their frequency decreases with their
gravity.

Most of the figures, for the first version of this book, were prepared in prelim-
inary form by Mr. R. F. Thomas. However, for this book, the figures are either new
or reworked by the coauthor (BCB).

We gratefully acknowledge the cooperation and kind support of Dr. C. Ascheron,
Ms. E. Sauer, and Ms. A. Duhm of Springer. Finally, and most importantly, JDP
would like to note that without the constant encouragement and patience of his wife
Marluce, this book would never have been completed.

Rapid City, South Dakota J. D. Patterson
Cape Canaveral, Florida B. C. Bailey
October 2005
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Chapter 1
Crystal Binding and Structure

It has been argued that solid-state physics was born, as a separate field, with the
publication, in 1940, of Frederick Seitz’s book,Modern Theory of Solids [82]. In that
book parts of many fields such as metallurgy, crystallography, magnetism, and
electronic conduction in solids were in a sense coalesced into the new field of
solid-state physics. About twenty years later, the term condensed-matter physics,
which included the solid-state but also discussed liquids and related topics, gained
prominent usage (see, e.g., Chaikin and Lubensky [26]). In this book we will focus on
the traditional topics of solid-state physics, but particularly in the last chapter con-
sider also some more general areas. The term “solid-state” is often restricted to mean
only crystalline (periodic) materials. However, we will also consider, at least briefly,
amorphous solids (e.g., glass that is sometimes called a supercooled viscous liquid),1

as well as liquid crystals, something about polymers, and other aspects of a new
subfield that has come to be called soft condensed-matter physics (see Chap. 12).

The history of Solid State Physics is very involved including many fields.
Perhaps the most complete history is found in Hoddeson et al. [38]. Some of the
earliest history involves minerals and rocks. A mineral is solid, naturally occurring,
of a specifiable chemical composition, inorganic, and with an internal structure that
is ordered. There are well over 3000 minerals. Most rocks can be defined as a
mixture of minerals. The three classes of rocks are: igneous (from liquid rocks),
metamorphic (from changes in preexisting rocks), and sedimentary (from trans-
formations of other rocks), Some of the earliest work in solid-state yielded
Matthiessen’s Rule, the Wiedemann-Franz Law, the Hall effect, the Drude model,
crystallography, X-ray scattering, and other areas. We will discuss all of these areas
as well as much more recent work.2

1The viscosity of glass is typically greater than 1013 poise and it is disordered.
2It might be of interest to some students to start off with advice on a career. One author of this book
has written two articles on this topic. See:

1. James D. Patterson, “An Open Letter to the Next Generation,” Physics Today, 57, 56 (2004)
2. James D. Patterson, “Ten Mistakes for Physicists to Avoid,” APS News, January 2012

(Volume 21, Number 1).
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The physical definition of a solid has several ingredients. We start by defining a
solid as a large collection (of the order of Avogadro’s number) of atoms that attract
one another so as to confine the atoms to a definite volume of space. Additionally,
in this chapter, the term solid will mostly be restricted to crystalline solids.
A crystalline solid is a material whose atoms have a regular arrangement that
exhibits translational symmetry. The exact meaning of translational symmetry will
be given in Sect. 1.2.2. When we say that the atoms have a regular arrangement,
what we mean is that the equilibrium positions of the atoms have a regular
arrangement. At any given temperature, the atoms may vibrate with small ampli-
tudes about fixed equilibrium positions. For the most part, we will discuss only
perfect crystalline solids, but defects will be considered later in Chap. 11.

Elements form solids because for some range of temperature and pressure, a
solid has less free energy than other states of matter. It is generally supposed that at
low enough temperature and with suitable external pressure (helium requires
external pressure to solidify) everything becomes a solid. No one has ever proved
that this must happen. We cannot, in general, prove from first principles that the
crystalline state is the lowest free-energy state.

P. W. Anderson has made the point3 that just because a solid is complex does not
mean the study of solids is less basic than other areas of physics. More is different.
For example, crystalline symmetry, perhaps the most important property discussed
in this book, cannot be understood by considering only a single atom or molecule. It
is an emergent property at a higher level of complexity. Many other examples of
emergent properties will be discussed as the topics of this book are elaborated.

The goal of this chapter is three-fold. All three parts will help to define the universe
of crystalline solids. We start by discussing why solids form (the binding), then we
exhibit how they bind together (their symmetries and crystal structure), and finally we
describe one way we can experimentally determine their structure (X-rays).

Section 1.1 is concerned with chemical bonding. There are approximately four
different forms of bonds. A bond in an actual crystal may be predominantly of one
type and still show characteristics related to others, and there is really no sharp
separation between the types of bonds.

Frederick Seitz—“Mr. Solid State”

b. San Francisco, California, USA (1911–2008)

Wigner–Seitz Method, Modern Study of Solids, a book; The series, Solid
State Physics, Advances in Research and Applications; Administrative
Leadership in spreading knowledge and research in Solid State Physics.

Seitz was prominent in both research and especially in later years in
administration. His research adviser was Eugene Wigner at Princeton and

3See Anderson [1.1].
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their work produced the Wigner–Seitz method for calculating the cohesive
energy of sodium and it later was applied to other metals by many
researchers. Seitz also derived the irreducible representations of all the
crystalline space groups. He did much work in crystalline defects, including
color centers. On assuming a position at the University of Illinois, he built
an outstanding department that included many very productive people in all
aspects (theoretical, applied, and experimental) of Condensed Matter
Physics. Later he and David Turnbull developed and edited a series called
Solid State Physics, Advances in Research and Applications, which helped
keep scientists in the field up to date. Later he was President of Rockefeller
University for approximately ten years.

In later years, he did consulting and engaged in activities that were not
always mainstream in physics. He was a prominent opponent of the rather
common scientific view of global warming as being heavily affected by man.
His consultantship with a tobacco company was controversial, as was his
support for the Vietnam war.

Never the less it is hard to think of anyone who did more in consolidating the
various researches and knowledge bases into one field called Solid State and
later Condensed Matter Physics. He also was prominent in insuring that the
more practical and applied field of Materials Physics was developed in parallel.

See [37] in subject references.

1.1 Classification of Solids by Binding Forces (B)4

A complete discussion of crystal binding cannot be given this early because it
depends in an essential way on the electronic structure of the solid. In this Section,
we merely hope to make the reader believe that it is not unreasonable for atoms to
bind themselves into solids.

1.1.1 Molecular Crystals and the van der Waals Forces (B)

Examples of molecular crystals are crystals formed by nitrogen (N2) and rare-gas
crystals formed by argon (Ar). Molecular crystals consist of chemically inert atoms
(atoms with a rare-gas electronic configuration) or chemically inert molecules
(neutral molecules that have little or no affinity for adding or sharing additional
electrons and that have affinity for the electrons already within the molecule).

4We have labeled sections by A for advanced, B for basic, and EE for material that might be
especially interesting for electrical engineers, and similarly MS for materials science, and MET
for metallurgy.
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We shall call such atoms or molecules chemically saturated units. These interact
weakly, and therefore their interaction can be treated by quantum-mechanical
perturbation theory.

The interaction between chemically saturated units is described by the van der
Waals forces. Quantum mechanics describes these forces as being due to correla-
tions in the fluctuating distributions of charge on the chemically saturated units. The
appearance of virtual excited states causes transitory dipole moments to appear on
adjacent atoms, and if these dipole moments have the right directions, then the
atoms can be attracted to one another. The quantum-mechanical description of these
forces is discussed in more detail in the example below. The van der Waals forces
are weak, short-range forces, and hence molecular crystals are characterized by low
melting and boiling points. The forces in molecular crystals are almost central
forces (central forces act along a line joining the atoms), and they make efficient use
of their binding in close-packed crystal structures. However, the force between two
atoms is somewhat changed by bringing up a third atom (i.e. the van der Waals
forces are not exactly two-body forces). We should mention that there is also a
repulsive force that keeps the lattice from collapsing. This force is similar to the
repulsive force for ionic crystals that is discussed in the next Section. A sketch of
the interatomic potential energy (including the contributions from the van der Waals
forces and repulsive forces) is shown in Fig. 1.1.

A relatively simple model [14, p. 438] that gives a qualitative feeling for the
nature of the van der Waals forces consists of two one-dimensional harmonic
oscillators separated by a distance R (see Fig. 1.2). Each oscillator is electrically
neutral, but has a time-varying electric dipole moment caused by a fixed +e charge
and a vibrating –e charge that vibrates along a line joining the two oscillators. The
displacements from equilibrium of the −e charges are labeled d1 and d2. When
di = 0, the −e charges will be assumed to be separated exactly by the distance R.
Each charge has a mass M, a momentum Pi, and hence a kinetic energy P2

i =2M.

r

V(r) 

0 

Fig. 1.1 The interatomic potential V(r) of a rare-gas crystal. The interatomic spacing is r
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The spring constant for each charge will be denoted by k and hence each
oscillator will have a potential energy kd2i =2. There will also be a Coulomb cou-
pling energy between the two oscillators. We shall neglect the interaction between
the −e and the +e charges on the same oscillator. This is not necessarily physically
reasonable. It is just the way we choose to build our model. The attraction between
these charges is taken care of by the spring.

The total energy of the vibrating dipoles may be written

E ¼ 1
2M

P2
1 þP2

2

� �þ 1
2
k d21 þ d22
� �þ e2

4pe0 Rþ d1 þ d2ð Þ

þ e2

4pe0R
� e2

4pe0 Rþ d1ð Þ �
e2

4pe0 Rþ d2ð Þ ;
ð1:1Þ

where e0 is the permittivity of free space. In (1.1) and throughout this book for the
most part, mks units are used (see Appendix A). Assuming that R � d and using

1
1þ g

ffi 1� gþ g2; ð1:2Þ

if |η | � 1, we find a simplified form for (1.1):

E ffi 1
2M

P2
1 þP2

2

� �þ 1
2
k d21 þ d22
� �þ 2e2d1d2

4pe0R3 : ð1:3Þ

If there were no coupling term, (1.3) would just be the energy of two independent
oscillators each with frequency (in radians per second)

x0 ¼
ffiffiffiffiffiffiffiffiffi
k=M

p
: ð1:4Þ

The coupling splits this single frequency into two frequencies that are slightly
displaced (or alternatively, the coupling acts as a perturbation that removes a
twofold degeneracy).

By defining new coordinates (making a normal coordinate transformation) it is
easily possible to find these two frequencies. We define

Yþ ¼ 1ffiffi
2

p d1 þ d2ð Þ; Y� ¼ 1ffiffi
2

p d1 � d2ð Þ;
Pþ ¼ 1ffiffi

2
p P1 þP2ð Þ; P� ¼ 1ffiffi

2
p P1 � P2ð Þ:

ð1:5Þ

d1

–e +e

d2

+e –e

R

Fig. 1.2 Simple model for the van der Waals forces
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By use of this transformation, the energy of the two oscillators can be written

E ffi 1
2M

P2
þ þ k

2
þ e2

4pe0R3

� �
Y2
þ

� �
þ 1

2M
P2
� þ k

2
� e2

4pe0R3

� �
Y2
�

� �
: ð1:6Þ

Note that (1.6) is just the energy of two uncoupled harmonic oscillators with
frequencies x+ and x− given by

x� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
M

k � e2

2pe0R3

� �s
: ð1:7Þ

The lowest possible quantum-mechanical energy of this system is the zero-point
energy given by

E ffi �h
2

xþ þx�ð Þ; ð1:8Þ

where ħ is Planck’s constant divided by 2p.
A more instructive form for the ground-state energy is obtained by making an

assumption that brings a little more physics into the model. The elastic restoring
force should be of the same order of magnitude as the Coulomb forces so that

e2

4pe0R2 ffi kdi:

This expression can be cast into the form

e2

4pe0R3

R
di

ffi k:

It has already been assumed that R � di so that the above implies
e2=4pe0R3 � k. Combining this last inequality with (1.7), making an obvious
expansion of the square root, and combining the result with (1.8), one readily finds
for the approximate ground-state energy

E ffi �hx0 1� C=R6� �
; ð1:9Þ

where

C ¼ e4

32p2k2e20
:

From (1.9), the additional energy due to coupling is approximately �C�hx0=R6.
The negative sign tells us that the two dipoles attract each other. The R−6 tells us
that the attractive force (proportional to the gradient of energy) is an inverse seventh
power force. This is a short-range force. Note that without the quantum-mechanical
zero-point energy (which one can think of as arising from the uncertainty principle)
there would be no binding (at least in this simple model).
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While this model gives one a useful picture of the van der Waals forces, it is only
qualitative because for real solids:

1. More than one dimension must be considered,
2. The binding of electrons is not a harmonic oscillator binding, and
3. The approximation R � d (or its analog) is not well satisfied.
4. In addition, due to overlap of the core wave functions and the Pauli principle

there is a repulsive force (often modeled with an R−12 potential). The totality of
R−12 linearly combined with the −R−6 attraction is called a Lennard–Jones
potential.

1.1.2 Ionic Crystals and Born–Mayer Theory (B)

Examples of ionic crystals are sodium chloride (NaCl) and lithium fluoride (LiF).
Ionic crystals also consist of chemically saturated units (the ions that form their basic
units are in rare-gas configurations). The ionic bond is due mostly to Coulomb
attractions, but there must be a repulsive contribution to prevent the lattice from
collapsing. The Coulomb attraction is easily understood from an electron-transfer
point of view. For example, we view LiF as composed of Li+(ls2) and F−(ls22s22p6),
using the usual notation for configuration of electrons. It requires about one electron
volt of energy to transfer the electron, but this energy is more than compensated by
the energy produced by the Coulomb attraction of the charged ions. In general, alkali
and halogen atoms bind as singly charged ions. The core repulsion between the ions
is due to an overlapping of electron clouds (as constrained by the Pauli principle).

Since the Coulomb forces of attraction are strong, long-range, nearly two-body,
central forces, ionic crystals are characterized by close packing and rather tight
binding. These crystals also show good ionic conductivity at high temperatures,
good cleavage, and strong infrared absorption.

A good description of both the attractive and repulsive aspects of the ionic bond
is provided by the semi-empirical theory due to Born and Mayer. To describe this
theory, we will need a picture of an ionic crystal such as NaCl. NaCl-like crystals
are composed of stacked planes, similar to the plane in Fig. 1.3. The theory below
will be valid only for ionic crystals that have the same structure as NaCl.

Fig. 1.3 NaCl-like ionic crystals
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Let N be the number of positive or negative ions. Let rij (a symbol in boldface
type means a vector quantity) be the vector connecting ions i and j so that jrijj is the
distance between ions i and j. Let Eij be (+1) if the i and j ions have the same signs
and (−1) if the i and j ions have opposite signs. With this notation the potential
energy of ion i is given by

Ui ¼
X

all j 6¼ið Þ
Eij

e2

4pe0jrijj ; ð1:10Þ

where e is, of course, the magnitude of the charge on any ion. For the whole crystal,
the total potential energy is U = NUi. If N1, N2 and N3 are integers, and a is the
distance between adjacent positive and negative ions, then (1.10) can be written as

Ui ¼
X0

N1;N2;N3ð Þ

�ð ÞN1 þN2 þN3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N2
1 þN2

2 þN2
3

p e2

4pe0a
: ð1:11Þ

In (1.11), the termN1 = 0,N2 = 0, andN3 = 0 is omitted (this is what the prime on
the summeans). If we assume that the lattice is almost infinite, theNi, in (1.11) can be
summed over an infinite range. The result for the total Coulomb potential energy is

U ¼ �N
MNaCle2

4pe0a
; ð1:12Þ

where

MNaCl ¼ �
X01

N1;N2;N3¼�1

�ð ÞN1 þN2 þN3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N2
1 þN2

2 þN2
3

p ð1:13Þ

is called the Madelung constant for a NaCl-type lattice. Evaluation of (1.13) yields
MNaCl ¼ 1:7476. The value for M depends only on geometrical arrangements. The
series for M given by (1.13) is very slowly converging. Special techniques are
usually used to obtain good results [46].

As already mentioned, the stability of the lattice requires a repulsive potential, and
hence a repulsive potential energy. Quantum mechanics suggests (basically from the
Pauli principle) that the form of this repulsive potential energy between ions i and j is

UR
ij ¼ Xij exp � jrijj

Rij

� �
; ð1:14Þ

where Xij and Rij depend, as indicated, on the pair of ions labeled by i and j.
“Common sense” suggests that the repulsion be of short-range. In fact, one usually
assumes that only nearest-neighbor repulsive interactions need be considered. There
are six nearest neighbors for each ion, so that the total repulsive potential energy is
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UR ¼ 6NX exp �a=Rð Þ: ð1:15Þ

This usually amounts to only about 10% of the magnitude of the total cohesive
energy. In (1.15), Xij and Rij are assumed to be the same for all six interactions (and
equal to the X and R). That this should be so is easily seen by symmetry.

Combining the above, we have for the total potential energy for the lattice

U ¼ N �MNaCle2

4pe0a

� �
þ 6NX exp � a

R

	 

: ð1:16Þ

The cohesive energy for free ions equals U plus the kinetic energy of the ions in
the solid. However, the magnitude of the kinetic energy of the ions (especially at
low temperature) is much smaller than U, and so we simply use U in our com-
putations of the cohesive energy. Even if we refer U to zero temperature, there
would be, however, a small correction due to zero-point motion. In addition, we
have neglected a very weak attraction due to the van der Waals forces.

Equation (1.16) shows that the Born–Mayer theory is a two-parameter theory.
Certain thermodynamic considerations are needed to see how to feed in the results
of experiment.

The combined first and second laws for reversible processes is

TdS ¼ dUþ p dV ; ð1:17Þ

where S is the entropy, U is the internal energy, p is the pressure, V is the volume,
and T is the temperature. We want to derive an expression for the isothermal
compressibility k that is defined by

1
kV

¼ � @p
@V

� �
T
: ð1:18Þ

The isothermal compressibility is not very sensitive to temperature, so we will
evaluate k for T = 0. Combining (1.17) and (1.18) at T = 0, we obtain

1
kV

� �
T¼0

¼ @2U
@V2

� �
T¼0

: ð1:19Þ

There is one more relationship between R, X, and experiment. At the equilibrium
spacing a = A (determined by experiment using X-rays), there must be no net force
on an ion so that

@U
@a

� �
a¼A

¼ 0: ð1:20Þ
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Thus, a measurement of the compressibility and the lattice constant serves to fix the
two parameters R and X. When we know R and X, it is possible to give a theoretical
value for the cohesive energy per molecule (U/N). This quantity can also be inde-
pendently measured by the Born–Haber cycle [46].5 Comparing these two quantities
gives a measure of the accuracy of the Born–Mayer theory. Table 1.1 shows that the
Born–Mayer theory gives a good estimate of the cohesive energy. (For some types of
complex solid-state calculations, an accuracy of 10 to 20% can be achieved.)

Fritz Haber

b. Breslau, Germany (now Wrocław, Poland) (1868–1934)

Synthesized ammonia for use in fertilizer; Lattice Energy of Ionic Solids;
Poison Gases and Chemical Warfare by Germans in WW 1

Table 1.1 Cohesive energy in kcal mole−1

Solid Born–Mayer Theory Experiment

LiBr 184.4 191.5
NaCl 182.0 184.7
KC1 165.7 167.8
NaBr 172.7 175.9
Reference: Sybil P Parker, Solid-State Physics Source Book,
McGraw-Hill Book Co., New York, 1987 (from “Ionic
Crystals,” by B. Gale Dick, p. 59). (To convert kcal/mole to
eV/ion pair, divide by 23 (approximately). Note the cohesive
energy is the energy required to separate the crystal into
positive and negative ions. To convert this to the energy to
separate the crystal into neutral atoms one must add the
electron affinity of the negative ion and subtract the ionization
energy of the positive ion. For NaCl this amounts to a
reduction of order 20%.)

5The Born–Haber cycle starts with (say) NaCl solid. Let U be the energy needed to break this up
into Na+ gas and Cl− gas. Suppose it takes EF units of energy to go from Cl− gas to Cl gas plus
electrons, and EI units of energy are gained in going from Na+ gas plus electrons to Na gas. The Na
gas gives up heat of sublimation energy S in going to Na solid, and the Cl gas gives up heat of
dissociation D in going to Cl2 gas. Finally, let the Na solid and Cl2 gas go back to NaCl solid in its
original state with a resultant energy W. We are back where we started and so the energies must
add to zero: U − EI + EF − S − D − W = 0. This equation can be used to determine U from other
experimental quantities.
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Fritz Haber is known for developing the means for synthesizing ammonia
and developing fertilizers. He won the Nobel Prize in chemistry in 1918. He is
also known for the Born–Haber cycle for finding he lattice energy of ionic
solids. However, he was prominent as the father of chemical warfare for
developing and directing the use of chorine and other poison gases in war.
His first wife committed suicide. Some say that was because the involvement of
Haber with the use of poison gases, others say it was because of his alleged
infidelity.

1.1.3 Metals and Wigner–Seitz Theory (B)

Examples of metals are sodium (Na) and copper (Cu). A metal such as Na is viewed
as being composed of positive ion cores (Na+) immersed in a “sea” of free con-
duction electrons that come from the removal of the 3s electron from atomic Na.
Metallic binding can be partly understood within the context of the Wigner–Seitz
theory. In a full treatment, it would be necessary to confront the problem of electrons
in a periodic lattice. (A discussion of the Wigner–Seitz theory will be deferred until
Chap. 3.) One reason for the binding is the lowering of the kinetic energy of the
“free” electrons relative to their kinetic energy in the atomic 3s state [41]. In a
metallic crystal, the valence electrons are free (within the constraints of the Pauli
principle) to wander throughout the crystal, causing them to have a smoother wave
function and hence less r2w. Generally speaking this spreading of the electrons
wave function also allows the electrons to make better use of the attractive potential.
Lowering of the kinetic and/or potential energy implies binding. However, the
electron–electron Coulomb repulsions cannot be neglected (see, e.g., Sect. 3.1.4),
and the whole subject of binding in metals is not on so good a quantitative basis as it
is in crystals involving the interactions of atoms or molecules which do not have free
electrons. One reason why the metallic crystal is prevented from collapsing is the
kinetic energy of the electrons. Compressing the solid causes the wave functions of
the electrons to “wiggle” more and hence raises their kinetic energy.

A very simple picture6 suffices to give part of the idea of metallic binding. The
ground-state energy of an electron of mass M in a box of volume V is [19]

E ¼ �h2p2

2M
V�2=3:

6A much more sophisticated approach to the binding of metals is contained in the pedagogical
article by Tran and Perdew [1.26]. This article shows how exchange and correlation effects are
important and discusses modern density functional methods (see Chap. 3).
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Thus the energy of N electrons in N separate boxes is

EA ¼ N
�h2p2

2M
V�2=3: ð1:21Þ

The energy of N electrons in a box of volume NV is (neglecting electron–electron
interaction that would tend to increase the energy)

EM ¼ N
�h2p2

2M
V�2=3N�2=3: ð1:22Þ

Therefore EM=EA ¼ N�2=3 � 1 for large N and hence the total energy is lowered
considerably by letting the electrons spread out. This model of binding is, of course,
not adequate for a real metal, since the model neglects not only electron–electron
interactions but also the potential energy of interaction between electrons and ions
and between ions and other ions. It also ignores the fact that electrons fill up states
by satisfying the Pauli principle. That is, they fill up in increasing energy. But it
does clearly show how the energy can be lowered by allowing the electronic wave
functions to spread out.

In modern times, considerable progress has been made in understanding the
cohesion of metals by the density functional method, see Chap. 3. We mention in
particular, Daw [1.6].

Due to the important role of the free electrons in binding, metals are good
electrical and thermal conductors. They have moderate to fairly strong binding. We
do not think of the binding forces in metals as being two-body, central, or
short-range.

1.1.4 Valence Crystals and Heitler–London Theory (B)

An example of a valence crystal is carbon in diamond form. One can think of the
whole valence crystal as being a huge chemically saturated molecule. As in the case
of metals, it is not possible to understand completely the binding of valence crystals
without considerable quantum-mechanical calculations, and even then the results
are likely to be only qualitative. The quantum-mechanical considerations (Heitler–
London theory) will be deferred until Chap. 3.

Some insight into covalent bonds (also called homopolar bonds) of valence
crystals can be gained by considering them as being caused by sharing electrons
between atoms with unfilled shells. Sharing of electrons can lower the energy
because the electrons can get into lower energy states without violating the Pauli
principle. In carbon, each atom has four electrons that participate in the valence
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bond. These are the electrons in the 2s2p shell, which has eight available states.7

The idea of the valence bond in carbon is (very schematically) indicated in Fig. 1.4.
In this figure each line symbolizes an electron bond. The idea that the eight 2s2p
states participate in the valence bond is related to the fact that we have drawn each
carbon atom with eight bonds.

Valence crystals are characterized by hardness, poor cleavage, strong bonds,
poor electronic conductivity, and poor ionic conductivity. The forces in covalent
bonds can be thought of as short-range, two-body, but not central forces. The
covalent bond is very directional, and the crystals tend to be loosely packed.

1.1.5 Comment on Hydrogen-Bonded Crystals (B)

Many authors prefer to add a fifth classification of crystal bonding: hydrogen-
bonded crystals [1.18]. The hydrogen bond is a bond between two atoms due to the
presence of a hydrogen atom between them. Its main characteristics are caused by
the small size of the proton of the hydrogen atom, the ease with which the electron
of the hydrogen atom can be removed, and the mobility of the proton.

The presence of the hydrogen bond results in the possibility of high dielectric
constant, and some hydrogen-bonded crystals become ferroelectric. A typical
example of a crystal in which hydrogen bonds are important is ice. One generally
thinks of hydrogen-bonded crystals as having fairly weak bonds. Since the
hydrogen atom often loses its electron to one of the atoms in the hydrogen-bonded
molecule, the hydrogen bond is considered to be largely ionic in character. For this
reason we have not made a separate classification for hydrogen-bonded crystals. Of

C C C

C C C

C C C

Fig. 1.4 The valence bond of diamond

7More accurately, one thinks of the electron states as being combinations formed from s and p
states to form sp3 hybrids. A very simple discussion of this process as well as the details of other
types of bonds is given by Moffatt et al. [1.17].
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course, other types of bonding may be important in the total binding together of a
crystal with hydrogen bonds. Figure 1.5 schematically reviews the four major types
of crystal bonds.

1.2 Group Theory and Crystallography

We start crystallography by giving a short history [1.14].

1. In 1669 Steno gave the law of constancy of angle between like crystal faces.
This of course was a key idea needed to postulate there was some underlying
microscopic symmetry inherent in crystals.

2. In 1784 Abbe Hauy proposed the idea of unit cells.
3. In 1826 Naumann originated the idea of 7 crystal systems.

Molecular crystals are bound by the van der
Waals forces caused by fluctuating dipoles
in each molecule. A “snap-shot” of the fluc-
tuations. 
Example: argon
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- 
ion 

- 
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Ionic crystals are bound by ionic forces as
described by the Born–Mayer theory. 
Example: NaCl 

+ 
ion 

+ 
ion 

+ 
ion 

+ 
ion 

+ 
ion 

+ 
ion 

Metallic crystalline binding is described by
quantum-mechanical means. One simple
theory which does this is the Wigner–Seitz
theory.
Example: sodium 

+ 
ion 

+ 
ion 

+ 
ion 

+ 
ion 

Valence crystalline binding is describe
by quantum-mechanical means. One sim-
ple theory that does this is the Heitler
London theory.
Example: carbon in diamond form 

Fig. 1.5 Schematic view of the four major types of crystal bonds. All binding is due to the
Coulomb forces and quantum mechanics is needed for a complete description, but some idea
of the binding of molecular and ionic crystals can be given without quantum mechanics. The
density of electrons is indicated by the shading. Note that the outer atomic electrons are
progressively smeared out as one goes from an ionic crystal to a valence crystal to a metal
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4. In 1830 Hessel said there were 32 crystal classes because only 32 point groups
were consistent with the idea of translational symmetry.

5. In 1845 Bravais noted there were only 14 distinct lattices, now called Bravais
lattices, which were consistent with the 32 point groups.

6. By 1894 several groups had enumerated the 230 space groups consistent with
only 230 distinct kinds of crystalline symmetry.

7. By 1912 von Laue started X-ray experiments that could delineate the space
groups.

8. In 1936 Seitz started deriving the irreducible representations of the space
groups.

9. In 1984 Shechtman, Steinhardt et al. found quasi-crystals, substances that were
neither crystalline nor glassy but nevertheless ordered in a quasi periodic way.

The symmetries of crystals determine many of their properties as well as sim-
plify many calculations. To discuss the symmetry properties of solids, one needs an
appropriate formalism. The most concise formalism for this is group theory. Group
theory can actually provide deep insight into the classification by quantum numbers
of quantum-mechanical states. However, we shall be interested at this stage in
crystal symmetry. This means (among other things) that finite groups will be of
interest, and this is a simplification. We will not use group theory to discuss crystal
symmetry in this Section. However, it is convenient to introduce some group-theory
notation in order to use the crystal symmetry operations as examples of groups and
to help in organizing in one’s mind the various sorts of symmetries that are pre-
sented to us by crystals. We will use some of the concepts (presented here) in parts
of the chapter on magnetism (Chap. 7) and also in a derivation of Bloch’s theorem
in Appendix C.

1.2.1 Definition and Simple Properties of Groups (AB)

There are two basic ingredients of a group: a set of elements G ¼ g1; g2; . . .f g and
an operation (*) that can be used to combine the elements of the set. In order that the
set form a group, there are four rules that must be satisfied by the operation of
combining set elements:

1. Closure. If gi and gj, are arbitrary elements of G, then

gi � gj 2 G

(2 means “included in”).

2. Associative Law. If gi, gj, and gk are arbitrary elements of G, then

gi � gj
� � � gk ¼ gi � gj � gk

� �
:
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3. Existence of the identity. There must exist a ge 2 G with the property that for
any

gk 2 G; ge � gk ¼ gk � ge ¼ gk:

Such a ge is called E, the identity.

4. Existence of the inverse. For each gi 2 G there exists a g�1
i 2 G such that

gi � g�1
i ¼ g�1

i � gi ¼ E;

where g�1
i is called the inverse of gi.

From now on the * will be omitted and gi * gj will simply be written gi gj.
An example of a group that is small enough to be easily handled and yet large

enough to have many features of interest is the group of rotations in three
dimensions that bring the equilateral triangle into itself. This group, denoted by D3,
has six elements. One thus says its order is 6.

In Fig. 1.6, let A be an axis through the center of the triangle and perpendicular
to the plane of the paper. Let g1, g2, and g3 be rotations of 0, 2p/3, and 4p/3 about
A. Let g4, g5, and g6 be rotations of p about the axes P1, P2, and P3. The group
multiplication table of D3 can now be constructed. See Table 1.2.

21

3

P1

P2P3

A

Fig. 1.6 The equilateral triangle

Table 1.2 Group multiplication table of D3

D3 g1 g2 g3 g4 g5 g6
g1 g1 g2 g3 g4 g5 g6
g2 g2 g3 g1 g6 g4 g5
g3 g3 g1 g2 g5 g6 g4
g4 g4 g5 g6 g1 g2 g3
g5 g5 g6 g4 g3 g1 g2
g6 g6 g4 g5 g2 g3 g1
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The group elements can be very easily described by indicating how the vertices
are mapped. Below, arrows are placed in the definition of g1 to define the notation.
After g1 the arrows are omitted:

g1 ¼
1 2 3
# # #
1 2 3

0
@

1
A; g2 ¼ 1 2 3

2 3 1

� �
; g3 ¼ 1 2 3

3 1 2

� �
;

g4 ¼ 1 2 3
2 1 3

� �
; g5 ¼ 1 2 3

1 3 2

� �
; g6 ¼ 1 2 3

3 2 1

� �
:

Using this notation we can see why the group multiplication table indicates that
g4 g2 = g5:

8

g4g2 ¼ 1 2 3
2 1 3

� �
1 2 3
2 3 1

� �
¼ 1 2 3

1 3 2

� �
¼ g5:

The table also says that g2 g4 = g6. Let us check this:

g2g4 ¼ 1 2 3
2 3 1

� �
1 2 3
2 1 3

� �
¼ 1 2 3

3 2 1

� �
¼ g6:

In a similar way, the rest of the group multiplication table was easily derived.
Certain other definitions are worth noting [61]. A is a proper subgroup ofG if A is

a group contained in G and not equal to E (E is the identity that forms a trivial group
of order 1) or G. In D3; g1; g2; g3f g; g1; g4f g; g1; g5f g; g1; g6f g are proper sub-
groups. The class of an element g 2 G is the set of elements g�1

i ggi
� �

for all gi 2 G.
Mathematically this can be written for g 2 G;Cl gð Þ ¼ g�1

i ggijfor all gi 2 G
� �

.
Two operations belong to the same class if they perform the same sort of geometrical
operation. For example, in the group D3 there are three classes:

g1f g; g2; g3f g; and g4; g5; g6f g:

Two very simple sorts of groups are often encountered. One of these is the cyclic
group. A cyclic group can be generated by a single element. That is, in a cyclic group
there exists a g 2 G, such that all gk 2 G are given by gk ¼ gk (of course one must
name the group elements suitably). For a cyclic group of order N with generator
g; gN � E. Incidentally, the order of a group element is the smallest power to which
the element can be raised and still yield E. Thus the order of the generator (g) is N.

The other simple group is the Abelian group. In the Abelian group, the order of
the elements is unimportant gigj ¼ gjgi for all gi; gj 2 G

� �
. The elements are said to

8Note that the application starts on the right so 3 ! 1 ! 2, for example.
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commute. Obviously all cyclic groups are Abelian. The group D3 is not Abelian but
all of its subgroups are.

In the abstract study of groups, all isomorphic groups are equivalent. Two
groups are said to be isomorphic if there is a one-to-one correspondence between
the elements of the group that preserves group “multiplication.” Two isomorphic
groups are identical except for notation. For example, the three subgroups of D3 that
are of order 2 are isomorphic.

An interesting theorem, called Lagrange’s theorem, states that the order of a
group divided by the order of a subgroup is always an integer. From this it can
immediately be concluded that the only possible proper subgroups of D3 have order
2 or 3. This, of course, checks with what we actually found for D3.

Lagrange’s theorem is proved by using the concept of a coset. If A is a subgroup
of G, the right cosets are of the form Agi, for all gi 2 G (cosets with identical
elements are not listed twice)—each gi, generates a coset. For example, the right
cosets of g1; g6f g are g1; g6f g; g2; g4f g, and g3; g5f g. A similar definition can be
made of the term left coset.

A subgroup is normal or invariant if its right and left cosets are identical. In D3,
g1; g2; g3f g form a normal subgroup. The factor group of a normal subgroup is the

normal subgroup plus all its cosets. In D3, the factor group of g1; g2; g3f g has
elements g1; g2; g3f g and g4; g5; g6f g. It can be shown that the order of the factor
group is the order of the group divided by the order of the normal subgroup. The
factor group forms a group under the operation of taking the inner product. The
inner product of two sets is the set of all possible distinct products of the elements,
taking one element from each set. For example, the inner product of g1; g2; g3f g
and g4; g5; g6f g is g4; g5; g6f g. The arrangement of the elements in each set does
not matter.

It is often useful to form a larger group from two smaller groups by taking the
direct product. Such a group is naturally enough called a direct product group. Let
G ¼ g1 . . . gnf g be a group of order n, and H ¼ h1 . . . hmf g be a group of order
m. Then the direct product G	 H is the group formed by all products of the form gi
hj. The order of the direct product group is nm. In making this definition, it has been
assumed that the group operations of G and H are independent. When this is not so,
the definition of the direct product group becomes more complicated (and less
interesting—at least to the physicist). See Sect. 7.4.4 and Appendix C.

1.2.2 Examples of Solid-State Symmetry Properties (B)

All real crystals have defects (see Chap. 11) and in all crystals the atoms vibrate
about their equilibrium positions. Let us define ideal crystals as real crystals in
which these complications are not present. This chapter deals with ideal crystals. In
particular we will neglect boundaries. In other words, we will assume that the
crystals are infinite. Ideal crystals exhibit many types of symmetry, one of the most
important of which is translational symmetry. Let m1, m2, and m3 be arbitrary
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integers. A crystal is said to be translationally symmetric or periodic if there exist
three linearly independent vectors a1; a2; a3ð Þ such that a translation by
m1a1 þm2a2 þm3a3 brings one back to an equivalent point in the crystal. We
summarize several definitions and facts related to the ai:

1. The ai, are called basis vectors. Usually, they are not orthogonal.
2. The set a1; a2; a3ð Þ is not unique. Any linear combination with integer coeffi-

cients gives another set.
3. By parallel extensions, the ai form a parallelepiped whose volume is

V ¼ a1 
 a2 	 a3ð Þ. This parallelepiped is called a unit cell.
4. Unit cells have two principal properties:

(a) It is possible by stacking unit cells to fill all space.
(b) Corresponding points in different unit cells are equivalent.

5. The smallest possible unit cells that satisfy properties (a) and (b) above are
called primitive cells (primitive cells are not unique). The corresponding basis
vectors a1; a2; a3ð Þ are then called primitive translations.

6. The set of all translations T ¼ m1a1 þm2a2 þm3a3 form a group. The group is
of infinite order, since the crystal is assumed to be infinite in size.9

The symmetry operations of a crystal are those operations that bring the crystal
back onto itself. Translations are one example of this sort of operation. One can find
other examples by realizing that any operation that maps three noncoplanar points
on equivalent points will map the whole crystal back on itself. Other types of
symmetry transformations are rotations and reflections. These transformations are
called point transformations because they leave at least one point fixed. For
example, D3 is a point group because all its operations leave the center of the
equilateral triangle fixed.

We say we have an axis of symmetry of the nth order if a rotation by 2p=n about
the axis maps the body back onto itself. Cn is often used as a symbol to represent
the 2p=n rotations about a given axis. Note that Cnð Þn¼ C1 ¼ E, the identity.

A unit cell is mapped onto itself when reflected in a plane of reflection sym-
metry. The operation of reflecting in a plane is called r. Note that r2 ¼ E.

Another symmetry element that unit cells may have is a rotary reflection axis. If
a body is mapped onto itself by a rotation of 2p=n about an axis and a simultaneous
reflection through a plane normal to this axis, then the body has a rotary reflection
axis of nth order.

If f x; y; zð Þ is any function of the Cartesian coordinates x; y; zð Þ, then the in-
version I through the origin is defined by I f x; y; zð Þ½ � ¼ f �x;�y;�zð Þ. If
f x; y; zð Þ ¼ f �x;�y;�zð Þ, then the origin is said to be a center of symmetry for f.
Denote an nth order rotary reflection by Sn, a reflection in a plane perpendicular to
the axis of the rotary reflection by rh, and the operation of rotating 2p=n about the

9One can get around the requirement of having an infinite crystal and still preserve translational
symmetry by using periodic boundary conditions. These will be described later.
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axis by Cn. Then Sn ¼ Cnrh. In particular, S2 ¼ C2rh ¼ I. A second-order rotary
reflection is the same as an inversion.

To illustrate some of the point symmetry operations, use will be made of the
example of the unit cell being a cube. The cubic unit cell is shown in Fig. 1.7. It is
obvious from the figure that the cube has rotational symmetry. For example,

C2 ¼ 1 2 3 4 5 6 7 8
8 7 6 5 4 3 2 1

� �

obviously maps the cube back on itself. The rotation represented by C2 is about a
horizontal axis. There are two other axes that also show two-fold symmetry. It turns
out that all three rotations belong to the same class (in the mathematical sense
already defined) of the 48-element cubic point group Oh (the group of operations
that leave the center point of the cube fixed and otherwise map the cube onto itself
or leave the figure invariant).

The cube has many other rotational symmetry operations. There are six fourfold
rotations that belong to the class of

C4 ¼ 1 2 3 4 5 6 7 8
4 3 7 8 1 2 6 5

� �
:

There are six two-fold rotations that belong to the class of the p rotation about the
axis ab. There are eight three-fold rotation elements that belong to the class of 2p=3
rotations about the body diagonal. Counting the identity, (1 + 3 + 6 + 6 + 8) = 24
elements of the cubic point group have been listed.

It is possible to find the other 24 elements of the cubic point group by taking the
product of the 24 rotation elements with the inversion element. For the cube,

Fig. 1.7 The cubic unit cell
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I ¼ 1 2 3 4 5 6 7 8

7 8 5 6 3 4 1 2

 !
:

The use of the inversion element on the cube also introduces the reflection
symmetry. A mirror reflection can always be constructed from a rotation and an
inversion. This can be seen explicitly for the cube by direct computation.

IC2 ¼
1 2 3 4 5 6 7 8

7 8 5 6 3 4 1 2

 !
1 2 3 4 5 6 7 8

8 7 6 5 4 3 2 1

 !

¼
1 2 3 4 5 6 7 8

2 1 4 3 6 5 8 7

 !
¼ rh:

It has already been pointed out that rotations about equivalent axes belong to the
same class. Perhaps it is worthwhile to make this statement somewhat more explicit.
If in the group there is an element that carries one axis into another, then rotations
about the axes through the same angle belong to the same class.

A crystalline solid may also contain symmetry elements that are not simply
group products of its rotation, inversion, and translational symmetry elements.
There are two possible types of symmetry of this type. One of these types is called a
screw-axis symmetry, an example of which is shown in Fig. 1.8.

The symmetry operation (which maps each point on an equivalent point) for
Fig. 1.8 is to simultaneously rotate by 2p=3 and translate by d. In general a screw
axis is the combination of a rotation about an axis with a displacement parallel to
the axis. Suppose one has an n-fold screw axis with a displacement distance d. Let
a be the smallest period (translational symmetry distance) in the direction of the
axis. Then it is clear that nd = pa, where p ¼ 1; 2; . . .; n� 1. This is a restriction
on the allowed types of screw-axis symmetry.

Fig. 1.8 Screw-axis symmetry
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Fig. 1.9 Glide-plane symmetry

An example of glide plane symmetry is shown in Fig. 1.9. The line beneath the
d represents a plane perpendicular to the page. The symmetry element for Fig. 1.9
is to simultaneously reflect through the plane and translate by d. In general, a glide
plane is a reflection with a displacement parallel to the reflection plane. Let d be the
translation operation involved in the glide-plane symmetry operation. Let a be the
length of the period of the lattice in the direction of the translation. Only those
glide-reflection planes are possible for which 2d = a.

When one has a geometrical entity with several types of symmetry, the various
symmetry elements must be consistent. For example, a three-fold axis cannot have
only one mirror plane that contains it. The fact that we have a three-fold axis
automatically requires that if we have one mirror plane that contains the axis, then
we must have three such planes. The three-fold axis implies that every physical
property must be repeated three times as one goes around the axis. A particularly
interesting consistency condition is examined in the next Section.

Time Crystals
When we talk about crystals in this book, we are restricting ourselves to solids that
are periodic in space. The periodicity arises from the spontaneous breaking of space
translation symmetry. Approaching it this way causes one to ask perhaps, “could
one have a situation in which time translation symmetry is broken and thus could
we have something analogous to spatial crystals?” (See 1. and 2. below) It appears
that one can, see reference 3. A crystal in space has a periodicity in space; a time
crystal has a periodicity in time.

Actually, it is more precise to call these space-time crystals as they have peri-
odicity in both space and time. Also, a further comment on spontaneous symmetry
breaking (SSB) is in order. One says that if the ground state is less symmetrical than
the fundamental equations of the model being considered then one has SSB.

This idea has been experimentally verified with a chain of ytterbium ions which
have spin. When the spins were flipped, they interacted and returned to their initial
position at a regular rate preferring, as it were, a regular elapsed time to return.
However, the rate of return was of a period which was not the period of the driving
force (it was sub-harmonic). The state itself was of a non-equilibrium nature (as a
matter of fact time crystals cannot exist in thermal equilibrium as it was proved after
Wilczek published his paper—but time crystals are possible in a periodically driven
system). The original proposal for time crystals was not possible in thermal equi-
librium. In the experimental new work (3), Floquet (periodic) systems under a
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periodic perturbation did show, at a sub-harmonic frequency, time correlations.
Technically this phase is called a discrete time crystal (DTC).

There is considerably more to this discussion and references will have to be
consulted for an understanding. No doubt, many discoveries will occur in the future,
but it was felt this new development should at least be mentioned. It has been sug-
gested that the ideas of time crystals might be useful for stabilizing quantum
memories.

1. F. Wilczek, “Quantum Time Crystals,” Phys. Rev. Lett. 109, 160401 (2012)
2. Alfred Shapere and Frank Wilczek, “Classical Time Crystals,” Phys. Rev. Lett.

109, 160402
3. J. Zhang, P. W. Hess, A. Kyprianidis, P. Becker, A. Lee, J. Smith, G. Pagano,

I. D. Potirniche, A. C. Potter, A. Vishwanath, N. Y. Yao, C. Monroe,
“Observation of a Discrete Time Crystal,” arXiv: 1609.08684 (2016)

4. N. Y. Yao, A. C. Potter, I. D. Potirniche, and A. Vishwanath, “Discrete Time
Crystals: Rigidity, Criticality, and Realizations,” Phys. Rev. Lett. 118, 030401
(2017)

1.2.3 Theorem: No Five-Fold Symmetry (B)

Any real crystal exhibits both translational and rotational symmetry. The mere fact
that a crystal must have translational symmetry places restrictions on the types of
rotational symmetry that one can have.

The theorem is:

A crystal can have only one-, two-, three-, four-, and six-fold axes of symmetry.

The proof of this theorem is facilitated by the geometrical construction shown in
Fig. 1.10 [1.5, p. 32]. In Fig. 1.10, R is a vector drawn to a lattice point (one of the
points defined by m1a1 þm2a2 þm3a3), and R1 is another lattice point. R1 is chosen
so as to be the closest lattice point toR in the direction of one of the translations in the
(x, z)-plane; thus jaj ¼ jR� R1j is the minimum separation distance between lattice

Fig. 1.10 The impossibility of five-fold symmetry. All vectors are in the (x, z)-plane
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points in that direction. The coordinate system is chosen so that the z-axis is parallel
to a. It will be assumed that a line parallel to the y-axis and passing through the lattice
point defined byR is an n-fold axis of symmetry. Strictly speaking, one would need to
prove one can always find a lattice plane perpendicular to an n-fold axis. Another way
to look at it is that our argument is really in two dimensions, but one can show that
three-dimensional Bravais lattices do not exist unless two-dimensional ones do.
These points are discussed by Ashcroft and Mermin in two problems [21, p. 129].
Since all lattice points are equivalent, there must be a similar axis through the tip of
R1. If h ¼ 2p=n, then a counterclockwise rotation of a about R by h produces a new
lattice vector Rr. Similarly a clockwise rotation by the same angle of a about R1

produces a new lattice point Rr
1. From Fig. 1.10, Rr � Rr

1 is parallel to the z-axis
Rr � Rr

1 ¼ pjaj. Further, jpaj ¼ jaj þ 2jaj sin h� p=2ð Þ ¼ jaj 1� 2 cos hð Þ. Therefore
p ¼ 1� 2 cos h or j cos hj ¼ j p� 1ð Þ=2j � 1. This equation can be satisfied only for
p = 3, 2, 1, 0, −1 or h ¼ � 2p=1; 2p=2; 2p=3; 2p=4; 2p=6ð Þ. This is the result that
was to be proved.

The requirement of translational symmetry and symmetry about a point, when
combined with the formalism of group theory (or other appropriate means), allows one
to classify all possible symmetry types of solids. Deriving all the results is far beyond
the scope of this chapter. For details, the book by Buerger [1.5] can be consulted.
The following Sect. (1.2.4 and following) give some of the results of this analysis.

Quasiperiodic Crystals or Quasicrystals (A)
These materials represented a surprise. When they were discovered in 1984,
crystallography was supposed to be a long dead field, at least for new fundamental
results. We have just proved a fundamental theorem for crystalline materials that
forbids, among other symmetries, a five-fold one. In 1984, materials that showed
relatively sharp Bragg peaks and that had five-fold symmetry were discovered. It
was soon realized that the tacit assumption that the presence of Bragg peaks implied
crystalline structure was false.

It is true that purely crystalline materials, which by definition have translational
periodicity, cannot have five-fold symmetry and will have sharp Bragg peaks.
However, quasicrystals that are not crystalline, that is not translationally periodic,
can have perfect (that is well-defined) long-range order. This can occur, for
example, by having a symmetry that arises from the sum of noncommensurate
periodic functions, and such materials will have sharp (although perhaps dense)
Bragg peaks (see Problems 1.10 and 1.12). If the amplitude of most peaks is very
small the denseness of the peaks does not obscure a finite number of diffraction
peaks being observed. Quasiperiodic crystals will also have a long-range orienta-
tional order that may be five-fold.

The first quasicrystals that were discovered (Shechtman and coworkers)10 were
grains of AlMn intermetallic alloys with icosahedral symmetry (which has five-fold
axes). An icosahedron is one of the five regular polyhedrons (the others being

10See Shechtman et al. [1.21].
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tetrahedron, cube, octahedron and dodecahedron). A regular polyhedron has
identical faces (triangles, squares or pentagons) and only two faces meet at an edge.
Other quasicrystals have since been discovered that include AlCuCo alloys with
decagonal symmetry. The original theory of quasicrystals is attributed to Levine
and Steinhardt.11 The book by Janot can be consulted for further details [1.12].

Quasicrystals continue to be an active area of research. Since they are not
periodic new ways must be found for discussing, for example, their electronic and
vibrational properties. They have even been found in meteorites. See e.g.: Igor V.
Blinov, “Periodic almost-Schrödinger equation for quasicrystals,” Scientific
Reports 5, 11492 (2015), and Luca Bindi, Chaney Lin, Chi Ma and
Paul J. Steinhardt, “Collisions in outer space produced an icosahedral phase in the
Khatyrka meteorite never observed previously in the laboratory,” Scientific Reports
6, 38117, (2016).

Auguste Bravais—“Crystallography”

b. Annonay, France (1811–1863)

Bravais Lattices and Bravais Law

Bravais showed there were only 14 unique crystalline lattices in three
dimensions. He also is known for the Bravais Law, which says that the
prominent faces of crystals are planes of greatest density of lattice points.

Dan Shechtman

b. Tel Aviv, Israel (1941–)

Quasi Crystals

Shechtman is a materials engineer who discovered quasi-crystals, which
are an ordered structure, but do not show translational symmetry as periodic
crystals do. He was awarded the Wolf Prize in 1999 and the Nobel Prize in
Chemistry for this accomplishment. He obtained electron diffraction data that
showed five fold symmetry. This was a very controversial result as crystals
with translational symmetry could not do this, but of course his materials
did not have translational symmetry. Linus Pauling actually opposed
Shechtman’s result vigorously.

A very nice article on Dan Shechtman is the following interview: “Nobel
Laureate Dan Shechtman: Advice for Young Scientists,” APS News, vol. 26,
No. 3, p. 4 (March 2017). Dr. Shechtman discusses here the difficulties he had
in convincing the scientific community that he had really discovered what
came to be called quasicrystals.

11See Levine and Steinhardt [1.15]. See also Steinhardt and Ostlund [1.22].
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1.2.4 Some Crystal Structure Terms and
Nonderived Facts (B)

A set of points defined by the tips of the vectors m1a1 þm2a2 þm3a3 is called a
lattice. In other words, a lattice is a three-dimensional regular net-like structure. If
one places at each point a collection or basis of atoms, the resulting structure is
called a crystal structure. Due to interatomic forces, the basis will have no sym-
metry not contained in the lattice. The points that define the lattice are not neces-
sarily at the location of the atoms. Each collection or basis of atoms is to be
identical in structure and composition.

Point groups are collections of crystal symmetry operations that form a group and
also leave one point fixed. From the above, the point group of the basis must be a
point group of the associated lattice. There are only 32 different point groups allowed
by crystalline solids. An explicit list of point groups will be given later in this chapter.

Crystals have only 14 different possible parallelepiped networks of points. These
are the 14 Bravais lattices. All lattice points in a Bravais lattice are equivalent. The
Bravais lattice must have at least as much point symmetry as its basis. For any given
crystal, there can be no translational symmetry except that specified by its Bravais
lattice. In other words, there are only 14 basically different types of translational
symmetry. This result can be stated another way. The requirement that a lattice be
invariant under one of the 32 point groups leads to symmetrically specialized types
of lattices. These are the Bravais lattices. The types of symmetry of the Bravais
lattices with respect to rotations and reflections specify the crystal systems. There are
seven crystal systems. The meaning of Bravais lattice and crystal system will be
clearer after the next Section, where unit cells for each Bravais lattice will be given
and each Bravais lattice will be classified according to its crystal system.

Associating bases of atoms with the 14 Bravais lattices gives a total of 230
three-dimensional periodic patterns. (Loosely speaking, there are 230 different
kinds of “three-dimensional wall paper.”) That is, there are 230 possible space
groups. Each one of these space groups must have a group of primitive translations
as a subgroup. As a matter of fact, this subgroup must be an invariant subgroup. Of
these space groups, 73 are simple group products of point groups and translation
groups. These are the so-called symmorphic space groups. The rest of the space
groups have screw or glide symmetries. In all cases, the factor group of the group of
primitive translations is isomorphic to the point group that makes up the (proper and
improper—an improper rotation has a proper rotation plus an inversion or a
reflection) rotational parts of the symmetry operations of the space group. The
above very brief summary of the symmetry properties of crystalline solids is by no
means obvious and it was not produced very quickly. A brief review of the history
of crystallography can be found in the article by Koster [1.14].
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1.2.5 List of Crystal Systems and Bravais Lattices (B)

The seven crystal systems and the Bravais lattice for each type of crystal system are
described below. The crystal systems are discussed in order of increasing
symmetry.

1. Triclinic Symmetry. For each unit cell, a 6¼ b; b 6¼ c; a 6¼ c; a 6¼ b; b 6¼ c, and
a 6¼ c, and there is only one Bravais lattice. Refer to Fig. 1.11 for nomenclature.

2. Monoclinic Symmetry. For each unit cell, a ¼ c ¼ p=2; b 6¼ a; a 6¼ b; b 6¼ c,
and a 6¼ c. The two Bravais lattices are shown in Fig. 1.12.

3. Orthorhombic Symmetry. For each unit cell, a ¼ b ¼ c ¼ p=2; a 6¼ b; b 6¼ c,
and a 6¼ c. The four Bravais lattices are shown in Fig. 1.13.

Fig. 1.11 A general unit cell (triclinic)

(a) (b)

Fig. 1.12 (a) The simple monoclinic cell, and (b) the base-centered monoclinic cell

(a) (b) (c) (d)

Fig. 1.13 (a) The simple orthorhombic cell, (b) the base-centered orthorhombic cell, (c) the
body-centered orthorhombic cell, and (d) the face-centered orthorhombic cell
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4. Tetragonal Symmetry. For each unit cell, a ¼ b ¼ c ¼ p=2 and a ¼ b 6¼ c. The
two unit cells are shown in Fig. 1.14.

5. Trigonal Symmetry. For each unit cell, a ¼ b ¼ c 6¼ p=2; \2p=3 and a =
b = c. There is only one Bravais lattice, whose unit cell is shown in Fig. 1.15.

6. Hexagonal Symmetry. For each unit cell, a ¼ b ¼ p=2; c ¼ 2p=3; a ¼ b, and
a 6¼ c. There is only one Bravais lattice, whose unit cell is shown in Fig. 1.16.

Fig. 1.15 Trigonal unit cell

(a) (b)

Fig. 1.14 (a) The simple tetragonal cell, and (b) the body-centered tetragonal cell

Fig. 1.16 Hexagonal unit cell
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7. Cubic Symmetry. For each unit cell, a ¼ b ¼ c ¼ p=2 and a = b = c. The unit
cells for the three Bravais lattices are shown in Fig. 1.17.

1.2.6 Schoenflies and International Notation for Point
Groups (A)

There are only 32 point group symmetries that are consistent with translational
symmetry. In this Section a descriptive list of the point groups will be given, but
first a certain amount of notation is necessary.

The international (sometimes called Hermann–Mauguin) notation will be
defined first. The Schoenflies notation will be defined in terms of the international
notation. This will be done in a table listing the various groups that are compatible
with the crystal systems (see Table 1.3).

An f-fold axis of rotational symmetry will be specified by f. Also, f will stand for
the group of f-fold rotations. For example, 2 means a two-fold axis of symmetry
(previously called C2), and it can also mean the group of two-fold rotations. f will
denote a rotation inversion axis. For example, 2 means that the crystal is brought
back into itself by a rotation of p followed by an inversion, f/m means a rotation axis
with a perpendicular mirror plane. f 2 means a rotation axis with a perpendicular
two-fold axis (or axes), fm means a rotation axis with a parallel mirror plane (or
planes) m ¼ 2

� �
. f 2 means a rotation inversion axis with a perpendicular two-fold

axis (or axes). f m means that the mirror plane m (or planes) is parallel to the rotation
inversion axis. A rotation axis with a mirror plane normal and mirror planes parallel
is denoted by f/mm or (f/m)m. Larger groups are compounded out of these smaller
groups in a fairly obvious way. Note that 32 point groups are listed.

A very useful pictorial way of thinking about point group symmetries is by the
use of stereograms (or stereographic projections). Stereograms provide a way of
representing the three-dimensional symmetry of the crystal in two dimensions. To
construct a stereographic projection, a lattice point (or any other point about which

(a) (b) (c)

Fig. 1.17 (a) The simple cubic cell, (b) the body-centered cubic cell, and (c) the
face-centered cubic cell. Po (polonium) is the only element that has the sc structure
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Table 1.3 Schoenfliesa and internationalb symbols for point groups, and permissible point
groups for each crystal system

Crystal system International symbol Schoenflies symbol

Triclinic 1

1

C1

Ci

Monoclinic 2

m

2=mð Þ

C2

C1h

C2h

Orthorhombic 222

2mm

2=mð Þ 2=mð Þ 2=mð Þ

D2

C2v

D2h

Tetragonal 4

4

4=mð Þ
422

4mm

42m

4=mð Þ 2=mð Þ 2=mð Þ

C4

S4

C4h

D4

C4v

D2d

D4h

Trigonal 3

3

32

3m

3 2=mð Þ

C3

C3i

D3

C3v

D3d

Hexagonal 6

6

6=mð Þ
622

6mm

6m2

6=mð Þ 2=mð Þ 2=mð Þ

C6

C3h

C6h

D6

C6v

D3h

D6h

Cubic 23

2=mð Þ3
432

43m

4=mð Þ 3
� �

2=mð Þ

T

Th

O

Td

Oh

aA. Schoenflies, Krystallsysteme und Krystallstruktur, Leipzig, 1891
bC. Hermann, Z. Krist., 76, 559 (1931); C. Mauguin, Z. Krist., 76, 542 (1931)
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one wishes to examine the point group symmetry) is surrounded by a sphere.
Symmetry axes extending from the center of the sphere intersect the sphere at
points. These points are joined to the south pole (for points above the equator) by
straight lines. Where the straight lines intersect a plane through the equator, a
geometrical symbol may be placed to indicate the symmetry of the appropriate
symmetry axis. The stereogram is to be considered as viewed by someone at the
north pole. Symmetry points below the equator can be characterized by turning the
process upside down. Additional diagrams to show how typical points are mapped
by the point group are often given with the stereogram. The idea is illustrated in
Fig. 1.18. Wood [98] and Brown [49] have stereograms of the 32 point groups.
Rather than going into great detail in describing stereograms, let us look at a
stereogram for our old friend D3 (or in the international notation 32).

The principal three-fold axis is represented by the triangle in the center of
Fig. 1.19b. The two-fold symmetry axes perpendicular to the three-fold axis are
represented by the dark ovals at the ends of the line through the center of the circle.

In Fig. 1.19a, the dot represents a point above the plane of the paper and the
open circle represents a point below the plane of the paper. Starting from any given
point, it is possible to get to any other point by using the appropriate symmetry
operations. D3 has no reflection planes. Reflection planes are represented by dark
lines. If there had been a reflection plane in the plane of the paper, then the outer
boundary of the circle in Fig. 1.19b would have been dark.

At this stage it might be logical to go ahead with lists, descriptions, and names of
the 230 space groups. This will not be done for the simple reason that it would be
much too confusing in a short time and would require most of the book otherwise.
For details, Buerger [1.5] can always be consulted. A large part of the theory of
solids can be carried out without reference to any particular symmetry type. For the
rest, a research worker is usually working with one crystal and hence one space
group and facts about that group are best learned when they are needed (unless one
wants to specialize in crystal structure).

(a) (b)

Fig. 1.19 Stereogram for D3Fig. 1.18 Illustration of the way a stereo-
gram is constructed
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1.2.7 Some Typical Crystal Structures (B)

The Sodium Chloride Structure. The sodium chloride structure, shown in
Fig. 1.20, is one of the simplest and most familiar. In addition to NaCl, PbS and
MgO are examples of crystals that hae the NaCl arrangement. The space lattice is
fcc (face-centered cubic). Each ion (Na+ or Cl−) is surrounded by six
nearest-neighbor ions of the opposite sign. We can think of the basis of the space
lattice as being a NaCl molecule.

The Diamond Structure. The crystal structure of diamond is somewhat more
complicated to draw than that of NaCl. The diamond structure has a space lattice
that is fcc. There is a basis of two atoms associated with each point of the fee lattice.
If the lower left-hand side of Fig. 1.21 is a point of the fcc lattice, then the basis
places atoms at this point [labeled (0, 0, 0)] and at (a/4, a/4, a/4). By placing bases
at each point in the fee lattice in this way, Fig. 1.21 is obtained. The characteristic
feature of the diamond structure is that each atom has four nearest neighbors or each
atom has tetrahedral bonding. Carbon (in the form of diamond), silicon, and ger-
manium are examples of crystals that have the diamond structure. We compare sc,
fcc, bcc, and diamond structures in Table 1.4.

Fig. 1.20 The sodium chloride structure Fig. 1.21 The diamond structure

Table 1.4 Packing fractions (PF) and coordination numbers
(CN)

Crystal Structure PF CN

fcc
ffiffiffiffiffiffi
2p

p

6
¼ 0:74 12

bcc
ffiffiffiffiffiffi
3p

p

8
¼ 0:68 8

sc p
6
¼ 0:52 6

diamond
ffiffiffiffiffiffi
3p

p

16
¼ 0:34 4
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The packing fraction is the fraction of space filled by spheres on each lattice
point that are as large as they can be so as to touch but not overlap. The coordi-
nation number is the number of nearest neighbors to each lattice point.

The Cesium Chloride Structure. The cesium chloride structure, shown in
Fig. 1.22, is one of the simplest structures to draw. Each atom has eight nearest
neighbors. Besides CsCl, CuZn (b-brass) and AlNi have the CsCl structure.
The Bravais lattice is simple cubic (sc) with a basis of (0, 0, 0) and (a/2)(l, l, l). If all
the atoms were identical this would be a body-centered cubic (bcc) unit cell.

The Perovskite Structure. Perovskite is calcium titanate. Perhaps the most familiar
crystal with the perovskite structure is barium titanate, BaTiO3. Its structure is shown
in Fig. 1.23. This crystal is ferroelectric. It can be described with a sc lattice with
basis vectors of (0, 0, 0), (a/2)(0, l, l), (a/2)(l, 0, l), (a/2)(l, l, 0), and (a/2)(l, l, l).

Crystal Structure Determination (B)
How do we know that these are the structures of actual crystals? The best way is by
the use of diffraction methods (X-ray, electron, or neutron). See Sect. 1.2.9 for more
details about X-ray diffraction. Briefly, X-rays, neutrons and electrons can all be
diffracted from a crystal lattice. In each case, the wavelength of the diffracted entity
must be comparable to the spacing of the lattice planes. For X-rays to have a
wavelength of order Angstroms, the energy needs to be of order keV, neutrons need
to have energy of order fractions of an eV (thermal neutrons), and electrons should
have energy of order eV. Because they carry a magnetic moment and hence interact
magnetically, neutrons are particularly useful for determining magnetic structure.12

Neutrons also interact by the nuclear interaction, rather than with electrons, so they

Fig. 1.22 The cesium chloride structure Fig. 1.23 The barium titanate (BaTiO3)
structure

12For example, Shull and Smart in 1949 used elastic neutron diffraction to directly demonstrate the
existence of two magnetic sublattices on an antiferromagnet.
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are used to located hydrogen atoms (which in a solid have few or no electrons
around them to scatter X-rays). We are concerned here with elastic scattering.
Inelastic scattering of neutrons can be used to study lattice vibrations (see the end of
Sect. 4.3.1). Since electrons interact very strongly with other electrons their
diffraction is mainly useful to elucidate surface structure.13

Ultrabright X-rays: Synchrotron radiation from a storage ring provides a major
increase in X-ray intensity. X-ray fluorescence can be used to study bonds on the
surface because of the high intensity.

1.2.8 Miller Indices (B)

In a Bravais lattice we often need to describe a plane or a set of planes, or a
direction or a set of directions. The Miller indices are a notation for doing this. They
are also convenient in X-ray work.

To describe a plane:

1. Find the intercepts of the plane on the three axes defined by the basis vectors
a1; a2; a3ð Þ.

2. Step 1 gives three numbers. Take the reciprocal of the three numbers.
3. Divide the reciprocals by their greatest common divisor (which yields a set of

integers). The resulting set of three numbers (h, k, l) is called the Miller indices
for the plane, {h, k, l} means all planes equivalent (by symmetry) to (h, k, l).

To find the Miller indices for a direction:

1. Find any vector in the desired direction.
2. Express this vector in terms of the basis a1; a2; a3ð Þ.
3. Divide the coefficients of a1; a2; a3ð Þ by their greatest common divisor. The

resulting set of three integers [h, k, l] defines a direction, h; k; lh i means all
vectors equivalent to [h, k, l]. Negative signs in any of the numbers are indicated
by placing a bar over the number (thus h).

1.2.9 Bragg and von Laue Diffraction (AB)14

By discussing crystal diffraction, we accomplish two things: (1) We make clear how
we know actual crystal structures exist, and (2) We introduce the concept of the
reciprocal lattice, which will be used throughout the book.

13Diffraction of electrons was originally demonstrated by Davisson and Germer in an experiment
clearly showing the wave nature of electrons.
14A particularly clear discussion of these topics is found in Brown and Forsyth [1.4]. See
also Kittel [1.13, Chaps. 2 and 19]
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The simplest approach to Bragg diffraction is illustrated in Fig. 1.24. We assume
specular reflection with angle of incidence equal to angle of reflection. We also
assume the radiation is elastically scattered so that incident and reflected waves
have the same wavelength.

For constructive interference we must have the path difference between reflected
rays equal to an integral (n) number of wavelengths kð Þ. Using Fig. 1.24, the
condition for diffraction peaks is then

nk ¼ 2d sin h; ð1:23Þ

which is the famous Bragg law. Note that peaks in the diffraction only occur if k is
less than 2d, and we will only resolve the peaks if k and d are comparable.

The Bragg approach gives a simple approach to X-ray diffraction. However, it is
not easily generalized to include the effects of a basis of atoms, of the distribution of
electrons, and of temperature. For that we need the von Laue approach.

We will begin our discussion in a fairly general way. X-rays are electromagnetic
waves and so are governed by the Maxwell equations. In SI and with no charges or
currents (i.e. neglecting the interaction of the X-rays with the electron distribution
except for scattering), we have for the electric field E and the magnetic field H (with
the magnetic induction B ¼ l0H)

r 
 E ¼ 0; r	H ¼ e0
@E
@t

; r	 E ¼ �@B
@t

; r 
 B ¼ 0:

Taking the curl of the third equation, using B ¼ l0H and using the first and second
of the Maxwell equations we find the usual wave equation:

r2E ¼ 1
c2

@2E
@t2

; ð1:24Þ

where c ¼ l0e0ð Þ�1=2 is the speed of light. There is also a similar wave equation for
the magnetic field. For simplicity we will focus on the electric field for this dis-
cussion. We assume plane-wave X-rays are incident on an atom and are scattered as
shown in Fig. 1.25.

Fig. 1.24 Bragg diffraction
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In Fig. 1.25 we use the center of the atom as the origin and rs locates the electron
that scatters the X-ray. As mentioned earlier, we will first specialize to the case of
the lattice of point scatterers, but the present setup is useful for generalizations.

The solution of the wave equation for the incident plane wave is

Ei rð Þ ¼ E0 exp i ki 
 ri � xtð Þ½ �; ð1:25Þ

where E0 is the amplitude and x = kc. If the wave equation is written in spherical
coordinates, one can find a solution for the spherically scattered wave (retaining
only dominant terms far from the scattering location)

Es ¼ K1E rsð Þ e
ikr

r
; ð1:26Þ

where K1 is a constant, with the scattered wave having the same frequency and
wavelength as the incident wave. Spherically scattered waves are important ones
since the wavelength being scattered is much greater than the size of the atom. Also,
we assume the source and observation points are very far from the point of scattering.
From the diagram r = R − rs, so by squaring, taking the square root, and using that
rs=R � 1 (i.e. far from the scattering center), we have

r ¼ R 1� rs
R
cos h0

	 

; ð1:27Þ

from which since krs cos h ffi kf 
 rs;
kr ffi kR� kf 
 rs: ð1:28Þ

Therefore

Es ¼ K1E0
eikR

R
ei ki�kfð Þ
rse�ixt; ð1:29Þ

where we have used (1.28), (1.26), and (1.25) and also assumed r�1 ffi R�1 to
sufficient accuracy. Note that ki � kf

� � 
 rs, as we will see, can be viewed as the
phase difference between the wave scattered from the origin and that scattered from
rs in the approximation we are using. Thus, the scattering intensity is proportional
to |P|2 [given by (1.32)] that, as we will see, could have been written down
immediately. Thus, we can write the scattered wave as

Fig. 1.25 Plane-wave scattering
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Esc ¼ FP; ð1:30Þ
where the magnitude of F2 is proportional to the incident intensity E0 and

jFj ¼ K1E0

R


; ð1:31Þ

P ¼
X
s

e�iDk
rs ; ð1:32Þ

summed over all scatterers, and

Dk ¼ kf � ki: ð1:33Þ
P can be called the (relative) scattering amplitude.

It is useful to follow up on the comment made above and give a simpler dis-
cussion of scattering. Looking at Fig. 1.26, we see the path difference between the
two beams is 2d ¼ 2rs sin h. So the phase difference is

Du ¼ 4p
k
rs sin h ¼ 2krs sin h;

since kf
  ¼ kij j ¼ k. Note also

Dk 
 rs ¼ krs cos
p
2
� h

	 

� cos

p
2
þ h

	 
h i
¼ 2krs sin h;

which is the phase difference. We obtain for a continuous distribution of scatterers

P ¼
Z

exp �iDk 
 rsð Þq rsð ÞdV ; ð1:34Þ

where we have assumed each scatterer scatters proportionally to its density.

Fig. 1.26 Schematic for simpler discussion of scattering
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We assume now the general case of a lattice with a basis of atoms, each atom
with a distribution of electrons. The lattice points are located at

Rpmn ¼ pa1 þma2 þ na3; ð1:35Þ

where p, m and n are integers and a1; a2; a3 are the fundamental translation vectors
of the lattice. For each Rpmn there will be a basis at

Rj ¼ aja1 þ bja2 þ cja3; ð1:36Þ

where j = 1 to q for q atoms per unit cell and aj, bj, cj are numbers that are generally
not integers. Starting at Rj we can assume the electrons are located at rs so the
electron locations are specified by

r ¼ Rpmn þRj þ rs; ð1:37Þ

as shown in Fig. 1.27. Relative to Rj then the electron’s position is

rs ¼ r� Rpmn � Rj:

If we let qj rð Þ be the density of electrons of atom j then the total density of electrons is

q rð Þ ¼
X
pmn

Xq
j¼1

qj r� Rj � Rpmn
� �

: ð1:38Þ

By a generalization of (1.34) we can write the scattering amplitude as

P ¼
X
pmn

X
j

Z
qj r� Rj � Rpmn
� �

e�iDk
rdV : ð1:39Þ

Making a dummy change of integration variable and using (1.37) (dropping s on rs)
we write

P ¼
X
pmn

e�iDk
Rpmn
X
j

e�iDk
Rj

Z
qj rð Þe�iDk
rdV

 !
:

For N3 unit cells the lattice factor separates out and we will show below that

Fig. 1.27 Vector diagram of electron positions for X-ray scattering
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X
pmn

exp �iDk 
 Rpmn
� � ¼ N3dDkGhkl

;

where as defined below, the G are reciprocal lattice vectors. So we find

P ¼ N3dDkGhkl
Shkl; ð1:40Þ

where Shkl is the structure factor defined by

Shkl ¼
X
j

e�iGhkl
Rj f hklj ; ð1:41Þ

and fj is the atomic form factor defined by

f hklj ¼
Z

qj rð Þe�iGhkl
rdV : ð1:42Þ

Since nuclei do not interact appreciably with X-rays, qj rð Þ is only determined by the
density of electrons as we have assumed. Equation (1.42) can be further simplified
for qj rð Þ representing a spherical distribution of electrons and can be worked out if
its functional form is known, such as qj rð Þ = (constant) exp �krð Þ.

This is the general case. Let us work out the special case of a lattice of point
scatterers where fj = 1 and Rj = 0. For this case, as in a three-dimension diffraction
grating (crystal lattice), it is useful to introduce the concept of a reciprocal lattice.
This concept will be used throughout the book in many different contexts. The basis
vectors bj for the reciprocal lattice are defined by the set of equations

ai 
 bj ¼ dij; ð1:43Þ

where i; j ! 1 to 3 and dij is the Kronecker delta. The reciprocal lattice is then
defined by

Ghkl ¼ 2p hb1 þ kb2 þ lb3ð Þ; ð1:44Þ

where h, k, l are integers.15 As an aside, we mention that we can show that

b1 ¼ 1
X
a2 	 a3 ð1:45Þ

plus cyclic changes where X ¼ a1 
 a2 	 a3ð Þ is the volume of a unit cell in direct
space. It is then easy to show that the volume of a unit cell in reciprocal space is

15Alternatively, as is often done, we could include a 2p in (1.43) and remove the multiplicative
factor on the right-hand side of (1.44).
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XRL ¼ b1 
 b2 	 b3ð Þ ¼ 1
X
: ð1:46Þ

The vectors b1. b2, and b3 span three-dimensional space, so Dk can be expanded in
terms of them,

Dk ¼ 2p hb1 þ kb2 þ lb3ð Þ; ð1:47Þ

where now h, k, l are not necessarily integers. Due to (1.43) we can write

Rpmn 
 Dk ¼ 2p phþmkþ lnð Þ; ð1:48Þ

with p, m, n still being integers. Using (1.32) with rs = Rpmn, (1.48), and assuming a
lattice of N3 atoms, the structure factor can be written:

P ¼
XN�1

p¼0

e�i2pph
XN�1

m¼0

e�i2pmk
XN�1

n¼0

e�i2pnl: ð1:49Þ

This can be evaluated by the law of geometric progressions. We find:

Pj j2¼ sin2 phN

sin2 ph

� �
sin2 pkN

sin2 pk

� �
sin2 plN

sin2 pl

� �
: ð1:50Þ

For a real lattice N is very large, so we assume N ! 1 and then if h, k, l are not
integers |P| is negligible. If they are integers, each factor is N2 so

Pj j2¼ N6dintegersh;k;l : ð1:51Þ

Thus for a lattice of point ions then, the diffraction peaks occur for

Dk ¼ kf � ki ¼ Ghkl ¼ 2p hb1 þ kb2 þ lb3ð Þ; ð1:52Þ

where h, k, and l are now integers (Fig. 1.28)

Thus the X-ray diffraction peaks directly determine the reciprocal lattice that in
turn determines the direct lattice. For diffraction peaks (1.51) is valid. Let

Fig. 1.28 Wave vector-reciprocal lattice relation for diffraction peaks
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Ghkl ¼ nG0
h0k0l0 , where now h′, k′, l′ are Miller indices and G0

h0k0l0 is the shortest vector
in the direction of Ghkl :Ghkl is perpendicular to (h, k, l) plane, and we show in
Problem 1.10 that the distance between adjacent such planes is

dhkl ¼ 2p
G0

h0k0l0
: ð1:53Þ

Thus

Gj j ¼ 2k sin h ¼ n G0
h0k0l0

  ¼ n
2p
dhkl

; ð1:54Þ

so since k ¼ 2p=k,

nk ¼ 2dhkl sin h; ð1:55Þ

which is Bragg’s equation.
So far our discussion has assumed a rigid fixed lattice. The effect of temperature

on the lattice can be described by the Debye–Waller factor. We state some results
but do not derive them as they involve lattice-vibration concepts discussed in
Chap. 2.16 The results for intensity are:

I ¼ IT¼0e�2W ; ð1:56Þ

where D Tð Þ ¼ e�2W , and W is known as the Debye–Waller factor. If K ¼ k� k0,
where kj j ¼ k0j j are the incident and scattered wave vectors of the X-rays, and if e
(q, j) is the polarization vector of the phonons (see Chap. 2) in the mode j with wave
vector q, then one can show,17 that the Debye–Waller factor is

2W ¼ �h2

2MN

X
q;j

K 
 e q; jð Þ
�hxj qð Þ coth

�hxj qð Þ
2kT

; ð1:57Þ

where N is the number of atoms, M is their mass and xj qð Þ is the frequency of
vibration of phonons in mode j, wave vector q. One can further show that in the
Debye approximation (again discussed in Chap. 2): At low temperature T � hDð Þ

2W ¼ 3
4M

�h2K2

khD
¼ constant, ð1:58Þ

and at high temperature T � hDð Þ

16See, e.g., Ghatak and Kothari [1.9].
17See Maradudin et al. [1.16]
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2W ¼ 3
M�hhD

T
hD

K2 / T ; ð1:59Þ

where hD is the Debye Temperature defined from the cutoff frequency in the Debye
approximation (see Sect. 2.3.3). The effect of temperature is to reduce intensity but
not broaden lines. Even at T = 0 the Debye–Waller factor is not unity so there is
always some “diffuse” scattering, in addition to the diffraction.

As an example of the use of the structure factor, we represent the bcc lattice as a
sc lattice with a basis. Let the simple cubic unit cell have side a. Consider a basis at
R0 = (0, 0, 0)a, R1 = (1, 1, 1)a/2. The structure factor is

Shkl ¼ f0 þ f1e�i2p hþ kþ lð Þa=2 ¼ f0 þ f1 �1ð Þhþ kþ l: ð1:60Þ

Suppose also the atoms at R0 and R1 are identical, then f0 ¼ f1 ¼ f so

Shkl ¼ f 1þ �ð Þhþ kþ l
	 


;

¼ 0 if hþ kþ l is odd;

¼ 2f if hþ kþ l is even:

ð1:61Þ

The nonvanishing structure factor ends up giving results identical to a bcc lattice.

William Henry Bragg

b. Wigton, England (1862–1942)

William Lawrence Bragg

b. Adelaide, Australia (1880–1971)

Bragg’s Law and Bragg Diffraction; Nobel Prize 1915 (for both)

Although, von Laue had the idea of diffraction of X-rays by crystals, the
Braggs greatly developed it and William Lawrence actually discovered
Bragg’s law. They both spent a good part of their lives working with X-ray
crystallography. William Lawrence is so far the youngest person to win a
Nobel Prize in Physics. He also worked with proteins and helped develop the
application of X-rays to biological systems. They are unique in being a
father–son combination to both win the Nobel Prize in the same year.
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Max von Laue

b. Pfaffendorf (now Koblenz), Germany (1879–1960)

Diffraction of X-rays by crystals–Nobel Prize 1914

Strongly opposed Nazi’s and anti-Jewish attitude of Stark and Lenard.
Helped rebuild physics in Germany after WW II.

Newell Shiffer Gingrich—“Gentleman Physicist”

b. Orwigsburg, Pennsylvania, USA (1906–1996)

X-ray diffraction particularly of liquids; Neutron Diffraction; Co-Author of
book, Physics, a textbook for colleges; Brought major research to U. of
Missouri, Columbia

Prof. Gingrich was a Ph.D. student of A. H. Compton. After his Ph.D. he
went to MIT and then to the U. of Missouri, Columbia. He was the guiding
light in developing the MU physics department from a teaching institution to
one prominent in research, particularly in condensed matter. He was inter-
nationally known in several areas of X-ray diffraction especially in the X-ray
diffraction of liquids. He also contributed to and helped develop many
scholarships and fellowships in Physics at Missouri (some of these are in his
name, many in the name of O. M. Stewart). He also developed the
O. M. Stewart lectures, which brought prominent physicists to Columbia.

Problems

1:1. Show by construction that stacked regular pentagons do not fill all
two-dimensional space. What do you conclude from this? Give an example
of a geometrical figure that when stacked will fill all two-dimensional space.

1:2. Find the Madelung constant for a one-dimensional lattice of alternating,
equally spaced positive and negative charged ions.

1:3. Use the Evjen counting scheme [1.19] to evaluate approximately the
Made-lung constant for crystals with the NaCl structure.

1:4. Show that the set of all rational numbers (without zero) forms a group under
the operation of multiplication. Show that the set of all rational numbers
(with zero) forms a group under the operation of addition.
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1:5. Construct the group multiplication table of D4 (the group of three dimen-
sional rotations that map a square into itself).

1:6. Show that the set of elements (1, −1, i, −i) forms a group when combined
under the operation of multiplication of complex numbers. Find a geometric
group that is isomorphic to this group. Find a subgroup of this group. Is the
whole group cyclic? Is the subgroup cyclic? Is the whole group Abelian?

1:7. Construct the stereograms for the point groups 4(C4) and 4 mm(C4v).
Explain how all elements of each group are represented in the stereogram
(see Table 1.3).

1:8. Draw a bcc (body-centered cubic) crystal and draw in three crystal planes
that are neither parallel nor perpendicular. Name these planes by the use of
Miller indices. Write down the Miller indices of three directions, which are
neither parallel nor perpendicular. Draw in these directions with arrows.

1:9. Argue that electrons should have energy of order electron volts to be dif-
fracted by a crystal lattice.

1:10. Consider lattice planes specified by Miller indices (h, k, l) with lattice
spacing determined by d(h, k, l). Show that the reciprocal lattice vectors G(h,
k, l) are orthogonal to the lattice plane (h, k, l) and if G(h, k, l) is the shortest
such reciprocal lattice vector then

d h; k; lð Þ ¼ 2p
G h; k; lð Þj j :

1:11. Suppose a one-dimensional crystal has atoms located at nb and amb where
n and m are integers and a is an irrational number. Show that sharp Bragg
peaks are still obtained.

1:12. Find the Bragg peaks for a grating with a modulated spacing. Assume the
grating has a spacing

dn ¼ nbþ eb sin 2pknbð Þ;

where e is small and kb is irrational. Carry your results to first order in e and
assume that all scattered waves have the same geometry. You can use the
geometry shown in the figure of this problem. The phase un of scattered
wave n at angle h is

un ¼
2p
k
dn sin h;
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where k is the wavelength. The scattered intensity is proportional to the
square of the scattered amplitude, which in turn is proportional to

E �
XN
0

exp iunð Þ



for N+1 scattered wavelets of equal amplitude.

1:13. Find all Bragg angles less than 50° for diffraction of X-rays with wavelength
1.5 angstroms from the (100) planes in potassium. Use a conventional unit
cell with structure factor.
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Chapter 2
Lattice Vibrations and Thermal
Properties

Chapter 1 was concerned with the binding forces in crystals and with the manner in
which atoms were arranged. Chapter 1 defined, in effect, the universe with which
we will be concerned. We now begin discussing the elements of this universe with
which we interact. Perhaps the most interesting of these elements are the internal
energy excitation modes of the crystals. The quanta of these modes are the
“particles” of the solid. This chapter is primarily devoted to a particular type of
internal mode—the lattice vibrations.

The lattice introduced in Chap. 1, as we already mentioned, is not a static
structure. At any finite temperature there will be thermal vibrations. Even at
absolute zero, according to quantum mechanics, there will be zero-point vibrations.
As we will discuss, these lattice vibrations can be described in terms of normal
modes describing the collective vibration of atoms. The quanta of these normal
modes are called phonons.

The phonons are important in their own right as, e.g., they contribute both to the
specific heat and the thermal conduction of the crystal, and they are also important
because of their interaction with other energy excitations. For example, the phonons
scatter electrons and hence cause electrical resistivity. Scattering of phonons, by
whatever mode, in general also limits thermal conductivity. In addition, phonon–
phonon interactions are related to thermal expansion. Interactions are the subject of
Chap. 4.

We should also mention that the study of phonons will introduce us to wave
propagation in periodic structures, allowed energy bands of elementary excitations
propagating in a crystal, and the concept of Brillouin zones that will be defined later
in this chapter.

There are actually two main reservoirs that can store energy in a solid. Besides
the phonons or lattice vibrations, there are the electrons. Generally, we start out by
discussing these two independently, but this is an approximation. This approxi-
mation is reasonably clear-cut in insulators, but in metals it is much harder to
justify. Its intellectual framework goes by the name of the Born–Oppenheimer
approximation. This approximation paves the way for a systematic study of solids
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in which the electron–phonon interactions can later be put in, often by perturbation
theory. In this chapter we will discuss a wide variety of lattice vibrations in one and
three dimensions. In three dimensions we will also discuss the vibration problem in
the elastic continuum approximation. Related topics will follow: in Chap. 3 elec-
trons moving in a static lattice will be considered, and in Chap. 4 electron–phonon
interactions (and other topics).

2.1 The Born–Oppenheimer Approximation (A)

The most fundamental problem in solid-state physics is to solve the many-particle
Schrödinger wave equation,

Hcw ¼ i�h
@w
@t

; ð2:1Þ

where Hc is the crystal Hamiltonian defined by (2.3). In a sense, this equation is the
“Theory of Everything” for solid-state physics. However, because of the
many-body problem, solutions can only be obtained after numerous approxima-
tions. As mentioned in Chap. 1, P. W. Anderson has reminded us, “more is dif-
ferent!” There are usually emergent properties at higher levels of complexity [2.1].
In general, the wave function w is a function of all electronic and nuclear coordi-
nates and of the time t. That is,

w ¼ w ri;Rl; tð Þ; ð2:2Þ

where the ri are the electronic coordinates and the Rl are the nuclear coordinates.
The Hamiltonian Hc of the crystal is

Hc ¼ �
X
i

�h2

2m
r2

i �
X
l

�h2

2Ml
r2

l þ
1
2

X0
i;j

e2

4pe0 ri � rj
�� ��

�
X
i;l

e2Zl
4pe0 ri � Rlj j þ

1
2

X0
l;l0

e2ZlZl0

4pe0 Rl � Rl0j j: ð2:3Þ

In (2.3), m is the electronic mass, Ml is the mass of the nucleus located at Rl, Zl is
the atomic number of the nucleus at Rl, and e has the magnitude of the electronic
charge. The sums over i and j run over all electrons.1 The prime on the third term on

1Had we chosen the sum to run over only the outer electrons associated with each atom, then we
would have to replace the last term in (2.3) by an ion–ion interaction term. This term could have
three and higher body interactions as well as two-body forces. Such a procedure would be
appropriate [51, p. 3] for the practical discussion of lattice vibrations. However, we shall consider
only two-body forces.
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the right-hand side of (2.3) means the terms i = j are omitted. The sums over l and l′
run over all nuclear coordinates and the prime on the sum over l and l′ means that
the l = l′ terms are omitted. The various terms all have a physical interpretation. The
first term is the operator representing the kinetic energy of the electrons. The second
term is the operator representing the kinetic energy of the nuclei. The third term is
the Coulomb potential energy of interaction between the electrons. The fourth term
is the Coulomb potential energy of interaction between the electrons and the nuclei.
The fifth term is the Coulomb potential energy of interaction between the nuclei.

In (2.3) internal magnetic interactions are left out because of their assumed
smallness. This corresponds to neglecting relativistic effects. In solid-state physics,
it is seldom necessary to assign a structure to the nucleus. It is never necessary (or
possible) to assign a structure to the electron. Thus in (2.3) both electrons and nuclei
are treated as point charges. Sometimes it will be necessary to allow for the fact that
the nucleus can have nonzero spin, but this is only when much smaller energy
differences are being considered than are of interest now. Because of statistics, as
will be evident later, it is usually necessary to keep in mind that the electron is a
spin 1/2 particle. For the moment, it is necessary to realize only that the wave
function of (2.2) is a function of the spin degrees of freedom as well as of the space
degrees of freedom. If we prefer, we can think of ri in the wave function as
symbolically labeling all the coordinates of the electron. That is, ri gives both the
position and the spin. However, r2

i is just the ordinary spatial Laplacian.
For purposes of shortening the notation it is convenient to let TE be the kinetic

energy of the electrons, TN be the kinetic energy of the nuclei, and U be the total
Coulomb energy of interaction of the nuclei and the electrons. Then (2.3) becomes

Hc ¼ TE þUþ TN: ð2:4Þ

It is also convenient to define

H0 ¼ TE þU: ð2:5Þ

Nuclei have large masses and hence in general (cf. the classical equipartition the-
orem) they have small kinetic energies. Thus in the expression Hc ¼ H0 þ TN, it
makes some sense to regard TN as a perturbation on H0. However, for metals,
where the electrons have no energy gap between their ground and excited states, it
is by no means clear that TN should be regarded as a small perturbation on H0. At
any rate, one can proceed to make expansions just as if a perturbation sequence
would converge.

Let M0 be a mean nuclear mass and define

K ¼ m
M0

� �1=4

:
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If we define

HL ¼ �
X
l

M0

Ml

�h2

2m
r2

l ; ð2:6Þ

then

TN ¼ K4HL: ð2:7Þ

The total Hamiltonian then has the form

Hc ¼ H0 þK4HL; ð2:8Þ

and the time-independent Schrödinger wave equation that we wish to solve is

Hcw ri;Rlð Þ ¼ Ew ri;Rlð Þ: ð2:9Þ

The time-independent Schrödinger wave equation for the electrons, if one assumes
the nuclei are at fixed positions Rl, is

H0/ ri;Rlð Þ ¼ E0/ ri;Rlð Þ: ð2:10Þ

Born and Huang [46] have made a perturbation expansion of the solution of (2.9) in
powers of K. They have shown that if the wave function is evaluated to second
order in K, then a product separation of the form wn ri;Rlð Þ ¼ /n rið ÞX Rlð Þ where
n labels an electronic state, is possible. The assertion that the total wave function
can be written as a product of the electronic wave function (depending only on
electronic coordinates with the nuclei at fixed positions) times the nuclear wave
function (depending only on nuclear coordinates with the electrons in some fixed
state) is the physical content of the Born–Oppenheimer approximation (1927). In
this approximation the electrons provide a potential energy for the motion of the
nuclei while the moving nuclei continuously deform the wave function of the
electrons (rather than causing any sudden changes). Thus this idea is also called the
adiabatic approximation.

It turns out when the wave function is evaluated to second order in K that the
effective potential energy of the nuclei involves nuclear displacements to fourth
order and lower. Expanding the nuclear potential energy to second order in the
nuclear displacements yields the harmonic approximation. Terms higher than sec-
ond order are called anharmonic terms. Thus it is possible to treat anharmonic terms
and still stay within the Born–Oppenheimer approximation.

If we evaluate the wave function to third order in K, it turns out that a simple
product separation of the wave function is no longer possible. Thus the Born–
Oppenheimer approximation breaks down. This case corresponds to an effective
potential energy for the nuclei of fifth order. Thus it really does not appear to be
correct to assume that there exists a nuclear potential function that includes fifth or
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higher power terms in the nuclear displacement, at least from the viewpoint of the
perturbation expansion.

Apparently, in actual practice the adiabatic approximation does not break down
quite so quickly as the above discussion suggests. To see that this might be so a
somewhat simpler development of the Born–Oppenheimer approximation [46] is
sometimes useful. In this development, we attempt to find a solution for w in (2.9)
of the form

w ri;Rlð Þ ¼
X
n

wn Rlð Þ/n ri;Rlð Þ: ð2:11Þ

The /n are eigenfunctions of (2.10). Substituting into (2.9) givesX
n

Hcwn/n ¼ E
X
n

wn/n;

or using (2.10) givesX
n

E0
nwn/n þ

X
n

TN wn/nð Þ ¼ E
X
n

wn/n:

Noting that

TN wn/nð Þ ¼ TNwnð Þ/n þwn TN/nð Þþ
X
l

1
Ml

Pl/nð Þ � Plwnð Þ;

where

TN ¼
X
l

1
2Ml

P2
l ¼ ��h

X
l

1
2Ml

r2
Rl
;

we can write the above asX
n1

/n1 TN þE0
n � E

� �
wn1 þ

X
n1

wn1TN/n1

þ
X
n1

X
l

1
Ml

Pl;/n1ð Þ � Pl;wn1ð Þ ¼ 0:

Multiplying the above equation by /�
n and integrating over the electronic coordi-

nates gives

TN þE0
n � E

� �
wn þ

X
n1

Cnn1 Rl;Plð Þwn1 ¼ 0; ð2:12Þ
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where

Cnn1 ¼
X
li

1
Ml

Qli
nn1Pli þRli

nn1
� � ð2:13Þ

(the sum over i goes from 1 to 3, labeling the x, y, and z components) and

Qli
nn1 ¼

Z
/�
nPli/n1ds; ð2:14Þ

Rli
nn1 ¼

1
2

Z
/�
nP

2
li
/n1ds: ð2:15Þ

The integration is over electronic coordinates.
For stationary states, the /s can be chosen to be real and so it is easily seen that

the diagonal elements of Q vanish:

Qli
nn1 ¼

Z
/nPli/nds ¼

�h
2i

@

@Xli

Z
/2
nds ¼ 0:

From this we see that the effect of the diagonal elements of C is a multiplication
effect and not an operator effect. Therefore the diagonal elements of C can be added
to E0

n to give an effective potential energy Ueff.
2 Equation (2.12) can be written as

TN þUeff � Eð Þwn þ
X
n1 6¼nð Þ

Cnn1wn1 ¼ 0: ð2:16Þ

If the Cnn1 vanish, then we can split the discussion of the electronic and nuclear
motions apart as in the adiabatic approximation. Otherwise, of course, we cannot.
For metals there appears to be no reason to suppose that the effect of the C is
negligible. This is because the excited states are continuous in energy with the
ground state, and so the sum in (2.16) goes over into an integral. Perhaps the best
way to approach this problem would be to just go ahead and make the Born–
Oppenheimer approximation. Then wave functions could be evaluated so that the
Cnn1 could be evaluated. One could then see if the calculations were consistent, by
seeing if the C were actually negligible in (2.16).

In general, perturbation theory indicates that if there is a large energy gap
between the ground and excited electronic states, then an adiabatic approximation
may be valid.

Can we even speak of lattice vibrations in metals without explicitly also dis-
cussing the electrons? The above discussion might lead one to suspect that the

2We have used the terms Born–Oppenheimer approximation and adiabatic approximation inter-
changeably. More exactly, Born–Oppenheimer corresponds to neglecting Cnn, whereas in the
adiabatic approximation Cnn is retained.
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answer is no. However, for completely free electrons (whose wave functions do not
depend at all on the Rl) it is clear that all the C vanish. Thus the presence of free
electrons does not make the Born–Oppenheimer approximation invalid (using the
concept of completely free electrons to represent any of the electrons in a solid is, of
course, unrealistic). In metals, when the electrons can be thought of as almost free,
perhaps the net effect of the C is small enough to be neglected in zeroth-order
approximation. We shall suppose this is so and suppose that the Born–Oppenheimer
approximation can be applied to conduction electrons in metals. But we should also
realize that strange effects may appear in metals due to the fact that the coupling
between electrons and lattice vibrations is not negligible. In fact, as we shall see in a
later chapter, the mere presence of electrical resistivity means that the Born–
Oppenheimer approximation is breaking down. The phenomenon of superconduc-
tivity is also due to this coupling. At any rate, we can always write the Hamiltonian
as H ¼ H (electrons) + H (lattice vibrations) + H (coupling). It just may be that in
metals, H (coupling) cannot always be regarded as a small perturbation.

Finally, it is well to note that the perturbation expansion results depend on
K being fairly small. If nature had not made the mass of the proton much larger than
the mass of the electron, it is not clear that there would be any valid Born–
Oppenheimer approximation.3

Max Born and Quantum History

b. Breslau, Germany (now Wrocław, Poland) (1882–1970)

Nobel Prize–1954—this was awarded later than most founding fathers of
quantum mechanics. Born introduced the idea that the magnitude squared of
the wave function is a probability. His professional position was suspended
by Nazi’s in WW II. As a side note, he was the grandfather of the singer
Olivia Newton-John.

A compelling problem in quantum mechanics has been how to treat the
many-electron problem. This was necessary to completely describe atoms,
solids, and other forms of condensed matter. Douglas Hartree made a
beginning and V. Fock went further to write down the Hartree–Fock equa-
tions. These treated the many electron problem with the exclusion principle
built in. Unfortunately, the remaining correlations between electrons due to
electron–electron interaction were not included. One contribution was made
by Tjalling Koopmans 1910–1985. Koopmans Theorem was important in
using the Hartree–Fock model. Koopmans is noted here because he won a

3For further details of the Born–Oppenheimer approximation, [46, 82], [22, Vol. 1, pp. 611–613]
and the references cited therein can be consulted.
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Nobel Prize, but not in Physics. He was primarily a mathematician and
economist and he won the Nobel Prize in Economics in 1975.

A great step forward in treating the correlation energy (not included in the
Hartree–Fock approach) is found in the density functional method of Walter
Kohn (1923–) and others. This method is a descendant of the Thomas–Fermi
model as noted in the Fermi chapter. Walter Kohn (1923–) was born in
Vienna, Austria. He was also known for many other things including the
KKR method in band structure studies and the Luttinger–Kohn theory of
bands in semiconductors. He won the Nobel Prize in Chemistry in 1998.

There are really two aspects to QM. One is to calculate results and the
other is what it all means. The later is still under debate. A leader in this area
is J. S. Bell. He is best known for his “theorem.”

J. Robert Oppenheimer—The Conflicted Man

b. New York City, New York, USA (1904–1967)

Black Holes; Tunneling; Atomic Bomb; Leftist Friends

For the Manhattan project, Oppenheimer directed Los Alamos, where the
atomic bomb was first constructed. He thus helped us end World War Two.
He was well known for the Born–Oppenheimer approximation as well as for
his studies of black holes and tunneling. By all accounts, he was a complex as
well as controversial man. He was one of a number of physicists who were
thought by some to be sympathetic to communists. His security clearance was
removed and Teller’s testimony was believed by some to be partly respon-
sible–see the separate mini-bio on Edward Teller.

Other’s who were caught up in the “red scare” of the times were Edward
Condon, and David Bohm. Condon was pursued by the House un-American
activities committee. Apparently, he was thought to be a security leak by
them although this was strongly rebutted by many-many reputable groups. It
is rumored that he was even accused of being a leader in the revolutionary
movement called quantum mechanics! Such were the times.

Bohm was hounded out of the country for a while. Those were the days
when Senator Joseph McCarthy was hunting communists in the government.
Bohm developed a form of quantum mechanics somewhat based on de
Broglie’s “Pilot Wave” theory, but it was highly controversial.

The physicist Klaus Fuchs was proven to have been a spy and Bruno
Pontecorvo who defected to the Soviet Union was thought by some to have
been one.

54 2 Lattice Vibrations and Thermal Properties



According to the general view of the Physics community, Oppenheimer
was a loyal American. This needs to be emphasized. For a person with his
important responsibilities, however, he seems to me to be careless in
friendships during wartime. One of his mistresses (Jean Tatlock) as well as
his wife, were certainly communist sympathizers, if not members of the
communist party.

Whatever else can be said of Oppenheimer, it is probably safe to say that
his personal morals were not compatible with mid America in the middle of
the twentieth century. Sexually, he apparently had several liaisons. One that is
reasonably well documented was with Ruth Tolman, the wife of his good
friend Richard C. Tolman (1881–1948) the American author of a famous
book on Statistical Mechanics. It is also alleged that Oppenheimer made
inappropriate proposals to Linus Pauling’s wife. She refused and reported the
episode to Linus and that made Pauling an enemy. Linus Pauling was the
chemist who won a Nobel Prize in chemistry as well as a Nobel Peace Prize.

Another odd character was Leo Szilard who patented, with Fermi, the idea
of the atomic bomb and was very liberal. Hans Bethe has said Szilard was the
most unusual character he knew. His loyalty was not questioned however.
Apparently, Szilard liked to sit in his bathtub while he considered deep
questions. According to a review by Hans Bethe, Szilard could be both
insightful and annoying. Insightful in that he would think things through to
their logical conclusion very quickly, and annoying in that he changed his
mind so often. He also had an interest in biology. It seems to me that biology
being so complex is not a natural fit for a person inclined towards physics.
However, some physicists like the challenges of either reduction to basics or
recognizing emergent properties. Schrödinger was another physicist with
such dual interests.

See e.g. Nuel Pharr Davis, Lawrence and Oppenheimer, Simon and
Schuster, New York, 1968.

Erwin Schrödinger—The Helpful Quantum Mechanic

b. Vienna, Austria (1887–1961)

Wave Mechanics; Cohabit/Wife-Mistress; Nobel Prize 1933

Unlike the General Theory of Relativity, quantum mechanics was the
product of many physicists including Erwin Schrödinger, Louis de Broglie,
Niels Bohr, Max Born, Wolfgang Pauli, Werner Heisenberg, and J. S. Bell.
All of them, and others, were involved in the elucidation of quantum
mechanics.
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Schrödinger is perhaps best remembered for his wave equation, which was
easier to understand and manipulate (for many systems) than was the matrix
version of quantum mechanics originated by Heisenberg. Thus Schrödinger’s
wave mechanics version of quantum mechanics, once developed, was more
used than Heisenberg’s matrix version. Heisenberg’s version was discovered
slightly before Schrödinger’s. These two versions have been proved to be
equivalent.

Schrödinger is also famous for the idea behind “Schrödinger’s cat” and
was a pioneer in trying to understand biological processes from a physical
standpoint. Schrödinger and Born taught us that life is made of probabilities
rather than certainties.

Finally, Schrödinger had a bizarre life style in that for a time he lived in
the same house with his wife and mistress. This made his visits to some
universities, shall we say, awkward.

As already indicated there was no one person who discovered quantum
mechanics although Schrödinger along with Heisenberg are often given credit
for the discovery. For many purposes the wave mechanics version is con-
sidered to be easier to use, but both the wave and matrix versions have their
place. Among the other men who contributed to creating quantum mechanics
I must mention Prince Louis de Broglie, Niels Bohr, Paul Dirac (see bio),
Max Born, and Wolfgang Pauli. J. S. Bell has contributed in recent times, and
there are others both early on and later that could be mentioned. As far as a
completely satisfactory version of the interpretation of the meaning of
quantum mechanics, that is still to come. Some people have the view that
when we consider QM, one should “shut up and calculate.” Feynman has
been reported to have said words to the effect, “No one understands quantum
mechanics.”

Planck originated the quantum idea in his theory of black body radiation,
as discussed in his mini bio. In addition, de Broglie introduced the idea of
waves in describing particle motion, Bohr quantized the Hydrogen atom, and
Einstein, in the photoelectric effect, had the idea that light waves can also be
described as particles now called photons. Born introduced the idea of
probability into quantum mechanics and Dirac, suggested the existence of
anti particles, with his relativistic version of QM that is discussed later.
I should also mention Henry Moseley (1887–1915) who was killed in World
War One. He experimentally showed a relation between X-ray frequencies of
atoms and their atomic number. This relation established that the atomic
number determined the number of protons in the atom.
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2.2 One-Dimensional Lattices (B)

Perhaps it would be most logical at this stage to plunge directly into the problem of
solving quantum-mechanical three-dimensional lattice vibration problems either in
the harmonic or in a more general adiabatic approximation. But many of the
interesting features of lattice vibrations are not quantum-mechanical and do not
depend on three-dimensional motion. Since our aim is to take a fairly easy path to
the understanding of lattice vibrations, it is perhaps best to start with some simple
classical one-dimensional problems. The classical theory of lattice vibrations is due
to M. Born, and Born and Huang [2.5] contains a very complete treatment.

Even for the simple problems, we have a choice as to whether to use the
harmonic approximation or the general adiabatic approximation. Since the latter
involves quartic powers of the nuclear displacements while the former involves
only quadratic powers, it is clear that the former will be the simplest starting place.
For many purposes the harmonic approximation gives an adequate description of
lattice vibrations. This chapter will be devoted almost entirely to a description of
lattice vibrations in the harmonic approximation.

A very simple physical model of this approximation exists. It involves a
potential with quadratic displacements of the nuclei. We could get the same
potential by connecting suitable springs (which obey Hooke’s law) between
appropriate atoms. This in fact is an often-used picture.

Even with the harmonic approximation there is still a problem as to what value
we should assign to the “spring constants” or force constants. No one can answer
this question from first principles (for a real solid). To do this we would have to
know the electronic energy eigenvalues as a function of nuclear position (Rl). This
is usually too complicated a many-body problem to have a solution in any useful
approximation. So the “spring constants” have to be left as unknown parameters,
which are determined from experiment or from a model that involves certain
approximations.

It should be mentioned that our approach (which we could call the unrestricted
force constants approach) to discussing lattice vibration is probably as straight-
forward as any and it also is probably as good a way to begin discussing the lattice
vibration problem as any. However, there has been a considerable amount of
progress in discussing lattice vibration problems beyond that of our approach. In
large part this progress has to do with the way the interaction between atoms is
viewed. In particular, the shell model4 has been applied with good results to ionic
and covalent crystals.5 The shell model consists in regarding each atom as con-
sisting of a core (the nucleus and inner electrons) plus a shell. The core and shell are
coupled together on each atom. The shells of nearest-neighbor atoms are coupled.
Since the cores can move relative to the shells, it is possible to polarize the atoms.
Electric dipole interactions can then be included in neighbor interactions.

4See Dick and Overhauser [2.12].
5See, for example, Cochran [2.9].
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Lattice vibrations in metals can be particularly difficult to treat by starting from
the standpoint of force constants as we do. A special way of looking at lattice
vibrations in metals has been given.6 Some metals can apparently be described by a
model in which the restoring forces between ions are either of the bond-stretching
or axially symmetric bond-bending variety.7

We have listed some other methods for looking at the vibrational problems in
Table 2.1. Methods, besides the Debye approximation (Sect. 2.3.3), for approxi-
mating the frequency distribution include root sampling and others [2.26, Chap. 3].
Montroll8 has given an elegant way for estimating the frequency distribution, at
least away from singularities. This method involves taking a trace of the Dynamical
Matrix (2.3.2) and is called the moment-trace method. Some later references for
lattice dynamics calculations are summarized in Table 2.1.

2.2.1 Classical Two-Atom Lattice with Periodic Boundary
Conditions (B)

We start our discussion of lattice vibrations by considering the simplest problem that
has any connection with real lattice vibrations. Periodic boundary conditions will be
used on the two-atom lattice because these are the boundary conditions that are used
on large lattices where the effects of the surface are relatively unimportant. Periodic
boundary conditions mean that when we come to the end of the lattice we assume that
the lattice (including its motion) identically repeats itself. It will be assumed that
adjacent atoms are coupled with springs of spring constant c. Only nearest-neighbor
coupling will be assumed (for a two-atom lattice, you couldn’t assume anything else).

Table 2.1 References for lattice vibration calculations

Lattice vibrational
calculations

References

Einstein Kittel [23, Chap. 5]
Debye Chapter 2, this book
Rigid ion models Bilz and Kress [2.3]
Shell model Jones and March [2.20, Chap. 3]. Also

Footnotes 4 and 5.
Ab initio models Kunc et al. [2.22]

Strauch et al. [2.33]. Density Functional
Techniques are used
See Chap. 3

General reference Maradudin et al. [2.26]. See also Born and
Huang [46]

6See Toya [2.34].
7See Lehman et al. [2.23]. For a more general discussion, see Srivastava [2.32].
8See Montroll [2.28].
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As should already be clear from the Born–Oppenheimer approximation, in a
lattice all motions of sufficiently small amplitude are describable by Hooke’s law
forces. This is true no matter what the physical origin (ionic, van der Waals, etc.) of
the forces. This follows directly from a Taylor series expansion of the potential
energy using the fact that the first derivative of the potential evaluated at the
equilibrium position must vanish.

The two-atom lattice is shown in Fig. 2.1, where a is the equilibrium separation
of atoms, x1 and x2 are coordinates measuring the displacement of atoms 1 and 2
from equilibrium, and m is the mass of atom 1 or 2. The idea of periodic boundary
conditions is shown by repeating the structure outside the vertical dashed lines.

With periodic boundary conditions, Newton’s second law for each of the two
atoms is

m€x1 ¼ c x2 � x1ð Þ � c x1 � x2ð Þ;
m€x2 ¼ c x1 � x2ð Þ � c x2 � x1ð Þ: ð2:17Þ

In (2.17), each dot means a derivative with respect to time.
Solutions of (2.17) will be sought in which both atoms vibrate with the same

frequency. Such solutions are called normal mode solutions (see Appendix B).
Substituting

xn ¼ un exp ixtð Þ ð2:18Þ

in (2.17) gives

�x2mu1 ¼ c u2 � u1ð Þ � c u1 � u2ð Þ;
�x2mu2 ¼ c u1 � u2ð Þ � c u2 � u1ð Þ: ð2:19Þ

Equation (2.19) can be written in matrix form as

2c� x2m �2c
�2c 2c� x2m

� �
u1
u2

� �
¼ 0: ð2:20Þ

For nontrivial solutions (u1 and u2 not both equal to zero) of (2.20) the
determinant (written “det” below) of the matrix of coefficients must be zero or

Fig. 2.1 The two-atom lattice (with periodic boundary conditions schematically indicated)
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det 2c� x2m �2c
�2c 2c� x2m

� �
¼ 0: ð2:21Þ

Equation (2.21) is known as the secular equation, and the two frequencies that
satisfy (2.21) are known as eigenfrequencies.

These two eigenfrequencies are

x2
1 ¼ 0; ð2:22Þ

and

x2
2 ¼ 4c=m: ð2:23Þ

For (2.22), u1 = u2 and for (2.23),

2c� 4cð Þu1 ¼ 2cu2 or u1 ¼ �u2:

Thus, according to Appendix B, the normalized eigenvectors corresponding to the
frequencies x1 and x2 are

E1 ¼ 1; 1ð Þffiffiffi
2

p ; ð2:24Þ

and

E1 ¼ 1;�1ð Þffiffiffi
2

p : ð2:25Þ

The first term in the row matrix of (2.24) or (2.25) gives the relative amplitude of u1
and the second term gives the relative amplitude of u2. Equation (2.25) says that in
mode 2, u2/u1 = −1, which checks our previous results. Equation (2.24) describes a
pure translation of the crystal. If we are interested in a fixed crystal, this solution is
of no interest. Equation (2.25) corresponds to a motion in which the center of mass
of the crystal remains fixed.

Since the quantum-mechanical energies of a harmonic oscillator are
En = (n + 1/2)ħx, where x is the classical frequency of the harmonic oscillator, it
follows that the quantum-mechanical energies of the fixed two-atom crystal are
given by

En ¼ nþ 1
2

� �
�h

ffiffiffiffiffi
4c
m

r
: ð2:26Þ

This is our first encounter with normal modes, and since we shall encounter them
continually throughout this chapter, it is perhaps worthwhile to make a few more
comments. The sets E1 and E2 determine the normal coordinates of the normal
mode. They do this by defining a transformation. In this simple example, the theory
of small oscillations tells us that the normal coordinates are
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X1 ¼ u1ffiffiffi
2

p þ u2ffiffiffi
2

p and X2 ¼ u1ffiffiffi
2

p þ u2ffiffiffi
2

p :

Note that X1, X2 are given by

X1

X2

� �
¼ E1

E2

� �
u1
u2

� �
¼ 1ffiffiffi

2
p 1 1

1 �1

� �
u1
u2

� �
:

X1 and X2 are the amplitudes of the normal modes. If we want the time-dependent
normal coordinates, we would multiply the first set by exp(ix1t) and the second set
by exp(ix2t). In most applications when we say normal coordinates it should be
obvious which set (time-dependent or otherwise) we are talking about.

The following comments are also relevant:

1. In an n-dimensional problem with m atoms, there are (n � m) normal coordinates
corresponding to nm different independent motions.

2. In the harmonic approximation, each normal coordinate describes an indepen-
dent mode of vibration with a single frequency.

3. In a normal mode, all atoms vibrate with the same frequency.
4. Any vibration in the crystal is a superposition of normal modes.

2.2.2 Classical, Large, Perfect Monatomic Lattice,
and Introduction to Brillouin Zones (B)

Our calculation will still be classical and one-dimensional but we shall assume that
our chain of atoms is long. Further, we shall give brief consideration to the pos-
sibility that the forces are not harmonic or nearest-neighbor. By a long crystal will
be meant a crystal in which it is not very important what happens at the boundaries.
However, since the crystal is finite, some choice of boundary conditions must be
made. Periodic boundary conditions (sometimes called Born–von Kárman or cyclic
boundary conditions) will be used. These boundary conditions can be viewed as the
large line of atoms being bent around to form a ring (although it is not topologically
possible analogously to represent periodic boundary conditions in three dimen-
sions). A perfect crystal will mean here that the forces between any two atoms
depend only on the separation of the atoms and that there are no defect atoms.
Perfect monatomic further implies that all atoms are identical.

N atoms of mass M will be assumed. The equilibrium spacing of the atoms will
be a. xn will be the displacement of the nth atom from equilibrium. V will be the
potential energy of the interacting atoms, so that V = V(x1,…, xn). By the Born–
Oppenheimer approximation it makes sense to expand the potential energy to fourth
order in displacements:
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V x1; . . .; xNð Þ ¼

V 0; . . .; 0ð Þþ 1
2

X
n; n0

@2V
@xn@xn0

� �
x1; . . .; xNð Þ ¼ 0

xnxn0

þ 1
6

X
n; n0; n00

@3V
@xn@xn0@xn00

� �
x1; . . .; xNð Þ ¼ 0

xnxn0xn00

þ 1
24

X
n; n0; n00; n000

@4V
@xn@xn0@xn00@xn000

� �
x1; . . .; xNð Þ ¼ 0

xnxn0xn00xn000 :

ð2:27Þ

In (2.27), V(0,…,0) is just a constant and the zero of the potential energy can be
chosen so that this constant is zero. The first-order termð@V=@xÞx1;...; xNÞ¼0 is the
negative of the force acting on atom n in equilibrium; hence it is zero and was left
out of (2.27). The second-order terms are the terms that one would use in the
harmonic approximation. The last two terms are the anharmonic terms.

Note in the summations that there is no restriction that says that n′ and n must
refer to adjacent atoms. Hence (2.27), as it stands, includes the possibility of forces
between all pairs of atoms.

The dynamical problem that (2.27) gives rise to is only exactly solvable in closed
form if the anharmonic terms are neglected. For small oscillations, their effect is
presumably much smaller than the harmonic terms. The cubic and higher order terms
are responsible for certain effects that completely vanish if they are left out. Whether
or not one can neglect them depends on what one wants to describe. We need
anharmonic terms to explain thermal expansion, a small correction (linear in tem-
perature) to the specific heat of an insulator at high temperatures, and the thermal
resistivity of insulators at high temperatures. The effect of the anharmonic terms is to
introduce interactions between the various normal modes of the lattice vibrations.
A separate chapter is devoted to interactions and so they will be neglected here. This
still leaves us with the possibility of forces of greater range than nearest-neighbors.

It is convenient to define

Vn;n0 ¼ @2V
@xn@xn0

� �
x1;...; xNð Þ¼0

: ð2:28Þ

Vn,n′ has several properties. The order of taking partial derivatives doesn’t matter, so
that

Vn;n0 ¼ Vn0n: ð2:29Þ

Two further restrictions on the V may be obtained from the equations of motion.
These equations are simply obtained by Lagrangian mechanics [2]. From our
model, the Lagrangian is
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L ¼ M=2ð Þ
X
n

_x2n �
1
2

X
n;n0

Vn;n0xnxn0 : ð2:30Þ

The sums extend over the one-dimensional crystal. The Lagrange equations are

d
dt

@L
@ _xn

� @L
@xn

¼ 0: ð2:31Þ

The equation of motion is easily found by combining (2.30) and (2.31):

M €xn ¼ �
X
n0

Vn;n0xn0 : ð2:32Þ

If all atoms are displaced a constant amount, this corresponds to a translation of the
crystal, and in this case the resulting force on each atom must be zero. ThereforeX

n0
Vn;n0 ¼ 0: ð2:33Þ

If all atoms except the kth are at their equilibrium position, then the force on the nth
atom is the force acting between the kth and nth atoms,

F ¼ M €xn ¼ �Vnkxk:

But because of periodic boundary conditions and translational symmetry, this force
can depend only on the relative positions of n and k, and hence on their difference,
so that

Vn;k ¼ V n� kð Þ: ð2:34Þ

With these restrictions on the V in mind, the next step is to solve (2.32).
Normal mode solutions of the form

xn ¼ uneixt ð2:35Þ

will be sought. The un are assumed to be time independent. Substituting (2.35) into
(2.32) gives

pun � Mx2un �
X
n0

V n0 � nð Þun0 ¼ 0: ð2:36Þ

Equation (2.36) is a difference equation with constant coefficients. Note that a new
operator p is defined by (2.36).

This difference equation has a nice property due to its translational symmetry.
Let n go to n + 1 in (2.36). We obtain
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Mx2unþ 1 �
X
n0

V n0 � n� 1ð Þun0 ¼ 0: ð2:37Þ

Then make the change n′ ! n′ + 1 in the dummy variable of summation. Because
of periodic boundary conditions, no change is necessary in the limits of summation.
We obtain

Mx2unþ 1 �
X
n0

V n0 � nð Þun0 þ 1 ¼ 0: ð2:38Þ

Comparing (2.36) and (2.38) we see that if pun = 0, then pun+1 = 0. If pf = 0 had
only one solution, then it follows that

unþ 1 = eiqaun; ð2:39Þ

where eiqa is some arbitrary constant K, that is, q = ln(K/ia). Equation (2.39) is an
expression of a very important theorem by Bloch that we will have occasion to
discuss in great detail later. The fact that we get all solutions by this assumption
follows from the fact that if pf = 0 has N solutions, then N linearly independent
linear combinations of solutions can always be constructed so that each satisfies an
equation of the form (2.39) [75].

By applying (2.39) n times starting with n = 0 it is readily seen that

un = eiqnau0: ð2:40Þ

If we wish to keep un finite as n ! ± ∞, then it is evident that q must be real.
Further, if there are N atoms, it is clear by periodic boundary conditions that
un = u0, so that

qNa ¼ 2pm; ð2:41Þ

where m is an integer.
Over a restricted range, each different value of m labels a different normal mode

solution. We will show later that the modes corresponding to m and m + N are in
fact the same mode. Therefore, all physically interesting modes are obtained by
restricting m to be any N consecutive integers. A common such range is (supposing
N to be even)

� N=2ð Þþ 1�m�N=2:

For this range of m, q is restricted to

�p=a\q� p=a: ð2:42Þ

This range of q is called the first Brillouin zone.
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Substituting (2.40) into (2.36) shows that (2.40) is indeed a solution, provided
that xq satisfies

Mx2
q ¼

X
n0

V n0 � nð Þeiqa n0�nð Þ;

or

x2
q ¼

1
M

X1
l¼�1

V lð Þ cos qlað Þ; ð2:43Þ

for an infinite crystal (otherwise the sum can run over appropriate limits specifying
the crystal). In getting the dispersion relation (2.43), use has been made of (2.29).

Equation (2.43) directly shows one general property of the dispersion relation
for lattice vibrations:

x2 �qð Þ ¼ x2 qð Þ: ð2:44Þ

Another general property is obtained by expanding x2(q) in a Taylor series:

x2 qð Þ ¼ x2 0ð Þþ x2� �0
q¼0qþ

1
2

x2� �00
q¼0q

2 þ � � � : ð2:45Þ

From (2.43), (2.33), and (2.34),

x2 0ð Þ/
X
l

V lð Þ ¼ 0:

From (2.44), x2(q) is an even function of q and hence x2ð Þ0q¼0¼ 0. Thus for
sufficiently small q,

x2 qð Þ ¼ constantð Þq2 or x qð Þ ¼ constantð Þq: ð2:46Þ

Equation (2.46) is a dispersion relation for waves propagating without dispersion
(that is, their group velocity dx/dq equals their phase velocity x/q). This is the type
of relation that is valid for vibrations in a continuum. It is not surprising that it is
found here. The small q approximation is a low-frequency or long-wavelength
approximation; hence the discrete nature of the lattice is unimportant.

That small q can be thought of as indicating a long-wavelength is perhaps not
evident. q (which is often called the wave vector) can be given the interpretation of
2p/k, where k is a wavelength, This is easily seen from the fact that the amplitude of
the vibration for the nth atom should equal the amplitude of vibration for the zeroth
atom provided na = k.
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In that case

un ¼ eiqnau0 ¼ eiqku0 ¼ u0;

so that q = 2p/k. This equation for q also indicates why there is no unique q to
describe a vibration. In a discrete (not continuous) lattice there are several wave-
lengths that will describe the same physical vibration. The point is that in order to
describe the vibrations, we have to know only the value of a function at a discrete
set of points and we do not care what values it takes on in between. There are
obviously many distinct functions that have the same value at many discrete points.
The idea is illustrated in Fig. 2.2.

Restricting q = 2p/k to the first Brillouin zone is equivalent to selecting the range
of q to have as small a |q| or as large a wavelength as possible. Letting q become
negative just means that the direction of propagation of the wave is reversed. In
Fig. 2.2 (a) is a first Brillouin zone description of the wave, whereas (b) is not.

It is worthwhile to get an explicit solution to this problem in the case where only
nearest-neighbor forces are involved. This means that

V lð Þ ¼ 0 if l 6¼ 0 or 1ð Þ:
By (2.29) and (2.34),

V þ lð Þ ¼ V �lð Þ:
By (2.33) and the nearest-neighbor assumption,

V þ lð ÞþV 0ð ÞþV �lð Þ ¼ 0:

Thus

V þ lð Þ ¼ V �lð Þ ¼ � 1
2
Vð0Þ: ð2:47Þ

(a) (b)

Fig. 2.2 Different wavelengths describe the same vibration in a discrete lattice. (The dots
represent atoms. Their displacement is indicated by the distance of the dots from the
horizontal axis.) (a) q = p/2a, (b) q = 5p/2a
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By combining (2.47) with (2.43), we find that

x2 ¼ V 0ð Þ
M

1� cos qað Þ;

or that

x ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
2V 0ð Þ
M

r
sin

qa
2

��� ���: ð2:48Þ

This is the dispersion relation for our problem. The largest value that x can have is

xc ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
2V 0ð Þ
M

r
: ð2:49Þ

By (2.48) it is obvious that increasing q by 2p/a leaves the value of x
unchanged. By (2.35), (2.40), (2.41), and (2.48), the displacement of the nth atom
in the mth normal mode is given by

x mð Þ
n ¼ u0 exp ina

2pm
Na

� �� �
exp it

2V 0ð Þ
M

� �
sin

a
2
� 2pm
Na

� �����
����

� �
: ð2:50Þ

This is also invariant to increasing q = 2pm=Na by 2p=a.
A plot of the dispersion relation (x vs. q) as given by (2.48) looks something

like Fig. 2.3. In Fig. 2.3, we imagine N ! ∞ so that the curve is defined by an
almost continuous set of points.

For the two-atom case, the theory of small oscillations tells us that the normal
coordinates (X1, X2) are found from the transformation

Fig. 2.3 Frequency versus wave vector for a large one-dimensional crystal
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X1

X2

� �
¼

1ffiffiffi
2

p 1ffiffiffi
2

p
1ffiffiffi
2

p � 1ffiffiffi
2

p

0
BB@

1
CCA x1

x2

� �
: ð2:51Þ

If we label the various components of the eigenvectors (Ei) by adding a subscript,
we find that

Xi ¼
X
j

Eijxj: ð2:52Þ

The equations of motion of each Xi are harmonic oscillator equations of motion.
The normal coordinate transformation reduced the two-atom problem to the prob-
lem of two decoupled harmonic oscillators.

We also want to investigate if the normal coordinate transformation reduces the
N-atom problem to a set of N decoupled harmonic oscillators. The normal coor-
dinates each vibrate with a time factor eixt and so they must describe some sort of
harmonic oscillators. However, it is useful for later purposes to demonstrate this
explicitly.

By analogy with the two-atom case, we expect that the normal coordinates in the
N-atom case are given by

Xm0 ¼ 1ffiffiffiffi
N

p
X
n0

exp
i2pm0n0

N

� �
xn0 ; ð2:53Þ

where 1/N1/2 is a normalizing factor. This transformation can be inverted as follows:

1ffiffiffiffi
N

p
X
m0

exp � 2pim0n
N

� �
Xm0 ¼ 1

N

X
m0n0

exp
2pi
N

n0 � nð Þm0
� �

xn0

¼ 1
N

X
n0

xn0
X
m0

exp
2pi
N

n0 � nð Þm0
� �

: ð2:54Þ

In (2.54), the sum over m′ runs over any continuous range in m′ equivalent to
one Brillouin zone. For convenience, this range can be chosen from 0 to N − 1.
Then

XN�1

m0 ¼ 0

exp
2pi
N

n0 � nð Þm0
� �

¼
1� exp

2pi
N

n0 � nð Þ
� �
 �N

1� exp
2pi
N

n0 � nð Þ
� �

¼ 1� 1

1� exp
2pi
N

n0 � nð Þ
� �

¼ 0 unless n0 ¼ n:
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If n′ = n, then
P

m′ just gives N. Therefore we can say in general that

1
N

XN�1

m0 ¼ 0

exp
2pi
N

n0 � nð Þm0
� �

¼ dnn0 : ð2:55Þ

Equations (2.54) and (2.55) together give

xn ¼ 1ffiffiffiffi
N

p
X
m0

exp � 2pi
N

m0n
� �

Xm0 ; ð2:56Þ

which is the desired inversion of the transformation defined by (2.53).
We wish to show now that this normal coordinate transformation reduces the

Hamiltonian for the N interacting atoms to a Hamiltonian representing a set of
N decoupled harmonic oscillators. The reason for the emphasis on the Hamiltonian is
that this is the important quantity to consider in nonrelativistic quantum-mechanical
problems. This reduction not only shows that the x are harmonic oscillator fre-
quencies, but it gives an example of an N-body problem that can be exactly solved
because it reduces to N one-body problems.

First, we must construct the Hamiltonian. If the Lagrangian L qk; _qk; tð Þ is
expressed in terms of generalized coordinates qk and velocities _qk , then the
canonically conjugate generalized momenta are defined by

pk ¼ @L qk; _qk; tð Þ
@ _qk

: ð2:57Þ

H is defined by

H pk; qk; tð Þ ¼
X
j

_qjpj � L qk; _qk; tð Þ: ð2:58Þ

The equations of motion of the system can be obtained by Hamilton’s canonical
equations,

_qk ¼ @H
@p

; ð2:59Þ

_pk ¼ � @H
@qk

: ð2:60Þ

If the constraints are independent of the time and if the potential V is independent of
the velocity, then the Hamiltonian is just the total energy, T + V (T � kinetic
energy), and is constant. In this case we really do not need to use (2.58) to construct
the Hamiltonian.
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From the above, the Hamiltonian of our system is

H ¼ M
2

X
n

_x2n þ
1
2

X
n;n0

Vn;n0xnxn0 : ð2:61Þ

As yet, no conditions requiring xn to be real have been inserted in the normal
coordinate definitions. Since the xn are real, the normal coordinates, defined by
(2.56), must satisfy

X�m ¼ X�
m: ð2:62Þ

Similarly _xn is real, and this implies that

_X�m ¼ _X�
m: ð2:63Þ

Substituting (2.56) into (2.61) yields

H ¼ M
2

X
n

1
N

X
m;m0

exp � 2pi
N

n mþm0ð Þ
� �

_Xm _Xm0

þ 1
2

X
n;n0

Vn;n0
X
m;m0

1
N
exp � 2pi

N
nmþ n0m0ð Þ

� �
XmXm0 :

The last equation can be written

H ¼ M
2N

X
m;m0

_Xm _Xm0
X
n

exp � 2pi
N

n mþm0ð Þ
� �

þ 1
2N

X
m;m0

XmXm0
X
n�n0

V n� n0ð Þ exp � 2pi
N

n� n0ð Þm
� �

�
X
n0

exp � 2pi
N

n0 mþm0ð Þ
� �

: ð2:64Þ

Using the results of Problem 2.2, we can write (2.64) as

H ¼ M
2

X
m

_Xm _X�m þ 1
2

X
m

XmX�m

X
l

V lð Þ exp � 2pi
N

lm

� �
;

or by (2.43), (2.62), and (2.63),

H ¼
X
m

M
2

_X2
m

�� ��þ 1
2
Mx2

m Xmj j2
� �

: ð2:65Þ

Equation (2.65) is practically the correct form. What is needed is an equation
similar to (2.65) but with the X real. It is possible to find such an expression by
making the following transformation: Define u and v so that
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Xm ¼ um þ ivm: ð2:66Þ

Since X�
m ¼ X�m; it is seen that um = u−m and vm = −v−m. The second condition

implies that v0 = 0, and also because Xm = Xm+N that vN/2 = 0 (we are assuming that
N is even). Therefore the number of independent u and v is 1 + 2(N/2 − 1) + 1 = N,
as it should be.

If the definitions

z0 ¼ u0

z1 ¼
ffiffiffi
2

p
u1; . . .; z N=2ð Þ�1 ¼

ffiffiffi
2

p
u N=2ð Þ�1; zN=2 ¼ uN=2;

z�1 ¼
ffiffiffi
2

p
v1; . . .; z� N=2ð Þþ 1 ¼

ffiffiffi
2

p
v N=2ð Þ�1

ð2:67Þ

are made, then the z are real, there are N of them, and the Hamiltonian may be
written, by (2.65), (2.66), and (2.67),

H ¼ M
2

XN=2
m¼� N=2ð Þþ 1

_z2m þx2
mz

2
m

� �
: ð2:68Þ

Equation (2.68) is explicitly the Hamiltonian for N uncoupled harmonic oscillators.
This is what was to be proved. The allowed quantum-mechanical energies are then

E ¼
XN=2

m¼� N=2ð Þþ 1

Nm þ 1
2

� �
�hxm: ð2:69Þ

By relabeling, the sum in (2.69) could just as well go from 0 to N − 1. The Nm are
integers.

Leon Brillouin—“A founder of Solid State Physics”

b. Sèvres, France (1889–1969)

Brillouin Zones; Brillouin Functions; Brillouin Scattering;WKBApproximation

Brillouin because of his explanation of the scattering of waves in a peri-
odic structure is sometimes known as the founder of solid-state physics. He
also studied radio wave propagation and other areas. Months after the French
Vichy government was established due to the German invasion in WW II,
Brillouin left for the USA where he worked at several universities.
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2.2.3 Specific Heat of Linear Lattice (B)

We will use the canonical ensemble to derive the specific heat of the
one-dimensional crystal.9 A good reference for the use of the canonical ensemble is
Huang [11]. In a canonical ensemble calculation, we first calculate the partition
function. The partition function and the Helmholtz free energy are related, and by
use of this relation we can calculate all thermodynamic properties once the partition
function is known.

If the allowed quantum-mechanical states of the system are labeled by EM, then
the partition function Z is given by

Z ¼
X
M

exp �EM=kTð Þ:

If there are N atoms in the linear lattice, and if we are interested only in the
harmonic approximation, then

EM ¼ Em1;m2;...;mn ¼ �h
XN
n¼1

mnxn þ �h
2

XN
n¼1

xn;

where the mn are integers. The partition function is then given by

Z ¼ exp � �h
2kT

XN
n¼1

xn

 ! X1
m1;m2;...;mNð Þ¼0

exp � �h
kT

XN
n¼1

xnmn

 !
: ð2:70Þ

Equation (2.70) can be rewritten as

Z ¼ exp � �h
2kT

XN
n¼1

xn

 !YN
n¼1

X1
mn¼0

exp � �h
kT

xnmn

� �
: ð2:71Þ

The result (2.71) is a consequence of a general property. Whenever we have a set
of independent systems, the partition function can be represented as a product of
partition functions (one for each independent system). In our case, the independent
systems are the independent harmonic oscillators that describe the normal modes of
the lattice vibrations.

9The discussion of 1D (and 2D) lattices is perhaps mainly of interest because it sets up a formalism
that is useful in 3D. One can show that the mean square displacement of atoms in 1D (and 2D)
diverges in the phonon approximation. Such lattices are apparently inherently unstable.
Fortunately, the mean energy does not diverge, and so the calculation of it in 1D (and 2D) perhaps
makes some sense. However, in view of the divergence, things are not as simple as implied in the
text. Also see a related comment on the Mermin–Wagner theorem in Chap. 7 (Sect. 7.2.5 under
Two Dimensional Structures).
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Since 1= 1� að Þ ¼P1
0 an if |a| < 1, we can write (2.71) as

Z ¼ exp � �h
2kT

XN
n¼1

xn

 !YN
n¼1

1
1� exp ��hxn=kTð Þ : ð2:72Þ

The relation between the Helmholtz free energy F and the partition function Z is
given by

F ¼ �kT ln Z: ð2:73Þ

Combining (2.72) and (2.73) we easily find

F ¼ �h
2

XN
n¼1

xn þ kT
XN
n¼1

ln 1� exp ��hxn

kT

� �� �
: ð2:74Þ

Using the thermodynamic formulas for the entropy S,

S ¼ � @F=@Tð ÞV ; ð2:75Þ

and the internal energy U,

U ¼ Fþ TS; ð2:76Þ

we easily find an expression for U,

U ¼ �h
2

XN
n¼1

xn þ
XN
n¼1

�hxn

exp �hx=kTð Þ � 1
: ð2:77Þ

Equation (2.77) without the zero-point energy can be arrived at by much more
intuitive reasoning. In this formulation, the zero-point energy �h=2

PN
n¼1 xn

� �
does

not contribute anything to the specific heat anyway, so let us neglect it. Call each
energy excitation of frequency xn and energy ħxn a phonon. Assume that the
phonons are bosons, which can be created and destroyed. We shall suppose that the
chemical potential is zero so that the number of phonons is not conserved. In this
situation, the mean number of phonons of energy ħxn (when the system has a
temperature T) is given by 1/[exp(ħxn /kT − 1)]. Except for the zero-point energy,
(2.77) now follows directly. Since (2.77) follows so easily, we might wonder if the
use of the canonical ensemble is really worthwhile in this problem. In the first place,
we need an argument for why phonons act like bosons of zero chemical potential.
In the second place, if we had included higher-order terms (than the second-order
terms) in the potential, then the phonons would interact and hence have an inter-
action energy. The canonical ensemble provides a straightforward method of
including this interaction energy (for practical cases, approximations would be
necessary). The simpler method does not.
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The zero-point energy has zero temperature derivative, and so need not be
considered for the specific heat. The indicated sum in (2.77) is easily done if
N ! ∞. Then the modes become infinitesimally close together, and the sum can be
replaced by an integral. We can then write

U ¼ 2
Zxc

0

1
exp �hx=kTð Þ � 1

�hxn xð Þdx; ð2:78Þ

where n(x)dx is the number of modes (with q > 0) between x and x + dx. The
factor 2 arises from the fact that for every (q) mode there is a (−q) mode of the same
frequency.

n(x) is called the density of states and it can be evaluated from the appropriate
dispersion relation, which is xn = xc |sin(pn/N)| for the nearest-neighbor approx-
imation. To obtain the density of states, we differentiate the dispersion relation

dxn ¼ pxc cos pn=Nð Þd n=Nð Þ;
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

c � x2
n

q
pd n=Nð Þ:

Therefore

Nd n=Nð Þ ¼ N=pð Þ x2
c � x2

n

� ��1=2
dxn � n xnð Þdxn;

or

n xnð Þ ¼ N=pð Þ x2
c � x2

n

� ��1=2
: ð2:79Þ

Combining (2.78), (2.79), and the definition of specific heat at constant volume, we
have

Cv ¼ @U
@T

� �
v

¼ 2N�h
p

Zxc

0

xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

c � x2
p exp

�hx
kT

� �
� 1

� ��2

exp
�hx
kT

� �
�hx
kT2

( )
dx:

ð2:80Þ

In the high-temperature limit this gives

Cv ¼ 2Nk
p

Zxc

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

c � x2
q� ��1

dx� 2Nk
p

sin�1 x=xcð Þ xc
0 ¼ Nk:
�� ð2:81Þ

Equation (2.81) is just a one-dimensional expression of the law of Dulong and
Petit, which is also the classical limit.
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2.2.4 Classical Diatomic Lattices: Optic
and Acoustic Modes (B)

So far we have considered only linear lattices in which all atoms are identical. There
exist, of course, crystals that have more than one type of atom. In this section we
will discuss the case of a linear lattice with two types of atoms in alternating
positions. We will consider only the harmonic approximation with nearest-neighbor
interactions. By symmetry, the force between each pair of atoms is described by the
same spring constant. In the diatomic linear lattice we can think of each unit cell as
containing two atoms of differing mass. It is characteristic of crystals with two
atoms per unit cell that two types of mode occur. One of these modes is called the
acoustic mode. In an acoustic mode, we think of adjacent atoms as vibrating almost
in phase. The other mode is called the optic mode. In an optic mode, we think of
adjacent atoms as vibrating out of phase. As we shall show, these descriptions of
optic and acoustic modes are valid only in the long-wavelength limit. In three
dimensions we would also have to distinguish between longitudinal and transverse
modes. Except for special crystallographic directions, these modes would not have
the simple physical interpretation that their names suggest. The longitudinal mode
is, usually, the mode with highest frequency for each wave vector in the three optic
modes and also in the three acoustic modes.

A picture of the diatomic linear lattice is shown in Fig. 2.4. Atoms of mass m are
at x = (2n + 1)a for n = 0, ±1, ±2,…, and atoms of mass M are at x = 2na for
n = 0, ±1,… The displacements from equilibrium of the atoms of mass m are
labeled dmn and the displacements from equilibrium of the atoms of mass M are
labeled dmn . The spring constant is k.

From Newton’s laws10

m€dmn ¼ k dMnþ 1 � dmn
� �þ k dMn � dmn

� �
; ð2:82aÞ

Fig. 2.4 The diatomic linear lattice

10When we discuss lattice vibrations in three dimensions we give a more general technique for
handling the case of two atoms per unit cell. Using the dynamical matrix defined in that section (or
its one-dimensional analog), it is a worthwhile exercise to obtain (2.87a) and (2.87b).
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and

M€dMn ¼ k dmn � dMn
� �þ k dmn�1 � dMn

� �
: ð2:82bÞ

It is convenient to define K1 = k/m and K2 = k/M. Then (2.82a) can be written

€dmn ¼ �K1 2dmn � dMn � dMnþ 1

� � ð2:83aÞ

and

€dmn ¼ �K2 dMn � dmn � dmn�1

� �
: ð2:83bÞ

Consistent with previous work, normal mode solutions of the form

dmn ¼ A exp i qxmn � xt
� �� 

; ð2:84aÞ

and

dMn ¼ B exp i qxMn � xt
� ��  ð2:84bÞ

will be sought. Substituting (2.84) into (2.83) and finding the coordinates of the
atoms (xn) from Fig. 2.4, we have

�x2A exp i q 2nþ 1ð Þa� xt½ �f g ¼ �K1ð2A exp i q 2nþ 1ð Þa� xt½ �f g
� B exp i q 2nað Þ � xt½ �f g
� B exp i q nþ 1ð Þ2a� xt½ �f gÞ

�x2B exp i q 2nað Þ � xt½ �f g ¼ �K2ð2B exp i q 2nað Þ � xt½ �f g
� A exp i q 2nþ 1ð Þa� xt½ �f g
� A exp i q 2n� 1ð Þa� xt½ �f gÞ

or

x2A ¼ K1 2A� Be�iqa � Beþ iqa� �
; ð2:85aÞ

and

x2B ¼ K2 2B� Ae�iqa � Aeþ iqa
� �

: ð2:85bÞ

Equations (2.85) can be written in the form

x2 � 2K1 2K1 cos qa
2K2 cos qa x2 � 2K2

� �
A
B

� �
¼ 0: ð2:86Þ
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Equation (2.86) has nontrivial solutions only if the determinant of the coefficient
matrix is zero. This yields the two roots

x2
1 ¼ K1 þK2ð Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K1 þK2ð Þ2�4K1K2 sin2 qa

q
; ð2:87aÞ

and

x2
2 ¼ K1 þK2ð Þþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K1 þK2ð Þ2�4K1K2 sin2 qa

q
: ð2:87bÞ

In (2.87) the symbol √ means the positive square root. In figuring the positive
square root, we assume m < M or K1 > K2. As q ! 0, we find from (2.87) that

x1 ¼ 0 and x2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 K1 þK2ð Þ

p
:

As q ! (p/2a) we find from (2.87) that

x1 ¼
ffiffiffiffiffiffiffiffi
2K2

p
and x2 ¼

ffiffiffiffiffiffiffiffi
2K1

p
:

Plots of (2.87) look similar to Fig. 2.5. In Fig. 2.5, x1 is called the acoustic mode
and x2 is called the optic mode. The reason for naming x1 and x2 in this manner
will be given later. The first Brillouin zone has −p/2a � q � p/2a. This is only
half the size that we had in the monatomic case. The reason for this is readily
apparent. In the diatomic case (with the same total number of atoms as in the
monatomic case) there are two modes for every q in the first Brillouin zone,
whereas in the monatomic case there is only one. For a fixed number of atoms and a
fixed number of dimensions, the number of modes is constant.

Fig. 2.5 The dispersion relation for the optic and acoustic modes of a diatomic linear lattice
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In fact it can be shown that the diatomic case reduces to the monatomic case
when m = M. In this case K1 = K2 = k/m and

x2
1 ¼ 2k=m� 2k=mð Þ cos qa ¼ 2k=mð Þ 1� cos qað Þ;

x2
2 ¼ 2k=mþ 2k=mð Þ cos qa ¼ 2k=mð Þ 1þ cos qað Þ:

But note that cos qa for �p=2\qa\0 is the same as −cos qa for p/2 < qa < p, so
that we can just as well combine x1

2 and x2
2 to give

x ¼ 2k=mð Þ 1� cos qað Þ ¼ 4k=mð Þ sin2 qa=2ð Þ
for −p < qa < p. This is the same as the dispersion relation that we found for the
linear lattice.

The reason for the names optic and acoustic modes becomes clear if we examine
the motions for small qa. We can write (2.87a) as

x1 ffi
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2K1K2

K1 þK2ð Þ qa
s

ð2:88Þ

for small qa. Substituting (2.88) into (x2 − 2K1)A + 2K1 cos (qa)B = 0, we find

B
A
¼ � 2K1K2q2a2= K1 þK2ð Þ � 2K1

2K1 cos qa

� �qa!0

! þ 1: ð2:89Þ

Therefore in the long-wavelength limit of the x1 mode, adjacent atoms vibrate in
phase. This means that the mode is an acoustic mode.

It is instructive to examine the x1 solution (for small qa) still further:

x1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2K1K2

K1 þK2ð Þ

s
qa ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2k2= mMð Þ
k=mþ k=M

s
qa ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ka

mþMð Þ=2a

s
q: ð2:90Þ

For (2.90), x1/q = dx/dq, the phase and group velocities are the same, and so there
is no dispersion. This is just what we would expect in the long-wavelength limit.

Let us examine the x2 modes in the qa ! 0 limit. It is clear that

x2
2 ffi 2 K1 þK2ð Þþ 2K1K2

K1 þK2ð Þ q
2a2 as qa ! 0: ð2:91Þ

Substituting (2.91) into (x2 − 2K1)A + 2K1 cos (qa)B = 0 and letting qa = 0, we
have

2K2Aþ 2K1B ¼ 0;

or

mAþMB ¼ 0: ð2:92Þ

Equation (2.92) corresponds to the center of mass of adjacent atoms being fixed. Thus
in the long-wavelength limit, the atoms in thex2 mode vibrate with a phase difference
of p. Thus thex2mode is the opticmode. Suppose we shine electromagnetic radiation
of visible frequencies on the crystal. The wavelength of this radiation is much greater
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than the lattice spacing. Thus, due to the opposite charges on adjacent atoms in a polar
crystal (which we assume), the electromagnetic wave would tend to push adjacent
atoms in opposite directions just as they move in the long-wavelength limit of a
(transverse) optic mode. Hence the electromagnetic waves would interact strongly
with the optic modes. Thus we see where the name optic mode came from. The
long-wavelength limits of optic and acoustic modes are sketched in Fig. 2.6.

In the small qa limit for optic modes by (2.91),

x2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2k 1=mþ 1=Mð Þ

p
: ð2:93Þ

Electromagnetic waves in ionic crystals are very strongly absorbed at this fre-
quency. Very close to this frequency, there is a frequency called the restrahl
frequency where there is a maximum reflection of electromagnetic waves [93].

A curious thing happens in the q ! p/2a limit. In this limit there is essentially
no distinction between optic and acoustic modes. For acoustic modes as q ! p/2a,
from (2.86),

x2 � 2K1
� �

A ¼ �2K1B cos qa;

or as qa ! p/2,

A
B
¼ K1

cos qa
K1 � K2

¼ 0;

so that only M moves. In the same limit x2 ! (2K1)
1/2, so by (2.86)

(a) (b)

Fig. 2.6 (a) Optic and (b) acoustic modes for qa very small (the long-wavelength limit)
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2K2 cos qað ÞAþ 2K1 � 2K2ð ÞB ¼ 0;

or

B
A
¼ 2K2

cos qa
K2 � K1

¼ 0;

so that only m moves. The two modes are sketched in Fig. 2.7. Table 2.2 collects
some one-dimensional results.

(a) (b)

Fig. 2.7 (a) Optic and (b) acoustic modes in the limit qa ! p/2

Table 2.2 One-dimensional dispersion relations and density of states

Model Dispersion relation Density of states

Monatomic x ¼ x0 sin
qa
2

��� ��� D xð Þ / 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

0 � x2
p

Diatomic [M > m,
l = Mm/(M + m)

Small q

– Acoustic
x2/ 1

l
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
l2

� 4
Mm

sin2 qa

s !
D(x) / constant

– Optical
x2/ 1

l
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
l2

� 4
Mm

sin2 qa

s !
D(x) / |q(x)|−1

q = wave vector, x = frequency, a = distance between atoms
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2.2.5 Classical Lattice with Defects (B)

Most of the material in this section was derived by Lord Rayleigh many years ago.
However, we use more modern techniques (Green’s functions). The calculation will
be done in one dimension, but the technique can be generalized to three dimensions.
Much of the present formulation is due to A. A. Maradudin and coworkers.11

The modern study of the vibration of a crystal lattice with defects was begun by
Lifshitz in about 1942 [2.25] and Schaefer [2.29] has shown experimentally that
local modes do exist. Schaefer examined the infrared absorption of H− ions
(impurities) in KCl.

Point defects can cause the appearance of localized states. Here we consider
lattice vibrations and later (in Sect. 3.2.4) electronic states. Strong as well as weak
perturbations can lead to interesting effects. For example, we discuss deep elec-
tronic effects in Sect. 11.2. In general, the localized states may be outside the bands
and have discrete energies or inside a band with transiently bound resonant levels.

In this section the word defect is used in a rather specialized manner. The only
defects considered will be substitutional atoms with different masses from those of
the atoms of the host crystal.

We define an operator p such that [compare (2.36)]

pun ¼ x2Mun þ c unþ 1 � 2un þ unþ 1ð Þ; ð2:94Þ
where un is the amplitude of vibration of atom n, with mass M and frequency x.
For a perfect lattice (in the harmonic nearest-neighbor approximation with
c = Mxc

2/4 = spring constant),

pun ¼ 0:

This result readily follows from the material in Sect. 2.2.2. If the crystal has one or
more defects, the equations describing the resulting vibrations can always be
written in the form

pun ¼
X
k

dnkuk: ð2:95Þ

For example, if there is a defect atom of mass M1 at n = 0 and if the spring
constants are not changed, then

dnk ¼ M �M1� �
x2d0nd

0
k : ð2:96Þ

Equation (2.95) will be solved with the aid of Green’s functions. Green’s functions
(Gmn) for this problem are defined by

pGmn ¼ dmn: ð2:97Þ

11See [2.39].
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To motivate the introduction of the Gmn, it is useful to prove that a solution to (2.95)
is given by

un ¼
X
l;k

Gnldlkuk: ð2:98Þ

Since p operates on index n in pun, we have

pun ¼
X
l;k

pGnldlkuk ¼
X
l;k

dnldlkuk ¼
X
k

dnkuk;

and hence (2.98) is a formal solution of (2.95).
The next step is to find an explicit expression for the Gmn. By the arguments of

Sect. 2.2.2, we know that (we are supposing that there are N atoms, where N is an
even number)

dmn ¼ 1
N

XN�1

s¼0

exp
2pis
N

m� nð Þ
� �

: ð2:99Þ

Since Gmn is determined by the lattice, and since periodic boundary conditions
are being used, it should be possible to make a Fourier analysis of Gmn:

Gmn ¼ 1
N

XN�1

s¼0

gs exp
2pis
N

m� nð Þ
� �

: ð2:100Þ

From the definition of p, we can write

p exp 2pi
s
N

m� nð Þ
h i

¼ x2M exp 2pi
s
N

m� nð Þ
h i

þ c exp 2pi
s
N

m� n� 1ð Þ
h i

� 2 exp 2pi
s
N

m� nð Þ
h in

þ exp 2pi
s
N

m� nþ 1ð Þ
h io

:

ð2:101Þ

To prove that we can find solutions of the form (2.100), we need only substitute
(2.100) and (2.99) into (2.97). We obtain

1
N

XN�1

s¼0

gs x2M exp 2pi
s
N

m� nð Þ
h i

þ c exp 2pi
s
N

m� n� 1ð Þ
h in�

�2 exp 2pi
s
N

m� nð Þ
h i

þ exp 2pi
s
N

m� nþ 1ð Þ
h io�

¼ 1
N

XN�1

s¼0

exp 2pi
s
N

m� nð Þ
h i

: ð2:102Þ
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Operating on both sides of the resulting equation with

X
m�n

exp � 2pi
N

m� nð Þs0
� �

;

we find

X
s

gs x2Mds
0
s � 2cds

0
s ½1� cos 2ps=Nð Þ�

n o
¼
X
s

ds
0
s : ð2:103Þ

Thus a G of the form (2.100) has been found provided that

gs ¼ 1
Mx2 � 2c 1� cos 2ps=Nð Þ ¼

1

Mx2 � 4c sin2 ps=Nð Þ : ð2:104Þ

By (2.100), Gmn is a function only of m − n, and, further by Problem 2.4, Gmn is
a function only of |m − n|. Thus it is convenient to define

Gmn ¼ Gl; ð2:105Þ

where l = |m − n| 
 0.
It is possible to find a more convenient expression for G. First, define

cos/ ¼ 1�Mx2

2c
: ð2:106Þ

Then for a perfect lattice

0\x2 �x2
c ¼

4c
M

;

so

1
 1�Mx2

2c

 � 1: ð2:107Þ

Thus when / is real in (2.106), x2 is restricted to the range defined by (2.107). With
this definition, we can prove that a general expression for the Gn is

12

Gn ¼ 1
2c sin/

cot
N/
2

cos n/þ sin nj j/
� �

: ð2:108Þ

12For the derivation of (2.108), see the article by Maradudin op cit (and references cited therein).
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The problem of a mass defect in a linear chain can now be solved. We define the
relative change in mass e by

e ¼ M �M1� �
=M; ð2:109Þ

with the defect mass M1 assumed to be less than M for the most interesting case.
Using (2.96) and (2.98), we have

un ¼ GnMex2u0: ð2:110Þ

Setting n = 0 in (2.110), using (2.108) and (2.106), we have (assuming u0 6¼ 0, this
limits us to modes that are not antisymmetric)

1
Gn

¼ 2
c sin/

cot N/=2ð Þ ¼ eMx2 ¼ 2ec 1� cos/ð Þ;

or

sin/
cot N/=2ð Þ ¼ e 1� cos/ð Þ;

or

tan
N/
2

¼ e tan
/
2
: ð2:111Þ

We would like to solve for x2 as a function of e. This can be found from / as a
function of e by use of (2.111). For small e, we have

/ eð Þ ffi / 0ð Þþ @/
@e

����
e¼0

e: ð2:112Þ

From (2.111),

/ 0ð Þ ¼ 2ps=N: ð2:113Þ

Differentiating (2.111), we find

d
de

tan
N/
2

¼ d
de

e tan
/
2

� �
;

or

N
2
sec2

N/
2

@/
@e

¼ tan
/
2
þ e

2
sec2

/
2
@/
@e

;
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or

@/
@e

����
e¼0

¼ tan/=2
N=2ð Þ sec2 N/=2ð Þ

����
e¼0

: ð2:114Þ

Combining (2.112), (2.113), and (2.114), we find

/ ffi 2ps
N

þ 2e
N
tan

ps
N

: ð2:115Þ

Therefore, for small e, we can write

cos/ ffi cos
2ps
N

þ 2e
N

tan
ps
N

� �

¼ cos
2ps
N

cos
2e
N
tan

ps
N

� �
� sin

2ps
N

sin
2e
N

� tan ps
N

ffi cos
2ps
N

� 2e
N

tan
ps
N

sin
2ps
N

¼ cos
2ps
N

� 4e
N

sin2
ps
N

: ð2:116Þ

Using (2.106), we have

x2 ffi 2c
M

1� cos
2ps
N

þ 4e
N

sin2
ps
N

� �
: ð2:117Þ

Using the half-angle formula sin2 h/2 = (1 − cos h)/2, we can recast (2.117) into the
form

x ffi xc sin
ps
N

��� ��� 1þ e
N

� �
: ð2:118Þ

We can make several physical comments about (2.118). As noted earlier, if the
description of the lattice modes is given by symmetric (about the impurity) and
antisymmetric modes, then our development is valid for symmetric modes.
Antisymmetric modes cannot be affected because u0 = 0 for them anyway and it
cannot matter then what the mass of the atom described by u0 is. When M > M1,
then e > 0 and all frequencies (of the symmetric modes) are shifted upward. When
M < M1, then e < 0 and all frequencies (of the symmetric modes) are shifted
downward. There are no local modes here, but one does speak of resonant modes.13

When N ! ∞, then the frequency shift of all modes given by (2.118) is negligible.
Actually when N ! ∞, there is one mode for the e > 0 case that is shifted in
frequency by a non-negligible amount. This mode is the impurity mode. The reason

13Elliott and Dawber [2.15].
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we have not yet found the impurity mode is that we have not allowed the / defined
by (2.106) to be complex. Remember, real / corresponds only to modes whose
amplitude does not diminish. With impurities, it is reasonable to seek modes whose
amplitude does change. Therefore, assume / ¼ pþ izþð/ ¼ p corresponds to the
highest frequency unperturbed mode). Then from (2.111),

tan
N
2

pþ izð Þ
� �

¼ e tan
1
2

pþ izð Þ: ð2:119Þ

Since tan (A + B) = (tan A + tan B)/(1 − tan A tan B), then as N ! ∞ (and
remains an even number), we have

tan
Np
2

þ iNz
2

� �
¼ tan

iNz
2

¼ i: ð2:120Þ

Also

tan
pþ iz
2

� �
¼ sin p=2þ iz=2ð Þ

cos p=2þ iz=2ð Þ ¼ � sin p=2ð Þ cos iz=2ð Þ
sin p=2ð Þ sin iz=2ð Þ

¼ � cot
iz
2
¼ þ i cot h

z
2
: ð2:121Þ

Combining (2.119), (2.120), and (2.121), we have

e cot h
z
2
¼ 1: ð2:122Þ

Equation (2.122) can be solved for z to yield

z ¼ ln
1þ e
1� e

: ð2:123Þ

But

cos/ ¼ cos pþ izð Þ ¼ cos p cos iz

¼ � 1
2

exp zþ exp�zð Þ

¼ � 1þ e2

1� e2
ð2:124Þ

by (2.122). Combining (2.124) and (2.106), we find

x2 ¼ x2
c= 1� e2
� �

: ð2:125Þ
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The mode with frequency given by (2.125) can be considerably shifted even if
N ! ∞. The amplitude of the motion can also be estimated. Combining previous
results and letting N ! ∞, we find

un ¼ �ð Þ nj jM �M1

2c
x2

c

2e
1� e
1þ e

� � nj j
u0 ¼ �1ð Þn 1� e

1þ e

� � nj j
u0: ð2:126Þ

This is truly an impurity mode. The amplitude dies away as we go away from the
impurity. No new modes have been gained, of course. In order to gain a mode with
frequency described by (2.125), we had to give up a mode with frequency described
by (2.118). For further details see Maradudin et al. [2.26 Sect. 5.5].

2.2.6 Quantum-Mechanical Linear Lattice (B)

In a previous section we found the quantum-mechanical energies of a linear lattice
by first reducing the classical problem to a set of classical harmonic oscillators. We
then quantized the harmonic oscillators. Another approach would be initially to
consider the lattice from a quantum viewpoint. Then we transform to a set of
independent quantum-mechanical harmonic oscillators. As we demonstrate below,
the two procedures amount to the same thing. However, it is not always true that we
can get correct results by quantizing the Hamiltonian in any set of generalized
coordinates [2.27].

With our usual assumptions of nearest-neighbor interactions and harmonic for-
ces, the classical Hamiltonian of the linear chain can be written

H pl; xlð Þ ¼ 1
2M

X
l

p2l þ
c
2

X
l

2x2l � xlxlþ 1 � xlxl�1
� �

: ð2:127Þ

In (2.127), p1 ¼ M _x1, and in the potential energy term use can always be made of
periodic boundary conditions in rearranging the terms without rearranging the limits
of summation (for N atoms, xl = xl+N). The sum in (2.127) runs over the crystal, the
equilibrium position of the lth atom being at la. The displacement from equilibrium
of the lth atom is xl and c is the spring constant.

To quantize (2.127) we associate operators with dynamical quantities. For
(2.127), the method is clear because pl and xl are canonically conjugate. The
momentum pl was defined as the derivative of the Lagrangian with respect to _xl.
This implies that Poisson bracket relations are guaranteed to be satisfied. Therefore,
when operators are associated with pl and xl, they must be associated in such a way
that the commutation relations (analog of Poisson bracket relations)

xl; pl0½ � ¼ i�hdl
0
l ð2:128Þ

are satisfied. One way to do this is to let
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pl! �h
i
@

@xi
; and xl!xl: ð2:129Þ

This is the choice that will usually be made in this book.
The quantum-mechanical problem that must be solved is

H �h
i
@

@xl
; xl

� �
w xl. . . xnð Þ ¼ E x1. . . xnð Þ: ð2:130Þ

In (2.130), w x1. . . xnð Þ is the wave function describing the lattice vibrational state
with energy E.

How can (2.130) be solved? A good way to start would be to use normal
coordinates just as in the section on vibrations of a classical lattice. Define

Xq ¼ 1ffiffiffiffi
N

p
X
l

eiqlaxl; ð2:131Þ

where q = 2pm/Na and m is an integer, so that

Xl ¼ 1ffiffiffiffi
N

p
X
q

eiqlaXq: ð2:132Þ

The next quantities that are needed are a set of new momentum operators that are
canonically conjugate to the new coordinate operators. The simplest way to get
these operators is to write down the correct ones and show they are correct by the
fact that they satisfy the correct commutation relations:

Pq0 ¼ 1ffiffiffiffi
N

p
X
l

ple�iq0la; ð2:133Þ

or

Pl ¼ 1ffiffiffiffi
N

p
X
q00

Pq00e�iq00la: ð2:134Þ

The fact that the commutation relations are still satisfied is easily shown:

Xq;Pq0
�  ¼ 1

N

X
l;l0

xl0 ; pl½ � exp ia ql0 � q0lð Þ½ �

¼ 1
N

X
l;l0

i�hdl
0
l exp ia ql0 � q0lð Þ½ �

¼ i�hdq
0

q : ð2:135Þ
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Substituting (2.134) and (2.132) into (2.127), we find in the usual way that the
Hamiltonian reduces to a fairly simple form:

H ¼ 1
2M

X
q

PqP�q þ c
X
q

XqX�q 1� cos qað Þ: ð2:136Þ

Thus, the normal coordinate transformation does the same thing quantum-
mechanically as it does classically.

The quantities Xq and X−q are related. Let † (dagger) represent the Hermitian
conjugate operation. Then for all operators A that represent physical observables
(e.g. pl), A

† = A. The † of a scalar is equivalent to complex conjugation (*).
Note that

Pyq ¼ 1ffiffiffiffi
N

p
X
l

pleiqla ¼ P�q;

and similarly that

Xyq ¼ X�q:

From the above, we can write the Hamiltonian in a Hermitian form:

H ¼
X
q

1
2M

PqP
y
q þ c 1� cos qað ÞXqX

y
q

� �
: ð2:137Þ

From the previous work on the classical lattice, it is already known that (2.137)
represents a set of independent simple harmonic oscillators whose classical fre-
quencies are given by

xq ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2c 1� cos qað Þ=M

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffi
2c=M

p
sin qa=2ð Þj j: ð2:138Þ

However, if we like, we can regard (2.138) as a useful definition. Its physical
interpretation will become clear later on. With xq defined by (2.138), (2.137)
becomes

H ¼
X
q

1
2M

PqPyq þ
1
2
Mx2XqXyq

� �
: ð2:139Þ

The Hamiltonian can be further simplified by introducing the two variables [99]

aq ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2M�hxq

p Pq � i

ffiffiffiffiffiffiffiffiffiffi
Mxq

2�h

r
Xyq ; ð2:140Þ
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ayq ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2M�hxq

p Pyq + i

ffiffiffiffiffiffiffiffiffiffi
Mxq

2�h

r
Xq: ð2:141Þ

Let us compute aq; a
y
q1

h i
. By (2.140) and (2.141),

aq; a
y
q1

h i
¼ iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2M�hxq
p

ffiffiffiffiffiffiffiffiffiffi
Mxq

2�h

r
Pq;Xq1
� � Xyq ;Pyq1

h in o

¼ i
2�h

�i�hdq
1

q � i�hdq
1

q

� �
¼ dq

1

q ;

or in summary,

aq; a
y
q1

h i
¼ dq

1

q : ð2:142Þ

It is also interesting to compute 1=2
P

q �hxq aq; a
y
q

n o
; where aq; a

y
q

n o
stands for

the anticommutator; i.e. it represents aqa
y
q þ aqa

y
q aq:

1
2

X
q

�hxq aq; ayq
n o

¼ 1
2

X
q

�hxq
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2M�hxq
p Pq � i

ffiffiffiffiffiffiffiffiffiffi
Mxq

2�h

r
Xyq

 !
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2M�hxq
p Pyq + i

ffiffiffiffiffiffiffiffiffiffi
Mxq

2�h

r
Xq

 !

þ 1
2

X
q

�hxq
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2M�hxq
p Pyq + i

ffiffiffiffiffiffiffiffiffiffi
Mxq

2�h

r
Xq

 !
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2M�hxq
p Pq � i

ffiffiffiffiffiffiffiffiffiffi
Mxq

2�h

r
Xyq

 !

¼ 1
2

X
q

�hxq
1

2M�hxq
PqPyq þ

Mxq

2�h
Xyq Xq � i

2�h
Xyq Pyq þ

i
2�h

PqXq

�

þ 1
2M�hxq

PyqPq þ Mxq

2�h
XqXyq þ i

2�h
XqPq � i

2�h
PyqXyq

�
:

Observing that

XqPq þPqXq � Xyq Pyq � PyqXyq ¼ PyqXyq ¼ 2 PqXq � PyqXyq
� �

;Pyq ¼ P�q;Xyq ¼ X�q;

and xq = x−q, we see that

X
q

�hxq PqXq � PyqXyq
� �

¼ 0:

Also Xyq ;Xq

h i
¼ 0 and Pyq ;Pq

h i
¼ 0, so that we obtain
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1
2

X
q

�hxq aq; a
y
q

n o
¼
X
q

1
2M

PqP
y
q þ

1
2
Mx2

qXqX
y
q

� �
¼ H: ð2:143Þ

Since the aq operators obey the commutation relations of (2.142) and by
Problem 2.6, they are isomorphic (can be set in one-to-one correspondence) to the
step-up and step-down operators of the harmonic oscillator [18, p. 349ff]. Since the
harmonic oscillator is a solved problem so is (2.143).

By (2.142) and (2.143) we can write

H ¼
X
q

�hxq ayq aq þ
1
2

� �
: ð2:144Þ

But from the quantum mechanics of the harmonic oscillator, we know that

ayq nq
�� � ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

nq þ 1
� �q

nq þ 1
�� �

; ð2:145Þ

aq nq
�� � ¼ ffiffiffiffiffi

nq
p

nq � 1
�� �

: ð2:146Þ

where nq
�� �

is the eigenket of a single harmonic oscillator in a state with energy
nq þ 1=2
� �

�hxq;xq is the classical frequency and nq is an integer. Equations (2.145)
and (2.146) imply that

ayq aq nq
�� �

= nq nq
�� �

: ð2:147Þ

Equation (2.144) is just an operator representing a sum of decoupled harmonic
oscillators with classical frequency xq. Using (2.147), we find that the energy
eigenvalues of (2.143) are

E ¼
X
q

�hxq nq þ 1
2

� �
: ð2:148Þ

This is the same result as was previously obtained.

From relations (2.145) and (2.146) it is easy to see why ayq is often called a

creation operator and aq is often called an annihilation operator. We say that ayq
creates a phonon in the mode q. The quantities nq are said to be the number of
phonons in the mode q. Since nq can be any integer from 0 to ∞, the phonons are
said to be bosons. In fact, the commutation relations of the aq operators are typical
commutation relations for boson annihilation and creation operators. The
Hamiltonian in the form (2.144) is said to be written in second quantization
notation. (See Appendix G for a discussion of this notation.) The eigenkets nq

�� �
are

said to be kets in occupation number space.
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With the Hamiltonian written in the form (2.144), we never really need to say
much about eigenkets. All eigenkets are of the form

mq

�� � ¼ 1ffiffiffiffiffiffiffi
mq!

p ayq
� �mq

0j i;

where 0j i is the vacuum eigenket. More complex eigenkets are built up by taking a
product. For example, m1;m2j i ¼ m1j i m2j i. States of the mq

�� �
, which are eigenkets

of the annihilation operators, are often called coherent states.
Let us briefly review what we have done in this section. We have found the

eigenvalues and eigenkets of the Hamiltonian representing one-dimensional lattice
vibrations in the harmonic and nearest-neighbor approximations. We have intro-
duced the concept of the phonon, but some more discussion of the term may well be
in order. We also need to give some more meaning to the subscript q that has been
used. For both of these purposes it is useful to consider the symmetry properties of
the crystal as they are reflected in the Hamiltonian.

The energy eigenvalue equation has been written

Hw x1. . . xNð Þ ¼ Ew x1. . . xNð Þ:

Now suppose we define a translation operator Tm that translates the coordinates by
ma. Since the Hamiltonian is invariant to such translations, we have

H; Tm½ � ¼ 0: ð2:149Þ

By quantum mechanics [18] we know that it is possible to find a set of functions
that are simultaneous eigenfunctions of both Tm and H. In particular, consider the
case m = 1. Then there exists an eigenket Ej i such that

H Ej i ¼ E Ej i; ð2:150Þ

and

T1 Ej i ¼ t1 Ej i: ð2:151Þ

Clearly t1
�� �� ¼ 1 for T1ð ÞN Ej i ¼ Ej i by periodic boundary conditions, and this

implies (t1)
N= 1 or |t1| = 1. Therefore let

t1 ¼ exp ikqa
� �

; ð2:152Þ

where kq is real. Since |t1| = 1 we know that kqaN = pp, where p is an integer. Thus

kq ¼ 2p
Na

� p; ð2:153Þ
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and hence kq is of the same form as our old friend q. Statements (2.150) to (2.153)
are equivalent to the already-mentioned Block’s theorem, which is a general the-
orem for waves propagating in periodic media. For further proofs of Bloch’s the-
orem and a discussion of its significance see Appendix C.

What is the q then? It is a quantum number labeling a state of vibration of the
system. Because of translational symmetry (in discrete translations by a) the system
naturally vibrates in certain states. These states are labeled by the q quantum
number. There is nothing unfamiliar here. The hydrogen atom has rotational
symmetry and hence its states are labeled by the quantum numbers characterizing
the eigenfunctions of the rotational operators (which are related to the angular
momentum operators). Thus it might be better to write (2.150) and (2.151) as

H E; qj i ¼ Eq E; qj i ð2:154Þ

T1 E; qj i ¼ eikqa E; qj i: ð2:155Þ

Incidentally, since E; qj i is an eigenket of T1 it is also an eigenket of Tm. This is
easily seen from the fact that (T1)

m= Tm.
We now have a little better insight into the meaning of q. Several questions

remain. What is the relation of the eigenkets E; qj i to the eigenkets nq
�� �

? They, in
fact, can be chosen to be the same.14 This is seen if we utilize the fact that T1 can be
represented by

T1 ¼ exp ia
X
q0

q0ayq0aq0
 !

: ð2:156Þ

Then it is seen that

T1 nq
�� � ¼ exp ia

X
q0

q0ayq0aq0
 !

nq
�� �

¼ exp ia
X
q0

q0mq0dq0q

 !
nq
�� � ¼ exp iaqnq

� �
nq
�� �

: ð2:157Þ

Let us now choose the set of eigenkets that simultaneously diagonalize both the
Hamiltonian and the translation operator (the E; qj i) to be the nq

�� �
. Then we see that

kq ¼ q � nq: ð2:158Þ

This makes physical sense. If we say we have one phonon in mode q
�
which state

we characterize by 1q
�� ��

then

14See, for example, Jensen [2.19].
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T1 1q
�� � ¼ eiqa 1q

�� �
;

and we get the typical factor eiqa for Bloch’s theorem. However, if we have two
phonons in mode q, then

T1 2q
�� � ¼ eiqa 2ð Þ 2q

�� �
;

and the typical factor of Bloch’s theorem appears twice.
The above should make clear what we mean when we say that a phonon is a

quantum of a lattice vibrational state.
Further insight into the nature of the q can be gained by taking the expectation

value of x1 in a time-dependent state of fixed q. Define

qj i �
X
nq

Cnq exp � i=�hð Þ Enq

� �
t

� 
nq
�� �

: ð2:159Þ

We choose this state in order that the classical limit will represent a wave of fixed
wavelength. Then we wish to compute

�
qjxpjq

� ¼X
nq;n1q

C�
nqCn1q exp½ þ i=�hð ÞðEnq � En1qÞt�:hnqjxpjn1qi: ð2:160Þ

By previous work we know that

xp ¼ 1=
ffiffiffiffi
N

p� �X
q1

expð�ipap1ÞXq1 ; ð2:161Þ

where the Xq can be written in terms of creation and annihilation operators as

Xq ¼ 1
2i

ffiffiffiffiffiffiffiffiffiffi
2�h
Mxq

s
ðayq � a�qÞ: ð2:162Þ

Therefore,

xp ¼ 1
2i

ffiffiffiffiffiffiffiffi
2�h
NM

r X
q1

expð�ipaq1Þðayq1 � a�q1Þ
1ffiffiffiffiffiffiffi
xq1

p : ð2:163Þ

Thus

nqjxpjn1q
D E

¼ 1
2i

ffiffiffiffiffiffiffiffi
2�h
NM

r �X
q1

xq1
� ��1=2

exp �ipaq1
� �

nqjay
q1
jn1q

D E

�
X
q1

exp �ipaq1
� �

nqja�q1 jn1q
D E�

: ð2:164Þ
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By (2.145) and (2.146), we can write (2.164) as

nqjxpjn1q
D E

¼ 1
2i

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2�h

NMxq

s
e�ipaq

ffiffiffiffiffiffiffiffiffiffiffiffiffi
n1q þ 1

q
dnqn1q þ 1 � eþ ipaq

ffiffiffiffiffiffiffiffiffiffiffiffiffi
n1q þ 1

q
d
n1q�1
nq : ð2:165Þ

Then by (2.160) we can write

qjxpjq
� � ¼ 1

2i

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2�h

NMxq

s �X
nq

C�
nqCnq � 1

ffiffiffiffiffi
nq

p
e�ipaqeþ ixqt

�
X
nq

CnqCnq þ 1
ffiffiffiffiffiffiffiffiffiffiffiffiffi
nq þ 1

p
eþ ipaqe�ixqt

�
: ð2:166Þ

In (2.166) we have used that

Enq ¼ nq þ 1
2

� �
�hxq:

Now let us go to the classical limit. In the classical limit only those Cn for which
nq is large are important. Further, let us suppose that Cn are very slowly varying
functions of nq. Since for large nq we can write

ffiffiffiffiffi
nq

p ffi ffiffiffiffiffiffiffiffiffiffiffiffiffi
nq þ 1

p
;

qjxpjq
� � ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2�h

NMxq

s �X1
nq¼0

ffiffiffiffiffi
nq

p jCnq j2
�
sin xqt � q pað Þ� 

: ð2:167Þ

Equation (2.167) is similar to the equation of a running wave on a classical lattice
where pa serves as the coordinate (it locates the equilibrium position of the
vibrating atom), and the displacement from equilibrium is given by xp. In this
classical limit then it is clear that q can be interpreted as 2p over the wavelength.

In view of the similarity of (2.167) to a plane wave, it might be tempting to call
ħq the momentum of the phonons. Actually, this should not be done because
phonons do not carry momentum (except for the q = 0 phonon, which corresponds
to a translation of the crystal as a whole). The q do obey a conservation law (as will
be seen in the chapter on interactions), but this conservation law is somewhat
different from the conservation of momentum.

To see that phonons do not carry momentum, it suffices to show that

nqjPtotjnq
� � ¼ 0; ð2:168Þ

where

Ptot ¼
X
l

pl: ð2:169Þ
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By previous work

pl ¼ 1=
ffiffiffiffi
N

p� �X
q1

Pq1 exp iq1la
� �

;

and

Pq1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2M�hxq1

q
aq1 þ ay�q1

� �
:

Then

nqjPtotjnq
� � ¼

ffiffiffiffiffiffiffi
M�h
2N

r X
l

X
q1

ffiffiffiffiffiffiffi
xq1

p
exp iq1la
� �

nqj aq1 þ ay�q1

� �
jnq

D E
¼ 0

ð2:170Þ

by (2.145) and (2.146). The q1 ! 0 mode can be treated by a limiting process.
However, it is simpler to realize it corresponds to all the atoms moving together so
it obviously can carry momentum. Anybody who has been hit by a thrown rock
knows that.

2.3 Three-Dimensional Lattices

Up to now only one-dimensional lattice vibration problems have been considered.
They have the very great advantage of requiring only simple notation. The prolixity
of symbols is what makes the three-dimensional problems somewhat more cum-
bersome. Not too many new ideas come with the added dimensions, but numerous
superscripts and subscripts do.

2.3.1 Direct and Reciprocal Lattices and Pertinent
Relations (B)

Let (a1, a2, a3) be the primitive translation vectors of the lattice. All points defined by

Rl ¼ l1a1 þ l2a2 þ l3a3; ð2:171Þ

where (l1, l2, l3,) are integers, define the direct lattice. This vector will often be
written as simply l. Let (b1, b2, b3) be three vectors chosen so that

ai � bj ¼ dij: ð2:172Þ
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Compare (2.172) to (1.38). The 2p could be inserted in (2.172) and left out of
(2.173), which should be compared to (1.44). Except for notation, they are the
same. There are two alternative ways of defining the reciprocal lattice. All points
described by

Gn ¼ 2p n1b1 þ n2b2 þ n3b3ð Þ; ð2:173Þ

where (n1, n2, n3) are integers, define the reciprocal lattice (we will sometimes use
K for Gn type vectors). Cyclic boundary conditions are defined on a fundamental
parallelepiped of volume

Vf:p:p: ¼ N1a1 � N2a2 � N3a3ð Þ; ð2:174Þ

where N1, N2, N3 are very large integers such that (N1) (N2) (N3) is of the order of
Avogadro’s number.

With cyclic boundary conditions, all wave vectors q (generalizations of the
old q) in one dimension are given by

q ¼ 2p n1=N1ð Þb1 þ n2=N2ð Þb2 þ n3=N3ð Þb3½ �: ð2:175Þ

The q are said to be restricted to a fundamental range when the ni in (2.175) are
restricted to the range

�Ni=2\ni\N1=2: ð2:176Þ

We can always add a Gn type vector to a q vector and obtain an equivalent vector.
When the q in a fundamental range are modified (if necessary) by this technique to
give a complete set of q that are closer to the origin than any other lattice point, then
the q are said to be in the first Brillouin zone. Any general vector in direct space is
given by

r ¼ g1a1 þ g2a2 þ g3a3; ð2:177Þ

where the ηi are arbitrary real numbers.
Several properties of the quantities defined by (2.171) to (2.177) can now be

derived. These properties are results of what can be called crystal mathematics.
They are useful for three-dimensional lattice vibrations, the motion of electrons in
crystals, and any type of wave motion in a periodic medium. Since most of the
results follow either from the one-dimensional calculations or from Fourier series or
integrals, they will not be derived here but will be presented as problems (Problem
2.11). However, most of these results are of great importance and are constantly
used.
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The most important results are summarized below:

1.
1

N1N2N3

X
Rl

exp iq � Rlð Þ ¼
X
Gn

dq;Gn : ð2:178Þ

2.
1

N1N2N3

X
q

exp iq � Rlð Þ ¼ dRl;0 ð2:179Þ

(summed over one Brillouin zone).

3. In the limit as Vf.p.p ! ∞, one can replace

X
q

by
Vf:p:p:

2pð Þ3
Z

d3q: ð2:180Þ

Whenever we speak of an integral over q space, we have such a limit in mind.

4:
Xa

2pð Þ3
Z

one Brillouin zone

exp iq � Rlð Þd3q ¼ dRl;0 ð2:181Þ

where Xa ¼ a1 � a2 � a3 is the volume of a unit cell.

5:
1
Xa

Z
Xa

exp i Gl1 � Glð Þ � r½ �d3r ¼ dl1;l: ð2:182Þ

6:
1

2pð Þ3
Z

all q space

exp iq � r� r1
� �� 

d3q ¼ d r� r1
� �

; ð2:183Þ

where d r� r1ð Þ is the Dirac delta function.

7:
1

2pð Þ3
Z

Vf:p:p:!1

exp i q� q1
� � � r� 

d3r ¼ d q� q1
� �

: ð2:184Þ

2.3.2 Quantum-Mechanical Treatment and Classical
Calculation of the Dispersion Relation (B)

This section is similar to Sect. 2.2.6 on one-dimensional lattices but differs in three
ways. It is three-dimensional. More than one atom per unit cell is allowed. Also, we
indicate that so far as calculating the dispersion relation goes, we may as well stick
to the notation of classical calculations. The use of Rl will be dropped in this
section, and l will be used instead. It is better not to have subscripts of subscripts
of…etc.
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In Fig. 2.8, l specifies the location of the unit cell and b specifies the location of
the atoms in the unit cell (there may be several b for each unit cell).

The actual coordinates of the atoms will be dl,b and

xl;b ¼ dl;b � lþ bð Þ ð2:185Þ
will be the coordinates that specify the deviation of the position of an atom from
equilibrium.

The potential energy function will be V(xl,b). In the equilibrium state, by
definition,

rxl;bV
� �

all xl;b¼0 ¼ 0: ð2:186Þ
Expanding the potential energy in a Taylor series, and neglecting the anharmonic
terms, we have

V xl;b
� � ¼ V0 þ 1

2

X
l;b;l1;b1 a;bð Þ

xalbJ
ab
lbl1b1

xb
l1b1

: ð2:187Þ

In (2.187), xal;b is the ath component of xl,b. V0 can be chosen to be zero, and this
choice then fixes the zero of the potential energy. If plb is the momentum (operator)
of the atom located at l + b with mass mb, the Hamiltonian can be written

H ¼ 1
2

Xa¼3

l all unit cellsð Þ; a¼1
b all atomswithin a cellð Þ

1
mb

palbp
a
lb

þ 1
2

Xa¼3;b¼3

l;b;l1;b1;a¼1;b¼1

Jab
lbl1b1

xalbx
b
l1b1

:
ð2:188Þ

Fig. 2.8 Notation for three-dimensional lattices
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In (2.188), summing over a or b corresponds to summing over three Cartesian
coordinates, and

Jab
lbl1b1

¼ @2V

@xalb@x
b
l1b1

 !
all xlb¼0

: ð2:189Þ

The Hamiltonian simplifies much as in the one-dimensional case. We make a
normal coordinate transformation or a Fourier analysis of the coordinate and
momentum variables. The transformation is canonical, and so the new variables
obey the same commutation relations as the old:

xl;b ¼ 1ffiffiffiffi
N

p
X
q

X1
q;be

�iq�l; ð2:190Þ

pl;b ¼
1ffiffiffiffi
N

p
X
q

P1
q;be

þ iq�l; ð2:191Þ

where N = N1N2N3. Since xl,b and pl,b are Hermitian, we must have

X1
�q;b ¼ X1y

q;b; ð2:192Þ

and

P1
�q;b ¼ P1y

q;b: ð2:193Þ

Substituting (2.190) and (2.191) into (2.188) gives

H ¼ 1
2

X
l;b

1
mb

1
N

X
q;q1

P1
q;bP

1
q1;be

i qþ q1ð Þ�l

þ 1
2

X
l;b;l1;b1;a;b

1
N

X
q;q1

Jab
l;b;l1b1

X1a
q;bX

1b
q1;b1

e�i q�lþ q1�l1ð Þ: ð2:194Þ

Using (2.178) on the first term of the right-hand side of (2.194) we can write

H ¼ 1
2

X
q;b

1
mb

P1
q;b � P1y

q;b

þ 1
2N

X
q; q1; b; b1

a; b

X
l;l1

Jab
l;b;l1;b1

e�iq1: l�l1ð Þe�i qþ q1ð Þ
8<
:

9=
;X1a

q;bX
1b
q1;b1

: ð2:195Þ
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The force between any two atoms in our perfect crystal cannot depend on the
position of the atoms but only on the vector separation of the atoms. Therefore, we
must have that

Jab
l;b;l1;b1

¼ Jab
b;b1

l� l1
� �

: ð2:196Þ

Letting m = (l − l1), defining

Kbb1 qð Þ ¼
X
m

Jbb1 mð Þe�iq�m; ð2:197Þ

and again using (2.178), we find that the Hamiltonian becomes

H ¼
X
q

Hq; ð2:198aÞ

where

Hq ¼ 1
2

X
b

1
mb

P1
q;b � P1y

q;b þ
1
2

X
b; b1

a; b

Kab
b;b1

X1a
q;bX

1by
q1;b1

: ð2:198bÞ

The transformation has used translational symmetry in decoupling terms in the
Hamiltonian. The rest of the transformation depends on the crystal structure and is
found by straightforward small vibration theory applied to each unit cell. If there are
K particles per unit cell, then there are 3K normal modes described by (2.198). Let
xq,p, where p goes from 1 to 3K, represent the eigenfrequencies of the normal
modes, and let eq,p,b be the components of the eigenvectors of the normal modes.
The quantities eq,p,b allow us to calculate15 the magnitude and direction of vibration
of the atom at b in the mode labeled by (q, p). The eigenvectors can be chosen to
obey the usual orthogonality relationX

b

e�qpb � eqp1b ¼ dp; p1 : ð2:199Þ

It is convenient to allow for the possibility that eqpb is complex due to the fact that
all we readily know about Hq is that it is Hermitian. A Hermitian matrix can always
be diagonalized by a unitary transformation. A real symmetric matrix can always be
diagonalized by a real orthogonal transformation. It can be shown that with only
one atom per unit cell the polarization vectors eqpb are real. We can choose e�q;p;b ¼
e�q;p;b in more general cases.

15The way to do this is explained later when we discuss the classical calculation of the dispersion
relation.
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Once the eigenvectors are known, we can make a normal coordinate transfor-
mation and hence diagonalize the Hamiltonian [99]:

X11
q;p ¼

X
b

ffiffiffiffiffiffi
mb

p
eqpb � X1

qb: ð2:200Þ

The momentum P11
q;p, which is canonically conjugate to (2.200), is

P11
q;p ¼

X
b

1=
ffiffiffiffiffiffi
mb

pð Þe�qpb � P11
qp: ð2:201Þ

Equations (2.200) and (2.201) can be inverted by use of the closure notation

X
p

ea�qpbe
b
qpb1

¼ dbad
b1
b : ð2:202Þ

Finally, define

aq;p ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2�hxq;p

p
P11
q;p � i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xq;p=2�h
� �q

X11y
q;p ; ð2:203Þ

and a similar expression for ayq;p. In the same manner as was done in the
one-dimensional case, we can show that

aq;p; a
y
q;p

h i
¼ dq

1

q d
p1
p ; ð2:204Þ

and that the other commutators vanish. Therefore the as are boson annihilation
operators, and the a† are boson creation operators. In this second quantization
notation, the Hamiltonian reduces to a set of decoupled harmonic oscillators:

H ¼
X
q;p

�hxq;p ayq;paq;p þ
1
2

� �
: ð2:205Þ

By (2.205) we have seen that the Hamiltonian can be represented by 3NK
decoupled harmonic oscillators. This decomposition has been shown to be formally
possible within the context of quantum mechanics. However, the only thing that we
do not know is the dispersion relationship that gives x as a function of q for each p.
The dispersion relation is the same in quantum mechanics and classical mechanics
because the calculation is the same. Hence, we may as well stay with classical
mechanics to calculate the dispersion relation (except for estimating the forces), as
this will generally keep us in a simpler notation. In addition, we do not know what
the potential V is and hence the J and K [(2.189), (2.197)] are unknown also.

This last fact emphasizes what we mean when we say we have obtained a formal
solution to the lattice-vibration problem. In actual practice the calculation of the
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dispersion relation would be somewhat cruder than the above might lead one to
suspect. We gave some references to actual calculations in the introduction to
Sect. 2.2. One approach to the problem might be to imagine the various atoms
hooked together by springs. We would try to choose the spring constants so that the
elastic constants, sound velocity, and the specific heat were given correctly. Perhaps
not all the spring constants would be determined by this method. We might like to
try to select the rest so that they gave a dispersion relation that agreed with the
dispersion relation provided by neutron diffraction data (if available). The details of
such a program would vary from solid to solid.

Let us briefly indicate how we would calculate the dispersion relation for a
crystal lattice if we were interested in doing it for an actual case. We suppose we
have some combination of model, experiment, and general principles so the

Jab
l;b;l1;b1

can be determined. We would start with the Hamiltonian (2.188) except that we
would have in mind staying with classical mechanics:

H ¼ 1
2

Xa¼3

l;b;a¼1

1
mb

pal;b
� �2

þ 1
2

Xa¼3;b¼3

l;b;l1;b1;a¼1;b¼1

Jab
l;b;l1;b1

xalbx
b
l1b1

: ð2:206Þ

We would use the known symmetry in J:

Jab
l;b;l1;b1

¼ Jab
l1;b1;l;b

; Jab
l;b;l1;b1

¼ Jab
l�l1ð Þb;b1 : ð2:207Þ

It is also possible to show by translational symmetry (similarly to the way (2.33)
was derived) that

X
l1;b1

Jab
l;b;l1;b1

¼ 0: ð2:208Þ

Other restrictions follow from the rotational symmetry of the crystal.16

The equations of motion of the lattice are readily obtained from the Hamiltonian
in the usual way. They are

mb€x
a
lb ¼ �

X
l1;b1;b

Jab
l;b;l1;b1

Xb
l1;b1

: ð2:209Þ

If we seek normal mode solutions of the form (whose real part corresponds to the
physical solutions)17

16Maradudin et al. [2.26].
17Note that this substitution assumes the results of Bloch’s theorem as discussed after (2.39).
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xal;b ¼
1ffiffiffiffiffiffi
mb

p xabe
�ixtþ q�l; ð2:210Þ

we find (using the periodicity of the lattice) that the equations of motion reduce to

x2xab ¼
X
b1;b

Mab
q;b;b1

xb
b1
; ð2:211Þ

where

Mab
q;b;b1

is called the dynamical matrix and is defined by

Mab
q;b;b1

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
mbmb1

p
X
l�l1ð Þ

Jab
l�l1ð Þb;b1e

�iq� l�l1ð Þ: ð2:212Þ

These equations have nontrivial solutions provided that

detðMab
q;b;b1

� x2dabdb;b1Þ ¼ 0: ð2:213Þ

If there are K atoms per unit cell, the determinant condition yields 3K values of x2

for each q. These correspond to the 3K branches of the dispersion relation. There
will always be three branches for which x = 0 if q = 0. These branches are called
the acoustic modes. Higher branches, if present, are called the optic modes.

Suppose we let the solutions of the determinantal condition be defined by xp
2(q),

where p = 1 to 3K. Then we can define the polarization vectors by

x2
p qð Þeaq;p;b ¼

X
b1;b

Mab
q;b;b1

ebq;p;b: ð2:214Þ

It is seen that these polarization vectors are just the eigenvectors. In evaluating the
determinantal equation, it will probably save time to make full use of the symmetry
properties of J via M. The physical meaning of complex polarization vectors is
obtained when they are substituted for xab and then the resulting real part of xal;b is
calculated.

The central problem in lattice-vibration dynamics is to determine the dispersion
relation. As we have seen, this is a purely classical calculation. Once the dispersion
relation is known (and it never is fully known exactly—either from calculation or
experiment), quantum mechanics can be used in the formalism already developed
(see, for example, (2.205) and preceding equations).
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2.3.3 The Debye Theory of Specific Heat (B)

In this section an exact expression for the specific heat will be written down. This
expression will then be approximated by something that can actually be evaluated.
The method of approximation used is called the Debye approximation. Note that in
three dimensions (unlike one dimension), the form of the dispersion relation and
hence the density of states is not exactly known [2.11]. Since the Debye model works
so well, for many years after it was formulated nobody tried very hard to do better.
Actually, it is always a surprise that the approximation does work well because the
assumptions, on first glance, do not appear to be completely reasonable. Before
Debye’s work, Einstein showed (see Problem 2.24) that a simple model in which
each mode had the same frequency, led with quantum mechanics to a specific heat
that vanished at absolute zero. However, the Einstein model predicted an exponential
temperature decrease at low temperatures rather than the correct T3 dependence.

The average number of phonons in mode (q, p) is

�nq;p ¼ 1
exp �hxq; p=kT
� �� 1

: ð2:215Þ

The average energy per mode is

�hxq; p�nq; p;

so that the thermodynamic average energy is [neglecting a constant zero-point
correction, cf. (2.77)]

U ¼
X
q; p

�hxq; p

exp �hxq; p=kT
� �� 1

: ð2:216Þ

The specific heat at constant volume is then given by

Cv ¼ @U
@T

� �
v
¼ 1

kT2

X
q; p

�hxq; p
� �2

exp �hxq; p=kT
� �

exp �hxq; p=kT
� �� 1

� 2 : ð2:217Þ

Incidentally, when we say we are differentiating at constant volume it may not be in
the least evident where there could be any volume dependence. However, the xq,p

may well depend on the volume. Since we are interested only in a crystal with a fixed
volume, this effect is not relevant. The student may object that this is not realistic as
there is a thermal expansion of the solids. It would not be consistent to include
anything about thermal expansion here. Thermal expansion is due to the anharmonic
terms in the potential and we are consistently neglecting these. Furthermore, the
Debye theory works fairly well in its present form without refinements.

The Debye model is a model based on the exact expression (2.217) in which the
sum is evaluated by replacing it by an integral in which there is a density of states.
Let the total density of states D(x) be represented by
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D xð Þ ¼
X
p

Dp xð Þ; ð2:218Þ

where Dp(x) is the number of modes of type p per unit frequency at frequency x.
The Debye approximation consists in assuming that the lattice vibrates as if it were
an elastic continuum. This should work at low temperatures because at low tem-
peratures only long-wavelength (low q) acoustic modes should be important. At
high temperatures the cutoff procedure that we will introduce for D(x) will assure
that we get the results of the classical equipartition theorem whether or not we use
the elastic continuum model. We choose the cutoff frequency so that we have only
3NK (where N is the number of unit cells and K is the number of atoms per unit cell)
distinct continuum frequencies corresponding to the 3NK normal modes. The
details of choosing this cutoff frequency will be discussed in more detail shortly.

In a box with length Lx, width Ly, and height Lz, classical elastic isotropic
continuum waves have frequencies given by

x2
j ¼ p2c2

k2j
L2x

þ l2j
L2y

þ m2
j

L2z

 !
; ð2:219Þ

where c is the velocity of the wave (it may differ for different types of waves), and
(kj, lj and mj) are positive integers.

We can use the dispersion relation given by (2.219) to derive the density of
states Dp(x).

18 For this purpose, it is convenient to define an x space with base
vectors

ê1 ¼ pc
Lx

î; ê2 ¼ pc
Ly

ĵ; and ê3 ¼ pc
Lz

k̂: ð2:220Þ

Note that

x2
j ¼ k2j ê

2
1 þ l2j ê

2
2 þm2

j ê
2
3: ð2:221Þ

Since the (ki, li, mi) are positive integers, for each state xj, there is an associated cell
in x space with volume

ê1 � ê2 � ê3ð Þ ¼ pcð Þ3
LxLyLz

: ð2:222Þ

The volume of the crystals is V = LxLyLz, so that the number of states per unit
volume of x space is V/(pc)3. If n is the number of states in a sphere of radius x in
x space, then

18We will later introduce more general ways of deducing the density of states from the dispersion
relation, see (2.258).
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n ¼ 1
8
4p
3
x3 V

pcð Þ3 :

The factor ⅛ enters because only positive kj, lj, and mj are allowed. Simplifying, we
obtain

n ¼ p
6
x3 V

pcð Þ3 : ð2:223Þ

The density of states for mode p (which is the number of modes of type p per unit
frequency) is

Dp xð Þ ¼ dn
dx

¼ x2V

2p2c3p
� � : ð2:224Þ

In (2.224), cp means the velocity of the wave in mode p.
Debye assumed (consistent with the isotropic continuum limit) that there were

two transverse modes and one longitudinal mode. Thus for the total density of
states, we have D xð Þ ¼ x2V=2p2ð Þ 1=c3l þ 2=c3t

� �
, where cl and ct are the velocities

of the longitudinal and transverse modes. However, the total number of modes must
be 3NK. Thus, we have

3NK ¼
ZxD

0

D xð Þdx:

Note that when K = 2 = the number of atoms per unit cell, the assumptions we
have made push the optic modes into the high-frequency part of the density of
states. We thus have

3NK ¼
ZxD

0

V
2p2

1
C3
l

þ 1
c3t

� �
x2dx: ð2:225Þ

We have assumed only one cutoff frequency xD. This was not necessary. We could
just as well have defined a set of cutoff frequencies by the set of equations

2NK ¼
ZxD

t

0

D xð Þtdx;

NK ¼
ZxD

l

0

D xð Þldx: ð2:226Þ
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There are yet further alternatives. But we are already dealing with a phenomeno-
logical treatment. Such modifications may improve the agreement of our results
with experiment, but they hardly increase our understanding from a fundamental
point of view. Thus for simplicity let us also assume that cp = c = constant. We can
regard c as some sort of average of the cp.

Equation (2.225) then gives us

xD ¼ 6p2Nc3

V
K

� �1=3

: ð2:227Þ

The Debye temperature hD is defined as

hD ¼ �hxD

k
¼ �h

k
6p2Nc3

V

� �1=3

: ð2:228Þ

Combining previous results, we have for the specific heat

Cv ¼ 3
kT2

ZxD

0

�hxð Þ2exp �hx=kTð Þ
exp �hx=kTð Þ � 1½ �2

V
2p2c3

x2dx;

which gives for the specific heat per unit volume (after a little manipulation)

Cv

V
¼ 9k NK=Vð ÞD hD=Tð Þ; ð2:229Þ

where D hD=Tð Þ is the Debye function defined by

D hD=Tð Þ ¼ T=hDð Þ3
ZhD=T
0

z4ezdz

ez � 1ð Þ2 : ð2:230Þ

In Problem 2.13, you are asked to show that (2.230) predicts a T3 dependence for Cv

at low temperature and the classical limit of 3k(NK) at high temperature. Table 2.3
gives some typical Debye temperatures. For metals hD in K for Al is about 394, Fe
about 420, and Pb about 88. See, e.g., Parker [24, p. 104].

Table 2.3 Approximate Debye temperature for
alkali halides at 0 K

Alkali halide Debye temperature (K)

LiF 734
NaCl 321
KBr 173
RbI 103
Adapted with permission from Lewis JT et al. Phys
Rev 161, 877, 1967. Copyright 1967 by the
American Physical Society
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In discussing specific heats there is, as mentioned, one big difference between
the one-dimensional case and the three-dimensional case. In the one-dimensional
case, the dispersion relation is known exactly (for nearest-neighbor interactions)
and from it the density of states can be exactly computed. In the three-dimensional
case, the dispersion relation is not known, and so the dispersion relation of a
classical isotropic elastic continuum is often used instead. From this dispersion
relation, a density of states is derived. As already mentioned, in recent years it has
been possible to determine the dispersion relation directly by the technique of
neutron diffraction (which will be discussed in a later chapter). Somewhat less
accurate methods are also available. From the dispersion relation we can (rather
laboriously) get a fairly accurate density of states curve. Generally speaking, this
density of states curve does not compare very well with the density of states used in
the Debye approximation. The reason the error is not serious is that the specific heat
uses only an integral over the density of states.

In Figs. 2.9 and 2.10 we have some results of dispersion curves and density of
states curves that have been obtained from neutron work. Note that only in the
crudest sense can we say that Debye theory fits a dispersion curve as represented by
Fig. 2.10. The vibrational frequency spectrum can also be studied by other methods
such as for example by X-ray scattering. See Maradudin et al. [2.26, Chap. VII] and
Table 2.4.

Fig. 2.9 Measured dispersion curves. The dispersion curves are for Li7F at 298 K. The
results are presented along three directions of high symmetry. Note the existence of both
optic and acoustic modes. The solid lines are a best least-squares fit for a seven-parameter
model. [Reprinted with permission from Dolling G, Smith HG, Nicklow RM,
Vijayaraghavan PR, and Wilkinson MK, Physical Review, 168(3), 970 (1968). Copyright
1968 by the American Physical Society.] For a complete definition of all terms, reference can
be made to the original paper
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The Debye theory is often phenomenologically improved by letting hD = hD(T) in
(2.229). Again this seems to be a curve-fitting procedure, rather than a procedure that
leads to better understanding of the fundamentals. It is, however, a good way of
measuring the consistency of the Debye approximation. That is, the more hD varies
with temperature, the less accurate the Debye density of states is in representing the
true density of states.

Fig. 2.10 Density of states g(v) for Li7F at 298 K. [Reprinted with permission from
Dolling G, Smith HG, Nicklow RM, Vijayaraghavan PR, and Wilkinson MK, Physical
Review, 168(3), 970 (1968). Copyright 1968 by the American Physical Society.]

Table 2.4 Experimental methods of studying phonon spectra

Method Reference

Inelastic scattering of neutrons by phonons Brockhouse and
Stewart [2.6]

See the end of Sect. 4.3.1 Shull and Wollan
[2.31]

Inelastic scattering of X-rays by phonons (in
which the diffuse background away from Bragg
peaks is measured). Synchrotron radiation with
high photon flux has greatly facilitated this
technique

Dorner et al. [2.13]

Raman scattering (off optic modes) and Brillouin
scattering (off acoustic modes). See Sect. 10.11

Vogelgesang et al.
[2.36]
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We should mention that from a purely theoretical point we know that the Debye
model must, in general, be wrong. This is because of the existence of Van Hove
singularities [2.35]. A general expression for the density of states involves one over
the k space gradient of the frequency [see (3.258)]. Thus, Van Hove has shown that
the translational symmetry of a lattice causes critical points [values of k for which
∇kxp(k) = 0] and that these critical points (which are maxima, minima, or saddle
points) in general cause singularities (e.g. a discontinuity of slope) in the density of
states. See Fig. 2.10. It is interesting to note that the approximate Debye theory has
no singularities except that due to the cutoff procedure.

The experimental curve for the specific heat of insulators looks very much like
Fig. 2.11. The Debye expression fits this type of curve fairly well at all temperatures.
Kohn has shown that there is another cause of singularities in the phonon spectrum
that can occur in metals. These occur when the phonon wave vector is twice the
Fermi wave vector. Related comments are made in Sects. 5.3, 6.6, and 9.5.3.

In this chapter we have set up a large mathematical apparatus for defining
phonons and trying to understand what a phonon is. The only thing we have
calculated that could be compared to experiment is the specific heat. Even the
specific heat was not exactly evaluated. First, we made the Debye approximation.
Second, if we had included anharmonic terms, we would have found a small term
linear in T at high T. For the experimentally minded student, this is not very
satisfactory. He would want to see calculations and comparisons to experiment for a
wide variety of cases. However, our plan is to defer such considerations. Phonons
are one of the two most important basic energy excitations in a solid (electrons
being the other) and it is important to understand, at first, just what they are.

We have reserved another chapter for the discussion of the interactions of
phonons with other phonons, with other basic energy excitations of the solid, and
with external probes such as light. This subject of interactions contains the real meat

Fig. 2.11 Sketch of specific heat of insulators. The curve is practically flat when the
temperature is well above the Debye temperature
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of solid-state physics. One topic in this area is introduced in the next section.
Table 2.5 summarizes simple results for density of states and specific heat in one,
two, and three dimensions.

Peter Debye

b. Maastricht, Netherlands (1884–1966)

Debye model of Specific Heat; Temperature dependence of average dipole
moments; Debye–Hückel theory of electrolytes; Debye–Waller theory of
temperature dependence of scattered X-rays from condensed matter systems;
Nobel Prize in Chemistry in 1936

Debye has been accused of being a Nazi sympathizer in helping to
“cleanse” German science of Jews and “non-Aryans.” Most scientists now
place no credence in these accusations.

2.3.4 Anharmonic Terms in the Potential/The Gruneisen
Parameter (A)19

We wish to address the topic of thermal expansion, which would not exist without
anharmonic terms in the potential (for then the average position of the atoms would
be independent of their amplitude of vibration). Other effects of the anharmonic
terms are the existence of finite thermal conductivity (which we will discuss later in
Sect. 4.2) and the increase of the specific heat beyond the classical Dulong and Petit
value at high temperature. Here we wish to obtain an approximate expression for
the coefficient of thermal expansion (which would vanish if there were no anhar-
monic terms).

Table 2.5 Dimensionality and frequency (x) dependence of
long-wavelength acoustic phonon density of states D(x), and
low-temperature specific heat Cv of lattice vibrations

D(x) Cv

One dimension A1 B1 T

Two dimensions A2 x B2 T
2

Three dimensions A3 x
2 B3 T

3

Note that the Ai and Bi are constants

19[2.10, 1973, Chap. 8].
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We first derive an expression for the free energy of the lattice due to thermal
vibrations. The free energy is given by

FL ¼ �kBT ln Z; ð2:231Þ

where Z is the partition function. The partition function is given by

Z ¼
X
nf g

expð�bE nf gÞ; b ¼ 1
kBT

; ð2:232Þ

where

E nf g ¼
X
k;j

nk þ 1
2

� �
�hxj kð Þ ð2:233Þ

in the harmonic approximation and xj(k) labels the frequency of the different modes
at wave vector k. Each nk can vary from 0 to ∞. The partition function can be
rewritten as

Z ¼
X
n1

X
n2

. . . exp �bE nkf g
� �

¼
Y
k;j

Y
nk

exp �b nk þ 1
2
�hxj kð Þ

� �� �

¼
Y
k;j

exp ��hxj kð Þ=2� Y
nk

exp �bnk�hxj kð Þ� 
;

which readily leads to

FL ¼ kBT
X
k;j

ln 2 sinh
�hxj kð Þ
2kBT

� �� �
: ð2:234Þ

Equation (2.234) could have been obtained by rewriting and generalizing (2.74).
We must add to this the free energy at absolute zero due to the increase in elastic
energy if the crystal changes its volume by ΔV. We call this term U0.

20

F ¼ kBT
X
k;j

ln 2 sinh
�hxj kð Þ
2kBT

� �� �
þU0: ð2:235Þ

20U0 is included for completeness, but we end up only using a vanishing temperature derivative so
it could be left out.
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We calculate the volume coefficient of thermal expansion a

a ¼ 1
V

@V
@T

� �
P
: ð2:236Þ

But,

@V
@T

� �
P

@P
@V

� �
T

@T
@P

� �
V
¼ �1:

The isothermal compressibility is defined as

j ¼ � 1
V

@V
@P

� �
T
; ð2:237Þ

then we have

a ¼ j
@P
@T

� �
V
: ð2:238Þ

But

P ¼ � @F
@V

� �
T
;

so

P ¼ � @U0

@V
� kBT

X
k; j

coth
�hxj kð Þ
2kBT

� �
�h

2kBT
@xj kð Þ
@V

: ð2:239Þ

The anharmonic terms come into play by assuming the xj(k) depend on volume.
Since the average number of phonons in the mode k, j is

�nj kð Þ ¼ 1

exp
�hxj kð Þ
kBT

� �
� 1

¼ 1
2

coth
�hxj kð Þ
2kBT

� �
� 1

� �
: ð2:240Þ

Thus

P ¼ � @U0

@V
�
X
k;j

�nj kð Þþ 1
2

� �
�h
@xj kð Þ
@V

: ð2:241Þ
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We define the Gruneisen parameter for the mode k, j as

cj kð Þ ¼ � V
xj qð Þ

@xj kð Þ
@V

¼ � @ lnxj kð Þ
@ lnV

: ð2:242Þ

Thus

P ¼ � @

@V
U0 þ

X
k;j

1
2
�hxh kð Þ

" #
þ
X
k;j

�nj kð Þ �hxj kð Þcj
V

: ð2:243Þ

However, the lattice internal energy is (in the harmonic approximation)

U ¼
X
k;j

�nj kð Þþ 1
2

� �
�hxj kð Þ: ð2:244Þ

So

@U
@T

¼
X
k;j

�hxj kð Þ @�nj kð Þ
@T

; ð2:245Þ

cv ¼ 1
V
@U
@T

¼
X
k;j

�hxj kð Þ @�nj kð Þ
@T

¼
X

cvj kð Þ; ð2:246Þ

which defines a specific heat for each mode. Since the first term of P in (2.243) is
independent of T at constant V, and using

a ¼ j
@P
@T

�
V
;

we have

a ¼ j
1
V

X
k;j

�hxj kð Þcj kð Þ @�nj kð Þ
@T

: ð2:247Þ

Thus

a ¼ j
X
k;j

cj kð Þcvj kð Þ: ð2:248Þ

Let us define the overall Gruneisen parameter cT as the average Gruneisen
parameter for mode k, j weighted by the specific heat for that mode. Then by
(2.242) and (2.246) we have
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cvcT ¼
X
k;j

cj kð Þcvk kð Þ: ð2:249Þ

We then find

a ¼ jcTcv: ð2:250Þ

If cT (the Gruneisen parameter) were actually a constant a would tend to follow the
changes of cV, which happens for some materials.

From thermodynamics

cP ¼ cV þ a2T
j

; ð2:251Þ

so cp = cv(1 + caT) and c is often between 1 and 2 (Table 2.6).

2.3.5 Wave Propagation in an Elastic Crystalline
Continuum21 (MET, MS)

In the limit of long waves, classical mechanics can be used for the discussion of
elastic waves in a crystal. The relevant wave equations can be derived from
Newton’s second law and a form of Hooke’s law. The appropriate generalized form
of Hooke’s law says the stress and strain are linearly related. Thus we start by
defining the stress and strain tensors.

The Stress Tensor (rij) (MET, MS)
We define the stress tensor rij in such a way that

ryx ¼ DFy

DyDz
ð2:252Þ

for an infinitesimal cube. See Fig. 2.12. Thus i labels the force (positive for tension)
per unit area in the i direction and j indicates which face the force acts on (the face
is normal to the j direction). The stress tensor is symmetric in the absence of body
torques, and it transforms as the products of vectors so it truly is a tensor.

Table 2.6 Gruneisen constants

Temperature
(K)

LiF NaCl KBr KI

0
283

1.7 ± 0.05
1.58

0.9 ± 0.03
1.57

0.29 ± 0.03
1.49

0.28 ± 0.02
1.47

Adaptation of Table 3 from White GK, Proc Roy Soc London A286, 204, 1965. By
permission of the Royal Society

21See, e.g., Ghatak and Kothari [2.16, Chap. 4] or Brown [2.7, Chap. 5].
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By considering Fig. 2.13, we derive a useful expression for the stress that we
will use later. The normal to dS is n and rindS is the force on dS in the ith direction.
Thus for equilibrium

rindS ¼ rixnxdSþ riynydSþ riznzdS;

so that

Fig. 2.13 Useful pictorial of stress tensor rij

Fig. 2.12 Schematic definition of stress tensor rij
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rin ¼
X
j

rijnj: ð2:253Þ

The Strain Tensor (eij) (MET, MS)
Consider infinitesimal and uniform strains and let i, j, k be a set of orthogonal axes
in the unstrained crystal. Under strain, they will go to a not necessarily orthogonal
set i′, j′, k′. We define eij so

i0 ¼ 1þ exxð Þiþ exy jþ exzk; ð2:254aÞ

j0 ¼ eyxiþ 1þ eyy
� �

jþ eyzk; ð2:254bÞ

k0 ¼ ezxiþ ezy jþ 1þ ezzð Þk: ð2:254cÞ
Let r represent a point in an unstrained crystal that becomes r′ under uniform
infinitesimal strain.

r ¼ xiþ yjþ zk; ð2:255aÞ

r0 ¼ xi0 þ yj0 þ zk0: ð2:255bÞ
Let the displacement of the point be represented by u = r′ − r, so

ux ¼ xexx þ yeyx þ zezx; ð2:256aÞ

uy ¼ xexy þ yeyy þ zezy; ð2:256bÞ

uz ¼ xexz þ yeyz þ zezz: ð2:256cÞ
We define the strain components in the following way

exx ¼ @ux
@x

; ð2:257aÞ

eyy ¼ @uy
@y

; ð2:257bÞ

ezz ¼ @uz
@z

; ð2:257cÞ

exy ¼ 1
2

@uz
@y

þ @uy
@x

� �
; ð2:257dÞ

eyz ¼ 1
2

@uy
@z

þ @uz
@y

� �
; ð2:257eÞ

ezx ¼ 1
2

@uz
@x

þ @ux
@z

� �
; ð2:257fÞ

The diagonal components are the normal strain and the off-diagonal components are
the shear strain. Pure rotations have not been considered, and the strain tensor (eij) is
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symmetric. It is a tensor as it transforms like one. The dilation, or change in volume
per unit volume is,

h ¼ dV
V

¼ i0 � j0 � k0ð Þ ¼ exx þ eyy þ ezz: ð2:258Þ

Due to symmetry there are only 6 independent stress, and 6 independent strain
components. The six component stresses and strains may be defined by:

r1 ¼ rxx; ð2:259aÞ

r2 ¼ ryy; ð2:259bÞ

r3 ¼ rzz; ð2:259cÞ

r4 ¼ ryz ¼ rzy; ð2:259dÞ

r5 ¼ rxz ¼ rzx; ð2:259eÞ

r6 ¼ rxy ¼ ryx; ð2:259fÞ

e1 ¼ exx; ð2:260aÞ

e2 ¼ eyy; ð2:260bÞ

e3 ¼ ezz; ð2:260cÞ

e4 ¼ 2eyz ¼ 2ezy; ð2:260dÞ

e5 ¼ 2exz ¼ 2ezx; ð2:260eÞ

e6 ¼ 2exy ¼ 2eyx: ð2:260fÞ

(The introduction of the 2 in (2.260d–2.260f) is convenient for later purposes).

Hooke’s Law (MET, MS)
The generalized Hooke’s law says stress is proportional to strain or in terms of the
six-component representation:

ri ¼
X6
j¼1

cijej; ð2:261Þ

where the cij are the elastic constants of the crystal.

General Equation of Motion (MET, MS)
It is fairly easy, using Newton’s second law, to derive an expression relating the
displacements ui and the stresses rij. Reference can be made to Ghatak and Kothari
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[2.16, pp. 59–62] for details. If rBi denotes body force per unit mass in the direction
i and if is the density of the material, the result is

q
@2ui
@t2

¼ qrBi þ
X
j

@rij
@xj

: ð2:262Þ

In the absence of external body forces the term rBi , of course, drops out.

Strain Energy (MET, MS)
Equation (2.262) seems rather complicated because there are 36 cij. However, by
looking at an expression for the strain energy [2.16, pp. 63–65] and by using
(2.261) it is possible to show

cij ¼ @ri
@ej

¼ @2uV
@ej@ei

; ð2:263Þ

where uV is the potential energy per unit volume. Thus cij is a symmetric matrix and
of the 36 cij, only 21 are independent.

Now consider only cubic crystals. Since the x-, y-, z-axes are equivalent,

c11 ¼ c22 ¼ c33 ð2:264aÞ

and

c44 ¼ c55 ¼ c66 ð2:264bÞ

By considering inversion symmetry, we can show all the other off-diagonal elastic
constants are zero except for

c12 ¼ c13 ¼ c23 ¼ c21 ¼ c31 ¼ c32:

Thus there are only three independent elastic constants,22 which can be represented
as:

cij ¼

c11 c12 c12 0 0 0
c12 c11 c12 0 0 0
c12 c12 c11 0 0 0
0 0 0 c44 0 0
0 0 0 0 c44 0
0 0 0 0 0 c44

0
BBBBBB@

1
CCCCCCA
: ð2:265Þ

22If one can assume central forces Cauchy proved that c12 = c44, however, this is not a good
approximation in real materials.
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Equations of Motion for Cubic Crystals (MET, MS)
From (2.262) (with no external body forces)

q ¼ @2ui
@t2

¼
X
j

@rij
@xj

¼ @rxx
@x

þ @rxy
@y

þ @rxz
@x

; ð2:266Þ

but

rxx ¼ r1 ¼ c11e1 þ c12e2 þ c13e3
¼ c11 � c12ð Þe1 þ c12 e1 þ e2 þ e3ð Þ; ð2:267aÞ

rxy ¼ r6 ¼ c44e6; ð2:267bÞ

rxz ¼ r5 ¼ c44e5; ð2:267cÞ

Using also (2.257a), and combining with the above we get an equation for
@2ux=@t2. Following a similar procedure we can also get equations for @2uy=@t2 and
@2uz=@t2. Seeking solutions of the form

uj ¼ Kjei k�r�xtð Þ ð2:268Þ

for j = 1, 2, 3 or x, y, z, we find nontrivial solutions only if

c11 � c44ð Þk2x
þ c44k

2 � qx2

( )
c12 þ c44ð Þkxky c12 þ c44ð Þkxkz

c12 þ c44ð Þkykx
c11 � c44ð Þk2y
þ c44k

2 � qx2

( )
c12 þ c44ð Þkykz

c12 þ c44ð Þkzkx c12 þ c44ð Þkzky
c11 � c44ð Þk2z
þ c44k2 � qx2

( )

���������������

���������������
¼ 0: ð2:269Þ

Suppose the wave travels along the x direction so ky = kz = 0. We then find the
three wave velocities:

v1 ¼
ffiffiffiffiffiffi
c11
q

r
; v2 ¼ v3 ¼

ffiffiffiffiffiffi
c44
q

r
degenerateð Þ: ð2:270Þ

vl is a longitudinal wave and v2, v3 are the two transverse waves. Thus, one way of
determining these elastic constants is by measuring appropriate wave velocities.
Note that for an isotropic material c11 = c12 + 2c44 so v1 > v2 and v3. The longi-
tudinal sound wave is greater than the transverse sound velocity.
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Problems

2:1 Find the normal modes and normal-mode frequencies for a three-atom
“lattice” (assume the atoms are of equal mass). Use periodic boundary
conditions.

2:2 Show when m and m′ are restricted to a range consistent with the first
Brillouin zone that

1
N

X
n

exp
2pi
N

m� m0ð Þn
� �

¼ dm
0

m ;

where dm
0

m is the Kronecker delta.
2:3 Evaluate the specific heat of the linear lattice [given by (2.80)] in the low

temperature limit.
2:4 Show that Gmn = Gnm, where G is given by (2.100).
2:5 This is an essay length problem. It should clarify many points about impurity

modes. Solve the five-atom lattice problem shown in Fig. 2.14. Use periodic
boundary conditions. To solve this problem define A = b/a and d = m/M
(a and b are the spring constants) and find the normal modes and eigenfre-
quencies. For each eigenfrequency, plot mx2/a versus d for A = 1 and mx2/a
versus A for d = 1. For the first plot: (a) The degeneracy at d = 1 is split by the
presence of the impurity. (b) No frequency is changed by more than the
distance to the next unperturbed frequency. This is a general property. (c) The
frequencies that are unchanged by changing d correspond to modes with a
node at the impurity (M). (d) Identify the mode corresponding to a pure
translation of the crystal. (e) Identify the impurity mode(s). (f) Note that as we
reduce the mass of M, the frequency of the impurity mode increases. For the
second plot: (a) The degeneracy atA = 1 is split by the presence of an impurity.
(b) No frequency is changed more than the distance to the next unperturbed
frequency. (c) Identify the pure translation mode. (d) Identify the impurity
modes. (e) Note that the frequencies of the impurity mode(s) increase with b.

2:6 Let aq and ayq be the phonon annihilation and creation operators. Show that

aq; qq1
�  ¼ 0 and ayq ; ayq1

h i
¼ 0:

Fig. 2.14 The five-atom lattice
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2:7 From the phonon annihilation and creation operator commutation relations
derive that

ayq nq
�� � ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi

nq þ 1
p

nq þ 1
�� �

;

and

aq nq
�� � ¼ ffiffiffiffiffi

nq
p

nq � 1
�� �

:

2:8 If a1, a2, and a3 are the primitive translation vectors and if Xa = a1 � (a2
a3), use the method of Jacobians to show that dx dy dz = Xa dη1 dη2 dη3,
where x, y, z are the Cartesian coordinates and η1, η2, and η3 are defined by
r = η1a1+ η2a2 + η3a3.

2:9 Show that the bi vectors defined by (2.172) satisfy

Xab1 ¼ a2 � a3; Xab2 ¼ a3 � a1; Xab3 ¼ a1 � a2;

where Xa = a1 ∙ (a2 � a3).
2:10 If Xb = b1 � (b2 � b3), Xa = a1 � (a2 � a3), the bi are defined by (2.172), and

the ai are the primitive translation vectors, show that Xb = 1/Xa.
2:11 This is a long problem whose results are very important for crystal mathe-

matics. [See (2.178)–(2.184)]. Show that

ðaÞ 1
N1N2N3

X
Rl

exp iq � Rlð Þ ¼
X
Gn

dq;Gn ;

where the sum over Rl is a sum over the lattice.

ðbÞ 1
N1N2N3

X
q

exp iq � Rlð Þ ¼ dRl;0;

where the sum over q is a sum over one Brillouin zone.
(c) In the limit as Vf.p.p. ! ∞ (Vf.p.p. means the volume of the parallelepiped

representing the actual crystal), one can replace

X
q

f qð Þ by
Vf:p:p:

2pð Þ3
Z

f qð Þd3q:

ðdÞ Xa

2pð Þ3
Z

B:Z:

exp iq � Rlð Þd3q ¼ dRl;0;

where the integral is over one Brillouin zone.
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ðeÞ 1
Xa

Z
exp i Gl0 � Glð Þ � r½ �d3r ¼ dl0;l;

where the integral is over a unit cell.

ðfÞ 1

2pð Þ3
Z

exp iq � r� r0ð Þ½ �d3q ¼ d r� r0ð Þ;
where the integral is over all of reciprocal space and d(r − r′) is the Dirac
delta function.

ðgÞ 1

2pð Þ3
Z

Vf:p:p:!1
exp i q� q0ð Þ � r½ �d3r ¼ d q� q0ð Þ:

In this problem, the ai are the primitive translation vectors. N1a1, N2a2,
and N3a3 are vectors along the edges of the fundamental parallelepiped.
Rl defines lattice points in the direct lattice by (2.171). q are vectors in
reciprocal space defined by (2.175). The Gl define the lattice points in the
reciprocal lattice by (2.173). Xa = a1 � (a2 � a3), and the r are vectors in
direct space.

2:12 This problem should clarify the discussion of diagonalizing Hq (defined by
2.198). Find the normal mode eigenvalues and eigenvectors associated with

mi€xi ¼ �P3
j¼1

cijxj;

m1 ¼ m3 ¼ m; m2 ¼ M; and cij
� � ¼ k; �k; 0

�k; 2k; �k
0; �k; k

0
@

1
A:

A convenient substitution for this purpose is

xi ¼ ui
eixtffiffiffiffiffi
mi

p :

2:13 By use of the Debye model, show that

cv / T3 for T � hD

and

cv/ 3k NKð Þ for T � hD:

Here, k = the Boltzmann gas constant, N = the number of unit cells in the
fundamental parallelepiped, and K = the number of atoms per unit cell.
Show that this result is independent of the Debye model.
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2:14 The nearest-neighbor one-dimensional lattice vibration problem (compare
Sect. 2.2.2) can be exactly solved. For this lattice: (a) Plot the average
number (per atom) of phonons (with energies between x and x + dx) versus
x for several temperatures. (b) Plot the internal energy per atom versus
temperature. (c) Plot the entropy per atom versus temperature. (d) Plot the
specific heat per atom versus temperature. [Hint: Try to use convenient
dimensionless quantities for both ordinates and abscissa in the plots.]

2:15 Find the reciprocal lattice of the two-dimensional square lattice shown above.
2:16 Find the reciprocal lattice of the three-dimensional body-centered cubic

lattice. Use for primitive lattice vectors

a1 ¼ a
2

x̂þ ŷ� ẑð Þ; a2 ¼ a
2

�x̂þ ŷþ ẑÞ; a3 ¼ a
2

x̂� ŷþ ẑÞ:ð
�

2:17 Find the reciprocal lattice of the three-dimensional face-centered cubic lat-
tice. Use as primitive lattice vectors

a1 ¼ a
2

x̂þ ŷð Þ; a2 ¼ a
2

ŷþ ẑð Þ; a3 ¼ a
2

ŷþ x̂ð Þ:

2:18 Sketch the first Brillouin zone in the reciprocal lattice of the fcc lattice. The
easiest way to do this is to draw planes that perpendicularly bisect vectors (in
reciprocal space) from the origin to other reciprocal lattice points. The vol-
ume contained by all planes is the first Brillouin zone. This definition is
equivalent to the definition just after (2.176).

2:19 Sketch the first Brillouin zone in the reciprocal lattice of the bcc lattice.
Problem 2.18 gives a definition of the first Brillouin zone.

2:20 Find the dispersion relation for the two-dimensional monatomic square lat-
tice in the harmonic approximation. Assume nearest-neighbor interactions.

2:21 Write an exact expression for the heat capacity (at constant area) of the
two-dimensional square lattice in the nearest-neighbor harmonic approxi-
mation. Evaluate this expression in an approximation that is analogous to the
Debye approximation, which is used in three dimensions. Find the exact
high- and low-temperature limits of the specific heat.
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2:22 Use (2.200) and (2.203), the fact that the polarization vectors satisfy

X
p

e�aqpbe
�b
qpb0 ¼ dbad

b0
b

(the a and b refer to Cartesian components), and

X11y
�q; p ¼ X11y

q; p ;P
11y
�q; p ¼ P11

q; p:

(you should convince yourself that these last two relations are valid) to
establish that

X1
q; b ¼ �i

X
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�h

2mbxq; p

s
e�q; p; b ayq; p � a�q; p

� �
:

2:23 Show that the specific heat of a lattice at low temperatures goes as the
temperature to the power of the dimension of the lattice as in Table 2.5.

2:24 Discuss the Einstein theory of specific heat of a crystal in which only one
lattice vibrational frequency is considered. Show that this leads to a van-
ishing of the specific heat at absolute zero, but not as T cubed.

2:25 In (2.270) show vl is longitudinal and v2, v3 are transverse.
2:26 Derive wave velocities and physically describe the waves that propagate

along the [110] directions in a cubic crystal. Use (2.269).
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Chapter 3
Electrons in Periodic Potentials

As we have said, the universe of traditional solid-state physics is defined by the
crystalline lattice. The principal actors are the elementary excitations in this lattice.
In the previous chapter we discussed one of these, the phonons that are the quanta
of lattice vibration. Another is the electron that is perhaps the principal actor in all
of solid-state physics. By an electron in a solid we will mean something a little
different from a free electron. We will mean a dressed electron or an electron plus
certain of its interactions. Thus we will find that it is often convenient to assign an
electron in a solid an effective mass.

There is more to discuss on lattice vibrations than was covered in Chap. 2. In
particular, we need to analyze anharmonic terms in the potential and see how these
terms cause phonon–phonon interactions. This will be done in the next chapter.
Electron–phonon interactions are also included in Chap. 4 and before we get there
we obviously need to discuss electrons in solids. After making the Born–
Oppenheimer approximation (Chap. 2), we still have to deal with a many-electron
problem (as well as the behavior of the lattice). A way to reduce the many-electron
problem approximately to an equivalent one-electron problem1 is given by the
Hartree and Hartree–Fock methods. The density functional method, which allows at
least in principle, the exact evaluation of some ground-state properties is also
important. In a certain sense, it can be regarded as an extension of the Hartree–Fock
method and it has been much used in recent years.

After justifying the one-electron approximation by discussing the Hartree,
Hartree–Fock, and density functional methods, we consider several applications of
the elementary quasifree-electron approximation.

We then present the nearly free and tight binding approximations for electrons in
a crystalline lattice. After that we discuss various band structure approximations.

1A much more sophisticated approach than we wish to use is contained in Negele and Orland
[3.36]. In general, with the hope that this book may be useful to all who are entering solid-state
physics, we have stayed away from most abstract methods of quantum field theory.
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Finally we discuss some electronic properties of lattice defects. We begin with the
variational principle, which is used in several of our developments.

Drude and Drude–Sommerfeld Models (B, EE, MS)
We often rather loosely talk of free electrons where interactions of electrons are
neglected. We then assume that whatever additional assumptions we are making
will be clear from the context. However, we should perhaps start by being rather
specific. The Drude theory of metals was often used in the early days and it still can
be used for certain situations. This theory assumes that metals consist of a gas of
valence electrons that do not interact with each other but do scatter randomly off
positively charged ions with a mean free time of collision of s. s is also called the
relaxation time so 1/s is the relaxation rate. They are assumed to reach equilibrium
by such collisions. In between, they may drift in an electric field. Such a model
predicts (see Ashcroft and Mermin for further details):

dP
dt

¼ �P
s
þF

where P is the vector momentum of the electrons, and F is the vector force on them
(−eE, in an electric field E with the charge on the electron of −e).

In equilibrium dP/dt is zero so the average vector velocity v is

v ¼ P
m
¼ sð�eÞE

m

so

J ¼ �nev ¼ ne2s
E
m

where J is the current density (current (I) per unit area A) and n is the number of
electrons per unit volume.

By definition,

J ¼ rE

where r is the electrical conductivity. The voltage difference (V) per unit length
(L) equals E, thus I/A = rV/L, but r = 1/q (the resistivity) and qL/A = R, the
resistance, so

R ¼ V
I

or Ohms Law.
The Drude Model also gives a good prediction (at room temperature) for the

Lorenz number which is the ratio of the electronic thermal conductivity to the
electronic conductivity times the temperature but to neither separately. This is
because the Drude model gives incorrect estimates for the mean time between
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collisions as well as the mean free path. It also fails to give both a reasonable
prediction for the electronic specific heat as well as the magnetic susceptibility. As we
will see later, the Drude Model is greatly improved by the Drude–Sommerfeld
models, which correctly describes the electrons by Fermi Dirac statistics rather than
the classical kinetic theory. One often hears of the Drude–Lorentz model, which is the
Drude model as often modified to consider certain optical properties (such as optical
absorption by oscillator electrons and also free electrons). A much more complete
discussion of the Drude–Lorentz is given in Chap. 1 of Ashcroft and Mermin.

Much of solid-state physics addresses other omissions of the Drude theory. These
include the fact that the lattice of positive ions vibrates and this also scatters electrons
and the valence electrons also interact with each other. We will give many more
examples of the applications of quasi-free electrons to metals throughout our book.

Paul Drude

b. Braunschweig, Germany (1863–1906)

Famous for the Drude model of conduction by electrons in metals. He died of
an apparent inexplicable suicide. Earlier (in 1905), he had been appointed
director of the physics institute at the University of Berlin.

Drude was known for his work on optics, measuring optical constants of
solids, relating Maxwell equations to optical properties, and for the Drude
Model. His work is important because it is among the earliest attempts to try
to understand optical properties of solids from the viewpoint of their elec-
tronic constituents.

3.1 Reduction to One-Electron Problem

3.1.1 The Variational Principle (B)

The variational principle that will be derived in this section is often called the
Rayleigh–Ritz variational principle. The principle in itself is extremely simple. For
this reason, we might be surprised to learn that it is of great practical importance. It
gives us a way of constructing energies that have a value greater than or equal to the
ground-state energy of the system. In other words, it gives us a way of constructing
upper bounds for the energy. There are also techniques for constructing lower
bounds for the energy, but these techniques are more complicated and perhaps not
so useful.2 The variational technique derived in this section will be used to derive

2See, for example, Friedman [3.18].
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both the Hartree and Hartree–Fock equations. A variational procedure will also be
used with the density functional method to develop the Kohn–Sham equations.

LetH be a positive definite Hermitian operator with eigenvalues El and eigenkets
lj i. SinceH is positive definite and Hermitian it has a lowest El and the El are real.
Let the El be labeled so that E0 is the lowest. Let wj i be an arbitrary ket (not
necessarily normalized) in the space of interest and define a quantity Q(w) such that

QðwÞ ¼ w Hj jwh i
wjwh i : ð3:1Þ

The eigenkets lj i are assumed to form a complete set so that

wj i ¼
X
l

al lj i: ð3:2Þ

Since H is Hermitian, we can assume that the lj i are orthonormal, and we find

wjwh i ¼
X

l1;la�l1al

l1jl� � ¼X
l

al
�� ��2; ð3:3Þ

and

wjHjwh i ¼
X

l1;la�l1al

l1jHjl� � ¼X
l

al
�� ��2El: ð3:4Þ

Q can then be written as

QðwÞ ¼
P

l El al
�� ��2P

l al
�� ��2 ¼

P
l E0 al

�� ��2P
l al
�� ��2 þ

P
l El � E0
� �

al
�� ��2P

l al
�� ��2 ;

or

QðwÞ ¼ E0 þ
P

l El � E0
� �

al
�� ��2P

l al
�� ��2 : ð3:5Þ

Since El > E0 and al
�� ��2 � 0; we can immediately conclude from (3.5) that

QðwÞ�E0: ð3:6Þ

Summarizing, we have

wjHjwh i
wjwh i �E0: ð3:7Þ
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Equation (3.7) is the basic equation of the variational principle. Suppose w is a
trial wave function with a variable parameter η. Then the η that are the best if Q(w)
is to be as close to the lowest eigenvalue as possible (or as close to the ground-state
energy if H is the Hamiltonian) are among the η for which

@Q
@g

¼ 0: ð3:8Þ

For the η = ηb that solves (3.8) and minimizes Q(w), Q(w(ηb)) is an approximation
to E0. By using successively more sophisticated trial wave functions with more and
more variable parameters (this is where the hard work comes in), we can get as
close to E0 as desired. Q(w) = E0 exactly only if w is an exact wave function
corresponding to E0.

3.1.2 The Hartree Approximation (B)

When applied to electrons, the Hartree method neglects the effects of antisymmetry
of many electron wave functions. It also neglects correlations (this term will be
defined precisely later). Despite these deficiencies, the Hartree approximation can
be very useful, e.g. when applied to many-electron atoms. The fact that we have a
shell structure in atoms appears to make the deficiencies of the Hartree approxi-
mation not very serious (strictly speaking even here we have to use some of the
ideas of the Pauli principle in order that all electrons are not in the same
lowest-energy shell). The Hartree approximation is also useful for gaining a crude
understanding of why the quasifree-electron picture of metals has some validity.
Finally, it is easier to understand the Hartree–Fock method as well as the density
functional method by slowly building up the requisite ideas. The Hartree approx-
imation is a first step.

For a solid, the many-electron Hamiltonian whose Schrödinger wave equation
must be solved is

H ¼ � �h2

2m

X
iðeletronsÞ

r2
i �

X
aðnucleiÞ
iðelectronsÞ

e2

4pe0rai

þ 1
2

X0
a;bðnucleiÞ

ZaZbe2

4pe0Rab
þ 1

2

X0
i;jðelectronÞ

e2

4pe0rij
:

ð3:9Þ

This equals H0 of (2.10).
The first term in the Hamiltonian is the operator representing the kinetic energy

of all the electrons. Each different i corresponds to a different electron The second
term is the potential energy of interaction of all of the electrons with all of the
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nuclei, and rai is the distance from the ath nucleus to the ith electron. This potential
energy of interaction is due to the Coulomb forces. Za is the atomic number of the
nucleus at a. The third term is the Coulomb potential energy of interaction between
the nuclei. Rab is the distance between nucleus a and nucleus b. The prime on the
sum as usual means omission of those terms for which a = b. The fourth term is the
Coulomb potential energy of interaction between the electrons, and rij is the dis-
tance between the ith and jth electrons. For electronic calculations, the internuclear
distances are treated as constant parameters, and so the third term can be omitted.
This is in accord with the Born–Oppenheimer approximation as discussed at the
beginning of Chap. 2. Magnetic interactions are relativistic corrections to the
electrical interactions, and so are often small. They are omitted in (3.9).

For the purpose of deriving the Hartree approximation, this N-electron
Hamiltonian is unnecessarily cumbersome. It is more convenient to write it in the
more abstract form

H x1. . . xnð Þ ¼
XN
i¼1

H ið Þþ 1
2

X0
i;j

VðijÞ; ð3:10aÞ

where

VðijÞ ¼ VðjiÞ: ð3:10bÞ

In (3.10a), HðiÞ is a one-particle operator (e.g. the kinetic energy), V(ij) is a
two-particle operator [e.g. the fourth term in (3.9)], and i refers to the electron with
coordinate xi (or ri if you prefer). Spin does not need to be discussed for a while, but
again we can regard xi in a wave function as including the spin of electron i if we so
desire.

Eigenfunctions of the many-electron Hamiltonian defined by (3.10a) will be
sought by use of the variational principle. If there were no interaction between
electrons and if the indistinguishability of electrons is forgotten, then the eigen-
function can be a product of N functions, each function being a function of the
coordinates of only one electron. So even though we have interactions, let us try a
trial wave function that is a simple product of one-electron wave functions:

w x1. . .xnð Þ ¼ u1ðx1Þu2ðx2Þ. . .unðxnÞ: ð3:11Þ

The u will be assumed to be normalized, but not necessarily orthogonal. Since
the u are normalized, it is easy to show that the w are normalized:Z

w� x1; . . .; xNð Þw x1; . . .; xNð Þds ¼
Z

u�1ðx1Þuðx1Þds1 � � �
Z

u�NðxNÞuðxNÞdsN
¼ 1:

Combining (3.10) and (3.11), we can easily calculate
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wjHjwh i �
Z

w�Hwds

¼
Z

u�1ðx1Þ. . .u�NðxNÞ
�X

HðiÞþ 1
2

X0
i;j

VðijÞ
�
u1ðx1Þ. . .uNðxNÞds

¼
X
i

Z
u�i ðxiÞHðiÞuiðxiÞdsi þ 1

2

X0
i;j

Z
u�i ðxiÞu�j ðxjÞVðijÞuiðxiÞuj xj

� �
dsidsj

¼
X
i

Z
u�i x1ð ÞHð1Þui x1ð Þds1 þ 1

2

X0
i;j

Z
u�i x1ð Þu�j x2ð ÞV 1,2ð Þui x1ð Þuj x2ð Þds1ds2;

ð3:12Þ

where the last equation comes from making changes of dummy integration
variables.

By (3.7) we need to find an extremum (hopefully a minimum) for w Hj jwh i while
at the same time taking into account the constraint of normalization. The convenient
way to do this is by the use of Lagrange multipliers [2]. The variational principle
then tells us that the best choice of u is determined from

d

�
w Hj jwh i �

X
i

ki

Z
u�i xið Þui xið Þdsi

�
¼ 0: ð3:13Þ

In (3.13), d is an arbitrary variation of the u. ui and uj can be treated independently
(since Lagrange multipliers ki are being used) as can ui and u�j . Thus it is convenient
to choose d = dk, where dku�k and dkuk are independent and arbitrary, dkuið6¼kÞ ¼ 0;
and dku�ið6¼kÞ ¼ 0:

By (3.10b), (3.12), (3.13), d = dk, and a little manipulation we easily find

Z
dku

�
kðx1Þ

	�
Hð1Þukðx1Þþ


X
jð6¼kÞ

Z
u�j ðx2ÞVð1; 2Þuj x2Þdsð

�
ukðx1Þ

�

� kkukðx1Þ
�
dsþC:C: ¼ 0:

ð3:14Þ

In (3.14), C.C. means the complex conjugate of the terms that have already been
written on the left-hand side of (3.14). The second term is easily seen to be the
complex conjugate of the first term because

d w Hj jwh i ¼ dw Hj jwh iþ w Hj jdwh i ¼ dw Hj jwh iþ dw Hj jwh i�;

since H is Hermitian.
In (3.14), two terms have been combined by making changes of dummy sum-

mation and integration variables, and by using the fact that V(1,2) = V(2,1). In
(3.14), dku�k x1ð Þ and dkuk x1ð Þ are independent and arbitrary, so that the integrands
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involved in the coefficients of either dkuk or dku�k must be zero. The latter fact gives
the Hartree equations

H x1ð Þuk x1ð Þþ
"X

jð6¼kÞ

Z
u�j x2ð ÞV 1; 2ð Þuj x2ð Þds2

#
uk x1ð Þ ¼ kkuk x1ð Þ: ð3:15Þ

Because we will have to do the same sort of manipulation when we derive the
Hartree–Fock equations, we will add a few comments on the derivation of (3.15).
Allowing for the possibility that the kk may be complex, the most general form of
(3.14) is Z

dku
�
k x1ð Þ Fð1Þukð1Þ � kkuk x1ð Þf gds1

þ
Z

dkuk x1ð Þ Fð1Þukð1Þ � k�kuk x1ð Þ ��ds1 ¼ 0;

where F(1) is defined by (3.14). Since dkuk x1ð Þ and dkuk x1ð Þ� are independent
(which we will argue in a moment), we have

Fð1Þukð1Þ ¼ kkukð1Þ and Fð1Þukð1Þ ¼ k�kukð1Þ:

F is Hermitian so that these equations are consistent because then kk ¼ k�k and is
real. The independence of dkuk and dku�k is easily seen by the fact that if dkuk ¼
aþ ib then a and b are real and independent. Therefore if

C1 þC2ð Þaþ C1 � C2ð Þib ¼ 0; then C1 ¼ C2 and C1 ¼ �C2;

or C1 = C2 = 0 because this is what we mean by independence. But this implies
C1 aþ ibð ÞþC2 a� ibð Þ ¼ 0 implies C1 = C2 = 0 so aþ ib ¼ dkuk and a� ib ¼
dku�k are independent.

Several comments can be made about these equations. The Hartree approxi-
mation takes us from one Schrödinger equation for N electrons to N Schrödinger
equations each for one electron. The way to solve the Hartree equations is to guess a
set of ui and then use (3.15) to calculate a new set. This process is to be continued
until the u we calculate are similar to the u we guess. When this stage is reached, we
say we have a consistent set of equations. In the Hartree approximation, the state ui
is not determined by the instantaneous positions of the electrons in state j, but only
by their average positions. That is, the sum �e

P
jð6¼kÞ u

�
j x2ð Þuj x2ð Þ serves as a

time-independent density q(2) of electrons for calculating uk(x1). If V(1,2) is the
Coulomb repulsion between electrons, the second term on the left-hand side cor-
responds to

�
Z

qð2Þ 1
4pe0r12

ds2:
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Thus this term has a classical and intuitive meaning. The ui, obtained by solving the
Hartree equations in a self-consistent manner, are the best set of one-electron orbitals
in the sense that for these orbitalsQðwÞ ¼ wjHjwh i= wjwh i withw ¼ u1; . . .; uNð Þ is a
minimum. The physical interpretation of the Lagrange multipliers kk has not yet been
given. Their values are determined by the eigenvalue condition as expressed by
(3.15). From the form of the Hartree equations wemight expect that the kk correspond
to “the energy of an electron in state k.” This will be further discussed and made
precise within the more general context of the Hartree–Fock approximation.

3.1.3 The Hartree–Fock Approximation (A)

The derivation of the Hartree–Fock equations is similar to the derivation of the
Hartree equations. The difference in the two methods lies in the form of the trial
wave function that is used. In the Hartree–Fock approximation the fact that elec-
trons are fermions and must have antisymmetric wave functions is explicitly taken
into account. If we introduce a “spin coordinate” for each electron, and let this spin
coordinate take on two possible values (say ±½), then the general way we put into
the Pauli principle is to require that the many-particle wave function be antisym-
metric in the interchange of all the coordinates of any two electrons. If we form the
antisymmetric many-particle wave functions out of one-particle wave functions,
then we are led to the idea of the Slater determinant for the trial wave function.
Applying the ideas of the variational principle, we are then led to the Hartree–Fock
equations. The details of this program are given below. First, we shall derive the
Hartree–Fock equations using the same notation as was used for the Hartree
equations. We will then repeat the derivation using the more convenient second
quantization notation. The second quantization notation often shortens the algebra
of such derivations. Since much of the current literature is presented in the second
quantization notation, some familiarity with this method is necessary.

Derivation of Hartree–Fock Equations in Old Notation (A)3

Given N one-particle wave functions ui(xi), where xi in the wave functions repre-
sents all the coordinates (space and spin) of particle i, there is only one antisym-
metric combination that can be formed (this is a theorem that we will not prove).
This antisymmetric combination is a determinant. Thus the trial wave function that
will be used takes the form

3Actually, for the most part we assume restricted Hartree–Fock Equations where there are an even
number of electrons divided into sets of 2 with the same spatial wave functions paired with either a
spin-up or spin-down function. In unrestricted Hartree–Fock we do not make these assumptions.
See, e.g., Marder [3.34, p. 209].
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w x1; . . .; xNð Þ ¼ M

u1 x1ð Þ u2 x1ð Þ � � � uN x1ð Þ
u1 x2ð Þ u2 x2ð Þ � � � uN x2ð Þ

..

. ..
. ..

.

u1 xNð Þ u2 xNð Þ � � � uN xNð Þ

���������

���������
: ð3:16Þ

In (3.16), M is a normalizing factor to be chosen so that
R

wj j2ds ¼ 1:
It is easy to see why the use of a determinant automatically takes into account the

Pauli principle. If two electrons are in the same state, then for some i and j, ui = uj.
But then two columns of the determinant would be equal and hence w = 0, or in
other words ui = uj is physically impossible. For the same reason, two electrons
with the same spin cannot occupy the same point in space. The antisymmetry
property is also easy to see. If we interchange xi and xj, then two rows of the
determinant are interchanged so that w changes sign. All physical properties of the
system in state w depend only quadratically on w, so the physical properties are
unaffected by the change of sign caused by the interchange of the two electrons.
This is an example of the indistinguishability of electrons. Rather than using (3.16)
directly, it is more convenient to write the determinant in terms of its definition that
uses permutation operators:

w x1. . . xnð Þ ¼ M
X
p

ð�ÞpPu1 x1ð Þ. . . uN xNð Þ: ð3:17Þ

In (3.17), P is the permutation operator and it acts either on the subscripts of u (in
pairs) or on the coordinates xi (in pairs). (−)P is ±1, depending on whether P is an
even or an odd permutation. A permutation of a set is even (odd), if it takes an even
(odd) number of interchanges of pairs of the set to get the set from its original order
to its permuted order.

In (3.17) it will be assumed that the single-particle wave functions are
orthonormal: Z

u�i x1ð Þuj x1ð Þdx1 ¼ d j
i : ð3:18Þ

In (3.18) the symbol
R
means to integrate over the spatial coordinates and to sum

over the spin coordinates. For the purposes of this calculation, however, the symbol
can be regarded as an ordinary integral (most of the time) and things will come out
satisfactorily.

From Problem 3.2, the correct normalizing factor for the w is (N!)−1/2, and so the
normalized w have the form

w x1. . . xnð Þ ¼ 1=
ffiffiffiffi
N

p
!

� �X
p

ð�ÞpPu1 x1ð Þ. . .uN xNð Þ: ð3:19Þ
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Functions of the form (3.19) are called Slater determinants.
The next obvious step is to apply the variational principle. Using Lagrange

multipliers kij, to take into account the orthonormality constraint, we have

d
�
w Hj jwh i �

X
i;j

ki;j uijuj
� �� ¼ 0: ð3:20Þ

Using the same Hamiltonian as was used in the Hartree problem, we have

w Hj jwh i ¼ w
X

HðiÞ
��� ���wD E

þ w
1
2

X0
i;j

VðijÞ
�����

�����w
* +

: ð3:21Þ

The first term can be evaluated as follows:

w
X

HðiÞ
��� ���wD E
¼ 1

N!

X
p;p0

ð�Þpþ p0
Z

Pu�1 x1ð Þ. . .u�N xNð Þ� �XHðiÞ P0u1 x1ð Þ. . .uN xNð Þ½ �ds

¼ 1
N!

X
p;p0

ð�Þpþ p0P
Z

u�1 x1ð Þ. . .u�N xNð Þ� �XHðiÞP�1P0 u1 x1ð Þ. . .uN xNð Þ½ �ds;

since P commutes with
PHðiÞ Defining Q = P−1P′, we have

w
X

HðiÞ
��� ���wD E
¼ 1

N!

X
p;p0

ð�ÞqP
Z

u�1 x1ð Þ. . .u�N xNð Þ� �XHðiÞQ u1 x1ð Þ. . .uN xNð Þ½ �ds;

where Q � P−1P′ is also a permutation,

¼
X
q

ð�Þq
Z

u�1 x1ð Þ. . .u�N xNð Þ� �XHðiÞQ u1 x1ð Þ. . .uN xNð Þ½ �ds;

where P is regarded as acting on the coordinates, and by dummy changes of
integration variables, the N! integrals are identical,

¼
X
q

ð�Þq
Z

u�1 x1ð Þ. . .u�N xNð Þ� �XHðiÞ uq1 x1ð Þ. . .uqN xNð Þ� �
ds;
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where q1…qN is the permutation of 1…N generated by Q,

¼
X
q

ð�Þq
X
i

Z
u�iHðiÞuqid1q1d2q2. . .di�1

qi�1
diþ 1
qiþ 1

. . .dNqNdsi;

where use has been made of the orthonormality of the ui,

¼
X
i

Z
u�i x1ð ÞHð1Þu1 x1ð Þds1; ð3:22Þ

where the delta functions allow only Q = I (the identity) and a dummy change of
integration variables has been made.

The derivation of an expression for the matrix element of the two-particle
operator is somewhat longer:

w
1
2

X0
i;j

V i; jð Þ
�����

�����w
* +

¼ 1
2N!

X
p;p0

ð�Þpþ p0
Z

Pu�1 x1ð Þ. . .u�N xNð Þ� ��X0
i;j

V i; jð Þ P0u1 x1ð Þ. . .uN xNð Þ½ �ds

¼ 1
2N!

X
p;p0

ð�Þpþ p0P
Z

u�1 x1ð Þ. . .u�N xNð Þ� ��X0
i;j

V i; jð ÞP�1P0 u1 x1ð Þ. . .uN xNð Þ½ �ds
( )

;

since P commutes with
P0

i;j V i; jð Þ,

¼ 1
2N!

X
p;q

ð�ÞqP
Z

u�1 x1ð Þ. . .u�N xNð Þ
X0
i;j

V i; jð ÞQu1 x1ð Þ. . .uN xNð Þds
" #

;

where Q � P−1P′ is also a permutation,

¼ 1
2N!

X
q

�ð Þq
Z

½u�1 x1ð Þ. . .u�N xNð Þ�
X0
i;j

V i; jð Þ[uq1 x1ð Þ. . .uqN xNð Þ]ds;

since all N! integrals generated by P can be shown to be identical and q1…qN is the
permutation of 1…N generated by Q,

¼ 1
2

X
q

ð�Þq
X0
i;j

Z
u�i xið Þu�j xj

� �
V i; jð Þuqi xið Þuqj xj

� �
dsidsjd

1
q1 . . .d

i�1
qi�1

� diþ 1
qiþ 1

. . .

dj�1
qj�1

djþ 1
qjþ 1

. . .dNqN ;

where use has been made of the orthonormality of the ui,
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¼ 1
2

X0
i;j

Z
u�i x1ð Þu�j x2ð ÞV 1; 2ð Þui x1ð Þuj x2ð Þ
h

�u�i x1ð Þu�j x2ð ÞV 1; 2ð Þuj x1ð Þui x2ð Þ
i
ds1ds2;

ð3:23Þ

where the delta function allows only qi = i, qj = j or qi = j, qj = i, and these per-
mutations differ in the sign of (−1)q and a change in the dummy variables of
integration has been made.

Combining (3.20), (3.21), (3.22), (3.23), and choosing d = dk in the same way as
was done in the Hartree approximation, we find

Z
ds1dku�k x1ð Þ

	
Hð1Þuk x1ð Þþ

X
j 6¼kð Þ

Z
ds2u

�
j x2ð ÞV 1; 2ð Þuj x2ð Þuk x2ð Þ

�
X
jð6¼kÞ

Z
ds2u

�
j x2ð ÞV 1; 2ð Þuk x2ð Þuj x1ð Þ �

X
j

uj x1ð Þkkj
�
þC:C: ¼ 0:

Since dku�k is completely arbitrary, the part of the integrand inside the brackets
must vanish. There is some arbitrariness in the k just because the u are not unique
(there are several sets of us that yield the same determinant). The arbitrariness is
sufficient that we can choose kk 6¼j = 0 without loss in generality. Also note that we
can let the sums run over j = k as the j = k terms cancel one another. The following
equations are thus obtained:

Hð1Þuk x1ð Þþ
X
j

Z
ds2u�j x2ð ÞV 1; 2ð Þuj x2ð Þuk x1ð Þ

�

�
Z

ds2u�j x2ð ÞV 1; 2ð Þuk x2ð Þuj x1ð Þ
�
¼ ekuk;

ð3:24Þ

where ek = kkk.
Equation (3.24) gives the set of equations known as the Hartree–Fock equa-

tions. The derivation is not complete until the ek are interpreted. From (3.24) we can
write

ek ¼ ukð1Þ Hð1Þj jukð1Þh iþ
X
j

ukð1Þujð2Þ Vð1; 2Þj jukð1Þujð2Þ
� �
� ukð1Þujð2Þ Vð1; 2Þj jujð1Þukð2Þ
� ��

;

ð3:25Þ

where 1 and 2 are a notation for x1 and x2. It is convenient at this point to be explicit
about what we mean by this notation. We must realize that
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uk x1ð Þ � wk r1ð Þnk s1ð Þ; ð3:26Þ

where wk is the spatial part of the wave function, and nk is the spin part.
Integrals mean integration over space and summation over spins. The spin

functions refer to either “+1/2” or “−1/2” spin states, where ±1/2 refers to the
eigenvalues of sz/ħ for the spin in question. Two spin functions have inner product
equal to one when they are both in the same spin state. They have inner product
equal to zero when one is in a +1/2 spin state and one is in a −1/2 spin state. Let us
rewrite (3.25) where the summation over the spin part of the inner product has
already been done. The inner products now refer only to integration over space:

ek ¼ wkð1Þ Hð1Þj jwkð1Þh iþ
X
j

wkð1Þwjð2Þ Vð1; 2Þj jwkð1Þwjð2Þ
� �

�
X
j jjkð Þ

wkð1Þwjð2Þ Vð1; 2Þj jwjð1Þwkð2Þ
� �

:
ð3:27Þ

In (3.27), j(||k) means to sum only over states j that have spins that are in the same
state as those states labeled by k.

Equation (3.27), of course, does not tell us what the ek are. A theorem due to
Koopmans gives the desired interpretation. Koopmans’ theorem states that ek is the
negative of the energy required to remove an electron in state k from the solid. The
proof is fairly simple. From (3.22) and (3.23) we can write [using the same notation
as in (3.27)]

E ¼
X
i

wið1Þ Hð1Þj jwið1Þh iþ 1
2

X
i;j

wið1Þwjð2Þ Vð1; 2Þj jwið1Þwjð2Þ
� �

� 1
2

X
i;j jjð Þ

wið1Þwjð2Þ Vð1; 2Þj jwjð1Þwið2Þ
� �

:

ð3:28Þ

Denoting E(w.o.k.) as (3.28) in which terms for which i = k, j = k are omitted from
the sums we have

E w:o:k:ð Þ � E ¼ � wkð1Þ Hð1Þj jwkð1Þh i
�
X
j

wkð1Þwjð2Þ Vð1; 2Þj jwkð1Þwjð2Þ
� �

þ
X
i;j jjð Þ

wkð1Þwjð2Þ Vð1; 2Þj jwjð1Þwkð2Þ
� �

:

ð3:29Þ

Combining (3.27) and (3.29), we have

ek ¼ � E w:o:k:ð Þ � E½ �; ð3:30Þ
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which is the precise mathematical statement of Koopmans’ theorem. A similar
theorem holds for the Hartree method.

Note that the statement that ek is the negative of the energy required to remove an
electron in state k is valid only in the approximation that the other states are
unmodified by removal of an electron in state k. For a metal with many electrons,
this is a good approximation. It is also interesting to note that

XN
1

ek ¼ Eþ 1
2

X
i; j

wið1Þwjð2Þ Vð1; 2Þj jwið1Þwjð2Þ
� �

� 1
2

X
i; j jjð Þ

wið1Þwjð2Þ Vð1; 2Þj jwjð1Þwið2Þ
� �

:

ð3:31Þ

Derivation of Hartree–Fock Equations in Second Quantization Notation (A)
There really aren’t many new ideas introduced in this section. Its purpose is to gain
some familiarity with the second quantization notation for fermions. Of course, the
idea of the variational principle will still have to be used.4

According to Appendix G, if the Hamiltonian is of the form (3.10), then we can
write it as

H ¼
X
i; j

Hi; ja
y
i aj þ

1
2

X
i; j;k;l

Vij;kla
y
j a
y
i akal; ð3:32Þ

where the Hij and the Vij,kl are matrix elements of the one- and two-body operators,

Vij;kl ¼ Vji;lk and aia
y
j þ ayj ai ¼ dij: ð3:33Þ

The rest of the anticommutators of the a are zero.
We shall assume that the occupied states for the normalized ground state U

(which is a Slater determinant) that minimizes U Hj jUh i are labeled from 1 to N. For
U giving a true extremum, as we saw in the section on the Hartree approximation,
we need require only that

dU Hj jUh i ¼ 0: ð3:34Þ

It is easy to see that if UjUh i ¼ 1; then Uj i þ dUj i is still normalized to first
order in the variation. For example, let us assume that

dUj i ¼ dsð Þayk1ai1 Uj i for k1 [N; i1 	N; ð3:35Þ

4For additional comments, see Thouless [3.54].
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where ds is a small number and where all one-electron states up to the Nth are
occupied in the ground state of the electron system. That is, dUj i differs from Uj i
by having the electron in state U1

i go to state U1
k . Then

Uh j þ dUh jð Þ Uj i þ dUj ið Þ

¼ Uh j þ Uh jayi1ak1ds�
� �

Uj i þ ayk1ai1ds Uj i
� �

¼ 1þðdsÞ� Uh jayi1ak1 Uj i þ ds Uh jayk1ai1 Uj i þOðdsÞ2

¼ 1þOðdsÞ2:

ð3:36Þ

According to the variational principle, we have as a basic condition

0 ¼ dU Hj jUh i ¼ ðdsÞ� U Hayi1ak1
��� ���UD E

: ð3:37Þ

Combining (3.32) and (3.37) yields

0 ¼
X
i;j

Hi;j U ayi1ak1a
y
i aj

��� ���UD E
þ 1

2

X
i;j;k;l

Vij;kl U ayi1ak1a
y
j a
y
i akal

��� ���UD E
ð3:38Þ

where the summation is over all values of i, j, k, l (both occupied and unoccupied).
There are two basically different matrix elements to consider. To evaluate them

we can make use of the anticommutation relations. Let us do the simplest one first.
U has been assumed to be the Slater determinant approximation to the ground state,
so:

U ayi1ak1a
y
i aj

��� ���UD E
¼ U ayi1 dik1 � ayi ak1

� �
aj

��� ���UD E

¼ U ayi1aj
��� ���UD E

dik1 � U ayi1a
y
i ak1aj

��� ���UD E
:

In the second term ak
l operating to the right gives zero (the only possible result of

annihilating a state that isn’t there). Since aj Uj i is orthogonal to ai1 Uj i unless i1 = j,
the first term is just d j

i1 . Thus we obtain

U ayi1ak1a
y
i aj

��� ���UD E
¼ d j

i1d
i
k1 : ð3:39Þ

The second matrix element in (3.38) requires a little more manipulation to evaluate
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U ayi1ak1a
y
j a
y
i akal

��� ���UD E

¼ U ayi1 d j
k1 � ayj ak1

� �
ayj akal

��� ���UD E

¼ d j
k1 U ayi1a

y
j akal

��� ���UD E
� U ayi1a

y
j ak1a

y
i akal

��� ���UD E

¼ d j
k1 U ayi1a

y
j akal

��� ���UD E
� U ayi1a

y
j d j

k1 � ayj ak1
� �

akal
��� ���UD E

¼ d j
k1 U ayi1a

y
j akal

��� ���UD E
� d j

k1 U ayi1a
y
j akal

��� ���UD E

þ U ayi1a
y
j a
y
i ak1akal

��� ���UD E
:

Since a1k Uj i ¼ 0; the last matrix element is zero. The first two matrix elements are
both of the same form, so we need evaluate only one of them:

U ayi1a
y
i ak1al

��� ���UD E
¼ � U ayi ayi1akal

��� ���UD E
¼ � U ayi dki1 � aka

y
i1

� �
al

��� ���UD E
¼ � U ayi al

��� ���UD E
dki1 þ U ayi akayi1al

��� ���UD E
¼ �dl	N

i dki1 � U ayi ak dli1 � ala
y
i1

� ���� ���UD E
:

ay
i1
Uj i is zero since this tries to create a fermion in an already occupied state. So

U ayi1a
y
i akal

��� ���UD E
¼ �dl	N

i dki1 þ dli1d
k	N
i :

Combining with previous results, we finally find

U ayi1ak1a
y
j a
y
i akal

��� ���UD E
¼ �d j

k1d
l
i1d

k	N
i � d j

k1d
l	N
i dki1

� dik1d
l
i1d

k	N
j þ d j

k1d
l	N
j dki1 :

ð3:40Þ

Combining (3.38), (3.39), and (3.40), we have

0 ¼
X
i;j

Hi;jd
j
i1d

i
k1

þ 1
2

XN
ijkl

Vij;kl d j
k1d

l
i1d

k
i þ d j

k1d
l
jd

k
i1 � d j

k1d
l
id

k
i1 � dik1d

l
i1d

k
j

� �
;
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or

0 ¼ Hk1i1

þ 1
2

XN
i¼1

Vik1;ii1 þ
XN
j¼1

Vk1;j;i1j �
XN
i¼1

Vik1;i1i �
XN
j¼1

Vk1j;ji1

 !
:

By using the symmetry in the V and making dummy changes in summation vari-
ables this can be written as

0 ¼ Hk1i1 þ
XN
j¼1

Vk1j;i1j � Vk1j;ji1
� �

: ð3:41Þ

Equation (3.41) suggests a definition of a one-particle operator called the
self-consistent one-particle Hamiltonian:

HC ¼
X
ki

Hki þ
XN
j¼1

Vkj;ij � Vkj;ji
� �" #

ayk ai: ð3:42Þ

At first glance we might think that this operator is identically zero by comparing it
to (3.41). But in (3.41) k1 > N and i1 < N, whereas in (3.42) there is no such
restriction.

An important property of HC is that it has no matrix elements between occupied

(i1) and normally unoccupied (k1) levels. Letting HC ¼Pki fkia
y
k ai, we have

k1 HCj ji1� � ¼X
ki

fki k1 ayk ai
��� ���i1D E

¼
X
ki

fki 0 ak1a
y
k a
y
i a
y
k1

��� ���0D E

¼
X
ki

fki 0 ayk ak1 � dkk1
� �

ayi1ai1 � dii1
� ���� ���0D E

:

Since ai 0j i ¼ 0; we have

k1 HCj ji1� � ¼ þ fk1i1 ¼ 0

by the definition of fki and (3.41).
We have shown that dU Hj jUh i ¼ 0 (for U constructed by Slater determinants)

if, and only if, (3.41) is satisfied, which is true if, and only if, HC has no matrix
elements between occupied (i1) and unoccupied (k1) levels. Thus in a matrix rep-
resentation HC is in block diagonal form since all i1 Hj jk1� � ¼ k1 Hj ji1� � ¼ 0: HC

is Hermitian, so that it can be diagonalized. Since it is already in block diagonal
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form, each block can be separately diagonalized. This means that the new occupied
levels are linear combinations of the old occupied levels only and the new occupied
levels are linear combinations of the old unoccupied levels only. By new levels we
mean those levels that have wave functions ih j; jh j such that i HCj jjh i vanishes
unless i = j.

Using this new set of levels, we can say

HC ¼
X
i

eia
y
i ai: ð3:43Þ

In order that (3.43) and (3.42) are equivalent, we have

Hki þ
XN
j¼1

Vkj;ij � Vkj;ji
� � ¼ eidki: ð3:44Þ

These equations are the Hartree–Fock equations. Compare (3.44) and (3.24). That
is, we have established that dU Hj jUh i ¼ 0 (for U a Slater determinant) implies
(3.44). It is also true that the set of one-electron wave functions for which (3.44) is
true minimizes U Hj jUh i, where U is restricted to be a Slater determinant of the
one-electron functions.

John C. Slater—“Slater’s Determinant”

b. Oak Park, Illinois, USA (1900–1976)

Calculation of electronic structure of atoms, molecules and solids;
Microwaves and Radar; Noted Teacher and Author of many physics books;
Augmented Plane Wave Method

Slater was perhaps most famous for introducing the Solid State and
Molecular Theory Group (SSMTG) at MIT and for related work. He planned
or directed calculations into the electronic structure of solids and related
matters. He worked at MIT for a good part of his career, but spent the last five
years at the University of Florida. Two of his well known Ph.D. students were
William Shockley and Nathan Rosen.

Hermitian Nature of the Exchange Operator (A)
In this section, the Hartree–Fock “Hamiltonian” will be proved to be Hermitian. If
the Hartree–Fock Hamiltonian, in addition, has nondegenerate eigenfunctions, then
we are guaranteed that the eigenfunctions will be orthogonal. Regardless of
degeneracy, the orthogonality of the eigenfunctions was built into the Hartree–Fock
equations from the very beginning. More importantly, perhaps, the Hermitian
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nature of the Hartree–Fock Hamiltonian guarantees that its eigenvalues are real.
They have to be real. Otherwise Koopmans’ theorem would not make sense.

The Hartree–Fock Hamiltonian is defined as that operator HF for which

HFuk ¼ ekuk: ð3:45Þ

HF is then defined by comparing (3.24) and (3.45). Taking care of the spin sum-
mations as has already been explained, we can write

HF ¼ H1 þ
X
j

Z
w�
j r2ð ÞV 1; 2ð Þwj r2ð Þds2 þA1; ð3:46Þ

where

A1wk r1ð Þ ¼ �
X
j jjkð Þ

Z
w�
j r2ð ÞV 1; 2ð Þwk r2ð Þds2wj r1ð Þ;

and A1 is called the exchange operator.
For the Hartree–Fock Hamiltonian to be Hermitian we have to prove that

i HF
�� ��j� � ¼ j HF

�� ��i� ��
: ð3:47Þ

This property is obvious for the first two terms on the right-hand side of (3.46) and
so needs only to be proved for A1

5:

l A1j jmh i� ¼ �
X
j jjmð Þ

Z
w�
l r1ð Þ

Z
w�
j r2ð ÞV 1; 2ð Þwm r2ð Þwj r1ð Þds2ds1

0
@

1
A
�

¼ �
X
j jjmð Þ

Z
w�
l r1ð Þwj r1ð Þ

Z
w�
j r2ð ÞV 1; 2ð Þwm r2ð Þds2ds1

0
@

1
A
�

¼ �
X
j jjmð Þ

Z
wm r1ð Þw�

j r1ð Þ
Z

wj r2ð ÞV 1; 2ð Þw�
l r2ð Þds2ds1

0
@

1
A
�

¼ m A1j jlh i:

In the proof, use has been made of changes of dummy integration variable and of
the relation V(1, 2) = V(2, 1).

5The matrix elements in (3.47) would vanish if i and j did not refer to spin states which were
parallel.
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The Fermi Hole (A)
The exchange term (when the interaction is the Coulomb interaction energy and e is
the magnitude of the charge on the electron) is

A1wi r1ð Þ � �
X
j jj ið Þ

Z
e2

4pe0r12
w�
j r2ð Þwi r2ð Þds2 � wi r1ð Þ

¼ �
X
j jj ið Þ

Z
e

4pe0r12

ew�
j r2ð Þwi r2ð Þwj r1ð Þ

wi r1ð Þ

 �

wi r1ð Þds2

A1wi r1ð Þ ¼
Z �eð Þ

4pe0r12
q r1; r2ð Þwi r1ð Þds2;

ð3:48Þ

where

q r1; r2ð Þ ¼ e
P

j jj ið Þ w
�
j r2ð Þwi r2ð Þwj r1ð Þ
wj r1ð Þ :

From (3.48) and (3.49) we see that exchange can be interpreted as the potential
energy of interaction of an electron at r1 with a charge distribution with charge
density qðr1; r2Þ: This charge distribution is a mathematical rather than a physical
charge distribution.

Several comments can be made about the exchange charge density qðr1; r2Þ:
Z

q r1; r2ð Þds2 ¼ þ e
Z X

j jj ið Þ
w�
j ðr2Þwi r2ð Þds2 �

wj r1ð Þ
wi r1ð Þ

¼ e
Z X

j jj ið Þ
d j
i �

wj r1ð Þ
wi r1ð Þ ¼ þ e:

ð3:49Þ

Thus we can think of the total exchange charge as being of magnitude +e.

1. q r1; r1ð Þ ¼ e
P

j jj ið Þ wj r1ð Þ�� ��2, which has the same magnitude and opposite sign
of the charge density of parallel spin electrons.

2. From (1) and (2) we can conclude that qj j must decrease as r12 increases. This
will be made quantitative in the section below on Two Free Electrons and
Exchange.

3. It is convenient to think of the Fermi hole and exchange charge density in the
following way: in HF, neglecting for the moment A1, the potential energy of the
electron is the potential energy due to the ion cores and all the electrons. Thus
the electron interacts with itself in the sense that it interacts with a charge
density constructed from its own wave function. The exchange term cancels out
this unwanted interaction in a sense, but it cancels it out locally. That is, the
exchange term A1 cancels the potential energy of interaction of electrons with
parallel spin in the neighborhood of the electron with given spin. Pictorially we
say that the electron with given spin is surrounded by an exchange charge hole
(or Fermi hole of charge +e).
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The idea of the Fermi hole still does not include the description of the Coulomb
correlations between electrons due to their mutual repulsion. In this respect the
Hartree–Fock method is no better than the Hartree method. In the Hartree method,
the electrons move in a field that depends only on the average charge distribution of
all other electrons. In the Hartree–Fock method, the only correlations included are
those that arise because of the Fermi hole, and these are simply due to the fact that
the Pauli principle does not allow two electrons with parallel spin to have the same
spatial coordinates. We could call these kinematic correlations (due to constraints)
rather than dynamic correlations (due to forces). For further comments on Coulomb
correlations see Sect. 3.1.4.

The Hartree–Fock Method Applied to the Free-Electron Gas (A)
To make the above concepts clearer, the Hartree–Fock method will be applied to a
free-electron gas. This discussion may actually have some physical content. This is
because the Hartree–Fock equations applied to a monovalent metal can be written

� �h2

2m
r2

1 þ
XN
I¼1

VI r1ð Þþ e2
XN
j¼1

Z
wj r2ð Þ�� ��2
4pe0r12

ds2

" #
wi r1ð Þ

� e
X
j jj ið Þ

Z
w�
j r2ð Þwi r2ð Þwj r1ð Þ
4pe0r12wi r1ð Þ ds2

� �
wi r1ð Þ ¼ Eiwi r1ð Þ:

ð3:50Þ

The VI(r1) are the ion core potential energies. Let us smear out the net positive
charge of the ion cores to make a uniform positive background charge. We will find
that the eigenfunctions of (3.50) are plane waves. This means that the electronic
charge distribution is a uniform smear as well. For this situation it is clear that the
second and third terms on the left-hand side of (3.50) must cancel. This is because
the second term represents the negative potential energy of interaction between
smeared out positive charge and an equal amount of smeared out negative elec-
tronic charge. The third term equals the positive potential energy of interaction
between equal amounts of smeared out negative electronic charge. We will,
therefore, drop the second and third terms in what follows.

With such a drastic assumption about the ion core potentials, we might also be
tempted to throw out the exchange term as well. If we do this we are left with just a
set of one-electron, free-electron equations. That even this crude model has some
physical validity is shown in several following sections. In this section, the
exchange term will be retained, and the Hartree–Fock equations for a free-electron
gas will later be considered as approximately valid for a monovalent metal.

The equations we are going to solve are

� �h2

2m
r2

1wk r1ð Þ � e
X
k0

Z
w�
k0 r2ð Þwk r2ð Þwk0 r1ð Þ
4pe0r12wk r1ð Þ ds2

� �
wk r1ð Þ ¼ Ekwk r1ð Þ: ð3:51Þ

Dropping the Coulomb terms is not consistent unless we can show that the solutions
of (3.51) are of the form of plane waves
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wk r1ð Þ ¼ 1ffiffiffiffi
V

p eik�r1 ; ð3:52Þ

where V is the volume of the crystal.
In (3.51) all integrals are over V. Since ħk refers just to linear momentum, it is

clear that there is no reference to spin in (3.51). When we sum over k′, we sum over
distinct spatial states. If we assume each spatial state is doubly occupied with one
spin 1/2 electron and one spin −1/2 electron, then a sum over k′ sums over all
electronic states with spin parallel to the electron in k.

To establish that (3.52) is a solution of (3.51) we have only to substitute. The
kinetic energy is readily disposed of:

� �h2

2m
r2

1wk r1ð Þ ¼ �h2k2

2m
wk r1ð Þ: ð3:53Þ

The exchange term requires a little more thought. Using (3.52), we obtain

A1wk r1ð Þ ¼ � e2

4pe0V

X
k0

Z
w�
k0 r2ð Þwk r2ð Þwk0 r1ð Þ

r12wk r1ð Þ ds2

� �
wk r1ð Þ

¼ � e2

4pe0V

X
k0

Z
ei k�k0ð Þ� r2�r1ð Þ

r12
ds2

" #
wk r1ð Þ

¼ � e2

4pe0V

X
k0

e�i k�k0ð Þ�r1
Z

ei k�k0ð Þ�r2

r12
ds2

" #
wk r1ð Þ:

ð3:54Þ

The last integral in (3.54) can be evaluated by making an analogy to a similar
problem in electrostatics. Suppose we have a collection of charges that have a
charge density q(r2) = exp[i(k − k′) � r2]. Let / r1ð Þ be the potential at the point r1
due to these charges. Let us further suppose that we can treat q(r2) as if it is a
collection of real charges. Then Coulomb’s law would tell us that the potential and
the charge distribution are related in the following way:

/ r1ð Þ ¼
Z

ei k�k0ð Þ�r2

4pe0r12
ds2: ð3:55Þ

However, since we are regarding q(r2) as if it were a real distribution of charge, we
know that / r1ð Þ must satisfy Poisson’s equation. That is,

r2
1/ r1ð Þ ¼ � 1

e0
ei k�k0ð Þ�r1 : ð3:56Þ

By substitution, we see that a solution of this equation is

/ r1ð Þ ¼ ei k�k0ð Þ�r1

e0 k� k0j j2
: ð3:57Þ

Comparing (3.55) with (3.57), we find
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Z
ei k�k0ð Þ�r2

4pe0r12
ds2 ¼ ei k�k0ð Þ�r1

e0 k� k0j j2
: ð3:58Þ

We can therefore write the exchange operator defined in (3.54) as

A1wk r1ð Þ ¼ � e2

e0V

X
k0

1

k� k0j j2
wk r1ð Þ: ð3:59Þ

If we define A1(k) as the eigenvalue of the operator defined by (3.59), then we find
that we have plane-wave solutions of (3.51), provided that the energy eigenvalues
are given by

Ek ¼ �h2k2

2m
þA1ðkÞ: ð3:60Þ

If we propose that the above be valid for monovalent metals, then we can make a
comparison with experiment. If we imagine that we have a very large crystal, then
we can evaluate the sum in (3.59) by replacing it by an integral. We have

A1ðkÞ ¼ � e2

e0V
V
8p3

Z
1

k� k0j j2
d3k0: ð3:61Þ

We assume that the energy of the electrons depends only on kj j and that the
maximum energy electrons have kj j ¼ kM . If we use spherical polar coordinates (in
k′-space) with the k′z-axis chosen to be parallel to the k-axis, we can write

A1ðkÞ ¼ � e2
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ð3:62Þ
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But
R
xðln xÞ dx ¼ x2=2ð Þ ln x� x2=4; so we can evaluate this last integral and

finally find

A1ðkÞ ¼ � e2kM
8p2e0

2þ k2M � k2

kkM
ln

kþ kM
k � kM

����
����


 �
: ð3:63Þ

The results of Problem 3.5 combined with (3.60) and (3.63) tell us on the Hartree–
Fock free-electron model for the monovalent metals that the lowest energy in the
conduction band should be given by

Eð0Þ ¼ � e2

2p2
kM
e0

; ð3:64Þ

while the energy of the highest filled electronic state in the conduction band should
be given by

E kMð Þ ¼ �h2k2M
2m

� e2kM
4p2e0

: ð3:65Þ

Therefore, the width of the filled part of the conduction band is readily obtained as a
simple function of kM:

E kMð Þ � Eð0Þ½ � ¼ �h2k2M
2m

þ e2kM
4p2e0

: ð3:66Þ

To complete the calculation we need only express kM in terms of the number of
electrons N in the conduction band:

N ¼
X
k

ð1Þ ¼ 2
V
8p3

ZkM
0

d3k ¼ 2V
8p3

� 4p
3
k3M : ð3:67Þ

The factor of 2 in (3.67) comes from having two spin states per k-state.
Equation (3.67) determines kM only for absolute zero temperature. However, we
only have an upper limit on the electron energy at absolute zero anyway. We do not
introduce much error by using these expressions at finite temperature, however,
because the preponderance of electrons always has kj j\kM for any reasonable
temperature.

The first term on the right-hand side of (3.66) is the Hartree result for the
bandwidth (for occupied states). If we run out the numbers, we find that the
Hartree–Fock bandwidth is typically more than twice as large as the Hartree
bandwidth. If we compare this to experiment for sodium, we find that the Hartree
result is much closer to the experimental value. The reason for this is that the
Hartree theory makes two errors (neglect of the Pauli principle and neglect of
Coulomb correlations), but these errors tend to cancel. In the Hartree–Fock theory,
Coulomb correlations are left out and there is no other error to cancel this omission.
In atoms, however, the Hartree–Fock method usually gives better energies than the
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Hartree method. For further discussion of the topics in these last two sections as
well as in the next section, see the book by Raimes [78].

Two Free Electrons and Exchange (A)
To give further insight into the nature of exchange and to the meaning of the Fermi
hole, it is useful to consider the two free-electron model. A direct derivation of the
charge density of electrons (with the same spin state as a given electron) will be
made for this model. This charge density will be found as a function of the distance
from the given electron. If we have two free electrons with the same spin in states
k and k′, the spatial wave function is

wk;k0 r1; r2ð Þ ¼ 1ffiffiffiffiffiffiffiffi
2V2

p eik�r1 eik�r2
eik

0�r1 eik
0�r2

����
����: ð3:68Þ

By quantum mechanics, the probability P(r1, r2) that rl lies in the volume element
drl, and r2 lies in the volume element dr2 is

P r1; r2ð Þd3r1d3r2 ¼ wk;k0 r1; r2ð Þ�� ��2d3r1d3r2
¼ 1

V2 1� cos k0 � kð Þ � r1 � r2ð Þ½ �f gd3r1d3r2:
ð3:69Þ

The last term in (3.69) is obtained by using (3.68) and a little manipulation.
If we now assume that there are N electrons (half with spin 1/2 and half with

spin −1/2), then there are ðN=2ÞðN=2�1Þ ffi N2=4 pairs with parallel spins.
Averaging over all pairs, we have for the average probability of parallel spin electron
at rl and r2

P r1; r2ð Þd3r1d3r2 ¼ 4
V2N2

X
k;k0

ZZ
1� cos k0 � kð Þ � r1 � r2ð Þ½ �f gd3r1d3r2;

and after considerable manipulation we can recast this into the form

P r1; r2ð Þ ¼ 4
N2
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 �2
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sin kMr12ð Þ � kMr12 cos kMr12ð Þ
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3
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� �2( )

� 2
V2 q kMr12ð Þ:

ð3:70Þ

If there were no exchange (i.e. if we use a simple product wave function rather
than a determinantal wave function), then q would be 1 everywhere. This means
that parallel spin electrons would have no tendency to avoid each other. But as
Fig. 3.1 shows, exchange tends to “correlate” the motion of parallel spin electrons
in such a way that they tend to not come too close. This is, of course, just an
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example of the Pauli principle applied to a particular situation. This result should be
compared to the Fermi hole concept introduced in a previous section. These
oscillations are related to the Rudermann–Kittel oscillations of Sect. 7.2.1 and the
Friedel oscillations mentioned in Sect. 9.5.3.

In later sections, the Hartree approximation on a free-electron gas with a uniform
positive background charge will be used. It is surprising how many experiments can
be interpreted with this model. The main use that is made of this model is in esti-
mating a density of states of electrons. (We will see how to do this in the section on
the specific heat of an electron gas.) Since the final results usually depend only on an
integral over the density of states, we can begin to see why this model does not
introduce such serious errors. More comments need to be made about the progress in
understanding Coulomb correlations. These comments are made in the next section.

3.1.4 Coulomb Correlations and the Many-Electron
Problem (A)

We often assume that the Coulomb interactions of electrons (and hence Coulomb
correlations) can be neglected. The Coulomb force between electrons (especially at
metallic densities) is not a weak force. However, many phenomena (such as Pauli
paramagnetism and thermionic emission, which we will discuss later) can be fairly
well explained by theories that ignore Coulomb correlations.

This apparent contradiction is explained by admitting that the electrons do
interact strongly. We believe that the strongly interacting electrons in a metal form a
(normal) Fermi liquid.6 The elementary energy excitations in the Fermi liquid are

Fig. 3.1 Sketch of density of electrons within a distance r12 of a parallel spin electron

6A normal Fermi liquid can be thought to evolve adiabatically from a Fermi liquid in which the
electrons do not interact and in which there is a 1 to 1 correspondence between noninteracting
electrons and the quasiparticles. This excludes the formation of “bound” states as in supercon-
ductivity (Chap. 8).
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called Landau7 quasiparticles or quasielectrons. For every electron there is a
quasielectron. The Landau theory of the Fermi liquid is discussed a little more in
Sect. 4.1.

Not all quasielectrons are important. Only those that are near the Fermi level in
energy are detected in most experiments. This is fortunate because it is only these
quasielectrons that have fairly long lifetimes.

We may think of the quasielectrons as being weakly interacting. Thus our dis-
cussion of the N-electron problem in terms of N one-electron problems is
approximately valid if we realize we are talking about quasielectrons and not
electrons.

Further work on interacting electron systems has been done by Bohm, Pines, and
others. Their calculations show two types of fundamental energy excitations:
quasielectrons and plasmons.8 The plasmons are collective energy excitations
somewhat like a wave in the electron “sea.” Since plasmons require many electron
volts of energy for their creation, we may often ignore them. This leaves us with the
quasielectrons that interact by shielded Coulomb forces and so interact weakly.
Again we see why a free-electron picture of an interacting electron system has some
validity.

We should also mention that Kohn, Luttinger, and others have indicated that
electron–electron interactions may change (slightly) the Fermi–Dirac distribution
(see Footnote 8). Their results indicate that the interactions introduce a tail in the
Fermi distribution as sketched in Fig. 3.2. Np is the probability per state for an
electron to be in a state with momentum p. Even with interactions there is a
discontinuity in the slope of Np at the Fermi momentum. However, we expect for all

(a) (b)

Fig. 3.2 The Fermi distribution at absolute zero (a) with no interactions, and (b) with
interactions (sketched)

7See Landau [3.31].
8See Pines [3.41].
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calculations in this book that we can use the Fermi–Dirac distribution without
corrections and still achieve little error.

The study of many-electron systems is fundamental to solid-state physics. Much
research remains to be done in this area. Further related comments are made in
Sects. 3.2.2 and 4.4.

3.1.5 Density Functional Approximation9 (A)

We have discussed the Hartree–Fock method in detail, but, of course, it has its
difficulties. For example, a true, self-consistent Hartree–Fock approximation is very
complex, and the correlations between electrons due to Coulomb repulsions are not
properly treated. The density functional approximation provides another starting
point for treating many-body systems, and it provides a better way of teaching
electron correlations, at least for ground-state properties. One can regard the density
functional method as a generalization of the much older Thomas–Fermi method
discussed in Sect. 9.5.2. Sometimes density functional theory is said to be a part of
The Standard Model for periodic solids [3.27].

There are really two parts to density functional theory (DFT). The first part, upon
which the whole theory is based, derives from a basic theorem of P. Hohenberg and
W. Kohn. This theorem reduces the solution of the many body ground state to the
solution of a one-particle Schrödinger-like equation for the electron density. The
electron density contains all needed information. In principle, this equation contains
the Hartree potential, exchange and correlation.

In practice, an approximation is needed to make a problem treatable. This is the
second part. The most common approximation is known as the local density
approximation (LDA). The approximation involves treating the effective potential
at a point as depending on the electron density in the same way as it would be for
jellium (an electron gas neutralized by a uniform background charge). The approach
can also be regarded as a generalization of the Thomas–Fermi–Dirac method.

The density functional method has met with considerable success for calculating
the binding energies, lattice parameters, and bulk moduli of metals. It has been
applied to a variety of other systems, including atoms, molecules, semiconductors,
insulators, surfaces, and defects. It has also been used for certain properties of
itinerant electron magnetism. Predicted energy gap energies in semiconductors and
insulators can be too small, and the DFT has difficulty predicting excitation ener-
gies. DFT-LDA also has difficulty in predicting the ground states of open-shell, 3d,
transition element atoms. In 1998, Walter Kohn was awarded a Nobel prize in
chemistry for his central role in developing the density functional method [3.27].

9See Kohn [3.27] and Callaway and March [3.8].
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Hohenberg–Kohn Theorem (HK Theorem) (A)
As the previous discussion indicates, the most important difficulty associated with
the Hartree–Fock approximation is that electrons with opposite spin are left
uncorrelated. However, it does provide a rational self-consistent calculation that is
more or less practical, and it does clearly indicate the exchange effect. It is a useful
starting point for improved calculations. In one sense, density functional theory can
be regarded as a modern improved and generalized Hartree–Fock calculation, at
least for ground-state properties. This is discussed below.

We start by deriving the basic theorem for DFT for N identical spinless fermions
with a nondegenerate ground state. This theorem is: The ground-state energy E0 is a
unique functional of the electron density n(r), i.e. E0 = E0[n(r)]. Further, E0[n(r)]
has a minimum value for n(r) having its correct value. In all variables, n is con-
strained, so N ¼ R nðrÞdr.

In deriving this theorem, the concept of an external (local) field with a local
external potential plays an important role. We will basically show that the external
potential v(r), and thus, all properties of the many-electron systems will be deter-
mined by the ground-state electron distribution function n(r). Let u = u0(r1r2,…
rN) be the normalized wave function for the nondegenerate ground state. The
electron density can then be calculated from

n r1ð Þ ¼ N
Z

u�
0u0dr2. . . drn;

where dri = dxidyidzi. Assuming the same potential for each electron t(r), the
potential energy of all electrons in the external field is

V r1. . . rNð Þ ¼
XN
i¼1

t rið Þ: ð3:71Þ

The proof of the theorem starts by showing that n(r) determines t(r), (up to an
additive constant, of course, changing the overall potential by a constant amount
does not affect the ground state). More technically, we say that t(r) is a unique
functional of n(r). We prove this by a reductio ad absurdum argument.

We suppose t′ determines the Hamiltonian H0 and hence the ground state u′0,
similarly, t determines H and hence, u0. We further assume t′ 6¼ t but the
ground-state wave functions have n′ = n. By the variational principle for nonde-
generate ground states (the proof can be generalized for degenerate ground states):

E0
0\

Z
u�
0H0u0ds; ð3:72Þ

where ds = dr1…drN, so

E0
0\

Z
u�
0 H� V þV 0ð Þu0ds;
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or

E0
0\E0 þ

Z
u�
0 V 0 � Vð Þu0ds

\E0 þ
XN
i¼1

Z
u�
0 1. . . Nð Þ t0 rið Þ � t rið Þ½ �u0 1. . . Nð Þds;

\E0 þN
Z

u�
0 1. . . Nð Þ t0 rið Þ � t rið Þ½ �u0 1. . . Nð Þds

ð3:73Þ

by the symmetry of u0j j2 under exchange of electrons. Thus, using the definitions
of n(r), we can write

E0
0\E0 þN

Z
t0 rið Þ � t rið Þ½ �

Z
u�
0 1. . . Nð Þu0 1. . .Nð Þ � dr2. . . drN


 �
dr1;

or

E0
0\E0 þ

Z
n r1ð Þ t0 r1ð Þ � t r1ð Þ½ �dr1: ð3:74Þ

Now, n(r) is assumed to be the same for t and t′, so interchanging the primed and
unprimed terms leads to

E0\E0
0 þ

Z
n r1ð Þ t r1ð Þ � t0 r1ð Þ½ �dr1: ð3:75Þ

Adding the last two results, we find

E0 þE0
0\E0

0 þE0; ð3:76Þ

which is, of course, a contradiction. Thus, our original assumption that n and n′ are
the same must be false. Thus t(r) is a unique functional (up to an additive constant)
of n(r).

Let the Hamiltonian for all the electrons be represented by H: This Hamiltonian
will include the total kinetic energy T, the total interaction energy U between
electrons, and the total interaction with the external field V ¼P tðriÞ. So,

H ¼ T þUþ
X

t rið Þ: ð3:77Þ

We have shown n(r) determines t(r), and hence, H which determines the
ground-state wave function u0. Therefore, we can define the functional

F nðrÞ½ � ¼
Z

u�
0 T þUð Þu0ds: ð3:78Þ
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We can also writeZ
u0

X
tðrÞu0ds ¼

XZ
u�
0 1. . . Nð Þt rið Þu0 1. . . Nð Þds; ð3:79Þ

by the symmetry of the wave function,Z
u0

X
tðrÞu0ds ¼ N

Z
u�
0 1. . . Nð Þt rið Þu0 1. . . Nð Þds

¼
Z

tðrÞnðrÞdr
ð3:80Þ

by definition of n(r). Thus the total energy functional can be written

E0½n� ¼
Z

u�
0Hu0ds ¼ F½n� þ

Z
nðrÞtðrÞdr: ð3:81Þ

The ground-state energy E0 is a unique functional of the ground-state electron
density. We now need to show that E0 is a minimum when n(r) assumes the correct
electron density. Let n be the correct density function, and let us vary n ! n′, so
t ! t′ and u ! u′ (the ground-state wave function). All variations are subject to
N ¼ R nðrÞdr ¼ R n0ðrÞdr being constant. We have

E0 n
0½ � ¼

Z
u0
0Hu0

0ds

¼
Z

u0
0 T þUð Þu0

0dsþ
Z

u0
0

X
t rið Þu0

0ds

¼ F n0½ � þ
Z

tn0dr:

ð3:82Þ

By the principle
R
u0
0Hu0

0ds[
R
u0Hu0ds, we have

E0 n
0½ �[E0½n�; ð3:83Þ

as desired. Thus, the HK Theorem is proved.
The HK Theorem can be extended to the more realistic case of electrons with

spin and also to finite temperature. To include spin, one must consider both a spin
density s(r), as well as a particle density n(r). The HK Theorem then states that the
ground state is a unique functional of both these densities.

Variational Procedure (A)
Just as the single particle Hartree–Fock equations can be derived from a variational
procedure, analogous single-particle equations can be derived from the density
functional expressions. In DFT, the energy functional is the sum of

R
tnds and F[n].

In turn, F[n] can be split into a kinetic energy term, an exchange-correlation term
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and an electrostatic energy term. We may formally write (using Gaussian units
so 1/4pe0 can be left out)

F½n� ¼ FKE½n� þExc½n� þ e2

2

Z
nðrÞn r0ð Þdsds0

r� r0j j : ð3:84Þ

Equation (3.84), in fact, serves as the definition of Exc[n]. The variational principle
then states that

dE0½n� ¼ 0; ð3:85Þ

subject to d
R
nðrÞds ¼ dN ¼ 0; where

E0½n� ¼ FKE½n� þExc½n� þ e2

2

Z
nðrÞn r0ð Þdsds0

r� r0j j þ
Z

tðrÞnðrÞds: ð3:86Þ

Using a Lagrange multiplier l to build in the constraint of a constant number of
particles, and making

d
e2

2

Z
nðrÞn r0ð Þdsds0

r� r0j j
� �

¼ e2
Z

dnðrÞ
Z

n r0ð Þds0ds
r� r0j j ; ð3:87Þ

we can write

Z
dnðrÞ dFKE½n�

dnðrÞ þ tðrÞþ e2
Z

n r0ð Þds0
r� r0j j þ

dExc n½ �
dnðrÞ

� �
ds� l

Z
dnds ¼ 0: ð3:88Þ

Defining

txcðrÞ ¼ dExc½n�
dnðrÞ ð3:89Þ

(an exchange correlation potential which, in general may be nonlocal), we can then
define an effective potential as

veffðrÞ ¼ tðrÞþ txcðrÞþ e2
Z

n r0ð Þds0
r� r0j j : ð3:90Þ

The Euler–Lagrange equations can now be written as

dFKE½n�
dnðrÞ þ veffðrÞ ¼ l: ð3:91Þ
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Kohn–Sham Equations (A)
We need to find usable expressions for the kinetic energy and the exchange corre-
lation potential. Kohn and Sham assumed that there existed some N single-particle
wave functions ui(r), which could be used to determine the electron density. They
assumed that if this made an error in calculating the kinetic energy, then this error
could be lumped into the exchange correlation potential. Thus,

nðrÞ ¼
XN
i¼1

uiðrÞj j2; ð3:92Þ

and assume the kinetic energy can be written as

FKEðnÞ ¼ 1
2

XN
i¼1

Z
$u�i � $uids

¼
XN
i¼1

Z
u�i � 1

2
r2


 �
uids

ð3:93Þ

where units are used so ħ2/m = 1. Notice this is a kinetic energy for noninteracting
particles In order for FKE to represent the kinetic energy, the ui must be orthogonal.
Now, without loss in generality, we can write

dn ¼
XN
i¼1

du�i
� �

ui; ð3:94Þ

with the ui constrained to be orthogonal so
R
u�i ui ¼ dij. The energy functional

E0[n] is now given by

E0½n� ¼
XN
i¼1

Z
u�i � 1

2
r2


 �
uidsþExc½n�

þ e2

2

Z
nðrÞn r0ð Þdsds0

r� r0j j þ
Z

tðrÞnðrÞds:
ð3:95Þ

Using Lagrange multipliers eij to put in the orthogonality constraints, the variational
principle becomes

dE0½n� �
XN
i¼1

eij

Z
du�i uids ¼ 0: ð3:96Þ

This leads to

XN
i¼1

Z
du�i � 1

2
r2 þ veff rð Þ


 �
ui �

X
j

eijui

" #
ds ¼ 0: ð3:97Þ
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Since the u�i can be treated as independent, the terms in the bracket can be set equal
to zero. Further, since eij is Hermitian, it can be diagonalized without affecting the
Hamiltonian or the density. We finally obtain one form of the Kohn–Sham
equations

� 1
2
r2 þ veffðrÞ


 �
ui ¼ eiui; ð3:98Þ

where veff(r) has already been defined. There is no Koopmans’ Theorem in DFT and
care is necessary in the interpretation of ei. In general, for DFT results for excited
states, the literature should be consulted. We can further derive an expression for
the ground state energy. Just as for the Hartree–Fock case, the ground-state energy
does not equal

P
ei. However, using the definition of n,

X
i

ei ¼
X
i

Z
u�i � 1

2
r2 þ tðrÞþ e2

Z
n r0ð Þds0
r� r0j j þ txcðrÞ

� �
uids

¼ FKE½n� þ
Z

ntdsþ
Z

ntxcdsþ e2
Z

n r0ð ÞnðrÞdsds0
r� r0j j :

ð3:99Þ

Equations (3.90), (3.92), and (3.98) are the Kohn–Sham equations. If txc were zero
these would just be the Hartree equations. Substituting the expression into the
equation for the ground-state energy, we find

E0½n� ¼
X

ei � e2

2

Z
nðrÞn r0½ �dsds0

r� r0j j �
Z

txcðrÞnðrÞdsþExc½n�: ð3:100Þ

We now want to look at what happens when we include spin. We must define
both spin-up and spin-down densities, n" and n#. The total density n would then be
a sum of these two, and the exchange correlation energy would be a functional of
both. This is shown as follows:

Exc ¼ Exc n"; n#
� �

: ð3:101Þ

We also assume single-particle states exist, so

n"ðrÞ ¼
XN"

i¼1

ui"ðrÞ
�� ��2; ð3:102Þ

and

n#ðrÞ ¼
XN#

i¼1

ui#ðrÞ
�� ��2: ð3:103Þ
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Similarly, there would be both spin-up and spin-down exchange correlation energy
as follows:

txc" ¼
dExc n"; n#

� �
dn"

; ð3:104Þ

and

txc# ¼
dExc n"; n#

� �
dn#

: ð3:105Þ

Using r to represent either " or #, we can find both the single-particle equations and
the expression for the ground-state energy

� 1
2
r2 þ tðrÞþ e2

Z
n r0ð Þds0
r� r0j j þ txcrðrÞ

� �
uir = eiruir; ð3:106Þ

E0½n� ¼
X
i;r

eir � e2

2

Z
nðrÞn r0½ �dsds0

r� r0j j

�
X
r

Z
txcrðrÞnrðrÞdsþExc½r�;

ð3:107Þ

over N lowest eir.

Local Density Approximation (LDA) to txc (A)
The equations are still not in a tractable form because we have no expression for
txc. We assume the local density approximation of Kohn and Sham, in which we
assume that locally Exc can be calculated as if it were a uniform electron gas. That
is, we assume for the spinless case

ELDA
xc ¼

Z
neuniformxc nðrÞ½ �ds;

and for the spin ½ case,

ELDA
xc ¼

Z
neuxc n"ðrÞ; n#ðrÞ

� �
ds;

where exc represents the energy per electron. For the spinless case, the
exchange-correlation potential can be written

tLDAxc ðrÞ ¼ dELDA
xc

dnðrÞ ; ð3:108Þ

and

dELDA
xc ¼

Z
dneuxc � dsþ

Z
n
deuxc
dn

dn � ds ð3:109Þ
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by the chain rule. So,

dELDA
xc ¼

Z
dnELDA

xc

dn
dn � ds ¼

Z
euxc þ n

deuxc
dn


 �
dn � ds: ð3:110Þ

Thus,

dELDA
xc

dn
¼ euxcðnÞþ n

deuxcðnÞ
dn

: ð3:111Þ

The exchange correlation energy per particle can be written as a sum of exchange
and correlation energies, excðnÞ ¼ exðnÞþ ecðnÞ. The exchange part can be calcu-
lated from the equations

Ex ¼ 1
2
V
p2

ZkM
0

A1ðkÞk2dk; ð3:112Þ

and

A1ðkÞ ¼ � e2kM
2p

2þ k2M � k2

kkM
ln

kM þ k
kM � k

����
����

� �
; ð3:113Þ

see (3.63), where 1/2 in Ex is inserted so as not to count interactions twice. Since

N ¼ V
p2

k3M
3
;

we obtain by doing all the integrals,

Ex

N
¼ � 3

4
3
p
� N
V


 �1=3

: ð3:114Þ

By applying this equation locally, we obtain the Dirac exchange energy functional

exðnÞ ¼ �cx nðrÞ½ �1=3; ð3:115Þ

where

cx ¼ 3
4

3
p


 �1=3

: ð3:116Þ

The calculation of ec is lengthy and difficult. Defining rs so

4
3
pr3s ¼

1
n
; ð3:117Þ
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one can derive exact expressions for ec at large and small rs. An often-used
expression in atomic units (see Appendix A) is

ec ¼ 0:0252F
rs
30

� �
; ð3:118Þ

where

FðxÞ ¼ 1þ x3
� �

ln 1þ 1
x


 �
þ x

2
� x2 � 1

3
: ð3:119Þ

Other expressions are often given. See, e.g., Ceperley and Alder [3.9] and Pewdew
and Zunger [3.39]. More complicated expressions are necessary for the nonspin
compensated case (odd number of electrons and/or spin-dependent potentials).

Reminder: Functions and Functional Derivatives A function assigns a number g
(x) to a variable x, while a functional assigns a number F[g] to a function whose
values are specified over a whole domain of x. If we had a function F(g1, g2, …, gn)
of the function evaluated at a finite number of xi, so that g1 = g(x1), etc., the
differential of the function would be

dF ¼
XN
i¼1

@F
@gi

dgi: ð3:120Þ

Since we are dealing with a continuous domain D of the x-values over a whole
domain, we define a functional derivative in a similar way. But now, the sum
becomes an integral and the functional derivative should really probably be called a
functional derivative density. However, we follow current notation and determine
the variation in F(dF) in the following way:

dF ¼
Z

x2D

dF
dgðxÞ dgðxÞdx: ð3:121Þ

This relates to more familiar ideas often encountered with, say, Lagrangians.
Suppose

F½x� ¼
Z
D

L x; _xð Þdt; _x ¼ dx=dt;

and assume dx = 0 at the boundary of D, then

dF ¼
Z

dF
dxðtÞ dxðtÞdt;
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but

dL x; _xð Þ ¼ @L
@x

dxþ @L
@ _x

d_x:

If

Z
@L
@ _x

d_xdt ¼
Z

@L
@ _x

d
dt
dxdt ¼ @L

@ _x

����
!0 Boundary

dx�
Z

d
dt
@L
@ _x

dxdt;

then

Z
D

dF
dxðtÞ dxðtÞdt ¼

Z
D

@L
@x

� d
dt
@L
@ _x


 �
dxðtÞdt:

So

dF
dxðtÞ ¼

@L
@x

� d
dt
@L
@ _x

;

which is the typical result of Lagrangian mechanics. For example,

ELDA
X ¼

Z
nðrÞexds; ð3:122Þ

where ex = −cxn(r)
1/3, as given by the Dirac exchange. Thus,

ELDA
X ¼ �cx

Z
nðrÞ4=3ds

dELDA
X ¼ �cx

4
3

Z
nðrÞ1=3dnds;

¼
Z

dELDA
X

dn
dnds

ð3:123Þ

so,

dELDA
X

dn
¼ � 4

3
cxnðrÞ1=3: ð3:124Þ

Further results may easily be found in the functional analysis literature (see, e.g.,
Parr and Yang [3.38]).

We summarize in Table 3.1 the one-electron approximations we have discussed
thus far.
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Table 3.1 One-electron approximations

Approximation Equations defining Comments

Free electrons H ¼ � �h2

2m� r2 þV

V ¼ constant

m� ¼ effective mass

Hwk ¼ Ew

Ek ¼ � �h2k2

2m� þV

wk ¼ Aeik�r

A ¼ constant

Populate energy
levels with
Fermi–Dirac
statistics useful
for simple
metals

Hartree HþVðrÞ½ �ukðrÞ ¼ EkukðrÞ

VðrÞ ¼ Vnucl þVcoul

Vnucl ¼ �
X

aðnucleiÞ
iðelectronsÞ

e2

4pe0rai
þ const

Vcoul ¼
X

jð6¼kÞ

Z
u�j ðx2ÞVð1; 2Þujðx2Þds2

Vcoul arises fromCoulomb interactions

of electrons

See (3.9), (3.15)

Hartree–Fock HþVðrÞþVexch½ �ukðrÞ ¼ EkukðrÞ
VexchukðrÞ ¼ �

X
j

Z
ds2u�j x2ð ÞV 1; 2ð Þuk x2ð Þuj x1ð Þ

andVðrÞ as for Hartree ðwithout the j 6¼ k
restriction in the sum)

Ek is defined by
Koopmans’
Theorem (3.30)

Hohenberg–Kohn
Theorem

An external potential v(r) is uniquely determined by
the ground-state density of electrons in a band
system. This local electronic charge density is the
basic quantity in density functional theory, rather
than the wave function

No Koopmans’
theorem

Kohn–Sham
equations � 1

2
r2 þ veffðrÞ � ej


 �
ujðrÞ ¼ 0

where nðrÞ ¼
XN

j¼1
ujðrÞ
�� ��2

Related to
Slater’s earlier
ideas (see
Marder op cit
p. 219)

Local density
approximation veffðrÞ ¼ vðrÞþ R n r0ð Þ

r� r0j j dr
0 þ vxcðrÞ

ELDA
xc ¼ R neuxc nðrÞ½ �dr;

exchange correlation energy exc per particle

vxcðrÞ ¼ dExc n½ �
dnðrÞ

and see (3.111) and following

See (3.90)
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More accurate Calculations (A)
It is important to note that the standard Density Functional Theory (DFT, W. Kohn,
[3.27]) may be exact in principle, but it is not in practice. This is because in carrying
out the calculation one typically is forced to assume some approximation for the
exchange correlation energy. This typically introduces an error of 0.15 eV. Often one
can put up with this for typical solid state and materials science calculations, but
apparently when chemists need to calculate accurately binding energies of molecules,
this is not enough. For this situation, some approximation of the many electron
Schrodinger equation is used, but for this then one cannot practically and accurately
calculate the binding energies of large molecules. A new approach called the Power
Series Approximation (PSA) appears to help considerably and provide accuracies
better than 0.05 eV, which can be useful for “chemical accuracy” in many cases. The
best “Schrodinger” calculations can be much better, but at a considerable cost for the
computation, not to mention that the size of the molecules is limited. It will be
interesting, especially for materials scientists, to see how this field develops. It can be
incredibly useful for material scientists to predict the behavior of a proposed material
without going to the time and expense of growing it to see if it has desired properties.
See e.g. Kieron Burke, Physics 9, 108, Sept. 26, 2016.

Walter Kohn

b. Vienna, Austria (1923–2016)

KKR Method (Korringa–Kohn–Rostoker); Kohn–Luttinger Model (for
semiconductor band structure); Kohn–Sham Equations and density functional
theory

A great step forward in treating the correlation energy (not included in the
Hartree–Fock approach) is found in the density functional method of Walter
Kohn and others. This method is a descendant of the Thomas–Fermi model.
Walter Kohn was born in Vienna, Austria, and was a young refugee from
Hitler’s Germany. He was also known for many other things including the
KKR method in band structure studies and the Luttinger–Kohn theory of
bands in semiconductors. He won the Nobel Prize in Chemistry in 1998.
“Physics isn’t what I do,” Dr. Kohn once famously said. “It is what I am.”

3.2 One-Electron Models

We now have some feeling about the approximation in which an N-electron system
can be treated as N one-electron systems. The problem we are now confronted with
is how to treat the motion of one electron in a three-dimensional periodic potential.
Before we try to solve this problem it is useful to consider the problem of one
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electron in a spatially infinite one-dimensional periodic potential. This is the
Kronig–Penney model.10 Since it is exactly solvable, the Kronig–Penney model is
very useful for giving some feeling for electronic energy bands, Brillouin zones,
and the concept of effective mass. For some further details see also Jones [58], as
well as Wilson [97, p. 26ff].

3.2.1 The Kronig–Penney Model (B)

The potential for the Kronig–Penney model is shown schematically in Fig. 3.3.
A good reference for this section is Jones [58, Chap. 1, Sect. 6].

Rather than using a finite potential as shown in Fig. 3.3, it is mathematically
convenient to let the widths a of the potential become vanishingly narrow and the
heights u become infinitely high so that their product au remains a constant. In this
case, we can write the potential in terms of Dirac delta functions

VðxÞ ¼ au
Xn¼1

n¼�1
d x� na1
� �

; ð3:125Þ

where d(x) is Dirac’s delta function.
With delta function singularities in the potential, the boundary conditions on the

wave functions must be discussed rather carefully. In the vicinity of the origin, the
wave function must satisfy

Fig. 3.3 The Kronig–Penney potential

10See Kronig and Penny [3.30].
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� �h2

2m
d2w
dx2

þ audðxÞw ¼ Ew: ð3:126Þ

Integrating across the origin, we find

�h2

2m
dw
dx

����
e

�e

�auwð0Þ ¼ �E
Ze
�e

wdx:

Taking the limit as e ! 0, we find

dw
dx

�
þ
�dw
dx

�
�
¼ 2mðauÞ

�h2
wð0Þ: ð3:127Þ

Equation (3.127) is the appropriate boundary condition to apply across the Dirac
delta function potential.

Our problem now is to solve the Schrödinger equation with periodic Dirac delta
function potentials with the aid of the boundary condition given by (3.127). The
periodic nature of the potential greatly aids our solution. By Appendix C we know
that Bloch’s theorem can be applied. This theorem states, for our case, that the wave
equation has stationary-state solutions that can always be chosen to be of the form

wkðxÞ ¼ eikxukðxÞ; ð3:128Þ

where

uk xþ að Þ1¼ ukðxÞ: ð3:129Þ

Knowing the boundary conditions to apply at a singular potential, and knowing
the consequences of the periodicity of the potential, we can make short work of the
Kronig–Penney model. We have already chosen the origin so that the potential is
symmetric in x, i.e. V(x) = V(−x). This implies that HðxÞ ¼ �HðxÞ: Thus if w(x) is
a stationary-state wave function,

HðxÞwðxÞ ¼ EwðxÞ:

By a dummy variable change

Hð�xÞwð�xÞ ¼ Ewð�xÞ;

so that

HðxÞwð�xÞ ¼ Ewð�xÞ:

This little argument says that if w(x) is a solution, then so is w(−x). In fact, any
linear combination of w(x) and w(−x) is then a solution. In particular, we can
always choose the stationary-state solutions to be even zs(x) or odd za(x):
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zsðxÞ ¼ 1
2
wðxÞþwð�xÞ½ �; ð3:130Þ

zsðxÞ ¼ 1
2
wðxÞ � wð�xÞ½ �: ð3:131Þ

To avoid confusion, it should be pointed out that this result does not necessarily
imply that there is always a two-fold degeneracy in the solutions; zs(x) or
za(x) could vanish. In this problem, however, there always is a two-fold degeneracy.

It is always possible to write a solution as

wðxÞ ¼ AzsðxÞþBzaðxÞ: ð3:132Þ

From Bloch’s theorem

w a1=2
� � ¼ eika

1
w �a1=2
� �

; ð3:133Þ

and

w0 a1=2
� � ¼ eika

1
w0 �a1=2
� �

; ð3:134Þ

where the prime means the derivative of the wave function.
Combining (3.132), (3.133), and (3.134), we find that

A zs a1=2
� �� eika

1
zs �a1=2
� �h i

¼ B eika
1
za �a1=2
� �� za a1=2

� �h i
; ð3:135Þ

and

A z0s a1=2
� �� eika

1
z0s �a1=2
� �h i

¼ B eika
1
z0a �a1=2
� �� z0a a1=2

� �h i
: ð3:136Þ

Recalling that zs, za′ are even, and za, zs′ are odd, we can combine (3.135) and
(3.136) to find that

1� eika
1

1þ eika1

 !
¼ z0s a

1=2ð Þza a1=2ð Þ
zs a1=2ð Þz0a a1=2ð Þ : ð3:137Þ

Using the fact that the left-hand side is

� tan2
ka1

2
¼ � tan2

h
2
¼ 1� 1

cos2 h=2ð Þ ;

and cos2(h/2) = (1 + cos h)/2, we can write (3.137) as

cos ka1
� � ¼ �1þ 2zs a1=2ð Þz0a a1=2ð Þ

W
; ð3:138Þ
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where

W ¼ zs za
z0s z0a

����
����: ð3:139Þ

The solutions of the Schrödinger equation for this problem will have to be
sinusoidal solutions. The odd solutions will be of the form

zaðxÞ ¼ sinðrxÞ; �a1=2	 x	 a1=2; ð3:140Þ

and the even solution can be chosen to be of the form [58]

zsðxÞ ¼ cos r xþKð Þ; 0	 x	 a1=2; ð3:141Þ

zsðxÞ ¼ cos r �xþKð Þ; �a1=2	 x	 0: ð3:142Þ

At first glance, we might be tempted to chose the even solution to be of the form cos
(rx). However, we would quickly find that it is impossible to satisfy the boundary
condition (3.127). Applying the boundary condition to the odd solution, we simply
find the identity 0 = 0. Applying the boundary condition to the even solution, we
find

�2r sin rK ¼ cos rKð Þ � 2mau=�h2;

or in other words, K is determined from

tan rK � mðauÞ
r�h2

: ð3:143Þ

Putting (3.140) and (3.141) into (3.139), we find

W ¼ r cos rK: ð3:144Þ

Combining (3.138), (3.140), (3.141), and (3.144), we find

cos ka1 ¼ �1þ 2r cos r a1=2þKð Þ½ � cos ra1=2ð Þ
r cosðrKÞ : ð3:145Þ

Using (3.143), this last result can be written

cos ka1 ¼ cos ra1 þ mðauÞ
�h2

a1
sin ra1

ra1
: ð3:146Þ

Note the fundamental 2p periodicity of ka1. This is the usual Brillouin zone
periodicity.

3.2 One-Electron Models 171



Equation (3.146) is the basic equation describing the energy eigenvalues of the
Kronig–Penney model. The reason that (3.146) gives the energy eigenvalue relation
is that r is proportional to the square root of the energy. If we substitute (3.141) into
the Schrödinger equation, we find that

r ¼
ffiffiffiffiffiffiffiffiffi
2mE

p

�h
: ð3:147Þ

Thus (3.146) and (3.147) explicitly determine the energy eigenvalue relation (E vs.
k; this is also called the dispersion relationship) for electrons propagating in a
periodic crystal.

The easiest thing to get out of this dispersion relation is that there are allowed
and disallowed energy bands. If we plot the right-hand side of (3.146) versus ra, the
results are somewhat as sketched in Fig. 3.4.

From (3.146), however, we see we have a solution only when the right-hand side
is between +1 and −1 (because these are the bounds of cos ka1, with real k). Hence
the only allowed values of ra1 are those values in the shaded regions of Fig. 3.4.
But by (3.147) this leads to the concept of energy bands.

Detailed numerical analysis of (3.146) and (3.147) will yield a plot similar to
Fig. 3.5 for the first band of energies as plotted in the first Brillouin zone. Other
bands could be similarly obtained.

Fig. 3.4 Sketch showing how to get energy bands from the Kronig–Penney model
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Figure 3.5 looks somewhat like the plot of the dispersion relation for a
one-dimensional lattice vibration. This is no accident. In both cases we have waves
propagating through periodic media. There are significant differences that distin-
guish the dispersion relation for electrons from the dispersion relation for lattice
vibrations. For electrons in the lowest band as k ! 0, E / k2, whereas for phonons
we found E / kj j. Also, for lattice vibrations there is only a finite number of energy
bands (equal to the number of atoms per unit cell times 3). For electrons, there are
infinitely many bands of allowed electronic energies (however, for realistic models
the bands eventually overlap and so form a continuum).

We can easily check the results of the Kronig–Penney model in two limiting
cases. To do this, the equation will be rewritten slightly:

cos ka1
� � ¼ cos ra1

� �þ l
sin ra1

ra1
� P ra1

� �
; ð3:148Þ

where

l � ma1ðauÞ
�h2

: ð3:149Þ

In the limit as the potential becomes extremely weak, l ! 0, so that ka1 � ra1.
Using (3.147), one easily sees that the energies are given by

E ¼ �h2k2

2m
: ð3:150Þ

Equation (3.150) is just what one would expect. It is the free-particle solution.
In the limit as the potential becomes extremely strong, l ! ∞, we can have

solutions of (3.148) only if sin ral = 0. Thus ra1 = np, where n is an integer, so that
the energy is given by

Fig. 3.5 Sketch of the first band of energies in the Kronig–Penney model (an arbitrary k = 0
energy is added in)
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E ¼ n2p2�h2

2m a1ð Þ2 : ð3:151Þ

Equation (3.151) is expected as these are the “particle-in-a-box” solutions.
It is also interesting to study how the widths of the energy bands vary with the

strength of the potential. From (3.148), the edges of the bands of allowed energy
occur when P(ral) = ±1. This can certainly occur when ra1 = np. The other values
of ra1 at the band edges are determined in the argument below. At the band edges,

�1 ¼ cos ra1 þ l
ra1

sin ra1
� �

:

This equation can be recast into the form,

0 ¼ 1þ l
ra1

sin ra1ð Þ
þ1þ cos ra1ð Þ : ð3:152Þ

From trigonometric identities

tan
ra1

2
¼ sin ra1ð Þ

1þ cos ra1ð Þ ; ð3:153Þ

and

cot
ra1

2
¼ sin ra1ð Þ

1� cos ra1ð Þ : ð3:154Þ

Combining the last three equations gives

0 ¼ 1þ l
ra1

tan
ra1

2
or 0 ¼ 1� l

ra1
cot

ra1

2
;

or

tan ra1=2
� � ¼ � ra1

� �
=l; cot ra1=2

� � ¼ þ ra1
� �

=l:

Since 1/tan h = cot h, these last two equations can be written

cot ra1=2
� � ¼ �l= ra1

� �
;

tan ra1=2
� � ¼ þ l= ra1

� �
;

or

ra1=2
� �

cot ra1=2
� � ¼ �ma1ðauÞ=2�h2; ð3:155Þ
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and

ra1=2
� �

tan ra1=2
� � ¼ þma1 auð Þ=2�h2: ð3:156Þ

Figure 3.6 uses ra1 = np, (3.155), and (3.156) (which determine the upper and
lower ends of the energy bands) to illustrate the variation of bandwidth with the
strength of the potential.

Note that increasing u decreases the bandwidth of any given band. For a fixed u,
the higher r (or the energy) is, the larger is the bandwidth. By careful analysis it can
be shown that the bandwidth increases as al decreases. The fact that the bandwidth
increases as the lattice spacing decreases has many important consequences as it is
valid in the more important three-dimensional case. For example, Fig. 3.7 sketches
the variation of the 3s and 3p bonds for solid sodium. Note that at the equilibrium
spacing a0, the 3s and 3p bands form one continuous band.

The concept of the effective mass of an electron is very important. A simple
example of it can be given within the context of the Kronig–Penney model.
Equation (3.148) can be written as

cos ka1 ¼ P ra1
� �

:

Fig. 3.6 Variation of bandwidth with strength of the potential
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Let us examine this equation for small k and for r near r0 (= r at k = 0). By a Taylor
series expansion for both sides of this equation, we have

1� 1
2

ka1
� �2¼ 1þP0

0a
1 r � r0ð Þ;

or

r0 � 1
2
k2a1

P0
0

¼ r:

Squaring both sides and neglecting terms in k4, we have

r2 ¼ r20 � r0
k2a1

P0
0
:

Defining an effective mass m* as

m� ¼ �mP0
0

r0a1
;

Fig. 3.7 Sketch of variation (with distance between atoms) of bandwidths of Na. Each
energy unit represents 2 eV. The equilibrium lattice spacing is a0. Higher bands such as the
4s and 3d are left out
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we have by (3.147) that

E ¼ �h2r2

2m
¼ E0 þ �h2k2

2m� ; ð3:157Þ

where E0 ¼ �h2r20=2m: Except for the definition of mass, this equation is just like an
equation for a free particle. Thus for small k we may think of m* as acting as a
mass; hence it is called an effective mass. For small k, at any rate, we see that the
only effect of the periodic potential is to modify the apparent mass of the particle.

The appearances of allowed energy bands for waves propagating in periodic
lattices (as exhibited by the Kronig–Penney model) is a general feature. The
physical reasons for this phenomenon are fairly easy to find.

Consider a quantum-mechanical particle moving along with energy E as shown
in Fig. 3.8. Associated with the particle is a wave of de Broglie wavelength k. In
regions a–b, c–d, e–f, etc., the potential energy is nonzero. These regions of “hills”
in the potential cause the wave to be partially reflected and partially transmitted.
After several partial reflections and partial transmissions at a–b, c–d, e–f, etc., it is
clear that the situation will be very complex. However, there are two possibilities.
The reflections and transmissions may or may not result in destructive interference
of the propagating wave. Destructive interference will result in attenuation of the
wave. Whether or not we have destructive interference depends clearly on the
wavelength of the wave (and of course on the spacings of the “hills” of the
potential) and hence on the energy of the particle. Hence we see qualitatively, at any
rate, that for some energies the wave will not propagate because of attenuation. This
is what we mean by a disallowed band of energy. For other energies, there will be
no net attenuation and the wave will propagate. This is what we mean by an
allowed band of energy. The Kronig–Penney model calculations were just a way of
expressing these qualitative ideas in precise quantum-mechanical form.

It is interesting that the Kronig-Penney model can be applied to higher dimen-
sions. In particular, some such 2D models can be applied to graphene. See. R. L.
Pavelich and F. Marsiglio, “Calculation of 2D electronic band structure using
matrix mechanics,” arXiv:1602.06851v1 [cond-mat.mes-hall] 22 Feb 2016.

Fig. 3.8 Wave propagating through periodic potential. E is the kinetic energy of the particle
with which there is associated a wave with de Broglie wavelength k = h/(2mE)1/2 (internal
reflections omitted for clarity)
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3.2.2 The Free-Electron or Quasifree-Electron
Approximation (B)

The Kronig–Penney model indicates that for small ka1
�� �� we can take the periodic

nature of the solid into account by using an effective mass rather than an actual
mass for the electrons. In fact we can always treat independent electrons in a
periodic potential in this way so long as we are interested only in a group of
electrons that have energy clustered about minima in an E versus k plot (in general
this would lead to a tensor effective mass, but let us restrict ourselves to minima
such that E / k2 + constant near the minima). Let us agree to call the electrons with
effective mass quasifree electrons. Perhaps we should also include Landau’s ideas
here and say that what we mean by quasifree electrons are Landau quasiparticles
with an effective mass enhanced by the periodic potential. We will often use
m rather than m*, but will have the idea that m can be replaced by m where con-
venient and appropriate. In general, when we actually use a number for the effective
mass it is necessary to quote what experiment the effective mass comes from. Only
in this way do we know precisely what we are including. There are many inter-
actions beyond that due to the periodic lattice that can influence the effective mass
of an electron. Any sort of interaction is liable to change the effective mass (or
“renormalize it”). It is now thought that the electron–phonon interaction in metals
can be important in determining the effective mass of the electrons.

The quasifree-electron model is most easily arrived at by treating the conduction
electrons in a metal by the Hartree approximation. If the positive ion cores are
smeared out to give a uniform positive background charge, then the interaction of
the ion cores with the electrons exactly cancels the interactions of the electrons with
each other (in the Hartree approximation). We are left with just a one-electron,
free-electron Schrödinger equation. Of course, we really need additional ideas (such
as discussed in Sects. 3.1.4 and 4.4 as well as the introduction of Chap. 4) to see
why the electrons can be thought of as rather weakly interacting, as seems to be
required by the “uncorrelated” nature of the Hartree approximation. Also, if we
smear out the positive ion cores, we may then have a hard time justifying the use of
an effective mass for the electrons or indeed the use of a periodic potential. At any
rate, before we start examining in detail the effect of a three-dimensional lattice on
the motion of electrons in a crystal, it is worthwhile to pursue the quasifree-electron
picture to see what can be learned. The picture appears to be useful (with some
modifications) to describe the motions of electrons in simple monovalent metals. It
is also useful for describing the motion of charge carriers in semiconductors. At
worst it can be regarded as a useful phenomenological picture.11

11See also Kittel [59, 60].
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Density of States in the Quasifree-Electron Model (B)
Probably the most useful prediction made by the quasifree-electron approximation is
a prediction regarding the number of quantum states per unit energy. This quantity is
called the density of states. For a quasifree electron with effective mass m*,

� �h2

2m� r2w ¼ Ew: ð3:158Þ

This equation has the solution (normalized in a volume V )

w ¼ 1ffiffiffiffi
V

p exp ik � rð Þ; ð3:159Þ

provided that

E ¼ �h2

2m� k21 þ k22 þ k23
� �

: ð3:160Þ
If periodic boundary conditions are applied on a parallelepiped of sides Niai and

volume V, then k is of the form

k ¼ 2p
n1
N1

b1 þ n2
N2

b2 þ n3
N3

b3


 �
; ð3:161Þ

where the ni are integers and the bi are the customary reciprocal lattice vectors that
are defined from the ai. (For the case of quasifree electrons, we really do not need
the concept of reciprocal lattice, but it is convenient for later purposes to carry it
along.) There are thus N1N2N3 k-type states in a volume ð2pÞ3b1 � ðb2 � b3Þ of
k space. Thus the number of states per unit volume of k space is

N1N2N3

ð2pÞ3b1 � ðb2 � b3Þ
¼ N1N2N3Xa

ð2pÞ3 ¼ V

ð2pÞ3 ; ð3:162Þ

where X ¼ a1 � ða2 � a3Þ. Since the states in k space are uniformly distributed, the
number of states per unit volume of real space in d3k is

d3k=ð2pÞ3: ð3:163Þ

If E = ħ2k2/2m*, the number of states with energy less than E (with k defined by
this equation) is

4p
3

kj j3 V

ð2pÞ3 ¼
Vk3

6p2
;
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where kj j ¼ k; of course. Thus, if N(E) is the number of states in E to E + dE, and
N(k) is the number of states in k to k + dk, we have

NðEÞdE ¼ NðkÞdk ¼ d
dk

Vk3

6p2


 �
dk

Vk2

2p2
dk:

But

dE ¼ �h2

m� kdk; so dk ¼ m�

�h2
dE
k
;

or

NðEÞdE ¼ V
2p2

ffiffiffiffiffiffiffiffiffiffiffi
2m�E
�h2

r
m�

�h2
dE;

or

NðEÞdE ¼ V
4p2

2m�

�h2


 �3=2

E1=2dE: ð3:164Þ

Equation (3.164) is the basic equation for the density of states in the
quasifree-electron approximation. If we include spin, there are two spin states for
each k, so (3.164) must be multiplied by 2.

Equation (3.164) is most often used with Fermi–Dirac statistics. The Fermi
function f(E) tells us the average number of electrons per state at a given temper-
ature, 0	 f ðEÞ	 1. With Fermi–Dirac statistics, the number of electrons per unit
volume with energy between E and E + dE and at temperature T is

dn ¼ f ðEÞK
ffiffiffiffi
E

p
dE ¼ K

ffiffiffiffi
E

p
dE

exp E � EFð Þ=kT½ � þ 1
; ð3:165Þ

where K ¼ 1=ð2p2Þð2m�=�h2Þ3=2 and EF is the Fermi energy.
If there are N electrons per unit volume, then EF is determined from

N ¼
Z1
0

K
ffiffiffiffi
E

p
f ðEÞdE: ð3:166Þ

Once the Fermi energy EF is obtained, the mean energy of an electron gas is
determined from

E ¼
Z1
0

Kf ðEÞ
ffiffiffiffi
E

p
EdE: ð3:167Þ
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We shall find (3.166) and (3.167) particularly useful in the next section where
we evaluate the specific heat of an electron gas. We summarize the density of states
for free electrons in one, two, and three dimensions in Table 3.2.

Specific Heat of an Electron Gas (B)
This section and the next one follow the early ground-breaking work of Pauli and
Sommerfeld. In this section all we have to do is to find the Fermi energy from
(3.166), perform the indicated integral in (3.167), and then take the temperature
derivative. However, to perform these operations exactly is impossible in closed
form and so it is useful to develop an approximate way of evaluating the integrals in
(3.166) and (3.167). The approximation we will use will be an excellent approxi-
mation for metals at all ordinary temperatures.

We first develop a general formula (the Sommerfeld expansion) for the evalu-
ation of integrals of the needed form for “low” temperatures (room temperature
qualifies as a very low temperature for the approximation that we will use).

Let f(E) be the Fermi distribution function, and R(E) be a function that vanishes
when E vanishes. Define

S ¼ þ
Z1
0

f ðEÞ dR Eð Þ
dE

dE ð3:168Þ

¼ �
Z1
0

RðEÞ df ðEÞ
dE

dE: ð3:169Þ

At low temperature, f ′(E) has an appreciable value only where E is near the Fermi
energy EF. Thus we make a Taylor series expansion of R(E) about the Fermi
energy:

RðEÞ ¼ R EFð Þþ E � EFð ÞR0 EFð Þþ 1
2

E � EFð Þ2R00 EFð Þþ � � � : ð3:170Þ

Table 3.2 Dependence of density of states of free electrons D(E) on
dimension and energy E

D(E)

One dimension A1 E
−1/2

Two dimensions A2

Three dimensions A3 E
1/2

Note that the Ai are constants, and in all cases the dispersion relation
is of the form Ek = ħ2k2/(2m*)
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In (3.170) R″(EF) means

d2RðEÞ
dE2


 �
E¼EF

:

Combining (3.169) and (3.170), we can write

S ffi aR EFð Þþ bR0 EFð Þþ cR00 EFð Þ; ð3:171Þ

where

a ¼ �
Z1
0

f 0 Eð ÞdE ¼ 1;

b ¼ �
Z1
0

E � EFð Þf 0ðEÞdE ¼ 0;

c ¼ � 1
2

Z1
0

E � EFð Þ2f 0ðEÞdE ffi kT2

2

Z1
�1

x2exdx

ex þ 1ð Þ2
p2

6
ðkTÞ2:

Thus we can write

Z1
0

f ðEÞ dRðEÞ
dE

dE ¼ R EFð Þþ p2

6
ðkTÞ2R00 EFð Þþ � � � : ð3:172Þ

By (3.166),

N ¼
Z1
0

K
d
dE

2
3
E3=2f ðEÞdE ffi 2

3
KE3=2

F þ p2

6
ðkTÞ2 K

2
1ffiffiffiffiffiffi
EF

p : ð3:173Þ

At absolute zero temperature, the Fermi function f(E) is 1 for 0	E	EFð0Þ and
zero otherwise. Therefore we can also write

N ¼
ZEFð0Þ

0

KE1=2dE ¼ 2
3
K EFð0Þ½ �3=2: ð3:174Þ

Equating (3.173) and (3.174), we obtain

EFð0Þ½ �3=2ffi E3=2
F þ p2

8
ðkTÞ2ffiffiffiffiffiffi
EF

p :
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Since the second term is a small correction to the first, we can let EF = EF(0) in the
second term:

EFð0Þ½ �3=2 1� p2

8
ðkTÞ2

EFð0Þ2
h i

2
4

3
5 ffi E3=2

F :

Again, since the second term is a small correction to the first term, we can use

ð1� eÞ3=2 � 1� 3=2e to obtain

EF ¼ EFð0Þ 1� p2

12
kT

EFð0Þ
� �2( )

: ð3:175Þ

For all temperatures that are normally of interest, (3.175) is a good approximation
for the variation of the Fermi energy with temperature. We shall need this
expression in our calculation of the specific heat.

The mean energy E is given by (3.167) or

E ¼
Z1
0

f ðEÞ d
dE

2
5
K Eð Þ5=2

� �
dE ffi 2K

5
E5=2
F þ p2

6
ðkTÞ2 3K

2

ffiffiffiffiffiffi
EF

p
: ð3:176Þ

Combining (3.176) and (3.175), we obtain

E ffi 2K
5

EFð0Þ½ �5=2 þ EFð0Þ½ �5=2p
2

6
K

kT
EFð0Þ
� �2

:

The specific heat of the electron gas is then the temperature derivative of E :

CV ¼ @E
@T

¼ p2

3
k2K

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EFð0ÞT

p
:

This is commonly written as

CV ¼ cT; ð3:177Þ

where

c ¼ p2

3
k2K

ffiffiffiffiffiffiffiffiffiffiffiffi
EFð0Þ

p
: ð3:178Þ
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There are more convenient forms for c. From (3.174),

K ¼ 3
2
N EFð0Þ½ ��3=2;

so that

c ¼ p2

2
Nk

k
EFð0Þ :

The Fermi temperature TF is defined as TF = EF(0)/k so that

c ffi p2

2
Nk
TF

: ð3:179Þ

The expansions for E and EF are expansions in powers of kT/EF(0). Clearly our
results [such as (3.177)] are valid only when kT � EF(0). But as we already
mentioned, this does not limit us to very low temperatures. If 1/40 eV corresponds
to 300 K, then EFð0Þ ffi 1 eV (as for metals) corresponds to approximately
12,000 K. So for temperatures well below 12,000 K, our results are certainly valid.

A similar calculation for the specific heat of a free electron gas using Hartree–
Fock theory yields Cv / ðT= ln T), which is not even qualitatively correct. This
shows that Coulomb correlations really do have some importance, and our
free-electron theory does well only because the errors (involved in neglecting both
Coulomb corrections and exchange) approximately cancel.

Arnold Sommerfeld—“Father of Modern Theoretical Physics”

b. Königsberg, Prussia (Germany) (1868–1951)

Drude–Sommerfeld Model; Applied Fermi-Dirac Statistics to Drude Model;
Fine Structure Constant; Six Volume book on Lectures in Theoretical Physics

Sommerfeld’s major contribution to Solid State Physics was applying
quantum mechanical results to the free electron model. Specifically this was
in using Fermi-Dirac Statistics on the Drude Model that explained, for
example, the linear low temperatures of specific heats of metals. He was also
noted as a teacher and mentor; many of his students (e.g. Heisenberg, Pauli,
Debye) won Nobel prizes. He seemed to have a knack for identifying Physics
talent. Many, Many of his students became famous physicists. His six volume
course of lecture is still of use.

Pauli Spin Paramagnetism (B)
The quasifree electrons in metals show both a paramagnetic and diamagnetic effect.
Paramagnetism is a fairly weak induced magnetization in the direction of the
applied field. Diamagnetism is a very weak induced magnetization opposite the
direction of the applied field. The paramagnetism of quasifree electrons is called
Pauli spin paramagnetism. This phenomenon will be discussed now because it is a
simple application of Fermi–Dirac statistics to electrons.
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For Pauli spin paramagnetism we must consider the effect of an external mag-
netic field on the spins and hence magnetic moments of the electrons. If the
magnetic moment of an electron is parallel to the magnetic field, the energy of the
electron is lowered by the magnetic field. If the magnetic moment of the electron is
in the opposite direction to the magnetic field, the energy of the electron is raised by
the magnetic field. In equilibrium at absolute zero, all of the electrons are in as low
an energy state as they can get into without violating the Pauli principle.
Consequently, in the presence of the magnetic field there will be more electrons
with magnetic moment parallel to the magnetic field than antiparallel. In other
words there will be a net magnetization of the electrons in the presence of a
magnetic field. The idea is illustrated in Fig. 3.9, where l is the magnetic moment
of the electron and H is the magnetic field.

Using (3.165), Fig. 3.9, and the definition of magnetization, we see that for
absolute zero and for a small magnetic field the net magnetization is given
approximately by

M ¼ 1
2
K

ffiffiffiffiffiffiffiffiffiffiffiffi
EFð0Þ

p
2l2l0H: ð3:180Þ

The factor of 1/2 arises because Da and Dp (in Fig. 3.9) refer only to half the total

number of electrons. In (3.180), K is given by ð1=2p2Þð2m�=�h2Þ3=2.

(a) (b)

Fig. 3.9 A magnetic field is applied to a free-electron gas. (a) Instantaneous situation, and
(b) equilibrium situation. Both (a) and (b) are at absolute zero. Dp is the density of states of
parallel (magnetic moment parallel to field) electrons. Da is the density of states of
antiparallel electrons. The shaded areas indicate occupied states
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Equations (3.180) and (3.174) give the following results for the magnetic
susceptibility:

v ¼ @M
@H

¼ l0l
2
ffiffiffiffiffiffiffiffiffiffiffiffi
EFð0Þ

p 3N
2

EFð0Þ½ ��3=2¼ 3Nl0l
2

2EFð0Þ ;

or, if we substitute for EF,

v ¼ 3Nl0l
2

2kTFð0Þ : ð3:181Þ

This result was derived for absolute zero, it is fairly good for all T � TF(0). The
only trouble with the result is that it is hard to compare to experiment. Experiment
measures the total magnetic susceptibility. Thus the above must be corrected for the
diamagnetism of the ion cores and the diamagnetism of the conduction electrons if
it is to be compared to experiment. Better agreement with experiment is obtained if
we use an appropriate effective mass, in the evaluation of TF(0), and if we try to
make some corrections for exchange and Coulomb correlation.

Wolfgang Pauli

b. Vienna, Austria (1900–1958)

Nobel Prize—1945 exclusion principle; Brilliant review article on Relativity;
Introduced idea of neutrino to conserve energy in beta decay; Spin-Statistics
Theorem (integer particles are bosons, half integral particles are fermions)

Pauli another pioneer in quantum mechanics is as noted familiar for his
exclusion principle, among other ideas. A general statement of this principle
is because of the antisymmetry of the wave function; two fermions cannot be
in the same completely specified state. A common but less general statement
is two electrons cannot be in the same energy level with the same quantum
numbers.

Pauli is also noted for being brilliant and arrogant. Sometimes he was
called the conscious of physics, and other times he is described by the fol-
lowing story (perhaps apocryphal). At a seminar Pauli did not like the pre-
sentation so stopped it. The speaker said, “We do not all think as fast as you
Pauli,” Pauli paused and then said, “That’s true, but you should think faster
than you talk.” Pauli is supposed to have said about a paper he thought was
bad, “This isn’t right. It’s not even wrong.”

Landau Diamagnetism (B)
It has already beenmentioned that quasifree electrons show a diamagnetic effect. This
diamagnetic effect is referred to as Landau diamagnetism. This section will not be a
complete discussion of Landau diamagnetism. The main part will be devoted to
solving exactly the quantum-mechanical problem of a free electron moving in a
region in which there is a constant magnetic field. We will find that this situation
yields a particularly simple set of energy levels. Standard statistical-mechanical
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calculations can then be made, and it is from these calculations that a prediction of the
magnetic susceptibility of the electron gas can be made. The statistical-mechanical
analysis is rather complicated, and it will only be outlined. The analysis here is also
closely related to the analysis of the de Haas-van Alphen effect (oscillations of
magnetic susceptibility in a magnetic field). The de Haas-van Alphen effect will be
discussed in Chap. 5. This section is also related to the quantum Hall effect, see
Sect. 12.7.2. In SI units, neglecting spin effects, the Hamiltonian of an electron in a
constant magnetic field described by a vector potential A is (here e > 0)

H ¼ 1
2m

pþ eAð Þ2¼ � �h2

2m
$2 þ e�h

2mi
$ � Aþ e�h

2mi
A � $þ e2

2m
A2: ð3:182Þ

Using $ � ðAwÞ ¼ A � $wþw$ � A; we can formally write the Hamiltonian as

H ¼ � �h2

2m
r2 þ e�h

2mi
$ � Aþ e�h

mi
A � $þ e2

2m
A2: ð3:183Þ

A constant magnetic field in the z direction is described by the nonunique vector
potential

A ¼ � l0Hy
2

îþ l0Hx
2

ĵ: ð3:184Þ

To check this result we use the defining relation

l0H ¼ $� A; ð3:185Þ

and after a little manipulation it is clear that (3.184) and (3.185) imply H ¼ Hk̂: It is
also easy to see that A defined by (3.184) implies

$ � A ¼ 0: ð3:186Þ
Combining (3.183), (3.184), and (3.186), we find that the Hamiltonian for an

electron in a constant magnetic field is given by

H ¼ � �h2

2m
r2 þ e�hl0H

2mi
x
@

@y
� y

@

@x


 �
þ e2l20H

2

8m
x2 þ y2
� �

: ð3:187Þ

It is perhaps worth pointing out that (3.187) plus a central potential is a Hamiltonian
often used for atoms. In the atomic case, the term ðx@=@y� y@=@xÞ gives rise to
paramagnetism (orbital), while the term (x2 + y2) gives rise to diamagnetism. For
free electrons, however, we will retain both terms as it is possible to obtain an exact
energy eigenvalue spectrum of (3.187).

The exact energy eigenvalue spectrum of (3.187) can readily be found by making
three transformations. The first transformation that it is convenient to make is
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w x; y; zð Þ ¼ / x; y; zð Þ exp iel0H
2

xy
�h


 �
: ð3:188Þ

Substituting (3.188) into Hw ¼ Ew withH given by (3.187), we see that / satisfies
the differential equation

� �h2

2m
r2/� e�hl0H

im
x
@/
@y

þ H2l20 e2

2m
x2/ ¼ E/: ð3:189Þ

A further transformation is suggested by the fact that the effective Hamiltonian of
(3.189) does not involve y or z so py and pz are conserved:

/ x; y; zð Þ ¼ FðxÞ exp �i kyyþ kzz
� �� �

: ð3:190Þ

This transformation reduces the differential equation to

d2F
dx2

þ AþBxð Þ2F ¼ CF; ð3:191Þ

or more explicitly

� �h2

2m
d2F
dx2

þ 1
2m

�hky � Hl0ð ÞðexÞ� �2
F ¼ E � �h2k2z

2m


 �
F: ð3:192Þ

Finally, if we make a transformation of the dependent variable x,

x1 ¼ x� �hky
eHl0

; ð3:193Þ

then we find

� �h2

2m
d2F

d x1ð Þ2 þ e2H2l20
2m

x1
� �2

F ¼ E � �h2k2z
2m


 �
F: ð3:194Þ

Equation (3.194) is the equation of a harmonic oscillator. Thus the allowed energy
eigenvalues are

En;kz ¼
�h2k2z
2m

þ �hxc nþ 1
2


 �
; ð3:195Þ

where n is an integer and

xc � eHl0
m

����
���� ð3:196Þ

is just the cyclotron frequency.
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This quantum-mechanical result can be given quite a simple classical meaning.
We think of the electron as describing a helix about the magnetic field. The helical
motion comes from the fact that, in general, the electron may have a velocity
parallel to the magnetic field (which velocity is unaffected by the magnetic field) in
addition to the component of velocity that is perpendicular to the magnetic field.
The linear motion has the kinetic energy p2=2m ¼ �h2k2z =2m, while the circular
motion is quantized and is mathematically described by harmonic oscillator wave
functions.

It is at this stage that the rather complex statistical-mechanical analysis must be
made. Landau diamagnetism for electrons in a periodic lattice requires a still more
complicated analysis. The general method is to compute the free energy and con-
centrate on the terms that are monotonic in H. Then thermodynamics tells us how to
relate the free energy to the magnetic susceptibility.

A beginning is made by calculating the partition function for a canonical
ensemble,

Z ¼
X
i

exp �Ei=kTð Þ; ð3:197Þ

where Ei is the energy of the whole system in state i, and i may represent several
quantum numbers. [Proper account of the Pauli principle must be taken in calcu-
lating Ei from (3.195).] The Helmholtz free energy F is then obtained from

F ¼ �kT ln Z; ð3:198Þ

and from this the magnetization is determined:

M ¼ @F
l0@H

: ð3:199Þ

Finally the magnetic susceptibility is determined from

v ¼ @M
@H


 �
H¼ 0

: ð3:200Þ

The approximate result obtained for free electrons is

vLandau ¼ � 1
3
vPauli ¼ �Nl0l

2=2kTF : ð3:201Þ

Physically, Landau diamagnetism (negative v) arises because the coalescing of
energy levels [described by (3.195)] increases the total energy of the system.
Fermi–Dirac statistics play an essential role in making the average energy increase.
Seitz [82] is a basic reference for this section.
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Lev Landau—The Soviet Grand Master

b. Baku, Russia (now Azerbaijan) (1908–1968)

Superfluidity-Rotons and the study of liquid helium; Believed in free love

Landau was perhaps Russia’s greatest physicist. He was a prodigy and
obtained his Ph.D. at 21. Besides superfluidity he developed the quantum
theory of diamagnetism, the theory of the Fermi liquid and the idea of Landau
quasi-particles, as well as the Ginzburg–Landau theory of superconductivity.
His special field was all of Physics. He won the Nobel Prize in physics in
1962. He died at 60 from lingering effects of a car wreck.

He is also well known for the “Landau-Lifshitz” series of books covering
most of classical physics and beyond. Physicists are fond of saying about
these books, “not one word of Landau nor one idea of Lifshitz.”

Landau was arrested in 1938 for comparing Stalin to Hitler. Pyotr Kapitsa
wrote a letter to Stalin to assist the release of Landau. Landau reciprocated in
a way by explaining the discovery of Kapitsa that Helium was superfluid.

Landau’s theoretical minimum exam was famous and only about forty
students passed it in his time. This was Landau’s entry-level exam for the-
oretical physics. It contained what Landau felt was necessary to work in that
field.

Like many Soviet era physicists he was an atheist. He also believed in the
practice of free love about which his wife is reputed to not have been in
agreement.

According to László Tisza, Landau was very abrasive, and had disliked
certain people such as the physicist Fritz London.

Some of Landau’s areas of accomplishments:

1. Electrons in a magnetic field, Landau Levels.
2. Neutron stars.
3. Cosmic rays and electron showers.
4. General ideas of second order phase transitions, order parameter, broken

symmetry.
5. Superfluidity in liquid helium (rotons).
6. Ferromagnets and magnetic domains.
7. Fermi liquids and Landau quasi particles.
8. Hydrogen bomb.
9. Density matrices.

10. Ginzburg–Landau theory of superconductors.
11. Landau damping in plasmas.
12. Tunneling.
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Soft X-ray Emission Spectra (B)
So far we have discussed the concept of density of states but we have given no
direct experimental way of measuring this concept for the quasifree electrons. Soft
X-ray emission spectra give a way of measuring the density of states. They are even
more directly related to the concept of the bandwidth. If a metal is exposed to a
beam of electrons, electrons may be knocked out of the inner or bound levels. The
conduction-band electrons tend to drop into the inner or bound levels and they emit
an X-ray photon in the process. If E1 is the energy of a conduction-band electron
and E2 is the energy of a bound level, the conduction-band electron emits a photon
of angular frequency

x ¼ E1 � E2ð Þ=�h:

Because these X-ray photons have, in general, low frequency compared to other
X-rays, they are called soft X-rays. Compare Fig. 3.10. The conduction-band width
is determined by the spread in frequency of all the X-rays. The intensities of the
X-rays for the various frequencies are (at least approximately) proportional to the
density of states in the conduction band. It should be mentioned that the measured
bandwidths so obtained are only the width of the occupied portion of the band. This
may be less than the actual bandwidth.

The results of some soft X-ray measurements have been compared with Hartree
calculations.12 Hartree–Fock theory does not yield nearly so accurate agreement
unless one somehow fixes the omission of Coulomb correlation. With the advent of
synchrotron radiation, soft X-rays have found application in a wide variety of areas.
See Smith [3.51].

The Wiedemann–Franz Law (B)
This law applies to metals where the main carriers of both heat and charge are
electrons. It states that the thermal conductivity is proportional to the electrical
conductivity times the absolute temperature. Good conductors seem to obey this
law quite well if the temperature is not too low.

Fig. 3.10 Soft X-ray emission

12See Raimes [3.42, Table I, p. 190].
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The straightforward way to derive this law is to derive simple expressions for the
electrical and thermal conductivity of quasifree electrons, and to divide the two
expressions. Simple expressions may be obtained by kinetic theory arguments that
treat the electrons as classical particles. The thermal conductivity will be derived first.

Suppose one has a homogeneous rod in which there is a temperature gradient of
@T=@z along its length. Suppose Q units of energy cross any cross-sectional area
(perpendicular to the axis of the rod) of the rod per unit area per unit time. Then the
thermal conductivity k of the rod is defined as

k ¼
_Q

@T=@z

����
����: ð3:202Þ

Figure 3.11 sets the notation for our calculation of the thermal conductivity.

If an electron travels a distance equal to the mean free path k after leaving the
(x, y)-plane at an angle h, then it has a mean energy

Eð0Þþ k cos h
@E
@z

: ð3:203Þ

Note that h going from 0 to p takes care of both forward and backward motion. If
N is the number of electrons per unit volume and u is their average velocity, then
the number of electrons that cross unit area of the (x, y)-plane in unit time and that
make an angle between h and h + dh with the z-axis is

2p sin hdh
4p

Nu cos h ¼ 1
2
Nu cos h sin hdh: ð3:204Þ

Fig. 3.11 Picture used for a simple kinetic theory calculation of the thermal conductivity.
E(0) is the mean energy of an electron in the (x, y)-plane, and k is the mean free path of an
electron. A temperature gradient exists in the z direction
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From (3.203) and (3.204) it can be seen that the net energy flux is

_Q ¼ k
@T
@z

����
���� ¼ 1

2
Nu
Zp
0

cos h sin h Eð0Þþ k cos h
@E
@z


 �
dh

¼ 1
2
Nu
Zp
0

k cos2 h sin h
@E
@z

dh

¼ 1
3
Nuk

@E
@z

¼ 1
3
Nuk

@E
@T

@T
@z

;

but since the heat capacity is C ¼ Nð@E=@TÞ, we can write the thermal conduc-
tivity as

k ¼ 1
3
Cuk: ð3:205Þ

Equation (3.205) is a basic equation for the thermal conductivity. Fermi–Dirac
statistics can somewhat belatedly be put in by letting u ! uF (the Fermi velocity)
where

1
2
mu2F ¼ kTF ; ð3:206Þ

and by using the correct (by Fermi–Dirac statistics) expression for the heat capacity,

C ¼ p2Nk2T
mu2F

: ð3:207Þ

It is also convenient to define a relaxation time s:

s � k=uF : ð3:208Þ

The expression for the thermal conductivity of an electron gas is then

k ¼ p2

3
Nk2sT
m

: ð3:209Þ

If we replace m by a suitable m* in (3.209), then (3.209) would probably give more
reliable results.

An expression is also needed for the electrical conductivity of a gas of electrons.
We follow here essentially the classical Drude–Lorentz theory. If vi is the velocity
of electron i, we define the average drift velocity of N electrons to be

v ¼ 1
N

XN
i¼1

vi: ð3:210Þ
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If s is the relaxation time for the electrons (or the mean time between collisions) and
a constant external field E is applied to the gas of the electrons, then the equation of
motion of the drift velocity is

m
d v
dt

þ v
s
¼ �eE: ð3:211Þ

The steady-state solution of (3.211) is

v ¼ �esE=m: ð3:212Þ

Thus the electric current density j is given by

j ¼ �Nev ¼ Ne2 s=mð ÞE: ð3:213Þ

Therefore, the electrical conductivity is given by

r ¼ Ne2s=m: ð3:214Þ

Equation (3.214) is a basic equation for the electrical conductivity. Again, (3.214)
agrees with experiment more closely if m is replaced by a suitable m*.

Dividing (3.209) by (3.214), we obtain the law of Wiedemann and Franz:

k
r
¼ p2

3
k
e


 �2

T ¼ LT ; ð3:215Þ

where L is by definition the Lorenz number and has a value of 2.45 � 10−8

w�X�K−2. At room temperature, most metals do obey (3.215); however, the
experimental value of k=rT may easily differ from L by 20% or so. Of course, we
should not be surprised as, for example, our derivation assumed that the relaxation
times for both electrical and thermal conductivity were the same. This perhaps is a
reasonable first approximation when electrons are the main carriers of both heat and
electricity. However, it clearly is not good when the phonons carry an appreciable
portion of the thermal energy.

We might also note in the derivation of the Wiedemann–Franz law that the
electrons are treated as partly classical and more or less noninteracting, but it is
absolutely essential to assume that the electrons collide with something. Without
this assumption, s ! 1 and our equations obviously make no sense. We also see
why the Wiedemann–Franz law may be good even though the expressions for k and
r were only qualitative. The phenomenological and unknown s simply cancelled
out on division. For further discussion of the conditions for the validity of
Wiedemann–Franz law see Berman [3.4].

There are several other applications of the quasifree electron model as it is often
used in some metals and semiconductors. Some of these will be treated in later
chapters. These include thermionic and cold field electron emission (Chap. 11), the
plasma edge and transparency of metals in the ultraviolet (Chap. 10), and the Hall
effect (Chap. 6).
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Ludwig Lorenz

b. Helsingør, Denmark (1829–1891)

He was known for the Wiedemann–Franz–Lorenz Law and the Lorenz gauge
in Maxwell’s equations of electrodynamics.

Angle-resolved Photoemission Spectroscopy (ARPES) (B)
Starting with Spicer [3.52], a very effective technique for learning about band
structure has been developed by looking at the angular dependence of the photo-
electric effect. When light of suitable wavelength impinges on a metal, electrons are
emitted and this is the photoelectric effect. Einstein explained this by saying the
light consisted of quanta called photons of energy R ¼ �hx where x is the fre-
quency. For emission of electrons the light has to be above a cutoff frequency, in
order that the electrons have sufficient energy to surmount the energy barrier at the
surface.

The idea of angle-resolved photoemission is based on the fact that the compo-
nent of the electron’s wave vector k parallel to the surface is conserved in the
emission process. Thus there are three conserved quantities in this process: the two
components of k parallel to the surface, and the total energy. Various experimental
techniques are then used to unravel the energy band structure for the band in which
the electron originally resided [say the valence band Ev(k)]. One technique con-
siders photoemission from differently oriented surfaces. Another uses high enough
photon energies that the final state of the electron is free-electron like. If one
assumes high energies so there is ballistic transport near the surface then k per-
pendicular to the surface is also conserved. Energy conservation and experiment
will then yield both k perpendicular and Ev(k), and k parallel to the surface can also
by obtained from experiment—thus Ev(k) is obtained. In most cases, the photon
momentum can be neglected compared to the electron’s ħk.13

William E. Spicer—“The Helpful Physicist”

b. Baton Rouge, Louisiana, USA (1929–2004)

Photoemission Spectroscopy as a way of learning about band structure; An
improved X-ray image intensifier especially for medical uses; Night Vision
devices used particularly for the military; Co-founder of Stanford
Synchrotron Radiation Laboratory

13A longer discussion is given by Marder [3.34 Footnote 3, p. 654].
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Bill Spicer had learning and speech difficulties when he was young and
because of this he was very helpful to students with any kind of impediments
including women and minorities. His Ph.D. was from the U of Missouri-
Columbia and in early career he worked for RCAResearch Laboratories. Then,
for over forty years he was at Stanford. He supervised the Ph.D. theses of over
80 students and authored over 700 papers. He was also a great inventor, as one
can see from the list above of some of his accomplishments.

3.2.3 The Problem of One Electron in a Three-Dimensional
Periodic Potential

There are two easy problems in this section and one difficult problem. The easy
problems are the limiting cases where the periodic potential is very strong or where
it is very weak. When the periodic potential is very weak, we can treat it as a
perturbation and we say we have the nearly free-electron approximation. When the
periodic potential is very strong, each electron is almost bound to a minimum in the
potential and so one can think of the rest of the lattice as being a perturbation on
what is going on in this minimum. This is known as the tight binding approxi-
mation. For the interesting bands in most real solids neither of these methods is
adequate. In this intermediate range we must use much more complex methods such
as, for example, orthogonalized plane wave (OPW), augmented plane wave (APW),
or in recent years more sophisticated methods. Many methods are applicable only at
high symmetry points in the Brillouin zone. For other places we must use more
sophisticated methods or some sort of interpolation procedure. Thus this section
breaks down to discussing easy limiting cases, harder realistic cases, and interpo-
lation methods.

Metals, Insulators, and Semiconductors (B)
From the band structure and the number of electrons filling the bands, one can
predict the type of material one has. If the highest filled band is full of electrons and
there is a sizeable gap (3 eV or so) to the next band, then one has an insulator.
Semiconductors result in the same way except the bandgap is smaller (1 eV or so).
When the highest band is only partially filled, one has a metal. There are other
issues, however. Band overlapping can complicate matters and cause elements to
form metals, as can the Mott transition (qv) due to electron-electron interactions.
The simple picture of solids with noninteracting electrons in a periodic potential
was exhaustively considered by Bloch and Wilson [97].

The Easy Limiting Cases in Band Structure Calculations (B)
The Nearly Free-Electron Approximation (B) Except for the one-dimensional
calculation, we have not yet considered the effects of the lattice structure.
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Obviously, the smeared out positive ion core approximation is rather poor, and the
free-electron model does not explain all experiments. In this section, the effects of
the periodic potential are considered as a perturbation. As in the one-dimensional
Kronig–Penny calculation, it will be found that a periodic potential has the effect of
splitting the allowed energies into bands. It might be thought that the nearly
free-electron approximation would have little validity. In recent years, by the
method of pseudopotentials, it has been shown that the assumptions of the nearly
free-electron model make more sense than one might suppose.

In this section it will be assumed that a one-electron approximation (such as the
Hartree approximation) is valid. The equation that must be solved is

� �h2

2m
r2 þVðrÞ

� �
wkðrÞ ¼ EkwkðrÞ: ð3:216Þ

Let R be any direct lattice vector that connects equivalent points in two unit cells.
Since V(r) = V(r + R), we know by Bloch’s theorem that we can always choose the
wave functions to be of the form

wkðrÞ ¼ eik�rUkðrÞ;

where Uk(r) = Uk(r + R).
Since both Uk and V have the fundamental translational symmetry of the crystal,

we can make a Fourier analysis [71] of them in the form

VðrÞ ¼
X
K

VðKÞeiK�r ð3:217Þ

UkðrÞ ¼
X
K

UðKÞeiK�r: ð3:218Þ

In the above equations, the sum over K means to sum over all the lattice points in
the reciprocal lattice. Substituting (3.217) and (3.218) into (3.216) with the Bloch
condition on the wave function, we find that

�h2

2m

X
K

UðKÞ kþKj j2eiK�r þ
X
K1;K11

V K1� �
U K11� �

ei K1 þK11ð Þ�r ¼ Ek

X
K

UðKÞeiK�r:

ð3:219Þ

By equating the coefficients of eiK�r, we find that

�h2

2m
kþKj j2�Ek


 �
UðKÞ ¼ �

X
K1

V K1� �
U K � K1� �

: ð3:220Þ
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If we had a constant potential, then all V(K) with K 6¼ 0 would equal zero. Thus
it makes sense to assume in the nearly free-electron approximation (in other words
in the approximation that the potential is almost constant) that V(K) � V(0). As we
will see, this also implies that U(K) � U(0).

Therefore (3.220) can be approximately written

Ek � Vð0Þ � �h2

2m
kþKj j2

� �
UðKÞ ¼ VðKÞUð0Þ 1� d0K

� �
: ð3:221Þ

Note that the part of the sum in (3.220) involving V(0) has already been placed in
the left-hand side of (3.221). Thus (3.221) with K = 0 yields

Ek ffi Vð0Þþ �h2k2

2m
: ð3:222Þ

These are the free-particle eigenvalues. Using (3.222) and (3.221), we obtain for
K 6¼ 0 in the same approximation:

UðKÞ
Uð0Þ ¼ � m

�h2
VðKÞ

k � Kþ 1
2
K2

: ð3:223Þ

Note that the above approximation obviously fails when

k � Kþ 1
2
K2 ¼ 0; ð3:224Þ

if V(K) is not equal to zero.
The k that satisfy (3.224) (for each value of K) span the surface of the Brillouin

zones. If we construct all Brillouin zones except those for which V(K) = 0 then we
have the Jones zones.

Condition (3.224) can be given an interesting interpretation in terms of Bragg
reflection. This situation is illustrated in Fig. 3.12. The k in the figure satisfy
(3.224). From Fig. 3.12,

k sin h ¼ 1
2
K: ð3:225Þ

Fig. 3.12 Brillouin zones and Bragg reflection
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But k ¼ 2p=k, where k is the de Broglie wavelength of the electron, and one can
find K for which k ¼ n � 2 p=a, where a is the distance between a given set of
parallel lattice planes (see Sect. 1.2.9 where this is discussed in more detail in
connection with X-ray diffraction). Thus we conclude that (3.225) implies that

2p
k
sin h ¼ 1

2
n
2p
a
; ð3:226Þ

or that

np ¼ 2a sin h: ð3:227Þ

Since h can be interpreted as an angle of incidence or reflection, (3.227) will be
recognized as the familiar law describing Bragg reflection. It will presently be shown
that at the Jones zone, there is a gap in the E versus k energy spectrum. This happens
because the electron is Bragg reflected and does not propagate, and this is what we
mean by having a gap in the energy. It will also be shown that when V(K) = 0 there is
no gap in the energy. This last fact is not obvious from the Bragg reflection picture.
However, we now see why the Jones zones are the important physical zones. It is
only at the Jones zones that the energy gaps appear. Note also that (3.225) indicates a
simple way of defining the Brillouin zones by construction. We just draw reciprocal
space. Starting from any point in reciprocal space, we draw straight lines connecting
this point to all other points. We then bisect all these lines with planes perpendicular
to the lines. Starting from the point of interest; these planes form the boundaries of
the Brillouin zones. The first zone is the first enclosed volume. The second zone is
the volume between the first set of planes and the second set. The idea should be
clear from the two-dimensional representation in Fig. 3.13.

Fig. 3.13 Construction of Brillouin zones in reciprocal space: (a) the first Brillouin zone,
and (b) the second Brillouin zone. The dots are lattice points in reciprocal space. Any vector
joining two dots is a K-type reciprocal vector
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To finish the calculation, let us treat the case when k is near a Brillouin zone
boundary so that U(K1) may be very large. Equation (3.220) then gives two
equations that must be satisfied:

Ek � Vð0Þ � �h2

2m
kþK1
�� ��2� �

U K1
� � ¼ V K1

� �
Uð0Þ; K1 6¼ 0; ð3:228Þ

Ek � Vð0Þ � �h2

2m
k2

� �
Uð0Þ ¼ V �K1� �

U K1� �
: ð3:229Þ

The equations have a nontrivial solution only if the following secular equation is
satisfied:

Ek � Vð0Þ � �h2

2m
kþK1� �2 �V K1

� �
�V �K1
� �

Ek � Vð0Þ � �h2

2m
K2

�������
������� ¼ 0: ð3:230Þ

By Problem 3.7 we know that (3.230) is equivalent to

Ek ¼ 1
2

E0
k þE0

k1

� �
� 1
2

4 V K1� ��� ��2 þ E0
k þE0

k1

� �2� �1=2
; ð2:231Þ

where

E0
k ¼ Vð0Þþ �h2

2m
k2; ð2:232Þ

and

E0
k1 ¼ Vð0Þþ �h2

2m
kþK1� �2

: ð3:233Þ

For k on the Brillouin zone surface of interest, i.e. for k2 = (k + K1)2, we see that
there is an energy gap of magnitude

Eþ
k � E�

k ¼ 2 V K1� ��� ��: ð3:234Þ

This proves our point that the gaps in energy appear whenever VðK1Þ�� �� 6¼ 0:
The next question that naturally arises is: “When does V(K1) = 0?” This question

leads to a discussion of the concept of the structure factor. The structure factor
arises whenever there is more than one atom per unit cell in the Bravais lattice.

If there are m atoms located at the coordinates rb in each unit cell, if we assume
each atom contributes U(r) (with the coordinate system centered at the center of the
atom) to the potential, and if we assume the potential is additive, then with a fixed
origin the potential in any cell can be written
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VðrÞ ¼
Xm
b¼1

U r� rbð Þ: ð3:235Þ

Since V(r) is periodic in a unit cube, we can write

VðrÞ ¼
X
K

VðKÞeik � r; ð2:236Þ

where

VðKÞ ¼ 1
X

Z
X

VðrÞe�iK � rd3r; ð3:237Þ

and X is the volume of a unit cell. Combining (3.235) and (3.237), we can write the
Fourier coefficient

VðKÞ ¼ 1
X

Xm
b¼1

Z
X

U r� rbð Þe�iK � rbd3r

¼ 1
X

Xm
b¼1

Z
X

U r0ð Þe�iK � r0 þ rbð Þd3r0

¼ 1
X

Xm
b¼1

e�iK � rb
Z
X

U r0ð Þe�iK � r0d3r0;

or

VðKÞ � SKvðKÞ ð3:238Þ

where

SK �
Xm
b¼1

e�iK � rb ; ð3:239Þ

(structure factors are also discussed in Sect. 1.2.9) and

vðKÞ � 1
X

Z
X

U r1
� �

e�iK � r1d3r1: ð3:240Þ

SK is the structure factor, and if it vanishes, then so does V(K). If there is only one
atom per unit cell, then SKj j ¼ 1: With the use of the structure factor, we can
summarize how the first Jones zone can be constructed:
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1. Determine all planes from

k � Kþ 1
2
K2 ¼ 0:

2. Retain those planes for which SK 6¼ 0, and that enclose the smallest volume in
k space.

To complete the discussion of the nearly free-electron approximation, the
pseudopotential needs to be mentioned. However, the pseudopotential is also used
as a practical technique for band-structure calculations, especially in semiconduc-
tors. Thus we discuss it in a later section.

The Tight Binding Approximation (B)14

This method is often called by the more descriptive name linear combination of
atomic orbitals (LCAO). It was proposed by Bloch, and was one of the first types of
band-structure calculation. The tight binding approximation is valid for the inner or
core electrons of most solids and approximately valid for all electrons in an
insulator.

All solids with periodic potentials have allowed and forbidden regions of energy.
Thus it is no great surprise that the tight binding approximation predicts a band
structure in the energy. In order to keep things simple, the tight binding approxi-
mation will be done only for the s-band (the band of energy formed by s-electron
states).

To find the energy bands one must solve the Schrödinger equation

Hw0 ¼ E0w0; ð3:241Þ

where the subscript zero refers to s-state wave functions. In the spirit of the tight
binding approximation, we attempt to construct the crystalline wave functions by
using a superposition of atomic wave functions

w0ðrÞ ¼
XN
i¼1

di/0 r� Rið Þ: ð3:242Þ

In (3.242), N is the number of the lattice ions, /0 is an atomic s-state wave function,
and the Ri are the vectors labeling the location of the atoms.

If the di are chosen to be of the form

di ¼ eik �Ri ; ð3:243Þ

14For further details see Mott and Jones [71].

202 3 Electrons in Periodic Potentials



then w0(r) satisfies the Bloch condition. This is easily proved:

w rþRkð Þ ¼
X
i

eik �Ri/0 rþRk � Rið Þ

¼ eik �Rk
X
i

eik � Ri�Rkð Þ/0 r� Ri � Rkð Þ½ �

¼ eik �RkwðrÞ:

Note that this argument assumes only one atom per unit cell. Actually a much more
rigorous argument for

w0ðrÞ ¼
XN
i¼1

eik �Ri/0 r� Rið Þ ð3:244Þ

can be given by the use of projection operators.15 Equation (3.244) is only an
approximate equation for w0(r).

Using (3.244), the energy eigenvalues are given approximately by

E0 ffi
R
w�
0Hw0dsR
w�
0w0ds

; ð3:245Þ

where H is the crystal Hamiltonian.
We define an atomic Hamiltonian

Hi ¼ � �h2=2m
� �r2 þV0 r� Rið Þ; ð3:246Þ

where V0(r − Ri) is the atomic potential. Then

Hi/0 r� Rið Þ ¼ E0
0/0 r� Rið Þ; ð3:247Þ

and

H�Hi ¼ VðrÞ � V0 r� Rið Þ; ð3:248Þ

where E0
0 and U0 are atomic eigenvalues and eigenfunctions, and V is the crystal

potential energy.
Using (3.244), we can now write

Hw0 ¼
XN
i¼1

eik �Ri Hi þ H�Hið Þ½ �/0 r� Rið Þ;

15See Löwdin [3.33].
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or

Hw0 ¼ E0
0w0 þ

XN
i¼1

eik �Ri VðrÞ � V0 r� Rið Þ½ �/0 r� Rið Þ: ð3:249Þ

Combining (3.245) and (3.249), we readily find

E0 � E0
0 ffi

PN
i¼1 e

ik �Ri
R
w�
0 VðrÞ � V0 r� Rið Þ½ �/0 r� Rið ÞdsR

w�
0w0ds

: ð3:250Þ

Using (3.244) once more, this last equation becomes

E0 � E0
0 ffi

P
i;j e

ik � Ri�Rjð Þ R /�
0 r� Rj
� �

VðrÞ � V0 r� Rið Þ½ �/0 r� Rið ÞdsP
i;j e

ik � Ri�Rjð Þ R /�
0 r� Rj
� �

/0 r� Rið Þds
:

ð3:251Þ

Neglecting overlap, we have approximatelyZ
/�
0 r� Rj
� �

/0 r� Rið Þds ffi di;j:

Combining (3.250) and (3.251) and using the periodicity of V(r), we have

E0 � E0
0 ffi

1
N

X
i;j

eik � Ri�Rjð Þ
Z

/�
0 r� Rj � Ri

� �� �
VðrÞ � V0 rið Þ½ �/0ðrÞds;

or

E0 � E0
0 ffi

X
l

e�ik �Rl

Z
/�
0 r� Rlð Þ VðrÞ � V0ðrÞ½ �/0ðrÞds: ð3:252Þ

Assuming that the terms in the sum of (3.252) are very small beyond nearest
neighbors, and realizing that only s-wave functions (which are isotropic) are
involved, then it is useful to define two parameters:Z

/�
0ðrÞ VðrÞ � V0ðrÞ½ �/0ðrÞds ¼ �a; ð3:253Þ

Z
/�
0 rþR0

l

� �
VðrÞ � V0ðrÞ½ �/0ðrÞds ¼ �c; ð3:254Þ

where R0
l is a vector of the form Rl for nearest neighbors.
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Thus the tight binding approximation reduces to a two-parameter (a, c) theory
with the dispersion relationship (i.e. the E vs. k relationship) for the s-band given by

E0 � E0
0 � a

� � ¼ �c
X
jðn:n:Þ

eik �R
0
j : ð3:255Þ

Explicit expressions for (3.255) are easily obtained in three cases

1. The simple cubic lattice. Here

R0
j ¼ �a; 0; 0ð Þ; 0;�a; 0ð Þ; 0; 0;�að Þ;

and

E0 � E0
0 � a

� � ¼ �2c cos kxaþ cos kyaþ cos kza
� �

:

The bandwidth in this case is given by 12c.
2. The body-centered cubic lattice. Here there are eight nearest neighbors at

R0
j ¼

1
2

�a;�a;�að Þ:

Equation (3.255) and a little algebra gives

E0 � E0
0 � a

� � ¼ �8c cos
kxa
2


 �
cos

kya
2


 �
cos

kza
2


 �
:

The bandwidth in this case is 16c.
3. The face-centered cubic lattice. Here the 12 nearest neighbors are at

R0
j ¼

1
2

0;�a;�að Þ; 1
2

�a; 0;�að Þ; 1
2

�a;�a; 0ð Þ:

A little algebra gives

E0 � E0
0 � a

� � ¼ �4c cos
kya
2


 �
cos

kza
2


 �
þ cos

kza
2


 �
cos

kxa
2


 ��

þ cos
kxa
2


 �
cos

kya
2


 ��
:

The bandwidth for this case is 16c. The tight binding approximation is valid
when c is small, i.e., when the bands are narrow.

As must be fairly obvious by now, one of the most important results that we get
out of an electronic energy calculation is the density of states. It was fairly easy to
get the density of states in the free-electron approximation (or more generally when
E is a quadratic function kj jÞ. The question that now arises is how we can get a
density of states from a general dispersion relation similar to (3.255).
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Since the k in reciprocal space are uniformly distributed, the number of states in
a small volume dk of phase space (per unit volume of real space) is

2
d3k

ð2pÞ3 :

Now look at Fig. 3.14 that shows a small volume between two constant electronic
energy surfaces in k-space.

From the figure we can write

d3k ¼ dsdk?:

But

de ¼ $keðkÞj jdk?;

so that if DðeÞ is the number of states between e and e + de, we have

DðeÞ ¼ 2

ð2pÞ3
Z
s

ds
$keðkÞj j: ð3:256Þ

Equation (3.256) can always be used to calculate a density of states when a dis-
persion relation is known. As must be obvious from the derivation, (3.256) applies
also to lattice vibrations when we take into account that phonons have different
polarizations (rather than the different spin directions that we must consider for the
case of electrons).

Tight binding approximation calculations are more complicated for p, d., etc.,
bands, and also when there is an overlapping of bands. When things get too
complicated, it may be easier to use another method such as one of those that will
be discussed in the next section.

The tight binding method and its generalizations are often subsumed under the
name linear combination of atomic orbital (LCAO) methods. The tight binding

Fig. 3.14 Infinitesimal volume between constant energy surfaces in k-space
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method here gave the energy of an s-band as a function of k. This energy depended
on the interpolation parameters a and c. The method can be generalized to include
other interpolation parameters. For example, the overlap integrals that were
neglected could be treated as interpolation parameters. Similarly, the integrals for
the energy involved only nearest neighbors in the sum. If we summed to
next-nearest neighbors, more interpolation parameters would be introduced and
hence greater accuracy would be achieved.

Results for the nearly free-electron approximation, the tight binding approxi-
mation, and the Kronig–Penny model are summarized in Table 3.3.

The Wigner–Seitz Method (1933) (B)
The Wigner–Seitz method [3.57] was perhaps the first genuine effort to solve the
Schrödinger wave equation and produce useful band-structure results for solids.
This technique is generally applied to the valence electrons of alkali metals. It will
also help us to understand their binding. We can partition space with polyhedra.
These polyhedra are constructed by drawing planes that bisect the lines joining each

Table 3.3 Simple models of electronic bands

Model Energies

Nearly free electron near Brillouin
zone boundary on surface where

k � Kþ 1
2
K2 ¼ 0

Ek ¼ 1
2

E0
k þE0

k0
� �� 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E0
k � E0

k0
� �2 þ 4 VðKÞj j2

q

E0
k ¼ Vð0Þþ �h2k2

2m

E0
k0 ¼ Vð0Þþ �h2

2m
kþKð Þ2

VðKÞ ¼ 1
X

Z
X
VðrÞe�iK � rdV

X ¼ unit cell volume

Tight binding A;B appropriately chosen parameters: a ¼ cell side

Simple cube Ek ¼ A� B cos kxaþ cos kyaþ cos kza
� �

Body-centered cubic Ek ¼ A� 4B cos
Kxa
2

cos
Kya
2

cos
Kza
2

Face-centered cubic
Ek ¼ A� 2B cos

Kxa
2

cos
Kya
2




þ cos
Kya
2

cos
Kza
2

þ cos
Kza
2

cos
Kxa
2

�

Kronig–Penny

r ¼
ffiffiffiffiffiffiffiffiffi
2mE

�h2

r
P ¼ mub

�h2
a

a—barriers
u—height of barriers
b—width of barrier

cos ka ¼ cos raþP
sin ka
ra

determines energies in b! 0, ua! constant limit
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atom to its nearest neighbors (or further neighbors if necessary). The polyhedra so
constructed are called the Wigner–Seitz cells.

Sodium is a typical solid for which this construction has been used (as in the
original Wigner–Seitz work, see [3.57]), and the Na+ ions are located at the center
of each polyhedron. In a reasonable approximation, the potential can be assumed to
be spherically symmetric inside each polyhedron.

Let us first consider Bloch wave functions for which k = 0 and deal with only
s-band wave functions.

The symmetry and periodicity of this wave function imply that the normal
derivative of it must vanish on the surface of each boundary plane. This boundary
condition would be somewhat cumbersome to apply, so the atomic polyhedra are
replaced by spheres of equal volume having radius r0. In this case the boundary
condition is simply written as

@w0

@r


 �
r¼r0

¼ 0: ð3:257Þ

With k = 0 and a spherically symmetric potential, the wave equation that must be
solved is simply

� �h2

2mr2
d
dr

r2
d
dr


 �
þVðrÞ

� �
w0 ¼ Ew0; ð3:258Þ

subject to the boundary condition (3.257). The simultaneous solution of (3.257) and
(3.258) gives both the eigenfunction w0 and the eigenvalue E.

The biggest problem remaining is the usual problem that confronts one in
making band-structure calculations. This is the problem of selecting the correction
core potential in each polyhedra. We select V(r) that gives a best fit to the electronic
energy levels of the isolated atom or ion. Note that this does not imply that the
eigenvalue E of (3.258) will be a free-ion eigenvalue, because we use boundary
condition (3.257) on the wave function rather than the boundary condition that the
wave function must vanish at infinity. The solution of (3.258) may be obtained by
numerically integrating this radial equation.

Once w0 has been obtained, higher k value wave functions may be approximated
by

wkðrÞ ffi eik � rw0; ð3:259Þ

with w0 = w0(r) being the same in each cell. This set of wave functions at least has
the virtue of being nearly plane waves in most of the atomic volume, and of
wiggling around in the vicinity of the ion cores as physically they should.

Finally, a Wigner–Seitz calculation can be used to explain, from the calculated
eigenvalues, the cohesion of metals. Physically, the zero slope of the wave function
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causes less wiggling of the wave function in a region of nearly constant potential
energy. Thus the kinetic and hence total energy of the conduction electrons is
lowered. Lower energy means cohesion. The idea is shown schematically in
Fig. 3.15.16

The Augmented Plane Wave Method (A)
The augmented plane wave method was developed by J. C. Slater in 1937, but
continues in various forms as a very effective method. (Perhaps the best early
reference is Slater [88] and also the references contained therein as well as Loucks
[63] and Dimmock [3.16].) The basic assumption of the method is that the potential
in a spherical region near an atom is spherically symmetric, whereas the potential in
regions away from the atom is assumed constant. Thus one gets a “muffin tin” as
shown in Fig. 3.16.

The Schrödinger equation can be solved exactly in both the spherical region and
the region of constant potential. The solutions in the region of constant potential are
plane waves. By choosing a linear combination of solutions (involving several
l values) in the spherical region, it is possible to obtain a fit at the spherical surface
(in value, not in normal derivative) of each plane wave to a linear combination of

Fig. 3.15 The boundary condition on the wave function w0 in the Wigner–Seitz model.
The free-atom wave function is w

Fig. 3.16 The “muffin tin” potential of the augmented plane wave method

16Of course there are much more sophisticated techniques nowadays using the density functional
techniques. See, e.g., Schlüter and Sham [3.44] and Tran and Pewdew [3.55].
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spherical solutions. Such a procedure gives an augmented plane wave for one
Wigner–Seitz cell. (As already mentioned, Wigner–Seitz cells are constructed in
direct space in the same way first Brillouin zones are constructed in reciprocal
space.) We can extend the definition of the augmented plane wave to all points in
space by requiring that the extension satisfy the Bloch condition. Then we use a
linear combination of augmented plane waves in a variational calculation of the
energy. The use of symmetry is quite useful in this calculation.

Before a small mathematical development of the augmented plane method is
made, it is convenient to summarize a few more facts about it. First, the exact
crystalline potential is never either exactly constant or precisely spherically sym-
metric in any region. Second, a real strength of early augmented plane wave
methods lay in the fact that the boundary conditions are applied over a sphere
(where it is relatively easy to satisfy them) rather than over the boundaries of the
Wigner–Seitz cell where it is relatively hard to impose and satisfy reasonable
boundary conditions. The best linear combination of augmented plane waves
greatly reduces the discontinuity in normal derivative of any single plane wave. As
will be indicated later, it is only at points of high symmetry in the Brillouin zone
that the APW calculation goes through well. However, nowadays with huge
computing power, this is not as big a problem as it used to be. The augmented plane
wave has also shed light on why the nearly free-electron approximation appears to
work for the alkali metals such as sodium. In those cases where the nearly
free-electron approximation works, it turns out that just one augmented plane wave
is a good approximation to the actual crystalline wave function.

The APW method has a strength that has not yet been emphasized. The potential
is relatively flat in the region between ion cores and the augmented plane wave
method takes this flatness into account. Furthermore, the crystalline potential is
essentially identical to an atomic potential when one is near an atom. The aug-
mented plane wave method takes this into account also.

The augmented plane wave method is not completely rigorous, since there are
certain adjustable parameters (depending on the approximation) involved in its use.
The radius R0 of the spherically symmetric region can be such a parameter. The
main constraint on R0 is that it be smaller than r0 of the Wigner–Seitz method. The
value of the potential in the constant potential region is another adjustable
parameter. The type of spherically symmetric potential in the spherical region is
also adjustable, at least to some extent.

Let us now look at the augmented plane wave method in a little more detail.
Inside a particular sphere of radius R0, the Schrödinger wave equation has a solution

/aðrÞ ¼
X
l;m

dlmRl r;Eð ÞYlm h;/ð Þ: ð3:260Þ

For other spheres, U/aðrÞ is constructed from (3.260) so as to satisfy the Bloch
condition. In (3.260), Rl(r, E) is a solution of the radial wave equation and it is a
function of the energy parameter E. The dlm are determined by fitting (3.260) to a
plane wave of the form eik � r. This gives a different /a ¼ /a

k for each value of k. The
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functions/a
k that are either plane waves or linear combinations of spherical harmonics

(according to the spatial region of interest) are the augmented plane waves /a
kðrÞ.

The most general function that can be constructed from augmented plane waves
and that satisfies Bloch’s theorem is

wkðrÞ ¼
X
Gn

KkþGn/
a
kþGn

ðrÞ: ð3:261Þ

The use of symmetry has already reduced the number of augmented plane waves that
have to be considered in any given calculation. If we form a wave function that
satisfies Bloch’s theorem, we form a wave function that has all the symmetry that the
translational symmetry of the crystal requires. Once we do this, we are not required to
mix together wave functions with different reduced wave vectors k in (3.261).

The coefficients Kk+Gn, are determined by a variational calculation of the energy.
This calculation also gives E(k). The calculation is not completely straightforward,
however. This is because of the E(k) dependence that is implied in the Rl(r, E) when
the dlm are determined by fitting spherical solutions to plane waves. Because of this,
and other obvious complications, the augmented plane wave method is practical to
use only with a digital computer, which nowadays is not much of a restriction. The
great merit of the augmented plane wave method is that if one works hard enough
on it, one gets good results.

There is yet another way in which symmetry can be used in the augmented plane
wave method. By the use of group theory we can also take into account some
rotational symmetry of the crystal. In the APW method (as well as the OPW
method, which will be discussed) group theory may be used to find relations among
the coefficients Kk+Gn. The most accurate values for E(k) can be obtained at the
points of highest symmetry in the zone. The ideas should be much clearer after
reasoning from Fig. 3.17, which is a picture of a two-dimensional reciprocal space
with a very simple symmetry.

Fig. 3.17 Points of high symmetry (C, D, X, R, M) in the Brillouin zone [Adapted from
Ziman JM, Principles of the Theory of Solids, Cambridge University Press, New York, 1964,
Fig. 53, p. 99. By permission of the publisher.]
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For the APW (or OPW) expansions, the expansions are of the form

wk ¼
X
n

Kk�Gnwk�Gn
:

Suppose it is assumed that only G1 through G8 need to be included in the
expansions. Further assume we are interested in computing EðkDÞ for a k on the D
symmetry axis. Then due to the fact that the calculation cannot be affected by
appropriate rotations in reciprocal space, we must have

Kk�G2 ¼ Kk�G8 ; Kk�G3 ¼ Kk�G7 ; Kk�G4 ¼ Kk�G6 ;

and so we have only five independent coefficients rather than eight (in three
dimensions there would be more coefficients and more relations). Complete details
for applying group theory in this way are available.17 At a general point k in
reciprocal space, there will be no relations among the coefficients.

Figure 3.18 illustrates the complexity of results obtained by an APW calculation
of several electronic energy bands in Ni. The letters along the horizontal axis refer

Fig. 3.18 Self-consistent energy bands in ferromagnetic Ni along the three principal
symmetry directions. The letters along the horizontal axis refer to different symmetry points
in the Brillouin zone [refer to Bouckaert LP, Smoluchowski R, and Wigner E, Physical
Review, 50, 58 (1936) for notation] [Reprinted by permission from Connolly JWD, Physical
Review, 159(2), 415 (1967). Copyright 1967 by the American Physical Society.]

17See Bouckaert et al. [3.7].
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to different symmetry points in the Brillouin zone. For a more precise definition of
terms, the paper by Connolly can be consulted. One rydberg (Ry) of energy equals
approximately 13.6 eV. Results for the density of states (on Ni) using the APW
method are shown in Fig. 3.19. Note that in Connolly’s calculations, the fact that
different spins may give different energies is taken into account. This leads to the
concept of spin-dependent bands. This is tied directly to the fact that Ni is
ferromagnetic.

Fig. 3.19 Density of states for up (a) and down (b) spins in ferromagnetic Ni [Reprinted by
permission from Connolly JWD, Physical Review, 159(2), 415 (1967). Copyright 1967 by the
American Physical Society.]
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The Orthogonalized Plane Wave Method (A)
The orthogonalized plane wave method was developed by C. Herring in 1940.18

The orthogonalized plane wave (OPW) method is fairly similar to the augmented
plane wave method, but it does not seem to be as much used. Both methods address
themselves to the same problem, namely, how to have wave functions wiggle like an
atomic function near the cores but behave as a plane wave in regions far from the
core. Both are improvements over the nearly free-electron method and the tight
binding method. The nearly free-electron model will not work well when the wiggles
of the wave function near the core are important because it requires too many plane
waves to correctly reproduce these wiggles. Similarly, the tight binding method does
not work when the plane-wave behavior far from the cores is important because it
takes too many core wave functions to reproduce correctly the plane-wave behavior.

The basic assumption of the OPW method is that the wiggles of the
conduction-band wave functions near the atomic cores can be represented by terms
that cause the conduction-band wave function to be orthogonal to the core-band
wave functions. We will see how (in the section The Pseudopotential Method) this
idea led to the idea of the pseudopotential. The OPW method can be stated fairly
simply. To each plane wave we add on a sum of (Bloch sums of) atomic core wave
functions. The functions formed in the previous sentence are orthogonal to Bloch
sums of atomic wave functions. The resulting wave functions are called the OPWs
and are used to construct trial wave functions in a variational calculation of the
energy. The OPW method uses the tight binding approximation for the core wave
functions.

Let us be a little more explicit about the technical details of the OPW method.
Let Ctk(r) be the crystalline atomic core wave functions (where t labels different
core bands). The conduction band states wk should look very much like plane
waves between the atoms and like core wave functions near the atoms. A good
choice for the base set of functions for the trial wave function for the conduction
band states is

wk ¼ eik � r �
X
t

KtCtkðrÞ: ð3:262Þ

The Hamiltonian is Hermitian and so wk and Ctk(r) must be orthogonal. With Kt

chosen so that

wk;Ctkð Þ ¼ 0; ð3:263Þ

where ðu; vÞ ¼ R u�vds, we obtain the orthogonalized plane waves

wk ¼ eik � r �
X
t

Ctk; eik � r
� �

CtkðrÞ: ð3:264Þ

18See [3.21, 3.22].
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Linear combinations of OPWs satisfy the Bloch condition and are a good choice for
the trial wave function wT

k .

wT
k ¼

X
l0

Kk�Gl0wk�Gl0 : ð3:265Þ

The choice for the core wave functions is easy. Let /tðr�RlÞ be the atomic
“core” states appropriate to the ion site Rl. The Bloch wave functions constructed
from atomic core wave functions are given by

Ctk ¼
X
l

eik �Rl/t r� Rlð Þ: ð3:266Þ

We discuss in Appendix C how such a Bloch sum of atomic orbitals is guaranteed
to have the symmetry appropriate for a crystal.

Usually only a few (at a point of high symmetry in the Brillouin zone) OPWs are
needed to get a fairly good approximation to the crystal wave function. It has
already been mentioned how the use of symmetry can help in reducing the number
of variational parameters. The basic problem remaining is to choose the
Hamiltonian (i.e. the potential) and then do a variational calculation with (3.265) as
the trial wave function.

For a detailed list of references to actual OPW calculations (as well as other
band-structure calculations) the book by Slater [89] can be consulted. Rather
briefly, the OPW method was first applied to beryllium and has since been applied
to diamond, germanium, silicon, potassium, and other crystals.

Conyers Herring—“A Bell Man”

b. Scotia, New York, USA (1914–2009)

Orthogonalized Plane Wave Method (OPW); Theoretical Division at Bell
Telephone Laboratories; Spin Waves in Metals and Many other contributions
in Solid State Physics; Wolf Prize (1984/1985)

Conyers Herringwas unusual in that he was an excellent physicist and I have
yet to hear anyone say anything but praise about him both in physics and as a
man. He grew up in a small town inKansas and took his bachelors in the physics
department at KU (The University of Kansas). He got his Ph.D. at Princeton
underWigner and spent a year at the University ofMissouri in Columbia before
joining Bell Labs. He retired from there at age 65 and then spent almost 30 years
at Stanford in the Applied Physics Department. He did important work in metal
physics, electronic structure, defects, and surfaces among many other areas. It
appears the best way to characterize him is as the physicist’s physicist.
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Better Ways of Calculating Electronic Energy Bands (A)
The process of calculating good electronic energy levels has been slow in reaching
accuracy. Some claim that the day is not far off when computers can be pro-
grammed so that one only needs to push a few buttons to obtain good results for any
solid. It would appear that this position is somewhat overoptimistic. The comments
below should convince you that there are many remaining problems.

In an actual band-structure calculation there are many things that have to be
decided. We may assume that the Born–Oppenheimer approximation and the
density functional approximation (or Hartree–Fock or whatever) introduce little
error. But we must always keep in mind that neglect of electron–phonon interac-
tions and other interactions may importantly affect the electronic density of states.
In particular this may lead to errors in predicting some of the optical properties. We
should also remember that we do not do a completely self-consistent calculation.

The exchange-correlation term in the density functional approximation is diffi-
cult to treat exactly so it can be approximated by the free-electron-like Slater q1/3

term [88] or the related local density approximation. However, density functional
techniques suggest some factor19 other than the one Slater suggests should multiply
the q1/3 term. In the treatment below we will not concern ourselves with this
problem. We shall just assume that the effects of exchange (and correlation) are
somehow lumped approximately into an ordinary crystalline potential.

This latter comment brings up what is perhaps the crux of an energy-band
calculation. Just how is the “ordinary crystalline potential” selected? We don’t want
to do an energy-band calculation for all electrons in a solid. We want only to
calculate the energy bands of the outer or valence electrons. The inner or core
electrons are usually assumed to be the same in a free atom as in an atom that is in a
solid. We never rigorously prove this assumption.

Not all electrons in a solid can be thought of as being nonrelativistic. For this
reason it is sometimes necessary to put in relativistic corrections.20

Before we discuss other techniques of band-structure calculations, it is conve-
nient to discuss a few features that would be common to any method.

For any crystal and for any method of energy-band calculation we always start
with a Hamiltonian. The Hamiltonian may not be very well known but it always is
invariant to all the symmetry operations of the crystal. In particular the crystal
always has translational symmetry. The single-electron Hamiltonian satisfies the
equation,

H p; rð Þ ¼ H p; rþRlð Þ; ð3:267Þ

for any Rl.

19See Kohn and Sham [3.29].
20See Loucks [3.32].
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This property allows us to use Bloch’s theorem that we have already discussed
(see Appendix C). The eigenfunctions wnk (n labeling a band, k labeling a wave
vector) of H can always be chosen so that

wnkðrÞ ¼ eik � rUnkðrÞ; ð3:268Þ

where

Unk rþRlð Þ ¼ UnkðrÞ: ð3:269Þ

Three possible Hamiltonians can be listed,21 depending on whether we want to
do (a) a completely nonrelativistic calculation, (b) a nonrelativistic calculation with
some relativistic corrections, or (c) a completely relativistic calculation, or at least
one with more relativistic corrections than (b) has.

(a) Schrödinger Hamiltonian:

H ¼ p2

2m
þVðrÞ: ð3:270Þ

(b) Low-energy Dirac Hamiltonian:

H ¼ p2

2m0
� p4

8m3
0c

2
þV þ �h2

4m2
0c

2
r � $V � pð Þ � $V � $w½ �; ð3:271Þ

where m0 is the rest mass and the third term is the spin-orbit coupling term (see
Appendix F). (More comments will be made about spin-orbit coupling later in
this chapter).

(c) Dirac Hamiltonian:

H ¼ bm0c
2 þ ca � pþV ; ð3:272Þ

where a and b are the Dirac matrices (see Appendix F).

Finally, two more general comments will be made on energy-band calculations.
The first is in the frontier area of electron-electron interactions. Some related
general comments have already been made in Sect. 3.1.4. Here we should note that
no completely accurate method has been found for computing electronic correla-
tions for metallic densities that actually occur [78], although the density functional
technique [3.27] provides, at least in principle, an exact approach for dealing with
ground-state many-body effects. Another comment has to do with Bloch’s theorem
and core electrons. There appears to be a paradox here. We think of core electrons
as having well-localized wave functions but Bloch’s theorem tells us that we can
always choose the crystalline wave functions to be not localized. There is no

21See Blount [3.6].
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paradox. It can be shown for infinitesimally narrow energy bands that either
localized or nonlocalized wave functions are possible because a large energy
degeneracy implies many possible descriptions [87, Vol. II, p. 154ff, 95, p. 160].
Core electrons have narrow energy bands and so core electronic wave functions can
be thought of as approximately localized. This can always be done. For narrow
energy bands, the localized wave functions are also good approximations to energy
eigenfunctions.22

Paul A. M. Dirac—The Solitary Genius

b. Bristol, England, UK (1902–1984)

Dirac Equation; Reclusive-Shy

Dirac used a form of relativistic quantum mechanics to discover his
famous equation and predict the existence of the positron and in general of
antiparticles. He introduced the idea of the vacuum as it is discussed in field
theory. He also derived the correct value of the magnetic moment of the
electron as well as considered the possible existence of the magnetic
monopole. He introduced the notation of bra and ket, which is widely used in
quantum mechanics. He was also famous for his very reticent personality. He
certainly was not a social person and perhaps even had a mild form of autism
(Aspergers). His work illustrated that truth and beauty may go together and
lead to discoveries. Dirac is also known for Fermi-Dirac statistics, but he
himself always called it just Fermi statistics.

As mentioned Dirac (Nobel 1933, at age 31) was terribly shy. He certainly
was addicted to long periods of silence. Thus it was a surprise when he
married a very social divorcee who happened to be Eugene Wigner’s sister.
Apparently, however, Paul and Margit Dirac were well married.

Here is a story I have heard. I hope I have the details correct. Dirac gave a
lecture and after the lecture somebody said something like, “Professor Dirac,
I did not understand that last equation you wrote down.” Then there was
silence. Dirac said nothing. Finally the moderator of the lectures said
something like, “Prof. Dirac, would you like to respond to the last question?”
Dirac replied, “That was not a question, it was a statement.”

Interpolation and Pseudopotential Schemes (A)
An energy calculation is practical only at points of high symmetry in the Brillouin
zone. This statement is almost true but, of course, as computers become more and
more efficient, calculations at a general point in the Brillouin zone become more

22For further details on band structure calculations, see Slater [88, 89, 90] and Jones and March
[3.26, Chap. 1].
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and more practical. Still, it will be a long time before the calculations are so “dense”
in k-space that no (nontrivial) interpolations between calculated values are neces-
sary. Even if such calculations were available, interpolation methods would still be
useful for many considerations in which their accuracy was sufficient. The inter-
polation methods are the LCAO method (already mentioned in the tight binding
method section), the pseudopotential method (which is closely related to the OPW
method and will be discussed), and the k � p method. Since the first two methods
have other uses let us discuss the k � p method.

The k � p Method (A)23 We let the index n label different bands. The solutions of

Hwnk ¼ EnðkÞwnk ð3:273Þ

determine the energy band structure En(k). By Bloch’s theorem, the wave functions
can be written as

wnk ¼ eik � rUnk:

Substituting this result into (3.273) and multiplying both sides of the resulting
equation by e−ik � r gives

e�ik � rHeik � r
� �

Unk ¼ EnðkÞUnk: ð3:274Þ

It is possible to define

H pþ �hk; rð Þ � e�ik � rHeik � r: ð3:275Þ

It is not entirely obvious that such a definition is reasonable; let us check it for a
simple example.

If H ¼ p2=2m; then Hðpþ �hkÞ ¼ ð1=2mÞðp2 þ 2�hk � pþ �h2k2Þ: Also

e�ik � rHeik � rF ¼ 1
2m

e�ik � r � �h
i
$


 �2

eik � rF

¼ 1
2m

p2 þ 2�hk � pþ �hkð Þ2
h i

F;

which is the same as Hðpþ �hkÞ½ �F for our example.
By a series expansion

H pþ �hk; rð Þ ¼ Hþ @H
@p


 �
� �hkþ 1

2

X3
i;j¼1

@2H
@pi@pj


 �
�hkið Þ �hkj

� �
: ð3:276Þ

23See Blount [3.6].

3.2 One-Electron Models 219



Note that if H ¼ p2=2m; where p is an operator, then

$pH � @H
@p

¼ p
m
� v; ð3:277Þ

where v might be called a velocity operator. Further

@2H
@pi@pl

¼ 1
m
dil; ð3:278Þ

so that (3.276) becomes

H pþ �hk; rð Þ ffi Hþ �hk � vþ �h2k2

2m
: ð3:279Þ

Then

H pþ �hkþ �hk0; rð Þ ¼ Hþ �h kþ k0ð Þ � vþ �h2

2m
kþ k0ð Þ2

¼ Hþ �hk � vþ �h2

2m
k2 þ �hk0 � vþ �h2

2m
k � k0 þ �h2

2m
k0 2

¼ H pþ �hk; rð Þþ �hk0 � vþ �hk
2m


 �
þ �h2

2m
k0 2:

Defining

vðkÞ � vþ �hk=m; ð3:280Þ

and

H0 ¼ �hk0 � vðkÞþ �h2k0 2

2m
; ð3:281Þ

we see that

H pþ �hkþ �hk0ð Þ ffi H pþ �hk; rð ÞþH0: ð3:282Þ

Thus comparing (3.274), (3.275), (3.180), (3.181), and (3.282), we see that if we
know Unk, Enk, and v for a k, we can find En,k+k′ for small k′ by perturbation theory.
Thus perturbation theory provides a means of interpolating to other energies in the
vicinity of Enk.

The Pseudopotential Method (A) The idea of the pseudopotential relates to the
simple idea that electron wave functions corresponding to different energies are
orthogonal. It is thus perhaps surprising that it has so many ramifications as we will
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indicate below. Before we give a somewhat detailed exposition of it, let us start
with several specific comments that otherwise might be lost in the ensuing details.

1. In one form, the idea of a pseudopotential originated with Enrico Fermi [3.17].
2. The pseudopotential and OPW methods are focused on constructing valence

wave functions that are orthogonal to the core wave functions. The pseu-
dopotential method clearly relates to the orthogonalized plane wave method.

3. The pseudopotential as it is often used today was introduced by Phillips and
Kleinman [3.40].

4. More general formalisms of the pseudopotential have been given by Cohen and
Heine [3.14] and Austin et al [3.3].

5. In the hands of Marvin Cohen it has been used extensively for band-structure
calculations of many materials—particularly semiconductors (Cohen [3.11],
and also [3.12, 3.13]).

6. W. A. Harrison was another pioneer in relating pseudopotential calculations to
the band structure of metals [3.19].

7. The use of the pseudopotential has not died away. Nowadays, e.g., people are
using it in conjunction with the density functional method (for an introduction,
see, e.g., Marder [3.34, p. 232ff].

8. Two complications of using the pseudopotential are that it is nonlocal and
nonunique. We will show these below, as well as note that it is short range.

9. There are many aspects of the pseudopotential. There is the empirical pseu-
dopotential method (EPM), ab initio calculations, and the pseudopotential can
also be considered with other methods for broad discussions of solid-state
properties [3.12].

10. As we will show below, the pseudopotential can be used as a way to assess the
validity of the nearly free-electron approximation, using the so-called cancel-
lation theorem.

11. Since the pseudopotential, for valence states, is positive it tends to cancel the
attractive potential in the core leading to an empty-core method (ECM).

12. We will also note that the pseudopotential projects into the space of core wave
functions, so its use will not change the valence eigenvalues.

13. Finally, the use of pseudopotentials has grown vastly and we can only give an
introduction. For further details, one can start with amonograph like Singh [3.45].

We start with the original Phillips–Kleinman derivation of the pseudopotential
because it is particularly transparent.

Using a one-electron picture, we write the Schrödinger equation as

H wj i ¼ E wj i; ð3:283Þ

where H is the Hamiltonian of the electron in energy state E with corresponding
eigenket wj i. For core eigenfunctions cj i
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H cj i ¼ Ec cj i: ð3:284Þ

If wj i is a valence wave function, we require that it be orthogonal to the core wave
functions. Thus for appropriate /j i it can be written

wj i ¼ /j i �
X
c0

c0j i c0h j/i; ð3:285Þ

so cjwh i ¼ 0 for all c; c0 2 the core wave functions. /j i will be a relatively smooth
function as the “wiggles” of wj i in the core region that are necessary to make
cjwh i ¼ 0 are included in the second term of (3.285) (This statement is complicated
by the nonuniqueness of /j i as we will see below). See also Ziman [3.59, p. 53].

Substituting (3.285) in (3.283) and (3.284) yields, after rearrangement

HþVRð Þ /j i ¼ E /j i; ð3:286Þ

where

VR /j i ¼
X
c

E � Ecð Þ cj i ch j/i: ð3:287Þ

Note VR has several properties:

a. It is short range since the wave function wc corresponds to cj i and is short range.
This follows since if r r0j i ¼ r0 r0j i is used to define rj i, then wc rð Þ ¼ rjch i.

b. It is nonlocal since

r0 VRj j/h i ¼
X
c

E � Ecð Þwcðr0Þ
Z

w�
cðrÞ/ðrÞdV ;

or VR/ðrÞ 6¼ f ðrÞ/ðrÞ but rather the effect of VR on / involves values of /ðrÞ for
all points in space.

c. The pseudopotential is not unique. This is most easily seen by letting /j i !
/j i þ d /j i (provided d /j i can be expanded in core states). By substitution
d wj i ! 0 but

dVR /j i ¼
X
c

E � Ecð Þ c d/j ijch i 6¼ 0:

d. Also note that E > Ec, when dealing with valence wave functions so VR > 0 and
since V < 0, V þVRj j\ Vj j: This is an aspect of the cancellation theorem.

e. Note also, by (3.287) that since VR projects /j i into the space of core wave
functions it will not affect the valence eigenvalues as we have mentioned and
will see in more detail later.

Since H ¼ T þV where T is the kinetic energy operator and V is the potential
energy, if we define the total pseudopotential Vp as
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Vp ¼ V þVR; ð3:288Þ

then (3.286) can be written as

T þVp
� �

/j i ¼ E /j i: ð3:289Þ

To derive further properties of the pseudopotential it is useful to develop the
formulation of Austin et al. We start with the following five equations:

Hwn ¼ Enwn n ¼ c or vð Þ; ð3:290Þ

Hp/n ¼ HþVRð Þ/n ¼ En/n allowing for several/ð Þ; ð3:291Þ

VR/ ¼
X
c

Fcj/h iwc; ð3:292Þ

where note Fc is arbitrary so VR is not yet specified.

/c ¼
X
c0

acc0wc0 þ
X
v

acvwv; ð3:293Þ

/v ¼
X
c

avcwc þ
X
v0

avv0wv0 : ð3:294Þ

Combining (3.291) with n = c and (3.293), we obtain

HþVRð Þ

X

c0
acc0wc0 þ

X
v

avv0wv

�
¼ En


X
c0

acc0wc0 þ
X
v

acv0wv0

�
: ð3:295Þ

Using (3.283), we haveX
c0

acc0Ec0wc0 þ
X
v

avvEvwv þ
X
c0

acc0VRwc0 þ
X
v

acvVRwv

¼ Ec


X
c0

acc0wc0 þ
X
v

acvwv

�
:

ð3:296Þ

Using (3.292), this last equation becomesX
c0

acc0Ec0wc0 þ
X
v

acvEvwv þ
X
c0

acc0
X
c

Fcjwc0h iwc

þ
X
v

acv
X
c

Fcjwvh iwc ¼ Ec


X
c0

acc0wc0 þ
X
v

acvwv

�
:

ð3:297Þ
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This can be recast as

X
c0c00

Ec0 � Ec
� �

dc
00
c0 þ Fc0 jwc00h i

h i
acc00wc0

þ
X
c0

X
v

acv Fc0 jwvh iwc0
X
v

acv Ev � Ec
� �

wv ¼ 0:
ð3:298Þ

Taking the inner product of (3.298) with wv0 givesX
v

acv Ev � Ec
� �

dv
0
v ¼ 0 or acv0 Ev0 � Ec

� � ¼ 0 or acv0 ¼ 0:

unless there is some sort of strange accidental degeneracy. We shall ignore such
degeneracies. This means by (3.293) that

/c ¼
X
c0v

acc0wc0 : ð3:299Þ

Equation (3.298) becomes

X
c0c00

Ec0 � Ec
� �

dc
00
c0 þ Fc0 jwc00h i

h i
acc00wc0 ¼ 0: ð3:300Þ

Taking the matrix element of (3.300) with the core state wc and summing out a
resulting Kronecker delta function, we have

X
c00

Ec � Ec
� �

dc
00
c þ Fcjwc00h i

h i
ac

0
c00 ¼ 0: ð3:301Þ

For nontrivial solutions of (3.301), we must have

det Ec � Ec
� �

dc
00
c þ Fcjwc00h i

h i
¼ 0: ð3:302Þ

The point to (3.302) is that the “core” eigenvalues Ec are formally determined.
Combining (3.291) with n = v, and using /v from (3.294), we obtain

HþVRð Þ

X

c

avcwc þ
X
v0

avv0wv0

�
¼ Ev


X
c

avcwc þ
X
v0

avv0wv0

�
:

By (3.283) this becomesX
c

amcEcwc þ
X
v0

avv0Ev0wv0 þ
X
c

avcVRwc þ
X
v0

avv0VRwv0

¼ Ev


X
c

avcwc þ
X
v0

avv0wv0

�
:
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Using (3.292), this becomesX
c

avc Ec � Ev
� �

wc þ
X
v0

avv0 Ev0 � Ev
� �

wv0 þ
X
c

avc
X
c

Fcjwch iwc0

þ
X
v0

avv0
X
c

Fcjwv0h iwc ¼ 0:
ð3:303Þ

With a little manipulation we can write (3.303) asX
c;c0

Ec � Ev
� �

dcc0 þ Fcjwc0h i� �
avc0wc

þ
X
c

avv Fcjwvh iwc þ
X

v0ð6¼vÞ;c
avv0 Fcjwv0h iwc

þ Ev � Ev
� �

avvwv þ
X
v0ð6¼vÞ

Ev0 � Ev
� �

avv0wv0 ¼ 0:

ð3:304Þ

Taking the inner product of (3.304) with wv, and wv″, we find

Ev � Ev
� �

avv ¼ 0; ð3:305Þ

and

Ev00 � Ev
� �

avv00 ¼ 0: ð3:306Þ
This implies that Ev � Ev and

avv00 ¼ 0:

The latter result is really true only in the absence of degeneracy in the set of Ev.
Combining with (3.294), we have (if avv ¼ 1Þ

/v ¼ wv þ
X
c

avcwc: ð3:307Þ

Equation (3.304) can now be writtenX
c0

Ec00 � Evð Þdc0c00 þ Fc00 jwc0h i
h i

avc0 ¼ � Fc00 jwvh i: ð3:308Þ

With these results we can understand the general pseudopotential theorem as given
by Austin et al.:

The pseudo-Hamiltonian HP ¼ HþVR, where VR/ ¼Pc Fcj/h iwc, has the same
valence eigenvalues Ev as H does. The eigenfunctions are given by (3.299) and
(3.307).

We get a particularly interesting form for the pseudopotential if we choose the
arbitrary function to be
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Fc ¼ �Vwc: ð3:309Þ

In this case

VR/ ¼
X
c

wcjV j/h iwc; ð3:310Þ

and thus the pseudo-Hamiltonian can be written

Hp/n ¼ T þV þVRð Þ/n ¼ T/n þV/n �
X
c

wc wcjV/nh i: ð3:311Þ

Note that by completeness

V/n ¼
X
m

amwm

¼
X
m

wm wmjV/nh i

¼
X
c

wc wcjV/nh iþ
X
v

wv wvjV/nh i;

so

V/n ¼
X
c

wc wcjV/nh i ¼
X
v

wv wvjV/nh i: ð3:312Þ

If the wc are almost a complete set for V/n, then the right-hand side of (3.312) is
very small and hence

Hp/n ffi T/n: ð3:313Þ

This is another way of looking at the cancellation theorem. Notice this equation is
just the free-electron approximation, and, furthermore,HP has the same eigenvalues
as H. Thus we see how the nearly free-electron approximation is partially justified
by the pseudopotential.

Physically, the use of a pseudopotential assures us that the valence wave
functions are orthogonal to the core wave functions. Using (3.307) and the
orthonormality of the core and valence eigenfunction, we can write

wvj i ¼ /vj i �
X
c

wcj i wcj/vh i ð3:314Þ

�


I �

X
c

wcj i wch j
�

/vj i: ð3:315Þ
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The operator I �Pc wcj i wch j� �
simply projects out from /vj i all components that

are perpendicular to wcj i. We can crudely say that the valence electrons would have
to wiggle a lot (and hence raise their energy) to be in the vicinity of the core and
also be orthogonal to the core wave function. The valence electron wave functions
have to be orthogonal to the core wave functions and so they tend to stay out of the
core. This effect can be represented by an effective repulsive pseudopotential that
tends to cancel out the attractive core potential when we use the effective equation
for calculating volume wave functions.

Since VR can be constructed so as to cause V + VR to be small in the core region,
the following simplified form of the pseudopotential VP is sometimes used.

VPðrÞ ¼ � Ze
4pe0r

for r[ rcore

VPðrÞ ¼ 0 for r	 rcore
ð3:316Þ

This is sometimes called the empty-core pseudopotential or empty-core method
(ECM).

Cohen [3.12, 3.13], has developed an empirical pseudopotential model
(EPM) that has been very effective in relating band-structure calculations to optical
properties. He expresses Vp(r) in terms of Fourier components and structure factors
(see [3.12, p. 21]). He finds that only a few Fourier components need be used and
fitted from experiment to give useful results. If one uses the correct nonlocal version
of the pseudopotential, things are more complicated but still doable [3.12, p. 23].
Even screening effects can be incorporated as discussed by Cohen and Heine [3.13].

Note that the pseudopotential can be broken up into different core angular
momentum components (where the core wave functions are expressed in atomic
form). To see this, write

cj i ¼ N; Lj i;

where N is all the quantum number necessary to define c besides L. Thus

VR ¼
X
c

cj i E � Ecð Þ ch j

¼
X
L


X
N

N; Lj i E � EN;L
� �

N; Lh j
�
:

This may help in finding simplified calculations.
For further details see Chelikowsky and Louie [3.10]. This is a Festschrift in

honor of Marvin L. Cohen. This volume shows how the calculations of Cohen and
his school intertwine with experiment: in many cases explaining experimental
results, and in other cases predicting results with consequent experimental verifi-
cation. We end this discussion of pseudopotentials with a qualitative roundup.

As already mentioned, M. L. Cohen’s early work (in the 1960s) was with the
empirical pseudopotential. In brief review, the pseudopotential idea can be traced
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back to Fermi and is clearly based on the orthogonalized plane wave (OPW) method
of Conyers Herring. In the pseudopotential method for a solid, one considers the ion
cores as a background in which the valence electrons move. J. C. Phillips and L.
Kleinman demonstrated how the requirement of orthogonality of the valence wave
function to core atomic functions could be folded into the potential. M. L. Cohen
found that the pseudopotentials converged rapidly in Fourier space, and so only a
few were needed for practical calculations. These could be fitted from experiment
(reflectivity for example), and then the resultant pseudopotential was very useful in
determining the optical response—this method was particularly useful for several
semiconductors. Band structures, and even electron–phonon interactions were use-
fully determined in this way. M. L. Cohen and his colleagues have continually
expanded the utility of pseudopotentials. One of the earliest extensions was to an
angular-momentum-dependent nonlocal pseudopotential, as discussed above. This
was adopted early on in order to improve the accuracy, at the cost of more com-
putation. Of course, with modern computers, this is not much of a drawback.

Nowadays, one often uses a pseudopotential-density functional method. One can
thus develop ab initio pseudopotentials. The density functional method (in say the
local density approximation—LDA) allows one to treat the electron–electron inter-
action in the core of the atom quite accurately. As we have already shown, the density
functional method reduces amany-electron problem to a set of one-electron equations
(the Kohn–Sham equations) in a rational way. Morrel Cohen (another pioneer in the
elucidation of pseudopotentials, see Chap. 23 of Chelikowsky and Louie, op cit) has
said, with considerable truth, that the Kohn–Sham equations taught us the real
meaning of our one-electron calculations. One then uses the pseudopotential to treat
the interaction between the valence electrons and the ion core. Again as noted, the
pseudopotential allows us to understand why the electron–ion core interaction is
apparently so small. This combined pseudopotential-density functional approach has
facilitated good predictions of ground-state properties, phonon vibrations, and
structural properties such as phase transitions caused by pressure.

There are still problems that need additional attention, such as the correct pre-
diction of bandgaps, but it should not be overlooked that calculations on real
materials, not “toy” models are being considered. In a certain sense, M. L. Cohen
and his colleagues are developing a “Standard Model of Condensed Matter
Physics.” The Holy Grail is to feed in only information about the constituents, and
from there, at a given temperature and pressure, to predict all solid-state properties.
Perhaps at some stage one can even theoretically design materials with desired
properties. Along this line, the pseudopotential-density functional method is now
being applied to nanostructures such as arrays of quantum dots (nanophysics,
quantum dots, etc. are considered in Chap. 12 of Chelikowsky and Louie).

We have now described in some detail the methods of calculating the E(k) re-
lation for electrons in a perfect crystal. Comparisons of actual calculations with
experiment will not be made here. Later chapters give some details about the type
of experimental results that need E(k) information for their interpretation. In par-
ticular, the section on the Fermi surface gives some details on experimental results
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that can be obtained for the conduction electrons in metals. Further references for
band-structure calculations are in Table 3.4. See also Altman [3.1].

The pseudo potential method with variations has developed into an enormous set
of techniques for doing band structure and related calculations. To go into all of this
is well beyond the scope of this book. We give some references here to help one get
started on this path.

Two of the pioneers in the field of pseupotentials have written a textbook which
should be emphasized here.

Marvin L. Cohen and Steven G. Louie, Fundamentals of Condensed Matter
Physics, Cambridge University Press, 2016. Items on pseudopotentials can be
found on p. 58ff, and 150ff.

Table 3.4 Band structure and related references

Band-structure calculational
techniques

Reference Comments

Nearly free electron methods
(NFEM)

3.2.3 Perturbed electron gas of free
electrons

Tight binding/LCAO methods
(TBM)

3.2.3 Starts from atomic nature of
electron states

Wigner–Seitz method [3.57],
3.2.3

First approximate quantitative
solution of wave equation in
crystal

Augmented plane wave and
related methods (APW)

[3.16],
[63], 3.2.3

Muffin tin potential with
spherical wave functions inside
and plane wave outside (Slater)

Orthogonalized plane wave
methods (OPW)

Jones [58]
Ch. 6,
[3.58],
3.2.3

Basis functions are plane waves
plus core wave functions
(Herring). Related to
pseudopotential

Empirical pseudopotential
methods (EPM) as well as
Self-consistent and ab initio
pseudopotential methods

[3.12, 3.20] Builds in orthogonality to core
with a pseudopotential

Kohn–Korringa–Rostocker or
KKR Green function methods

[3.26] Related to APW

Kohn–Sham density functional
Techniques (for many-body
properties)

[3.23, 3.25,
3.27, 3.28]

For calculating ground-state
properties

k � p Perturbation Theory [3.5, 3.16,
3.26], 3.2.3

An interpolation scheme

G. W. approximation [3.2] G is for Green’s function, W for
Coulomb interaction, Evaluates
self-energy of quasi-particles

General reference [3.1, 3.37]
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Norm-conservation
D. H. Hammam, M. Schluter, and C. Chiang, Phys. Rev. Letters, 43, 1494, 1979
Kleinman-Bylander Pseudopotentials
Leonard Kleinman and D. M. Bylander, Phys. Rev. Lett. 48, 1425, 1982
Ultrasoft pseudopotentials
D. Vanderbilt, Phys. Rev. B, 41, 7892, 1990
PAW, projector augmented wave method
P. E. Blöchl, Phys. Rev. B, 50, 17953, 1994
Plane-wave density functional theory
G. Kresse and D. Joubert, Phys. Rev. B, 59, 1758, 1999
G. Kresse, J. Furthmuller, Comput. Mater. Sci., 6, 15, 1996

Marvin L. Cohen

b. Montreal, Canada (1935–)

Pseudopotentials; Nanostructures; Buckyballs and Graphene; Calculations of
realistic materials

Cohen is a Condensed Matter theorist. According to recent h-indices,
Marvin Cohen is the second most influential physicist. He has won numerous
awards such as the National Medal of Science and the Buckley award, he has
been President of the American Physical Society, but is perhaps best known as
someone, with his group, that does realistic calculation on real materials and
even predicts new materials. Except for a year at Bell Labs, he has been
associated with U. of California, Berkeley, as well as the University of
Chicago where he did his doctoral work.

The Spin-Orbit Interaction (B)
As shown in Appendix F, the spin-orbit effect can be correctly derived from the
Dirac equation. As mentioned there, perhaps the most familiar form of the spin-orbit
interaction is the form that is appropriate for spherical symmetry. This form is

H0 ¼ f ðrÞL � S: ð3:317Þ

In (3.317), H0 is the part of the Hamiltonian appropriate to the spin-orbit interaction
and hence gives the energy shift for the spin-orbit interaction. In solids, spherical
symmetry is not present and the contribution of the spin-orbit effect to the
Hamiltonian is

H ¼ �h
2m2

0c
2
S � $V � pð Þ: ð3:318Þ
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There are other relativistic corrections that derive from approximating the Dirac
equation but let us neglect these.

A relatively complete account of spin-orbit splitting will be found in Appendix 9
of the second volume of Slater’s book on the quantum theory of molecules and
solids [89]. Here, we shall content ourselves with making a few qualitative
observations. If we look at the details of the spin-orbit interaction, we find that it
usually has unimportant effects for states corresponding to a general point of the
Brillouin zone. At symmetry points, however, it can have important effects because
degeneracies that would otherwise be present may be lifted. This lifting of
degeneracy is often similar to the lifting of degeneracy in the atomic case. Let us
consider, for example, an atomic case where the j ¼ l�½ levels are degenerate in
the absence of spin-orbit interaction. When we turn on a spin-orbit interaction, two
levels arise with a splitting proportional to L � S (using J2 = L2 + S2 + 2L � S). The
energy difference between the two levels is proportional to

lþ 1
2


 �
lþ 1

3


 �
� l lþ 1ð Þ � 1

2
3
2


 �
� l� 1

2


 �
lþ 1

2


 �
þ l lþ 1ð Þþ 1

2
3
2


 �

¼ lþ 1
2


 �
lþ 3

2


 �
� lþ 1

2

� �
¼ lþ 1

2


 �
� 2 ¼ 2lþ 1:

This result is valid when l > 0. When l = 0, there is no splitting. Similar results are
obtained in solids. A practical case is shown in Fig. 3.20. Note that we might have
been able to guess (a) and (b) from the atomic consideration given above.

(a) (b) (c)

Fig. 3.20 Effect of spin-orbit interaction on the l = 1 level in solids: (a) no spin-orbit, six
degenerate levels at k = 0 (a point of cubic symmetry), (b) spin-orbit with inversion
symmetry (e.g. Ge), (c) spin-orbit without inversion symmetry (e.g. InSb) [Adapted from
Ziman JM, Principles of the Theory of Solids, Cambridge University Press, New York, 1964,
Fig. 54, p. 100. By permission of the publisher.]
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3.2.4 Effect of Lattice Defects on Electronic States
in Crystals (A)

The results that will be derived here are similar to the results that were derived for
lattice vibrations with a defect (see Sect. 2.2.5). In fact, the two methods are
abstractly equivalent; it is just that it is convenient to have a little different for-
malism for the two cases. Unified discussions of the impurity state in a crystal,
including the possibility of localized spin waves, are available.24 Only the case of
one-dimensional motion will be considered here; however, the method is extendible
to three dimensions.

The model of defects considered here is called the Slater–Koster model.25 In the
discussion below, no consideration will be given to the practical details of the
calculation. The aim is to set up a general formalism that is useful in the under-
standing of the general features of electronic impurity states.26 The Slater–Koster
model is also useful for discussing deep levels in semiconductors (see Sect. 11.3).

In order to set the notation, the Schrödinger equation for stationary states will be
rewritten:

Hwn;kðxÞ ¼ EnðkÞwn;kðxÞ: ð3:319Þ

In (3.319), H is the Hamiltonian without defects, n labels the different bands, and
k labels the states within each band. The solutions of (3.319) are assumed known.

We shall now suppose that there is a localized perturbation (described by V) on
one of the lattice sites of the crystal. For the perturbed crystal, the equation that
must be solved is

HþVð Þw ¼ Ew: ð3:320Þ

(This equation is true by definition; HþV is by definition the total Hamiltonian of
the crystal with defect.)

Green’s function for the problem is defined by

HGE x; x0ð Þ � EGE x; x0ð Þ ¼ �4pd x� x0ð Þ: ð3:321Þ

Green’s function is required to satisfy the same boundary conditions as wnkðxÞ.
Writing wnk = wm, and using the fact that the wm form a complete set, we can write

GE x; x0ð Þ ¼
X
m

AmwmðxÞ: ð3:322Þ

24See Izynmov [3.24].
25See [3.49, 3.50]
26Wannier [95, p. 181ff]
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Substituting (3.322) into the equation defining Green’s function, we obtainX
m

Am Em � Eð ÞwmðxÞ ¼ �4pd x� x0ð Þ: ð3:323Þ

Multiplying both sides of (3.323) by w�
nðxÞ and integrating, we find

An ¼ �4p
w�
n x0ð Þ

En � E
: ð3:324Þ

Combining (3.324) with (3.322) gives

GE x; x0ð Þ ¼ 4p
X
m

w�
m x0ð ÞwnðxÞ
Em � E

: ð3:325Þ

Green’s function has the property that it can be used to convert a differential
equation into an integral equation. This property can be demonstrated. Multiply
(3.320) by GE* and integrate:Z

G�
EHwdx� E

Z
G�

Ewdx ¼ �
Z

G�
EVwdx: ð3:326Þ

Multiply the complex conjugate of (3.321) by w and integrate:Z
wHG�

Edx� E
Z

G�
Ewdx ¼ �4pw x0ð Þ: ð3:327Þ

Since H is Hermitian, Z
G�

EHwdx ¼
Z

wHG�
Edx: ð3:328Þ

Thus subtracting (3.326) from (3.327), we obtain

w x0ð Þ ¼ 1
4p

Z
G�

E x; x0ð ÞVðxÞwðxÞdx: ð3:329Þ

Therefore the equation governing the impurity problem can be formally written as

wðx0Þ ¼ �
X
n;k

wn;k x0ð Þ
EnðkÞ � E

Z
w�
n;kðxÞVðxÞwðxÞdx: ð3:330Þ

Since the wn;kðxÞ form a complete orthonormal set of wave functions, we can
define another complete orthonormal set of wave functions through the use of a
unitary transformation. The unitary transformation most convenient to use in the
present problem is
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wn;kðxÞ ¼
1ffiffiffiffi
N

p
X
j

eikðjaÞAn x� jað Þ: ð3:331Þ

Equation (3.331) should be compared to (3.244), which was used in the tight
binding approximation. We see the /0 r� Rið Þ are analogous to the An(x − ja). The
/0 r� Rið Þ are localized atomic wave functions, so that it is not hard to believe that
the An(x − ja) are localized. The An(x − ja) are called Wannier functions.27

In (3.331), a is the spacing between atoms in a one-dimensional crystal (with
N unit cells) and so the ja (for j an integer) labels the coordinates of the various
atoms. The inverse of (3.331) is given by

An x� jað Þ ¼ 1ffiffiffiffi
N

p
X

kðaBrillouin zoneÞ
e�ikðjaÞwn;kðxÞ: ð3:332Þ

If we write the wn,k as functions satisfying the Bloch condition, it is possible to give a
somewhat simpler form for (3.332). However, for our purposes (3.332) is sufficient.

Since (3.332) form a complete set, we can expand the impurity-state wave
function w in terms of them:

wðxÞ ¼
X
l;i

UlðiaÞAl x� iað Þ: ð3:333Þ

Substituting (3.331) and (3.333) into (3.330) gives

X
l;i0

Ul i
0að ÞAl x� i0að Þ

¼ �
Xn;k
l;i0
j;j0

1
N

eikja

E � EnðkÞAn x0 � jað Þ
Z

e�ikj0aA�
n x� j0að ÞVUl i

0að ÞAl x� i0að Þdx:
ð3:334Þ

Multiplying the above equation by A�
m x0 � pað Þ; integrating over all space, using

the orthonormality of the Am, and defining

Vn;l j
0; ið Þ ¼

Z
A�
n x� j0að ÞVAl x� iað Þdx; ð3:335Þ

we find

X
l;i0

Ul i0að Þ dm1 d
p
i0 þ

1
N

X
k;j0

eikðpa�j0aÞ

EmðkÞ � E
Vm;l j0; j0ð Þ

" #
¼ 0: ð3:336Þ

27See Wannier [3.56].
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For a nontrivial solution, we must have

det dml d
p
i0 þ

1
N

X
k;j0

eik p�j0að Þ

EmðkÞ � E
Vm;l j

0; i0ð Þ
" #

¼ 0 ð3:337Þ

This appears to be a very difficult equation to solve, but if Vml (j′, i) = 0 for all but a
finite number of terms, then the determinant would be drastically simplified.

Once the energy of a state has been found, the expansion coefficients may be
found by going back to (3.334).

To show the type of information that can be obtained from the Slater–Koster
model, the potential will be assumed to be short range (centered on j = 0), and it
will be assumed that only one band is involved. Explicitly, it will be assumed that

Vm;l j
0; ið Þ ¼ dbl d

b
md

0
j0d

0
i0V0: ð3:338Þ

Note that the local character of the functions defined by (3.332) is needed to make
such an approximation.

From (3.337) and (3.338) we find that the condition on the energy is

f ðEÞ � N
V0

þ
X
k

1
EbðkÞ � E

¼ 0: ð3:339Þ

Equation (3.339) has N real roots. If V0 = 0, the solutions are just the unperturbed
energies Eb(k). If V0 6¼ 0, then we can use graphical methods to find E such that f
(E) is zero. See Fig. 3.21. In the figure, V0 is assumed to be negative.

Fig. 3.21 A qualitative plot of f(E) versus E for the Slater-Koster model. The crosses
determine the energies that are solutions of (3.339)
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The crosses in Fig. 3.21 are the perturbed energies; these are the roots of f(E).
The poles of f(E) are the unperturbed levels. The roots are all smaller than the
unperturbed roots if V0 is negative and larger if V0 is positive. The size of the shift
in E due to V0 is small (negligible for large N) for all roots but one. This is
characterized by saying that all but one level is “pinned” in between two unper-
turbed levels. As expected, these results are similar to the lattice defect vibration
problem. It should be intuitive, if not obvious, that the state that splits off from the
band for V0 negative is a localized state. We would get one such state for each band.

This section has discussed the effects of isolated impurities on electronic states.
We have found, except for the formation of isolated localized states, that the Bloch
view of a solid is basically unchanged. A related question is what happens to the
concept of Bloch states and energy bands in a disordered alloy. Since we do not
have periodicity here, we might expect these concepts to be meaningless. In fact,
the destruction of periodicity may have much less effect on Bloch states than one
might imagine. The changes caused by going from a periodic potential to a potential
for a disordered lattice may tend to cancel one another out.28 However, the entire
subject is complex and incompletely understood. For example, sufficiently large
disorder can cause localization of electron states.29

Problems

3:1 Use the variational principle to find the approximate ground-state energy of
the helium atom (two electrons). Assume a trial wave function of the form
exp �g r1 þ r2ð Þ½ �; where rl and r2 are the radial coordinates of the electron.

3:2 By use of (3.17) and (3.18) show that
R

wj j2ds ¼ N! Mj j2:
3:3 Derive (3.31) and explain physically why

PN
1 ek 6¼ E:

3:4 For singly charged ion cores whose charge is smeared out uniformly and for
plane-wave solutions so that wj

�� �� ¼ 1, show that the second and third terms
on the left-hand side of (3.50) cancel.

3:5 Show that

lim
k!1

k2M � k2

kkM
ln

kM þ k
kM � k

����
���� ¼ 2;

and

lim
k!kM

k2M � k2

kkM
ln

kM þ k
kM � k

����
���� ¼ 0;

relate to (3.64) and (3.65).

28For a discussion of these and related questions, see Stern [3.53], and references cited therein.
29See Cusack [3.15].
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3:6 Show that (3.230) is equivalent to

Ek ¼ 1
2

E0
k þE0

k0
� �� 1

2
4 V K0ð Þj j2 þ E0

k � E0
k0

� �2h i1=2
;

where

E0
k ¼ Vð0Þþ �h2k2

2m
and E0

k0 ¼ Vð0Þþ �h2

2m
kþK0ð Þ2:

3:7 Construct the first Jones zone for the simple cubic lattice, face-centered cubic
lattice, and body-centered cubic lattice. Describe the fcc and bcc with a sc
lattice with basis. Assume identical atoms at each lattice point.

3:8 Use (3.255) to derive E0 for the simple cubic lattice, the body-centered cubic
lattice, and the face-centered cubic lattice.

3:9 Use (3.256) to derive the density of states for free electrons. Show that your
results check (3.164).

3:10 For the one-dimensional potential well shown in Fig. 3.22 discuss either
mathematically or physically the behavior of the low-lying energy levels as a
function of V0, b, and a. Do you see any analogies to band structure?

3:11 How does soft X-ray emission differ from the more ordinary type of X-ray
emission?

3:12 Suppose the first Brillouin zone of a two-dimensional crystal is as shown in
Fig. 3.23 (the shaded portion). Suppose that the surfaces of constant energy
are either circles or pieces of circles as shown. Suppose also that where k is
on a sphere or a spherical piece that E = (ħ2/2m)k2. With all of these
assumptions, compute the density of states.

Fig. 3.22 A one-dimensional potential well
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3:13 Use Fermi–Dirac statistics to evaluate approximately the low-temperature
specific heat of quasi free electrons in a two-dimensional crystal.

3:14 For a free-electron gas at absolute zero in one dimension, show the average
energy per electron is one third of the Fermi energy.

3:15 Under the usual assumptions of the Drude Model, derive:

dP
dt

¼ F � P
s

where P is the average momentum of the electrons and both P and F are
vectors.
Recall these assumptions are:

a. The Kinetic Theory of gases can be used to describe the motion of
electrons.

b. Electrons are scattered in dt with a probability of dt/s, where s is called
the relaxation time, perhaps the collision time, and also the mean free
time of collision.

c. The average momentum just after scattering vanishes.
d. In between scattering, electrons respond to the Lorentz force in the usual

way.

Fig. 3.23 First Brillouin zone and surfaces of constant energy in a simple two-dimensional
reciprocal lattice
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Chapter 4
The Interaction of Electrons and Lattice
Vibrations

4.1 Particles and Interactions of Solid-State Physics (B)

There are, in fact, two classes of types of interactions that are of interest. One type
involves interactions of the solid with external probes (such as electrons, positrons,
neutrons, and photons). Perhaps the prime example of this is the study of the
structure of a solid by the use of X-rays as discussed in Chap. 1. In this chapter,
however, we are more concerned with the other class of interactions; those that
involve interactions of the elementary energy excitations among themselves.

So far the only energy excitations that we have discussed are phonons (Chap. 2)
and electrons (Chap. 3). Thus the kinds of internal interactions that we consider at
present are electron–phonon, phonon–phonon, and electron–electron. There are of
course several other kinds of elementary energy excitations in solids and thus there
are many other examples of interaction. Several of these will be treated in later parts
of this book. A summary of most kinds of possible pair wise interactions is given in
Table 4.1.

The concept of the “particle” as an entity by itself makes sense only if its life
time in a given state is fairly long even with the interactions. In fact interactions
between particles may be of such character as to form new “particles.” Only a
limited number of these interactions will be important in discussing any given
experiment. Most of them may be important in discussing all possible experiments.
Some of them may not become important until entirely new types of solids have
been formed. In view of the fact that only a few of these interactions have actually
been treated in detail, it is easy to believe that the field of solid-state physics still has
a considerable amount of growing to do.

We have not yet defined all of the fundamental energy excitations.1 Several of
the excitations given in Table 4.1 are defined in Table 4.2. Neutrons, positrons, and
photons, while not solid-state particles, can be used as external probes. For some

1A simplified approach to these ideas is in Patterson [4.33]. See also Mattuck [17, Chap. 1].

© Springer International Publishing AG, part of Springer Nature 2018
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https://doi.org/10.1007/978-3-319-75322-5_4

239

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-75322-5_4&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-75322-5_4&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-75322-5_4&amp;domain=pdf


T
ab

le
4.
1

Po
ss
ib
le

so
rt
s
of

in
te
ra
ct
io
ns

of
in
te
re
st
in

in
te
rp
re
tin

g
so
lid

-s
ta
te

ex
pe
ri
m
en
ts
a

1 e−
2 h

3 ph
4 m

5 pl
6 b

7 ex
8 ex
t

9 pe
10 he

11 n
12 e+

13 m

1.
E
le
ct
ro
ns

(e
−
)

e−
–
e−

2.
H
ol
es

(h
)

h–
e−

h–
h

3.
Ph

on
on

s
(p
h)

ph
–
e−

ph
–
h

ph
–
ph

4.
M
ag
no

ns
(m

)
m
–
e−

m
–
h

m
–
ph

m
–
m

5.
Pl
as
m
on

s
(p
l)

pl
–
e−

pl
–
h

pl
–
ph

pl
–
m

pl
–
pl

6.
B
og

ol
on

s
(b
)

b–
e−

b–
h

b–
ph

b–
m

b–
pl

b–
b

7.
E
xc
ito

ns
(e
x)

ex
–
e−

ex
–
h

ex
–
ph

ex
–
m

ex
–
pl

ex
–
b

ex
–
ex

8.
Po

lit
ar
on

s
(p
n)

pn
–
e−

pn
–
h

pn
–
ph

pn
–
m

pn
–
pl

pn
–
b

pn
–
ex

pn
–
pn

9.
Po

la
ro
ns

(p
o)

po
–
e−

po
–
h

po
–
ph

po
–
m

po
–
pl

po
–
b

po
–
ex

po
–
pn

po
–
po

10
.
H
el
ic
on

s
(h
e)

he
–
e−

he
–
h

he
–
ph

he
–
m

he
–
pl

he
–
b

he
–
ex

he
–
pn

he
–
po

he
–
he

11
.
N
eu
tr
on

s
(n
)

n–
e−

n–
h

n–
ph

n–
m

n–
pl

n–
b

n–
ex

n–
pn

n–
po

n–
he

n–
n

12
.
Po

si
tr
on

s
(e

+
)

e+
−
e–

e+
–
h

e+
–
ph

e+
–
m

e+
–
pl

e+
–
b

e+
–
ex

e+
–
pn

e+
–
po

e+
–
he

e+
–
n

e+
−
e+

13
.
Ph

ot
on

s
(v
)

m–
e−

m–
h

m–
ph

m–
m

m–
pl

m–
b

m–
ex

m–
pn

m–
po

m–
he

m–
n

m–
e+

m–
m

a F
or

ac
tu
al
us
e
in

a
ph

ys
ic
al
si
tu
at
io
n,

ea
ch

in
te
ra
ct
io
n
w
ou

ld
ha
ve

to
be

ca
re
fu
lly

ex
am

in
ed

to
m
ak
e
su
re

it
di
d
no

tv
io
la
te
so
m
e
fu
nd

am
en
ta
ls
ym

m
et
ry

of
th
e
ph

ys
ic
al

sy
st
em

an
d
th
at

a
ph

ys
ic
al

m
ec
ha
ni
sm

to
gi
ve

th
e
ne
ce
ss
ar
y
co
up

lin
g
w
as

pr
es
en
t.
E
ac
h
of

th
es
e
qu

an
tit
ie
s
ar
e
de
fi
ne
d
in

T
ab
le

4.
2

240 4 The Interaction of Electrons and Lattice Vibrations



Table 4.2 Solid-state particles and related quantities

Bogolon (or Bogoliubov
quasiparticles)

Elementary energy excitations in a superconductor. Linear
combinations of electrons in (+k, +), and holes in (−k, −)
states. See Chap. 8. The + and − after the ks refer to “up”
and “down” spin states

Cooper pairs Loosely coupled electrons in the states (+k, +), (−k, −). See
Chap. 8

Electrons Electrons in a solid can have their masses dressed due to
many interactions. The most familiar contribution to their
effective mass is due to scattering from the periodic static
lattice. See Chap. 3

Mott–Wannier and
Frenkel excitons

The Mott–Wannier excitons are weakly bound electron-hole
pairs with energy less than the energy gap. Here we can think
of the binding as hydrogen-like except that the electron–hole
attraction is screened by the dielectric constant and the mass
is the reduced mass of the effective electron and hole masses.
The effective radius of this exciton is the Bohr radius
modified by the dielectric constant and effective reduced
mass of electron and hole.

Since the static dielectric constant can only have meaning
for dimensions large compared with atomic dimensions,
strongly bound excitations as in, e.g., molecular crystals are
given a different name Frenkel excitons. These are small and
tightly bound electron-hole pairs. We describe Frenkel
excitons with a hopping excited state model. Here we can
think of the energy spectrum as like that given by tight
binding. Excitons may give rise to absorption structure
below the bandgap. See Chap. 10

Helicons Slow, low-frequency (much lower than the cyclotron
frequency), circularly polarized propagating electromagnetic
waves coupled to electrons in a metal that is in a uniform
magnetic field that is in the direction of propagation of the
electromagnetic waves. The frequency of helicons is given by
(see Chap. 10)

xH ¼ xc kcð Þ2
x2

p

Holes Vacant states in a band normally filled with electrons. See
Chap. 5

Magnon The low-lying collective states of spin systems, found in
ferromagnets, ferrimagnets, antiferromagnets, canted, and
helical spin arrays, whose spins are coupled by exchange
interactions are called spin waves. Their quanta are called
magnons. One can also say the spin waves are fluctuations in
density in the spin angular momentum. At very long
wavelength, the magnetostatic interaction can dominate
exchange, and then one speaks of magnetostatic spin
waves. The dispersion relation links the frequency with the

(continued)
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Table 4.2 (continued)

reciprocal wavelength, which typically, for ordinary spin
waves, at long wavelengths goes as the square of the wave
vector for ferromagnets but is linear in the wave vector for
antiferromagnets. The magnetization at low temperatures for
ferromagnets can be described by spin-wave excitations that
reduce it, as given by the famous Bloch T3/2 law.
See Chap. 7

Neutron Basic neutral constituent of nucleus. Now thought to be a
composite of two down quarks and one up quark whose
charge adds to zero. Very useful as a scattering projectile in
studying solids

Acoustical phonons Sinusoidal oscillating wave where the adjacent atoms vibrate
in phase with the frequency, vanishing as the wavelength
becomes infinite. See Chap. 2

Optical phonons Here the frequency does not vanish when the wavelength
become infinite and adjacent atoms tend to vibrate out of
phase. See Chap. 2

Photon Quanta of electromagnetic field

Plasmons Quanta of collective longitudinal excitation of an electron
gas in a metal involving sinusoidal oscillations in the density
of the electron gas. The alkali metals are transparent in the
ultraviolet, that is for frequencies above the plasma
frequency. In semiconductors, the plasma edge in
absorption can occur in the infrared. Plasmons can be
observed from the absorption of electrons (which excite the
plasmons) incident on thin metallic films. See Chap. 9

Polaritons Waves due to the interaction of transverse optical phonons
with transverse electromagnetic waves. Another way to say
this is that they are coupled or mixed transverse
electromagnetic and mechanical waves. There are two
branches to these modes. At very low and very high wave
vectors the branches can be identified as photons or phonons
but in between the modes couple to produce polariton
modes. The coupling of modes also produces a gap in
frequency through which radiation cannot propagate. The
upper and lower frequencies defining the gap are related by
the Lyddane–Sachs–Teller relation. See Chap. 10

Polarons A polaron is an electron in the conduction band (or hole in
the valence band) together with the surrounding lattice with
which it is coupled. They occur in both insulators and
semiconductors. The general idea is that an electron moving
through a crystal interacts via its charge with the ions of the
lattice. This electron–phonon interaction leads to a
polarization field that accompanies the electron. In particle
language, the electron is dressed by the phonons and the
combined particle is called the polaron. When the coupling
extends over many lattice spacings, one speaks of a large
polaron. Large polarons are formed in polar crystals by
electrons coulombically interacting with longitudinal optical

(continued)
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Table 4.2 (continued)

phonons. One thinks of a large polaron as a particle moving
in a band with a somewhat increased effective mass. A small
polaron is localized and hops or tunnels from site to site with
larger effective mass. An equation for the effective mass of a
polaron is:

mpolaron ffi m
1

1� a
6

;

where a is the polaron coupling constant. This equation
applies to large polarons. For small polarons one may use
m(1 + a/6) on the right hand side

Polarons summary (1) Small polarons: a > 6. These are not band-like. The
transport mechanism for the charge carrier is that of hopping.
The electron associated with a small polaron spends most of
its time near a particular ion.
(2) Large polarons: 1 < a < 6. These are band-like but their
mobility is low. See Chap. 4

Positron The antiparticle of an electron with positive charge
Proton A basic constituent of the nucleus thought to be a composite

of two up and one down quarks whose charge total equals
the negative of the charge on the electron. Protons and
neutrons together form the nuclei of solids

Roton A roton occurs in superfluid He-4 as an elementary energy
excitation. Strictly speaking, perhaps it would be better listed
in condensed matter systems rather than solid state ones. If
you plot the elementary energy excitations in He-4, you get a
curve described by

EðpÞ ¼ Aðp� p0Þ2 þB;

where A and B are constants and p is the linear momentum.
The equation is valid for E not too far from B. For small p,
when E is linear in p, the excitations are called phonons and
for p near p0 they are called rotons

purposes, it may be useful to make the distinctions in terminology that are noted in
Table 4.3. However, in this book, we hope the meaning of our terms will be clear
from the context in which they are used.

Once we know something about the interactions, the question arises as to what to
do with them. A somewhat oversimplified viewpoint is that all solid-state properties
can be discussed in terms of fundamental energy excitations and their interactions.
Certainly, the interactions are the dominating feature of most transport processes.
Thus we would like to know how to use the properties of the interactions to
evaluate the various transport coefficients. One way (perhaps the most practical
way) to do this is by the use of the Boltzmann equation. Thus in this chapter we will
discuss the interactions, the Boltzmann equation, how the interactions fit into the
Boltzmann equation, and how the solutions of the Boltzmann equation can be used
to calculate transport coefficients. Typical transport coefficients that will be dis-
cussed are those for electrical and thermal conductivity.
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Table 4.3 Distinctions that are sometimes made between solid-state quasi particles
(or “particles”)

1. Landau quasi particles Quasi electrons interact weakly and have a long
lifetime provided their energies are near the Fermi
energy. The Landau quasi electrons stand in
one-to-one relation to the real electrons, where a
real electron is a free electron in its measured state;
i.e. the real electron is already “dressed” (see below
for a partial definition) due to its interaction with
virtual photons (in the sense of quantum
electrodynamics), but it is not dressed in the sense
of interactions of interest to solid-state physics. The
term Fermi liquid is often applied to an electron gas
in which correlations are strong, such as in a simple
metal. The normal liquid, which is what is usually
considered, means as the interaction is turned on
adiabatically and forms the one-to-one
correspondence, that there are no bound states
formed. Superconducting electrons are not a Fermi
liquid

2. Fundamental energy excitations
from ground state of a solid

Quasi particles (e.g. electrons): These may be
“dressed” electrons where the “dressing” is caused
by mutual electron–electron interaction or by the
interaction of the electrons with other “particles.”
The dressed electron is the original electron
surrounded by a “cloud” of other particles with
which it is interacting and thus it may have a
different effective mass from the real electron. The
effective interaction between quasi electrons may
be much less than the actual interaction between
real electrons. The effective interaction between
quasi electrons (or quasi holes) usually means their
lifetime is short (in other words, the quasi electron
picture is not a good description) unless their
energies are near the Fermi energy and so if the
quasi electron picture is to make sense, there must
be many fewer quasi electrons than real electrons.
Note that the term quasi electron as used here
corresponds to a Landau quasi electron

Collective excitations (e.g. phonons, magnons,
or plasmons): These may also be dressed due to
their interaction with other “particles.” In this book
these are also called quasi particles but this practice
is not followed everywhere. Note that collective
excitations do not resemble a real particle because
they involve wave-like motion of all particles in the
system considered

(continued)

244 4 The Interaction of Electrons and Lattice Vibrations



The Boltzmann equation itself is not very rigorous, at least in the situations
where it will be applied in this chapter, but it does yield some practical results that
are helpful in interpreting experiments. In general, the development in this whole
chapter will not be very rigorous. Many ideas are presented and the main aim will
be to get the ideas across. If we treat any interaction with great care, and if we use
the interaction to calculate a transport property, we will usually find that we are
engaged in a sizeable research project.

In discussing the rigor of the Boltzmann equation, an attempt will be made to
show how its predictions can be true, but no attempt will be made to discover the
minimum number of assumptions that are necessary so that the predictions made by
use of the Boltzmann equation must be true.

It should come as no surprise that the results in this chapter will not be rigorous.
The systems considered are almost as complicated as they can be: they are inter-
acting many-body systems, and nonequilibrium statistical properties are the prop-
erties of interest. Low-order perturbation theory will be used to discuss the
interactions in the many-body system. An essentially classical technique (the
Boltzmann equation) will be used to derive the statistical properties. No precise
statement of the errors introduced by the approximations can be given. We start
with the phonon–phonon interaction.

Emmy Noether

b. Erlangen, Germany (1882–1935)

Emmy Noether derived the general result that conservation laws come from
symmetries and conservation laws constrain types of motion–examples are:

Energy–symmetry under translation of time gives energy conservation.
Linear momentum mv–symmetry under translation in space gives rise to
linear momentum conservation.

Angular momentum r � mv–symmetry under rotation in space gives rise
to angular momentum conservation.

Table 4.3 (continued)

3. Excitons and bogolons Note that excitons and bogolons do not correspond
either to a simple quasi particle (as discussed
above) or to a collective excitation. However, in
this book we will also call these quasi particles or
“particles”

4. Goldstone boson Quanta of long-wavelength and low-frequency
modes associated with conservation laws and
broken symmetry. The existence of broken
symmetry implies this mode. Broken symmetry
(see Sect. 7.2.6) means quantum eigenstates with
lower symmetry than the underlying Hamiltonian.
Phonons and magnons are examples
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4.2 The Phonon–Phonon Interaction (B)

The mathematics is not always easy but we can see physically why phonons scatter
phonons. Wave-like motions propagate through a periodic lattice without scattering
only if there are no distortions from periodicity. One phonon in a lattice distorts the
lattice from periodicity and hence scatters another phonon. This view is a little
oversimplified because it is essential to have anharmonic terms in the lattice
potential in order for phonon–phonon scattering to occur. These cause the first
phonon to modify the original periodicity in the elastic properties.

4.2.1 Anharmonic Terms in the Hamiltonian (B)

From the Golden rule of perturbation theory (see for example, Appendix E), the
basic quantity that determines the transition probability from one phonon state ij ið Þ
to another fj ið Þ is the matrix element ijH1jf� ��� ��2, where H1 is that part of the
Hamiltonian that causes phonon–phonon interactions.

For phonon–phonon interactions, the perturbing Hamiltonian H1 is the part
containing the cubic (and higher if necessary) anharmonic terms.

H1 ¼
X

lbl0b0l00b00
a; b; c

Ua;b;c
lbl0b0l00b00x

a
lbx

b
l0b0x

c
l00b00 ; ð4:1Þ

where xa is the ath component of vector x and U is determined by Taylor’s
theorem,

Ua;b;c
lbl0b0l00b00 �

1
3!

@3V

@xalb@x
b
l0b0@x

c
l00b00

 !
all xlb¼0

; ð4:2Þ

and the V is the potential energy of the atoms as a function of their position. In
practice, we generally do not try to calculate the U from (4.2) but we carry them
along as parameters to be determined from experiment.

As usual, the mathematics is easier to do if the Hamiltonian is expressed in terms
of annihilation and creation operators. Thus it is useful to work toward this end by
starting with the transformation (2.190). We find,

H1 ¼ 1
N3=2

X
q; b; q0; b0; q00; b00

a; b; c

X
l;l0;l00

exp �i q � lþ q0 � l0 þ q00 � l00ð Þ½ �

�Ua;b;c
lbl0b0l00b00X

0a
q;bX

0b
q0;b0X

0c
q00;b00 :

ð4:3Þ
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In (4.3) it is convenient to make the substitutions l′ = l + m, and l″= l + m″:

H1 ¼ 1
N3=2

X
q; b; q0; b0; q00; b00

a; b; c

X
l

exp �i qþ q0 þ q00ð Þ � l½ �

�X
0a
q;bX

0b
q0;b0X

0c
q00;b00D

a;b;c
q;b;q0;b0;q00;b00 :

ð4:4Þ

where

Da;b;c
q;b;q0;b0;q00;b00

could be expressed in terms of the U if necessary, but its fundamental property is
that

Da;b;c
q;b;q0;b0;q00;b00 6¼ f lð Þ; ð4:5Þ

because there is no preferred lattice point.
We obtain

H1 ¼ 1
N1=2

X
q; b; q0; b0; q00; b00

a; b; c

dGn
qþ q0 þ q00X

0a
q;bX

0b
q0;b0X

0c
q00;b00D

a;b;c
q;b;q0;b0;q00;b00 : ð4:6Þ

In an annihilation and creation operator representation, the old unperturbed
Hamiltonian was diagonal and of the form

H1 ¼ 1
N1=2

X
q;p

ayq;paq;p þ
1
2

� �
�hxq;p: ð4:7Þ

The transformation that did this was (see Problem 2.22)

X0
q;b ¼ �i

X
p

e�q;b;p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�h

2mbxq;p

s
ayq;p � a�q;p

� 	
: ð4:8Þ

Applying the same transformation on the perturbing part of Hamiltonian, we find

H1 ¼
X

q;p;q0;p0;q00;p00
dGn
qþ q0 þ q00 ayq;p � a�q;p

� 	
ayq0;p0 � a�q0;p0
� 	

� ayq0;p0 � a�q0;p0
� 	

Mq;p;q0;p0;q00;p00 ;

ð4:9Þ
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where

Mq;p;q0;p0;q00;p00 ¼ f Da;b;c
q;b;q0;b0;q00;b00

� 	
; ð4:10Þ

i.e. it could be expressed in terms of the D if necessary.

4.2.2 Normal and Umklapp Processes (B)

Despite the apparent complexity of (4.9) and (4.10), they are in a transparent form.
The essential thing is to find out what types of interaction processes are allowed by
cubic anharmonic terms. Within the framework of first-order time-dependent per-
turbation theory (the Golden rule) this question can be answered.

In the first place, the only real (or direct) processes allowed are those that
conserve energy:

Etotal
initial ¼ Etotal

final: ð4:11Þ

In the second place, in order for the process to proceed, the Kronecker delta
function in (4.9) says that there must be the following relation among wave vectors:

qþ q0 þ q00 ¼ Gn: ð4:12Þ

Within the limitations imposed by the constraints (4.11) and (4.12), the products
of annihilation and creation operators that occur in (4.9) indicate the types of
interactions that can take place. Of course, it is necessary to compute matrix ele-
ments (as required by the Golden rule) of (4.9) in order to assure oneself that the
process is not only allowed by the conservation conditions, but is microscopically

probable. In (4.9) a term of the form ayq;pa�q0;p0a�q00;p00 occurs. Let us assume all the
p are the same and thus drop them as subscripts. This term corresponds to a process
in which phonons in the modes −q′ and −q″ are destroyed, and a phonon in the
mode q is created. This process can be diagrammatically presented as in Fig. 4.1. It
is subject to the constraints

q ¼ �q0 þ �q00ð Þ þGn and �hxq ¼ �hx�q0 þ �hx�q00:

Fig. 4.1 Diagrammatic representation of a phonon–phonon interaction
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If Gn = 0, the vectors q, −q′, and −q″ form a closed triangle and we have what is
called a normal or N-process. If Gn 6¼ 0, we have what is called a U or umklapp
process.2

Umklapp processes are very important in thermal conductivity as will be dis-
cussed later. It is possible to form a very simple picture of umklapp processes. Let
us consider a two-dimensional reciprocal lattice as shown in Fig. 4.2. If k1 and k2
together add to a vector in reciprocal space that lies outside the first Brillouin zone,
then a first Brillouin-zone description of kl + k2, is k3, where kl + k2 = k3 −G. If kl
and k2 were the incident phonons and k3 the scattered phonon, we would call such a
process a phonon–phonon umklapp process. From Fig. 4.2 we see the reason for
the name umklapp (which in German means “flop over”). We start out with two
phonons going in one direction and end up with a phonon going in the opposite
direction. This picture gives some intuitive understanding of how umklapp pro-
cesses contribute to thermal resistance. Since high temperatures are needed to excite
high-frequency (high-energy and thus probably large wave vector) phonons, we see
that we should expect more umklapp processes as the temperature is raised. Thus
we should expect the thermal conductivity of an insulator to drop with increase in
temperature.

So far we have demonstrated that the cubic (and hence higher-order) terms in the
potential cause the phonon–phonon interactions. There are several directly
observable effects of cubic and higher-order terms in the potential. In an insulator in
which the cubic and higher-order terms were absent, there would be no diffusion of
heat. This is simply because the carriers of heat are the phonons. The phonons do

Fig. 4.2 Diagram for illustrating an umklapp process

2Things may be a little more complicated, however, as the distinction between normal and
umklapp may depend on the choice of primitive unit cell in k space [21, p. 502].
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not collide unless there are anharmonic terms, and hence the heat would be carried
by “phonon radiation.” In this case, the thermal conductivity would be infinite.

Without anharmonic terms, thermal expansion would not exist (see Sect. 2.3.4).
Without anharmonic terms, the potential that each atom moved in would be sym-
metric, and so no matter what the amplitude of vibration of the atoms, the average
position of the atoms would be constant and the lattice would not expand.

Anharmonic terms are responsible for small (linear in temperature) deviations
from the classical specific heat at high temperature. We can qualitatively understand
this by assuming that there is some energy involved in the interaction process. If
this is so, then there are ways (in addition to the energy of the phonons) that energy
can be carried, and so the specific heat is raised.

The spin–lattice interaction in solids depends on the anharmonic nature of the
potential. Obviously, the way the location of a spin moves about in a solid will have
a large effect on the total dynamics of the spin. The details of these interactions are
not very easy to sort out.

More generally we have to consider that the anharmonic terms cause a tem-
perature dependence of the phonon frequencies and also cause finite phonon life-
times. We can qualitatively understand the temperature dependence of the phonon
frequencies from the fact that they depend on interatomic spacing that changes with
temperature (thermal expansion). The finite phonon lifetimes obviously occur
because the phonons scatter into different modes and hence no phonon lasts
indefinitely in the same mode. For further details on phonon–phonon interactions
see Ziman [99].

4.2.3 Comment on Thermal Conductivity (B)

In this Section a little more detail will be given to explain the way umklapp
processes play a role in limiting the lattice thermal conductivity. The discussion in
this Section involves only qualitative reasoning.

Let us define a phonon current density J by

Jph ¼
X
q0;p

q0Nq0p; ð4:13Þ

where Nq,p is the number of phonons in mode (q, p). If this quantity is not equal to
zero, then we have a phonon flux and hence heat transport by the phonons.

Now let us consider what the effect of phonon–phonon collisions on Jph would
be. If we have a phonon–phonon collision in which q2 and q3 disappear and ql
appears, then the new phonon flux becomes

J0ph ¼ q1 Nq1p þ 1

 �þ q2 Nq2p � 1


 �þ q3 Nq3p � 1

 �þ X

q 6¼q1;q2;q3ð Þ;p
qNq;p: ð4:14Þ
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Thus

J0ph ¼ q1 � q2 � q3 þ Jph:

For phonon–phonon processes in which q2 and q3 disappear and ql appears, we
have that

q1 ¼ q2 þ q3 þGn;

so that

J0ph ¼ Gn þ Jph:

Therefore, if there were no umklapp processes the Gn would never appear and
hence J0ph would always equal Jph. This means that the phonon current density
would not change; hence the heat flux would not change, and therefore the thermal
conductivity would be infinite.

The contribution of umklapp processes to the thermal conductivity is important
even at fairly low temperatures. To make a crude estimate, let us suppose that the
temperature is much lower than the Debye temperature. This means that small q are
important (in a first Brillouin-zone scheme for acoustic modes) because these are the
q that are associatedwith small energy. Since for umklapp processes q + q′ + q″ = Gn,
we know that if most of the q are small, then one of the phonons involved in a
phonon–phonon interaction must be of the order of Gn, since the wave vectors in the
interaction process must add up to Gn.

By use of Bose statistics with T 	 hD, we know that the mean number of
phonons in mode q is given by

Nq ¼ 1
exp �hxq=kT

 �� 1

ffi exp ��hxq=kT

 �

: ð4:15Þ

Let ħxq be the energy of the phonon with large q, so that we have approximately

�hxq ffi khD; ð4:16Þ

so that

Nq ffi exp �hD=Tð Þ: ð4:17Þ

The more Nqs there are, the greater the possibility of an umklapp process, and since
umklapp processes cause Jph to change, they must cause a decrease in the thermal
conductivity. Thus we would expect at least roughly

Nq / K�1; ð4:18Þ
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where K is the thermal conductivity. Combining (4.17) and (4.18), we guess that the
thermal conductivity of insulators at fairly low temperatures is given approximately
by

K/ exp hD=Tð Þ: ð4:19Þ

More accurate analysis suggests the form should be Tnexp(FhD/T), where F is of
order 1/2. At very low temperatures, other processes come into play and these will
be discussed later. At high temperature, K (due to the umklapp) is proportional to
T−1. Expression (4.19) appears to predict this result, but since we assumed T 	 hD
in deriving (4.19), we cannot necessarily believe (4.19) at high T.

It should be mentioned that there are many other types of phonon–phonon inter-
actions besides the ones mentioned. We could have gone to higher-order terms in the
Taylor expansion of the potential. A third-order expansion leads to three phonon
(direct) processes. An N th-order expansion leads to N phonon interactions.
Higher-order perturbation theory allows additional processes. For example, it is
possible to go indirectly from level i to level f via a virtual level k as is illustrated in
Fig. 4.3.

There are a great many more things that could be said about phonon–phonon
interactions, but at least we should know what phonon–phonon interactions are by
now.

The following statement is by way of summary: Without umklapp processes
(and impurities and boundaries) there would be no resistance to the flow of phonon
energy at all temperatures (in an insulator).

4.2.4 Phononics (EE)

Phononics refers to the controlled flow of heat. The effective utilization of this idea
is in its infancy, but indeed, it is possible to make thermal diodes, transistors, and
even logic gates. The idea is based on the resonant frequencies of vibrations of

Fig. 4.3 Indirect i ! f transitions via a virtual or short-lived level k
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materials. Heat flow from one material to the next is much easier if their resonant
frequencies “match.” The details are beyond the scope of what we want to go into
here. See L. Wang and B. Li, “Phononics gets hot,” Physics World, March 2008,
pp. 27–29.

4.3 The Electron–Phonon Interaction

Physically it is easy to see why lattice vibrations scatter electrons. The lattice
vibrations distort the lattice periodicity and hence the electrons cannot propagate
through the lattice without being scattered.

The treatment of electron–phonon interactions that will be given is somewhat
similar to the treatment of phonon–phonon interactions. Similar selection rules (or
constraints) will be found. This is expected. The selection rules arise from con-
servation laws, and conservation laws arise from the fundamental symmetries of the
physical system. The selection rules are: (1) energy is conserved, and (2) the total
wave vector of the system before the scattering process can differ only by a
reciprocal lattice vector from the total wave vector of the system after the scattering
process. Again it is necessary to examine matrix elements in order to assure oneself
that the process is microscopically probable as well as possible because it satisfies
the selection rules.

The possibility of electron–phonon interactions has been introduced as if one
should not be surprised by them. It is perhaps worth pointing out that electron–phonon
interactions indicate a breakdown of the Born–Oppenheimer approximation. This is
all right though. We assume that the Born–Oppenheimer approximation is the
zeroth-order solution and that the corrections to it can be taken into account by
first-order perturbation theory. It is almost impossible to rigorously justify this pro-
cedure. In order to treat the interactions adequately, we should go back and insert the
terms that were dropped in deriving the Born–Oppenheimer approximation. It
appears to be more practical to find a possible form for the interaction by phe-
nomenological arguments. For further details on electron–phonon interactions than
will be discussed in this book see Ziman [99].

4.3.1 Form of the Hamiltonian (B)

Whatever the form of the interaction, we know that it vanishes when there are no
atomic displacements. For small displacements, the interaction should be linear in
the displacements. Thus we write the phenomenological interaction part of the
Hamiltonian as
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Hep ¼
X
l;b

xl;b � $xl;bU reð Þ� 
all xl;b¼0; ð4:20Þ

where re represents the electronic coordinates.
As we will see later, the Boltzmann equation will require that we know the

transition probability per unit time. The transition probability can be evaluated from
the Golden rule of time-dependent first-order perturbation theory. Basically, the
Golden rule requires that we evaluate f Hep

�� ��i� �
, where ij i and fh j are formal ways

of representing the initial and final states for both electron and phonon unperturbed
states.

As usual it is convenient to write our expressions in terms of creation and
destruction operators. The appropriate substitutions are the same as the ones that
were previously used:

xl;b ¼ 1ffiffiffiffi
N

p
X
q

x0q;be
�iq�l;

x0q;b ¼ �i
X
p

e�q;b;p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�h

2mbxq;p

s
ayq;p � a�q;p

� 	
:

Combining these expressions, we find

xl;b ¼ �i
X
q;p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�h

2Nmbxb

r
e�iq�le�q;b;p ayq;p � a�q;p

� 	
: ð4:21Þ

If we assume that the electrons can be treated by a one-electron approximation, and
that only harmonic terms are important for the lattice potential, a typical matrix
element that will have to be evaluated is

Tk;k0 � nq;p

Z
w�
k rð ÞHepwk0 rð Þdr

����
����nq;p � 1

� �
; ð4:22Þ

where nq;p
�� �

are phonon eigenkets and wk(r) are electron eigenfunctions. The
phonon matrix elements can be evaluated by the usual rules (given below):

nq;p � 1 aq0;p0
�� ��nq;p� � ¼ ffiffiffiffiffiffiffi

nq;p
p

dq
0

q d
p0
p ; ð4:23aÞ

and

nq;p þ 1 ayq0;p0
��� ���nq;pD E

¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nq;p þ 1

p
dq

0
q d

p0
p : ð4:23bÞ
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Combining (4.20), (4.21), (4.22), and (4.23), we find

Tk;k0 ¼ �i
X
l;b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�hnq;p

2Nmbxq;b

s
e�iq�l

Z
all space

w�
k rð Þe�q;b;p � $xl;bU rð Þ� 

0wk0 rð Þd3r: ð4:24Þ

Equation (4.24) can be simplified. In order to see how, let us consider a simple
problem. Let

G ¼
X
l

e�iql
ZL
�L

f xð ÞUl xð Þdx; ð4:25Þ

where

f xþ lað Þ ¼ eiklf xð Þ; ð4:26Þ

l is an integer, and Ul(x) is in general not a periodic function of x. In particular, let
us suppose

Ul xð Þ � @U
@xl

� �
xl¼0

; ð4:27Þ

where

U x; xlð Þ ¼
X
l

exp �K x� dlð Þ2
h i

; ð4:28Þ

and

dl ¼ lþ xl: ð4:29Þ

U(x, xl) is periodic if xl = 0. Combining (4.27) and (4.28), we have

Ul ¼ þ 2K exp �K x� lð Þ2
h i

x� lð Þ
� F x� lð Þ:

ð4:30Þ

Note that Ul(x) = F(x − l) is a localized function.
Therefore we can write

G ¼
X
l

e�iql
ZL
�L

f xð ÞF x� lð Þdx: ð4:31Þ
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In (4.31), let us write x′ = x − l or x = x′ + l. Then we must have

G ¼
X
l

e�iql
ZL�l

�L�l

f x0 þ 1ð ÞF x0ð Þdx0: ð4:32Þ

Using (4.26), we can write (4.32) as

G ¼
X
l

e�i q�kð Þl
ZL�l

�L�l

f x0ð ÞF x0ð Þdx0: ð4:33Þ

If we are using periodic boundary conditions, then all of our functions must be
periodic outside the basic interval −L to +L. From this it follows that (4.33) can be
written as

G ¼
X
l

e�i q�kð Þl
ZL
�L

f x0ð ÞF x0ð Þdx0: ð4:34Þ

The integral in (4.34) is independent of l. Also we shall suppose F(x) is very small
for x outside the basic one-dimensional unit cell X. From this it follows that we can
write G as

G ffi
Z
X

f x0ð ÞF x0ð Þdx0
0
@

1
A X

l

e�i q�kð Þl
 !

: ð4:35Þ

A similar argument in three dimensions says that

X
l;b

e�iq�l
Z

all space

w�
k rð Þe�q;b;p $xl;bU rð Þ� 

0wk0 rð Þd3r

ffi
X
l;b

e�i k0�k�qð Þ�l
Z
X

w�
k rð Þe�q;b;p $xl;bU rð Þ� 

0wk0 rð Þd3r:

Using the above, and the known delta function property of
P

l e
ik�l, we find that

(4.24) becomes

Tk;k0 ¼ �i
ffiffiffiffiffiffiffi
nq;p

p
ffiffiffiffiffiffiffiffiffiffiffi
�hN
2xq;b

s
dGn

k0�k�q

Z
X

w�
k

X
b

1ffiffiffiffiffiffi
mb

p e�q;b;p � $xl;bU
� 

0wk0d
3r: ð4:36Þ
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Equation (4.36) gives us the usual but very important selection rule on the wave
vector. The selection rule says that for all allowed electron–phonon processes; we
must have

k0 � k� q ¼ Gn: ð4:37Þ

If Gn 6¼ 0, then we have electron–phonon umklapp processes. Otherwise, we say
we have normal processes. This distinction is not rigorous because it depends on
whether or not the first Brillouin zone is consistently used.

The Golden rule also gives us a selection rule that represents energy
conservation

Ek0 ¼ Ek þ �hxq;p: ð4:38Þ

Since typical phonon energies are much less than electron energies, it is usually
acceptable to neglect ħxq,p in (4.38). Thus while technically speaking the electron
scattering is inelastic, for practical purposes it is often elastic.3 The matrix element
considered was for the process of emission. A diagrammatic representation of this
process is given in Fig. 4.4. There is a similar matrix element for phonon
absorption, as represented in Fig. 4.5. One should remember that these processes
came out of first-order perturbation theory. Higher-order perturbation theory would
allow more complicated processes.

It is interesting that the selection rules for inelastic neutron scattering are the
same as the rules for inelastic electron scattering. However, when thermal neutrons
are scattered, ħxq,p is not negligible. The rules (4.37) and (4.38) are sufficient to
map out the dispersion relations for lattice vibration. Ek, Ek′, k, and k′ are easily
measured for the neutrons, and hence (4.37) and (4.38) determine xq,p versus q for

Fig. 4.4 Phonon emission in an electron–phonon interaction

3This may not be true when electrons are scattered by polar optical modes.
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phonons. In the hands of Brockhouse et al. [4.5] this technique of slow neutron
diffraction or inelastic neutron diffraction has developed into a very powerful
modern research tool. It has also been used to determine dispersion relations for
magnons. It is also of interest that tunneling experiments can sometimes be used to
determine the phonon density of states.4

4.3.2 Rigid-Ion Approximation (B)

It is natural to wonder if all modes of lattice vibration are equally effective in the
scattering of electrons. It is true that, in general, some modes are much more
effective in scattering electrons than other modes. For example, it is usually possible
to neglect optic mode scattering of electrons. This is because in optic modes the
adjacent atoms tend to vibrate in opposite directions, and so the net effect of the
vibrations tends to be very small due to cancellation. However, if the ions are
charged, then the optic modes are polar modes and their effect on electron scattering
is by no means negligible. In the discussion below, only one atom per unit cell is
assumed. This assumption eliminates the possibility of optic modes. The polar-
ization vectors are now real.

In what follows, an approximation called the rigid-ion approximation will be
used to discuss differences in scattering between transverse and longitudinal
acoustic modes. It appears that in some approximations, transverse phonons do not
scatter electrons. However, this rule is only very approximate.

So far we have derived that the matrix element governing the scattering is

Tk;k0
�� �� ¼ ffiffiffiffiffiffiffi

nq;p
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�hN

2mxq;p

s
dGn

k0�k�q Hk;k0
q;p

��� ���; ð4:39Þ

Fig. 4.5 Phonon absorption in an electron–phonon interaction

4See McMillan and Rowell [4.29].
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where

Hk;k0
q;p

��� ��� ¼ Z
X

w�
keq;p � $xl;bU


 �
0wk0d

3r

������
������: ð4:40Þ

Equation (4.40) is not easily calculated, but it is the purpose of the rigid-ion
approximation to make some comments about it anyway. The rigid-ion approxi-
mation assumes that the potential the electrons feel depends only on the vectors
connecting the ions and the electron. We also assume that the total potential is the
simple additive sum of the potentials from each ion. We thus assume that the
potential from each ion is carried along with the ion and is undistorted by the
motion of the ion. This is clearly an oversimplification, but it seems to have some
degree of applicability, at least for simple metals. The rigid-ion approximation
therefore says that the potential that the electron moves in is given by

U rð Þ ¼
X
l0

va r� xl0ð Þ; ð4:41Þ

where va(r − xl′) refers to the potential energy of the electron in the field of the ion
whose equilibrium position is at l′. The va is the cell potential, which is used in the
Wigner–Seitz approximation, so that we have inside a cell,

� �h2

2m
$2 þ va rð Þ

� �
wk0 rð Þ ¼ Ek0wk0 rð Þ: ð4:42Þ

The question is, how can we use these two results to evaluate the needed integrals in
(4.40)? By (4.41) we see that

$xlU ¼ �$rva � �$va: ð4:43Þ

What we need in (4.40) is thus an expression for $va. That is,

Hk;k0
q;p

��� ��� ¼ Z
X

w�
keq;p � $vawk0d

3r

������
������: ð4:44Þ

We can get an expression for the integrand in (4.44) by taking the gradient of
(4.42) and multiplying by w�

k. We obtain

w�
kva$wk0 þw�

k $vað Þwk0 ¼ w�
k
�h2

2m
$3wk0 þEk0w

�
k$wk0 : ð4:45Þ

Several transformations are needed before this gets us to a usable approximation:
We can always use Bloch’s theorem wk0 ¼ eik

0�ruk0 rð Þ to replace $wk0 by
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$wk0 ¼ eik
0 �r$uk0 rð Þþ ik0wk0 : ð4:46Þ

We will also have in mind that any scattering caused by the motion of the rigid ions
leads to only very small changes in the energy of the electrons, so that we will
approximate Ek by Ek′ wherever needed. We therefore obtain from (4.45), (4.46),
and (4.42)

w�
k $vað Þwk0 ¼ w�

k
�h2

2m
$2 eik

0�r$uk0
� 	

� �h2

2m
$2w�

k


 �
eik

0�r$uk0 : ð4:47Þ

We can also write

�h2

2m

Z
surface S

w�
k$ eik

0 �r $uk0ð Þa
h i

� eik
0�r $uk0ð Þa$w�

k

n o
:dS

¼ �h2

2m

Z
$ � w�

k$ eik
0 �r $uk0ð Þa

h i
� eik

0 �r $uk0ð Þa$w�
k

n o
ds

¼ �h2

2m

Z
w�
k$

2 eik
0 �r $uk0ð Þa

h i
� eik

0 �r $uk0ð Þa$2w�
k

n o
ds;

since we get a cancellation in going from the second step to the last step. This
means by (4.44), (4.47), and the above that we can write

Hk;k0
q;p

��� ��� ¼ �h2

2m

Z
w�
k$ eik

0�r eq;p � $uk0

 �h i

� eik
0�req;p � $uk0ð Þ$w�

k

n o
� dS

����
����: ð4:48Þ

We will assume we are using a Wigner–Seitz approximation in which the Wigner–
Seitz cells are spheres of radius r0. The original integrals in Hk;k0

q;p involved only
integrals over the Wigner–Seitz cell (because $va vanishes very far from the cell for
va). Now uk0 ffi wk0 ¼ 0 in the Wigner-Seitz approximation, and also in this
approximation we know rwk0¼0ð Þr¼r0¼ 0 Since rw0 ¼ r̂ @w0=@rð Þ, by the above
reasoning we can now write

Hk;k0
q;p

��� ��� ¼ Z
w�
ke

ik0�r �h
2

2m
$2w0 ek;p � r̂


 �
dS

����
����: ð4:49Þ

Consistent with the Wigner–Seitz approximation, we will further assume that va is
spherically symmetric and that

�h2

2m
r2w0 ¼ va r0ð Þ � E0½ �w0;
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which means that

Hk;k0
q;p

��� ��� ¼ va r0ð Þ � E0½ �
Z

w�
ke

ik0�rw0eq;p � r̂dS
����

����
ffi va r0ð Þ � E0½ �

Z
w�
kwk0eq;p � r̂dS

����
����

ffi
���� va r0ð Þ � E0½ �

Z
X

eq;p � $ w�
kwk0


 �
ds

����;
ð4:50Þ

where X is the volume of the Wigner–Seitz cell. We assume further that the main
contribution to the gradient in (4.50) comes from the exponentials, which means
that we can write

$ w�
kwk0


 � ffi i k0 � kð Þw�
kwk0 : ð4:51Þ

Finally, we obtain

Hk;k0
q;p

��� ��� ¼ eq;p � k0 � kð Þ va r0ð Þ � E0½ �
Z

w�
kwk0ds

����
����: ð4:52Þ

Neglecting umklapp processes, we have k′ −k = q so

Hk;k0
q;p

��� ��� / eq;p � q:

Since for transverse phonons, eq,p is perpendicular to q, eq;p � q ¼ 0 and we get no
scattering. We have the very approximate rule that transverse phonons do not
scatter electrons. However, we should review all of the approximations that went
into this result. By doing this, we can fully appreciate that the result is only very
approximate [99].

4.3.3 The Polaron as a Prototype Quasiparticle (A)5

Introduction (A)
We look at a different kind of electron–phonon interaction in this section. Landau
suggested that an F-center could be understood as a self-trapped electron in a polar
crystal. Although this idea did not explain the F-center, it did give rise to the
conception of polarons. Polarons occur when an electron polarizes the surrounding
media, and this polarization reacts back on the electron and lowers the energy.

5See, E.G., [4.26]. Note also that a ‘Fermi Polaron’ Has Been Created by Putting a Spindown
Atom in a Fermi Sea of Spin-up Ultra-Cold Atoms. See Frédéric Chevy, “Swimming in the Fermi
Sea,” Physics 2, 48 (2009) Online. This Research Deepens the Understanding of Quasiparticles.
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The polarization field moves with the electron and the whole object is called a
polaron, which will have an effective mass generally much greater than the electrons.
Polarons also have different mobilities from electrons and this is one way to infer
their existence. Much of the basic work on polarons has been done by Fröhlich. He
approached polarons by considering electron–phonon coupling. His ideas about
electron–phonon coupling also helped lead eventually to a theory of superconduc-
tivity, but he did not arrive at the correct treatment of the pairing interaction for
superconductivity. Relatively simple perturbation theory does not work there.

There are large polarons (sometimes called Fröhlich polarons) where the lattice
distortion is over many sites and small ones that are very localized (some people
call these Holstein polarons). Polarons can occur in polar semiconductors or in
polar insulators due to electrons in the conduction band or holes in the valence
band. Only electrons will be considered here and the treatment will be limited to
Fröhlich polarons. Then the polarization can be treated on a continuum basis.

Once the effective Hamiltonian for electrons interact with the polarized lattice,
perturbation theory can be used for the large-polaron case and one gets in a rela-
tively simple manner the enhanced mass (beyond the Bloch effective mass) due to
the polarization interaction with the electron. Apparently, the polaron was the first
solid-state quasi particle treated by field theory, and its consideration has the
advantage over relativistic field theories that there is no divergence for the
self-energy. In fact, the polaron’s main use may be as an academic example of a
quasi particle that can be easily understood. From the field theoretic viewpoint, the
polarization is viewed as a cloud of virtual phonons around the electron. The
coupling constant is:

ac ¼ 1
8pe0

1
K 1ð Þ �

1
K 0ð Þ

� �
e2

�hxL

ffiffiffiffiffiffiffiffiffiffiffiffi
2mxL

�h

r
:

The K(0) and K(∞) are the static and high-frequency dielectric constants, m is the
Bloch effective mass of the electron, and xL is the long-wavelength longitudinal
optic frequency. One can show that the total electron effective mass is the Bloch
effective mass over the quantity 1 − ac/6. The coupling constant ac is analogous to
the fine structure coupling constant e2/ħc used in a quantum-electrodynamics cal-
culation of the electron–photon interaction.

Herbert Fröhlich

b. Rexingen, Germany (now in France) (1905–1991)

Frölich Polaron; Frölich Hamiltonian (electrons and longitudinal optic
phonons)

With Hitler coming to power, he went to the Soviet Union and then with
Stalin’s great purge he went to the United Kingdom and worked at several
Universities, including Bristol where he worked with Nevill Mott. He was
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ahead of his time in that he related the electron–phonon interaction to
superconductivity and showed how it could introduce an attractive force near
the Fermi Energy and lower the electron energy. The full theory of super-
conductivity had to await Bardeen-Cooper-Schrieffer however by including
the superconductivity energy gap. He also did significant work in biology.

The Polarization (A)
We first want to determine the electron–phonon interaction. The only coupling that
we need to consider is for the longitudinal optical (LO) phonons, as they have a
large electric field that interacts strongly with the electrons. We need to calculate the
corresponding polarization of the unit cell due to the LO phonons. We will find this
relates to the static and optical dielectric constants.

We consider a diatomic lattice of ions with charges ±e. We examine the optical
mode of vibrations with very long wavelengths so that the ions in neighboring unit
cells vibrate in unison. Let the masses of the ions bem± and if k is the effective spring
constant and Ef is the effective electric field acting on the ions we have (e > 0)

mþ€rþ ¼ �k rþ � r�ð Þþ eEf ; ð4:53aÞ

m�€r� ¼ þ k rþ � r�ð Þ � eEf ; ð4:53bÞ

where r± is the displacement of the ± ions in the optic mode (related equations are
more generally discussed in Sect. 10.10).

Subtracting, and defining the reduced mass in the usual way (l−1 = m+
−1 + m−

−1),
we have

l€r ¼� krþ eEf ; ð4:54aÞ

where

r ¼ rþ � r�: ð4:54bÞ

We assume Ef in the solid is given by the Lorentz field (derived in Chap. 9)

Ef ¼ Eþ P
3e0

; ð4:55Þ

where e0 is the permittivity of free space.
The polarization P is the dipole moment per unit volume. So if there are N unit

cells in a volume V, and if the ± ions have polarizability of a± so for both ions
a = a+ + a−, then
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P ¼ N
V

� �
erþ aEfð Þ: ð4:56Þ

Inserting Ef into this expression and solving for P we find:

P ¼ N
V

� �
erþ aE

1� Na=3Ve0ð Þ : ð4:57Þ

Putting Ef into (4.54a) and (4.56) and using (4.57) for P, we find

€r ¼ arþ bE; ð4:58aÞ

P ¼ crþ dE; ð4:58bÞ

where

b ¼ e=l
1� Na=3Ve0ð Þ ; ð4:59aÞ

c ¼ N
V

� �
e

1� Na=3Ve0ð Þ ; ð4:59bÞ

and a and d can be similarly evaluated if needed. Note that

b ¼ V
Nl

c: ð4:60Þ

It is also convenient to relate these coefficients to the static and high-frequency
dielectric constants K(0) and K(∞). In general

D ¼ Ke0E ¼ e0EþP; ð4:61Þ

so

P ¼ K � 1ð Þe0E: ð4:62Þ

For the static case €r ¼ 0 and

r ¼ � b
a
E: ð4:63Þ

Thus

P ¼ K 0ð Þ � 1½ �e0 E ¼ d � cb
a

� �
E: ð4:64Þ
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For the high-frequency or optic case ̈r ! 1, and r!0 because the ions cannol
follow the high-frequency fields so

P ¼ dE ¼ K 1ð Þ � 1½ �e0E: ð4:65Þ

From the above

d ¼ K 1ð Þ � 1½ �e0; ð4:66Þ

d � bc
a

K 0ð Þ � 1½ �e0: ð4:67Þ

We can use the above to get an expression for the polarization, which in turn can be
used to determine the electron–phonon interaction. First we need to evaluate P.

We work out the polarization for the longitudinal optic mode, as that is all tha is
needed. Let

r ¼ rT þ rL; ð4:68Þ

where T and L denote transverse and longitudinal. Since we assume

rT ¼ v exp i q � rþxtð Þ½ �; v a constant, ð4:69aÞ

then

$ � rT ¼ iq � rT ¼ 0; ð4:69bÞ

by definition since q is the direction of motion of the vibrational wave and is
perpendicular to rT. There is no free charge to consider, so

$ � D ¼ $ � e0EþPð Þ ¼ $ � e0Eþ dEþ crð Þ ¼ 0

or

$ � e0 þ d½ �Eþ crL ¼ 0; ð4:70Þ

using (4.69b). This gives as a solution for E

E ¼ �c
e0 þ d

rL: ð4:71Þ

Therefore

PL ¼ crL þ dE ¼ ce0
e0 þ d

rL: ð4:72Þ
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If

rL ¼ rL 0ð Þ exp ixLtð Þ; ð4:73aÞ

and

rT ¼ rT 0ð Þ exp ixTtð Þ; ð4:73bÞ

then

€rL ¼ �x2
LrL; ð4:74aÞ

and

€rT ¼ �x2
TrT: ð4:74bÞ

Thus by (4.58a) and (4.71)

€rL ¼ arL � cb
e0 þ d

rL: ð4:75Þ

Also, using (4.71) and (4.58a)

€rT ¼ arT; ð4:76Þ

so

a ¼ �x2
T: ð4:77Þ

Using (4.66) and (4.67)

a� bc
e0 þ d

¼ a
K 0ð Þ
K 1ð Þ ; ð4:78Þ

and so by (4.74a), (4.75) and (4.77)

x2
L ¼ �a

K 0ð Þ
K 1ð Þ ¼ x2

T
K 0ð Þ
K 1ð Þ ; ð4:79Þ

which is known as the LST (for Lyddane–Sachs–Teller) equation. See also Born
and Huang [46 p. 87]. This will be further discussed in Chap. 9. Continuing, by
(4.66),

e0 þ d ¼ K 1ð Þe0; ð4:80Þ
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and by (4.67)

d � K 0ð Þ � 1½ �e0 ¼ bc
a
; ð4:81Þ

from which we determine by (4.60), (4.77), (4.78), (4.80), and (4.81)

c ¼ xT

ffiffiffiffiffiffiffi
Nl
V

r ffiffiffiffi
e0

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K 0ð Þ � K 1ð Þ

p
: ð4:82Þ

Using (4.72) and the LST equation we find

P ¼ xL
ffiffiffiffi
e0

p
ffiffiffiffiffiffiffi
Nl
V

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

K 0ð ÞK 1ð Þ

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K 0ð Þ � K 1ð Þ

p
rL; ð4:83Þ

or if we define

ac ¼ e2

8pe0�hxL

1
r0

1
�K
; ð4:84Þ

with

1
K

¼ 1
K 1ð Þ �

1
K 0ð Þ ; ð4:85Þ

and

r0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
�h

2mxL

r
; ð4:86Þ

we can write a more convenient expression for P. Note we can think of �K as the
effective dielectric constant for the ion displacements. The quantity r0 is called the
radius of the polaron. A simple argument can be given to see why this is a good
interpretation. The uncertainty in the energy of the electron due to emission or
absorption of virtual phonons is

DE = �hxL; ð4:87Þ

and if

DE
�h2

2m
Dkð Þ2; ð4:88Þ
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then

1
Dk

� r0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
�h

2mxL

r
: ð4:89Þ

The quantity ac is called the coupling constant and it can have values considerably
less than 1 for for direct band gap semiconductors or greater than 1 for insulators.
Using the above definitions:

P ¼ e0xL

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nlac
V

8p�hxL

e2
r0

r
rL

� ArL:
ð4:90Þ

The Electron–Phonon Interaction due to the Polarization (A)
In the continuum approximation appropriate for large polarons, we can write the
electron–phonon interaction as coming from dipole moments interacting with the
gradient of the potential due to the electron (i.e. a dipole moment dotted with an
electric field, e > 0) so

Hep ¼ �e
4pe0

Z
P rð Þ$ 1

r � rej j dr ¼
e

4pe0

Z
P rð Þ � r� reð Þ

r� rej j3 dr: ð4:91Þ

Since P = ArL and we have determined A, we need to write an expression for rL.
In the usual way we can express rL at lattice position Rn in terms of an expansion

in the normal modes for LO phonons (see Sect. 2.3.2):

rLn ¼ rnþ � rn� ¼ 1ffiffiffiffi
N

p
X
q

Q qð Þ eþ qð Þffiffiffiffiffiffiffiffi
mþ

p � e� qð Þffiffiffiffiffiffiffi
m�

p
� �

exp iq � Rnð Þ: ð4:92Þ

The polarization vectors are normalized so

eþj j2 þ e�j j2¼ 1: ð4:93Þ

For long-wavelength LO modes

eþ ¼ �e�

ffiffiffiffiffiffiffiffi
m�
mþ

r
: ð4:94Þ

Then we find a solution for the LO modes as

eþ qð Þ ¼ i
ffiffiffiffiffiffiffiffi
l
mþ

r
ê qð Þ; ð4:95aÞ
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e� qð Þ ¼ i
ffiffiffiffiffiffiffi
l
m�

r
ê qð Þ; ð4:95bÞ

where

ê qð Þ ¼ q
q

as q!1:

Note the i allows us to satisfy

e qð Þ ¼ e� �qð Þ; ð4:96Þ

as required. Thus

rLn ¼ 1ffiffiffiffiffiffiffi
Nl

p
X
q

iQ qð Þê qð Þ exp iq � Rnð Þ; ð4:97Þ

or in the continuum approximation

rLn ¼ 1ffiffiffiffiffiffiffi
Nl

p
X
q

iQ qð Þê qð Þ exp iq � rð Þ: ð4:98Þ

Following the usual procedure:

Q qð Þ ¼ 1
i

ffiffiffiffiffiffiffiffiffi
�h

2xL

r
aþ
�q � aq

� 	
ð4:99Þ

[compare with (2.140), (2.141)]. Substituting and making a change in dummy
summation variable:

rL ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�h
2NlxL

s X
q

aþ
q e�iq�r þ aqeiq�r

� 	 q
q
: ð4:100Þ

Thus

Hep ¼ � �hxL

4p

ffiffiffiffiffiffiffiffiffiffiffiffiffi
4pacr0

V

r Z
dr

r� re
r� rej j3

q
q

X
q

aþ
q e�iq�r þ aqeiq�r

� 	
: ð4:101Þ

Using the identity from Madelung [4.26],

Z
exp 
 exp iq � rð Þ½ � r� reð Þ

r� rej j3 dr ¼� 4pi
q
q2

exp 
iq � reð Þ; ð4:102Þ

4.3 The Electron–Phonon Interaction 269



we find

Hep ¼ i�hxL
ffiffiffiffi
r0

p
ffiffiffiffiffiffiffiffiffiffi
4pac
V

r X
q

1
q

aq exp iq � reð Þ � aþ
q exp �iq � reð Þ

h i
: ð4:103Þ

Energy and Effective Mass (A)
We consider only processes in which the polarizable medium is at absolute zero,
and for which the electron does not have enough energy to create real optical
phonons. We consider only the process described in Fig. 4.6. That is we consider
the modification of self-energy of the electron due to virtual phonons. In pertur-
bation theory we have as ground state k; 0q

�� �
with energy

Ek ¼ �h2k2

2m� ð4:104Þ

and no phonons. For the excited (virtual) state we have one phonon, k� q; 1q
�� �

. By
ordinary Rayleigh-Schrödinger perturbation theory, the perturbed energy of the
ground state to second order is:

Ek;0 ¼ E 0ð Þ
k;0 þ k; 0 Hep

�� ��k; 0� �þ X
q

k� q; 1 Hep

�� ��k; 0� ��� ��2
E 0ð Þ
k;0 � E 0ð Þ

k�q;1

: ð4:105Þ

But

E 0ð Þ
k;0 ¼

�h2k2

2m� ;

k; 0 Hep
�� ��k; 0� � ¼ 0;

E 0ð Þ
k�q;1 ¼

�h2

2m� k� qð Þ2 þ �hxL;

Fig. 4.6 Self-energy Feynman diagram (for interaction of electron and virtual phonon)

270 4 The Interaction of Electrons and Lattice Vibrations



so

E 0ð Þ
k;0 � E 0ð Þ

k�q;1 ¼
�h2

2m� 2k � q� q2

 �� �hxL; ð4:106Þ

and

k� q; 1 Hep
�� ��kj; 0� � ¼ �i�hxL

ffiffiffiffi
r0

p
ffiffiffiffiffiffiffiffiffiffi
4pac
V

r X
q0

1
q0

k� q; 1jeð�iq0�reÞaþ
q0 jk; 0

D E
ð4:107Þ

Since

1 aþ
q

��� ���0D E
¼ 1; ð4:108aÞ

k� q exp �iq0 � reð Þj jkh i ¼ dq;q0 ð4:108bÞ

we have

k� q; 1 Hep
�� ��k; 0� ��� ��2¼ �hxLð Þ2r0 4pacV

1
q2

� C2
H

q2
; ð4:109Þ

where

C2
H ¼ �hxLð Þ2r0 4pacV

: ð4:110Þ

Replacing X
q

by
V

2pð Þ3
Z

dq;

we have

Ek;0 ¼ �h2k2

2m� þ VC2
H

2pð Þ3
Z

1
q2

dq"
�h2k2

2m� 2k � q� q2

 �� �hxL

# : ð4:111Þ

For small k we can show (see Problem 4.5)

Ek;0 ffi �ac�hxL þ �h2k2

2m�� ; ð4:112Þ
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where

m�� ¼ m�

1� ac=6ð Þ : ð4:113Þ

Thus the self-energy is increased by the interaction of the cloud of virtual phonons
surrounding the electrons.

Experiments and Numerical Results (A)
A discussion of experimental results for large polarons can be found in the paper by
Appel [4.2, pp. 261–276]. Appel (pp. 366–391) also gives experimental results for
small polarons. Polarons are real. However, there is not the kind of comprehensive
comparisons of theory and experiment that one might desire. Cyclotron resonance
and polaron mobility experiments are common experiments cited. Difficulties
abound, however. For example, to determine m** accurately, m* is needed. Of
course m* depends on the band structure that then must be accurately known.
Crystal purity is an important but limiting consideration in many experiments. The
chapter by F. C. Brown in the book edited by Kuper and Whitfield [4.23] also
reviews rather thoroughly the experimental situation. Some typical values for the
coupling constant ac (from Appel), are given below. Experimental estimates of ac
are also given by Mahan [4.27] on p. 508 (Table 4.4).

4.4 Brief Comments on Electron–Electron Interactions (B)

A few comments on electron–electron interactions have already been made in
Chap. 3 (Sects. 3.1.4 and 3.2.2) and in the introduction to this chapter. Chapter 3
discussed in some detail the density functional technique (DFT), in which the
density function plays a central role for accounting for effects of electron–electron
interactions. Kohn [4.20] has given a nice summary of the limitation of this model.
The DFT has become the traditional way nowadays for calculating the electronic
structure of crystalline (and to some extent other types of) condensed matter. For
actual electronic densities of interest in metals it has always been difficult to treat
electron–electron interactions. We give below earlier results that have been
obtained for high and low densities.

Table 4.4 Polaron coupling constant

Material ac
KBr 3.70
GaAs 0.031
InSb 0.015
CdS 0.65
CdTe 0.39
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Results, which include correlations or the effect of electron–electron interactions,
are available for a uniform electron gas with a uniform positive background (jel-
lium). The results given below are in units of Rydberg (R∞), see Appendix A. If q
is the average electron density,

rs
3

4pq

� �1=3

is the average distance between electrons. For high density (rs 	 1), the theory of
Gellmann and Bruckner gives for the energy per electron

E
N

¼ 2:21
r2s

� 0:916
rs

þ 0:062 ln rs � 0:096þ higher order termsð Þ R1ð Þ:

For low densities (rs � 1) the ideas of Wigner can be extended to give

E
N

¼ � 1:792
rs

þ 2:66

r3=2s

þ higher order terms in r�1=2
s :

In the intermediate regime of metallic densities, the following expression is
approximately true:

E
N

¼ 2:21
r2s

� 0:916
rs

þ 0:031 ln rs � 0:115 R1ð Þ;

for 1.8  rs  5.5. See Katsnelson et al. [4.16]. This book is also excellent for
DFT.

The best techniques for treating electrons in interaction that has been discussed
in this book are the Hartree and Hartree–Fock approximation and especially the
density functional method. As already mentioned, the Hartree–Fock method can
give wrong results because it neglects the correlations between electrons with
antiparallel spins. In fact, the correlation energy of a system is often defined as the
difference between the exact energy (less the relativistic corrections if necessary)
and the Hartree–Fock energy.

Even if we limit ourselves to techniques derivable from the variational principle,
we can calculate the correlation energy at least in principle. All we have to do is to
use a better trial wave function than a single Slater determinant. One way to do this
is to use a linear combination of several Slater determinants (the method of
superposition of configurations). The other method is to include interelectronic
coordinates r12 = |r1 − r2| in our trial wave function. In both methods there would
be several independent functions weighted with coefficients to be determined by the
variational principle. Both of these techniques are practical for atoms and molecules
with a limited number of electrons. Both become much too complex when applied
to solids. In solids, cleverer techniques have to be employed. Mattuck [4.28] will
introduce you to some of these clever ideas and do it in a simple, understandable
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way, and density functional techniques (see Chap. 3) have become very useful, at
least for ground-state properties.

It is well to keep in mind that most calculations of electronic properties in real
solids have been done in some sort of one-electron approximation and they treat
electron–electron interactions only approximately. There is no reason to suppose
that electron correlations do not cause many types of new phenomena. For example,
Mott has proposed that if we could bring metallic atoms slowly together to form a
solid there would still be a sudden (so-called Mott) transition to the conducting or
metallic state at a given distance between the atoms.6 This sudden transition would
be caused by electron–electron interactions and is to be contrasted with the older
idea of conduction at all interatomic separations. The Mott view differs from the
Bloch view that states that any material with well separated energy bands that are
either filled or empty should be an insulator while any material with only partly
filled bands (say about half-filled) should be a metal. Consider, for example, a
hypothetical sodium lattice with N atoms in which the Na atoms are 1 m apart. Let
us consider the electrons that are in the outer unfilled shells. The Bloch theory says
to put these electrons into the N lowest states in the conduction band. This leaves
N higher states in the conduction band for conduction, and the lattice (even with the
sodium atoms well separated) is a metal. This description allows two electrons with
opposite spin to be on the same atom without taking into account the resulting
increase in energy due to Coulomb repulsion. A better description would be to place
just one electron on each atom. Now, the Coulomb potential energy is lower, but
since we are using localized states, the kinetic energy is higher. For separations of
1 m, the lowering of potential energy must dominate. In the better description as
provided by the localized model, conduction takes place only by electrons hopping
onto atoms that already have an outer electron. This requires considerable energy
and so we expect the material to behave as an insulator at large atomic separations.
Since the Bloch model so often works, we expect (usually) that the kinetic energy
term dominates at actual interatomic spacing. Mott predicted that the transition to a
metal from an insulator as the interatomic spacing is varied (in a situation such as
we have described) should be a sudden transition. By now, many examples are
known, NiO was one of the first examples of “Mott–Hubbard” insulators—fol-
lowing current usage. Anderson has predicted another kind of metal–insulator
transition due to disorder (see Foot note 6). Anderson’s ideas are also discussed in
Sect. 12.9.

Kohn has suggested another effect that may be due to electron–electron inter-
actions. These interactions cause singularities in the dielectric constant [see, e.g.,
(9.167)] as a function of wave vector that can be picked up in the dispersion relation
of lattice vibrations. This Kohn effect appears to offer a means of mapping out the
Fermi surface.7 Electron–electron interactions may also alter our views of impurity

6See Mott [4.31].
7See [4.19]. See also Sect. 9.5.3.
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states.8 We should continue to be hopeful about the possibility of finding new
effects due to electron–electron interactions.9

Strongly Correlated Systems and Heavy Fermions (A)
The main characteristic of strongly correlated materials is that they cannot be
reduced to systems of quasi particles that weakly interact and cannot be described
by so called one electron theories. They include a wide class of materials including
some high Tc superconductors, Mott insulators, heavy fermion materials and other
examples. Typically, they involve materials whose d or f shells are not filled and
which in a solid produce narrow bands. Some of these materials have been suc-
cessfully described by density functional theory in some generalizations of the local
density approximation.

A special case of strongly correlated materials involves heavy fermions. The
effective mass of heavy fermions may be much greater than the rest mass of an
electron. At low temperature, these effective masses may be up to many hundreds of
rest masses. Thus, their low temperature specific heat may be similarly increased.
Commonly heavy fermion materials have incomplete f shells.

Heavy fermion compounds may show quantum critical points and non-fermi/
landau liquid behavior at low temperatures. They may also show superconductivity.

Actually, the study of highly correlated electrons has become very important
nowadays. Such studies impact copper oxide high-temperature superconductors
(Sect. 8.8), heavy fermion metals (Sect. 12.7), the Mott transition and related areas
(this section), and quantum phase transitions (which are phase transitions that can
occur by varying, at absolute zero, the appropriate parameter). Some authors like to
clarify by making a list of strongly correlated systems:

1. Both conventional and hi-temperature superconductors are included in this list
but the latter does not appear to be fully understood to this day.

2. Heavy fermions and magnetism is another area.
3. Quantum Hall systems also fit here.
4. Certain 1 D electron systems.
5. The insulating state of boson atoms as in an optical lattice.
6. Fermions and the Hubbard model are discussed here also.

There seems to be no general approach to understanding this area, which is
under very active research.

This is another very broad subject. A start can be made by looking at Gabriel
Kotliar and Dieter Volhardt, “Strongly Correlated Materials: Insights from
Dynamical Mean Field Theory,” Physics Today, March 2004, pp. 53–59, and
Y. Tokura, “Correlated-Electron Physics in Transition-Metal Oxides,” Physics
Today, July 2003, pp. 50–55. See also Laura H Greene, Joe Thompson and Jörg
Schmalian, “Strongly correlated electron systems—reports on the progress of the
field,” Reports on Progress in Physics, 80 (3), 2017.

8See Langer and Vosko [4.24].
9See also Sect. 12.8.3 where the half-integral quantum Hall effect is discussed.
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4.5 The Boltzmann Equation and Electrical Conductivity

4.5.1 Derivation of the Boltzmann Differential Equation (B)

In this section, the Boltzmann equation for an electron gas will be derived. The
principle lack of rigor will be our assumption that the electrons are described by
wave packets made of one-electron Bloch wave packets (Bloch wave packets
incorporate the effect of the fields due to the lattice ions which by definition change
rapidly over inter ionic distances). We also assume these wave packets do not
spread appreciably over times of interest. The external fields and temperatures will
also be assumed to vary slowly over distances of the order of the lattice spacing.

Later, we will note that the Boltzmann equation is only relatively simple to solve
in an iterated first order form when a relaxation time can be defined. The use of a
relaxation time will further require that the collisions of the electrons with phonons
(for example) do not appreciably alter their energies, that is that the relevant phonon
energies are negligible compared to the electrons energies so that the scattering of
the electrons may be regarded as elastic.

We start with the distribution function fkr(r,t), where the normalization is such
that

fkr r; tð Þ dkdr
2pð Þ3

is the number of electrons in dk (=dkxdkydkz) and dr (=dxdydz) at time t with spin r.
In equilibrium, with a uniform distribution, fkr!f 0kr becomes the Fermi–Dirac
distribution.

If no collisions occurred, the r and k coordinates of every electron would evolve
by the semiclassical equations of motion as will be shown (Sect. 6.1.2). That is:

vkr ¼ 1
�h
@Ekr

@k
; ð4:114Þ

and

�h _k ¼ Fext; ð4:115Þ

where F = Fext is the external force. Consider an electron having spin r at r and
k and time t started from r − vkrdt, k − Fdt/ħ at time t − dt. Conservation of the
number of electrons then gives us:

fkr r; tð Þdrtdkt ¼ f k�Fd=�hð Þr r� vkrdt; t � dtð Þdrt�dtdkt�dt: ð4:116Þ
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Liouville’s theorem then says that the electrons, which move by their equation of
motion, preserve phase space volume. Thus, if there were no collisions:

fkr r;tð Þ ¼ f k�Fdt=�hð Þr r� vkrdt; t � dtð Þ: ð4:117Þ

Scattering due to collisions must be considered, so let

Q r; k; tð Þ ¼ @fkr
@t

�
collisions

ð4:118Þ

be the net change, due to collisions, in the number of electrons [per dkdr/(2p)3] that
get to r, k at time t. By expanding to first order in infinitesimals,

fkr r; tð Þ ¼ fkr r; tð Þ � dt
@fkr
@r

� vkr þ @fkr
@k

� F
�h
þ @fkr

@t

� �
þQ r; k; tð Þdt; ð4:119Þ

so

Q r; k; tð Þ ¼ @fkr
@r

� vkr þ @fkr
@k

� F
�h
þ @fkr

@t
: ð4:120Þ

If the steady state is assumed, then

@fkr
@t

¼ 0: ð4:121Þ

Equation (4.120) may be the basic equation we need to solve, but it does us little
good to write it down unless we can find useful expressions for Q. Evaluation of
Q is by a detailed consideration of the scattering process. For many cases Q is
determined by the scattering matrices as was discussed in Sects. 4.1 and 4.2. Even
after Q is so determined, it is by no means a trivial problem to solve the Boltzmann
integrodifferential (as it turns out to be) equation.

Ludwig Boltzmann—The Arrow of Time

b. Vienna, Austria (1844–1906)

S = k ln(W)

Suicide

Boltzmann connected entropy with probability and thus helped us
understand why even though energy is conserved, natural processes convert
energy into less usable (more disordered) forms. The connection of entropy
and probability is even engraved on his tombstone: S = k ln(W), where S is
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the entropy, k is Boltzmann’s constant, and W is the number of microstates
per macro state. His work helped us understand why time has an arrow (that
is a direction, the idea is that time going forward is linked to entropy
increase). He along with Gibbs and Maxwell are giants in promulgating
statistical mechanics and showing how macroscopic laws follow from basic
microscopic ones. He was frustrated by the lack of acceptance of his work
and committed suicide. The problem was the laws of physics were time
invariant, while the Boltzmann equation was not (he made an assumption of
molecular chaos at one point which breaks time symmetry). Nevertheless, his
equation is still useful even today for many purposes. Students encounter his
name often in the Boltzmann constant k as well as in the Stefan-Boltzmann
law governing the rate of “black body” radiation from a surface (the rate is
proportional to the temperature to the fourth power).

4.5.2 Motivation for Solving the Boltzmann Differential
Equation (B)

Before we begin discussing the Q details, it is worthwhile to give a little motivation
for solving the Boltzmann differential equation. We will show how two important
quantities can be calculated once the solution to the Boltzmann equation is known.
It is also very useful to approximate Q by a phenomenological argument and then
obtain solutions to (4.120). Both of these points will be discussed before we get into
the rather serious problems that arise when we try to calculate Q from first
principles.

Solutions to (4.120) allow us, from fkr, to obtain the electric current density J,
and the electronic flux of heat energy H. By definition of the distribution function,
these two important quantities are given by

J ¼
X
r

Z
�eð Þvkrfkr dk

2pð Þ3 ; ð4:122Þ

H ¼
X
r

Z
Ekrvkrfkr

dk

2pð Þ3 : ð4:123Þ

Electrical conductivity r and thermal conductivity к10 are defined by the relations

J ¼ rE; ð4:124Þ

10See Table 4.5 for a more precise statement about what is held constant.
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H ¼ �j$T ð4:125Þ
(with a few additional restrictions as will be discussed, see, e.g., Sect. 4.6 and
Table 4.5).

As long as we are this close, it is worthwhile to sketch the type of experimental
results that are obtained for the transport coefficients к and r. In particular, it is
useful to understand the particular form of the temperature dependences that are
given in Figs. 4.7, 4.8 and 4.9. See Problems 4.2, 4.3, and 4.4.

4.5.3 Scattering Processes and Q Details (B)

We now discuss the Q details. A typical situation in which we are interested is how
to calculate the electron–phonon interaction and thus calculate the electrical resis-
tivity. To begin with we consider how

@fkr
@t

����
c

¼ Q r; k; tð Þ

Fig. 4.7 The thermal conductivity of a
good metal (e.g. Na as a function of
temperature)

Fig. 4.8 The electrical conductivity of a
good metal (e.g. Na as a function of
temperature)

Fig. 4.9 The thermal conductivity of an insulator as a function of temperature, b ≅ hD/2
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is determined by the interactions. Let Pkr, k′r′ be the probability per unit time to
scatter from the state k′r′ to kr. This is typically evaluated from the Golden rule of
time-dependent perturbation theory (see Appendix E):

Pk0r0
kr ¼ 2p

�h
kr Vintj jk0r0h ij j2d Ekr � Ek0r0ð Þ: ð4:126Þ

The probability that there is an electron at r, k, r available to be scattered is fkr and
(1 − fk′r′) is the probability that k′r′ can accept an electron (because it is empty).

For scattering out of kr we have

@fkr
@t

�
c;out

¼ �
X
k0r0

Pk0r0;kr fkr 1� fk0r0ð Þ: ð4:127Þ

By a similar argument for scattering into kr, we have

@fkr
@t

�
c;in

¼ þ
X
k0r0

Pkr;k0r0 fk0r0 1� fkrð Þ: ð4:128Þ

Combining these two we have an expression for Q:

Q r; k; tð Þ ¼ @fkr
@t

�
c

¼
X
k0r0

Pkr;k0r0 fk0r0 1� fkrð Þ � Pk0r0;kr fkr 1� fk0r0ð Þ� 
:

ð4:129Þ

This rate equation for fkr is a type of Master equation [11, p. 190]. At equilibrium,
the above must yield zero and we have the principle of detailed balance.

Pkr;k0r0 f
0
k0r0 1� f 0kr

 � ¼ Pk0r0;kr f

0
kr 1� f 0k0r0

 �

: ð4:130Þ

Using the principle of detailed balance, we can write the rate equation as

Q r; k; tð Þ ¼ @fkr
@t

�
c

¼
X
k0r0

Pk0r0;kr f
0
kr 1� f 0k0r0

 � fk0r0 1� fkrð Þ

f 0k0r0 1� f 0kr

 �� fkr 1� fk0r0ð Þ

f 0kr 1� f 0k0r0
� 	

2
4

3
5: ð4:131Þ

We now define a quantity ukr such that
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fkr ¼ f 0kr � ukr
@f 0kr
@Ekr

; ð4:132Þ

where

f 0kr ¼ 1
exp b Ekr � lð Þ½ � þ 1

; ð4:133Þ

with b = 1/kBT and f 0kr is the Fermi function.
Noting that

@f 0kr
@Ekr

¼ �bf 0kr 1� f 0kr

 �

; ð4:134Þ

we can show to linear order in ukr that

b uk0r0 � ukrð Þ ¼ fk0r0 1� fkrð Þ
f 0k0r0 1� f 0kr

 �� fkr 1� fk0r0ð Þ

f 0kr 1� f 0k0r0

 �

" #
: ð4:135Þ

The Boltzmann transport equation can then be written in the form

@fkr
@r

� vkr þ @fkr
@k

� F
�h
þ @fkr

@t
¼ b

X
k0r0

Pk0r0;krf
0
kr 1� f 0k0r0

 �

uk0r0 � ukrð Þ: ð4:136Þ

Since the sums over k′ will be replaced by an integral, this is an integrodifferential
equation.

Let us assume that in the Boltzmann equation, on the left-hand side, that there
are small fields and temperature gradients so that fkr can be replaced by its equi-
librium value. Further, we will assume that f 0kr characterizes local equilibrium in
such a way that the spatial variation of f 0kr arises from the temperature and chemical
potential (l). Thus

@f 0kr
@r

¼ @f 0kr
@T

rT þ @f 0kr
@l

rl ¼ � Ekr � lð Þ
T

rT
@f 0kr
@Ekr

� @f 0kr
@Ekr

rl:

We also use

@fkr
@k

¼ �hvkr
@f 0kr
@Ekr

; ð4:137Þ

and assume an external electric field E so F ¼ �eE. (The treatment of magnetic
fields can be somewhat more complex, see, for example, Madelung [4.26, pp. 205
and following].)
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We also replace the sums by integrals as follows:

X
k0r0

! V

2pð Þ3
X
r0

Z
dk0:

We assume steady-state conditions so @fkr=@t ¼ 0. We thus write for the
Boltzmann integrodifferential equation:

� Ekr � lð Þ
T

vkr � rT
@f 0kr
@Ekr

� e Eþ 1
e
rl

� �
� vkr @f 0kr

@Ekr

¼ V

2pð Þ3kT
X
r0

Z
dk0Pk0r0;kr f

0
kr 1� f 0k0r0

 �

uk0r0 � ukrð Þ

� @fkr
@t

�
c
:

ð4:138Þ

We now want to see under what conditions we can have a relaxation time. To this
end we now assume elastic scattering. This can be approximated by electrons
scattering from phonons if the phonon energies are negligible. In this case we write:

� V

2pð Þ3 Pk0r0;kr f
0
kr 1� f 0k0r0

 � ¼ W kr; k0r0ð Þd Ek0r0 � Ekrð Þ; ð4:139Þ

where the electron energies are given by Ekr, so

@fkr
@t

�
c
¼ �dfkr

X
r0

Z
dk0W k0r0; krð Þ 1� dfk0r0

dfkr

� �
1

@f 0kr=@Ekr

 � d Ek0r0 � Ekrð Þ:

ð4:140Þ

where dfkr ¼ fkr � f 0kr We will also assume that the effect of external fields in the
steady state causes a displacement of the Fermi distribution in k space. If the energy
surface is also assumed to be spherical so E = E(k), with k equal to the magnitude
of k, (and k′) we can write

fkr ¼ f 0kr � k � c Eð Þ @f
0
kr

@Ekr
; ð4:141Þ

where c is a constant vector in the direction that f is displaced in k space. Thus

dfkr
@f 0kr=@Ekr

¼ �k � c Eð Þ; ð4:142Þ
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and from Fig. 4.10, we see we can write:

cosH0 ¼ c � k0
ck

¼ sin h sinH cosu0 þ cosH cos h: ð4:143Þ

If we define a relaxation time by

@fkr
@t

�
c
¼ � dfkr

s Eð Þ ; ð4:144Þ

then

1
s Eð Þ ¼

X
r0

Z
dk0W k0r0; krð Þd Ek0r0 � Ekrð Þ 1� cosHð Þ

@f 0kr=@Ekr
; ð4:145Þ

since the cos(u′) vanishes on integration.
Expressions for @fkr=@tÞc can be written down for various scattering processes.

For example electron–phonon interactions can be sometimes evaluated as above
using a relaxation-time approximation. Note if we were concerned with scattering
of electrons from optical phonons, then in general their energies can not be
neglected, and we would have neither an elastic scattering event, nor a
relaxation-time approximation.11 In any case, the evaluation of Q is complex and
further approximations are typically made.

An assumption that is often made in deriving an expression for electrical con-
ductivity, as controlled by the electron–phonon interaction, is called the Bloch
Ansatz. The Bloch Ansatz is the assumption that the phonon distribution remains in
equilibrium even though the phonons scatter electrons and vice versa. By carrying
through an analysis of electron scattering by phonons, using the approximations
equivalent to the relaxation-time approximation (above), neglecting umklapp

Fig. 4.10 Orientation of the constant c vector with respect to k and k′ vectors

11For a discussion of how to treat such cases, see, for example, Howarth and Sondheimer [4.13].
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processes, and also making the Debye approximation for the phonons, Bloch
evaluated the equilibrium resistivity of electrons as a function of temperature. He
found that the electrical resistivity is approximated by

1
r
/ T

hD

� �5 ZhD=T
0

x5dx
ex � 1ð Þ 1� e�xð Þ: ð4:146Þ

This is called the Bloch–Gruneisen relation. In (4.146), hD is the Debye tempera-
ture. Note that (4.146) predicts the resistivity curve goes as T5 at low temperatures,
and as T at higher temperatures.12 In (4.146), 1/r is the resistivity q, and for real
materials one should include a residual resistivity q0 as a further additive factor. The
purity of the sample determines q0.

4.5.4 The Relaxation-Time Approximate Solution
of the Boltzmann Equation for Metals (B)

A phenomenological form of

Q ¼ @f
@t

� �
scatt

will be stated. We assume that ð@f =@tÞscatt ð¼ @f =@tÞcÞ is proportional to the dif-
ference of f from its equilibrium f0 and is also proportional to the probability of a
collision 1/s, where s is the relaxation time, as in (4.144) and (4.145). Then

@f
@t

� �
scatt

¼ � f � f0
s

: ð4:147Þ

Integrating (4.147) gives

f � f0 ¼ Ae�t=s; ð4:148Þ

which simply says that in the absence of external perturbations, any system will
reach its equilibrium value when t becomes infinite. Equation (4.148) assumes that
collisions will bring the system to equilibrium. This may be hard to prove, but it is
physically very reasonable. There may be only a few cases where the assumption of

12As emphasized by Arajs [4.3], (4.146) should not be applied blindly with the expectation of good
results in all metals (particularly for low temperature).
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a relaxation time is fully justified. To say more about this point requires a dis-
cussion of the Q details of the system. In (4.131), s will be assumed to be a function
of Ek only. A more drastic assumption would be that s is a constant, and a less
drastic assumption would be that s is a function of k.

With all of the above assumptions and assuming steady state, the Boltzmann
differential equation is13

vk � $T @fk
@T

� e Eþ vk � Bð Þ � vk @fk
@Ek

¼ � fk � f 0k
s Ekð Þ : ð4:149Þ

Since electrons are being considered, if we ignore the possibility of electron cor-
relations, then f 0k is the Fermi–Dirac distribution function [as in (4.154)].

In order to show the utility of (4.149), a calculation of the electrical conductivity
using (4.149) will be made. We assume $T ¼ 0, B¼ 0, and E ¼ Eẑ. Then (4.149)
reduces to

fk ¼ f 0k þ esEvzk
@fk
@Ek

: ð4:150Þ

If we assume that there is only a small deviation from equilibrium, a first iteration
yields

fk ¼ f 0k � esEvzk
@f 0k
@Ek

: ð4:151Þ

Since there is no electrical current in equilibrium, substitution of (4.151) into
(4.122) gives

Jz ¼ � e2

4p3

Z
vzk

 �2

s
@f 0k
@Ek

Ed3k: ð4:152Þ

If we have spherical symmetry in k space,

J ¼ � 1
3
e2

4p3
E
Z

v2ks
@f 0k
@Ek

d3k: ð4:153Þ

Since f 0k represents the value of the number of electrons, by our normalization
(4.5.1)

f 0k ¼ F the Fermi function: ð4:154Þ

13Equation (4.149) is the same as (4.138) and (4.145) with $l ¼ 0 and B¼ 0. These are typical
conditions for metals, although not necessarily for semiconductors.
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At temperatures lower than several thousand degrees F ≅ 1 for Ek < EF and
F ≅ 0 for Ek > EF, and so

@F
@Ek

ffi �d Ek � EFð Þ; ð4:155Þ

where d is the Dirac delta function and EF is the Fermi energy. Now since a volume
in k-space may be written as

d3k ¼ dSdE
rkEj j ¼

dSdE
�hvk

; ð4:156Þ

where S is a surface of constant energy, (4.153), (4.154), (4.155), and (4.156) imply

J ¼ e2E
12p3�h

Z Z
vksd Ek � EFð ÞdE

� �
dS: ð4:157Þ

Using Ek¼ ħ2k2/2 m, (4.157) becomes

J ¼ e2E
12p3�h

vFk

 �

sFð Þ4pk2F ; ð4:158Þ

where the subscript F means that the function is to be evaluated at the Fermi energy.
If n is the number of conduction electrons per unit volume, then

n ¼ 1
4p3

Z
Fd3k ¼ 4p

3
k3F

1
4p3

: ð4:159Þ

Combining (4.158) and (4.159), we find that

J ¼ ne2EsF
m

¼ rE or r ¼ ne2sF
m

: ð4:160Þ

This is (3.214) that was derived earlier. Now it is clear that all pertinent quantities
are to be evaluated at the Fermi energy. There are several general techniques for
solving the Boltzmann equation, for example the variation principle. The book by
Ziman can be consulted [99, p275ff].

4.6 Transport Coefficients

As mentioned, if we have no magnetic field (in the presence of a magnetic field,
several other characteristic effects besides those mentioned below are of importance
[4.26, p 205] and [73]), then the approximate Boltzmann differential equation is (in
the relaxation-time approximation)
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vk � �rT
@f 0k
@T

þ eE
@f 0k
@Ek

� �
¼ fk � f 0k

s
: ð4:161Þ

Using the definitions of J and H in terms of the distribution function [(4.122) and
(4.123)], and using (4.161), we have

J ¼ aEþ b$T ; ð4:162Þ

H ¼ cEþ d$T : ð4:163Þ

For cubic crystals a, b, c, and d are scalars. Equations (4.162) and (4.163) are more
general than their derivation based on (4.161) might suggest. The equations must be
valid for sufficiently small E and $T . This is seen by a Taylor series expansion and
by the fact that J and H must vanish when E and $T vanish. The point of this
Section will be to show how experiments determine a, b, c, and d for materials in
which electrons carry both heat and electricity.

4.6.1 The Electrical Conductivity (B)

The electrical conductivity measurement is the simplest of all. We simply set
$T ¼ 0 and measure the electrical current. Equation (4.162) becomes J¼ aE, and
so we obtain a¼ r.

4.6.2 The Peltier Coefficient (B)

This is also an easy measurement to describe. We use the same experimental
setup as for electrical conductivity, but now we measure the heat current.
Equation (4.163) becomes

H ¼ cE ¼ c
J
r
¼ c

a
J: ð4:164Þ

The Peltier coefficient is the heat current per unit electrical current and so it is given
by П = c/a.

4.6.3 The Thermal Conductivity (B)

This is just a little more complicated than the above, because we usually do the
thermal conductivity measurements with no electrical current rather than no elec-
trical field. By the definition of thermal conductivity and (4.163), we obtain
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K ¼ � Hj j
$Tj j ¼ � cEþ d$Tj j

$Tj j : ð4:165Þ

Using (4.162) with no electrical current, we have

E ¼ � b
a
$T: ð4:166Þ

The thermal conductivity is then given by

K ¼ �dþ cb
a
: ð4:167Þ

We might expect the thermal conductivity to be −d, but we must remember that we
required there to be no electrical current. This causes an electric field to appear,
which tends to reduce the heat current.

4.6.4 The Thermoelectric Power (B)

We use the same experimental setup as for thermal conductivity but now we
measure the electric field. The absolute thermoelectric power Q is defined as the
proportionality constant between electric field and temperature gradient. Thus

E ¼ Q$T: ð4:168Þ

Comparing with (4.166) gives

Q ¼ � b
a
: ð4:169Þ

We generally measure the difference of two thermoelectric powers rather than the
absolute thermoelectric power. We put two unlike metals together in a loop and
make a break somewhere in the loop as shown in Fig. 4.11. If VAB is the voltage
across the break in the loop, an elementary calculation shows

Fig. 4.11 Circuit for measuring the thermoelectric power. The junctions of the two metals
are at temperature T1 and T2
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Q2 � Q1j j ffi VABj j
T2 � T1j j : ð4:170Þ

4.6.5 Kelvin’s Theorem (B)

A general theorem originally stated by Lord Kelvin, which can be derived from the
thermodynamics of irreversible process, states that [99]

P ¼ QT : ð4:171Þ

Summarizing, by using (4.162), (4.163), r = a, (4.165), (4.167), (4.164), and
(4.171), we can write

J ¼ rE� rP
T

$T ; ð4:172Þ

H ¼ rPE� K þ r
P2

T

� �
$T : ð4:173Þ

If, in addition, we assume that the Wiedemann–Franz law holds, then K = CTr,
where C = (p2/3)(k/e)2, and we obtain

J ¼ rE� rP
T

$T ; ð4:174Þ

H ¼ rPE� r CT þ P2

T

� �
$T: ð4:175Þ

We summarize these results in Table 4.5. As noted in the references there are
several other transport coefficients including magnetoresistance, Rigli–Leduc,
Ettinghausen, Nernst, and Thompson.

Table 4.5 Transport coefficients

Quantity Definition Comment

Electrical
conductivity

Electric current density at unit electric
field (no magnetic (B) field, no
temperature gradient)

See Sects. 4.5.4
and 4.6.1

Thermal conductivity Heat flux per unit temp. gradient (no
electric current)

See Sect. 4.6.3

Peltier coefficient Heat exchanged at junction per
electric current density

See Sect. 4.6.2

Thermoelectric power
(related to Seebeck
effect)

Electric field per temperature gradient
(no electric current)

See Sect. 4.6.4

Kelvin relations Relates thermopower, Peltier
coefficient and temperature

See Sect. 4.6.5

References: [4.1, 4.32, 4.39]
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Applications of Transport Coefficients (Thermoelectric Coefficients)
(B, EE, MS)

1. The electrical conductivity is obviously the important measure of how well a
material conducts electricity. It also enters in the coefficients below.

2. The thermal conductivity measures how well a material conducts heat. For
practical matters one often quotes the R factor to measure how good an insulator
is. The R factor is the reciprocal of the thermal conductivity per unit width. In SI
units, it is given in units of [(meter squared Kelvin) per Watt] or m2K/W. In the
USA, you will find the units are degrees F times square feet of area times hours
of time per BTUs of heat flow or (hr °F ft2)/BTU.

3. The Seebeck effect is exhibited when you join two materials as in Fig. 4.11 with
different thermopower and different temperatures at the junctions. At the break
there is then a voltage as given in (4.170). This effect is used to recover waste
heat into power as e.g. the heat from the exhaust of an automobile.

4. The Peltier effect is defined by (4.164) and it is applied to thermoelectric cooling
as for example in a solid-state refrigerator.

Lord Kelvin or William Thomson

b. Belfast, Ireland, UK (1824–1907)

Absolute Zero; Joule-Thomson (porous plug) Effect

He was prominent in the field of Thermodynamics. He is perhaps most
famous because of the eponymous Kelvin Temperature scale, where the
temperature starts from absolute zero. He also assisted in laying of the
transatlantic telegraph cable, predicted incorrectly the age of the earth (by
neglecting radioactive decay in the earth), and was active in many fields of
physics, e.g. in fluid mechanics there is Kelvin’s circulation theorem. He may
have been the most well known British scientist in his time.

4.6.6 Transport and Material Properties in Composites
(MET, MS)

Introduction (MET, MS)
Sometimes the term composite is used in a very restrictive sense to mean fibrous
structures that are used, for example, in the aircraft industry. The term composite is
used much more generally here as any material composed of constituents that
themselves are well defined. A rock composed of minerals, is thus a composite
using this definition. In general, composite materials have become very important
not only in the aircraft industry, but in the manufacturing of cars, in many kinds of
building materials, and in other areas.
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A typical problem is to find the effective dielectric constant of a composite
media. As we will show below, if we can find the potential as a function of position,
we can evaluate the effective dielectric constant. First, we want to illustrate that this
is also the same problem as the effective thermal conductivity, the effective elec-
trical conductivity, or the effective magnetic permeability of a composite. For in
each case, we end up solving the same differential equation as shown in Table 4.6.

To begin with we must define the desired property for the composite. Consider
the case of the dielectric constant. Once the overall potential is known (and it will
depend on boundary conditions in general as well as the appropriate differential
equation), the effective dielectric constant may ec be defined such that it would lead
to the same over all energy. In other words

ecE
2
0 ¼

1
V

Z
e rð ÞE2 rð ÞdV ; ð4:176Þ

Table 4.6 Equivalent problems

Dielectric constant Magnetic permeability

D¼ eE
e is dielectric constant
E is electric field
D is electric displacement vector

B¼ lH
l is magnetic permeability
H is magnetic field intensity
B is magnetic flux density

$� E ¼ 0
(no changing B)
E ¼ �$ð/Þ
$ � D ¼ 0
(no free charge)
$ � ð�$ð/ÞÞ ¼ 0

$ � B¼ 0
(no current, no changing E)
H¼−$(U)
$ � B¼ 0
(Maxwell equation)
$ � [l $(U)]¼ 0

B.C.
/ constant at top and bottom
$ð/Þ ¼ 0 on side surfaces

analogous B.C.

Electrical conductivity Thermal conductivity

J ¼ rE and only driven by E
r is electrical conductivity
E is electric field
J is electrical current density

J ¼ −K $(T) and only driven by $T
K is the thermal conductivity
T is the temperature
J is the heat flux

$� E ¼ 0
(no changing B)
E ¼ − $ (/)
$� J¼ 0
(cont. equation, steady state)
$ � ðs$ð/ÞÞ = 0
analogous B.C.

$ � $ (T) ¼ 0, an identity

$ � J ¼ 0
(cont. equation, steady state)
$ � K[$(T)] ¼ 0
analogous B.C.
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where

E0 ¼ 1
V

Z
E rð ÞdV ; ð4:177Þ

where V is the volume of the composite, and the electric field E(r) is known from
solving for the potential. The spatial dependence of the dielectric constant, e(r), is
known from the way the materials are placed in the composite.

One may similarly define the effective thermal conductivity. Let b ¼ �$T,
where T is the temperature, and h ¼ �K$T , where K is the thermal conductivity.
The equivalent definition for the thermal conductivity of a composite is

Kc ¼ V
R
h � bdVR
bdV


 �2 : ð4:178Þ

For the geometry and boundary conditions shown in Fig. 4.12, we show this
expression reduces to the usual definition of thermal conductivity.

Note since $ � h ¼ 0 in the steady state that �$ � ðThÞ ¼ h � b, and soR
h � bdV ¼ �ðTt � TbÞ

R
hzdSz, where the law of Gauss has been used, and the

integral is over the top of the cylinder. Also note, by the Gauss law
ẑ � R bdV ¼ Tt � Tbð ÞS, where S is the top or bottom area. We assume either parallel
slabs, or macroscopically dilute solutions of ellipsoidally shaped particles so that the
average temperature gradient will be along the z-axis, then

�KcS Tt � Tbð Þ=L ¼
Z
top

hzdSz; ð4:179Þ

as required by the usual definition of thermal conductivity.

Fig. 4.12 The right-circular cylinder shown is assumed to have sides insulated and it has
volume V = LS
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It is an elementary exercise to compute the effective material property for the
series and parallel cases. For example, consider the thermal conductivity. If one has
a two-component system with volume fractions u1 and u2, then for the series case
one obtains for the effective thermal conductivity Kc of the composite:

1
Kc

¼ u1

K1
þ u2

K2
: ð4:180Þ

This is easily shown as follows. Suppose we have a rod of total length L = (l1 + l2)
and uniform cross-sectional area composed of a smaller length l1 with thermal
conductivity K1 and an upper length l2 with K2. The sides of the rod are assumed to
be insulated and we maintain the bottom temperature at T0, the interface at T1, and
the top at T2. Then since ΔT1 = T0 − T1 and ΔT2 = T1 − T2 we have
ΔT = ΔT1 + ΔT2 and since the temperature changes linearly along the length of
each rod:

K1
DT1
l1

¼ K2
DT2
l2

¼ Kc
DT
L

; ð4:181Þ

where Kc is the effective thermal conductivity of the rod. We can thus write:

DT1 ¼ K
K1

l1
DT
L

; DT2 ¼ K
K2

l2
DT
L

; ð4:182Þ

and so

DT ¼ DT1 þDT2 ¼ K
K1

l1
L
þ K

K2

l2
L

� �
DT ; ð4:183Þ

and since the volume fractions are given by u1 = (Al1/AL) = l1/L and u2 = l2/L, this
yields the desired result.

Similarly for the parallel case, one can show:

Kc ¼ u1K1 þu2K2: ð4:184Þ

Consider two equal length slabs of length L and areas A1 and A2. These are placed
parallel to each other with the sides insulated and the tops and bottoms maintained
at T0 and T2. Then if ΔT = T0 − T2, the effective thermal conductivity can be
defined by

K A1 þA2ð ÞDT
L

¼ K1A1
DT
L

þK2A2
DT
L

; ð4:185Þ

where we have used that the temperature changes linearly along the slabs. Solving
for K yields the desired relation, with the volume fractions defined by u1 = A1/
(A + A2) and u2 = A2/(A1 + A2).
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General Theory (MET, MS)14

Let

u ¼
R
bdV

jR bdV j ; ð4:186Þ

and with the boundary conditions and material assumptions we have made, u ¼ ẑ.
Define the following averages:

�h ¼ 1
V

Z
V

u � hdV ; ð4:187Þ

�b ¼ 1
V

Z
V

u � bdV ; ð4:188Þ

�hi ¼ 1
Vi

Z
Vi

u � hdVi; ð4:189Þ

�bi ¼ 1
Vi

Z
Vi

u � bdVi; ð4:190Þ

where V is the overall volume, and Vi is the volume of each constituent so
V =

P
Vi. From this we can show (using Gauss-law manipulations similar to that

already given) that

Kc ¼
�h
�b

ð4:191Þ

will give the same value for the effective thermal conductivity as the original
definition. Letting ui = Vi/V be the volume fractions and fi ¼ �bi=�b be the “field
ratios” we have

Kifi ¼
�hi
�b
; ð4:192Þ

and X
�hiui ¼ �h; ð4:193Þ

14This is basically Maxwell–Garnett theory. See Garnett [4.9]. See also Reynolds and Hough
[4.36].
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so

K ¼
X

Kifiui: ð4:194Þ

Also X
fiui ¼ 1; ð4:195Þ

and X
ui ¼ 1: ð4:196Þ

The field ratios fi, the volume fractions ui, and the thermal conductivities Ki of the
constituents determine the overall thermal conductivity. The fi will depend on the Ki

and the geometry. They are only known for the case of parallel slabs or very dilute
solutions of ellipsoidally shaped particles. We have already assumed this, and we
will only treat these cases. We also only consider the case of two phases, although it
is relatively easy to generalize to several phases.

The field ratios can be evaluated from the equivalent electrostatic problem. The
b inside an ellipsoid bi are given in terms of the externally applied b(b0) by

15

bi ¼ gib0i; ð4:197Þ

where the i refer to the principle axis of the ellipsoid. With the ellipsoid having
thermal conductivity Kj and its surrounding K* the gi are

gi ¼ 1
1þNi½ Kj=K�
 �� 1� ; ð4:198Þ

where the Ni are the depolarization factors. As usual,

X3
i¼1

Ni ¼ 1:

Redefine (equivalently, e.g. using our conventions, we would apply an external
thermal gradient along the z-axis)

u ¼ b0
b0

;

and let hi be the angle between the principle axes of the ellipsoid and u. Then

15See Stratton [4.38].
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u � b ¼
X3
i¼1

gib0 cos2 hi; ð4:199Þ

so

fj ¼
X
i

gi cos2 hi; ð4:200Þ

where the sum over i is over the principle axis directions and j refers to the
constituents. Conditions that insure that �b ¼ b0 have already been assumed. We
have

fj ¼
X3
i¼1

cos2 hi
1þNi½ Kj=K�
 �� 1� ; ð4:201Þ

Kj is the thermal conductivity of the ellipsoid surrounded by K*.

Case 1 Thin slab parallel to b0, with K* = K2. Assuming an ellipsoid of revolution,

N ¼ 0 depolarization factor along b0ð Þ
f1 ¼ 1;
f2 ¼ 1:

Using

K ¼
X

Kifiui;

we get

K ¼ K1u1 þK2u2: ð4:202Þ

We have already seen this is appropriate for the parallel case.

Case 2 Thin slab with plane normal to b0, K* = K2.

N ¼ 1; f1 ¼ 1
1þ K1=K2ð Þ � 1

¼ K2

K1
; f2 ¼ 1;

so we get

1
K

¼ u1

K1
þ u2

K2
: ð4:203Þ

Again as before.
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Case 3 Spheres with K* = K2 [where by (4.195), the denominator in 0 is 1]

N ¼ 1
3
; f1 ¼ 1

2þ K1=K2ð Þ ; f2 ¼ 1

K ¼
K2u2 þK1u1

3
2þ K1=K2ð Þ

u2 þu1
3

2þ K1=K2ð Þ
: ð4:204Þ

These are called the Maxwell (composite) equations (interchanging 1 and 2 gives
the second one).

The parallel and series combinations can be shown to provide absolute upper and
lower bounds on the thermal conductivity of the composite.16 The Maxwell
equations provide bounds if the material is microscopically isotropic and
homogenous (See Bergmann [4.4]). If K2 > K1 then the Maxwell equation written
out above is a lower bound.

As we have mentioned, generalizations to more than two components is rela-
tively straightforward.

The empirical equation

K ¼ Ku1
1 Ku2

2 ð4:205Þ

is known as Lictenecker’s equation and is commonly used when K1 and K2 are not
too drastically different.17

Problems

4:1 According to the equation

K ¼ 1
3

X
m

Cm �Vmkm;

the specific heat Cm can play an important role in determining the thermal con-
ductivity K. (The sum over m means a sum over the modes m carrying the energy.)
The total specific heat of a metal at low temperature can be represented by the
equation

16See Bergmann [4.4].
17Also of some interest is the variation in K due to inaccuracies in the input parameters (such as K1,
K2) for different models used for calculating K for a composite. See, e.g., Patterson [4.34].
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Cv ¼ AT3 þBT ;

where A and B are constants. Explain where the two terms come from.

4:2 Look at Figs. 4.7 and 4.9 for the thermal conductivity of metals and insulators.
Match the temperature dependences with the “explanations.” For (3) and
(6) you will have to decide which figure works for an explanation.

(1) T (a) Boundary scattering of phonons K ¼ C�Vk=3, and �V ; k
approximately constant

(2) T2 (b) Electron–phonon interactions at low temperature changes
cold to hot electrons and vice versa

(3) constant (c) Cv / T
(4) T3 (d) T > hD, you know q from Bloch (see Problem 4.4), and use

the Wiedemann–Franz law
(5) Tneb/T (e) C and �V ffi constant. The mean squared displacement of the

ions is proportional to T and is also inversely proportional to the
mean free path of phonons. This is high-temperature umklapp

(6) T−1 (f) Umklapp processes at not too high temperatures

4:3 Calculate the thermal conductivity of a good metal at high temperature using
the Boltzmann equation and the relaxation-time approximation. Combine your
result with (4.160) to derive the law of Wiedemann and Franz.

4:4 From Bloch’s result (4.146) show that r is proportional to T−1 at high tem-
peratures and that r is proportional to T−5 at low temperatures. Many solids
show a constant residual resistivity at low temperatures (Matthiessen’s rule).
Can you suggest a reason for this?

4:5 Feynman [4.7, p. 226], while discussing the polaron, evaluates the integral

I ¼
Z

dq
q2f qð Þ ;

[compare (4.112)] where

dq ¼ dqx dqy dqz;

and

f qð Þ ¼ �h2

2m
2k � q� q2

 �� �hxL;

by using the identity:
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1
K1K2

¼
Z1
0

dx

½K1xþK2 1� xð Þ2�:

a. Prove this identity
b. Then show the integral is proportional to

1
k
sin�1 K3kffiffiffi

2
p ;

and evaluate K3.
c. Finally, show the desired result:

Ek;0 ¼ �ac�hxL þ �h2k2

2m�� ;

where

m�� ¼ m�

1� ac
6

;

and m* is the ordinary effective mass.
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Chapter 5
Metals, Alloys, and the Fermi Surface

Metals are one of our most important sets of materials. The study of bronzes (alloys of
copper and tin) dates back thousands of years. Metals are characterized by high
electrical and thermal conductivity and by electrical resistivity (the inverse of con-
ductivity) increasingwith temperature. Typically, metals at high temperature obey the
Wiedemann–Franz law (Sect. 3.2.2). They are ductile and deform plastically instead
of fracturing. They are also opaque to light for frequencies below the plasma fre-
quency (or the plasma edge as discussed in the chapter on optical properties).Many of
the properties of metals can be understood, at least partly, by considering metals as a
collection of positive ions in a sea of electrons (the jelliummodel). The metallic bond,
as discussed in Chap. 1, can also be explained to some extent with this model.

Metals are very important but this chapter is relatively short. The reason for this
is that various properties of metals are discussed in other chapters. For example in
Chap. 3 the free-electron model, the pseudopotential, and band structure were
discussed, as well as some aspects of electron correlations. Electron correlations
were also mentioned in Chap. 4 along with the electrical and thermal conductivity
of solids including metals. Metals are also important for the study of magnetism
(Chap. 7) and superconductors (Chap. 8). The effect of electron screening is dis-
cussed in Chap. 9 and free-carrier absorption by electrons in Chap. 10.

Metals occur whenever one has partially filled bands because of electron con-
centration and/or band overlapping. Many elements and alloys form metals (see
Sect. 5.10). The elemental metals include alkali metals (e.g. Na), noble metals (Cu
and Ag are examples), polyvalent metals (e.g. Al), transition metals with incomplete
d shells, rare earths with incomplete f shells, lanthanides, and actinides. Even
non-metallic materials such as iodine may become metallic under very high pressure.

Also, in this chapter we will include some relatively new and novel ideas such as
heavy electron systems, and so-called linear metals.

We start by discussing one of the most important properties of metals—the
Fermi surface, and show how one can use simple free-electron ideas along with the
Brillouin zone to get a first orientation.
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5.1 Fermi Surface (B)

Mackintosh has defined a metal as a solid with a Fermi-Surface [5.19]. This tacitly
assumes that the highest occupied band is only partly filled. At absolute zero, the
Fermi surface is the highest filled energy surface in k or wave vector space.

When one has a constant potential, the metal has free-electron spherical energy
surfaces, but a periodic potential can cause many energy surface shapes. Although
the electrons populate the energy surfaces according to Fermi–Dirac statistics, the
transition from fully populated to unpopulated energy surfaces is relatively sharp at
room temperature. The Fermi surface at room temperature is typically as well
defined as is the surface of a peach, i.e. the surface has a little “fuzz”, but the overall
shape is well defined.

For many electrical properties, only the electrons near the Fermi surface are
active. Therefore, the nature of the Fermi surface is very important. Many Fermi
surfaces can be explained by starting with a free-electron Fermi surface in the
extended-zone scheme and, then, mapping surface segments into the reduced-zone
scheme. Such an approach is said to be an empty-lattice approach. We are not
considering interactions but we have already noted that the calculations of Luttinger
and others (see Sect. 3.1.4) indicate that the concept of a Fermi surface should have
meaning, even when electron–electron interactions are included. Experiments, of
course, confirm this point of view (the Luttinger theorem states that the volume of
the Fermi surface is unchanged by interactions).

When Fermi surfaces intersect Brillouin zone boundaries, useful Fermi surfaces
can often be constructed by using an extended or repeated-zone scheme. Then
constant-energy surfaces can be mapped in such a way that electrons on the surface
can travel in a closed loop (i.e. without “Bragg scattering”). See, e.g. [5.36, p. 66].

Going beyond the empty-lattice approach, we can use the results of calculations
based on the one-electron theory to construct the Fermi surface. We first solve the
Schrödinger equation for the crystal to determine Eb(k) for the electrons (b labels
the different bands). We assume the temperature is zero and we find the highest
occupied band Eb′(k). For this band, we construct constant-energy surfaces in the
first Brillouin zone in k-space. The highest occupied surface is the Fermi surface.
The effects of nonvanishing temperatures and of overlapping bands may make the
situation more complicated. As mentioned, finite temperatures only smear out the
surface a little. The highest occupied energy surface(s) at absolute zero is (are) still
the Fermi surface(s), even with overlapping bands. It is possible to generalize
somewhat. One can plot the surface in other zones besides the first zone. It is
possible to imagine a Fermi surface for holes as well as electrons, where
appropriate.

However, this approach is often complex so we start with the empty-lattice
approach. Later we will give an example of the results of a band-structure calcu-
lation (Fig. 5.2). We then discuss (Sects. 5.3 and 5.4) how experiments can be used
to elucidate the Fermi surface.
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Enrico Fermi—A Physicist for All Seasons

b. Rome, Italy (1901–1954)

First artificial self-sustaining nuclear chain reaction; Perhaps last physicist
internationally known for work in both theory and experiment.

Fermi won the 1938 Nobel Prize for studying induced radioactivity. You
will find his name on many ideas in physics such as Fermi–Dirac statistics,
beta decay and the weak interaction, acceleration by moving magnetic fields,
and Thomas–Fermi theory, which was an ancestor of the density functional
theory. Fermi also recognized the utility of slow neutrons in nuclear reactors
and the list goes on and on. He could be considered an odd duck only in that
he was such a good physicist he towered over his associates. He was perhaps
the last physicist to be considered a giant in both theory and experimental
work. Many, many ideas and results in physics are rightfully named after
Fermi. He also motivated others to do ground breaking work. For example, he
suggested to Maria Mayer that she add the spin orbit effect in her attempt to
classify nuclear energy levels and thus the “magic numbers” were explained.
This led to “Mrs. Mayer’s magic numbers” and a Nobel Prize to her. Only
Madame Curie and Maria Mayer are women who have won a Nobel Prize in
physics.

To emphasize I list some of the areas for which Fermi contributed:

1. Fermi–Dirac Statistics (Fermions).
2. Beta decay theory and the weak force.
3. Artificial radioactivity induced by neutrons.
4. Effect of slow neutron on nuclei.
5. First self sustained reactor, “Atomic pile.”
6. Fermi acceleration by magnetic fields.
7. Thomas–Fermi theory.
8. Stimulating others to make discoveries.

Fermi–Dirac statistics apply to half integral spin particles. For integral spin
particles we must use Bose–Einstein statistics. S. N. Bose (1894–1974) an
Indian, had ideas which he sent to Einstein which led to Bose–Einstein
Statistics and the Bose Condensate. We can summarize the results of both
Bose–Einstein and Fermi–Dirac statistics in a single equation for Bosons and
Fermions. The Bose and Fermi distribution functions are

np ¼ 1
expððEp � lÞ=kTÞ � 1

where the plus is for Fermi particles and the minus for Bose, np is the average
number of particles in state p and l is the chemical potential. These can be
derived from statistical mechanics. These equations imply there can be an
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arbitrary number of bosons in the same quantum state, but only one fermion
in a completely specified quantum state.

A Bose–Einstein condensate occurs in a dilute gas of (massive) bosons at
very low temperatures in which many bosons occupy the same lowest
quantum state (there is no Pauli exclusion principle for Bosons). This is a
condensation in momentum space.

In a sense, Bose was partly self-taught, as he never got a doctorate. He was
what is called a polymath having interests in physics, mathematics, chemistry,
biology and other areas.

Other geniuses of that era or later were Richard Feynman (1918–1988)
known for his diagrams and for renormalization and Freeman Dyson (1923–)
who was an all around genius and who helped unify quantum electrody-
namics. Feynman won the Nobel Prize in Physics in 1965. He even invented
a new kind of quantum mechanics (the path integral method). He was
amusingly famous for picking locks and playing the bongo drum.

Feynman was the doctoral thesis adviser of George Zweig (b. Russia,
1937) who proposed the idea of quarks (he called them Aces) independent of
Murray Gell–Mann. Zweig is reported to have said, “Life can be very boring
without work.”

Much has been written about Richard Feynman and he should have (and
indeed has had) separate books all about him. For that very reason I have rele-
gated him to a brief role. I have left out Stephen Hawking for the same reason.
Hawking, because of his physical disabilities could be classified as unusual, as
could Feynman because of his quirks. Feynman certainly was a brilliant physi-
cist, lecturer, showman, charmer, as well as a lock picker and (alleged) wom-
anizer. Consult one of the copious references available if you are curious.

5.1.1 Empty Lattice (B)

Suppose the electrons are characterized by free electrons with effective mass m*
and let EF be the Fermi energy. Then we can say:

(a) E ¼ �h2k2

2m� ;

(b) kF ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m�EF

�h2

r
is the Fermi radius,

(c) n ¼ 1
3p2

k3F is the number of electrons per unit volume,
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n ¼ N
V
¼ 2

8p3

� �
4
3
pk3F

� �� �
;

(d) in a volume ΔkV of k-space, there are

Dn ¼ 1
4p3

DkV

electrons per unit volume of real space, and finally

(e) the density of states per unit volume is

dn ¼ 1
2p2

2m�

�h2

� �3=2 ffiffiffiffi
E

p
dE:

We consider that each band is formed from an atomic orbital with two spin
states. There are, thus, 2N states per band if there are N atoms associated with
N lattice points. If each atom contributes one electron, then the band is half-full, and
one has a metal, of course. The total volume enclosed by the Fermi surface is
determined by the electron concentration.

5.1.2 Exercises (B)

In 2D, find the reciprocal lattice for the lattice defined by the unit cell, given next.

The direct lattice is defined by

a ¼ ai and b ¼ bj ¼ 2aj: ð5:1Þ

The reciprocal lattice is defined by vectors

A ¼ AxiþAy j and B ¼ BxiþBy j; ð5:2Þ

with

A � a ¼ B � b ¼ 2p and A � b ¼ B � a ¼ 0:
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Thus

A ¼ 2p
a
i; ð5:3Þ

B ¼ 2p
b
j ¼ p

a
j; ð5:4Þ

where the 2p now inserted in an alternative convention for reciprocal-lattice vec-
tors. The unit cell of the reciprocal lattice looks like:

Now we suppose there is one electron per atom and one atom per unit cell. We want
to calculate (a) the radius of the Fermi surface and (b) the radius of an energy
surface that just manages to touch the first Brillouin zone boundary. The area of the
first Brillouin zone is

ABZ ¼ 2pð Þ2
ab

¼ 2p2

a2
: ð5:5Þ

The radius of the Fermi surface is determined by the fact that its area is just 1/2 of
the full Brillouin zone area

pk2F ¼ 1
2
ABZ or kF ¼

ffiffiffi
p

p
a

: ð5:6Þ

The radius to touch the Brillouin zone boundary is

kT ¼ 1
2
� 2p
b

¼ p
2a

: ð5:7Þ

Thus,

kT
kF

¼
ffiffiffi
p

p
2

¼ 0:89;

and the circular Fermi surface extends into the second Brillouin zone. The first two
zones are sketched in Fig. 5.1.

As another example, let us consider a body-centered cubic lattice (bcc) with a
standard, nonprimitive, cubic unit cell containing two atoms. The reciprocal lattice
is fcc. Starting from a set of primitive vectors, one can show that the first Brillouin
zone is a dodecahedron with twelve faces that are bounded by planes with
perpendicular vector from the origin at
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p
a

�1;�1; 0ð Þ; �1; 0;�1ð Þ; 0;�1;�1ð Þf g:

Since there are two atoms per unit cell, the volume of a primitive unit cell in the bcc
lattice is

VC ¼ a3

2
: ð5:8Þ

The Brillouin zone, therefore, has volume

VBZ ¼ 2pð Þ3
VC

¼ 16p3

a3
: ð5:9Þ

Let us assume we have one atom per primitive lattice point and each atom con-
tributes one electron to the band. Then, since the Brillouin zone is half-filled, if we
assume a spherical energy surface, the radius is determined by

4pk3F
3

¼ 1
2
� 16p

3

a3
or kF ¼

ffiffiffiffiffiffiffi
6p23

p

a
: ð5:10Þ

From (5.11), a sphere of maximum radius kT, as given below, can just be inscribed
within the first Brillouin zone

kT ¼ p
a

ffiffiffi
2

p
: ð5:11Þ

Fig. 5.1 First (light-shaded area) and second (dark-shaded area) Brillouin zones
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Direct computation yields

kT
kF

¼ 1:14;

so the Fermi surface in this case, does not touch the Brillouin zone. We might
expect, therefore, that a reasonable approximation to the shape of the Fermi surface
would be spherical.

By alloying, it is possible to change the effective electron concentration and,
hence, the radius of the Fermi surface. Hume-Rothery has predicted that phase
changes to a crystal structure with lower energy may occur when the Fermi surface
touches the Brillouin zone boundary. For example in the AB alloy Cu1−xZnx, Cu
has one electron to contribute to the relevant band, and Zn has two. Thus, the
number of electrons on average per atom, a, varies from 1 to 2.

For another example, let us estimate for a fcc structure (bcc in reciprocal lattice)
at what a = aT the Brillouin zone touches the Fermi surface. Let kT be the radius
that just touches the Brillouin zone. Since the number of states per unit volume of
reciprocal space is a constant,

aTN
4pk3T=3

¼ 2N
VBZ

; ð5:12Þ

where N is the number of atoms. In a fcc lattice, there are 4 atoms per nonprimitive
unit cell. If VC is the volume of a primitive cell, then

VBZ ¼ 2pð Þ3
VC

¼ 4
a3

2pð Þ3: ð5:13Þ

The primitive translation vectors for a bcc unit cell are

A ¼ 2p
a

iþ j� kð Þ; ð5:14Þ

B ¼ 2p
a

�iþ jþ kð Þ; ð5:15Þ

C ¼ 2p
a

iþ j� kð Þ: ð5:15Þ

From this we easily conclude

kT
2p
a

� �
1
2

� � ffiffiffi
3

p
:
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So we find

aT ¼ 2
a3

4

� �
1
8p3

� 4
3
p

2pð Þ3
a3

" #
1
8
33=2 or aT ¼ 1:36:

5.2 The Fermi Surface in Real Metals (B)

5.2.1 The Alkali Metals (B)

For many purposes, the Fermi surface of the alkali metals (e.g. Li) can be con-
sidered to be spherical. These simple metals have one valence electron per atom.
The conduction band is only half-full, and this means that the Fermi surface will not
touch the Brillouin zone boundary (includes Li, Na, K, Rb, Cs, and Fr).

5.2.2 Hydrogen Metal (B)

At a high enough pressure, solid molecular hydrogen presumably becomes a metal
with high conductivity due to relatively free electrons.1 So far, this high pressure
(about two million atmospheres at about 4400 K) has only been obtained explo-
sively in the laboratory. The metallic hydrogen produced was a fluid. There may be
metallic hydrogen on Jupiter (which is 75% hydrogen). It is premature, however, to
give the phenomenon extended discussion, or to say much about its Fermi surface.

The production of metallic hydrogen however continues to be perhaps contro-
versial. At a pressure of 495 GPa Dias and Silvera have said hydrogen becomes
metallic. See Ranga P. Dias, Isaac F. Silvera, “Observation of the Wigner–
Huntington transition to metallic hydrogen,” Science 26 Jan 2017.

P. W. Bridgman

b. Cambridge, Massachusetts, USA (1882–1961)

Physics of High Pressure/Dimensional Analysis/Thermodynamics.

He committed suicide because of cancer. It is interesting to note that
Bridgman supervised the Ph.D. theses of J. H. Van Vleck and J. C. Slater.
Van Vleck supervised the thesis of my (JD Patterson) partial thesis adviser
Bill Wright.

1See Wigner and Huntington [5.32].
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5.2.3 The Alkaline Earth Metals (B)

These are much more complicated than the alkali metals. They have two valence
electrons per atom, but band overlapping causes the alkaline earths to form metals
rather than insulators. Figure 5.2 shows the Fermi surfaces for Mg. The case for
second-zone holes has been called “Falicov’s Monster”. Examples of the alkaline
earth metals include Be, Mg, Ca, Sr, and Ra. A nice discussion of this as well as
other Fermi surfaces is given by Harrison [56, Chap. 3].

5.2.4 The Noble Metals (B)

The Fermi surface for the noble metals is typically more complicated than for the
alkali metals. The Fermi surface of Cu is shown in Fig. 5.3. Other examples are Zn,
Ag, and Au. Further information about Fermi surfaces is given in Table 5.1.

(a) (b) (c)

(d) (e) (f)

Fig. 5.2 Fermi surfaces inmagnesium based on the singleOPWmodel: (a) second-zone holes,
(b) first-zone holes, (c) third-zone electrons, (d) third-zone electrons, (e) third-zone electrons,
(f) fourth-zone electrons. [Reprinted with permission from Ketterson JB and Stark RW,
Physical Review, 156(3), 748 (1967). Copyright 1967 by the American Physical Society.]
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There were many productive scientists connected with the study of Fermi sur-
faces, we mention only: A. B. Pippard, D. Schoenberg, A. V. Gold, and
A. R. Mackintosh.

Experimental methods for studying the Fermi surface include the de Haas–van
Alphen effect, the magnetoacoustic effect, ultrasonic attenuation, magnetoresis-
tance, anomalous skin effect, cyclotron resonance, and size effects (see Ashcroft and
Mermin [21, Chap. 14]). See also Pippard [5.24]. We briefly discuss some of these
in Sect. 5.3.

(a) (b)

Fig. 5.3 Sketch of the Fermi surface of Cu (a) in the first Brillouin zone, (b) in a cross
Section of an extended zone representation

Table 5.1 Summary of metals and Fermi surface

The Fermi energy EF is the highest filled electron energy at absolute zero.
The Fermi surface is the locus of points in k space such that E(k) = EF

Type of metal Fermi surface Comment

Free-electron gas Sphere
Alkali
(bcc) (monovalent,
Na, K, Rb, Cs)

Nearly spherical Specimens hard
to work with

Alkaline earth
(fcc) (divalent, Be,
Mg, Ca, Sr, Ba)

See Fig. 5.2 Can be complex

Noble (monovalent,
Cu Ag, Au)

Distorted sphere makes
contact with hexagonal faces
—complex in repeated zone
scheme. See Fig. 5.3

Specimens need
to be pure and
single crystal

Many more complex examples are discussed in Ashcroft and Mermin [21,
Chap. 15]. Examples include trivalent (e.g. Al) and tetravalent (e.g. Pb)
metals, transition metals, rare earth metals, and semimetals (e.g. graphite)
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5.3 Experiments Related to the Fermi Surface (B)

We will describe the de Haas–van Alphen effect in more detail in the next section.
Under suitable conditions, if we measure the magnetic susceptibility of a metal as a
function of external magnetic field, we find oscillations. Extreme cross-sections of
the Fermi surface normal to the direction of the magnetic field are determined by
the change of magnetic field that produces one oscillation. For similar physics
reasons, we may also observe oscillations in the Hall effect, and thermal conduc-
tivity, among others.

We can also measure the dc electrical conductivity as a function of applied
magnetic field as in magnetoresistance experiments. Under appropriate conditions,
we may see an oscillatory change with the magnetic field as in the de Haas–
Schubnikov effect. Under other conditions, we may see a steady change of the
conductivity with magnetic field. The interpretation of these experiments may be
somewhat complex.

In Chap. 6, we will discuss cyclotron resonance in semiconductors. As we will
see then, cyclotron resonance involves absorption of energy from an alternating
electric field by an electron that is circling about a magnetic field. In metals, due to
skin-depth problems, we need to use the Azbel–Kaner geometry that places both the
electric and magnetic fields parallel to the metallic surface. Cyclotron resonance
provides a way of finding the effective mass m* appropriate to extremal sections of
the Fermi surface. This can be used to extrapolate E(k) away from the Fermi surface.

Magnetoacoustic experiments can determine extremal dimensions of the Fermi
surface normal to the plane formed by the ultrasonic wave and perpendicular
magnetic field. It turns out that as we vary the magnetic field we find oscillations in
the ultrasonic absorption. The oscillations depend on the wavelength of the ultra-
sonic waves. Proper interpretation gives the information indicated. Another tech-
nique for learning about the Fermi surface is the anomalous skin effect.We shall not
discuss this technique here.

5.4 The de Haas–van Alphen Effect (B)

The de Haas–van Alphen effect will be studied as an example of how experiments can
be used to determine the Fermi surface and as an example of the wave-packet
description of electrons. The most important factor in the de Haas–van Alphen effect
involves the quantization of electron orbits in a constant magnetic field. Classically,
the electrons revolve around the magnetic field with the cyclotron frequency

xc ¼ eB
m

: ð5:17Þ

There may also be a translational motion along the direction of the field. Let s be
the mean time between collisions for the electrons, T be the temperature, and k be
the Boltzmann constant.
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In order for the de Haas–van Alphen effect to be detected, two conditions must
be satisfied. First, despite scattering, the orbits must be well defined, or

xcs[ 2p: ð5:18Þ

Second, the quantization of levels should not be smeared out by the thermal motion
so

�hxc [ kT : ð5:19Þ

The energy difference between the quantized orbits is ћxc, and kT is the average
energy of thermal motion. To satisfy these conditions, we need large s and large xc,
or high purity, low temperatures, and high magnetic fields.

We now consider the motions of the electrons in a magnetic field. For electrons
in a magnetic field B, we can write (e > 0, see Sect. 6.1.2)

F ¼ �hk ¼� e v� Bð Þ; ð5:20Þ

and taking magnitudes

dk ¼ eB
�h
v1?dt; ð5:21Þ

where v1? is the component of velocity perpendicular to B and F.
It will take an electron the same length of time to complete a cycle of motion in

real space as in k-space. Therefore, for the period of the orbit, we can write

T ¼ 2p
xc

¼
I

dt ¼ �h
eB

I
dk
v1?

: ð5:22Þ

Since the force is perpendicular to the velocity of the electron, the constant
magnetic field cannot change the energy of the electron. Therefore, in k-space, the
electron must stay on the same constant energy surface. Only electrons near the
Fermi surface will be important for most effects, so let us limit our discussion to
these. That the motion must be along the Fermi surface follows not only from the
fact that the motion must be at constant energy, but that dk is perpendicular to

v
1
�h

� �
$kE kð Þ; ð5:23Þ

because $kE kð Þ is perpendicular to constant-energy surfaces. Equation (5.23) is
derived in Sect. 6.1.2. The orbit in k-space is confined to the intersection of the
Fermi surface and a plane perpendicular to the magnetic field.

In order to consider the de Haas–van Alphen effect, we need to relate the energy
of the electron to the area of its orbit in k-space. We do this by considering two
orbits in k-space, which differ in energy by the small amount DE.
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v? ¼ 1
�h
� DE
Dk?

; ð5:24Þ

where v? is the component of electron velocity perpendicular to the energy surface.
From Fig. 5.4, note

v1? ¼ v? sin h ¼ 1
�h
� DE
Dk?

sin h ¼ 1
�h
� DE
Dk?= sin h

¼ 1
�h
� DE
Dk1?

: ð5:25Þ

Therefore,

2p
xc

¼ �h
eB

I
dk

1
�h
� DE=Dk1?

¼ �h2

eB
� 1
DE

I
Dk1?dk; ð5:26Þ

and

2p
xc

¼ �h2

eB
� DA
DE

; ð5:27Þ

where DA is the area between the two Fermi surfaces in the plane perpendicular to
B. This result was first obtained by Onsager in 1952 [5.20].

Recall that we have already found that the energy levels of an electron in a
magnetic field (in the z direction) are given by (3.201)

En;kz ¼ �hxc nþ 1
2

� �
þ �h2k2z

2m
: ð5:28Þ

This equation tells us that the difference in energy between different orbits with the
same kz is ћc. Let us identify the DE in the equations of the preceding figure with
the energy differences of ћc. This tells us that the area (perpendicular to B) between
adjacent quantized orbits in k-space is given by

Fig. 5.4 Constant-energy surfaces for the de Haas–van Alphen effect
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DA ¼ eB

�h2
� 2p
xc

�hxc ¼ 2peB
�h

: ð5:29Þ

The above may be interesting, but it is not yet clear what it has to do with the
Fermi surface or with the de Haas–van Alphen effect. The effect of the magnetic
field along the z-axis is to cause the quantization in k-space to be along energy tubes
(with axis along the z-axis perpendicular to the cross-sectional area). Each tube has
a different quantum number with corresponding energy

�hxc � nþ 1
2

� �
þ �h2k2z

2m
:

We think of these tubes existing only when the magnetic field along the z-axis is
turned on. When it is turned on, the tubes furnish the only available states for the
electrons. If the magnetic field is not too strong, this shifting of states onto the tube
does not change the overall energy very much. We want to consider what happens
as we increase the magnetic field. This increases the area of each tube of fixed n. It
is convenient to think of each tube with only small extension in the kz direction,
Ziman makes this clear [5.35, Fig. 140, 1st edn.]. For some value of B, the tube of
fixed n will break away from that part of the Fermi surface [with maximum
cross-sectional area, see comment after (5.31)]. As the tube breaks away, it pulls
the allowed states (and, hence, electrons) at the Fermi surface with it. This causes an
increase in energy. This increase continues until the next tube approaches from
below. The electrons with energy just above the Fermi energy then hop down to this
new tube. This results in a decrease in energy. Thus, the energy undergoes oscil-
lations as the magnetic field is increased. These oscillations in energy can be
detected as an oscillation in the magnetic susceptibility, and this is the de Haas–van
Alphen effect. The oscillations look somewhat as sketched in Fig. 5.5. Such
oscillations have now been seen in many metals.

One might still ask why the electrons hop down to the lower tube. That is, why
do states become available on the lower tube? The states become available because
the number of states on each tube increases with the increase in magnetic field

Fig. 5.5 Sketch of de Haas–Van Alphen oscillations in Cu
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(the density of states per unit area is eB/h, see Sect. 12.7.3). This fact also explains
why the total number of states inside the Fermi surface is conserved (on average)
even though tubes containing states keep moving out of the Fermi surface with
increasing magnetic field.

The difference in area between the n = 0 tube and the n = n tube is

DA0n ¼ 2peB
�h

� n: ð5:30Þ

Thus, the area of the tube n is

An ¼ 2peB
�h

nþ constantð Þ: ð5:31Þ

If A0 is the area of an extremal (where one gets the dominant response, see
Ziman [5.35, p. 322]) cross-sectional area (perpendicular to B) of the Fermi surface
and if B1 and B2 are the two magnetic fields that make adjacent tubes equal in area
to A0, then

1
B2

¼ 2pe
�hA0

nþ 1ð Þþ constant½ �; ð5:32Þ

and

1
B1

¼ 2pe
�hA0

nþ constantð Þ; ð5:33Þ

and so, by subtraction

D
1
B

� �
¼ 2pe

�hA0
: ð5:34Þ

Δ(1/B) is the change in the reciprocal of the magnetic field necessary to induce one
fluctuation of the magnetic susceptibility. Thus, experiments combined with the
above equation determine A0. For various directions of B, A0 gives considerable
information about the Fermi surface.

5.5 Eutectics (MS, ME)

In metals, the study of alloys is very important, and one often encounters phase
diagrams as in Fig. 5.6. This is a particularly important technical example as dis-
cussed below. The subject of binary mixtures, phase diagrams, and eutectics is well
treated in Kittel and Kroemer [5.15].

316 5 Metals, Alloys, and the Fermi Surface



Alloys that are mixtures of two or more substances with two liquidus branches,
as shown in Fig. 5.6, are especially interesting. They are called eutectics and the
eutectic mixture is the composition that has the lowest freezing point, which is
called the eutectic point (0.3 in Fig. 5.6). At the eutectic, the mixture freezes
relatively uniformly (on the large scale) but consists of two separate intermixed
phases. In solid-state physics, an important eutectic mixture occurs in the Au1−xSix
system. This system occurs when gold contacts are made on Si devices. The
resulting freezing point temperature is lowered, as seen in Fig. 5.6.

5.6 Peierls Instability of Linear Metals (B)

The Peierls transition [75 pp. 108–112, 23 p. 203] is an example of a broken
symmetry (see Sect. 7.2.6) in which the ground state has a lower symmetry than the
Hamiltonian. It is a sort of metal-insulator phase transition that happens because a
bandgap can occur at the Fermi surface, which results in an overall lowering of
energy. One thinks of there being displacements in the regular array of lattice ions,
induced by a strong electron–phonon interaction, that decreases the electronic
energy without a larger increase in lattice elastic energy. The charge density then is
nonuniform but has a periodic spatial variation.

We will only consider one dimension in this section. However, Peierls transi-
tions have been discovered in (very special kinds of) real three-dimensional solids
with weakly coupled molecular chains.

As Fig. 5.7 shows, a linear metal (in which the nearly free-electron model is
appropriate) could lower its total electron energy by spontaneously distorting, that
is reducing its symmetry, with a wave vector equal to twice the Fermi wave vector.
From Fig. 5.7 we see that the states that increase in energy are empty, while those
that decrease in energy are full. This implies an additional periodicity due to the
distortion of

Fig. 5.6 Sketch of eutectic for Au1−xSix Adapted from Kittel and Kroemer (op. cit.)
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p ¼ 2p
2kF

¼ p
kF

;

or a corresponding reciprocal lattice vector of

2p
p

¼ 2kF :

In the case considered (Fig. 5.7), if kF = p/2a, there would be a dimerization of the
lattice and the new periodicity would be 2a. Thus, the deformation in the lattice can
be approximated by

d ¼ c � cos 2kFzð Þ; ð5:35Þ

which is periodic with period p/kF as desired, and c is a constant. As Fig. 5.7
shows, the creation of an energy gap at the Fermi surface leads to a lowering of the
electronic energy, but there still is a question as to what electron–lattice interaction
drives the distortion. A clue to the answer is obtained from the consideration of
screening of charges by free electrons. As (9.167) shows, there is a singularity in
the dielectric function at 2kF that causes a long-range screened potential propor-
tional to r−3 cos(2kF r), in 3D. This can relate to the distortion with period 2p/2kF.
Of course, the deformation also leads to an increase in the elastic energy, and it is
the sum of the elastic and electronic energies that must be minimized.

For the case where k and k′ are near the Brillouin zone boundary at kF = K′/2, we
assume, with c1 a constant, that the potential energy due to the distortion is pro-
portional to the distortion, so2

V zð Þ ¼ c1d ¼ c1c � cos 2kFzð Þ: ð5:36Þ

So 2 V(K′) � 2 V(2kF) = c1c, and in the nearly free-electron model we have shown
[by (3.231) to (3.233)]

Fig. 5.7 Splitting of energy bands at Fermi wave vector due to distortion

2See e.g. Marder [3.34, p. 277].
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Ek ¼ 1
2

E0
k þE0

k0
� �� 1

2
4 V K 0ð Þ½ �2 þ E0

k � E0
k0

� �2n o1=2
;

where

E0
k ¼ V 0ð Þþ �h2k2

2m
;

and

E0
k0 ¼ V 0ð Þþ �h2

2m
kþK 0j j2:

Let k ¼ D� K 0=2, so

k2 � kþK 0ð Þ2¼ �K 0 2Dð Þ;
1
2

k2 þ kþK 0j j2
	 


¼ D2 þ k2F :

For the lower branch, we find:

Ek ¼ V 0ð Þþ �h2

2m
D2 þ k2F
� �� 1

4
c21c

2 þ 4k2FD
2 �h2

2m

� �2
" #1=2

: ð5:37Þ

We compute an expression relating to the lowering of electron energy due to the
gap caused by shifting of lattice ion positions. If we define

yF ¼ �h2k2F
2m

and y ¼ �h2DkF
2m

; ð5:38Þ

we can write3

dEel

dc
¼ 2

p

ZkF
0

dD
dEk

dc

¼ � c21c
2p

kF
yF

� �Z2yF
0

4y2 þ c21c
2

4

� ��1=2

dy

¼ � c21ckF
4pyF

� ln 8yF
cc1

� �
; if

8yF
cc1

	 1:

ð5:39Þ

3The number of states per unit length with both spins is 2dk/2p and we double as we only integrate
from D = 0 to kF or −kF to 0. We compute the derivative, as this is all we need in requiring the
total energy to be a minimum.
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As noted by R. Peierls in [5.23], this logarithmic dependence on displacement is
important so that this instability not be swamped other effects. If we assume the
average elastic energy per unit length is

Eelastic =
1
4
celc

2;/ d2; ð5:40Þ

we find the minimum (total Eel + Eelastic) energy occurs at

c1c
2

ffi 2�h2k2F
m

exp � �h2kFpcel
mc21

� �
: ð5:41Þ

The lattice distorts if the quasifree-electron energy is lowered more by the distor-
tions than the elastic energy increases. Now, as defined above,

yF ¼ �h2k2F
2m

ð5:42Þ

is the free-electron bandwidth, and

1
p
� dk
dE

�
k¼kF

¼ N EFð Þ ¼ 1
p
� m

�h2kF
ð5:43Þ

equals the density (per unit length) of orbitals at the Fermi energy (for free elec-
trons), and we define

V1 ¼ c21
cel

ð5:44Þ

as an effective interaction energy. Therefore, the distortion amplitude c is propor-
tional to yF times an exponential;

c / yF exp � 1
N EFð ÞV1

� �
: ð5:45Þ

Our calculation is of course done at absolute zero, but this equation has a formal
similarity to the equation for the transition temperature or energy gap as in the
superconductivity case. See, e.g., Kittel [23, p. 300], and (8.215). Comparison can
be made to the Kondo effect (Sect. 7.5.2) where the Kondo temperature is also
given by an exponential.
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Rudolf E. Peierls

b. Berlin, Germany (1907–1955)

Peierls Transition, British Nuclear Program, Book: Quantum Theory of
Solids

Peierls was a distinguished German Physicist who became a British citi-
zen. The University of Birmingham and Oxford are two of the many uni-
versities he was associated with. Besides the above, he is credited with the
idea of umklapp processes and many others. He invited Klaus Fuchs to join
the nuclear program to his later regret. He was one of the last giants who
created modern physics.

5.6.1 Relation to Charge Density Waves (A)

The Peierls instability in one dimension is related to a mechanism by which charge
density waves (CDW) may form in three dimensions. A charge density wave is the
modulation of the electron density with an associated modulation of the location of
the lattice ions. These are observed in materials that conduct primarily in one (e.g.
NbSe3, TaSe3) or two (e.g. NbSe2, TaSe2) dimensions. Limited dimensionality of
conduction is due to weak coupling. For example, in one direction the material is
composed of weakly coupled chains. The Peierls transitions cause a modulation in
the periodicity of the ionic lattice that leads to lowering of the energy. The total
effect is of course rather complex. The effect is temperature dependent, and the
CDW forms below a transition temperature with the strength p [see as in (5.46)]
growing as the temperature is lowered.

The charge density assumes the form

q rð Þ ¼ q0 rð Þ 1þ p cos k � rþ/ð Þ½ �; ð5:46Þ

where / is the phase, and the length of the CDW determined by k is, in general, not
commensurate with the lattice. k is given by 2kF where kF is the Fermi wave vector.
CDWs can be detected as satellites to Bragg peaks in X-ray diffraction. See, e.g.,
Overhauser [5.21]. See also Thorne [5.31].

CDW’s have a long history. Peierls considered related mechanisms in the 1930s.
Fröhlich and Peierls discussed CDWs in the 1950s. Bardeen and Frölich actually
considered them as a model for superconductivity. It is true that some CDW sys-
tems show collective transport by sliding in an electric field but the transport is
damped. It also turns out that the total electron conduction charge density is
involved in the conduction.
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It is well to point out that CDWs have three properties (see, e.g., Thorne op cit)

a. An instability associated with the Fermi surface caused by electron–phonon and
electron–electron interactions.

b. An opening of an energy gap at the Fermi surface.
c. The wavelength of the CDW is p/kF.

Shirley Jackson

b. Washington, D. C., USA (1946–)

Nuclear Physics; Magnetic Polarons; Nano physics; Two Dimensional
Systems; Administration

Dr. Jackson is currently President of Rennselaer Polytechnic Institute.
After getting a Ph.D. in elementary particle physics at M. I. T. she eventually
went to Bell Labs and worked in several areas, as listed above, and also in
charge density waves. She is a theoretical physicist.

Besides work in basic physics, Dr. Jackson has made major contributions
to inventions. For example, her work has been related to the development of
caller ID and call waiting.

5.6.2 Spin Density Waves (A)

Spin density waves (SDW) are much less common than CDW. One thinks here of a
“spin Peierls” transition. SDWs have been found in chromium. The charge density
of a SDW with up (" or +) and down (# or −) spins looks like

q� rð Þ ¼ 1
2
q0 rð Þ 1� p cos k � rþ/ð Þ½ �: ð5:47Þ

So, there is no change in charge density [q+ + q− = q0(r)] except for that due to
lattice periodicity. The spin density, however, looks like

qS rð Þ ¼ êq0 rð Þ cos k � rþ/ð Þ; ð5:48Þ

where ê defines the quantization axis for spin. In general, the SDW is not com-
mensurate with the lattice. SDWs can be observed by magnetic satellites in neutron
diffraction. See, e.g., Overhauser [5.21]. Overhauser first discussed the possibility
of SDWs in 1962. See also Harrison [5.10].

5.7 Heavy Fermion Systems (A)

This has opened a new branch of metal physics. Certain materials exhibit huge
(*1000me) electron effective masses at very low temperatures. Examples are
CeCu2Si2, UBe13, UPt3, CeAl3, UAl2, and CeAl2. In particular, they may show
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large, low-T electronic specific heat. Some materials show f-band superconductivity
—perhaps the so-called “triplet superconductivity” where spins do not pair. The
novel results are interpreted in terms of quasiparticle interactions and incompletely
filled shells. The heavy fermions represent low-energy excitations in a strongly
correlated, many-body state. See Stewart [5.30], Radousky [5.25]. See also Fisk
et al [5.8].

5.8 Electromigration (EE, MS)

Electromigration is of great interest because it is an important failure mechanism as
aluminum interconnects in integrated circuits are becoming smaller and smaller in
very large scale integrated (VLSI) circuits. Simply speaking, if the direct current in
the interconnect is large, it can start some ions moving. The motion continues under
the “push” of the moving electrons.

More precisely, electromigration is the motion of ions in a conductor due to
momentum exchange with flowing electrons and also due to the Coulomb force
from the electric field.4 The momentum exchange is dubbed the electron wind and
we will assume it is the dominant mechanism for electromigration. Thus, electro-
migration is diffusion with a driving force that increases with electric current
density. It increases with decreasing cross section. The resistance is increased and
the heating is larger as are the lattice vibration amplitudes. We will model the
inelastic interaction of the electrons with the ion by assuming the ion is in a
potential hole, and later simplify even that assumption.

Damage due to electromigration can occur when there is a divergence in the flux
of aluminum ions. This can cause the appearance of a void and hence a break in the
circuit or a hillock can appear that causes a short circuit. Aluminum is cheaper than
gold, but gold has much less electromigration-induced failures when used in
interconnects. This is because the ions are much more massive and hence harder to
move.

Electromigration is a very complex process and we follow Fermi’s purported
advice to use simpler models for complex situations. We do a one-dimensional
classical calculation to illustrate how the electron wind force can assist in breaking
atoms loose and how it contributes to the steady flow of ions. We let p and P be the
momentum of the electron before and after collision, and pa and Pa be the
momentum of the ion before and after. By momentum and energy conservation we
have:

4To be even more precise the phenomena and technical importance of electromigration is certainly
real. The explanations have tended to be controversial. Our explanation is the simplest and
probably has at least some of the truth. (See, e.g., Borg and Dienes [5.3].) The basic physics
involving momentum transfer was discussed early on by Fiks [5.7] and Huntington and Grove
[5.13]. Modern work is discussed by R. S Sorbello as referred to at the end of this section.
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pþ pa ¼ PþPa; ð5:49Þ

p2

2m
þ p2a

2ma
¼ P2

2m
þ P2

a

2ma
þV0; ð5:50Þ

where V0 is the magnitude of the potential hole the ion is in before collision, and
m and ma are the masses of the electron and the ion, respectively. Solving for Pa

and P in terms of pa and p, retaining only the physically significant roots and
assuming m � ma:

Pa ¼ pþ pað Þþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 � 2mV0

p
; ð5:51Þ

P ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 � 2mV0

p
: ð5:52Þ

In order to move the ion, the electron’s kinetic energy must be greater than V0 as
perhaps is obvious. However, the process by which ions are started in motion is
surely more complicated than this description, and other phenomena, such as the
presence of vacancies are involved. Indeed, electromigration is often thought to
occur along grain boundaries.

For the simplest model, we may as well start by setting V0 equal to zero. This
makes the collisions elastic. We will assume that the ions are pushed along by the
electron wind, but there are other forces that cancel out the wind force, so that the
flow is in steady state. The relevant conservation equations become:

Pa ¼ pa þ 2p; P ¼ �p:

We will consider motion in one dimension only. The ions drift along with a
momentum pa. The electrons move back and forth between the drifting ions with
momentum p. We assume the electron’s velocity is so great that the ions are
stationary in comparison. Assume the electric field points along the −x-axis.
Electrons moving to the right collide and increase the momentum of the ions, and
those moving to the left decrease their momentum. Because of the action of the
electric field, electrons moving to the right have more momentum so the net effect is
a small increase in the momentum of the ions (which, as mentioned, is removed by
other effects to produce a steady-state drift). If E is the electric field, then in time s,
(the time taken for electrons to move between ions), an electron of charge −e gains
momentum

D ¼ eEs; ð5:53Þ

if it moves against the field, and it loses a similar amount of momentum if it goes in
the opposite direction. Assume the electrons have momentum p when they are
halfway between ions. The net effect of collisions to the left and to the right of the
ion is to transfer an amount of momentum of
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D ¼ 2eEs: ð5:54Þ

This amount of momentum is gained per pair of collisions. Each ion experiences
such pair collisions every 2s. Thus, each ion gains on average an amount of
momentum eEs in time s. If n is the electron density, v the average velocity of
electrons and r the cross section, then the number of collisions per unit time is nvr,
and the net force is this times the momentum transferred per collision. Since the
mean free path is k = vs, we find for the magnitude of the wind force

FW ¼ eEsn k=sð Þr ¼ eEnkr: ð5:55Þ

If Ze is the charge of the ion, then the net force on the ion, including the electron
wind and direct Coulomb force can be written

F ¼ �Z�eE; ð5:56Þ

where the effective charge of the ion is

Z� ¼ nkr� Z; ð5:57Þ

and the sign has been chosen so a positive electric field gives a negative wind force
(see Borg and Dienes, op cit). The subject is of course much more complicated that
this. Note also, if the mobility of the ions is l, then the ion flux under the wind force
has magnitude Z*naE, where na is the concentration of the ions. For further details,
see, e.g., Lloyd [5.18]. See also Sorbello [5.28]. Sorbello summarizes several dif-
ferent approaches. Our approach could be called a rudimentary ballistic method.

5.9 White Dwarfs and Chandrasekhar’s Limit (A)

This Section is a bit of an excursion. However, metals have electrons that are
degenerate as do white dwarfs, except the electrons here are at a much higher
degeneracy. White dwarfs evolve from hydrogen-burning stars such as the sun
unless, as we shall see, they are much more massive than the sun. In such stars,
before white-dwarf formation, the inward pressure due to gravitation is balanced by
the outward pressure caused by the “burning” of nuclear fuel.

Eventually the star runs out of nuclear fuel and one is left with a collection of
electrons and ions. This collection then collapses under gravitational pressure. The
electron gas becomes degenerate when the de Broglie wavelength of the electrons
becomes comparable with their average separation. Ions are much more massive.
Their de Broglie wavelength is much shorter and they do not become degenerate.
The outward pressure of the electrons, which arises because of the Pauli principle
and the electron degeneracy, balances the inward pull of gravity and eventually the
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star reaches stability. However, by then it is typically about the size of the earth and
is called a white dwarf.

A white dwarf is a mass of atoms with major composition of C12 and O16. We
assume the gravitational pressure is so high that the atoms are completely ionized,
so the white dwarf is a compound of ions and degenerate electrons.

For typical conditions, the actual temperature of the star is much less than the
Fermi temperature of the electrons. Therefore, the star’s electron gas can be
regarded as an ideal Fermi gas in the ground state with an effective temperature of
absolute zero.

In white dwarfs, it is very important to note that the density of electrons is such
as to require a relativistic treatment. A nonrelativistic limit does not put a mass limit
on the white dwarf star.

Some reminders of results from special relativity: The momentum p is given by

p ¼ mv ¼ m0cv; ð5:58Þ

where m0 is the rest mass.

b ¼ v
c

ð5:59Þ

c ¼ 1� b2
� ��1=2 ð5:60Þ

E ¼ K þm0c
2 ¼ kinetic energy plus rest energy

¼ cm0c
2

¼ mc2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2c2 þm2

0c
4

q
:

ð5:61Þ

5.9.1 Gravitational Self-Energy (A)

If G is the gravitational constant, the gravitational self-energy of a mass M with
radius R is

U ¼ �Ga
M2

R

� �
: ð5:62Þ

For uniform density, a = 3/5, which is an oversimplification. We simply assume
a = 1 for stars.
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5.9.2 Idealized Model of a White Dwarf (A)5

We will simply assume that we have N electrons in their lowest energy state, which
is of such high density that we are forced to use relativistic dynamics. This leads to
less degeneracy pressure than in the nonrelativistic case and hence collapse. The
nuclei will be assumed motionless, but they will provide the gravitational force
holding the white dwarf together. The essential features of the model are the Pauli
principle, relativistic dynamics, and gravity.

We first need to calculate the relativistic pressure exerted by the Fermi gas of
electrons in their ground state. The combined first and second laws of thermody-
namics for open systems states:

dU ¼ TdS� pdV þ ldN: ð5:63Þ

As T ! 0, U ! E0, so

p ¼ �@E0

@V

�
N;T¼0

: ð5:64Þ

For either up or down spin, the electron energy is given by

ep ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pcð Þ2 þ mec2ð Þ2

q
; ð5:65Þ

where me is the rest mass of the electrons. Including spin, the ground-state energy of
the Fermi gas is given by (with p = ћk)

E0 ¼ 2
X
k\kF

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�hkcð Þ2 þ mec2ð Þ2

q
¼ V

p2

ZkF
0

k2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�hkcð Þ2 þ mec2ð Þ2

q
dk: ð5:66Þ

The Fermi momentum kF is determined from

k3FV
3p3

¼ N; ð5:67Þ

where N is the number of electrons, or

kF ¼ 3p2N
V

� �1=3
: ð5:68Þ

5See e.g. Huang [5.12]. See also Shapiro and Teukolsky [5.26].
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From the above we have

E0

N
/

Z�hkF=mec

0

x2
ffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2

p
dx; ð5:69Þ

where x = ћk/mec. The volume of the star is related to the radius by

V ¼ 4
3
pR3 ð5:70Þ

and the mass of the star is, neglecting electron mass and assuming the neutron mass
equals the proton mass (mp) and that there are the same number of each

M ¼ 2mpN: ð5:71Þ

Using (5.64) we can then show for highly relativistic conditions (xF 	 1) that

p0 / ab02 � bb0; ð5:72Þ

where

b0 / M2=3

R2 ; ð5:73Þ

where a and b are constants determined by algebra. See Prob. 5.3.
We now want to work out the conditions for equilibrium. Without gravity, the

work to compress the electrons is

�
ZR
1

p0 rð Þ4pr2 � dr: ð5:74Þ

Gravitational energy is approximately (with a = 1)

�GM2

R
: ð5:75Þ

If R is the equilibrium radius of the star, since gravitational self-energy plus work to
compress = 0, we have

ZR
1

p04pr2 � drþ GM2

R
¼ 0: ð5:76Þ
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Differentiating, we get the condition for equilibrium

p0 / M2

R4 : ð5:77Þ

Using the expression for p0 (5.72) with xF 	 1, we find

R / M1=3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� M

M0

� �2=3
s

; ð5:78Þ

where

M0 ffi Msun; ð5:79Þ

and this result is good for small R (and large xF). A more precise derivation predicts
M0 ≅ 1.4 Msun. Thus, there is no white dwarf star with mass M � M0 ≅ Msun. See
Fig. 5.8. M0 is known as the mass for the Chandrasekhar limit. When the mass is
greater than M0, the Pauli principle is not sufficient to support the star against
gravitational collapse. It may then become a neutron star or even a black hole,
depending upon the mass.

These ideas by Chandrasekhar were opposed by Eddington when first intro-
duced. See E. N. Parker’s obituary of Chandrasekhar, Physics Today, Nov 1995,
pp. 106–108. For a thorough treatment of Chandrasekhar’s ideas of White Dwarfs
and other matters, see S. Chandrasekhar, An Introduction to the Study of Stellar
Structure, U. of Chicago Press, 1939.

Fig. 5.8 The Chandrasekhar limit
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Subrahmanyan Chandrasekhar

b. Lahore, Punjab, British India (now in Pakistan) (1910–1995)

Chandrasekhar limit

Chandrasekhar won the 1983 Nobel Prize in physics for his prediction of
the Chandrasekhar limit in stars. This led to a famous controversy with
Eddington who erroneously thought Chandrasekhar was wrong. At the
University of Chicago, Chandrasekhar once taught a class that had only two
students, but they were Yang and Lee who later both won Nobel prizes. He
was of course an astrophysicist, not a solid-state physicist.

5.10 Some Famous Metals and Alloys (B, MET)6

We finish the chapter on a much less abstract note. Many of us became familiar
with the solid-state by encountering these metals.

Iron Has the highest melting point of any metal and is used in steels, as
filaments in light bulbs and in tungsten carbide. The hardest known
metal

Aluminum The second most important metal. It is used everywhere from
aluminum foil to alloys for aircraft

Copper Another very important metal used for wires because of its high
conductivity. It is also very important in brasses (copper-zinc alloys)

Zinc Zinc is widely used in making brass and for inhibiting rust in steel
(galvanization)

Lead Used in sheathing of underground cables, making pipes, and for the
absorption of radiation

Tin Well known for its use as tin plate in making tin cans. Originally, the
word “bronze” was meant to include copper-tin alloys, but its use has
been generalized to include other materials

Nickel Used for electroplating. Nickel steels are known to be corrosion
resistant. Also used in low-expansion “Invar” alloys (36% Ni–Fe
alloy)

Chromium Chrome plated over nickel to produce an attractive finish is a major
use. It is also used in alloy steels to increase hardness

6See Alexander and Street [5.1].
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Gold Along with silver and platinum, gold is one of the precious metals. Its
use as a semiconductor connection in silicon is important

Titanium Much used in the aircraft industry because of the strength and
lightness of its alloys

Tungsten Has the highest melting point of any metal and is used in steels, as
filaments in light bulbs and in tungsten carbide. The hardest known
metal

Historically, many of the materials listed above were discovered and created
with rudimentary knowledge along with trial and error methods. Now, with the aid
of increasingly powerful computers, complex algorithms and computational
methods, these and many more materials are better understood and even discovered
by realistic calculations.

Mei-Yin Chou

b. Taiwan

Hydrogen in Metals; Computations in Material Physics

She is presently at Georgia Tech and former chair of the School of
Physics. Her Ph.D. was obtained in 1996 at UC/Berkeley under Marvin
Cohen and she is heavily invested in high performance computing of realistic
materials. She has been awarded numerous awards such as the
Alfred P. Sloan fellowship.

Problems

5:1 For the Hall effect (metals-electrons only), find the Hall coefficient, the
effective conductance jx /Ex, and ryx. For high magnetic fields, relate ryx to the
Hall coefficient. Assume the following geometry:

Reference can be made to Sect. 6.1.5 for the definition of the Hall effect.
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5:2 (a) A two-dimensional metal has one atom of valence one in a simple rect-
angular primitive cell a = 2, b = 4 (units of angstroms). Draw the First
Brillouin zone and give dimensions in cm−1.
(b) Calculate the areal density of electrons for which the free electron Fermi
surface first touches the Brillouin zone boundary.

5:3 For highly relativistic conditions within a white dwarf star, derive the rela-
tionship for pressure p0 as a function of mass M and radius R using
p0 ¼ �@E0=@V .

5:4 Consider the current due to metal-insulator-metal tunneling. Set up an
expression for calculating this current. Do not necessarily assume zero tem-
perature. See, e.g., Duke [5.6].

5:5 Derive (5.37).
5:6 Compare Cu and Fe as conductors of electricity.
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Chapter 6
Semiconductors

Starting with the development of the transistor by Bardeen, Brattain, and Shockley
in 1947, the technology of semiconductors has exploded. With the creation of
integrated circuits and chips, semiconductor devices have penetrated into large parts
of our lives. The modern desktop or laptop computer would be unthinkable without
microelectronic semiconductor devices, and so would a myriad of other devices.

Recalling the band theory of Chap. 3, one could call a semiconductor a narrow
gap insulator in the sense that its energy gap between the highest filled band (the
valence band) and the lowest unfilled band (the conduction band) is typically of the
order of one electron volt. The electrical conductivity of a semiconductor is con-
sequently typically much less than that of a metal.

The purity of a semiconductor is very important and controlled doping is used to
vary the electrical properties. As we will discuss, donor impurities are added to
increase the number of electrons and acceptors are added to increase the number of
holes (which are caused by the absence of electrons in states normally electron
occupied—and as discussed later in the chapter, holes act as positive charges).
Donors are impurities that become positively ionized by contributing an electron to
the conduction band, while acceptors become negatively ionized by accepting
electrons from the valence band. The electrons and holes are thermally activated
and in a temperature range in which the charged carriers contributed by the
impurities dominate, the semiconductor is said to be in the extrinsic temperature
range, otherwise it is said to be intrinsic. Over a certain temperature range, donors
can add electrons to the conduction band (and acceptors can add holes to the
valence band) as temperature is increased. This can cause the electrical resistivity to
decrease with increasing temperature giving a negative coefficient of resistance.
This is to be contrasted with the opposite behavior in metals. For group IV semi-
conductors (Si, Ge) typical donors come from column V of the periodic table
(P, As, Sb) and typical acceptors from column III (B, Al, Ga, In).

Semiconductors tend to be bonded tetrahedrally and covalently, although binary
semiconductors may have polar, as well as covalent character. The simplest
semiconductors are the nonpolar semiconductors from column 4 of the Periodic
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Table: Si and Ge. Compound III-V semiconductors are represented by, e.g., InSb
and GaAs while II-VI semiconductors are represented by, e.g., CdS and CdSe. The
pseudobinary compound Hg(1−x)Cd(x)Te is an important narrow gap semiconductor
whose gap can be varied with concentration x and it is used as an infrared detector.
There are several other pseudobinary alloys of technical importance as well.

As already alluded to, there are many applications of semiconductors, see for
example Sze [6.42]. Examples include diodes, transistors, solar cells, microwave
generators, light-emitting diodes, lasers, charge-coupled devices, thermistors, strain
gauges, and photoconductors. Semiconductor devices have been found to be highly
economical because of their miniaturization and reliability. We will discuss several
of these applications.

The technology of semiconductors is highly developed, but cannot be discussed
in this book. The book by Fraser [6.14] is a good starting point for a physics
oriented discussion of such topics as planar technology, information technology,
computer memories, etc.

Tables 6.1 and 6.2 summarize several semiconducting properties that will be
used throughout this chapter. Many of the concepts within these tables will become
clearer as we go along. However, it is convenient to collect several values all in one
place for these properties. Nevertheless, we need here to make a few introductory
comments about the quantities given in Tables 6.1 and 6.2.

In Table 6.1 we mention bandgaps, which as already stated, express the energy
between the top of the valence band and the bottom of the conduction band. Note
that the bandgap depends on the temperature and may slowly and linearly decrease
with temperature, at least over a limited range.

In Table 6.1 we also talk about direct (D) and indirect (I) semiconductors. If the
conduction-band minimum (in energy) and the valence-band maximum occur at
the same k (wave vector) value one has a direct (D) semiconductor, otherwise the

Table 6.1 Important properties of representative semiconductors (A)

Semiconductor Direct/indirect, crystal
struct.

Lattice
constant

Bandgap (eV)

D/I 300 K (Å)a 0 K 300 K

Si I, diamond 5.43 1.17 1.124
Ge I, diamond 5.66 0.78 0.66
InSb D, zincblende 6.48 0.23 0.17
GaAs D, zincblende 5.65 1.519 1.424
CdSe D, zincblende 6.05 1.85 1.70
GaN D, wurtzite a = 3.16

c = 5.12
3.5 3.44

aAdapted from Sze SM (ed), Modern Semiconductor Device Physics,
Copyright © 1998, John Wiley & Sons, Inc., New York, pp. 537–540. This
material is used by permission of John Wiley & Sons, Inc.
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semiconductor is indirect (I). Indirect and direct transitions are also discussed in
Chap. 10, where we discuss optical measurement of the bandgap.

In Table 6.2 we mention several kinds of effective mass. Effective masses are
used to take into account interactions with the periodic lattice as well as other
interactions (when appropriate). Effective masses were defined earlier in Sect. 3.2.1
[see (3.163)] and discussed in Sect. 3.2.2 as well as Sect. 4.3.3. They will be further
discussed in this chapter as well as in Sect. 11.3. Hole effective masses are defined
by (6.65).

When, as in Sect. 6.1.6 on cyclotron resonance, electron-energy surfaces are
represented as ellipsoids of revolution, we will see that we may want to represent
them with longitudinal and transverse effective masses as in (6.103). The relation of
these to the so-called ‘density of states effective mass’ is given in Sect. 6.1.6 under
“Density of States Effective Electron Masses for Si.” Also, with certain kinds of
band structure there may be, for example, two different E(k) relations for holes as in
(6.144) and (6.145). One may then talk of light and heavy holes as in Sect. 6.2.1.

Finally, mobility, which is drift velocity per unit electric field, is discussed in
Sect. 6.1.4 and the relative static dielectric constant is the permittivity over the
permittivity of the vacuum.

The main objective of this chapter is to discuss the basic physics of semicon-
ductors, including the physics necessary for understanding semiconductor devices.
We start by discussing electrons and holes—their concentration and motion.

Table 6.2 Important properties of representative semiconductors (B)

Semiconductor Effective masses (units of
free electron mass)

Mobility
(300 K)
(cm2/Vs)

Relative static
dielectric
constant

Electrona Holeb Electron Hole

Si ml = 0.92
mt = 0.19

mlh = 0.15
mhh = 0.54

1450 505 11.9

Ge ml = 1.57
mt = 0.082

mlh = 0.04
mhh = 0.28

3900 1800 16.2

InSb 0.0136 mlh = 0.0158
mhh = 0.34

77,000 850 16.8

GaAs 0.063 mlh = 0.076
mhh = 0.50

9200 320 12.4

CdSe 0.13 0.45 800 – 10
GaN 0.22 0.96 440 130 10.4
am1 is longitudinal, mt is transverse
bmlh is light hole, mhh is heavy hole
Adapted from Sze SM (ed), Modern Semiconductor Device Physics, Copyright ©
1998, John Wiley & Sons, Inc., New York, pp. 537–540. This material is used by
permission of John Wiley & Sons, Inc.
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6.1 Electron Motion

6.1.1 Calculation of Electron and Hole Concentration (B)

Here we give the standard calculation of carrier concentration based on (a) excita-
tion of electrons from the valence to the conduction band leaving holes in the
valence band, (b) the presence of impurity donors and acceptors (of electrons) and
(c) charge neutrality. This discussion is important for electrical conductivity among
other properties.

We start with a simple picture assuming a parabolic band structure of semicon-
ductors involving conduction and valence bands as shown in Fig. 6.1. We will later
find our results can be generalized using a suitable effective mass (Sect. 6.1.6). Here
when we talk about donor and acceptor impurities we are talking about shallow
defects only (where the energy levels of the donors are just below the conduction
band minimum and of acceptors just above the valence-band maximum). Shallow
defects are further discussed in Sect. 11.2. Deep defects are discussed and compared
to shallow defects in Sect. 11.3 and Table 11.1. We limit ourselves in this chapter to
impurities that are sufficiently dilute that they form localized and discrete levels.
Impurity bands can form where 4pa3n/3 ≅ 1 where a is the lattice constant and n is
the volume density of impurity atoms of a given type.

The charge-carrier population of the levels is governed by the Fermi function
f. The Fermi function evaluated at the Fermi energy E = l is 1/2. We have assumed
p is near the middle of the band. The Fermi function is given by

Fig. 6.1 Energy gaps, Fermi function, and defect levels (sketch). Direction of increase of D
(E), f(E) is indicated by arrows
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f Eð Þ ¼ 1

exp
E � l
kT

� �
þ 1

: ð6:1Þ

In Fig. 6.1 EC is the energy of the bottom of the conduction band. EV is the energy
of the top of the valence band. ED is the donor state energy (energy with one
electron and in which case the donor is assumed to be neutral). EA is the acceptor
state energy (which when it has two electrons and no holes is singly charged). For
more on this model see Tables 6.3 and 6.4. Some typical donor and acceptor
energies for column IV semiconductors are 44 and 39 meV for P and Sb in Si,
46 and 160 meV for B and In in Si.1

We now evaluate expressions for the electron concentration in the conduction
band and the hole concentration in the valence band. We assume the
nondegener-ate case when E in the conduction band implies ðE � lÞ � kT , so

f Eð Þ ffi exp �E � l
kT

� �
: ð6:2Þ

We further assume a parabolic band, so

E ¼ �h2k2

2m�
e
þEC; ð6:3Þ

where me
* is a constant. For such a case we have shown (in Chap. 3) the density of

states is given by

D Eð Þ ¼ 1
2p2

2m�
e

�h2

� �3=2 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E � EC

p
: ð6:4Þ

The number of electrons per unit volume in the conduction band is given by:

n ¼
Z1
EC

D Eð Þf Eð ÞdE: ð6:5Þ

Evaluating the integral, we find

n ¼ 2
m�

ekT

2p�h2

� �3=2

exp
l� EC

kT

� �
: ð6:6Þ

For holes, we assume, following (6.3),

1[6.2, p. 580].
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E ¼ EV � �h2k2

2m�
h
; ð6:7Þ

which yields the density of states

Dh Eð Þ ¼ 1
2p2

2m�
n

�h2

� �3=2 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EV � E

p
: ð6:8Þ

The number of holes per state is

fh ¼ 1� f Eð Þ ¼ 1

exp
l� E
kT

� �
þ 1

: ð6:9Þ

Again, we make a nondegeneracy assumption and assume (l − E) � kT for E in
the valence band, so

fh ffi exp
E � l
kT

� �
: ð6:10Þ

The number of holes/volume in the valence band is then given by

p ¼
ZEV

�1
Dh Eð Þfh Eð ÞdE; ð6:11Þ

from which we find

p ¼ 2
m�

hkT

2p�h2

� �3=2

exp
EV � l
kT

� �
: ð6:12Þ

Since the density of states in the valence and conduction bands is essentially
unmodified by the presence or absence of donors and acceptors, the equations for
n and p are valid with or without donors or acceptors. (Donors or acceptors, as we
will see, modify the value of the chemical potential, l.) Multiplying n and p, we
find

np ¼ n2i ; ð6:13Þ

where

ni ¼ 2
kT

2p�h2

� �3=2

m�
em

�
h

� �3=4exp � Eg

2kT

� �
; ð6:14Þ
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where Eg = EC −EV is the bandgap and ni is the intrinsic (without donors or
acceptors) electron concentration. Equation (6.13) is sometimes called the Law of
Mass Action and is generally true since it is independent of l.

We now turn to the question of calculating the number of electrons on donors
and holes on acceptors. We use the basic theorem for a grand canonical ensemble
(see, e.g., Ashcroft and Mermin, [6.2, p. 581])

nh i ¼
P

j Nj exp �b Ej � lNj
� �� �

P
j exp �b Ej � lNj

� �� � ; ð6:15Þ

where b ¼ 1=kT and nh i = mean number of electrons in a system with states j, with
energy Ej, and number of electrons Nj.

We are considering a model of a donor level that is doubly degenerate (in a
single-particle model). Note that it is possible to have other models for donors and
acceptors. There are basically three cases to look at, as shown in Table 6.3. Noting
that when we sum over states, we must include the degeneracy factors. For the
mean number of electrons on a state j as defined in Table 6.3

nh i ¼ 1ð Þ 2ð Þ exp �b Ed � lð Þ½ �
1þ 2 exp �b Ed � lð Þ½ � ; ð6:16Þ

or

nh i ¼ 1
1
2
exp �b Ed � lð Þ½ � þ 1

¼ nd
Nd

; ð6:17Þ

where nd is the number of electrons/volume on donor atoms and Nd is the number of
donor atoms/volume. For the acceptor case, our model is given by Table 6.4.

Table 6.3 Model for energy and degeneracy of donors

Number of
electrons

Energy Degeneracy of state

Nj = 0 0 1
Nj = 1 Ed 2
Nj = 2 !∞ neglect as too

improbable

Table 6.4 Model for energy and degeneracy of acceptors

Number of electrons Number of holes Energy Degeneracy

0 2 very large neglect
1 1 0 2
2 0 EA 1
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The number of electrons per acceptor level of the type defined in Table 6.4 is

nh i ¼ 1ð Þ 2ð Þ exp �b �lð Þ½ � þ 2 1ð Þ exp �b Ea � 2lð Þ½ �
2 exp bl½ � þ exp �b Ea � 2lð Þ½ � ; ð6:18Þ

which can be written

nh i ¼ exp b l� Eað Þ½ � þ 1
1
2
exp b l� Eað Þ½ � þ 1

: ð6:19Þ

Now, the average number of electrons plus the average number of holes associated
with the acceptor level is 2. So, nh iþ ph i ¼ 2. We thus find

ph i ¼ pa
Na

¼ 1
1
2
exp b l� Eað Þ½ � þ 1

; ð6:20Þ

where pa is the number of holes/volume on acceptor atoms. Na is the number of
acceptor atoms/volume.

So far, we have four equations for the five unknowns n, p, nd, pa, and l. A fifth
equation, determining l can be found from the condition of electrical neutrality.
Note:

Nd � nd � number of ionized and, hence, positive donors � N þ
d ;

Na � pa � number of negative acceptors ¼ N�
a :

Charge neutrality then says,

pþN þ
d ¼ nþN�

a ; ð6:21Þ

or

nþNa þ nd ¼ pþNd þ pa: ð6:22Þ

We start by discussing an example of the exhaustion region where all the donors
are ionized. We assume Na = 0, so also pa = 0. We assume kT � Eg, so also p = 0.
Thus, the electrical neutrality condition reduces to

nþ nd ¼ Nd: ð6:23Þ

We also assume a temperature that is high enough that all donors are ionized. This
requires kT � Ec −Ed. This basically means that the probability that states in the
donor are occupied is the same as the probability that states in the conduction band
are occupied. But, there are many more states in the conduction band compared to

340 6 Semiconductors



donor states, so there are many more electrons in the conduction band. Therefore
nd � Nd or n ffi Nd . This is called the exhaustion region of donors.

As a second example, we consider the same situation, but now the temperature is
not high enough that all donors are ionized. Using

nd ¼ Nd

1þ a exp b Ed � lð Þ½ � : ð6:24Þ

In our model a = 1/2, but different models could yield different a. Also

n ¼ NC exp �b EC � lð Þ½ �; ð6:25Þ

where

Nc ¼ 2
m�

ekT

2p�h2

� �3=2

: ð6:26Þ

The neutrality condition then gives

Nc exp �b Ec � lð Þ½ � þ Nd

1þ a exp b Ed � lð Þ½ � ¼ Nd: ð6:27Þ

Defining x = ebl, the above gives a quadratic equation for x. Finding the physically
realistic solution for low temperatures, kT � (Ec − Ed), we find x and, hence,

n ¼ ffiffiffi
a

p ffiffiffiffiffiffiffiffiffiffiffi
NcNd

p
exp �b Ec � Edð Þ=2½ �: ð6:28Þ

This result is valid only in the case that acceptors can be neglected, but in actual
impure semiconductors this is not true in the low-temperature limit. More detailed
considerations give the variation of Fermi energy with temperature for Na = 0 and
Nd > 0 as sketched in Fig. 6.2. For the variation of the majority carrier density for
Nd > Na 6¼ 0, we find something like Fig. 6.3.

Fig. 6.2 Sketch of variation of Fermi energy or chemical potential l, with temperature for
Na = 0 and Nd > 0
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6.1.2 Equation of Motion of Electrons in Energy Bands (B)

We start by discussing the dynamics of wave packets describing electrons [6.33,
p. 23]. We need to do this in order to discuss properties of semiconductors such as
the Hall effect, electrical conductivity, cyclotron resonance, and others. In order to
think of the motion of charge, we need to think of the charge being transported by
the wave packets.2 The three-dimensional result using free-electron wave packets
can be written as

m ¼ 1
�h
$kE kð Þ: ð6:29Þ

Fig. 6.3 Energy gaps, Fermi function, and defect levels (sketch)

Fig. 6.4 Geometry for the Hall effect

2The standard derivation using wave packets is given by, e.g., Merzbacher [6.24]. In Merzbacher’s
derivation, the peak of the wave packet moves with the group velocity.
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This result, as we now discuss, is appropriate even if the wave packets are built out
of Bloch waves.

Let a Bloch state be represented by

wnk ¼ unk rð Þeik	r; ð6:30Þ

where n is the band index and unk(r) is periodic in the space lattice. With the
Hamiltonian

H ¼ 1
2m

�h
i
$

� �2

V rð Þ; ð6:31Þ

where V(r) is periodic,

Hwnk ¼ Enkwnk; ð6:32Þ

and we can show

Hkunk ¼ Enkunk; ð6:33Þ

where

Hk ¼ �h2

2m
1
i
$þ k

� �2

þV rð Þ: ð6:34Þ

Note

Hkþ qunkþ q ¼ Enkþ qunkþ q; ð6:35Þ

and to first order in q:

Hkþ q ¼ Hk þ �h2

m
q 	 1

i
$þ k

� �
: ð6:36Þ

To first order

En kþ qð Þ ¼ En kð Þþ q 	 $kEnk: ð6:37Þ

Also by first-order perturbation theory

En kþ qð Þ ¼ En kð Þþ
Z

unk
�h2

m
q 	 1

i
$þ k

� �
unkdV : ð6:38Þ
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From this we conclude

$kEnk ¼
Z

unk
�h2

m
1
i
$þ k

� �
unkdV

¼ �h
Z

wnk
�h
mi

$wnkdV

¼ �h
D
wnkj

p
m
jwnk

E
:

ð6:39Þ

Thus if we define

m ¼
D
wnkj

p
m
jwnk

E
; ð6:40Þ

then v equals the average velocity of the electron in the Bloch state nk. So we find

m ¼ 1
�h
$kEnk:

Note that v is a constant velocity (for a given k). We interpret this as meaning that a
Bloch electron in a periodic crystal is not scattered.

Note also that we should use a packet of Bloch waves to describe the motion of
electrons. Thus we should average this result over a set of states peaked at k. It can
also be shown following standard arguments (Smith [6.38], Sect. 4.6) that (6.29) is
the appropriate velocity of such a packet of waves.

We now apply external fields and ask what is the effect of these external fields on
the electrons. In particular, what is the effect on the electrons if they are already in a
periodic potential? If an external force Fext acts on an electron during a time interval
dt, it produces a change in energy given by

dE ¼ Fextdx ¼ Fmgdt: ð6:41Þ

Substituting for vg,

dE ¼ Fext
1
�h
dE
dk

dt: ð6:42Þ

Canceling out dE, we find

Fext ¼ �h
dk
dt

: ð6:43Þ

The three-dimensional result may formally be obtained by analogy to the above:

Fext ¼ �h
dk
dt

: ð6:44Þ
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In general, F is the external force, so if E and B are electric and magnetic fields,
then

�h
dk
dt

¼ �e Eþ m 
 Bð Þ ð6:45Þ

for an electron with charge −e. See Problem 6.3 for a more detailed derivation. This
result is often called the acceleration theorem in k-space.

We next introduce the concept of effective mass. In one dimension, by taking the
time derivative of the group velocity we have

dm
dt

¼ 1
�h
d2E
dk2

dk
dt

¼ 1

�h2
d2E
dk2

Fext: ð6:46Þ

Defining the effective mass so

Fext ¼ m� dm
dt

; ð6:47Þ

we have

m� ¼ �h2

d2E=dk2
: ð6:48Þ

In three dimensions:

1
m�

� �
ab

¼ 1

�h2
@2E

@ka@kb
: ð6:49Þ

Notice in the free-electron case when E = ħ2k2/2 m,

1
m�

� �
ab

¼ dab
m

: ð6:50Þ

6.1.3 Concept of Hole Conduction (B)

The totality of the electrons in a band determines the conduction properties of that
band. But, when a band is nearly full it is usually easier to consider holes that
represent the absent electrons. There will be far fewer holes than electrons and this
in itself is a huge simplification.

It is fairly easy to see why an absent electron in the valence band acts as a
positive electron. See also Kittel [6.17, p. 206ff]. Let f label filled electron states,
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and g label the states that will later be emptied. For a full band in a crystal, with
volume V, for conduction in the x direction,

jx ¼ � e
V

X
f

m fx �
e
V

X
g

mgx ¼ 0; ð6:51Þ

so that

X
f

m fx ¼ �
X
g

mgx : ð6:52Þ

If g states of the band are now emptied, then the current is given by

jx ¼ � e
V

X
f

m fx ¼ e
V

X
g

mgx : ð6:53Þ

Notice this argument means that the current in a partially empty band can be
considered as due to holes of charge +e, which move with the velocities of the states
that are missing electrons. In other words, qh = +e and vh = ve.

Now, let us talk about the energy of the holes. Consider a full band with one
missing electron. Let the wave vector of the missing electron be ke and the cor-
responding energy Ee(ke):

Esolid; full band ¼ Esolid; onemissing electron þEe keð Þ: ð6:54Þ

Since the hole energy is the energy it takes to remove the electron, we have

Hole energy ¼ Esolid; onemissing electron � Esolid; full band ¼ �Ee keð Þ ð6:55Þ

by using the above. Now in a full band the sum of the k is zero. Since we identify
the hole wave vector as the totality of the filled electronic states

ke þ
X0

k ¼ 0; ð6:56Þ

kh ¼
X0

k ¼ �ke; ð6:57Þ

where
P

′ k means the sum over k omitting ke. Thus, we have, assuming symmetric
bands with Ee(ke) = Ee(−ke):

Eh khð Þ ¼ �Ee �keð Þ; ð6:58Þ

or
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Eh khð Þ ¼ �Ee keð Þ: ð6:59Þ

Notice also, since

�h
dke
dt

¼ �e Eþ me 
 Bð Þ; ð6:60Þ

with qh = +e, kh = −ke and ve = vh, we have

�h
dkh
dt

¼ þ e Eþ mh 
 Bð Þ; ð6:61Þ

as expected. Now, since

me ¼ 1
�h
@Ee keð Þ
@ keð Þ ¼ 1

�h
@ �Eh khð Þð Þ
@ �khð Þ ¼ 1

�h
@Eh

@kh
; ð6:62Þ

and since ve = vh, then

mh ¼ 1
�h
@Eh

@kh
: ð6:63Þ

Now,

dvh
dt

¼ 1
�h
@2Eh

@k2h

dkh
dt

¼ 1

�h2
@2Eh

@k2h
Fh: ð6:64Þ

Defining the hole effective mass as

1
m�

h
¼ 1

�h2
@2Eh

@k2h
; ð6:65Þ

we see

1
m�

h
¼ � 1

�h2
@2Ee

@ �keð Þ2 ¼ � 1
m�

e
; ð6:66Þ

or

m�
e ¼ �m�

h: ð6:67Þ

Notice that if Ee = Ak2, where A is constant then me
* > 0, whereas if Ee = −Ak2,

then mh
* = −me

* > 0, and concave down bands have negative electron masses but
positive hole masses. Later we note that electrons and holes may interact so as to
form excitons (Sect. 10.7, Exciton Absorption).
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6.1.4 Conductivity and Mobility in Semiconductors (B)

Current can be produced in semiconductors by, e.g., potential gradients (electric
fields) or concentration gradients. We now discuss this.

We assume, as is usually the case, that the lifetime of the carriers is very long
compared to the mean time between collisions. We also assume a Drude model with
a unique collision or relaxation time s. A more rigorous presentation can be made
by using the Boltzmann equation where in effect we assume s = s(E).
A consequence of doing this is mentioned in (6.102).

We are actually using a semiclassical Drude model where the effect of the lattice
is taken into account by using an effective mass, derived from the band structure,
and we treat the carriers classically except perhaps when we try to estimate their
scattering. As already mentioned, to regard the carriers classically we must think of
packets of Bloch waves representing them. These wave packets are large compared
to the size of a unit cell and thus the field we consider must vary slowly in space.
An applied field also must have a frequency much less than the bandgap over ħ in
order to avoid band transitions.

We consider current due to drift in an electric field. Let v be the drift velocity of
electrons, m* be their effective mass, and s be a relaxation time that characterizes
the friction drag on the electrons. In an electric field E, we can write (for e > 0)

m� dv
dt

¼ �m�v
s

� eE: ð6:68Þ

Thus in the steady state

v ¼ � esE
m� : ð6:69Þ

If n is the number of electrons per unit volume with drift velocity v, then the current
density is

j ¼ �nev: ð6:70Þ

Combining the last two equations gives

j ¼ ne2sE
m� : ð6:71Þ

Thus, the electrical conductivity r, defined by j/E, is given by

r ¼ ne2s
m� : ð6:72Þ
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3The electrical mobility is the magnitude of the drift velocity per unit electric field
|v/E|, so

l ¼ es
m� : ð6:73Þ

Notice that the mobility measures the scattering, while the electrical conductivity
measures both the scattering and the electron concentration. Combining the last two
equations, we can write

r ¼ nel: ð6:74Þ
If we have both electrons (e) and holes (h) with concentration n and p, then

r ¼ nele þ pelh; ð6:75Þ
where

le ¼
ese
m�

e
; ð6:76Þ

and

lh ¼
esh
m�

h
: ð6:77Þ

The drift current density Jd can be written either as

Jd ¼ �neve þ pevh; ð6:78Þ
or

Jd ¼ neleð Þþ pelhð Þ½ �E: ð6:79Þ

As mentioned, in semiconductors we can also have current due to concentration
gradients. By Fick’s Law, the diffusion number current is negatively proportional to
the concentration gradient with the proportionality constant equal to the diffusion
constant. Multiplying by the charge gives the electrical current density. Thus,

Je; diffusion ¼ eDe
dn
dx

ð6:80Þ

Jh; diffusion ¼ �eDh
dp
dx

: ð6:81Þ

For both drift and diffusion currents, the electronic current density is

Je ¼ leenEþ eDe
dn
dx

; ð6:82Þ

3We have already derived this, see, e.g., (3.214) where effective mass was not used and in (4.160)
where again the m used should be effective mass and s is more precisely evaluated at the Fermi
energy.
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and the hole current density is

Jh ¼ lhepE � eDh
dp
dx

: ð6:83Þ

In both cases, the diffusion constant can be related to the mobility by the Einstein
relationship (valid for both Drude and Boltzmann models)

eDe ¼ lekT; ð6:84Þ

eDh ¼ lhkT : ð6:85Þ

6.1.5 Drift of Carriers in Electric and Magnetic Fields:
The Hall Effect (B)

The Hall effect is the production of a transverse voltage (a voltage change along the
“y direction”) due to a transverse B-field (in the “z direction”) with current flowing
in the “x direction.” It is useful for determining information on the sign and con-
centration of carriers. See Fig. 6.4.

If the collisional force is described by a relaxation time s,

me
dm
dt

¼ �e Eþ m 
 Bð Þ � me
m
se
; ð6:86Þ

where v is the drift velocity. We treat the steady state with dv/dt = 0. The magnetic
field is assumed to be in the z direction and we define

xe ¼ eB
me

; the cyclotron frequency, ð6:87Þ

and

le ¼
ese
me

; the mobility: ð6:88Þ

For electrons, from (6.86) we can write the components of drift velocity as (steady
state)

vex ¼ �leEx � xesev
e
y; ð6:89Þ

vey ¼ �leEy þxesev
e
x; ð6:90Þ
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where vez ¼ 0, since Ez = 0. With similar definitions, the equations for holes
become

vhx ¼ þ lhEx þxhshvhy ; ð6:91Þ

vhy ¼ þ lhEy � xhshv
h
x : ð6:92Þ

Due to the electric field in the x direction, the current is

jx ¼ �nevex þ pevhx : ð6:93Þ

Because of the magnetic field in the z direction, there are forces also in the y di-
rection, which end up creating an electric field Ey in that direction. The Hall
coefficient is defined as

RH ¼ Ey

jxB
: ð6:94Þ

Equations (6.89) and (6.90) can be solved for the electrons drift velocity and (6.91)
and (6.92) for the hole’s drift velocity. We assume weak magnetic fields and neglect
terms of order x2

e and x2
h, since xe and xh are proportional to the magnetic field.

This is equivalent to neglecting magnetoresistance, i.e. the variation with resistance
in a magnetic field. It can be shown that for carriers of two types if we retain terms
of second order then we have a magnetoresistance. So far we have not considered a
distribution of velocities as in the Boltzmann approach. Combining these
assumptions, we get

vex ¼ �leEx þ lexeseEy; ð6:95Þ

vhx ¼ þ lhEx þ lhxhshEy; ð6:96Þ

vey ¼ �leEy � lexeseEx; ð6:97Þ

vhy ¼ þ lhEy � lhxhshEx: ð6:98Þ

Since there is no net current in the y direction,

jy ¼ �nevey þ pevhy ¼ 0: ð6:99Þ

Substituting (6.97) and (6.98) into (6.99) gives

Ex ¼ �Ey
nle þ plh

nlexese � plhxhsh
: ð6:100Þ
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Putting (6.95) and (6.96) into jx, using (6.100) and putting the results into RH, we
find

RH ¼ 1
e
p� nb2

pþ nbð Þ2 ; ð6:101Þ

where b = le/lh. Note if p = 0, RH = −1/ne and if n = 0, RH = +1/pe. Both the sign
and concentration of carriers are included in the Hall coefficient. As noted, this
development did not take into account that the carrier would have a velocity dis-
tribution. If a Boltzmann distribution is assumed,

RH ¼ r
1
e

� �
p� nb2

pþ nbð Þ2 ; ð6:102Þ

where r depends on the way the electrons are scattered (different scattering
mechanisms give different r).

The Hall effect is further discussed in Sects. 12.6 and 12.7, where peculiar
effects involved in the quantum Hall effect are dealt with. The Hall effect can be
used as a sensor of magnetic fields since it is proportional to the magnetic field for
fixed currents.

There has been noted a spin Hall effect in which spin-up and spin-down electrons
gather on opposite sides of a material (because of induced “spin current”) which is
carrying an electrical current. This spin Hall effect has been observed in GaAs and
even ZnSe, and has generated considerable theoretical and experimental interest. At
the heart of the effect may be spin-orbit coupling. A nice review has been written by
V. Sih, Y. Kato, and David Awschalom called “AHall of Spin,” Physics World, Nov.
2005, pp. 33–36. A complete understanding of the spin Hall effect is not yet available.

6.1.6 Cyclotron Resonance (A)

Cyclotron resonance is the absorption of electromagnetic energy by electrons in a
magnetic field at multiples of the cyclotron frequency. It was predicted by
Dorfmann and Dingel and experimentally demonstrated by Kittel all in the early
1950s.

In this section, we discuss cyclotron resonance only in semiconductors. As we
will see, this is a good way to determine effective masses but few carriers are
naturally excited so external illumination may be needed to enhance carrier con-
centration (see further comments at the end of this section). Metals have plenty of
carriers but skin-depth effects limit cyclotron resonance to those electrons near the
surface (as discussed in Sect. 5.4).
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We work on the case for Si. See also, e.g. [6.33, pp. 78–83]. We impose a
magnetic field and seek the natural frequencies of oscillatory motion. Cyclotron
resonance absorption will occur when an electric field with polarization in the plane
of motion has a frequency equal to the frequency of oscillatory motion due to the
magnetic field. We first look at motion for the energy lobes along the kz-axis (see Si
in Fig. 6.6). The energy ellipsoids are not centered at the origin. Thus, the two
constant energy ellipsoids along the kz-axis can be written

E ¼ �h2

2

k2x þ k2y
mT

þ kz � k0ð Þ2
mL

" #
: ð6:103Þ

The shape of the ellipsoid determines the effective mass (T for transverse, L for
longitudinal) in (6.103). The star on the effective mass is eliminated for simplicity.
The velocity is given by

v ¼ 1
�h
$kEk; ð6:104Þ

so

vx ¼ �hkx
mT

ð6:105Þ

vy ¼ �hky
mT

ð6:106Þ

vz ¼ �h kz � k0ð Þ
mL

: ð6:107Þ

Using Lorentz force, the equation of motion for charge q is

�h
dk
dt

¼ qv
 B: ð6:108Þ

Writing out the three components of this equation, and substituting the equations
for the velocity, we find with (see Fig. 6.5)

Fig. 6.5 Definition of angles used for cyclotron-resonance discussion
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Bx ¼ B sin h cos/; ð6:109Þ

By ¼ B sin h sin/; ð6:110Þ

Bz ¼ B cos h; ð6:111Þ

dkx
dt

¼ qB
ky cos h
mT

� kz � k0ð Þ
mL

sin h sin/
	 


; ð6:112Þ

dky
dt

¼ qB
kz � k0ð Þ
mL

sin h cos/� kx
mT

cos h
	 


; ð6:113Þ

dkz
dt

¼ qB
kx
mT

sin h sin/� ky
mT

sin h cos/
	 


: ð6:114Þ

Seeking solutions of the form

kx ¼ A1 exp ixtð Þ; ð6:115Þ

ky ¼ A2 exp ixtð Þ; ð6:116Þ

kz � k0ð Þ ¼ A3 exp ixtð Þ; ð6:117Þ

and defining a, b, c, and c for convenience,

a ¼ qB cos h
mT

; ð6:118Þ

b ¼ qB
mT

sin h sin/; ð6:119Þ

c ¼ qB
mL

sin h cos/; ð6:120Þ

c ¼ mL

mT
; ð6:121Þ

we can express (6.112), (6.113), and (6.114) in the matrix form

ix �a b
a ix �c

�bc cc ix

2
4

3
5 a

b
c

2
4
3
5 ¼ 0: ð6:122Þ

Setting the determinant of the coefficient matrix equal to zero gives three solutions
for x,
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x ¼ 0; ð6:123Þ

and

x2 ¼ a2 þ c b2 þ c2
� �

: ð6:124Þ

After simplification, the nonzero frequency solution (6.124) can be written:

x2 ¼ qBð Þ2 cos2 h
m2

T
þ sin2 h

mLmT

	 

: ð6:125Þ

Since we have two other sets of lobes in the electronic wave function in Si (along
the x-axis and along the y-axis), we have two other sets of frequencies that can be
obtained by substituting hx and hy for h (Figs. 6.5 and 6.6).

Note from Fig. 6.5

cos hx ¼ B 	 i
B

¼ sin h cos/ ð6:126Þ

cos hy ¼ B 	 j
B

¼ sin h sin/: ð6:127Þ

Thus, the three resonance frequencies can be determined. For the (energy) lobes
along the z-axis, we have found

[001] 

[010] 

B 

[001] 
B 

[100] 

Silicon Germanium

[100]

[010]

Fig. 6.6 Constant energy ellipsoids in the conduction band in Si and Ge. Reprinted with
permission from H. Ibach and H. Lüth, Solid-State Physics: An introduction to theory and
experiment, 1st Edition, Fig. XV.2 (a), p. 296, Copyright 1993 (Corrected Printing)
Springer-Verlag New York Berlin Heidelberg
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x2
z ¼ qBð Þ2 cos2 h

m2
T

þ sin2 h
mLmT

	 

: ð6:128Þ

For the lobes along the x-axis, replace h with hx and get

x2
x ¼ qBð Þ2 sin2 h cos2 /

m2
T

þ 1� sin2 h cos2 /
mLmT

	 

; ð6:129Þ

and for the lobes along the y-axis, replace h with hy and get

x2
y ¼ qBð Þ2 sin2 h sin2 /

m2
T

þ 1� sin2 h sin2 /
mLmT

	 

: ð6:130Þ

In general, then we get three resonance frequencies. Obviously, for certain direc-
tions of B, some or all of these frequencies may become degenerate.

Several comments:

1. When mL = mT, these frequencies reduce to the cyclotron frequency xc = qB/m.
2. In general, one will have to illuminate the sample to produce enough electrons

and holes to detect the absorption, as with laser illumination.
3. In order to see the absorption, one wants collisions to be rare. If s is the mean

time between collisions, we then require xcs[ 1 or low temperatures, high
purity, and high magnetic fields are required.

4. The resonant frequencies can be used to determine the longitudinal and trans-
verse effective mass mL, mT.

5. Extremal orbits, with high density of states, are most important for effective
absorption.

Some classic cyclotron resonance results obtained at Berkeley in 1955 by
Dresselhaus, Kip, and Kittel are sketched in Fig. 6.7. See also the Section below
“Power Absorption in Cyclotron Resonance.”

Fig. 6.7 Sketch of cyclotron resonance for silicon [near 24 
 103Mc/s and 4 K, B at 30° with
[100] and in (110) plane]. Adaptation reprinted with permission from Dresselhaus, Kip, and
Kittel, Physical Review 98, 368 (1955). Copyright 1955 by the American Physical Society
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H. A. Lorentz

b. Arnhem, Netherlands (1853–1928)

Theoretical explanation of Zeeman effect (Nobel Prize 1902); Lorentz Force;
Lorentz Transformation; Lorentz Contraction

He was a pioneer in ideas related to special relativity and was highly
regarded by Einstein.

The Lorentz transformations and 4 vectors are much used. These are used
to describe the way four vectors transform (examples of four vectors are
position and time, momentum and energy, also vector and scalar potentials)
between inertial frames.

Density of States Effective Electron Masses for Si (A)
We can now generalize the concept of density of states effective mass so as to
extend the use of equations like (6.4). For Si, we relate the transverse and longi-
tudinal effective masses to the density of states effective mass. See “Density of
States for Effective Hole Masses” in Sect. 6.2.1 for light and heavy hole effective
masses. For electrons in the conduction band we have used the density of states.

D Eð Þ ¼ 1
2p2

2m�
e

�h2

� �3=2 ffiffiffiffi
E

p
: ð6:131Þ

This can be derived from

D Eð Þ ¼ dn Eð Þ
dE

¼ dn Eð Þ
dVk

dVk

dE
;

where n(E) is the number of states per unit volume of real space with energy E and
dVk is the volume of k-space with energy between E and E + dE. Since we have
derived (see Sect. 3.2.3)

dn Eð Þ ¼ 2

2pð Þ3 dVk;

D Eð Þ ¼ 1
4p3

dVk

dE
;

for

E ¼ �h2

2m�
e
k2;
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with a spherical energy surface,

Vk ¼ 4
3
pk3;

so we get (6.131).
We know that an ellipsoid with semimajor axes a, b, and c has volume

V = 4pabc/3. So for Si with an energy represented by [(6.110) with origin shifted
so k0 = 0]

E ¼ 1
2

k2x þ k2y
mT

þ k2z
mL

 !
;

the volume in k-space with energy E is

V ¼ 4
3
p

2m2=3
T m1=3

L

�h2

 !3=2

E3=2: ð6:132Þ

So

D Eð Þ ¼ 1
2p2

2 m2
TmL

� �1=3
�h2

 !3=2 ffiffiffiffi
E

p
: ð6:133Þ

Since we have six ellipsoids like this, we must replace in (6.131)

m�
e

� �3=2 by 6 mLm
2
T

� �1=2
;

or

m�
e by 62=3 mLm

2
T

� �1=3
for the electron density of states effective mass.

Power Absorption in Cyclotron Resonance (A)
Here we show how a resonant frequency gives a maximum in the power absorption
versus field, as for example in Fig. 6.7. We will calculate the power absorption by
evaluating the complex conductivity. We use (6.86) with v being the drift velocity
of the appropriate charge carrier with effective mass m* and charge q = −e. This
equation neglects interactions between charge carriers in semiconductors since the
carrier density is low and they can stay out of each others way. In (6.86), s is the
relaxation time and the 1/s terms take care of the damping effect of collisions. As
usual the carriers will be assumed to be quasifree (free electrons with an effective
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mass to include lattice effects) and we assume that the wave packets describing the
carriers spread little so the carriers can be treated classically.

Let the B field be a static field along the z-axis and let E = Exe
ixti be the

plane-polarized electric field. Solutions of the form

v tð Þ ¼ veixt; ð6:134Þ

will be sought. Then (6.86) may be written in component form as

m� ixð Þvx ¼ qEx þ qvyB� m�

s
vx; ð6:135Þ

m� ixð Þvy ¼ �qvxB� m�

s
vy: ð6:136Þ

If we assume the carriers are electrons then j ¼ nevx �eð Þ ¼ rEx so the complex
conductivity is

r ¼ � enevx
Ex

; ð6:137Þ

where ne is the concentration of electrons. By solving (6.136) and (6.137) we find

r ¼ r0
1þ x2

c � x2
� �

s2
� �þ 2x2s2

1þ x2
c � x2

� �
s2

� �2 þ 4x2s2
þ ir0

xs 1þ x2
c � x2

� �
s2 � 2

� �
1þ x2

c � x2
� �

s2
� �2 þ 4x2s2

;

ð6:138Þ

where r0 = nee
2s/m* is the dc conductivity and xc ¼ eB=m�.

The rate at which energy is lost (per unit volume) due to Joule heating is
j ⋅ E = jxEx. But

Re jxð Þ ¼ Re rExð Þ
¼ Re rr þ irið Þ Ex cosxtþ iEx sinxtð Þ½ �
¼ rrEx cosxt � riEx sinxt:

ð6:139Þ

So

Re jxð ÞRe Ecð Þ ¼ E2
x rr cos2 xt � ri cosxt sinxt
� �

: ð6:140Þ

The average energy (over a cycle) dissipated per unit volume is thus

P ¼ Re jxð ÞRe Ecð Þ ¼ 1
2
rrjEj2; ð6:141Þ

where |E| � Ex. Thus

6.1 Electron Motion 359



P / Re
r
r0

� �
/ 1þ g2c þ g2

1þ g2c � g2
� �2 þ 4g2

;

where g ¼ xs and gc ¼ xcs. We get a peak when g = gc. If there is more than one
resonance there is more than one maximum as we have already noted. See Fig. 6.7.

6.2 Examples of Semiconductors

6.2.1 Models of Band Structure for Si, Ge and II-VI
and III-V Materials (A)

First let us give some band structure and density of states for Si and Ge. See
Figs. 6.8 and 6.9. The figures illustrate two points. First, that model calculation
tools using the pseudopotential (see “The Pseudopotential Method” under
Sect. 3.2.3) have been able to realistically model actual semiconductors. Second,
that the models we often use (such as the simplified pseudopotential) are over-
simplified but still useful in getting an idea about the complexities involved. As
discussed by Cohen and Chelikowsky [6.8], optical properties have been very
useful in obtaining experimental results about actual band structures.

For very complicated cases, models are still useful. A model by Kane has been
found useful for many II-VI and III-V semiconductors [6.16]. It yields a conduction
band that is not parabolic, as well as having both heavy and light holes and a split-off
band as shown in Fig. 6.10. It even applies to pseudobinary alloys such as mercury
cadmium telluride (MCT) provided one uses a virtual crystal approximation (VCA),
in which alloy disorder later can be put in as a perturbation, e.g. to discuss mobility.
In the VCA, Hg1−xCdxTe is replaced by ATe, where A is some “average” atom
representing the Hg and Cd.

If one solves the secular equation of the Kane [6.16] model, one finds the
following equation for the conduction, light holes, and split-off band:

E3 þ D� Eg
� �

E2 � EgDþP2k2
� �

E � 2
3
DP2k2 ¼ 0; ð6:142Þ

where Δ is a constant representing the spin-orbit splitting, Eg is the bandgap, and P
is a constant representing a momentum matrix element. With the energy origin
chosen to be at the top of the valence band, if Δ � Eg and Pk, and including heavy
holes, one can show:

E ¼ Eg þ �h2k2

2m
þ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
g þ

8P2k2

3

r
� Eg

 !
for the conduction band, ð6:143Þ
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E ¼ � �h2k2

2mhh
; for the heavy holes, ð6:144Þ

E ¼ � �h2k2

2m
� 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
g þ

8P2k2

3

r !
� Eg; for the light holes, and ð6:145Þ

E ¼ �D� �h2k2

2m
� P2k2

3Eg þ 3D
for the split-off band: ð6:146Þ

In the above, m is the mass of a free electron (Kane [6.16]).

Fig. 6.8 Band structures for Si and Ge. For silicon two results are presented: nonlocal
pseudopotential (solid line) and local pseudopotential (dotted line). Adaptation reprinted with
permission from Cheliokowsky JR and Cohen ML, Phys Rev B 14, 556 (1976). Copyright
1976 by the American Physical Society
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Knowing the E versus k relation, as long as E depends only on |k|, the density of
states per unit volume is given by

D Eð ÞdE ¼ 2
 4pk2dk

2pð Þ3 ; ð6:147Þ

Fig. 6.9 Theoretical pseudopotential electronic valence densities of states compared with
experiment for Si and Ge. Adaptation reprinted with permission from Cheliokowsky JR and
Cohen ML, Phys Rev B 14, 556 (1976). Copyright 1976 by the American Physical Society
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or

D Eð Þ ¼ h2dk
p2dE

: ð6:148Þ

Finally, for the conduction band, if ħ2k2/2m is negligible compared to the other
terms, we can show for the conduction band that

E
E � Eg

Eg

� �
¼ �h2k2

2m1
; ð6:149Þ

where

m1 ¼ 3�h2

4P2 Eg: ð6:150Þ

This clearly leads to changes in effective mass from the parabolic case ðE / k2Þ.
Brief properties of MCT, as an example of a II-VI alloy, [6.5, 6.7] showing its

importance:

1. A pseudobinary II-VI compound with structure isomorphic to zincblende.
2. Hg1−xCdxTe forms a continuous range of solid solutions between the

semi-metals HgTe and CdTe. The bandgap is tunable from 0 to about 1.6 eV as
x varies from about 0.15 (at low temperature) to 1.0. The bandgap also depends
on temperature, increasing (approximately) linearly with temperature for a fixed
value of x.

Fig. 6.10 Energy bands for zincblende lattice structure
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3. Useful as an infrared detector at liquid nitrogen temperature in the wavelength
8–12 lm, which is an atmospheric window. A higher operating temperature
than alternative materials and MCT has high detectivity, fast response, high
sensitivity, IC compatible and low power.

4. The band structure involves mixing of unperturbed valence and conduction band
wave function, as derived by the Kane theory. They have nonparabolic bands,
which makes their analysis more difficult.

5. Typical carriers have small effective mass (about 10−2 free-electron mass),
which implies large mobility and enhances their value as IR detectors.

6. At higher temperatures (well above 77 K) the main electron scattering mecha-
nism is the scattering by longitudinal optic modes. These modes are polar modes
as discussed in Sect. 10.10. This scattering process is inelastic, and it makes the
calculation of electron mobility by the Boltzmann equation more difficult
(noniterated techniques for solving this equation do not work). At low tem-
peratures the scattering may be dominated by charged impurities. See Yu and
Cardona [6.44, p. 207]. See also Problem 6.7.

7. The small bandgap and relatively high concentration of carriers make it nec-
essary to include screening in the calculation of the scattering of carriers by
several interactions.

8. It is a candidate for growth in microgravity in order to make a more perfect
crystal.

The figures below may further illustrate II-VI and III-V semiconductors, which
have a zincblende structure. Figure 6.11 shows two interpenetrating lattices in the
zincblende structure. Figure 6.12 shows the first Brillouin zone. Figure 6.13

Fig. 6.11 Zincblende lattice structure. The shaded sites are occupied by one type of ion, the
unshaded by another type
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sketches results for GaAs (which is zincblende in structure) which can be compared
to Si and Ge (see Fig. 6.8). The study of complex compound semiconductors is far
from complete.4

Fig. 6.12 First Brillouin zone for zincblende lattice structure. Certain symmetry points are
denoted with the usual notation

Fig. 6.13 Sketch of the band structure of GaAs in two important directions. Note that in the
valence bands there are both light and heavy holes. For more details see Cohen and
Chelikowsky [6.8]

4See, e.g., Patterson [6.30].
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Density of States for Effective Hole Masses (A)
If we have light and heavy holes with energies

El;h

�� �� ¼ �h2k2

2mlh
;

Eh;h

�� �� ¼ �h2k2

2mhh
;

each will give a density of states and these density of states will add so we must
replace in an equation analogous to (6.131),

m�
h

� �3=2
by m3=2

lh þm3=2
hh :

Alternatively, the effective hole mass for density of states is given by the
replacement of

mh by m3=2
lh þm3=2

hh

� 2=3
:

6.2.2 Comments About GaN (A)

GaN is a III-V material that has been of much interest lately. It is a direct wide
bandgap semiconductor (3.44 electron volts at 300 K). It has applications in blue and
UV light emitters (LEDs) and detectors. It forms a heterostructure (see Sect. 12.4)
with AlGaN and thus HFETs (heterostructure field effect transistors) have been made.
Transistors of both high power and high frequency have been produced with GaN. It
also has good mechanical properties, and can work at higher temperature as well as
having good thermal conductivity and a high breakdown field.

GaN has become very important for recent advances in solid-state lighting. As
mentioned, light-emitting diodes (LEDs) have now been based on GaN, see M. Fox
[10.12, pp. 105–107]. LEDs are becoming commercially very important. LEDs and
semiconducting injection lasers are similar except the latter has an optical resonant
cavity, see Dalven [6.10, pp. 206–209]. Studies of dopants, impurities, and defects
are important for improving the light-emitting efficiency.

It should be emphasized that the Nobel Prize (see Appendix L) in physics in
2014 was for achieving blue LEDs. Having done this enabled the making of
practical white light from LEDs. These white LED light bulbs are roughly ten times
as efficient as incandescent lightbulbs and in addition may last about one hundred
times as long. This means they would be a major player in energy conservation.
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Gertrude Neumark (Rothschild)

b. Nuremberg, Germany (1927–2010)

Ideas for doping wide bandgap semiconductors; Light-emitting and Laser
Diodes; Development of blue, green, and UV LEDs

She had positions in private industry but settled as a professor at Columbia
University in Materials Science. Many other honors followed. She pursued
several patent infringement cases and was awarded considerable remunera-
tion. Although she was a theorist her work had wide application to flat screen
and mobile phone screens.

6.3 Semiconductor Device Physics

This Section will give only some of the flavor and some of the approximate device
equations relevant to semiconductor applications. The book by Dalven [6.10] is an
excellent introduction to this subject. So is the book by Fraser [6.14]. The most
complete book is by Sze [6.41]. In recent years layered structures with quantum
wells and other new effects are being used for semiconductor devices. See Chap. 12
and references [6.1, 6.19].

6.3.1 Crystal Growth of Semiconductors (EE, MET, MS)

The engineering of semiconductors has been as important as the science. By
engineering we mean growth, purification, and controlled doping. In Chap. 12 we
go a little further and talk of the band engineering of semiconductors. Here we wish
to consider growth and related matters. For further details, see Streetman [6.40,
p. 12ff]. Without the ability to grow extremely pure single crystal Si, the semi-
conductor industry as we know it would not have arisen. With relatively few
electrons and holes, semiconductors are just too sensitive to impurities.

To obtain the desired pure crystal semiconductor, elemental Si, for example, is
chemically deposited from compounds. Ingots are then poured that become
poly-crystalline on cooling.

Single crystals can be grown by starting with a seed crystal at one end and
passing a molten zone down a “boat” containing the seed crystal (the molten zone
technique), see Fig. 6.14.

Since the boat can introduce stresses (as well as impurities) an alternative
method is to grow the crystal from the melt by pulling a rotating seed from it (the
Czochralski technique), see Fig. 6.14b.
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Purification can be achieved by passing a molten zone through the crystal. This
is called zone refining. The impurities tend to concentrate in the molten zone, and
more than one pass is often useful. A variation is the floating zone technique where
the crystal is held vertically and no walls are used.

There are other crystal growth techniques. Liquid phase epitaxy and vapor phase
epitaxy, where crystals are grown below their melting point, are discussed by
Streetman (see reference above). We discuss molecular beam epitaxy, important in
molecular engineering, in Chap. 12.

In order to make a semiconductor device, initial purity and controlled intro-
duction of impurities is necessary. Diffusion at high temperatures is often used to
dope or introduce impurities. An alternative process is ion implantation that can be
done at low temperature, producing well-defined doping layers. However, lattice
damage may result, see Streetman [6.40, p. 128ff], but this can often be removed by
annealing.

6.3.2 Gunn Effect (EE)

The Gunn effect is the generation of microwave oscillations in a semiconductor like
GaAs or InP (or other III-V materials) due to a high (of order several thousand
V/cm) electric field. The effect arises due to the energy band structure sketched in
Fig. 6.15.

Since m� / ðd2E=dk2Þ�1, we see m2
* > m1

*, or m2 is heavy compared to m1.
The applied electric field can supply energy to the electrons and raise them from the
m1
* (where they would tend to be) part of the band to the m2

* part. With their gain in
mass, it is possible for the electrons to experience a drop in drift velocity
ðmobility ¼ v=E / 1=m�Þ.

If we make a plot of drift velocity versus electric field, we get something like
Fig. 6.16. The differential conductivity is

(a) (b)

Fig. 6.14 (a) The molten zone technique for crystal growth and (b) the Czochralski
Technique for crystal growth
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rd ¼ dJ
dE

; ð6:151Þ

where J is the electrical current density that for electrons we can write as J = nev,
where v = |v|, e > 0. Thus,

rd ¼ ne
dv
dE

\0; ð6:152Þ

when E > Ec and is not too large. This is the region of bulk negative conductivity
(BNC), and it is unstable and leads to the Gunn effect. The generation of Gunn
microwave oscillations may be summarized by the following three statements:

Fig. 6.15 Schematic of energy band structure for GaAs used for Gunn effect

Fig. 6.16 Schematic of electron drift velocity versus electric field in GaAs
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1. Because the electrons gain energy from the electric field, they transfer to a
region of E(k) space where they have higher masses. There, they slow down,
“pile up”, and form space-charge domains that move with an overall drift
velocity v.

2. We assume the length of the sample is l. A current pulse is delivered for every
domain transit.

3. Because of reduction of the electric field external to the domain, once a domain
is formed, another is not formed until the first domain drifts across.

The frequency of the oscillation is approximately

f ¼ v
l
� 107m/s

10�3m
� 10GHz: ð6:153Þ

The instability with respect to charge domain-foundation can be simply argued. In
one dimension from the continuity equation and Gauss’ law, we have

@J
@x

þ @q
@t

¼ 0; ð6:154Þ

@E
@x

¼ q
e
; ð6:155Þ

@J
@x

¼ @J
@E

	 @E
@x

¼ rd
q
e
: ð6:156Þ

So,

@q
@s

¼ � @J
@x

¼ �rd
q
e
; ð6:157Þ

or

q ¼ q 0ð Þ exp � rd
e
t

� 
: ð6:158Þ

If rd\0, and there is a random charge fluctuation, then q is unstable with respect to
growth. A major application of Gunn oscillations is in RADAR.

We should mention that GaN (see Sect. 6.2.2) is being developed for
high-power and high-frequency (*750 GHz) Gunn diodes.

6.3.3 pn Junctions (EE)

The pn junction is fundamental for constructing transistors and many other
important applications. We assume a linear junction, which is abrupt, with acceptor
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doping for x < 0 and donor doping for x > 0 as in Fig. 6.17. Of course, this is an
approximation. No doping profile is absolutely sharp. In some cases a graded
junction (discussed later) may be a better approximation. We now develop
approximately valid results concerning the pn junction. We use simple principles
and develop what we call device equations.

For x < −dp we assume p = Na and for x > +dn we assume p = Nd, i.e.
exhaustion in both cases. Near the junction at x = 0, holes will tend to diffuse into
the x > 0 region and electrons will tend to diffuse into the x < 0 region. This will
cause a built-in potential that will be higher on the n-side (x > 0) than the p-side
(x < 0). The potential will increase until it is of sufficient size to stop the net
diffusion of electrons to the p-side and holes to the n-side. See Fig. 6.18. The region
between −dp and dn is called the depletion region. We further make the depletion
layer approximation that assumes there are negligible free carriers in this depletion
region. We assume this occurs because the large electric field in the region quickly
sweeps any free carriers across it. It is fairly easy to calculate the built-in potential
from the fact that the net hole (or electron) current is zero.

Consider, for example, the hole current:

Jp ¼ e plpE � Dp
dp
dx

� �
¼ 0: ð6:159Þ

The electric field is related to the potential by E = −du/dx, and using the Einstein
relation, Dp ¼ lpkT=e, we find

� e
kT

du ¼ dp
p
: ð6:160Þ

Integrating from −dp to dn, we find

pp0
pn0

¼ exp
e
kT

un � up

� �� 
; ð6:161Þ

Fig. 6.17 Model of doping profile of abrupt pn junction
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where pp0 and pn0 mean the hole concentrations located in the homogeneous part of
the semiconductor beyond the depletion region. The Law of Mass Action tells us
that np = ni

2, and we know that pp0 = Na, nn0 = Nd, and nn0pn0 = ni
2; so

pn0 ¼ n2i =Nd: ð6:162Þ

Thus, we find

e un � up

� � ¼ kT ln
NaNd

n2i

� �
; ð6:163Þ

for the built-in potential. The same built-in potential results from the constancy of
the chemical potential. We will leave this as a problem.

(a)

(b)

Fig. 6.18 The pn junction: (a) Hypothetical junction just after doping but before equilibrium
(i.e. before electrons and holes are transferred). (b) pn junction in equilibrium.
CB = conduction band, VB = valence band
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We obtain the width of the depletion region by solving Gauss’s law for this
region. We have assumed negligible carriers in the depletion region −dp to dn:

dE
dx

¼ � eNa

e
for � dp � x� 0; ð6:164Þ

and

dE
dx

¼ þ eNd

e
for 0� x� dn: ð6:165Þ

Integrating and using E = 0 at both edges of the depletion region

E ¼ � eNa

e
xþ dp
� �

for � dp � x� 0; ð6:166Þ

E ¼ þ eNd

e
x� dnð Þ for 0� x� dn: ð6:167Þ

Since E must be continuous at x = 0, we find

Nadp ¼ Nddn; ð6:168Þ

which is just an expression of charge neutrality. Using E = −du/dx, integrating
these equations one more time, and using the fact that u is continuous at x = 0, we
find

Du ¼ u dnð Þ � u �dp
� � ¼ e

2e
Ndd

2
n þNad

2
p

h i
: ð6:169Þ

Using the electrical neutrality condition, Nadp = Nddn, we find

dp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Du

2e
eNa

� �
Nd

Na þNd

� �s
; ð6:170Þ

dn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Du

2e
eNd

� �
Na

Nd þNa

� �s
; ð6:171Þ

and the width of the depletion region is W = dp + dn. Notice dp increases as Na

decreases, as would be expected from electrical neutrality. Similar comments about
dn and Nd may be made.
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6.3.4 Depletion Width, Varactors and Graded
Junctions (EE)

From the previous results, we can show for the depletion width at an abrupt
pn junction

W ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2eDu
e

Na þNd

NaNd

� �s
: ð6:172Þ

Also,

dn ¼ Na

Nd þNa

� �
W ; ð6:173Þ

dp ¼ Nd

Nd þNa

� �
W : ð6:174Þ

If we add a bias voltage ub selected so ub > 0 when a positive bias is applied on the
p-side, then

W ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2e Du� ubð Þ

e
Na þNd

NaNd

� �s
: ð6:175Þ

For noninfinite current, Δu > ub.
The charge associated with the space charge on the p-side is Q = eAdpNa, where

A is the cross-sectional area of the pn junction. We find

Q ¼ A

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ee Dp� ubð Þ NaNd

Na þNd

r
: ð6:176Þ

The junction capacitance is then defined as

CJ ¼ dQ
dub

����
����; ð6:177Þ

which, perhaps, not surprisingly comes out

CJ ¼ eA
W

; ð6:178Þ

just like a parallel-plate capacitor. Note that CJ depends on the voltage through
W. When the pn junction is used in such a way as to make use of the voltage
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dependence of CJ, the resulting device is called a varactor. A varactor is useful
when it is desired to vary the capacitance electronically rather than mechanically.

To introduce another kind of pn junction, and to see how this affects the concept
of a varactor, let us consider the graded junction. Any simple model of a junction
only approximately describes reality. This is true for both abrupt and graded
junctions. The abrupt model may approximate an alloyed junction. When the
junction is formed by diffusion, it may be better described by a graded junction. For
a graded junction, we assume

Nd � Na ¼ Gx; ð6:179Þ

which is p-type for x < 0 and n-type for x > 0. Note the variation is now smooth
rather than abrupt. We assume, as before, that within the transition region we have
complete ionization of impurities and that carriers there can be neglected in terms of
their effect on net charge. Gauss’ law becomes

dE
dz

¼ e
e
Nd � Nað Þ ¼ eGx

e
: ð6:180Þ

Integrating

E ¼ eG
2e

x2 þ k: ð6:181Þ

The doping is symmetrical, so the electric field should vanish at the same distance
on either side from x = 0. Therefore,

dp ¼ dn ¼ W
2
; ð6:182Þ

and

E ¼ eG
2e

x2 � W
2

� �2
" #

: ð6:183Þ

Integrating

u zð Þ ¼ � eG
2e

x3

3
� W

2

� �2

x

" #
þ k2: ð6:184Þ

Thus,

Du ¼ u
W
2

� �
� u

�W
2

� �
¼ W3

12
eG
e

� �
; ð6:185Þ
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or

W ¼ 12e
eG

Du

� �1=3

: ð6:186Þ

With an applied voltage, this becomes

W ¼ 12e
eG

Du� ubð Þ
	 
1=3

: ð6:187Þ

The charge associated with the right dipole layer is

Q ¼
ZW=2

0

eGxAdx ¼ eGW2

8
A: ð6:188Þ

The junction capacitance therefore is

CJ ¼ dQ
dub

����
���� ¼ dQ

dW

����
���� dWdub

����
����; ð6:189Þ

which, finally, gives again

CJ ¼ Ae
W

:

But, now W depends on ub in a 1/3 power way rather than a 1/2 power. Different
approximate models lead to different approximate device equations.

6.3.5 Metal Semiconductor Junctions—the Schottky Barrier
(EE)

We consider the situation shown in Fig. 6.19 where an n-type semiconductor is in
contact with the metal. Before contact we assume the Fermi level of the semicon-
ductor is above the Fermi level of the metal. After contact electrons flow from the
semiconductor to the metal and the Fermi levels equalize. The work functions Фт,
Фs are defined in Fig. 6.19. We assumeФт > Фs. IfФт < Фs an ohmic contact with
a much smaller barrier is formed (Streetman [6.40, p. 185ff]). The internal electric
fields cause a varying potential and hence band bending as shown. The concept of
band bending requires the semiclassical approximation (Sect. 6.1.4). Let us analyze
this in a bit more detail. Choose x > 0 in the semiconductor and x < 0 in the metal.
We assume the depletion layer has width xb. For xb > x > 0, Gauss’ equation is
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dE
dx

¼ Nde
e

: ð6:190Þ

Using E = −du/dx, setting the potential at 0 and xb equal to u0 and uxb, and
requiring the electric field to vanish at x = xb, by integrating the above for u we find

u0 � uxb ¼ �Ndex2b
2e

: ð6:191Þ

If the potential energy difference for electrons across the barrier is

DV ¼ �e u0 � uzb

� �
;

we know

DV ¼ þEF sð Þ � EF mð Þ
before contactð Þ: ð6:192Þ

Solving the above for xb gives the width of the depletion layer as

xb ¼
ffiffiffiffiffiffiffiffiffiffiffi
2eDV
Nde2

s
: ð6:193Þ

Schottky barrier diodes have been used as high-voltage rectifiers. The behavior of
these diodes can be complicated by “dangling bonds” where the rough semicon-
ductor surface joins the metal. See Bardeen [6.3].

Fig. 6.19 Schottky barrier formation (sketch)
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Walter H. Schottky

b. Zürich, Switzerland (1886–1976)

Schottky Defects; The Schottky effect in electron and ion emission; Invented
ribbon microphone

Schottky was a German physicist and inventor who worked at universities
and for industrial companies. He was especially well known for his work on
charged particle emissions from a metal and related matters. He was much
involved with the electronics of metals and semiconductors of his time.

6.3.6 Semiconductor Surface States and Passivation (EE)

The subject of passivation is complex, and we will only make brief comments. The
most familiar passivation layer is SiO2 over Si, which reduces the number of
surface states. A mixed layer of GaAs-AlAs on GaAs is also a passivating layer that
reduces the number of surface states. The ease of passivation of the Si surface by
oxygen is a major reason it is the dominant semiconductor for device usage.

What are surface states? A solid surface is a solid terminated at a
two-dimensional surface. The effect on charge carriers is modeled by using a sur-
face potential barrier. This can cause surface states with energy levels in the for-
bidden gap. The name “surface states” is used because the corresponding wave
function is localized near the surface. Further comments about surface states are
found in Chap. 11.

Surface states can have interesting effects, which we will illustrate with an
example. Let us consider a p-type semiconductor (bulk) with surface states that are
donors. The situation before and after equilibrium is shown in Fig. 6.20. For the

(a) (b)

Fig. 6.20 p-type semiconductor with donor surface states (a) before equilibrium, (b) after
equilibrium (T = 0). In both (a) and (b) only relative energies are sketched
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equilibrium case (b), we assume that all donor states have given up their electrons,
and hence, are positively charged. Thus, the Fermi energy is less than the
donor-level energy. A particularly interesting case occurs when the Fermi level is
pinned at the surface donor level. This occurs when there are so many donor states
on the surface that not all of them can be ionized. In that case (b), the Fermi level
would be drawn on the same level as the donor level.

One can calculate the amount of band bending by a straightforward calculation.
The band bending is caused by the electrons flowing from the donor states at the
surface to the acceptor states in the bulk. For the depletion region, we assume,

q xð Þ ¼ �eNa ð6:194Þ
dE
dx

¼ �eNa

e
: ð6:195Þ

So,

d2V
dx2

¼ eNa

e
: ð6:196Þ

If nd is the number of donors per unit area, the surface charge density is r ¼ end .
The boundary condition at the surface is then

Esurface ¼ � dV
dx

����
x¼0

¼ end
e

: ð6:197Þ

If the width of the depletion layer is d, then

E x ¼ dð Þ ¼ 0: ð6:198Þ
Integrating (6.196) with boundary condition (6.198) gives

E ¼ eNa

e
d � xð Þ: ð6:199Þ

Using the boundary condition (6.197), we find

d ¼ nd
Na

: ð6:200Þ

Integrating a second time, we find

V ¼ eNa

2e
x2 � eNad

e
xþ constant: ð6:201Þ

Therefore, the total amount of band bending is

e V 0ð Þ � V dð Þ½ � ¼ e2Nad2

2e
¼ e2n2d

2eNa
: ð6:202Þ
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This band bending is caused entirely by the assumed ionized donor surface states.
We have already mentioned that surface states can complicate the analysis of
metal-semiconductor junctions.

6.3.7 Surfaces Under Bias Voltage (EE)

Let us consider a p-type surface under three kinds of voltage shown in Fig. 6.21:
(a) a negative bias voltage, (b) a positive bias voltage, and then (c) a very strong,
positive bias voltage.

In case (a), the bands bend upward, holes are attracted to the surface, and thus,
an accumulation layer of holes is founded. In (b), holes are repelled from the
surface forming the depletion layer. In (c) the bands are bent sufficiently such that
the conduction band bottom is below the Fermi energy and the semiconductor
becomes n-type, forming an inversion region. In all these cases, we are essentially
considering a capacitor with the semiconductor forming one plate. These ideas have
been further developed into the MOSFET (metal-oxide semiconductor field-effect
transistor, see Sect. 6.3.10).

6.3.8 Inhomogeneous Semiconductors not in Equilibrium
(EE)

Here we will discuss pn junctions under bias and how this leads to electron and hole
injection. We will start with a qualitative treatment and then do a more quantitative
analysis. The study of pn junctions is fundamental for the study of transistors.

Fig. 6.21 p-type semiconductor under bias voltage (energies in each figure are relative)
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We start by looking at a pn junction in equilibrium where there are two types of
electron flow that balance in equilibrium (as well as two types of hole flow which
also balance in equilibrium). See also, e.g., Kittel [6.17, p. 572] or Ashcroft and
Mermin [6.2, p. 600].

From the n-side to the p-side, there is an electron recombination (r) or diffusion
current (Jnr) where n denotes electrons. This is due to the majority carrier electrons,
which have enough energy to surmount the potential barrier. This current is very
sensitive to a bias field that would change the potential barrier. On the p-side, there
are thermally generated electrons, which in the space-charge region may be swiftly
swept downhill into the n-region. This causes the thermal generation (g) or drift
current (Jng). Electrons produced farther than a diffusion length (to be defined)
recombine before being swept across. As mentioned, in the absence of potential, the
electron currents balance and we have

Jnr 0ð Þþ Jng 0ð Þ ¼ 0; ð6:203Þ

where the 0 in Jnr(0), etc. means zero bias voltage. Similarly, for holes, denoted by p,

Jpr 0ð Þþ Jpg 0ð Þ ¼ 0: ð6:204Þ

We set the notation that forward bias (V > 0) is when the p-side is higher in
potential than the n-side. See Fig. 6.22. Since the barrier responds exponentially to
the bias voltage, we might expect the electron injection current, from n to p, to be
given by

Jnr Vð Þ ¼ Jnr 0ð Þ exp eV
kT

� �
: ð6:205Þ

The thermal generation current is essentially independent of voltage so

Jng Vð Þ ¼ Jng 0ð Þ ¼ �Jnr 0ð Þ: ð6:206Þ

Similarly, for injection of holes from p to n, we expect

Jpr Vð Þ ¼ Jpr 0ð Þ exp eV
kT

� �
; ð6:207Þ

and similarly for the generation current,

Jpg Vð Þ ¼ Jpg 0ð Þ ¼ �Jpr 0ð Þ: ð6:208Þ

Adding everything up, we get the Shockley diode equation for a pn junction under
bias
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J ¼ Jnr Vð Þþ Jng Vð Þþ Jpr Vð Þþ Jpg Vð Þ
¼ J0 exp eV=kTð Þ � 1½ � ð6:209Þ

where J0 = Jnr(0) + Jpr(0).
We now give a more detailed derivation, in which the exponential term is more

carefully argued, and J0 is calculated. We assume that both electrons and holes
recombine (due to various processes) with characteristic recombination times sn and
sp. The usual assumption is, that as far as net recombination goes with no flow,

@p
@s

�
r
¼ � p� p0

sp
; ð6:210Þ

and

(a)

(b)

Fig. 6.22 The pn junction under bias V: (a) forward bias, (b) reverse bias (only relative shift
is shown)
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@n
@s

�
r
¼ � n� n0

sn
; ð6:211Þ

where r denotes recombination. Assuming no external generation of electrons or
holes, the continuity equation with flow and recombination can be written (in one
dimension):

@Jp
@x

þ e
@p
@s

¼ �e
p� p0
sp

� �
; ð6:212Þ

@Jn
@x

� e
@n
@s

¼ þ e
n� n0
sn

� �
: ð6:213Þ

The electron and hole current densities are given by

Jp ¼ �eDp
@p
@x

þ eplpE; ð6:214Þ

Jn ¼ eDn
@n
@x

þ enlnE: ð6:215Þ

And, as always, we assume Gauss’ law, where q is the total charge density

@E
@x

¼ q
e
: ð6:216Þ

We will also assume a steady state, so

@p
@t

¼ @n
@t

¼ 0: ð6:217Þ

An explicit solution is fairly easy to obtain if we make three further assumptions
(See Fig. 6.23):

Fig. 6.23 Schematic of pn junction (p region for x < 0 and n region for x > 0). Ln and Lp are
n and p diffusion lengths
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(a) The electric field is very small outside the depletion region, so whatever drop in
potential there is occurs across the depletion region.

(b) The concentrations of injected minority carriers in the region outside the
depletion region is negligible compared to the majority carrier concentration.
Also, the majority carrier concentration is essentially constant beyond the
depletion and diffusion regions.

(c) Finally, we assume negligible generation or recombination of carriers in the
depletion region. We can argue that this ought to be a good approximation if the
depletion layer is sufficiently thin. Under this approximation, the electron and
hole currents are constant across the depletion region.

A few further comments are necessary before we analyze the pn junction. In the
depletion region there are both drift and diffusion currents that are large. In the
nonequilibrium case they do not quite cancel. Consistent with this the electric fields,
gradient of carrier densities and space charge are all large. Electric fields can be so
large here as to lead to the validity of the semiclassical model being open to
question. However, we are only trying to develop approximate device equations so
our approximations are probably OK.

The diffusion region only exists under applied voltage. The minority drift current
is negligible here but the gradient of carrier densities can still be appreciable as can
the drift current even though electric fields and space charges are small. The
majority drift current is not small as the majority density is large.

In the homogeneous region the whole current is carried by drift and both dif-
fusion currents are negligible. The carrier densities are nearly the same as in
equilibrium, but the electric field, space charge, and gradient of carrier densities are
all small.

For any x (the direction along the pn junction, see Fig. 6.23), the total current
should be given by

Jtotal ¼ Jn xð Þþ Jp xð Þ: ð6:218Þ

Since by (c) both Jn and Jp are independent of x in the depletion region, we can
evaluate them for the x that is most convenient, see Fig. 6.23,

Jtotal ¼ Jn �dp
� �þ Jp dnð Þ: ð6:219Þ

That is, we need to evaluate only minority current densities. Also, since by (a) and
(b), the minority current drift densities are negligible, we can write

Jtotal ¼ eDn
@n
@x

����
x ¼ �dp

�eDp
@p
@x

����
x ¼ �dn

; ð6:220Þ

which means we only need to find the minority carrier concentrations. In the steady
state, neglecting carrier drift currents, we have
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d2pn
dx2

� pn � pn0
L2p

¼ 0; for x dn; ð6:221Þ

and

d2np
dx2

� np � np0
L2n

¼ 0; for x� � dp; ð6:222Þ

where the diffusion lengths are defined by

L2p ¼ Dpsp; ð6:223Þ

and

L2n ¼ Dnsn: ð6:224Þ

Diffusion lengths measure the distance a carrier goes before recombining. The
solutions obeying appropriate boundary conditions can be written

pn xð Þ � pn0 ¼ pn dnð Þ � pn0½ � exp � x� dnð Þ
Lp

� �
; ð6:225Þ

and

np xð Þ � np0 ¼ np �dp
� �� np0

� �
exp þ xþ dp

� �
Ln

� �
: ð6:226Þ

Thus,

�@pn
@x

����
x ¼ �dn

¼ pn dnð Þ � pn0½ �
Lp

; ð6:227Þ

and

þ @np
@x

����
x ¼ �dp

¼ np �dp
� �� np0

� �
Ln

: ð6:228Þ

Thus,

Jtotal ¼ eDn

Ln

� �
np �dp
� �� np0

� �þ eDp

Lp

� �
pn dnð Þ � pn0½ �: ð6:229Þ

To finish the calculation, we need expressions for np(−dp) −np0 and pn(−dn) −pn0,
which are determined by the injected minority carrier densities.
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Across the depletion region, even with applied bias, Jn and Jp are very small
compared to individual drift and diffusion currents of electrons and holes (which
nearly cancel). Therefore, we can assume Jn ffi 0 and Jp ffi 0 across the depletion
regions. Using the Einstein relations, as well as the definition of drift and diffusion
currents, we have

kT
@n
@x

¼ en
@u
@x

; ð6:230Þ

and

kT
@p
@x

¼ �ep
@u
@x

: ð6:231Þ

Integrating across the depletion region

n dnð Þ
n �dp
� � ¼ exp þ e

kT
u dnð Þ � u �dp

� �� �� 
; ð6:232Þ

and

p dnð Þ
p �dp
� � ¼ exp � e

kT
u dnð Þ � u �dp

� �� �� 
: ð6:233Þ

If Du is the built-in potential and ub is the bias voltage with the conventional sign

u dnð Þ � u �dp
� � ¼ Du� ub: ð6:234Þ

Thus,

n dnð Þ
n �dp
� � ¼ exp

eDu
kT

� �
exp � eub

kT

� 
¼ nn0

np0
exp � eub

kT

� 
; ð6:235Þ

and

p dnð Þ
p �dp
� � ¼ exp � eDu

kT

� �
exp � eub

kT

� 
¼ pn0

pp0
exp � eub

kT

� 
: ð6:236Þ

By assumption (b)

n dnð Þ ffi nn0 ; ð6:237Þ
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and

p �dp
� � ffi pp0 : ð6:238Þ

So, we find

np �dp
� � ¼ np0 exp

eub

kT

� 
; ð6:239Þ

and

pn dnð Þ ¼ pn0 exp
eub

kT

� 
: ð6:240Þ

Substituting, we can find the total current, as given by the Shockley diode equation

Jtotal ¼ e
Dn

Ln
np0 þ

Dp

Lp
pn0

� �
exp

eub

kT

� 
� 1

h i
: ð6:241Þ

Light-emitting diodes (LEDs) are becoming very common, even easily pur-
chased in flashlights at your local hardware store. A degenerate pn junction under
forward bias can produce a LED. Direct band gap semiconductors are most efficient
for this use. See, e.g., Dalven [6.10, p. 199]. A somewhat similar process, with
appropriate forward voltage producing a population inversion can create a laser,
provided the pn junction is made so the structure is an optical resonant cavity.
Again, the physics is clearly explained in Dalven [6.10, p. 206].

Reverse Bias Breakdown (EE)
The Shockley diode equation indicates that the current attains a constant value of
−J0 when the reverse bias is sufficiently strong. Actually, under large reverse bias,
the Shockley diode equation is no longer valid and the current becomes arbitrarily
large and negative. There are two mechanisms for this reverse current breakdown,
as we discuss below (which may or may not destroy the device).

One is called the Zener breakdown. This is due to quantum-mechanical inter-
band tunneling and involves a breakdown of the quasiclassical approximation. It
can occur at lower voltages in narrow junctions with high doping. At higher
voltages, another mechanism for reverse bias breakdown is dominant. This is the
avalanche mechanism. The electric field in the junction accelerates electrons in the
electric field. When the electron gains kinetic energy equal to the gap energy, then
the electron can create an electron-hole pair e�!e� þ e� þ hð Þ. If the sample is
wide enough to allow further accelerations and/or if the electrons themselves retain
sufficient energy, then further electron–hole pairs can form, etc. Since a very narrow
junction is required for tunneling, avalanching is usually the mode by which reverse
bias breakdown occurs.

6.3 Semiconductor Device Physics 387



Clarence Zener—“A Physicist with Practical Leanings”

b. Indianapolis, USA (1905–1993)

Zener breakdown, Zener Diodes, Geometric Programming

Clarence Zener did research in many areas including besides above, metals
and metallurgy, diffusion in metals, magnetism and other practical problems.
He worked in academia as well as industry (Westinghouse). At the University
of Chicago Goodenough (the “father” of the Li-Ion Battery) was a doctoral
student of his. Geometric programming, an optimization procedure, is
explained in: Clarence Zener, Engineering Design by Geometric
Programming, John Wiley, 1971.

6.3.9 Solar Cells (EE)

One of the most important applications of pn junctions is for obtaining energy of
the sun. Compare, e.g., Sze, [6.42, p. 473]. The photovoltaic effect is the appear-
ance of a forward voltage across an illuminated junction. By use of the photovoltaic
effect, the energy of the sun, as received at the earth, can be converted directly into
electrical power. When the light is absorbed, mobile electron-hole pairs are created,
and they may diffuse to the pn junction region if they are created nearby (within a
diffusion length). Once in this region, the large built-in electric field acts on elec-
trons on the p-side, and holes on the n-side to produce a voltage that drives a current
in the external circuit.

The first practical solar cell was developed at Bell Labs in 1954
(by Daryl M. Chapin, Calvin S. Fuller, and Gerald L. Pearson). A photovoltaic cell
converts sunlight directly into electrical energy. An antireflective coating is used to
maximize energy transfer. The surface of the earth receives about 1000 W/m2 from
the sun. More specifically, AM0 (air mass zero) has 1367 W/m2, while AM1
(directly overhead through atmosphere without clouds) is 1000 W/m2. Solar cells
are used in spacecraft as well as in certain remote terrestrial regions where an
economical power grid is not available.

If PM is the maximum power produced by the solar cell and PI is the incident
solar power, the efficiency is

E ¼ 100
PM

PI
%: ð6:242Þ

A typical efficiency is of order 10%. Efficiencies are limited because photons with
energy less than the bandgap energy do not create electron–hole pairs and so,
cannot contribute to the output power. On the other hand, photons with energy
much greater than the bandgap energy tend to produce carriers that dissipate much
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of their energy by heat generation. For maximum efficiency, the bandgap energy
needs to be just less than the energy of the peak of the solar energy distribution. It
turns out that GaAs with E ffi 1:4 eV tends to fit the bill fairly well. In principle,
GaAs can produce an efficiency of 20% or so.

To be a little more precise one could use the Shockley-Queisser (S-Q) limit for
solar cells. If one has a perfect p-n junction for a Si solar cell (in a single layer) one
finds the maximum efficiency is about or a little over 30%. See William Shockley
and Hans J. Queisser, “Detailed Balance Limit of Efficiency of p-n Junction Solar
Cells,” Journal of Applied Physics, 32, pp. 510–519, 1961.

The GaAs cell is covered by a thin epitaxial layer of mixed GaAs-AlAs that has
a good lattice match with the GaAs and that has a large energy gap thus being
transparent to sunlight. The purpose of this over-layer is to reduce the number of
surface states (and, hence, the surface recombination velocity) at the GaAs surface.
Since GaAs is expensive, focused light can be used effectively. Less expensive Si is
often used as a solar cell material.

Single-crystal Si pn junctions still have the disadvantage of relatively high cost.
Amorphous Si is much cheaper, but one cannot make a solar cell with it unless it is
treated with hydrogen. Hydrogenated amorphous Si can be used since the hydrogen
apparently saturates some dangling or broken bonds and allows pn junction solar
cells to be built. We should mention also that new materials for photovoltaic solar
cells are constantly under development. For example, copper indium gallium
selenide (CIGS) thin films are being considered as a low-cost alternative.

Let us start with a one-dimensional model. The dark current, neglecting the
series resistance of the diode can be written

I ¼ I0 exp
eV
kT

� �
� 1

	 

: ð6:243Þ

The illuminated current is

I ¼ I0 exp
eV
kT

� �
� 1

	 

� IS; ð6:244Þ

where

IS ¼ gep ð6:245Þ

(p = photons/s, η = quantum efficiency). Solving for the voltage, we find

V ¼ kT
e
ln

Iþ I0 þ IS
I0

� �
: ð6:246Þ
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The open-circuit voltage is

VOC ¼ kT
e
ln

IS þ I0
I0

� �
; ð6:247Þ

because the dark current I = 0 in an open circuit. The short circuit current (with
V = 0) is

ISC ¼ �IS: ð6:248Þ

The power is given by

P ¼ VI ¼ V I0 exp
eV
kT

� �
� 1

� �
� IS

	 

: ð6:249Þ

The voltage VM and current IM for maximum power can be obtained by solving dP/
dV = 0. Since P = IV, this means that dI/dV = −I/V. Figure 6.24 helps to show this.
If P is the point of maximum power, then at P,

dV
dI

¼ �VM

IM
[ 0 since IM\0: ð6:250Þ

No current or voltage can be measured across the pn junction unless light shines
on it. In a complete circuit, the contact voltages of metallic leads will always be
what is needed to cancel out the built-in voltage at the pn junction. Otherwise,
energy would not be conserved.

Fig. 6.24 Current–voltage relation for a solar cell
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To understand physically the photovoltaic effect, consider Fig. 6.25. When light
shines on the cell, electron-hole pairs are produced. Electrons produced in the
p-region (within a diffusion length of the pn junction) will tend to be swept over to
the n-side and similarly for holes on the n-side. This reduces the voltage across the
pn junction from ub to ub � V0, say, and thus, produces a measurable forward
voltage of V0. The maximum value of the output potential V0 from the solar cell is
limited by the built-in potential ub.

V0 �ub; ð6:251Þ

for if V0 ¼ ub, then the built-in potential has been canceled and there is no potential
left to separate electron-hole pairs.

In nondegenerate semiconductors suppose, before the p- and n-sides were
“joined,” we let the Fermi levels be EF(p) and EF(n). When they are joined, equi-
librium is established by electron-hole flow, which equalizes the Fermi energies.
Thus, the built-in potential simply equals the original difference of Fermi energies

eub ¼ EF nð Þ � EF pð Þ: ð6:252Þ

Fig. 6.25 The photoelectric effect for a pn junction before and after illumination. The
“before” are the solid lines and the “after” are the dashed lines. ub is the built-in potential and
V0 is the potential produced by the cell

6.3 Semiconductor Device Physics 391



But, for the nondegenerate case

EF nð Þ � EF pð Þ�EC � EV ¼ Eg: ð6:253Þ

Therefore,

eV0 �Eg: ð6:254Þ

Smaller Eg means smaller photovoltages and, hence, less efficiency. By connecting
several solar cells together in series, we can build a significant potential with arrays
of pn junctions. These connected cells power space satellites.

We give, now, an introduction to a more quantitative calculation of the behavior
of a solar cell. Just as in our discussion of pn junctions, we can find the total current
by finding the minority current injected on each side. The only difference is that the
external photons of light create electron–hole pairs. We assume the flux of photons
is given by (see Fig. 6.26)

N xð Þ ¼ N0 exp �a xþ dð Þ½ �; ð6:255Þ

where a is the absorption coefficient, and it is a function of the photon wavelength.
The rate at which electrons or holes are created per unit volume is

� dN
dx

¼ aN0 exp �a xþ dð Þ½ �: ð6:256Þ

The equations for the minority carrier concentrations are just like those used for the
pn junction in (6.221) and (6.222), except now we must take into account the
creation of electrons and holes by light from (6.256). We have

Fig. 6.26 A schematic of the solar cell
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d2 np � np0
� �

dx2
� np � np0

L2n
¼ � aN0

Dn
exp �a xþ dð Þ½ �; x \0; ð6:257Þ

and

d2 pn � pn0ð Þ
dx2

� pn � pn0
L2p

¼ � aN0

Dp
exp �a xþ dð Þ½ �; x [ 0: ð6:258Þ

Both equations apply outside the depletion region when drift currents are negligi-
ble. The depletion region is so thin it is assumed to be treatable as being located in
the plane x = 0.

By adding a particular solution of the inhomogeneous equation to a general
solution of the homogeneous equation, we find

np xð Þ � np0 ¼ a cosh
x
Ln

� �
þ b sinh

x
Ln

� �
þ aN0sn

1� a2L2n
exp �a xþ dð Þ½ �; ð6:259Þ

and

pn xð Þ � pn0 ¼ d exp � x
Lp

� �
þ aN0sp

1� a2L2p
exp �a xþ dð Þ½ �; ð6:260Þ

where it has been assumed that pn approaches a finite value for large x. We now
have three constants to evaluate (a), (b), and (d). We can use the following
boundary conditions:

np 0ð Þ
np0

¼ exp
eV0

kT

� �
; ð6:261Þ

pn 0ð Þ
pn0

¼ exp
eV0

kT

� �
; ð6:262Þ

and

Dn
d
dx

np � np0
� �	 


x¼�d
¼ Sp np �dð Þ � np0

� �
: ð6:263Þ

This is a standard assumption that introduces a surface recombination velocity Sp.
The total current as a function of V0 can be evaluated from

I ¼ eA Jp 0ð Þ � Jn 0ð Þ� �
; ð6:264Þ
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where A is the cross-sectional area of the p-n junction. V0 is now the bias voltagi
across the pn junction. The current can be evaluated from (with a negligibly thick
depletion region)

JTotal ¼ qDn
dnp
dx

���� x\0
x ! 0

�qDp
dpn
dx

���� x[ 0
x ! 0

: ð6:265Þ

For a modern update, see Martin Green, “Solar Cells” (Chap. 8 in Sze, [6.42]).
Sometimes, the development of solar cells is divided into three generations

(Edwin Cartridge, “Bright outlook for solar cells,” Physics World, July 2007,
pp. 20–24):

First Generation—Single crystal Si (typically 18% efficient), and also GaAs.
Second Generation—Thin films of Si and other elements (CuInSe2 (CIS),
Cadmium Telluride, hydrogenated amorphous Si, etc.). These are cheaper but less
efficient than the first generation.
Third Generation—These concentrate sunlight, and/or use a stack of multiple
cells, and/or utilize carrier multiplication (has been done by quantum dots to
increase efficiency to 40% or so—the process is ill understood). Multiple quantum
wells have also been used.

The storage problem is huge since solar energy is not available 24/7. Batteries
may be the most important for storage, but the use of solar energy to produce
hydrogen, for fuel cells, and oxygen from water by electrolysis has been much
discussed of late. Energy can also be stored in flywheels and pumped water.

6.3.10 Batteries (B, EE, MS)

Of course batteries (or at least some device to store energy) are important because
gathering energy as from the sun or wind would not be of a great deal of use unless
we can store, and then use it when it is needed.

To start, it is important to have our definitions clear. First, we consider the case
of a battery that is delivering energy. See Fig. 6.27 which is a sketch for a battery.
Note the anode is labeled negative while we say the cathode is positive. Electrons
flow to the cathode, and away from the anode in the external circuit. In the elec-
trolyte, which resides in the battery, the positive cations flow away from the anode
and towards the cathode. Anions may also be involved and they would flow the
other way. Cations are neutral atoms which have lost electrons (e.g. Na which has
been oxidized to Na+) and anions are neutral atoms which have gained electrons
(e.g. Cl which has been reduced to Cl−). In a battery, electrons flow so as to try to
equalize the Fermi level, that is, towards the lowest Fermi level.

When you charge a battery the sign of the anode is now positive and the cathode
negative. In general, the positive terminal is where the reduction occurs and the
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negative terminal is where the oxidation happens. So when you charge a battery, the
anode is positive.

Examples of types of batteries
Non-rechargeable batteries
Alkaline battery (zinc manganese oxide, carbon): These are the typical batteries that
you use for example for a flashlight. You can buy in almost any store.

Rechargeable batteries
Lead-acid battery: These are typical batteries used in automobiles.
Nickel-cadmium battery: These are now harder to find because of the advent of
lithium-ion batteries.
Lithium-ion battery: They commonly are intercalation batteries. Intercalation is the
reversible insertion of an ion into layered compounds. In general, you want batteries
to store a lot of energy. Sometimes you want the energy delivered quickly.
A Lithium-ion battery needs to store a lot of Li ions, and furnish them quickly.
Many such batteries use graphite for the anode and a Li metal oxide for the
cathode.5

There have been problems with Li-ion batteries that use liquid electrolytes, there
is now research into lithium with solid electrolytes.6,7 This perhaps can help
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Electron
flow

Resistor or other load

Conventional
current

Electrolyte

ions
+

Separator
(permeable to ionic charge carriers)

Fig. 6.27 In a battery that is discharging and doing work, the electrons flow from the anode
to the cathode

5See Sung Chang, “Better batteries through architecture,” Physics Today, pp. 17–19, Sept. (2016).
6See Yan Wang, et al., “Design principles for solid-state lithium superionic conductors,” Nature
Materials 14, 1026–1031 (2015).
7See Mahesh Datt Bhatt and Colm O’Dwyer, “Recent progress in theoretical and computational
investigations of Li-ion battery materials and electrolytes,” Phys. Chem. Chem. Phys., 17, 4799–
4844, (2015).
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flammability and electrochemical stability in Li-ion batteries. Finding solids with
sufficient conductivity is still a problem.

Nowadays there is considerable work going on to theoretically predict the best
materials for cathodes, anodes, and electrolytes (see Foot note 5). This has the
obvious advantage of focusing on promising cases before getting into expensive
hardware development.

Perhaps the most important recent advances in batteries are due to John B.
Goodenough who is regarded as the father of the Li-Ion battery. This battery is now
used in a large variety of portable power tools such as drills and electronics devices
as for example smart phones. More discussion can be found in:

(1) Helen Gregg, “His current quest,” The University of Chicago Magazine,
Summer, 2016.

(2) John B. Goodenough and Kyu-Sung Park, “The Li-Ion Rechargeable Battery:
A Perspective,” J. Am. Chem. Soc., 135 (4), 2013, pp. 1167–1176.

(3) Mathew N. Eisler, “Cold War Computers, California supercars, and the Pursuit
of Lithium-Ion Power,” Physics Today, September, 2016, pp. 30–36.

6.3.11 Transistors (EE)

A power-amplifying structure made with pn junctions is called a transistor. There are
two main types of transistors: bipolar junction transistors (BJTs) and metal-oxide
semiconductor field effect transistors (MOSFETs). MOSFETs are unipolar (electrons
or holes are the carriers) and are the most rapidly developing type partly because they
are easier to manufacture. However, MOSFETs have large gate capacitors and are
slower. The huge increase in the application of microelectronics is due to integrated
circuits and planar manufacturing techniques (Sapoval and Hermann, [6.33, p. 258];
Fraser, [6.14, Chap. 6]). MOSFETs may have smaller transistors and can thus be
used for higher integration. A serious discussion of the technology of these devices
would take us too far aside, but the student should certainly read about it. Three
excellent references for this purpose are Streetman [6.40] and Sze [6.41, 6.42].

Although J. E. Lilienfeld was issued a patent for a field effect device in 1935, no
practical commercial device was developed at that time because of the poor
understanding of surfaces and surface states. In 1947, Shockley, Bardeen, and
Brattrain developed the point constant transistor and won a Nobel Prize for that
work. Shockley invented the bipolar junction transistor in 1948. This work had
been stimulated by earlier work of Schottky on rectification at a
metal-semiconductor interface. A field effect transistor was developed in 1953, and
the more modern MOS transistors were invented in the 1960s.

Bipolar Junction Transistor or BJT (B, EE)
We only give a qualitative discussion of BJT’s here. For more details, we partic-
ularly recommend the two references:
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Richard Dalven, Introduction to Applied Solid State Physics, Plenum Press, New
York, 2nd edition, 1990, pp. 83–98, 103–108.

Ben G. Streetman and Sanjay K. Banerjee, Solid State Electronic Devices,
Prentice-Hall, 7th edition, 2015, Chap. 7.

In brief, BJT’s control a large current with a small current. Our objective is to
indicate physically how BJT’s can amplify current. First, look at Figs. 6.28 and 6.29.
We can apply the Shockley diode equation to the p+n junction where the p+ side is
very heavily doped compared to the n-side. This means that most of the injection
current is carried by holes so by (6.241)

Jpþ!n � J1 ffi e
Dp

Lp
pn0 exp

eub1

kT

� 
� 1

h i
ð6:266Þ

p+ n p

E B C

Fig. 6.28 The BJT transistor. E = Emitter, B = Base, C = Collector

p+ pn

E B C

EF

p+ pn

E B C

(a)

(b)

Fig. 6.29 BJT transistor: (a) no applied bias, (b) forward bias applied to emitter and reverse
bias applied to collector
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where ub1 is forward biased. By the diode equation applied to the np junction with
a reverse bias of ub2

Jnp � J2 ffi �J exp
�eub2

kT

� 
� 1

h i
ð6:267Þ

We expect both the forward and reverse biases just mentioned are much greater
than kT so J2 is about equal to J and because the hole current is dominant J is about
the same as J1 and so

Jnp ¼ J1 ¼ e
Dp

Lp
pn0 exp

eub1

kT

� 
ð6:268Þ

We have assumed the exponential in (6.267) is negligible but the net current is of
course positive.

For the p+np transistor we are assuming:

a. At the p+n junction, holes are injected into the base as the energy barrier for
holes is decreased at forward bias.

b. The holes then diffuse across the base and we speak of them as the emitter hole
current; I(Ep), that is these are the holes going into the base.

c. The reverse bias (reverse for electrons) of the np junction easily collects the
holes which are swept across and they are then collected as hole current I(C),
that is these are the holes out of the base into the collector.

d. In addition, there are holes that recombine with electrons while the holes are
diffusing across the base.

e. Due to (d) there must be a base current of electrons (not large).
f. There will also be a small injection current of electrons from the base to the

emitter, I(En).

We have neglected the reverse current of electrons and holes at the collector.
To finish the qualitative analysis let the fractionF of the holes that cross the base be

F ¼ IðCÞ
IðEpÞ ð6:269Þ

The base current must be equal to I(En) plus the fraction (1 − F) of holes that do
not cross the base so

IðBÞ ¼ IðEnÞþ ð1� FÞIðEpÞ ð6:270Þ

We define the base to collector gain G as

G ¼ IðCÞ
IðBÞ ¼

FIðEpÞ
IðEnÞþ ð1� FÞIðEpÞ ð6:271Þ
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If we define the emitter injection efficiency as

IE ¼ IðEpÞ
IðEpÞþ IðEnÞ ð6:272Þ

or the ratio of the injected hole current to the sum of the emitter currents, we obtain

G ¼ IðCÞ
IðBÞ ¼

FIE
1� FIE

ð6:273Þ

The holes collected by the collector must be less than the holes injected to the
base so F is less than one. Also from the definition of IE it must be less than one so
FIE is less than one, G is greater than FIE and in fact since FIE can be nearly one
G can be large, perhaps as large as 100 or so.

Another way of saying this is that small base currents can cause large collector
currents. One sometimes says the BJT is a current controlled device. More details
are given in the references already mentioned.

The basic idea is that if electrons in the base tend to live longer than the holes
take to cross the base then one electron is sufficient to maintain space charge base
neutrality for several holes. This leads to the collector current being larger than the
base current and amplification occurs.

The Junction Field Effect Transistor (JFET) (B, EE)
The bipolar transistor was developed in 1948 while the unipolar field effect tran-
sistors were created (in a practical sense) in the early fifties. The current in the JFET
is voltage controlled, as we will see. We give a schematic of JFET in Fig. 6.30.
Now the nomenclature refers to gate (G), drain (D), and source (S) rather than base,
collector, and emitter.

In the JFET, the width of the depletion layer of a reverse biased pn junction is
increased by increasing the reverse bias. The depletion layers reduce the current that
flows. Alternatively, we can say on the n side the resistance increases the more the n
side is depleted of electrons by a reverse bias. For the p+n junction most of the
depletion width is on the n side. Thus, the drain voltage controls the drain current.

When the depletion layers are wide enough they can meet and “pinchoff” occurs.
For discussion of this and other matters, again consult the references. Of course, by
now many variations of field effect devices such as MOSFETs are common.

With integrated circuits, continued integration, miniaturization, microprocessors
and the like becoming ubiquitous, we have iPads, iPhones, smaller andmore powerful
computers and no end in sight. Where this will all lead, I don’t think anyone knows.
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William B. Shockley—The Genius And Controversial Figure?

b. London, England, UK to American Parents (1910–1989)

Transistor; Promoted Eugenics; Apparently Not liked by many co-workers

Known with John Bardeen and Walter Brattain for his invention of the
transistor. The three of them won the Nobel Prize in 1956 for this work. He
was (alleged to be) a domineering man who promoted eugenics in his later
life. Eugenics endorses the idea of trying to improve the human species
through sterilization of “inferior” people and also appropriate breeding. In
other words Shockley seemed (or was alleged) to believe in breeding a
superior race somewhat along the ideas of the Nazis. Beside moral problems
with this idea, one has to be able to determine what is inferior. Who can judge

Drain

Gate

Source
p+

n

p+

(a)

D

x = 0 x = L
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Distributed Resistor
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(b)
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V(x = 0) = VD
V(x = L) = 0
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bias at x = 0
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Shaded
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Fig. 6.30 The JFET transistor: (a) geometry, (b) typical circuit, (c) depletion width
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that? So some people thought such notions were reminiscent of Hitler.
Shockley was also the only Nobelist who (is alleged to have) contributed to a
sperm bank for high performing individuals. There were jokes about him
because of this. In later years when he was scheduled to give a talk, there
were often demonstrations against him.

He and Bardeen were known for the key idea of minority carrier injection
used in some transistors.

Transistors, of course, gave rise to integrated circuits, microprocessors,
and the whole array of gadgets such as smart phones, small desk computers,
and the like.

Transistors are the basis of modern microelectronics as we know it. With
the Internet and other developments, microelectronics generated the infor-
mation age.

I would like to be fair to Shockley, he certainly was a brilliant man, and
contributed greatly to the applications of solid-state physics. His book,
Electrons and Holes in Semiconductors, Van Nostrand, New York, 1950 is
certainly a classic in the field. We have no personal knowledge as to the
stories told about him. As such, they can be labeled as alleged.

The number of people that could be mentioned here as central to micro-
electronics is extremely large, but perhaps this would take us outside the
intended scope of this presentation.

Moore’s Law (EE)
Gordon Moore’s law is not a law but mainly the empirical observation that the
number of transistors per unit area (or the number of transistors per integrated
circuit) that can be manufactured on a silicon chip doubles every year (or nowadays
that doubles about every 18 months). It was proposed in 1965, but will probably by
now be near its end. Obviously there is a limit to how small basic electronic
components can be made.

There is much history associated with Moore and his associates. William
Shockley in the 1950s, after being a co-inventor of the transistor left Bell Labs and
founded Shockley Semiconductor Laboratory. This did not work out so well and
Gordon Moore and Robert Noyce (two of his employees) left for Fairchild
Semiconductor, then later left to form their own company Intel. They were shortly
joined by Andrew Grove. All three were founding fathers of the semiconductor
industry, as was Shockley who is sometimes credited with being a founder of
Silicon Valley—although others are also credited.

The miniaturization of electronics evolved from the invention of the transistor
(by Bardeen, Brattain, and Shockley) to the integrated circuit (a set of many-many
electronics on a chip, invented by Jack Kilby and Robert Noyce) to microprocessors
(basically an integrated circuit that can perform as a central processing unit for a
computer). Some feel that this electronics revolution that gave rise to the internet
revolution is producing as big a change in society as did the industrial revolution.
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6.3.12 Charge-Coupled Devices (CCD) (EE)

Charge-coupled devices (CCDs)8 were developed at Bell Labs in the 1970s and are
now used extensively by astronomers for imaging purposes, and in digital cameras.

CCDs are based on ideas similar to those in metal-insulator-semiconductor
structures that we just discussed. These devices are also called charge-transfer
devices. The basic concept is shown in Fig. 6.31. Potential wells can be created
under each electrode by applying the proper bias voltage.

V1;V2;V3\0 and V2j j[ V1j j or V3j j:

By making V2 more negative than V1, or V3, one can create a hole inversion layer
under V2. Generally, the biasing is changed frequently enough that holes under V2

only come by transfer and not thermal excitation. For example, if we have holes
under V2, simply by exchanging the voltages on V2 and V3 we can move the hole to
under V3.

Since the presence or absence of charge is information in binary form, we have a
way of steering or transferring information. CCDs have also been used to tem-
porarily store an image. If we had large negative potentials at each Vi, then only
those Vis, where light was strong enough to create electron-hole pairs, would have
holes underneath them. The image is digitized and can be stored on a disk, which
later can be used to view the image through a monitor.

Problems

6:1. For the nondegenerate case where E � l � kT , calculate the number of
electrons per unit volume in the conduction band from the integral

Fig. 6.31 Schematic for a charge-coupled device

8See W. S. Boyle and G. E. Smith, Bell System Tech. Journal 49, 587–593 (1970).
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n ¼
Z1
Ec

D Eð Þf Eð ÞdE:

D(E) is the density of states, f(E) is the Fermi function.
6:2. Given the neutrality condition

Nc exp �b Ec � lð Þ½ � þ Nd

1þ a exp b Ed � lð Þ½ � ¼ Nd;

and the definition x ¼ expðblÞ, solve the condition for x. Then solve for n in
the region kT � Ec −Ed, where n ¼ Ncexp½�bðEc�lÞ�.

6:3. Derive (6.45). Hint—look at Sect. 8.8 and Appendix 1 of Smith [6.38].
6:4. Discuss in some detail the variation with temperature of the position of the

Fermi energy in a fairly highly donor doped n-type semiconductor.
6:5. Explain how the junction between two dissimilar metals can act as a rectifier.
6:6 Discuss the mobility due to the lattice scattering of electrons in silicon or

germanium. See, for example, Seitz [6.35].
6:7 Discuss the scattering of charge carriers in a semiconductor by ionized

donors or acceptors. See, for example, Conwell and Weisskopf [6.9].
6:8 A sample of Si contains 10−4 atomic per cent of phosphorous donors that are

all singly ionized at room temperature. The electron mobility is 0.15
m2 V−1 s−1. Calculate the extrinsic resistivity of the sample (for Si, atomic
weight = 28, density = 2300 kg/m3).

6:9 Derive (6.163) by use of the spatial constancy of the chemical potential.
6:10 Describe how crystal radios work.
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Chapter 7
Magnetism, Magnons, and Magnetic
Resonance

The first chapter was devoted to the solid-state medium (i.e. its crystal structure and
binding). The next two chapters concerned the two most important types of energy
excitations in a solid (the electronic excitations and the phonons). Magnons are
another important type of energy excitation and they occur in magnetically ordered
solids. However, it is not possible to discuss magnons without laying some
groundwork for them by discussing the more elementary parts of magnetic phe-
nomena. Also, there are many magnetic properties that cannot be discussed by
using the concept of magnons. In fact, the study of magnetism is probably the first
solid-state property that was seriously studied, relating as it does to lodestone and
compass needles.

Nearly all the magnetic effects in solids arise from electronic phenomena, and so
it might be thought that we have already covered at least the fundamental principles
of magnetism. However, we have not yet discussed in detail the electron’s spin
degree of freedom, and it is this, as well as the orbital angular moment that together
produce magnetic moments and thus are responsible for most magnetic effects in
solids. When all is said and done, because of the richness of this subject, we will
end up with a rather large chapter devoted to magnetism.

We will begin by briefly surveying some of the larger-scale phenomena asso-
ciated with magnetism (diamagnetism, paramagnetism, ferromagnetism, and allied
topics). These are of great technical importance. We will then show how to
understand the origin of ordered magnetic structures from a quantum-mechanical
viewpoint (in fact, strictly speaking this is the only way to understand it). This will
lead to a discussion of the Heisenberg Hamiltonian, mean field theory, spin waves
and magnons (the quanta of spin waves). We will also discuss the behavior of
ordered magnetic systems near their critical temperature, which turns out also to be
incredibly rich in ideas.

Following this we will discuss magnetic domains and related topics. This is of
great practical importance.

Some of the simpler aspects of magnetic resonance will then be discussed as it
not only has important applications, but magnetic resonance experiments provide
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direct measurements of the very small energy differences between magnetic sub-
levels in solids, and so they can be very sensitive probes into the inner details of
magnetic solids.

We will end the chapter with some brief discussion of recent topics: the Kondo
effect, spin glasses, magnetoelectronics, and solitons.

7.1 Types of Magnetism

7.1.1 Diamagnetism of the Core Electrons (B)

All matter shows diamagnetic effects, although these effects are often obscured by
other stronger types of magnetism. In a solid in which the diamagnetic effect
predominates, the solid has an induced magnetic moment that is in the opposite
direction to an external applied magnetic field.

Since the diamagnetism of conduction electrons (Landau diamagnetism) has
already been discussed (Sect. 3.2.2), this section will concern itself only with the
diamagnetism of the core electrons.

For an external magnetic field H in the z direction, the Hamiltonian (SI, e[ 0) is
given by

H ¼ p2

2m
þVðrÞþ e�hl0H

2mi
x
@

@y
� y

@

@x

� �
þ e2l20H

2

8m
x2 þ y2
� �

:

For purely diamagnetic atoms with zero total orbital angular momentum, the term
involving first derivatives has zero matrix elements and so will be neglected. Thus,
with a spherically symmetric potential V(r), the one-electron Hamiltonian is

H ¼ p2

2m
þVðrÞþ e2l20H

2

8m
x2 þ y2
� �

: ð7:1Þ

Let us evaluate the susceptibility of such a diamagnetic substance. It will be
assumed that the eigenvalues of (7.1) (with H = 0) and the eigenkets nj i are pre-
cisely known. Then by first-order perturbation theory, the energy change in state
n due to the external magnetic field is

E0 ¼ e2l20H
2

8m
nh x2 þ y2
�� ��ni: ð7:2Þ

For simplicity, it will be assumed that nj i is spherically symmetric. In this case

nh x2 þ y2
�� ��ni ¼ 2

3
nh r2
�� ��ni: ð7:3Þ
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The induced magnetic moment l can now be readily evaluated:

l ¼ � @E0

@ðl0HÞ ¼ � e2l0H
6m

nh r2
�� ��ni: ð7:4Þ

If N is the number of atoms per unit volume, and Z is the number of core
electrons, then the magnetization M is ZNl, and the magnetic susceptibility v is

v ¼ @M
@H

¼ � ZNe2l0
6m

nh r2
�� ��ni: ð7:5Þ

If we make an obvious reinterpretation of nh r2
�� ��ni, then this result agrees with the

classical result [7.39, p. 418]. The derivation of (7.5) assumes that the core electrons
do not interact and that they are all in the same state nj i: For core electrons on
different atoms noninteraction would appear to be reasonable. However, it is not
clear that this would lead to reasonable results for core electrons on the same atom.
A generalization to core atoms in different states is fairly obvious.

A measurement of the diamagnetic susceptibility, when combined with theory
(similar to the above), can sometimes provide a good test for any proposed forms
for the core wave functions. However, if paramagnetic or other effects are present,
they must first be subtracted out, and this procedure can lead to uncertainty in
interpretation.

In summary, we can make the following statements about diamagnetism:

1. Every solid has diamagnetism although it may be masked by other magnetic
effects.

2. The diamagnetic susceptibility (which is negative) is temperature independent
(assuming we can regard nh r2

�� ��ni as temperature independent).

7.1.2 Paramagnetism of Valence Electrons (B)

This section is begun by making several comments about paramagnetism:

1. One form of paramagnetism has already been studied. This is the Pauli para-
magnetism of the free electrons (Sect. 3.2.2).

2. When discussing paramagnetic effects, in general both the orbital and intrinsic
spin properties of the electrons must be considered.

3. A paramagnetic substance has an induced magnetic moment in the same
direction as the applied magnetic field.

4. When paramagnetic effects are present, they generally are much larger than the
diamagnetic effects.
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5. At high enough temperatures, all substances appear to behave in either a
paramagnetic fashion or a diamagnetic fashion (even ferromagnetic solids, as we
will discuss, become paramagnetic above a certain temperature).

6. The calculation of the paramagnetic susceptibility is a statistical problem, but
the general reason for paramagnetism is unpaired electrons in unfilled shells of
electrons.

7. The study of paramagnetism provides a natural first step for understanding
ferromagnetism.

The calculation of a paramagnetic susceptibility will only be outlined. The
perturbing part of the Hamiltonian is of the form [94], e[ 0,

H0 ¼ el0H
2m

� Lþ 2Sð Þ; ð7:6Þ

where L is the total orbital angular momentum operator, and S is the total spin
operator. Using a canonical ensemble, we find the magnetization of a sample to be
given by

Mh i ¼ NTr l exp
F �H0

kT

� �� �
; ð7:7Þ

where N is the number of atoms per unit volume, µ is the magnetic moment
operator proportional to (L + 2S), and F is the Helmholtz free energy.

Once (7.7) has been computed, the magnetic susceptibility is easily evaluated by
means of

v � @ Mh i
@H

: ð7:8Þ

Equations (7.7) and (7.8) are always appropriate for evaluating v, but the form of
the Hamiltonian is modified if one wants to include complicated interaction effects.

At lower temperatures we expect that interactions such as crystal-field effects will
become important. Properly including these effects for a specific problem is usually a
research problem. The effects of crystal fields will be discussed later in the chapter.

Let us consider a particularly simple case of paramagnetism. This is the case of a
particle with spin S (and no other angular momentum). For a magnetic field in the
z-direction we can write the Hamiltonian as (charge on electron is e[ 0Þ

H0 ¼ el0H
2m

� 2Sz� ð7:9Þ

Let us define glB in such a way that the eigenvalues of (7.9) are

E ¼ glBl0HMS; ð7:10Þ

where lB ¼ e�h=2m is the Bohr magneton, and g is sometimes called simply the g-
factor. The use of a g-factor allows our formalism to include orbital effects if
necessary. In (7.10) g = 2 (spin only).
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If N is the number of particles per unit volume, then the average magnetization
can be written as1

Mh i ¼ N

PS
MS¼�S

MSglB expðMSglBl0H=kTÞPS
MS¼�S

expðMSglBl0H=kTÞ : ð7:11Þ

For high temperatures (and/or weak magnetic fields, so only the first two terms of
the expansion of the exponential need be retained) we can write

Mh i ffi NglB

PS
MS¼�S

MSð1þMSglBl0H=kTÞPS
MS¼�S

ð1þMSglBl0H=kTÞ ;

which, after some manipulation, becomes to order H

Mh i ¼ g2SðSþ 1ÞNl
2
Bl0H
3kT

;

or

v � @ Mh i
@H

¼ l0
Np2effl

2
B

3kT
; ð7:12Þ

2where peff ¼ g S Sþ 1ð Þ½ �1=2 is called the effective magneton number. Equation
(7.12) is the Curie law. It expresses the (1/T) dependence of the magnetic sus-
ceptibility at high temperature. Note that when H ! 0, (7.12) is an exact conse-
quence of (7.11).

It is convenient to have an expression for the magnetization of paramagnets that
is valid at all temperatures and magnetic fields.

If we define

X ¼ glBl0H
kT

; ð7:13Þ

then

Mh i ¼ NglB

PS
MS¼�S

MSeMSXPS
MS¼�S

eMSX
: ð7:14Þ

1Note that lB has absorbed the ℏ soMS and S are either integers or half-integers. Also note (7.11)
is invariant to a change of the dummy summation variable from MS to −MS.
2A temperature-independent contribution known as van Vleck paramagnetism may also be
important for some materials at low temperature. It may occur due to the effect of excited states
that can be treated by second-order perturbation theory. It is commonly important when first-order
terms vanish. See Ashcroft and Mermin [7.2, p. 653].
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With a little elementary manipulation, it is possible to perform the sums indicated in
(7.14):

Mh i ¼ NglB
d
dX

ln
sinh½ðSþ 1

2
ÞX�

sinhðX=2Þ

0
B@

1
CA

2
64

3
75;

or

Mh i ¼ NglBS
2Sþ 1
2S

coth
2Sþ 1
2S

SX

� �
� 1
2S

coth
SX
2S

� �� �
: ð7:15Þ

Defining the Brillouin function BJ(y) as
3

BJðyÞ ¼ 2Jþ 1
2J

coth
2Jþ 1
2J

y

� �
� 1
2J

coth
y
2J

; ð7:16Þ

we can write the magnetization Mh i as

Mh i ¼ NgSlBBsðSXÞ: ð7:17Þ

It is easy to recover the high-temperature results (7.12) from (7.17). All we have to
do is use

BJðyÞ ¼ J þ 1
3J

y if y � 1: ð7:18Þ

Then using (7.13),

Mh i ¼ Ng2l2BSðSþ 1Þl0H
3kT

:

Marie Curie—The Pioneering Woman

b. Warsaw, Poland (1867–1934)

Radium; Affair Langevin; Nobel Prizes 1903, 1911

Pierre Curie (Marie’s husband) and Marie Curie isolated and hence dis-
covered radioactive radium and polonium (named for the land of her
birth-Poland).

3The Langevin function is the classical limit of (7.16).
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Pierre Curie was also famous for his work in magnetism. Pierre’s life was
cut short by falling under a wheel of a vehicle. This tragic event crushed his
head.

Pierre and Marie were the parents of Irene Curie. Irene and her husband
Frederick Joliot-Curie also won Nobel prizes.

Marie coined the term radioactivity to describe the field of her work. Her
life showed how persistent hard work, coupled with a clever mind often leads
to scientific success. She is the only person to win two Nobel prizes in two
scientific fields (Physics in 1903 for her work with radioactivity and
Chemistry in 1911 for discovering radium and polonium) Marie was the first
woman to win a Nobel Prize.

After Pierre’s death, Marie had an affair with Paul Langevin, a well-known
Physics researcher in the field of magnetism. Langevin’s thesis adviser was
Pierre Curie. Langevin was still married when they had the affair and this
nearly cost Marie her second Nobel Prize. I see in her life that the line
between possible saint and proposed sinner can be rather fuzzy. This is
particularly true because she worked with X-ray diagnostic units on and near
battlefields in World War 1.

I must mention something further on Marie Curie’s husband Pierre. I also
discuss William Crookes who I will connect by a circuitous route back to
Madame Curie.

Pierre Curie

b. Paris, France (1859–1906)

Nobel Prize 1903

Before the above-mentioned street accident that killed him in his middle
forties, besides radioactivity, he worked on crystallography and magnetism
(Curie point, Curie’s law etc.).

William Crookes

b. UK (1832–1919)

Discovered Thallium

Made the Crookes Tube and Crookes Radiometer
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William Roentgen

b. Germany (1845–1923)

Discovered X-rays using Crookes Tubes. For this he won the first Nobel Prize
in Physics in 1901.

In fact Crookes could have discovered X-rays himself except on noticing a
fog on his photo plates (later known to be caused by X-rays) he thought the
manufacturer had supplied him with defective plates. Crookes had poor
eyesight and this may have helped lead him astray when he delved into
spiritualism. He believed in mediums, and supported the (later found to be)
fraudulent claims of Medium Florence Cook. Crookes was at one time
President of the Society for Psychical Research. The discovery of X-rays led
to many applications. As mentioned, Marie Curie volunteered in WW 1 to be
a nurse primarily concerned with taking care of the x-ray equipment.

Henri Becquerel

b. France (1852–1908)

The discovery of x-rays led Becquerel to wonder if there were other kinds of
radiation.

Eventually he became one of the discoverers of radioactivity. He won the
Nobel Prize in Physics in 1903 with Pierre and Marie Curie.

Paul Langevin

b. Paris, France (1872–1946)

He is remembered primarily for the Langevin equation in magnetism as well
as his two patents concerning submarine detection by ultrasonic waves. He
was also an anti Nazi, a communist, and the lover of Marie Curie.

The French have a distinguished line of physicists who contributed to
understanding magnetism.
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John H. Van Vleck—“Father of Modern Magnetism”

b. Middletown, Connecticut, USA (1899–1980)

Quantum Mechanics of Magnetism; Radar Absorption due to water and
oxygen molecules; Memorized Train Schedules

Van Vleck via his papers and famous book (The Theory of Electric and
Magnetic Susceptibilities) showed that magnetism in solids needs quantum
mechanics for its full description and explanations. Some of his notable Ph.D.
students were Robert Serber, Edward Mills Purcell, Philip Anderson, Thomas
Kuhn, and John Atanasoff. He won a Nobel Prize in Physics in 1977.

7.1.3 Ordered Magnetic Systems (B)

Ferromagnetism and the Weiss Mean Field Theory (B)
Ferromagnetism refers to solids that are magnetized without an applied magnetic
field. These solids are said to be spontaneously magnetized. Ferromagnetism occurs
when paramagnetic ions in a solid “lock” together in such a way that their magnetic
moments all point (on the average) in the same direction. At high enough tem-
peratures, this “locking” breaks down and ferromagnetic materials become para-
magnetic. The temperature at which this transition occurs is called the Curie
temperature.

There are two aspects of ferromagnetism. One of these is the description of what
goes on inside a single magnetized domain (where the magnetic moments are all
aligned). The other is the description of how domains interact to produce the observed
magnetic effects such as hysteresis. Domainswill be briefly discussed later (Sect. 7.3).

We start by considering various magnetic structures without the complication of
domains. Ferromagnetism, especially ferromagnetism in metals, is still not quan-
titatively and completely understood in all magnetic materials. We will turn to a
more detailed study of the fundamental origin of ferromagnetism in Sect. 7.2. Our
aim in this section is to give a brief survey of the phenomena and of some phe-
nomenological ideas.

In the ferromagnetic state at low temperatures, the spins on the various atoms are
aligned parallel. There are several other types of ordered magnetic structures. These
structures order for the same physical reason that ferromagnetic structures do (i.e.
because of exchange coupling between the spins as we will discuss in Sect. 7.2).
They also have more complex domain effects that will not be discussed.
Examples of elements that show spontaneous magnetism or ferromagnetism are
(1) transition or iron group elements (e.g. Fe, Ni, Co), (2) rare earth group elements
(e.g. Gd or Dy), and (3) many compounds and alloys. Further examples are given in
Sect. 7.3.2.
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TheWeiss theory is ameanfield theory and is perhaps the simplestway of discussing
the appearance of the ferromagnetic state. First, what is mean field theory? Basically,
mean field theory is a linearized theory in which the Hamiltonian products of operators
representing dynamical observables are approximated by replacing these products by a
dynamical observable times the mean or average value of a dynamic observable. The
average value is then calculated self-consistently from this approximated Hamiltonian.
The nature of this approximation is such that thermodynamic fluctuations are ignored.
Mean field theory is often used to get an idea as to what structures or phases are present
as the temperature and other parameters are varied. It is almost universally used as a first
approximation, although, as discussed below, it can even be qualitatively wrong (in, for
example, predicting a phase transition where there is none).

The Weiss mean field theory does the main thing that we want a theory of the
magnetic state to do. It predicts a phase transition. Unfortunately, the quantitative
details of real phase transitions are typically not what the Weiss theory says they
should be. Still, it has several advantages:

1. It provides a comprehensive if at times only qualitative description of most
magnetic materials. The Weiss theory (augmented with the concept of domains)
is still the most important theory for a practical discussion of many types of
magnetic behavior. Many experimental results are still presented within the
context of this theory, and so in order to read the experimental papers it is
necessary to understand Weiss theory.

2. It is rigorous for infinite-range interactions between spins (which never occur in
practice).

3. The Weiss theory originally postulated a mysterious molecular field that was the
“real” cause of the ordered magnetic state. This molecular field was later given an
explanation based on the exchange effects described by the Heisenberg
Hamiltonian (see Sect. 7.2). TheWeiss theory gives a very simple way of relating
the occurrence of a phase transition to the description of a magnetic system by the
Heisenberg Hamiltonian. Of course, the way it relates these two is only qualita-
tively correct. However, it is a good starting place for more general theories that
come closer to describing the behavior of the actual magnetic systems.4

For the case of a simple paramagnet, we have already derived that (see
Sect. 7.1.2)

M ¼ NgSlBBSðaÞ; ð7:19Þ
5where BS is defined by (7.16) and

4Perhaps the best simple discussion of the Weiss and related theories is contained in the book by
J. S. Smart [92], which can be consulted for further details. By using two sublattices, it is possible
to give a similar (to that below) description of antiferromagnetism. See Sect. 7.1.3.
5Here e can be treated as |e| and so as usual, lB ¼ ej j�h=2m.
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a � SglBl0H
kT

: ð7:20Þ
Recall also high-temperature (7.18) for BS(a) can be used.

Following a modern version of the original Weiss theory, we will give a qual-
itative description of the occurrence of spontaneous magnetization. Based on the
concept of the mean or molecular field the spontaneous magnetization must be
caused by some sort of atomic interaction. Whatever the physical origin of this
interaction, it tends to bring about an ordering of the spins. Weiss did not attempt to
derive the origin of this interaction. In fact, all he did was to postulate the existence
of a molecular field that would tend to align the spins. His basic assumption was
that the interaction would be taken account of if H (the applied magnetic field) were
replaced by Hþ cM, where cM is the molecular field. (c is called the molecular
field constant, sometimes the Weiss constant, and has nothing to do with the
gyromagnetic ratio y that will be discussed later.)

Thus the basic equation for ferromagnetic materials is

M ¼ NglBSBSða0Þ; ð7:21Þ
where

a0 ¼ l0SglB
kT

ðHþ cMÞ: ð7:22Þ

That is, the basic equations of the molecular field theory are the same as the
paramagnetic case plus the H ! Hþ cM replacement. Equations (7.21) and (7.22)
are really all there is to the molecular field model. We shall derive other results from
these equations, but already the basic ideas of the theory have been covered.

Let us now indicate how this predicts a phase transition. By a phase transition,
we mean that spontaneous magnetization (M 6¼ 0 with H = 0) will occur for all
temperatures below a certain temperature Tc called the ferromagnetic Curie
temperature.

At the Curie temperature, for a consistent solution of (7.21) and (7.22) we
require that the following two equations shall be identical as a0 ! 0 and H = 0:

M1 ¼ NglBSBSða0Þ; ½ð7:21Þ again]

M2 ¼ kTa0

SglBcl0
; ½ð7:22Þ with H ! 0�:

If these equations are identical, then they must have the same slope as a0 ! 0: That
is, we require

dM1

da0

� �
a0!0

¼ dM2

da0

� �
a0!0

: ð7:23Þ

Using the known behavior of BS(a′) as a0 ! 0, we find that condition (7.23) gives
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Tc ¼ l0Ng
2SðSþ 1Þl2B
3k

c: ð7:24Þ
Equation (7.24) provides the relationship between the Curie constant Tc and the
Weiss molecular field constant c. Note that, as expected, if c ¼ 0, then Tc = 0 (i.e. if
c ! 0, there is no phase transition). Further, numerical evaluation shows that if
T > Tc, (7.21) and (7.22) with H = 0 have a common solution for M only if M = 0.
However, for T < Tc, numerical evaluation shows that they have a common solu-
tion M 6¼ 0, corresponding to the spontaneous magnetization that occurs when the
molecular field overwhelms thermal effects.

There is another Curie temperature besides Tc. This is the so-called paramag-
netic Curie temperature h that enters into the equation for the high-temperature
behavior of the magnetic susceptibility. Within the context of the Weiss theory,
these two temperatures turn out to be the same. However, if one makes an
experimental determination of Tc (from the transition temperature) and of h from the
high-temperature magnetic susceptibility, h and Tc do not necessarily turn out to be
identical (see Fig. 7.1). We obtain an explicit expression for h below.

For l0HSglB=kT � 1 we have [by (7.17) and (7.18)]

M ¼ l0Ng
2l2BSðSþ 1Þ
3kT

h ¼ C0h: ð7:25Þ

Fig. 7.1 Inverse susceptibility v�1
0 of Ni. [Reprinted with permission from Kouvel JS and

Fisher ME, Phys Rev 136, A1626 (1964). Copyright 1964 by the American Physical Society.
Original data from Weiss P and Forrer R, Annales de Physique (Paris), 5, 153 (1926).]
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For ferromagnetic materials we need to make the replacement H ! Hþ cM so that
M ¼ C0HþC0cM or

M ¼ C0H
1� C0c

: ð7:26Þ

Substituting the definition of C′, we find that (7.26) gives for the susceptibility

v ¼ M
H

¼ C
T � h

; ð7:27Þ

where

C � the Curie-Weiss constant ¼ l0Ng
2l2BSðSþ 1Þ
3k

;

h � the paramagnetic Curie temperature ¼ l0Ng
2SðSþ 1Þ
3k

l2Bc:

The Weiss theory gives the same result:

Cc ¼ h ¼ Tc ¼ Nl2B
3k

ðpeffÞ2 l0c; ð7:28Þ

where peff ¼ g S Sþ 1ð Þ½ �1=2 is the effective magnetic moment in units of the Bohr
magneton. Equation (7.27) is valid experimentally only if T � h. See Fig. 7.1.

It may not be apparent that the above discussion has limited validity. We have
predicted a phase transition, and of course c can be chosen so that the predicted Tc is
exactly the experimental Tc. The Weiss prediction of the T � hð Þ�1 behavior for v
also fits experiment at high enough temperatures.

However, we shall see that when we begin to look at further details, the Weiss
theory begins to break down. In order to keep the algebra fairly simple it is con-
venient to absorb some of the constants into the variables and thus define new
variables. Let us define

b � l0glB
kT

ðHþ cMÞ; ð7:29Þ

and

m � M
NglBS

� BSðbSÞ; ð7:30Þ

which should not be confused with the magnetic moment.
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It is also convenient to define a quantity Jex by

c ¼ 2ZJex
l0Ng2l

2
B
�h2; ð7:31Þ

where Z is the number of nearest neighbors in the lattice of interest, and Jex is the
exchange integral. Compare this to (7.104), which is the same. That is, we will see
that (7.31) makes sense from the discussion of the physical origin of the molecular
field.

Finally, let us define

b0 ¼ glB
kT

l0H; ð7:32Þ
and

s ¼ T=Tc:

With these definitions, a little manipulation shows that (7.29) is

bS ¼ b0Sþ 3S
Sþ 1

m
s
: ð7:33Þ

Equations (7.30) and (7.33) can be solved simultaneously for m (which is pro-
portional to the magnetization). With b0 equal to zero (i.e. H = 0) we combine
(7.30) and (7.33) to give a single equation that determines the spontaneous
magnetization:

m ¼ BS
3S

Sþ 1
m
s

� �
: ð7:34Þ

A plot similar to that yielded by (7.34) is shown in Fig. 7.18 (H = 0). The fit to
experiment of the molecular field model is at least qualitative. Some classic results
for Ni by Weiss and Forrer as quoted by Kittel [7.39, p. 448] yield a reasonably
good fit.

We have reached the point where we can look at sufficiently fine details to see
how the molecular field theory gives predictions that do not agree with experiment.
We can see this by looking at the solutions of (7.34) as s ! 1 (i.e. T � Tc) and as
s ! 1 (i.e. T ! TcÞ.

We know that for any y that BS(y) is given by (7.16). We also know that

coth X ¼ 1þ e�2X

1� e�2X : ð7:35Þ

Since for large X

coth X ffi 1þ 2e�2X ;
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we can say that for large y

BSðyÞ ffi 1þ 2Sþ 1
S

exp � 2Sþ 1
s

y

� �
� 1
S
exp � y

S

	 

: ð7:36Þ

Therefore by (7.34), m can be written for T ! 0 as

m ffi 1þ 2Sþ 1
S

� �
exp � 3ð2Sþ 1Þm

ðSþ 1Þs
� �

� 1
S
exp � 3m

ðSþ 1Þs
� �

: ð7:37Þ

By iteration, it is clear that m = 1 can be used in the exponentials. Further,

exp �2
3

ðSþ 1Þs
� �

� exp � 3
ðSþ 1Þs

� �
;

so that the second term can be neglected for all S 6¼ 0 (for S = 0 we do not have
ferromagnetism anyway). Thus at lower temperature, we finally find

m ffi � 1
S
exp � 3

Sþ 1
Tc
T

� �
: ð7:38Þ

Experiment does not agree well with (7.38). For many materials, experiment agrees
with

m ffi 1� CT3=2; ð7:39Þ

where C is a constant. As we will see in Sect. 7.2, (7.39) is correctly predicted by
spin wave theory.

It also turns out that the Weiss molecular field theory disagrees with experiment
at temperatures just below the Curie temperature. By making a Taylor series
expansion, one can show that for y � 1,

BSðyÞ ffi ð2Sþ 1Þ2 � 1

ð2SÞ2 � y
3
� ð2Sþ 1Þ4 � 1

ð2SÞ4 � y
3

45
: ð7:40Þ

Combining (7.40) with (7.34), we find that

m ¼ KðTc� TÞ1=2; ð7:41Þ

and

dm2

dT
¼ �K2 as T ! T�

c : ð7:42Þ

Equations (7.41) and (7.42) agree only qualitatively with experiment. For many
materials, experiment predicts that just below the Curie temperature
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m ffi AðTc � TÞ1=3: ð7:43Þ
Perhaps the most dramatic failure of the Weiss molecular field theory occurs when
we consider the specific heat. As we will see, the Weiss theory flatly predicts that
the specific heat (with no external field) should vanish for temperatures above the
Curie temperature. Experiment, however, says nothing of the sort. There is a small
residual specific heat above the Curie temperature. This specific heat drops off with
temperature. The reason for this failure of the Weiss theory is the neglect of
short-range ordering above the Curie temperature.

Let us now look at the behavior of the Weiss predictions for the magnetic
specific heat in a little more detail. The energy of a spin in a cM field in the
z direction due to the molecular field is

Ei ¼ l0glB
�h

SizcM: ð7:44Þ

Thus the internal energy U obtained by averaging Ei for N spins is,

U ¼ l0
N
2
glB
�h

cM Sizh i ¼ � 1
2
l0cM

2; ð7:45Þ

where the factor 1/2 comes from the fact that we do not want to count bonds twice,
and M ¼ �NglB hSizi=�h has been used.

The specific heat in zero magnetic field is then given by

C0 ¼ @U
@T

¼ � 1
2
l0c

dM2

dT
: ð7:46Þ

For T > Tc, M = 0 (with no external magnetic field) and so the specific heat van-
ishes, which contradicts experiment.

The precise behavior of the magnetic specific heat just above the Curie tem-
perature is of more than passing interest. Experimental results suggest that the
specific heat should exhibit a logarithmic singularity or near logarithmic singularity
as T ! Tc: The Weiss theory is inadequate even to begin attacking this problem.

Pierre Weiss

b. Mulhouse, France (1865–1940)

He is well known for the Weiss theory of magnetism (a mean field theory)
and for the domain theory of ferromagnetism.
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Antiferromagnetism, Ferrimagnetism, and Other Types of Magnetic
Order (B)
Antiferromagnetism is similar to ferromagnetism except that the lowest-energy state
involves adjacent spins that are antiparallel rather than parallel (but see the end of
this section). As we will see, the reason for this is a change in sign (compared to
ferromagnetism) for the coupling parameter or exchange integral.

Ferrimagnetism is similar to antiferromagnetism except that the paired spins do
not cancel and thus the lowest-energy state has a net spin.

Examples of antiferromagnetic substances are FeO and MnO. Further examples
are given in Sect. 7.3.2. The temperature at which an antiferromagnetic substance
becomes paramagnetic is known as the Néel temperature.

Examples of ferrimagnetism are MnFe2O4 and NiFe2O7. Further examples are
also given in Sect. 7.3.2.

We now discuss these in more detail by use of mean field theory.6 We assume
near-neighbor and next-nearest-neighbor coupling as shown schematically in
Fig. 7.2. The figure is drawn for an assumed ferrimagnetic order below the tran-
sition temperature. A and B represent two sublattices with spins SA and SB. The
coupling is represented by the exchange integrals J (we assume JBA = JAB < 0 and
these J dominate JAA and JBB > 0). Thus we assume the effective field between
A and B has a negative sign. For the effective field we write:

BA ¼ �xl0MB þ aAl0MA þB ; ð7:47Þ

BB ¼ �xl0MA þ bBl0MB þB ; ð7:48Þ

where x[ 0 is a constant proportional to JABj j ¼ JBAj j, while aA and bB are
constants proportional to JAA and JBB. The M represent magnetization and B is the
external field (that is the magnetic induction B ¼ l0HexternalÞ.

By the mean field approximation with BSA and BSB being the appropriate
Brillouin functions [defined by (7.16)]:

MA ¼ NAgASAlBBsAðbgAlBSABAÞ; ð7:49Þ

Fig. 7.2 Schematic to represent ferrimagnets

6See also, e.g., Kittel [7.39, p. 458ff].
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MB ¼ NBgBSBlBBsBðbgBlBSBBBÞ: ð7:50Þ

The SA, SB are quantum numbers (e.g. 1, 3/2, etc., labeling the spin). We also will
use the result (7.40) for BS(x) with x � 1. In the above, Ni is the number of ions of
type i per unit volume, gA and gB are the Lande g-factors (note we are using B not
l0HÞ, lB is the Bohr magneton and b ¼ 1= kBTð Þ:

Defining the Curie constants

CA ¼ NASAðSA þ 1Þg2Al2B
3k

; ð7:51Þ

CB ¼ NBSBðSB þ 1Þg2Bl2B
3k

; ð7:52Þ

we have if BA/T and BB/T are small:

MA ¼ CABA

T
; ð7:53Þ

MB ¼ CBBB

T
: ð7:54Þ

This holds above the ordering temperature when B ! 0 and even just below the
ordering temperature provided B ! 0 and MA, MB are very small. Thus the equa-
tions determining the magnetization become:

ðT � aAl0CAÞMA þxl0CAMB ¼ CAB ; ð7:55Þ

xl0CBMA þðT � bBl0CBÞMB ¼ CBB : ð7:56Þ
If the external field B ! 0, we can have nonzero (but very small) solutions for MA,
MB provided

ðT � aAl0CAÞðT � bBl0CBÞx2l20CACB: ð7:57Þ

So

T	
c ¼ l0

2
aACA þ bBCB 	

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4x2CACB þðaACA � bBCBÞ2

q� �
: ð7:58Þ

The critical temperature is chosen so Tc ¼ xl0 CACBð Þ1=2 when aA ! bB ! 0 and
so Tc ¼ T þ

c . Above Tc for B 6¼ 0 (and small) with

D � T � T þ
c

� �
T � T�

c

� �
;

MA ¼ D�1 T � bBl0CBð ÞCA � xl0CACB½ �B;
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MB ¼ D�1 T � aAl0CAð ÞCB � xl0CACB½ �B:

The reciprocal magnetic susceptibility is then given by

1
v
¼ B

l0ðMA þMBÞ ¼
D

l0 TðCA þCBÞ � aA þ bBð Þþ 2x½ �l0CACBf g : ð7:59Þ

Since D is quadratic in T ; 1=v is linear in T only at high temperatures (ferrimag-
netism). Also note

1
v
¼ 0 at T ¼ T þ

c ¼ Tc:

In the special case where two sublattices are identical (and x[ 0Þ, since CA ¼
CB � C1 and aA ¼ bB � a1,

T þ
c ¼ a1 þxð ÞC1l0; ð7:60Þ

and after canceling,

v�1 ¼ T � C1l0 a1 � xð Þ½ �
2C1l0

; ð7:61Þ

which is linear in T (antiferromagnetism).
This equation is valid for T [ T þ

c ¼ l0 a1 þxð ÞC1 � TN , the Néel temperature.
Thus, if we define

h � C1 x� a1ð Þl0;

vAF ¼ 2l0C1

T þ h
: ð7:62Þ

Note:

h
TN

¼ x� a1
xþ a1

:

We can also easily derive results for the ferromagnetic case. We choose to drop
out one sublattice and in effect double the effect of the other to be consistent with
previous work.

CA ¼ CF
A � 2C1; bB ¼ 0; CB ¼ 0;

so

Tc ¼ l0a
F
AC

F
A ¼ 2C1l0a1 if a1 � aFA

� �
:
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Then,7

v ¼ l0MA

B
¼ l0Tð2C1Þ

T T � 2C1l0a1ð Þ ¼
2C1l0

T � 2C1l0a1
: ð7:63Þ

The paramagnetic case is obtained from neglecting the coupling so

v ¼ 2C1l0
T

: ð7:64Þ

The reality of antiferromagnetism has been absolutely determined by neutron
diffraction that shows the appearance of magnetic order below the critical tem-
perature. See Figs. 7.3 and 7.4. Figure 7.5 summarizes our results.
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Fig. 7.3 Neutron diffraction patterns of MnO at 80 and 300 K. The Curie temperature is
120 K. The low temperature pattern has extra antiferromagnetic reflections for a magnetic
unit twice that of the chemical unit cell. Reprinted with permission from C. G. Shull and
J. S. Smart, Phys Rev, 76, 1256 (1949). Copyright 1949 by the American Physical Society

72C1l0 = C of (7.27).
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MANGANESE
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Fig. 7.4 Neutron diffraction patterns for a-manganese at 20 and 295 K. Note the
antiferromagnetic reflections at the lower temperature. Reprinted with permission from
Shull C. G. and Wilkinson M. K., Rev Mod Phys, 25, 100 (1953). Copyright 1953 by the
American Physical Society

Fig. 7.5 Schematic plot of reciprocal magnetic susceptibility. Note the constants for the
various cases can vary. For example a could be negative for the antiferromagnetic case and
aA; bB could be negative for the ferrimagnetic case. This would shift the zero of v�1
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The above definitions of antiferromagnetism and ferrimagnetism are the old
definitions (due to Néel). In recent years it has been found useful to generalize these
definitions somewhat. Antiferromagnetism has been generalized to include solids
with more than two sublattices and to include materials that have triangular, helical
or spiral, or canted spin ordering (which may not quite have a net zero magnetic
moment). Similarly, ferrimagnetism has been generalized to include solids with
more than two sublattices and with spin ordering that may be, for example, trian-
gular or helical or spiral. For ferrimagnetism, however, we are definitely concerned
with the case of nonvanishing magnetic moment.

It is also interesting to mention a remarkable theorem of Bohr and Van Leeuwen
[94]. This theorem states that for classical, nonrelativistic electrons for all finite
temperatures and applied electric and magnetic fields, the net magnetization of a
collection of electrons in thermal equilibrium vanishes. This is basically due to the
fact that the paramagnetic and diamagnetic terms exactly cancel one another on a
classical and statistical basis. Of course, if one cleverly makes omissions, one can
discuss magnetism on a classical basis. The theorem does tell us that if we really
want to understand magnetism, then we had better learn quantum mechanics. See
Problem 7.17.

It might be well to learn relativity also. Relativity tells us that the distinction
between electric and magnetic fields is just a distinction between reference frames.

Louis Néel

b. Lyon, France (1904–2000)

Nobel Prize in 1970

A near contemporary in magnetism to Pierre Weiss. Known for his
theories of Anti-ferromagnetism and Ferrimagnetism.

Hans Bethe

b. Strasbourg, France, part of Germany when he was born, (1906–2005)

Many areas of physics including Solid State; Bethe Ansatz; 1967 Nobel

Bethe was one of the greatest American Physicists and physics problem
solvers of the twentieth century. In Solid State Physics he was perhaps best
known for the Bethe Ansatz (used among other things for finding the exact
solution of the 1D antiferromagnetic Heisenberg model). He also worked
notably in quantum electrodynamics, astrophysics (nuclear processes in stars)
and on nuclear bombs.
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7.2 Origin and Consequences of Magnetic Order

7.2.1 Heisenberg Hamiltonian

Werner Heisenberg

b. Würzburg, Germany (1901–1976)

Nobel Prize 1932 for matrix version of quantum mechanics.

Famous for the Uncertainty Principle, Heisenberg also worked in
Ferromagnetism (The Heisenberg Hamiltonian). He was involved with the
atomic energy project of the Germans in WW II. Heisenberg has been
accused of being somewhat ambivalent about the Nazis. See the play
Copenhagen by Michael Frayn. On the other hand, Stark in his role as a
promoter of “Deutsche Physik” accused Heisenberg of being a “White Jew.”
It was a sad time.

Moe Berg, an ex big league catcher, was sent to Switzerland in 1944 with
a gun. He was ordered to attend a lecture of Heisenberg and shoot him if it
appeared from the lecture that the Germans had made significant progress in
building an A-bomb. Moe did not feel the need to shoot.

Somewhat paradoxically, Heisenberg is quoted as saying “The first gulp
from the glass of natural sciences will turn you into an atheist, but at the
bottom of the glass God is waiting for you.”

Perhaps Heisenberg is best known for the uncertainty principle. One
example of the uncertainty principle is DxDp
 �h=2:

The Heitler–London Method (B)
In this section we develop the Heisenberg Hamiltonian and then relate our results to
various aspects of the magnetic state. The first method that will be discussed is the
Heitler–London method. This discussion will have at least two applications. First, it
helps us to understand the covalent bond, and so relates to our previous discussion
of valence crystals. Second, the discussion gives us a qualitative understanding of
the Heisenberg Hamiltonian. This Hamiltonian is often used to explain the prop-
erties of coupled spin systems. The Heisenberg Hamiltonian will be used in the
discussion of magnons. Finally, as we will show, the Heisenberg Hamiltonian is
useful in showing how an electrostatic exchange interaction approximately predicts
the existence of a molecular field and hence gives a fundamental qualitative
explanation of the existence of ferromagnetism.

Let a and b label two hydrogen atoms separated by R (see Fig. 7.6). Let the
separated (R ! 1Þ hydrogen atoms be described by the Hamiltonians
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Ha
0ð1Þ ¼ � �h2

2m
r2

1 �
e2

4pe0ra1
; ð7:65Þ

and

Hb
0ð2Þ ¼ � �h2

2m
r2

2 �
e2

4pe0rb1
: ð7:66Þ

Let wa (1) and wb (2) be the spatial ground-state wave functions, that is

Ha
0wað1Þ ¼ E0wað1Þ; ð7:67Þ

or

Hb
0wbð1Þ ¼ E0wbð2Þ;

where E0 is the ground-state energy of the hydrogen atom. The zeroth-order
hydrogen molecular wave functions may be written

w	 ¼ wað1Þwbð2Þ 	 wað2Þwbð1Þ: ð7:68Þ

In the Heitler–London approximation for un-normalized wave functions

E	 ffi
R
w	Hw	ds1ds2R

w2
	ds1ds2

; ð7:69Þ

where dsi ¼ dxidyidzi and we have used that wave functions for stationary states
can be chosen to be real. In (7.69),

H ¼ Ha
0ð1ÞþHb

0ð2Þ �
e2

4pe0

1
ra2

þ 1
rb2

� 1
r12

� 1
R

� �
: ð7:70Þ

Working out the details when (7.68) is put into (7.69) and assuming wa(1) and
wb(2) are normalized we find

Fig. 7.6 Model for two hydrogen atoms
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E	 ¼ 2E0 þ e2

4pe0R
þ K 	 JE

1	 S
; ð7:71Þ

where

S ¼
Z

wað1Þwbð1Þwað2Þwbð2Þds1ds2 ð7:72Þ

is the overlap integral,

K ¼ e2

4pe0

Z
w2
að1Þw2

bð2ÞVð1; 2Þds1ds2 ð7:73Þ

is the Coulomb energy of interaction, and

JE ¼ e2

4pe0

Z
wað1Þwbð2Þwbð1Þwbð2ÞVð1; 2Þds1ds2 ð7:74Þ

is the exchange energy. In (7.73) and (7.74),

Vð1; 2Þ ¼ e2

4pe0

1
r12

� 1
ra2

� 1
rb1

� �
: ð7:75Þ

The corresponding normalized eigenvectors are

w	ð1; 2Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 1	 Sð Þp w1ð1; 2Þ 	 w2ð1; 2Þ½ �; ð7:76Þ

where

w1ð1; 2Þ ¼ wað1Þwbð2Þ; ð7:77Þ

w2ð1; 2Þ ¼ wað2Þwbð1Þ: ð7:78Þ

So far there has been no need to discuss spin, as the Hamiltonian did not
explicitly involve it. However, it is easy to see how spin enters. wþ is a symmetric
function in the interchange of coordinates 1 and 2, and w� is an antisymmetric
function in the interchange of coordinates 1 and 2. The total wave function that
includes both space and spin coordinates must be antisymmetric in the interchange
of all coordinates. Thus in the total wave function, an antisymmetric function of
spin must multiply wþ , and a symmetric function of spin must multiply w�. If we
denote aðiÞ as the “spin-up” wave function of electron i and bðjÞ as the “spin-down”
wave function of electron j, then the total wave functions can be written as
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wþ
T ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ð1þ SÞp w1 þw2ð Þ 1ffiffiffi
2

p að1Þbð2Þ � að2Þbð1Þ½ �; ð7:79Þ

w�
T ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ð1� SÞp w1 � w2ð Þ
að1Það2Þ;

1ffiffiffi
2

p að1Þbð2Þþ að2Þbð1Þ½ �;
bð1Þbð2Þ:

8><
>: ð7:80Þ

Equation (7.79) has total spin equal to zero, and is said to be a singlet state. It corre-
sponds to antiparallel spins. Equation (7.80) has total spin equal to one (with three
projections of +1, 0,−1) and is said to describe a triplet state. This corresponds to parallel
spins. For hydrogen atoms, J in (7.74) is called the exchange integral and is negative.
Thus E+ (corresponding to wþ

T Þ is lower in energy than E− (corresponding to w�
T Þ,

and hence the singlet state is lowest in energy. A calculation of E± − E0 for E0

labeling the ground state of hydrogen is sketched in Fig. 7.7. Let us now pursue this
two-spin case in order to write an effective spin Hamiltonian that describes the
situation. Let Sl and S2 be the spin operators for particles 1 and 2. Then

S1 þ S2ð Þ2¼ S21 þ S22 þ 2S1 � S2: ð7:81Þ

Since the eigenvalues of S12 and S22 are 3�h
2=4 we can write for appropriate / in the

space of interest

Fig. 7.7 Sketch of results of the Heitler–London theory applied to two hydrogen atoms
(R/R0 is the distance between the two atoms in Bohr radii). See also, e.g., Heitler [7.26]
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S1 � S2/ ¼ 1
2

S1 þ S2ð Þ2� 3
2
�h2

� �
/: ð7:82Þ

In the triplet (or parallel spin) state, the eigenvalue of (Sl + S2)
2 is 2�h2, so

S1 � S2/triplet ¼
1
4
�h2/triplet: ð7:83Þ

In the singlet (or antiparallel spin) state, the eigenvalue of (S1 + S2)
2 is 0, so

S1 � S2/singlet ¼ � 3
4
�h2/singlet: ð7:84Þ

Comparing these results to Fig. 7.7, we see we can formally write an effective
spin Hamiltonian for the two electrons on the two different atoms:

H ¼ �2JS1 � S2 ; ð7:85Þ

where J is often simply called the exchange constant and J = J(R), i.e. it depends
on the separation R between atoms. By suitable choice of J(R), the eigenvalues of
H� 2E0 can reproduce the curves of Fig. 7.7. Note that J > 0 gives the parallelspin
case the lowest energy (ferromagnetism) and J < 0 (the two-hydrogen-atom case—
this does not always happen, especially in a solid) gives the antiparallelspin case the
lowest energy (antiferromagnetism). If we have many atoms on a lattice, and if
there is an exchange coupling between the spins of the atoms, we assume that we
can write a Hamiltonian:

H ¼ �
X0
a;b

ðelectronsÞ

Ja;bSa � Sb ð7:86Þ

If there are several electrons on the same atom and if J is constant for all electrons
on the same atom, then we assume we can writeX

Ja;bSa:Sb ffi
X
k; l

ðatomsÞ

Jk;l
X
i; j

ðelectrons on
k; l atomsÞ

Ski:Slj

¼
X
k;l

Jk;l
X
i

Ski

 ! X
j

Slj

 !

¼
X
k;l

Jk;lSTk :S
T
l ;

ð7:87Þ
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where STk and STl refer to the spin operators associated with atoms k and l. SinceP0 Sa � SbJab differs from
P

Sa � SbJab by only a constant and
P0

k;l JklS
T
k S

T
l differs

from
P

k;l JklS
T
k S

T
l by only a constant, we can write the effective spin Hamiltonian as

H ¼ �
X0
k;l

Jk;lSTk � STl ; ð7:88Þ

here unimportant constants have not been retained. This last expression is called the
Heisenberg Hamiltonian for a system of interacting spins in the absence of an
external field.

This form of the Heisenberg Hamiltonian already tells us two important things:

1. It is applicable to atoms with arbitrary spin.
2. Closed shells contribute nothing to the Heisenberg Hamiltonian because the spin

is zero for a closed shell.

Our development of the Heisenberg Hamiltonian has glossed over the approx-
imations that were made. Let us now return to them. The first obvious approxi-
mation was made in going from the two-spin case to the N-spin case. The presence
of a third atom can and does affect the interaction between the original pair. In
addition, we assumed that the exchange interaction between all electrons on the
same atom was a constant.

Another difficulty with the extension of the Heitler–London method to the n-
electron problem is the so-called “overlap catastrophe.” This will not be discussed
here as we apparently do not have to worry about it when using the simple
Heisenberg theory for insulators.8 There are also no provisions in the Heisenberg
Hamiltonian for crystalline anisotropy, which must be present in any real crystal.
We will discuss this concept in Sects. 7.2.2 and 7.3.1. However, so far as energy
goes, the Heisenberg model does seem to contain the main contributions.

But there are also several approximations made in the Heitler–London theory
itself. The first of these assumptions is that the wave functions associated with the
electrons of interest are well-localized wave functions. Thus we expect the
Heisenberg Hamiltonian to be more nearly valid in insulators than in metals. The
assumption is necessary in order that the perturbation approach used in the Heitler–
London method will be valid. It is also assumed that the electrons are in nonde-
generate orbital states and that the excited states can be neglected. This makes it
harder to see what to do in states that are not “spin only” states, i.e. in states in
which the total orbital angular momentum L is not zero or is not quenched.
Quenching of angular momentum means that the expectation value of L (but not L2)
for electrons of interest is zero when the atom is in the solid. For the nonspin only
case, we have orbital degeneracy (plus the effects of crystal fields) and thus the
basic assumptions of the simple Heitler–London method are not met.

8For a discussion of this point see the article by Keffer [7.37].
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The Heitler–London theory does, however, indicate one useful approximation:
that J�h2 is of the same order of magnitude as the electrostatic interaction energy
between two atoms and that this interaction depends on the overlap of the wave
functions of the atoms. Since the overlap seems to die out exponentially, we expect
the direct exchange interaction between any two atoms to be of rather short range.
(Certain indirect exchange effects due to the presence of a third atom may extend
the range somewhat and in practice these indirect exchange effects may be very
important. Indirect exchange can also occur by means of the conduction electrons in
metals, as discussed later.)

Before discussing further the question of the applicability of the Heisenberg
model, it is useful to get a physical picture of why we expect the spin-dependent
energy that it predicts. In considering the case of two interacting hydrogen atoms,
we found that we had a parallel spin case and an antiparallel spin case. By the Pauli
principle, the parallel spin case requires an antisymmetric spatial wave function,
whereas the antiparallel case requires a symmetric spatial wave function. The
antisymmetric case concentrates less charge in the region between atoms and hence
the electrostatic potential energy of the electrons ðe2=4pe0rÞ is smaller. However,
the antisymmetric case causes the electronic wave function to “wiggle” more and
hence raises the kinetic energy TðTop / $2Þ. In the usual situation (in the
two-hydrogen-atom case and in the much more complicated case of many insu-
lating solids) the kinetic energy increase dominates the potential energy decrease;
hence the antiparallel spin case has the lowest energy and we have antiferromag-
netism (J < 0). In exceptional cases, the potential energy decrease can dominate the
kinetic energy increases, and hence the parallel spin case has the least energy and
we have ferromagnetism (J > 0). In fact, most insulators that have an ordered
magnetic state become antiferromagnets at low enough temperature.

Few rigorous results exist that would tend either to prove or disprove the validity
of the Heisenberg Hamiltonian for an actual physical situation. This is one reason
for doing calculations based on the Heisenberg model that are of sufficient accuracy
to yield results that can usefully be compared to experiment. Dirac9 has given an
explicit proof of the Heisenberg model in a situation that is oversimplified to the
point of not being physical. Dirac assumes that each of the electrons is confined to a
different specified orthogonal orbital. He also assumes that these orbitals can be
thought of as being localizable. It is clear that this is never the situation in a real
solid. Despite the lack of rigor, the Heisenberg Hamiltonian appears to be a good
starting place for any theory that is to be used to explain experimental magnetic
phenomena in insulators. The situation in metals is more complex.

Another side issue is whether the exchange “constants” that work well above the
Curie temperature also work well below the Curie temperature. Since the devel-
opment of the Heisenberg Hamiltonian was only phenomenological, this is a sen-
sible question to ask. It is particularly sensible since J depends on R and R increases

9See, for example, Anderson [7.1].

7.2 Origin and Consequences of Magnetic Order 433



as the temperature is increased (by thermal expansion). Charap and Boyd10 and
Wojtowicz11 have shown for EuS (which is one of the few “ideal” Heisenberg
ferromagnets) that the same set of J will fit both the low-temperature specific heat
and magnetization and the high-temperature specific heat.

We have made many approximations in developing the Heisenberg Hamiltonian.
The use of the Heitler–London method is itself an approximation. But there are
other ways of understanding the binding of the hydrogen atoms and hence of
developing the Heisenberg Hamiltonian. The Hund–Mulliken12 method is one of
these techniques. The Hund–Mulliken method should work for smaller R, whereas
the Heitler–London works for larger R. However, they both qualitatively lead to a
Heisenberg Hamiltonian.

We should also mention the Ising model, where H ¼ �P Jijrizrjz; and the r
a are the Pauli spin matrices. Only nearest-neighbor coupling is commonly used.
This model has been solved exactly in two dimensions (see Huang [7.32, p. 341ff]).
The Ising model has spawned a huge number of calculations.

The Hund–Mulliken Method (B)
We have made many approximations in developing the Heisenberg Hamiltonian.
The use of the Heitler–London method is itself an approximation. But there are
other ways of understanding the binding of the hydrogen atoms and hence of
developing the Heisenberg Hamiltonian. The Hund–Mulliken method is one of
these techniques.

This method is of interest, not only because it is a way of treating the hydrogen
molecule, but also because the method can be directly generalized to calculations in
crystals. In fact, a direct generalization is the tight binding method in which Bloch
functions are used.

The Heitler–London method becomes better as R ! ∞. In the Hund–Mulliken
method, the one-electron unperturbed functions describe the system best when R is
small, because the single electron functions are chosen to be molecular orbitals
(MO’s) that are linear combinations of atomic orbitals (LCAO’s).

Let wa(x) be the wave function of the atom at a in its ground state. Define
wb(x) similarly. Then define the molecular orbitals

wgðxÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ð1þ dÞp ½waðxÞþwbðxÞ� ð7:89Þ

and

wuðxÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ð1� dÞp ½waðxÞ � wbðxÞ�; ð7:90Þ

10See [7.10].
11See Wojtowicz [7.70].
12See Patterson [7.53, p. 176ff].
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where d is the overlap integral,

d ¼
Z

waðxÞwbðxÞdx: ð7:91Þ

(We don’t have to worry about complex conjugation, since a stationary state wave
function can always be chosen to be real.) There are better ways of choosing the
MO’s, but only the idea of the Hund–Mulliken method, not its refinements, is of
interest here.

Combining (7.89) and (7.90) with spin functions, we see that there are six obvious
antisymmetric two-electron functions that can be constructed (by the technique of
forming Slater determinants). These antisymmetric two-electron functions are

wI ¼
1ffiffiffi
2

p wgð1Það1Þ wgð1Þbð1Þ
wgð2Það2Þ wgð2Þbð2Þ

�����
�����

¼ wgð1Þwgð2Þ
1ffiffiffi
2

p ½að1Þbð2Þ � bð1Það2Þ�
; ð7:92aÞ

wII ¼
1ffiffiffi
2

p wuð1Það1Þ wuð1Þbð1Þ
wuð2Það2Þ wuð2Þbð2Þ

����
����

¼ wuð1Þwuð2Þ
1ffiffiffi
2

p ½að1Þbð2Þ � bð1Það2Þ�
; ð7:92bÞ

wIII ¼
1ffiffiffi
2

p wgð1Það1Þ wuð1Það1Þ
wgð2Það2Þ wuð2Það2Þ

�����
�����

¼ 1ffiffiffi
2

p ½wgð1Þwuð2Þ � wuð1Þwgð2Þ�að1Það2Þ
; ð7:92cÞ

wIV ¼ 1ffiffiffi
2

p wgð1Það1Þ wuð1Þbð1Þ
wgð2Það2Þ wuð2Þbð2Þ

�����
�����

¼ 1ffiffiffi
2

p ½wgð1Þwuð2Það1Þbð2Þ � wuð1Þwgð2Það2Þbð1Þ�
; ð7:92dÞ

wV ¼ 1ffiffiffi
2

p wgð1Þbð1Þ wuð1Það1Þ
wgð2Þbð2Þ wuð2Það2Þ

�����
�����

¼ 1ffiffiffi
2

p ½wgð1Þwuð2Þbð1Það2Þ � wuð1Þwgð2Það1Þbð2Þ�
; ð7:92eÞ
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wVI ¼
1ffiffiffi
2

p wgð1Þbð1Þ wuð1Þbð1Þ
wgð2Þbð2Þ wuð2Þbð2Þ

�����
�����

¼ 1ffiffiffi
2

p ½wgð1Þwuð2Þ � wuð1Þwgð2Þ�bð1Þbð2Þ
: ð7:92fÞ

For the total system of two atoms, [H, S2] = 0 and [H, SZ] = 0 and therefore it is
convenient to choose eigenfunctions of S2 and SZ as basis functions. Then matrix
elements of H with basis functions corresponding to different eigenvalues of S2 or
SZ will vanish. Thus it is convenient to replace IV and V with IV′ and V′, where

wIV0 ¼ 1ffiffiffi
2

p ðwIV þwVÞ

¼ 1
2
½wgð1Þwuð2Þ � wuð1Þwgð2Þ�½að1Þbð2Þþ að2Þbð1Þ�;

ð7:93Þ

and

wV0 ¼ 1ffiffiffi
2

p ðwIV � wVÞ

¼ 1
2
½wgð1Þwuð2Þþwuð1Þwgð2Þ�½að1Þbð2Þ � að2Þbð1Þ�:

ð7:94Þ

First-order degenerate time-independent perturbation theory then tells us that the
perturbed energies are eigenvalues of

Ih jH Ij i � E IIh jH Ij i 0 0 0 V 0h jH Ij i
Ih jH IIj i IIh jH IIj i � E 0 0 0 V 0h jH IIj i
0 0 IIIh jH IIIj i � E 0 0 0
0 0 0 IV 0h jH IV 0j i � E 0 0
0 0 0 0 VIh jH VIj i � E 0

Ih jH V 0j i IIh jH V 0j i 0 0 0 V 0h jH V 0j i � E

�����������

�����������
¼ 0:

ð7:95Þ

In (7.95), the matrices that vanish are already set equal to zero. The vanishing
matrix elements are easily located by using Table 7.1.

Table 7.1 Eigenvalues of S2op=�h
2 and Sz/�h for basis functions

Function S2op=�h
2 ¼ SðSþ 1Þ;

where S is listed below

Sz=�h

I 0 0
II 0 0
III 1 1
IV′ 1 0
VI 1 −1
V′ 0 0
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In (7.95), H = H0 + V(1,2). We can see that

Ih jH V 0j i ¼
Z

wgð1Þwgð2ÞH½wgð1Þwuð2Þþwuð1Þwgð2Þ�ds

after the normalization of the spin functions has been used. This further becomes
(by using the definitions of wg and wu)

Ih jH V 0j i /
Z

½wað1Þþwbð1Þ�½wað2Þþwbð2Þ�H½wað1Þwað2Þ � wbð1Þwbð2Þ�ds

¼
Z

wað1Þwað2ÞHwað1Þwað2Þdsþ
Z

wbð1Þwað2ÞHwað1Þwað2Þds

þ
Z

wað1Þwbð2ÞHwað1Þwað2Þdsþ
Z

wbð1Þwbð2ÞHwað1Þwað2Þds

�
Z

wað1Þwað2ÞHwbð1Þwbð2Þds�
Z

wbð1Þwað2ÞHwbð1Þwbð2Þds

�
Z

wað1Þwbð2ÞHwbð1Þwbð2Þds�
Z

wbð1Þwbð2ÞHwbð1Þwbð2Þds:
ð7:96Þ

Equation (7.96) equals zero when use is made of the facts that wa and wb differ only
by having different origins and that H is independent of interchanging a and b.
These and similar considerations reduce the 6 by 6 determinant to

Ih jH Ij i � E IIh jH Ij i
Ih jH IIj i IIh jH IIj i � E

����
���� ¼ 0: ð7:97Þ

This is an easy problem to solve and there is little need to carry it further.
Several physical comments should be made. At actual physical separations the

Hund–Mulliken method gives better results than the Heitler–London method. Of
the two eigenvalues of (7.97) only one (E−) is negative. This is the bound state
energy. Five of the eigenvalues of (7.95) are positive. hIjHjIi is approximately
equal to E− at low atomic separation. The Hund–Mulliken method also gives a
difference in energy between the singlet and triplet states so that some sort of
Heisenberg Hamiltonian would still seem to be appropriate. In a typical calculation,
the triplet state (which is threefold degenerate) has the lowest unbound energy of all
the unbound states. The Hund–Mulliken calculation (or the Heitler–London method
if more basis states are used) does raise a question about the higher states. Should
we try to take these states into account in the Heisenberg Hamiltonian? The idea
seems to be to either ignore the higher states (since in a real solid the situation is so
complicated anyway) or hope that at low enough temperatures the higher states will
not be important anyway. This may make some sense in insulators.
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The Heisenberg Hamiltonian and its Relationship to the Weiss Mean Field
Theory (B)
We now show how the mean molecular field arises from the Heisenberg
Hamiltonian. If we assume a mean field cM then the interaction energy of moment
lk with this field is

Ek ¼ �l0cM � lj: ð7:98Þ

Also from the Heisenberg Hamiltonian

Ek ¼ �
X0
i

JikSi � Sk�
X0
j

JkjSk � Sj;

and since Jij = Jji, and noting that j is a dummy summation variable

Ek ¼ �2
X0
i

JikSi � Sk: ð7:99Þ

In the spirit of the mean-field approximation we replace Si by its average �Si ¼ S
since the average of each site is the same. Further, we assume only nearest-neighbor
interactions so Jik = J for each of the Z nearest neighbors. So

Ek ffi �2ZJS � Sk: ð7:100Þ

But

lk ffi � glBSk
�h

ð7:101Þ

(with lB ¼ ej j�h=2mÞ, and the magnetization M is

M ffi �NglBS
�h

; ð7:102Þ

where N is the number of atomic moments per unit volume (�1=X; where X is the
atomic volume). Thus we can also write

Ek ffi �2ZJ
XM � lk
ðglBÞ2

�h2 ð7:103Þ

Comparing (7.98) and (7.103)

J ¼ l0cðglBÞ2
2ZX�h2

: ð7:104Þ

438 7 Magnetism, Magnons, and Magnetic Resonance



This not only shows how Heisenberg’s theory “explains” the Weiss mean molecular
field, but also gives an approximate way of evaluating the parameter J. Slight
modifications in (7.104) result for other than nearest-neighbor interactions.

RKKY Interaction13 (A)
The Ruderman, Kittel, Kasuya, Yosida, (RKKY) interaction is important for rare
earths. It is an interaction between the conduction electrons with the localized
moments associated with the 4f electrons. Since the spins cause the localized
moments, the conduction electrons can mediate an indirect exchange interaction
between the spins. This interaction is called RKKY interaction.

We assume, following previous work, that the total exchange interaction is of the
form

HTotal
ex ¼ �

X
i;a

Jxðri�RaÞSa � Si; ð7:105Þ

where Sa is an ion spin and Si is the conduction spin. For convenience we assume
the S are dimensionless with �h absorbed in the J. We assume Jxðri � RaÞ is short
range (the size of 4f orbitals) and define

J ¼
Z

Jxðr� RaÞdr: ð7:106Þ

Consistent with (7.106), we assume

Jxðri � RaÞ ¼ JdðrÞ; ð7:107Þ

where r ¼ ri � Ra and write

Hex ¼ �JSa � SidðrÞ

for the exchange interaction between the ion a and the conduction electron. This is the
same form as the Fermi contact term, but the physical basis is different. We can regard
SidðrÞ ¼ SiðrÞ as the electronic conduction spin density. Now, the interaction between
the ion spin Sa and the conduction spin Si can be written (gaussian units, l0 ¼ 1)

�JSa � SidðrÞ ¼ �ð�glBSiÞ � HeffðrÞ;

so this defines an effective field

Heff ¼ � JSa
glB

dðrÞ: ð7:108Þ

13Kittel [60, pp. 360–366] and White [7.68, pp. 197–200].
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The Fourier component of the effective field can be written

HeffðqÞ ¼
Z

HeffðrÞe�iq� rdr ¼ � J
glB

Sa: ð7:109Þ

We can now determine the magnetization induced by the effective field by use of
the magnetic susceptibility. In Fourier space

vðqÞ ¼ MðqÞ
HðqÞ : ð7:110Þ

This gives us the response in magnetization of a free-electron gas to a magnetic
field. It turns out that this response (at T = 0) is functionally just like the response to
an electric field (see Sect. 9.5.3 where Friedel oscillation in the screening of a point
charge is discussed).We find

vðqÞ ¼ 3g2l2B
8EF

N
V
Aðq=2kFÞ; ð7:111Þ

where N/V is the number of electrons per unit volume and

Aðq=2kFÞ ¼ 1
2
þ kF

2q
1� q2

4k2F

� �
ln

2kF þ q
2kF � q

����
����: ð7:112Þ

The magnetization M(r) of the conduction electrons can now be calculated from
(7.110), (7.111), and (7.112).

MðrÞ ¼ 1
V

X
q

MðqÞeiq�r

¼ 1
V

X
q

vðqÞHeffðqÞeiq�r

¼ � J
glBV

Sa
X
q

vðqÞeiq�r

ð7:113Þ

With the aid of (7.111) and (7.112), we can evaluate (7.113) to find

MðrÞ ¼ � J
glB

KGðrÞSa; ð7:114Þ

where

K ¼ 3g2l2B
8EF

N
V

k3F
16p

; ð7:115Þ
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and

GðrÞ ¼ sinð2kFrÞ � 2kFr cosð2kFrÞ
ðkFrÞ4

: ð7:116Þ

The localized moment Sa causes conduction spins to develop an oscillating
polarization in the vicinity of it. The spin-density oscillations have the same form as
the charge-density oscillations that result when an electron gas screens a charged
impurity.14

Let us define

FðxÞ ¼ sin x� x cos x
x4

;

so

GðrÞ ¼ 24Fð2kFrÞ:

F(x) is the basic function that describes spatial oscillating polarization induced by a
localized moment in its vicinity. It is sketched in Fig. 7.8. Note as x ! ∞, F
(x) ! −cos(x)/x3 and as x ! 0, F(x) ! 1/(3x).

Using (7.114), if S(r) is the spin density,

SðrÞ ¼ MðrÞ
ð�glBÞ

¼ J

ðglBÞ2
KGSa: ð7:117Þ

Fig. 7.8 Sketch of F(x) = [sin(x) − x cos(x)]/x4, which describes the RKKY exchange
interaction

14See Langer and Vosko [7.42].
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Another localized ionic spin at Sb interacts with S(r)

Hindirect
a and b ¼ �JSb � Sðra � rbÞ:

Now, summing over all a, b interactions and being careful to avoid double counting
spins, we have

HRKKY ¼ � 1
2

X
a;b

JabSa�Sb; ð7:118Þ

where

Jab ¼ J2

ðglBÞ2
KGðr ¼ rabÞ: ð7:119Þ

For strong spin-orbit coupling, it would be more natural to express the Hamiltonian
in terms of J (the total angular momentum) rather than S. J = L + S and within the
set of states of constant J, gJ is defined so

gJlBJ ¼ lBðLþ 2SÞ ¼ lBðJþ SÞ;

where remember the g factor for L is 1, while for spin S it is 2. Thus, we write

ðgJ � 1ÞJ ¼ S:

If Ja is the total angular momentum associated with site a, by substitution

HRKKY ¼ � 1
2
ðgJ � 1Þ2

X
a;b

JabJa � Jb; ð7:120Þ

where (gJ − 1)2 is called the deGennes factor.

Charles Kittel

b. New York City, New York, USA (1916–)

Book: Introduction to Solid State Physics (8 editions); Ferromagnetism; Spin
Waves; Ferromagnetic Resonance

Some books seem to define a field, at least for a time. Kittel’s book,
referenced above, seems to do this for Solid State Physics. Kittel of course
was active in research at Bell Labs and Berkeley, but it is for his introductory
solid-state book that he is best known. For an overall perspective it is hard to
beat.
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Simple Example of the Calculation of Magnetic Susceptibility and Magnetic
Specific Heat for Exchange Coupled Spin Systems (B)
It is worthwhile to give an explicit example of the types of things we might hope to
calculate for a Heisenberg system. We will not have to resort to mean field theory
here, because we will consider an exactly solvable system with a finite number of
spins.

Perhaps the discussion of ordered spin systems (ordered by an exchange inter-
action) is the most interesting subject in magnetism. Certainly many problems
remain in this area. We can describe the behavior of exchange coupled spin systems
in the limit of high or low temperature by making two assumptions. We must
assume a coupling to represent the effect of exchange. A common spin coupling is
obtained by assuming the Heisenberg form for the Hamiltonian. We must also
assume a certain amount of symmetry in the arrangement of the spins.

To illustrate the general problem, a very simple spin system is considered which
can be solved exactly at all temperatures. The main deficiency with our example is
that it does not show a phase transition, which is typical of finite systems.

The point of this section will be to derive equations for the magnetic suscepti-
bility (v) and the specific heat (Cv) as a function of magnetic field and temperature.
The simple model considered is the two-spin model shown in Fig. 7.9.

The Heisenberg Hamiltonian for this spin system is

H ¼ �2J 0S1 � S2 ¼ �J 0½S2 � S21 � S22�: ð7:121Þ

If J ¼ J 0�h2, then (7.121) has two eigenvalues which are

ES ¼ �J½SðSþ 1Þ � 3
2
� for S ¼ 0 or 1: ð7:122Þ

If a magnetic field, H, in the S-direction is applied, then the degeneracy of the S = 1
energy level of (7.122) is lifted. The additional Hamiltonian is of the form

S1 S2

Fig. 7.9 A simple exchange coupled spin system. In this model Sl and S2 are the vector spin
operators for spin 1/2 particles
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H0 ¼ � el0H
m

X2
j¼1

Sjz: ð7:123Þ

The total Hamiltonian can be diagonalized, and we obtain the additional energy

E0
s ¼ � el0H�h

m

X2
j¼1

Mjs; ð7:124Þ

where Mjs is the magnetic quantum number for spin j, and is restricted in the usual
way:

�S�Mjs � S:

Adding (7.122) and (7.124), we find the energies listed in Table 7.2.

Once the energies are known, it is a simple matter to calculate the partition
function Z for a canonical ensemble. The appropriate equation is

Z ¼
X
j

expð�Ej=kTÞ: ð7:125Þ

The result for our example is

Z ¼ exp � 3J
2kT

� �
þ exp

J
2kT

� �
sinhð3e�hl0H=2mkTÞ
sinhðe�hl0H=2mkTÞ : ð7:126Þ

Thermodynamically interesting quantities can be calculated by use of the
equation

F ¼ �kT ln Z; ð7:127Þ

Table 7.2 Energies of simple two-spin system

S Ms = Rl Mjs Es

0 0 3
2
J

1 1 � 1
2
J � el0H�h

m

1 0 � 1
2
J

1 −1 � 1
2
Jþ el0H�h

m
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where F is the Helmholtz free energy. Using (7.126) and (7.127),

F ¼ U � TS; ð7:128Þ

and

Cv;h ¼ T
@S
@T

� �
v;h
; ð7:129Þ

it is possible to calculate an expression for Cv,h as a function of magnetic field and
temperature.

From the partition function (7.125) we can also derive the magnetization hMi,
and the zero field magnetic susceptibility v0. The equations from statistical
mechanics are

Mh i ¼ N
@ ln Z

@ðl0H=kTÞ ; ð7:130Þ

where N is the number of coupled spin systems per unit volume, and

v0 ¼
@ Mh i
@H

� �
H!0

: ð7:131Þ

Magnetic Structure and Mean Field Theory (A)
We assume the Heisenberg Hamiltonian where the lattice is assumed to have
transitional symmetry, R labels the lattice sites, J(0) = 0, J(R − R′) = J(R′ − R). We
wish to investigate the ground state of a Heisenberg-coupled classical spin system,
and for simplicity, we will assume:

a. T = 0 K
b. The spins can be treated classically
c. A one-dimensional structure (say in the z direction), and
d. The SR are confined to the (x, y)-plane

SRx ¼ S cosuR; SRy ¼ S sinuR:

Thus, the Heisenberg Hamiltonian can be written:

H ¼ � 1
2

X
R;R0

S2JðR� R0Þ cosðuR � uR0 Þ:

e. We are going to further consider the possibility that the spins will have a
constant turn angle of qa (between each spin), so uR = qR, and for adjacent
spins DuR ¼ qDR ¼ qa:
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Substituting (in the Hamiltonian above), we find

H ¼ �NS2

2
JðqÞ; ð7:132Þ

where

JðqÞ ¼
X
R

JðRÞeiqR ð7:133Þ

and J(q) = J(−q). Thus, the problem of finding Hmin reduces to the problem of
finding J(q)max (Fig. 7.10).

Note if JðqÞ ! max for

q ¼ 0; get ferromagnetism;
q ¼ p=a; get antiferromagnetism;
qa 6¼ 0 or p; get heliomagnetism with qa

defining the turn angles:

8>><
>>:

It may be best to give an example. We suppose that J(a) = J1, J(2a) = J2 and the
rest are zero. Using (7.133) we find:

JðqÞ ¼ 2J1 cosðqaÞþ 2J2 cosð2qaÞ: ð7:134Þ

For a minimum of energy [maximum J(q)] we require

@J
@q

¼ 0 ! J1 ¼ �4J2 cosðqaÞ or q ¼ 0 or
p
a
;

and

@2J
@q2

\0 or J1 cosðqaÞ[�4J2 cosð2qaÞ:

Fig. 7.10 Graphical depiction of the classical spin system assumptions
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The three cases give:

7.2.2 Magnetic Anisotropy andMagnetostatic Interactions (A)

Anisotropy
Exchange interactions drive the spins to lock together at low temperature into an
ordered state, but often the exchange interaction is isotropic. So, the question arises
as to why the solid magnetizes in a particular direction. The answer is that other
interactions are active that lock in the magnetization direction. These interactions
cause magnetic anisotropy.

Anisotropy can be caused by different mechanisms. In rare earths, because of the
strong-spin orbit coupling, magnetic moments arise from both spin and orbital
motion of electrons. Anisotropy, then, can be caused by direct coupling between the
orbit and lattice.

There is a different situation in the iron group magnetic materials. Here we think
of the spins of the 3d electrons as causing ferromagnetism. However, the spins are
not directly coupled to the lattice. Anisotropy arises because the orbit “feels” the
lattice, and the spins are coupled to the orbit by the spin-orbit coupling.
Let us first discuss the rare earths, which are perhaps the easier of the two to
understand. As mentioned, the anisotropy comes from a direct coupling between the
crystalline field and the electrons. In this connection, it is useful to consider the
classical multipole expansion for the energy of a charge distribution in a potential
U. The first three terms are given below:

u ¼ qUð0Þ � p � Eð0Þ � 1
6

X
i;j

Qij
@Ej

@xi

� �
0
þ higher-order terms: ð7:135Þ

Here, q is the total charge, p is the dipole moment, Qij is the quadrupole moment,
and the electric field is E = −$U. For charge distributions arising from states with
definite parity, p = 0. (We assume this, or equivalently we assume the parity
operator commutes with the Hamiltonian.) Since the term qU 0ð Þ is an additive
constant, and since p = 0, the first term that merits consideration is the quadru-
pole term. The quadrupole term describes the interaction of the quadrupole
moment with the gradient of the electric field. Generally, the quadrupole moments
will vary with J;Mj i (J = total angular momentum quantum number and M refers
to the z component), which will enable us to construct an effective Hamiltonian.

q = 0 q = p/a q 6¼ 0, p/a
J1 > −4J2
Ferromagnetism
e.g. J1 > 0, J2 = 0

J1 < 4J2
Antiferromagnetism
e.g. J1 < 0, J2 = 0

Turn angle qa defined by
cos(qa) = −J1/4J2 and
J1cos(qa) > −4J2cos
(2qa)
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This Hamiltonian will include the anisotropy in which different states within a
manifold of constant J will have different energies, hence anisotropy. We now
develop this idea in quantum mechanics below.

We suppose the crystal field is caused by an array of charges described by qðRÞ.
Then, the potential energy of −e at the point ri is given by

VðriÞ ¼ �
Z

eqðRÞdR
4pe0 ri � Rj j: ð7:136Þ

If we further suppose q(R) is outside the ion in question, then in the region of the
ion, V(r) is a solution of the Laplace equation, and we can expand it as a solution of
this equation:

VðriÞ ¼
X
l;m

Bm
l r

lYm
l ðh;/Þ; ð7:137Þ

where the constants Bm
l can be computed from q(R). For rare earths, the effects of

the crystal field, typically, can be adequately calculated in first-order perturbation
theory. Let vj i be all states J;Mj i, which are formed of fixed J manifolds from
l;mj i, and s;msj i where l = 3 for 4f electrons. The type of matrix element that we
need to evaluate can be written:

D
v
���X

i

VðriÞ
���v0E; ð7:138Þ

summing over the 4f electrons. By (7.137), this eventually means we will have to
evaluate matrix elements of the form

D
lmi Y

m0
l0

�� ��lm0
i

E
; ð7:139Þ

and since l = 3 for 4f electrons, this must vanish if l0 [ 6. Also, the parity of the

functions in (7.139) is �ð Þ2lþ l0 the matrix element must vanish if l0 is odd since
2l = 6, and the integral over all space is of an odd parity function is zero. For 4f
electrons, we can write

VðriÞ ¼
X6
l0 ¼ 0
evenð Þ

X
m0 B

m0
l0 r

l0Ym0
l0 ðh;/Þ: ð7:140Þ

We define the effective Hamiltonian as

HA ¼
X
i

VðriÞh idoing radial integrals only:
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If we then apply the Wigner-Eckhart theorem [7.68, p. 33], in which one replaces
(x’/r), etc. by their operator equivalents Jx, etc., we find for hexagonal symmetry

HA ¼ K1J
2
z þK2J

4
z þK3J

6
z þK4ðJ6þ þ J6�Þ; ðJ	 ¼ Jx 	 iJyÞ: ð7:141Þ

We now discuss the anisotropy that is appropriate to the iron group [7.68, p. 57].
This is called single-ion anisotropy. Under the action of a crystalline field we will
assume the relevant atomic states include a ground state (G) of energy e0 and
appropriate excited (E) states of energy e0 þD. We will consider only one excited
state, although in reality there would be several. We assume Gj i and Ej i are
separated by energy Δ.

The states Gj i and Ej i are assumed to be spatial functions only and not spin
functions. In our argument, we will carry the spin S along as a classical vector. The
argument we will give is equivalent to perturbation theory.

We assume a spin-orbit interaction of the form V ¼ kL � S, which mixes some of
the excited state into the ground state to produce a new ground state.

Gj i ! GTj i ¼ Gj i þ a Ej i; ð7:142Þ

where a is in general complex. We further assume GjGh i ¼ EjEh i ¼ 1 and
EjGh i ¼ 0 so GTjGTh i ¼ 1 to O(a). Also note the probability that Ej i is contained
in GTj i is aj j2. The increase in energy due to the mixture of the excited state is
(after some algebra)

e1 ¼ GT Hj jGTh i
GT jGTh i � e0 ¼ aEþG Hj jaEþGh i

1þ aj j2 � e0;

or

e1 ¼ aj j2D: ð7:143Þ

In addition, due to first-order perturbation theory, the spin-orbit interaction will
cause a change in energy given by

e2 ¼ k GT Lj jGTh i � S: ð7:144Þ

We assume the angular momentum L is quenched in the original ground state so by
definition G Lj jGh i ¼ 0. (See also White, [7.68, p. 43]. White explains that if a
crystal field removes the orbital degeneracy, then the matrix element of L must be
zero. This does not mean the matrix element of L2 in the same state is zero.) Thus to
first order in a,

e2 ¼ ka� E Lj jGh i � Sþ ka G Lj jEh i � S: ð7:145Þ
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The total change in energy given by (7.143) and (7.145) e ¼ e1 þ e2. Since a and a*

are complex with two components we can treat them as linearly independent, so
@e=@a� ¼ 0, which gives

a ¼ � E kLj jGh i � S
D

:

Therefore, after some algebra e ¼ e1 þ e2 becomes

e ¼ � aj j2D ¼ � E kLj jGh i � Sj j2
D

\0;

a decrease in energy. If we let

A ¼ E kLj jGh iffiffiffiffi
D

p ;

then

e ¼ �A � SA�S ¼ �
X
l;v

SlBlvSv;

where Blv ¼ AlA�
v . If we let S become a spin operator, we get the following

Hamiltonian for single-ion anisotropy:

Hspin ¼ �
X
l;v

SlBlvSv: ð7:146Þ

When we have axial symmetry, this simplifies to

Hspin ¼ �DS2z :

For cubic crystal fields, the quadratic (in S) terms go to a constant and can be
neglected. In that case, we have to go to a higher order. Things are also more
complicated if the ground state has orbital degeneracy. Finally, it is also possible to
have anisotropic exchange. Also, as we show below, the shape of the sample can
generate anisotropy.

Magnetostatics (B)
The magnetostatic energy can be regarded as the quantity whose reduction causes
domains to form. The other interactions then, in a sense, control the details of how
the domains form. Domain formation will be considered in Sect. 7.3. Here we will
show how the domain magnetostatic interaction can cause shape anisotropy.

Consider a magnetized material in which there is no real or displacement current.
The two relevant Maxwell equations can be written in the absence of external
currents and in the static situation
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$H ¼ 0; ð7:147Þ

$ � B ¼ 0: ð7:148Þ

Equation (7.147) implies there is a potential U from which the magnetic field H can
be derived:

H ¼ �$U: ð7:149Þ

We assume a constitutive equation linking the magnetic induction B, the magne-
tization M and H;

B ¼ l0ðHþMÞ; ð7:150Þ

where l0 is called the permeability of free space. Equations (7.148) and (7.150)
become

$ � H ¼ �$ �M: ð7:151Þ

In terms of the magnetic potential U,

r2U ¼ $ �M: ð7:152Þ

This is analogous to Poisson’s equation of electrostatics with qM ¼ �$ �M playing
the role of a magnetic source density.

By analogy to electrostatics, and in terms of equivalent surface and volume pole
densities, we have

U ¼ 1
4p

Z
S

M � dS
r

�
Z
V

$ �M
r

dV

2
4

3
5; ð7:153Þ

where S and V refer to the surface and volume of the magnetized body. By analogy
to electrostatics the magnetostatic self-energy is

UM ¼ l0
2

Z
qMUdV ¼ � l0

2

Z
$ �MUdV ¼ � l0

2

Z
M �HdV

since
Z

all space

$ � ðMUÞdV ¼ 0

0
B@

1
CA;

ð7:154Þ

which also would follow directly from the energy of a dipole l in a magnetic field
ð�l � BÞ, with a 1/2 inserted to eliminate double counting. Using $ �M ¼ �$ �H
and

R
all space $ � ðHUÞdV ¼ 0, we get

7.2 Origin and Consequences of Magnetic Order 451



UM ¼ l0
2

Z
H2dV : ð7:155Þ

For ellipsoidal specimens the magnetization is uniform and

HD ¼ �DM; ð7:156Þ

where HD is the demagnetization field, D is the demagnetization factor that depends
on the shape of the sample and the direction of magnetization and hence one has
shape isotropy, since (7.155) would have different values for M in different
directions. For ellipsoidal magnets, the demagnetization energy per unit volume is
then

uM ¼ l0
2
D2M2: ð7:157Þ

7.2.3 Spin Waves and Magnons (B)

If there is an external magnetic field B ¼ l0Hẑ, and if the magnetic moment of each
atom ism ¼ 2lSð2l�h � �glB

15 in previous notation), then the above considerations
tell us that the Hamiltonian describing an (nn) exchange coupled spin system is

H ¼ �J
X
jD

Sj � SjþD � 2l0lH
X
j

Sjz: ð7:158Þ

j runs over all atoms, and d runs over the nearest neighbors of j, and also we may
redefine J so as to write (7.158) as H ¼ ðJ=2ÞP . . .. (We do this sometimes to
emphasize that (7.158) double counts each interaction.) From now on it will be
assumed that there exist real solids for which (7.158) is applicable. The first term in
this equation is the Heisenberg Hamiltonian and the second term is the Zeeman
energy.

Let

S2 ¼
X
j

Sj

 !2

; ð7:159Þ

and

Sz ¼
X
j

Sjz: ð7:160Þ

15The minus sign comes from the negative charge on the electron.
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Then it is possible to show that the total spin and the total z component of spin are
constants of the motion. In other words,

H; S2
�  ¼ 0; ð7:161Þ

and

H; Sz½ � ¼ 0: ð7:162Þ

Spin Waves in a Classical Heisenberg Ferromagnet (B)
We want to calculate the internal energy u (per spin) and the magnetization
M. Assuming the magnetization is in the z direction and letting Ah i stand for the
quantum-statistical average of A, we have (if H = 0)

u ¼ 1
N

Hh i ¼ � 1
2N

X
i;j

Jij Si � Sj
� �

; ð7:163Þ

and

M ¼ � glB
V

X
iz

Sizh i; ð7:164Þ

(with the S written in units of h and V is the volume of the crystal and Jij absorbs an
�h2Þ where the Heisenberg Hamiltonian is written in the form

H ¼ � 1
2

X
i;j

JijSi � Sj:

Using the fact that

S2 ¼ S2x þ S2y þ S2z ;

assuming a ferromagnetic ground state, and very low temperatures (where spin
wave theory is valid) so that Sx and Sy are very small,

Sz ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2 � S2x � S2y ;

q

(negative so M > 0) and thus

Sz ffi �S 1� S2x þ S2y
2S2

 !
; ð7:165Þ
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which can be substituted in (7.164). Then by (7.163)

u ffi � 1
2N

X
i;j

S2Jij 1� S2ix þ S2iy
2S2

 !
1� S2jx þ S2jy

2S2

 !* +

� 1
2N

X
i;j

Jij SixSjx þ SiySjy
� �

:

We obtain

M ¼ N
V
glBS�

glB
2SV

X
i

S2ix þ S2iy
D E

; ð7:166Þ

u ¼ � S2Jz
2

þ 1
2N

X
i;j

Jij S2ix þ S2iy � SixSjx � SiySjy
D E

; ð7:167Þ

where z is the number of nearest neighbors. It is now convenient to Fourier
transform the spins and the exchange integral

Si ¼
X
k

Skeik�Ri ð7:168Þ

JðkÞ ¼
X
R

JðRÞeik�R: ð7:169Þ

Using the standard crystal lattice mathematics and S�kx ¼ S�kx, we find:

M ¼ N
V
glBS 1� 1

2S

X
k

SkxS
�
kx þ SkyS

�
ky

D E( )
ð7:170Þ

u ¼ � S2Jz
2

þ 1
2

X
k

ðJð0Þ � JðkÞÞ SkxS�kx þ SkyS�ky
D E

: ð7:171Þ

We still have to evaluate the thermal averages. To do this, it is convenient to exploit
the analogy of the spin waves to a set of uncoupled harmonic oscillators whose energy
is proportional to the amplitude squared. We do this by deriving the equations of
motion and showing in our low-temperature “spin-wave” approximation that they are
harmonic oscillators. We can write the Heisenberg Hamiltonian equation as

H ¼ � 1
2

X
j

X
i

Jij
Si

�glB

( )
ð�glBSjÞ; ð7:172Þ

where �glBSj is the magnetic moment. The 1/2 takes into account the double
counting and we therefore identify the effective field acting on Sj as
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BMj ¼ � 1
glB

X
i

JijSi: ð7:173Þ

Treating the Si as dimensionless so �hSi is the angular momentum, and using the fact
that torque is the rate of change of angular momentum and is the moment crossed
into field, we have for the equations of motion

�h
dSj
dt

¼
X
i

JijSj  Si: ð7:174Þ

We leave as a problem to show that after Fourier transformation the equations of
motion can be written:

�h
dSk
dt

¼
X
k00

Jðk00ÞSk�k00  Sk00 : ð7:175Þ

For the ferromagnetic ground state at low temperature, we assume that

Sk¼0j j � Sk 6¼0

�� ��;
since

Sk¼0 ¼ 1
N

X
R

SR;

and at absolute zero,

Sk¼0 ¼ Sk̂; Sk 6¼0 ¼ 0:

Even with small excitations, we assume S0z= S, S0x= S0y= 0 and Skx, Sky are of first
order. Retaining only quantities of first order, we have

�h
dSkx
dt

¼ S Jð0Þ � JðkÞ½ �Sky ð7:176aÞ

�h
dSky
dt

¼ �S Jð0Þ � JðkÞ½ �Skx ð7:176bÞ

�h
dSkz
dt

¼ 0: ð7:176cÞ

Combining (7.176a) and (7.176b), we obtain harmonic-oscillator-type equations
with frequencies xðkÞ and energies eðkÞ given by
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eðkÞ ¼ �hxðkÞ ¼ S Jð0Þ � JðkÞ½ �: ð7:177Þ

Combining this result with (7.171), we have for the average energy per oscillator,

u ¼ � S2Jz
2

þ 1
2

X
k

eðkÞ
S

Skxj j2 Sky
�� ��2D E

for z nearest neighbors. For quantized harmonic oscillators, up to an additive term,
the average energy per oscillator would be

1
N

X
k

eðkÞ nkh i:

Thus, we identify nkh i as

Skxj j2 þ Sky
�� ��2

2S

* +
N;

and we write (7.170) and (7.171) as

M ¼ N
V
glBS 1� 1

NS

X
k

nkh i
( )

ð7:178Þ

u ¼ � S2Jz
2

þ 1
N

X
k

eðkÞ nkh i: ð7:179Þ

Now nkh i is the average number of excitations in mode k (magnons) at temperature T.
By analogy with phonons (which represent quanta of harmonic oscillators) we say

nkh i ¼ 1
eeðkÞ=kT � 1

: ð7:180Þ

As an example, we work out the consequences of this for simple cubic lattices with
Z = 6 and nearest-neighbor coupling.

JðkÞ ¼
X

JðRÞeik�R ¼ 2Jðcos kxaþ cos kyaþ cos kzaÞ:

At low temperatures where only small k are important, we find

eðkÞ ¼ S Jð0Þ � JðkÞ½ � ffi SJk2a2: ð7:181Þ

We will evaluate (7.178) and (7.179) using (7.180) and (7.181) later after treating
spin waves quantum mechanically from the beginning.
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The name “spin-waves” comes from the following picture. In Fig. 7.11, suppose

Skx ¼ S sinðhÞ exp½ixðkÞt�;

Then

�h _Skx ¼ ixðkÞ�hSkx ¼ xðkÞ�hSky
by the equation of motion. So,

iSkx ¼ Sky:

Therefore, if we had one spin-wave mode q in the x direction, e.g., then

SRx ¼ expðik � RÞSkx ¼ S sinðhÞ exp½iðkRx þxtÞ�;
SRy ¼ S sinðhÞ exp½iðkRx þxt � p=2Þ�:

Thus, if we take the real part, we find

SRx ¼ S sinðhÞ cosðkRx þxtÞ;
SRy ¼ S sinðhÞ sinðkRx þxtÞ;

and the spins all spin with the same frequency but with the phase changing by ka,
which is the change in kRx, as we move from spin to spin along the x-axis.

As we have seen, spin waves are collective excitations in ordered spin systems.
The collective excitations consist in the propagation of a spin deviation, h.
A localized spin at a site is said to undergo a deviation when its direction deviates
from the direction of magnetization of the solid below the critical temperature.
Classically, we can think of spin waves as vibrations in the magnetic moment
density. As mentioned, quanta of the spin waves are called magnons. The concept
of spin waves was originally introduced by F. Bloch, who used it to explain the
temperature dependence of the magnetization of a ferromagnet at low temperatures.
The existence of spin waves has now been definitely proved by experiment. Thus
the concept has more validity than its derivation from the Heisenberg Hamiltonian

(a)

(b)

Fig. 7.11 Classical representation of a spin wave in one dimension (a) viewed from side and
(b) viewed from top (along −z). The phase angle from spin to spin changes by ka. Adapted
from Kittel C, Introduction to Solid State Physics, 7th edn, Copyright © 1996 John Wiley
and Sons, Inc. This material is used by permission of John Wiley and Sons, Inc

7.2 Origin and Consequences of Magnetic Order 457



might suggest. We will only discuss spin waves in ferromagnets but it is possible to
make similar comments about them in any ordered magnetic structure. The dif-
ferences between the ferromagnetic case and the antiferromagnetic case, for
example, are not entirely trivial [60, p 61].

Spin Waves in a Quantum Heisenberg Ferromagnet (A)
The aim of this section is rather simple. We want to show that the quantum
Heisenberg Hamiltonian can be recast, in a suitable approximation, so that its
energy excitations are harmonic-oscillator-like, just as we found classically (7.181).

Here we make two transformations and a long-wavelength, low-temperature
approximation. One transformation takes the Hamiltonian to a localized excitation
description and the other to an unlocalized (magnon) description. However, the
algebra can get a little complex.

Equation (7.158) (with �h ¼ 1 or 2l ¼ �glBÞ is our starting point for the
threedimensional case, but it is convenient to transform this equation to another
form for calculation. From our previous discussion, we believe that magnons are
similar to phonons (insofar as their mathematical description goes), and so we
might guess that some sort of second quantization notation would be appropriate.
We have already indicated that the squared total spin and the z component of total
spin give good quantum numbers. We can also show that S2j commutes with the
Heisenberg Hamiltonian so that its eigenvalues S(S + 1) are good quantum num-
bers. This makes sense because it just says that the total spin of each atom remains
constant. We assume that the spin S of every ion is the same. Although each atom
has three components of each spin vector, only two of the components are
independent.
The Holstein and Primakoff Transformation (A) Holstein and Primakoff16 have
developed a transformation that not only has two independent variables, but also
utilizes the very convenient second quantization notation. The Holstein–Primakoff
transformation is also very useful for obtaining terms that describe magnon-magnon
interactions.17 This transformation is (with �h ¼ 1 or S representing S=�hÞ:

Sþ
j � Sjx þ iSjy ¼

ffiffiffiffiffi
2S

p
1� ayj aj

2S

2
4

3
5
1=2

aj; ð7:182Þ

S�j � Sjx � iSjy ¼
ffiffiffiffiffi
2S

p
ayj 1� ayj aj

2S

2
4

3
5
1=2

; ð7:183Þ

Sjz � S� ayj aj: ð7:184Þ

16See, for example, [7.38].
17At least for high magnetic fields; see Dyson [7.18].
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We could use these transformation equations to attempt to determine what

properties aj and ajy must have. However, it is much simpler to define the prop-

erties of the aj and ajy and show that with these definitions the known properties of

the Sj operators are obtained. We will assume that the ay and a are boson creation
and annihilation operators (see Appendix G) and hence they satisfy the commu-
tation relations

½aj; ayl � ¼ dlj: ð7:185Þ

We first show that (7.184) is consistent with (7.182) and (7.183). This amounts
to showing that the Holstein–Primakoff transformation automatically puts in the
constraint that there are only two independent components of spin for each atom.
We start by dropping the subscript j for a particular atom and by using the fact that
S2j has a good quantum number so we can substitute S(S + 1) for S2j (with �h ¼ 1Þ.
We can then write

SðSþ 1Þ ¼ S2x þ S2y þ S2z ¼ S2z þ
1
2
ðSþ S� þ S�Sþ Þ: ð7:186Þ

By use of (7.182) and (7.183) we can use (7.186) to calculate S2z . That is,

S2z ¼ SðSþ 1Þ � S 1� aya
2S

 !1=2

ð1þ ayaÞ 1� aya
2S

 !1=2

þ ay 1� aya
2S

 !
a

2
4

3
5:

ð7:187Þ

Remember that we define a function of operators in terms of a power series for the

function, and therefore it is clear that aya will commute with any function of aya.
Also note that ½aya; a� ¼ ayaa� aaya ¼ ayaa� ð1þ ayaÞa ¼ �a, and so we can
transform (7.187) to give after several algebraic steps:

S2z ¼ ðS� ayaÞ2: ð7:188Þ

Equation (7.188) is consistent with (7.184), which was to be shown.
We still need to show that Sþ

j and S�j defined in terms of the annihilation and

creation operators act as ladder operators should act. Let us define an eigenket of S2j
and Sjz, by (still with �h ¼ 1Þ

S2j S;msj i ¼ SðSþ 1Þ S;msj i; ð7:189Þ
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and

Sjz S;msj i ¼ ms S;msj i: ð7:190Þ

Let us further define a spin-deviation eigenvalue by

n ¼ S� ms; ð7:191Þ

and for convenience let us shorten our notation by defining

nj i ¼ S;msj i: ð7:192Þ

By (7.182) we can write

Sþ
j nj i ¼

ffiffiffiffiffi
2S

p
1� ayj aj

2S

0
@

1
A
1=2

aj nj i ¼
ffiffiffiffiffi
2S

p
1� n� 1

2S

� �1=2 ffiffiffi
n

p
n� 1j i; ð7:193Þ

where we have used aj nj i ¼ n1=2 n� 1j i and also the fact that

ayj aj nj i ¼ ðS� SjzÞ nj i ¼ n nj i: ð7:194Þ

By converting back to the S;msj i notation, we see that (7.193) can be written

Sþ
j S;msj i ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðS� msÞðSþms þ 1Þ

p
S;ms þ 1j i: ð7:195Þ

Therefore Sþ
j does have the characteristic property of a ladder operator, which is

what we wanted to show. We can similarly show that the S�j has the step-down
ladder properties.

Note that since (7.195) is true, we must have that

Sþ S;ms ¼ Sj i ¼ 0: ð7:196Þ

A similar calculation shows that

S�jS;�ms ¼ Si ¼ 0: ð7:197Þ

We needed to assure ourselves that this property still held even though we defined

the S+ and S− in terms of the ayj and aj. This is because we normally think of the
a as operating on jni, where 0 � n � ∞. In our situation we see that
0 � n � 2S + 1. We have now completed the verification of the consistency of
the Holstein–Primakoff transformation. It is time to recast the Heisenberg
Hamiltonian in this new notation.

Combining the results of Problem 7.10 and the Holstein–Primakoff transfor-
mation, we can write
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H ¼ �J
X
jD

S� ayj aj
	 


S� ayjþDajþD

	 

þ S ayj 1� ayj aj

2S

0
@

1
A
1=2

1� ayjþDajþD

2S

0
@

1
A
1=2

ajþ d

2
64

8><
>:

þ 1� ayj aj
2S

0
@

1
A
1=2

aja
y
jþD 1� ayjþDajþD

2S

0
@

1
A
1=2
3
75
9>=
>;þ glB l0Hð Þ

X
j

S� ayj aj
	 


:

ð7:198Þ
Equation (7.198) is the Heisenberg Hamiltonian (plus a term for an external
magnetic field) expressed in second quantization notation. It seems as if the
problem has been complicated rather than simplified by the Holstein–Primakoff
transformation. Actually both (7.158) and (7.198) are equally impossible to solve
exactly. Both are many-body problems. The point is that (7.198) is in a form that
can be approximated fairly easily. The approximation that will be made is to expand
the square roots and concentrate on low-order terms. Before this is done, it is
convenient to take full advantage of translational symmetry. This will be done in
the next section.

Magnons (A) The ayj create localized spin deviations at a single site (one atom
per unit cell is assumed). What we need (in order to take translational symmetry
into account) is creation operators that create Bloch-like nonlocalized excitations.
A transformation that will do this is

Bk ¼ 1ffiffiffiffi
N

p
X
j

exp ik � Rj
� �

aj; ð7:199aÞ

and

Byk ¼ 1ffiffiffiffi
N

p
X
j

expð�ik � RjÞayj ; ð7:199bÞ

where Rj is defined by (2.171) and cyclic boundary conditions are used so that the
k are defined by (2.175). N = N1N2N3 and so the delta function relations (2.178) to
(2.184) are valid. k will be assumed to be restricted to the first Brillouin zone. Using
all these results, we can derive the inverse transformation

aj ¼ 1ffiffiffiffi
N

p
X
k

expð�ik � RjÞBk; ð7:200aÞ

and

ayj ¼ 1ffiffiffiffi
N

p
X
k

expðik � RjÞByk : ð7:200bÞ

So far we have not shown that the B are boson creation and annihilation oper-
ators. To show this, we merely need to show that the B satisfy the appropriate
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commutation relations. The calculation is straightforward, and is left as a problem
to show that the Bk obey the same commutation relations as the aj.

We can give a very precise definition to the word magnon. First let us review
some physical principles. Exchange coupled spin systems (e.g. ferromagnets and
antiferromagnets) have low-energy states that are wave-like. These wave-like
energy states are called spin waves. A spin wave is quantized into units called
magnons. We may have spin waves in any structure that is magnetically ordered.
Since in the low-temperature region there are only a few spin waves that are excited
and thus their complicated interactions are not so important, this is the best tem-
perature region to examine spin waves. Mathematically, precisely whatever is
created by Bj and annihilated by Bk is called a magnon.

There is a nice theorem about the number of magnons. The total number of
magnons equals the total spin deviation quantum number. This theorem is easily
proved as shown below:

DS ¼
X
j

S� Sjz
� � ¼X

j

ayaj

¼ 1
N

X
i;k;k0

exp iðk� k0Þ½ � Rj

BykBk0

¼
X
k;k0

dk
0
k B

y
kBk0

¼
X
k

BykBk:

This proves the theorem, since Byk Bk is the occupation number operator for the
number of magnons in mode k.

The Hamiltonian defined by (7.198) will now be approximated. The spin-wave
variables Bk will also be substituted.

At low temperatures we may expect the spin-deviation quantum number to be
rather small. Thus we have approximately

ayj aj
D E

� S: ð7:201Þ

This implies that the relation between the S and a can be approximated by

S�j ffi
ffiffiffiffiffi
2S

p
ayj �

ayj ayj aj
4S

0
@

1
A; ð7:202aÞ

Sþ
j ffi

ffiffiffiffiffi
2S

p
aj �

ayj ajaj
4S

0
@

1
A; ð7:202bÞ

and
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Sjz ¼ S� ayj aj: ð7:202cÞ

Expressing these results in terms of the B, we find

Sþ
j ffi

ffiffiffiffiffi
2S
N

r X
k

exp �ik � Rj
��(
Bk

� 1
4SN

X
k;k0;k00

exp i k� k0 � k00Þð½ � Rj

BykBk0Bk00

9=
;;

ð7:203aÞ

S�j ffi
ffiffiffiffiffi
2S
N

r X
k

exp ik � Rj
��(
Bk

� 1
4SN

X
k;k0;k00

exp i kþ k0 � k00Þð½ � Rj

BykByk0Bk00

9=
;;

ð7:203bÞ

and

Sjz ¼ S� 1
N

X
k;k0

exp i k�k0Þð½ � Rj

BykBk0 : ð7:203cÞ

The details of the calculation begin to get rather long at about this stage. The
approximate Hamiltonian in terms of spin-wave variables is obtained by substituting
(7.203) into (7.198). Considerable simplification results from the delta function

relations. Terms of order ayi ai
D E

=S
	 
2

are to be neglected for consistency. The final

result is

H ¼ H0 þHex; ð7:204Þ
neglecting a constant term, where Z is the number of nearest neighbors, H0 is the
term that is bilinear in the spin wave variables and is given by

H0 ¼ �JSZ
X
k

ak 1þBykBk

	 

þ a�kB

y
kBk � 2BykBk

	 
" #

þ glB l0HÞð
X
k

BykBk;

ð7:205Þ

ak ¼ 1
Z

X
D

exp ik � DÞð ; ð7:206Þ

and Hex is called the exchange interaction Hamiltonian and is biquadratic in the
spin-wave variables. It is given by
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Hex / Z
J
N

X
k1k2k3k4

dk2 þ k3
k1 þ k4 Bk1ð Byk2 � dk2k1ÞB

y
k3Bk4ðak1 � ak1�k2Þ: ð7:207Þ

Note that H0 describes magnons without interactions and Hex includes terms
that describe the effect of interactions. Mathematically, we do not want to consider
interactions. Physically, it makes sense to believe that interactions should not be
important at low temperatures. We can show that Hex can be neglected for long-
wavelength magnons, which should be the only important magnons at low tem-
perature. We will therefore neglect Hex in all discussions below.

H0 can be somewhat simplified. Incidentally, the formalism that is being used
assumes only one atom per unit cell and that all atoms are equally spaced and
identical. Among other things, this precludes the possibility of having “optical
magnons.” This is analogous to the lattice vibration problem where we do not have
optical phonons in lattices with one atom per unit cell.

H0 can be simplified by noting that if the crystal has a center of symmetry, then
ak ¼ a�k; and also

X
k

ak ¼ 1
Z

X
D

X
k

exp ik � DÞð ¼ N
Z

X
D

d0D ¼ 0;

where the last term is zero because D, being the vector to nearest-neighbor atoms,

can never be zero. Also note that BBy � 1 ¼ ByB: Using these results and defining
(with H = 0)

�hxk ¼ 2JSZ 1� akð Þ; ð7:208Þ
we find

H0 ¼
X
k

�hxknk; ð7:209Þ

where nk is the occupation number operator for the magnons in mode k.
If the wavelength of the spin waves is much greater than the lattice spacing, so

that atomic details are not of much interest, then we are in a classical region. In this
region, it makes sense to assume that k � D � 1; which is also the long- wavelength
approximation made in neglecting Hex. Thus we find

�hxk ffi JS
X
D

k � Dð Þ2: ð7:210Þ

If further we have a simple cubic, bcc, or fcc lattice, then

�hxk ¼ �h2k2

2m� ; ð7:211Þ
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where

m� / 2ZJSa2
�� �1

; ð7:212Þ

and a is the lattice spacing. The reality of spin-wave dispersion has been shown by
inelastic neutron scattering. See Fig. 7.12.

Specific Heat of Spin Waves (A) With

ayi ai
D E

S
� 1; ka � 1; H ¼ 0;

and assuming we have a monatomic lattice, the magnons were found to have the
energies

�hxk ¼ CK2; ð7:213Þ

where C is a constant. Thus apart from notation (7.181) and (7.213) are identical.
We also know that the magnons behave as bosons. We can return to (7.178),

Fig. 7.12 Fe (12 at.% Si) room-temperature spin-wave dispersion relations at low energy.
Reprinted with permission from Lynn JW, Phys Rev B 11(7), 2624 (1975). Copyright 1975
by the American Physical Society
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(7.179), (7.180), and (7.181) to evaluate the magnetization as well as the internal
energy due to spin waves.

Now in (7.178) we can replace a sum with an integral because for large N the
number of states is fairly dense and in dk per unit volume is dk/(2p)3. SoX

k

1
exp JSk2a2=kBTð Þ � 1

! V

2pð Þ3
Z

dk
exp JSk2a2=kBTð Þ � 1

! V

2pð Þ3
Z1
0

k2dk
exp JSk2a2=kBTð Þ � 1

:

Also we have used that at low T the upper limit can be set to infinity without
appreciable error. Changing the integration variable to x = (JS/kBT)

1/2ka, we find at
low temperature

X
k

1
exp JSk2a2=kBTð Þ � 1

! V

2pð Þ3
ffiffiffiffiffiffiffiffi
kBT
JS

r
1
a

 !3

N1;

where

N1 ¼
Z1
0

x2dx
exp x2ð Þ � 1

:

Similarly

X
k

JSk2a2

exp JSk2a2=kBTð Þ � 1
! V

2pð Þ3
ffiffiffiffiffiffiffiffi
kBT
JS

r
1
a

 !5

N2;

where

N2 ¼
Z1
0

x4dx
exp x2ð Þ � 1

:

N1 and N2 are numbers that can be evaluated in terms of gamma functions and
Riemann zeta functions. We thus find

M ¼ N
V
glBS 1� V

2p2SN
kB
JSa2

� �3=2

N1T
3=2

( )
; ð7:214Þ

and

u ¼ S2Jz
2

þ V
2p2N

kB
JSa2

� �5=2

N2T
5=2: ð7:215Þ

Thus, from (7.215) by taking the temperature derivative we find the low- temper-
ature magnon specific heat, as first shown by Bloch, is
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CV / T3=2: ð7:216Þ
Similarly, by (7.214) the low-temperature deviation from saturation goes as T3/2.
these results only depend on low-energy excitations going as k2.

Also at low T, we have a lattice specific heat that goes as T3. So at low T we have

CV ¼ aT3=2 þ bT3;

where a and b are constants. Thus

CVT
�3=2 ¼ aþ bT3=2;

so theoretically, plotting CT−3/2 versus T−3/2 will yield a straight line at low T.
Experimental verification is shown in Fig. 7.13 (note this is for a ferrimagnet for
which the low-energy ħxk is also proportional to k2).

At higher temperatures there are deviations from the 3/2 power law and it is nec-
essary to make refinements in the above theory. One source of deviations is spin-wave
interactions. We also have to be careful that we do not approximate away the kine-
matical part, i.e. the part that requires the spin-deviation quantum number on a given
site not to exceed (2Sj + 1). Then, of course, in a more careful analysis we would have
to pay more attention to the geometrical shape of the Brillouin zone. Perhaps our worst
error involves (7.211), which leads to an approximate density of states and hence to an
approximate form for the integral in the calculation of CV and ΔM (Table 7.3).

Fig. 7.13 CV at low T for ferrimagnet YIG. After Elliott RJ and Gibson AF, An Introduction
to Solid State Physics and Applications, Macmillan, 1974, p. 461. Original data from
Shinozaki SS, Phys Rev 122, 388 (1961)
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Equation (7.213) predicts that the density of states (up to cutoff) is proportional
to the magnon energy to the 1/2 power. A similar simple development for antiferro-
magnets [it turns out that the analog of (7.213) only involves the first power of |k|
for antiferromagnets] also leads to a relatively smooth dependence of the density of
states on energy. In any case, a determination from analyzing the neutron diffraction
of an actual magnetic substance will show a result that is not so smooth (see
Fig. 7.14). Comparison of spin-wave calculations to experiment for the specific
heat for EuS is shown in Fig. 7.15.18 EuS is an ideal Heisenberg ferromagnet.

Table 7.3 Summary of spin-wave properties (low energy and low temperature)

Dispersion relation ΔM = Ms − M
magnetization

C
magnetic Sp. Ht.

Ferromagnet x = A1k B1T
3/2 B2T

3/2

Antiferromagnet x = A2n B2T
2 (sublattice) C2T

3

Ai and Bi are constants. For discussion of spin waves in more complicated structures
see, e.g., Cooper [7.13]

Fig. 7.14 Density of states for magnons in Tb at 90 K. The curve is a smoothed computer plot.
[Reprinted with permission from Moller HB, Houmann JCG, and Mackintosh AR, Journal of
Applied Physics, 39(2), 807 (1968). Copyright 1968, American Institute of Physics.]

18A good reference for the material in this chapter on spin waves is an article by Kittel [7.38]
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Magnetostatic Spin Waves (MSW) (A)
For very large wavelengths, the exchange interaction between spins no longer can
be assumed to be dominant. In this limit, we need to look instead at the effect of
dipole-dipole interactions (which dominate the exchange interactions) as well as
external magnetic fields. In this case spin-wave excitations are still possible but they
are called magnetostatic waves. Magnetostatic waves can be excited by in-
homogeneous magnetic fields. MSW look like spin waves of very long wavelength,
but the spin coupling is due to the dipole-dipole interaction. There are many device
applications of MSW (e.g. delay lines) but a discussion of them would take us too
far afield. See, e.g., Auld [7.3], and Ibach and Luth [7.33]. Also see Kittel [7.38,
p. 471ff], and Walker [7.65]. There are also surface or Damon–Eshbach wave
solutions.19

Fig. 7.15 Spin wave specific heat of EuS. An equation of the form C/R = aT312 + bT5/2 is
needed to fit this curve. For an evaluation of b, see Dyson FJ, Physical Review, 102, 1230
(1956). [Reprinted with permission from McCollum, Jr. DC, and Callaway J, Physical
Review Letters, 9 (9), 376 (1962). Copyright 1962 by the American Physical Society.]

19Damon and Eshbach [7.17].
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Damon–Eshbach Surface Magnetostatic Waves20 (A)
These were first observed in the Ghz frequency range in the absorption of micro-
waves. Let us assume that there is magnetic material only in the half plane x < 0 in
the geometry defined in Fig. 7.16. If we seek solutions of the form

/ðx; yÞ ¼ /ðxÞ expðikyyÞ;

the previous results show if v 6¼ −1 that,21

d2

dx2
� k2y

� �
wðxÞ ¼ 0 ð7:217Þ

for all x so x < 0 has solution

wðxÞ ¼ Ae kyj jx ð7:218Þ

and x > 0 has solution

wðxÞ ¼ A0e� kyj jx ð7:219Þ

Continuity in u leads to A = A′. Continuity in Bnormal lead to

½Ht
x þMt

x�x¼0� ¼ ½Ht
x þMt

x�x¼0þ : ð7:220Þ

x

y

z 

External
field

Fig. 7.16 Orientation of external magnetic field for Damon–Eshbach surface magnetostatic
waves

20R. Damon and J. Eshbach, J Phys. Chem. Solids, 19, 308 (1961).
21(v = −1 yields the bulk modes with x = c′[Hz

0(Hz
0 + M)]1/2 for no boundaries—magnetic

material everywhere—and c′[Hz
0(Hz

0 − M)]1/2 for the plate perpendicular to the z direction).
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Then since

Mt
x ¼ vHt

x þ v12H
t
y ¼ � v

@

@x
þ v12

@

@y

� �
/;

we find

v12ky ¼ ðvþ 2Þ ky
�� ��: ð7:221Þ

If ky = |ky|, v12 = v + 2, and if ky = −|ky| then v12 = −(v + 2). v12 = −(v + 2) leads
to

x ¼ c0ðH0
z þM=2Þ ð7:222Þ

with u(x, y) = A exp(|ky|x) exp(−i|ky|y) for x < 0 and ky = −|ky|.
We see that the wave travels in the −y direction for the external magnetic field

along z. The wave travels as a precessing magnetization but with amplitude damped
as −x increases. We neglect the v12 = v + 2 case as it leads to a negative frequency,
and we have also ignored a uniform precessional mode which is of not of interest
here.

7.2.4 Band Ferromagnetism (B)

Despite the obvious lack of rigor, we have justified qualitatively a Heisenberg
Hamiltonian for insulators and rare earths. But what can we do when we have
ferromagnetism in metals? It seems to be necessary to take into account the band
structure. This topic is very complicated, and only limited comments will be made
here. See Mattis [7.48], Morrish [68] and Yosida [7.72] for more discussion.

In a metal, one might hope that the electrons in unfilled core levels would
interact by the Heisenberg mechanism and thus produce ferromagnetism. We might
expect that the conduction process would be due to electrons in a much higher band
and that there would be little interaction between the ferromagnetic electrons and
conduction electrons. This is not always the case. The core levels may give rise to a
band that is so wide that the associated electrons must participate in the conduction
process. Alternatively, the core levels may be very tightly bound and have very
narrow bands. The core wave functions may interact so little that they could not
directly have the Heisenberg exchange between them. That such materials may still
be ferromagnetic indicates that other electrons such as the conduction electrons
must play some role (we have discussed an example in Sect. 7.2.1 under RKKY
Interaction). Obviously, a localized spin model cannot be good for all types of
ferromagnetism. If it were, the saturation magnetization per atom would be an
integral number of Bohr magnetons. This does not happen in Ni, Fe, and Co, where
the number of electrons per atom contributing to magnetic effects is not an integer.
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Despite the fact that one must use a band picture in describing the magnetic
properties of metals, it still appears that a Heisenberg Hamiltonian often leads to
predictions that are approximately experimentally verified. It is for this reason that
many believe the Heisenberg Hamiltonian description of magnetic materials is
much more general than the original derivation would suggest.

As an approach to a theory of ferromagnetism in metals it is worthwhile to
present one very simple band theory of ferromagnetism. We will discuss Stoner’s
theory, which is also known as the theory of collective electron ferromagnetism.
See Mattis [7.48, Vol. I, p. 250ff] and Herring [7.56, p. 256ff]. The two basic
assumptions of Stoner’s theory are:

1. The ferromagnetic electrons or holes are free-electron-like (at least near the
Fermi energy); hence their density of states has the form of a constant times
E1/2, and the energy is

E ¼ �h2k2

2m� : ð7:223aÞ

2. There is still assumed to be some sort of exchange interaction between the (free)
electrons. This interaction is assumed to be representable by a molecular field
M. If c is the molecular field constant, then the exchange interaction energy of
the electrons is (SI)

E ¼ 	l0cMl; ð7:223bÞ

where l represents the magnetic moment of the electrons, + indicates electrons
with spin parallel, and − indicates electrons with spin antiparallel to M.

The magnetization equals l (here the magnitude of the magnetic moment of the
electron = lB) times the magnitude of the number of parallel spin electrons per unit
volume minus the number of antiparallel spin electrons per unit volume. Using the
ideas of Sect. 3.2.2, we can write

M ¼ l
Z

f½ E � l0ð cMlÞ � f Eð þ l0cMlÞ�K
ffiffiffiffi
E

p

2V
dE

����
����; ð7:224Þ

where f is the Fermi function. The above is the basic equation of Stoner’s theory,
with the sum of the parallel and antiparallel electrons being constant. For T = 0 and
sufficiently strong exchange coupling the magnetization has as its saturation value
M = Nl. For sufficiently weak exchange coupling the magnetization vanishes. For
intermediate values of the exchange coupling the magnetization has intermediate
values. Deriving M as a function of temperature from the above equation is a little
tedious. The essential result is that the Stoner theory also allows the possibility of a
phase transition. The qualitative details of the M versus T curves do not differ
enormously from the Stoner theory to the Weiss theory. We develop one version of
the Stoner theory below.
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The Hubbard Model and the Mean-Field Approximation (A)
So far, except for Pauli paramagnetism, we have not considered the possibility of
nonlocalized electrons carrying a moment, which may contribute to the magneti-
zation. Consistent with the above, starting with the ideas of Pauli paramagnetism and
adding an exchange interaction leads us to the type of band ferromagnetism called
the Stoner model. Stoner’s model for band ferromagnetism is the nonlocalized mean
field counterpart of Weiss’ model for localized ferromagnetism. However, Stoner’s
model has neither the simplicity, nor the wide applicability of the Weiss approach.

Just as a mean-field approximation to the Heisenberg Hamiltonian gives us the
Weiss model, there exists another Hamiltonian called the Hubbard Hamiltonian,
whose mean-field approximation gives rise to a Stoner model. Also, just as the
Heisenberg Hamiltonian gives good insight to the origin of the Weiss molecular
field. So, the Hubbard model gives some physical insight concerning the exchange
field for the Stoner model.

The Hubbard Hamiltonian as originally introduced was intended to bridge the
gap between a localized and a mobile electron point of view. In general, in a
suitable limit, it can describe either case. If one does not go to the limit, it can (in a
sense) describe all cases in between. However, we will make a mean-field
approximation and this displays the band properties most effectively.

One can give a derivation, of sorts, of the Hubbard Hamiltonian. However, so
many assumptions are involved that it is often clearer just to write the Hamiltonian
down as an assumption. This is what we will do, but even so, one cannot solve it
exactly for cases that approach realism. Here we will solve it within the mean-field
approximation, and get, as we have mentioned, the Stoner model of itinerant
ferromagnetism.

In a common representation, the Hubbard Hamiltonian is

H ¼
X
k;r

eka
y
krakr þ

I
2

X
a;r

narna;�r; ð7:225Þ

where r labels the spin (up or down), k labels the band energies, and a labels the
lattice sites (we have assumed only one band—say an s-band—with ek being the

band energy for wave vector k). The ayka and akr are creation and annihilation
operators and I defines the interaction between electrons on the same site.

It is important to notice that the Hubbard Hamiltonian (as written above)
assumes the electron–electron interactions are only large when the electrons are on
the same site. A narrow band corresponds to localization of electrons. Thus, the
Hubbard Hamiltonian is often said to be a narrow s-band model. The nar are
Wannier site-occupation numbers. The relation between band and Wannier (site
localized) wave functions is given by the use of Fourier relations:

wk ¼
1ffiffiffiffi
N

p
X
Ra

exp �ik � Rað ÞW r � Rað Þ; ð7:226aÞ
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W r � Rað Þ ¼ 1ffiffiffiffi
N

p
X
k

exp ik � Rað Þwk rð Þ: ð7:226bÞ

Since the Bloch (or band) wave functions wk are orthogonal, it is straightforward to
show that the Wannier functions Wðr� RaÞ are also orthogonal. The Wannier
functions Wðr� RaÞ are localized about site a and, at least for narrow bands, are
well approximated by atomic wave functions.

Just as aykr creates an electron in the state wk [with spin r either + or " (up) or −#
(down)], so cyar (the site creation operator) creates an electron in the stateWðr� RaÞ,
again with the spin either up or down. Thus, occupation number operators for the
localized Wannier states are nyar ¼ cyarnar and consistent with (7.226a) the two sets
of annihilation operators are related by the Fourier transform

akr ¼ 1ffiffiffiffi
N

p
X
Ra

exp ik � Rað Þcar: ð7:227Þ

Substituting this into the Hubbard Hamiltonian and defining

Tab ¼ 1
N

X
k

ek exp ik � Ra � Rb
� �� 

; ð7:228Þ

we find

H ¼
X
a;b;r

Tabc
þ
brcar þ

I
2

X
a;r

nþ
arna�r: ð7:229Þ

This is the most common form for the Hubbard Hamiltonian. It is often further
assumed that Tab is only nonzero when a and b are nearest neighbors. The first term
then represents nearest-neighbor hopping.

Since the Hamiltonian is a many-electron Hamiltonian, it is not exactly solvable
for a general lattice. We solve it in the mean-field approximation and thus replace

I
2

X
a;r

narna;�r;

With

I
X
a;r

nar na;�r
��
;

where hna;�ri is the thermal average of na, −r. We also assume hna;�ri is
independent of site and so write it down as n−r in (7.230).
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Itinerant Ferromagnetism and the Stoner Model (Gaussian) (B)
The mean-field approximation has been criticized on the basis that it builds in the
possibility of an ordered ferromagnetic ground state regardless of whether the
Hubbard Hamiltonian exact solution for a given lattice would predict this.
Nevertheless, we continue, as we are more interested in the model we will even-
tually reach (the Stoner model) than in whether the theoretical underpinnings from
the Hubbard model are physical. The mean-field approximation to the Hubbard
model gives

H ¼
X
a;b;r

Tabc
y
brcar þ I

X
a;r

n�rnar ð7:230Þ

Actually, in the mean-field approximation, the band picture is more convenient to
use. Since we can show X

a

nar ¼
X
k

nkr;

the Hubbard model in the mean field can then be written as

H ¼
X
k;r

ek þ In�rð Þnkr: ð7:231Þ

The single-particle energies are given by

Ek;r ¼ ek þ In�r: ð7:232Þ

The average number of electrons per site n is less than or equal to 2 and n = n+ + n−,
while the magnetization per site n is M = (n+ − n−)lB, where lB is the Bohr
magneton.
Note: In order not to introduce another “−” sign, we will say “spin up” for now. This
really means “moment up” or spin down, since the electron has a negative charge.
Note n + (M/lB) = 2n+ and n − (M/lB) = 2n−. Thus, up to an additive constant

Ek	 ¼ ek þ I � M
2lb

 !
: ð7:233Þ

Note (7.233) is consistent with (7.223b). If we then define Heff = IM/2lB
2, we write

the following basic equations for the Stoner model:

M ¼ lB n" � n#
� �

; ð7:234Þ

Ek;r ¼ ek � lBHeff ; ð7:235Þ
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Heff ¼ IM
2l2B

; ð7:236Þ

nr ¼ 1
N

X
k

1
exp Ekr �Mlð Þ=kT½ � þ 1

; ð7:237Þ

n" þ n# ¼ n: ð7:238Þ

Although these equations are easy to write down, it is not easy to obtain simple
convenient solutions from them. As already noted, the Stoner model contains two
basic assumptions: (1) The electronic energy band in the metal is described by a
known ek. By standard means, one can then derive a density of states. For free

electrons, NðEÞ / ðEÞ1=2. (2) A molecular field approximately describes the effects
of the interactions and we assume Fermi-Dirac statistics can be used for the spin- up
and spin-down states. Much of the detail and even standard notation has been
presented by Wohlfarth [7.69]. See also references to Stoner’s work in the works by
Wohlfarth.

The only consistent way to determine ek and, hence, N(E) is to derive it from the
Hubbard Hamiltonian. However, following the usual Stoner model we will just use
an N(E) for free electrons.

The maximum saturation magnetization (moment per site) is M0 = lBn and the
actual magnetization is M = lB(n" − n#). For the Stoner model, a relative magne-
tization is defined below:

n ¼ M
M0

¼ n" � n#
n

: ð7:239Þ

Using (7.238) and (7.239), we have

nþ ¼ n" ¼ 1þ nð Þ n
2
; ð7:240aÞ

n� ¼ n# ¼ 1� nð Þ n
2
: ð7:240bÞ

It is also convenient to define a temperature h′, which measures the strength of the
exchange interaction

kh0n ¼ lBHeff : ð7:241Þ

We now suppose that the exchange energy is strong enough to cause an
imbalance in the number of spin-up and spin-down electrons. We can picture the
situation with constant Fermi energy l = EF (at T = 0) and a rigid shifting of the up
N+ and the down N− density states as shown in Fig. 7.17.
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The " represents the “spin-up” (moment up actually) band and the # the “spin-
down” band. The shading represents states filled with electrons. The exchange
energy causes the splitting of the two bands. We have pictured the density of states
by a curve that goes to zero at the top and bottom of the band unlike a free-electron
density of states that goes to zero only at the bottom.

At T = 0, we have

nþ ¼ 1þ nð Þ n
2
¼

Z
occ: states

Nþ Eð ÞdE; ð7:242aÞ

n� ¼ 1� nð Þ n
2
¼

Z
occ: states

N� Eð ÞdE: ð7:242bÞ

This can be easily worked out for free electrons if E = 0 at the bottom of both
bands,

N	 Eð Þ ¼ 1
2
Ntotal Eð Þ ¼ 1

4p2
2m

�h2

� �3=2 ffiffiffiffi
E

p
� N Eð Þ ð7:243Þ

We now derive conditions for which the magnetized state is stable at T = 0. If
we just use a single-electron picture and add up the single-electron energies, we
find, with the (−) band shifted up by Δ and the (+) band shifted down by Δ, for the
energy per site

Fig. 7.17 Density states imbalanced by exchange energy
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E ¼ n�Dþ
ZE�

F

0

EN Eð ÞdE � nþDþ
ZEþ

F

0

EN Eð ÞdE:

The terms involving Δ are the exchange energy. We can rewrite it from (7.234),
(7.239), and (7.241) as

�M
lB

D ¼ �nkh0n2:

However, just as in the Hartree–Fock analysis, this exchange term has double
counted the interaction energies (once as a source of the field and once as inter-
action with the field). Putting in a factor of 1/2, we finally have for the total energy

E ¼
ZEþ

F

0

EN Eð ÞdEþ
ZE�

F

0

EN Eð ÞdE � 1
2
nkh0n2: ð7:244Þ

Differentiating (d/dn) (7.242) and (7.244) and combining the results, we can show

1
n
dE
dn

¼ 1
2

Eþ
F � E�

F

� �� kh0n: ð7:245Þ

Differentiating (7.245) a second time and again using (7.242), we have

1
n
d2E

dn2
¼ n

4
1

N Eþ
Fð Þ þ

1
N E�

Fð Þ
� �

� kh0: ð7:246Þ

Setting dE/dn = 0, just gives the result that we already know

2kh0n ¼ Eþ
F � E�

F

� � ¼ 2lBHeff ¼ 2D:

Note if n = 0 (paramagnetism) and dE/dn = 0, while d2E/dn2 < 0 the paramag-
netism is unstable with respect to ferromagnetism. n = 0, dE/dn = 0 implies
EF
+ = EF

− and N(EF
−) = N(EF

+) = N(EF). So by (7.246) with d2E/dn2 � 0 we have

kh0 
 n
2N EFð Þ : ð7:247Þ

For a parabolic band with NðEÞ / ðEÞ1=2, this implies

kh0

EF

 2

3
: ð7:248Þ
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We now calculate the relative magnetization (n0) at absolute zero for a parabolic
band where N(E)= K(E)1/2 where K is a constant. From (7.242)

1þ n0ð Þ n
2
¼ 2

3
K Eþ

F

� �3=2
;

1� n0ð Þ n
2
¼ 2

3
K E�

F

� �3=2
:

Also

n ¼ 4
3
KE3=2

F :

Eliminating K and using Eþ
F � E�

F ¼ 2kh0n0; we have

kh0

EF
¼ 1

2n0
1þ n0ð Þ2=3� 1� n0ð Þ2=3

h i
; ð7:249Þ

which is valid for 0 � n0 � 1. The maximum n0 can be is 1 for which kh′/
EF = 2−1/3, and at the threshold for ferromagnetism n0 is 0. So, kh′/EF = 2/3 as
already predicted by the Stoner criterion.

Summary of Results at Absolute Zero
We have three ranges:

kh0

EF
\

2
3
¼ 0:667 and n0 ¼

M
nlB

¼ 0 ;

2
3
\

kh0

EF
\

1
21=3

¼ 0:794; 0\n0 ¼
M
nlB

\1 ;

kh0

EF
[

1
21=3

and n0 ¼
M
nlB

\1 :

The middle range, where 0 < n0 < 1 is special to Stoner ferromagnetism and not to
be found in the Weiss theory. This middle range is called “unstructured” or “weak”
ferromagnetism. It corresponds to having electrons in both " and # bands. For very
low, but not zero, temperatures, one can show for weak ferromagnetism that

M ¼ M0 � CT2; ð7:250Þ

where C is a constant. This is particularly easy to show for very weak ferromag-
netism, where n0 � 1 and is left as an exercise for the reader.

We now discuss the case of strong ferromagnetism where kh′/EF > 2−1/3. For
this case, n0 = 1, and n" = n, n# = 0. There is now a gap Eg between EF

+ and the
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bottom of the spin-down band. For this case, by considering thermal excitations to
the n# band, one can show at low temperature that

M ¼ M0 � K 00T3=2 exp �Eg=kT
� �

; ð7:251Þ

where K″ is a constant. However, spin-wave theory says M = M0− C′T3/2, where C′
is a constant, which agrees with low-temperature experiments. So, at best, (7.251) is
part of a correction to low-temperature spin-wave theory.

Within the context of the Stoner model, we also need to talk about exchange
enhancement of the paramagnetic susceptibility vP (gaussian units with l0 = 1)

M ¼ vPB
Total
eff ; ð7:252Þ

where M is the magnetization and vP the Pauli susceptibility, which for low tem-
peratures, has a very small aT2 term. It can be written

vP ¼ 2l2BN EFð Þ 1þ aT2� �
; ð7:253Þ

where N(E) is the density of states for one subband. Since

BTotal
eff ¼ Heff þB ¼ cBþB;

it is easy to show that (gaussian with B = H)

v ¼ M
B

¼ vP
1� cvP

; ð7:254Þ

where 1/(1 − cvP) is the exchange enhancement factor.
We can recover the Stoner criteria from this at T = 0 by noting that paramag-

netism is unstable if

v0Pc
 1: ð7:255Þ

By using c = kh′/nlB
2 and XP

0 = 2lB
2N(EF), (7.255) just gives the Stoner criteria. At

finite, but low temperatures where (a = −|a|)

vP ¼ v0P 1� jajT2� �
;

if we define

h2 ¼ cv0P � 1
cv0Pjaj

;

and suppose jajT2 � 1, it is easy to show
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v ¼ 1
cjaj

1

T2 � h2
:

Thus, as long as T ffi 0 we have a Curie–Weiss-like law:

v ¼ 1
2hcjaj

1
T � h

: ð7:256Þ

At very high temperatures, one can also show that an ordinary Curie–Weiss-like
law is obtained:

v ¼ nl2B
k

1
T � h

: ð7:257Þ

Summary Comments About the Stoner Model

1. The low-temperature results need to be augmented with spin waves. Although in
this book we only derive the results of spin waves for the localized model, it
turns out that spin waves can also be derived within the context of the itinerant
electron model.

2. Results near the Curie temperature are never qualitatively good in a mean-field
approximation because the mean-field approximation does not properly treat
fluctuations.

3. The Stoner model gives a simple explanation of why one can have a fractional
number of electrons contributing to the magnetization (the case of weak fer-
romagnetism where n0 = MT=0/nlB is between 0 and 1).

4. To apply these results to real materials, one usually needs to consider that there
are overlapping bands (e.g. both s and d bands), and not all bands necessarily
split into subbands. However, the Stoner model does seem to work for ZrZn2.

The Hubbard Model and the t-J Model
The Hubbard Model is used much more generally than in the discussion in this book.
The Hubbard Model is defined by (7.225). It is used for fermions and even bosons.
Generally, it is a model for describing Coulomb interactions (which are screened) in
narrow band materials. It has also been used for high temperature cuprates (copper
oxide materials) in high temperature superconductors. The important parameters are
J/t (defined below), and n the number of fermions per lattice site.

Phase diagrams as a function of variation of relevant parameters are of much
interest. Some even say the Hubbard model is as important for studying highly
correlated electronic systems as the Ising model has been for many statistical
mechanical systems.

The t-J model is derived from the Hubbard model and is also used for strongly
correlated electron materials especially some high temperature superconductor states
in doped antiferromagnets. Specifically, t is the hopping parameter, J is the coupling
parameter, defined by J = 4t2/U, where U defines the coulomb repulsion. Spalek
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derived this model; see reference below. Also, see the Wikipedia article for complete
definitions of relevant parameters. It should be mentioned that strongly correlated
electron systems are becomingmore andmore important in condensed matter physics
(See our short section, “Strongly correlated systems and heavy fermions). They deal
with situations in which single electrons, or even the idea of quasi-electrons is not
adequate. In fact, this means that the usual band theory of electronic structure has
inadequacies. As discussed elsewhere, a topological approach to some of the prob-
lems engendered here can be very helpful. In fact, condensed matter theory is
undergoing a revolution in its approach to new problems along this line.
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7.2.5 Magnetic Phase Transitions (A)

Simple ideas about spin waves break down as Tc is approached. We indicate here
one way of viewing magnetic phenomena near the T = Tc region. In this section we
will discuss magnetic phase transitions in which the magnetization (for ferro-
magnets with H = 0) goes continuously to zero as the critical temperature is
approached from below. Thus at the critical temperature (Curie temperature for a
ferromagnet) the ordered (ferromagnetic) phase goes over to the disordered (para-
magnetic) phase. This “smooth” transition from one phase (or more than one phase
in more general cases) to another is characteristic of the behavior of many sub-
stances near their critical temperature. In such continuous phase transitions there is
no latent heat and these phase transitions are called second-order phase transitions.
All second-order phase transitions show many similarities. We shall consider only
phase transitions in which there is no latent heat.

No complete explanation of the equilibrium properties of ferromagnets near the
magnetic critical temperature (Tc) has yet been given, although the renormalization
technique, referred to later, comes close. At temperatures well below Tc we know
that the method of spin waves often yields good results for describing the magnetic
behavior of the system. We know that high-temperature expansions of the partition
function yield good results. The Green function method provides results for
interesting physical quantities at all temperatures. However, the Green function
results (in a usable approximation) are not valid near Tc. Two methods (which are
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not as straightforward as one might like) have been used. These are the use of
scaling laws22 and the use of the Padé approximant.23 These methods often appear
to give good quantitative results without offering much in the way of qualitative
insight. Therefore we will not discuss them here. The renormalization group, ref-
erenced later, in some ways is a generalization of scaling laws. It seems to offer the
most in the way of understanding.

Since the region of lack of knowledge (around the phase transition) is only near
s = 1 (s = T/Tc, where Tc is the critical temperature) we could forget about the
region entirely (perhaps) if it were not for the fact that very unusual and surprising
results happen here. These results have to do with the behavior of the various
quantities as a function of temperature. For example, the Weiss theory predicts for

the (zero field) magnetization that M / ðTc � TÞþ 1=2 as T ! T�
c (the minus sign

means that we approach Tc from below), but experiment often seems to agree better

with M / ðTc � TÞþ 1=3. Similarly, the Weiss theory predicts for T > Tc that the
zero-field susceptibility behaves as v / ðT � TcÞ�1, whereas experiment for many

materials agrees with v / ðT � TcÞ�4=3 as T ! T þ
c . In fact, the Weiss theory fails

very seriously above Tc because it leaves out the short-range ordering of the spins.
Thus it predicts that the (magnetic contribution to the) specific heat should vanish
above Tc, whereas the zero-field magnetic specific heat does not so vanish. Using an
improved theory that puts in some short-range order above Tc modifies the specific
heat somewhat, but even these improved theories [92] do not fit experiment well
near Tc. Experiment appears to suggest (although this is not settled yet) that for
many materials C ffi lnjðT � TcÞj as T ! Tc

+ (the exact solution of the specific heat
of the two-dimensional Ising ferromagnet shows this type of divergence), and the
concept of short-range order is just not enough to account for this logarithmic or
near logarithmic divergence. Something must be missing. It appears that the
missing concept that is needed to correctly predict the “critical exponents” and/or
“critical divergences” is the concept of (anomalous) fluctuations. [The exponents
1/3 and 4/3 above are critical exponents, and it is possible to set up the formalism in
such a way that the logarithmic divergence is consistent with a certain critical
exponent being zero.] Fluctuations away from the thermodynamic equilibrium
appear to play a very dominant role in the behavior of thermodynamic functions
near the phase transition. Critical-point behavior is discussed in more detail in the
next section.

Additional insight into this behavior is given by the Landau theory (see Footnote
19). The Landau theory appears to be qualitatively correct but it does not predict
correctly the critical exponents.

22See Kadanoff et al. [7.35].
23See Patterson et al. [7.54] and references cited therein.
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The Landau Theory of Second-Order Phase Transitions (A)
The Landau theory,24 as mentioned, is only qualitatively valid but it does seem to
have great heuristic value. The ideas in the Landau theory are the same ideas that
are inherent in the Weiss molecular field theory of ferromagnetism (and other types
of mean field theories). The basic assumption of the Landau theory is that near the
critical temperature, thermodynamic functions can be expanded in a power series in
an order parameter. The thermodynamic function of interest to us will be the
(Gibbs) free energy and the order parameter we shall use will be the z-component of
the magnetization Mz for an isotropic ferromagnet (an external magnetic field hz in
the z-direction will be assumed).

Perhaps a word or two about the order parameter is appropriate. By order
parameter we mean (here) a long-range order parameter. If the external magnetic
field is negligible, then below the Curie temperature in a ferromagnet, there exists
long-range order and Mz 6¼ 0. Above the Curie temperature in a ferromagnet, there
exists no long-range order and Mz = 0. However, above the Curie temperature there
still exists short-range order (we have noted that we needed this to account for the
tail on the specific heat curve above Tc). Below Tc the magnetization decreases as
the temperature is increased. Therefore, below Tc there must exist some sort of
disorder, since the long-range order is maximum for T = 0. We could call this
disorder a short-range disorder since the nearest neighbor pair spin correlation
function hS1 � S2i decreases steadily as T increases in this region. The brackets here
denote the statistically averaged value as will be explained later, and 1 and 2 denote
neighboring sites. A decrease in hS1 � S2i implies that the motion of neighboring
spins becomes less correlated. This also relates to the idea of short-range order
because hS1 � S2i is not zero above Tc although it may be rather small compared to
the typical values it has below Tc. In order to complete our picture we need to think
about the concept of fluctuations. Since we are dealing with thermodynamic
functions in equilibrium, we might feel that fluctuations of a quantity (which are
deviations from the mean value of a quantity) would have little importance. It is true
as we go away from Tc that fluctuations become less important: However, near Tc
the fluctuations become so violent that they must be given special consideration.
We hope to explain why this is so by use of the Landau theory.

As mentioned, the basic assumption of the Landau theory is that the Gibbs free
energy is expandable in the order parameter (the magnetization) near the critical
temperature. This makes sense, since the overall magnetization (in zero external
field) of a ferromagnet goes smoothly to zero as T is approached. Actually, we will
deal with a magnetization Mz(r). That is, we want to view the ferromagnet as a
continuous function of position, that is, Mz(r) has to be the atomic magnetization
averaged over several neighboring atoms. We are using a classical picture and so
our results are not valid on an atomic scale. We have in mind that the net mag-
netization calculated by averaging Mz(r) over a great many lattice spacings could
still be zero even though Mz(r) might not be zero. This will allow for the possibility

24L. P. Kadanoff et al., Reviews of Modern Physics, 39 (2), 395 (1967).
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of spatial fluctuations. Rather than dealing with the free energy G, it is more
convenient to deal with the free energy density Gv(r), where

G �
Z

vol: of
crystal

GvðrÞd3r: ð7:258Þ

If Gv0(T) (with no magnetization) represents the free energy per unit volume of the
crystal, we can write the power series expansion as

GvðrÞ ¼ Gv0ðTÞ � l0MzðrÞHzðrÞþ aðTÞMzðrÞ2

þ bðTÞMzðrÞ4 þ cðTÞ$MzðrÞ � $MzðrÞ;
ð7:259Þ

where l0 is defined so that B = l0H. The second term is just the energy per unit
volume of the magnetic dipoles of the solid, in the external magnetic field Hz(r),
described on a continuum basis by Mz(r). The terms with coefficients a(T) and
b(T) arise in a straightforward fashion from the series expansion in powers of Mz.
There are no odd powers in Mz because in the absence of an external field, the free
energy does not depend on the sign of Mz. The last term is added because we expect
that spatial fluctuations should increase the energy. It is phenomenological.

We now use statistical mechanics to determine the most probable value of Mz.
This should occur when G is a minimum as a function of Mz. The variation in G as
Mz is varied can be determined from (7.258) and (7.259):

dG ¼
Z

fdGv0ðTÞþ ½�l0HzðrÞþ 2aðTÞMzðrÞþ 4bðTÞMzðrÞ3�dMzðrÞ
þ 2cðTÞ$MzðrÞ � $dMzðrÞgd3r :

ð7:260Þ

The first term in (7.260) must be zero since Gv0(T) does not involve Mz. The last
term in (7.260) can be simplified by using Gauss’ theorem:Z

surface

u$v � dS¼
Z

volume

$ � ðu$v)d3r

¼
Z

ur2vd3rþ
Z

$u � $vd3r:
ð7:261Þ

In (7.261) if we let u = dMz(r) and v = Mz(r) and then let the volume become
infinite so that the surface spanning the volume spreads out to infinity, we see that
the left-hand side of (7.261) (using physical boundary conditions) should be zero.
Thus we obtain by (7.261)
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Z
$MzðrÞ � $dMzðrÞd3r ¼ �

Z
dMzðrÞr2MzðrÞd3r: ð7:262Þ

Equation (7.260) can now be written as

dG ¼
Z

dMzðrÞf�l0HzðrÞþ 2aðTÞMzðrÞ

þ 4bðTÞ½MzðrÞ�3 � 2cðTÞr2MzðrÞgd3r:
ð7:263Þ

The most probable value of Mz(r) is a solution of dG = 0 for all dMz. Thus the most
probable value of Mz(r) is determined from

f2aðTÞþ 4bðTÞ½MzðrÞ�2 � 2cðTÞr2gMzðrÞ ¼ l0HzðrÞ: ð7:264Þ

To gain some insight into this equation it is useful to neglect the spatial fluc-
tuations in Mz at least for the moment. We will find that it is not valid to do this, but
we will learn a considerable amount about the system by neglecting the fluctua-
tions. Suppose we assume in addition that hz = 0, in which case Mz should be a
constant in space. If we neglect fluctuations, the most probable value of Mz is also
the mean value hMzi. Equation (7.264) is now approximated by

½2aðTÞþ 4bðTÞ Mzh i2� Mzh i ¼ 0: ð7:265Þ

There are several solutions to (7.265), but we will select just one that is in accord
with our customary ideas of second-order phase transitions. We can do this by
assuming b(T) > 0. We then have two solutions:

Mzh i ¼ 0; ð7:266aÞ

Mzh i ¼ 	 � aðTÞ
2bðTÞ

� �1=2

: ð7:266bÞ

We now see something rather interesting. If a(T) > 0, we have only one solution
and that solution is hMzi ¼ 0. On the other hand, if a(T) < 0 and if we do not want
the magnetization to vanish for all temperatures, then the only solution is

hMzi ¼ ½�aðTÞ=2bðTÞ�1=2. However, for a ferromagnetic to paramagnetic phase
transition, we must have hMzi 6¼ 0 for T < Tc and hMzi ¼ 0 for T > Tc. Thus we
have the natural identification of the a(T) > 0 solution with T > Tc and the a(T) < 0
solution with T < Tc. The whole spirit of the Landau theory is to do things as
simply as possible. Thus we assume (for T close to Tc)

aðTÞ ¼ KðT � TcÞ; ð7:267Þ
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where K is a constant. If we assume in addition that b is constant−and we might as

well assume c(T) = c = constant also—for T near Tc, we have hMzi / ðT � TcÞ1=2
for T < Tc, so we get the results of the Weiss theory (which is not quantitatively
valid near Tc).

The advantage we have gained is a rather abstract formulation of the Weiss
theory that can be used to learn other things. The first thing we learn is that the
Weiss theory results are consistent with neglecting fluctuations in the magnetiza-
tion. However, with hz = 0, with no fluctuations, and with a(T) = K(T − Tc), all of

which went into the Weiss theory result hMziaðT � TcÞ1=2, we see from (7.259) that
as T ! Tc, the free energy is fourth order in Mz. That is, the magnetization is large
enough to require fourth order terms without raising the free energy much. That is,
by assuming no fluctuations in the magnetization, we have found that they are likely
(because they would not change the energy much). This indicates that our
assumption of no fluctuations in Mz is not tenable. We would still tend to believe
that our assumptions on the coefficients have some validity, because they did give
the Weiss theory. We can say that even though our assumptions are not consistent,
they do seem to have some truth in them. In particular, the result that fluctuations
are very important near Tc is now accepted as being valid.

We will now return to the free energy expression and consider the possibility of
fluctuations—so that Mz(r) is certainly not to be regarded as spatially constant—but
we will retain the assumptions we have made about the a, b, and c coefficients.

To discuss how fluctuations enter into the Landau theory we need to introduce
two more concepts. One is the mean value of a quantity hAi obtained, for example,
from a canonical ensemble average. The other is a type of correlation function that
measures spatial correlation (at two different points) of deviations of A from its
mean value. If H is the Hamiltonian of the system, we define the equilibrium or
mean value of a quantity A by

AðrÞh i ¼ Tr½e�H=kTAðrÞ�
Trðe�H=kTÞ : ð7:268Þ

For the classical case which is of interest to us, Tr can be interpreted as an integral
over an appropriate phase space. We are doing a classical calculation but the quantum
notation is easier to write down.We want hAi to be regarded as a function of position.
Then we can choose A(r) = Sa, where Sa is the spin associated with site a. The spatial
dependence enters naturally through the dependence on site a.

The type of correlation function which is of interest to us here is

gAðr; r0Þ ¼ AðrÞ � AðrÞh i½ � Aðr0Þ � Aðr0Þh i½ �h i: ð7:269Þ

It should be clear that (7.269) is closely related to the concept of fluctuations. By a
fluctuation, we mean a fluctuation of a quantity from its thermodynamic mean
value. Hence ½AðrÞ � hAðrÞi� measures the size of the fluctuation at r, and gA(r, r′)
provides a measure of the spatial extent of a fluctuation of a given size; i.e., when
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|r − r′| is such that we are outside the fluctuation, then gA(r, r′) becomes very small.
Note the difference between the correlation function hS1 � S2i and the correlation
function gA(r, r′). If 1 and 2 denote neighboring spins, then hS1 � S2i measures the
correlation between neighboring spins and hence measures short-range order. On
the other hand, gA(r, r′) measures the correlation in the fluctuation of spins, located
at different positions (say if A = Sz), from their equilibrium value.

Correlation functions of the form gA(r, r′) are then clearly related to fluctuations.
Two questions remain. How can we calculate the correlation functions? What good
are they once they are calculated? We shall show below that even though we began
by assuming that the fluctuations are negligible, we can still calculate a first-order
correction to this assumption within the context of equilibrium statistical
mechanics. Secondly we will indicate that the thermodynamic quantities, specific
heat and magnetic susceptibility, can be evaluated directly from the correlation
functions. The connection between the fluctuations and equilibrium statistical
mechanics is provided by the theorem that we prove below.

Suppose

H0 ¼ H�
Z

AðrÞHV ðrÞd3r; ð7:270Þ

and define

AðrÞh iH¼
Tr½AðrÞe�H=kT �
Trðe�H=kTÞ : ð7:271Þ

We want to investigate the change in hAðrÞiH due to a change in H. That is, if we
have a variation in HV

HVðrÞ ! HV ðrÞþ dHV ðrÞ;

and hence a variation in the Hamiltonian

H ! H0 �
Z

AðrÞHVðrÞd3r �
Z

AðrÞdHV ðrÞd3r
� Hþ dH;

we want to be able to evaluate the resulting variation dhAðrÞi in dhAðrÞi, where

d AðrÞh i � AðrÞh iHþ dH� AðrÞh iH: ð7:272Þ

Writing (7.272) more explicitly we have

d AðrÞh i � Tr½AðrÞe�ðHþ dHÞ=kT �
Tr½e�ðHþ dHÞ=kT � � Tr½AðrÞe�H=kT �

Tr½e�H=kT � :
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Remember we are giving Tr a classical interpretation. For a rigorous quantum
mechanical development below we would need ½H; dH� ¼ 0. We can write

d AðrÞh i � Tr½AðrÞe�H=kT � � ð1=kTÞTr½AðrÞe�H=kTdH�
Trðe�H=kTÞ � ð1=kTÞTrðe�H=kTdHÞ � Tr½AðrÞe�H=kT �

Trðe�H=kTÞ

¼ Tr½AðrÞe�H=kT �
Trðe�H=kTÞ  1� ð1=kTÞTr½AðrÞe�H=kTdH�=Tr½AðrÞe�H=kT �

1� ð1=kTÞTrðe�H=kTdHÞ=Trðe�H=kTÞ � 1
� �

ffi Tr½AðrÞe�H=kT �
Trðe�H=kTÞ  1� 1

kT
Tr½AðrÞe�H=kTdH�
Tr½AðrÞe�H=kT �

� �
1þ 1

kT
Trðe�H=kTdHÞ
Trðe�H=kTÞ

� �
� 1

� �

ffi � 1
kT

Tr½AðrÞe�H=kT �
Trðe�H=kTÞ  Tr½AðrÞe�H=kTdH�

Tr½AðrÞe�H=kT � � 1
kT

Trðe�H=kTdHÞ
Trðe�H=kTÞ

� �

or

d AðrÞh i � � 1
kT

AðrÞdHh iþ 1
kT

AðrÞh i dHh i: ð7:273Þ

It should be noted here that brackets indicate canonical averaging with respect to
the old original Hamiltonian H.

Since

dH ¼ �
Z

Aðr0ÞdHVðr0Þd3r0;

we can write

d AðrÞh i � 1
kT

AðrÞ
Z

Aðr0ÞdHVðr0Þd3r0
� �

� 1
kT

AðrÞh i
Z

Aðr0ÞdHV ðr0Þd3r0
� �

¼ 1
kT

Z
AðrÞAðr0Þh i � AðrÞh i Aðr0Þh i½ �dHVðr0Þd3r0:

ð7:274Þ

It is easy to show that

AðrÞ � AðrÞh i½ � Aðr0Þ � Aðr0Þh i½ �h i ¼ AðrÞAðr0Þh i � AðrÞh i Aðr0Þh i: ð7:275Þ

Combining (7.274), (7.275), and the definition of correlation function yields

d AðrÞh i ¼ 1
kT

Z
gAðr; r0ÞdHVðr0Þd3r0: ð7:276Þ

Equation (7.276) shows how to relate the change in a thermodynamic variable to
the change or fluctuation in the Hamiltonian by use of the correlation function. We
will now show how (7.276) can be used to evaluate the correlation function itself.

7.2 Origin and Consequences of Magnetic Order 489



The physical situation of interest requires A(r) = Mz(r). The preceding theorem
fits our physical situation if we require that HV(r) = l0Hz(r). Equation (7.276) then
becomes

d MzðrÞh i ¼ 1
kT

Z
gMzðr; r0Þdðl0Hzðr0ÞÞd3r0; ð7:277Þ

where now gMzðr; r0Þ is the correlation function for the magnetization.
We can use (7.264) to link the variation of the magnetization with the variation

of the magnetic field. From (7.264) if we take the mean value and then perform a
variation having replaced Mz by hMzðrÞi, we obtain

½2aðTÞþ 12bðTÞ MzðrÞh i2�2cr2�d MzðrÞh i � dðl0HzðrÞÞ ¼ 0; ð7:278Þ

(note dhMzðrÞi3 ¼ 3hMzðrÞi2hMzðrÞiÞ. Note that in using (7.264) we left in the ∇2,
since we are considering the possibility of spatial fluctuations.

Combining (7.277) and (7.278), we can writeZ
f½2aðTÞþ 12bðTÞ MzðrÞh i2�2cr2�gMzðr; r0Þ � kTdðr� r0Þgdðl0HzðrÞÞd3r0

ð7:279Þ

In deriving (7.279), we have said nothing about the size of d Hz r0ð Þl0ð Þ and in fact
(7.279) must hold for arbitrary (small) d Hz r0ð Þl0ð Þ. Thus we see that the correlation
is determined by the equation

½2aðTÞþ 12bðTÞ MzðrÞh i2�2cr2�gMzðr; r0Þ ¼ kTdðr� r0Þ: ð7:280Þ

Let us write down (7.280) for the case of no external magnetic field. If T > Tc,
then we know that hMzðrÞi ¼ 0 and 2a(T) = 2 K(T − Tc). If T < Tc, a(T) is still
given by the same expression but

12bðTÞ MzðrÞh i2¼ �12b
aðTÞ
2bðTÞ ¼ �6aðTÞ:

Equation (7.280) then becomes

½2KðT � TcÞ � 2cr2�gMzðr; r0Þ ¼ kTdðr� r0Þ if T [ Tc; ð7:281aÞ

and

½2KðTc � TÞ � 2cr2�gMzðr; r0Þ ¼ kTdðr� r0Þ if T\Tc: ð7:281bÞ

Equations (7.281a) and (7.281b) can be solved; the result is
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gMzðr; r0Þ ¼
kT
8pc

expð�jr� r0j=RÞ
jðr� r0Þj : ð7:282Þ

where

R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

c
KðT � TcÞ

r
if T [ Tc ð7:283aÞ

and

R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

c
KðTc � TÞ

r
if T\Tc: ð7:283bÞ

R is called the characteristic range of the fluctuation and it has an important
physical interpretation. The size of a typical (coherent) fluctuation is the size of a
region over which gMz is everywhere appreciable in size. R is the same size as a
typical dimension of the typical fluctuation. Due to quantum effects, this devel-
opment is not valid unless jr� r0j � a, where a is the lattice spacing. Of course, it
is also invalid when T is very close to Tc.

Suppose we use (7.277) and choose dHz so that it is spatially constant. We then
obtain the magnetic susceptibility (gaussian units with l0 = 1)

v ¼ 1
kT

Z
gMzðr; r0Þd3r0: ð7:284Þ

Equation (7.284) clearly shows that if g grows in range as a result of increasing
fluctuation size, then so does v. In fact if we were to substitute (7.282) into (7.284)
and use the definitions (7.283a) and (7.283b) of R, we would find that as T ! Tc,
then v ! ∞. We shall not do this because the form of divergence of v as T ! Tc
predicted by (7.282) and (7.284) is not quantitatively correct.

We can also calculate the specific heat from the correlation. If (E) is the ther-
modynamic energy of a system and H the Hamiltonian, we have

hEi ¼ Trðe�H=kTHÞ
Trðe�H=kTÞ :

Thus the total specific heat at zero magnetic field is

CT
0 ¼ @hEi

@T
¼ Trðe�H=kTH2Þ

Trðe�H=kTÞ
1
kT2 �

Trðe�H=kTHÞTrðe�H=kTHÞ
½Trðe�H=kTÞ�2

1
kT2 ;

where the subscript on CT
0 means to let the magnetic field go to zero. Thus
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CT
0 ¼ 1

kT2 ðhE2i � hEi2Þ: ð7:285Þ

If H′V(r) is the Hamiltonian density,

hEi ¼
Z

H0
Vðr0Þd3r0

� �
¼
Z

H0
V ðr0Þ

� �
d3r0

¼
Z

H0
V ðr0Þd3r0

� �
2

� �
¼

Z Z
H0

VðrÞH0
V ðr0Þd3r d3r0

� �

¼
Z Z

H0
V ðrÞH0

V ðr0Þ
� �

d3rd3r0:

Thus by (7.285)

CT
0 ¼ 1

kT2

Z Z
½hH0

V ðrÞH0
Vðr0Þi � hH0

V ðrÞihH0
Vðr0Þi�d3r0

� �
d3r

or

CT
0 ¼ 1

kT2

Z Z
½hH0

V ðrÞ � hH0
VðrÞiihH0

V ðr0Þ � hH0
Vðr0Þii�d3r0

� �
d3r

In the usual case the second integral over r′ is independent of r (since the correlation
function depends only on r − r′ and the limits of the integral are at ∞), and thus if
C0 is the specific heat per unit volume, we have

C0 ¼ 1
kT2

Z
gH0

V
ðr; r0Þd3r0: ð7:286Þ

From (7.286) we can show that an increase in range of gH0
V
ðr; r0Þ as T ! Tc, due to

the fluctuations [compare (7.282)] can produce a singularity in C0 as T ! Tc. In
summary, the Landau theory has shown us that fluctuations are very important near
Tc and that the presence of these fluctuations can cause singularities in C0 and v.
These results are sometimes referred to as the examples of the fluctuation-
dissipation theorem.25

Critical Exponents and Failures of Mean-Field Theory (B)
Although mean-field theory has been extraordinarily useful and in fact, is still the
“workhorse” of theories of magnetism (as well as theories of the thermodynamics
behavior of other types of systems that show phase transitions), it does suffer from
several problems. Some of these problems have become better understood in recent
years through studies of critical phenomena, particularly in magnetic materials,

25H. Callen and T. Welton, Phys. Rev. 83, 34 (1951).
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although the studies of “critical exponents” relates to a much broader set of
materials than just magnets as referred to above. It is helpful now to define some
quantities and to introduce some concepts.

A sensitive test of mean-field theory is in predicting critical exponents, which
define the nature of the singularities of thermodynamic variables at critical points of
second-order phase transitions. For example,

/� Tc � T
Tc

����
����

b

and n ¼ Tc � T
Tc

����
����

�v

;

for T < Tc, where b, v are critical exponents, / is the order parameter, which for
ferromagnets is the average magnetization M and n is the correlation length. In
magnetic systems, the correlation length measures the characteristic length over
which the spins are ordered, and we note that it diverges as the Curie temperature Tc
is approached. In general, the order parameter / is just some quantity whose value
changes from disordered phases (where it may be zero) to ordered phases (where it
is nonzero). Note for ferromagnets that / is zero in the disordered paramagnetic
phase and nonzero in the ordered ferromagnetic situation.

Mean-field theory can be quite good above an upper critical (spatial) dimension
where by definition it gives the correct value of the critical exponents. Below the
upper critical dimension (UCD), thermodynamic fluctuations become very impor-
tant, and mean-field theory has problems. In particular, it gives incorrect critical
exponents. There also exists a lower critical dimension (LCD) for which these
fluctuations become so important that the system does not even order (by definition
of the LCD). Here, mean-field theory can give qualitatively incorrect results by
predicting the existence of an ordered phase. The lower critical dimension is the
largest dimension for which long-range order is not possible. In connection with
these ideas, the notion of a universality class has also been recognized. Systems
with the same spatial dimension d and the same dimension of the order parameter
D are usually in the same universality class. Range and symmetry of the interaction
potential can also play a role in determining the universality class. Quite dissimilar
systems in the same universality class will, by definition, exhibit the same critical
exponents. Of course, the order parameter itself as well as the critical temperature
Tc, may be quite different for systems in the same universality class. In this con-
nection, one also needs to discuss concepts like the renormalization group, but this
would take us too far afield. Reference can be made to excellent statistical
mechanics books like the one by Huang.26

26See Huang [7.32, p. 441ff]. For clarity, perhaps we should also remind the reader of some
definitions.
1. Phase Transition. This can involve a change of structure, magnetization (e.g. from zero to a
finite value), or a vanishing of electrical resistivity with changes of temperature or pressure or other
relevant state variables. By the Ehrenfest criterion, phase transitions are of the nth order if the
(n − 1)st order derivatives of the Gibbs free energy are continuous without the nth order
derivatives being continuous. For example, for a typical first order fluid system where a liquid
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Critical exponents for magnetic systems have been defined in the following way.
First, we define a dimensionless temperature that is small when we are near the
critical temperature.

t ¼ T � TCð Þ=TC:

We assume B = 0 and define critical exponents by the behavior of physical
quantities such as M:

Magnetization (order parameter): M� tj jb:
Magnetic susceptibility: v� tj j�c:
Specific heat: C� tj j�a:

There are other critical exponents, such as the one for correlation length (as
noted above), but this is all we wish to consider here. Similar critical exponents are
defined for other systems, such as fluid systems. When proper analogies are made,
if one stays within the same universality class, the critical exponents have the same
value. Under rather general conditions, several inequalities have been derived for
critical exponents. For example, the Rushbrooke inequality is

aþ 2bþ c
 2:

It has been proposed that this relation also holds as an equality. For mean-field
theory a = 0, b = 1/2, and c ¼ 1. Thus, the Rushbrooke relation is satisfied as an
equality. However, except for a being zero, the critical exponents are wrong. For
ferromagnets belonging to the most common universality class, experiment, as well
as better calculations than mean field, suggest, as we have mentioned (Sect. 7.2.5),

boils, this leads to a latent heat. A typical magnetic second order transition as T is varied with the
magnetic field zero has continuous first order derivatives and the magnetization continuously rises
from zero at the transition point, which in this case is also a critical point. It is helpful to look at
phase diagrams when discussing these matters.

2. Critical Point. A critical point is a definite temperature, pressure, and density of a fluid (or other
state variable, e.g., for a magnetic system, one uses temperature, magnetic field, and magnetiza-
tion) at which a phase transition happens without a discontinuous change in these state variables.

In addition, there are new terms that have appeared such as multicritical point. One example of
a multicritical point is a tricritical point where three second order lines meet at a first order line.
3. Quantum Phase Transitions (A). A quantum phase transition is one that occurs at absolute
zero. Classical phase transitions occur because of thermal fluctuations, whereas quantum phase
transitions happen due to quantum fluctuations as required by the Heisenberg uncertainty principle.
Suppose x is a characteristic frequency of a quantum oscillation, then if �hx is less than kT,
classical phase transitions can happen in appropriate systems. The effects of quantum critical
behavior will only be seen if the inequality goes the other way around. If one is very near
absolute zero then as an external parameter (such as chemical composition, pressure, or mag-
netic field) is varied, some systems will show quantum critical behavior as one moves through
the quantum critical point. Quantum criticality was first seen in some ferroelectrics. Other
examples include Cobalt niobate and considerable discussion is given in the reference: Subir
Sachdev and Bernhard Keimer, “Quantum criticality,” Physics Today, pp. 29–35, Feb. 2011.
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b ¼ 1=3, and c ¼ 4=3. Note that the Rushbrooke equality is still satisfied with
a = 0. The most basic problem mean-field theory has is that it just does not properly
treat fluctuations nor does it properly treat a related aspect concerning short-range
order. It must include these for agreement with experiment. As already indicated,
short-range correlation gives a tail on the specific heat above Tc, while the
mean-field approximation gives none.

The mean-field approximation also fails as T ! 0 as we have discussed. An
elementary calculation from the properties of the Brillouin function shows that
(s = 1/2)

M ¼ M0 1� 2 exp �2TC=Tð Þ½ �;

whereas for typical ferromagnets, experiment agrees better with

M ¼ M0 1� aT3=2
	 


:

As we have discussed, this dependence on temperature can be derived from spin
wave theory.

Although considerable calculation progress has been made by high-tem- perature
series expansions plus Padé Approximants, by scaling, and renormalization group
arguments, most of this is beyond the scope of this book. Again, Huang’s excellent
text can be consulted (see Footnote 21). Tables 7.4 and 7.5 summarize some of the
results.

Table 7.4 Summary of mean-field theory

Failures Successes

Neglects spin-wave excitations near
absolute zero

Often used to predict the type of magnetic
structure to be expected above the lower
critical dimension (ferromagnetism,
ferrimagnetism, antiferromagnetism,
helimagnetism, etc.)

Near the critical temperature, it does not
give proper critical exponents if it is below
the upper critical dimension

Predicts a phase transition, which certainly
will occur if above the lower critical
dimension

May predict a phase transition where there
is none if below the lower critical
dimension. For example, a one-dimension
isotropic Heisenberg magnet would be
predicted to order at a finite temperature,
which it does not

Gives at least a qualitative estimate of the
values of thermodynamic quantities, as
well as the critical exponents—when used
appropriately

Predicts no tail in the specific heat for
typical magnets

Serves as the basis for improved
calculations
The higher the spatial dimension, the better
it is
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Two-Dimensional Structures (A)
Lower-dimensional structures are no longer of purely theoretical interest. One way
to realize two dimensions is with thin films. Suppose the thin film is of thickness
t and suppose the correlation length of the quantity of interest is c. When the
thickness is much less than the correlation length (t � c), the film will behave two
dimensionally and when t � c the film will behave as a bulk threedimensional
material. If there is a critical point, since c grows without bound as the critical point
is approached, a thin film will behave two-dimensionally near the two-dimensional
critical point. Another way to have two-dimensional behavior is in layered magnetic
materials in which the coupling between magnetic layers, of spacing d, is weak.
Then when c � d, all coupling between the layers can be neglected and one sees
2D behavior, whereas if c � d, then interlayer coupling can no longer be neglected.
This means with magnetic layers, a twodimensional critical point will be modified
by 3D behavior near the critical temperature.

In this chapter we are mainly concerned with materials for which the threedi-
mensional isotropic systems are a fairly good or at least qualitative model.
However, it is interesting that two-dimensional isotropic Heisenberg systems can be
shown to have no spontaneous (sublattice—for antiferromagnets) magnetization
[7.49]. On the other hand, it can be shown [7.26] that the highly anisotropic
two-dimensional Ising ferromagnet (defined by the Hamiltonian H /Pi;jðnn:Þ r

z
ir

z
j ,

where the rs refer to Pauli spin matrices, the i and j refer to lattice sites) must show
spontaneous magnetization.

We have just mentioned the two-dimensional Heisenberg model in connection
with the Mermin–Wagner theorem. The planar Heisenberg model is in some ways
even more interesting. It serves as a model for superfluid helium films and predicts
the long-range order is destroyed by formation of vortices [7.40].

Another common way to produce two-dimensional behavior is in an electronic
inversion layer in a semiconductor. This is important in semiconductor devices.

Spontaneously Broken Symmetry (A)
A Heisenberg Hamiltonian is invariant under rotations, so the ensemble average of
the magnetization is zero. For every M there is a −M of the same energy. Physically
this answer is not correct since magnets do magnetize. The symmetry is sponta-
neously broken when the ground state does not have the same symmetry as the
Hamiltonian, The symmetry is recovered by having degenerate ground states whose
totality recovers the rotational symmetry. Once the magnet magnetizes, however, it
does not go to another degenerate state because all the magnets would have to rotate
spontaneously by the same amount. The probability for this to happen is negligible

Table 7.5 Critical exponents (calculated)

a b c

Mean field 0 0.5 1
Ising (3D) 0.11 0.32 1.24
Heisenberg (3D) −0.12 0.36 1.39
Adapted with permission from Chaikin PM and Lubensky TC,
Principles of Condensed Matter Physics, Cambridge University
Press, 1995, p. 231
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for a realistic system. Quantum mechanically in the infinite limit, each ground state
generates a separate Hilbert space and transitions between them are forbidden—a
super selection rule. Because of the symmetry there are excited states that are
wave-like in the sense that the local ground state changes slowly over space (as in a
wave). These are the Goldstone excitations and they are orthogonal to any ground
state. Actually each of the (infinite) number of ground states is orthogonal to each
other: The concept of spontaneously broken symmetry is much more general than
just for magnets. For ferromagnets the rotational symmetry is broken and spin
waves or magnons appear. Other examples include crystals (translation symmetry is
broken and phonons appear), and superconductors (local gauge symmetry is broken
and a Higgs mode appears—this is related to the Meissner effect—see Chap. 8).27

7.3 Magnetic Domains and Magnetic Materials (B)

7.3.1 Origin of Domains and General Comments28 (B)

Because of their great practical importance, a short discussion of domains is merited
even though we are primarily interested in what happens in a single domain.

We want to address the following questions: What are the domains? Why do they
form? Why are they important? What are domain walls? How can we analyze the
structure of domains, and domain walls? Is there more than one kind of domain wall?

Magnetic domains are small regions in which the atomic magnetic moments are
lined up. For a given temperature, the magnetization is saturated in a single domain,
but ferromagnets are normally divided into regions with different domains mag-
netized in different directions.

When a ferromagnet splits into domains, it does so in order to lower its free
energy. However, the free energy and the internal energy differ by TS and if T is
well below the Curie temperature, TS is small since also the entropy S is small
because the order is high. Here we will neglect the difference between the internal
energy and the free energy. There are several contributions to the internal energy
that we will discuss presently.

Magnetic domains can explain why the overall magnetization can vanish even if
we are well below the Curie temperature Tc. In a single domain the M versus
T curve looks somewhat like Fig. 7.18.

For reference, the Curie temperature of iron is 1043 K and its saturation mag-
netization MS is 1707 G. But when there are several domains, they can point in
different directions so the overall magnetization can attain any value from zero up to

27See Weinberg [7.67]. A fun introduction to spontaneously broken symmetry, renormalization
(p. 665), renormalization group (p. 415), order parameters (p. 416), and much, much more can be
found in Kerson Huang, Fundamental Forces of Nature, The Story of Gauge Fields, World
Scientific, New Jersey, 2007.
28More Details Can Be Found in Morrish [68] and Chikazumi [7.11].
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saturation magnetization. In a magnetic field, the domains can change in size (with
those that are energetically preferred growing). Thus the phenomena of hysteresis,
which we sketch in Fig. 7.19 starting from the ideal demagnetized state, can be
understood (see Section Hysteresis, Remanence, and Coercive Porce).

In order for some domains to grow at the expense of others, the domain walls
separating the two regionsmustmove. Domainwalls are transition regions that separate
adjacent regions magnetized in different directions. The idea is shown in Fig. 7.20.

Fig. 7.18 M versus T curve for a single magnetic domain

Fig. 7.19 M versus H curve showing magnetic hysteresis

domains

Fig. 7.20 Two magnetic regions (domains) separated by a domain wall, where size is
exaggerated
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We now want to analyze the four types of energy involved in domain formation.
We consider (1) exchange energy, (2) magnetostatic energy, (3) anisotropy energy,
and (4) magnetostrictive energy. Domain structures with the lower sum of these
energies are the most stable.

Exchange Energy (B)
We have seen (see Section The Heisenberg Hamiltonian and its Relationship to the
Weiss Mean-Field Theory) that quantum mechanics indicates that there may be an
interaction energy between atomic spins Si that is proportional to the scalar product
of the spins. From this, one obtains the Heisenberg Hamiltonian describing the
interaction energy. Assuming J is the proportionality constant (called the exchange
integral) and that only nearest-neighbor (nn) interactions need be considered, the
Heisenberg Hamiltonian becomes

H ¼ �J
X
i;j
ðnnÞ

Si � Sj; ð7:287Þ

where the spin Si for atom i when averaged over many neighboring spins gives us
the local magnetization. We now make a classical continuum approximation. For
the interaction energy of two spins we write:

Uij ¼ �2JSi � Sj : ð7:288Þ

Assuming ui is a unit vector in the direction of Si we have since Si = Sui:

Uij ¼ �2JS2ui � uj: ð7:289Þ

If rji is the vector connecting spins i and j, then

uj ¼ ui þ rji � $uð Þi ; ð7:290Þ

treating u as a continuous function r, u = u(r). Then since

ðuj � uiÞ2 ¼ u2j þ u2i � 2ui � uj ¼ 2ð1� ui � ujÞ ; ð7:291Þ

we have, neglecting an additive constant that is independent of the directions of ut
and uj,

Uij ¼ þ JS2ðuj � uiÞ2 :

So

Uij ¼ þ JS2ðrji � $uÞ2 : ð7:292Þ

Thus the total interaction energy is
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U ¼ 1
2

X
Uij ¼ JS2

2

X
i; j

ðrji � $uÞ2; ð7:293Þ

where we have inserted a 1/2 so as not to count bonds twice. If

u ¼ a1iþ a2jþ a3k ;

where the ai, are the direction cosines, for rji = ai, for example:

X
	ai

ðrji � $uÞ2 ¼ 2a2
@a1
@x

iþ @a2
@x

jþ @a3
@x

k
� �2

¼ 2a2
@a1
@x

� �2

þ @a2
@x

� �2

þ @a3
@x

� �2
" #

:

ð7:294Þ

For a simple cubic lattice where we must also include neighbors at
rji = ±aj and ±ak, we have29:

U ¼ JS2

a

X
i all spinsð Þ

$a1ð Þ2 þ $a2ð Þ2 þ $a3ð Þ2
h i

i
a3 ; ð7:295Þ

or in the continuum approximation:

U ¼ JS2

a

Z
$a1ð Þ2 þ $a2ð Þ2 þ $a3ð Þ2

h i
dV : ð7:296Þ

For variation of M only in the y direction, and using spherical coordinates r, h, u, a
little algebra shows that (M = M(r, h, u))

Energy
Volume

¼ A
@h
@y

� �2

þ sin2 h
@u
@y

� �2
)(
; ð7:297Þ

where A = JS2/a and has the following values for other cubic structures (Afcc = 4A,
and Abcc = 2A). We have treated the exchange energy first because it is this
interaction that causes the material to magnetize.

Magnetostatic Energy (B)
We have already discussed magnetostatics in Sect. 7.2.2. Here we want to mention
that along with the exchange interaction it is one of the two primary interactions of

29An alternative derivation is based on writing U /PliBi, where li is the magnetic moment /
Si and Bi is the effective exchange field /PjðnnÞ JijSj, treating the Sj in a continuum spatial
approximation and expanding Sj in a Taylor series (Sj = Si + a∂Si /∂x + etc. to 2nd order). See
(7.375) and following.
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interest in magnetism. It is the driving mechanism for the formation of domains.
Also, at very long wavelengths, as we have mentioned, it can be the causative factor
in spin-wave motion (magnetostatic spin waves). A review of magnetostatic fields
of relevance for applications is given by Bertram [7.6].

Anisotropy (B)
Because of various energy-coupling mechanisms, certain magnetic directions are
favored over others. As discussed in Sect. 7.2.2, the physical origin of crystalline
anisotropy is a rather complicated subject. As discussed there, a partial understand-
ing, in some materials, relates it to spin-orbit coupling in which the orbital motion is
coupled to the lattice. Anisotropy can also be caused by the shape of the sample or the
stress it is subjected to, but these two types are not called crystalline anisotropy.
Regardless of the physical origin, a ferromagnetic material will have preferred (least
energy) directions of magnetization. For uniaxial symmetry, we can write

Hanis ¼ �Da

X
i

k � Sið Þ2; ð7:298Þ

where k is the unit vector along the axis of symmetry. If we let K1 = DaS
2/a3, where

a is the atom-atom spacing, then since sin2h = 1 − cos2h and neglecting unim-
portant additive terms, the anisotropy energy per unit volume is

uanis ¼ K1 sin2 h : ð7:299Þ

Also, for proper choice of K1 this may describe hexagonal crystals, e.g. cobalt
(hcp) where h is the angle between M and the hexagonal axis. Figure 7.21 shows
some data related to anisotropy. Note Fe with a bcc structure has easy directions in
h100i and Ni with fcc has easy directions in h111i.

Fig. 7.21 Magnetization curves showing anisotropy for single crystals of iron with 3.85%
silicon. [Reprinted with permission from Williams HJ, Phys Rev 52(7), 747 (1937).
Copyright 1937 by the American Physical Society.]
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Wall Energy (B)
The wall energy is an additive combination of exchange and anisotropy energy,
which are independent. Exchange favors parallel moments and a wide wall.
Anisotropy prefers moments along an easy direction and a narrow wall. Minimizing
the sum of the two determines the width of the wall. Consider a uniaxial ferro-
magnet with the magnetization varying only in the y direction. If the energy per unit
volume is (using spherical coordinates, see, e.g., (7.297) and Fig. 7.27)

w ¼ A
@h
@y

� �2

þ sin h
@u
@y

� �2
" #

þK1 sin2 h ; ð7:300Þ

where

A ¼ a1
JS2

a
and K1 ¼ j1

DaS2

a3
; ð7:301Þ

and a1, j1 differ for different crystal structures, but both are approximately unity.
For simplicity in what follows we will set a1 and j1 equal to one.

Using d
R
wdy ¼ 0 we get two Euler–Lagrange equations. Inserting (7.300) in

the Euler–Lagrange equations, we get the results indicated by the arrows.

@w
@h

� d
dy

@w

@ @h
@y

¼ 0 ! d
dh

K1 sin2 h ¼ 2A
d
dy

@h
dy

; ð7:302Þ

@w
@u

� d
dy

@w

@ @u
@y

¼ 0 ! 2
d
dy

sin2 h
@u
@y

� �
¼ 0: ð7:303Þ

For Bloch walls by definition, u ¼ 0, which is a possible solution. The first (7.302)
has a first integral of

ffiffiffiffiffiffiffiffiffiffiffi
A
K1

dh
dy

s
¼ sin h ; ð7:304Þ

which integrates in turn to

h ¼ 2 arctanðey=D0Þ; D0 ¼
ffiffiffiffiffiffi
A
K1

r
: ð7:305Þ

The effective wall width is obtained by approximating dh=dy by its value at the
midpoint of the wall, where h ¼ p=2.
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dh
dy

¼
ffiffiffiffiffiffi
K1

A

r
ffi 1

a

ffiffiffiffi
D
J

r
; ð7:306Þ

so the wall width/a is

wall width
a

¼ p

ffiffiffiffi
J
D

r
:

One can also show the wall width per unit area (perpendicular to the y-axis in
Fig. 7.27) is 4(AK1)

1/2. For Iron, the wall energy per unit area is of order 1 erg/cm2,
and the wall width is of order 500 Å.

Magnetostrictive Energy (B)
Magnetostriction is the variation of size of a magnetic material when its magneti-
zation varies. Magnetostriction implies a coupling between elastic and magnetic
effects caused by the interaction of atomic magnetic moments and the lattice. The
magnetostrictive coefficient k is dl/l, where dl is the change in length associated
with the magnetization change. In general k can be either sign and is typically of the
order of 10−5 or so. There may also be a change in volume due to changing
magnetization. In any case the deformation is caused by a lowering of the energy.

Magnetostriction is a very complex matter and a detailed description is really
outside the scope of this book. We needed to mention it because it has a bearing on
domains. See, e.g., Gibbs [7.24].

Formation of Magnetic Domains (B)
We now give a qualitative account of the formation of domains. Consider a cubic
material, originally magnetized along an easy direction as shown in Fig. 7.22.
Because the magnetization M and demagnetizing fields have opposite directions
(7.156), this configuration has large magnetostatic energy. The magnetostatic
energy can be reduced if the material splits into domains as shown in Fig. 7.23.

Fig. 7.22 Magnetic domain formation within a material
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Since the density of surface poles is +M � n where nM is the outward normal, at
an interface the net magnetic charge per unit area is

M2 �M1ð Þ � nM2 ;

where nM2 is a unit vector pointing from region 1 to region 2. Thus when M � n is
continuous, there are no demagnetizing fields (assuming also M is uniform in the
interior). Thus (for typical magnetic materials with cubic symmetry) the magne-
tostatic energy can be further reduced by forming domains of closure, as shown in
Fig. 7.24. The overall magneto strictive and strain energy can be reduced by the
formation of more domains of closure (see Fig. 7.25). That is, this splitting into
smaller domains reduces the extra energy caused by the internal strain brought
about by the spontaneous strain in the direction of magnetization. This process will
not continue forever because of the increase in the wall energy (due to exchange
and anisotropy). An actual material will of course have many imperfections as well
as other complications that will cause irregularities in the domain structure.

Fig. 7.23 Magnetic-domain splitting within a material

Fig. 7.24 Formation of magnetic domains of closure

Fig. 7.25 Formation of more magnetic domains of closure
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Hysteresis, Remanence, and Coercive Force (B)
Consider an unmagnetized ferromagnet well below its Curie temperature. We can
understand the material being unmagnetized if it consists of a large number of
domains, each of which is spontaneously magnetized, but that have different
directions of magnetization so the net magnetization averages to zero.

The magnetization changes from one domain to another through thin but
finite-width domain walls. Typically, domain walls are of thickness of about
10−7 m or some hundreds of atomic spacings, while the sides of the domains are a
few micrometers and larger.

The hysteresis loop can be visualized by plotting M versus H or B ¼
l0ðHþMÞ ðin SIÞ ¼ Hþ 4pM (in Gaussian units) (see Fig. 7.26). The virgin
curve is obtained by starting in an ideal demagnetized state in which one is at the
absolute minimum of energy.

When an external field is turned on, “favorable” domains have lower energy than
“unfavorable” ones, and thus the favorable ones grow at the expense of the unfa-
vorable ones.

Imperfections determine the properties of the hysteresis loop. Moving a domain
wall generally increases the energy of a ferromagnetic material due to a complex
combination of interactions of the domain wall with dislocations, grain boundaries,
or other kinds of defects. Generally the first part of the virgin curve is reversible, but
as the walls sweep past defects one enters an irreversible region, then in the final
approach to saturation, one generally has some rotation of domains. As H is
reduced to zero, one is left with a remanent magnetization (in a metastable state

Fig. 7.26 Magnetic hysteresis loop identifying the virgin curve
Hc = coercive “force”
BR = remanence
Ms = [(B − H)/4p]H ! ∞ = saturation magnetization
MR = BR/4p = remanent magnetization
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with a “local” rather than absolute minimum of energy) at H = 0 and B only goes to
zero at −Hc, the coercive “force”.30 For permanent magnetic materials, MR and Hc

should be as large as possible. On the other hand, soft magnets will have very low
coercivity. The hysteresis and domain properties of magnetic materials are of vast
technological importance, but a detailed discussion would take us too far afield. See
Cullity [7.16].

Néel and Bloch Walls (B)
Figure 7.27 provides a convenient way to distinguish Bloch and Néel walls. Bloch
walls have u = 0, while Néel walls have u = p/2. Néel walls occur in thin films of
materials such as permalloy in order to reduce surface magnetostatic energy as
suggested by Fig. 7.28. There are many other complexities involved in domainwall
structures. See, e.g., Malozemoff and Slonczewski [7.44].

Methods of Observing Domains (EE, MS)
We briefly summarize five methods.

1. Bitter patterns—a colloidal suspension of particles of magnetite is placed on a
polished surface of the magnetic material to be examined. The particles are
attracted to regions of nonuniform magnetization (the walls) and hence the walls
are readily seen by a microscope.

Fig. 7.27 Bloch wall: u = 0; Néel wall: u = p/2

Fig. 7.28 Néel wall in thin film

30Some authors define Hc as the field that reduces M to zero.
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2. Faraday and Kerr effects—these involve rotation of the plane of polarization on
transmission and reflection (respectively) from magnetic substances.

3. Neutrons—since neutrons have magnetic moments they experience interaction
with the internal magnetization and its direction, see Bacon GE, “Neutron
Diffraction,” Oxford 1962 (p. 355ff).

4. Transmission electron microscopy (TEM)—Moving electrons are influenced by
forces due to internal magnetic fields.

5. Scanning electron microscopy (SEM)—Moving secondary electrons sample
internal magnetic fields.

7.3.2 Magnetic Materials (EE, MS)

Some Representative Magnetic Materials (EE, MS)
See Tables 7.6, 7.7 and 7.8. We should emphasize that these classes do not exhaust
the types of magnetic order that one can find. At suitably low temperatures the
heavy rare earths may show helical or conical order, and there are other types of
order, as for example, spin glass order. Amorphous ferromagnets show many kinds
of order such as speromagnetic and asperomagnetic. (see, e.g., Solid State Physics
Source Book, op cit p 89).

Table 7.7 Antiferromagnets

Antiferromagnets TN (K)

MnO 122
NiO 523
CoO 293
From Cullity BD, Introduction to Magnetic Materials, Addison-Wesley
Publ. Co., Reading, Mass, 1972, p. 157

Table 7.6 Ferromagnets

Ferromagnets Tc (K) Ms (T = 0 K, Gauss)

Fe 1043 1752
Ni 631 510
Co 1394 1446
EuO 77 1910
Gd 293 1980
From Parker SP (ed), Solid State Physics Sourcebook, McGraw-Hill Book
Co., New York, 1987, p. 225

Table 7.8 Ferrimagnets

Ferrimagnets Tc (K) Ms (T = 0 K, Gauss)

YIG (Y3Fe5O12) 560 195 a garnet
Magnetite (Fe3O4) 858 510 a spinel
From Solid State Physics Sourcebook, op cit p. 225
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Ferrites are perhaps the most common type of ferrimagnets. Magnetite, the oldest
magnetic material that is known, is a ferrite also called lodestone. In general, ferrites
are double oxides of iron and another metal such as Ni or Ba (e.g. nickel ferrite:
NiOFe2O3 and barium ferrite: BaO � 6Fe2O3). Many ferrites find application in
high-frequency devices because they have high resistivity and hence do not have
appreciable eddy currents. They are used in microwave devices, radar, etc. Barium
ferrite, a hard magnet, is one of the materials used for magnetic recording that is a
very large area of application of magnets (see, e.g., Craik [7.15 p. 379]).

HardandSoftMagneticMaterials (EE,MS)The clearestway to distinguish between
hard and softmagneticmaterials is by a hysteresis loop (see Fig. 7.29). Hard permanent
magnets are hard to magnetize and demagnetize, and their coercive forces can be of the
order of 106 A/m or larger. For a soft magnetic material, the coercive force can be of
order 1A/mor smaller. For conversions: 1A/m is 4p  10−3Oersted, 1 kJ/m3 converts
to MGOe (mega Gauss Oersted) if we multiply by 0.04p, 1 T = 104 G.

Permanent Magnets (EE, MS) There are many examples of permanent magnetic
materials. The largest class of magnets used for applications are permanent mag-
nets. They are used in electric motors, in speakers for audio systems, as wig- gler
magnets in synchrotrons, etc. We tabulate in Table 7.9 only two examples that have
among the highest energy products (BH)max.

Fig. 7.29 Hard and soft magnetic material hysteresis loops (schematic)

Table 7.9 Permanent magnets

Tc (K) Ms (kA m−1) Hc (kA m−1) (BH)max (kJ m
−3)

(1) SmCo5 997 768 700–800 183
(2) Nd2Fe14B *583 – *880 *290
(1) Craik [7.15 pp. 385, 387]. Sm2Co17 is in some respects better, see [7.15 p. 388]
(2) Solid State Physics Source Book op cit p. 232. Many other hard magnetic materials are
mentioned here such as the AlNiCos, barium ferrite, etc. See also Herbst [7.29]
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Soft Magnetic Materials (EE, MS) There are also many kinds of soft magnetic
materials. They find application in communication materials, motors, generators,
transformers, etc. Permalloys form a very common class of soft magnets. These are
Ni-Fe alloys with sometimes small additions of other elements. 78 Permalloy
means, e.g., 78% Ni and 22% Fe (Table 7.10).

Some typical magnetic fields (B in Tesla)
Earth’s magnetic field of order 210−5 T (or 0.2 Gauss)
Refrigerator magnets of order 5 mT
Fields in MRI device 4T
Field from superconducting magnet 20 T.

Intrinsic Coercivity–Maximum Value (EE, MS) Anything that inhibits the
movement of domain walls increases the coercivity of multi domain magnetic
materials. Very small particles may be single domain because it is energetically
unfavorable for a wall to form. In a single domain particle, Hc is determined by the
anisotropy field governing the rotation of the magnetization.

We write the anisotropy energy as

EA ¼ K1 sin2 h: ð7:307Þ
We define an anisotropy field (see Fig. 7.30) so

EA ¼ �HAM cos hþ constant: ð7:308Þ

Table 7.10 Soft magnet

Tc (K) Hc (A m_1) Bs (T)

78 Permalloy 873 4 1.08
See Solid State Physics Source Book op cit, p. 231. There are several other
examples such as high-purity iron

θ

M

Easy Direction, HA

Fig. 7.30 Anisotropy field
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The torques due to each should balance so

2K1 sin h cos h ¼ þHAM sin h: ð7:309Þ

Thus for small h

HA ¼ 2K1

M
: ð7:310Þ

which is also the maximum coercivity.
Maximum Energy Product—In SI units:

B ¼ l0ðHþMÞ;

BH ¼ l0ðH2 þMHÞ;

@ðBHÞ
@H

¼ 0 ¼ l0 2HþMþH
@M
@H

� �
;

so

H ¼ � 1
2
ðMþ vHÞ ; v � @M

@H

and

�BH ¼ �l0ðH2 þMHÞ

¼ �l0
1
4
ðMþHvÞ2 �M

2
ðMþ vHÞ

� �

¼ l0
4
ðM2 � v2H2Þ
 l0M

2

4

 l0M

2
S

4
:

So the maximum energy product is

ðBHÞj jmax¼
l0M

2
S

4
: ð7:311Þ

Permanent magnets should have large coercivities and large energy products.

7.3.3 Nanomagnetism (EE, MS)

A recent application of the ideas presented so far in Sect. 7.3 is in the area of
nanomagnetism. Nanomagnetism deals with magnetic phenomena in materials with
dimensions of order less than microns. When we think of nanostructures we also
mean sizes above those of atoms. A common nanostructure size is of the order of
domain wall widths. Here shape and size are very important, and the exchange
energy is typically comparable to the magnetostatic energy. In soft magnetic
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materials the anisotropy energy is relatively very small, whereas it is large in hard
magnetic materials.

Small enough dimensions can lead to single domain particles. Dimensions a little
larger can lead to vortex structures (when anisotropy is small enough). Patterned
magnets are important for various ways of storing information.

Applications of nanomagnetism include magnetic recording heads and magne-
toresistive random access memory (MRAM). The latter may lead to instant boot up
computers.

Areas of research include fabrication and analysis. Fabrication includes
selfassembly or self-organization of structures. Experimental analysis involves
advanced photon sources from a synchrotron, neutron scattering, and magnetic
force microscopy. Theoretical analysis includes simulations.

For more details see S. D. Bader, “Colloquium: Opportunities in nanomag-
netism,” Rev. Modern Physics 78, 1 ff., 2006, C. L. Chien, et al., “Patterned nano-
magnets,” Physics Today, June 2007, pp. 40–45, and Ralph Skomski, Simple Models
of Magnetism, Oxford University Press, Oxford OX2 6DP, 2008, pp. 268–282.

7.4 Magnetic Resonance and Crystal Field Theory

7.4.1 Simple Ideas About Magnetic Resonance (B)

This section is the first of several that discuss magnetic resonance. For further details
on magnetic resonance than we will present, see Slichter [91]. The technique of
magnetic resonance can be used to investigate very small energy differences between
individual energy levels in magnetic systems. The energy levels of interest arise from
the orientation of magnetic moments of the system in, for example, an external
magnetic field. The magnetic moments can arise from either electrons or nuclei.

Consider a particle with magnetic moment l and total angular momentum J and
assume that the two are proportional so that we can write

l ¼ cJ ; ð7:312Þ

where the proportionality constant c is called the gyromagnetic ratio and equals
�glB=�h (for electrons, it would be + for protons) in previous notation. We will
then suppose that we apply a magnetic induction B in the z direction so that the
Hamiltonian of the particle with magnetic moment becomes

H0 ¼ �cl0HJz ; ð7:313Þ

where we have used (7.312), and B = l0H, where H is the magnetic field. If we
define j (which are either integers or half-integers) so that the eigenvalues of J2 are
jðjþ 1Þ�h2, then we know that the eigenvalues of H0 are
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Em ¼ �c�hl0Hm ; ð7:314Þ

where −j � m � j.
From (7.314) we see that the difference between adjacent energy levels is

determined by the magnetic field and the gyromagnetic ratio. We can induce
transitions between these energy levels by applying an alternating magnetic field
(perpendicular to the z direction) of frequency x, where

�hx ¼ cj j�hl0H or x ¼ cj jl0H: ð7:315Þ

These results follow directly from energy conservation and they will be discussed
further in the next section. It is worthwhile to estimate typical frequencies that are
involved in resonance experiments for a convenient size magnetic field. For an
electron with charge e and mass m, if the gyromagnetic ratio c is defined as the ratio
of magnetic moment to orbital angular momentum, it is given by

c ¼ e=2m; for e\0: ð7:316Þ

For an electron with spin but no orbital angular momentum, the ratio of magnetic
moment to spin angular momentum is 2y = e/m. For an electron with both orbital
and spin angular momentum, the contributions to the magnetic moment are as
described and are additive. If we use (7.315) and (7.316) with magnetic fields of
order 8000 G, we find that the resonance frequency for electrons is in the mi-
crowave part of the spectrum. Since nuclei have much greater mass, the resonance
frequency for nuclei lies in the radio frequency part of the spectrum. This change in
frequency results in a considerable change in the type of equipment that is used in
observing electron or nuclear resonance.

Abbreviations that are often used are NMR for nuclear magnetic resonance and
EPR or ESR for electron paramagnetic resonance or electron spin resonance.

7.4.2 A Classical Picture of Resonance (B)

Except for the concepts of spin-lattice and spin-spin relaxation times (to be dis-
cussed in the section on the Bloch equations) we have already introduced many of
the most basic ideas connected with magnetic resonance. It is useful to present a
classical description of magnetic resonance [7.39]. This description is more pic-
torial than the quantum description. Further, it is true (with a suitable definition of
the time derivative of the magnetic moment operator) that the classical magnetic
moment in an external magnetic field obeys the same equations of motion as the
magnetic moment operator. We shall not prove this theorem here, but it is because
of it that the classical picture of resonance has considerable use. The simplest way
of presenting the classical picture of resonance is by use of the concept of the
rotating coordinate system. It also should be pointed out that we will leave out of
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our discussion any relaxation phenomena until we get to the section on the Bloch
equations.

As before, let a magnetic system have angular momentum J and magnetic
moment l, where l ¼ cJ. By classical mechanics, we know that the time rate of
change of angular momentum equals the external torque. Therefore we can write for
a magnetic moment in an external field H,

dJ
dt

¼ l l0H: ð7:317Þ

Since l ¼ cJ (c\0 for electrons), we can write

dl
dt

¼ l cl0ð ÞH: ð7:318Þ

This is the general equation for the motion of the magnetic moment in an external
magnetic field.

To obtain the solution to (7.318) and especially in order to picture this solution,
it is convenient to use the concept of the rotating coordinate system. Let

A ¼ îAx þ ĵAy þ k̂Az

be any vector, and let î; ĵ; k̂ be unit vectors in a rotating coordinate system. If X is
the angular velocity of the rotating coordinate system relative to a fixed coordinate
system, then relative to a fixed coordinate system we can show that

d̂i
dt

¼ X î ð7:319Þ

This implies that

dA
dt

¼ dA
dt

þX A; ð7:320Þ

where dA/dt is the rate of change of A relative to the rotating coordinate system and
dA/dt is the rate of change of A relative to the fixed coordinate system.

By using (7.320), we can write (7.318) in a rotating coordinate system. The
result is

dl
dt

¼ l Xþ cl0Hð Þ: ð7:321Þ

Equation (7.321) is the same as (7.318). The only difference is that in the rotating
coordinate system the effective magnetic field is
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Heff ¼ Hþ X

cl0
: ð7:322Þ

If H is constant and X is chosen to have the constant value X ¼ �cl0H, then dl/d
t = 0. This means that the spin precesses about H with angular velocity cl0H.Note
that this is the same as the frequency for magnetic resonance absorption. We will
return to this point below.

It is convenient to get a little closer to the magnetic resonance experiment by
supposing that we have a static magnetic field H0 along the z direction and an
alternating magnetic field HxðtÞ ¼ 2H0 cosðxtÞðtÞ along the x-axis. We can resolve
the alternating field into two rotating magnetic fields (one clockwise, one coun-
terclockwise) as shown in Fig. 7.31. Simple vector addition shows that the two
fields add up to Hx(t) along the x-axis.

With the static magnetic field along the z direction, the magnetic moment will
precess about the z-axis. The moment will precess in the same sense as one of the
rotating magnetic fields. Now that we have both constant and alternating magnetic
fields, something interesting begins to happen. The component of the alternating
magnetic field that rotates in the same direction as the magnetic moment is the
important component [91]. Near resonance, the magnetic moment and one of the
circularly polarized components of the alternating magnetic field rotate with almost
the same angular velocity. In this situation the rotating magnetic field exerts an
almost constant torque on the magnetic moment and tends to tip it over. Physically,
this is what happens in resonance absorption.

Fig. 7.31 Decomposition of an alternating magnetic field into two rotating magnetic fields
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Let us be a little more quantitative about this problem. If we include only one
component of the rotating magnetic field and if we assume that X is the cyclic
frequency of the alternating magnetic field, then we can write

dl
dt

¼ l Xþ cl0 îH0 þ k̂H0

	 
h i
: ð7:323Þ

This can be further written as

dl
dt

¼ lHeff ; ð7:324Þ

where now

Heff � k̂ H0 þ X
cl0

� �
þ îH0:

Since in the rotating coordinate system l precesses about Heff, we have the picture
shown in Fig. 7.32. If we adjust the static magnetic field so that

H0 ¼ � X
cl0

;

then we have satisfied the conditions of resonance. In this situation Heff is along the
x-axis (in the rotating coordinate system) and the magnetic moment flops up and
down with frequency cl0H′.

Similar quantum-mechanical calculations can be done in a rotating coordinate
system, but we shall not do them as they do not add much that is new. What we
have done so far is useful in forming a pictorial image of magnetic resonance, but it
is not easy to see how to put in spin-lattice interactions, or other important

Fig. 7.32 Precession of the magnetic moment l about the effective magnetic field Heff in a
coordinate system rotating with angular velocity X about the z-axis
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interactions. In order to make progress in interpreting experiments, it is necessary to
generalize our formalism somewhat.

7.4.3 The Bloch Equations and Magnetic Resonance (B)

These equations are used for a qualitative and phenomenological discussion of
NMR and EPR. In general, however, it is easier to describe NMR than EPR. This is
because the nuclei do not interact nearly so strongly with their surroundings as do
the electrons. We shall later devote a section to discussing how the electrons
interact with their surroundings.

The Bloch equations are equations that describe precessing magnetic moments,
and various relaxation mechanisms. They are almost purely phenomenological, but
they do provide us a means of calculating the power absorbed versus the frequency.
Without the interactions responsible for the relaxation times, this plot would be a
delta function. Such a situation would not be very interesting. It is the relaxation
times that give us information about what is going on in the solid.31

Definition of Bloch Equations and Relaxation Times (B)
The theory of the resonance of free spins in a magnetic field is simple but it holds
little inherent interest. To relate to more physically interesting phenomena it is
necessary to include the interactions of the spins with their environment. The Bloch
equations include these interactions in a phenomenological way.

When we include a relaxation time (or an interaction process), we find that the
time rate of change of the magnetization (along the field) is proportional to the
deviation of the magnetization from its equilibrium value. This guarantees a
relaxation of magnetization along the field. If we add an alternating magnetic field
along the x- or y-axes, it is also necessary to add a term (M  H)z that is pro-
portional to the torque. Thus for the component of magnetization along the constant
external magnetic field, it is reasonable to write

dMz

dt
¼ M0 �Mz

T1
þ cl0ð Þ M Hð ÞZ : ð7:325Þ

As noted, (7.325) has a built-in relaxation process of Mz to M0, the spin-lattice
relaxation time T1. However, as we approach equilibrium in a static magnetic field
H0k̂, we will want both Mx and My to tend to zero. For this purpose, a new term
with a relaxation time T2 is often introduced. We write

dMx

dt
¼ cl0 M Hð Þx�

Mx

T2
; ð7:326Þ

31See Manenkov and Orbach (eds) [7.45].
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and

dMy

dt
¼ cl0 M Hð Þy�

My

T2
: ð7:327Þ

Equations (7.325), (7.326), and (7.327) are called the Bloch equations. T2 is often
called the spin-spin relaxation time. The idea is that the term involving T1 is caused
by the interaction of the spin system with the lattice or phonons, while the term
involving T2 is caused by something else. The physical origin of T2 is somewhat
complicated. Consider, for example, two nuclei precessing in an external static
magnetic field. The precession of one nucleus produces a varying magnetic field at
the second nucleus and hence tends to “flip” the spin of the second nucleus (and
vice versa). Waller32 first pointed out that there are two different types of spin
relaxation processes.

A Model for Calculation of Relaxation Times (A)
We will consider only a one-phonon direct process. This process can be important
at very low temperatures in rare earth salts.33

Suppose there are only two electronic states of interest, and suppose they are
separated by dab in energy. See Fig. 7.33. Let V(o.l.) be a dynamic interaction
between the electrons and the lattice (o.l. � orbit-lattice). It will be assumed that
V(o.l.) is of the form

Vðo.l.Þ ¼ SV : ð7:328Þ

where S is a strain in the crystal and V is a crystalline potential that acts on the
electrons. The S is an average strain, and no directional properties are associated
with it. For larger strains there would probably be terms of order S2 or higher.
Equation (7.328) is actually a good assumption considering the lack of information
that we would have about a real orbit-lattice (o.l.) interaction.

Fig. 7.33 Model for computing a spin-lattice relaxation time for a one-phonon direct
process. dab is the difference in energy between a and b

32See Waller [7.66]. Discussion of ways to calculate T1 and T2 is contained in White [7.68,
pp. 124ff and 135ff].
33For a complete discussion of the many types of relaxation that are possible and for comments on
when these processes are important, see A. A. Manenkov and R. Orbach, Editors, Spin-Lattice
Relaxation in Ionic Solids, Harper and Row Publishers, New York, 1966.
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In discussing transitions with the interaction (7.328), initial jii and final jf i states
will not only involve the electronic states jai and jbi, but also initial and final
phonon states.

By the Golden rule, the transition probability for going from state b to state a is

Wb!a ¼ 2p
�h

Z
4pq2V

ð2pÞ3 � 3 � h f jSV jii�� ��2dðEi � Ef Þdq: ð7:329Þ

In (7.329), V is the volume of the crystal, and the factor 3 appears because three
different types of phonon modes are assumed.

By equations similar to (2.132), (2.140), (2.141), (2.145), and (2.146) we can
write

hnq þ 1jSjnqi ¼ A0q
�hðnq þ 1Þ
2mxq

� �1=2
expð�iq � RjÞ ð7:330Þ

and

hnq � 1jSjnqi ¼ A0q
�hnq
2mxq

� �1=2
expðþ iq � RjÞ: ð7:331Þ

The extra q factor comes from the fact that the strain S is the gradient of a dis-
placement. A′ is a constant which could be calculated if necessary. Rj is a vector
locating lattice point j.

The way we have set things up, in going from jbi to jai a phonon must be
emitted so only (7.330) will be of interest for the moment.

If Nb is the number of atoms in state jbi, then the number of b ! a transitions
per unit time is

Nb!a ¼ 2p
�h
4pðA0Þ2
ð2pÞ3 � 3V �

Z
�hðnq þ 1Þ
2mxq

hajV jbi�� ��2q4dðEi � Ef Þdq: ð7:332Þ

Since Ef − Ei = �hx − dab, the delta function d(Ei − Ef) restricts �hx to be dab, the
energy difference between states. If t is the phase velocity of the lattice vibrations
(which is assumed to be constant), then x = qt, and we can write

Z
dð�hx� dabÞ q

4dq
x

¼
Z1
0

dð�hx� dabÞ ð�hxÞ
3dð�hxÞ
t5�h4

¼ ðdabÞ3
t5�h4

: ð7:333Þ

Combining (7.332) and (7.333), we have
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Nb!a ¼ 3
2p

V
m
Nbðndab=�ht þ 1Þ hajV jbi�� ��2 d3ab

t5�h4
ðA0Þ2 ; dab

�ht
¼ x

t
¼ q

� �

¼ 3
2p

1
ðm=VÞt5�h hajV jbi�� ��2 dab

�h

� �3

Nbðndab=�ht þ 1ÞðA0Þ2;

which can be written as

Nb!a � A hajV jbi�� ��2 dab
�h

� �3

Nbðndab=�ht þ 1Þ: ð7:334Þ

where A is a constant.
A similar calculation for the reverse process ðjai ! jbiÞ with the absorption of a

phonon) gives

Na!b ¼ A hajV jbi�� ��2 dab
�h

� �3

Nandab=�ht: ð7:335Þ

Since only a two-level system is being considered, the net gain in the number of
b states per unit time is

dNb

dt
¼ Na!b � Nb!a: ð7:336Þ

Combining (7.334), (7.335), and (7.336), we have

dNb

dt
¼ �A

dab
�h

� �3
hajV jbi�� ��2½Nbðndab=�ht þ 1Þ � Nandab=�ht�: ð7:337Þ

If we assume that the phonons are in equilibrium, then the n’s are given by the
Bose–Einstein factor

dNb

dt
¼ �A

dab
�h

� �3
hajV jbi�� ��2 Nb 1þ 1

expðdab=kTÞ � 1

� �
� Na

1
expðdab=kTÞ � 1

� �

¼ �A
dab
�h

� �3
hajV jbi�� ��2 Nb expðdab=kTÞ � Na

expðdab=kTÞ � 1

� �
:

ð7:338Þ

In equilibrium we can define Nb
E and Na

E by

NE
b

NE
a
¼ expð�dab=kTÞ: ð7:339Þ

7.4 Magnetic Resonance and Crystal Field Theory 519



Thus

Nb expðdab=kTÞ � Na ¼ ðNb � NE
b Þ expðdab=kTÞ � ðNa � NE

a Þ:

but

Na þNb ¼ NE
a þNE

b ;

so that

Nb expðdab=kTÞ � Na ¼ ðNb � NE
b Þ expðdab=kTÞ � ðNb � NE

b Þ
¼ ðNb � NE

b Þ½expðdab=kTÞþ 1�: ð7:340Þ

Since Nb
E is a constant, we can use (7.338) and (7.340) to write

d
dt
ðNb � NE

b Þ ¼ �A
dab
�h

� �3
hajV jbi�� ��2expðdab=kTÞþ 1

expðdab=kTÞ � 1
ðNb � NE

b Þ: ð7:341Þ

The above is readily integrated to give

ðNb � NE
b Þ ¼ ðNb � NE

b Þt¼0 exp �t A
dab
�h

� �3

hajV jbi�� ��2coth dab
2kT

� �" #( )
:

From this one can immediately identify the relaxation time s as

1
s
¼ A

dab
�h

� �3
hajV jbi�� ��2coth dab

2kT

� �
: ð7:342Þ

Quite often derivations of quantities such as (7.342) give valuable information
on how the relaxation time depends on the temperature, and on the magnetic field
(via dab), but the derivations are seldom reliable for a determination of the absolute
magnitude of s. The real difficulty lies in evaluating jhajV jbij2. The derivation
indicates how s depends on internal interactions, but it is seldom easy to find a good
model for them.

The Use of Bloch Equations to Interpret Experiments (A)
Since the T1 and T2 terms were introduced in a phenomenological way, it is obvious
that the Bloch equations are not rigorous and must have some limitations. They are
useful in relating the power absorbed to the relaxation times. To understand this,
solutions of the Bloch equations for small values of the alternating magnetic field
are obtained below.

The setup will be the same as before. There will be a static magnetic field h0 along
the z-axis, and an alternating magnetic field of magnitude 2H′ along the x-axis. As
usual, the alternating magnetic field will be split into two rotating fields; one rotating
field will be neglected; and then the equations will be solved in a rotating coordinate
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system which rotates with the other rotating magnetic field. The rotating magnetic
field that is used rotates in the same sense as the moment precesses.

In the rotating coordinate system, the magnetic field is

H ¼ îH0 þ k̂H0;

so the Bloch equations become (with Heff
0 � H0 þx=cl0)

dMz

dt
¼ �cl0MyH0 þ M0 �Mz

T1
; ð7:343Þ

dMx

dt
¼ cl0H

eff
0 My �Mx

T2
; ð7:344Þ

dMy

dt
¼ cl0ðMzH

0 �MxH
eff
0 Þ �My

T2
: ð7:345Þ

This problem will be solved in the limit of small H′ in order to avoid saturation
difficulties (at saturation, increase in the strength of the alternating magnetic field
does not cause the power absorbed to increase). We will also be interested in the
steady state as far as the magnetization along the z-axis is concerned and therefore
we assume dMz/dt = 0. We also note that as H′ ! 0 then so do Mx and My so that
My is of the order of h′. This means from (7.343) thatM0 andMz differ by O(H′)

2, so
if we are only interested in solving our problem to O(H′), we can set M0 = Mz. This
is what we will do.

It is convenient to solve (7.343) and (7.344) simultaneously by the use of the
complex number ZM = Mx + iMy. ZM is determined by one differential equation
The real part of the solution for ZM gives Mx, while the imaginary part gives My.
From (7.344) and (7.345) it is easy to show that ZM satisfies

dZM
dt

¼ �ZM
1
T2

þ icl0H
eff
0

� �
þ icl0M0H

0: ð7:346Þ

Equation (7.346) is easily solved by adding a particular solution of (7.346) to the
general solution of (7.346) with h′ = 0. The result is

ZM ¼ K exp � 1
T2

þ icl0H
eff
0

� �
t

� �
þ icl0M0H0

1=T2 þ icl0H
eff
0

; ð7:347Þ

where K is a constant to be evaluated from the boundary conditions, but we do not
need to do this since we are interested only in the solution in the t ! ∞ limit and
so the transient part involving K vanishes.

Let us set x′ = −x and find Mx and My from the real and imaginary parts of ZM.
The result is
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Mx ¼ cl0M0T2
ðcl0H0 � x0ÞT2

1þðcl0H0 � x0Þ2T2
2

H0 ð7:348Þ

and

My ¼ cl0M0T2
1

1þðcl0H0 � x0Þ2T2
2

H0; ð7:349Þ

Solutions valid in higher order in H′ would also involve T1.
Equations (7.348) and (7.349) are the solutions in a rotating coordinate system.

Figure 7.34 shows how to transform these solutions to the laboratory (fixed)
coordinate system. By Fig. 7.34, the X-component of magnetization in the fixed
coordinate system is

MX ¼ M � I; ð7:350Þ

where I is a unit vector along the X-axis or

MX ¼ Mx cosx0tþMy cos
p
2
� x0t

	 

ð7:351Þ

or

MX ¼ Mx cosx0tþMy sinx0t ð7:352Þ

Let us define a complex alternating magnetic field as

Hc
XðtÞ ¼ 2H0eix

0t: ð7:353Þ

Note that

HXðtÞ ¼ Re½Hc
XðtÞ� ¼ 2H0 cosx0t ð7:354Þ

t = t
Mx

My

M
y

x

X

Fig. 7.34 Relationship between rotating and laboratory coordinate systems
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equals the real alternating magnetic field in the laboratory system. Further let us
define v′ and v″ so that

MXðtÞ � Re½ðv0 � iv00ÞHc
X �

¼ 2h0½v0 cosx0tþ v00 sinx0t�; ð7:355Þ

and then it is convenient to define a complex susceptibility as

vc ¼ v0 � iv00: ð7:356Þ

By comparing (7.348), (7.349), (7.352), and (7.355) we can identify

v0 � 1
2
v0x0T2

ðx0 � x0ÞT2
1þðx0 � x0Þ2T2

2

ð7:357Þ

and

v00 � 1
2
v0x0T2

1

1þðx0 � x0Þ2T2
2

ð7:358Þ

where

v0 � M0=H0 ð7:359aÞ

and

x0 � cl0H0: ð7:359bÞ

Equation (7.355) gives a linear relation via the complex susceptibility between the
magnetic field (a generalized force) and the magnetization (a generalized
displacement).

Ferromagnetic Resonance (B)
Using a simple quantum picture, for an atomic system, we have already argued [see
(7.318)]

dl
dt

¼ cl Ba; ð7:360Þ

where Ba = l0H. This implies a precession of l and M about the constant magnetic
field Ba with frequency x ¼ cBa the Larmor frequency, as already noted. For
ferromagnetic resonance (FMR) all spins precess together and M = Nl, where N is
the number of spins per unit volume. Thus by (7.360)
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dM
dt

¼ cM  Ba: ð7:361Þ

Several comments can be made. The above equation is valid also for M = M
(r) varying slowly in space. We will also use this equation for spin-wave resonance
when the wavelengths of the waves are long compared to the atom to atom spacing
that allows the classical approach to be valid. One generalizes the above equation
by replacing Ba by B where

B ¼ Ba appliedð Þ
þ Brf due to a radio-frequency applied fieldð Þ
þ Bdemag from demagnetizing fields that depend on geometryð Þ
þ Bexchange as derived from the Heisenberg Hamiltonianð Þ
þ Banisotropy an effective field arising from interactions producing anisotropyð Þ:

We should also include dissipative or damping and relaxation effects.
We start with all fields zero or negligible except for the applied field (note here

Bexchange / M, which is assumed to be uniform, so M  Bexchange = 0). This gives
resonance at the natural precessional frequency of the uniform precessional mode.
With B ¼ B0k̂ we have

dMx

dt
¼ cMyB0;

dMy

dt
¼ �cMxB0;

dMz

dt
¼ 0: ð7:362Þ

We look for solutions with

Mx ¼ A1e�ixt;
My ¼ A2e�ixt;
Mz ¼ constant;

ð7:363Þ

and so we have a solution provided

�ix �cB0

cB0 �ix

����
���� ¼ 0; ð7:364Þ

or

xj j ¼ cB0j j; ð7:365Þ

which as expected is just the Larmor precessional frequency. In actual situations we
also need to include demagnetization fields and hence shape effects, which will alter
the resonant frequencies. FMR typically occurs at microwave frequencies.
Antiferromagnetic resonance (AFMR) has also been studied as a way to determine
anisotropy fields.

524 7 Magnetism, Magnons, and Magnetic Resonance



Shape Effects (B)
We next consider FMR with shape effects. We consider only ellipsoids of revo-
lution with their principle axes parallel to the x, y, z axes and with demagnetization
factors Dx, Dy, and Dz. For such ellipsoids, uniform magnetization produces uni-
form demagnetization fields so

Bx ¼ �DxMx;

By ¼ �DyMy;

Bz ¼ B0 � DzMz;

ð7:366Þ

where the applied field is assumed to be only in the z direction.

_Mx ¼ c½MyðB0 � DzMzÞ �Mzð�DyMyÞ�;
_My ¼ c½Mzð�DxMxÞ �MxðB0 � DzMzÞ�;
_Mz ¼ c½Mxð�DyMyÞ �Myð�DxMxÞ�:

ð7:367Þ

In the small signal approximation Mx and My are small and products such as MxMy

are negligible, so Mz is approximately M. Thus

_Mx ¼ c½MyðB0 � DzMÞ� þ cDyMyM;

_My ¼ �c½MxðB0 � DzMÞ� � cDxMxM;

_Mz ffi 0:

ð7:368Þ

Assuming Mx = A1e
−ixt, My = A2e

−ixt,

� ixA1 � cðB0 þDyM � DzMÞA2 ¼ 0;

cðB0 þDxM � DzMÞA1 � ixA2 ¼ 0;

which has a non vanishing solution provided

�ix �cðB0 þDyM � DzMÞ
cðB0 þDxM � DzMÞ �ix

����
���� ¼ 0 ð7:369Þ

For a sphere Dx = Dy = Dz and

x ¼ cB0:

For a flat plate with z perpendicular to the plate Dx = Dy = 0 and

x ¼ cðB0 � DzMÞ:

Many other geometries can be considered. FMR can be used to determine c and
M. FMR typically occurs at high frequencies in the microwave.
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Antiferromagnetic Resonance (A)
We assume an effective uniaxial anisotropy field of strength Ba along the + or
−z-axis (depending on the sublattice magnetization). We assume no external field.
Including the exchange field (with strength a times magnetization) but neglecting
the other fields (except for anisotropy), we have:

_M1 ¼ c½M1  ðþ k̂Ba � al0M2Þ�;
_M2 ¼ c½M2  ð�k̂Ba � al0M1Þ�:

ð7:370Þ

In the small signal approximation (Mx, My small, M1z � M and M2z � −M)

_M1x ¼ þ cM1yðþBa þ al0MÞ � cMð�al0M2yÞ;
_M1y ¼ �cM1xðþBa þ al0MÞþ cMð�al0M2xÞ;
_M2x ¼ þ cM2yð�Ba � al0MÞþ cMð�al0M1yÞ;
_M2y ¼ �cM2xð�Ba � al0MÞ � cMð�al0M1xÞ:

If we let M1+ = M1x +iM1y and M1+ = M2x +iM2y, we find

_M1þ ¼ �ic½ðBa þ al0MÞM1þ þ al0MM2þ �;
_M2þ ¼ þ ic½ðBa þ al0MÞM2þ þ al0MM1þ �:

ð7:371Þ

Then if we assume an exp(−ixt) dependence for M1+ and M2+ we have solutions
only if

cðBa þ al0MÞ � x cal0M

�cal0M �cðBa þ al0MÞ � x

������
������ ¼ 0; ð7:372Þ

� c2ðBa þ al0MÞ2 þx2 þ c2ðal0Þ2M2 ¼ 0;

x2 ¼ c2ðB2
a þ 2Baal0MÞ;

x ¼ c
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2
a þ 2Baal0M

q
:

ð7:373Þ

Antiferromagnetic resonance can be used to determine the anisotropy field, c, and
the magnetization. Typical resonance frequencies will be many gigahertz. The
variation of M with temperature has been studied for MnF2 by AFMR.

Spin-Wave Resonance (A)
Spin-wave resonance is a direct way to experimentally prove the existence of spin
waves (as is inelastic neutron scattering—see Kittel [7.39, pp. 456–458]). Consider
a thin film with a magnetic field B0 perpendicular to the film (Fig. 7.35a). In the
simplest picture, we view the spin waves as “vibrations” in the spin between the
surfaces of the film. Plotting the amplitude versus position, Fig. 7.35b is obtained
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for unpinned spins. Except for the uniform mode, these have no net interaction
(absorption) with the electromagnetic field. The pinned case is a little different
(Fig. 7.35c). Here only waves with an even number of half-wavelengths will show
no net interaction energy with the field while the ones with an odd number of
halfwavelengths (n = 1, 3, etc.) will absorb energy. (Otherwise the induced spin
flippings will absorb and emit equal amounts of energy).

We get absorption when (Fig. 7.35)

n
k
2
¼ T n odd; T thickness of filmf g;

k ¼ 2p
k

¼ np
T

or k ¼ 2nþ 1ð Þ p
T

n ¼ 0; 1; 2. . .f g:

With applied field normal to film and with demagnetizing field and exchange D′k2,
absorption will occur for

x0 ¼ c B0 � l0Mð ÞþD0k2 SIð Þ;

where M is the static magnetization in the direction of B0. The spin-wave frequency
is determined by both the FMR frequency (the first term including demagnetization)
and the dispersion relation typical for spin waves.

(a)

(b)

(c)

Fig. 7.35 (a) Thin film with magnetic field. (b) “Unpinned” spin waves. (c) “Pinned” spin
waves
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We now analyze spin-wave resonance in a little more detail. First we develop the
Heisenberg Hamiltonian in the continuum approximation,

H ¼ �
X

JijSi � Sj ¼ � 1
2

X
li � Bex

i ð7:374Þ
defines the effective field Bex

i acting on the moment at site i, li ¼ cSi. (c\0 for
electrons)

Bex
i ¼ 2

c

X
j

JijSj: ð7:375Þ

Assuming nearest neighbors (nn) at distance a and nn interactions only. We find for
a simple cubic (SC) structure after expansion, and using cancellation resulting from
symmetry

cBex
i ¼ 12JSi þ 2Ja2r2Si:

Consistent with the classical continuum approximation

M
M

¼ Si
S
; ð7:376Þ

Bex ¼ kMþK 0r2 M=Mð Þ; ð7:377Þ

where

k ¼ 12JS
cM

; K 0 ¼ 2Ja2S
c

: ð7:378Þ

As an aside we note Bex is consistent with results obtained before (Sect. 7.3.1).
Since

U ¼ � 1
2

X
li �Bex

i ; ð7:379Þ

neglecting constant terms (resulting from the magnitude of the magnetization being
constant) we have

U ¼ � JS2

a

Z
mr2mdV m ¼ M=Mf g: ð7:380Þ

Assuming
R
mx$mx � dA etc. = 0 for a large surface we can also recast the above as

U ¼ � JS2

a

Z
ra1ð Þ2 þ ra2ð Þ2 þ ra3ð Þ2

h i
dV ð7:381Þ
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which is the same as we obtained before, with a slightly different analysis. The ai
are of course the direction cosines.

The anisotropy energy and effective field can be written in the same way as
before, and no further comments need be made about it.

When one generalizes the equation for the time development of M, one has the
Landau–Lifshitz equations. Damping causes broadening of the absorption lines.
Then

_M ¼ cM  Beff þ a
M

M  M  Beff� �
; ð7:382Þ

where a is a constant characterizing the damping. Spin-wave resonance has been
observed as shown in Fig. 7.36. The integers label the modes of excitation. The
figure is complicated by surface spin waves that are labeled 2, 1 and not fully
resolved. Reference to the original paper must be made for complete details.

Fig. 7.36 Spin wave resonance spectrum for Ni film, room temperature, 17 GHz. After
Puszharski H, “Spin Wave Resonance”, Magnetism in Solids Some Current Topics, Scottish
Universities Summer School in Physics, 1981, p. 287, by permission of SUSSP. Original
data in Mitra DP and Whiting JSS, J Phys F: Metal Physics, 8, 2401 (1978)
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We have discussed Beff in the section on FMR. Allowing M to vary with r and
using the pinned boundary conditions, (7.382) can be used to quantitatively discuss
SWR.

7.4.4 Crystal Field Theory and Related Topics (B)

This section is primarily related to EPR. The general problem is to analyze the
effects of neighboring ions on paramagnetic ions in a crystal. This cannot be exactly
solved, and so we must seek physically reasonable simplifying assumptions.

Some atoms or ions when placed in a crystal act as if they undergo very little
change. When this is so, we can predict the changes by perturbation theory. In order
to estimate the perturbing effects of a host crystal on a paramagnetic ion, we ought
to be able to treat the host crystal fairly crudely. For example, for an ionic crystal it
might be sufficient to treat the ions as point charges. Then it would be fairly simple
to estimate the change in the potential at the paramagnetic ion due to the host
crystal. This potential energy could serve as a perturbation on the Hamiltonian of
the paramagnetic ion.

Another simplification is possible. The crystal potential must have the symmetry
of the point group describing the surroundings of the paramagnetic ion. As we will
discuss later, group theory is useful in taking this into account.

The effect of the crystal field is to split the energy levels of a paramagnetic ion.
In order to show how this comes about, it is useful to know what we mean by the
energy levels. The best way to do this is to write down the Hamiltonian (whose
eigenvalues are the energy levels) for the electrons. With no external field, the
Hamiltonian has a form similar to

H ¼
X
i

P2
i

2m
� Ze2

4pe0ri
þ aiJi � I � e/c rið Þ

� �

þ
X00
i;j

1
2

e2

4pe0rij
þ
X
i;j

kijLi � Sj:
ð7:383Þ

The origin of the coordinate system for (7.383) is the nucleus of the paramagnetic
ion. The sum over i and j is a sum over electronic coordinates. The first term is the
kinetic energy. The second term is the potential energy of the electrons in the field of
the nucleus. The third term is the hyperfine interaction of the electron (with total
angular momentum Ji) with the nucleus that has angular momentum I. The fourth
term is the crystal field energy. The fifth term is the potential energy of the electrons
interacting with themselves. The last term is the spin (Sj)-orbit (angular momentum
Li) interaction (see Appendix F) of the electrons. By the unperturbed energy levels of
the paramagnetic ion, one often means the energy eigenstates of the first, second, and
fifth terms obtained perhaps by Hartree–Fock calculations. The rest of the terms are
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usually thought of as perturbations. In the discussion that follows, the hyperfine
interaction will be neglected.

To avoid complicated many-body effects, we will assume that the sources of the
crystal field (Ec � �$/c) are external to the paramagnetic ion. Thus in the vicinity
of the paramagnetic ion, it can be assumed that $2/c ¼ 0.

Weak, Medium, and Strong Crystal Fields (B)
In discussing the effect of the crystal field on the energy levels, which is important
to EPR, three cases can be distinguished [47].

Weak crystal fields are by definition those for which the spin-orbit interaction is
stronger than the crystal field interaction. This is often realized when the electrons
of the paramagnetic shell of the ion lie “fairly deep” within the ion, and hence are
shielded from the crystalline field by the outer electrons. This may happen in ionic
compounds of the rare earths. Rare earths have atomic numbers (Z) from 58 to 71.
Examples are Ce, Pr, and Ne, which have incomplete 4f shells.

By a medium crystal field we mean that the crystal field is stronger than the
spin-orbit interaction. This happens when the paramagnetic electrons of the ion are
mainly distributed over the outer portions of the ion and hence are not well
shielded. In this situation something else may occur. The potential that the para-
magnetic ions move in is no longer even approximately spherically symmetric, and
hence the orbital angular momentum is not conserved. We say that the orbital
angular momentum is (at least partially) “quenched” (this means w Ljj wh i ¼ 0,
w L2

���� w
� � 6¼ 0Þ. Paramagnetic crystals that have iron group elements (Z = 21 to 29,
e.g., Cr, Mn, and Fe that have an incomplete 3d shell) are typical examples of the
medium-field case.

Strong crystal field by definition means covalent bonding. In this situation, the
wave functions for the paramagnetic ion electrons overlap considerably with the
wave functions of the other electrons of the crystal. Crystal field theory does not
work here. This type of situation will not be discussed in this chapter.

As we will see, group theory can be an aid in understanding how energy levels
are split by perturbations.

Reasons for Using Crystal Field Theory (A)
Obviously the reason that crystal field theory is useful is that it aids in the calcu-
lation of the electronic states of the paramagnetic electrons. The way it does this
will be sketched below. Since electronic orbitals are written in terms of spherical
harmonics, it is useful to expand the crystal field potential /c in spherical harmonics
YL
M with origin at the paramagnetic ion:

/c ¼
X
L0;M0

FM0
L0 ðrÞYM0

L0 : ð7:384Þ

If the crystal field potential acts as a perturbation on the Hamiltonian H0 of the
paramagnetic ion, then we can write
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H ¼ H0 � e/c: ð7:385Þ

This sort of situation is appropriate even for the medium field case as long as we
leave the spin-orbit effect out of H0. For simplicity, we will omit spin in what
follows. It will be supposed that the unperturbed problem is exactly solvable, so that
we know wl

m and el
m which satisfy H0w

m
l ¼ eml w

m
l . The problem is to find

approximately the w and E such that Hw ¼ Ew.
Let us suppose as an example that states with different l are fairly widely

separated in energy. Then we expect that states with different l are not mixed by /c.
Therefore, to a good approximation,

w ¼
X
m

Am
l w

m
l : ð7:386Þ

E is then given approximately by

E ¼ hwjHjwi

¼
X
m;m0

Am0�
l Am

l eml d
m0
m � e

Z
wm0�
l /cw

m
l ds

� �
:

By the variational principle with Lagrange multipliers to ensure normalization we
have

@

@Am
l

	
E � k

X
m;m0

Am0�
l Am

l d
m0
m



¼ 0

This implies

X
m0

Am0�
l �e

Z
wm0�
l /cw

m
l dsþðeml � kÞdm0

m

� �
¼ 0; ð7:387Þ

or for nontrivial solutions,

det �e
Z

wm0�
l /cw

m
l dsþðeml � kÞdm0

m

� �
¼ 0; ð7:388Þ

From (7.387), we can show that the k’s as calculated from (7.388) are to be
identified with the new energies. Therefore, in this approximation, the k’s are
determined from the matrix elements

R
wm0�
l /cw

m
l ds. Using (7.384), we have

Z
wm0�
l /cw

m
l ds ¼

X
L0;M0

Z1
0

GM0
L0 ðrÞ

Z
YM0
L0 Y

m0�
L0 Ym

l dX

� �
dr; ð7:389Þ

where GL′
M′(r) is whatever function of r that results from the casting of the left hand

side of (7.389) into the right hand side. But
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Ym0�
l ðh;/ÞYm

l ðh;/Þ ¼
X2l
L¼0

XL
M¼�L

dm�m0
M CllL

�m0;m;MY
M
L ðh;/Þ; ð7:390Þ

where the C’s are the Clebsch-Gordan coefficients (for appropriate definitions see a
chapter on angular momentum in any good quantum mechanics text). Combining
(7.389) and (7.390), we have

Z
wm0�
l /cw

m
l ds ¼

X
L0;M0

Z1
0

GM0
L0 ðrÞ

X2l
L¼0

XL
m�m0¼�L

 

 CllL
�m0;m;m�m0

Z
YM0�
L0 Ym�m0

L dX

�
dr ¼ 0:

ð7:391Þ

unless M′ = m − m′ and L = L′. Thus, for example, if l = 2, we do not need all the
F’s in (7.384) but only those F’s up to L′ = 4 (adding two l = 2 states gives a
maximum L of 4). This shows the crucially important fact that we do not need all of
the terms in the crystal field expansion, but only a small number of them.

Further, all terms with L′ odd will have matrix elements equal to zero. This is
clear because the parity of Yl

m′*Yl
m is (−)2l = 1, while the parity of YL′

M′ = (−)L′ and
the integral over all space of an odd function is zero. Since constant terms are of no
interest, for l = 2 states we need only A2

M′ and A4
M′.

The symmetry of the lattice can often be used to find more restrictions on the
A’s. For example, for l = 2 and for cubic symmetry the result is [47]

/c ¼ C x4 þ y4 þ z4 � 3
5
r4

	 

: ð7:392Þ

In this special case, out of all the constants in the expansion of the crystal field, only
one constant is left. One constant determines all we need to know about the crystal
field in this case! This is remarkable. This constant can be used as a fitting
parameter and can be determined by comparing only one theoretical and one
experimental level. In this example, if the other experimental and theoretical levels
agree with each other, then the procedure of crystal field theory is justified.

As we will see, Group theory can be an aid in looking at how energy levels are
split by perturbations. See Appendix E and the section on Energy Level Splitting in
Crystal Fields by Group Theory.

Miscellaneous Theorems and Facts (In Relation to Crystal Field Theory) (B)
The theorems below will not be proved. They are stated because they are useful in
carrying out actual crystal field calculations.

The Equivalent Operator Theorem. This theorem is used in calculating needed
matrix elements in crystal field calculations. The theorem states that within a
manifold of states for which l is constant, there are simple relations between the
matrix elements of the crystal-field potential and appropriate angular momentum
operators. For constant l, the rule says to replace the x by Lx (operator, in this case
Lx is the x operator equivalent) and so forth for other coordinates. If the result is a
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product in which the order of the factors is important, then we must use all possible
different permutations. There is a similar rule for manifolds of constant J (where we
include both the orbital angular momentum and the spin angular momentum).

There is a straightforward way of generating operator equivalents (OpEq) by
using

Lþ ; OpEq YM
l

�  / OpEqYMþ 1
l ;

and

L�; OpEq YM
l

�  / OpEqYM�1
l : ð7:393Þ

The constants of proportionality can be computed from a knowledge of the
Clebsch-Gordon coefficients.
Kramers’ Theorem. This theorem tells us about systems that must have a degen-
eracy. The theorem says that the systems with an odd number of electrons on which
a purely electrostatic field is acting can have no energy levels that are less than
two-fold degenerate. If a magnetic field is imposed, this two-fold degeneracy can be
lifted.

Jahn–Teller effect. This effect tells us that high degeneracy may be unlikely. The
theorem states that a nonlinear molecule that has a (orbitally) degenerate ground
state is unstable, and tends to distort itself so as to lift the degeneracy. Because of
the Jahn–Teller effect, the symmetry of a given atomic environment in a solid is
frequently slightly different from what one might expect. Of course, the JahnTeller
effect does not remove the fundamental Kramers’ degeneracy.

Hund’s rules. Assuming Russel-Sanders coupling, these rules tell us what the
ground state of an atomic system is. Hund’s rules were originally obtained from
spectroscopic evidence, but they have been confirmed by atomic calculations that
include the Coulomb interactions between electrons. The rules state that in figuring
out how electrons fill a shell in the ground state we should (1) assign a maximum
S allowed by the Pauli principle, (2) assign maximum L allowed by S, (3) assign
J = L − S when the shell is not half-full, and J = L + S when the shell is over
half-full. See Problems 7.17 and 7.18. Results from the use of Hund’s rules are
shown in Tables 7.11 and 7.12.

Table 7.11 Effective magneton number for some representative trivalent
lanthanide ions

Ion Configuration Ground state g
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
JðJ þ 1Þp

a

Pr (3+) …4f 2 5s2 5p6 3H4 3.58
Nd (3+) …4f 3 5s2 5p6 4I9/2 3.62
Gd (3+) …4f 7 5s2 5p6 8S7/2 7.94
Dy (3+) …4f 9 5s2 5p6 6H15/2 10.63

ag ¼ g Landeð Þ ¼ 1þ J J þ 1ð Þþ S Sþ 1ð Þ � L Lþ 1ð Þ
2J J þ 1ð Þ
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Edward Teller—Dr. Strangelove?

b. Budapest, Hungary (1908–2003)

Father of H Bomb; Ostracized by many physicists because of his
Oppenheimer testimony

Teller was a controversial but also a very good physicist. He was also
known for his political manipulations and ideas as well as for his work in
physics. He is noted for the Jahn–Teller effect, for the Gamow-Teller theory
of beta decay and for the BET (Brunauer, Emmett and Teller) theory in
surface physics as well other ideas. He was a co-founder of the Livermore
Lab. He may have been the inspiration for the Dr. Strangelove character in the
movie of that name. Teller is sometimes given credit for the idea of implosion
and for being the father of the Hydrogen bomb, but most also credit Stanislaw
Ulam as being partly responsible for critical ideas in this area.

Some say Teller was denied the Nobel Prize because of his testimony
against Oppenheimer, which opposed Oppenheimer’s continued security
clearance. Others have said a similar thing happened to John Archibald
Wheeler (1911–2008, American) of Princeton. Also Teller’s promotion of
Nuclear weapons was held against him. According to Abraham Pais in his
autobiography (Physicists are strange people, Oxford, 1998), Teller cheated
also at cribbage. Whatever the truth of all the stories about Teller it is cer-
tainly fair to say Teller was a brilliant if complex man.

Teller’s testimony against Oppenheimer was:

In a great number of cases, I have seen Dr. Oppenheimer act—I understand that
Dr. Oppenheimer acted—in a way which for me was exceedingly hard to under-
stand. I thoroughly disagreed with him in numerous issues and his actions frankly
appeared to me confused and complicated. To this extent I feel that I would like to
see the vital interests of this country in hands which I understand better, and
therefore trust more. In this very limited sense I would like to express a feeling that I
would feel personally more secure if public matters would rest in other hands.

Table 7.12 Effective magneton number for some representative iron group
ionsa

Ion Configuration Ground state 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SðSþ 1Þp

Fe (3+) …3d5 6S5/2 5.92
Fe (2+) …3d6 5D4 4.90
Co (2+) …3d7 4F9/2 3.87
Ni (2+) …3d8 3F4 2.83
aQuenching with J = S, L = 0 (so g = 2) is assumed for better agreement with
experiment
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Energy-Level Splitting in Crystal Fields by Group Theory (A)
In this section we introduce enough group theory to be able to discuss the relation
between degeneracies (in the energies of atoms) and symmetries (of the environ-
ment of the atoms). The fundamental work in the field was done by H. A. Bethe
(see, e.g., Von der Lage and Bethe [7.64]). For additional material see Knox and
Gold [61, in particular see Table 1 and 2, pp. 5–8 for definitions].

We have already discussed some of the more elementary ideas related to groups
in Chap. 1 (see Sect. 1.2.1). The most important new concept that we will introduce
here is the concept of group representations. A group representation starts with a set
of nonsingular square matrices. For each group element gi there is a matrix Ri such
that gigj = gk implies that RiRj = Rk. Briefly stated, a representation of a group is a
set of matrices with the same multiplication table as the original group.

Two representations (R′, R) of g that are related by

R0 gð Þ ¼ S�1R gð ÞS ð7:394Þ
are said to be equivalent. In (7.394), S is any nonsingular matrix. We define

R gð Þ � R 1ð Þ gð Þ � R 2ð Þ gð Þ � R 1ð Þ gð Þ 0
0 R 2ð Þ gð Þ

��
: ð7:395Þ

In (7.395) we say that the representation R(g) is reducible because it can be
reduced to the direct sum of at least two representations. If R(g) is of the form (7.395),
it is said to be in block diagonal form. If a matrix representation can be brought into
block diagonal form by a similarity transformation, then the representation is re-
ducible. If no matrix representation reduces the representation to block diagonal
form, then the matrix representation is irreducible. In considering any representation
that is reducible, the most interesting information is to find out what irreducible
representations are contained in the given reducible representation. We should
emphasize that when we say a given representation R(g) is reducible, we mean that a
single S in (7.394) will put R′(g) in block diagonal form for all g in the group.

In a typical problem in crystal field theory, a reducible representation (with
respect to some group) of interest might be the irreducible representation R(l) of the
three-dimensional rotation group. That is, we would like to know what irreducible
representations of a group of interest is contained in a given irreducible represen-
tation of R(l) for some l. As we will see later, this can tell us a good deal about what
happens to the electronic energy levels of a spherical atom in a crystal field.

It is worthwhile to give an explicit example of the irreducible representations of
a group. Let us consider the group D3 already defined in Chap. 1 (see Table 1.2).

In Table 7.13 note that R(1) and R(2) are unfaithful (many elements of the group
correspond to the same matrix) representations while R(3) is a faithful (there is a
one-to-one correspondence between group elements and matrices) representation.
R(1) is, of course, the trivial representation.

Since a similarity transformation will induce so many equivalent irreducible
representations, a quantity that is invariant to similarity transformation might be (and
in fact is) of considerable interest. Such a quantity is the character. The character
of a group element is the trace of the matrix representing that group element.
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It is elementary to show that the trace is invariant to similarity transformation.
A similar argument shows that all group elements in the same class34 have the same
character. The argument goes as indicated below:

Tr R gð Þð Þ ¼ Tr R gð ÞSS�1� � ¼ Tr S�1R gð ÞS� � ¼ Tr R0 gð Þð Þ;

if R′(g) is defined by (7.394).
In summary the characters are defined by

v ið Þ gð Þ ¼
X
a

R ið Þ
aa gð Þ: ð7:396Þ

Equation (7.396) defines the character of the group element g in the ith represen-
tation. The characters still serve to distinguish various representations. As an
example, the character table for the irreducible representation of D3 is shown in
Table 7.14. In Table 7.14, the top row labels the classes.

Below we summarize some important rules for constructing the character table
for the irreducible representations. These results will not be proved, since they are
readily available.35 These rules are:

1. The number of classes s in the group is equal to the number of irreducible
representations of the group.

2. If ni is the dimension of the ith irreducible representation, then ni = vi(E), where
E is the identity of the group and

Ps
l n

2
i ¼ h, where h is the order of the group

G. For small finite groups, this rule obviously greatly restricts what the ni can be.

Table 7.13 The irreducible representations of D3

D3 g1 g2 g3 g4 g5 g6

R(1) 1 1 1 1 1 1

R(2) 1 1 1 −1 −1 −1

R(3) 1; 0
0; 1

� �
1
2

�1; þ ffiffiffi
3

p
� ffiffiffi

3
p

; �1

� �
1
2

�1; � ffiffiffi
3

pffiffiffi
3

p
; �1

� �
1
2

1; � ffiffiffi
3

p
� ffiffiffi

3
p

; �1

� �
1
2

1;
ffiffiffi
3

pffiffiffi
3

p
; �1

� � �1; 0
0; 1

� �

Table 7.14 The character table of D3

C1 C2 C3

g1 g2 g3 g4 g5 g6
v(1) 1 1 1 1 1 1
v(2) 1 1 1 −1 −1 −1
v(3) 2 −1 −1 0 0 0

34Elements in the same class are conjugate to each other that means if g1 and g2 are in the same
class there exists a g 2 G 3 g1 ¼ g�1g2g.
35See Mathews and Walker [7.47].
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3. If Bk is the number of group elements in the class Ck, then the characters for each
class obey the relationship

Xs
k¼1

Bkv
lð Þ� Ckð Þv jð Þ Ckð Þ ¼ hd j

l ;

where d j
l is the Kronecker delta. This relation is often called the orthogonality

relation for characters.
4. Suppose the order of a group element g is m (i.e. suppose gm = E). Further

suppose that the dimension of a representation (which need not be irreducible) is
n. It then follows that v(g) equals the sum of n, mth roots of unity.

5. The one-dimensional representation is always present.

Finally it is worth giving the criterion for determining the irreducible repre-
sentations in a given reducible representation. The rule is if

R ¼
X
i

C0
iR

i; ð7:397Þ

then C0
i (which is the number of times that irreducible representation i appears in the

reducible representation R) is given by

C0
i ¼ 1=hð Þ

X
k

Bkv
ið Þ Ckð Þ�v Ckð Þ; ð7:398Þ

where v denotes character relative to R and the sum over k is a sum over classes.
When a reducible representation is expressible in the form (7.397) it is said to be in,
reduced form. Putting it into such a form as (7.397) is called reduction.

A frequent use of these results occurs when the representation R is formed by
taking direct products (see Sect. 1.2.1 for a definition) of the representations R(i).
We can then evaluate (7.398) by remembering that the trace of a direct product is
the product of the traces.

There are many ways that group theory has been used as an aid in actual
calculations. No doubt there remain other ways that have not yet been discovered.
The basic ideas that we will use in our physical calculations involve:

1. The physical system determines a symmetry group with irreducible represen-
tations that can be found by group theory.

2. Except for what is called by definition “accidental degeneracy” we have a
distinct eigenvalue for each (occurrence of an) irreducible representation. (It is
possible for the same irreducible representation to occur many times. The
meaning of the word “occuf’ will be given later.)

3. The dimension of the irreducible representation is the degeneracy of each
corresponding eigenvalue.
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For a brief insight into the above, let the eigenfunctions of H corresponding to
the eigenvalue En be labeled wniði ! 1 to dÞ. En is thus d-fold degenerate. Thus

Hwni ¼ Enwni: ð7:399Þ

If g is an element of the symmetry group G, it follows that

g;H½ � ¼ 0: ð7:400Þ

From this,

H gwnið Þ ¼ En gwnið Þ: ð7:401Þ
Comparing (7.399) and (7.400), we see that

gwni ¼
Xd
i¼1

Cn
i wni: ð7:402Þ

It can be shown that Cn
i matrices are a representation of the group G. We thus have

the desired connection between energy levels, degeneracy, and representations.
Let us consider the physically interesting problem of an atom with one 4f

electron. Let us place this atom in a potential with trigonal symmetry. The group
appropriate to trigonal symmetry is our old friend D3. We want to neglect spin and
discover what happens (or may happen) to the 4f energy levels when the atom is
placed in a trigonal field. This is a problem that could be directly attacked by
perturbation theory, but it is interesting to see what type of statements can be made
by the group theory.

If you think a little about the ideas we have introduced and about our problem,
you should come to the conclusion that what we have to find is the irreducible
representations of D3 generated by (in previous notation) w 4fð Þi. Here i runs from 1
to 7. This problem can be solved by using (7.398).

The first thing we need to know is the character of our rotation group. This is
given by [61] for the lth irreducible representation

v lð Þ /ð Þ ¼
sin lþ 1

2

� �
/

� �
sin /=2ð Þ : ð7:403Þ

In (7.403), / is an appropriate rotation angle. Since we are dealing with a 4f level
we are interested only in the case l = 3:

v 3ð Þ /ð Þ ¼ sin 7/=2ð Þ
sin /=2ð Þ : ð7:404Þ

By (7.398), we need to evaluate (7.403) only for / in each of the three classes of
D3. Since the classes of D3 correspond to the identity, three-fold rotations and
two-fold rotations, we have
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v 3ð Þ 0ð Þ ¼ 7; ð7:405aÞ

v 3ð Þ 2p=3ð Þ ¼ þ 1; ð7:405bÞ

v 3ð Þ pð Þ ¼ �1: ð7:405cÞ
We can now construct Table 7.15. Applying (7.398) we have

C0
1 ¼

1
6

7ð Þ 1ð Þ 1ð Þþ 2 þ 1ð Þ 1ð Þþ 3 �1ð Þ 1ð Þ½ � ¼ 1;

C0
2 ¼

1
6
7 1ð Þ 1ð Þþ 2 þ 1ð Þ 1ð Þþ 3 �1ð Þ �1ð Þ½ � ¼ 2;

C0
3 ¼

1
6
7 1ð Þ 1ð Þþ 2 þ 1ð Þ �1ð Þþ 3 �1ð Þ 0ð Þ½ � ¼ 2:

Thus

R ¼ 2R 3ð Þ þR 1ð Þ þ 2R 2ð Þ: ð7:406Þ

By (7.406) we expect the 4f level to split into two doubly degenerate levels plus
three nondegenerate levels. The two levels corresponding to R(3) that occur twice
and the two R(2) levels will probably not have the same energy.

Some Comments About the Use of Crystal Field Theory (B)
We have seen that a crystal field will in general split the atomic energy levels of a
spherical atom. We have indicated that we can use group theory to find out what type
of splitting to expect in a crystal field of a given symmetry. In this section, we want to
be a little more qualitative and also briefly link up crystal field considerations with
paramagnetic resonance and magnetic susceptibility. Experimentally one would
probably start with paramagnetic resonance or magnetic susceptibility data and try to
use crystal field effects to explain the data. Our procedure will be just the opposite.
We will start with an ion and place it in a crystal field. We will then see where the
effect of a crystal field will have to be considered in relation to the experiments.

Let us consider an ion with a 3d1 electronic configuration whose ground state is
2D. We will consider this ion to be placed in a cubic crystal field. The effects of spin
will be neglected for the moment. This would be consistent with the medium crystal
field case where the effects of the crystal field are large compared to the effects of
the spin orbit interaction.

Table 7.15 Character table for calculating C0
i

C1 C2 C3

Bk 1 2 3
v(1) 1 1 1
D3 v

(2) 1 1 −1
v(3) 2 −1 0
Rotation group v(3) 7 +1 −1
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We begin by discussing the effects of cubic symmetry on the original wave
functions of the paramagnetic ion. The original wave functions are appropriate for
spherical symmetry so that their angular dependence is described by spherical
harmonics. There are several ways that wave functions appropriate to cubic sym-
metry can be selected. Probably the clearest way to do this would be by projection
operators (see, for example, Appendix F). The most straightforward way to do this
is to use perturbation theory (the perturbation would be of the form kVc, where Vc is
a function with cubic symmetry and jkj � 1). Another way to find the functions
appropriate to cubic symmetry is by use of a character table. We solved a problem
in this manner in the previous section when we considered the effect of a trigonal
field on the level of a 4f1 configuration. The functions that are sought are the basis
functions for the irreducible representations of the cubic point group. In general,
when we went through the argument Hwmi = Emwmi and (gwmi) =

P
j(Dij)wmj, the

Dij’s were a representation of g, and the wmi were the corresponding basis functions.
A suitable choice of basis functions generates an irreducible representation when
they are acted on by the group elements. We can show by a character table that the
irreducible representations for the rotation group with l = 2 decomposes into a sum
of two irreducible representations of the cubic group. In order to find basis func-
tions for these two irreducible representations of the cubic point group we have to
form two different linear combinations of spherical harmonics. There must be no
mixing between the different linear combinations by the action of the elements of
the cubic group. The basis functions are the correct basis functions if they generate
the irreducible representations. It is fairly easy to use group theory to see how many
energy levels the l = 2 level is split into. It is a little harder to construct the basis
functions. To summarize, the eigenfunctions of a Hamiltonian with potential energy

lim
k!0

¼ ½Vsðspherical symmetry)þ kVcðcubic symmetry)]

are being sought. The limit is to be taken after the eigenfunctions are found. The
resulting eigenfunctions are called kubic harmonics.

The kubic harmonics for the l = 2 case will not be derived. They are listed [61,
p. 56] in Table 7.16. Note that they do not necessarily have cubic symmetry. This is
generally true for basis functions for any symmetry group.

Table 7.16 l = 2 kubic harmonics

Representation Basis function

R(3)

ðw2
2 � w�2

2 Þ / xy=r2

ðw1
2 � w�1

2 Þ / yz=r2

ðw1
2 þw�1

2 Þ / zx=r2

8><
>:

R(2) ðw2
2 þw�2

2 Þ / ðx2 � y2Þ=r2
w0
2 / ð3z2 � r2Þ=r2

(

Note The subscript on w denotes l = 2 and the superscript refers to the
projection of the angular momentum along an axis
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We can understand physically why the R(3) and R(2) representations should
correspond to different energies. We shall suppose that the cubic symmetry is
caused by an octahedral array of negative ions ranged about the ion with the 3d1

configuration. By symmetry, each of the basis functions of the R(3) representation
has the same energy of interaction with the octahedral array. Also by symmetry (but
not so obviously) each basis function in the R(2) representation has the same
interaction energy with the octahedral array. We might expect the R(2) interaction to
be higher than the R(3) interaction, because we can show that the R(2) electrons
overlap more with the negative charges of the octahedral array than do the R(3)

electrons. Actual calculations support these physical ideas. Such ideas are often
useful when detailed calculations appear to be too complex. Note that the general
effect of the cubic crystal field was to split the five-fold degeneracy in energy which
was appropriate for spherical symmetry. This is a general principle. The higher the
symmetry, the more the degeneracy.

Suppose we could neglect any distortions in the cubic symmetry and the spin of
the electron. It should even now be clear that the crystal field acts to modify, for
example, the magnetic susceptibility. With spherical symmetry, the energy levels in
a magnetic field hz are proportional to mhz where m is an integer between −l and
l. However, with the cubic field, the energies are either the energy appropriate to
R(3) or R(2). To the first order, these energies are not even affected by a magnetic
field. This is because the cubic field acts to “quench” the orbital angular momen-
tum. Quenching of the orbital angular momentum means that the expectation value
of Lz is zero. This is easily seen, for example, for the first basis function of R(3):Z

ðw2�
2 � w�2

2 ÞLzðw2
2 � w�2

2 Þds ¼ 2�h
Z

ðw2�
2 � w�2�

2 Þðw2
2 þw�2

2 Þds

¼ 2�h
Z

w2�
2 w

2
2ds� 2�h

Z
w�2�
2 w�2

2 ds

� 2�h
Z

w�2�
2 w2

2dsþ 2�h
Z

w2�
2 w

�2
2 ds

¼ 0:

Of course, if we include spin, then even in first order there will be a magnetic
field dependence of the energy levels in the cubic field. However, it must be clear
that the presence of the cubic field redistributes the energy levels. This alone is
enough to change the population of the energy levels as a function of temperature.
Thus, the magnetic susceptibility will be changed. Since paramagnetic resonance
can be used to measure energy differences between levels, it should also be clear
that the cubic field will change the positions of the resonance peaks observed in the
paramagnetic resonance data.

In an actual situation we might be concerned with further small crystalline field
distortions which would split apart the energy levels in R(2) and R(3). Whether or
not there are further crystal field distortions, we would certainly be concerned with
the effect of the spin orbit term. In order to consider the spin orbit term, we have to
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realize that each of the basis function of R(3) and R(2) is now two wave functions
corresponding to the two possible spin states of an electron in a given orbital state.
By Appendix B, the spin orbit term has the form

kL � S ¼ k LzSz þ 1
2
ðLþ S� þ L�Sþ Þ

h i
: ð7:407Þ

The L+S− + L−S+ terms will cause a mixing among the R(2) and R(3) wave functions
and so can act to partially remove the quenching of orbital angular momentum. Thus,
it is clear that the presence of the spin orbit term will further affect paramagnetic
resonance and magnetic susceptibility measurements. We will not carry the analysis
further here because it can be done by standard quantum mechanical techniques and
because our purpose in this section is to discuss just the general ideas.

7.5 Brief Mention of Other Topics

7.5.1 Spintronics or Magnetoelectronics (EE)36

We are concerned here with spin-polarized transport for which the name spintronics
is sometimes used. We need to think back to the ideas of band ferromagnetism as
contained for example in the Stoner model. Here one assumes that an exchange
interaction can cause the spin-up and spin-down density of states to split apart as
shown in the schematic diagram (for simplicity we consider that the majority spin-
up band is completely filled). Thus, the number of electrons at the Fermi level with
spin up (Nup) can differ considerably from the number with spin down (Ndown). See
(7.297) and Fig. 7.37 (spins and moments have opposite directions due to the
negative charge of the electron—the spins are drawn in the bands). This results in
two phenomena: (a) a net magnetic moment, and (b) a net spin polarization in
transport defined by

P ¼ Nup � Ndown

Nup þNdown
: ð7:408Þ

Fe, Ni, and Co typically have P of order 50%.

36A comprehensive review has recently appeared, Zutic et al. [7.73]. Comment: Our discussion
in this section is of course too brief and highly simplified. In particular, our discussion of GMR
has ignored spin dependent scattering processes at the Ferro-nonmagnetized metal interfaces.
These are typically very important. Our discussion is perhaps most apropos for GMR in so-called
half-metals (one spin band metallic, one insulating). This is clearly discussed in “The Discovery
of Giant Magnetoresistance” issued by the Royal Swedish Academy of Sciences on 9 Oct. 2007. It
can be readily found on the internet. They also discuss tunneling magnetoresistance and give many
references. By now, entire books have been written on spintronics and it is a field with huge
technical.
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In the figures, the D(E) describe the density of states of up and down spins. As
shown also in Fig. 7.38 one can use this idea to produce a “spin valve,” which
preferentially transmits electrons with one spin direction. Spin valves have many
possible device applications (see, e.g., Prinz [7.55]). In Fig. 7.38 we show transport
from a magnetized metal to a magnetized metal through a nonmagnetic metal. The
two ferromagnets are still exchange coupled through the metal separating them. For
the case of the secondmetal being antialigned with the first, the current is reduced and
the resistance is high. The electrons with moment up can go from (a) to (b) but are
blocked from (b) to (c). Themoment-down electrons are inhibited frommovement by
the gap from (a) to (b). If the second magnetized metal were aligned, the resistance
would be low. Since the second ferromagnet’s magnetization direction can be con-
trolled by an external magnetic field, this is the principle used in GMR (giant
magnetoresistance, discovered by Baibich et al. in 1988). See Baibich et al. [7.4].

Fig. 7.37 Exchange coupling causes band ferromagnetism. The D are the density of states of
the spin-up and spin-down bands. EF is the Fermi energy. Adapted from Prinz [7.55]

(a) (b) (c)

Fig. 7.38 Due to preferential transmission of spin orientation, the resistance is high if the
second ferromagnet is antialigned. Adapted from Prinz [7.55]
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One should note that spintronic devices are possible because the spin diffusion
length that is the square root of the diffusion constant times the spin relaxation time
can be fairly large, e.g. 0.1 mm in Al at 40 K. This means that the spin polarization
of the transport will typically last over these distances when the polarized current is
injected into a nonmagnetized metal or semiconductor. Only in 1988 was it realized
that electronic current flowing into an ordinary metal from a ferromagnet could
preserve spin, so that spin could be transported just as charge is.

We should also mention that control of spin is important in efforts to achieve
quantum computing. Quantum computers perform a series of sequences of unitary
transformation on sets of “qubits”—see Bennett [7.5] for a definition. In essence,
this holds out the possibility of something like massive parallel computation.
Quantum computing is a huge subject; see, e.g., Bennett [7.5].

In contrast to bits that have the value of (say) 0 or 1 as in ordinary computers,
qubits are the basic units of quantum computers. For a spin 1/2 particle a qubit
could specify that the particle is in some linear combinations of “up” and “down”
spin states. Quantum computers operate on qubits and as mentioned quantum
computing is like parallel rather than serial processing. Decoherence is a problem.
That is, interactions with the environment could cause the qubits to lose the par-
ticular state they are in and we need large numbers of qubits to do practical
calculations. In fact, we may need to entangle many particles for coherence times
much longer than the cycle time of one calculation.

We are finding that there are many possible ways to implement the construction
of quantum computers in the future. Large scale semiconductor quantum systems
can be developed to do this. However, as these are made smaller and smaller, it is
harder and harder to avoid decoherence due to interaction with the environment. On
the other hand, nuclear spins maintain coherence well due to their relative isolation
from the environment, but that means they are harder to use to read out information.
Photons are used to carry quantum information (via their polarization), but they are
hard to store in localized locations. The current thinking is that all of these tech-
niques may be most useful in devices when we mix and match them so each
particular strengths can be used where most effective.

Quantum computers hold out the promise that factoring is facilitated, and hence
so is code breaking. Peter Shor’s quantum factoring algorithm showed that a
quantum computer could factor large integers exponentially faster than a conven-
tional computer. The security of many present encryption standards is based on the
difficulty of factoring very large (say 150 or so digits) integers. Thus, quantum
computers could break the security of these encryption methods.

Quantum computing allows one to tell if someone is intercepting the messages.
In what is now conventional language, Alice and Bob can use entangled photons to
establish an encryption key, and if Eve intercepts their sharing information, they
can know of it and start over.

It should also be mentioned that one class of spintronics devices relies on the
flow of electrons with spins and how the spin affects the flow of current. The other
class has to do with using the spin via qubits to contain certain amounts of infor-
mation. This class is closely related to quantum computers.
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Quantum computers may also be useful for quantum simulations of very com-
plex physics systems such as high-temperature superconductors.

For further details see, N. David Mermim, Quantum Computer Science, An
Introduction, Cambridge University Press, New York, 2007, C. Monroe and Mikhail
Lukin, “Remapping the quantum frontier,” Physics World, 2008, pp. 32–39, and you
can search arkiv.org/archive/quant-ph, for detailed papers.

Hard Drives (EE)
In 1997 IBM introduced another innovation—the giant magnetoresistance
(GMR) read head for use in magnetic hard drives—in which magnetic and non-
magnetic materials are layered one in the read head, roughly doubling or tripling its
sensitivity. By layering one can design the device with the desired GMR properties.
The device works on the quantum-mechanical principle, already mentioned, that
when the layers are magnetized in the same direction, the spin-dependent scattering
is small, and when the layers are alternatively magnetized in opposite directions, the
electrons experience a maximum of spin-dependent scattering (and hence much
higher resistivity). Thus, magnetoresistance can be used to read the state of a
magnetic bit in a magnetic disk drive. The direction of soft layer in the read head
can be switched by the direction of the magnetization in the storing media. The
magnetoresistance is thus changed and the direction of storage is then read by the
size of the current in the read head. Sandwiches of Co and Cu can be used with the
widths of the layers typically of the order of nanometers (a few atoms say) as this is
the order of the wavelength of electrons in solids. More generally, magnetic mul-
tilayers of ferromagnetic materials (e.g. 3d transition metal ferromagnets) with
nonferromagnetic spacers are used. The magnetic coupling between layers can be
ferromagnetic or antiferromagnetic depending on spacing. Stuart Parkin of IBM has
been a pioneer in the development of the GMR hard disk drive [7.52].

Magnetic Tunnel Junctions (MTJs) (EE)
Here the spacer in a sandwich with two ferromagnetic layers is a thin insulating
layer. One difficulty is that it is difficult to make thin uniform insulators. Another
difficulty, important for logic devices, is that the ferromagnetic layers need to be
ferromagnetic semiconductors (rather than metals with far more mobile electrons
than in semiconductors) so that a large fraction of the spin-aligned electrons can get
into the rest of the device (made of semiconductors). GaMnAs and TiCoO2 are
being considered for use as ferromagnetic semiconductors for these devices.

The tunneling current depends on the relative magnetization directions of the
ferromagnetic layers. It should be mentioned here that in the usual GMR structures
the current typically flows parallel to the layers (but electrons undergo a random
walk, and sample more than one layer so GMR can still operate), while in a MTJ
sandwich the current typically flows perpendicular to the layers.

For the typical case, the resistance of the MTJ is lower when the moments of the
ferromagnetic layers are aligned parallel and higher when the moments are antipar-
allel. This produces tunneling magnetic resistance TMR that may be 40% or so larger
than GMR. MTJ holds out the possibility of making nonvolatile memories.

Spin-dependent tunneling through the FM-I-FM (ferromagnetic-insulator-
ferromagnetic) sandwich had been predicted by Julliere [7.34] and Slonczewski
[7.61]. It has now become possible to consider semiconductor spintronics without
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ferromagnetism. The spins in this case are controlled by the spin-orbit interaction.
A brief review is in David Awschalom and Nitin Samarth, “Spintronics without
magnetism,” Physics 2, 50 (2009) online.

Colossal Magnetoresistance (EE)
Magnetoresistance (MR) can be defined as

MR ¼ q Hð Þ � q 0ð Þ
q 0ð Þ ; ð7:409Þ

where q is the resistivity and H is the magnetic field.
Typically, MR is a few per cent, while GMR may be a few tens of per cent.

Recently, materials with so-called colossal magnetoresistance (CMR) of 100% or
more have been discovered. CMR occurs in certain oxides of manganese—man-
ganese perovskites (e.g. La0.75Ca0.25MnO3). Space does not permit further dis-
cussion here. See Fontcuberta [7.23]. See also Salamon and Jaime [7.58].

7.5.2 The Kondo Effect (A)

Scattering of conduction electrons by localized moments due to s-d exchange can
produce surprising effects as shown by J. Kondo in 1964. Although, this would
appear to be a very simple basic phenomena that could be easily understood, at low
temperature Kondo carried the calculation beyond the first Born approximation and
showed that as the temperature is lowered the scattering is enhanced. This led to an
explanation of the old problem of the resistance minimum as it occurred in, e.g.,
dilute solutions of Mn in Cu.

The Kondo temperature is defined as the temperature at which the Kondo effect
clearly appears and for which Kondo’s result is valid [see (7.411)]. It is given
approximately by

Tk ¼ EF

ffiffiffi
J

p
exp

�1
nJ

��
; ð7:410Þ

where Tk is the Kondo temperature, EF is the Fermi energy, J characterizes the
strength of the exchange interaction, and n is the density of states. Generally Tk is
below the resistance minimum that can be estimated from the approximate
expression giving the resistivity q,

q ¼ a� b ln Tð Þþ cT5: ð7:411Þ
The ln(T) term contains the spin-dependent Kondo scattering and cT5 characterizes
the resistivity due to phonon scattering at low temperature (the low temperature is
also required for a sharp Fermi surface), and a, b and c are constants with b being
proportional to the exchange interaction. This leads to a resistivity minimum at
approximately
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TM ¼ b
5c

�� 1=5

: ð7:412Þ

In actual practice the Kondo resistivity does not diverge at extremely low temper-
atures, but rather at temperatures well below the Kondo temperature, the resistivity
approaches a constant value as the conduction electrons and impurity spins form a
singlet. Wilson has used renormalized group theory to explain this. There are
actually three regimes that need to be distinguished. The logarithmic regime is above
the Kondo temperature, the crossover region is near the Kondo temperature, and the
plateau of the resistivity occurs at the lowest temperatures. To discuss this in detail
would take us well beyond the scope of this book. See, e.g., Kirk WP, “Kondo
Effect,” pp. 162–165 in [24] and references contained therein. Using quantum dots
as artificial atoms and studying them with scanning tunneling microscopes has
revived interest in the Kondo effect. See Kouwenhoven and Glazman [7.41].

Jun Kondo

b. Japan (1930–)

Kondo Effect; Dilute Magnetic Alloys

The Kondo effect is the appearance of a low temperature resistance min-
imum in a non-magnetic metal with dilute magnetic impurities. An example
is cobalt in copper. It is of much interest because it has wide applicability and
connections to many fields. These include many body effects, the renormal-
ization group, heavy fermions and others. Interest has revived in the effect
because of a connection that has been made of it to nanophysics and quantum
dots.

Kenneth G. Wilson

b. Waltham, Massachusetts, USA (1936–2013)

Renormalization Group and Critical Exponents; Phase Transitions; Kondo
Effect; Lattice Gauge Theory.

Wilson, was the son of E. Bright Wilson a noted Chemist. Kenneth, in
large measure, helped to revolutionize and expand the understanding of phase
transitions and critical exponents through his use of scaling and related
matters. This work had wide application in a variety of areas including
magnetism. He was noted for bringing the ideas of quantum field theory into
other fields including condensed matter physics. In later life, he worked on
science education. He won the Nobel Prize in 1982.
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Myriam Sarachik

b. Antwerp, Belgium (1933–)

Experimental Low Temperature Physicist; Distinguished Professor, CCNY.

Dr. Sarachik has won the Buckley Prize for condensed matter physics. She
has made contributions in several fields such as superconductivity, the Kondo
effect, metal insulator transitions in doped Si, and quantum tunneling in large
spin systems.

7.5.3 Spin Glass (A)

Another class of order that may occur in magnetic materials at low temperatures is
spin glass. The name is meant to suggest frozen in (long-range) disorder.
Experimentally the onset of a spin glass is signaled by a cusp in the magnetic
susceptibility at Tf (the freezing temperature) in zero magnetic field. Below Tf there
is no long- range order. The classic examples of spin glasses are dilute alloys of iron
in gold (Au:Fe, also Cu:Mn, Ag:Mn, Au:Mn and several other examples). The
critical ingredients of a spin glass seem to be (a) a competition among interactions
as to the preferred direction of a spin (frustration), and (b) a randomness in the
interaction between sites (disorder). There are still many questions surrounding spin
glasses such as do they have a unique ground state and if the spin glass transition is
a true phase transition to a new state (see Bitko [7.7]).

For spin glasses, it is common to define an order parameter by summing over the
average spin’s squared:

q ¼ 1
N

XN
i¼1

Sih i2; ð7:413Þ

and for T > Tf, q = 0, while q 6¼ 0 for T < Tf. Much further detail can be found in
Fischer and Hertz [7.22]. See also the article by Young [7.8 pp. 331–346].

Randomness and frustration (where two paths linking the same pair of spins do
not have the same net effective sign of exchange coupling) are shared by many
other systems besides spin glasses. Or another way of saying this is that the study of
spin glasses fall in the broad category of the study of disordered systems, including
random field systems (like diluted antiferromagnets), glasses, neural networks,
optimization and decision problems. Other related problems include combinatorial
optimization problems, such as the traveling salesman problem, and other problems
involving complexity. For the neural network problem see for example, Muller and
Reinhardt [7.50]. The book by Fischer and Hertz, already mentioned has a chapter
on the physics of complexity with references. Another reference to get started in
this general area is Chowdhury [7.12]. Mean-field theories of spin glasses have
been promising, but there is no general consensus as to how to model spin glasses.

It is worth looking at a few experimental results to show real spin glass properties.
Figure 7.39 shows the cusp in the susceptibility for CuMn. The true Tf occurs as the ac
frequency goes to zero. Figure 7.40 shows the temperature dependence of the
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Fig. 7.40 The temperature variation of the magnetization M(T, H) and order parameter Q(T,
H) with vanishing field (open symbols) and with 16 kg applied external magnetic field (full
symbols) for Cu–0.7 at.% Mn and Au-6.6 at.% Fe; M(T, H = 0) is zero. After Mookerjee A and
Chowdhury D, J Physics F,Metal Physics 13, 365 (1983), by permission of the Institute of Physics

Fig. 7.39 The ac susceptibility as a function of T for CuMn (1 at.%). Measuring frequencies:
open square, 1.33 kHz; open circle, 234 Hz, filled square, 10.4 Hz; and open triangle, 2.6 Hz.
From Mydosh JA, “Spin-Glasses—The Experimental Situation” Magnetism in Solids Some
Current Topics, Scottish Universities Summer School in Physics, 1981, p. 95, by permission of
SUSSP.Data fromMulder CA, vanDuyneveldtAJ, andMydosh JA,Phys Rev,B23, 1384 (1981)
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magnetization and order parameter for CuMn and AuFe. Figure 7.41 shows the
magnetic specific heat for two CuMn samples.

7.5.4 Quantum Spin Liquids—A New State of Matter (A)

1. A disordered state of electron spins. It was originally proposed by
P. W. Anderson.

2. The crystal is ordered but spins “jiggle” around even at absolute zero due to
quantum fluctuations (or zero point motion) and also spin frustration (which
can weaken net coupling). Consider three spins (spin 1/2) at the vertices of an
equilateral triangle with antiferromagnetic coupling. All spins would like to be
antiparallel to their neighbor, but this is impossible, so at least one pair is
frustrated.

3. The spins should be thought of somewhat like the atoms of a liquid, but note
the Quantum Spin Liquid is a quantum fluid. The spins are disordered but
localized to a site, so the material is a crystal, not a liquid.

4. QSL’s show fractionalization of spins (somewhat analogous to the fractional
quantum Hall effect as discussed in Sect. 12.7.3).

5. The fractionalized spins are called spinons. They are Majorana fermions. It is
thought they may provide building blocks for quantum computers.

6. The spins show long range many-body entanglement.
7. This state also has topological properties and is related to topological insulators

in some fashion.
8. Current real material examples include alpha-RuCl3 and the mineral herbert-

smithite, which has a Kagome lattice.
9. Neutron scattering produces broad humps as predicted and gives firm evidence

for this state.

Fig. 7.41 Magnetic specific heat for CuMn spinglasses. The arrows show the freezing
temperature (susceptibility peak). Reprinted with permission from Wenger LE and
Keesom PH, Phys Rev B 13, 4053 (1976). Copyright 1976 by the American Physical Society
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10. See e.g. Christian Balz, et al., “Physical realization of a quantum spin liquid
based on a complex frustration mechanism” Nature Physics (2016) https://doi.
org/10.1038/nphys3826, Published online 25 July 2016.

7.5.5 Solitons37 (A, EE)

Solitary waves are large-amplitude, localized, stable propagating disturbances. If in
addition they preserve their identity upon interaction they are called solitons. They
are particle-like solutions of nonlinear partial differential equations. They were first
written about by John Scott Russell, in 1834, who observed a peculiar stable
shallow water wave in a canal. They have been the subject of much interest since
the 1960s, partly because of the availability of numerical solutions to relevant
partial differential equations. Optical solitons in optical fibers are used to transmit
bits of data.

Solitons occur in hydrodynamics (water waves), electrodynamics (plasmas),
communication (light pulses in optical fibers), and other areas. In magnetism the
steady motion of a domain wall under the influence of a magnetic field is an
example of a soliton.38

In one dimension, the Korteweg–de Vries equation

@u
@t

þA
@3u
@x3

þB
@

@x
u2
� � ¼ 0

(with A and B being positive constants) is used to discuss water waves. In other
areas, including magnetism and domain walls, the sine-Gordon equation is
encountered

A
@2u
@t2

� B
@2u
@x2

¼ � C
u0

sin
2pu
u0

��

(with A, B, C, and u0 being positive constants). Generalization to higher dimension
have been made. The solitary wave owes its stability to the competition of dis-
persion and nonlinear effects (such as a tendency to steepen waves). The solitary
wave propagates with a velocity that depends on amplitude.

37See Fetter and Walecka [7.20] and Steiner, “Linear and non linear modes in 1d magnets,”
in [7.14, p. 199ff].
38See the article by Krumhansl in [7.8, pp. 3–21] who notes that static solutions are also solitons.
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Problems

7:1 Calculate the demagnetization factor of a sphere.
7:2 In the mean-field approximation in dimensionless units for spin 1/2 ferro-

magnets the magnetization (m) is given by

m ¼ tanh
m
t

	 

;

where t = T/Tc and Tc is the Curie temperature. Show that just below the
Curie temperature t < 1,

m ¼
ffiffiffi
3

p ffiffiffiffiffiffiffiffiffiffi
1� t

p
:

7:3 Evaluate the angular momentum L and magnetic moment l for a sphere of
mass M (mass uniformly distributed through the volume) and charge
Q (uniformly distributed over the surface), assuming a radius r and an
angular velocity x. Thereby, obtain the ratio of magnetic moment to angular
momentum.

7:4 Derive Curie’s law directly from a high-temperature expansion of the par-
tition function. For paramagnets, Curie’s law is

v ¼ C
T

The magnetic susceptibilityð Þ;

where Curie’s constant is

C ¼ l0Ng
2l2Bj jþ 1ð Þ
3k

:

N is the number of moments per unit volume, g is Lande’s g factor, lB is the
Bohr magneton, and j is the angular momentum quantum number.

7:5 Prove (7.175).
7:6 Prove (7.176).
7:7 In one spatial dimension suppose one assumes the Heisenberg Hamiltonian

H ¼ � 1
2

X
R;R0

J R� R0ð ÞSR � SR0 ; J 0ð Þ ¼ 0;

where R − R′ = ±a for nearest neighbor and J1 � J(±a) > 0, J2 � J
(±2a) = −J1/2 with the rest of the couplings being zero. Show that the stable
ground state is helical and find the turn angle. Assume classical spins. For
simplicity, assume the spins are confined to the (x, y)-plane.
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7:8 Show in an antiferromagnetic spin wave that the neighboring spins precess in
the same direction and with the same angular velocity but have different
amplitudes and phases. Assume a one-dimensional array of spins with
nearest-neighbor antiferromagnetic coupling and treat the spins classically.

7:9 Show that (7.183) is a consistent transformation in the sense that it obeys a
relation like (7.195), but for S�j .

7:10 Show that (7.158) can be written as

H ¼ �J
X
jd

SjzSjþ d;z þ 1
2

S�j S
þ
jþ d þ Sþ

j Sþ
jþ d

	 
� �
� 2l0lH

X
j

Sjz:

7:11 Using the definitions (7.199), show that

bk; b
y
k0

h i
¼ dk

0
k ;

bk; bk0½ � ¼ 0;

byk ; byk0
h i

¼ 0:

7:12 (a) Apply Hund’s rules to find the ground state of Nd3+ (4f35s2p6).
(b) Calculate the Lande g-factor for this case.

7:13 By use of Hund’s rules, show that the ground state of Ce3+ is 2F5/2, of Pm
3+

is 5I4, and of Eu3+ is 7F0.
7:14 Explain what the phrases “3d1 configuration” and “2D term” mean.
7:15 Give a rough order of magnitude estimate of the magnetic coupling energy of

two magnetic ions in EuO ðTc ffi 69KÞ. How large an external magnetic field
would have to be applied so that the magnetic coupling energy of a single ion
to the external field would be comparable to the exchange coupling energy
(the effective magnetic moment of the magnetic Eu2+ ions is 7.94 Bohr
magnetons)?

7:16 Estimate the Curie temperature of EuO if the molecular field were caused by
magnetic dipole interactions rather than by exchange interactions.

7:17 Prove the Bohr–van Leeuwen theorem that shows the absence of magnetism
with purely classical statistics. Hint—look at Chap. 4 of Van Vleck [7.63].

7:18 Describe how iron magnetizes.
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Chapter 8
Superconductivity

8.1 Introduction and Some Experiments (B)

In 1911 H. Kamerlingh Onnes measured the electrical resistivity of mercury and
found that it dropped to zero below 4.15 K. He could do this experiment because he
was the first to liquefy helium and thus he could work with the low temperatures
required for superconductivity. It took 46 years before Bardeen, Cooper, and
Schrieffer (BCS) presented a theory that correctly accounted for a large number of
experiments on superconductors. Even today, the theory of superconductivity is
rather intricate and so perhaps it is best to start with a qualitative discussion of the
experimental properties of superconductors.

Superconductors can be either of type I or type II, whose different properties we
will discuss later, but simply put the two types respond differently to external
magnetic fields. Type II materials are more resistant, in a sense, to a magnetic field
that can cause destruction of the superconducting state. Type II superconductors are
more important for applications in permanent magnets. We will introduce the
Ginzburg–Landau theory to discuss the differences between type I and type II.

The superconductive state is a macroscopic state. This has led to the develop-
ment of superconductive quantum interference devices that can be used to measure
very weak magnetic fields. We will briefly discuss this after we have laid the
foundation by a discussion of tunneling involving superconductors.

We will then discuss the BCS theory and show how the electron–phonon
interaction can give rise to an energy gap and a coherent motion of electrons
without resistance at sufficiently low temperatures.

Until 1986 the highest temperature that any material stayed superconducting was
about 23 K. In 1986, the so-called high-temperature ceramic superconductors were
found and by now, materials have been discovered with a transition temperature of
about 140 K (and even higher under pressure). Even though these materials are not
fully understood, they merit serious discussion. In 2001 MgB2, an inter-metallic
material was discovered to superconduct at about 40 K and it was found to have
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several unusual properties. We will also discuss briefly so-called heavy-electron
superconductors.

Besides the existence of superconductivity, Onnes further discovered that a
superconducting state could be destroyed by placing the superconductor in a large
enough magnetic field. He also noted that sending a large enough current through the
superconductor would destroy the superconducting state. Silsbee later suggested that
these two phenomena were related. The disruption of the superconductive state is
caused by the magnetic field produced by the current at the surface of the wire.
However, the critical current that destroys superconductivity is very structure sensitive
(see below) so that it can be regarded for some purposes as an independent parameter.
The critical magnetic field (that destroys superconductivity) and the critical temper-
ature (at which the material becomes superconducting) are related in the sense that the
highest transition temperature occurs when there is no external magnetic field with the
transition temperature decreasing as the field increases. We will discuss this a little
later when we talk about type I and type II superconductors. Figure 8.1 shows at low
temperature the difference in behavior of a normal metal versus a superconductor.

In 1933, Meissner and Ochsenfeld made another fundamental discovery. They
found that superconductors expelled magnetic flux when they were cooled below
the transition temperature. This established that there was more to the supercon-
ducting state than perfect conductivity (which would require E = 0); it is also a state
of perfect diamagnetism or B = 0. For a long, thin superconducting specimen,
B = H + 4pM (cgs). Inside B = 0, so H + 4pM = 0 and Hin = Ba (the externally
applied B field) by the boundary conditions of H along the length being continuous.
Thus, Ba + 4pM = 0 or v = M/Ba = −1/(4p), which is the case for a perfect dia-
magnet. Exclusion of the flux is due to perfect diamagnetism caused by surface
currents, which are always induced so as to shield the interior from external
magnetic fields. A simple application of Faraday’s law for a perfect conductor
would lead to a constant flux rather than excluded flux. A plot of critical field versus
temperature typically (for type I as we will discuss) looks like Fig. 8.2. The
equation describing the critical fields dependence on temperature is often empiri-
cally found to obey

Fig. 8.1 Electrical resistivity in normal and superconducting metals (schematic)
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Hc Tð Þ ¼ Hc 0ð Þ 1� T
Tc

� �2
" #

: ð8:1Þ

In 1950, H. Fröhlich discussed the electron–phonon interaction and considered
the possibility that this interaction might be responsible for the formation of the
superconducting state. At about the same time, Maxwell and Reynolds, Serin,
Wright, and Nesbitt found that the superconducting transition temperature depen-
ded on the isotopic mass of the atoms of the superconductor. They found MaTc ffi
constant. This experimental result gave strong support to the idea that the electron–
phonon interaction was involved in the superconducting transition. In the simplest
model, a = 1/2.

In 1957, Bardeen, Cooper, and Schrieffer (BCS) finally developed a formalism
that contained the correct explanation of the superconducting state in common
superconductors. Their ideas had some similarity to Fröhlich’s. A key idea of the
BCS theory was developed by Cooper in 1956. Cooper analyzed the electron–
phonon interaction in a different way from Fröhlich. Fröhlich had discussed the
effect of the lattice vibrations on the self-energy of the electrons. Cooper analyzed
the effect of lattice vibrations on the effective interaction between electrons and
showed that an attractive interaction between electrons (even a very weak attractive
interaction at low enough temperature) would cause pairs of the electrons (the
Cooper pairs) to form bound states near the Fermi energy (see Sect. 8.5.3). Later,
we will discuss the BCS theory and show the pairing interaction causes a gap in the
density of single-electron states.

As we have mentioned a distinction is made between type I and type II super-
conductors. Type I have only one critical field while type II have two critical fields.
The idea is shown in Fig. 8.3a and b. 4pM is the magnetic field produced by the
surface superconducting currents induced when the external field is applied. Type I
superconductors either have flux penetration (normal state) or flux exclusion (su-
perconductivity state). For type II superconductors, there is no flux penetration
below Hc1, the lower critical field, and above the upper critical field Hc2 the material
is normal. But, between Hcl and Hc2 the superconductivity regions are threaded by

Fig. 8.2 Schematic of critical field versus temperature for Type I superconductors
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vortex regions of the flux penetration. The idea is shown in Fig. 8.4. We are
neglecting any effect of demagnetizing fields. This would be appropriate for a long
thin sample along its axis. Thus we do not discuss the intermediate state in Type I
superconductors due to shape dependent effects in which a fraction of the sample
may be in the normal state. This is different from the mixed or vortex state in
Type II superconductors.

Type I and type II behavior will be discussed in more detail after we discuss the
Ginzburg–Landau equations for superconductivity. We now mention some exper-
iments that support the theories of superconductivity.

(a) (b)

Fig. 8.3 (a) Type I and (b) Type II superconductors

Fig. 8.4 Schematic of flux penetration for type II superconductors. The gray areas represent
flux penetration surrounded by supercurrent (vortex). The net effect is that the supercon-
ducting regions in between have no flux penetration
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H. Kamerlingh Onnes

b. Groningen, Netherlands (1853–1926)

First to liquefy Helium; Discovered Superconductivity (first in Hg); Low
Temperature Physics

Onnes not only made seminal discoveries, but also was a giant in creating
the science of low temperature physics and accompanying laboratories. Many
very prominent scientists in this field were trained by him. Only several
decades after the discovery of superconductivity was the phenomenon
explained by Bardeen, Cooper, and Schrieffer.

8.1.1 Ultrasonic Attenuation (B)

The BCS theory of the ratio of the normal to the superconducting absorption
coefficients ðan to asÞ as a function of temperature variation of the energy gap
(discussed in detail later) can be interpreted in such a way as to give information on
the temperature variation of the energy gap. Some experimental results on ðan=asÞ
versus temperature are shown in Fig. 8.5. Note the close agreement of experiment
and theory, and that the absorption of superconductors is much lower than for the
normal case when well below the transition temperature.

Fig. 8.5 Absorption coefficients ultrasonic attenuation in Pb (an refers to the normal state, as
refers to the superconducting state, and Tc is the transition temperature). The dashed curve is
derived from BCS theory and it uses an energy gap of 4.2 kTc [Adapted with permission from
Love RE and Shaw RW, Reviews of Modern Physics 36(1) part 1, 260 (1964). Copyright
1964 by the American Physical Society.]
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8.1.2 Electron Tunneling (B)

There are at least two types of tunneling experiments of interest. One involves
tunneling from a superconductor to a superconductor with a thin insulator sepa-
rating the two superconductors. Here, as will be discussed later, the Josephson
effects are caused by the tunneling of pairs of electrons. The other type of tunneling
(Giaever) involves tunneling of single quasielectrons from an ordinary metal to a
superconducting metal. As will be discussed later, these measurements provide
information on the temperature dependence of the energy gap (which is caused by
the formation of Cooper pairs in the superconductor), as well as other features.

8.1.3 Infrared Absorption (B)

The measurement of transmission or reflection of infrared radiation through thin
films of a superconductor provides direct results for the magnitude of the energy
gap in superconductors. The superconductor absorbs a photon when the photon’s
energy is large enough to raise an electron across the gap.

8.1.4 Flux Quantization (B)

We will discuss this phenomenon in a little more detail later. Flux quantization
through superconducting rings of current provides evidence for the existence of
paired electrons as predicted by Cooper. It is found that flux is quantized in units of
h/2e, not h/e.

8.1.5 Nuclear Spin Relaxation (B)

In these experiments, the nuclear spin relaxation time T1 is measured as a function
of temperatures. The time T1 depends on the exchange of energy between the
nuclear spins and the conduction electrons via the hyperfine interaction. The data
for T1 for aluminum looks somewhat as sketched in Fig. 8.6. The rapid change of
T1 near T = Tc can be explained, at least quantitatively, by BCS theory.

Fig. 8.6 Schematic of nuclear spin relaxation time in a superconductor near Tc

560 8 Superconductivity



8.1.6 Thermal Conductivity (B)

A sketch of thermal conductivity K versus temperature for a superconductor is
shown in Fig. 8.7. Note that if a high enough magnetic field is turned on, the
material stays normal—even below Tc. So, a magnetic field can be used to control
the thermal conductivity below Tc.

All of the above experiments have tended to confirm the BCS ideas of the
superconducting state. A central topic that needs further elaboration is the criterion
for occurrence of superconductivity in any material. We would like to know if the
BCS interaction (electrons interacting by the virtual exchange of phonons) is the
only interaction. Could there be, for example, superconductivity due to magnetic
interactions? Over a thousand superconducting alloys and metals have been found,
so superconductivity is not unusual. It is, perhaps, still an open question as to how
common it is.

In the chapter on metals, we have mentioned heavy-fermion materials.
Superconductivity in these materials seems to involve a pairing mechanism.
However, the most probable cause of the pairing is different from the conventional
BCS theory. Apparently, the nature of this “exotic” pairing has not been settled as
of this writing, and reference needs to be made to the literature (see Sect. 8.7).

For many years, superconducting transition temperatures (well above 20 K) had
never been observed. With the discovery of the new classes of high-temperature
superconductors, transition temperatures (well above 100 K) have now been
observed. We will discuss this later, also. The exact nature of the interaction
mechanism is not known for these high-temperature superconductors, either.

8.2 The London and Ginzburg–Landau Equations (B)

We start with a derivation of the Ginzburg–Landau (GL) equations, from which
several results will follow, including the London equations, the penetration depth,
the coherence length, and criteria for type I and type II superconductors. Originally,

Fig. 8.7 Effect of magnetic field on thermal conductivity K
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these equations were proposed on intuitive, phenomenological lines. Later, it was
realized they could be derived from the BCS theory. Gor’kov showed the GL
theory was a valid and simpler description of the BCS theory near Tc. He also
showed that the wave function w of the GL theory was proportional to the energy
gap. Also, the density of superconducting electrons is |w|2. Due to spatial inho-
mogeneities w = w(r), where w(r) is also called the order parameter. This whole
theory was developed further by Abrikosov and is often known as the Ginzburg,
Landau, Abrikosov, and Gor’kov theory (for further details, see, e.g., Kuper [8.20]).

Near the transition temperature, the free energy density in the phenomenological
GL theory is assumed to be (using gaussian units, and following a generalization of
the thermodynamic Landau theory of second order phase transitions, see
Sects. 7.2.5 and 9.3.1, introducing a more general order parameter w, and coupling
in electrodynamics by analogy with quantum mechanics)

FS rð Þ ¼ a wj j2 þ 1
2
b wj j4 þ 1

2m�
�h
i
$� qA

c

� �
w

����
����
2

þFN þ h2

8p
; ð8:2Þ

where N and S refer to normal and superconducting phases. The coefficients a and b
are phenomenological coefficients to be discussed. h2=8p is the magnetic energy
density (h = h(r) is local and the magnetic induction B is determined by the spatial
average of h(r), so A is the vector potential for h; h ¼ $� A). m* = 2m (for pairs of
electrons), q = 2e is the charge and is negative for electrons, and w is the complex
superconductivity wave function. Requiring (in the usual calculus of variations
procedure) dFS/dw

* to be zero [dFS/dw = 0 would yield the complex conjugate of
(8.3)], we obtain the first Ginzburg–Landau equation

1
2m�

�h
i
$� qA

c

� �2

þ aþ b wj j2
" #

w ¼ 0: ð8:3Þ

FS can be regarded as a functional of w and A, so requiring @FS=@A ¼ 0 we
obtain the second GL equation for the current density:

j ¼ c
4p

$� h ¼ q�h
2m�i

w�rw� wrw�ð Þ � q2

m�c
w�wA

¼ q
m� wj j2 �h$/� q

c
A

� �
;

ð8:4Þ

where w ¼ wj jeiu. Note (8.3) is similar to the Schrödinger wave equation (except
for the term involving b) and (8.4) is like the usual expression for the current
density. Writing nS = |w|2 and neglecting, as we have, any spatial variation in |w|,
we find, where J is the average of j, so the average of h gives B,

$� J ¼ � c

4pk2L
B; ð8:5Þ
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where

k2L ¼ m�c2

4pnSq2
; ð8:6Þ

where kL is the London penetration depth. Equation (8.5) is London’s equation.
Note this is the same for a single electron (where m* = m, q = e, nS = ordinary
density) or a Cooper pair (m* = 2m, q = 2e, nS ! n/2).

Let us show why kL is called the London penetration depth. At low frequencies,
we can neglect the displacement current in Maxwell’s equations and write

$� B ¼ 4p
c
J: ð8:7Þ

Combining with (8.5) that we assume to be approximately true, we have

$� $� Bð Þ ¼ 4p
c
$� J ¼ � 1

k2L
B; ð8:8Þ

or using $ � B ¼ 0, we have

r2B ¼ 1

k2L
B: ð8:9Þ

For a geometry with a normal material for x < 0 and a superconductor for x > 0, if
the magnetic field at x = 0 is B0, the solution of (8.9) is

B xð Þ ¼ B0 exp �x=kLð Þ: ð8:10Þ

Clearly, kL is a penetration depth. Thus, if we have a very thin superconducting film
(with thickness << kL), we really do not have a Meissner effect (flux exclusion).
Magnetic flux will penetrate the surface of a superconductor over a distance
approximately equal to the London penetration depth kL ≅ 100 to 1000 Å.
Actually, kL is temperature dependent and can be well described by

kL
kL0

� �2

¼ 1

1� T=Tcð Þ4 ; ð8:11Þ

where

kL0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m�c2

4pnSq2

s
: ð8:12Þ
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Vitally Ginzburg

b. Moscow, Russia (1916–2009)

Won Nobel Prize in Physics in 2003 for studying Type II Superconductors,
Superfluids and the like. He helped develop the Hydrogen Bomb.

His second wife spent a year in prison for being charged falsely with
planning to assassinate Stalin.

Alexi Abrikosov

b. Moscow, Russia (1928–2017)

Vortices in type II superconductors, Nobel Prize Physics, 2003

Abrikosov also worked on superfluidity, high temperature superconduc-
tors and was a scientist at Argonne National Laboratory for the last part of his
career. His theory is part of the famous GLAG theory for the contributions of
Ginzburg, Landau, Abrikosov, and Gorkov. This theory is now known to be
strongly connected to the BCS theory and is often used for many applications.
See Physics World, “Superconductivity, the first 100 years), April 2011
(http://physics.gmu.edu/*pnikolic/articles/Superconductivity%20100%20
years%20(Physics%20World,%20April%202011).pdf).

Lev P. Gor’kov

b. Moscow, Russia (1929–2016)

Superconductivity, Gapless Superconductivity, Mesoscopic Physics, Student
of Landau, after early 1990’s at MagLab/Florida State University

Gor’kov is known especially for developing the microscopic theory of the
Ginzburg Landau theory. This theory became the GLAG theory. Gor’kov
made many contributions to condensed matter physics. See, for example, A.
A. Abrikosov, L. P. Gor’kov, I. E. Dzyaloshinski, Methods of Quantum Field
Theory in Statistical Physics, Dover Books, 1963, New York.

8.2.1 The Coherence Length (B)

Consider the Ginzburg–Landau equation in the absence of magnetic fields (A = 0).
Then, in one dimension from (8.3), we have
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� �h2

2m�
d2

dx2
þ aþ b wj j2

� �
w ¼ 0: ð8:13Þ

We define

f ¼ w
w0

where w0 ¼
ffiffiffiffiffiffiffiffi
� a
b

r
: ð8:14Þ

Then

��h2

2m�a
d2

dx2
þ 1� fj j2

� �
f ¼ 0: ð8:15Þ

When f has no gradients |f| = 1, which would correspond to being well inside the
superconductor. We assume a boundary at x = 0 between a normal and a super-
conductor so f = 1, w ! w0 as x !1.

Defining

n2 Tð Þ ¼ ��h2

2m�a
ð8:16Þ

and letting f = 1 + g, where g is small, then

n2 Tð Þ d
2g
dx2

þ 1þ g� 1þ gð Þ 1þ gð Þ2¼ 0: ð8:17Þ

Keeping only first order in g since it is small,

n2 Tð Þ d
2g
dx2

� 2g ffi 0 ð8:18Þ

g xð Þ ffi exp �
ffiffiffi
2

p
x=n Tð Þ

h i
: ð8:19Þ

Thus, the wave function attains its characteristic value of w0 in a distance n(T). n(T)
is called the coherence length. The coherence length measures the “range” or “size”
of Cooper pairs or the distance necessary for the superconducting wave function to
change much.

Let us discuss the coherence length further. First, let us review a little about the
free energy. The plots for FS − FN are shown in Fig. 8.8. The superconducting
transition clearly appears at T = Tc or a = 0. The free energy for no fields or
gradients is
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FS � FN ¼ aw2 þ b
2
w4; ð8:20Þ

so

@

@w
FS � FNð Þ ¼ 0 ð8:21Þ

gives

w2 ¼ w2
0 ¼ � a

b
ð8:22Þ

at the minimum. Thus at the minimum

FS � FN ¼ � a2

2b
; ð8:23Þ

which would also be the stabilization energy. From thermodynamics, if F = U −
TS, and dU = TdS − MdH, then dF = −MdH at constant T. For perfect
diamagnetism,

M ¼ �1
4p

H: ð8:24Þ

So,

dFS ¼ 1
4p

HdH; ð8:25Þ

Fig. 8.8 Free energy change at the transition temperature. See (8.20) for how a enters the
free energy with no fields or gradients
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and

FS Hð Þ � FS 0ð Þ ¼ H2

8p
: ð8:26Þ

At H = Hc, the critical field that destroys superconductivity,

FN Hcð Þ ¼ FS Hcð Þ: ð8:27Þ

FN is almost independent of H so,

FN Hcð Þ ¼ FN 0ð Þ: ð8:28Þ

We show the idea schematically in Fig. 8.9. Therefore,

FS 0ð Þ � FN 0ð Þ ¼ �H2
c

8p
¼ �DF ð8:29Þ

would also be the negative of the stabilization energy, or using (8.23)

H2
c

8p
¼ a2

2b
ð8:30Þ

aj j ¼
ffiffiffiffiffiffiffiffiffiffi
b
H2

c

4p

r
: ð8:31Þ

Notice deep in the superconductor

w2
S ¼ � a

b
¼ nS ¼ n

2
; ð8:32Þ

and

k2 ¼ m�c2

4pq2nS
: ð8:33Þ

So,

a ¼ �b
n
2
; ð8:34Þ

by (8.32) and thus by (8.33) and (8.31)

Fig. 8.9 Free energy as a function of field
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a ¼ � 2e2k2H2
c

m�c2
: ð8:35Þ

Combining (8.16) and (8.35), an expression for the coherence length can be
derived.

We wish to estimate the upper critical field. In Chap. 2 on electrons, we found
the allowed energy levels in a constant B field were (in an approximation)
free-electron-like parallel to the field and harmonic-oscillator-like in a plane per-
pendicular to the field. The harmonic energy levels were (dropping * on m)

�hxc nþ 1
2

� �
¼ En;kz �

�h2k2z
2m

; xc ¼ eB
mc

����
����;

or

�h
ej jB
mc

nþ 1
2

� �
¼ �a� �h2k2z

2m
; ð8:36Þ

for the (linearized) Ginzburg–Landau equation [with −a acting as the eigenvalue in
(8.3)]. The largest value of B for which solutions of the GL equation exists is (n = 0
and letting kz = 0)

Bmax � Hc2 ¼ � 2mca
�h ej j : ð8:37Þ

The two lengths k and n can be defined as a dimensionless ratio K (the GL
parameter). Hc2 can now be described in terms of K and Hc. Using (8.6), (8.16),
(8.32), (8.30) and

K ¼ k
n
; ð8:38Þ

we find

Hc2 ¼
ffiffiffi
2

p
KHc: ð8:39Þ

If K = k/n > 2−1/2, then Hc2 > Hc. This results in a type II superconductor. The
regime of K > 2−1/2 is a regime of negative surface energy.

8.2.2 Flux Quantization and Fluxoids (B)

We have for the superconducting current density (by (8.4) with |w|2 as spatially
constant = n)
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J ¼ q
m� n �hru� q

c
A

� �
: ð8:40Þ

Well inside a superconductor J = 0, so

�hru ¼ q
c
A: ð8:41Þ

Applying this to Fig. 8.10 and integrating around the loop gives

�h
I

$u � dl ¼ q
c

I
A � dl ¼ q

c

Z
S

B � dS¼ qU
c

ð8:42Þ

�h 2pmð Þ ¼ q
U
c
; m ¼ integer ð8:43Þ

U ¼ hc
q
m; q ¼ 2e: ð8:44Þ

This also applies to Fig. 8.11, so

U0 ¼ hc
2e

����
���� � the unit of flux of a fluxoid: ð8:45Þ

In the vortex state of the type II superconductors, the minimum current produces the
flux U0. In the intermediate state there can be flux tubes threading through the
superconductors as shown in Figs. 8.4 and 8.11. Below, in Fig. 8.12, is a sketch of
the penetration depth and coherence length in a superconductor starting with a
region of flux penetration. Note k/n < 1 for type I superconductors.

Fig. 8.10 Super current in a ring

8.2 The London and Ginzburg–Landau Equations (B) 569



8.2.3 Order of Magnitude for Coherence Length (B)

For type II superconductors, there is a lower critical field Hc1 for which the flux just
begins to penetrate, so

Hc1pk
2 �U0 ð8:46Þ

for a single fluxoid. At the upper critical field,

Hc2pn
2
0 �U0; ð8:47Þ

so that, by (8.45),

n20 ffi
hc
2e

1
p

1
Hc2

ð8:48Þ

for fluxoids packed as closely as possible. n0 is the intrinsic coherence length, to be
distinguished from the actual coherence length when the superconductor is “dirty”
or possessed of appreciable impurities. A better estimate, based on fundamental
parameters is1

Fig. 8.11 Flux tubes in type II superconductors

Fig. 8.12 Decay of H and asymptotic value of superconducting wave function

1See Kuper [8.20 p. 221].
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n0 ¼
2�hmF
pEg

; ð8:49Þ

where vF is the velocity of the Fermi surface and Eg is the energy gap. The
coherence length changes in the presence of scattering. If the electron mean free
path is l we have

n ¼ n0; ð8:50Þ

as given by (8.49) for clean superconductors when n0 < l and

n ffi
ffiffiffiffiffiffiffi
l n0

p
; ð8:51Þ

for dirty superconductors when l 	 n0.
2 That is, dirty superconductors have

decreased n and increased K = k/n. The penetration depth can also depend on
structure. The idea is schematically shown in Fig. 8.13 where typically the more
impure the superconductor the lower the mean free path (mfp) leading to type II
behavior.

8.3 Tunneling (B, EE)

8.3.1 Single-Particle or Giaever Tunneling

We anticipate some results of the BCS theory, which we will discuss later. As we
will show, when electrons are well separated the electron–lattice interaction can
lead to an effective attractive interaction between the electrons. An effective
attractive interaction between electrons can cause there to be an energy gap in the

Fig. 8.13 Type I and type II superconductors depending on mfp

2See Saint-James et al. [8.27 p. 141].
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single-particle density of states, as we also show later. This energy gap separates the
ground state from the excited states and is responsible for most of the unique
properties of superconductors.

Suppose we form a structure as given in Fig. 8.14. Let T be a tunneling matrix
element. For the tunneling current we can write (with an applied voltage V)3

I1!2 ¼ K 0
Z1
�1

Tj j2D1 Eð Þf Eð ÞD2 Eþ eVð Þ 1� f Eþ eVð Þ½ 
dE ð8:52Þ

I2!1 ¼ K 0
Z1
�1

Tj j2D1 Eð ÞD2 Eþ eVð Þf Eþ eVð Þ 1� f Eð Þ½ 
dE ð8:53Þ

I ¼ I1!2 � I2!1 ¼ K 0
Z1
�1

Tj j2D1 Eð ÞD2 Eþ eVð Þ f Eð Þ � f Eþ eVð Þ½ 
dE ð8:54Þ

I ffi K 0D2 0ð Þ Tj j2
Z1
�1

D1S Eð Þ � @f
@E

eV

� 	
dE: ð8:55Þ

Fig. 8.14 Diagram of energy gap in a superconductor. D(E) is the density of states

3Note this is actually an oversimplified semiconductor-like picture of a complicated many-body
effect [8.14 p. 247], but the picture works well for certain aspects and certainly is the simplest way
to get a feel for the experiment.
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4In the above, K′ is a constant, Di represents density of states, and f is the Fermi
function. If we raise the voltage V by eV = D, we get the following (see Fig. 8.15)
for the net current, and thus, the energy gap can be determined.

8.3.2 Josephson Junction Tunneling

Josephson [8.18] predicted that when two superconductors were separated by an
insulator there could be tunneling of Cooper pairs from one to the other provided
the insulator was thinner than the coherence length, see Fig. 8.16.

The main concept used to discuss the Josephson effects is that of the phase of the
paired electrons. We have already considered this idea in our discussion of flux
quantization. F. London had the idea of something like a phase associated with
superconducting electrons in that he believed that the motions of electrons in
superconductors are correlated over large distances. We now associate the idea of
spatial correlation of electrons with the idea of the existence of Cooper pairs.
Cooper pairs are sets of two electrons that are attracted to one another (in spite of
their Coulomb repulsion) because an electron attracts positive ions. As alluded to
earlier, the positive ions in a crystal are much more massive and have, in general,
less freedom of movement than the conduction electrons. This means that when an

Fig. 8.15 Schematic of Giaever (single-particle) tunneling

Fig. 8.16 Schematic of Josephson junction

4For the superconducting density of states see Problem 8.2.
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electron has attracted a positive ion to a displaced position, we can imagine the
electron as moving out of the area while the positive ion remains displaced for a
time. In the region of the crystal where the positive ion(s) is (are) displaced, the
crystal has a more positive charge than usual and so this region can attract another
electron. We could generalize this argument to consider that the displaced positive
ion would be undergoing some sort of motion but still an electron with suitable
phase could be attracted to the region of the displaced positive ion. Anyway, the
argument seems to make it plausible that there can be an effective attractive
interaction between electrons due to the presence of the positive ion lattice. The
rather qualitative picture that we have given seems to be the physical content of the
statement “Cooper pairs of electrons are formed because of the virtual exchange of
phonons between the electrons.” We also see that only lattices in which the elec-
tron–lattice vibration coupling is strong will be good superconductors. Thus, we are
led to an understanding of the almost paradoxical fact that good conductors of
electricity (with low resistance and hence low electron–phonon coupling) often
make poor superconductors. We give details including the role of spin later.

Due to the nature of the attractive mechanism between electrons in a Cooper pair,
we should not be surprised that the binding of the electrons is very weak. This means
that we have to think of the Cooper pairs as being very large (of the order of many,
many lattice spacings) and hence the Cooper pairs overlap with each other a great
deal in the solid. As we will see, further analysis of the pairs shows that the electrons
in pairs have equal and opposite momentum (in the ground state) and equal and
opposite spin. However, the Cooper pairs can accept momentum in such a way that
they are still “stable” systems, but so that their center of mass moves. When this
happens, the motion of the pairs is influenced by the fact that they are so large many
of them must overlap. The Cooper pairs are composed of electrons, and the way
electronic wave functions can overlap is limited by the Pauli principle.We now know
that overlapping together with the constraint of the Pauli principle causes all Cooper
pairs to have the same phase and the same momentum (i.e. the momentum of the
center of mass of the Cooper pairs). The pairs are like bosons, in a sense, and
condense into a lowest quantum state producing a wave function with phase.

Returning to the coupling of superconductors through an oxide layer, we write a
sort of time-dependent “Ginzburg–Landau equations,” that allow for coupling,5

i�h
@w1

@t
¼ H1w1 þ �hUw2; ð8:56Þ

i�h
@w2

@t
¼ H2w2 þ �hUw1: ð8:57Þ

If no voltage or magnetic field is applied, we can assume H1 = H2 = 0. Then

5See, e.g., Feynman et al. [8.13], and Josephson [8.18], this was Josephson’s Nobel Prize address.
See also Dalven [8.11] and Kittel [23 Chap. 12].
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i�h
@w1

@t
¼ �hUw2; ð8:58Þ

i�h
@w2

@t
¼ �hUw1: ð8:59Þ

We seek solutions of the form (any complex function can always be written as a
product of amplitude q and eiu where u is the phase)

w1 ¼ q1 exp iu1ð Þ; ð8:60Þ

w2 ¼ q2 exp iu2ð Þ: ð8:61Þ

So, using (8.58) and (8.59) we get

i _q1 � q1 _u1 ¼ Uq2 exp iDuð Þ; ð8:62Þ

i _q2 � q2 _u2 ¼ Uq1 exp �iDuð Þ; ð8:63Þ

where

Du ¼ u2 � u1ð Þ ð8:64Þ

is the phase difference between the electrons on the two sides. Separating real and
imaginary parts,

_q1 ¼ Uq2 sinDu; ð8:65Þ

q1 _u1 ¼ �Uq2 cosDu; ð8:66Þ

_q2 ¼ �Uq1 sinDu; ð8:67Þ

q2 _u2 ¼ �Uq1 cosDu: ð8:68Þ

Assume q1 ffi q2 ffi q for identical superconductors, then

d
dt

u2 � u1ð Þ ¼ 0; ð8:69Þ

u2 � u1 ffi constant, ð8:70Þ

_q1 ffi � _q2: ð8:71Þ

The current density J can be written as

J / d
dt
q22 ¼ 2q2 _q2; ð8:72Þ
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so

J ¼ J0 sin u2 � u1ð Þ: ð8:73Þ
This predicts a dc current with no applied voltage. This is the dc Josephson effect.
Another more rigorous derivation of (8.73) is given in Kuper [8.20 p. 141]. J0 is the
critical current density or the maximum J that can be carried by Cooper pairs.

The ac Josephson effect occurs if we apply a voltage difference V across the
junction, so that ħqV with q = 2e is the energy change across the junction. The
relevant equations become

i�h
@w1

@t
¼ �hUw2 � eV�hw1; ð8:74Þ

i�h
@w2

@t
¼ �hUw1 þ eV�hw2: ð8:75Þ

Again,

i _q1 � q1 _u1 ¼ Uq2 exp iDuð Þ � eVq1; ð8:76Þ

i _q2 � q2 _u2 ¼ Uq1 exp �iDuð Þþ eVq2: ð8:77Þ

So, separating real and imaginary parts

_q1 ¼ Uq2 sinDu ð8:78Þ

_q2 ¼ �Uq1 sinDu ð8:79Þ
_q1 ffi � _q2 ð8:80Þ

q1 _u1 ¼ �Uq2 cosDuþ eV ð8:81Þ
q2 _u2 ¼ �Uq1 cosDu� eV : ð8:82Þ

Remembering q1 ffi q2 ffi q, so

_u2 � _u1 ffi �2eV : ð8:83Þ
Therefore

Du ffi Duð Þ0�2eVt; ð8:84Þ

and

J ¼ J0 sin Duð Þ0�2eVt

 �

: ð8:85Þ
Again, J0 is the maximum current carried by Cooper pairs. Additional current is
carried by single-particle excitations producing the voltage V. The idea is shown
later in Fig. 8.18. Therefore, since V is voltage in units of ħ, the current oscillates
with frequency [see (8.85)]
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xJ ¼ 2eV ¼ 2e
Voltage

�h
: ð8:86Þ

For the dc Josephson effect one can say that for low enough currents there is a
current across the insulator in the absence of applied voltage. In effect because of
the coherence of Cooper pairs, the insulator becomes a superconductor. Above a
critical voltage, Vc, one has single electrons and the material becomes ohmic rather
than superconducting. The junction then has resistance, but the current also has a
component that oscillates with frequency xJ as above. One understands this by
saying that above Vc one has single particles as well as Cooper pairs. The Cooper
pairs change their energy by 2eV ¼ �hxJ as they cross the energy gap causing
radiation at this frequency. The ac Josephson effect, which occurs when

x ¼ q
�h
Voltage ð8:87Þ

is satisfied, is even more interesting. With q = 2e (for a Cooper pair), (8.87) is
believed to be exact. Thus, the ac Josephson effect can be used for a precise
determination of e/ħ. Parker, Taylor, and Langenberg6 have done this. They used
their new value of e/ħ to determine a new and better value of the fine structure
constant a. Their new value of a removed a discrepancy between the
quantum-electrodynamics calculation and the experimental value of the hyperfine
splitting of atomic hydrogen in the ground state. These experiments have also
contributed to better accuracy in the determination of the fundamental constants.
There have been many other important developments connected with the Josephson
effects, but they will not be presented here. Reference [8.20] is a good source for
further discussion. See also Fig. 8.18 for a summary.

Finally, it is worth pointing out another reason why the Josephson effects are so
interesting. They represent a quantum effect operating on a macroscopic scale. We
can play with words a little, and perhaps convince ourselves that we understand this
statement. In order to see quantum effects on a macroscopic scale, we must have
many particles in the same state. For example, photons are bosons, and so, we can
obtain a large number of them in the same state (which is necessary to see the
quantum effects of electrons on a large scale). Electrons are fermions and must obey
the Pauli principle. It would appear, then, to be impossible to see the quantum
effects of electrons on a macroscopic scale. However, in a certain sense, the Cooper
pairs having total spin zero, do act like bosons (but not entirely; the Cooper pairs
overlap so much that their motion is highly correlated, and this causes their motion
to be different from bosons interacting by a two-boson potential). Hence, we can
obtain many electrons in the same state, and we can see the quantum effects of
superconductivity on a macroscopic scale.

6See [8.24].
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Brian Josephson

b. Cardiff, Wales, UK (1940–)

Josephson effect/led to SQUID 1973 Nobel

Superconducting quantum interference devices (SQUIDS) are used to
make magnetometers that are applied in oil prospecting and neural research
among other things.

After discovering the Josephson effects, Brian changed to investigating
mind/matter projects. He is listed here because he is a mystery. Why a
brilliant young physicist who, as an undergraduate, could challenge John
Bardeen, who could terrify professors just because he was in class, would
then change to pursuing totally unconventional projects, completely outside
of mainline physics is a mystery to many including me.

The story of how he challenged Bardeen (on tunneling of pairs through an
insulator) is worth telling by itself; see “The Nobel Laureate versus The
Graduate Student.” in Physics Today (see Physics Today, 47–51, July 2001).

8.4 SQUID: Superconducting Quantum Interference (EE)

A Josephson junction is shown in Fig. 8.17 below. It is basically a superconductor–
insulator–superconductor or a superconducting “sandwich”. We now show how
flux, due to B, threading the circuit can have profound effects. Using (8.4) with u
the Ginzburg–Landau phase, we have

J ¼ nq
m

�hru� q
c
A

h i
: ð8:88Þ

Integrating along the upper path gives

�hDu1 ¼
Zb
a

m
nq

J � dl1 þ q
c

Zb
a

A � dl1; ð8:89Þ

while integrating along the lower path gives

�hDu2 ¼
Zb
a

m
nq

J � dl2 þ q
c

Zb
a

A � dl2: ð8:90Þ

Subtracting, we have

�h Du1 � Du2ð Þ ¼ m
nq

I
J � dlþ q

c

I
A � dl; ð8:91Þ

where the first term on the right is zero or negligible. So, using Stokes Theorem and
B ¼ $� A (and choosing a path where J ffi 0)
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Du1 � Du2 ¼
q
�hc

I
A � dl ¼ q

�hc

Z
B � dA ¼ qU

�hc
: ð8:92Þ

Defining U0 = ħc/q as per (8.45), we have

Du1 � Du2 ¼
U
U0

; ð8:93Þ

so when U = 0, Du1 = Du2. We assume the junctions are identical so defining u0

= (Du1 + Du2)/2, then

Fig. 8.17 A Josephson junction

Fig. 8.18 Schematic of current density across junction versus V. The Josephson current
0 < J < J0 occurs with no voltage. When J > J0 at Vc ≅ Eg/e, where Eg is the energy gap,
one also has single-particle current
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Du1 ¼ u0 þ
U
2U0

; ð8:94Þ

Du2 ¼ u0 �
U
2U0

ð8:95Þ

is a solution. By (8.73)

JT ¼ J1 þ J2 ¼ J0 sinDu1 þ sinDu2ð Þ

¼ 2J0 sin
Du1 þDu2

2

� �
cos

Du1 � Du2

2

� �
:

ð8:96Þ

So

JT ¼ 2J0 sin u0ð Þ cos U
2U0

� �
; ð8:97Þ

and

JTmax ¼ 2J0 cos
U
2U0

� �����
����: ð8:98Þ

The maximum occurs when U = 2npU0. Thus, quantum interference can be used to
measure small magnetic field changes. The maximum current is a periodic function
of U and, hence, measures changes in the field. Sensitive magnetometers have been
constructed in this way. See the original paper about SQUIDS by Silver and
Zimmerman [8.31].

James Edward Zimmerman

b. Lantry, South Dakota, USA (1923–1999)

Co-inventor of rf Squid; First measurement of Sagnac effect (interference
effects due to rotation) with matter waves (with James Mercereau)

Superconducting quantum interference devices (SQUIDS) are used to
make magnetometers that are applied (as already mentioned) in oil
prospecting and neural research among other things. James Zimmerman who
was born in Lantry, South Dakota is a co-inventor of the SQUID. He also
named it. His undergraduate education was at the S. D. School of Mines. He
earned a B.S. in Electrical Engineering in 1943 at Mines and at Carnegie
Tech he was awarded an ScD in Physics in 1953.
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8.4.1 Questions and Answers (B)

Q1. What is the simplest way to understand the dc Josephson effect (a current with
no voltage in a super–insulator–super sandwich or SIS)?

A. If the insulator is much thinner than the coherence length, the superconducting
pairs of electrons tunnel right through, and the insulator does not interfere with
them–it is just one superconductor.

Q2. What is the simplest way to understand the ac Josephson effect (a current with a
component of frequency 2eV/ħ, where V is the applied voltage)?

A. The Cooper pairs have charge q = 2e, and when they tunnel across the insulator,
they drop in energy by qV. Thus they radiate with frequency qV/ħ. This radiation is
linked to the ac current.

8.5 The Theory of Superconductivity7 (A)

8.5.1 Assumed Second Quantized Hamiltonian
for Electrons and Phonons in Interaction (A)

As has already been mentioned, in many materials the superconducting state can be
accounted for by an attractive electron–electron interaction due to the virtual
exchange of phonons. See, e.g., Fig. 8.19 in Sect. 8.5.2. Thus, if we are going to try
to understand the theory of superconductivity from a microscopic viewpoint, then
we must examine, in detail, the nature of the electron–phonon interaction. There is
no completely rigorous road to the BCS Hamiltonian. The arguments given below
are intended to show how the physical origins of the BCS Hamiltonian could arise.
It is not claimed that this is the way it must arise. However, given the BCS
Hamiltonian, it is fair to say that the way it describes superconductivity is well
understood.

One could draw an analogy to the Heisenberg Hamiltonian. The road to this
Hamiltonian is also not rigorous for real materials, but there seems to be no doubt
that it well describes magnetic phenomena in at least certain materials. The phe-
nomena of superconductivity and ferromagnetism are exact, but the road to a
quantitative description is not.

We thus start out with the Hamiltonian, which represents the interaction of
electrons and phonons. As before, an intuitive approach suggests

Hep ¼
X
l;b

xlb � $xlbU rið Þ½ 
x¼0: ð8:99Þ

7See Bardeen et al. [8.6] and Tinkham [8.32].
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We have already discussed this Hamiltonian in Chap. 4, which the reader should
refer to, if needed. By the theory of lattice vibrations, we also know that (see
Chaps. 2 and 4)

xl;b ¼ �
X
q;p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�h

2Nmbxq;p

s
exp �iq � lð Þe�q;b;p ayq;p � a�q;p

� �h i
: ð8:100Þ

In the above equation, the a are, of course, phonon creation and annihilation
operators.

By a second quantization representation of the terms involving electron coor-
dinates (see Appendix G), we can write

@U rið Þ
@xl;b

¼
X
k;k0

wk $xl;bU rið Þ�� ��wk0
� 

Cy
k
C

k0 ; ð8:101Þ

where the C are electron creation and annihilation operators. The only quantities
that we will want to calculate involve matrix elements of the operator Hep. As we
have already shown, these matrix elements will vanish unless the selection rule
q = k′ − k − Gn is obeyed. Neglecting umklapp processes (assuming Gn = 0 the first
major approximation), we can write

Hep ¼ �i
X
l;b

X
q;p

X
k;k0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�h

2Nmbxq;p

s
exp �iq � lð Þ

� wk e�q;b;p$xlbU rið Þ
��� ���wk0

D E
dk

0�k
q ayq;p � a�q;p

� �
CykCk0 ;

ð8:102Þ

or

Hep ¼ �i
X
l;b

X
q;p

X
k;k0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�h

2Nmbxq;p

s
exp �iq � lð Þ

� wk0�q e�q;b;p$xlbU rið Þ
��� ���wk0

D E
ayq;p � a�q;p

� �
Cyk0�qCk0 :

ð8:103Þ

Making the dummy variable changes k′ !k, q!−q, and dropping the sum over
p (assuming, for example, that only longitudinal acoustic phonons are effective in
the interaction—this is the second major approximation), we find

Hep ¼ i
X
k;b

BqC
y
kþ qCk aq � ay�q

� �
ð8:104Þ

where

Bq ¼
X
l;q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�h

2Nmbxq

s
exp iq � lð Þ wkþ q e��q;b$xl;bU rið Þ

��� ���wk

D E
: ð8:105Þ

The only property of Bq that we will use from the above equation is Bq = B−q
* . From

any reasonable, practical viewpoint, it would be impossible to evaluate the above
equation directly and obtain Bq. Thus, Bq will be treated as a parameter to be
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evaluated from experiment. Note that so far we have not made any approximations
that are specifically restricted to superconductivity. The same Hamiltonian could be
used in certain electrical-resistivity calculations.We can now write the total
Hamiltonian for interacting electrons and phonons (with ħ = 1, and neglecting the
zero-point energy of the lattice vibrations):

H ¼ H0 þHep ¼
X
q

xqa
y
qaq þ

X
k

ekC
y
kCk þ i

X
q;k

BqC
y
kþ qCk aq � ay�q

� �
;

ð8:106Þ

where the first two terms are the unperturbed Hamiltonian H0.
The first term is the Hamiltonian for phonons only (with nq = aq

†aq as the phonon
occupation number operator). The second term is the Hamiltonian for electrons only
(with nk = Ck

†Ck as the electron occupation number operator). The third term repre-
sents the interaction of phonons and electrons. We have in mind that the second term
really deals with quasielectrons.We can assign an effective mass to the quasielectrons
in such a manner as partially to take into account the electron–electron interactions,
electron interactions with the lattice, and at least partially any other interactions that
may be important but only lead to a “renormalization” of the electron mass. Compare
Sects. 3.1.4, 3.2.2, and 4.3, as well as the introduction in Chap. 4. We should also
include a screened Coulomb repulsion between electrons (see Sect. 9.5.3), but we
neglect this here (or better, absorb it in Vk,k′—to be defined later).

Various experiments and calculations indicate that the energy per atom between
the normal and superconducting states is of order 10−7 eV. This energy is very
small compared to the accuracy with which we can hope to calculate the absolute
energy. Thus, a frontal attack is doomed to failure. So, we will concentrate on those
terms leading to the energy difference. The rest of the terms can then be pushed
aside. The results are nonrigorous, and their main justification is the agreement we
get with experiment. The method for separating the important terms is by no means
obvious. It took many years to find. All that will be done here is to present a
technique for doing the separation.

The technique for separating out the important terms involves making a
canonical transformation to eliminate off-diagonal terms of O(Bq) in the
Hamiltonian. Before doing this, however, it is convenient to prove several useful
results. First, we derive an expansion for

HS � e�S
� � Hð Þ eS

� �
; ð8:107Þ

where S is an operator.

e�S
� � Hð Þ eS

� � ¼ 1� Sþ 1
2
S2 þ � � �

� �
H 1þ Sþ 1

2
S2 þ � � �

� �

¼ H� SHþHSþ 1
2
S2H� SHSþ 1

2
HS2;

ð8:108Þ
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but

H; S½ 
; S½ 
 ¼ HS� SH; S½ 
 ¼ 2
1
2
HS2 þ 1

2
S2H� SHS

� 	
; ð8:109Þ

so that

HS ¼ Hþ H; S½ 
 þ 1
2

H; S½ 
; S½ 
 þ � � � ð8:110Þ

We can treat the next few terms in a similar way.
The second useful result is obtained by H ¼ H0 þXHep where X is eventually

going to be set to one. In addition, we choose S so that

XHep þ H0; S½ 
 ¼ 0: ð8:111Þ

We show that in this case Hs has no terms of O(X). The result is proved by using
(8.110) and substituting H ¼ H0 þXHep. Then

HS ¼ H0 þXHep þ H0 þXHep; S

 �þ 1

2
½½H0 þXHep; S
; S
 þ � � �

¼ H0 þXHep þ ½H0; S
 þX½Hep; S

þ 1

2
½½H0; S
; S
 þ X

2
½½Hep; S
; S
 þ � � � :

: ð8:112Þ

Using (8.111), we obtain

HS ¼ H0 þX Hep; S

 �þ X

2
Hep; S

 �

; S

 �þ 1

2
H0; S½ 
; S½ 
 þ � � � : ð8:113Þ

Since

XHep þ H0; S½ 
 ¼ 0; ð8:114Þ
we have

X Hep; S

 � ¼ � H0; S½ 
; S½ 
; ð8:115Þ

so that

HS ¼ H0 þX Hep; S

 �þ X

2
Hep; S

 �

; S

 �� X

2
Hep; S

 �

; ð8:116Þ

or

HS ¼ H0 þ X
2

Hep; S

 �þO X3� �

: ð8:117Þ

Since O(S) = X the second term is of order X2, which was to be proved.
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The point of this transformation is to push aside terms responsible for ordinary
electrical resistivity (third major transformation). In the original Hamiltonian, terms
in X contribute to ordinary electrical resistivity in first order.

From XHep þ ½H0; S
 ¼ 0; we can calculate S. This is especially easy if we use a
representation in which H0 is diagonal. In such a representation

n XHep
�� ��m� þ n H0S� SH0j jmh i ¼ 0; ð8:118Þ

or

n XHep
�� ��m� þ En � Emð Þ n Sj jmh i ¼ 0; ð8:119Þ

or

n Sj jmh i ¼ n XHep

�� ��m� 
Em � Enð Þ : ð8:120Þ

The above equation determines the matrix elements of S and, hence, defines the
operator S (for Em 6¼ En).

8.5.2 Elimination of Phonon Variables and Separation
of Electron–Electron Attraction Term Due to Virtual
Exchange of Phonons (A)

Let us now connect the results we have just derived with the problem of super-
conductivity. Let XHep be the interaction Hamiltonian for the electron–phonon
system. Any operator that we present for S that satisfies

n Sj jmh i ¼ n XHep

�� ��m� 
Em � En

ð8:121Þ

is good enough. In the above equation, mj i means both electron and phonon states.
However, let us take matrix elements with respect to phonon states only and select
S so that if we were to take electronic matrix elements, the above equation would be
satisfied. This procedure is done because the behavior of phonons, except insofar as
it affects the electrons, is of no interest. The point of this Section is then to find an
effective Hamiltonian for the electrons.

We begin with these ideas. Taking phonon matrix elements, we have

nq0 þ 1 Sj jnq0
�  ¼ nq0 þ 1 XHep

�� ��nq0� 
E total initial stateð Þ � E total final stateð Þ

¼ i
X
k;q

Bq

Cykþ qCk nq0 þ 1 aq � ay�q

��� ���nq0D E
Eq0 þ ek � Eq0 þxq0

� �� ekþ q

¼ �i
X
k;q

Bq

Cykþ qCk nq0 þ 1 ay�q

��� ���nq0D E
Eq0 � Eq0 þxq0

� �þ ek � ekþ q
;

ð8:122Þ
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where xq is the energy of the created phonon (with ħ = 1 and xq ¼ x�q0 ). Using

nq þ 1 ayq
��� ���nqD E

¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi
nq þ 1

p
; ð8:123Þ

we find

nq þ 1 Sj jnq
�  ¼ �i

X
k;q

BqC
y
kþ qCk

ffiffiffiffiffiffiffiffiffiffiffiffiffi
nq0 þ 1

p
ek � ekþ q0 � xq0

d�q
q0

¼ �i
X
k

B�q0C
y
k�q0Ck

ffiffiffiffiffiffiffiffiffiffiffiffiffi
nq0 þ 1

p
ek � ek�q0 � xq0

:

ð8:124Þ

In a similar way we can show

nq0 Sj jnq0 þ 1
�  ¼ i

X
k

Bq0C
y
kþ q0Ck

ffiffiffiffiffiffiffiffiffiffiffiffiffi
nq0 þ 1

p
ek � ekþ q þxq0

: ð8:125Þ

Now, using

HS ¼ H0 þ 1
2

HepS� SHep

 �þ � � � ; ð8:126Þ

with

Hep ¼ i
X
k;q

BqC
y
kþ qCk aq � ay�q

� �
ð8:127Þ

(X has now been set equal to 1), and taking phonon expectation values for a
particular phonon state, we have

n HSj jnh i ¼ n H0j jnh iþ 1
2

X
m

n Hep
�� ��m� 

m Sj jnh i � n Sj jmh i m Hep
�� ��n� 
 �

¼ n H0j jmh iþ 1
2

Hep
� �

n;n�1Sn�1;n þ Hep
� �

n;nþ 1Snþ 1;n

h
� Sn;n�1 Hep

� �
n�1;n�Sn;nþ 1 Hep

� �
nþ 1;n

i
:

ð8:128Þ

Since we are interested only in electronic coordinates, we will write below
nq Hsj jnq
� 

as HS, and nq H0j jnq
� 

as H0, and hope that no confusion in notation
will arise. Using

Hep
� �

nq;nq�1
¼ �i

X
k

B�qC
y
k�qCk

ffiffiffiffiffi
nq

p
; ð8:129Þ

and

Hep
� �

nq;nqþ 1
¼ i
X
k

BqC
y
kþ qCk

ffiffiffiffiffiffiffiffiffiffiffiffiffi
nq þ 1

p
; ð8:130Þ
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the effective Hamiltonian for electrons is given by combining the above. Thus,

HS ¼ H0 þ 1
2
Bq
�� ��2X

k;k0
Cyk�qCkC

y
k0 þ qCk0nq

1
ek0 � ek0 þ q þxq

"

þCykþ qCkC
y
k0�qCk0 nq þ 1

� � 1
ek0 � ek0�q � xq

� Cyk0�qCk0C
y
kþ qCknq

1
ek0 � ek0�q � xq

� Cyk0 þ qCk0C
y
k�qCk nq þ 1

� � 1
ek0 � ek0 þ q þxq

#
:

ð8:131Þ

Making dummy variable changes, dropping terms that do not involve the
interaction of electrons (i.e. that do not involve both k and k′), and using the
commutation relations for the C, it is possible to write the above in the form

HS ¼ H0 þ 1
2
Bq
�� ��2X

k;k0
Cyk0 þ qCk0C

y
k�qCk

� 1
ek � ek�q � xq

� 1
ek0 � ek0 þ q þxq

 !
:

ð8:132Þ

In order to properly interpret Hamiltonians such as the above equation, which are
expressed in the second quantization notation, it is necessary to keep in mind the
appropriate commutation relations of the C. By Appendix G, these are

CkC
y
k0 þCyk0Ck ¼ dk

0
k ; ð8:133Þ

CykCyk0 þCyk0C
y
k ¼ 0; ð8:134Þ

and
CkCk0 þCk0Ck ¼ 0: ð8:135Þ

The Hamiltonian (8.132) describes a process called a virtual exchange of a phonon.
It has the diagrammatic representation shown in Fig. 8.19.

Fig. 8.19 The virtual exchange of a phonon of wave vector q. The k are the wave vectors of
the electrons. This is the fundamental process of superconductivity
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Note that (8.132) is independent of the number of phonons in mode q, and it is
the effective electron Hamiltonian with phonons in the single mode q. To get the
effective Hamiltonian with phonons in all modes, we merely have to sum over the
modes of q. Thus, the total effective interaction Hamiltonian is given by

HI ¼ 1
2

X
q

X
k;k0

Bq
�� ��2Cyk0 þ qCk0C

y
k�qCk

� 1
ek � ek�q � xq

� 1
ek0 � ek0 þ q þxq

 !
:

ð8:136Þ

By dropping further terms that do not involve the interaction of electrons (terms not
involving both k and k′) and by making variable changes, we can reduce this
Hamiltonian to

HI ¼
X
q

X
k;k0

Bq
�� ��2 xq

ek � ek�q
� �2�x2

q

Cyk0 þ qC
y
k�qCkCk0 : ð8:137Þ

From the above equation, we see that there is an attractive electron–electron
interaction for ek�ek�q

�� ��\ xq
�� ��. We will assume, for appropriate excitation ener-

gies, that the main interaction is attractive. In this connection, most of the electron
energies of interest are near the Fermi energy eF . A typical phonon energy is the
Debye energy �hxD (or cutoff frequency with ħ = 1). Many approximations have
already been made, and so a very simple criterion for the dominance of the
attractive interaction will be assumed. It will be assumed that the interaction is
attractive when the electronic energies are in the range of

eF � �hxD\ek\eF þ �hxD �h 6¼ 1 hereð Þ: ð8:138Þ
The states that do not satisfy this criterion are not directly involved in the supercon-
ducting transition, so their properties are of no particular interest. Hence, the effective
Hamiltonian can be written in the following form (fourth major approximation):

HI ¼ �
X
q

X
k;k0

VqC
y
k0 þ qC

y
k�qCkCk0 : ð8:139Þ

For simplicity, we will assume that Vq is positive and fitted from experiment, that
Vq = V−q and Vq = 0, unless q is such that (8.138) is satisfied. We assume that any
important interactions not included in the above equation can be included by
re-normalizing (i.e. changing) the quasiparticle mass.

8.5.3 Cooper Pairs and the BCS Hamiltonian (A)

Let us assume that ek = 0 at the Fermi level. The total effective Hamiltonian for the
electrons is then
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H ¼
X
k

ekC
y
kCk �

X
k;k0;q

VqC
y
k0 þ qC

y
k�qCkCk0 : ð8:140Þ

By Appendix G, the Fermion operators satisfy

Cj n1. . .nj. . .i
�� ¼ �ð ÞPjnj

��n1. . . 1� nj
� �

. . .

; ð8:141Þ

Cyj n1. . .nj. . .i
�� ¼ �ð ÞPj 1� nj

� ���n1. . . 1þ nj
� �

. . .

; ð8:142Þ

where

Pj ¼
Xj�1

P¼1

nP: ð8:143Þ

It is essential to notice the alternation in sign defined by (8.142). This alternation is
very important for discovering the nature of the lowest-energy state. When we
begin to guess a trial wave function, if we pay no attention to this alternation of
sign, the presence of the interaction will result in little lowering of the energy. What
we need is a way of selecting the trial wave function so that most of the matrix
elements of individual terms in the second sum in (8.138) are negative. The way to
do this for the ground state is by grouping the electrons into Cooper pairs. (These
will be precisely defined below.)

There are several assumptions necessary to construct a minimum energy wave
function [60, p. 155ff]. For the ground-state wave function, it will be assumed that
the Bloch states are occupied only in pairs. In fact, the superconducting ground state
is a coherent superposition of Cooper pairs. The Hamiltonian conserves the wave
vector, and only pairs with equal total momentum will be considered, i.e.,

kþ k0 ¼ K; ð8:144Þ

where K is the same for each pair. It is reasonable to suppose that K is zero for the
ground (noncurrent carrying) state of the pairs.

Cooper Pairs8

Before proceeding, let us discuss Cooper pairs a little more. A large clue as to the
nature of the unusual character of the superconducting state was obtained by
L. Cooper in 1956. He showed that the Fermi sea was unstable if electrons inter-
acted by an attractive mechanism—no matter how weak.

Consider the normal Fermi sea of electrons with a well-defined Fermi energy EF.
Now add two more electrons interacting with an attractive interaction V(1, 2) and
suppose the only interaction with the other electrons is via the Pauli principle.

We write the Schrödinger wave equation for the two electrons as

8See Cooper [8.10].
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� �h2

2m
r2

1 �
�h2

2m
r2

2 þV 1; 2ð Þ
� 	

w 1; 2ð Þ ¼ Ew 1; 2ð Þ: ð8:145Þ

We seek a solution of the form

w 1; 2ð Þ ¼ V

2pð Þ3 A 1; 2ð Þ 1
V

Z
eik� r1�r2ð Þf kð Þdk; ð8:146Þ

where A(1, 2) is the antisymmetric spin zero spin wave function

A 1; 2ð Þ ¼ 1ffiffiffi
2

p a 1ð Þb 2ð Þ � a 2ð Þb 1ð Þ½ 
;

with a, b being the usual spin-up and -down wave functions (note A†A = 1) and
f(k) = +f(−k) so that the spatial wave function is symmetric (it can be shown that
the w with spin 1 and antisymmetric wave function yields no energy shift, at least in
our approximation, and in any case such wave functions correspond to p-state pairs
that we are not considering). Note that the spatial wave function pairs off the
electrons into (k, −k) states.

Inserting (8.146) into (8.145) we have

1

2pð Þ3 A 1; 2ð Þ
Z

�h2

2m
k2 þ �h2

2m
k2 þV

� �
f kð Þeik� r1�r2ð Þ

� 	
dk

¼ A 1; 2ð Þ
2pð Þ3

Z
Ef kð Þeik� r1�r2ð Þdk:

ð8:147Þ

Now multiply by

Ay 1; 2ð Þ 1
V
e�ik0 � r1�r2ð Þ;

and integrate over r1 and r2 and we obtain (r = r1 − r2, V(r1, r2) = V(r1 − r2) = V(r),
and Ek = ħ2k2/2m)ZZ

e�ik0 �r 2Ek þV rð Þ½ 
f kð Þeik�rdrdk ¼Z
Ef kð Þei k�k0ð Þ�rdk: ð8:148Þ

Using

1

2pð Þ3
Z

eik�rdk ¼d kð Þ;

and

590 8 Superconductivity



Vk0;k ¼
1
V

Z
e�ik0�rV rð Þeik�rdr;

we obtain

2Ek0 � E½ 
f k0ð Þ þ V

2pð Þ3
Z

f k0ð ÞVk0;kdk ¼ 0: ð8:149Þ

We suppose

Vk0;k ¼ �V0\0 for EF\Ek; Ek0\EF þ �hxD

¼ 0 otherwise:

Notice we are using the ideas that led us to (8.138), divide by 2Ek0 � E and
integrate over k0 and obtain (after canceling)

1 ¼ V0
V

2pð Þ3
Z

dk0

2Ek0 � E
: ð8:150Þ

Note that in the limit of large volumes

V=N

2pð Þ3
Z

dk0ðÞ $ 1
N

X
k0

$
Z

N E0ð ÞðÞdE0;

where N(E) is the density of state for one spin per unit cell (N unit cells). Thus with
Epair = E

1 ¼ V0

ZEF þ �hxD

EF

N E0ð Þ
2E0 � Epair

dE0: ð8:151Þ

Note we can replace NðE0Þ ffi NðEFÞ because �hxD 	 EF so we obtain

1 ¼ V0N EFð Þ
2

ln
2EF þ 2�hxD � Epair

2EF � Epair
: ð8:152Þ

Let d = 2EF − Epair so

d ¼ �hxD

exp
�1

V0N EFð Þ
� �

sinh
1

V0N EFð Þ
; ð8:153Þ

and in the weak coupling limit
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d ¼ 2�hxD exp
�2

V0N EFð Þ
� �

: ð8:154Þ

We note in particular, the following points:

1. A pair electron wave function that is independent of the direction of r1 − r2 is
said to be an s wave function, which is consistent with an antisymmetric spin
wave function.

2. d is not an analytic function of V0 so ordinary perturbation theory would not
work.

3. In the BCS theory one considers pairing of all electrons.
4. For d > 0 then the Fermi sea is unstable with respect to the formation of Cooper

pairs.

BCS Hamiltonian
Returning to the mainstream of the BCS argument, the above reasoning can be used
to pick out the best wave function to use as a trial wave function for evaluating the
ground-state energy by variational principle. For mathematical convenience, it is
easier to place these assumptions directly in the Hamiltonian. Also, due to
exchange, the spins in the Cooper pairs are usually opposite. Thus, the interaction
part of the Hamiltonian is now written (fifth major approximation) with K = 0,

HI ¼ �
X
k;q

VqC
y
kþ q"C

y
�k�q#C�k#Ck": ð8:155Þ

Next, assume a “BCS Hamiltonian” for interacting pairs consistent with (8.155),
with k+ q!k, k!k′, Vq = Vk − k′ = −Vk,k′

H ¼
X
kr

ekC
y
krCkr þ

X
k;k0

Vk;k0C
y
k"C

y
�k#C�k0#Ck0"; ð8:156Þ

where

ek ¼ �h2k2

2m
� l; ð8:157Þ

and where l is the chemical potential. Also

H � H0 þHI; ð8:158Þ

and note

Vk;k0 ¼ Vk0;k ¼ V�
k;k0 : ð8:159Þ

As before C are Fermion (electron) annihilation operators, and C† are Fermion
(electron) creation operators. Defining the pair creation and annihilation operators
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byk ¼ Cyk"Cy�k#; ð8:160Þ

bk ¼ C�k#Ck"; ð8:161Þ

and defining

bk ¼
Tr e�bHbk
� �
Tr e�bHð Þ ; ð8:162Þ

we can show b
y
k ¼ b

�
k using Tr(AB) = Tr(BA). We can also show in the represen-

tation we use that b
�
k ¼ bk. We define

Dk ¼ �
X
k0

Vk;k0bk0 ¼ D�
k: ð8:163Þ

As we will demonstrate later, this will turn out to be the gap parameter. We can
write the interaction term as

HI ¼
X
k;k0

Vk;k0b
y
kbk0 : ð8:164Þ

Note

bk0 ¼ bk0 þ dbk0 ¼ bk0 þ bk0 � bk0
� �

; ð8:165Þ

and

byk0 ¼ b
�
k0 þ dbyk0 ¼ b

�
k0 þ byk0 � b

�
k0

� �
; ð8:166Þ

byk ¼ b
�
k þ dbyk ¼ bk þ dbyk ; ð8:167Þ

and we will neglect ðdbk0 Þ � ðdbyk Þ terms. (This is sort of a mean-field-like
approximation for pairs.) Thus, using (8.166) and (8.167) and neglecting Oðdb2Þ
terms, we can write

bykbk0 ¼ ðbk þ dbyk Þðbk0 þ dbk0 Þ
¼ bkbk0 þ bk0db

y
k þ bkdbk0 ;

¼ bkbk0 þ bk0b
y
k � bkbk0 ;

ð8:168Þ

assuming bk is real. Also,
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HI ¼
X
k;k0

Vk;k0 bk0b
y
k þ bk0bk � bk0bk

� �
: ð8:169Þ

Thus,

H ¼
X
kr

ekC
y
krCkr �

X
k

Dkb
y
k þDkbk � Dkbk

� �
: ð8:170Þ

We now diagonalize by a Bogoliubov–Valatin transformation:

Ck" ¼ ukak þ mkb
y
k ; ð8:171Þ

C�k# ¼ ukbk � mka
y
k ; ð8:172Þ

where uk
2 + vk

2 = 1 (to preserve anticommutation relations), uk and vk are real, and
the a and b given by

ayk ¼ ukC
y
k" � mkC

y
�k#; ð8:173Þ

byk ¼ ukC
y
�k# þ mkCk"; ð8:174Þ

are Fermion operators obeying the usual anticommutation relations. The ak
†, and byk

create “bogolons”. The algebra gets a bit detailed here and one can skip along
unless curious,

bk ¼ C�k#Ck" ¼ �mka
y
k þ ukbk

� �
ukak þ mkb

y
k

� �
ð8:175Þ

byk ¼ Cyk"Cy�k# ¼ uka
y
k þ mkbk

� �
�mkak þ ukb

y
k

� �
ð8:176Þ

Cyk"Ck" ¼ uka
y
k þ mkbk

� �
ukak þ mkb

y
k

� �
ð8:177Þ

Cy�k#C�k# ¼ �mkak þ ukb
y
k

� �
�mka

y
k þ ukbk

� �
ð8:178Þ

byk ¼ �ukmka
y
kak þ ukmkbkb

y
k � m2kbkak þ u2ka

y
kb

y
k ð8:179Þ

bk ¼ �mkuka
y
kak þ ukmkbkb

y
k � m2ka

y
kb

y
k þ u2kbkak ð8:180Þ
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Cyk"Ck" ¼ u2ka
y
kak þ m2kbkb

y
k þ ukmka

y
kb

y
k þ ukmkbkak ð8:181Þ

Cy�k#C�k# ¼ u2kb
y
kbk þ m2kaka

y
k � ukmkb

y
ka
y
k � mkukakbk ð8:182Þ

H ¼
X
k

2ekukmka
y
kb

y
k þ 2ekbkakukmk

h

þ ek u2k � m2k
� �

aykak þ bykbk
� �

þ 2ekm2k

þDkukmk aykak þ bykbk
� �

� Dkukmk þDkm
2
kbkak � Dku

2
ka
y
kb

y
k

þD�
kukmk aykak þ bykbk

� �
� D�

kukmk

þDkm
2
ka
y
kb

y
k � D�

ku
2
kbkak

i
þ
X
k

Dkbk:

ð8:183Þ

Rewriting this we get

H ¼
X
k

2Dkukmk � ek m2k � u2k
� �� �

aykak þ bykbk
� �n

þ 2ekukmk þDk m2k � u2k
� �� �

aykbyk þ bkak
� �o

þG;

ð8:184Þ

where

G ¼
X

2ekm2k � 2Dkukmk þDkbk
� �

:

Next, choose

2ekukmk þDk m2k � u2k
� � ¼ 0; ð8:185Þ

so as to diagonalize the Hamiltonian. Also, using uk
2 + vk

2 = 1 let

m2k ¼
1
2
� a; ð8:186Þ

m2k � u2k ¼ �2a; ð8:187Þ

ukmk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1
4
� a2

r
; ð8:188Þ
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2ek

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1
4
� a2

r
¼ Dk2a; ð8:189Þ

e2k
1
4
� a2

� �
¼ D2

ka
2: ð8:190Þ

Thus

a ¼ ek

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2k þD2

k

q : ð8:191Þ

Rewriting,

H ¼ 2Dkukmk � ek m2k � u2k
� �
 �� aykak þ bykbk

� �
þG: ð8:192Þ

But, define

Ek ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2k þD2

k

q
; ð8:193Þ

a ¼ ek
2Ek

; ð8:194Þ

and thus

2ukmk ¼ Dk

Ek
: ð8:195Þ

Thus, after a bit of algebra,

2Dkukmk � ek m2k � u2k
� � ¼ Ek: ð8:196Þ

So

H ¼
X
k

Ek aykak þ bykbk
� �

þG; ð8:197Þ

and G can be put in the form

G ¼
X
k

ek � Ek þDkbk
� �

: ð8:198Þ
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Note by Fig. 8.20 and (8.193) how Ek predicts a gap, for clearly Ek� D0.
Continuing

bk ¼ �mkuka
y
kak þ ukmkbkb

y
k � m2ka

y
kb

y
k þ u2kbkak: ð8:199Þ

But bk involves only diagonal terms, so using an appropriate anticommutation
relation

bk ¼ ukmk 1� aykak � bykbk
� �

; ð8:200Þ
so

bk ¼ ukmk 1� 2nkð Þ; ð8:201Þ

where

nk ¼ 1
ebEk þ 1

¼ f Ekð Þ: ð8:202Þ

f(Ek) is of course the Fermi function but it looks strange without the chemical
potential. This is because a†, b† do not change the particle number. See Marder
[8.22]. Therefore,

Dk ¼ �
X

Vk;k0bk0

¼ �
X

Vk;k0uk0mk0 1� 2f Ek0ð Þ½ 


¼ �
X
k0

Vk;k0
Dk0

2Ek0
1� 2f Ek0ð Þ½ 
:

ð8:203Þ

Fig. 8.20 Gap in single-particle excitations near the Fermi energy
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Now assume that (not using ħ = 1)

Dk0 ¼ D when ekj j\�hxD; ð8:204Þ

Vk;k0 ¼ �V when ekj j\�hxD; ð8:205Þ

Dk ¼ 0 when ekj j[ �hxD; ð8:206Þ

and

Vk;k0 ¼ 0 when ekj j[ �hxD; ð8:207Þ

where xD is the Debye frequency [see (8.138)] So,

D ¼ V
X

ek0j j\�hxD

D 1� 2f Ek0ð Þ½ 

2Ek0

: ð8:208Þ

For T = 0, then

D ¼
X
k0

V
D

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2k0 þD2

q ; ð8:209Þ

and for T 6¼ 0, then

D ¼
X
k0

VD

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2k0 þD2

q tanh
Ek0

2kT

� �
: ð8:210Þ

We can then write

D ffi
Z�hxD

0

N Eð ÞV Dffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 þD2

p dE: ð8:211Þ

If we further suppose that N(E) ≅ constant ≅ N(0) � the density of states at the
Fermi level, then (8.211) becomes

1
N 0ð ÞV ¼

Z�hxD

0

dEffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 þD2

p ¼ ln Eþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 þD2

p� ���� �hxD

0

¼ ln
�hxD þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�hxDð Þ2 þD2

q
D

0
@

1
A:

ð8:212Þ

598 8 Superconductivity



This equation can be written as

exp � 1
N 0ð ÞV

� �
¼ D

�hxD þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�hxDð Þ2 þD2

q
¼ D

�hx0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ D=�hxDð Þ2

q
þ 1

� � ¼ D
2�hxD

ð8:213Þ

in the weak coupling limit (when D 	 �hxD). Thus, in the weak coupling limit, we
obtain

D ffi 2�hxD exp � 1
N 0ð ÞV

� �
: ð8:214Þ

From (8.210) by similar reasoning

1
N 0ð ÞV ¼

Z�hxD

0

tanh
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2 þD2

p
=2kT

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2 þD2

p de; ð8:215Þ

where, again, N(0) is the density of states at the Fermi energy.
For T greater than some critical temperature there are no solutions for D, i.e. the

energy gap no longer exists. We can determine Tc by using the fact that at T = Tc,
D = 0. This says that

1
N 0ð ÞV ¼

Z�hxD

0

tanh e=2kTcð Þ
e

de: ð8:216Þ

In the weak coupling approximation, when N(0)V 	 1, we obtain from (8.216)
that

kTc ¼ 1:14�hxD exp �1=N 0ð ÞVð Þ: ð8:217Þ

Equation (8.217) is a very important equation. It depends on three material
properties:

(a) The Debye frequency xD

(b) V that measures the strength of the electron–phonon coupling and
(c) N(0) that measures the number of electrons available at the Fermi energy.

Note that typically xD / ðmÞc�1=2, where m is the mass of atoms. This leads
directly to the isotope effect. Note also the energy gap Eg = 2D(0) at absolute zero.

We can combine this result with our result for the energy gap parameter in the
ground state to derive a relation between the energy gap at absolute zero and the
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critical superconducting transition temperature with no magnetic field. By (8.217)
and (8.214), we have that

D 0ð Þ ¼ 2�hxD exp �1=N 0ð ÞVð Þ ¼ 2
1:14

kTc; ð8:218Þ

or

2D 0ð Þ ¼ 3:52kTc: ð8:219Þ

Note that our expression for D(0) and Tc both involve the factor exp(−1/N(0)V); that
is, a power series (in V) expansion for both D(0) and Tc have an essential singu
larity in V. We could not have obtained reasonable results if we had tried ordinary
perturbation theory because with ordinary perturbation theory, we cannot reproduce
the effect of an essential singularity in the perturbation. This is similar to what
happened when we discussed a single Cooper pair.

Our discussion has only been valid for weakly coupled superconductors.
Roughly speaking, these have (Tc/hD)

2 ≳ (500)−2. Pb, Hg, and Nb are strongly
coupled, and for them (Tc/hD)

2 � (300)−2. Alternatively, the electron–phonon
coupling parameter is about three times larger than is a typical weak coupling
superconductor. A result for the strong coupling approximation is given below.

John Bardeen

b. Madison, Wisconsin, USA (1908–1991)

Nobel Prize in Physics twice; Transistor in 1956 with Brattain and Shockley;
Theory of Superconductivity with Cooper and Schrieffer

He had a long career at Bell Labs that terminated, we are led to believe,
because of conflicts with Shockley.

Bardeen was a quiet man who liked golf and cookouts for his neighbors. He
liked to associate with “ordinary” people. At cookouts he was concerned about
whether people wanted toasted hamburger buns. He himself preferred them.

Bardeen was the only physicist to win two Nobel prizes. These were for
the transistor and for the theory of superconductivity. Rather than saying he
won two Nobel Prizes he would say he won 2/3 of a Nobel. The reasoning
being that each time he won it was in collaboration with two others. He was
so quiet and unassuming, that I was disappointed when I first heard him
lecture. I got very little out of it. He was not a dynamic speaker, but I would
guess he talked above my head. With his calm demeanor people said he was
the antithesis of the “Mad Scientist.”
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I think Bardeen had more influence (via his ideas concerning transistors and
superconductivity) on the world and the culture of the human species than any
other physicist of the twentieth century. We now live in the information age,
and John Bardeen was one of its fathers, but so was Shockley. Indeed
Shockley’s unsuccessful attempts to form semiconductor companies led to
Intel and also Silicon Valley.

I should mention that another revolution has occurred besides that gen-
erated by the transistor and that is in the arena of optics–lasers to be precise.
They have not only contributed to the information age but to a myriad of
other areas. They are used to read CD’s (compact discs), barcodes in stores, to
do eye surgery and many other medical procedures, as well as guide missile
weapons and in many other uses.

8.5.4 Remarks on the Nambu Formalism and Strong
Coupling Superconductivity (A)

The Nambu approach to superconductivity is presented by matrices and diagrams.
The Nambu formalism includes the possibility of Cooper pairs in the calculation
from the beginning via two component field operators. This approach allows for the
treatment of retardation effects that need to be included for the strong (electron
lattice) coupling regime. An essential step in the development was taken by
Eliashberg and this leads to his equations. The Eliashberg strong coupling calcu-
lation of the superconducting transition temperature gives with a computer fit (via
McMillan):

Tc ¼ hD
1:45

exp
�1:04 1þ kð Þ

k� l� 1þ 0:62kð Þ
� �

:

hD is the Debye temperature, and for definitions of k (the coupling constant) and l*

(the Coulomb pseudopotential term) see Jones and March [8.17]. They also give a
nice summary of the calculation. Briefly k = N(0)Vphonon, l = N(0)Vcoulomb where
V in (8.218) is Vphonon − Vcoulomb, and

l� ¼ l 1þ l ln
EF

kBhD

� ��1

:

Usually k empirically turns out to be not much larger than 5/4 (or smaller).

8.5 The Theory of Superconductivity (A) 601



The calculation includes the self-energy terms. The lowest-order correction to
self-energy for electrons due to phonons is indicated in Fig. 8.21. The BCS theory
with the extension of Eliashberg and McMillan has been very successful for many
superconductors.

A nice reference to consult is Mattuck [8.23 pp. 267–272].

Yoichiro Nambu—The John The Baptist Physicist

b. Tokyo, Japan (1921–2015)

Spontaneous Symmetry Breaking; Nambu was unusual for his modesty

Nambu’s work, especially in Spontaneous Symmetry Breaking (SSB), had
applications to broad areas of physics, from superconductivity to particle
physics. SSB occurs when the ground state of a system has less symmetry
than the underlying physics laws. He won the Nobel Prize in Physics in 2008.
He was a giant in Physics who did not seem overly impressed with himself.
He was at the U. of Chicago when I was a graduate student there. He taught a
course in Statistical Mechanics, which I did not take, but friends who did
gave him high marks as a teacher. I think it fair to say that none of us had any
idea he would rank as a physicist equal to or above such faculty members at
the time as Chandrasekhar, Wentzel, Mayer, or others. When he was a young
student he was reputed to have flunked thermodynamics because he could not
understand the idea of entropy.

Apparently, due to Nambu’s culture he could not say no. So he substituted
by delaying a yes. If he really disagreed, the yes was a very long time in
coming. In his obituary in Physics today it is said that when he was
department head for a while, this led to some amusing situations.

Fig. 8.21 Lowest-order correction to self-energy Feynman diagram (for electrons due to
phonons)
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8.6 Magnesium Diboride (EE, MS, MET)

For a review of the new superconductor magnesium diboride, see, e.g., Physics
Today, March 2003, p. 34ff. The discovery of the superconductor MgB2, with a
transition temperature of 39 K, was announced by Akimitsu in early 2001. At first
sight this might not appear to be a particularly interesting discovery, compared to that
of the high-temperature superconductors, butMgB2 has several interesting properties:

1. It appears to be a conventional BCS superconductor with electron–phonon
coupling driving the formation of pairs. It shows a strong isotope effect.

2. It does not appear to have the difficulty that the high-Tc cuprate ceramics have of
having grain boundaries that inhibit current.

3. It is a widely available material that comes right off the shelf.
4. MgB2 is an intermetallic (two metals forming a crystal structure at a

well-defined stoichiometry) compound with a transition temperature near double
that of Nb3Ge.

Possibly, the transition temperature can be driven higher by tailoring the prop-
erties of magnesium diboride. At this writing, several groups are working intensely
on this material, with several interesting results including the fact that it has two
superconducting gaps arising from two weakly interacting bands. In addition, V.
Moshchalkov et al. [Phys. Rev. Lett. 102, 117001 (2009)] have shown that the two
bands lead to vortex–vortex interactions that are repulsive for short ranges and
weakly attractive at long ranges. For this reason they call magnesium diboride type
1.5 (rather than type I-attractive, or type II-repulsive).

8.7 Heavy-Electron Superconductors (EE, MS, MET)

UBe13 (Tc = 0.85 K), CeCu2Si2 (Tc = 0.65 K), and UPt3 (Tc = 0.54 K) are
heavy-electron superconductors. They are characterized by having large
low-temperature specific heats due to effective mass being two or three orders of
magnitude larger than in normal metals (because of f band electrons).
Heavy-electron superconductors do not appear to have a singlet state s-wave pairing,
but perhaps can be characterized as d-wave pairing or p-wave pairing (d and p
referring to orbital symmetry). It is also questionable whether the pairing is due to
the exchange of virtual phonons—it may be due, e.g., to the exchange of virtual
magnons. See, e.g., Burns [8.9 p. 51]. We have already mentioned these in Sect. 5.7.

8.8 High-Temperature Superconductors (EE, MS, MET)

It has been said that Brazil is the country of the future and always has been as well
as always will be. A similar comment has been made about superconductors. The
problem is that superconductivity applications have been limited by the fact that
liquid helium temperatures (of order 4 K) have been necessary to retain super-
conductivity. Liquid nitrogen (which boils at 77 K) is much cheaper and materials
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that superconduct at or above the boiling temperature of liquid nitrogen would open
a large range of practical applications. Particularly important would be the transport
of electrical power.

Just finding a high superconducting transition temperature Tc, however, does not
solve all problems. The critical current can be an important limiting factor.
Thermally activated creep of fluxoids (due to J�B) can lower Jc (the critical cur-
rent) as the current interacts with the fluxoid and causes energy loss when the
fluxoid becomes unpinned and thus creeps (can move). This is important in the
high-Tc superconductors considered in this section.

Until 1986, the highest transition temperature for a superconductor was
Tc = 23.2 K for Nb3Ge. Then Bednortz and Müller found a ceramic oxide (product
of clay) of lanthanum, barium, and copper became superconducting at about 35 K.
For this work they won the Nobel prize for Physics in 1987. Since Bednortz’s
pioneering work several other high-Tc superconductors have been found.

The “1-2-3” compound YBa2Cu3O7, has a Tc of 92 K. The “2-1-4” compound
(e.g. BaxLa2−xCuO4−y) are another class of high-Tc superconductors.
Tl2Ba2Ca2Cu3O10 has a remarkably high Tc of 125 K. Hg12Tl3Ba30Ca30C45O125 is
reported to have a Tc 138 K which under pressure may go to 164 K.

The high-Tc materials are type II and typically have a penetration depth to
coherence length ratio K �100 and typically have a very large upper critical field.
As we have mentioned, thermally activated creep of fluxoids due to the J� B force
may cause energy dissipation and limit useable current values. For real materials,
the critical current (Jc), critical temperature (Tc), and critical magnetic field (Bc)
vary, but can be conveniently represented as shown in Fig. 8.22. As mentioned, the
high-temperature superconductors (HTSs) are typically type II and also their Jc
parallel to the copper oxide sheets (mentioned below) �107 A/cm2, while

Fig. 8.22 J, B, T surface separating superconducting and normal regions
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perpendicular to the sheets Jc can be about 107 A/cm2. A schematic of J, Bc, and Tc
is shown in Fig. 8.22 for type I materials. For HTS, the representation of Fig. 8.22
is not complex enough. In Table 8.1 we list selected superconductor elements and
compounds along with their transition temperature.

For HTS, we are faced with a puzzle as to what causes some ceramic copper
oxide materials to be superconductors at temperatures well above 100 K. In con-
ventional superconductors, we talk about electrons paired into spherically sym-
metric wave functions (s-waves) due to exchange of virtual phonons. Apparently,
lattice vibrations cannot produce a strong enough coupling to produce such high
critical temperatures. It appears parallel Cu-O planes in these materials play some
very significant but not yet fully understood role. Hole conduction in these planes is
important. Superconductivity appears when holes are lightly doped into the cuprate
HTS. See Mona Berciu, “Challenging a hole to move through an ordered insulator,”
Physics 2, 55 (2009) online. Colossal Magnetoresistance also appears in certain
manganites on hole doping (see Sect. 7.5.1). As mentioned, there is also a strong
anisotropy in electrical conduction. Although there seems to be increasing evidence
for d-wave pairing, the exchange mechanism necessary to produce the pair is still
not clear as of this writing. It could be due to magnetic interactions or there may be
new physics. See, e.g., Burns [8.9]. See also P. Lee, N. Nagaosa, X-G Wen,
“Doping a Mott insulator; physics of a high-temperature superconductor,”
Rev. Modern Phys, 78, p. 17ff (2006).

Besides the HTS mentioned above (now called cuprates), there is a new group of
high-temperature superconductors which contain compounds of the nitrogen group
and are called, “Pnictides.” These compounds are layered, as are the cuprates, with
layers of FeAs between layers of LaO. The whole compound, as first demonstrated
by Hosono, was of the form LaO1−xFxFeAs with 0.05 < x < 0.1 and Tc = 26 K.

By varying the chemical composition various “iron oxypnictides” have been
discovered with Tc as high as 55 K. Note that the presence of Fe (magnetic) in a
superconductor is surprising. The mechanism for superconductivity in these mate-
rials is not yet known. It is also not known whether superconductivity in the pnictides
will help us learn about superconductivity in the cuprates. For further details see
Hai-Hu Wen, “Rebirth of the hot,” Physics World, Sept. 2008, pp. 23–26, and
references cited therein.

See also Table 8.1. So far, there seems to be no completely accepted satisfactory
theory of superconductivity in the cuprates (with copper) superconductors. See e.g.
Kiaran B Dave, Philip Phillips, Charles L Kane, “Absence of Luttinger’s
Theorem due to Zeros in the Single-Particle Green Function,” Physical Review
Letters, 110, 090403, (2013).

It should be mentioned that Hydrogen Sulfide (H2S) under a pressure of 150
gigapascal has found to be a superconductor at as high a temperature as 203 K. It is
probably a conventional (BCS) superconductor with the highest temperature yet
found. Previously in the copper oxides the highest transition temperatureswere 133 K
at ambient pressure, and 164 K at high pressures. See A. P. Drozdov, M. I. Eremets, I.
A. Troyan, V. Ksenofontov, S. I. Shylin, “Conventional superconductivity at 203
kelvin at high pressures in the sulfur hydride system,”Nature 525, pp. 73, 84, Sept. 3,
2015.
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Table 8.1 Superconductors and their transition temperatures

Selected elementsa Transition temperature Tc (K)

Al 1.17
Hg 4.15
Nb 9.25
Sn 3.72
Pb 7.2
Selected compoundsa

Nb3Ge 23.2
Nb3Sn 18.
Nb3Au 10.8
NbSe2 7.2
MgB2

b 39
Copper oxide (HTS)a

HgBa2Ca2Cu3Ox
d 133

Bi2Sr2Ca2Cu3O10 *110
YBa2Cu3O7 *92
Tl2Ba2Ca3Cu4O11 *122
Hydrogen based superconductorse

H2S 203 (but at 150 GPa)
H3S 190
Iron based superconductorsf

LaO0.89F0.11FeAs 26
CeFeAsO0.84F0.16 41
SmFeAsO*0.85 55
Heavy fermiona

UBe13 0.85
CeCu2Si2 0.65
UPt3 0.54
Fullerenesc

K3C60 19.2
RbCs2C60 33
aReprinted from Burns G, High Temperature Superconductivity Table 2-1
p. 8 and Table 3-1 p. 57, Academic Press, Copyright 1992, with permission
from Elsevier. On p. 52 Burns also briefly discusses organic superconductors
bCanfield PC and Crabtree GW, Physics Today 56(3), 34 (2003)
cHuffmann DR, “Solid C60,” Physics Today 41(11), 22 (1991)
dFrom Wikipedia, the free encyclopedia https://en.wikipedia.org/wiki/High-
temperature_superconductivity
eS. Chang, “Unmasking the record-setting sulfur hydride superconductors,”
Physics Today, 69(7) 21–23, (July 2016.)
fMd. Atikur Rahman, Md. Arafat Hossen, “Brief Review on Iron-Based
Superconductors Including Their Characteristics and Applications,”
American Scientific Research Journal for Engineering, Technology, and
Sciences (ASRJETS), Vol 11, No 1, pp 104–126, (2015)
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By now, many materials have shown superconductivity. It is turning out to be a
fairly common phase under suitable conditions such as low temperatures or high
pressures. We have already mentioned the Fe based superconductors. The goal of a
room temperature superconductor has not yet been achieved. The exact nature of
the coupling causing unconventional superconductors is still under discussion.

Karl A. Müller

b. Basel, Switzerland (1927–)

High Tc Superconductors; Strontium Titanate

He along with Georg Bednorz won the Nobel Prizes in 1987 for discov-
ering high Tc superconductors. For many years the high temperature at which
superconductivity had been achieved was 23° K. Müller and Bednorz dis-
covered that Barium-Lanthanum-Copper-Oxide had a Tc of 35° K and soon
other cuprates were discovered that had Tc’s of the order of 100° K. Since
then iron based compounds have been discovered with high Tc and H2S under
extremely high pressure has a Tc of about 203° K.

8.9 Summary Comments on Superconductivity (B)

1. In the superconducting state E = 0 (superconductivity implies the resistivity q
vanishes, q ! 0).

2. The superconducting state is more than vanishing resistivity since this would
imply B was constant, whereas B = 0 in the superconducting state (flux is
excluded as we drop below the transition temperature).

3. For “normal” BCS theory:

(a) An attractive interaction between electrons can lead to a ground state separated
from the excited states by an energy gap. Most of the important properties of
superconductors follow from this energy gap.

(b) The electron–lattice interaction, which can lead to an effective attractive
interaction, causes the energy gap.

(c) The ideas of the penetration depth (and, hence, the Meissner effect—flux
exclusion) and the coherence length follow from the theory of
superconductivity.

4. Type II superconductors have upper and lower critical fields and are technically
important because of their high upper critical fields. Magnetic flux can penetrate
between the upper and lower critical fields, and the penetration is quantized in
units of hc/|2e|, just as is the magnetic flux through a superconducting ring.
Using a unit of charge of 2e is consistent with Cooper pairs.
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5. In zero magnetic fields, for weak superconductors, superconductivity occurs at
the transition temperature:

kBTc ffi 1:14�hxD exp �1=N0V0ð Þ; ð8:220Þ

where N0 is half the density of single-electron states, V0 is the effective interaction
between electron pairs near the Fermi surface, and �hxD ffi �hhD, where hD is the
Debye temperature.

6. The energy gap (2D) is determined by (weak coupling):

D 0ð Þ ffi 2�hxD exp �1=N0V0ð Þ ¼ 1:76kTc ð8:221Þ

D Tð Þ ffi D 0ð Þ 1� T
Tc

� �1=2

; T  Tc: ð8:222Þ

7. The critical field is fairly close to the empirical law (for weak coupling):

Hc Tð Þ
Hc 0ð Þ � 1� T

Tc

� �2

: ð8:223Þ

8. The coherent motion of the electrons results in a resistanceless flow because a
small perturbation cannot disturb one pair of electrons without disturbing all of
them. Thus, even a small energy gap can inhibit scattering.

9. The central properties of superconductors are the penetration depth k (of
magnetic fields) and the coherence length n (or “size” of Cooper pairs). Small
k/n ratios lead to type I superconductors, and large k/n ratios lead to type II
behavior. n can be decreased by alloying.

10. The Ginzburg–Landau theory is used for superconductors in a magnetic field
where one has inhomogeneities in spatial behavior.

11. We should also mention that one way to think about the superconducting
transition is a Bose–Einstein condensation, as modified by their interaction, of
bosonic Cooper pairs. However, this view is too simple.9

9Fermion Pairing: Shafroth [8.29] seems to be the first to connect superconductivity with a Bose–
Einstein condensation of fermion pairs. It is now understood that the ideas of Shafroth were
incomplete and not really the way to view things. As we have mentioned, superconductivity in
metals was discovered early on (1911). Superfluidity in 4He was discovered somewhat later (1938)
by Kapitsa and also Allen and Misener. It was speculated fairly soon that the explanations for each
must have some connection, but the relation was certainly not clear. In particular, F. London
argued that superfluidity must have a connection with Bose–Einstein condensation (BEC).
Because of these and related ideas, one sometimes calls superconductivity charged superfluidity.
See C. A. R. Sa de Melo, “When fermions become bosons: pairing in ultra-cold gas,” Physics
Today, Oct. 2008, pp. 45–51 for details and references. See also the Chap. 12 section entitled
“Bose–Einstein Condensation.”
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12. See the comment on spontaneously broken symmetry in the chapter on mag-
netism. Superconductivity can be viewed as a broken symmetry (local gauge
invariance).

13. In the paired electrons of superconductivity, in s and d waves, the spins are
antiparallel, and so one understands why ferromagnetism and superconductivity
don’t appear to coexist, at least normally. However, even p-wave superconduc-
tors (e.g. Strontium Ruthenate) with parallel spins the magnetic fields are com-
monly expelled in the superconducting state. Recently, however, two materials
have been discovered in which ferromagnetism and superconductivity coexist.
They are UGe2 (under pressure) and ZrZn2 (at ambient pressure). One idea is that
these twomaterials are p-wave superconductors. The issues about these materials
are far from settled, however. See Physics Today, p. 16, Sept. 2001.

14. Also, high-Tc (over 100 K) superconductors have been discovered and much
work remains to understand them.

In Table 8.2 we give a subjective “Top Ten” of superconductivity research.

Pyotr Kapitsa

b. Kronstadt, Russia (1894–1984)

He discovered superfluidity in liquid Helium and won the Nobel Prize in
Physics in 1978. He spent several years working with Rutherford at
Cambridge, but on a visit to his parents in Russia, he was not allowed to
return. He was unusual in that he was courageous even under Stalin’s rule.
For example, he refused to meet Beria, who was head of the secret police in
the Soviet Union. Kapitsa retained his moral integrity but was put under
house arrest.

I have often wondered what living in a regime like Stalin’s did to a person.
In Kapitsa we have one answer, in other physicists we have different
approaches.
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Table 8.2 Top 10 of superconductivity (subjective)

Person Achievement Date/comments

1. H. Kammerlingh
Onnes

Liquefied He found resistance of
Hg ! 0 at 4.19 K

1908—Started low-
T physics

1911—Discovered
superconducting
state

1911—Nobel prize
2. W. Meissner and R.

Ochsenfeld
Perfect diamagnetism 1933—Flux exclusion

3. F. and H. London London equations and flux expulsion 1935—B proportional
to curl of J

4. V. L. Ginzburg and
L. D. Landau

Phenomenological equations 1950—Eventually
GLAG
Equations

1962—Nobel Prize,
Landau

2003—Nobel Prize,
Ginzburg

A. A. Abrikosov Improvement to GL equations, Type
II

1957—Negative
surface energy

2003—Nobel prize
L. P. Gor’kov GL limit of BCS and order

parameter
1959—Order parameter

proportional to
gap parameter

5. A. B. Pippard Nonlocal electrodynamics 1953—x and l
dependent
on mean free
path in alloys

6. J. Bardeen,
L. Cooper, and
J. Schrieffer

Theory of superconductivity 1957—e.g. see (8.217)
1972—Nobel Prize

(all three)
7. I. Giaver Single-particle tunneling 1960—Get gap energy

1973—Nobel prize
8. B. D. Josephson Pair tunneling 1962—SQUIDS and

metrology
1973—Nobel prize

9. Z. Fisk et al. Heavy fermion “exotic”
superconductors

1985—Pairing different
than BCS,
probably

10. J. G. Bednorz and
K. A. Müller

High-temperature superconductivity 1986—Now, Tcs
are over 100 K

1987—Nobel prize
(both)
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Problems

8:1 Show that the flux in a superconducting ring is quantized in units of h/q, where
q = |2e|.

8:2 Derive an expression for the single-particle tunneling current between two
superconductors separated by an insulator at absolute zero. If ET is measured
from the Fermi energy, you can calculate a density of states as below.

 
Note:

ET ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2 þD2

p
compare 8:93ð Þð Þ;

DS ET
� � ¼ dn ETð Þ

dET ¼
dn ETð Þ

de
dET

de

ffi D 0ð Þ ETffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ETð Þ2�D2

q ;

where D(0) is the number of states per unit energy without pairing.
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Chapter 9
Dielectrics and Ferroelectrics

Despite the fact that the concept of the dielectric constant is often taught in
introductory physics—because, e.g., of its applications to capacitors—the concept
involves subtle physics. The purpose of this chapter is to review the important
dielectric properties of solids without glossing over the intrinsic difficulties.

Dielectric properties are important for insulators and semiconductors. When a
dielectric insulator is placed in an external field, the field (if weak) induces a polar-
ization that varies linearly with the field. The constant of proportionality determines
the dielectric constant. Both static and time-varying external fields are of interest, and
the dielectric constant may depend on the frequency of the external field. For typical
dielectrics at optical frequencies, there is a simple relation between the index of
refraction and the dielectric constant. Thus, there is a close relation between optical
and dielectric properties. This will be discussed in more detail in the next chapter.

In some solids, below a critical temperature, the polarization may “freeze in.”
This is the phenomena of ferroelectricity, which we will also discuss in this chapter.
In some ways ferroelectric and ferromagnetic behavior are analogous.

Dielectric behavior also relates to metals particularly by the idea of “dielectric
screening” in a quasifree-electron gas. In metals, a generalized definition of the
dielectric constant allows us to discuss important aspects of the many-body prop-
erties of conduction electrons. We will discuss this in some detail.

Thus, we wish to describe the ways that solids exhibit dielectric behavior. This
has practical as well as intrinsic interest and is needed as a basis for the next chapter
on optical properties.

9.1 The Four Types of Dielectric Behavior (B)

1. The polarization of the electronic cloud around the atoms: When an external
electric field is applied, the electronic charge clouds are distorted. The resulting
polarization is directly related to the dielectric constant. There are “anomalies”
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https://doi.org/10.1007/978-3-319-75322-5_9

613

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-75322-5_9&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-75322-5_9&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-75322-5_9&amp;domain=pdf


in the dielectric constant or refractive index at frequencies in which the atoms
can absorb energies (resonance frequencies, or in the case of solids, interband
frequencies). These often occur in the visible or ultraviolet. At lower frequen-
cies, the dielectric constant is practically independent of frequency.

2. The motion of the charged ions: This effect is primarily of interest in ionic
crystals in which the positive and negative ions can move with respect to one
another and thus polarize the crystal. In an ionic crystal, the resonant frequencies
associated with the relative motion of the positive and negative ions are in the
infrared and will be discussed in the optics chapter in connection with the
restrahlen effect.

3. The rotation of molecules with permanent dipole moments: This is perhaps the
easiest type of dielectric behavior to understand. In an electric field, the dipoles
tend to line up with the electric fields, while thermal effects tend to oppose this
alignment, and so, the phenomenon is temperature dependent. This type of
dielectric behavior is mostly relevant for liquids and gases.

4. The dielectric screening of a quasifree electron gas: This is a many-body
problem of a gas of electrons interacting via the Coulomb interaction. The
technique of using the dielectric constant with frequency and wave-vector
dependence will be discussed. This phenomena is of interest for metals.

Perhaps we should mention electrets here as a fifth type of dielectric behavior in
which the polarization may remain, at least for a very long time after the removal of
an electric field. In some ways an electret is analogous to a magnet. The behavior of
electrets appears to be complex and as yet they have not found wide applications.
Electrets occur in organic waxes due to frozen in disorder that is long lived but
probably metastable.1

J. D. Stranathan—“Benevolent Director”

b. Missouri, USA (1898–1981).

Book, Particles of Modern Physics; Electrets and Dielectric Properties of
Liquids and Solids; Administration.

Perhaps some would disagree with our including him here. However, J. D.
was dedicated to the University of Kansas for 44 years, and was head of the
physics department there for a good portion of that time. He rode out the bad
and the good times of physics funding and attracted for the most part good
professors (e.g. Max Dresden) and students (e.g. Martin Gutzwiller) who
were active and knowledgeable in physics and research. He can represent one
strength of USA physics in that it can occur in places that are not so famous

1See Gutmann [9.9]. See also Bauer et al. [9.1].
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or as well known as for example, Harvard and Berkeley. Among areas of his
research was that of electrets, which are, in some ways, electrical analogs of
magnets. He was best known for his book, which was a good summary of
many active areas in physics before WW II.

9.2 Electronic Polarization and the Dielectric Constant (B)

The ideas in this Section link up closely with optical properties of solids. In the
chapter on the optical properties of solids, we will relate the complex index of
refraction to the absorption and reflection of electromagnetic radiation. Now, we
remind the reader of a simple picture, which relates the complex index of refraction
to the dynamics of electron motion. We will include damping.

Our model considers matters only from a classical point of view. We limit
discussion to electrons in bound states, but for some solids we may want to consider
quasifree electrons or both bound and quasifree electrons. For electrons bound by
Hooke’s law forces, the equation describing their motion in an alternating electric
field E = E0exp(−ixt) may be written (e > 0)

m
d2x
dx2

þ m
s
dx
dt

þmx2
0x ¼ �eE0 exp �ixtð Þ: ð9:1Þ

The term containing s is the damping term, which can be due to the emission of
radiation or the other frictional processes. x0 is the natural oscillation frequency of
the elastically bound electron of charge −e and mass m. The steady-state solution is

x tð Þ ¼ � e
m

E0 exp �ixtð Þ
x2

0 � x2 � ix=s
: ð9:2Þ

Below, we will assume that the field at the electronic site is the same as the
average internal field. This completely neglects local field effects. However, we will
follow this discussion with a discussion of local field effects, and in any case, much
of the basic physics can be done without them. In effect, we are looking at atomic
effects while excluding some interactions.

If N is the number of charges per unit volume, with the above assumptions, we
write:

P ¼ �Nex ¼ e
e0

� 1
� �

e0E ¼ NaE; ð9:3Þ

where e is the dielectric constant and a is the polarizability. Using E = E0exp(−ixt),
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a ¼ � ex
E

¼ e2

m
1

x2
0 � x2 � ix=s

: ð9:4Þ

The complex dielectric constant is then given by

e
e0

¼ 1þ N
e0

e2

m
1

x2
0 � x2 � ix=s

� er þ iei; ð9:5Þ

where we have absorbed the e0 into er and ei for convenience. The real and the
imaginary parts of the dielectric constant are then given by:

er ¼ 1þ Ne2

m e0

x2
0 � x2

x2
0 � x2

� �2 þx2=s2
; ð9:6Þ

ei ¼ Ne2

me0

x=s

x2
0 � x2

� �2 þx2=s2
: ð9:7Þ

In the chapter on optical properties, we will note that the connection (10.8) between
the complex refractive index and the complex dielectric constant is:

n2c ¼ nþ i nið Þ2¼ er þ ieið Þ: ð9:8Þ

Therefore,

n2 � n2i ¼ er; ð9:9Þ

2nni ¼ ei: ð9:10Þ

Thus, explicit equations for fundamental optical constants n and ni are:

n2 � n2i ¼ 1þ Ne2

me0

x2
0 � x2

x2
0 � x2

� �2 þx2=s2
ð9:11Þ

2nni ¼ Ne2

me0

x=s

x2
0 � x2

� �2 þx2=s2
: ð9:12Þ

Quantum mechanics produces very similar equations. The results as given by
Moss2 are

2See Moss [9.13]. Note ni refers to the imaginary part of the dielectric constant on the left of these
equations and in fij, i refers to the initial state, while j refers to the final state.
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n2 � n2i ¼ 1þ
X
j

Ne2 fij=me0
� �

x2
ij � x2

� �
x2

ij � x2
� �2

þx2=s2j

; ð9:13Þ

2nni ¼
X
j

Ne2fij=me0
� �

x=sj

x2
ij � x2

� �2
þx2=s2j

; ð9:14Þ

where the fij are called oscillator strengths and are defined by

fij ¼ 2xji
m wi xj jwj

� 	

 

2
�h

; ð9:15Þ
where

xij ¼ Ei � Ej

�h
; ð9:16Þ

with Ei and Ej being the energies corresponding to the wave functions wi and wj. In
a solid, because of the presence of neighboring dipoles, the local electric field does
not equal the applied electric field.

Clearly, dielectric and optical properties are not easy to separate. Further dis-
cussion of optical-related dielectric properties comes in the next chapter.

We now want to examine some consequences of local fields. We also want to
keep in mind that we will be talking about total dielectric constants and total
polarizability. Thus in an ionic crystal, there are contributions to the polarizabilities
and dielectric constants from both electronic and ionic motion.

The first question we must answer is, “If an external field, E, is applied to a
crystal, what electric field acts on an atom in the crystal?” See Fig. 9.1. The slab is
maintained between two plates that are connected to a battery of constant voltage V.
Fringing fields are neglected. Thus, the electric field, E0, between the plates before
the slab is inserted, is the same as the electric field in the solid-state after insertion
(so, E0d = V). This is also the same as the electric field in a needle-shaped cavity in
the slab. The electric field acting on the atom is

Fig. 9.1 Geometry for local field. (The external electric field in the dielectric is from right to left.)
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Eloc ¼ E0
0 þEa þEb þEc; ð9:17Þ

where, E0
0 is the electric field due to charge on the plates after the slab is inserted, Ea

is the electric field due to the polarization charges on the faces of the slab, and Eb is
the electric field due to polarization charges on the surface of the spherical cavity
(which exists in our imagination), and Ec is the polarization due to charges interior
to the cavity that we assume (in total) sums to zero.

It is, of course, an approximation to write Eloc in the above form. Strictly
speaking, to find the field at any particular atom, we should sum over the contri-
butions to this field from all other atoms. Since this is an impossible task, we treat
macroscopically all atoms that are sufficiently far from A (and outside the cavity).

By Gauss’ law, we know the electric field due to two plates with a uniform
charge density (±r) is E = r/e. Further, r due to P ending on the boundary of a slab
is r = P (from electrostatics). Since the polarization charges on the surface of the
slabs will oppose the electric field of the plate and since charge will flow to
maintain constant voltage.

e0E0 ¼ e0E
0
0 � P; ð9:18Þ

or

E0
0 ¼ E0 þ P

e0
: ð9:19Þ

Clearly, Ea ¼ �P=e0 (see Fig. 9.2), and for all cubic crystals, Ec = 0. So,

Eloc ¼ E0 þEb: ð9:20Þ

Using Fig. 9.3, since rq = P � n (n is outward normal), the charge on an annular
region of the surface of the cavity is

Fig. 9.2 The polarized slab. (Here the external electric field in the dielectric is from left to right.)

Fig. 9.3 Polarized charges around the cavity
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dq ¼ �P cos h � 2pa sin h � adh; ð9:21Þ

dEb ¼ 1
4pe0

dq
a2

� cos h; ð9:22Þ

Eb ¼ � P
2e0

Zp
0

cos2 h � d cos h: ð9:23Þ

Thus Eb = P/3e0, and so we find

Eloc ¼ E0 þ P
3e0

: ð9:24Þ

Since E0 is also the average electric field in the solid, the dielectric constant is
defined as

e ¼ D
E0

¼ e0E0 þP
E0

¼ e0 þ P
E0

: ð9:25Þ

The polarization is the dipole moment per unit volume, and so, it is given by

P ¼
X

i atomsð Þ
Ei
locNiai; ð9:26Þ

where Ni is the number of atoms per unit volume of type i, and ai is the appropriate
polarizability (which can include ionic, as well as electronic motions). Thus,

P ¼ E0 þ P
3e0

� �X
i

Niai; ð9:27Þ

or

P
E0

¼
P

i Niai

1� 1
3e0

X
i
Niai

; ð9:28Þ

or

e
e0

¼ 1þ 1
e0

P
i Niai

1� 1
3e0

X
i
Niai

� � ; ð9:29Þ

which can be arranged to give the Clausius–Mossotti equation
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e=e0ð Þ � 1
e=e0ð Þþ 2

¼ 1
3e0

X
i

Niai: ð9:30Þ

In the optical range of frequencies (the order of but less than 1015 cps), n2 = e/e0,
and the equation becomes the Lorentz–Lorenz equation

n2 � 1
n2 þ 2

¼ 1
3e0

X
i

Niai: ð9:31Þ

Finally, we show that when one resonant peak dominates, the only effect of the
local field is to shift the dormant resonant (natural) frequency. From

e
e0

¼ 1þ 1
e0

Na
1� Na=3e0ð Þ ; ð9:32Þ

and

a ¼ e2

m
1

x2
0 � x2 � ix=s

; ð9:33Þ

we have

e=e0ð Þ � 1
e=e0ð Þþ 2

¼ Na
3e0

¼ x2
p

3
1

x2
0 � x2 � ix=s

; ð9:34Þ

where

xp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ne2=me0

p
ð9:35Þ

is the plasma frequency. From this, we easily show

e
e0

¼ 1þ x2
p

x02
0 � x2 � ix=s

; ð9:36Þ

where

x02
0 ¼ x2

0 �
1
3
x2

p; ð9:37Þ

which is exactly what we would have obtained in the beginning [from (9.32) and
(9.33)] if x0 ! x0

0, and if the term Na/3e0 had been neglected.
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9.3 Ferroelectric Crystals (B)

All ferroelectric crystals are polar crystals.3 Because of their structure, polar crystals
have a permanent electric dipole moment. If qðrÞ is the total charge density, we
know for polar crystals

Z
rq rð ÞdV 6¼ 0: ð9:38Þ

Pyroelectric crystals have a polarization that changes with temperature. All polar
crystals are pyroelectric, but not all polar crystals are ferroelectric. Ferroelectric
crystals are polar crystals whose polarization can be reversed by an electric field.
All ferroelectric crystals are also piezoelectric, in which stress changes the polar-
ization. Piezoelectric crystals are suited for making electromechanical transducers
with a variety of applications.

Ferroelectric crystals often have unusual properties. Rochelle salt
NaKC4H4O6⋅4H2O, which was the first ferroelectric crystal discovered, has both an
upper and lower transition temperature. The crystal is only polarized between the
two transition temperatures. The “TGS” type of ferroelectric, including triglycine
sulfate and triglycine selenate, is another common class of ferroelectrics and has
found application to IR detectors due to its pyroelectric properties. Ferroelectric
crystals with hydrogen bonds (e.g. KH2PO4, which was the second ferroelectric
crystal discovered) undergo an appreciable change in transition temperature when
the crystal is deuterated (with deuterons replacing the H nuclei). BaTiO3 was the
first mechanically hard ferroelectric crystal that was discovered. Ferroelectric
crystals are often classified as displacive, involving a lattice distortion (i.e. barium
titinate, BaTiO3, see Fig. 9.4), or order–disorder (i.e. potassium dihydrogen
phosphate, KH2PO4, which involves the ordering of protons).

Fig. 9.4 Unit cell of barium titanate. The displacive transition is indicated by the direction of the
arrows

3Ferroelectrics: The term ferro is used but iron has nothing to do with it. Low symmetry causes
spontaneous polarization.
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In a little more detail, displacive ferroelectrics involve transitions associated with
the displacement of a whole sublattice. How this could arises is discussed in
Sect. 9.3.3 where we talk about the soft mode model. The soft mode theory,
introduced in 1960, has turned out to be a unifying principle in ferroelectricity (see
Lines and Glass [9.12]). Order–disorder ferroelectrics have transitions associated
with the ordering of ions. We have mentioned in this regard KH2PO4 as a crystal
with hydrogen bonds in which the motion of protons is important. Ferroelectrics
have found application as memories, their high dielectric constant is exploited in
making capacitors, and ferroelectric cooling is another area of application.

Other examples include ferroelectric cubic perovskite (PZT) PbZr(x)Ti(1−x)O3,
Tc = 670 K. The ferroelectric BaMgF4 (BMF) does not show a Curie T even up to
melting. These are other familiar ferroelectrics as given below.

The central problem of ferroelectricity is to be able to describe the onset of
spontaneous polarization. Spontaneous polarization is said to exist if, in the absence
of an electric field, the free energy is minimum for a finite value of the polarization.
There may be some ordering involved in a ferroelectric transition, as in a ferro-
magnetic transition, but the two differ by the fact that the ferroelectric transition in a
solid always involves the creation of dipoles.

Just as for ferromagnets, a ferroelectric crystal undergoes a phase transition from
the paraelectric phase to the ferroelectric phase, typically, as the temperature is
lowered. The transition can be either first order (with a latent heat, i.e. BaTiO3) or
second order (without latent heat, i.e. LiTaO3). Just as for ferromagnets, the fer-
roelectric will typically split into domains of varying size and orientation of
polarization. The domain structure forms to reduce the energy. Ferroelectrics show
hysteresis effects just like ferromagnets. Although we will not discuss it here, it is
also possible to have antiferroelectrics that one can think of as arising from
anti-parallel orientation of neighboring unit cells. A simple model of spontaneous
polarization is obtained if we use the Clausius–Mossotti equation and assume
(unrealistically for solids) that polarization arises from orientation effects. This is
discussed briefly in a later section.

Another similar crystal to barium titanate is strontium titanate. Both have per-
ovskite structure. SrTiO3 (STO) was originally synthesized and then found in
nature. For a while STO enjoyed popularity as a diamond like material in jewelry,
but not being as hard as diamond it scratched much easier. It has been described as
showing a quantum like (due to quantum fluctuations) paraelectric behavior at low
temperature. It also shows a transition at 110 K due to soft phonon mode behavior.
It becomes superconductive when electron doped and in certain cases has been
shown to be useful as a substrate material. A very interesting material which bares
watching. For a start see for example; Lev P. Gor’kov, “Back to mechanisms of
superconductivity in low-doped strontium titanate,” arXiv:1610.02062 [cond-mat.
supr-con].
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9.3.1 Thermodynamics of Ferroelectricity by Landau
Theory (B)

For both first-order (c < 0, latent heat, G continuous) and second-order (c > 0, no
latent heat, G′ (first derivatives) are continuous and we can choose d = 0), we
assume for the Gibbs free energy G′ [9.6 Chap. 3, generally assumed for displacive
transitions],

G ¼ G0 þ 1
2
b T � T0ð ÞP2 þ 1

4
cP4 þ 1

6
dP6; b; d[ 0: ð9:39Þ

(By symmetry, only even powers are possible. Also, in a second-order transition,
P is continuous at the transition temperature Tc, whereas in a first-order one it is
not.) From this we can calculate

E ¼ @G
@P

¼ b T � T0ð ÞPþ cP3 þ dP5; ð9:40Þ

1
v
¼ @E

@P
¼ b T � T0ð Þþ 3cP2 þ 5dP4: ð9:41Þ

Notice in the paraelectric phase, P = 0 so E = 0 and v ¼ 1=bðT�T0Þ, and therefore
Curie–Weiss behavior is included in (9.39). For T < Tc and E = 0 for second order
where d = 0, b(T − T0)P + cP3 = 0, so

P2 ¼ � b
c

T � T0ð Þ; ð9:42Þ

or

P ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b
c

T0 � Tð Þ
s

; ð9:43Þ

which again is Curie–Weiss behavior (we assume c > 0). For T = Tc = T0, we can
show the stable solution is the polarized one.

For first order set E = 0, solve for P and exclude the solution for which the free
energy is a maximum. We find (where we assume c < 0)

PS ¼ � � c
2d

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4db

c2
T � T0ð Þ

s !" #1=2
:

Now, G(PSC) = Gpolar = Gnonpolar = G0 at the transition temperature. Using the
expression for G (9.39) and the expression that results from setting E = 0 (9.40), we
find
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Tc ¼ T0 � c
4b

P2
SC: ð9:44Þ

By E = 0, we find [using (9.44)]

3c
4
P3
SC þ dP5

SC ¼ 0; ð9:45Þ
so

P2
SC ¼ � 3c

4d
: ð9:46Þ

Putting (9.46) into (9.44) gives

Tc ¼ T0 þ 3c2

16bd
: ð9:47Þ

Figures 9.5, 9.6, and 9.7 give further insight into first- and second-order transitions.

(a) (b)

Fig. 9.5 Sketch of (a) first-order and (b) second-order ferroelectric transitions

Fig. 9.6 Sketch of variation of Gibbs free energy G(T, p) for first-order transitions
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Josiah Willard Gibbs

b. New Haven, Connecticut, USA (1839–1903).

Ensembles; Phase rule; Vector Calculus; Applications of Maxwell’s equations
to Optics.

Gibbs was another giant of statistical mechanics and introduced the idea of
vectors (this work was similar to and independent of the work of Oliver
Heaviside). Gibbs approached statistical mechanics through ensembles. For a
canonical ensemble, the Partition Function Z ¼ Tr(e−bH), Tr is trace, b is 1/kT,
H is the Hamiltonian operator. The derivation of Thermodynamics from state
functions can be done from the partition function. Gibbs never married and had
a most reserved personality. He graduated from Yale and after travels,
including extensive studying in Europe, he returned to Yale and worked in
isolation. As suggested above he was noted7 for several contributions besides
statistical mechanics.

9.3.2 Further Comment on the Ferroelectric
Transition (B, ME)

Suppose we have N permanent, noninteracting dipoles P per unit volume, at tem-
perature T, in an electric field E. At high temperature, simple statistical mechanics
shows that the polarizability per molecule is

Fig. 9.7 Sketch of variations of Gibbs free energy G(T, p) for second-order transitions
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a ¼ P2

3kT
: ð9:48Þ

Combining this with the Clausius–Mossotti equation (9.29) gives

e
e0

¼ 1þ Np2

3ke0 T � Tcð Þ : ð9:49Þ

As T ! Tc, we obtain the “polarization catastrophe”. For a real crystal, even if this
were a reasonable approach, the equation would break down well before T = Tc,
and at T = Tc, we would assume that permanent polarization had set in. Near
T = Tc, the 1 is negligible, and we have essentially a Curie–Weiss type of behavior.
However, this derivation should not be taken too seriously, even though the result is
reasonable.

Another way of viewing the ferroelectric transition is by the Lyddane–Sachs–
Teller (LST) relation. This is developed in the next chapter, see (10.204). Here an
infinite dielectric constant implies a zero-frequency optical mode. This leads to
Cochran’s theory of ferroelectricity arising from “soft” optic modes. The LST
relation can be written

x2
T

x2
L
¼ e 1ð Þ

e 0ð Þ ; ð9:50Þ

where xT is the transverse optical frequency, xL is the longitudinal optical fre-
quency (both at low wave vector), e(∞) is the high-frequency limit of the dielectric
constant and e(0) is the low-frequency (static) limit. Thus a Curie–Weiss behavior
for e(0) as

1
e 0ð Þ / T � Tcð Þ ð9:51Þ

is consistent with

x2
T / T � Tcð Þ: ð9:52Þ

Cochran has pioneered the approach to a microscopic theory of the onset of
spontaneous polarization by the soft mode or “freezing out” (frequency going to
zero) of an optic mode of zero wave vector. The vanishing frequency appears to
result from a canceling of short-range and long-range (Coulomb) forces between
ions. Not all ferroelectric transitions are easily associated with phonon modes. For
example, the order–disorder transition is associated with the ordering of protons in
potential wells with double minima above the transition. Transition temperatures for
some typical ferroelectrics are given in Table 9.1.
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9.3.3 One-Dimensional Model of the Soft Model
of Ferroelectric Transitions (A)

In order to get a better picture of what the soft mode theory involves, we present a
one-dimensional model below that is designed to show ferroelectric behavior.
Anderson and Cochran have suggested that the phase transition in certain ferro-
electrics results from an instability of one of the normal vibrational modes of the
lattice. Suppose that at some temperature Tc

(a) An infinite-wavelength optical mode is accompanied by the condition that the
vibrational frequency x for that mode is zero.

(b) The effective restoring force for this mode for the ion displacements equals
zero. This condition has prompted the terminology, “soft” mode ferroelectrics.

If these conditions are satisfied, it is seen that the static ion displacements would
give rise to a “frozen-in” electric dipole moment–that is, spontaneous polarization.
The idea is shown in Fig. 9.8.

We now consider a one-dimensional lattice consisting of two atoms per unit cell, see
Fig. 9.9. The atoms (ions) have, respectively, mass m1 and m2 with charge e1 = e and
e2 = −e. The equilibrium separation distance between atoms is the distance a/2.

Table 9.1 Selected ferroelectric crystals

Type Crystal Tc (K)

KDP KH2PO4 123

TGS Triglycine sulfate 322

Perovskites BaTiO3 406

PbTiO3 765

LiNbO3 1483

From Anderson HL (ed), A Physicists Desk Reference 2nd edn, American
Institute of Physics, Article 20: Frederikse HPR, p.314, Table 20.02.C.1.,
1989, with permission of Springer-Verlag. Original data from Kittel C,
Introduction to Solid State Physics, 4th edn, p.476, Wiley, NY, 1971

Fig. 9.9 One-dimensional model for ferroelectric transition (masses mi, charges ei)

Fig. 9.8 Schematic for ferroelectric mode in one dimension
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It should be pointed out that in an ionic, one-dimensional model, a unit cell
exhibits a nonzero electric polarization—even when the ions are in their equilibrium
positions. However, in three dimensions, one can find a unit cell that possesses zero
polarization when the atoms are in equilibrium positions. Since our interest is to
present a model that reflects important features of the more complicated
three-dimensional model, we are interested only in the electric polarization that
arises because of displacements away from equilibrium positions. We could pro-
pose for the one-dimensional model the existence of fixed charges that will cancel
the equilibrium position polarization but that have no other effect. At any rate, we
will disregard equilibrium position polarization.

We define xkb as the displacement from its equilibrium position of the bth atom
(b = 1, 2) in the kth unit cell. For N atoms, we assume that the displacements of the
atoms from equilibrium give rise to a polarization, P, where

P ¼ 1
N

X
k0;b0

xk0b0eb: ð9:53Þ

The equation of motion of the bth atom in the kth unit cell can be written

mb€xkb þ
X
k0;b0

Jbb0 k � k0ð Þxk0b0 ¼ cebP; ð9:54Þ

where

Jbb0 k � k0ð Þ ¼ @2V
@xkb@xk0b0

: ð9:55Þ

This equation is, of course, Newton’s second law, F = ma, applied to a particular
ion. The second term on the left-hand side represents a “spring-like” interaction
obtained from a power series expansion to the second order of the potential energy,
V, of the crystal. The right-hand side represents a long-range electrical force rep-
resented by a local electric field that is proportional to the local electric field
Eloc = cP, where c is a constant.

As a further approximation, we assume the spring-like interactions are nearest
neighbors, so

V ¼ c
2

X
k00

xk002 � xk001ð Þ2 þ c
2

X
k00

xk00 þ 1;1 � xk002
� �2

; ð9:56Þ

where c is the spring constant. By direct calculation, we find for the Jbb′

J11 k0 � kð Þ ¼ 2cdk
0
k ¼ J22 k0 � kð Þ;

J12 k0 � kð Þ ¼ �c dk
0
k þ dk

0 þ 1
k

� �
;

J21 k0 � kð Þ ¼ �c dk
0
k þ dk

0�1
k

� �
:

ð9:57Þ
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We rewrite our dynamical equation in terms of h = k′ − k

mb€xkb þ
X
h;b0

Jbb0 hð Þxhþ k;b0 ¼ ceb
N

X
h;b0

xhþ k;b0eb0 : ð9:58Þ

Since this equation is translationally invariant, it has solutions that satisfy Bloch’s
theorem. Thus, there exists a wave vector k such that

xkb ¼ exp ikqað Þxob; ð9:59Þ
where xob is the displacement of the bth atom in the cell chosen as the origin for the
lattice vectors. Substituting, we find

mb€xkb þ
X
h;b0

Jbb0 kð Þ exp ihqað Þxob0 ¼ ceb
N

X
h;b0

exp ihqað Þxob0eb0 : ð9:60Þ

We simplify by defining

Gbb0 qð Þ ¼
X
h

Jbb0 hð Þ exp ihqað Þ: ð9:61Þ

Using the results for Jbb0 , we find

G11 ¼ 2c ¼ G22;

G12 ¼ �c 1þ exp iqað Þ½ �;
G21 ¼ �c 1� exp �iqað Þ½ �:

ð9:62Þ

In addition, since X
h

exp ihqað Þ ¼ Nd0q; ð9:63Þ

we finally obtain,

mb€xob þ
X
b0

Gbb0 qð Þxob0 ¼ ceb
X
b0

d0qxob0eb0 : ð9:64Þ

As in the ordinary theory of vibrations, we assume xob contains a time factor
exp(ixt), so

€xob ¼ �x2xob: ð9:65Þ

The polarization term only affects the q ! 0 solution, which we look at now.
Letting q = 0, and e1 = −e2 = e, we obtain the following two equations:

�m1x
2xo1 þ 2cxo1 � 2cxo2 ¼ ce xo1e� xo2eð Þ; ð9:66Þ
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and

�m2x
2xo2 � 2cxo1 þ 2cxo2 ¼ �ce xo1e� xo2eð Þ: ð9:67Þ

These two equations can be written in matrix form:

�m1x2 þ d �d
�d �m1x2 þ d

� 
xo1
xo2

� 
¼ 0; ð9:68Þ

where d = 2c − ce2. From the secular equation, we obtain the following:

x2 m1m2x
2 � m1 þm2ð Þd� � ¼ 0: ð9:69Þ

The solution x = 0 is the long-wavelength acoustic mode frequency. The other
solution, x2 = d/l with 1/l = 1/m1 + 1/m2, is the optic mode long-wavelength
frequency. For this frequency

�m1xo1 ¼ m2xo2: ð9:70Þ

So,

P ¼ xo1e 1þ m1

m2

� �
; ð9:71Þ

and P 6¼0 if xo1 6¼ 0. Suppose

lim
T!Tc

2c Tð Þ � ce2
� � ¼ 0; ð9:72Þ

then

x2 ¼ d
l
! 0 at T ¼ Tc; ð9:73Þ

and

F1 ¼ m1€xo1 ¼ d xo1 þ xo2ð Þ ! 0 as T ! Tc: ð9:74Þ

So, a solution is xo1 = constant 6¼ 0. That is, the model shows a ferroelectric
solution for T ! Tc.

9.3.4 Multiferroics (A)

We consider the simultaneous situation of magnetic and dielectric order. That is, we
consider situations in which magnetic fields may control electric effects and con-
versely electric fields may affect magnetic effects. A simple definition of the kind of
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multiferroic that is of most interest nowadays is a material that shows both ferro-
electric and ferromagnetic behavior. Although this behavior was considered by
Pierre Curie in the late 19th century, it was only found in the mid 20th century, and
then in only a material with very weak coupling. More recently, materials have been
found which show much stronger coupling and the interest in them has conse-
quently grown. Generally, multiferroic materials need some asymmetry in the
crystal structure. However, recently they have been found surprisingly in cubic
perovskite LaMn3Cr4O12 (X. Wang et al., Phys. Rev. Lett. 115, 087601, 2015). For
a review of somewhat older work see S. W. Cheong and M. Mostovoy, Nature
Mater. 6, 13–20 (2007). Multiferroics seem to have possible applications to spin-
tronics as well as memory devices in multiferroics. Multiferroics also have con-
nections with topological insulators (see Sect. 12.7.4), and are a very hot topic.

9.4 Dielectric Screening and Plasma Oscillations (B)

We begin now to discuss more complex issues. We want to discuss the nature of a
gas of interacting electrons. This topic is closely related to the occurrence of
oscillations in gas-discharge plasmas and is linked to earlier work of Langmuir and
Tonks.4 We begin by considering the subject of plasma oscillations. The general
idea can be presented from a classical viewpoint, so we start by assuming the
simultaneous validity of Newton’s laws and Maxwell’s equations.

Let n0 be the number density of electrons in equilibrium. We assume an equal
distribution of positive charge that remains uniform and, thus, supplies a constant
background. We will consider one dimension only and, thus, consider only lon-
gitudinal plasma oscillations.

Let u(x, t) represent the displacement of electrons whose equilibrium position is
x and refer to Fig. 9.10 to compute the change in density Let e represent the

Fig. 9.10 Schematic used to discuss plasma vibration

4See Tonks and Langmuir [9.19].
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magnitude of the electronic charge. Since the positive charge remains at rest, the
total charge density is given by q = −(n − n0)e. Since the same number of electrons
is contained in the new volume as the old volume.

n ¼ n0Dx
DxþDuð Þ ffi n0 1� du

dx

� �
: ð9:75Þ

Thus,

q ¼ n0e
du
dx

: ð9:76Þ

In one-dimension, Gauss’ law is

dEx

dx
¼ q

e0
¼ n0e

e0

du
dx

: ð9:77Þ

Integrating and using the boundary condition that (Ex)n=0 = 0, we have

Ex ¼ n0e
e0

u: ð9:78Þ

A simpler derivation is discussed in the optics chapter (see Sect. 10.9). Using
Newton’s second law with force −eEx, we have

m
d2u
dt2

¼ � n0e2

e0
u; ð9:79Þ

with solution

u ¼ u0 cos xptþ const:
� �

; ð9:80Þ

where

xp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n0e2=me0

p
ð9:81Þ

is the plasma frequency of electron oscillation. The quanta associated with this type
of excitation are called plasmons. For a typical gas in a discharge tube,
xP ≅ 1010 s−1, while for a typical metal, xP ≅ 1016 s−1.

More detailed discussions of plasma effects and electrons can be made by using
frequency- and wave-vector-dependent dielectric constants. See Sect. 9.5.3 for
further details where we will discuss screening in some detail. We define e(q, x) as
the proportionality constant between the space and time Fourier transform com-
ponents of the electric field and electric displacement vectors. We generally assume
e(x) = e(q = 0, x) provides an adequate description of dielectric properties when
q−1� a, where a is the lattice spacing. It is necessary to use e(q, x) when spatial
variations not too much larger than the lattice constant are important.
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The basic idea is contained in (9.82) and (9.83). For electrical interactions, if the
actual perturbation of the potential is of the form

V 0 ¼
Z Z

m0 q;xð Þ exp iq � rð Þ exp ixtð Þdq � dx: ð9:82Þ

Then, the perturbation of the energy is given by

e0 ¼
Z Z

m0 q;xð Þ
e q;xð Þ exp iq � rð Þ exp ixtð Þdq � dx: ð9:83Þ

eðq;xÞ is used to discuss (a) plasmons, (b) the ground-state energy of a
many-electron system, (c) screening and Friedel oscillation in charge around a
charged impurity in a sea of electrons, (d) the Kohn effect (a singularity in the
dielectric constant that implies a change in phonon frequency), and (e) even other
elementary energy excitations, provided enough physics is included in eðq;xÞ.
Some of this is elaborated in Sect. 9.5.

We now discuss two kinds of waves that can occur in plasmas. The first kind
concerns waves that propagate in a region with only one type of charge carrier, and
in the second we consider both signs of charge carrier. In both cases we assume
overall charge neutrality. Both cases deal with electromagnetic waves propagating
in a charged media in the direction of a constant magnetic field. Both cases only
relate somewhat indirectly to dielectric properties through the Coulomb interaction.
They seem to be worth discussing as an aside.

9.4.1 Helicons (EE)

Here we consider electrons as the charge carriers. The helicons are low-frequency
(much lower than the cyclotron frequency) waves of circularly polarized electro-
magnetic radiation that propagate, with little attenuation, along the direction of the
external magnetic field. They have been observed in sodium at high field (*2.5 T)
and low temperatures (*4 K). The existence of these waves was predicted by
P. Aigrain in 1960. Since their frequency depends on the Hall coefficient, they have
been used to measure it in solids. Their dispersion relation shows that lower fre-
quencies have lower velocities. When high-frequency helicons are observed in the
ionosphere, they are called whistlers (because of the way their signal sounds when
converted to audio).

For electrons (charge −e) in E and B fields with drift velocity v, relaxation time
s, and effective mass m, we have

m
d
dt

þ 1
s

� �
m ¼ �e Eþ m 	 Bð Þ: ð9:84Þ
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Assuming B ¼ Bk̂ and low frequencies so xs 
 1, we can neglect the time
derivatives and so

mx ¼ � esEx

m
� xcsmy;

my ¼ � esEy

m
þxcsmx;

mz ¼ � esEz

m
;

ð9:85Þ

where xc = eB/m is the cyclotron frequency. Letting, r0 = m/ne2s, where n is the
number of charges per unit volume, and the Hall coefficient RH = −1/ne, we can
write (noting j = −nev, j = v/RH):

mx ¼ r0RH Ex þBmy
� �

; ð9:86Þ

my ¼ r0RH Ey � Bmx
� �

: ð9:87Þ

Neglecting the displacement current, from Maxwell’s equations we have:

r	 B ¼ l0 j;

r	 E ¼ � @B
@t

:

Assuming ∇ � E = 0 (overall neutrality), these give

r2E ¼l0
@ j
@ t

: ð9:88Þ

If solutions of the form E = E0exp[i(kx − xt)] and v = v0exp[i(kx − xt)] are
sought, we require:

�k2E ¼ �ixl0
m

RH
;

Ex ¼ i
xl0
k2

mx
RH

;

Ey ¼ i
xl0
k2

my
RH

:

Thus

1� ir0
xl0
k2

� �
mx � r0RHBmy ¼ 0;

r0RHBmx þ 1� ir0
xl0
k2

� �
my ¼ 0:

ð9:89Þ
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Assuming large conductivity, r0xl0/k
2 � 1, and large B, we find:

x ¼ k2

l0
RHj jB ¼ k2

l0ne
B; ð9:90Þ

or the phase velocity is

mp ¼ x
k
¼

ffiffiffiffiffiffiffiffiffiffi
xB
l0ne

s
; ð9:91Þ

independent of m. Note the group velocity is just twice the phase velocity. Since the
plasma frequency xp is (ne

2/me0)
1/2, we can write also

mp ¼ c

ffiffiffiffiffiffiffiffiffi
xxc

x2
p

s
: ð9:92Þ

Typically vp is of the order of sound velocities.

9.4.2 Alfvén Waves (EE)

Alfvén waves occur in a material with two kinds of charge carriers (say electrons
and holes). As for helicon waves, we assume a large magnetic field with
electro-magnetic radiation propagating along the field. Alfvén waves have been
observed in Bi, a semimetal at 4 K. The basic assumptions and equations are:

1. ∇ 	 B = l0j, neglecting displacement current.
2. r	 E ¼ �@B=@t, Faraday’s law.
3. q _v ¼ j	 B; where v is the fluid velocity, and the force per unit volume is

dominated by magnetic forces.
4. E = −(v 	 B), from the generalized Ohm’s law j/r = E + v 	 B with infinite

conductivity.
5. B ¼ Bx̂iþBŷj, where Bx = B0 and is constant while By = B1 (t).
6. Only the jx, Ex, and vy components need be considered (vy is the velocity of the

plasma in the y direction and oscillates with time).
7. _v ¼ @v=@t, as we neglect (v � ∇)v by assuming small hydrodynamic motion.

Also we assume the density q is constant in time.

Combining (1), (3), and (7) we have

l0q
@my
@t

¼ r	 Bð Þ 	 B½ �yffi
@B1

@x
B0: ð9:93Þ
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By (4)

Ez ¼ �B0my;

so

� l0q
B0

@Ez

@t
¼ B0

@B1

@x
: ð9:94Þ

By (2)

@Ez

@x
¼ � @B1

@t
;

so

@2Ez

@t2
¼ � B2

0

l0q
@2B1

@x@t
¼ þ B2

0

l0q
@2Ez

@x2
: ð9:95Þ

This is the equation of a wave with velocity

mA ¼ Bffiffiffiffiffiffiffiffi
l0q

p ; ð9:96Þ

the Alfvén velocity. For electrons and holes of equal number density n and effective
masses me and mh,

mA ¼ Bffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l0n me þmhð Þp ; ð9:97Þ

Notice that vA = (B2/l0q)
1/2 is the velocity in a string of tension B2/l0 and density

q. In some sense, the media behaves as if the charges and magnetic flux lines move
together.

A unified treatment of helicon and Alfvén waves can be found in Elliot and
Gibson [9.5] and Platzman and Wolff [9.15]. Alfvén waves are also discussed in
space physics, e.g. in connection with the solar wind.

9.4.3 Plasmonics (EE)

Light waves incident on a metal dielectric interface can, under appropriate cir-
cumstances, induce surface plasmon waves of the same frequency as the light. The
surface plasmons have wavelengths much less than the wavelengths of the light. In
effect, this allows the optical signal to be squeezed into nanowires that carry much
more information than an electronic wire. Thus, plasmonics may combine the
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virtues of fiber optics (high frequencies and high bandwidths) and electronics (very
small wire interconnects). Plasmonics does have a limitation in that the amplitude
of the plasmons tends to die out in a short distance (of order perhaps millimeters,
more or less, depending on the device). Kittel [23, p. 302] has a couple of problems
that illustrate surface and interface plasmons (for a single metallic surface, not a thin
film, the surface plasmon frequency is (1/√2) times the volume plasmon frequency).
For further details on how thin film metals can be used to change the plasmon
frequency, as well as a discussion of other ideas and applications see, H.
A. Atwater, “The Promise of Plasmonics,” Sci. Am., April 2007, pp. 56–63, and
references cited therein.

9.5 Free-Electron Screening

9.5.1 Introduction (B)

If you place one charge in the midst of other charges, they will redistribute
themselves in such a way as to “damp out” the long-range effects of the original
charge. This long-range damping is an aspect of screening. Its origin resides in the
Coulomb interactions of charges. This phenomenon was originally treated classi-
cally by the Debye–Huckel theory. A semiclassical form is called the Thomas–
Fermi Approximation, which also assumes a free-electron gas. Neither the Debye–
Huckel Theory nor the Thomas–Fermi model treats screening accurately at small
distances. To do this, it is necessary to use the Lindhard theory.

We begin with the linearized Thomas–Fermi and Debye–Huckel methods and
show how to use them to calculate the screening due to a single charged impurity.
Perhaps the best way to derive this material is through the dielectric function and
derive the Lindhard expression for it for a free-electron gas. The Lindhard
expression for e(x ! 0, q) for small q then gives us the Thomas–Fermi expression.
Generalization of the dielectric function to band electrons can also be made. The
Lindhard approach follows in Sect. 9.5.3.

9.5.2 The Thomas–Fermi and Debye–Huckel
Methods (A, EE)

We assume an electron gas with a uniform background charge (jellium). We assume
a point charge of charge Ze (e > 0) is placed in the jellium. This will produce a
potential u(r), which we assume to be weak and to vary slowly over a distance of
order 1/kF where kF is the wave vector of the electrons whose energy equals the
Fermi energy. For distances close to the impurity, where the potential is neither
weak nor slowly varying our results will not be a very good approximation.
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Consistent with the slowly varying potential approximation, we assume it is valid to
think of the electron energy as a function of position.

Ek ¼ �h2k2

2m
� eu rð Þ; ð9:98Þ

where ħ is Planck’s constant (divided by 2p), k is the wave vector, and m is the
electronic effective mass.

In order to exhibit the effects of screening, we need to solve for the potential u.
We assume the static dielectric constant is e and q is the charge density. Poisson’s
equation is

r2u ¼ �q
e

; ð9:99Þ

where the charge density is

q ¼ eZd rð Þþ n0e� ne; ð9:100Þ

where eZd(r) is the charge density of the added charge. For the spin 1/2 electrons
obeying Fermi–Dirac statistics, the number density (assuming local spatial equi-
librium) is

n ¼
Z

1
exp b Ek � lð Þ½ � þ 1

dk
4p3

; ð9:101Þ

where b = 1/kBT and kB is the Boltzmann constant. When u = 0, then n = n0, so

n0 ¼ n0 lð Þ ¼
Z

1

exp b �h2k2=2m
� �� l
� �� �þ 1

dk
4p3

: ð9:102Þ

Note by (9.98) and (9.102), we also have

n ¼ n0 lþ eu rð Þ½ �: ð9:103Þ

This means the charge density can be written

q ¼ eZd rð Þþ qind rð Þ; ð9:104Þ

where

qind rð Þ ¼ �e n0 lþ eu rð Þð Þ � n0 lð Þ½ �: ð9:105Þ

We limit ourselves to weak potentials. We can then expand n0 in powers of u and
obtain:

638 9 Dielectrics and Ferroelectrics



qind rð Þ ¼ �e2
@n0
@l

u rð Þ: ð9:106Þ

The Poisson equation then becomes

r2u ¼ � 1
e

Zed rð Þ � e2
@n0
@l

u rð Þ
� 

: ð9:107Þ

A convenient way to solve this equation is by the use of Fourier transforms. The
Fourier transform of the potential can be written

u qð Þ ¼
Z

u rð Þ exp �iq � rð Þdr; ð9:108Þ

with inverse

u rð Þ ¼ 1

2pð Þ3
Z

u qð Þ exp �iq � rð Þdq; ð9:109Þ

and the Dirac delta function can be represented by

d rð Þ ¼ 1

2pð Þ3
Z

exp iq � rð Þdq: ð9:110Þ

Taking the Fourier transform of (9.107), we have

q2u qð Þ ¼ 1
e

Ze� e2
@n0
@l

u qð Þ
� 

: ð9:111Þ

Defining the screening parameter as

k2S ¼
e2

e
@n0
@l

; ð9:112Þ

we find from (9.111) that

u qð Þ ¼ Ze
e

1
q2 þ k2S

: ð9:113Þ

Then, using (9.109), we find from (9.113) that

u rð Þ ¼ Ze
4per

exp �kSrð Þ: ð9:114Þ

Equations (9.112) and (9.114) are the basic equations for screening.
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For the classical nondegenerate case, we have from (9.102)

n0 lð Þ ¼ exp blð Þ
Z

exp �b�h2k2=2m
� � dk

4p3
; ð9:115Þ

so that by (9.112)

k2S ¼
e2

e
n0
kBT

; ð9:116Þ

we get the classical Debye–Huckel result. For the degenerate case, it is convenient
to rewrite (9.102) as

n0 lð Þ ¼
Z

DðEÞf ðEÞdE; ð9:117Þ

so

@n0
@l

¼
Z

DðEÞ @f
@l

dE; ð9:118Þ

where D(E) is the density of states per unit volume and f(E) is the Fermi function

f Eð Þ ¼ 1
exp b E � lð Þ½ � þ 1

: ð9:119Þ

since

@f Eð Þ
@l

ffi d E � lð Þ; ð9:120Þ

at low temperatures when compared with the Fermi temperature; so we have

@n0
@l

ffi D lð Þ: ð9:121Þ

Since the free-electron density of states per unit volume is

D Eð Þ ¼ 1
2p2

2m

�h2

� �3=2 ffiffiffiffi
E

p
; ð9:122Þ

and the Fermi energy at absolute zero is

l ¼ �h2

2m
3p2n0
� �2=3

; ð9:123Þ
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where n0 = N/V, we find

D lð Þ ¼ 3n0
2l

; ð9:124Þ

which by (9.121) and (9.112) gives the linearized Thomas–Fermi approximation. If
we further use

l ¼ 3
2
kBTF ; ð9:125Þ

we find

k2S ¼
e2

e
n0

kBTF
; ð9:126Þ

which looks just like the Debye–Huckel result except T is replaced by the Fermi
temperature TF. In general, by (9.112), (9.118), (9.119), and (9.122), we have for
free-electrons,

k2S ¼
e2n0
ekBTF

F0
1=2 gð Þ

F1=2 gð Þ ; ð9:127Þ

where η = l/kBT and

F1=2 gð Þ ¼
Z1
0

ffiffiffi
x

p
dx

exp x� gð Þþ 1
ð9:128Þ

is the Fermi integral. Typical screening lengths 1/kS for good metals are of order 1
Å, whereas for typical semiconductors 60 Å is more appropriate. For η 
 –1,
F0
1=2 gð Þ=F1=2 gð Þ � 1, which corresponds to the classical Debye–Huckel theory, and

for η � 1, F0
1=2 gð Þ=F1=2 gð ÞÞ ¼ 3= 2gð Þ is the Thomas–Fermi result.

9.5.3 The Lindhard Theory of Screening (A)

Here we do amore general discussion that is self-consistent.5We start with the idea of
an external potential that determines a set of electronic states. Electronic states in turn
give rise to a charge density from which a potential can be determined. We wish to

5This topic is also treated in Ziman JM [25, Chap. 5], and Grosso and Paravicini [55 p 245ff].
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show how we can determine a charge density and a potential in a self-consistent way
by using the concept of a frequency- and wave-vector-dependent dielectric constant.

The specific problem we wish to solve is that of the self-consistent response to
an applied field. We will assume small applied fields and linear responses. The
electronic response to the applied field is called screening, and it arises from the
interaction of the electrons with each other and with the external field. Only
screening by a free-electron gas will be considered.

Let a charge qext be placed in jellium, and let it produce a potential uext (by
itself). Let u be the potential caused by the extra charge, the free-electrons, and the
uniform background charge (i.e. extra charge plus jellium). We also let be the
corresponding charge density. Then

r2uext ¼ � qext

e
; ð9:129Þ

r2u ¼ � q
e
: ð9:130Þ

The induced charge density qind is then defined by

qind ¼ q� qext: ð9:131Þ

We Fourier analyze the equations in both the space and time domains:

q2uext q;xð Þ ¼ qext q;xð Þ
e

; ð9:132aÞ

q2u q;xð Þ ¼ q q;xð Þ
e

; ð9:132bÞ

q q;xð Þ ¼ qext q;xð Þþ qind q;xð Þ: ð9:132cÞ

Subtracting (9.132a) from (9.132b) and using (9.132c) yields:

eq2 u q;xð Þ � uext q;xð Þ½ � ¼ qind q;xð Þ: ð9:133Þ

We have assumed weak field and linear responses, so we write

qind q;xð Þ ¼ g q;xð Þu q;xð Þ; ð9:134Þ

which defines g(q, x). Thus, (9.133) and (9.134) give this as

eq2 u q;xð Þ � uext q;xð Þ½ � ¼ g q;xð Þu q;xð Þ: ð9:135Þ

Thus,
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u q;xð Þ ¼ uext q;xð Þ
e q;xð Þ ; ð9:136Þ

where

e q;xð Þ ¼ 1� g q;xð Þ
eq2

: ð9:137Þ

To proceed further, we need to calculate e(q, x) directly. In the process of doing
this, we will verify the correctness of the linear response assumption. We write the
Schrödinger equation as

H0 ki ¼ Ekj jki: ð9:138Þ

We assume an external perturbation of the form

dV r; tð Þ ¼ V exp i q � rþxtð Þð ÞþV exp �i q � rþxtð Þð Þ½ � exp atð Þ: ð9:139Þ

The factor exp(at) has been introduced so that the perturbation vanishes as t = −∞,
or in other words, as the perturbation is slowly turned on. V is assumed real. Let

H ¼ H0 þ dV : ð9:140Þ

We then seek an approximate solution of the time-dependent Schrödinger wave
equation

Hw ¼ i�h
@w
@t

: ð9:141Þ

We seek solutions of the form

wj i ¼
X

k0
Ck0 tð Þ exp �iEk0 t=�hð Þ k0j i: ð9:142Þ

Substituting, X
k0

H0 þ dVð ÞCk0 tð Þexp �iEk0 t=�hð Þjk0i

¼ i�h
@

@t

X
k0

Ck0 tð Þexp �iEk0 t=�hð Þjk0i:
ð9:143Þ

Using (9.138) to cancel two terms in (9.143), we haveX
k0

dVCk0 tð Þexp �iEk0 t=�hð Þjk0i ¼ i�h
X
k0

_Ck0 tð Þexp �iEk0 t=�hð Þjk0i: ð9:144Þ
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Using

k00jk0h i ¼ dk
00

k0 ; ð9:145Þ

k00 dVj jk0h i ¼ k00 dVj jk0þq
� 	

d
k00þq
k0 ; ð9:146Þ

_Ck00 tð Þ ¼ 1
i�h
Ck00 þ q exp �iEk00 þ qt=�h

� �
k00 dVj jk00 þ qh i exp iEk00 t=�hð Þ

þ 1
i�h
Ck00�q exp �iEk00�qt=�h

� �
k00 dVj jk00 � qh i exp iEk00 t=�hð Þ:

ð9:147Þ

Using (9.139), we have

_Ck00 tð Þ ¼
1
i�h
Ck00 þ q exp �i Ek00 þ q � Ek00

� �
t=�h

� �
V exp �ixtð Þ exp atð Þ

þ 1
i�h
Ck00�q exp �i Ek00�q � Ek00

� �
t=�h

� �
V exp ixtð Þ exp atð Þ:

ð9:148Þ

We assume a weak perturbation, and we begin in the state k with probability f0(k),
so we have

Ck00 tð Þ ¼
ffiffiffiffiffiffiffiffiffiffi
f0 kð Þ

p
dk00;k þ kC 1ð Þ

k00 tð Þ: ð9:149Þ

We write out (9.147) to first order for two interesting cases:

_Ckþ q tð Þ ¼ k _C 1ð Þ
kþ q tð Þ

¼ 1
i�h

� � ffiffiffiffiffiffiffiffiffiffi
f0 kð Þ

p
exp �i Ek � Ekþ q

� �
t=�h

� �
V exp ixtð Þ exp atð Þ;

ð9:150Þ

_Ck�q tð Þ ¼ k _C 1ð Þ
k�q tð Þ

¼ 1
i�h

� � ffiffiffiffiffiffiffiffiffiffi
f0 kð Þ

p
exp �i Ek � Ek�q

� �
t=�h

� �
V exp �ixtð Þ exp atð Þ:

ð9:151Þ

Integrating, we find, since Ck±q(∞) = 0

Ckþ q tð Þ ¼
ffiffiffiffiffiffiffiffiffiffi
f0 kð Þ

p exp �i Ek � Ekþ q
� �

t=�h
� �

V exp ixtð Þ exp atð Þ
Ek � Ekþ q � �hxþ i�ha

; ð9:152Þ

Ck�q tð Þ ¼
ffiffiffiffiffiffiffiffiffiffi
f0 kð Þ

p exp �i Ek � Ek�q
� �

t=�h
� �

V exp �ixtð Þ exp atð Þ
Ek � Ek�q þ �hxþ i�ha

: ð9:153Þ

We write (9.142) as
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w kð Þ ¼
X
k0

Ck0 tð Þ exp �iEk0 t=�hð Þwk0 ; ð9:154Þ

where

wk0 rð Þ ¼ 1ffiffiffiffi
X

p eik
0 �r; ð9:155Þ

and X is the volume. We put a superscript on w because we assume we start in the
state k. More specifically, (9.153) can be written as

w kð Þ ¼ exp �iEkt=�hð Þ
ffiffiffiffiffiffiffiffiffiffi
f0 kð Þ

p
wk

þCkþ q tð Þ exp �iEkþ qt=�h
� �

wkþ q þCk�q tð Þ exp �iEk�qt=�h
� �

wk�q:

ð9:156Þ

Any charge density in jellium is an induced charge density (in equilibrium, jellium
is uniform and has a net density of zero). Thus,

qind ¼ eN
X

� e
X
k

w kð Þ



 


2: ð9:157Þ

Now, note

w kð Þ



 


2¼ 1

X
and

X
all k

f0 kð Þ ¼ N; ð9:158Þ

so putting (9.155) into (9.156) and retaining no terms beyond first order,

qind ¼ eN
X

� e
X

X
k

f0ðkÞ 1þ V expðiq � rÞ exp ixtð Þ exp atð Þ
Ek � Ekþ q � �hxþ i�ha

�

þV expð�iq � rÞ exp �ixtð Þ expðatÞ
Ek � Ekþ q þ �hxþ i�ha

þ c:c.
�
;

ð9:159Þ

or

qind ¼ � e
X

X
k

f0 kð Þ � f0 kþ qð Þ½ �V exp iq � rð Þ exp ixtð Þ exp atð Þ
Ek � Ekþ q � �hxþ i�ha

þ c:c:

� �
:

ð9:160Þ

Using
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V q;xð Þ ¼ �eu q;xð Þ; ð9:161Þ

and identifying qind(q, x) as the coefficient of exp(iq � r)exp(i xt), we have

qind q;xð Þ ¼ � e2

X

X
k

f0 kð Þ � f0 k� qð Þ
Ek�q � Ek � �hxþ i�ha

� �
u q;xð Þ: ð9:162Þ

By (9.134) we find g(q, x) and by (9.137), we thus find

e q;xð Þ ¼ 1þ e2

eXq2
X
k

f0 kð Þ � f0 k� qð Þ
Ek�q � Ek � �hxþ i�ha

: ð9:163Þ

Finally, a few notes are provided on notation. We can redefine the Fourier com-
ponents so as to change the sign of q. For example, we can say

u rð Þ ¼ 1

2pð Þ2
Z

exp �iq � rð Þu qð Þdq: ð9:164Þ

Then defining

mq ¼ e2

eXq2
; ð9:165Þ

gives e(q, x) in the form given in many textbooks:

e q;xð Þ ¼ 1� mq
X
k

f0 kþ qð Þ � f0 kð Þ
Ekþ q � Ek � �hxþ i�ha

: ð9:166Þ

The limit as a ! 0 is tacitly implied in (9.166). In the limit as q becomes small,
(9.165) gives, as we will show below, the Thomas–Fermi approximation (when
x = 0). Two notable effects follow from (9.165), but they are not included in the
small q limit. An expression for e(q, 0) at large q is readily obtained for our
free-electron case. The result for x = 0 is

e q;xð Þ ¼ 1þ constantð ÞD EFð Þ 1
2
þ 1� x2

4x
ln

1þ x
1� x












� 
; ð9:167Þ

where D(EF) is the density of states at the Fermi energy and x = q/2kF with kF being
the wave vector at the Fermi energy. This expression has a singularity at q = 2kF,
which causes the screening of a charged impurity to have a weakly decaying
oscillating term (beyond the Fermi–Thomas potential). This is the origin of Friedel
oscillations. The Friedel oscillations damp out with distance due to electron scat-
tering. At finite temperature, the singularity disappears causing the Friedel oscil-
lation to damp out.
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Further, since ion–ion interactions are screening by e(q), the singularity at
q = 2kF is reflected in the phonon spectrum. Kinks in the phonon spectrum due to
the singularity in e(q) are called Kohn anomalies.

Finally, we look at (9.165) for small q, x = 0 and a = 0. We find

e q;xð Þ ¼ 1� e2

eXq2
X
k

@f0=@k
@Ek=@k

¼ 1� e2

eq2
X
k

D Eð Þ @f
@E

dE ¼ 1þ k2S
q2

:

ð9:168Þ

and hence comparing to previous work, we get exactly the Thomas–Fermi
approximation.

Jacques Friedel

b. Paris, France (1921–2014)

Dislocations; Friedel Oscillations and Friedel Sum Rule; Many insights into
metals and alloys and physical metallurgy

Friedel, while best known for the oscillation of charge around a charged
impurity, worked in many areas, including the effect of dislocations on
materials. He was a co-founder of the Laboratory of Solid State Physics at
Orsay, France and one of founders of the discipline of Materials Science. He
was noted for simple models used to explain complex phenomena.

Problems

9:1 Show that E0
0 ¼ E0 þP=e0, where E0 is the electric field between the plates

before the slab is inserted (9.19).
9:2 Show that E1 = −P/e0 (see Fig. 9.2).
9:3 Show that E2 = P/3e0 (9.23).
9:4 Show for cubic crystals that E3 = 0 (chapter notation is used).
9:5 If we have N permanent free dipoles p per unit volume in an electric field E,

find an expression for the polarization. At high temperatures show that the
polarizability (per molecule) is a = p2/3kT. What magnetic situation is this
analogous to?

9:6 Use (9.30) and (9.48) to show (9.49)
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e
e0

¼ 1þ Np2

3ke0 T � Tcð Þ :

Find Tc. How likely is this to apply to any real material?
9:7 Use the trial wave function w = w100 (1 + pz) (where p is the variational

parameter) for a hydrogen atom (in an external electric field in the z direction)
to show that we obtain for the polarizability 16pe0a30. (w100 is the ground-state
wave function of the unperturbed hydrogen atom, a0 is the radius of the first
Bohr orbit of the hydrogen atom, and the exact polarizability is 18pe0a30.)

9:8 (a) Given the Gibbs free energy6

G ¼ G0 þ 1
2 b T � T0ð ÞP2 þ 1

4 cP
4 þ 1

6 dP
6;

b; d[ 0; c\0 first orderð Þ;

derive an expression for Tc in terms of Psc where G(Psc) = G0 and E = 0.
(b) Put the expression for Tc in terms without Psc. That is, fill in the details of
Sect. 9.3.1.

6See e.g. Fatuzzo and Merz [9.6, Chap. 9] or Kittel and Kroemer [10, Subject References] pp. 298–
304, i.e. the section called “Landau Theory of Phase Transitions.”
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Chapter 10
Optical Properties of Solids

10.1 Introduction (B)

The organization of a solid-state course may vary towards its middle or end. Logical
beginnings are fairly easy. One defines the solid-state universe, and this is done
with a Section on crystal structures and how they are determined. Then one
introduces the main players, and so there are sections on lattice vibrations, phonons,
band structure, and electrons. Following this, one can present topics based on the
interaction of electrons and phonons and hence discuss, for example, transport.
After that come specific materials (semiconductors, magnetic materials, metals, and
superconductors) and properties (dielectric, optic, defect, surface, etc.). The prob-
lem is that some of these categories overlap so that a clean separation is not
possible. Optical properties, in particular, seem to spread into many areas, so a
well-focused segment on the optical properties of solids can be somewhat tricky to
put together.1

By optical properties of solids, we mean those properties that relate to the
interaction of solids with electromagnetic radiation whose wavelength is in the
infrared to the ultraviolet. There are several aspects to optical properties of solids
and looking at the subject in full generality can often lead to complexity, whereas
treating each part as a separate case often leads to confusion. We will try to keep to
a middle ground between these, by emphasizing only one topic (absorption) but
treating it in some detail. Although we will concentrate on absorption, we will
mention other optical phenomena including emission, reflection, scattering, and
photoemission of electrons.

There are several processes involved in absorption, but the main five seem to be:

(a) Absorption due to electronic transitions between bands that involve wave-
lengths typically less than ten micrometers;

1A good treatment is Fox [10.12].
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(b) Absorption by excitons at wavelengths with energies just below the absorption
edge due to valence–conduction band transitions (in semiconductors);

(c) Excitation and ionization of impurities that involve wavelengths ranging from
about one micrometer to one thousand micrometers;

(d) Excitation of lattice vibrations (optical phonons) in polar solids for which the
usual wavelengths are ten to fifty micrometers;

(e) Free-carrier absorption for frequencies up to the plasma edge. Free-carrier
absorption is particularly important in metals, of course. By gathering data
about any optical process, we can gain information about the inner workings of
the solid.

10.2 Macroscopic Properties (B)

We start by relating the dielectric properties to optical properties, particularly those
involving absorption and reflection. The complex dielectric constant, and the
relation of its two components by the Kronig–Kramers relation, is particularly
important. The imaginary part relates to the absorption coefficient. We assume the
total charge density qtotal ¼ 0; j ¼ rE, and l ¼ l0 (no internal magnetic effects, all
in the usual notation). We assume a wavelength large compared with atomic
dimensions but small compared with the dimensions of the sample. We start with
Maxwell’s equations and the constitutive relations in SI in the usual notation:

$ � E ¼ 0 $� E ¼ �l0
@H
@t

¼ � @B
@t

$ � B ¼ 0 $� H ¼ jþ @D
@t

D ¼ e0EþP ¼ eE

B ¼ l0ðHþMÞ ¼ lH:

ð10:1Þ

One then finds

r2E ¼l0r
@E
@t

þ l0
@2

@t2
ðeEÞ: ð10:2Þ

We look for solutions for each Fourier component

Eðk;xÞ ¼ E0 exp½iðk � r� xtÞ�; ð10:3Þ

and keep in mind that e should be written eðk;xÞ. Substituting, one finds

k2 ¼ l0 ex2 þ irx
� �

: ð10:4Þ
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Or, since c ¼ 1= l0e0ð Þ1=2,

k ¼ x
c

e
e0

þ i
r
e0x

� �1=2

: ð10:5Þ
For an insulator, r ¼ 0 so,

k ¼ x
v
¼ xn

c
¼ x

c

ffiffiffiffiffiffi
e
e0
:

r
ð10:6Þ

where n is the index of refraction. It is then natural to define a complex dielectric
constant ec and a complex index of refraction nc so,

k ¼ x
c
nc; ð10:7Þ

where

nc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e
e0

þ i
r
e0x

r
¼ nþ ini: ð10:8Þ

Letting

ec ¼ er þ iei ¼ eðk;xÞ
e0

þ i
r
e0x

; ð10:9Þ

squaring both sides and equating real and imaginary parts, we find

erðk;xÞ ¼ n2 � n2i ; ð10:10Þ

and

eiðk;xÞ ¼ 2nni: ð10:11Þ

Now, assuming the wave propagates in the z direction, if we substitute

k ¼ x
c

nþ inið Þ; ð10:12Þ

we have

E ¼ E0 exp ix
nz
c
� t

� �h i
exp �x

c
niz

� �
: ð10:13Þ

So, since energy in the wave is proportional to Ej j2, we have that the absorption
coefficient is given by

a ¼ 2nix
c

: ð10:14Þ
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Another readily measured quantity can be related to n and ni. If we apply appro-
priate boundary conditions to a solid surface, we can show as noted below that the
reflection coefficient for normal incidence is given by

R ¼ ðn� 1Þ2 þ n2i
ðn� 1Þ2 þ n2i

: ð10:15Þ

This relation follows directly from the Maxwell relations. From Faraday’s law, we
can show that the tangential component of E is continuous, and from Ampere’s Law
we can show the tangential component of H is continuous. Further manipulation
leads to the desired relation. Let us work this out. For normal incidence from the
vacuum on a surface at z = 0, the incident and reflected waves can be written as

Eiþ r ¼ E1 exp ix
z
c
� t

� �h i
þE2 exp �ix

z
c
þ t

� �h i
; ð10:16Þ

and the refracted wave is given by

Erf ¼ E0 exp ix nc
z
c
� t

� �h i
; ð10:17Þ

where nc is the complex index of refraction. Since

$� Eþ @B
@t

¼ 0; ð10:18Þ

we can use the loop of Fig. 10.1 to writeZ
A

ð$� EÞ � dsþ
Z

@B
@t

� ds ¼ 0; ð10:19Þ

Fig. 10.1 Loop used for deriving field boundary conditions (notice this e is a distance)
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or Z
C

E � dr ¼ � d
dt

Z
B � ds; ð10:20Þ

as

E1
T � E2

T

� �
lþOðeÞ ¼ � d

dt
B?2leð Þ; ð10:21Þ

where the subscript T means the tangential component of the electric field, and the
subscript ? means perpendicular to the page of the paper. Taking the limit as
e ! 0, we obtain

E1
T � E2

T ¼ 0; ð10:22Þ

or the tangential component of E is continuous. In a similar way we can use

$�H ¼ jþ @D
@t

ð10:23Þ

to show that

H1
T � H2

T

� �
lþOðeÞ ¼

Z
A

j � dsþ d
dt

D?2leð Þ ¼ j?ð2leÞþ d
dt

D?2leð Þ: ð10:24Þ

Again taking the limit as e ! 0, we find

H1
T � H2

T

� � ¼ 0; ð10:25Þ

or that the tangential component of H is also continuous. Continuity of the tan-
gential component of H requires [using $� E ¼ �@B=@t, proper constitutive
relations, and (10.16) and (10.17)]

ncE0 ¼ E1 � E2: ð10:26Þ

Continuity of the tangential component of E requires [(10.16) and (10.17)]

E0 ¼ E1 þE2: ð10:27Þ

Adding these two equations gives

E1 ¼ E0 nc þ 1ð Þ
2

: ð10:28Þ
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Subtracting these equations gives

E2 ¼ E0 �nc þ 1ð Þ
2

: ð10:29Þ
Thus, the reflection coefficient is given by

R ¼ E2

E1

				 				2¼ 1� nc
1þ nc

				 				2¼ ðn� 1Þ2 þ n2i
ðnþ 1Þ2 þ n2i

					
					: ð10:30Þ

Enough has been said to indicate that the theory of the optical properties of solids is
intimately related to the complex index of refraction of solids. The complex
dielectric constant equals the square of the complex index of refraction. Thus, the
optical properties of solids are intimately related to the study of the dielectric
properties of solids, and the measurement of the absorptivity and reflectivity
determine n and ni, and hence, er and ei.

10.2.1 Kronig–Kramers Relations (A)

We will give a quantum description of the absorption of radiation, but first it is
helpful to derive the Kronig–Kramers equations, which give a relation between the
real and imaginary parts of the dielectric constant. Let e be a complex function of x
that converges in the upper half-plane. We need to define the Cauchy principal
value P with a real for the following equations and diagrams:

P
Z1
�1

eðxÞdx
x� a

¼ 1
2

Z
C0

eðxÞdx
x� a

þ
Z
C00

eðxÞdx
x� a

24 35; ð10:31Þ

as shown by Fig. 10.2. It is assumed that the integral over the large semicircles is
zero. From complex variables, we know that if C encloses a and if f has no
singularity in C, then I

C

f ðZÞdZ
Z � a

¼ 2pif ðaÞ: ð10:32Þ

Fig. 10.2 Contours used for Cauchy principal value
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Using the definition of Cauchy principal value, since we have the integralZ
C00

¼ 0; P ! 1
2

Z
C0

�
Z
C00

0@ 1A: ð10:33Þ

Thus,

P
Z

eðxÞdx
x� a

¼ 1
2

Z
small circle
q ! 0

eðxÞdx
x� a

¼ ipeðaÞ; ð10:34Þ

and we have used that eðxÞ on the big circle is zero (actually, to achieve this we
should use that eðxÞ ¼ erðxÞ � 1½ � þ ieiðxÞ, which we will put in explicitly at the
end). Taking real and imaginary parts we then have,

P
Z1
�1

Re eðxÞ½ �dx
x� a

¼ �pIm eðaÞ½ �; ð10:35Þ

and

P
Z1
�1

Im eðxÞ½ �dx
x� a

¼ þ pRe eðaÞ½ �: ð10:36Þ

There are some other ways to write these relationships,

erðxÞ ¼ 1
p
P
Z1
�1

eiðxÞ
x� a

dx ¼ 1
p
P
Z1
0

eiðxÞ
x� a

dxþ
Z0
�1

eiðxÞ
x� a

dx

24 35: ð10:37Þ

But, the second term can be written

�
Z�1

0

eiðxÞ
x� a

dx ¼
Z�1

0

�eiðxÞ½ �
�xþ a

dð�xÞ ¼
Z1
0

�eið�xÞ½ �
xþ a

dx; ð10:38Þ

and e�ðr; tÞ ¼ eðr; tÞ; so eð�q;�xÞ ¼ e�ðq;xÞ. Therefore,

e�ð�xÞ ¼ eðxÞ; ð10:39Þ

or

erð�xÞ ¼ erðxÞ; ð10:40Þ
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and

eið�xÞ ¼ eiðxÞ: ð10:41Þ

We get

1
p
P
Z0
�1

eiðxÞ
x� a

dx ¼
Z1
0

eiðxÞ
xþ a

dx: ð10:42Þ

We can thus write the real component of the dielectric constant as

erðaÞ ¼ P
p

Z1
0

eiðxÞdx
x� a

þ
Z1
0

eiðxÞdx
xþ a

24 35 ¼ 2P
p

Z1
0

xeiðxÞdx
x2 � a2

; ð10:43Þ

and similarly the imaginary component can be written

eiðaÞ ¼ �P
p

Z1
�1

erdx
x� a

¼ �P
p

Z1
0

erdx
x� a

þ
Z0
�1

erdx
x� a

24 35
¼ �P

p

Z1
0

erdx
x� a

þ
Z0
�1

erð�xÞdð�xÞ
�xþ a

24 35
¼ �P

p

Z1
0

erðxÞdx
x� a

þ
Z0
1

erðxÞdx
xþ a

24 35
¼ �P

p

Z1
0

erðxÞdx
x� a

�
Z1
0

erðxÞdx
xþ a

24 35 ¼ � 2aP
p

Z1
0

erðxÞdx
x2 � a2

:

ð10:44Þ

In summary, the Kronig–Kramers relations can be written, where erðxÞ !
erðxÞ � 1 should be substituted

erðaÞ ¼ P
p

Z1
�1

Im eðxÞ½ �dx
x� a

¼ 2P
p

Z1
0

xeiðxÞdx
x2 � a2

; ð10:45Þ

eiðaÞ ¼ �P
p

Z1
�1

Re½eðxÞ�dx
x� a

¼ � 2Pa
p

Z1
0

erðxÞdx
x2 � a2

: ð10:46Þ
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10.3 Absorption of Electromagnetic Radiation—
General (B)

We now give a fairly general discussion of the absorption process by quantum
mechanics (see also Yu and Cardona [10.27, Chap. 6] as well as Fox op. cit.
Chap. 3). Although much of the discussion is more general, we have in mind the
absorption due to transitions between the valence and conduction bands of semi-
conductors. If −e is the electronic charge, and if we assume the electromagnetic
field is described by a vector potential A and a scalar potential /, the Hamiltonian
describing the electron in the field is in SI

H ¼ 1
2m

½pþ eA�2 � e /þVð Þ; ð10:47Þ
where V is the potential in the absence of an electromagnetic field; V would be a
periodic potential if the electron were in a solid. We will use the Coulomb gauge to
describe the electromagnetic field so / ¼ 0; $ � A ¼ 0 and the fields are given by

E ¼ � @A
@t

; B ¼ $� A: ð10:48Þ

The Hamiltonian can then be written

H ¼ 1
2m

p2 þ eA � pþ ep � Aþ e2A2
 �� eV : ð10:49Þ

The terms quadratic in A will be ignored as they are normally small compared to the
terms linear in A. Further in the Coulomb gauge, we can write

p � Aw 1 $ � ðAwÞ ¼ ð$ � AÞwþðA � $Þw ¼ A � $w; ð10:50Þ

so that the Hamiltonian can be written

H ¼ H0 þH0; H0 ¼ p2

2m
� eV ;

where the perturbation is

H0 ¼ e
m
A � p: ð10:51Þ

We assume the matrix element responsible for electronic transitions will be in the
form f jH ijh i, where i and f refer to the initial and final electron states and H0 is the
perturbing Hamiltonian. We assume the vector potential is given by

Aðr; tÞ ¼ ae exp iðk � r� xtÞ½ � þ exp �iðk � r� xtÞ½ �f g; ð10:52Þ
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where e � k = 0 and a2 is given by

a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
.
2x2

r
; ð10:53Þ

where E2 is the averaged squared electric field. Then,

Pabsorption
i!f ¼ 2p

�h
a2

e2

m2 fh j exp �ik � rð Þe � p ij ij j2; ð10:54Þ
and for emission

Pemission
i!f ¼ 2p

�h
a2

e2

m2 fh j exp �ik � rð Þe � p ij ij j2: ð10:55Þ

10.4 Direct and Indirect Absorption Coefficients (B)

Let us now look at the absorption coefficient. Using Bloch wave functions
wk ¼ eik�ruðrÞ� �

, we have

hf expðik � rÞe � pj jii ¼
Z

u�f exp i k� kf þ ki
� � � r
 �

�he � kiuidX

þ
Z

u�f exp i k� kf þ ki
� � � r
 �

�he � puidX:
ð10:56Þ

The first integral can be written as proportional toZ
w�
f wi exp ik � rð ÞdX ¼

X
j

exp i k� kf þ ki
� � � Rj

 �

�
Z
Xc

u�f exp i k� kf þ ki
� � � r
 �

uidX

ffi N
Z
Xc

wfwidX ffi 0;

ð10:57Þ

by orthogonality and assuming k is approximately zero, where we have also usedX
j

exp i k� kf þ ki
� � � Rj

 � ¼ dkf�ki

k ðNÞ; ð10:58Þ

and Xc is the volume of a unit cell. The neglect of all terms but the k = 0 terms
(called the electric dipole approximation) allows a similar description of the
emission term. Following a similar procedure for the second term in (10.56), we
obtain for absorption,
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fh j expðik � rÞe � p ij i ¼ N
Z
Xc

u�f e � puidX; ð10:59Þ

with k = 0 and ki = kf.

Notice in the electric dipole approximation since ki = kf, we have what are called
direct optical transitions. If something else such as phonons is involved, direct
transitions are not required but the whole discussion must be modified to include
this new physical ingredient. The electric dipole transition probability for photon
absorption per unit time is

Pabs
i!f ¼

2p
�h

X
k

E2

2x2

e2N2

m2

Z
Xc

u�f e � puidX

							
							
2

d EcðkÞ � EvðkÞ � �hx½ �: ð10:60Þ

The power (per unit volume) lost by the field due to absorption in the medium is the
transition probability per unit volume P multiplied by the energy of each photon
(where in carrying out the sum over k in (10.60), we will assume we are summing
over k states per unit volume). Carrying out the manipulations below, we finally
find an expression for the absorption coefficient and, hence, the imaginary part of
the dielectric constant. The power lost equals

P�hx ¼ � dI
dt

; ð10:61Þ

where I is the energy/volume. But,

� dI
dt

¼ � dI
dx

dx
dt

¼ aI
c
n

� �
; ð10:62Þ

where a ¼ 2nix=c, and ni ¼ ei=2n. Thus,

dI
dt

¼ eixI
n2

¼ P�hx: ð10:63Þ

Using

I ¼ 1
2
n2e0E2 � 2; ð10:64Þ

where n ¼ e=e0ð Þ1=2 if l ¼ l0 and the factor of 2 comes from both magnetic and
electric fields carrying current, we find

eiðxÞP�he0
1

E2
: ð10:65Þ
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Using the Kronig–Kramers relations, we can also derive an expression for the real
part of the dielectric constant. Defining

Mvcj j ¼
Z
X

u�f e � puidX
						

						; ð10:66Þ

we have [using (10.65), (10.66), and (10.60)]

ei ¼ p
e0

e
mx

� �2X
k

Mvcjj 2d Ec � Ev � �hxð Þ; ð10:67Þ

and by (10.45)

er ¼ 1þ e2

me0

X
k

2
m�hxcv

Mcvj2
		

x2
cv � x2

 !
ð10:68Þ

(where Ec � Ev � �hxcv and dðaxÞ ¼ dðxÞ=a has been used). Recall that the
P

k has
to be per unit volume and the oscillator strength is defined by

fvc ¼
2 Mvcj2
		
m�hxcv

: ð10:69Þ

Classically, the oscillator strength is the number of oscillators per unit volume with
frequency xcv. Thus, the real part of the dielectric constant can be written

er ¼ 1þ e2

me0

X
k

fvc
x2

cv � x2

� �
: ð10:70Þ

We want to work this out in a little more detail for direct absorption edges. For
direct transitions between parabolic valence and conduction bands, effective mass
concepts enter because one has to deal with both the valence band and conduction
band. For parabolic bands we write

Evc ¼ Eg þ �h2k2

2l
; ð10:71Þ

where

1
l
¼ 1

mc
þ 1

mv
: ð10:72Þ
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The joint density of states per unit volume [see (10.94)] is then given by

Dj ¼
ffiffiffi
2

p
l3=2

p2�h3

�  ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Evc � Eg

p
where Evc [Eg; ð10:73Þ

and

Dj ¼ 0 where Evc\Eg: ð10:74Þ

Thus, we obtain that the imaginary part of the dielectric constant is given by

eiðxÞ ¼ K
ffiffiffiffiffiffiffiffiffiffiffiffiffi
X� 1;

p
X[ 1

0; X\1

�
; ð10:75Þ

where

K ¼ 2e2ð2lÞ3=2 Mvcj2
ffiffiffiffiffi
Eg

p		
m2x2�h3

; ð10:76Þ

and

X ¼ �hx
Eg

: ð10:77Þ

From this, one then has an expression for the absorption coefficient
ðsince a ¼ xei=ncÞ. Thus for direct transitions and parabolic bands, a plot of the
square of the absorption coefficient as a function of the photon energy should be a
straight line, at least over a limited frequency. Figure 10.3 illustrates direct and
indirect transitions and absorption. Indirect transitions are discussed below.

The fundamental absorption edge due to the bandgap determines the apparent
color of semiconductors as seen by transmission.

We now want to discuss indirect transitions. So far, our analysis has assumed a
direct bandgap. This means that the k of the initial and final electronic states
defining the absorption edge are almost the same (as has been mentioned, the k of
the photon causing the absorption is negligible, compared to the Brillouin zone
width, for visible wavelengths). This is not true for the two most common semi-
conductors Si and Ge. For these semiconductors, the maximum energy of the
valence band and the minimum energy of the conduction band do not occur at the
same k vectors, one has what is called an indirect bandgap semiconductor. For a
minimum energy transition across the bandgap, something else, typically a phonon,
must be involved in order to conserve wave vector. The requirement of having, for
example, a phonon being involved reduces the probability of the event; see
Figs. 10.3b, c, 10.4, (10.82), and consider also Fermi’s Golden Rule.

Even in a direct bandgap semiconductor, processes can cause the fundamental
absorption edge to shift from direct to indirect, see Fig. 10.3a. For degenerate
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(a) (b)

(c)

Fig. 10.3 (a)Direct transitions and indirect transitions due to band filling; (b) indirect transitions,
where kph is the phonon wave vector; (c) vertical transitions dominate indirect transitions when
energy is sufficient to cause them. Emission and absorption refer to phonons in all sketches

Fig. 10.4 Indirect transitions: hfa ¼ Eg � Ephonon; hfb ¼ Eg þEphonon;Eg ¼ ðhfa þ hfbÞ=2; sketch
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semiconductors, the optical absorption edge may be a function of the carrier den-
sity. In simple models, the location of the Fermi energy in the conduction band can
be estimated on the free-electron model. When the Fermi energy is above the
bottom of the conduction band, the k vector of the minimum energy that can cause a
transition has also shifted from the k of the conduction band minimum. Now direct
transitions will originate from deeper states in the valence band, they will be
stronger than the threshold energy transitions, but of higher energy.

For indirect transitions, we can write the energy and momentum conservation
conditions as follows:

k0 ¼ kþK 	 q; ð10:78Þ
where K = photon ≅ 0 and, q = phonon (=kph in Fig. 10.3b). Also

Eðk0Þ ¼ EðkÞþ �hx	 �hxq; ð10:79Þ

where ħx = photon, and ħxq = phonon. Note: although the photon makes the
main contribution to the transition energy, the phonon carries the burden of insuring
that momentum is conserved. Now the Hamiltonian for the process would look like

H0¼ H0
photon þH0

photon; ð10:80Þ
where

H0
photon ¼

e
m
p�A; ð10:81Þ

and

H0
phonon ¼

X
rkq

Mkq aþ
�q þ aq

� �
cþkþ q;rck;r: ð10:82Þ

One can sketch the indirect process as a two-step process in which the electron
absorbs a photon and changes state then absorbs or emits a phonon. See Fig. 10.5.

We mention as an aside another topic of considerable interest. We discuss briefly
optical absorption in an electric field. The interesting feature of this phenomenon is
that in an electric field, optical absorption can occur for photon energies lower than

Fig. 10.5 An indirect process viewed in two steps
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the normal bandgap energies. The increased optical absorption due to an electric
field can be qualitatively understood by thinking about pictures such as in Fig. 10.6.
This figure does not present a rigorous concept, but it is helpful.

Very simply, we can think of the triangular area in the figure as a potential
barrier that electrons can “tunnel” through. From this point of view, one perhaps
believes than an electric field can cause electronic transitions from band 2 to band 1
(This is called the Zener effect). Obviously, the process of tunneling would be
greatly enhanced if the electron “picked up some energy from a photon before it
began to tunnel.” Further details are given by Kane [10.15].

It is not hard to see why the Zener effect (or “Zener breakdown”) can be
considered as a tunneling effect. The horizontal line corresponds to the motion of an
electron (if we describe electrons in terms of wave packets, then we can speak of
where they are at various times and we can label positions in terms of distances in
the bands). Actually, we should realize that this horizontal line corresponds to the
electric field causing the electron to make transitions to higher and higher stationary
states in the crystal. When the electron reaches the top of the lower band, we
normally think of the electron as being Bragg reflected. However, we should
remember what we mean by the energy gap.

The energy gap, Eg, does not represent an absolutely forbidden gap. It simply
represents energies corresponding to attenuated, nonpropagating wave functions.
The attenuation will be of the form e�Kx, where x represents the distance traveled
(K is real and greater than zero) and K is actually a function of x, but this will be
ignored here. The electron gains energy from the electric field E as |eEx|. When the
electron has traveled x ¼ Eg=eEj

		 , it has gained sufficient energy to get into
the bottom of the upper band if it started at the top of the lower band. In order for the
process to occur, we must require that the electron’s wave function not be too
strongly attenuated, i.e. Zener breakdown will occur if 1=K 
 Eg=eE

		 		. To see the
analogy to tunneling, we observe that the electron’s wave function in the triangular
region also behaves as e�Kx from a tunneling viewpoint (also with K a function of x),
and that the larger we make the electric field, the thinner the area we have to tunnel
across, so the greater a band-to-band transition. A more quantitative discussion of
this effect is obtained by evaluating K not from the picture, but directly from the
Schrödinger equation. The x dependence on K turns out to be fairly easy to handle
in the WKB approximation.

Fig. 10.6 Qualitative effect of an electric field on the energy bands in a solid
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Finally, we can summarize the results for many cases in Table 10.1. Absorption
coefficients a for various cases (parabolic bands) can be written

a ¼ A
hf

� �
hf þ b� Eg
� �c

; ð10:83Þ

where c, b depend on the process as shown in the table. When phonons are involved
we need to add both the absorption and emission (±) possibilities to get the total
absorption coefficient.2 A very clean example of optical absorption is given in
Fig. 10.7. Good optical absorption experiments on InSb were done in the early days
by Gobeli and Fan [10.15]. In general, one also needs to take into account the effect
of temperature. For example, the indirect allowed term should be written

Table 10.1 Absorption coefficients

c b

Direct, allowed 1/2 0 see (10.75)
Direct, forbidden 3/2 0
Indirect, allowed 2 ±hfq (phonons)

Indirect, forbidden 3 ±hfq (phonons)

c and b are defined by (10.83)

Fig. 10.7 Optical absorption in indium antimonide, InSb at 5 K. The transition is direct
because both conduction and valence band edges are at the center of the Brillouin zone, k = 0.

Notice the sharp threshold. The dots are measurements and the solid line is ð�hx� EgÞ1=2
(Reprinted with permission from Sapoval B and Hermann C, Physics of Semiconductors, Fig. 6.3
p. 154, Copyright 1988 Springer Verlag, New York.)

2An additional very useful reference is Greenaway and Harbeke [10.16]. See also Yu and Cardona
[10.27].
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a ¼ A0

hf

� �
hf þ b� Eg
� �2
expðb=kTÞ � 1

þ hf � b� Eg
� �2
expðb=kTÞ � 1

expðb=kTÞ
" #

; ð10:84Þ

where A′ is a constant independent of the temperature, see, e.g., Bube [10.4] and
Pankove [10.22].

10.5 Oscillator Strengths and Sum Rules (A)

Let us define the oscillator strength by

fij ¼ bxij i e � rjjhj jij2:

We will show this is equivalent to the previous definition with the proper choice of
b by using commutation relations to cast it in another form. From x; px½ � ¼ i�h we
can show

½H; x� ¼ � i�h
m
px: ð10:85Þ

Also,

½H; e � r� ¼ � i�h
m

� �
e � p; ð10:86Þ

therefore

ih e � pjj ji ¼ imxij ih e � rjj ji: ð10:87Þ

Thus we can write the oscillator strength as,

fij ¼ b
ih e � pj j jij j2
m2xij

; ð10:88Þ

which is consistent with how we wrote it before, if b = −2m=�h [see (10.69),
(10.66)]. It is also interesting to show that the oscillator strength obeys a sum rule.
If e = i, thenX

j

fij ¼ b
X
j

xij i e � rjjhj jij2

¼ b
2

X
j

1
im

i e � pj jijh j e � rjiijh � i e � rj ji j e � pjiijhjhf g

¼ b
2

1
im

i e � p; e � rjh iij½ � ¼ b
2im

½�i�h� ¼ 1:

ð10:89Þ
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Classically, for bound states with no damping, we can derive the dielectric constant.
Assume N states with frequency x0. The result is

e
e0

¼ 1þ Ne2

me0

1
x2

0 � x2
; ð10:90Þ

which follows from (9.6) with s ! 1 and x0 used for several bound states labeled
with i. Note that it is just the same as the quantum result (10.70) provided the
oscillator strength from one oscillator is one. From this we have the index of
refraction, and it is given by n2 ¼ e=e0, since e is real with s ! 1. When e=e0 as
the preceding, the resulting equation is often called Sellmeier’s equation.

10.6 Critical Points and Joint Density of States (A)

Optical absorption spectra give many details about the band structure. This can be
explained by the Van Hove singularities, which appear in the joint density of states
as mentioned below. In the integral for the imaginary part of the dielectric constant,
we had an expression of the form (10.67):

ei / 2
x2

Z
d3k

ð2pÞ3 Mvcjj 2d Ec � Evð Þ: ð10:91Þ

A property of delta functions can be written asZb
a

gðxÞd½ f ðxÞ�dx ¼
X
xp

g xp
� � 1

@f
@x

				
x¼xp

; ð10:92Þ

where xp are the zeros of f(x). From which we conclude that the imaginary part of
the dielectric constant can be written as

ei / 2
x2

1

ð2pÞ3
Z
s

dS Mvcj2
		

$k Ec � Evð Þjj Ec�Ev¼�hx
; ð10:93Þ

where dS is a surface of constant �hx ¼ Ec � Ev: The joint density of states is
defined as (Yu and Cardona [10.27, p. 251])

Jvc ¼
Z

2

ð2pÞ3
dS

$k Ec � Evð Þjj Ec�Ev¼�hx
; ð10:94Þ

and typically the matrix element Mvc is a slowly varying function compared with
the joint density of states. Now the joint density of states is a strongly varying
function of k where the denominator is zero, i.e. where
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$k Ec � Evð Þ ¼ 0: ð10:95Þ

Both valence and conduction band energies must be periodic functions in
reciprocal space and so must their difference and from this it follows that there must
be a point for which the denominator vanishes (smooth periodic functions have
analytic maxima and minima). These critical points lead to singularities in the
density of states, the Van Hove singularities. At very highly symmetrical points in
the Brillouin zone, we can have critical points due to the gradient of both con-
duction and valence energies vanishing, at other critical points only the gradient of
the difference vanishes. Critical points are defined by the band structure, and in turn,
they help determine the absorption coefficient. Reversing the process, studying the
absorption coefficient gives information on the band structure.

10.7 Exciton Absorption (A)

In semiconductors, one may detect absorption for energies just below the energy gap
where onemight have initially expected transparency. This could be due to absorption
by bound electron-hole pairs or excitons. The binding energy of the excitons lowers
their absorption below the bandgap energy. It is interesting that one can only think of
bound electron-hole pairs if electron and holes move with the same group velocity, in
other words the energy gradients of valence and electronic energies need to be the
same. That is, excitons form at the critical points of the joint density of states.

One generally talks of two kinds of excitons, the Frenkel excitons and Wannier
excitons. The Frenkel excitons are tightly bound and can be described by a variant
of tight binding theory. Another way to view Frenkel excitons is as a propagating
excited state of a single atom. Thus, we describe it with the Hamiltonian where the
states are the localized excited states of each atom. For the Frenkel case let

H ¼
X
i

e iij ijh þ
X
i;j

Vij iij jjh ; ð10:96Þ

where with one-dimensional nearest-neighbor hopping

Vij ¼ Vdjþ 1
i þVdj�1

i : ð10:97Þ
This can be diagonalized by the substitution:

kij ¼
X
j

expðijkaÞ jij ; ð10:98Þ

which leads to the energy eigenvalues

H kj i ¼ ek kj i; ð10:99Þ

where, ek ¼ eþ 2V cosðkaÞ. These Frenkel types of excitons are found in the
alkali halides.
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In semiconductors, the important types of excitons are the Wannier excitons,
which have size much larger than typical interatomic dimensions. The Wannier
excitons can be analyzed much as a hydrogen atom with reduced mass defined by
the electron and hole masses and with the binding Coulomb potential reduced by
the appropriate dielectric constant. That is, the energy eigenvalues are

En ¼ Eg � le4

2�h2ð4peÞ2n2 ; n ¼ 1; 2; . . .; ð10:100Þ

where

1
l
¼ 1

me
þ 1

mh
: ð10:101Þ

Optical absorption in GaAs is shown in Fig. 10.8.

Yakov Frenkel

b. Rostov-on-Don, Russia (1894–1982)

Frenkel defects; Excitons; Dislocations; Liquids

Frenkel was a very well known Russian physicist who worked in
condensed matter and other physics fields. He wrote many books and was an
educator as well as a noted researcher. He was especially well known for his
book on the Kinetic Theory of Liquids.

Fig. 10.8 Absorption coefficient near the band edge of GaAs. Note the exciton absorption
level below the bandgap Eg [Reprinted with permission from Sturge MD, Phys Rev 127, 768
(1962). Copyright 1962 by the American Physical Society.]

10.7 Exciton Absorption (A) 669



10.8 Imperfections (B, MS, MET)

We will only give a brief discussion here. Reference should be made also to the
chapters on semiconductors and defects. Imperfections may produce resonant energy
levels in the bands or energy levels that are in the bandgap. Donors and acceptors in
semiconductors produce energy levels that may be detected by optical absorption
when the thermal energy is much less than their ionization energy. Similarly, deep
defects produced in a variety of waysmay produce energy levels in the gap, often near
the center. Deep defects tend to be very localized in space and therefore to contain a
large range of k vectors. Thus, it is possible to have a direct transition from a deep
defect to a large range of k values in the conduction band, for example. A shallow
level, on the other hand, is well spread out in space and therefore restricted in k value
and so direct transitions from it to a band go to quite a restricted range of values. Color
centers in alkali halides are examples of other kinds of optically important defects.

Suppose we have some generic defect with energy level in the gap. One could
have absorption due to transitions from the valence or conduction band to the level.
There could even be absorption between levels due to the defect or different defects.
Several types of optical processes are suggested in Fig. 10.9.

10.9 Optical Properties of Metals (B, EE, MS)

Free-carrier absorption can be viewed as intraband absorption—the electron
absorbing the photon remains in the same band.3 Free-carrier absorption is obviously
important for metals, and is often of importance for semiconductors. The electron is

Fig. 10.9 Some typical radiative transitions in semiconductors. Nonradiative (Auger)
transitions are also possible

3See also, e.g., Ziman [25, Chap. 8] and Born and Wolf [10.1].
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accelerated by the photon and gains energy, but since the wave vector of the photon is
negligible, something else such as a phonon needs to be involved. For many pur-
poses, the process can be viewed classically by Drude theory with a relaxation time of
s � 1/x0. This relaxation time defines a frictional force constant m*/s, where the
viscous like frictional force is proportional to the velocity.

We will use classical theory here, but it is worthwhile to make a few comments.
It is common to deal with a semiclassical picture of radiation. There we treat the
radiation classically, but the underlying electronic systems that absorb and emit the
radiation we treat quantum mechanically. Radiation can be treated classically when
it is intense enough to have many photons in each mode. Free-electronic systems
can be treated classically when their de Broglie wavelengths are small compared to
the average interparticle separations.

The de Broglie wavelength can be estimated from the momentum as estimated
from equipartition. In practice, this means that for temperatures that are not too low
and densities that are not too high, then classical mechanics should be valid. Bound
systems are more complicated, but in general, classical mechanics works at higher
quantum numbers (higher bound-state energies). In any case, classical and quantum
results often overlap in validity well beyond where one might naively expect.

The classical theory can be written, assuming a sinusoidal electric field
E = E0exp(−ixt) (note these are for free-electrons (e > 0) with damping). We also
generalize by using an effective mass m* rather than m:

m�€xþ m�

s
_x ¼ �eE0 expð�ixsÞ ð10:102Þ

Note this is just (9.1) with x0 = 0, as appropriate for free charges. Seeking a
steady-state solution of the form x = x0exp(−ixs), we find

x ¼ �ieEs
m�xð1� ixsÞ ; ð10:103Þ

which is (9.2) with x0 = 0. Thus, the polarization is given by

P ¼ �Nex ¼ e� eLð ÞE; ð10:104Þ

where eL is the contribution to the dielectric constant of everything except the free
carriers [generalizing (9.3)]. The frequency-dependent dielectric constant is

eðxÞ ¼ eL þ i
Ne2s
m�x

1
1� ixs

; ð10:105Þ

where N is the number of electrons per unit volume. From the real and imaginary
parts of e we find, similar to Sect. 9.2,
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er ¼ n2 � n2i ¼
eL
e0

� r0s=e0
1þx2s2

; r0 ¼ Ne2s
m� ; ð10:106Þ

and

ei ¼ 2nni ¼ ro
e0x

1
1þx2s2

� �
: ð10:107Þ

It is convenient to write this in terms of the plasma frequency

x2
p ¼

Ne2

me0
¼ r0

se0
� r0x0

e0
; ð10:108Þ

and so,

er ¼ eL
e0

� x2
p

x2
0 þx2

; ð10:109Þ

and

ei ¼ x0

x

x2
p

x2
0 þx2

; ð10:110Þ

From here onwards for simplicity we assume eL = e0. We have three important x.
The plasma frequency xp is proportional to the free-carrier concentration, x0

measures the electron–phonon coupling and x is the frequency of light.
We now want to show what these equations predict in three different frequency

regions.

(i) xs � 1, the low-frequency region. We obtain by (10.109) with x0 = 1/s

n2 � n2i ¼ 1� x2
ps

2; ð10:111Þ

which is small, and by (10.110)

2nni ¼ x2
p
s
x

¼ xps
� �2
xs

; ð10:112Þ

which is large. Here the imaginary part (of the dielectric constant) is much greater
than the real part and we have high reflectivity. In this approximation

n2 � n2i ¼ 1� xs 2nnið Þ ffi 1; ð10:113Þ

but neither n nor ni are small, so n ≅ ni, and n2 ≅ r0/2xe0. The reflectivity then
becomes
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R ¼ ðn� 1Þ2 þ n2i
ðnþ 1Þ2 þ n2i

ffi 1� 2
n
ffi 1� 2

ffiffiffiffiffiffiffiffiffiffiffiffi
2xe0
r0

:

r
ð10:114Þ

This is the Hagen–Rubens relation [10.17].

(ii) 1/s � x � xp, the relaxation region. The basic relations become

n2 � n2i ¼ 1� x2
p

x2 ; ð10:115Þ

which is large and negative, and

2nni ¼ xp

x

� �2 1
xs

; ð10:116Þ

which is smaller than n2 − ni
2. However, this predicts the metal is still strongly

reflecting as we now show. Since xs 
 1 and xp/x 
 1, we see

n� nið Þ nþ nið Þ ffi � xp

x

� �2
� 1; ð10:117Þ

or

ni � nð Þ nþ nið Þ ¼ xp

x

� �2

 1: ð10:118Þ

Therefore,

ni 
 n; ð10:119Þ

n2i ffi
xp

x

� �2
; ð10:120Þ

ni ffi xp

x
; ð10:121Þ

2nni ffi n2i
1
xs

; ð10:122Þ

R ¼ ðn� 1Þ2 þ n2i
ðnþ 1Þ2 þ n2i

¼ 1þ ðn� 1Þ=ni½ �2
1þ ðnþ 1Þ=ni½ �2 ffi 1þ n� 1

ni

� �2

� nþ 1
ni

� �2

; ð10:123Þ

and

R ¼ 1� 4n
n2i

¼ 1� 2
xps

: ð10:124Þ

Since xps 
 1, the metal is still strongly reflecting.
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(iii) xp � x or xp/x � 1. This is the ultraviolet region where we also assume
x 
 x0:

n2 � n2i
� � ffi 1; ð10:125Þ

so

n� nið Þ n� nið Þ ¼ 1: ð10:126Þ

2nni, = (xp/x)
2(1/xs) is very small. Both n and ni are not very small, therefore ni is

very small. Therefore,

n 
 ni; n ffi 1: ð10:127Þ

Therefore,

ni ffi 1
2

xp

x

� �2 1
xs

: ð10:128Þ

So,

R ffi n2i
n2i þ 4

ffi n2i
4
ffi 1

16
xp

x

� �4 1

xsð Þ2 ð10:129Þ

is very small. There is little reflectance since this is the ultraviolet transparency
region. We summarize our results in Fig. 10.10. See also Seitz [82, p. 639], Ziman
[25, 1st edn, p. 240], and Fox [10.12].

Fig. 10.10 Sketch of absorption and reflection in metals
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The plasma edge, or the region around the plasma frequency deserves a little
more attention. Using Maxwell’s equations we have

$� E ¼ � @B
@t

; $ � E ¼ $ � B ¼ 0 ðq ¼ 0; Þ ð10:130Þ

and

$� B ¼ l0
@2D
@t2

ðj ¼ 0Þ; ð10:131Þ

and we will include any charge motion in P. Therefore,

r2E ¼ l0
@2D
@t2

; D ¼ e0eE: ð10:132Þ

Note here e ! e/e0. Assume E = E0exp(−ixt)exp(ik � r). We obtain, as shown
below (10.142), (10.143), for the wave vector

k2 ¼ eðxÞl0e0x2 ) ðkcÞ2 ¼ eð1Þ x2 � ex2
p

� �
: ð10:133Þ

For a free-electron in an electric field we have already derived the plasma frequency
in Sect. 9.4. We give here an alternative simple derivation and bring out a few new
features,

m
d2x
dt2

¼ �eE; ð10:134Þ

x ¼ x0 expð�ixtÞ; ð10:135Þ

E ¼ E0 expð�ixtÞ; ð10:136Þ

x ¼ eE
mx2 : ð10:137Þ

Also,

P ¼ �Nex ¼ � Ne2

mx2 E; ð10:138Þ

eðxÞ ¼ 1þ PðxÞ
e0EðxÞ ¼ 1� Ne2

e0mx2 ; ð10:139Þ

x2
p ¼

Ne2

e0m
; ð10:140Þ

eðxÞ ¼ 1� x2
p

x2 : ð10:141Þ
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If the positive ion core background has a dielectric constant of e(∞) that is about
constant, then (10.141) is modified

eðxÞ ¼ eð1Þ 1� ex2
p

x2

" #
; ð10:142Þ

where exp ¼ xpffiffiffiffiffiffiffiffiffiffiffi
eð1Þp : ð10:143Þ

When the frequency is less than the plasma frequency the squared wave vector is
negative (10.133) and gives us total reflection. Above the plasma frequency, the
wave vector squared is positive and the material is transparent. That is, simple
metals should reflect in the visible and be transparent in the ultraviolet, as we have
already seen.

It is also good to remember that at the plasma frequency the electrons undergo
low-frequency longitudinal oscillations. See Sect. 9.4. Specifically, note that setting
e(x) = 0 defines a frequency x = xL corresponding to longitudinal plasma
oscillations.

eðxÞ ¼ 1� x2
p

x2 ; so eðxÞ ¼ 0 implies x ¼ xp: ð10:144Þ

Here we have neglected the dielectric constant of the positive ion cores.
The plasma frequency is also a free longitudinal oscillation. If we have a doped

semiconductor with the plasma frequency less than the bandgap over Planck’s
constant, one can detect the plasma edge, as illustrated in Fig. 10.11. See also Fox
op cit, p. 156. Hence, we can determine the electron concentration.

Fig. 10.11 Reflectivity of doped semiconductor, sketch
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10.10 Lattice Absorption, Restrahlen, and Polaritons (B)

10.10.1 General Results (A)

Polar solids carry lattice polarization waves and hence can interact with electro-
magnetic waves (only transverse optical phonons couple to electromagnetic waves
by selection rules and conservation laws). The dispersion relations for photons and
the phonons of the polarization waves can cross. When these dispersion relations
cross, the resulting quanta turn out to be neither photons nor phonons but mixtures
called polaritons. One way to view this is shown in Fig. 10.12. We now discuss this
process in more detail. We start by considering lattice vibrations in a polar solid.
We will later add in a coupling with electromagnetic waves. The displacement of
the tth ion in the lth cell for the jth component, satisfies

Mt€v
j
tl ¼ �

X
t0h

Gjj0
tt0 ðhÞv jt0;lþ h; ð10:145Þ

where

Gjj0

tl;t0;l0¼lþh ¼ @2U

@v jtl@v
j0
t0l0

ð10:146Þ

and U describes the potential of interaction of the ions. If vtl is a constant,

Fig. 10.12 Polaritons as mixtures of photons and transverse phonons. The mathematics of
this model is developed in the text
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X
t0h

Gtt0 ðhÞ ¼ 0: ð10:147Þ

We will add an electromagnetic wave that couples to the system through the
force term.

etE0 exp½i(q � l� xtÞ�; ð10:148Þ

where et is the charge of the tth ion in the cell. We seek solutions of the form

vslðtÞ ¼ expðiq � lÞvs;qðtÞ; ð10:149Þ

(now s labels ions) with q = K (dropping the vector notation of q, h, and l for
simplicity from here on) and t is the time. Defining

GSS0 ðKÞ ¼
X
h

Gss0 ðhÞ expðiKhÞ; ð10:150Þ

we have (for one component in field direction)

Ms€vsK ¼ �
X
s0

Gss0 ðKÞvs0K þ esE0 expð�ixtÞ: ð10:151Þ

Note that

Gss0 K ¼ 0ð Þ ¼
X
h

Gss0 ðhÞ: ð10:152Þ

Using the above we find X
s0

Gss0 K ¼ 0ð Þ ¼ 0: ð10:153Þ

Assuming e1 = |e| and e1 = −|e| (to build in the polarity of the ions), the following
equations can be written (where long wavelengths, K ≅ 0, and one component of
ion location is assumed)

Ms€vs ¼ �
X
s0

Gss0vs0 þ esE0 expð�ixtÞ; ð10:154Þ

where

Gss0 ¼
X
h

Gss0 ðhÞ : ð10:155Þ
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If we assume that

U ¼
X
l0;h

G
4
v1l0 � v2l0 þ h0ð Þ2; ð10:156Þ

where h′ = −1, 0, 1 (does not range beyond nearest neighbors), then

G11ðhÞ ¼ @2U
@v1l@v1lþ h

¼ Gd0h: ð10:157Þ

Similarly,

G22 h0ð Þ ¼ Gd0h0 ; ð10:158Þ

G11ðhÞ ¼ �G12ðhÞ; ð10:159Þ

and

G22ðhÞ ¼ �G21ðhÞ: ð10:160Þ

Therefore we can write

M1€v1 ¼ G11 v2 � v1ð Þþ eE0 expð�ixtÞ; ð10:161Þ

and

M2€v2 ¼ G22 v1 � v2ð Þ � eE0 expð�ixtÞ: ð10:162Þ

We now apply this to a dielectric where

e ¼ e0 þP=E; ð10:163Þ

and

P ¼
X
i

NiaiEloc;i; ð10:164Þ

with Ni = the number of ions/vol of type i and ai is the polarizability. For cubic
crystals as derived in the chapter on dielectrics,

Eloc;i ¼ Eþ P
3e0

: ð10:165Þ
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Then,

e ¼ e0 þ 1
E

X
Niai Eþ P

3e0

� �
: ð10:166Þ

Let4

B ¼ 1
3e0

X
Niai; ð10:167Þ

so

e ¼ e0 þ 3e0BþB e� e0ð Þ; ð10:168Þ

eð1� BÞ ¼ e0 þ 2e0B; ð10:169Þ

and

e ¼ e0
1þ 2B
1� B

: ð10:170Þ

For the diatomic case, define

Be1 ¼ 1
3e0

N aþ þ a�ð Þ; ð10:171Þ

Bion ¼ 1
3e0

Naion: ð10:172Þ

Then the static dielectric constant is given by

eð0Þ
e0

¼ 1þ 2 Be1 þBionð0Þ½ �
1� Be1 þBionð0Þ½ � ; ð10:173Þ

while for high frequency

eð1Þ
e0

¼ 1þ 2Bel

1� Bel
: ð10:174Þ

We return to the equations of motion of the ions in the electric field—which in
fact is a local electric field, and it should be so written. After a little manipulation
we can write

l€v1 ¼ lG
M1

v2 � v1ð Þþ l
M1

eE1oc; ð10:175Þ

4Grosso and Paravicini [55, p. 342] also introduce B as a parameter and refer to its effects as a
“renormalization” due to local field effects.
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l€v2 ¼ lG
M2

v1 � v2ð Þþ l
M2

eE1oc: ð10:176Þ

Using
l
M1

þ l
M2

¼ 1; ð10:177Þ

we can write

l €v1 � €v2ð ÞþG v1 � v2ð Þ ¼ eE1oc: ð10:178Þ

We first discuss this for transverse optical phonons.5 Here, the polarization is
perpendicular to the direction of travel, so

E1oc ¼ P
3e0

ð10:179Þ

in the absence of an external field. Now the polarization can be written as

P ¼ Pe1 þPion ¼ N a� þ aþð ÞE1oc þNev; v ¼ v1 � v2; ð10:180Þ

P ¼ N aþ þ a�ð Þ P
3e0

þNev; ð10:181Þ

and

P ¼ Nev
1� Bel

; ð10:182Þ

so the local field becomes

Eloc ¼ 1
3e0

Nev
1� Bel

: ð10:183Þ

The equation of motion can be written

l€vþGv ¼ 1
3e0

Ne2v
1� Bel

: ð10:184Þ

Seeking sinusoidal solutions of the form v = v0exp(−ixTt) of the same frequency
dependence as the local field, then

x2
T ¼ G

l
1� 1=3e0ð Þ Ne2

�
G

� �
1� Bel

� 
: ð10:185Þ

5A nice picture of transverse and longitudinal waves is given by Cochran [10.7].
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We suppose aion is the static polarizability so that

ev
Eloc

¼ aion ¼ e2

G
ð10:186Þ

form the equations of motion. So,

Bionð0Þ ¼ 1
3e0

Naion ¼ 1
3e0

� �
Ne2

G

� �
; ð10:187Þ

or

x2
T ¼ G

l
1� Bionð0Þ

1� Bel

� 
: ð10:188Þ

For the longitudinal case with q || P we have

Eloc ¼ � P
e0

þ 1
3
P
e0

¼ � 2
3
P
e0
: ð10:189Þ

So,

P ¼ Pel þPion ¼ N aþ þ a�ð Þ � 2
3
P
e0

� �
þNev ¼ �2BelPþNev: ð10:190Þ

Then, we obtain the equation of motion,

l€vþGv ¼ � 2
3e0

Ne2v
1þ 2Bel

; ð10:191Þ

so

x2
L ¼ G

l
1þ 2=3e0ð Þ Ne2

�
G

� �
1þ 2Bel

� 
: ð10:192Þ

By the same reasoning as before, we obtain

x2
L ¼ G

l
1þ 2Bionð0Þ

1þ 2Bel

� 
: ð10:193Þ

Thus, we have shown that, in general

x2
L ¼ G

l
1þ 2 Bel þBionð0Þ½ �

1þ 2Bel

� 
; ð10:194Þ
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and

x2
T ¼ G

l
1� Bel þBionð0Þ

1� Bel

� 
: ð10:195Þ

Therefore, using (10.173), (10.174), (10.194), and (10.195) we find

eð1Þ
eð0Þ ¼ x2

T

x2
L
: ð10:196Þ

This is the Lyddane–Sachs–Teller Relation, which was mentioned in Sect. 9.3.2,
and also derived in Sect. 4.3.3 (see 4.79) as an aside in the development of
polarons. Compare also Kittel [59, 3rd edn, 1966, p. 393ff] who gives a table
showing experimental confirmation of the LST relation. The original paper is
Lyddane et al. [10.20]. An equivalent derivation is given by Born and Huang [10.2,
p. 80ff].For intermediate frequencies xT < x < xL,

eðxÞ � eð1Þ
e0

¼ 1þ 2 Bel þBiðxÞ½ �
1� Bel þBiðxÞ½ � �

1þ 2Bel

1� Bel
; ð10:197Þ

or

eðxÞ
e0

¼ eð1Þ
e0

þ 3
1� Bel � BiðxÞ½ � 1� Belð ÞBiðxÞ: ð10:198Þ

We need an expression for Bi(x). With an external field since only transverse
phonons are strongly interacting

l€vþGv ¼ 1
3e0

Ne2

1� Bel
vþ eE; ð10:199Þ

so

Bið0Þ ¼ 1
3e0

Naið0Þ ¼ 1
3e0

N
ev
Eloc

¼ 1
3e0

N
e2

G
: ð10:200Þ

Seeking a solution of the form v = v0exp(−ixt) we get

x2vlþGv� Gv
1� Bel

Bið0Þ ¼ eE: ð10:201Þ

So,

x2
T ¼ G

l

� �
1� Bið0Þ

1� Bel

� �
; ð10:202Þ
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or

l x2
T � x2� �

v ¼ eE: ð10:203Þ

So,

aiðxÞ ¼ ev
Eloc

¼ e
Eloc

eE
l x2

T � x2ð Þ : ð10:204Þ

Using the local field relations, we have

Eloc ¼ Eþ P
3e0

¼ Eþ 1
3e0

Nev
1� Bel

¼ Eþ 1
3e0

Ne
1� Bel

eE
l

1
x2

T � x2ð Þ ;
ð10:205Þ

so,

E
Eloc

¼ 1
1þF

� �
; ð10:206Þ

where,

F ¼ G
l

Bið0Þ
1� Belð Þ x2

T � x2ð Þ : ð10:207Þ

Or,

BiðxÞ ¼ 1
3e0

NaiðxÞ ¼ 1� Belð Þ F
1þF

; ð10:208Þ

or

eðxÞ
e0

¼ eð1Þ
e0

þ 3 1� Belð ÞF= 1þFð Þ
1� Belð Þ 1� Belð Þ � 1� Belð ÞF= 1þFð Þ½ � ; ð10:209Þ

or

eðxÞ
e0

¼ eð1Þ
e0

þ 3
1� Bel

G
l

Bið0Þ
1� Belð Þ x2

T � x2ð Þ : ð10:210Þ

Defining

c ¼ 3
G
l

Bið0Þ
1� Belð Þ2 ; ð10:211Þ
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after some algebra we also find

x2
T þ

ce0
eð1Þ ¼ x2

L: ð10:212Þ

10.10.2 Summary of the Properties of e(q, x) (B)

Since n = e1/2 with r = 0 [see (10.8)], if e < 0, one gets high reflectivity (by
(10.15) with nc pure imaginary). Note if

x2
T\x2\x2

T þ
ce0
e 1ð Þ ; ð10:213Þ

then e(x) < 0, since by (10.210), (10.211), and (10.212) we can also write

eðxÞ ¼ eð1Þx
2
L � x2

x2
T � x2

;

and one has high reflectivity (R ⟶ 1). Thus, one expects a whole band of for-
bidden nonpropagating electromagnetic waves. xT is called the Restrahl frequency
and the forbidden gap extends from xT to xL. We only get Restrahl absorption in
semiconductors that show ionic character; it will not happen in Ge and Si. We give
some typical values in Table 10.2. See also Born and Huang [2, p. 118].

Table 10.2 Selected lattice frequencies and dielectric constants

Crystal xT (cm−1) xL (cm−1) e(0) (cgs) e(∞) (cgs)

InSb 185 197 17.88 15.68
GaAs 269 292 12.9 10.9
NaCl 164 264 5.9 2.25
KBr 113 165 4.9 2.33
LiF 306 659 8.8 1.92
AgBr 79 138 13.1 4.6
From Anderson HL (ed), A Physicists Desk Reference 2nd edn, American
Institute of Physics, Article 20: Frederikse HPR, Table 20.02.B.1, p. 312,
1989, with permission of Springer-Verlag. Original data from Mitra SS,
Handbook on Semiconductors, Vol 1, Paul W (ed), North-Holland,
Amsterdam, 1982, and from Handbook of Optical Constants of Solids,
Palik ED (ed), Academic Press, Orlando, FL, 1985
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10.10.3 Summary of Absorption Processes: General
Equations (B)

Much of what we have discussed can be summed up in Fig. 10.13. Summary
expressions for the dielectric constants are given in (10.67) and (10.68). See also
Yu and Cardona [10.27, p. 251], and Cohen [10.8] as well as Cohen and
Chelikowsky [10.9, p. 31].

10.11 Optical Emission, Optical Scattering
and Photoemission (B)

10.11.1 Emission (B)

We will only tread lightly on these topics, but they are important to mention. For
example, photoemission (the ejection of electrons from the solid due to photons) can
often give information that is not readily available otherwise, and it may be easier to
measure than absorption. Photoemission can be used to study electron structure.
Two important kinds are XPS—X-ray photoemission from solids, and UPS ultra-
violet photoemission. Both can be compared directly with the valence-band density
of states. See Table 10.3. A related discussion is given in Sect. 12.2.

Also, the topic of emission is important because it involves applications—
fluorescent lighting and television are obviously important and based on emission
not on absorption. There are perhaps four principal aspects of optical emission.
First, there are many types of transitions allowed. A second aspect is the excitation
mechanism that positions the electron for emission. Third are the mechanisms that
delay emission and give rise to luminescence. Finally, there are those combinations
of mechanisms that produce laser action. Luminescence is often defined as light

Fig. 10.13 Sketch of absorption coefficient of a typical semiconductor such as GaAs.
Adapted from Elliott and Gibson [10.11, p. 208]
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emission that is not due just to the temperature of the emitting body (that is, it is not
black-body emission). There are several different kinds of luminescence depending
on the source of the energy. For example, one uses the term photoluminescent if the
energy comes from IR, visible, or UV light. Although there seems to be no uni-
versal agreement on the terms phosphorescence and fluorescence, phosphorescence
is used for delayed light emission and fluorescence sometimes just means the light
emitted due to excitation. Metals have high absorption at most optical frequencies,
and so when we deal with photoemission, we normally deal with semiconductors
and insulators.

Table 10.3 Some optical experiments on solids

High-energy
reflectivity

The low-energy range below about 10 eV is good for investigating
transitions between valence and conduction bands. The use of
synchrotron radiation allows one to consider much higher energies
that can be used to probe transitions between the conduction- band
and core states. Since core levels tend to be well defined, such
measurements provide direct data about conduction band states
including critical point structure. The penetration depth is large
compared to the depth of surface irregularities and thus this
measurement is not particularly sensitive to surface properties. Only
relative energy values are measured

Modulation
spectroscopy

This involves measuring derivatives of the dielectric function to
eliminate background and enhance critical point structure. The
modulation can be of the wavelength, temperature, stress, etc. See
Cohen and Chelikowsky p. 52

Photoemission Can provide absolute energies, not just relative ones. Can use to
study both surface and bulk states. Use of synchrotron radiation is
extremely helpful here as it provides a continuous (from infrared to
X-ray) and intense bombarding spectrum

XPS and UPS X-ray photoemission spectroscopy and ultraviolet photoemission
spectroscopy. Both can now use synchrotron radiation as a source.
In both cases, one measures the intensity of emitted electrons versus
their energy. At low energy this can provide good checks on
band-structure calculations

ARPES Angle-resolved photoemission spectroscopy. This uses the
wave-vector conservation rule for wave vectors parallel to the
surface. Provided certain other bits of information are available (see
Cohen and Chelikowsky, p. 68), information about the band
structure can be obtained (see also Sect. 3.2.2)

Reference: Cohen and Chelikowsky [10.8]. See also Brown [10.3]
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10.11.2 Einstein A and B Coefficients (B, EE, MS)

We give now a brief discussion of emission as it pertains to the lasers and masers.
The MASER (microwave amplification by stimulated emission of radiation) was
developed by C. H. Townes in 1951, also independently by N. G. Basov and A.
M. Prokhorov at about the same time). The first working LASER (light amplification
by stimulated emission of radiation) was achieved by T. H. Maiman in 1960 using a
ruby crystal. Ruby is sapphire (Al2O3) with a small amount of chromium impurities.

The Einstein A and B coefficients are easiest to discuss in terms of discrete
levels, and exhibit a main idea of lasers. See Fig. 10.14. For a complete discussion
of how lasers produce intense, coherent, and monochromatic beams of light see the
references on applied physics [32–35]. Let the spontaneous emission and the
induced transition rates be defined as follows:

Spontaneous emission n ! m Anm

Induced emission n ! m Bnm

Induced absorption m ! n Bmn

From the Planck distribution we have for the density of photons

qðvÞ ¼ 8ph3v2

c3
1

exp hv=kTð Þ � 1
: ð10:214Þ

Thus, generalizing to band-to-band transitions, we can write the generation rate as

Gmn ¼ BmnNmfmNn 1� fnð Þq vmnð Þ; ð10:215Þ

where N represents the number and f is the Fermi function. Also, we can write the
recombination rate as

Rnm ¼ BnmNnfnNm 1� fmð Þq vmnð ÞþAnmNnfnNm 1� fmð Þ: ð10:216Þ

Fig. 10.14 The Einstein A and B coefficients
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In steady state, Gmn = Rnm. From the Fermi function we can show

fm 1� fnð Þ
fn 1� fmð Þ ¼ exp

En � Em

kT

� �
: ð10:217Þ

Thus, since Bnm = Bmn, we have from (10.215) and (10.216)

BnmqðvÞ exp
En � Em

kT

� �
� 1

� 
¼ Anm; ð10:218Þ

and

En � Em ¼ hvmn; ð10:219Þ

we find for the ratio between the A and B coefficients,

A
B
¼ 8pn3v2

c3
: ð10:220Þ

Albert Einstein—The Babe Ruth of Physics

b. Ulm, Germany (1879–1955)

General Relativity and Special Relativity; Nobel Prize in Physics in 1921 for
explaining studies related to the photoelectric effect.

As the heading suggests, if Albert Einstein had the abilities in baseball
equivalent to his abilities in Physics, he would have been at least Babe Ruth’s
equal. (The Babe was a great pitcher as well as a hitter for average and for
power. Such dual abilities are nowadays unheard of.) Indeed, I think, Ruth
would have been far surpassed by Einstein under this equivalency.

Einstein like many German Jews came to the USA after Hitler took over.
There are some that say Hitler really shot himself in the foot with his anti
Jewish program. He might have had the atomic bomb first if so many talented
physicists had not been forced to leave.

Here are some of the fields that Einstein either originated or made extensive
progress in.

1. The Special Theory of Relativity, which requires the equivalence of inertial
frames of reference.

2. The General Theory of Relativity, which incorporates the equivalence of all
frames of reference in stating the laws of nature.
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3. Einstein considered Kaluza–Klein five dimensional theories. Here Einstein was
trying to unify gravitation and electromagnetism.

4. Brownian motion—(Here is derived the Einstein relation-which relates the
diffusion constant to the mobility and temperature). A major result was his
analysis of Brownian motion and the relation of that work to proving the reality
of atoms.

5. Critical opalescence occurs in second order phase transitions where fluctuations
of order can grow near the critical point.

6. Bose–Einstein statistics and Bose–Einstein condensation. These are important
for particles with integer spin.

7. Einstein–de Haas experiment (relates angular momentum to the magnetization
of electron spins)

8. Photoelectric effect shows light having a quantum nature.
9. Specific heat of solids. Here Einstein did the first quantum solid-state

calculation.
10. A and B coefficients which are used to describe spontaneous and stimulated

emission. This was the basis of the Laser.
11. The Einstein–Podolsky–Rosen paper. This introduced the idea of spooky action

at a distance and quantum entanglement. The paper served as partial motivation
of the ideas in Bell’s Theorem.

12. The prediction (1916) and recent detection (2016) of gravitational waves.

Although Einstein felt very uncomfortable with trying to interpret quantum
mechanics (“God does not play dice with the Universe”), he was one of the pioneers
in that field. Consider his theory of the specific heat of solids, his explanation of the
photoelectric effect by quantizing the radiation field, Bose–Einstein statistics, and
even the Einstein–Podolsky–Rosen paper where he voiced his discomfort with
some of the results of quantum mechanics. He was a fan of clean experiments that
showed quantum effects, however, for on hearing a seminar about the Franck–Hertz
experiment he is reported to have said, “It is so pretty it makes one cry!”

He is of course best known for Special and General Relativity.

Two basic Principles of Special Relativity
(1) The Laws of physics are the same in all inertial systems
(2) The speed of Light is constant in all inertial frames.

Einstein had great respect for Lorentz, some of whose work related to special
relativity.

I now come to the apex of Einstein’s ideas: The theory of General Relativity.
The Principle of Equivalence is the basis for general relativity. One way of stating
this principle is inertial mass and gravitational mass are the same.

John Wheeler liked to describe the basic idea of General Relativity with the
statement “mass tells space-time how to curve and space-time tells mass how to
move.”
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Einstein’s three tests of general relativity (bending of light due to gravity, red
shift, precession perihelion of the planet mercury) have all been experimentally
verified.

A notable result of general relativity is the idea of the event horizon. Light
cannot escape from inside the event horizon and thus Black Holes have event
horizons, which preclude escape.

Simple Newtonian physics gives the escape velocity from a ball of mass M. If
the escape velocity is set at c the speed of light, the radius of the ball is the
Schwarzschild radius, RS, and the surface of the ball is the event horizon: RS =
2GM/c2. The result is relativistically correct because of compensating errors.

Einstein had three children by his first wife Mileva Maric, a Serbian. In order of
birth they are Lieserl, his only daughter, Hans Albert, and Eduard. Lieserl is
sometimes called Einstein’s missing child. She may have died at 2 or been taken by
Mileva’s mother. There are other theories but no hard facts are known after she was
about two. Lieserl was born illegitimate, as Einstein did not marry Mileva until
about a year after his daughter was born. Hans Albert became a successful engineer
and was well known in the field of sediment transfer. Eduard died at 55 and was a
Schizophrenic. Apparently he once told Albert Einstein that he hated him.

There are many interesting stories related to Einstein. Einstein’s grandson,
Bernard, who was a physicist of not very great renown. (Bernard Einstein was the
son of Hans Albert Einstein–Einstein’s son—the well respected civil engineer).
When Bernard was little his father let him travel alone to Princeton to visit his
grandpa. When visiting, Bernard’s bedroom window was in line with and one story
above Einstein’s study. It is said that Bernard would misbehave and thoroughly
irritate Einstein.

Einstein divorced his first wife Mileva Maric, and the terms of the divorce
included that Einstein would give the money he got from his Nobel Prize to her and
their sons.

Later Einstein married Elka his first cousin on his mother side and his second
cousin on his father’s side. Some say Einstein had many romances and as a family
man was a flawed human being.

It is also interesting that Einstein apparently did not believe in free will. In old
age he relaxed by playing the violin and sailing. Everyone has heard about
Einstein’s first full time job was as a patent clerk and how he saved enough time
doing this to do important work such as developing the Special Theory of
Relativity.

A quote of Einstein’s that is often misunderstood has to do with the idea that if
he had his life to live over again he would rather be a plumber. A more precise
quote, that explains things better is: “If I would be a young man again and had to
decide how to make my living, I would not try to become a scientist or scholar or
teacher. I would rather choose to be a plumber in the hope to find that modest
degree of independence still available under present circumstances.”—Albert
Einstein, in The Reporter, November 18, 1954.

See for example, Abraham Pais, Subtle is the Lord…, Oxford University Press,
Oxford, 1982.
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Theodore H. Maiman

b. Los Angeles, California, USA (1927–2007)

The first working laser was developed by Theodore Maiman. His laser was
a ruby laser producing, as required, coherent light. At the time it was regarded
as “a solution seeking a problem.”

Although Maiman was nominated several times, he never was awarded a
Nobel Prize.

Max Planck—The Reluctant Quantum Mechanic

b. Kiel, Germany (1858–1947)

Quantized Black Body Radiators; Son killed by Nazis

Max Planck explained the frequency distribution of the intensity of Black
Body radiation by introducing the idea of the quantization of the oscillators
emitting the radiation. In his description he defined a constant h now called
the Planck Constant. Quantum mechanics is a more correct mechanics of
nature than Newton’s mechanics, which is only valid when h can be con-
sidered negligible. Planck’s constant can often be neglected for large (com-
pared to atoms) systems. Planck is in a sense the father of quantum
mechanics. However, he only introduced this idea as a desperate move to
explain the Black Body radiation as mentioned above. He was not happy with
the idea of quantization. Nevertheless, Planck won the Nobel Prize in physics
in 1918.

His family suffered many tragedies including the hanging of his son,
Erwin, for being connected with the assassination attempt on Hitler’s life in
1944. In addition his first wife died after 22 years of marriage, his oldest son
was killed in WW 1, two daughters died in childbirth, and in WW 2 his house
was destroyed by bombs. He stayed in Germany during WW 2, and even at
first tried to get Hitler to change his anti Jewish policies.

In explaining the photoelectric effect, Einstein went further than Planck
and quantized the electromagnetic radiation field of which light occupies a
certain band of frequencies (430 to 750 � 1012 Hz).

Further experimental work on the photoelectric effect was done by Robert
Millikan at the University of Chicago. As a matter of fact, in the twenties and
thirties of the previous century, the University of Chicago had three giants in
physics, all of whom were involved in one way or another with the radiation
field. Michelson emphasized the importance of precision measurements
especially of light, and Millikan and Compton did important measurements
verifying quantum mechanical principles.
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C. H. Townes

b. Greenville, South Carolina, USA (1915–2015)

Maser as well as contributions to the Laser; Later in life he worked in
Astronomy

Townes was interesting in that he contributed importantly in several fields
with significant ideas in instrumentation, experimental physics and admin-
istration. His development of the Maser and work with the Laser led to
revolutionary changes in science as well as in the working of society. He was
also a religious man (along with e.g. Herring) and this is not exactly common
among physicists nowadays. He won the Nobel prize in 1964.

10.11.3 Raman and Brillouin Scattering (B, MS)

The laser has facilitated many optical experiments such as, for example, Raman
scattering. We now discuss briefly Raman and Brillouin scattering. One refers to the
inelastic scattering of light by phonons as Raman scattering if optical phonons are
involved, and Brillouin scattering if acoustic phonons are. If phonons are emitted
one speaks of the Stokes line and if absorbed as the anti-Stokes line. Note that these
processes are two-photon processes (there is one photon in and one out). Raman
and Brillouin scattering are made possible by the strain dependence of the elec-
tronic polarization. The relevant conservation equations can be written:

xk ¼ xk0 	 xK ; ð10:221Þ

k ¼ k0 	 K; ð10:222Þ

where x and k refer to photons and xK and K to phonons. Since the value of the
wave vector of photons is very small, the phonon wave vector can be at most twice
that of the photon, and hence is very small compared to the Brillouin zone width.
Hence, the energy of the optical phonons is very nearly constant at the optical
phonon energy of zero wave vectors.

Brillouin scattering from longitudinal acoustic waves can be viewed as scattering
from a density grating that moves at the speed of sound. Raman scattering can be
used to determine the frequency of the zone-center phonon modes. Since the
processes depend on phonons, a temperature dependence of the relative intensity of
the Stokes and anti-Stokes lines can be predicted.

A simple idea as to the temperature dependence of the Stokes and the anti-Stokes
lines is as follows [23, p. 323]. (For a more complete analysis see [10.2, p. 272].
See also Fox op. cit. p. 222.)
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Stokes : Intensity / nK þ 1 ayk
						 nK
ED 						 2

/ nK þ 1; ð10:223Þ

Anti-Stokes : Intensity / nK � 1 akjj nKih jj 2/ nK ð10:224Þ

I xþxKð Þ
I x� xKð Þ ¼

nK
nK þ 1

¼ expð��hbXÞ: ð10:225Þ

A diagram of Raman/Brillouin scattering involving absorption of a phonon
(anti-Stokes) is shown in Fig. 10.15. As we have shown above, the intensity of the
anti-Stokes line goes to zero at absolute zero, simply because there are no phonons
available to absorb.

An expression for the frequency shift of both of these processes is now given.
For absorption

kþK ¼ k0; ð10:226Þ
and

xk þxK ¼ xk0 : ð10:227Þ

Assuming the wavelength of the phonon is much greater than the wavelength of
light, we have k ≅ k′. If we let h be the angle between k and k′, then it is easy to see
that

K ¼ 2k sin
h
2

� �
: ð10:228Þ

The shift in frequency of the scattered light is xK. For Brillouin scattering, with
V ≅ xK/K being the phonon velocity and n being the index of refraction, one finds

xK ¼ 2nxkV
c

� �
sin

h
2

� �
; ð10:229Þ

Fig. 10.15 Raman and Brillouin scattering. The diagram shows absorption. Acoustic
phonons are involved for Brillouin scattering, and optical phonons for Raman
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and thus n can be determined. When phonons are absorbed, the photons are shifted
up in frequency by xK, and when phonons are emitted, they are shifted down in
frequency by this amount.

Sir C. V. Raman

b. Thiruvanaikoil, India (1888–1970)

Raman effect.

Raman won the 1930 Nobel Prize for the discovery his effect. Raman
scattering is the inelastic scattering of light to be contrasted with Rayleigh
scattering, which is elastic. Along with the Compton effect, the Raman effect
was very important in establishing the quantum nature of light. He was also
the paternal uncle of Subrahmanyan Chandrasekhar.

10.11.4 Optical Lattices (A, B)

Two laser beams traveling in opposing directions can create an interference pattern
that forms a one-dimensional optical lattice with a period of one half the wave-
length of the light. Even three-dimensional optical lattices can be formed using
similar ideas.

Something like an artificial crystal can then be made by using the lattice to trap
atoms. The trapping arises from the electric fields of the laser light interacting with
the atoms (causing time varying dipole moments in the atoms). The atoms with
moments thus interact with the electric field of the laser light and hence the energy
of the atom varies. More specifically, depending on the frequency of the laser, the
atoms may be attracted or repelled from the maxima of the intensity of the laser.

The artificial crystal can be modified by changing the strength of the laser light,
using lasers with different wavelengths, or by trapping different kinds of atoms.

These artificial crystals are studied at very low temperature and bosonic as well
as fermionic quantum gases of atoms can be created. The strength of the interac-
tions between the atoms can be varied by suitably varying the nature of the optical
lattice.

There are many exciting possible applications of optical lattices and quantum
gases. See, e.g., S. Rolston, “Optical lattices,” Physics World, October 1998,
pp. 27–32, and I. Bloch, “Quantum gases in optical lattices,” physicsworld.com,
April 10, 2004.

With three orthogonal standing waves from lasers, artificial crystals of light can
be produced with hundreds of thousands of traps holding ultra cold quantum gases
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of bosons and fermions. This is an experimental gold mine for studying actual
fundamental condensed matter problems such as the behavior of many body sys-
tems in periodic potentials. These systems have for example been used to study the
strongly correlated behavior of quantum phases and to observe Fermi surfaces. For
many more details see I. Bloch, “Ultracold quantum gases in optical lattices,”
Nature Physics, 1, 23–30 (2005).

10.11.5 Photonics (EE)

Photonics is a rather broad term that in general deals with the transmission of
information by the guiding of light signals in, e.g., optical fibers,6 as is widely done
today, as well as the manipulation of this light in various ways. Here we wish to
focus on the manipulation of signal carrying light with so-called “photonic” crys-
tals. These are materials with layers of large and small indices of refraction. The
layers are periodic, and can be constructed by boring holes to cause the indices of
refraction to vary. The dimensions of the layers, holes, etc. are scaled so as to be
comparable to the wavelength of light. It is possible to make one, two, or even
three-dimensional photonic crystals. These photonic crystals will have “photonic”
band gaps just as solid-state materials have electronic band gaps. Outside the band
gap, the light can propagate, but with a different speed, of course, than in a vacuum.
By modifying the periodic photonic crystals with, e.g., point or line defects, the
propagation of the light can be controlled. Photonic crystals can be applied to
making optical switches, optical cavities, or perhaps even single photon optic cir-
cuits. For further details, see T. Krauss, “Photonic crystals shine on,” Physics
World, Feb. 2006, pp. 32–36, and references therein.

Eli Yablonovith has written an interesting article on the origin of the part of pho-
tonics related to solid state physics [see “Crystals: Semiconductors of Light,” Scientific
American, pp. 50–55, (2001)]. He points out that producing band gaps is not as simple
as just scaling up the size of crystals to match (more or less) light wavelengths as de
Broglie wavelengths of electrons “match” crystal lattice spacings. This is because
electrons obey the Schrodinger wave equation while light must obey Maxwell’s
equations.Also, the periodic structures produced by boring holes certainly differ in light
interactions than atoms do in electronic wave interactions. Nonetheless, artificial
photonics crystals were produced with band gaps. Applications to photonic integrated
circuits, high capacity optical fibers, and other useful results have been obtained.

6See C. K. Kao and G. A. Hockham, Proc. of the Institution of Electrical Engineers-London 113,
1151–1158 (1966).

696 10 Optical Properties of Solids



Renata Wentzcovitch

b. Brazil

Nano materials; Materials Theory; Photonics

Wentzcovich is active with the supercomputing center at the University of
Minnesota and professor of Chemistry and Chemical Engineering and
Materials at Minnesota. She obtained her Ph.D. in 1988 at Berkeley under
Marvin Cohen. She is also a specialist in the use of density functional and
pseudo potentials theory in calculating the properties of materials at high
temperature and pressure.

10.11.6 Negative Index of Refraction (EE)

In the late 1960s V. Veselago considered the effects on electromagnetic (EM) waves
of materials with negative index of refraction (n). This was an academic exercise at
the time because no such materials were known. In 1999, J. B. Pendry proposed a
number of artificial structures (metamaterials) that would show n\0. In 2001, D.
R. Smith experimentally showed the existence of n\0 in one such structure. It has
also been shown that photonic crystals can be made to have n\0. Sometimes the
n\0 structures are called center handed materials because the wave vector and the
Poynting Vector of the EM waves in them are antiparallel.

The field of negative index of refraction has generated considerable interest
because of many applications that have been suggested for them. These applications
include; refocusing the rays (from a near source) better than allowed by the
diffraction limit of n[ 0 materials, improving the performance of antenna’s,
reversing the Doppler effect, and even making someday an “invisibility cloak.”

Perhaps, the first question that should be answered is what the phrase, negative
index of refraction means. Very simply we know from Maxwell’s equations that

n2 ¼ le
l0e0

so

n ¼ 	
ffiffiffiffiffiffiffiffiffi
le
l0e0

r
:

Conventionally, the plus sign is always chosen. However, both l and e should be
represented by complex numbers so for negative l and e (required for negative n),
we should write
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l
l0

¼ Ueip; U ¼ l
l0

				 				;
and

e
e0

¼ Eeip; E ¼ e
e0

				 				;
so

n2 ¼ UEei2p; n ¼
ffiffiffiffiffiffiffi
UE

p
eip ¼ �

ffiffiffiffiffiffiffi
UE

p
:

Negative n can be used in Snell’s law so for EM waves incident from air, a negative
index requires

sin h1 ¼ � nj j sin h2;
thus for small h1 and h2

h1 ffi � nj jh2:

The difference between positive and negative n is shown in Fig. 10.16.

Since negative n materials require artificial structures, success at achieving these
structures has been easiest for microwaves. However, increasing skill in making
nanostructures has allowed people to make metamaterials which show n\0
behavior for light with wavelength as short as 660 nm (red).

There are far too many aspects of negative index metamaterials to go into here.
We have already mentioned some applications, but several other topics such as
dispersion, opposite phase and group velocities, causality, and construction of these
materials need to be considered. For this and for many references, see John B.
Pendry and David R. Smith, “Reversing Light with Negative Refraction,” Physics
Today, June 2004, pp. 37–44.

θ2 > 0 θ2 < 0

n > 0 n < 0

n = 1, air
n

θ1

Fig. 10.16 Positive and negative index of refraction
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Cherry Murray

b. Fort Riley, Kansas, USA (1951–)

Light scattering; Soft Condensed Matter; Administration

Dr. Murray was on leave from Harvard University serving as director of
the Dept. of Energy’s Office of Science. She started her career at Bell Labs
doing research. Subsequently she had many administrative positions includ-
ing a Dean at Harvard, President of the American Physical Society, and also a
deputy director at Lawrence Livermore.

10.11.7 Metamaterials and Invisibility Cloaks (A, EE, MS,
MET)

How can you make an object invisible? The simple answer is to fix things so light
from an object bends around the quantity to be made invisible and then the light
comes together again. Thus, it proceeds on its way as if it never had curved around.
A rough idea of the process is given in Fig. 10.17. However there are several
problems to be solved.

(a) How do you get the light to bend? This is where the metamaterials come in.
Metamaterials are engineered materials.

(b) How do you get the different frequencies to bend the same way? This is still a
problem. Many designs only work for a particular frequency and the frequency
they work for is probably near the microwave and not in the visible region.

(c) How are you sure that movement does not interfere with the process? This can
be a problem with methods not discussed here.

The only technique that we will mention is to devise a cloak of material to lay over
the object to be made invisible. We make the cloak out of suitable material that will
bend the electromagnetic wave appropriately. It appears that this will require a neg-
ative index of refraction. For materials currently available we seem to be limited at
present to microwave frequencies (extending to infrared and beyond) and we use

XLight Observer 

Object 

Cloak 

Fig. 10.17 Flow of light around an object as water goes over a stone
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artificiallymadematerials calledmetamaterials.We can see how this might workwith
a negative n. Suppose the incident angle is 30° with an initial refractive index of 1 and
the cloak has a refractive index of say −1.0 Then the refracted angle is −30°. See
Fig. 10.18. So the ray is bent back as it’s path is shifted parallel to itself. A popular
way of describing this is via “transformational optics” as described by John Pendry,
Physics 2, 95, November 16, 95. See also J. B. Pendry, Negative refraction,
Contemporary Physics, January–February 2004, 45, (3), pp. 191–202. It has also been
proposed that so called super lenses with resolution better than the Rayleigh Criterion
can be made with materials that have negative index of refraction.

10.12 Magneto-Optic Effects: The Faraday
Effect (B, EE, MS)

The rotation of the plane of polarization of plane-polarized light, which is propa-
gating along an external magnetic field, is called the Faraday effect.7 Substances for
which this occurs naturally without an applied field are said to be optically active.
One way of understanding this effect is to resolve the plane-polarized light into
counterrotating circularly polarized components. Each component will have (see
below) a different index of refraction and so propagates at a different speed, thus
when they are recombined, the plane of polarization has been rotated. The two
components behave differently because they interact with electrons via the two
rotating electric fields. The magnetic field in effect causes a different radial force
depending on the direction of rotation, and this modifies the effective spring con-
stant. Both free and bound carriers can contribute to this effect. A major use of the
Faraday effect is as an isolator that allows electromagnetic waves to propagate only
in one direction. If the wave is polarized, and then rotated by 45° by the Faraday

Fig. 10.18 Refraction with a negative index of refraction

7A comprehensive treatment has been given by Caldwell [10.5].
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rotator, any wave reflected back through the rotator will be rotated another 45° in the
same direction and hence be at 90° to the polarizer and so cannot travel that way.

A simple classical picture of the effect works fairly well. We assume an electron
bound by an isotropic Hooke’s law spring in an electric and a magnetic field. By
Newton’s second law ðe[ 0Þ:

m�r ¼ �kr� eðEþ _r� BÞ: ð10:230Þ
Defining x2

0 ¼ k=m (a different use of x0 from that in (10.108)!), letting B ¼ Bk,
and assuming the electric field is in the (x, y)-plane, if we write out the x and
y components of the above equation we have

€xþ e
m
_yBþx2

0x ¼ � e
m
Ex ð10:231Þ

€y� e
m
_xBþx2

0y ¼ � e
m
Ey ð10:232Þ

We define w	 ¼ x	 iy and E	 ¼ Ex 	 iEy: Note that the real and imaginary parts
of Eþ correspond to “right-hand waves” (thumb along z) and the real and imagi-
nary parts of E� correspond to “center-hand waves”.

We assume for the two circularly polarized components,

E	 ¼ E0 exp 	i xt � k	zð Þ½ �; ð10:233Þ

which when added together gives a plane-polarized beam along x at z = 0. We seek
steady-state solutions for which

w	 ¼ exp 	i xt � k	zð Þ½ �: ð10:234Þ

Substituting we find

w	 ¼ �e=mð ÞE	
x2

0 � x2
� �	 e=mð ÞBx : ð10:235Þ

The polarization P is given by

P ¼ �Ner; ð10:236Þ

where N is the number of electrons/volume:

P	 ¼ Ne2
�
m

� �
E	

x2
0 � x2

� �	 e=mð ÞBx : ð10:237Þ

It is convenient to write this in terms of two special frequencies. The cyclotron
frequency is
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xc ¼ eB
m

; ð10:238Þ

and the plasma frequency is

xp ¼
ffiffiffiffiffiffiffiffi
Ne2

me0

s
: ð10:239Þ

Thus (10.237) can be written

P	 ¼ e0x2
pE	

x2
0 � x2

� �	 xcx
: ð10:240Þ

As usual we write

D	 ¼ e0E	 þP	; ð10:241Þ

or

D	 ¼ e	E	: ð10:242Þ

Using (10.240), (10.241), (10.242), and

n2	 ¼ e	
e0

; ð10:243Þ

we find

n2	 ¼ 1þ x2
p

x2
0 � x2

� �	 xcx
: ð10:244Þ

The total angle that the polarization turns through is

H ¼ 1
2

Hþ �H�ð Þ; ð10:245Þ

where in a distance l (and with period of rotation T)

H	 ¼ 2p
l

v	T
¼ xl

v	
¼ xl

c
n	: ð10:246Þ
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Thus,

H ¼ 1
2
xl
c

n	 � nð Þ: ð10:247Þ

If

x2
p � x2

0 � x2� �	 xcx; ð10:248Þ

then

n	 ffi 1þ 1
2

x2
p

x2
0 � x2

� �	 xCx
: ð10:249Þ

So, combining (10.247) and (10.249)

H ¼ �xcx2
px

2l

2c
1

x2
0 � x2

� �2�x2
cx

2
: ð10:250Þ

For free carriers x0 ¼ 0, we find if xc � x,

H ¼ lx2
pxc

2cx2 : ð10:251Þ

Note a positive B (along z) with propagation along z will give a negative Verdet
constant (the proportionality between the angle and the product of the field and path
length) and a clockwise H when it is viewed along (i.e. in the direction of) −z.

Problems

10:1 In a short paragraph explain what photoconductivity is, and describe any
photoconductivity experiment.

10:2 Describe, very briefly, the following magneto-optical effects: (a) Zeeman
effect, (b) inverse Zeeman effect, (c) Voigt effect, (d) Cotton-Mouton effect,
(e) Faraday effect, (f) Kerr magneto-optic effect.
Describe briefly the following electro-optic effects: (g) Stark effect, (h) in-
verse Stark effect, (i) electric double refraction, (j) Kerr electro-optic effect.
Descriptions of these effects can be found in any good optics text.

10:3 Given a plane wave E = E0exp[i(k � r − xt)] normally incident on a surface,
detail the assumptions, conditions and steps to show ncE0 ¼ E1 � E2, [cf.
(10.26)].

10:4 (a) From x; px½ � ¼ i�h, show that

10.12 Magneto-Optic Effects: The Faraday Effect (B, EE, MS) 703



H; ê � r½ � ¼ � i�h
m
ê � p

(b) For ê ¼ î, show the oscillator strength fij obeys the sum rule
P

j fij ¼ 1.
10:5 For intermediate frequencies xT\x\xL, given [by (10.198)]

eðxÞ
e0

� e 1ð Þ
e0

¼ 3BionðxÞ
1� Bel � BionðxÞ½ � 1� Belð Þ ;

and the equation of motion [by (10.199)]

l€vþGv ¼ 1
3e0

Ne2

1� Bel
vþ eE;

derive the equation

x2
T þ

ce0
eð1Þ ¼ x2

L;

where c is a defined as constant within the derivation. In this process, show
intermediate derivations for the following equations defining constants as
necessary:

l x2
T � x2� �

v ¼ eE;

E
Eloc

¼ 1
1þF

;

eðxÞ ¼ eð1Þþ ce0
x2

T � x2
:

10:6 This problem fills in the details of Sect. 10.11.2.

(a) Describe the factors that make up the generation rate

Gmn ¼ BmnNmfmNn 1� fnð Þq vmnð Þ:

(b) Show from the Fermi function that

fn 1� fmð Þ
fm 1� fnð Þ ¼ exp

Em � En

kT

� �
:

(c) Starting from Gmn ¼ Rnm, show that

A
B
¼ 8pn3v2

c3
:

10:7 Describe how zinc sulfide functions as a phosphor.
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Chapter 11
Defects in Solids

11.1 Summary About Important Defects (B)

A defect in a solid is any deviation from periodicity in the solid. All solids have
defects, but for some applications, they can be neglected, while for others, the
defects can be very important. By now, simple defects are well understood, but for
more complex defects, a considerable amount of fundamental work remains to be
accomplished for a thorough understanding.

Some discussion of defects has already been made. In Chap. 2, the effects of
defects on the phonon spectrum of a one-dimensional lattice were discussed,
whereas in Chap. 3 the effects of defects on the electronic states in a
one-dimensional lattice were considered. In the semiconductor chapter, donor and
acceptor states were used, but some details were postponed until this chapter.

There is only one way to be perfect, but there are numerous ways to be imperfect.
Thus, we should not be surprised that there are many kinds of defects. The mere fact
that no crystal is infinite is enough to introduce surface defects, which could be
electronic or vibrational. Electronic surface states are classified as Tamm states (if
they are due to a different potential in the last unit cell at the surface edge with atoms
far apart) or Shockley states (the cells remain perfectly repetitive right up to the edge,
but with atoms close enough so as to have band crossing1).Whether or not Tamm and
Shockley states should be distinguished has been the subject of debate that we do not
wish to enter into here. In any case, the atoms on the surface are not in the same
environment as interior atoms, and so, their contribution to the properties of the solid
must be different. The surface also acts to scatter both electrons and phonons. The
properties of surfaces are of considerable practical importance. All input and output
to solids goes through the surfaces. Thermionic and cold field emission from surfaces
is discussed in Sects. 11.7 and 11.8. Surface reconstruction is discussed in Chap. 12.
Another important application of surface physics is to better understand corrosion.

1See, e.g., Davison and Steslicka [11.8].
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Besides surfaces, we briefly review other ways crystals can have defects, starting
with point defects (see Crawford and Slifkin [11.7]). When a crystal is grown, it is
not likely to be pure. Foreign impurity atoms will be present, leading to substitu-
tional or interstitial defects (see Fig. 11.1). Interstitial atoms can originate from
atoms of the crystal as well as foreign atoms. These may be caused by thermal
effects (see below) or may be introduced artificially by radiation damage. Radiation
damage (or thermal effects) may also cause vacancies. Also, when a crystal is
composed of more than one element, these elements may not be exactly in their
proper chemical proportions. The stoichiometric derivations can result in vacancies
as well as antisite defects (an atom of type A occupying a site normally occupied by
an atom of type B in an AB compound material).

Vacancies are always present in any real crystal. Two sorts of point defects
involving vacancies are so common that they are given names. These are the
Schottky and Frenkel defects, shown for an ionic crystal in Fig. 11.2. Defects such
as Schottky and Frenkel defects are always present in any real crystal at a finite
temperature in equilibrium. The argument is simple. Suppose we assume that the
free energy F = U − TS has a minimum in equilibrium. The defects will increase U,
but they cause disorder, so they also cause an increase in the entropy S. At high
enough temperatures, the increase in U can be more than compensated by the
decrease in −TS. Thus, the stable situation is the situation with defects.

Mass transport is largely possible because of defects. Vacancies can be quite
important in controlling diffusion (discussed later in Sect. 11.5). Ionic conductivity
studies are important in studying the motion of lattice defects in ionic crystals.
Color centers are another type of point defect (or complex of point defects). We

Fig. 11.1 Point defects

(a) (b)

Fig. 11.2 (a) Schottky and (b) Frenkel defects
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will discuss them in a little more detail later (Sect. 11.4). Color centers are formed
by defects and their surrounding potential, which trap electrons (or holes).

Vacancies, substitutional atoms, and interstitial atoms are all point defects.
Surfaces are planar defects. There is another class of defects called line defects.
Dislocations are important examples of line defects, and they will be discussed later
(Sect. 11.6). They are important for determining how easily crystals deform and
may also relate to crystal growth.

Finally, there are defects that occur over a whole volume. It is usually hard to grow
a single crystal. In a single crystal, the lattice planes are all arranged as expected-in a
perfectly regular manner. When we are presented with a chunk of material, it is

Table 11.1 Summary of common crystal lattice defects

Point defects Comments

Foreign atoms Substitutional or interstitial
Vacancies Schottky defect is vacancy with atom transferred to

surface
Antisite Example: A on a B site in an AB compound
Frenkel Vacancy with foreign atom transferred to interstice
Color centers Several types—F is vacancy with trapped electron

(ionic crystals—see Sect. 11.4
Donors and acceptors Main example are shallow defects in

semiconductors—see Sects. 11.2 and 11.3
Deep levels in
semiconductors

See Sects. 11.2 and 11.3

Line defects Comments

Dislocations Edge and screw—see Sect. 11.6—General
dislocation is a combination of these two

Surface defects Comments

External
Tamm and Shockley
electronic states

See Sect. 11.1

Reconstruction See Sect. 12.2
Internal
Stacking fault Example: a result of an error in growtha

Grain boundaries Tilt between adjacent crystallites—can include low
angle (with angle, in radians, being the ratio of the
Burgers vector (magnitude) to the dislocation
spacing) to large angle (which includes twin
boundaries)

Heteroboundary Between different crystals
Volume defects Comments

Many examples Three-dimensional precipitates and complexes
of defects

See, e.g., Henderson [11.16]
aA fcc lattice along (1,1,1) is composed of planes ABCABC etc. If an A plane is
missing then we have ABCBCABC, etc. This introduces a local change of symmetry.
See, e.g., Kittel [23, p. 18]
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usually in a polycrystal form. That is, many little crystals are stuck together in a
somewhat random way. The boundary between crystals is also a two-dimensional
defect called a grain boundary. We have summarized these ideas in Table 11.1.

11.2 Shallow and Deep Impurity Levels
in Semiconductors (EE)

We start by considering a simple chemical model of shallow donor and acceptor
defects. We will give a better definition later, but for now, by “shallow”, we will
mean energy levels near the bottom of the conduction band for donor level and near
the top of the valence band for acceptors.

Consider Si14 as the prototype semiconductor. In the usual one-electron shell
notation, its electron structure is denoted by

1s22s22p63s23p2:

There are four valence electrons in the 3s23p2 shell, which requires eight to be
filled. We think of neighboring Si atoms sharing electrons to fill the shells. This
sharing lowers energy and binds the electrons. We speak of covalent bonds.
Schematically, in two dimensions, we picture this occurring as in Fig. 11.3. Each
line represents a shared electron. By sharing, each Si in the outer shell has eight
electrons. This is of course like the discussion we gave in Chap. 1 of the bonding of
C to form diamond.

Now, suppose we have an atom, say As, which substitutionally replaces a Si.
The sp shell of As has five electrons (4s24p3) and only four are needed to “fill the
shell”. Thus, As acts as a donor with an additional loosely bound electron (with a
large orbit encompassing many atoms), which can be easily excited into the con-
duction band at room temperature.

An acceptor like In (with three electrons in its outer sp shell (5s25p)) needs four
electrons to complete its covalent bonds. Thus, In can accept an electron from the
valence band, leaving behind a hole. The combined effects of effective mass and
dielectric constant cause the carrier to be bound much less tightly than in an
analogous hydrogen atom. The result is that donors introduce energy levels just

Fig. 11.3 Chemical model of covalent bond in Si
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below the conduction-band minimum and acceptors introduce levels just above the
top of the valence band. We discuss this in more detail below.

In brief, it turns out that the ground-state donor energy level is given by (atomic
units, see the appendix)

En ¼ �m�=m
2n2e2

; ð11:1Þ

where m*/m is the effective mass ratio typically about 0.25 for Si and e is the
dielectric constant (about 11.7 in Si). En in (11.1) is measured from the bottom of
the conduction band. Except for the use of the dielectric constant and the effective
mass, this is the same result as obtained from the theory of the energy levels of
hydrogen. A similar, remarkably simple result holds for acceptor states. These
results arise from pioneering work by Kohn and Luttinger as discussed in [11.17],
and we develop the basics below.

11.3 Effective Mass Theory, Shallow Defects,
and Superlattices (A)

11.3.1 Envelope Functions (A)

The basic model we will use here is called the envelope approximation.2 It will
allow us to justify our treatments of effective mass theory and of shallow defects in
semiconductors. With a few more comments, we will then be able to relate it to a
simple approach to superlattices, which will be discussed in more detail in Chap. 12

Let

H0 ¼ � �h2

2m
$2 þV rð Þ; ð11:2Þ

where V(r) is the periodic potential. Let H ¼ H0 þU where U = VD(r) is the extra
defect potential. Now, H0wn k; rð Þ ¼ Enwn k; rð Þ and Hw ¼ Ew.

We expand the wave function in Bloch functions

w ¼
X
n;k

an kð Þwn k; rð Þ; ð11:3Þ

where n is the band index. Also, since En(k) is a periodic function in k-space, we
can expand it in a Fourier series with the sum restricted to lattice points

En kð Þ ¼
X
m

Fnmeik�Rm : ð11:4Þ

2Besides [11.17], see also Luttinger and Kohn [11.22] and Madelung [11.23].
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We define an operator En(–i$) by substituting –i$ for k:

En �i$ð Þwn k; rð Þ ¼
X
m

Fnme
Rm�$wn k; rð Þ

¼
X
m

Fnm 1þRm � $þ 1
2

Rm � $ð Þ2 þ � � �
� �

wn k; rð Þ

¼
X
m

Fnmwn k; rþRmð Þ;

ð11:5Þ

by the properties of Taylor’s series. Then using Bloch’s theorem

En �i$ð Þwn k; rð Þ ¼
X
m

Fnme
ik�Rmwn k; rð Þ; ð11:6Þ

and by (11.4)

En �i$ð Þwn k; rð Þ ¼ En kð Þwn k; rð Þ: ð11:7Þ
Substituting (11.3) into Hw ¼ Ew, we have (using the fact that wn is an eigen-
function of H0 with eigenvalue En(k))X

n;k

En kð Þan kð Þwn k; rð Þþ
X
n;k

VDan kð Þwn k; rð Þ

¼
X
n;k

Ean kð Þwn k; rð Þ:
ð11:8Þ

If we use (11.4) and (11.6), this becomesX
n;k

an kð Þ En �i$ð ÞþVD½ �wn k; rð Þ ¼ Ew: ð11:9Þ

11.3.2 First Approximation (A)

We neglect band-to-band interactions and hence, neglect the summation over n.
Dropping n entirely from (11.9), we have

w ¼
X
k

a kð Þw k; rð Þ; ð11:10Þ

and

E �i$ð ÞþVD½ �w k; rð Þ ¼ Ew: ð11:11Þ
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11.3.3 Second Approximation (A)

We assume a large extension in real space that means that only a small range of
k values are important—say the ones near a parabolic (assumed for simplicity)
minimum at k = 0 (Madelung op. cit. Chap. 9).

We assume, then,

w k; rð Þ ¼ eik�ru k; rð Þ ffi eik�ru 0; rð Þ ¼ eik�rw 0; rð Þ ð11:12Þ

so using (11.10) and (11.12),

w ¼ F rð Þw 0; rð Þ; ð11:13Þ

where

F rð Þ ¼
X
k

a kð Þeik�r: ð11:14Þ

So, we have by (11.11)

E �i$ð ÞþVD½ �F rð Þw 0; rð Þ ¼ EF rð Þw 0; rð Þ: ð11:15Þ

Using the definition of E(−i$) as in (11.5) we have with n suppressed,X
m

FmF rþRmð Þw 0; rþRmð Þ ¼ E � VDð ÞF rð Þw 0; rð Þ: ð11:16Þ

But, w(0, r + Rm) = w(0, r), so it can be cancelled. Thus retracing our steps, we
have

E �i$ð ÞþVD½ �F rð Þ ¼ EF rð Þ: ð11:17Þ

This simply means that a rapidly varying function has been replaced by a slowly
varying function F(r) called the “envelope” function. This immediately leads to the
concept of shallow donors. Consider the bottom of a parabolic conductor band near
k = 0 and expand about k = 0;

E �i$ð Þ ¼ Ec þ dE
dk

����
k¼0

�i$ð Þþ 1
2
d2E
dk2

�i$ð Þ2: ð11:18Þ

Also,

dE
dk

����
k¼0

¼ 0; ð11:19Þ
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and

d2E
dk2

����
k¼0

¼ �h2

m� ; ð11:20Þ

where m* is the effective mass. Thus, we find

E �i$ð Þ ¼ Ec � �h2

2m� r2: ð11:21Þ

And, if VD = e2/4per, our resulting equation is

� �h2

2m� $
2 � e2

4per

� �
F rð Þ ¼ E � Ecð ÞF rð Þ: ð11:22Þ

Except for the use of e and m*, these solutions are just hydrogenic wave functions
and energies, and so our use of the hydrogenic solution (11.1) is justified.

Now let us discuss briefly electron and hole motion in a perfect crystal. If U = 0,
we simply write

� �h2

2m�
e
$2 þEc

� �
F ¼ EF: ð11:23Þ

On the other hand, suppose U is still 0, but consider a valence band with a max-
imum at k = 0. We then can expand about that point with the following result:

E �i$ð Þ ¼ Em þ 1
2
d2E
dk2

�i$ð Þ2: ð11:24Þ

Using the hole mass, which has the opposite sign for the electron mass (mh = −me),
we can write

E �i$ð Þ ¼ Em þ �h2

2m�
h

r2� �
; ð11:25Þ

so the relevant Schrödinger equation becomes

��h2

2m�
h

r2� �� Em

� �
F ¼ �EF: ð11:26Þ

Looking at (11.23) and (11.26), we see how discontinuities in band energies can
result in effective changes in the potential for the carriers, and we see why the hole
energies are inverted from the electron energies.
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Now let us consider superlattices with a set of layers so there is both a lattice
periodicity in each layer and a periodicity on a larger scale due to layers (see
Sect. 12.6). The layers A and B could for example be laid down as ABABAB…

There are several more considerations, however, before we can apply these
results to superlattices. First, we have to consider that if we are to move from a
region of one band structure (layer) to another (layer), the effective mass changes
since adjacent layers are different. With the possibility of change in effective mass,
the Hamiltonian is often written as

H ¼ � �h2

2
@

@z
1

m� zð Þ
@

@z

� �
þV zð Þ; ð11:27Þ

rather than in the more conventional way. This allows the Hamiltonian to remain
Hermitian, even with varying m*, and it leads to a probability current density of

jz zð Þ ¼ �h
2i

w�

m� �
@w
@z

� w
m� �

@w�

@z

� �
; ð11:28Þ

from which we apply the requirement of continuity on w and ∂w/(т*∂z) rather than
w and ∂w/∂z.

We have assumed the thickness of each layer is sufficient that the band structure
of the material can be established in this thickness. Basically, we will need both
layers to be several monolayers thick. Also, we assume in each layer that the
electron wave function is an envelope function (different for different monolayers)
times a Bloch function (see (11.13)). Finally, we assume that in each layer U = U0

(a constant appropriate to the layer) and the carrier motion perpendicular to the
layers is free-electron-like so,

F rð Þ ¼ u zð Þei kxxþ kyyð Þ; ð11:29Þ

� �h2

2m� k2x þ k2y
	 


� �h2d2

2m�dz2
þU0

� �
u zð Þei kxxþ kyyð Þ ¼ EF; ð11:30Þ

which means

� �h2

2m�
d2

dz2
þU0

� �
u zð Þ ¼ Ezu zð Þ; ð11:31Þ

where for each layer

E ¼ Ez þ �h2

2m� k2x þ k2y
	 


: ð11:32Þ
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There are many, many complications to the above. We have assumed, e.g., that
m�

xy ¼ m�
z which may not be so in all cases. The book by Bastard [11.1] can be

consulted. See also, Mitin et al. [11.25].
In semiconductors, shallow levels are often defined as being near a band edge

and deep levels as being near the center of the forbidden energy gap. In more recent
years, a different definition has been applied based on the nature of the causing
agent. Shallow levels are now defined as defect levels produced by the long-range
Coulomb potential of the defect and deep levels3 are defined as being produced by
the central cell potential of the defect, which is short ranged. Since the potential is
short range, a modification of the Slater–Koster model, already discussed in Chap. 2,
is a convenient starting point for discussing deep defects. Some reasons for the
significance of shallow and deep defects are given in Table 11.2. Deep defects
are commonly formed by substitutional, interstitial, and antisite atoms and by
vacancies.

11.4 Color Centers (B)

The study of color centers arose out of the curiosity as to what caused the yellow
coloration of rock salt (NaCl) and other coloration in similar crystals. This yellow
color was particularly noted in salt just removed from a mine. Becquerel found that
NaCl could be colored by placing the crystal near a discharge tube. From a fun-
damental point of view, NaCl should have an infrared absorption due to vibrations
of its ions and an ultraviolet absorption due to excitation of the electrons. A perfect
NaCl crystal should not absorb visible light, and should be uncolored. The col-
oration of NaCl must be due, then, to defects in the crystal. The main absorption
band in NaCl occurs at about 4650 Å (the “F”-band). This blue absorption is
responsible for the yellow color that the NaCl crystal can have. A further clue to the
nature of the absorption is provided by the fact that exposure of a colored crystal to
white light can result in the bleaching out of the color. Further experiments show

Table 11.2 Definition and significance of deep and shallow levels

Shallow levels are defect levels produced by the long-range Coulomb potential of defects.
Deep Levels are defect levels produced by the central cell potential of defect

Deep level Shallow level

Energy May or may not be near band edge
Spectrum is not hydrogen-like

Near band edge
Spectrum is hydrogen-like

Typical properties Recombination centers
Compensators
Electron-hole generators

Suppliers of carriers

3See, e.g., Li and Patterson [11.20, 11.21] and references cited therein.
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that during the bleaching, the crystal becomes photoconductive, which means that
electrons have been promoted to the conduction band. It has also been found that
NaCl could be colored by heating it in the presence of Na vapor. Some of the Na
atoms become part of the NaCl crystal, resulting in a deficiency of Cl and, hence,
Cl− vacancies. Since photoconductive experiments show that F-band defects can
release electrons, and since Cl− vacancies can trap electrons, it seems very sug-
gestive that the defects responsible for the F-band (called “F-centers”) are electrons
trapped at Cl− vacancies. (Note: the “F” comes from the German farbe, meaning
“color”.) This is the explanation accepted today. Of course, since some Cl−

vacancies are always present in a NaCl crystal in thermodynamic equilibrium, any
sort of radiation that causes electrons to be knocked into the Cl− vacancies will
form F-centers. Thus, we have an explanation of Becquerel’s early results as
mentioned above.

More generally, color centers are formed when point defects in crystals trap
electrons with the resultant electronic energy levels at optical frequencies. Color
centers usually form “deep” traps for electrons, rather than “shallow” traps, as
donor impurities in semiconductors do, and, their theoretical analysis is complex.
Except for relatively simple centers such as F-centers, the analysis is still relatively
rudimentary.

Typical experiments that yield information about color centers involve optical
absorption, paramagnetic resonance and photoconductivity. The absorption exper-
iments give information about the transition energies and other properties of the
transition. Paramagnetic resonance gives wave function information about the
trapped electron, while photoconductivity yields information on the quantum effi-
ciency (number of free electrons produced per incident photon) of the color centers.

Mostly by interpretation of experiment, but partly by theoretical analysis, several
different color centers have been identified. Some of these are listed below. The
notation is

½missing ion trapped electronj jadded ion�;

where our notation is p � proton, e � electron, – � halide ion, + � alkaline ion,
and M++ � doubly charged positive ion. The usual place to find color centers is in
ionic crystals.

� ej j½ � ¼ F-center

� 2ej j½ � ¼ F0-center
�� 2ej j½ � ¼ M-center ?ð Þ

ej jp½ � ¼ U2-center

þ eMþ þj j½ � ¼ Z1-center ?ð Þ:

In Figs. 11.4 and 11.5 we give models for two of the less well-known color
centers. In these two figures, ions enclosed by boxes indicate missing ions, a dot
means an added electron, and a circle includes a substitutionally added ion. We
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include several references to color centers. See, e.g., Fowler [11.12] or Schulman
and Compton [11.28].

Color centers turn out to be surprisingly difficult to treat theoretically with
precision. But success has been obtained using modern techniques on, e.g., F
centers in LiCl. See, e.g., Louie p. 94, in Chelikowsky and Louie [11.4]. In recent
years tunable solid-state lasers have been made using color centers at low
temperatures.

A different type of color center was detected by J. Wrachtrup in 1997. This color
center is found in diamond and consists of substitutional N replacing a C and with a
C vacancy adjacent to the N. This color center is called an N-V center. The whole
complex acts as a single defect center and possess a spin. These defects fluoresce a
bright red, and can operate at room temperature. They are a prime candidate for a
spintronic quantum computer because the spin can be controlled by microwave as

Fig. 11.5 Four proposed models for Z1-centers. [Reprinted with permission from Paus H and
Lüty F, Phys Rev Lett 20(2), 57 (1968). Copyright 1968 by the American Physical Society.]

(a) (b)

Fig. 11.4 Models of the M-center: (a) Seitz, (b) Van Doorn and Haven. [Reprinted with
permission from Rhyner CR and Cameron JR, Phys Rev 169(3), 710 (1968). Copyright 1968
by the American Physical Society.]
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well as optical means, and because the spin can couple to nearby C-13 nuclei as
well as to a nearby substitutional N. For further details, see R. J. Epstein,
F. M. Mendoza, Y. K. Kato, and D. D. Awschalom, Nature Physics 1, 94–98
(2005), and David D. Awschalom, Ryan Epstein, and Ronald Hansen, “The
Diamond Age of Spintronics,” Scientific American, Oct. 2007, pp. 84–91.

11.5 Diffusion (MET, MS)

Point defects may diffuse through the lattice, while vacancies may provide a
mechanism to facilitate diffusion. Diffusion and defects are intimately related, so we
give a brief discussion of diffusion. If C is the concentration of the diffusing
quantity, Fick’s Law says the flux of diffusing quantities is given by

J ¼ �D
@C
@x

; ð11:33Þ

where D is, by definition, the diffusion constant. Combining this with the equation
of continuity

@J
@x

þ @C
@s

¼ 0; ð11:34Þ

leads to the diffusion equation

@C
@s

¼ D
@2C
@x2

: ð11:35Þ

For solution of this equation, we refer to several well-known treatises as referred to
in Borg and Dienes [11.2]. Typically, the diffusion constant is a function of tem-
perature via

D ¼ D0 exp �E0=kTð Þ; ð11:36Þ

where E0 is the activation energy that depends on the process. Interstitial defects
moving from one site to an adjacent one typically have much less E0 than say,
vacancy motion. Obviously, the thermal variation of defect diffusion rates has wide
application.

11.6 Edge and Screw Dislocation (MET, MS)

Any general dislocation is a combination of two basic types: the edge and the screw
dislocations. The edge dislocation is perhaps the easiest to describe. If we imagine
the pages in a book as being crystal planes, then we can visualize an edge
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dislocation as a book with half a page (representing a plane of atoms) missing. The
edge dislocation is formed by the missing half-plane of atoms. The idea is depicted
in Fig. 11.6. The motion of edge dislocations greatly reduces the shear strength of
crystals. Originally, the shear strength of a crystal was expected to be much greater
than it was actually found to be for real crystals. However, all large crystals have
dislocations, and the movement of a dislocation can greatly aid the shearing of a
crystal. The idea involves similar reasoning as to why it is easier to move a rug by
moving a wrinkle through it rather than moving the whole rug. The force required
to move the wrinkle is much less.

Crystals can be strengthened by introducing impurity atoms (or anything else),
which will block the motion of dislocations. Dislocations themselves can interfere
with each other’s motions and bending crystals can generate dislocations, which
then causes work hardening. Long, but thin, crystals called whiskers have been
grown with few dislocations (perhaps one screw dislocation to aid growth—see
below). Whiskers can have the full theoretical strength of ideal, perfect crystals.

The other type of dislocation is called a screw dislocation. Screw dislocations
can be visualized by cutting a book along A (see Fig. 11.7), then moving the upper
half of the book a distance of one page and taping the book into a spiral staircase.

Fig. 11.6 An edge dislocation

Fig. 11.7 A book can be used to visualize screw dislocations
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Another view of the dislocation is shown in Fig. 11.8 where successive atomic
planes are joined together to form one surface similar to the way a kind of Riemann
surface can be defined. Screw dislocations greatly aid crystal growth. During the
growth, a wandering atom finds two surfaces to “stick” to at the growth edge (or
jog) (see Fig. 11.8) rather than only one flat plane. Actual crystals have shown little
spirals on their surface corresponding to this type of growth.

We have already mentioned that any general dislocation is a combination of the
edge and screw. It is well at this point to make the idea more precise by the use of
the Burgers vector, which is depicted in Fig. 11.9. We take an atom-to-atom path
around a dislocation line. The path is drawn in such a way that it would close on
itself as if there were no dislocations. The additional vector needed to close the path
is the Burgers vector. For a pure edge dislocation, the Burgers vector is perpen-
dicular to the dislocation line; for a pure screw dislocation, it is parallel. In general,
the Burgers vector can make any angle with the dislocation line, which is allowed
by crystal symmetry. The book by Cottrell [11.6] is a good source of further details
about dislocations. See also deWit [11.9].

Fig. 11.8 A screw dislocation

Fig. 11.9 Diagram used for the definition of the Burgers vector b
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11.7 Thermionic Emission (B)

We now discuss two very classic and important properties of the surfaces of metals
—in this Section thermionic emission and in the next Section cold-field emission.

So far, we have mentioned the role of Fermi–Dirac statistics in calculating the
specific heat, Pauli paramagnetism, and Landau diamagnetism. In this Section we
will apply Fermi–Dirac statistics to the emission of electrons by heated metals. It
will turn out that the fact that electrons obey Fermi–Dirac statistics is relatively
secondary in this situation.

It is also possible to have cold (no heating) emission of electrons. Cold emission of
electrons is obtained by applying an electric field and allowing the electrons to tunnel
out of the metal. This was one of the earliest triumphs of quantum mechanics in
explaining hitherto unexplained phenomena. It will be explained in the next section.4

For the purpose of the calculation in this section, the surface of the metal will be
pictured as in Fig. 11.10. In Fig. 11.10, EF is the Fermi energy, / is the work
function, and E0 is the barrier height of the potential. The barrier can at least be
partially understood by an image charge calculation.

We wish to calculate the current density as a function of temperature for the
heated metal. If n(p) d3p is the number of electrons per unit volume in p to
p + d3p and if vx is the x component of velocity of the electrons with momentum p,
we can write the rate at which electrons with momentum from p to p + d3p hit a
unit area in the (x, y)-plane as

vxn pð Þd3p ¼ n pð Þ px=mð Þdpxdpydpz: ð11:37Þ

Fig. 11.10 Model of the surface of a metal used to explain thermionic emission

4A comprehensive review of many types of surface phenomena is contained in Gundry and
Tompkins [11.14].
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Now

n pð Þd3p ¼ n kð Þd3k ¼ 2f Eð Þ d3k

2pð Þ3 ð11:38Þ

¼ 2f Eð Þ d3p

2p�hð Þ3

¼ 2f Eð Þ
h3

d3p;

ð11:39Þ

so that

n pð Þ ¼ 2f Eð Þ=h3: ð11:40Þ

In (11.40), f(E) is the Fermi function and the factor 2 takes the spin degeneracy of
the electronic states into account. Finally, we need to consider that only electrons
whose x component of momentum px satisfies

p2x=2m[/þEF ð11:41Þ

will escape from the metal.
If we assume the probability of reflection at the surface of the metal is R and is

constant (or represents an average value), the emission current density j is e (the
electronic charge, here e > 0) times the rate at which electrons of sufficient energy
strike unit area of the surface times Tr � 1 − R. Thus, the emission current density
is given by

j ¼ � 2e
h3

Tr

Z1
�1

Z1
�1

Z1
/þEF

d p2x=2m
� �

exp E � EFð Þ=kT½ � þ 1

8><
>:

9>=
>;dpz

0
B@

1
CAdpy: ð11:42Þ

Since E = (1/2m)(px
2 + py

2 + pz
2), we can write this expression as

j ¼ �kT
2e
h3

Tr

Z1
�1

Z1
�1

Z1
0

dE0

eE0=kT exp /þ p2x þ p2y
	 


=2m
h i

=kT
n o

þ 1

0
@

1
Adpz

2
4

3
5dpy;

where E′ = (px
2/2m) – /� EF . But

Z1
0

dn
aen þ 1

¼ ln 1þ a�1� �
;
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so that

j ¼ � Trð Þ 2kTe
h3

Z1
�1

Z1
�1

ln 1þ e�G
� �

dpz

2
4

3
5 dpy; ð11:43Þ

where

G ¼
/þ 1=2mð Þ p2x þ p2y

	 

kT

: ð11:44Þ

At common operating temperatures, G 	 1, so since ln(1 + e) 
 e (for small e) we
can write (this approximation amounts to replacing Fermi–Dirac statistics by
Boltzmann statistics for all electrons that get out of the metal)

j ¼ � Tr2kTe
h3

Z1
�1

Z1
�1

exp �/=kTð Þ � exp �1
2mkT

p2x þ p2y
	 
� �

dpz

8<
:

9=
;dpy:

Thus, so far as the temperature dependence goes, we can write

j ¼ AT2e�/=kT ; ð11:45Þ

where A is a quantity that can be determined from the above expressions. In actual
practice there is little point to making this evaluation. Our A depends on having an
idealized surface, which is never realized. Typical work functions /, as determined
from thermionic emission data, are of the order of 5 eV, see Table 11.3.

Table 11.3 Work functions

Element u (eV)

Ag
100 4.64
110 4.52
111 4.74
poly 4.26
Co poly 5
Cu poly 4.65
Fe poly 4.5
K poly 2.3
Na poly 2.75
Ni poly 5.15
W poly 4.55
From Anderson HL (ed), A Physicists Desk Reference 2nd edn,
Article 21: Hagstum HD, Surface Physics, p. 330, American Institute
of Physics, (1989) by permission of Springer-Verlag. Original data
from Michaelson HB, J Appl Phys 48, 4729 (1977)
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Equation (11.45) is often referred to as the Richardson–Dushmann equation. It
agrees with experimental results at least qualitatively. Account must be taken,
however, of adsorbates that can lower the effective work function.5

11.8 Cold-Field Emission (B)

To have a detectable cold-field emission it is necessary to apply a strong electric
field. The strong electric field can be obtained by using a sharp point, for example.
We shall assume that we have applied an electric field E1 in the −x direction to the
metal so that the electron’s potential energy (with –e the charge of the electron)
produced by the electric field is V = E0 − eE1x. The form of the potential function
near the surface of the metal will be assumed to be as in Fig. 11.11.

To calculate the current density, which is emitted by the metal when the electric
field is applied, it is necessary to have the transmission coefficient for tunneling
through the barrier. This transmission coefficient can perhaps be adequately eval-
uated by use of the WKB approximation. For a high and broad barrier, the WKB
approximation gives for the transmission coefficient

T ¼ exp �2
Zx0
x¼0

K xð Þdx
0
@

1
A; ð11:46Þ

 

Fig. 11.11 Potential energy for tunneling from a metal in the presence of an applied electric
field

5See Zanquill [11.33].
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where

K xð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2m=�h2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V xð Þ � E

p
; ð11:47Þ

x0 is the second classical turning point, and E is, of course, the energy.
The upper limit of the integral is determined (for an electron of energy E) from

E ¼ E0 � eE1x0 or x0 ¼ E0 � E
eE1

:

Therefore

Zx0
x¼0

K xð Þdx ¼ 2
3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m E0 � Eð Þ3= �heE1ð Þ2

q
:

Since (E0 − EF) = /, the transmission coefficient for electrons with the Fermi
energy is given by

T ¼ exp � 4
3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m

�h2
/3

eE1ð Þ2

s !
: ð11:48Þ

Further analysis shows that the current density for field-emitted electrons is given
approximately by J / E1

2T so,

J ¼ aE2
1e

�b=E1 ; ð11:49Þ

where a and b are different constants for different materials. Equation (11.49),
where b is commonly proportional to /3=2, is often referred to as the Fowler–
Nordheim equation. The ideas of Fowler–Nordheim tunneling are also used for the
tunneling of electrons in a metal-oxide-semiconductor (MOS) structure. See also
Sarid [11.27].

There is another type of electron emission that is present when an electric field is
applied. When an electric field is applied, the height of the potential barrier is
slightly lowered. Thus more electrons can be classically emitted (without tunneling)
by thermionic emission than previously. This additional emission due to the low-
ering of the barrier is called Schottky emission. If we imagine the barrier is caused
by image charge attraction, it is fairly easy to see why the maximum barrier height
should decrease with field strength. Simple analysis predicts the barrier lowering to
be proportional to the square root of the magnitude of the electric field. The idea is
shown in Fig. 11.12. See Problem 11.7.
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11.9 Microgravity (MS)

It is believed that crystals grown in microgravity will often be more perfect, with
fewer defects such as dislocations. S. Lehoczky of Marshall Space Flight Center has
been experimenting for years with growing mercury cadmium telluride in micro-
gravity (on the Space Shuttle) with the idea of producing more perfect crystals that
would yield better infrared detectors [11.19].6 Others have done micro-gravity
experiments involving growth of protein crystals. Although progress has been made
with various microgravity experiments, particularly in understanding crystal growth
in general, early expectations have not been completely fulfilled.

First, we should talk about what microgravity is and what it is not. It is not the
absence of gravity, or even a region where gravity is very small. Unless one goes very
far from massive bodies, this is impossible. Even at a Shuttle orbit of 300 km above
the Earth, the force of gravity is about 90% the value experienced on the Earth.

Newton himself understood the principle. If one mounts a cannon on a large
mountain on an otherwise flat Earth and fires the cannonball horizontally, it will
land some distance away from the base of the mountain (In his 1728 book A
Treatise of the System of the World as noted by Robert P. Crease, Physics World,
Oct. 2007, p. 19). Adding more powder will cause the ball to go further. Finally, a
point will be reached when the ball falls exactly the same amount that the earth
curves. The ball will then be in free-fall and in orbit. The effects of gravity for
objects inside the ball will be very small. In an orbiting satellite, there will be
exactly one surface where the effects of gravity are negligible. At other places
inside, one has “microgravity”. Another way of saying this simply is just that
gravity and the centrifugal pseudoforce almost cancel for microgravity.

(a) (b)

Fig. 11.12 The effect of an electric field on the surface barrier of a metal: (a) with no field,
and (b) with a field

6See, e.g., C.-H. Su, et al. “Crystal growth of HgZnTe alloy by directional solidification in low
gravity environment,” J. of Crystal Growth, 234(2), pp. 487–497(11), Jan. 2002.
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There are many ways to produce microgravity; all you have to do is arrange to
be in free-fall. Drop towers and drop tubes offer two ways of accomplishing this.
The first commercial use of microgravity was probably the drop tower used in 1785
in England to make spherical lead balls. Marshall Space Flight Center had both a
drop tower and a drop tube 100 m high—this alone allowed free-fall, or micro-
gravity, for about 5 s. In a drop tower, the entire experimental package is dropped.
For crystal growth experiments, this means the furnace as well as the instrumen-
tation and the specimen are all placed in a special canister and dropped. In a drop
tube, there is an enclosure in which, for example, only the molten sample would be
dropped. Special aerodynamic design, vacuum, or other means is used to reduce air
drag and, hence, obtain real free-fall. For slightly longer times (20 s or so), the KC
135 aircraft can be put into a parabolic path to produce microgravity. Extending this
idea, rockets have been used to produce microgravity for periods of about 400 s.

Problems

11:1 Give a simple derivation of Ivey’s law. Ivey’s law states that fa2 = constant
where f is the frequency of absorption in the F-band and a is the lattice
spacing in the colored crystal. Use as a model for the F-center an electron in a
box and assume that the absorption is due to a transition between the ground
and first excited energy states of the electron in the box.

11:2 The F-center absorption energy in NaCl is about 2.7 eV. For a particle in a
box of side aNaCl = 5.63 � 10−10 m, find the excitation energy of an electron
from the ground to the first excited state.

11:3 A low-angle grain boundary is found with a tilt angle of about 20 s on a
(100) surface of Ge. What is the prediction for the linear dislocation density
of etch pits predicted?

11:4 Find the allowed energies of a hydrogen atom in two dimensions. The
answer you should get is [12.54]

En ¼ � R

n� 1
2

� �2 ;
where n is a nonzero integer. R is the Rydberg constant that can be written as

R ¼ � me4

2 4pe0K�hð Þ2 ;

where K = e/e0 with e the appropriate dielectric constant. Since the Bohr
radius is
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aB ¼ 4pe0K�h2

me2
;

one can also write

R ¼ � �h2

2ma2B
:

Note that the result is the same as the three-dimensional hydrogen atom if
one replaces n by n� 1=2.

11:5 Quantum wells will be discussed in Chap. 12. Find the allowed energies of a
donor atom, represented by a modified hydrogen atom as described below
with electron mass m and in a region of dielectric constant as above. Suppose
the quantum well is of width w and with infinite sides with potential energy
V(z). Also suppose w � aB. In this case the wave function for a donor in a
quantum well is

� �h2

2m
r2 � e2

4pe0K
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p þV zð Þ
" #

w ¼ Ew;

where V(z) = 0 for 0 < z < w and is infinite otherwise. The answer is

E ¼ Ep;n ¼ �h2p2p2

2mw2 � R

n� 1
2

� �2 ;
p, n are nonzero integers and R is the Rydberg constant [12.54].

11:6 (a) Show that a solution of the one-dimensional diffusion equation is

C x; tð Þ ¼ Affiffi
t

p exp � x2

4Dt

� �
:

(b) If
R1
�1 C x; tð Þdx ¼ Q, show that

A ¼ Q

2
ffiffiffiffiffiffiffi
pD

p :

11:7 This problem illustrates the Schottky effect. See Figs. 11.11 and 11.12.
Suppose the attraction outside the metal is caused by an image charge.
(a) Show that in the absence of an electric field we can write the potential
energy as

V xð Þ ¼ E0 � e2

16pe0x
;
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so that with an external field

V xð Þ ¼ E0 � eE1x� e2

16pe0x
:

(b) Thus show that with the electric field E1, the barrier height is reduced
from E0 to E0 − D, where

D ¼ 1
2

ffiffiffiffiffiffiffiffiffi
e3E1

pe0

s
:
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Chapter 12
Current Topics in Solid
Condensed–Matter Physics

This chapter is concerned with some of the newer areas of solid condensed-matter
physics and so contains a variety of topics in nanophysics, surfaces, interfaces,
amorphous materials, and soft condensed matter.

There was a time when the living room radio stood on the floor and people
gathered around in the evening and “watched” the radio. Radios have become
smaller and smaller and thus, increasingly cheaper. Eventually, of course, there will
be a limit in smallness of size to electronic devices. Fundamental physics places
constraints on how small the device can be and still operate in a “conventional
way”. Recently people have realized that a limit for one kind of device is an
opportunity for another. This leads to the topic of new ways of using materials,
particularly semiconductors, for new devices.

Of course, the subject of electronic technology, particularly semiconductor
technology, is too vast to consider here. One main concern is the fact that quantum
mechanics places basic limits on the size of devices. This arises because quantum
mechanics associates a wavelength with the electrons that carry current and elec-
trical signals. Quantum effects become important when electron wavelength
becomes comparable to component size. In particular, the phenomenon of tunnel-
ing, which is often assumed to be of no importance for most ordinary microelec-
tronic devices becomes important in this limit. We will discuss some of the basic
physics needed to understand these devices, in which tunneling and related phe-
nomena are important. Here we get into the area of bandgap engineering to attain
structures that have desired properties not attainable with homostructures.
Generally, these structures are nanostructures. A nanostructure is a
condensed-matter structure having at least one minimum dimension between about
1 nm to 10 nm.

We will start by discussing surfaces and then consider how to form nanos-
tructures on surfaces by molecular beam epitaxy. Nanostructures may be two
dimensional (quantum wells), one dimensional (quantum wires), or “zero”
dimensional (quantum dots). We will discuss all of these and also talk about
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heterostructures, superlattices, quantum conductance, Coulomb blockade, and
single-electron devices.

Another reduced-dimensionality effect is the quantum Hall effect, which arises
when electrons in a magnetic field are confined two dimensionally. As we will see,
the ideas and phenomena involved are quite novel.

Carbon, carbon nanotubes, and fullerene nanotechnology may lead to entirely
new kinds of devices and they are also included in this chapter, as the nanotubes are
certainly nanostructures.

Amorphous, noncrystalline disordered solids have become important and we
discuss them as examples of new materials if not reduced dimensionality.

Finally, the new area of soft condensed-matter physics is touched on. This area
includes liquid crystals, polymers, and other materials that may be “soft” to the
touch. The unifying idea here is the ease with which the materials deform due to
external forces.

12.1 Surface Reconstruction (MET, MS)

As already mentioned, the input and output of a device go through the surface, so
physical understanding of surfaces is critical. Of course, the nature of the surface
also affects crystal growth, chemical reactions, thermionic emission, semicon-
ducting properties, etc.

One generally thinks of the surface of a material as being the top two or three
layers. The rest can be called the bulk or substrate. The distortion near the surface
can be both perpendicular (stretching or contracting) as well as parallel. Below we
concentrate on that which is parallel.

If we project the bulk with its periodicity on the surface and if no reconstruction
occurs we say the surface is 1 � 1. More likely the lack of bonding forces on the
surface side will cause the surface atoms to find new locations of minimum energy.
Then the projection of the bulk on the surface is different in symmetry from the
surface. For the special case where the projection defines primitive surface vectors
a and b, while the actual surface has primitive vectors aS = Na and bS = Mb then
one says one has an N � M reconstruction. If there also is a rotation R of b
associated with aS and bS primitive cell compared to the a, b primitive cell we write
the reconstruction as

aSj j
aj j �

bSj j
bj j

� �
Rb:

Note that the vectors a and b depend on whether the original (unreconstructed or
unrelaxed) surface is (1, 1, 1) or (1, 0, 0), or in general (h, k, l). For a complete
description the surface involved would also have to be included. The reciprocal
lattice vectors A, B associated with the surface are defined in the usual way as
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A � aS ¼ B � bS ¼ 2p; ð12:1aÞ

and

A � bS ¼ B � aS ¼ 0; ð12:1bÞ

where the 2p now inserted in an alternative convention for reciprocal lattice vectors.
One uses these to discuss two-dimensional diffraction.

Low-energy electron diffraction (LEED, see Sects. 1.2.7 and 12.2) is commonly
used to examine the structure of surfaces. This is because electrons, unlike photons,
have charge and thus, do not penetrate too far into materials. There are theoretical
techniques, including those using the pseudopotential, which are available. See
Chen and Ho [12.12].

Since surfaces are so important for solid-state properties we briefly review
techniques for their characterization in the next section.

12.2 Some Surface Characterization Techniques (MET,
MS, EE)

AFM: Atomic Force Microscopy—This instrument detects images of surfaces on an
atomic scale by sensing atomic forces between the sample and a cantilevered tip (in
one kind of mode, there are various modes of operation). Unlike STMs (see below),
this instrument can be used for nonconductors as well as conductors.
AES: Auger Electron Spectroscopy—uses an alternative (to X-ray emission) decay
scheme for an excited core hole. The core hole is often produced by the impact of
energetic electrons. An electron from a higher level makes a transition to fill the
hole, and another bound electron escapes with the left-over energy. The Auger
process leaves two final-state holes. The energy of the escaping electron is related to
the characteristic energies of the atom from which it came, and therefore chemical
analysis is possible.
EDX: Energy Dispersive X-ray Spectroscopy—electrons are incident at a grazing
angle and the energy of the grazing X-rays that are produced, are detected and ana-
lyzed. This technique has sensitivities comparable to Auger electron spectroscopy.
Ellipsometry—study of the reflection of plane-polarized light from the surface of
materials to determine the properties of these materials by measuring the ellipticity
of the reflected light.
EELS: Electron Energy Loss Spectroscopy—electrons scattered from surface atoms
may lose amounts of energy dependent on surface excitations. This can be used to
examine surface vibrational modes. It is also used to detect surface plasmons.
EXAFS: Extended X-ray Absorption Spectroscopy—photoelectrons caused to be
emitted by X-rays are backscattered from surrounding atoms. They interfere with
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the emitted photoelectrons and give information about the geometry of the atoms
that surround the original absorbing atom. When this technique is surface specific,
as for detecting Auger electrons, it is called SEXAFS.
FIM: Field Ion Microscopy—this can be used to detect individual atoms. Ions of
the surrounding imaging gas are produced by field ionization at a tip and are
detected on a fluorescent screen placed at a distance, to which ions are repelled.
LEED: Low-Energy Electron Diffraction—due to their charge, electrons do not
penetrate deeply into a surface. LEED is the coherent reflection or diffraction of
electrons typically with energy less than hundreds of electron volts from the surface
layers of a solid. Since it is from the surface, the diffraction is two-dimensional and
can be used to examine surface reconstruction.
RHEED: Reflection High-Energy Electron Diffraction—high-energy electrons can
also be diffracted from the surface, provided they are at grazing incidence and so do
not greatly penetrate.
SEM: Scanning Electron Microscopy—a focused electron beam is scanned across a
surface. The emitted secondary electrons are used as a signal that, in a synchronous
manner, is displayed on the surface of an oscilloscope. An electron spectrometer can
be used to only display electrons whose energies correspond to an Auger peak, in
which case the instrument is called a scanning Auger microscope (SAM).
SIMS: Secondary Ion Mass Spectrometry—a destructive but sensitive surface
technique. Kiloelectron-volt ions bombard a surface and knock off or sputter ions,
which are analyzed by a mass spectrometer and thus can be chemically analyzed.
TEM: Transmission Electron Microscopy—this is like SEM except that the elec-
trons transmitted through a thin specimen are examined. Both elastically and
inelastically scattered electrons can be examined, and high contrast is possible.
STM: Scanning Tunneling Microscopy—A sample (metal or semiconductor) has a
sharp metal tip placed within 10 Å or less of its surface. A small voltage of order
1 V is established between the two. Since the wave functions of the atoms on the
surface of the sample and the tip overlap, in equilibrium the Fermi energies of the
sample and tip equalize and under the voltage difference a tunneling current of
order nanoamperes will flow between the two. Since the current flow is due to
tunneling, it depends exponentially on the distance from the sample to the tip. The
exponential dependence makes the tunneling sensitive to sub-angstrom changes in
distance, and hence it is possible to use this technique to detect and image indi-
vidual atoms. The current depends on the local density of states (LDOS) at the
surface of the sample and hence is used for LDOS mapping. The position of the tip
is controlled by piezoelectric transducers. The apparatus is operated in either the
constant-distance or constant-current mode.
UPS: Ultraviolet Photoelectron (or Photoemission) Spectroscopy—the binding
energy of a core electron is measured by measuring the energy of the core electron
ejected by the ultraviolet photon. For energies not too high, the energy distribution
of emitted electrons is dominated by the joint density of initial and final states. An
angle-resolved mode is often used since the parallel (to the surface) component of
the k vector as well as the energy is conserved. This allows experimental deter-
mination of the energy of the initial occupied state for which k parallel is thus
known (see Sect. 3.2.2). See also Table 10.3.
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XPS: X-ray Photoelectron (or Photoemission) Spectroscopy—the binding energy of
a core electron is measured by measuring the energy of the core electron ejected by
the X-ray photon–also called ESCA. See also Table 10.3

There are of course many other characterization techniques that we could dis-
cuss. There are many kinds of scanning probe microscopes, for example. There are
many kinds of characterization techniques that are not primarily related to surface
properties. Some ideas have already been discussed. Elastic and inelastic X-ray and
neutron scattering come immediately to mind. Electrical conductivity and other
electrical measurements can often yield much information, as can the many kinds of
magnetic resonance techniques. Optical techniques can yield important information
(see, e.g., Perkowitz [12.49], as well as Chap. 10 on optical properties in this book).
Raman scattering spectroscopy is often important in the infrared. Spectroscopic data
involves information about intensity versus frequency. In Raman scattering, the
incident photon is inelastically scattered by phonons. Commercial instruments are
available, as they are for FTIR (Fourier transform infrared spectroscopy), which use
a Michelson interferometer to increase the signal-to-noise ratio and get the Fourier
transform of the intensity versus frequency. A FFT (fast Fourier transform) algo-
rithm is then used to get the intensity versus frequency in real time. Perkowitz also
mentions photoluminescence spectroscopy, where in general after photon excitation
an electron returns to its initial state. Commercial instruments are also available.
This technique gives fingerprints of excited states. Considerable additional infor-
mation about characterization can be found in Bullis et al. [12.5]. For a general
treatment see Prutton [12.52] and Marder (preface 6, pp 73–82).

Heinz Rohrer

b. Buchs, Switzerland (1933–2013).

Scanning Tunneling Microscopy (STM).

With scanning tunnel microscopy Rohrer was able to image surface atoms
using quantum tunneling. This technique spawned a variety of related tech-
niques including scanning tunneling spectroscopy and atomic force micro-
scopy. He (along with Gerd Binnig) won the Nobel Prize in Physics in 1986.

12.3 Molecular Beam Epitaxy (MET, MS)

Molecular beam epitaxy (MBE) was developed in the 1970s and is by now a
common technology for use in making low-dimensional solid-state structure. MBE
is an ultrathin film vacuum technique in which several atomic and/or molecular
beams collide with and stick to the substrate. Epitaxy means that at the interface of
two materials, there is a common crystal orientation and registry of atoms.
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The substrates are heated to temperature T and mounted suitably. Each effusion cell,
from which the molecular beams originate, are held at appropriate temperatures to
maintain a suitable flux. The effusion cells also have shutters so that the growth of
layers due to the molecular beams can be controlled (see Fig. 12.1). MBE produces
high-purity layers in ultrahigh vacuum. Abrupt transitions on an atomic scale can be
grown at a rate of a few (tens of) nanometers per second. See, e.g., Joyce [12.31].
Other techniques for producing layered structures include chemical vapor deposi-
tion and electrochemical deposition.

Fig. 12.1 Schematic diagram of an ultrahigh vacuum, molecular beam growth system
(adapted from Joyce BA, Rep Prog Physics 48, 1637 (1985), by permission of the Institute of
Physics). Reflection high-energy electron diffraction (RHEED) is used for monitoring the
growth
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12.4 Heterostructures and Quantum Wells

By use of MBE or other related techniques, heterostructures and quantum wells can
be formed. Heterostructures are layers of semiconductors with the same crystal
structure, grown coherently, but with different bandgaps. Their properties depend
heavily on their type. Two types are shown in Fig. 12.2: normal (example
GaAlAs-GaAs) and broken (example GaSb-InAs). There are also other types. See
Butcher et al. [12.6 p. 15]. ΔEc is the conduction-band offset.

Two-dimensional quantum wells are formed by sandwiching a small-bandgap
material between two large-bandgapmaterials. Energy barriers are formed that quantize
the motion in one direction. These can be used to form resonant tunneling devices (e.g.
by depositing small-bandgap—large-bandgap—small-bandgap—large—small, etc.
See applications of superlattices in Sect. 12.6.1). A quantum well can show increased
tunneling currents due to resonance at allowed energy levels in the well. The current
versus voltage can even show a decrease with voltage for certain values of voltage. See
Fig. 12.11. Diodes and transistors have been constructed with these devices.

12.5 Quantum Structures and Single-Electron
Devices (EE)

Dimension is an important aspect of small electronic devices. Dimensionality can be
controlled by sandwiching. If the center of the sandwich is bordered by planar
materials for which the electronic states are higher (wider bandgaps), then
three-dimensional motion can be reduced to two, producing quantum wells.
Similarly one can make linear one-dimensional “quantum wires” and nearly
zero-dimensional or “quantum dot” materials. That is, a quantum wire is made by
laying down a line of narrow-gap semiconductors surrounded by a wide-gap one
with the carriers confined in two dimensions, while a quantum dot involves only a

Fig. 12.2 Normal and broken heterostructures
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small volume of narrow-gap material surrounded by wide-gap material and the
carriers are confined in all three dimensions. With the quantum-dot structure, one
may confine or exchange one electron at a time and develop single-electron tran-
sistors that would be fast, low power, and have essentially error-free signals. These
three types of quantum structures are summarized in Table 12.1.

12.5.1 Coulomb Blockade1 (EE)

The Coulomb blockade model shows how electron–electron interactions can give
rise to effects that in certain circumstances are very easy to understand. It relates to the
ideas of single-electron transistors, quantum dots, charge quantization leading to an
energy gap in the density of states for tunneling, and is sometimes even qualitatively
likened to a dripping faucet. For purposes of illustration, we consider a simple model
of an artificial atom represented by the metal particle shown in Fig. 12.3.

Table 12.1 Summary of three types of quantum structures

Nanostructures Comments

Quantum wells Superlattices can be regarded as quantum well layers—alternating
layers of different crystals (when the wells are not too far apart)

Quantum wires A crystal enclosed on two sides by another crystalline material, with
appropriate wider bandgaps

Quantum dots A crystal enclosed on three sides by another crystalline material—
sometimes descriptively called a quantum box

Note Nanostructures have a least one dimension of a size between approximately one to
ten nanometers. See Sects. 12.6 and 7.4.
References: 1. Bastard [12.2]

2. Weisbuch and Vinter [12.65]
3. Mitin et al. [12.47]

Fig. 12.3 Model of a single-electron transistor

1See Kastner [12.32]. See also Kelly [12.33, pp. 300–305].
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Experimentally, the conductance (current per voltage bias) from source to drain
shows large changes with gate voltage. We wish to analyze this with the Coulomb
blockade model. Let C be the total capacitance between the metal particle and the
rest of the system, which we will assume is approximately the capacitance between
the metal particle and the gate. Let Vg be the gate voltage, relative to source, and
assume the source, particle, and drain voltages are close (but sufficiently different to
have the possibility of drawing current from source to drain). If there is a charge
Q on the metal particle, then its electrostatic energy is

U ¼ QVg þ Q2

2C
: ð12:2Þ

Setting @U=@Q ¼ 0, we find U has a minimum at

Q ¼ Q0 ¼ �CVg: ð12:3Þ

If N is an integer, let Q0 = –(N + η)e, where e > 0, so

CVg ¼ N þ gð Þe: ð12:4Þ

Note that while Q0 can be any value, the actual physical situation will be
determined by the integer number of electrons on the artificial atom (metal particle)
that makes U the smallest. This will only be at a mathematical minimum if Vg is an
integral multiple of e/C.

For −1/2 < η < 1/2, and Vg= (N + η)e/C, the minimum energy is obtained for
N electrons on the metal particle. The Coulomb blockade arises because of the
energy required to transfer an electron to (or from) the metal particle (you can’t
transfer less than an electron). We can easily calculate this as follows. Let us
consider η between zero and one half. Combining (12.2) and (12.4),

U ¼ 1
C

Q Nþ gð Þeþ Q2

2

� �
: ð12:5Þ

Let the initial charge on the particle be Qi = −Ne and the final charge be
Qf = −(N ± 1)e. Then for the energy difference,

DU� ¼ U�
f � Ui;

we find

DU þ ¼ e2

C
1
2
� g

� �
; DU� ¼ e2

C
1
2
þ g

� �
:

We see that for η < 1/2 there is an energy gap for tunneling: the Coulomb blockade.
For η = 1/2 the energies for the metal particle having N and N + 1 electrons are the
same and the gap disappears. Since the source and the drain have approximately
the same Fermi energy, one can understand this result from Fig. 12.4. Note ΔU+ is
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the energy to add an electron and ΔU− is the energy to take away an electron (or to
add a hole). Thus the gap in the allowed states of the particle is e2/C. Just above
η = 1/2, the number of electrons on the artificial atoms increases by 1 (to N + 1)
and the process repeats as Vg is increased. It is indeed reminiscent of a dripping
faucet.

The total voltage change from one turn on to the next turn on occurs, e.g., when
η goes from 1/2 to 3/2 or

DVg ¼ e
C

N þ 3
2
� N þ 1

2

� �� �
¼ e

C
:

A sketch of the conductance versus gate voltage in Fig. 12.5 shows periodic peaks.
In order to conduct, an electron must go from source to particle, and then from
particle to drain (or a hole from drain to particle, etc.).

Fig. 12.4 Schematic diagram of the Coulomb blockade at η = 0. At η = 1/2 the energy gap
ΔE disappears

Fig. 12.5 Periodic conductance peaks
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Low temperatures are required to see this effect, as one must have

kT\
e2

2C
;

so that thermal effects do not wash out the gap. This condition requires small
temperatures and small capacitances, such as encountered in nanodevices. In
addition the metal particle-artificial atom has discrete energy levels that may be
observed in tunneling experiments by fixing Vg and varying the drain-to-source
voltage. See Kasner op. cit.

12.5.2 Tunneling and the Landauer Equation (EE)

Metal-Barrier-Metal Tunneling (EE)
We start by considering tunneling through a barrier as suggested in Fig. 12.6. We
assume each (identical) metal is in local equilibrium with a chemical potential l.
Due to an applied external potential difference u, we assume the chemical potential
is shifted down by −eu/2 (e > 0) for metal 1 and up by eu/2 for metal 2 (see
Fig. 12.7).

Fig. 12.6 Schematic diagram for barrier tunneling

Fig. 12.7 Tunneling sketch
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We consider an electron of energy E and assume it tunnels through the barrier
without changing energy. We write its energy as (with W defined by the equation
and assuming for simplicity the same effective mass in all directions)

E ¼ W þEk þC ¼ �h2k2x
2m� þ �h2

2m� k2y þ k2z
� �

þC;

where C is a constant that determines the bottom of the conduction band and m*,
assumed constant, is the effective mass. We assume, for this case, that the trans-
mission coefficient T across the barrier depends only on W, T = T(W). We insert a
factor of 2 for the spin and consider electron flow in the ± x directions. With u = 0,
let the chemical potential in each metal be l and the Fermi function

f E; lð Þ ¼ 1
exp E � lð Þ=kT½ � þ 1

:

Notice l ! l − eu/2 is the same as E ! E + eu/2. Then the current density J is
(considering current flowing each way, ± x)

dJ ¼ �2emx f Eþ eu=2; lð Þ 1� f E � eu=2; lð Þð Þ½

�f E � eu=2; lð Þ 1� f Eþ eu=2; lð Þð Þ�T Wð Þ d3k

2pð Þ3 :

Since

mx ¼ 1
�h
@E
@kx

;

then

mxdkx ¼ 1
�h
dE:

Also d3k = dkxdkydkz and since

W ¼ E �
�h2k2k
2m� � C with k2k ¼ k2y þ k2z

� �
;

we have

dkydkz ¼ 2pkkdkk ¼ pdk2k ¼ � 2pm�

�h2
dW ;

so substituting we find

dJ ¼ m�e
2p2�h3

f Eþ eu=2ð Þ � f E � eu=2ð Þ½ �dE T Wð ÞdW :

When the form of the barrier is known and is suitably simple, the transmission
coefficient is often evaluated by the WKB approximation. J can then be calculated
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by integrating over appropriate limits (W from 0 to E−C and E from C to infinity).
This is the standard simple way of looking at tunneling conductance. A different
situation is presented below.

Landauer Equation and Quantum Conductance (EE)
In mesoscopic (intermediate between atomic and macroscopic sizes) channels at
small sizes, it may be necessary to have a different picture of transport because of
quantum effects. In mesoscopic channels at low voltage and low temperatures and
few inelastic collisions, Landauer has derived that the electronic conductance is
2e2/h times the number of conductance channels corresponding to all (quantized)
transverse energies from zero to the Fermi energy. Transverse energy is defined as
the total energy minus the kinetic energy for velocities in the direction of the
channel. We derive this result below (see, e.g., Imry I and Landauer R,More Things
in Heaven and Earth, Bederson B (ed), Springer-Verlag, 1999, p515ff.) We here
write the electron energy as

E ¼ �h2k2x
2m

þEny;nz;

where Eny,nz represents the quantized energy corresponding to the y and z directions.
We have replaced the barrier by a device of conductance length L in the x direction
and with small size in the y and z directions. We assume this small size is of order of
the electron wavelength and thus Eny,nz is clearly quantized. We also regard the two
metals as leads to the device and we continue to assume we can treat each lead as
essentially in thermal equilibrium.

We assume Tny,nz(E) is the transmission coefficient of the device. Note we have
allowed for the possibility that T depends on the quantized motion in the y and
z directions. Thus the current is

I ¼ � 2e
L

X
ny;nz

L
Z

dkx
2p

vxTny;nz Eð Þ½f Eþ eu=2; lð Þ � f E � eu=2; lð Þ�:

Note that dkx=2p is the number of states per unit length, so we multiply by
L. Then we end up with (effectively) the number of electrons, but we want the
number per unit length so we divide by L. If u and the temperature are small then

f Eþ eu=2; lð Þ � f E � eu=2; lð Þ½ � ¼ @f
@E

�
u¼0

euð Þ

¼ �d E � lð Þeu:

Then using vxdkx = (1/ħ)dE as before, we have

I ¼ 2e
h

X
ny;nz

Tny;nz lð Þeu:

We thus obtain for the conductance
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G ¼ I
u
¼ 2e2

h

X
ny;nz

Tny;nz lð Þ:

Note that the sum is only over states with total energy l so Eny,nz� l.
The quantity e2/h is called the quantum of conductance G0 so

G ¼ eG0 Rny;nz
Eny;nz �lð Þ

Tny;nz lð Þ;

which is the Landauer equation. This equation has been verified by experiment.
Recently, a similar effect has been seen for thermal conduction by phonons. Here
the unit of thermal conduction is pkBð Þ2T=3h (see Schab [12.53].

12.6 Superlattices, Bloch Oscillators, Stark–Wannier
Ladders

A superlattice is a set of essentially epitaxial layers (with thickness in nanometers)
laid down in a periodic way so as to introduce two periodicities: the lattice peri-
odicity, and the layer periodicity. One can introduce this additional periodicity by
doping variations or by compositional variations. A particularly interesting type of
superlattice is the strained layer. This is a superlattice in which the lattice constants
do not exactly match. It has been found that one can do this without introducing
defects provided the layers are sufficiently thin. The resulting strain can be used to
productively modify the energy levels.

Minibands can appear in a superlattice. These are caused by quantum wells with
discrete levels that are split into minibands due to tunneling between the wells. Some
applications of superlattices will be discussed later. For a more quantitative discussion
of superlattices, see the sections on Envelope Functions, Effective Mass Theory,
ShallowDefects, and Superlattices in Sect. 11.3, and alsoMendez andBastard [12.46].

Bloch oscillations can occur in minibands. Consider a portion of a miniband when
it is “tilted” by an electric field as shown in Fig. 12.8. An electron in the band will
lower its potential energy in the electric fieldwhile gaining in kinetic energy, and thus,

Fig. 12.8 Miniband “tilted” by electric field, and Bloch oscillations
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follow a constant energy path from the bottom of the band to the top, as illustrated
above. For very narrow minibands, there is a good chance it will reach the top before
phonon emission. In such cases, it could be Bragg reflected. Several reflections
between the top and bottom could be possible. These are the Bragg reflections.

We can be slightly more quantitative about Bloch oscillations. The equation of
motion of an electron in a lattice is

�h
dk
dt

¼ �eE; e[ 0: ð12:6Þ
The width of the Brillouin zone associated with the superlattice is

K ¼ 2p
p
; ð12:7Þ

where p is the length of the fundamental repeat distance for the superlattice and K is
thus a reciprocal lattice vector of the superlattice. Integrating (12.6) from one side
of the zone to the other, we find

�hK ¼ �eEt: ð12:8Þ

The Bloch frequency for an oscillation corresponding to the time required to cross
the Brillouin zone boundary is given by

xB ¼ 2p
t
¼ peE

�h
: ð12:9Þ

In a tight binding approximation, the energy band structure is given by

Ek ¼ A� B cos kpð Þ; � p
p
� k� p

p
: ð12:10Þ

The group velocity can then be calculated by

mg ¼ 1
�h
dEk

dk
: ð12:11Þ

In time zero to t1, the electron moves

x1

Zt1
0

mgdt ¼
Z�eEt1=�h

0

mg
dt
dk

dk: ð12:12Þ

Combining (12.12), (12.11), (12.10), (12.9), and (12.6), we find

x1 ¼ B
eE

cos xBt1ð Þ � 1½ �: ð12:13Þ

The electron oscillates in real space with the Bloch frequency xB, as expected. In
a normal material (nonsuperlattice), the band width is much larger than the miniband
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width D, so that phonon emission before Bloch oscillations set in is overwhelmingly
probable. Note that the time required to cross the (superlattice) Brillouin zone is also
the time required to go from k = 0 to p/p (assuming bottom of band is at 0 and top at
2p/p) then be Bragg reflected to −p/p and hence go from k = −p/p to 0. So the Bloch
oscillation is a complete oscillation of the band to the top and back.

Consider a superlattice of quantum wells producing a narrow miniband. On
applying an electric field, the whole drawing “tilts” producing a set of discrete
energy levels known as a Stark-Wannier Ladder (see Fig. 12.9). The presence of
the (sufficiently strong) electric field may cause the extended wave functions of the
miniband to become localized wave functions. If p is the thickness of the period of
the superlattice and D is the width of the miniband, the Stark–Wannier ladder
occurs where |eEp| 	 D. Actual realistic calculation gives a set of sharp resonances
rather than discrete levels, and the Stark-Wannier ladder has been verified experi-
mentally. Stark-Wannier ladders were predicted by Wannier [12.64]. See also
Lyssenko et al. [12.45], and [55, p 31ff].

12.6.1 Applications of Superlattices
and Related Nanostructures (EE)

High Mobility (EE)
See Fig. 12.10. Suppose the GaAlAs is heavily donor doped. The donated electrons
will fall into the GaAs wells where they would be separated from the impurities
(donor ions) that furnished them and could scatter them. Thus, high mobility would
be created. So, this structure would create high-conductivity semiconductors.

Fig. 12.9 An applied electric field to a superlattice may create a Stark–Wannier ladder when
electrons in the discrete levels have no states to easily tunnel to. Only one miniband is shown
and the tilt is exaggerated
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Superlattices were proposed by Esaki and Tsu [12.18]. They have since become a
very large part of basic and applied research in solid-state physics.

Resonant Tunneling Devices (EE)
A quantum well is formed by layers of wide-bandgap, narrow-bandgap, and
wide-bandgap semiconductors. Quantum barriers can be formed from narrow-gap,
wide gap, narrow-gap semiconductors. A resonant tunneling device can be formed
by surrounding a well with two barriers. Outside the barrier, electrons populate
states up to the Fermi energy. If a voltage is applied across the device, the (quasi)
Fermi energy on the input side can be moved until it equals the energy of one of the
discrete energies within the well.

Typically, the current increases with increasing voltage until a match is obtained,
and as the voltage is further increased, the current decreases. The decrease in
current with increasing voltage is called negative differential resistance, which can
be applied in making high-frequency devices (See Fig. 12.11). See, e.g., Beltram
and Capasso in Butcher et al. [12.6 Chap. 15]. See also Capasso and Datta [12.8].

Fig. 12.10 GaAs–GaAlAs superlattice

Fig. 12.11 V-I curve showing the peak and valley indicating resonant tunneling for a double
barrier structure with metals (Fermi energy EF) on each side
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Lasers (EE)
We start with a superlattice (or at least a multiple quantumwell structure) of alternating
wide-gap, narrow-gap materials. The quantum wells form where we have narrow-gap
semiconductors and the electrons settle into discrete ground states in the quantum
wells. Now, apply an electric field so that the ground state of one level is in resonance
with the excited state of the next level. One then gets resonant tunneling between these
two states. In effect, one can obtain a population inversion leading to lasing action (see
Fig. 12.12). For further details, discussion of relevance of minibands, etc., see Capasso
et al. [12.9]. Lasers using quantum wells are used in compact disk players.

Infrared Detectors (EE)
This can be made similarly to the way the laser is made, except one deals with
excitations to the conduction band and subsequent collection by the electric field.
See Fig. 12.13 where the idea is sketched. One assumes the excitation energy is in
the infrared.

(a)

(b)

Fig. 12.12 (a) Resonant tunneling through a superlattice with a discrete Stark-Wannier
“ladder” of states. (b) Resonant tunneling laser (emission amay trigger emission b, etc.). Note
that in (a) we are considering non radiative transitions while (b) has indicated radiative
transitions a and b. Adapted from Capasso F, Science 235, 175 (1987)
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12.7 Classical and Quantum Hall Effect (A)

12.7.1 Classical Hall Effect—CHE (A)

The Hall effect has been important for many reasons. For example, in semicon-
ductors it can be used for determining the sign and the concentration of charge
carriers. The fractional quantum Hall effect, in terms of basic physics ideas, may be
the most important discovery in solid-state physics in the last quarter of a century.
To start, we first reconsider the classical quantum Hall effect for electrons only.

Let electrons move in the (x,y)-plane with a magnetic field in the z direction and
an electric field also in the (x,y)-plane. In MKS units and standard notation (e > 0)

Fx ¼ �eEx � eVyB� mVx

s
; ð12:14Þ

Fy ¼ �eEy þ eVxB� mVy

s
; ð12:15Þ

where the term involving the relaxation time s is due to scattering. The current
density is given by

Jx ¼ �neVx; ð12:16Þ

Jy ¼ �neVy; ð12:17Þ

Fig. 12.13 Infrared photodetector made with quantum wells. As shown, the electrons in the
wells are excited into the conduction band states and then can be collected and detected.
Adapted from Capasso and Datta [12.8, p. 81]
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where n is the number of electrons per unit volume. Letting the dc conductivity be

r0 ¼ ne2s
m

; ð12:18Þ

we can write [in the steady state when Fx, Fy = 0 using (12.14)–(12.18)]

Ex

Ey

� �
¼ 1

r0

1 xcs
�xcs 1

� �
Jx
Jy

� �
; ð12:19Þ

where xc ¼ eB=m is the cyclotron frequency and we can show [by (12.18)]

B
ne

¼ xcs
r0

: ð12:20Þ

The inverse to (12.19) can be written

Jx
Jy

� �
¼ r0

1þ xcsð Þ2
1 �xcs

xcs 1

� �
Ex

Ey

� �
: ð12:21Þ

We will use the geometry as shown in Fig. 12.14. We rederive the Hall coefficient.
Setting Jy = 0, then

Ey ¼ V � Bj j ¼ �xcs
r0

Jx ¼ � B
ne

Jx; ð12:22Þ

where V = Vx = Jx/ne from (12.16). The Hall coefficient is defined as

RH ¼ Ey

JxBz
¼ � 1

ne
ð12:23Þ

Fig. 12.14 Schematic diagram of classical Hall effect
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as usual. The Hall voltage over the length w would then be

VH ¼ �Eyw ¼ BJxw
ne

: ð12:24Þ

The current through the segment of area tw is

Ix ¼ Jxtw; ð12:25Þ

So

VH ¼ BIx
nte

: ð12:26Þ

Define na as the number of electrons per unit area (projected into the (x,y)-plane) so
the Hall voltage can be written

VH ¼ IxB
nae

: ð12:27Þ

The Hall conductance 1/Rxy is

1
Rxy

¼ Ix
VH

¼ nae
B

: ð12:28Þ

Longitudinally over a length L, the voltage change is

VL ¼ ExL ¼ JxL
r0

¼ IxL
twr0

; ð12:29Þ

which we find to be independent of B. This is the usual Drude result. However, this
result is based on the assumption that all electrons are moving with the same
velocity. If we allow the electrons to have a distribution of velocities by doing a
proper Boltzmann equation calculation, we find there is a magnetoresistance effect.
The result is (Blakemore [12.3]).

r ¼ r0

1þ r0RHð Þ2 J � Bj j2
Jj j2

: ð12:30Þ

In addition, when band-structure effects are taken into account one finds there also
may be a magnetoresistance even when J � B = 0. Classically then we predict
behavior for the Hall effect (with Ix = constant) as shown schematically in
Fig. 12.15.
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12.7.2 The Quantum Mechanics of Electrons in a Magnetic
Field: The Landau Gauge (A)

We start by solving the problem of electrons moving in two dimensions (x, y) in a
magnetic field in the z direction (see, e.g., [12.41, 12.51, 12.56, 12.59]). The
essential ideas of the quantum Hall effect can be made clear by ignoring electron
spin, and so we do. The limit to two dimensions is necessary for the quantum Hall
effect as we will discuss later. The discussion of Landau diamagnetism (Sect. 3.2.2)
may be helpful here as a review of the quantum mechanics of electrons in magnetic
fields.

For B = Bk, one choice of A is:

A ¼ � 1
2
r� B; ð12:31Þ

which is a cylindrically symmetric gauge. Instead, we use the Landau gauge where
Ax = −yB, Ay = 0, and Az = 0. This yields a simpler solution for the Hall situation
that we consider.

The free-electron Hamiltonian can then be written

H ¼ 1
2m

p� qA½ �2; ð12:32Þ

where q = –e < 0. In two dimensions this becomes (compare Sect. 3.2.2)

H ¼ 1
2m

�h
i
@

@x
� eyB

� �2

��h2
@2

@y2

" #
: ð12:33Þ

Fig. 12.15 Schematic diagram of classical Hall effect behavior. See (12.27) for VH and
(12.29) for VL
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Introducing the “magnetic length”

ll ¼
ffiffiffiffiffiffi
�h
eB

r
; ð12:34Þ

we can then write the Schrödinger equation as

� �h2

2m
@2

@y2
� 1

i
@

@x
� y
l2l

 !2
2
4

3
5w ¼ Ew: ð12:35Þ

We seek a solution of the form

w ¼ Aeikxu yð Þ;
and thus

� �h2

2m
@2

@y2
þ �h2

2ml4l
y� l2lk
� �2" #

u ¼ Eu: ð12:36Þ

Since also

ll ¼
ffiffiffiffiffiffiffiffiffi
�h

mxc

r
;

and from (12.34) and from the preceding equation for ll, we have

�h2

2ml4l
¼ 1

2
mx2

c :

This may be recognized as a harmonic oscillator equation with the quantized
energies

En ¼ �hxc nþ 1
2

� �
; n ¼ 0; 1; 2. . .;

and the eigenfunctions are

un ¼
mxc

p�h

� �1=4 1ffiffiffiffiffiffiffiffiffi
2nn!

p Hn
y
ll
� llk

� �
exp � 1

2

y� l2lk

ll

 !2
2
4

3
5; ð12:37Þ

where the Hn(x) are the Hermite polynomials

H0 xð Þ ¼ 1; H1 xð Þ ¼ 2x; H2 xð Þ ¼ 4x2 � 2; etc:
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For the Hall effect we now solve for the case in which there is also an electric
field in the y direction (the Hall field). This adds a potential of

U ¼ eEy: ð12:38Þ

The drift velocity in crossed E and B fields is

V ¼ E
B
;

so by (12.38), the above, and xc ¼ eB=m

U ¼ mxcVy: ð12:39Þ

Thus we can write from (12.38):

� �h2

2m
@2

@y2
þ 1

2
mx2

c y� l2lk
� �2

þmxcVy

� �
u ¼ Eu: ð12:40Þ

Now since V is very small, we can neglect terms involving the square of V. Then if
we define the origin so y = y′ − aV, with a ¼ 1=xc, the Schrödinger equation
simplifies to the same form as (12.36):

� �h2

2m
@2

@y2
þ 1

2
mx2

c y0 � l2lk
� �2� �

u ¼ E � mxcl
2
lkV

h i
u: ð12:41Þ

Thus using (12.37) in new notation,

un / Hn
yþV=xc

ll
� llk

� �
exp � 1

2

yþV=xc � l2lk

ll

 !2
2
4

3
5; ð12:42Þ

and

En ¼ �hxc nþ 1
2

� �
þmxcl

2
lkV : ð12:43Þ

Now let us discuss some qualitative results related to these states.

12.7.3 Quantum Hall Effect: General Comments (A)

We first present the basic experimental results of the quantum Hall effect and then
indicate how it can be explained. We have already described the Hall geometry. The
Hall resistance is VH/Ix, where Ix may be held constant. The longitudinal resistance
is VL/Ix. One finds plateaus at values of (h/e

2)/v with e2/h being called the quantum
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of conductance and m is an integer for the integer quantum Hall effect and a fraction
for the fractional quantum Hall effect.

As shown in Fig. 12.16, VL/Ix appears to be zero when the Hall resistance is on a
plateau. The figures only schematically illustrate the effect for m = 2, 1, and 1/3.
There are many other plateaus, which we have omitted.

The quantum Hall effect requires two dimensions, low temperatures, electrons,
and a large external magnetic field. Two dimensions are necessary so the gaps in
between the Landau levels (Eg ¼ �hxc) are not obliterated by the continuous energy
introduced by motion in the third dimension. (The IQHE involves filled or empty
Landau levels. Gaps for the FQHE, which involve partially filled Landau levels, are
introduced by electron–electron interactions.) Low temperatures are necessary so as
not to wipe out the quantization of levels by thermal-broadening effects.

There are two convenient ways to produce the two dimensional electron systems
(2DES). One way is with MOSFETs. In a MOSFET a positive gate voltage can
create a 2DES in an inversion region at the Si and SiO2 interface. One can also use
GaAs and AlGaAs heterostructures with donor doping in the AlGaAs so the
electrons go to the GaAs region that has lower potential. This separates the elec-
trons from the donor impurities and hence the electrons can have high mobility due
to low scattering of them.

The IQHE was discovered by Klaus von Klitzing in 1980 and for this he was
awarded the Nobel prize in 1985. About two years later, Störmer and Tsui dis-
covered the FQHE and they along with Laughlin (for theory) were awarded the
1998 Nobel prize for this effect.

Qualitatively, the IQHE can be fairly simply explained. As each Landau level is
filled there is a gap to the next Landau level. The gap is filled by localized non-
conducting states, and as the Fermi level moves through this gap, no change in
current is observed. The Landau levels themselves are conducting. For the IQHE
the electron–electron interactions effects are really not important, but the disorder
that causes the localized states in the gap is crucial.

The fractional quantum Hall effect occurs for partially filled Landau levels and
electron–electron interaction effects are crucial. They produce an excitation gap

Fig. 12.16 Schematic diagram of quantum Hall effect behavior
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reminiscent of the gap produced in the Mott insulating transition. Potential fluc-
tuations cause localized states and plateau formation.

The Integer Quantum Hall Effect—IQHE–Simple Picture (A)
We give an elementary picture of the IQHE. We start with four results.

a. The Landau degeneracy per spin is eB/h. (This follows because the number of
states per unit area in k-space (ΔA) and in real space is ðDAÞ=ð2pÞ2. Then from
(5.29), (ΔA) = (2p)2(eB/h). Thus, the number of states per unit area in real space
is nB 
 eB/h).

b. The drift velocity perpendicular to E and B field is V = E/B.
c. Flux quanta have the value U0 = h/e [see (8.47)].
d. The number offilled Landau levels m = N/NU, where N is the number of electrons

and NU is the number of flux quanta. This follows from m = N/(eBLw/h) =
N/(U/U0).

Then

Ix ¼ Jxwt ¼ neVwt; ð12:44Þ

where n = the number of electrons per unit volume and

n ¼ N
wtL

¼ m
eB
h

Lwð Þ 1
wtL

¼ m
eB
ht

: ð12:45Þ

So since V = E/B,

Ix ¼ m
eB
ht

e
E
B
wt ¼ me2

Ew
h

¼ me2
VH

h
; ð12:46Þ

or

I
VH

¼ 1
Rxy

¼ the Hall conductance =
me2

h
: ð12:47Þ

If B changes, as long as the Fermi level stays in the gap, the Landau levels are
filled or empty and the current over the voltage remains on a plateau of fixed n. (It
can be shown that the total current carried by a full Landau level remains constant
even as the number of electrons that fill it varies with the Landau degeneracy.)

Incidentally, when 1/Rxy = ve2/h then 1/Rxx = I/VL ! ∞ or Rxx ! 0. This is
because the electrons in conducting states have no available energy states into
which they can scatter.

Fractional Quantum Hall Effect—FQHE (A)
One needs to think about the FQHE both by thinking about the Laughlin wave
functions and by thinking of their physical interpretation. For example, for the
m = 1/3 case with m = 3 (see general comments, next section), the wave function is
(see [12.41]):
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w z1; . . .; zNð Þ ¼
YN
j\k

zj � zk
	 
m

exp � 1
4l2l

XN
j¼1

zj
�� ��2 !

; ð12:48Þ

where zj = xj +iyj locates the jth electron in 2D. Positive and negative excitations at
z = z0 are given by (see also [12.59])

wþ ¼ exp � 1
4l2l

XN
j¼1

zj
�� ��2 !YN

j

zj � z0
	 
YN

j\k

zj � zk
	 
m

; ð12:49Þ

w� ¼ exp � 1
4l2l

XN
j¼1

zj
�� ��2 !YN

j

2l2l
@

@zj
� z�0

� �YN
j\k

zj � zk
	 
m

: ð12:50Þ

For m = 3, these excitations have effective charges of magnitude e/3. The ground
state of the FQHE is considered to be like an incompressible fluid as the density is
determined by the magnetic field and is fairly rigidly locked. The papers by
Laughlin should be consulted for full details. It may even be possible to think of
fractional Hall states as having a 3D character. See Fiona J. Burnell and Shivaji L.
Sondhi, “Fractional charges fly between planes,” Physics 2, 49 (2009) online.

These wave functions have led to the idea of composite particles (CPs). Rather
than considering electrons in 2D in a large magnetic field, it turns out to be possible
to consider an equivalent system of electrons plus attached field vortices (see
Fig. 16, p. 885 in [12.51]). The attached vortices account for most of the magnetic
field and the new particles can be viewed as weakly interacting because the vortices
minimize the electron–electron interactions. Further insight into the fractional
quantum Hall effect (including the important edge effect we have not discussed) is
in Mathew Grayson, “Quasiparticle doppelgängers,” Physics 2, 56 (2009) online.

More ideas about the topics in this section are to be found in our section on
topological insulators. Also an excellent article in Physics Today connects many
relevant concepts, see Sung Chang, “Foundational theories in topological physics
garner Nobel Prize,” Physics Today, December 2016, pp. 14–17. The article
emphasizes the importance of topology change to difference phases as well as the
older concept of symmetry breaking.

General Comments (A)
It turns out that the composite particles may behave as either bosons or fermions
according to the number of attached flux quanta. Electrons plus an odd number of
surrounding flux quanta are Bose CPs and electrons with an even number of
attached quanta are Fermi CPs. The m = 1/3, m = 3 case involves electrons with
three attached quanta and hence these CPs are bosons that can undergo a Bose–
Einstein-like condensation, produce an energy gap, and have a FQHE with plateaus.
For the m = 1/2 case, there are two attached quanta, the system behaves as a col-
lection of fermions, there is no Bose–Einstein condensation and no FQHE.
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In general, when the magnetic field increases, electrons can “absorb” some field
and become “anyons.” These can be shown to obey fractional statistics and seem to
be intermediate between fermions and bosons. This topic takes us too far afield and
references should be consulted.2

There are different ways to construct CPs to describe the same physical situation,
but normally one tries to use the simplest. Also, there are still problems connected
with the understanding of some values of m. A complete description would take us
further than we intend to go, but the chapter references listed at the end of this book
can be a good starting point for further investigation.

The quantum Hall effects are very rich in physical effects. So far, they are not so
rich in applications. However, the experiments do determine e2/h to three parts in
ten million or better, and hence they provide an excellent resistance standard. Also,
since the speed of light is a defined quantity, the QHE also determines the fine
structure constant e2/hc to high accuracy. It is interesting that the quantum Hall
effect determines e2/h, while we found earlier that e/h could be determined by the
Josephson effect. Thus the two can be used to determine both e and h individually.

Klaus von Klitzing

b. Schroda, Germany (now Poland) (1943–).

Integer Quantum Hall Effect; Later work on low dimensional electronic
systems.

Known for experimentally detecting the integer quantum Hall effect and
thus exhibiting the von Klitzing constant, which is Planck’s constant over the
electronic charge squared. This number is in ohms and gives a value to a
fundament resistance (RK = h/e2 = 25,812.807557 (very nearly) X because of
so called “exact quantization.”). In 1985, von Klitzing won the Nobel Prize
for this work.

Robert B. Laughlin

b. Visalia, California, USA (1950–).

Theory of Fractional Quantum Hall Effect.

Laughlin is best known for finding a many body wave function for
describing the fractional quantum Hall effect. Along with Horst Störmer and
Daniel Tsui he won the Nobel Prize in 1998 for the fractional quantum Hall
effect. He also has taken a somewhat controversial position on the ability to
predict future weather such as climate change.

2See Lee [12.43].
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12.7.4 Majorana Fermions and Topological Insulators
(Introduction) (A)

When Dirac wrote down his relativistic quantum theory he did not have to write his
Dirac solutions of the Dirac equation. There are variations of the equations that
Dirac considered that describe quantum relativistic particles of various spin. In
particular we now talk about Majorana and Dirac fermions. Dirac fermions describe
most fermions that we know about and they have mass. Majorana fermions [1
below], are their own antiparticles (which means they must also have no charge).
Majorana fermions must be neutral or their antiparticles would have an opposite
sign. They are described by their own equation separate from but related to the
Dirac equation. The complete nature of neutrinos is not yet known, but they do
appear to have mass. There may be neutrinos that are Majorana fermions.

It is possible that Majorana fermions may contribute to the success of doing
quantum computing, they may have robust coherence, or resist decoherence, due to
outside perturbation. A key experiment to prove their existence is to find the
phenomena of neutrinoless double beta decay. This can exist if neutrinos can be
massive Majorana particles. Majorana’s equations may relate to electronic states in
superconductors. They are thought to occur as emergent particles in supercon-
ducting solids.

Majorana fermions also appear to relate to certain solids which are called
topological insulators [2 below]. Topological insulators are insulators in the bulk or
interior but have surface states that conduct. That is the bulk states have gaps, but
the surface states do not. In general, it is hard to change a topological material
unless you change its phase.

Dirac, Majorana, and Weyl Fermions
We now seem to have three types of fermions, so perhaps it is well to summarize
where we are. They all of course obey Fermi-Dirac statistics. They are all solutions
of the Dirac equation (found by Majorana and Weyl, after Dirac had used his
equation to describe electrons and predict the existence of positrons).

1. Dirac Fermions (These are not their own antiparticles). Most fermions we know
about are classified as Dirac. Perhaps the electron is the most familiar one. These
can be massless as electrons in graphene. Technically, they are four component
spinors.

2. Majorana Fermions (These are their own antiparticles) They have been detected
by Ali Yazdani of Princeton, and others, as quasi particles in condensed matter
systems. These could have applications to quantum computers. These are also
four component spinors.

3. Weyl Fermions (These are massless) Zahid Hasan of Princeton University, and
others have detected quasi particle Weyl fermions in semimetal tantalum
arsenide (TaAs). These might have application for devices requiring very fast
conduction of electricity. These are two component spinors.
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For more details see reference 3 below.

Topological Materials
The distinguishing feature of topological materials is that they are, as indicated,
insulating or have band gaps in the bulk but possess gapless edge or surface states as a
result of the topology. Related to this is the spins are locked perpendicular to the
momentum of the charge carriers. Electrons move on the surface without scattering
perhaps even when the temperature is at room temperature. One says, the surface or
edge current in topological insulators seems to be protected by topology. Topological
insulators are related to the integer 2D quantum Hall effect. There are also 3D
topological insulators. These topological insulators are attracting interest because
they seem to have states which would be important for quantum computing.

In 3D superconducting topological insulator materials a superconducting energy
gap leads to Majorana fermions and may facilitate quantum computing. Topological
insulators are clearly important but they involve subtle quantum mechanics which
is, to some extent, outside of the scope of this book. References, such as those
below, or the discussion we give in the next section, will have to be consulted.

However, they are of increasing interest because the solids out of which they are
made no longer have to be synthesized out of bismuth antimonide and other ele-
ments but have been found in a mine in the Czech Republic. The ore that is a
“Topo” insulator is called Kawazulite and is of course of a complex nature.
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Andrei, as noted above has worked in a number of fields. She is an
experimental physicist who uses the techniques of Scanning Tunneling
Microscopy (and Spectroscopy), among others in her work. Dr. Andrei is
particularly known for her work with graphene. She is a Chaired Professor in
the Physics and Astronomy Department at Rutgers University.

12.7.5 Topological Insulators (A, MS)

There are many new ideas to discuss when one starts talking about condensed
matter and topology. First of all the discussion of topological insulators involves
discussing a topological invariance [1 below] such as the topological difference
between a sphere (an idealized orange) and a torus (an idealized donut). One says
there is no way to continuously and smoothly pass from one to another by defor-
mations (i.e. adiabatically).

The concept of topological insulators also involves a phase that is not obtained
by spontaneously breaking a symmetry (such as when a crystalline solids breaks
translational symmetry, magnets break rotational symmetry, or superconductors
break gauge symmetry). That is, topological insulators are a new phase that arises
from their topology and not from a spontaneous broken symmetry.

One should understand that there is something entirely new about topological
insulators and topological phases. They are really new phases quite distinct from the
classic three phases of solid, liquid, and gas, or even of the newer phases of plasma
and quantum (see e.g. Quantum Phase Transitions). These phases do not arise from
spontaneous symmetry breaking as do the classic phases but from different
topologies. The integer Hall effect as well as the integer spin Hall effect were early
discoveries and have only been fully understood because of topological effects. The
introduction of topology into Condensed Matter/Solid State Physics, has truly been
a revolution for the field.

From a band theory perspective, which is mostly what we will consider, one
thinks of topological insulators as having a different topology in their electronic
band structure from ordinary insulators. Suppose one has a way of assigning a
topology to bands. Bands with different topologies that cannot be mapped from one
to another by adiabatic distortions will have different properties. For example,
bands with band gaps for electronic excitations are topologically different from
those without band gaps. In the study of topological insulators, one investigates
different classes of band topologies to see if one can produce useful properties.

A topological insulator (or TI as we will often refer to them) can be described for
our purposes as follows [2, 5 below]:
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(a) A band insulator whose bulk is band gapped (for the most part we will not
consider strongly correlated electron systems).

(b) Has a topological number (to be clarified later).
(c) Has gapless excitations and is conductive at its boundaries or edges but not in

the bulk.
(d) Has topologically protected properties (for the edge states, again to be clarified

later).

What we want to present here is enough information to outline what this topic is
about and why it is important. A complete study would involve looking at some
reviews as well as several specific papers in the references [1–5 below], as well as
research papers and books. We prefer to derive any statements we can, but for this
topic that is impossible, as it is beyond the scope of the book, and would also take
up too much space. Books have been written on TIs [6 below]. Some statements we
will make without proof.

The list, (a)–(d) does not uniquely define TIs. Quantum Hall materials, which
have been discussed (see Sect. 12.7.3), have properties that depend on their
topology but are generally not called topological insulators. However, topological
insulators (e.g. crystals with Quantum Spin Hall states) are different still. To see the
quantum Hall effect it is necessary to have an external magnetic field. This external
field breaks time reversal symmetry. Quantum spin Hall materials are examples of
TIs and require no such field. They also have time reversal symmetry. Topological
insulators have different topology than quantum Hall systems. As already alluded
to, the idea of discussing topology with condensed matter physics is relatively new
and takes some getting used to. There will be new names and ideas introduced.

As we have indicated, a peculiar but important property of topological insulators
is that they are true insulators in the bulk but they have surface states that are metallic
or conducting. One says these surface states are topologically protected and they are
not affected by impurities or other common non-magnetic perturbations. In the bulk
of topological insulators, there are energy gaps, but the surface does not have them.

All this is to say that that there are many interesting ideas involved in TIs. These
include; Kramers’ Theorem, Berry Phases, Chern numbers, Z2 topological invari-
ants, Majorana particles, topological insulators in two and three dimensions, chiral
“one way” states, genus, and so on. We will at least mention most of these.

Do real crystals exist that are topological insulators? After all, this in an area that
was mostly first explored in theory. The answer is yes (see Real Materials below),
and one TI has even been found in nature, as we have mentioned and will mention
later. Others have been grown in the lab.

The engineering types will ask, but are there any applications? Again, the answer
is yes. They should have applications to spintronics and maybe more importantly to
quantum computing. See Possible Applications below.

Now we need to start going over things in a little more detail.
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Symmetries and Topology
By symmetry, we already know that we mean an operation that leaves an object
invariant, such as translating a crystal by a “repeat” distance. The ideas of symmetry
have long been basic to solid-state physics. Crystals are of course classified by their
symmetry.

By a topology, we mean the study of objects that have properties that stay the
same when we deform it. Here we are interested in electronic phases that are the
same or different under a smooth adiabatic deformation.

These are often characterized by genus. Genus, in common usage, is the number
of “holes” an object has. A round ball has genus zero while a donut or a coffee mug
has genus one. For two-dimensional surfaces, the idea is clear. For higher dimen-
sions, one must consider abstractions.

The Kramers degeneracy theorem in quantum mechanics is important. With time
reversal symmetry, this theorem says that every energy level with half-integer spin
is at least doubly degenerate. We will see important examples of this theorem later.

The concepts of Berry phases [12 below] and Chern numbers are very important
when it comes to discussing topological properties of materials. We will discuss
them later, albeit rather lightly.

Let us first look at ordinary insulators. Solid Argon is often mentioned as a
classic insulator with a very large energy gap, and Si is an insulator that is easily
made to conduct because of its small energy gap. These are illustrated in
Figs. 12.17 and 12.18. Si is more often called a semiconductor because its con-
ducting properties are usually controlled by adding impurities. Also, as we have
alluded to before, we only discuss solids where the band theory gives an adequate
description of electronic properties. Thus, certain strongly correlated electronic
materials may be excluded from our discussion.

CB 

CB 

CB 

VB VB VB 

BG BG

Energy 

Insulator Semiconductor Metal

Fig. 12.17 Simplified band picture. CB is Conduction Band, VB is Valence Band, and BG
is Band Gap. Shaded areas are occupied with electrons. BG for insulator is *10 eV. BG for
a semiconductor is *1 eV. BG for a metal is not relevant here; the point is the highest
occupied band is partially full
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Quantum Hall Effect—Strong Applied B
The “original” topological phase or state is the quantum Hall effect [7 below].
David Thouless and coworkers are given credit for realizing the importance here of
topology. The effect here involves 2-D (the “flatlands”) confined electrons and a
large magnetic field characterized by B. See Fig. 12.19a. We have also discussed
this phenomenon in Sect. 12.7.3.

On the surface, the states are metallic. We call these states TSS or topological
surface (edge) states [8 below]. The states on each edge are one-way states. In the
ideal case, the states are too far apart to mix. Since they are one-way states they
cannot turn around when they scatter. One says these states are “robust,” or
topologically protected.

(a) “Ordinary” Insulator 

(b) Topological Insulator 

VB

VB

CB

CB

EF
BG

Energy 

Energy 

k (crystal 
    momentum)

k (crystal 
    momentum)

Surface or 
Edge States

BG

0

EF

Fig. 12.18 Sketch (a) and (b): CB is Conduction Band, VB is Valence Band, and BG is
Band Gap, EF is Fermi energy. Shaded areas are full. CB and VB are in bulk. Surface states
connect VB and CB. The edge or surface states in the figure show Kramer’s degeneracy. The
Dirac point, or place where the surface states cross and have the same energy is of particular
importance. For the IQHE, in which spin is not considered, there is only one (or an odd
number) of states that connect the VB and the CB
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As given in (12.47), the Hall conductance r is

r ¼ ne2

h

where n is an integer and the equation is accurate to 10−9 a remarkable fact.
The significant difference between a pure insulator and the quantum Hall state is

topology. In the above equation for the Hall conductance, n is called the first Chern
number and it is zero for a pure insulator but a non-zero integer for the IQHE. One
can regard the value of n as similar to a winding number as illustrated in Fig. 12.20.
Note one can think of a winding number as similar to the number of times a rope is
wrapped around a post.

(a) Quantum Hall 

Edge motion can be 
viewed as “skipping 
orbits” 

B 
×

(b) Quantum Spin Hall 

Edge

Edge

Fig. 12.19 (a) Spin is not relevant; there is an applied B field. Bulk is insulating. (b) Edge
states are robust against impurities and are metallic (unless perturbation closes energy gap)
and here there is no applied magnetic field, but rather a strong spin-orbit coupling. The two
cases are distinct topologically

n = 0 n = 1 n = 2

Fig. 12.20 Winding number
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In Fig. 12.19, the 2-D electron states are on the boundary of a material, with the
interior an insulator. The edge states are the ones we are concerned with here. These
states can be pictured classically as skipping states as in Fig. 12.19a. The skipping
states, classically, are just the usual skipping states of electrons which go in circles
around a magnetic field, except where their circuit is intercepted by the boundary.
Because of the boundary, those electrons close to it, bounce off it as shown. As
noted, they are one-way states. If they go forward on the top, they go back on the
bottom and one says they are topologically protected, because the top and bottom
states do not mix. There is no way for the top states to be reflected back, as they are
in unidirectional states. There is no dissipation and they are insensitive to disorder.
We have already noted that the conductance is quantized. The Chern number gives
the number of edge modes.

In terms of applying these modes, one needs a large B and a low T. Because of
the external B, these modes also break time invariance. Something is time invariant
if there is no way to tell that the system is running forward or backward in time (that
is, that the equations of motion are invariant to time reversal).

The Quantum Spin Hall Effect, Topological Insulators (2-D)
Two of the major aspects of TIs are:

A. On the surface the spin is perpendicular to momentum, and when they reverse
direction so does the spin (this comes from relativistic effects).

B. Their surfaces stay metallic even if there are many (non magnetic) defects. The
metallic boundary of topological insulator comes from topological invariance.

Here we think of the magnetic field being “replaced” for the TIs by the spin orbit
effect which must be strong–this means we need heavy elements and small band
gap materials so the band gap is much less than the spin-orbit coupling.

We begin by giving a heuristic derivation of the spin-orbit energy. (See e.g. Robert
Eisberg and Robert Resnick, Quantum Physics of Atoms, Molecules, Solids, Nuclei,
and Particles, Second Edition, John Wiley and Sons, New York, 1985) Note that we
begin in (12.51) by using a relativistic transformation. In MKS units with

c ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðv=cÞ2

q ffi 1;

neglecting terms of order (v/c)2, we have for a particle moving with velocity v,

B ¼ � v� E
c2

: ð12:51Þ

Assuming a radial field as from the nucleus of an atom,

E ¼ E
r
r

ð12:52Þ
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so

B ¼ � v� r
c2r

E ¼ � p� r
m0c2r

E: ð12:53Þ

or

B ¼ L
m0c2r

E: ð12:54Þ

where m0 = rest mass and L = r � p. Now

E ¼ � dU
dr

¼ þ 1
e
dV
dr

where U is the potential and V = −eU is the potential energy of the electron in the
atom. So

B ¼ L
m0c2e

1
r
dV
dr

E: ð12:55Þ

The energy of the electron due to field B is thus

E ¼ �l � B ð12:56Þ

where the magnetic moment of the electron is

l ¼ glB
S
�h

with g being the g-factor and lB being the Bohr magneton.
In the usual convention g = 2 (for spin) and lB = eh/2m0, so

E ¼ þ 2
e�h
2m0

�h

� �
1

m0c2e
1
r
dV
dr

S
�h
� L
�h

� �

or with S and L in units of �h

E ¼ þ �h2

m2
0c

2

1
r
dV
dr

S � L ð12:57Þ

This is correct except for the relativistic Thomas precessing due to the fact that the
electron is rotating about the nucleus. See e.g. J. D. Jackson, Classical
Electrodynamics, New York, 1975 pp 546ff. Then
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E ¼ þ �h2

2m2
0c

2

1
r
dV
dr

S � L ð12:58Þ

This is identical to (F.9) in Appendix F.
We continue by writing down the part of the Hamiltonian (called Rashba). We

must add in the Rashba Hamiltonian (see below) and note it’s effects. We can also
write by (12.51) and using the energy of a magnetic dipole moment in a field B.

H ¼ �l � B ¼ þ l

c2
� ðv� EÞ: ð12:59Þ

For an electron with spin S ¼ �h=2

l ¼ �glB
S
�h
¼ �ð2Þ e�h

2m0

S
�h
¼ e�h

2m
r; ð12:60Þ

where e is the magnitude of electronic charge. So

H ¼ � e�h
2m0c2

ðr � vÞ � E ¼ � e�h
2m2

0c2
ðr� pÞ � E; ð12:61Þ

since p = mv. Now if E ¼ E0ẑ, this quantity is called the Rashba Hamiltonian HR

HR ¼ aðr� pÞ � ẑ;

where

a ¼ � e�hE0

2m0c2

The Rashba effect involves spin bands, depending of course on spin and p, the
momentum in two-dimensional electronic systems. Our derivation of the Rashba
Hamiltonian is heuristic and the a so derived is not accurate.

The Rashba effect is important in the study of spintronics as well as in possibly
attaining topological quantum computation. Here one may get into “p-wave”
superconductors, Majorana bound states, both of which are beyond the scope of this
book.

To emphasize, the topological insulators are insulators in the bulk or interior but
have surface states that conduct. That is, the bulk states have energy gaps, but the
surface states do not. Changes in the topology of materials involve changes in phase
(Fig. 12.18b aswell as Fig. 12.19b illustrate this). As shown, the spin is perpendicular
to momentum. Again, we call these states TSS or topological surface (edge) states
[8 below]. The states on each edge are chiral or handed–see the end of this section for
further discussion. In common discussion, chiral states often refer to one-way currents
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as in the IQHEwhile helical is often used for the ISHEwhere there is spin polarization.
In the ideal case, the spin states on each edge are too far apart to mix.

The gapless edge or surface states are a result of the topology, which causes the
connection of the VB and the CB as shown. Related to this is the spins are locked
perpendicular to the momentum of the charge carriers. Electrons move on the surface
without scattering apparently even when the temperature is at room temperature for
some cases. One says the surface or edge current in topological insulators is pro-
tected by topology. Topological insulators are related to the integer 2-D quantum
Hall effect. There are also 3-D topological insulators. Topological insulators are
attracting interest partly because they may have states that would be important for
quantum computing. Some of the mathematics helpful for this case is given below.

Suppose H is the Hamiltonian of the crystal. Then to get the energy eigenstates
we must solve the time independent equation

Hw ¼ Ew ð12:62Þ

If we can use a one-electron picture then for each band of electrons

HwkðrÞ ¼ EðkÞwkðrÞ ð12:63Þ

where by Bloch’s Theorem

wkðrÞ ¼ eik�rukðrÞ ð12:64Þ

and

ukðrÞ ¼ ukðrþRÞ ð12:65Þ

where R is any repeat distance.
If we define

HðkÞ ¼ eik�rHe�ik�r ð12:66Þ

then

HðkÞukðkÞ ¼ EðkÞukðkÞ ð12:67Þ

where HðkÞ is sometimes called the Bloch Hamiltonian, and E(k) is periodic in the
reciprocal lattice. This means in 2-D (bulk) one can picture E(k) as a torus for each
band.

We can further pursue the topology by defining the Berry connection of Bloch
states

A ¼ �uk��1i rk
��uk; ð12:68Þ
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and the Berry Curvature

F ¼ r� A: ð12:69Þ

Note the similarity here to the vector potential. We further define the first Chern
number as

n ¼ 1
2p

Z
F � dAk

¼ 1
2p

I
A � dk

ð12:70Þ

where dAk is an area in k space and the integrals are carried out within the first
Brillouin Zone only, of course, over occupied states. This is a topological invariant.
For the quantum Hall effect

rxy ¼ n
e2

�h

for one filled band. In a material in which there is only spin-orbit interaction as in
the quantum spin Hall effect, n = 0. So now n is not a useful topological invariant.
However, there is another topological invariant that can be used and the literature
can be consulted for details.

A complete treatment of Berry phases and related matters is beyond the scope of
this book, but this article, with many references is a good place to start: Di Xiao,
Ming-Che Chang, and Qian Niu, “Berry Phase Effects on Electronic Properties,”
This article, available on the internet (http://phy.ntnu.edu.tw/*changmc/Paper/wp.
pdf) is a wide ranging pedagogical article. The last sentence in the abstract is of
particular interest. “It is clear that the Berry phase should be added as an essential
ingredient to our understanding of basic material properties.”

There are other ways of arguing the robustness of the surface states, see
Fig. 12.21. There are two ways as shown to scatter into backward moving states.
Spin 1/2 particles have phase difference of 2p between forward and backward paths
and the net effect is to insert a p phase change which inserts a minus sign into their
addition (via eip). Thus, these two backward states destructively interfere and so

(a) (b)

Fig. 12.21 Two ways to scatter: (a) clockwise and (b) counterclockwise. In (a) we have p
change in spin and in (b) −p, so the difference is 2p. For a 2p rotation of spin ½ particle the
wave function w ! −w and thus the two ways to reverse direction interfere destructively.
This effect only occurs when the number of forward (and backward moves) is odd
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perfect transmission is assured. As before indicated, we call these states TSS or
topological surface (edge) states [8 below]. The states on each edge are chiral or
handed–see the end of this section for definition. In the ideal case, the spins on each
edge are too far apart to mix.

There is another way of looking at things. We show that time reversal symmetry
suppresses scattering. (General ideas of quantum mechanics such as anti-unitarity
may be useful here [9 below]).

Here we show that if states have time reversal symmetry then they cannot be
scattered. Let T be the time reversal operator. It can be shown.3

H; T½ � ¼ 0 ð12:71Þ

when H has time reversal symmetry. It can also be shown that T is an antiunitary
operator, so

Twa j Twbh i ¼ wa j wbh i� ð12:72Þ

and

T2 waj i ¼ � waj i ð12:73Þ

if wa represents a spin ½ particle. Thus, by (12.72) and (12.73) we can say

wa j Twah i ¼ Twa

�� T2wa

� �
¼ � Twa j wah i�
¼ � wa j Twah i :

ð12:74Þ

Using

wa j wbh i ¼ wb j wah i�

we find

wa j Twah i ¼ 0: ð12:75Þ

By a similar argument, further manipulation as shown below results in (12.76)
Let

wa ¼ k; "j i; Twa ¼ �k; #j i

wb ¼ TU waj i ¼ U �k; #j i

U is invariant to time reversal (no B). So

3Eugen Merzbacher, Quantum Mechanics,” 2nd Edn 1970, John Wiley and Sons, p. 406ff.
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wa j wbh i ¼ Twa j Twbh i�
T wbj i ¼ T2U waj i ¼ �U waj i:

Therefore

wa j wbh i ¼ Twah jU Twaj i�
¼ � wah jU Twaj i

or

k; "h jTU waj i ¼ k; "h jU �k; #j i
¼ � k; "h jU �k; #j i:

So

k; "h jU �k; #j i ¼ 0: ð12:76Þ

Thus, if U is the time invariant scattering operator the backscattering is impossible.
The Bulk Boundary correspondence has to do with the relation of, for example,

the Chern quantum number and the evaluation of it for the bulk by (12.70). For the
IQHE, n is the number of “wires” or one-way conducting states n. Recall rxy = ne2/h,
each wire contributes a one to n. For the QSHE, the net number of wires is
effectively zero as they come in conducting pairs, each pair going forward and
backward. In addition, for the QSHE there is a Chern parity which is odd or even,
but odd for QSH. The Chern parity is another topological invariant which by
definition does not change under an adiabatic deformation that leaves an energy
gap. We often speak of the states as being Dirac Fermions, which means they are
not their own anti particles. (Majorana Fermions are their own antiparticles) If, in
addition, they are massless (energy proportional to wave vector k) we say they are
helical or maybe chiral. For particles that are like photons, chiral and helical mean
the same thing. Otherwise helical particles can be reversed because helical particles
are either right handed or left handed with the spin in the direction of the
momentum or opposite to the momentum. But this can be reversed if we can find a
reference frame moving faster than the particles. For chiral particles we use this
definition but think of a fixed reference frame in which the particles move.

As indicated for QSHE, what we have to do is find a material that has a strong
spin orbit effect. In a sense, the spin orbit effect plays the role of the external
magnetic field. For the spin Hall insulator however there are two connecting E
(k) relations between the VB and CB. As we have indicated, we want here a strong
spin orbit effect. Also, as noted, since the spin orbit effect is a relativistic effect, we
need elements with high atomic number. See again Figs. 12.18b and 12.19b. This
Quantum Spin Hall Effect and Topological Phase Transition were first experi-
mentally exhibited in HgTe Quantum Wells by Konig and Molencamp [10 below].

The edge modes are chiral with spin perpendicular to direction. They are also
time reversal invariant. There are several ways to view this. Another way is in the
topological insulator the two modes on each side (forward and backward) are chiral
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which means that if scattering were to reverse the direction this would require a flip
of the spin. But this case has time reversal symmetry, which is violated by the spin
flip as we have already shown.

In 3-D superconducting topological insulator materials, a superconducting
energy gap leads to Majorana fermions and may facilitate quantum computing.
Three-dimensional topological insulators are clearly important but they involve
subtle quantum mechanics, which is outside of the scope of this book. References,
such as those previously mentioned as well as [5 below] and [6 below], will have to
be consulted.

What happens in 3-D [11]
Surface States–these have Dirac cones as does graphene (see Sect. 12.8) and
Figs. 12.22 and 12.23. These surface states are spin polarized and this is where the
relation to spintronics comes in.

The Dirac cones have already been alluded to in Sect. 12.8 for Graphene. They
have also been seen in actual topological insulators by use of the experimental
technique of ARPES (see the end of Sect. 3.2.2).

 p  p

S

S

Fig. 12.22 Sketch of 2-D edge states on surface of a block of 3-D crystal Topological
Insulator. S spin is perpendicular to p momentum

kx

ky

E

Fig. 12.23 E(k) Dirac cones for 2-D surface states on 3-D TI
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Berry Phase [12 below]–this is related to a kind of curvature, called Berry
Curvature, as described by (12.69) above. See also section 5.6 in the book by
Cohen and Louie referenced in the preface. Several of the references will tie in
Berry Phase to topological insulators in 3D. (See also the book by Cohen and Louie
as mentioned in the preface).

Real Materials
We only mention a few that were earlier noted.

Hg1−XCdXTe HgTe Hg1−XCdX Te quantum wells.
Bismuth Antimony Alloys-BixSb(1−X) was first discovered.
Bismuth Selenide Bi2Se3.
Bismuth Telluride Bi2Te3.

However, TIs are also of increasing interest because the solids out ofwhich they are
made no longer have to be synthesized out of bismuth antimonide and other elements
but have been found in amine in theCzechRepublic. The ore that is a “Topo” insulator
is called Kawazulite and is of course a complex composition [13 below].

Possible Applications
Dissipationless “wires,” using edge states: These might be used for “connects” in
microelectronic devices.

Spintronics (see Sect. 7.5.1): Note in the quantum spin Hall case, that we have
one-way states of spin up and spin down going in opposite direction. The two carry
no electric current, but do carry a net spin current since (spin up) plus current is
(spin down) negative current, or down spin current going in −x is equivalent to spin
up current going in +x.

Superconductors and Quantum Computing: Very roughly speaking if you jux-
tapose a topological insulator and a superconductor, in certain cases a Majorana
fermion might be created. These fermions may be helpful in storing nonlocal qubits
for a quantum computer. Stated slightly differently perhaps qubits can be stabilized
by combining in some fashion superconductors and topological insulators. Thus
topological insulators may be a platform for quantum computing, using Majorana
Fermions (who are their own antiparticles) [14, 15 below]. Another way to put this
is linking up topological insulators and superconductors may lead to creating
Majorana particles (in the solid state). In (essentially perhaps) one dimension you
can use these to form nonlocal q-bits, which because of their non-locality are
topologically protected from decoherence. Decoherence has been the big stumbling
block to making practical quantum computers. Quantum Computers if ever built
will have a sufficient capability to “blow present computers out of the water.”

Magnetoelectric coupling: Here an electric field causes a magnetic field. The
magnetoelectric effect has application for example to refrigeration.

Some significant workers in this area

Bertrand Halperin–born 1941, Professor of Mathematics and Natural Philosophy,
Harvard, Condensed Matter Physics and Statistical Mechanics, Integral and
Fractional Quantum Hall Effect, Edge States in TIs, etc.
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M. Zahid Hasan–born 1970, Prof. of Physics, Princeton, Condensed Matter
Experiment, Topological Insulators, etc.
Charles L. Kane–born 1963, Prof. of Physics, U. of Pennsylvania, Condensed
Matter Theory, Quantum Spin Hall Effect and TIs, etc.
J. Michael Kosterlitz–born 1942, Prof. of physics, Brown University, Providence,
RI, Condensed Matter Theory, topological phase transitions and topological phases
of matter.
F. DuncanM.Haldane–born 1951, Prof. of Physics, PrincetonUniversity, Condensed
Matter Theory, topological phase transitions and topological phases of matter.
Laurens W. Molencamp–born 1956, Prof. of Physics, U. of Wurzburg, Condensed
Experiment, Observation of Quantum Spin Hall Effect, etc.
Joel E. Moore–born 1974, Prof. of Physics, U Cal/Berkeley, Condensed Matter
Theory, Topological Insulators, etc.
Emmanuel Rashba–born 1927, Many institutions, Condensed Matter Theory,
Rashba effect, spintronics, etc.
David J. Thouless–born 1934, Prof of Physics, U. of Washington, Condensed
Matter Theory, Topological Invariants in Crystals, plus many other topics in CMP.
S. C. Zhang–born 1963, Prof. of Physics, Stanford, Condensed Matter Theory,
Quantum Spin Hall Effect, etc.

Appendix of Topological Insulator related terms
To give a hint about the broadness and complexity of the study of topological
insulators, we give an (incomplete) list:

Antiunitary operator IQHE
Arpes Kramer’s theorem
Axions Landau levels
Berry phase Magnetic monopoles
Braids Magnetoelectric effect
Bulk boundary correspondence Majorana and Dirac fermions
Chern numbers Quantum entanglement
Chiral fermions Quantum phases
Dirac cone Quantum spin hall effect
Dirac points Rashba effect
Edge and boundary states Resistanceless current
Fractional quantum hall effect Spintronics
Gauge Symmetry Spontaneously broken symmetry
Gauss-Bonnet theorem Su-Schrieffer Heeger model
Genus Time reversal symmetry (TRS)
Graphene TKNN invariant
Haldane model Topological invariants
Helical fermions Topological superconductor
Highly correlated electrons Topologically protected
(Beyond bands) Z2 invariant (and related ideas)

The list is alphabetical as it would be impossible for the authors to list them in
order of importance. We have discussed some, but with varying degrees of detail.
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b. United Kingdom (1934–).

Kosterlitz-Thouless Transition; Topological invariants in topological
insulators.

A distinguished and versatile professor of physics at the University of
Washington in Seattle and the winner of the (1990) Wolf Prize in Physics,
and the 2016 Nobel Prize, among many other awards. He has worked in
nuclear physics, many-body physics, superconductivity, and many areas in
condensed matter theory.

Charles L. Kane

b. USA (1963–).

Theoretical Condensed Matter Physics; Quantum Spin Hall Effect in 2D and
3D as well as Topological Insulators in general.

Kane is C. H. Browne Distinguished Professor of Physics at the University
of Pennsylvania and a pioneer in the field of topological insulators. For this
work, he has won several awards including the 2012 Dirac Prize, and the 2012
Buckley Prize.

Shou-Cheng Zhang

b. China (1963–).

Theoretical Condensed Matter Physics; Topological Insulators; Quantum Hall
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Zhang is the J. G. Jackson and C. J. Wood professor of physics at Stanford
University. He is the winner of several awards including the Buckley and
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12.7.6 Phases of Matter

There are several and certainly more than three. Some may list more than we will,
but this will suffice for most condensed matter systems of interest here. We will only
give the briefest description, and there may be overlapping in the more exotic types.

Solid—holds its shape-rigid.
Liquid—A fluid which is not easily compressed.
Gas—A fluid that is easily compressed.
Plasma—charged particles which are free.
Bose–Einstein Condensates and Fermionic Condensates—(involving pairs of Fermi
particles).
Superconductive and Superfluid States.
Quantum States—such as in the quantum Hall effect, Quantum Spin Liquids, and
various topological and quantum phases.

12.7.7 Topological Phases and Topological
Insulators (A, MS)

These are distinguished by a general idea and specific examples. For some time, it has
been known that typical symmetry breaking phase transitions should not occur in two
dimensions (see the Mermin–Wagner theorem for example—Sect. 7.2.5).
Nevertheless, some kind of transition was noticed in appropriate two-dimensional
systems. Kosterlitz and Thouless explained this for certain spin systems in terms of
vortex—anti vortex pairs being created at high temperatures and annihilating at low
temperatures. Thus at low temperatures the spins can order. One says the spins are
ordered due to topological order in a topological phase. More generally topological
order and topological phases have been useful in explaining superconductivity,
superfluidity and even the quantum Hall (QHE) effect in two dimensions (among
others). One speaks of the Kosterlitz-Thouless (KT) transition. The idea of topological
invariants was introduced and topological invariants were connected to the integers that
appear in the quantum Hall conductance. Haldane is credited with firmly using
topology to define various phases of matter. Topological insulators are perhaps the
most famous example of the importance of a topological phase. In the fractional
quantumHall effect, we have another example of a peculiar topological state. Thouless,
Kosterlitz, and Haldane won the 2016 Nobel Prize in Physics for work in this area.

12.7.8 Quantum Computing (A, EE)

Richard Feynman is cited by many as the originator of the idea of quantum com-
puting. In a talk in 1981 and in a paper published in 1982 he notes that by operating
on a linear combination of states rather just on ones and zeroes, that computers
could accomplish many tasks more quickly.

By now, quantum computing is a very large multidisciplinary field in flux.
Because of this, it would not make sense to try to cover it here. Certainly, however,
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some solid state/condensed matter physicists will be engaged in research to see if
the field can arrive at wide practical use.

So here, we simply want to make a few introductory comments and then a few
references for a more detailed discussion. Besides physics, the field is of interest to
a wide variety of professionals including mathematicians, electrical engineers, and
computer scientists, among many others.

Electrical Engineers and computer scientists will, one expects, be completely
familiar with how ordinary computers work. That is they will know that the binary
number systems (using only 0 or 1) is the convenient one to use, and that all
arithmetic operations can be performed in the binary system by using Boolean
algebra. Physically these operations can be performed by logic gates made of for
example transistors (see the addendum after the references). One needs quantum
mechanics to understand transistors, for example, but we do not call such ordinary
computers “quantum” computers. Quantum computing is reserved for systems that
involve the two key concepts of superposition and entanglement.

One calls 0 or 1 a bit and in normal or ordinary or classical computers all
numbers can be stored by using bits. Thus in classical computing we say that each
bit has a state 1j i or 0j i. In quantum computers we say the particle’s state could be
defined in a superposition of states of the form a 1j i þ b 0j i where the sum of |a2| and
|b2| is unity. Such states are called qubits. When we process such a state we are in
fact processing both states 1 and 0 simultaneously, or doing something reminiscent
of “parallel processing” on a qubit state.

In contrast to bits that have the value of (say) 0 or 1 as in ordinary computers,
qubits are the basic units of quantum computers. For a spin 1/2 particle a qubit
could specify that the particle is in some linear combinations of “up” and “down”
spin states. Quantum computers operate on qubits and as mentioned quantum
computing is more like parallel rather than serial processing. Decoherence is a
problem. That is, interactions with the environment could cause the qubits to lose
the particular state they are in and we need large numbers of qubits to do practical
calculations. In fact, we may need to entangle many particles for coherence times
much longer than the cycle time of one calculation.

However, if we have N particles then we can form an arbitrary normalized combi-
nation of 2N states, and such simultaneous computations could be of considerable use.
If the phase relations between the various 2N states are constant, i.e. if the states are
coherent and the decoherence that might be injected by the external world did not break
up this coherence,we could say that the states stay entangled. Failing to keep states from
decohering, one can still be on the road to quantum computers if appropriate error
correction methods can be devised to in effect override the decohering processes.

When two particles are entangled say like

1ffiffiffi
2

p 10j i þ 01j ið Þ

and this entanglement holds as they separate, Einstein was troubled by the fact that
if particle one was measured and found to be in a 1 (0) state, then particle 2 would
have to be in a 0 (1) state. He called this “spooky action at a distance.”

Of course one must ask the question, “Suppose we could physically realize
quantum computers, what practical good are they?” First, due to superposition they
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hold the promise of doing many calculations at the same time and thus speeding up
many calculations tremendously.

We are finding that there are many possible ways to implement the construction
of quantum computers in the future. Large-scale semiconductor quantum systems
can be developed to do this. However, as these are made smaller and smaller, it is
harder and harder to avoid decoherence due to interaction with the environment. On
the other hand, nuclear spins maintain coherence well due to their relative isolation
from the environment, but that means they are harder to use to read out information.
Photons are used to carry quantum information (via their polarization), but they are
hard to store in localized locations. The current thinking is that all of these tech-
niques may be most useful in devices when we mix and match them so each
particular strengths can be used where most effective.

A second benefit, or perhaps detriment is that they can factor certain key
numbers which are the product of say two prime numbers and such factoring may
lead to identification of critical information such as a credit card number. Such
factoring enables the breaking of a cryptography code. With ordinary computers,
factoring can be essentially impossible for large key numbers in a finite amount of
time. Peter Shor’s quantum factoring algorithm showed that a quantum computer
could factor large integers exponentially faster than a conventional computer. The
security of many present encryption standards is based on the difficulty of factoring
very large (say 150 or so digits) integers. Thus, quantum computers could break the
security of these encryption methods.

There are also ways to transmit keys to two people so that those keys will only
be the same if no one has attempted to intercept the transmissions. The whole
subject of quantum cryptography is thus of much importance.

It should also be mentioned that one class of spintronics devices relies on the
flow of electrons with spins and how the spin affects the flow of current. The other
class has to do with using the spin via qubits to contain certain amounts of infor-
mation. This class is closely related to quantum computers.

There are other algorithms of use of course. Grover’s Algorithm indicates how to
use a quantum computer to search for things in a set that is not ordered. There are
also algorithms of Deutsch and Jozsa which illustrate that quantum computers can
be much (exponentially) faster that “ordinary” computers. Deutsch has argued that
any physical process can be modeled by quantum logic gates.

Things get hard when one tries to construct physical realizations of systems that
can entangle enough qubits to do a useful calculation. There are several proposals for
systems on which qubits can be realized such as nuclear spins (and other sources of
spins) which can be up or down (or 0 or 1), quantum dots, diamond nitrogen vacancies
(NV Centers), Josephson junctions, photons, trapped ions, molecules and so on.
A Canadian company called D-Wave Systems has claimed to have developed a
quantum computer with 1000 plus qubits, but exactly what is involved is open to
much discussion and is certainly controversial. At the present writing it appears that
single figure qubit computers is the approximate state of the art, but these qubits may
be scalable in the sense of being linked together to form a larger computer.

As already mentioned, a large topic in quantum computers is error correction.
Due to the entangled nature of information in quantum computers, decoherence is a
constant problem and so quantum error correction is of utmost importance.
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Quantum computers may also be useful for quantum simulations of very com-
plex physics systems such as high-temperature superconductors.

Another interesting experiment is teleportation of a quantum state. What is
involved is transference of the quantum numbers characterizing the state of an
object to that of an identical object. This is easier to consider for a minimal object of
just a very few particles. Then one only has to think of a few quantum numbers
characterizing its state and transferring these to another identical object.

There are many problems to solve such as: developing gates that will process
qubits and finding ways to get answers without causing collapse of state. That is,
quantum logic gates will need a way to control interactions between qubits and
decoherence times must be suitably long, and it must also be possible to read the
final state without destroying the information one is seeking. Of course, it must also
be possible to select the qubits to be in appropriate initial state. Other conditions are
necessary but the literature will have to be consulted for that.

For further details see Mermin, and Monroe and Lukin referenced below, and
you can search https://arXiv.org/archive/quant-ph, for detailed papers.

Addendum. We can do arithmetic calculations using Boolean logic on binary
numbers. The results of Boolean logic operations on bits (or zeroes and ones, or
true and false quantities) are specified by truth tables. All arithmetic results can be
performed by appropriate combinations of Boolean logic operations, which in turn
can be achieved by logic gates. We shall give some formal examples of these
shortly. These logic gates can be implemented in the real world by appropriate
electronics. Of course, it is outside the scope of our description to show how these
gates can be combined to do useful practical calculations.

Binary numbers are numbers expressed in base 2 rather than in base 10, Let an
arbitrary number be A. Then A can be written in the form

A ¼
Xþ1

�1
aj2 j

The aj expresses the number in binary form.
As an example letA = 9.75 in decimal (base 10) form. It is relatively easy to see that

a3 ¼ 1; a0 ¼ 1; a�1 ¼ 1; a�2 ¼ 1

and the rest are zero. Thus we could also write

A ¼ ð1; 0; 0; 1; 1; 1Þ

This is a multi-bit number. Just for illustration, we indicate the operation of certain
logic gates (NOT, AND, NAND, OR, NOR, XOR, NXOR) on single bits in
Fig. 12.24.
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J. S. Bell

b. Belfast, Ireland, UK (1928–1990).

Bell was mainly a theoretical particle physicist, but was perhaps best known
for his work in the foundations of quantum mechanics, particularly Bell’s
Theorem.

Discussions about the EPR paper led to Bell’s Theorem: “Any local
hidden variable theory is incompatible with quantum mechanics.”

Related ideas are: Entanglement—In an entangled state such as directly
below, a measurement on particle 1 forces particle 2 into a state and this state
is determined no matter how far the particles are apart. This is explained in
more detail in the second paragraph after this one.

An example of Entanglement–two particles in the state

1ffiffiffi
2

p
� �

10j i þ 01j ið Þ

are in an entangled state.
This notation means e.g. in 10j i particle one is in state 1 and particle two is

in state 0. Thus in the state 10j i þ 01j i both particles are in both states.
A measurement forces the particles to “choose” a state. Thus if we take a
measurement and get particle 1 in state 1, then particle 2 is in state 0 and a
subsequent measurement of particle 2 will show that. This is an example of
EPR “Paradox”—or as Einstein called it spooky action at a distance.
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In Quantum Mechanics, we have qubits rather than bits (0 or 1). The term
qubits is used for a state like

1ffiffiffi
2

p
� �

1j i þ 0j ið Þ;

which means a particle can be in an up spin state 1j i, or a down spin 0j i or a
state in between. These ideas have also led to the ideas involved in building a
quantum computer.

Anton Zeilinger

b. Ried im Innkreis, Austria (1945–).

Quantum Teleportation; Experimental Test of Bell’s Inequality; Quantum
Entanglement.

In recognition of his work, Zeilinger has won the Wolf Prize; This work
includes quantum entanglement of qubits and related work on sending
quantum information (across the Danube and further—up to 144 km as of
this writing). He uses entangled photons.

David Deutsch

b. Haifa, Israel (1953–).

Quantum Turing Machine; Quantum Logic Gates; Quantum Error Correction.

A theoretical physicist, Dr. Deutsch is given credit for much of the basis of
the quantum theory of computation. Via the Deutsch-Jozsa Algorithm he has
argued that quantum computers may be exponentially faster than ordinary
computers. He supports the many worlds interpretation of quantum
mechanics and has also written more or less popular science books.

Susan Coppersmith

b. USA (1957–).

A theoretical condensed matter physicist. Work in nonlinear physics and
quantum computers among other areas. Presently at U. of Wisconsin in
Madison.
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She is also noted for her work in disordered materials, granular materials
and several other areas. A fascinating personal summary of her achievements
and difficulties because of gender can be found in: http://ethw.org/Oral-
History:Susan_Coppersmith.

Alan Turing

b. London, England, UK (1912–1954).

Regarded as the founder of Computer Science.

Known for ideas of Turing Machines, the Turing Test, and Cryptanalysis.
I list him here as computers are information processing machines and Claude
Shannon made the analogy of information to entropy.

12.7.9 Five Kinds of Insulators (A)

There are insulators caused by electron ion interactions.

1. Band insulators where the bands arise from Bragg scattering from a periodic
array of atoms in which the lowest filled band is called the valence band, the
highest unfilled band is called the conduction band, and of course the Fermi
level is in-between these two bands. The interior of the crystal then does not
conduct, nor do the surface states allow conduction on the surface. Nowadays,
this solid is called a ‘trivial’ insulator to distinguish it from a topological
insulator. This is the normal situation for band theories and has been used
throughout this book.

2. Peierl’s Insulators (or Peierl’s Transition) in which the material becomes
insulating because of lattice distortions. This has been discussed in Sect. 5.6.

3. Anderson insulators (or Anderson Localization or Metal-insulator Transition) in
this case a sufficient concentration of impurities and imperfections cause insu-
lating behavior. See Sect. 12.14.

4. There are insulators caused by electronic correlations.
5. Mott insulators (or Mott Transition or Metal-Insulator Transition) are caused by

electron–electron interactions and here correlations between electrons need to be
explicitly considered. See Sect. 12.14.1.

6. There are insulators caused by topological properties.
7. Topological insulators. We have discussed these in Sect. 12.7.4. As noted there,

these have a different topological invariant form than do ordinary band insu-
lators. They are insulators in the bulk, but the surface states are conductive.
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12.7.10 Semimetals (A, B, EE, MS)

We know that when the lowest band (valence band) is completely full of electrons
and the next higher band (conduction band) is empty and some electron volts
higher, that one has an insulator. When these bands are very close, one has a
semiconductor, and when the highest filled band is only partly filled, one has a
metal (see e.g. Fig. 12.25). But there are also semimetals in which the valence and
conduction bands overlap just a little bit. The schematic figure shows the idea. Note
the maximum of the valence band generally occurs at a different wave vector than
the minimum of the conduction band as in the figure. Antimony, arsenic, bismuth,
gray tin, and graphite, are examples of semimetals. At the Fermi level one thus has
both electrons and holes.

Recently however Hasan and co-workers, have discovered an interesting Weyl
semimetal (M. Zahid Hasan and co-workers, “Discovery of a Weyl fermion
semimetal and topological Fermi arcs,” Science, 349, Issue 6248, pp. 613–617, 07
Aug 2015). Weyl fermions have been defined in section on Majorana Fermions and
Topological Insulators. They are massless with spin 1/2. Weyl semimetals (e.g.
TaAs) can have Weyl fermions. Applications may include fast electronics.

12.8 Carbon—Nanotubes and Fullerene
Nanotechnology (EE)

Carbon is very versatile and important both to living tissues and to inanimate
materials. Carbon of course forms diamond and graphite. In recent years the ability
of carbon to aggregate into fullerenes and nanotubes has been much discussed.

Fullerenes are stable, cage-like molecules of carbon with often a nearly spherical
appearance. A C60 molecule is also called a Buckyball. Both are named after
Buckminster Fuller because of their resemblance to the geodesic domes he

Energy

Wave Vector (k) 

Brillouin Zone Boundary 

Fermi Energy 

holes 

electrons

Fig. 12.25 Schematic idea of semimetal bands
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designed. Buckyballs were discovered in 1985 as a byproduct of laser-vaporized
graphite. Some of the fullerides (salts such as K–C60) can be superconductors (see,
e.g., Hebard [12.25]).

Carbon nanotubes are one or more cylindrical and seamless shells of graphitic
sheets. Their ends are capped by half of a fullerene molecule. They were discovered
in 1993 by Sumio Iijima and mass produced in 1995 by Rick Smalley. For more
details see, e.g., Dresselhaus et al. [12.17]. While carbon nanotubes are now easy to
produce, they are not easy to produce in a controlled fashion.

To form them, start with a single sheet of graphite called graphene whose band
structure leads to a semimetal (where the conduction band edge is very close to the
valence band edge). A picture of the dispersion relations show a two-dimensional
E vs. k relationship where two cones touch at their tips with the same conic axis and
in an end-to-end fashion. See Fig. 12.26. Where the cones touch is the Fermi
energy, or as it is called, the Fermi point. It has even become possible to make
single strings of carbon atoms by use of high energy electron beams on gra-phene.
See Jan van Ruitenbeck, “Atomic wires of carbon,” Physics 2, 42 (2009) online.

Graphene is by now a huge field of investigation. It may be the strongest material
known; it is also an excellent conductor of heat and electricity. See in addition, Hideo
Aoki andMildred S. Dresselhaus,Physics of Graphene, Springer Science, December,
2013, as well as other works by Mildred Dresselhaus and fellow researchers.

Nanotubes can be semiconductors or metals. It depends on the boundary con-
ditions on the wave function as determined by how the sheet is rolled up. Both the
circumference and twist are important. This, in turn, affects whether a bandgap is
introduced where the Fermi point in graphene was. The semiconducting bandgap
can be varied by the circumference. Multiwalled nanotubes are more complex.

Semiconductor nanotubes can be made to act as transistors by using a gate
voltage. A negative bias (to the gate) induces holes and makes them conduct.

k

E

Fermi 
point 

Fig. 12.26 Dispersion relation for graphene
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Positive bias makes the conductance shut off. They have even been made to act as
simple logic devices. See McEven PL, “Single-Wall Carbon Nanotubes,” Physics
World, pp. 32–36 (June 2000). One interesting feature about nanotubes is that they
provide a way around the fundamental size limits of Si devices. This is because they
can be made very small and are not plagued with surface states (they have no surface
formed by termination of a 3D structure and as cylinders they have no edges).

Carbon nanotubes are a fascinating example of one-dimensional transport in
hopefully easy to make structures. They are quantum wires with ballistic electrons
—and they show many interesting quantum effects.

An additional feature of interest is that carbon nanotubes show significant
mechanical strength. Their strength arises from the carbon bond.4

It should also be mentioned that other kinds of nanotubes are now being dis-
covered. Very prominent are Boron Nitride Nanotubes (BNNTs). They have the
advantage of more chemical stability. Among other properties, they show heat
tolerance, resistance to oxidation, radiation resistance, and piezoelectricity. See e.g.
Nasreen G. Chopra, R. J. Luyken, K. Cherrey, Vincent H. Crespi, Marvin L. Cohen,
Steven G. Louie, A. Zettl, “Boron Nitride Nanotubes,” Science 18 Aug 1995: Vol.
269, Issue 5226, pp. 966–967.

Graphene, a single plane “peeled” from graphite, is interesting in it’s own right.
Graphene was first isolated in 2004 by Andre Geim and K. Novoselov. Graphene is
an essentially 2D hexagonal honeycomb structure, an allotrope of C, in which
electrons act as if they are massless particles obeying a Dirac equation, but with a
speed (of magnitude c/300) analogous to the speed of light. According to the
Mermin–Wagner theorem and related ideas [7.49], purely 2D crystals should not
exist. Graphene however has ripples and other defects that do away with the exact
translational order. Graphene shows a signature quantum Hall effect different from
that in metals or semiconductors. Graphene is bonded in the plane with three r bonds
of each C to its nearest neighbor C’s. In addition, there are p bonds sharing charge
perpendicular to the r bonds. As usual, we think of each atom having one s orbital
and three p orbitals. Two p orbitals in the graphene plane and the s orbital are used to
make the r bonds. The remaining p orbitals perpendicular to the plane make the p
bonds. The p bonds form bands in graphene and contribute to the conductivity. The
electrons in these bonds have a very large mobility and travel long distances without
any scattering. Graphene is a very active area of research. For more on the band
structure and recent developments see: 1. M. I. Katnelson, “Graphene: carbon in two
dimensions,” Materials Today, Jan.-Feb. 2007, pp. 20–27, 2. Andre K. Geim and
Allan H. MacDonald, “Graphene: Exploring carbon flatland,” Physics Today,

4Carbon is becoming an increasingly interesting material with the suggestion that under certain
circumstances it can even be magnetic. See Coey M and Sanvito S, Physics World, Nov 2004,
p 33ff.
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August 2007, pp. 35–41, 3. A. C. Neto, F. Guinea and N. M. Peres, “Drawing
conclusions from Graphene,” Physics World, Nov. 2006, pp. 33–37.

Graphene with a Dirac cone as in Fig. 12.26 would have no energy gap and thus
would not be appropriate for making many electronic devices. Hexagonal boron
nitride is an insulator, so it also is not appropriate for typical semiconductor
devices. Now hexagonal boron-carbon nitrogen (h-BCN) has been made with a
useful band gap and may well be useful for such semiconductor applications, see
e.g. Sumit Beniwal, et al., “Graphene-like Boron–Carbon–Nitrogen Monolayers,”
ACS Nano, February 6, 2017.

Besides graphene we should mention new elemental 2D materials such as sil-
icene, phosphorene, germanene and stanene (tin). These are also topological
insulators except for phosphorene. See Yuanbo Zhang, Angel Rubio, and Guy Le
Lay, “Emergent elemental two-dimensional materials beyond graphene,” Journal of
Physics D: Applied Physics, 50, 053004, 9 January 2017.

Carbon Onions and Buckyballs which bind
Carbon onions are Bucky Balls with multiple layers, one inside another. Typically,
the inner layer can be composed of 60 carbon atoms, with outer layers being larger
and with more C atoms.

The typical pure carbon buckyballs bind together with weak van der Waals
forces and it has been hard to find applications for them.

Lars Hultman has found that adding nitrogen to the buckyball allows them to
bind much better through covalent bonds and making them much more likely to
find applications.

One configuration is a core of C48N12 which is surrounded by layers with many
carbon atoms. The carbon nitride buckyball C48N12 is another kind of fullerene.
With the solid formed by these fullerenes being another kind of fulleride. These
onions are strongly bonded. See Lars Hultman et al., “Cross-Linked Nano-Onions
of Carbon Nitride in the Solid Phase Existence of a Novel C48N12 Aza-Fullerene,”
Phys. Rev. Lett. 87, 225503 (2001).

Mildred Dresselhaus

b. New York City, New York, USA (1930–2017).

Known as “Queen of Carbon Science;” She was active in Carbon Nanotubes,
Graphite, and certain low dimensional materials including thermoelectric
among others; Very interested in women in science.

Dresselhaus earned her Ph.D. in Physics from the U. of Chicago, and
married Gene Dresselhaus also a physicist. She was given many honors
including the Presidential Medal of Freedom and the Fermi Award. First
Female Institute Professor at MIT.
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12.9 Graphene and Silly Putty (A, EE, MS)

As has been discussed graphene is a one layer thick piece of carbon. Silly Putty is a
viscoelastic polysilicone. Polysillicone is an organic material used in shampoos and
for other somewhat related applications. Viscoelastic means it shows both elastic
behavior, and resists shears proportional to the time of applied stress. C. S. Boland
and J. N. Coleman (see reference below) discovered that mixing graphene and silly
putty led to a nano composite with very unusual properties.

Graphene has good electrical properties such as high conductivty. Mixing it with
silly putty led to a material whose resistance was highly sensitive to deformation
but would relax back to it’s original form when the stress was released (self
healing). It seems the graphene flakes were moved apart by the deformation, but
returned to a conducting network on stopping the stress. Such a nano composite
could have medical applications as hanging an appropriate device made of it around
the neck could be used to measure pulse and blood pressure. It was so sensitive that
it could even be used to measure the footsteps of a small spider.

Graphene of course has been found to have many uses besides medical. These
include electronic, optical, and a myriad of many other possibilities.

Reference
C. S. Boland, several others, J. N. Coleman, “Sensitive electromechanical sensor
using viscoelastic graphene-polymer nano composites,” Science 09 Dec 2016: Vol.
354, Issue 6317, pp. 1257–1260. Also see references therein.

12.10 Novel Newer Transistors (EE)

Graphene is used for transistors, which can be very fast because of the speed of
their electrons, as discussed above. However, it has the serious problem that it has
no band gap, and so no straightforward way to switch it off. There are ways to get
around this, but they make the transistor more complicated to form.

A newer material is now being used to make two-dimensional semiconductors,
This isMoS2which does have a bandap, and being thin could bemade flexible, aswell
as transparent.Molybdenumdisulfide is awell known engine lubricant, but it’s use for
semiconductor transistors is a hot new area. In fact, there are many areas in which it is
being considered such as for solar cells, LEDs, lasers, as well as for nano transistors.

Until recently, five nanometers was considered the smallest size that transistors
could be built before tunneling took over and disallowed transistor action. Now Ali
Javey and others have built a Molybdenum disulfide transistor with a 1 nm gate.
(Sujay B. Desai, Surabhi R. Madhvapathy, Angada B. Sachid, Juan Pablo Llinas,
Qingxiao Wang, Geun Ho Ahn Gregory Pitner, Moon J. Kim, Jeffrey Bokor,
Chenming Hu, H.-S. Philip Wong, Ali Javey, “MoS2 transistors with 1-nanometer
gate lengths,” Science 07 Oct 2016: Vol. 354, Issue 6308, pp. 99–102). The next step
is tomass produce these so they can bemade on a chip. Progress has beenmade on this
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by Eric Pop and others, (Kirby K H Smithe, Chris D English, Saurabh V Suryavanshi
and Eric Pop, “Intrinsic electrical transport and performance projections of synthetic
monolayer MoS2 devices,” 2D Mater. 4 (2017) 011009).

12.11 Amorphous Semiconductors and the Mobility Edge
(EE)

By amorphous, we will mean noncrystalline. Here, rather than an energy gap one
has a mobility gap separating localized and nonlocalized states. The localization of
electron states is an important concept. The electron–electron interaction itself may
give rise to localization as shown by Mott [12.48], as we have discussed earlier in
the book. In effect, the electron–electron interaction can split the originally partially
filled band into a filled band and an empty band separated by a bandgap. We are
more interested here in the Anderson localization transition caused by random local
field fluctuations due to disorder. In amorphous semiconductors, this can lead to
“mobility edges” rather than band edges (see Fig. 12.27).

The dc conductivity of an amorphous semiconductor is of the form

r ¼ r0 exp �DE
kT

� �
; ð12:77Þ

for charge transport by extended state carriers, where ΔE is of the order of the
mobility gap and r0 is a conductor. For hopping of localized carriers

r ¼ r0 exp � T0
T

� �1=4

; ð12:78Þ

where r0 and T0 are constants. Memory and switching devices have been made with
amorphous chalcogenide semiconductors. The meaning of (12.78) is amplified in
the next section.

Valence band Mobility Gap 

Density of States 

Conduction band 

Localized, low mobility states 

Extended states

Energy 
Low Mobility EV EC

Extended states 

Fig. 12.27 Area of mobility between valence and conduction bands
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P. W. Anderson

b. Indianapolis, Indiana, USA (1923–).

Anderson Localization; Spin Glasses; Symmetry Breaking; Higgs
Mechanism; Emergent Phenomena.

Anderson won the Nobel Prize in 1977. He was one of the excellent
physicists that worked at Bell Labs during their golden years. He was also
associated with Princeton and Cambridge. Besides the above mentioned fields
he worked with different approaches to the BCS theory of superconductivity
and superconductivity in High Tc cuprates. His classic paper on emergent
properties was entitled “More is Different.”

12.11.1 Hopping Conductivity (EE)

So far, we have discussed band conductivity. Here electrons move along at constant
energy, in the steady state the energy they gain from the field is dissipated by
collisions. One can even have band conductivity in impurity bands when the
impurity wave functions overlap sufficiently to form a band. One usually thinks of
impurity states as being localized, and for localized states there is no dc conduc-
tivity at absolute zero. However, at nonzero temperatures, an electron in a localized
state may make a transition to an empty localized state, getting any necessary
energy from a phonon, for example. We say the electron hops from state to state. In
general, then, an electron hop is a transition of the electron involving both its
position and energy.

The topic of hopping conductivity is very complicated and a thorough treatment
would take us too far afield. The books by Shoklovskii and Efros [12.55], and Mott
[12.48], together with copious references cited therein, can be consulted. In what is
given below, we are primarily concerned with hopping conductivity in lightly
doped semiconductors.

Suppose the electron jumps to a state a distance R. We assume very low tem-
peratures with the relevant states localized near the Fermi energy. We assume states
just below the Fermi energy hop to states just above gaining the energy Ea (from a
phonon). Letting N(E) be the number of states per unit volume, we estimate:

1
Ea

� 4
3
pR3N EFð Þ; ð12:79Þ

thus we estimate (see Mott [12.48]) the hopping probability and hence the con-
ductivity is proportional to
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exp �2aR� Ea=kTð Þ; ð12:80Þ

where a is a constant denoting the rate of exponential decrease of the wave function
of the localized state expð�arÞ.

Substituting (12.79) into (12.80) and maximizing the expression with regard to
the hopping range R gives:

r ¼ r0 exp �T0=Tð Þ1=4
h i

; ð12:81Þ

where

T0 ¼ 1:5a3b=N EFð Þ; ð12:82Þ

and b is a constant, whose value follows from the derivation, but in fact needs to be
more precisely evaluated in a more rigorous presentation.

Maximizing also yields

R ¼ constant 1=Tð Þ1=4; ð12:83Þ

so the theory is said to be for variable-range hopping (VRH); the lower the tem-
perature, the longer the hopping range and the less energy is involved.

Equation (12.81), known as Mott’s law, is by no means a universal expression
for the hopping conductivity. This law may only be true near the Mott transition,
and even then that is not certain. Electron–electron interactions may cause a
Coulomb gap (Coulombic correlations may lead the density of states to vanish at
the Fermi level), and lead to a different exponent (from one quarter–actually to 1/2
for low-temperature VRH).

12.11.2 Anderson and Mott Localization and Related
Matters

It would be inappropriate to leave these topics without a few more definitions for
clarity and some appropriate references.
When an insulator results due to the effects of disorder and resulting interference we
say we have an Anderson insulator.
When an insulator results due to electron-electron interactions then a Mott insulator
results.
An Anderson transition results when an Anderson insulator becomes a metal.
A Mott transition results when a Mott insulator becomes a metal.
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Anderson localization is the absence of diffusion on waves due to disorder or in the
cases of interest here electron localization resulting from randomness of defects or
impurities.

Mott localization is localization resulting from Coulomb interactions.
See for example:

Masatoshi Imada, Atsushi Fujimori, and Yoshinori Tokura, “Metal-insulator tran-
sitions,” Rev. Mod. Phys. 70, 1039, 1998.
Ad Lagendijk, Bart van Tiggelen, and Diederik S. Wiersma, “Fifty years of
Anderson localization,” Physics Today 62, 24 (2009).

Sir Nevill Mott

b. Leeds, England, UK (1905–1996).

Mott Insulators and Mott Transitions; Mott-Jones book among others; Atomic
Collisions.

Mott was one of the giants of solid-state physics. He studied disordered
systems including amorphous semiconductors as well as metals and alloys. The
Mott Transition was due to Coulomb repulsion of electrons. This was not to be
confused with Anderson location due to disorder. In short, Mott showed one
waymaterials could transition from conductors to insulators. Nobel Prize 1977.

12.12 Amorphous Magnets (MET, MS)

Magnetic effects are typically caused by short-range interactions, and so they are
preserved in the amorphous state although the Curie temperature is typically low-
ered. A rapid quench of a liquid metallic alloy can produce an amorphous alloy.
When the alloy is also magnetic, this can produce an amorphous magnet. Such
amorphous magnets, if isotropic, may have low anisotropy and hence low coer-
civities. An example is Fe80B30, where the boron is used to lower the melting point,
which makes quenching easier. Transition metal amorphous alloys such as
Fe75P15C10 may also have very small coercive forces in the amorphous state.

On the other hand, amorphous NdFe may have a high coercivity if the quench is
slow so as to yield a multicrystalline material. Rare earth alloys (with transition
metals) such as TbFe2 in the amorphous state may also have giant coercive fields
(*3 kOe). For further details, see [12.20, 12.26, 12.36].

We should mention that bulk amorphous steel has been made. It has approxi-
mately twice the strength of conventional steel. See Lu et al. [12.44].
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Nanomagnetism is also of great importance, but is not discussed here. However,
see the relevant chapter references at the end of this book.

12.13 Anticrystals

Crystals grown in the lab or found in nature are essentially always imperfect.
A common requirement is how to analyze these deviations from perfection. The
common procedure is to start with a perfect crystal and then try to understand the
effect of the impurities or defects. Another procedure that is being considered is to
start with a completely disordered crystal and then gradually build back some order.
A problem here is that there are many ways to disorder a crystal and it is hard to define
just how a perfectly disordered crystal can be characterized. It has been suggested that
certain crystals under sufficient pressure seem to more or less define a perfectly
disordered state, at least for mechanical properties, by undergoing a phase transition.
This phase transition that occurs with a fluid going to a disordered solid when under
sufficient pressure is called a “jamming transition.” The material assumes a disor-
dered state with many properties that are inherent in any disordered material. S. Nagel
and others are working on this concept and seem to be making some progress. It may
be that starting from a disordered state and adding order is a better way to understand
say an amorphous solid, than trying to start from an ordered state and adding disorder.
The so-called perfectly disordered state is called an anticrystal. See Carl P. Goodrich,
Andrea J. Liu, and Sidney R. Nagel, “Solids between the mechanical extremes of
order and disorder,” Nature Physics, 10, 578–581 (2014).

12.14 Magnetic Skyrmions (A, EE)

Magnetic skyrmions are small vortex regions of reversed magnetization in a uniform
magnet. They can be used for communicating information with little energy con-
sumption and good stability. See reference [1] below for a nice picture of one, Niklas
Romming and coworkers have obtained images of them by STM [2 below].
The idea of skyrmions was originally proposed by Tony Skyrme in the area of
particle physics, but they have now become useful for solid state physics. They also
relate to certain topological properties of the magnetized solids with chiral (hand-
edness) symmetries.

References

1. Christopher H. Marrows, “Viewpoint: An Inside View of Magnetic Skyrmions,”
Physics, 8, 40, 1 May, 2015

2. Niklas Romming, et al., “Field-Dependent Size and Shape of Single Magnetic
Skyrmions,” Phys. Rev. Lett., 114, 177203, 1 May 2015.
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12.15 Soft Condensed Matter (MET, MS)

12.15.1 General Comments

Soft condensed-matter physics occupies an intermediate place between solids and
fluids. We can crudely say that soft materials will not hurt your toe if you kick
them.

Generally speaking, hard materials are what solid-state physics discusses and the
focus of this book was crystalline solids. Another way of contrasting soft and hard
materials is that soft ones are typically not describable by harmonic excitations
about the ground-state equilibrium positions. Soft materials are also often complex,
as well as flexible. Soft materials have a shape but respond more easily to forces
than crystalline solids.

Soft condensed-matter physics concerns itself with liquid crystals and polymers,
which we will discuss, and fluids as well as other materials that feel soft. Also
included under the umbrella of soft condensed matter are colloids, emulsions, and
membranes. As a reminder, colloids are solutes in a solution where the solute clings
together to form ‘particles,’ and emulsions are two-phase systems with the dis-
solved phase being minute drops of a liquid. A membrane is a thin, flexible sheet
that is often a covering tissue. Membranes are two-dimensional structures built
from molecules with a hydrophilic head and a hydrophobic tail. They are important
in biology.

For a more extensive coverage the books by Chaikin and Lubensky [12.11],
Isihara [12.27], and Jones [12.30] can be consulted.

We will discuss liquid crystals in the next Section and then we have a Section on
polymers, including rubbers.

Katherine Blodgett

b. Schenectady, New York, USA (1898–1979).

Non-reflective glass coatings (invisible glass) used in lenses etc.;
Langmuir-Blodgett Films; Improving Tungsten filaments in Bulbs.

Blodgett was the first female graduate in physics from Cambridge
University and the first female hired as a scientist by General Electric. She
was mentored by Irving Langmuir. She was a highly effective inventor
involved with films, coatings and other areas as noted above. She is perhaps
most famous for Langmuir-Blodgett films which have many applications
besides non-reflective films, including even in semiconductor devices.
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12.15.2 Liquid Crystals (MET, MS)

Liquid crystals involve phases that are intermediate between liquids and crystals.
Because of their intermediate character some call them mesomorphic phases. Liquid
crystals consist of highly anisotropic weakly coupled (often rod-like) molecules. They
are liquid-like but also have some anisotropy. The anisotropic properties of some liquid
crystals can be changed by an electric field, which affects their optical properties, and
thus watch displays and screens for computer monitors have been developed. J. L.
Fergason [12.19] has been one of the pioneers in this as well as other applications.

There are twomain classes of liquid crystals: nematic and smectic. In nematic liquid
crystals the molecules are partly aligned but their position is essentially random. In
smectic liquid crystals, the molecules are in planes that can slide over each other.
Nematic and smectic liquid crystals are sketched in Fig. 12.28. An associated form of
the nematic phase is the cholesteric. Cholesterics have a director (which is a unit vector
along the average axis of orientation of the rod-like molecules) that has a helical twist.

Liquid crystals still tend to be somewhat foreign to many physicists because they
involve organic molecules, polymers, and associated structures. For more details
see deGennes PG and Prost [12.15] and Isihara [12.27 Chap. 12].

Pierre-Gilles de Gennes

b. Paris, France (1932–2007).

Superconductors; Liquid Crystals; Polymers and Reptation; Soft Matter;
Surfactants.

de Gennes was particularly known for liquid crystals, and a variety of
matter called soft, such as polymers, as well as order-disorder in such
materials. His book “The Physics of Soft Matter,” is known as a classic. He
won the Nobel Prize in 1991.

(a) (b)

Fig. 12.28 Liquid crystals. (a) Nematic (long-range orientational order but no long-range
positional order), and (b) smectic (long-range orientational order and in one dimension
long-range positional order)
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James L. Fergason—“The Inventor”

b. Wakenda, Missouri, USA (1934–2008).

Liquid Crystal Devices; Twisted-Nematic Field Effect LCD used for display
in watches, calculators, etc.; Thermochromic Devices used in Mood Rings;
Liquid Crystal Screening for Breast Cancer.

Jim Fergason was one of the most important physicist inventors of the
twentieth century. His highest earned degree was a B.S. from the University
of Missouri—Columbia (he was later given an honorary Doctorate by the
same institution). If you ever had a wristwatch with a LCD (liquid crystal
display), the chances are Jim invented the display. He had well over 100
American Patents and 500 or so foreign ones. He worked for Westinghouse,
the Liquid Crystal Institute of Kent State University and his own companies.
He won the prestigious Lemelson Inventors Prize from MIT and was in the
Inventors Hall of Fame. He once said that it bothered him that so many
physicists never considered what their ideas could be used for to make
something useful.

12.15.3 Polymers and Rubbers (MET, MS)

Polymers are a classic example of soft condensed matter. In this section, we will
discuss polymers5 and treat rubber as a particular example.

A monomer is a simple molecule that can join with itself or similar molecules
(many times) to form a giant molecule that is referred to as a polymer. (From the
Greek, polys—many andmeros—parts). A polymermay be either naturally occurring
or synthetic. The number of repeating units in the polymer is called the degree of
polymerization (which is typically of order 103 to 10). Most organic substances
associated with living matter are polymers, thus examples of polymers are myriad.
Plastics, rubbers, fibers, and adhesives are common examples. Bakelite was the first
thermosetting plastic found. Rayon, Nylon, and Dacron (polyester) are examples of
synthetic fibers. There are crystalline polymer fibers such as cellulose (wood is made
of cellulose) that diffractX-rays and by contrast there are amorphous polymers (rubber
can be thought of as made of amorphous polymers) that don’t show diffraction peaks.

5As an aside we mention the connection of polymers with fuel cells, which have been much in the
news. In 1839 William R. Grove showed the electrochemical union of hydrogen and oxygen
generates electricity—the idea of the fuel cell. Hydrogen can be extracted from say methanol, and
stored in, for example, metal hydrides. Fuel cells can run as long as hydrogen and oxygen are
available. The only waste is water from the fuel-cell reaction. In 1960 synthetic polymers were
introduced as electrolytes.
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There are many subfields of polymers of which rubber is one of the most
important. A rubber consists of many long chains of polymers connected together
somewhat randomly. The chains themselves are linear and flexible. The random
linking bonds give shape. Rubbers are like liquids in that they have a well-defined
volume, but not a well-defined shape. They are like a solid in that they maintain
their shape in the absence of forces. The most notable property of rubbers is that
they have a very long and reversible elasticity. Vulcanizing soft rubber, by adding
sulfur and heat treatment makes it harder and increases its strength. The sulfur is
involved in linking the chains.

A rubber can be made by repetition of the isoprene group (C5H8, see
Fig. 12.29).6 Because the entropy of a polymer is higher for configurations in which
the monomers are randomly oriented than for which they are all aligned, one can
estimate the length of a long linear polymer in solution by a random-walk analysis.
The result for the overall length is the length of the monomer times the square root
of their number (see below). The radius of a polymer in a ball is given by a similar
law. More complicated analysis treats the problem as a self-avoiding random walk
and leads to improved results (such as the radius of the ball being approximately the
length of the monomer times their number to the 3/5 power). Another important
feature of polymers is their viscosity and diffusion. The concept of reptation (which
we will not discuss here, see Doi and Edwards [12.16]), which means snaking, has
proved to be very important. It helps explain how one polymer can diffuse through
the mass of the others in a melt. One thinks of the Brownian motion of a molecule
along its length as aiding in disentangling the polymer.

We first give a one-dimensional model to illustrate how the length of a polymer
can be estimated from a random-walk analysis. We will then discuss a model for
estimating the elastic constant of a rubber.

We suppose N monomers of length a linked together along the x-axis. We
suppose the ith monomer to be in the +x direction with probability of 1/2 and in the
−x direction with the same probability. The rms length R of the polymer is cal-
culated below.

Let xi = a for the monomer in the +x direction and −a for the −x direction. Then
the total length is x =

P
xi and the average squared length is

x2
�  ¼ X

xi
D E2

¼
X

x2
i

D E
; ð12:84Þ

CH2 CH2C

CH3

CH ][

Fig. 12.29 Chemical structure of isoprene (the basic unit for natural rubber)

6See, e.g., Brown et al. [12.4]. See also Strobl [12.57].
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since the cross terms drop out, so

x2
�  ¼ Na2; ð12:85Þ

or

R ¼ a
ffiffiffiffi
N

p
: ð12:86Þ

We have already noted that a similar scaling law applies to the radius of a N-
monomer polymer coiled in a ball in three dimensions.

In a similar way, we can estimate the tension in the polymer. This model or
generalizations of it to two or three dimensions (See, e.g., Callen [12.7]) seem to
give the basic idea. Let n+ and n− represent the links in the + and − directions. The
length x is

x ¼ nþ � n�ð Þa; ð12:87Þ

and the total number of monomers is

N ¼ nþ þ n�ð Þ: ð12:88Þ

Thus

nþ ¼ 1
2

Nþ x
a

� �
; n� ¼ 1

2
N � x

a

� �
: ð12:89Þ

The number of ways we can arrange N monomers with n+ in the +x direction and n−

in the − direction is

W ¼ N!
nþ !n�!

: ð12:90Þ

Using S = kln(W) and using Stirling’s approximation, we can find the entropy
S. Then since dU = TdS + Fdx, where T is the temperature, U the internal energy
and F the tension, we find

F ¼ �T
@S
@x

þ @U
@x

; ð12:91Þ

so we find (assuming we use a model in which @U=@x can be neglected)

F ¼ kT
2a

ln
1þ x=Na
1� x=Na

� �
¼ kTx

Na2
if x  Nað Þ: ð12:92Þ

The tension F comes out to be proportional to both the temperature and the
extension x (it becomes stiffer as the temperature is raised!). Another way to look at
this is that the polymer contracts on warming. In 3D, we think of the polymer
curling up at high temperatures and the entropy increasing.
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Since 1970, when it was discovered that certain polymers could conduct elec-
tricity, plastics have been an important part of condensed matter physics. In 2000,
the Nobel Prize in Chemistry was awarded to H. Shirakawa, Alan Heeger, and Alan
MacDiarmid for this discovery. It turns out that polymers with conjugated struc-
tures (alternating covalent double (“p”) and single (“r”) bonds) may have con-
ductivities of order 10−8 X−1m−1 to almost 10+8 X−1m−1. This spans the range
from semiconductors to metals. These plastics have been used for color displays in
watches and mobile phones, for example. The conductivities are achieved by
doping the conjugated structures.

It is important to note that these conducting polymers may be formed by adding
an impurity to a polymer (for example, adding an electron acceptor such as iodine
to polyacetylene). However, the current carrying process is totally different than in
typical semiconductors, see e.g: C. K. Chiang, et.al., “Electrical Conductivity in
Doped Polyacetylene,” Phys. Rev. Lett. 39, 1098 (1977).

12.16 Bose–Einstein Condensation (A)

The Bose–Einstein Condensation (BEC) was predicted by Einstein in 1924–1925
and it came to be regarded as a sort of holy grail of physics. It was finally found in
1995 as we will discuss. The condensation is one that occurs in a gas of nonin-
teracting (or nearly without interactions in a real case) boson atoms (for example)
below some critical temperature in which there appears a macroscopic population in
the lowest quantum mechanical state.

The condensation is often called “condensation in momentum space” as noted by
Huang [11, p. 290], but as also noted when it occurs in gravity, then there is
actually a separation in space of the dual phases. This is definitely a different kind
of phase transition than the familiar ones driven by particle interactions. We can
think of this as driven by the Bose statistics coming from the symmetric wave
functions of bosons.

The particles which appear in the zero momentum state are called the conden-
sate. The condensate, when it exists, accounts for a finite fraction of the particles in
the system. The gas with the condensate has macroscopically different properties
than the gas without it. The condensed phase has quantum coherence with many
bosons in the same state.

The coherent state of the atoms is different. In this state we think of all atoms as
“marching in step.” Using the uncertainty principle if the uncertainty in the
momentum is very small (which it is since in the condensate the momentum is
zero), then the uncertainty in the position is large, all atomic wave functions overlap
and one cannot really think of individual atoms. We think of the whole condensate
as being in one quantum state. All atoms in this state show behavior together in a
macroscopic state.

For energies relevant to condensed matter physics, there are two kinds of bosons;
thosewhose particle number is conserved (non zero restmass) and thosewhose number
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is not conserved (zero rest mass and chemical potential identically equal to zero). Only
those whose particle number is conserved show a Bose–Einstein condensation.
Photons have zero rest mass and rather than showing a Bose–Einstein condensation
simply disappear in the vacuum. Similar comments can be made as to phonons.

In general, the boson particles are composites. When we are dealing with atoms,
then it is the total spin (electronic as well as nuclear) of the atom that is important.
A Hydrogen atom treated as a single particle is thus a boson.

Eric Cornell, Carl Wieman and Wolfgang Ketterle won the 2001 Nobel Prize for
experimentally establishing the existence of BEC in the 1990’s. Cornell and
Wieman saw the BEC first in Rb atoms at about 200 nK with a dilute vapor of
Rb-87. In their experiment, the macroscopic occupation of the ground state was
seen in momentum space as a peak at zero velocity. Interestingly it was also seen in
real space as a sudden increase in the density of atoms in the center of the “trap.”
Shortly thereafter Ketterle did a related experiment showing BEC using Sodium 23.
Both groups used laser cooling as well as evaporative cooling. Of course, to get a
“pure” boson condensate one must have a sufficiently high or non-negligible phase
space density of the condensed phase.

For more details about this fascinating area, you can start with: Carl E. Wieman,
David E. Pritchard, and David J. Wineland, see [1 below]. There are many other
phenomena that are related to these ideas. Fermions can form pairs when there are
attractive forces and if these pairs are bosons they may also show condensation. In
essence, one thinks of fermions joining together to form boson molecules which in
turn can form condensates. There are many phenomena related to BEC but the ones
such as listed at the end of this paragraph are not regarded as having the correct
“signature”. In the “pure”BECwhichwe give a summary of below, we totally neglect
the effect of interactions. Phenomenawhere interaction are not negligible, and thus are
not considered pure BECs, include Superfluid He-4, Superfluid He-3 (first forming
pairs somewhat analogous to Cooper pairs), superconductivity and other examples.

Deborah Jin has used the idea of of a “Feshbach Resonance,” to make a new
state called a Fermi condensate. One “tunes” the fermion interaction by a magnetic
field. The whole concept is rather involved depending as it does on somewhat
subtle quantum ideas which take us outside the scope planned for this book. See [5,
6 below], as we will only give a brief sketch. The simple idea is that at a sufficiently
low temperature, by varying the magnetic field one can go from a BEC condensate
of diatomic molecules (1) to strongly interacting pairs (2) to Cooper pairs in the
BCS (Bardeen-Cooper-Schrieffer) superconducting state (3), as one passes through
the resonance from the BEC side to the BCS side. The middle ground (2) is where
we speak of Fermi Condensates. This work has given rise to some saying there are
at least six forms of matter. These are solids, liquids, gases, plasmas, Bose–Einstein
condensates, and now fermionic condensates. Others prefer to list just solids, liq-
uids, gases, and plasmas. They classify the others in a category like they do liquid
crystals.
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12.16.1 Bose–Einstein Condensation for an Ideal
Bose Gas (A)

The grand partition function is

QG ¼ TrðqÞ ð12:93Þ

where q is the density matrix

q ¼ e�bðH�lNÞ ð12:94Þ

H is the Hamiltonian operator and N is the number operator. We can write

H ¼
X
states

esns; N ¼
X
states

ns ð12:95Þ

where es is the energy of state s and ns is the operator whose eigenvalue is the
number of bosons in state s. So

q ¼ e�b
P

s ðes�lÞns ; ð12:96Þ

Tr(qÞ ¼ Tr e�b
P

s ðes�lÞms

¼ Tr
Y
s

e�bðes�lÞms

¼
Y
s

Tr e�bðes�lÞms

¼
Y
s

X1
ms¼0

msh je�bðes�lÞms msj i

ð12:97Þ

where ms is an integer. Using (12.97)

Tr(qÞ ¼
Y
s

X
ms

e�bðes�lÞms ð12:98Þ

Let

1
1� a

¼ 1þ aþ a2 þ � � � if a\1 ð12:99Þ
So

Tr(qÞ ¼
Y
s

1
1� e�bðes�lÞ ð12:100Þ

Now
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lnQG ¼ lnðTrðqÞÞ
¼ �

X
s

ln 1� e�bðes�lÞ
� �

¼ �
X
s

ln 1� e�bes z
	 


;

ð12:101Þ

where

z ¼ ebl ð12:102Þ

is the fugacity. Now

z
@

@z
lnQG ¼ z

@

@z
ln Tr e

�b
P
s

ðes�lÞns

¼ z
@

@z
ln Tr e

�b
P
s

esns
z

P
s

ns

¼ Tr(
P

s nsqÞ
Tr(qÞ

¼
X
s

nsh i ¼ Nh i:

ð12:103Þ

Also since

lnQG ¼ �
X
s

ln 1� e�bes z
	 


;

then

z
@

@z
lnQG ¼ zð�Þ

X
s

ð�Þe�bes

1� e�bes z

¼
X
s

e�bðes�lÞ

1� e�bðes�lÞ

¼
X
s

1
ebðes�lÞ � 1

:

ð12:104Þ

We identify

nsh i ¼ 1
ebðes�lÞ � 1

ð12:105Þ

For the Bose–Einstein condensation we have
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Nh i
V

¼ 1
V

X
s

1
ebes

z
� 1

¼ 1
V

z
1� z

þ 4p

�h3

Z1
0

p2dp

ebp
2=2m

z
� 1

ð12:106Þ

where the zero momentum term diverges if z ! 1, so it has been separated out.
Periodic boundary conditions have been used to convert the sum to an integral.

The separated terms can be interpreted as the average number of bosons in the
state with zero momentum (the “condensed state”).

nsh i
N

¼ z
1� z

ð12:107Þ

This can be important if nsh i is a non-negligible fraction of the bosons. The
remainder is somewhat involved algebra (see Huang [11 section 12.3]) but it can be
shown that

n0h i
N

¼
0 if T [ Tc

1� T
Tc

� �3=2
if T\Tc

(

where

kTc ¼ 2p�h2=m

1
2:612

Nh i
V

� �3=2

for spin 0 bosons. Tc is approximately the temperature at which the thermal de
Broglie wavelength is the same as the average interparticle separations.

12.16.2 Excitonic Condensates (A)

As is well known, superfluids and superconductors have some similarities. We
say superfluids have vanishing viscosity and superconductors have vanishing
resistance. In superconductors we think of the weakly paired electrons in Cooper
pairs (at low temperature) as forming a sort of boson. We thus think of the
superconducting transition as being analogous to a sort of Bose–Einstein con-
densation. In some sense so is a superfluid in He-4, but the He-4 atoms are
bosons without pairing. Condensation in He-3 can occur, because of pairing and
this is a Fermionic Condensate analogous in a certain way to superconductors
with electron pairing.

Another sort of condensate that is being explored is that of excitons. Excitons are
pairs of electrons and holes which are strongly paired and are bosons. However, the
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excitons vanish because of the recombination of electrons and holes at a fast enough
rate to inhibit somewhat the formation of a condensate. Ways around this difficulty
are being pursued by the use of graphene layers that separate the electrons and
holes. It is probably safe to say that this is only in the exploratory stage. It is clear
that the area of condensates is a very rich area.
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Problems

12:1 If the periodicity p = 50 Å and E = 5 � 104 V/cm, calculate the funda-
mental frequency for Bloch oscillations. Compare the results to relaxation
times s typical for electrons, i.e. compute xBs.

12:2 Find the minimum radius of a spherical quantum dot whose electron binding
energy is at least 1 eV.

12:3 Discuss how the Kronig–Penny model can be used to help understand the
motion of electrons in superlattices. Discuss both transverse and in-plane
motion. See, e.g., Mitin et al. [12.47 pp. 99–106].

12:4 Consider a quantum well parallel to the (x, y)-plane of width w in the z di-
rection. For simplicity assume the depth of the quantum well is infinite.
Assume also for simplicity that the effective mass is a constant m for motion
in all directions, See, e.g., Shik [12.54, Chaps. 2 and 4].

(a) Show the energy of an electron can be written

E ¼ �h2p2n2

2mw2 þ �h2

2m
k2x þ k2y
� �

;

where px = ħkx and py = ħky and n is an integer.

(b) Show the density of states can be written

D Eð Þ ¼ m

p�h2
X
n

h E � Enð Þ;

where D(E) represents the number of states per unit area per unit energy in
the (x, y)-plane and

En ¼ �h2p2

2mw2 n
2:

hðxÞ is the step function hðxÞ = 0 for x < 0 and = 1 for x > 0.
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(c) Show also D(E) at E ≳ E3 is the same as D3D(E) where D3D represents
the density of states in 3D without the quantum well (still per unit area
in the (x, y)-plane for a width w in the z direction)

(d) Make a sketch showing the results of (b) and (c) in graphic form.

12:5 For the situation of Problem 12.4 impose a magnetic field B in the z direction.
Show then that the allowed energies are discrete with values

En;p ¼ �h2p2n2

2mw2 �hxc pþ 1
2

� �
;

where n, p are integers and xc ¼ eB=mj j is the cyclotron frequency. Show
also the two-dimensional density of states per spin (and per unit energy and
area in (x, y)-plane) is

D Eð Þ ¼ eB
h

X
p

d E0 � �hx pþ 1
2

� �� �

where

E0 ¼ E � E1; E1 ¼ �h2p2

2mw2

� �

when

�h2p2

2mw2 \E\
4�h2p2

2mw2 :

These results are applicable to a 2D Fermi gas, see, e.g., Shik [12.54,
Chap. 7] as well as 12.7.2 and 12.7.3.

12:6 The Gauss-Bonnet Theorem illustrates how results can depend on topology
and be invariant to certain deformations. Show that this theorem applied to a
circle and a square box with rounded (circular p/2 arcs) edges is identically
valid in both cases. For our purpose the Gauss-Bonnet Theorem is

Z
KdA ¼ 2p

where K is the curvature and A is the (1-D) “area.”
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Appendices

A Units

The choice of a system of units to use is sometimes regarded as an emotionally
charged subject. Although there are many exceptions, experimental papers often
use mksa (or SI) units, and theoretical papers may use Gaussian units (or perhaps a
system in which several fundamental constants are set equal to one).

All theories of physics must be checked by comparison to experiment before
they can be accepted. For this reason, it is convenient to express final equations in
the mksa system. Of course, much of the older literature is still in Gaussian units, so
one must have some familiarity with it. The main thing to do is to settle on a system
of units and stick to it. Anyone who has reached the graduate level in physics can
convert units whenever needed. It just may take a little longer than we wish to
spend.

In this appendix, no description of the mksa system will be made. An adequate
description can be found in practically any sophomore physics book.1

In solid-state physics, another unit system is often convenient. These units are
called Hartree atomic units. Let e be the charge on the electron, and m be the mass
of the electron. The easiest way to get the Hartree system of units is to start from the
Gaussian (cgs) formulas, and let |e| = Bohr radius of hydrogen = |m| = 1. The
results are summarized in Table A.1. The Hartree unit of energy is 27.2 eV.
Expressing your answer in terms of the fundamental physical quantities shown in
Table A.1 and then using Hartree atomic units leads to simple numerical answers
for solid-state quantities. In such units, the solid-state quantities usually do not
differ by too many orders of magnitude from one.

1Or see “Guide for Metric Practice,” by Robert A. Nelson at scitation.aip.org/upload/
PhysicsToday/metric.pdf
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We also include in Table A.2 some other conversion factors, and in Table A.3
some quantities in units often used.

Table A.1 Fundamental physical quantitiesa

Quantity Symbol Expression/value
in mksa units

Expression/value
in Gaussian units

Value in
Hartree
units

Charge on electron e 1.6 � 10−19

coulomb
4.80 � 10−10 esu 1

Mass of electron m 0.91 � 10−30 kg 0.91 � 10−27 g 1

Planck’s constant ħ 1.054 � 10−34 J s
1.054 � 10−27

erg s
1

Compton
wavelength of
electron

kc
2p(ħ/mc)

2.43 � 10−12 m
2p(ħ/mc)

2.43 � 10−10 cm ð2pÞ 1
137

Bohr radius of
hydrogen

a0
4pe0ħ2/mc2

0.53 � 10−10 m
ħ2/mc2

0.53 � 10−8 cm
1

Fine structure
constant a

e2/4pe0ħc
1
137

(approx)

e2/ħc
1
137

1
137

Speed of light c 3 � 108 m s−1 3 � 1010 cm s−1 137

Classical electron
radius

ro
e2/4pe0mc

2

2.82 � 10−15 m
e2/mc2

2.82 � 10−13 cm
ð 1
137
Þ2

Energy of ground
state of hydrogen
(1 Rydberg)

Eo
e4m/32(pe0ħ)2

13.61 eVb
me4/2ħ2

13.61 eVb
1
2

Bohr magneton
(calculated from
above)

lB
eħ/2m

0.927 � 10−23

amp m2

eħ/2mc
0.927 � 10−20

erg gauss−1
1
274

Cyclotron frequency xc, or
xh

(l0e/2m)(2H) (e/2mc)(2H)
1
274

(2H)

aThe values given are greatly rounded off from the standard values. The list of fundamental
constants has been updated and published yearly in part B of the August issue of Physics
Today. See, e.g., Peter J. Mohr and Barry N. Taylor, “The Fundamental Physical Constants,”
Physics Today, pp. BG6–BG13, August, 2003. Now see http://physics.nist.gov/cuu/Constants/
b1 eV = 1.6 � 10−12 erg = 1.6 � 10−19 J

Table A.2 Some other conversion factors

Quantity Conversion

1Å 10−8 cm = 10−10 m
1 year p � 107 s (actually 3.16 � 107 s)
1 calorie 4.19 J
1 T 1 Wb/m2 = 104 gauss
me c

2 0.51 MeV
mp c

2 938 MeV
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B Normal Coordinates

The main purpose of this appendix is to review clearly how the normal coordinate
transformation arises, and how it leads to a diagonalization of the Hamiltonian. Our
development will be made for classical systems, but a similar development can be
made for quantum systems. An interesting discussion of normal modes has been
given by Starzak.2 The use of normal coordinates is important for collective
excitations such as encountered in the discussion of lattice vibrations.

We will assume that our mechanical system is described by the Hamiltonian

H ¼ 1
2

X
i;j

ð _xi _xjdijþ tijxixjÞ: ðB:1Þ

In (B.1) the first term is the kinetic energy and the second term is the potential
energy of interaction among the particles. We consider only the case that each
particle has the same mass that has been set equal to one. In (B.1) it is also assumed
that tij ¼ tji, and that each of the tij is real. The coordinates x, in (B.2) are measured
from equilibrium that is assumed to be stable. For a system of N particles in three
dimensions, one would need 3N xi, to describe the vibration of the system. The dot
of _xi of course means differentiation with respect to time, _xi ¼ dxi=dt.

The Hamiltonian (B.1) implies the following equation of motion for the
mechanical system: X

j

ðdij€xjþ tijxjÞ ¼ 0: ðB:2Þ

The normal coordinate transformation is the transformation that takes us from
the coordinates xi to the normal coordinates. A normal coordinate describes the

Table A.3 Some other quantities in units often used

Quantity Symbol Value

Gravitational constant G 6.67 � 10−11 Nm2/kg2

Mass of proton mp 1.67 � 10−27 kg
Permeability constant l0 4p � 10−7 N/A2

Permittivity constant e0 (4p)−1 (9 � 109)−1 F/m
Avogadro’s number NA 6.02 � 1023 mol−1

Boltzmann’s constant k 1.38 � 10−23 J/K
Universal gas constant (NAk) R 8.31 J/(mol K)
Hartree atomic unit of energy (e2/4pe0aB) 2Ry 27 eV
Magnetic flux quantum (h/2|e|) /0 2.07 � 10−15 Wb

2See Starzak [A.25, Chap. 5].
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motion of the system in a normal mode. In a normal mode each of the coordinates
vibrates with the same frequency. Seeking a normal mode solution is equivalent to
seeking solutions of the form

xj ¼ caje�ixt: ðB:3Þ

In (B.3), c is a constant that is usually selected so that
P

j jxjj2 ¼ 1, and |caj| is the
amplitude of vibration of xj in the mode with frequency x. The different frequencies
x for the different normal modes are yet to be determined.

Equation (B.2) has solutions of the form (B.3) provided thatX
j

ðtijaj � x2dijajÞ ¼ 0: ðB:4Þ

Equation (B.4) has nontrivial solutions for the aj (i.e. solutions in which all the aj do
not vanish) provided that the determinant of the coefficient matrix of the aj vanishes.
This condition determines the different frequencies corresponding to the different
normal modes of the mechanical system. If V is the matrix whose elements are given
by tij (in the usual notation), then the eigenvalues of V are x2, determined by (B.4).
V is a real symmetric matrix; hence it is Hermitian; hence its eigenvalues must be real.

Let us suppose that the eigenvalues x2 determined by (B.4) are denoted by Xk.
There will be the same number of eigenvalues as there are coordinates xi. Let ajk be
the value of aj, which has a normalization determined by (B.7), when the system is
in The Mode Corresponding to the kth eigenvalue Xk. In this situation we can writeX

j

tijajk ¼ Xk

X
j

dijajk: ðB:5Þ

Let A stand for the matrix with elements ajk and X be the matrix with elements
Xlk ¼ Xkdlk. Since Xk

P
j dijajk ¼ Xkaik ¼ aikXk ¼

P
l ailXkdlk ¼

P
l ailXlk, we

can write (B.5) in matrix notation as

VA ¼ AX: ðB:6Þ

It can be shown [2] that the matrix A that is constructed from the eigenvectors is an
orthogonal matrix, so that

AeA ¼ eAA ¼ I: ðB:7Þ

eA means the transpose of A. Combining (B.6) and (B.7) we have

eAVA ¼ X: ðB:8Þ

This equation shows how V is diagonalized by the use of the matrix that is con-
structed from the eigenvectors.
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We still must indicate how the new eigenvectors are related to the old coordi-
nates. If a column matrix a is constructed from the aj as defined by (B.3), then the
eigenvectors E (also a column vector, each element of which is an eigenvector) are
defined by

E ¼ eAa; ðB:9aÞ

or

a ¼ AE: ðB:9bÞ

That (B.9) does define the eigenvectors is easy to see because substituting (B.9b)
into the Hamiltonian reduces the Hamiltonian to diagonal form. The kinetic energy
is already diagonal, so we need consider only the potential energyX

tijaiaj ¼ ~aVa ¼ eEeAVAE ¼ eEXE
¼
X
k;j

ðeEÞjXjkEk ¼
X
j;k

ðeEÞjXkdjkEk

¼
X
j

ðeEÞjXjEj ¼
X
j;k

x2
j ðeEiÞdjk;

which tells us that the substitution reduces V to diagonal form. For our purposes, the
essential thing is to notice that a substitution of the form (B.9) reduces the
Hamiltonian to a much simpler form.

An example should clarify these ideas. Suppose the eigenvalue condition yielded

det 1� x2 2
2 3� x2

� �
¼ 0: ðB:10Þ

This implies the two eigenvalues

x2
1 ¼ 2þ

ffiffiffi
5
p

ðB:11aÞ

x2
2 ¼ 2�

ffiffiffi
5
p

: ðB:11bÞ

Equation (B.4) for each of the eigenvalues gives for

x ¼ x2
1: a1 ¼

2a2
1þ ffiffiffi

5
p ; ðB:12aÞ

and for

x ¼ x2
2: a1 ¼

2a2
1� ffiffiffi

5
p : ðB:12bÞ

From (B.12) we then obtain the matrix A
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eA ¼
2N1

1þ ffiffiffi
5
p ; N1

2N2

1� ffiffiffi
5
p ; N2

0BBB@
1CCCA; ðB:13Þ

where

ðN1Þ�1 ¼ 4ffiffiffi
5
p þ 1
� �2 þ 1

" #1=2
; ðB:14aÞ

and

ðN2Þ�1 ¼ 4ffiffiffi
5
p � 1
� �2 þ 1

" #1=2
: ðB:14bÞ

The normal coordinates of this system are given by

E ¼ E1

E2

� �
¼

2N1

1þ ffiffiffi
5
p ; N1

2N2

1� ffiffiffi
5
p ; N2

0BBB@
1CCCA a1

a2

� �
: ðB:15Þ

Problems

B:1 Show that (B.13) satisfies (B.7)
B:2 Show for A defined by (B.13) that

eA 1 2
2 3

� �
A ¼ 2þ ffiffiffi

5
p

; 0
0; 2� ffiffiffi

5
p

� �
:

This result checks (B.8).

C Derivations of Bloch’s Theorem

Bloch’s theorem concerns itself with the classifications of eigenfunctions and
eigenvalues of Schrödinger-like equations with a periodic potential. It applies
equally well to electrons or lattice vibrations. In fact, Bloch’s theorem holds for any
wave going through a periodic structure. In mathematics, Bloch’s Theorem goes by
the name of Floquet’s theorem (see Jon Mathews and R. L. Walker, Mathematical
Methods of Physics, W. A. Benjamin, Inc. New York, 1964, p. 192). We start with a
simple one-dimensional derivation.
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C.1 Simple One-Dimensional Derivation3,4,5

This derivation is particularly applicable to the Kronig-Penney model. We will
write the Schrödinger wave equation as

d2wðxÞ
dx2

þUðxÞwðxÞ ¼ 0; ðC:1Þ

where U(x) is periodic with period a, i.e.,

Uðxþ naÞ ¼ UðxÞ; ðC:2Þ

with n an integer. Equation (C.1) is a second-order differential equation, so that
there are two linearly independent solutions w1 and w2:

w001 þUw1 ¼ 0; ðC:3Þ

w002 þUw2 ¼ 0: ðC:4Þ

From (C.3) and (C.4) we can write

w2w
00
1 þUw2w1 ¼ 0;

w1w
00
2 þUw1w2 ¼ 0:

Subtracting these last two equations, we obtain

w2w
00
1 � w1w2 ¼ 0: ðC:5Þ

This last equation is equivalent to writing

dW
dx
¼ 0; ðC:6Þ

where

W ¼ w1 w2
w01 w02

���� ���� ðC:7Þ

is called the Wronskian. For linearly independent solutions, the Wronskian is a
constant not equal to zero.

3See Ashcroft and Mermin [A.3].
4See Jones [A.10].
5See Dekker [A.4].
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It is easy to prove one result from the periodicity of the potential. By dummy
variable change (x) ! (x + a) in (C.1) we can write

d2wðxþ aÞ
dx2

þUðxþ aÞwðxþ aÞ ¼ 0:

The periodicity of the potential implies

d2wðxþ aÞ
dx2

þUðxÞwðxþ aÞ ¼ 0: ðC:8Þ

Equations (C.1) and (C.8) imply that if w(x) is a solution, then so is w(x + a). Since
there are only two linearly independent solutions w1 and w2, we can write

w1ðxþ aÞ ¼ Aw1ðxÞþBw2ðxÞ ðC:9Þ

w2ðxþ aÞ ¼ Cw1ðxÞþDw2ðxÞ: ðC:10Þ

The Wronskian W is a constant 6¼ 0, so W(x + a) = W(x), and we can write

Aw1þBw2 Cw1þDw2
Aw01þBw02 Cw01þDw02

���� ���� ¼ w1 w2
w01 w02

���� ���� A C
B D

���� ���� ¼ w1 w2
w01 w02

���� ����;
or

A C
B D

���� ���� ¼ 1;

or

AD� BC ¼ 1: ðC:11Þ

We can now prove that it is possible to choose solutions w(x) so that

wðxþ aÞ ¼ DwðxÞ; ðC:12Þ

where D is a constant 6¼ 0. We want w(x) to be a solution so that

wðxÞ ¼ aw1ðxÞþ bw2ðxÞ; ðC:13aÞ

or

wðxþ aÞ ¼ aw1ðxþ aÞþ bw2ðxþ aÞ: ðC:13bÞ

Using (C.9), (C.10), (C.12), and (C.13), we can write
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wðxþ aÞ ¼ ðaAþ bcÞw1ðxÞþ ðaBþ bDÞw2ðxÞ
¼ Daw1ðxÞþDbw2ðxÞ:

ðC:14Þ

In other words, we have a solution of the form (C.12), provided that

aAþ bc ¼ Da;

and

aBþ bD ¼ Db:

For nontrivial solutions for a and ß, we must have

A� D C
B D� D

���� ���� ¼ 0: ðC:15Þ

Equation (C.15) is equivalent to, using (C.11),

DþD�1 ¼ AþD: ðC:16Þ

If we let D+ and D− be the eigenvalues of the matrix
A C
B D

� �
and use the fact that

the trace of a matrix is the sum of the eigenvalues, then we readily find from (C.16)
and the trace condition

Dþ þ ðDþ Þ�1 ¼ AþD;

D� þ ðD�Þ�1 ¼ AþD;
ðC:17Þ

and

Dþ þD� ¼ AþD:

Equations (C.17) imply that we can write

Dþ ¼ ðD�Þ�1: ðC:18Þ

If we set

Dþ ¼ eb; ðC:19Þ

and

D� ¼ e�b; ðC:20Þ

the above implies that we can find linearly independent solutions w1
i that satisfy
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w1
1ðxþ aÞ ¼ ebw1

1ðxÞ; ðC:21Þ

and

w1
2ðxþ aÞ ¼ e�bw1

2ðxÞ: ðC:22Þ

Real b is ruled out for finite wave functions (as x ! ±∞), so we can write b = ika,
where k is real. Dropping the superscripts, we can write

wðxþ aÞ ¼ e�ikawðxÞ: ðC:23Þ

Finally, we note that if

wðxÞ ¼ eikxuðxÞ; ðC:24Þ

where

uðxþ aÞ ¼ u xð Þ; ðC:25Þ

then (C.23) is satisfied. (C.23) or (C.24), and (C.25) are different forms of Bloch’s
theorem.

C.2 Simple Derivation in Three Dimensions

Let

Hwðx1. . .xNÞ ¼ Ewðx1. . .xNÞ ðC:26Þ

be the usual Schrödinger wave equation. Let Tl be a translation operator that
translates the lattice by l1a1 + l2a2 + l3a3, where the li are integers and the ai are the
primitive translation vectors of the lattice.

Since the Hamiltonian is invariant with respect to translations by Tl, we have

½H; Tl� ¼ 0; ðC:27Þ

and

½Tl; T 0l � ¼ 0: ðC:28Þ

Now we know that we can always find simultaneous eigenfunctions of com-
muting observables. Observables are represented by Hermitian operators. The Tl are
unitary. Fortunately, the same theorem applies to them (we shall not prove this
here). Thus we can write
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HwE;l ¼ EwE;l; ðC:29Þ

TlwE;l ¼ tlwE;l: ðC:30Þ
Now certainly we can find a vector k such that

tl ¼ eik�l: ðC:31Þ

Further Z
all space

wðrÞj j2ds ¼
Z

wðrþ lÞj j2ds ¼ tlj j2
Z

wðrÞj j2ds;

so that

jtlj2 ¼ 1: ðC:32Þ

This implies that k must be a vector over the real field.
We thus arrive at Bloch’s theorem

TlwðrÞ ¼ wðrþ lÞ ¼ eik�lwðrÞ: ðC:33Þ

The theorem says we can always choose the eigenfunctions to satisfy (C.33). It does
not say the eigenfunction must be of this form. If periodic boundary conditions are
applied, the usual restrictions on the k are obtained.

C.3 Derivation of Bloch’s Theorem by Group Theory

The derivation here is relatively easy once the appropriate group theoretic knowl-
edge is acquired. We have already discussed in Chaps. 1 and 7 the needed results
from group theory. We simply collect together here the needed facts to establish
Bloch’s theorem.

1. It is clear that the group of the Tl is Abelian (i.e. all the Tl commute).
2. In an Abelian group each element forms a class by itself. Therefore the number

of classes is O(G), the order of the group.
3. The number of irreducible representations (of dimension ni) is the number of

classes.
4.
P

ni2 ¼ OðGÞ and thus by above

n21þ n22þ � � � þ n20ðGÞ ¼ 0ðGÞ:

This can be satisfied only if each ni = 1. Thus the dimensions of the irreducible
representations of the Tl are all one.
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5. In general

Tlw
k
i ¼

X
j

Al;k
ij w

k
j ;

where the Al;k
ij are the matrix elements of the Tl for the kth representation and the

sum over j goes over the dimensionality of the kth representation. The wk
i are the

basis functions selected as eigenfunctions of H (which is possible since [H, Tl]
= 0). In our case the sum over j is not necessary and so

Tlwk ¼ Al;kwk:

As before, the Al,k can be chosen to be eil�k. Also in one dimension we could use
the fact that {Tl} is a cyclic group so that the Al,k are automatically the roots of one.

Felix Bloch—“Quantum Theory of Solids”

b. Zürich, Switzerland (1905–1983)

Bloch Waves and Bloch’s Theorem; Bloch Equations and Nuclear Magnetic
Resonance (NMR); Spin Waves

Bloch in some sense created the quantum theory of solids with his
introduction of Bloch’s Theorem and Bloch Waves. He was also a pioneer in
the field of magnetism and NMR. Along with many distinguished physicists
he left Europe with the rise of Hitler. He was at Stanford for a large part of his
career. He won the 1952 Nobel Prize and was the first director general of
CERN. He, along with L. Alvarez measured the magnetic moment of the
neutron and Bloch developed the theory of spin waves in ferromagnets.

D Density Matrices and Thermodynamics

A few results will be collected here. The proofs of these results can be found in any
of several books on statistical mechanics.

If wi(x, t) is the wave function of system (in an ensemble of N systems where
1 � i � N) and If jni is a complete orthonormal set, then

wiðx; tÞ�� � ¼X
n

cinðtÞ nj i:

The density matrix is defined by

qnm ¼
1
N

XN
i¼1

ci�mðtÞcimðtÞ 	 c�mcn:
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It has the following properties:

TrðqÞ 	
X
n

qnm ¼ 1;

the ensemble average (denoted by a bar) of the quantum-mechanical expectation
value of an operator A is

A
	 � 	 TrðqAÞ;

and the equation of motion of the density operator q is given by

�i�h @q
@t
¼ ½q;H�;

where the density operator is defined in such a way that n qj jmh i 	 qnm. For a
canonical ensemble in equilibrium

q ¼ exp
F � H
kT

� �
:

Thus we can readily link the idea of a density matrix to thermodynamics and
hence to measurable quantities. For example, the internal energy for a system in
equilibrium is given by

U ¼ H
	 � ¼ Tr H exp

F � H
kT

� �
 �
¼ Tr H expð�H=kTÞ½ �

Tr expð�H=kTÞ½ � :

Alternatively, the internal energy can be calculated from the free energy F where for
a system in equilibrium,

F ¼ �kT ln Tr½expð�H=kTÞ�:

It is fairly common to leave the bar off A
	 �

so long as the meaning is clear. For
further properties and references see Patterson [A.19], see also Huang [A.8].

E Time-Dependent Perturbation Theory

A common problem in solid-state physics (as in other areas of physics) is to find the
transition rate between energy levels of a system induced by a small time-
dependent perturbation. More precisely, we want to be able to calculate the time
development of a system described by a Hamiltonian that has a small time-
dependent part. This is a standard problem in quantum mechanics and is solved by
the time-dependent perturbation theory. However, since there are many different
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aspects of time-dependent perturbation theory, it seems appropriate to give a brief
review without derivations. For further details any good quantum mechanics book
such as Merzbacher6 can be consulted.
Let

HðtÞ ¼ H0þVðtÞ; ðE:1Þ

H0 lj i ¼ E0
l lj i; ðE:2Þ

VklðtÞ ¼ k VðtÞj jlh i; ðE:3Þ

xkl ¼ E0
k � E0

l

�h
: ðE:4Þ

In first order in V, for V turned on at t = 0 and constant otherwise, the probability
per unit time of a discrete i ! f transition for t > 0 is

Pi!f ffi 2p
�h

Vfi

�� ��2dðE0
i � E0

f Þ: ðE:5Þ

In deriving (E.5) we have assumed that the f (t, x) in Fig. E.1 can be replaced by a
Dirac delta function via the equation

lim
t!1

1� cosðxif tÞ
ð�hxif Þ2

¼ pt
�h
dðE0

i � E0
f Þ ¼

f ðt;xÞ
2�h2

: ðE:6Þ

Fig. E.1 f(t,x) versus x. The area under the curve is 2pt

6See Merzbacher [A.15 Chap. 18].
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If we have transitions to a group of states with final density of states pf (Ef), a similar
calculation gives

Pi!f ¼ 2p
�h

Vfi

�� ��2pf ðEf Þ: ðE:7Þ

In the same approximation, if we deal with periodic perturbations represented by

VðtÞ ¼ geixt þ gye�ixt; ðE:8Þ

which are turned on at t = 0, we obtain for transitions between discrete states

Pi!f ¼ 2p
�h

gfi
�� ��2dðE0

i � E0
f � �hxÞ: ðE:9Þ

In the text, we have loosely referred to (E.5), (E.7), or (E.9) as the Golden rule
(according to which is appropriate to the physical situation).

F Derivation of the Spin-Orbit Term from Dirac’s Equation

In this appendix we will indicate how the concepts of spin and spin-orbit interaction
are introduced by use of Dirac’s relativistic theory of the electron. For further
details, any good quantum mechanics text such as that of Merzbacher,7 or Schiff8

can be consulted. We will discuss Dirac’s equation only for fields described by a
potential V. For this situation, Dirac’s equation can be written

½cða � pÞþm0c
2bþV �w ¼ Ew: ðF:1Þ

In (F.1), c is the speed of light, a and b are 4 � 4 matrices defined below, p is the
momentum operator, m0 is the rest mass of the electron, w is a four-component
column matrix (each element of this matrix may be a function of the spatial position
of the electron), and E is the total energy of the electron (including the rest mass
energy that is m0c

2). The a matrices are defined by

a ¼ 0 r

r 0

� �
; ðF:2Þ

where the three components of r are the 2 � 2 Pauli spin matrices. The definition
of b is

b ¼ I 0
0 �I

� �
; ðF:3Þ

where I is a 2 � 2 unit matrix.

7See Merzbacher [A.15 Chap. 23].
8See Schiff [A.23].
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For solid-state purposes we are not concerned with the fully relativistic equation
(F.1), but rather we are concerned with the relativistic corrections that (F.1) predicts
should be made to the nonrelativistic Schrödinger equation. That is, we want to
consider the Dirac equation for the electron in the small velocity limit. More
precisely, we will consider the limit of (F.1) when

e 	 ðE � m0c2Þ � V
2m0c2

� 1; ðF:4Þ

and we want results that are valid to first order in e, i.e. first-order corrections to the
completely nonrelativistic limit. To do this, it is convenient to make the following
definitions:

E ¼ E0 þm0c
2; ðF:5Þ

and

w ¼ v
/

� �
; ðF:6Þ

where both v and / are two-component wave functions.
If we substitute (F.5) and (F.6) into (F.1), we obtain an equation for both v and

/. We can combine these two equations into a single equation for v in which /
does not appear. We can then use the small velocity limit (F.4) together with several
properties of the Pauli spin matrices to obtain the Schrödinger equation with rel-
ativistic corrections

E0v ¼ p2

2m0
� p4

8m3
0c

2
þV � �h2

4m2
0c

2
$V � $þ �h2

4m2
0c

2
r � ðð$VÞ � pÞ


 �
� v: ðF:7Þ

This is the form that is appropriate to use in solid-state physics calculations. The
term

�h2

4m2
0c

2
r � ½ð$VÞ � p� ðF:8Þ

is called the spin-orbit term. This term is often used by itself as a first-order
correction to the nonrelativistic Schrödinger equation. The spin-orbit correction is
often applied in band-structure calculations at certain points in the Brillouin zone
where bands come together. In the case in which the potential is spherically
symmetric (which is important for atomic potentials but not crystalline potentials),
the spin-orbit term can be cast into the more familiar form
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�h2

2m2
0c

2

1
r
dV
dr

L � S; ðF:9Þ

where L is the orbital angular momentum operator and S is the spin operator (in
units of �h).

It is also interesting to see how Dirac’s theory works out in the (completely)
nonrelativistic limit when an external magnetic field B is present. In this case the
magnetic moment of the electron is introduced by the term involving S � B. This
term automatically appears from the nonrelativistic limit of Dirac’s equation. In
addition, the correct ratio of magnetic moment to spin angular momentum is
obtained in this way.

G The Second Quantization Notation for Fermions and Bosons

When the second quantization notation is used in a nonrelativistic context it is
simply a notation in which we express the wave functions in occupation-number
space and the operators as operators on occupation number space. It is of course of
great utility in considering the many-body problem. In this formalism, the sym-
metry or antisymmetry of the wave functions is automatically built into the for-
malism. In relativistic physics, annihilation and creation operators (which are the
basic operators of the second quantization notation) have physical meaning.
However, we will apply the second quantization notation only in nonrelativistic
situations. No derivations will be made in this section. (The appropriate results will
just be concisely written down.) There are many good treatments of the second
quantization or occupation number formalism. One of the most accessible is by
Mattuck.9

G.1 Bose Particles

For Bose particles we deal with bi and byi operators (or other letters where con-

venient): byi creates a Bose particle in the state i; bt annihilates a Bose particle in
the state f The bi operators obey the following commutation relations:

½bi; bj� 	 bibj � bjbi ¼ 0;

½byi ; byj � ¼ 0;

½bi; byj � ¼ dij:

9See Mattuck [A.14].
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The occupation number operator whose eigenvalues are the number of particles
in state i is

ni ¼ byi bi;

and

niþ 1 ¼ bib
y
i :

The effect of these operators acting on different occupation number kets is

bi n1; . . .ni; . . .j i ¼ ffiffiffiffi
ni
p

n1; . . .; ni � 1; . . .j i;
byi n1; . . .ni; . . .j i ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
niþ 1

p
n1; . . .; niþ 1; . . .j i;

where n1; . . .; ni; . . .j i means the ket appropriate to the state with n1 particles in state
1, n2 particles in state 2, and so on.

The matrix elements of these operators are given by

ni � 1 bij jnih i ¼ ffiffiffiffi
ni
p

;

h ni
�� byi �� ni � 1i ¼ ffiffiffiffi

ni
p

:

In this notation, any one-particle operator

f ð1Þop ¼
X
l

f ð1ÞðrlÞ

can be written in the form

f ð1Þop ¼
X
i;k

h i f ð1Þ
�� ��k ibyi bk;

and the kj i are any complete set of one-particle eigenstates.
In a similar fashion any two-particle operator

f ð2Þop ¼
X
l;m

f ð2Þðrl � rmÞ

can be written in the form

f ð2Þop ¼
X
i;k;l;m

	
ið1Þkð2Þ f ð2Þ

�� ��lð1Þmð2Þ�byi byk bmbl:
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Operators that create or destroy base particles at a given point in space (rather
than in a given state) are given by

wðrÞ ¼
X
a

uaðrÞba;

wyðrÞ ¼
X
a

u�aðrÞbya ;

where ua(r) is the single-particle wave function corresponding to state a. In general,
r would refer to both space and spin variables. These operators obey the com-
mutation relation

½wðrÞ;wyðrÞ� ¼ dðr� r0Þ:

G.2 Fermi Particles

For Fermi particles, we deal with ai and ayi operators (or other letters where con-

venient): ayi creates a fermion in the state i; ai annihilates a fermion in the state i. The
ai operators obey the following anticommutation relations:

fai; ajg 	 aiajþ ajai ¼ 0;

fayi ; ayj g ¼ 0;

fai; ayj g ¼ dij:

The occupation number operator whose eigenvalues are the number of particles
in state i is

ni ¼ ayi ai;

and

1� ni ¼ aia
y
i :

Note that (ni)
2 = ni, so that the only possible eigenvalues of ni are 0 and 1 (the Pauli

principle is built in!).
The matrix elements of these operators are defined by

. . .ni ¼ 0. . . aij j. . .ni ¼ 1. . .h i ¼ ð�Þ
P
ð1;i�1Þ;
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and

. . .ni ¼ 1. . . ayi
��� ���. . .ni ¼ 0. . .

D E
¼ ð�Þ

P
ð1;i�1Þ;

where
P ð1; i� 1Þ equals the sum of the occupation numbers of the states from 1 to

i − 1.
In this notation, any one-particle operator can be written in the form

f ð1Þ0 ¼
X
i; j

h i f ð1Þ
�� �� j iayi aj;

where the jj i are any complete set of one-particle eigenstates. In a similar fashion,
any two-particle operator can be written in the form

f ð2Þop ¼
X
i;j;k;l

h ið1Þjð2Þ f ð2Þ
�� ��kð1Þlð2Þ iayj ayi akal:

Operators that create or destroy Fermi particles at a given point in space (rather
than in a given state) are given by

wðrÞ ¼
X
a

uaðrÞaa;

where ua(r) is the single-particle wave function corresponding to state a, and

wyðrÞ ¼
X
a

u�aðrÞaya :

These operators obey the anticommutation relations

fwðrÞ;wyðrÞg ¼ dðr� r0Þ:

The operators also allow a convenient way of writing Slater determinants, e.g.,

ayaayb 0j i $ 1ffiffiffi
2
p uað1Þ uað2Þ

ubð1Þ ubð2Þ
���� ����;

0j i is known as the vacuum ket.
The easiest way to see that the second quantization notation is consistent is to

show that matrix elements in the second quantization notation have the same values
as corresponding matrix elements in the old notation. This demonstration will not
be done here.
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H The Many-Body Problem

Richard P. Feynman is famous for many things, among which is the invention, in
effect, of a new quantum mechanics. Or maybe we should say of a new way of
looking at quantum mechanics. His way involves taking a process going from A to
B and looking at all possible paths. He then sums the amplitude of the all paths
from A to B to find, by the square, the probability of the process.

Related to this is a diagram that defines a process and that contains by impli-
cation all the paths, as calculated by appropriate integrals. Going further, one looks
at all processes of a certain class, and sums up all diagrams (if possible) belonging
to this class. Ideally (but seldom actually) one eventually treats all classes, and
hence arrives at an exact description of the interaction.

Thus, in principle, there is not so much to treating interactions by the use of
Feynman diagrams. The devil is in the details, however. Certain sums may well be
infinite-although hopefully disposable by renormalization. Usually doing a non-
trivial calculation of this type is a great technical feat.

We have found that a common way we use Feynman diagrams is to help us
understand what we mean by a given approximation. We will note below, for
example, that the Hartree approximation involves summing a certain class of dia-
grams, while the Hartree–Fock approximation involves summing these diagrams
along with another class. We believe, the diagrams give us a very precise idea of
what these approximations do.

Similarly, the diagram expansion can be a useful way to understand why a
perturbation expansion does not work in explaining superconductivity, as well as a
way to fix it (the Nambu formalism).

The practical use of diagrams, and diagram summation, may involve great
practical skill, but it seems that the great utility of the diagram approach is in clearly
stating, and in keeping track of, what we are doing in a given approximation.

One should not think that an expertise in the technicalities of Feynman diagrams
solves all problems. Diagrams have to be summed and integrals still have to be
done. For some aspects of many-electron physics, density functional theory
(DFT) has become the standard approach. Diagrams are usually not used at the
beginning of DFT, but even here they may often be helpful in discussing some
aspects.

DFT was discussed in Chap. 3, and we briefly review it here, because of its great
practical importance in the many-electron problem of solid-state physics. In the
beginning of DFT Hohenberg and Kohn showed that the N-electron Schrödinger
wave equation in three dimensions could be recast. They showed that an equation
for the electron density in three dimensions would suffice to determine ground-state
properties. The Hohenberg-Kohn formulation may be regarded as a generalization
of the Thomas-Fermi approximation. Then came the famous Kohn–Sham equations
that reduced the Hohenberg–Kohn formulation to the problem of noninteracting
electrons in an effective potential (somewhat analogous to the Hartree equations, for
example). However, part of the potential, the exchange correlation part could only
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be approximately evaluated, e.g. in the local density approximation (LDA)—which
assumed a locally homogeneous electron gas. A problem with DFT-LDA is that it is
not necessarily clear what the size of the errors are, however, the DFT is certainly a
good way to calculate, ab initio, certain ground-state properties of finite electronic
systems, such as the ionization energies of atoms. It is also very useful for com-
puting the electronic ground-state properties of periodic solids, such as cohesion
and stability. Excited states, as well as approximations for the exchange correlation
term in N-electron systems continue to give problems. For a nice brief summary of
DFT see Mattsson [A.13].

For quantum electrodynamics, a brief and useful graphical summary can be found
at: Richard P. Feynmann and A. Zee (Introduction), QED: The Strange Theory of
Light and Matter, Princeton University Press, 2014 (Originally published 1985). We
now present a brief summary of the use of diagrams in many-body physics.

In some ways, trying to do solid-state physics without Feynman diagrams is a little
like doing electricity and magnetism (EM) without resorting to drawing Faraday’s
lines of electric and magnetic fields. However, just as field lines have limitations in
describing EM interactions, so do diagrams for discussing the many-body
problem [A.1]. The use of diagrams can certainly augment one’s understanding.

The distinction between quasi- or dressed particles and collective excitations is
important and perhaps is made clearer from a diagrammatic point of view. Both are
‘particles’ and are also elementary energy excitations. But after all a polaron
(a quasi-particle) is not the same kind of beast as a magnon (a collective excitation).
Not everybody makes this distinction. Some call all ‘particles’ quasiparticles.
Bogolons are particles of another type, as are excitons (see below for definitions of
both). All are elementary excitations and particles, but not really collective exci-
tations or dressed particles in the usual sense.

H.1 Propagators

These are the basic quantities. Their representation is given in the next section. The
single-particle propagator is a sum of probability amplitudes for all the ways of
going from r1, t1 to r2, t2 (adding a particle at 1 and taking out at 2).

The two-particle propagator is the sum of the probability amplitudes for all the
ways two particles can enter a system, undergo interactions and emerge again.

H.2 Green Functions

Propagators are represented by Green functions. There are both advanced and
retarded propagators. Advanced propagators can describe particles traveling
backward in time, i.e. holes. The use of Fourier transforms of time-dependent
propagators led to simpler algebraic equations. For a retarded propagator the free
propagator is:
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Gþ0 k;xð Þ ¼ 1
x� ek þ id

: ðH:1Þ

For quasiparticles, the real part of the pole of the Fourier transform of the
single-particle propagator gives the energy, and the imaginary part gives the width
of the energy level. For collective excitations, one has a similar statement, except
that two-particle propagators are needed.

H.3 Feynman Diagrams

Rules for drawing diagrams are found in Economu [A.5, pp. 251–252], Pines
[A.22, pp. 49–50] and Schrieffer [A.24, pp. 127–128]. Also, see Mattuck [A. 14,
p. 165]. There is a one-to-one correspondence between terms in the perturbation
expansion of the Green functions and diagrammatic representation. Green functions
can also be calculated from a hierarchy of differential equations and an appropriate
decoupling scheme. Such approximate decoupling schemes are always equivalent
to a partial sum of diagrams.

H.4 Definitions

Here we remind you of some examples. A more complete list is found in Chap. 4.

Quasiparticle—A real particle with a cloud of surrounding disturbed particles with
an effective mass and a lifetime. In the usual case it is a dressed fermion. Examples
are listed below.
Electrons in a solid—These will be dressed electrons. They can be dressed by
interaction with the static lattice, other electrons or interactions with the vibrating
lattice. It is represented by a straight line with an arrow to the right if time
goes that way.
Holes in a solid—One can view the ground state of a collection of electrons as a
vacuum. A hole is then what results when an electron is removed from a normally
occupied state. It is represented by a straight line with an arrow to the left .
Polaron—An electron moving through a polarizable medium surrounded by its
polarization cloud of virtual phonons.
Photon—Quanta of electromagnetic radiation (e.g. light)—it is represented by a
wavy line .
Collective Excitation—These are elementary energy excitations that involve
wave-like motion of all the particles in the systems. Examples are listed below.
Phonon—Quanta of normal mode vibration of a lattice of ions. Also often repre-
sented by wavy line.
Magnon—Quanta of low-energy collective excitations in the spins, or quanta of
waves in the spins.
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Plasmon—Quanta of energy excitation in the density of electrons in an interacting
electron gas (viewing, e.g., the positive ions as a uniform background of charge).
Other Elementary Energy Excitations—Excited energy levels of many-particle
systems.
Bogolon—Linear combinations of electrons in a state +k with ‘up’ spin and −k with
‘down’ spin. Elementary excitations in a superconductor.
Exciton—Bound electron-hole pairs.

Some examples of interactions represented by vertices (time going to the right):

Diagrams are built out of vertices with conservation of momentum satisfied at
the vertices. For example

represents a coulomb interaction with time going up.

H.5 Diagrams and the Hartree and Hartree–Fock
Approximations

In order to make these concepts clearer it is perhaps better to discuss an example that
we have already worked out without diagrams. Here, starting from the Hamiltonian
we will discuss briefly how to construct diagrams, then explain how to associate
single-particle Green functions with the diagrams and how to do the partial sums
representing these approximations. For details, the references must be consulted.

In the second quantization notation, a Hamiltonian for interacting electrons

H ¼
X
i

V ið Þþ 1
2

X
i;j

V ijð Þ; ðH:2Þ

with one- and two-body terms can be written as

H ¼
X
i;j

i 1ð Þ V 1ð Þj jj 1ð Þh iayi ajþ
1
2

X
ijkl

i 1ð Þj 2ð Þ V 1; 2ð Þj jk 1ð Þj 2ð Þh iayj ayi akal; ðH:3Þ
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where

i 1ð Þ V 1ð Þj j j 1ð Þh i ¼
Z

/�i r1ð ÞV r1ð Þ/j r1ð Þd3ri; ðH:4Þ

and

i 1ð Þj 2ð Þ V 1; 2ð Þj jk 1ð Þl 2ð Þh i ¼
Z

/�i r1ð Þ/�j r2ð ÞV 1; 2ð Þ/k r1ð Þ/l r2ð Þd3r1d3r2;
ðH:5Þ

and the annihilation and creation operators have the usual properties

aia
y
j þ ayj ai ¼ dij;

aiajþ ajai ¼ 0:

We now consider the Hartree approximation. We assume, following Mattuck
[A.14] that the interactions between electrons is mostly given by the forward
scattering processes where the interacting electrons have no momentum change in
the interaction. We want to get an approximation for the single-particle propagator
that includes interactions. In first order the only possible process is given by a
bubble diagram where the hole line joins on itself. One thinks of the particle in state
k knocking a particle out of and into a state l instantaneously. Since this can happen
any number of times, we get the following partial sum for diagrams representing the
single-particle propagator. The first diagram on the right-hand side represents the
free propagator where nothing happens (Mattuck [A.14, p. 89]10).

Using the “dictionary” given by Mattuck [A.14 p. 86], we substitute propagators for
diagrams and get

Gþ k;xð Þ ¼ 1
x� ek �

P
l occ:ð Þ

Vklklþ id
: ðH:6Þ

10Reproduced with permission from Mattuck RD, A Guide to Feynman Diagrams in the
Many-Body Problem, 2nd edn, (4.67) p. 89, Dover Publications, Inc., 1992.

Appendices 831



Since the poles give the elementary energy excitations we have

e0k ¼ ek þ
X
l occ:ð Þ

Vklkl; ðH:7Þ

which is exactly the same as the Hartree approximation [see (3.21)] since

X
l

Vklkl ¼
Z

d3r2/
�
k r2ð Þ/k r2ð Þ

X
l

Z
/�l r1ð Þ/l r1ð ÞV 1; 2ð Þd3r1: ðH:8Þ

It is actually very simple to go from here to the Hartree–Fock approximation—all
we have to do is to include the exchange terms in the interactions. These are the
“open-oyster” diagrams

where a particle not only strikes a particle in l and creates an instantaneous hole, but
is exchanged with it. Doing the partial sum of forward scattering and exchange
scattering one has (Mattuck [A.14, p. 91]11):

Associating propagators with the terms in the diagram gives

Gþ k;xð Þ ¼ 1
x� ek �

P
l occ:ð Þ Vklkl � Vlkklð Þþ id

: ðH:9Þ

From this we identify the elementary energy excitations as

11Reproduced with permission from Mattuck RD, A Guide to Feynman Diagrams in the
Many-Body Problem, 2nd edn, (4.76) p. 91, Dover Publications, Inc., 1992.
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e0k ¼ ek þ
X
l occ:ð Þ

Vklkl � Vlkklð Þ; ðH:10Þ

which is just what we got for the Hartree–Fock approximation [see (3.50)].
The random-phase approximation [A.14] can also be obtained by a partial

summation of diagrams, and it is equivalent to the Lindhard theory of screening.

H.6 The Dyson Equation

This is the starting point for many approximations both diagrammatic, and alge-
braic. Dyson’s equation can be regarded as a generalization of the partial sum
technique used in the Hartree and Hartree–Fock approximations. It is exact. To state
Dyson’s equation we need a couple of definitions. The self-energy part of a diagram
is a diagram that has no incoming or outgoing parts and can be inserted into a
particle line. The bubbles of the Hartree method are an example. An irreducible or
proper self-energy part is a part that cannot be further reduced into unconnected
self-energy parts. It is common to define

as the sum over all proper self-energy parts. Then one can sum over all repetitions
of sigma

P
k;xð Þ to get

Dyson’s equation yields an exact expression for the propagator,

G k;xð Þ ¼ 1
x� ek �

P
l occ:ð Þ k;xð Þþ idk

; ðH:11Þ

since all diagrams are either proper diagrams or their repetition.
In the Hartree approximation

and in the Hartree–Fock approximation
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Although the Dyson equation is in principle exact, one still has to evaluate sigma,
and this is in general not possible except in some approximation.

We cannot go into more detail here. We have given accurate results for the high
and low-density electron gas in Chap. 2. In general, the ideas of Feynman diagrams
and the many-body problem merit a book of their own. We have found the book by
Mattuck [A.14] to be particularly useful, but note the list of references at the end of
this section. We have used some ideas about diagrams when we discussed
superconductivity.

I Brief Summary of Solid-State Physics12

Note the order of review here is not identical to the text as we indicate below.

1. Classification and Crystal Structure (see Sects. 1.2.4 and 1.2.5).

fcc:
a
2

1; 1; 0ð Þ; a
2

0; 1; 1ð Þ; a
2

1; 0; 1ð Þ

bcc:
a
2

1; 1;�1ð Þ; a
2
�1; 1; 1ð Þ; a

2
1;�1; 1ð Þ

Seven Crystal Systems: cubic, tetragonal, orthorhombic, monoclinic, triclinic,
hexagonal, trigonal, 14 Bravais lattices, 230 distinct lattices.

Bravais Lattice and Reciprocal Lattice Vectors (see Sect. 1.2.9).

b1 ¼ 1
X

a2 � a3ð Þ; ðSee 1:45Þ

X ¼ a1 � a2 � a3ð Þ; ðSee 1:46Þ

Reciprocal Lattice of fcc is bcc, Reciprocal Lattice of bcc is fcc.

Bragg and von Laue Diffraction (see Sect. 1.2.9). The two are equivalent.

nkhkl ¼ 2dhkl sin hhkl ðSee 1:55Þ

Gshortest; hkl ¼ 2p
dhkl

ðSee 1:54Þ

Dk ¼ G ðSee 1:52Þ

12A much more extensive survey of solid-state physics is contained in Sybil P. Parker, Editor
in Chief, Solid State Physics Source Book, McGraw-Hill Book Co., New York, 1987.
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G ¼ 2p
X

nibi ðSee 1:44Þ

ai � Dk ¼ 2pmi ðSee 1.48 with ai ¼ RpmnÞ

Brillouin Zones (see Sect. 2.3.1, discussed in detail). The first Brillouin zone is the
set of all k-space points that enclose the origin and are inside all Bragg planes
(planes describing Bragg reflection in k-space). Higher zones are similarly defined.

Madelung’s constant

a
R
¼
X �ð Þ

rij
ðSee 1:13Þ

Structure Factor and Atomic Form Factor (see Sect. 1.2.9).

SG ¼
X
j

fje�iG�rj ðSee 1:41Þ

fj ¼
Z

nj rð Þe�iG�qdV ðSee 1:42Þ

Jahn-Teller Effect (see Sect. 7.4.4). Relevant to symmetry considerations.
A distortion of a symmetric molecule in a degenerate state which reduces symmetry
and lowers energy.

2. Lattice Vibrations

Lennard-Jones potential (see Sect. 1.1.1). For van der Waals interactions, men-
tioned here as illustrative of the potential between atoms in a solid that gives rise to
vibrations. The 12th power term is used to model the repulsive part of the potential.

U rij
� � ¼ 4e � r

rij

� �6

þ r
rij

� �12
" #

;

Bose Einstein Statistics for Bosons with zero chemical potential: the Planck
Distribution (see Sects. 2.2.3 and 2.3.3).

nh i ¼ 1
e�hx=kT � 1

ðSee 2:77; 2:215Þ

Dispersion Relations (see Sects. 2.2.2, 2.2.4). For long wavelength acoustic modes.

x2 ¼ ks
m
k2a2 ðSee 2:48; 2:88; 2:90Þ

where ks is the elastic constant, k is the wave vector.

Appendices 835



Thermal Conductivity (see Sect. 4.2.3 for phonons). Arises from both phonons and
electrons. A simple kinetic theory argument gives the equation below.

K ffi 1
3
Cvl ðSee 3:205Þ

where C is the specific heat per unit volume, v is the average carrier velocity, l is the
mean free path.

Debye Specific Heat (see Sect. 2.3.3). (assume three modes with same v)

D xð Þ / x2;x�xD

¼ 0 ;x[xD
ðSee 2:224Þ

�hxD ¼ khD; hD ¼ �hv
k

6p2N
V

� �1=3

; ðSee 2:228Þ

where v is velocity and V is volume.

Heat Capacity (see Sect. 2.3.3).

CV ¼ 9Nk
T
h

� �3Zh=T
0

x4exdx

ex � 1ð Þ2 ðSee 2:229Þ

Density of States (see Sect. 3.2.3 for most general derivation).

D xð Þ ¼ V

2pð Þ3
Z

const xð Þ

dAx

$kx kð Þj j ðSee 3:256Þ

Van Hove Singularity (see Sect. 2.3.3). When tg = $k w(k) = 0 in Density of
States resulting in singularities in D(w).

Umklapp Relates to phonon interactions but listed here (see Sect. 4.2.2 with dif-
ferent notation).

k1þ k2 ¼ k3þG ðSee 4:12Þ

Debye-Waller Factor e−2W (see end of Sect. 1.2.9). Related to lattice vibrations.
Scattered X-ray intensity reduced by

e�2W I ¼ I0e�2W
� �

For low T

W / Dkð Þ2
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and for High T

W / Dkð Þ2 T
h

� �
Lindemann Melting Formula relates to lattice vibrations, see, e.g., J. M. Ziman,
Principles of the Theory of Solids, Cambridge, 1964, p. 63.

Tm ¼ Amð Þ2
9�h2

mkh2D

where Am = amplitude of thermally excited oscillation at melting point.

Gruneisen Constant (DebyeModel) (see Sect. 2.3.4).

c ¼ � @ lnxD

@ lnV
ðSee 2:242Þ

then the coefficient of thermal expansion is

a ¼ cCv

3B
ðSee 2:237; 2:238; 2:250Þ

where B is the bulk modulus [�V@P=@V the reciprocal of the compressibility,
(1.18), (2.237)], and Cv is the specific heat per unit volume.

Elastic constants in continuum (see Sect. 2.3.5). For cubic crystal [1,0,0] waves:

longitudinal wave velocity

v ¼
ffiffiffiffiffiffiffi
C11

q

s
; ðSee 2:270Þ

transverse wave velocity

v ¼
ffiffiffiffiffiffiffi
C44

q

s
; ðSee 2:270Þ

where C11 and C44 are elastic stiffness constants.
In addition, for a summary of crystal mathematics. See Sect. 2.3.1 and Problem
2.11.

3. Electrons

Fermi Function (see Sect. 3.2.2).

f ¼ 1
e E�lð Þ=kT þ 1

ðSee 3:165Þ
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Bloch’s Theorem for periodic lattices (see Sect. 3.2.1 and Appendix C).

wk ¼ uk rð Þeik�r ðSee 3:128;C:24Þ

uk rð Þ ¼ uk rþRð Þ ðSee 3:129;C:25Þ

A crystal is periodic in real space. This forms a periodic potential for electrons. The
wave functions for these electrons are Bloch functions, which introduce the k vector.
The energies of these electrons are periodic in k space or reciprocal space. A Brillouin
Zone is a zone in reciprocal space of all physically distinct k vectors. Because of
periodicity in k space one can define first, second, etc. Brillouin zones. The planes that
form the Brillouin Zone Boundaries are the planes that Bragg reflect the k vector lying
on those planes. (There is a slight complication due to Jones Zones, see text.)

Free Electron Density of States and Fermi Energy (see Sect. 3.2.2).

g Eð Þ ¼ V
2p2

2m

�h2

� �3=2 ffiffiffiffi
E
p

; ðSee 3:164Þ

g(E) = 2N(E) includes spin.

EF T ¼ 0ð Þ ¼ �h2

2m
3p2

N
V

� �2=3

ðIntegrate 3:164Þ

Electrical Conductivity (see Sect. 3.2.2).

r ¼ ne2s
m

; ðSee 3:214Þ

where n is the number of electrons per volume.

Hall Constant (see Sects. 6.1.5 and 12.7.1).

RH ¼ � 1
ne

or � 1
nec

in cgs
� �

; e[ 0 ðSee 6:102; 12:23Þ

Wiedemann Franz Law (see Sect. 3.2.2).

K
r
¼ LT ðSee 3:215Þ

L ¼ p2

3
k
e

� �2

ðSee 3:215Þ

Nearly Free Electrons (see Sect. 3.2.3, with different notation used).

E0
k � E U�G
UG E0

kþG � E

���� ���� ¼ 0; near band edge ðSee 3:230Þ
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Tight Binding Approximation (see Sect. 3.2.3). DU = difference between potential
of crystal and potential of isolated atom.

wk rð Þ ¼
X
j

/a r� Rj
� �

eik�Rj ðSee 3:244Þ

Ek ¼ E0 � a� c
X
j n:n:ð Þ

eik�Rj ðSee 3:255Þ

a ¼ �
Z

dV/�a rð ÞDU/a rð Þ ðSee 3:253Þ

c ¼ �
Z

dV/�a r� Rð ÞDU/a rð Þ ðSee 3:254Þ

Wannier Functions (see Sect. 3.2.4).

/w r� Rj
� � ¼ 1ffiffiffiffi

N
p

X
k

e�ik�Rj wk rð Þ
Bloch Fns:

ðSee 3:332Þ

Pseudopotential (see Sect. 3.2.3).

Vpseudo ¼ V �
X
c

Ec � Eð Þ wcj i wch j ðSee 3:287; 3:288Þ

Cyclotron Frequency (see Sect. 3.2.2).

xc ¼ eB
m

or
eB
mc

in cgs
� �

ðSee 3:196Þ

Low Temperature Specific Heat (see Sect. 3.2.2 and Table 2.5).

Cv ¼ AT3þ cT = phononsþ electrons

Hartree Equation (see Sect. 3.1.2).

� �h2

2m
r2wi rð ÞþVion rð Þwi rð Þ

þ e2

4pe0

X
j 6¼ið Þ

Z
dr0 wj r

0ð Þ�� ��2 1
r� r0j j

24 35
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Vel rð Þ

wi rð Þ ¼ Eiwi rð Þ

[Equivalent to (3.15)].
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Hartree–Fock Equation (see Sect. 3.1.3).

� �h2

2m
$2wi rð ÞþVion rð Þwi rð ÞþVel rð Þwi rð Þ

� e2

4pe0

X
j 6¼ið Þ
spink

Z
dr0

1
r� r0j jw

�
j r0ð Þwi r

0ð Þwj rð Þ ¼ Eiwi rð Þ

[Equivalent to (3.24)].

Density Functional Theory (see Sect. 3.1.5). Kohn–Sham Equations—with
exchange potential derived from jellium.

� �h2

2m
$2wi rð Þþ Vion rð ÞþVel rð Þ �

wi rð Þ �
3
p
n rð Þ

� �1=3

wi rð Þ ¼ Eiwi rð Þ

(Implied by (3.98) with use of (3.115), (3.116). See especially Marder [3.34, p. 219
(9.80)]

Lindhard Equation and Screening Length (see Sect. 9.5.3).

e q;xð Þ ¼ 1þ e2

eq2
1
V

X
k;r

f kð Þ � f kþ qð Þ
E kþ qð Þ � E kð Þ � �hxþ ig

ðSee 9:166Þ

T ¼ 0: e q; 0ð Þ ¼ 1þ k2s
q2

F xð Þ; x ¼ q
2kF

; F xð Þ ¼ 1
2
þ 1� x2

4x
ln

1þ x
1� x

���� ����
For a static screened charge Q,

q� kF / ¼ 1
4per

e�ksr k2s ¼
3m0e2

2eEF

4. Interactions and Transport

Boltzmann Differential Equation (see Sect. 4.5). 2/(2p)3 is the number of states
(including spin) in drdk. Let f(r,k,t)dkdr/4p3 be the number of electrons in drdk (in
equilibrium, f = f0 = Fermi function).

@f
@t
þ v � $rf þ F

�h
� $kf ¼ @f

@t

�
collisions

Relaxation time approximation With simplifying assumptions,

RHS of BDE ¼ � f � f0
s kð Þ ðSee 4:149; 4:145Þ

840 Appendices



Electrical current and Heat flux (one band) (see Sects. 4.5.2, 4.6)

je ¼ �e
Z

dk
4p3

v kð Þf kð Þ ¼ L11 Eþ $l
e

� �
þ L12 �$Tð Þ

jQ ¼ �
Z

dk
4p3

E kð Þv kð Þf kð Þ ¼ L21 Eþ $l
e

� �
þ L22 �$Tð Þ

[see (4.122), (4.123)] see Ashcroft–Mermin p. 256 for definitions of Lij.

Electrical conductivity r and thermal conductivity j (see Sect. 4.6). ∇l/e is
negligible for metals but not semiconductors. We assume metals in the next two
Sects.

r ¼ je
E

���� ����; $T ¼ 0

j ¼ jQ
$T

���� ����; je ¼ 0

Thermoelectric Power Q and Peltier Effect P (see Sects. 4.6.4, 4.6.2).

Q ¼ E
$T

���� ����; je ¼ 0

P ¼ jQ
je

���� ����; $T ¼ 0

P ¼ QT

Mott Transition (metal-insulator transition) (see Sect. 4.4).

n1=3c a1 ffi constant

where nc is the critical electron density and a1 is the Bohr radius. When n > nc,
electrons are “crowded” together. See Marder [3.34, p. 491] for values.

Charge Density Waves (see Sect. 5.6.1). An electron lattice phenomena. At
absolute zero the deformation amplitude is proportional to

exp � 1
D EFð ÞV

� �
where V characterizes the effective electron-electron interaction.

Quantum Conductance G (see Sect. 12.5.2).

G ¼ integerð Þ e
2

h
2ð Þ; 2 for spin

e2/h is called the quantum conductance.
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Bloch Metallic Resistivity (see Sect. 4.5.3).

q� T T  hD

q� T5 T � hD
ðSee 4:146Þ

May have p * constant at T � 0D due to impurities and there may be other
effects.

5. Metals (Na, Cu, Au, Mg, etc.), Alloys, and the Fermi Surface

Fermi Surface (see Sect. 5.1). For the nth band with energy En(k) the locus of
points such that En(k) = EF. (see Table 5.1)

deHaas van Alphen Effect (see Sect. 6.5). Neglecting spin, the number of states per
Landau level per area = eB/h. Interval of susceptibility oscillations

D
1
B

� �
¼ 2pe

�hA0
SIð Þ ðSee 5:34Þ

where A0 is extremal area of Fermi surface.

Plasma Frequency (see Sect. 10.9). No radiation propagates for frequency below

xp ¼ ne2

me0

4pne2

m
cgsð Þ

� �
ðSee 10:108Þ

Hume-Rothery Rules (see Sect. 5.1.2). (Roughly) when inscribed Fermi sphere
makes contact with the Brillouin zone boundary a new phase appears.

Kohn Anomalies (see Sects. 4.4 and 9.5.3). The Lindhard dielectric constant sin-
gularity at q = 2kF introduces (via the screened ion-ion interaction) a kink or
infinity in @x=@q in the phonon spectrum at values of q corresponding to a
diameter of the Fermi surface.

6. Semiconductors (Si, Ge, InSb, GaAs, etc.)

Five Equations for doped semiconductors in equilibrium:

1. Charge neutrality,
2. Number of electrons in conduction band,
3. Number of holes in valence band,
4. Number of electrons on donor ions,
5. Number of holes on acceptor ions.

Law of Mass Action in Equilibrium (see Sect. 6.1.1).

np ¼ n2i ðSee 6:13Þ

ni ¼ 2
kT

2p�h2

� �3=2

m�em
�
h

� �3=4
exp � Eg

2kT

� �
ðSee 6:14Þ
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External Force and k (see Sect. 6.1.2).

F ¼ �h
dk
dt

ðSee 6:44Þ
Group Velocity (see Sect. 6.1.2).

vg ¼ 1
�h
$kE kð Þ ðSee 6:29Þ

Effective Mass (see Sect. 6.1.2).

1
m�
¼ 1

�h2
@2E
@k2

ðSee 6:49Þ

Einstein Relation (see Sect. 6.1.4).

lkT ¼ eD ðSee 6:84; 6:85Þ

Current due to drift and diffusion (see Sect. 6.1.4).

je ¼ neleEþ eDern ðSee 6:82Þ

jh ¼ pelhE� eDhrp ðSee 6:83Þ

Schottky Barrier (see Sect. 6.3.5).

width ¼ Zb ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Ke DVj j

ne2

r ffiffiffiffiffiffiffiffiffiffiffiffi
e DVj j
2pne2

r
cgsð Þ

 !
ðSee 6:193Þ

Shockley Diode Equation (see Sect. 6.3.8).

j ¼ e
Dn

Ln
np0 þ

Dp

Lp
pn0

� �
exp

eub

kT

� �
� 1

h i
ðSee 6:241Þ

Mobility (see Sect. 6.1.4).

acoustic phonon scattering

l / T�3=2

ionized impurity scattering

l / T3=2

Depending on the situation there may be several other scattering mechanisms to
consider. With GaAs for example, optical phonon scattering may need
consideration.

Appendices 843



7. Magnetism (Fe, Ni, Co, EuS, Y3Fe5O12, Gd, etc. are ferromagnets)

Larmor frequency (see Sect. 7.4.1).

eB
2m

eB
2mc

cgsð Þ
� �

ðSee 7:255; 7:256Þ

Lande g factor

g ¼ 1þ 1
2

J Jþ 1ð Þþ S Sþ 1ð Þ � L Lþ 1ð Þ
J Jþ 1ð Þ


 �
[Implied by (7.6), (7.10)]

Pauli Paramagnetism and Landau Diamagnetism (see Sects. 7.1.2 and 3.2.2 for
Pauli and 7.1.1 and 3.2.2 for Landau).

vp ¼ l0l
2
BD EFð Þ ðSee 3:181; 3:201Þ

vdia ¼ �
1
3
vp ðSee 3:201Þ

lB ¼ Bohr magneton

Van Vleck Paramagnetism (See Footnote 2 of Chap. 7).

v ¼ 2N
V

exch jlz gj i
�� ��2
Eexc � Eg

exc ¼ excited, g ¼ groundð Þ

Brillouin Function (see Sect. 7.1.2).

BJ xð Þ ¼ 2Jþ 1
2J

coth
2Jþ 1ð Þx

2J


 �
� 1
2J

coth
x
2J

� �
ðSee 7:16Þ

Heisenberg Hamiltonian (see Sect. 7.2.1).

H ¼ �
X
i;j

JijSi � Sj ðSee 7:88Þ

RKKY Interaction (see Sect. 7.2.1).

Jij / F 2kFRij
� �

; F xð Þ ¼ x cos x� sin x
x4

ðSee 7:107� 7:110Þ
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Weiss Mean Field Theory (see Sect. 7.1.3).

M ¼ NgJlBBJ xð Þ ðSee 7:21Þ

x ¼ gJlB
Beff

kT
ðSee 7:22Þ

Beff ¼ Bþ kM

Stoner Criterion for Band ferromagnetism (see Sect. 7.2.4).

kh0

EF
[

2
3
; kh0 ¼ lBHeff

M=M0
cgsð Þ ðSee 7:222Þ

Kondo Temperature (see Sect. 7.5.2).

TK / exp � 1
JD EFð Þ

� �
ðSee 7:300Þ

Quantum Hall Effect (see Sect. 12.7.3). This is an effect of magnetic field on high
density electrons in two dimensions. The Hall conductance is

Gxy ¼ v
e2

h
ðSee 12:47Þ

where v is integer or fraction.

Bloch Wall Width d (see Sect. 7.3.1)

d /
ffiffiffiffi
J
K

r
ðSee 7:251Þ

where K is anisotropy, and J is exchange.

Spin Wave Theory Ferromagnetic and Antiferromagnetic Dispersion Long waves
(see Sect. 7.2.3)

xF / k2 cubicð Þ; xAF / kaj j ðSee 7:191Þ

Low T (Ferro) (see Sect. 7.2.3)

M 0ð Þ �M Tð Þ / T3=2

CM / T3=2
ðSee 7:196Þ
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Critical Exponents (see Sect. 7.2.5 and Table 7.3)

C � T � TCj j�a
v � T � TCj j�c

M � TC � Tj jb� H1=d for T ¼ TCð Þ

a b c aþ 2bþ c

Mean Field 0 1/2 1 2
2D Ising 0 1/8 7/4 2
3D Ising *0.11 *0.32 *1.24 *2
Experiment *0 *1/3 *4/3 *2

For a summary of useful group theory results see Sect. 1.2.1 and p. 445ff.

8. Superconductivity, all cgs (Pb, Hg, Nb3Ge, HTS, etc.)

London Equation (in London Gauge) (see Sect. 8.2)

J rð Þ ¼ � ne2

mc
A rð Þ cgsð Þ ðSee 8:5Þ

London Penetration Depth (see Sect. 8.2)

kL ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
mc2

4pne2

r
ðSee 8:6Þ

Intrinsic Coherence Length (see Sect. 8.2.1).

n0�
2�hvF
pEg

ðSee 8:49Þ

Type I and II (see Sect. 8.2.3). n * (n0l)
1/2, l = mfp of electrons in normal state

[see (8.51)].

I: n[ k Hc� u0

pnk2

II: n\k Hc1 �
u0

pk2
Hc2 �

u0

pn2
Hc2

Hc1
� k

n

� �2

Note n/k defines Type I and II. Hc1 and Hc2 are upper and lower critical fields for
Type II.

Fluxoid Quanta (see Sect. 8.2.2).

/0 ¼
hc
2e

cgsð Þ ðSee 8:45Þ
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BCS Transition Temperature

(a) Weak Coupling (D(EF)V � 1, V = electron–phonon coupling) (see Sect. 8.5.3).

Tc ffi 1:14hD exp � 1
VD EFð Þ

� �
ðSee 8:217Þ

(b) Strong Coupling (see Sect. 8.5.4)

Tc ffi hD
1:45

exp � 1þ kep
kep � l� 1þ 0:62kep

� � !
ðSee first Eq: in Sect:Þ

kep is the coupling constant, l* is the effective Coulomb repulsion.

GLAG Equation (see Sect. 8.2) |w|2 = concentration of superconducting
electrons = ns.

1
2m

�h
i
$� q

A
c
þ aþ b wj j2

� �
 �
w ¼ 0 a; b are related to kL; n0ð Þ ðSee 8:3Þ

js ¼ � iq�h
2m

w�$w� w$w�ð Þ � q2

mc
w�wA q ¼ �2e;m! 2með Þ ðSee 8:4Þ

Isotope effect (see Sect. 8.5.3)

Tc / M�aðfor weak coupling; a� 1=2ð Þ

9. Dielectrics and Ferroelectrics (KH2PO4, BaTiO3)

LST Equation (see Sect. 9.3.2)

x2
L

x2
T
¼ e 0ð Þ

e 1ð Þ ðSee 9:50Þ

Lorentz Local Field (see Sect. 9.2)

Eloc ¼ Eþ 4p
3
P guassianð Þ ¼ Eþ P

3e0
ðSIÞ

� �
ðSee 9:24Þ

Clausius-Mossotti Equation (see Sect. 9.2)

e� 1
eþ 2

¼ 4p
3

X
Njaj

e=e0ð Þ � 1
e=e0ð Þþ 2

¼ 1
3e0

X
Njaj SIð Þ

� �
ðSee 9:30Þ
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10. Optical Properties

Direct and Indirect Absorption (see Sect. 10.4).

direct: Dke ¼ 0
indirect: DkeþDqph ¼ 0:

Optical Absorption Coefficient (see Sect. 10.4) Near band edge for allowed direct
transitions in parabolic bands.

a ¼ A
�hf

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hf � Eg

p ðSee 10:83Þ

Frenkel Excitons (tightly bound) (see Sect. 10.7).

ek ¼ eþ 2V cos ka nnð Þ ðSee below 10:99Þ

Mott-Wannier Excitons (weakly bound) (see Sect. 10.7).

En ¼ Eg � le4

2�h2e2n2
cgsð Þ ðSee 10:100Þ

1
l
¼ 1

me
þ 1

mh
cgsð Þ ðSee 10:101Þ

Franck-Condon Effect Roughly speaking, absorption of light occurs as if the
lattice is frozen.

11. Defects

Schottky and Frenkel Defects (see Sect. 11.1). Schottky produces lattice vacancy
and surface ion. Frenkel produces a lattice vacancy plus interstitial.

Mollwo Equation

kmax of F center band / a2

a = lattice constant (see Problem 11.1, DE / a�2 / k�1.)

Burger’s Vectors (see Sect. 11.6) The jog in a complete (if undistorted) circuit of
the dislocation caused by a dislocation.

12. Nanophysics, Surfaces, Interfaces, and Amorphous Materials

Surface Reconstruction (see Sect. 12.1) Expressed in 2D for surface, with new
lattice vectors expressed in terms of undistorted vectors.

848 Appendices



Bloch Oscillations (see Sect. 12.6).

xB ¼ eEp
�h

G ¼ 2p
p

� �
ðSee 12:9Þ

Variable Range Hopping (see Sect. 12.9.1)

r ¼ B exp � A
T1=4

� �
Mottð Þ ðSee 12:55Þ

for localized states near Fermi energy and at low temperature, where a is electrical
conductivity.

Richardson-Dushman Equation Thermionic emission, a property of surfaces
(different notation in text)

jsurface ¼ � em

2p2�h3
kTð Þ2 exp � W

kT

� �
; W ¼ work function ðSee 11:45Þ

Fowler Nordheim Equation Field emission, a property of surfaces (different
notation in text)

jsurface ¼ AE2 exp �BW3=2

E

� �
ðSee 11:49Þ

Chapter 12 is substantially related to modern areas of solid-state physics and con-
densed matter physics. There are so many things to mention and review that they
obviously cannot all be done here. The general area of nanophysics is much in the news
now as are the more specific areas of quantum dots, wires, wells (12.5), superlattices
(11.3, 12.6), spintronics [which utilizes the spin rather than just the charge of the
electron to operate the device (7.5.1)], quantum computers (7.5.1), entanglement, and
cryptoanalysis. Everyone seems to have a TV with either LCD (12.11.2) or Plasma
displays. The latest Nobel prize in physics was for GMR (giant magneto resistance),
which is used in iPods. The use of GMR is also regarded as the birth of spintronics.
Nowadays LEDs (where a degenerate pn junction (6.3.3, 6.3.8) under forward bias
emits light) are becoming very popular even for Christmas tree lights. One could go on
and on, Solid State/Condensed Matter remains a very vibrant area.

J Folk Theorems

These are approximate facts which should be easy to remember and are grouped by
chapter.

Chapter 1

1. X-rays with wavelength comparable to a lattice spacing are diffracted and the
diffraction peaks can be used to determine the crystal structure.
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2. Crystals which have translational symmetry can only have 1, 2, 3, 4, and 6 fold
rotational symmetry. So why the heck can diffraction patterns show 5-fold
symmetry?

Chapter 2

3. Phonons carry no momentum.
4. Lattice Specific Heat goes as T cubed at low temperatures—in general this just

depends on the density of states going as omega squared. The Debye model
which uses this density of states with a cutoff is correct at both high and low
temperatures, but not in between.

Chapter 3

5. Band Gaps occur because of Bragg scattering of wave-like electrons.
6. Free electron theory often works well—don’t ask why unless you really want to

know.
7. Using quantum mechanics, the electron specific heat is predicted to go linearly

to zero with temperature.
8. With quantum mechanics, all free electrons contribute to conduction but not to

specific heat.
9. For extremely narrow bands, Bloch functions can be constructed from linear

combinations of Atomic functions.
10. With band theory, we understand the origin of metals, insulators, and

semiconductors.
11. Even though electrons are the only conductors, the Hall effect can be positive

(see band theory and consider holes).
12. The more a wave function wiggles, the higher the kinetic energy.

Chapter 4

13. Without Umklapp, lattice thermal conductivity would be infinite.
14. Anharmonic terms give rise to thermal expansion.
15. Quasi particles (dressed particles) and collective energy excitations are a large

chunk of solid-state physics.
16. Lattice vibrations cause the electrical resistivity to go to zero with temperature,

but in fact, the resistivity usually just goes to a constant value due to
imperfections.

17. Bloch’s Theorem, then lattice vibrations, then electron–phonon and other
interactions, make resistivity or the lack of it complex to analyze.

18. Localization is affected by order and interactions.

Chapter 5

19. The free electron Fermi surfaces when mapped into the first Brillouin zone
explain a lot.
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Chapter 6

20. Non-degenerate semiconductors have electrons in the conduction band and
holes in the valence band. These may be in the Fermi tail and hence behave
classically.

21. The resistivity of a semiconductor may decrease with increasing temperature.
22. For degenerate semiconductors, the Fermi energy is in an energy band.
23. Charged impurity scattering is important at lower temperatures and phonon

scattering is important at higher temperatures.
24. Electrons and holes during their lifetime move a diffusion length before they

recombine.
25. Recombination centers are most effective when they are near the middle of the

band gap.
26. An electric field causes energy bands to bend. Making this idea rigorous is not

trivial.
27. Direct band gap semiconductors are much better for LEDs and LASERs than

indirect ones. Direct band gap materials absorb light better.
28. The more abrased the surface is the higher the recombination velocity. A large

number of surface states can pin the Fermi energy.
29. FETs would have been invented long ago if surface states had been understood.
30. Surface states can have important effects on whether a metal semiconductor

contact is ohmic or rectifying.
31. BJTs are current controlled.
32. FETs are voltage driven.
33. The Fermi energy is spatially constant in equilibrium.
34. Flat is fat—for effective masses. This is true both for energy and momentum

effective masses.
35. LEDs may someday replace ordinary light bulbs.
36. Who would have thought the Hall effect would be so important? There is now a

spin Hall effect. Also (Chap. 12) there are two kinds of quantum Hall effect (the
integer and the fractional).

Chapter 7

37. Pauli ideas were fundamental for ferromagnetism, since his exclusion principle
eventually led to the exchange interaction.

38. It takes quantum mechanics to produce magnetism. This is the Bohr-Miss J. H.
von Leuwen Theorem. Classically paramagnetism and diamagnetism would
cancel.

39. The mean field theory of magnetism ignores fluctuations and hence does not
properly treat critical point phenomena.

40. Spin wave theory correctly predicts the magnetization of magnets at low
temperatures.

41. Demagnetizing fields drive domain formation.
42. For phase transitions, you need to know your LCDs and UCDs.
43. Broken Symmetry produces Goldstone Bosons, e.g., phonons and magnons.
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44. Spintronics (controlling spin transport of spin polarized electrons) is now
studied in both metals and semiconductors.

45. GMR made ipods possible.

Chapter 8

46. If it costs too much energy to scatter a carrier it is not scattered—hence
superconductivity.

47. Pauli is still partly right—all theories of superconductivity are wrong (or at least
don’t completely explain high temperature superconductivity).

48. Cuprates are not the only high temperature superconductors (HTS). HTS has
also been found in iron pnictides. What is going on?

Chapter 9

49. Soft phonon modes are associated with the many ferroelectric transitions.
50. Electron screening is important when considering Coulomb interactions.

Chapter 10

51. Optical experiments can yield many details about band structure.
52. In simple metals total reflection occurs below the plasma edge and this deter-

mines the electron density.
53. “Invisibility cloaks” are being developed so we can “cloud men’s minds so they

cannot see.”
54. Optical lattices can be investigated to broaden our understanding of solids.

Chapter 11

55. A perfect crystal at any finite temperature is an oxymoron.
56. One man’s defect is another man’s jewel.
57. Dislocations cause crystals to be weaker than would be expected. They aid

plastic deformation.
58. Crystals may show “work hardening.”
59. Defects can be shallow or deep.
60. The N-V color center may be important for spintronic devices.

Chapter 12

61. People in designer jeans are now inventing designer materials.
62. Yes Virginia, you can see an atom: scanning tunneling microscopy (STM).
63. Graphene has “massless fermions.”
64. Electrons can go ballistic (when there is little scattering).
65. There are ordinary lattices and also superlattices.
66. Condensed matter can go “soft.”
67. A quantum dot can be thought of as an artificial atom.
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K Handy Mathematical Results

Gauss law Z
V2A

$ � BdV ¼
Z
A

B � dA

Stokes law Z
A

$� Vð Þ ¼
I
L

V � dl ðfor L bounding AÞ

$� $� Fð Þ ¼ $ $ � Fð Þ � $2FZ1
0

xne�axdx ¼ n!
anþ 1

Normalized Hydrogen ground state

W1:0:0 ¼ R10 rð ÞY0
0

R10 rð Þ ¼ 1
aB

� �3=2

2e�r=aB

Y0
0 ¼

1ffiffiffiffiffiffi
4p
p

Spherical Coordinates

dr ¼ r̂drþ rdhĥþ r sin hduû

$U ¼ @U
@r

r̂þ 1
r
@U
@h

ĥþ 1
r sin h

@U
@u

û

$ � A ¼ 1
r2

@

@r
r2Ar
� �þ 1

r sin h
@

@h
sin hAhð Þþ 1

r sin h
@Au

@u

r2U ¼ 1
r2

@

@r
r2
@U
@r

� �
þ 1

r2 sin h
@

@h
sin h

@U
@h

� �
þ 1

r2 sin2 h

@2U
@u2

Geometric Progression Xn�1
n0¼0

cn
0 ¼ cn � 1

c� 1

Stirling’s Approximation

n! ffi
ffiffiffiffiffiffiffiffi
2pn
p n

e

� �n
ðfor large nÞ
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Dirac Delta functionZ
d x� bð Þdx ¼ 1 if region includes x ¼ b

d xð Þ ¼ d �xð Þ
xd xð Þ ¼ 0Z

f xð Þd0 x� bð Þdx ¼ �f 0ðbÞ

d f xð Þð Þ ¼
X
n

1
j f 0 xnð Þjd x� xnð Þ

if f ðxÞ has only simple zeroes at x ¼ xn:

Complex VariablesI
C

f zð Þdz ¼ 2pi
X

Res f zð Þ inside closed curve Cð Þ

f(z) analytic inside C except at singular points where residue (Res) is to be
computed.

Res f að Þ ¼ 1
n� 1ð Þ! limz!a

dn�1

dzn�1
z� að Þnf zð Þ½ �

� �
for pole at a of order n

Maxwell’s Equations

SI Gaussian

$�H¼ Jþ @

@t
D $�H¼ 4p

c
Jþ 1

c
@

@t
D

$� E ¼ � @B
@t

$� E ¼ � 1
c
@B
@t

$ � D ¼ q $ � D ¼ 4pq

$ � B ¼ 0 $ � B ¼ 0

D ¼ e0EþP D ¼ Eþ 4pP

H ¼ 1
l0

B�M H ¼ B� 4pM

F ¼ q Eþ v� Bð Þ F ¼ q Eþ v
c
� B

� �
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L Condensed Matter Nobel Prize Winners (in Physics
or Chemistry)

Name Year Nobel prize for

W. Rontgen 1901 X-rays
H. A. Lorentz
P. Zeeman

1902 Effect of magnetic fields on radiation

3 Total for decade
J. D. van der Waals 1910 Equation of state
H. K. Onnes 1913 Liquid helium, superconductivity
Max von Laue 1914 Crystal X-ray diffraction
W. H. Bragg
W. L. Bragg (Son)

1915 Crystal structure/X-rays

5 Total for decade
C. E. Guillaume 1920 Anomalies in nickel and steel alloys
A. Einstein 1921 Photoelectric effect
R. A. Millikan 1923 Charge of e/photoelectric effect
A. H. Compton 1927 Compton effect
O. W. Richardson 1928 Thermionic phenomena

5 Total for decade
C. V. Raman 1930 Raman effect
I. Langmuir 1932 Surface chemistry
P. Debye 1936 Molecular structure, dipole moments, X-rays
C. J. Davisson
G. P. Thomson

1937 Diffraction of electrons

5 Total for decade
I. I. Rabi 1944 Magnetic resonance of nuclei
P. W. Bridgman 1946 High pressure physics

2 Total for decade
Felix Bloch
E. M. Purcell

1952 Nuclear magnetic resonance

W. Shockley
John Bardeen
W. H. Brattain

1956 Transistor

P. A. Cerenkov
I. M. Frank
I. E. Tamm

1958 Cerenkov effect

8 Total for decade
R. L Mossbauer 1961 Mossbauer effect
L. D. Landau 1962 Liquid helium
L. Onsager 1968 Thermodynamics of irreversible processes

(continued)
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Name Year Nobel prize for

3 Total for decade
Louis Néel 1970 Ferrimagnetism/antiferromagnetism
John Bardeen
Leon Cooper
J. Robert Schrieffer

1972 Theory of superconductivity

Leo Esaki
Ivar Giaver
B. D. Josephson

1973 Tunneling in a superconductor

P. W. Anderson
N. F. Mott
J. H. Van Vleck

1977 Magnetism/disorder in materials

P. L. Kapitza 1978 Low temperature physics
11 Total for decade

Nick. Bloembergen 1981 Lasers/Etc.
Kai Siegbahn 1981 High resolution electron spectroscopy (particularly

ESCA—electron spectroscopy for chemical analysis)
K. G. Wilson 1982 Renormalization group theory/critical phenomena

(magnetism)
Klaus von Klitzing 1985 Quantized hall resistivity
Ernst Ruska
Gerd Binnig
H. Rohrer

1986 Scanning tunneling microscopy

Karl A. Müller
J. G. Bednorz

1987 High temperature superconductivity

9 Total for decade
Pierre de Gennes 1991 Liquid crystals/polymers
B. Brockhouse
Cliff Shull

1994 Diffraction/scattering of neutrons (Magnetism)

David M. Lee
D. D. Osheroff
Robert C. Richardson

1996 Superfluidity in helium-3

Steve Chu
Claude Tannoudji
William D. Phillips

1997 Methods to cool and trap atoms

John Pople 1998 Quantum chemical calculations
Walter Kohn 1998 Density functional
Horst Störmer
D. Tsui
R. Laughlin

1998 Half integer quantum hall effect

14 Total for decade
Z. I. Alferov 2000 Heterostructures, etc.
Herbert Kroemer 2000 Heterostructures, etc.
Jack Kilby 2000 Integrated circuits
Alan J. Heeger
Alan G. MacDiarmid
Hideki Shirakawa

2000 Conducting plastics

(continued)
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Name Year Nobel prize for

E. A. Cornell
W. Ketterle
C. E. Wieman

2001 Bose–Einstein condensation in dilute gases of alkali
atoms

A. A. Abrikosov
V. L. Ginzburg
A. J. Leggett

2003 Theory of superconductors and superfluids

R. J. Glauber 2005 Quantum theory of optical coherence
J. L. Hall
T. W. Hänsch

2005 Laser-based precision spectroscopy

A. Fort
P. Grünberg

2007 Giant magnetoresistance (GMR)

G. Ertl 2007 Chemical processes on solid surfaces
C. K. Kao 2009 Optical fiber communication
W. S. Boyle
G. E. Smith

2009 Charge coupled devices

21 Total for decade
A. Geim
K. Novoselov

2010 Graphene

Isamu Akasaki
Hiroshi Amano
Shuji Nakamura

2014 Invention of efficient blue light-emitting diodes

David J. Thouless
F. Duncan M. Haldane
J. Michael Kosterlitz

2016 Topological phase transitions and topological
phases of matter

8 (so far) Total for decade

The listing of Nobel Laureates suggests even further ways to think about people,
names, and what they did in condensed matter physics. One can even play what
might be called high school games as in “The Three B’s of Solid State Physics,” as
listed below.

Every one has heard of the Three B’s of Music: Bach, Brahms, and Beethoven.
But how many have heard of Three B’s of Solid State Physics who developed the
basis for a large part of our modem electronics industry?

Brillouin

Zones—These are fundamental for discussing wave like motion in periodic struc-
tures and hence for electron motion, lattice vibrations, and other energy excitations
in solids.
Function—This describes paramagnetism as a function of temperature and is used
in the mean field theory determines the magnetization below the Curie temperature.
Scattering—This is scattering of light from acoustic modes in crystals.
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Bloch

Theorem—This is the fundamental theorem in which the effect of lattice periodicity
is taken into account in writing down a special form for the wave function in solids.
Equations—These describe the magnetic resonance behavior of the magnetization
components in solids.
T3/2 Law—This uses spin wave theory to take into account the behavior of mag-
netism at low temperatures in ferromagnets.
Wall—This describes how the magnetism can vary between domains.
Bloch also gave the fundamental calculation of the temperature dependence of
resistivity in metals due to scattering of electrons by lattice vibrations.

Bardeen

He was the only person to win two Nobel prizes in Physics. One was with Brattain
and Shockley for the development of the transistor—the fundamental component of
all modern electronic systems.
The other was with Schrieffer and Cooper for the development of the theory of
superconductivity.

Others

Other B’s that could be considered are Bravais (lattice), Bragg, W. H. and W. L.
(equation for X-ray diffraction), and Bridgman (high pressure techniques).
S’s that could be considered are Shockley (transistor), Seitz (“Mr. Solid State
Physics”), Slater (determinant, numerical techniques), Schottky (barrier), Stoner
(magnetism) and Schrieffer (superconductivity).
W’s that could be considered are Wannier (functions), Weiss (mean field theory),
and Wigner (Wigner-Seitz cell, group theory), Wilson (Renormalization Group and
Critical Phenomena).
V’s include Van der Waals (equation, forces), Van Vleck (magnetism), and von
Laue (X-ray diffraction).
There is no end to this type of game. One can play with any letter of the alphabet
and usually find several prominent condensed matter physicists who have the first
letter of their last name starting with this letter. Such games may be useful when
trying to remember ideas on starting a subject. Since they have little use for
research, we stop here.

Fluid Mechanics

We include a brief appendix on fluid mechanics [1–4 below] principally because it
is sometimes discussed in books on Condensed Matter Physics as well as in other
areas (see Marders book [5 below] as well as the book by Marc J. Madou
[6 below]), for example for topics dealing with soft matter such as polymers. For a
very readable introduction it is hard to beat the book by Acheson [7 below]. We
will limit ourself to a very narrow summary. For a much more complete discussion
see Batchelor [8 below].
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Fluid Mechanics deals with liquids and gases where it is assumed that it is a
good approximation to treat the atoms or molecules as a continuous fluid. A fluid is
either a liquid or a gas and deforms continuously under a shearing force. If we
restrict ourselves to liquids (and hence limit ourselves to hydrodynamics) we can
usually treat the fluid as incompressible.

Newton’s laws applied to fluids then lead to the Navier Stokes equation which is
non linear, and solvable only in special circumstances, and even then one usually
finds highly sophisticated computer codes are necessary for numerical solution. In
turbulent flow, all solutions are unstable. For Navier Stokes, it is necessary to
include external forces, forces due to the pressure of fluids that surround the
infinitesimal volume in question, and forces due to viscosity. These equations can
be written down either for the compressible or incompressible case, but from here
on (except for the equation of continuity, and for the Law of Atmospheres) we will
assume incompressibility. The forces are per unit volume.

The Navier Stokes equation for incompressible flow is the basic equation of fluid
dynamics. It is:

q
@u
@t
þðu � $Þu


 �
¼ �$pþ f þ m$2u ð1Þ

where, q is the density, u is the fluid velocity, t is the time, p is the pressure, f is an
external force per unit volume, and m = η/q is called the kinematic viscosity. Notice
that the viscosity (η) is included via the viscous force term. The viscosity deter-
mines the resistance to shear stress, and dissipates energy to heat via friction which
comes about from momentum exchange between layers of flow. The coefficient of
viscosity is defined as the shear stress divided by the gradient of velocity perpen-
dicular to the flow. In equation form:

g ¼ F=A
@u?=@y

ð2Þ

where F is the shearing force acting tangentially on A, u⊥ = u � n, n is the unit
vector normal to flow, and @u?=@y (where y is perpendicular to flow direction) is
the velocity gradient. The fluid must also obey the equation of continuity which is:

$ � ðquÞþ @q
@t
¼ 0 ð3Þ

Conservation of mass, via the continuity equation, leads to (quA) = constant
(valid even for compressible fluids), where A is the area perpendicular to the flow
velocity u, (u = |u|).

In the case of non viscous flow the Navier Stokes equations then lead to Euler’s
equation, and if we further assume time independent or steady flow we can derive
Bernoulli’s equation, which relates kinetic energy, potential energy due to external
force (such as gravitation), and pressure, at say two different locations.
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Euler’s equation is just the Navier Stokes equation without the viscosity term:

�$p ¼ q
@u
@t
þðu � $Þu


 �
� f ð4Þ

Bernoulli’s equation is:

1
2
qu21þ qgz1þ p1 ¼ 1

2
qu22þ qgz2þ p2 ð5Þ

where the external force per unit volume is assumed to arise from a constant
gravitation force with g being the acceleration due to gravity. The height in the
gravitational field is measure by zi at position i.

In dealing with the Navier Stokes equation, there are two important regimes.
One is laminar flow in which the fluid moves in layers along streamlines, and the
other is turbulent flow, which is random with many scales of excitations, fluctua-
tions, and rotations or vortices that dissipate energy. The transition between the two
is determined by the Reynolds number (R) which is a dimensionless parameter
involving the density (q), velocity (u), some characteristic size (D), and the vis-
cosity (η), R = (q)(u)(D)/(η). The dimensionless nature of R, allows one to design
experiments which apply to many situations of different scale as long as R is the
same, this leads for example to the usefulness of wind tunnels. Along the boundary
layers of the fluid where the velocity goes the zero, the viscosity term in the Navier
Stokes equation is never negligible. Laminar flow occurs for the Reynolds number
smaller than about 2000.

Turbulence is important for mixing of fluids, as e.g. in a car’s carburetor where
gas and air are mixed. It is also important for transport of heat and momentum in the
atmosphere and the oceans. However, it causes drag on cars and airplane wings and
it generates somewhat random forces. There is no detailed understanding of tur-
bulence even now. Thus, the detailed description of fluid flow is probably the great
unsolved problem in classical physics.

Examples in which turbulent flow can be easily seen include flowing water from
faucet as the flow is increased, and in rising smoke. Golf balls are dimpled to change
the turbulence and reduce drag (this is somewhat complicated, it reduces a large
region of low pressure behind the golf ball). Bernoulli’s equation is used to explain
why pressure is smaller for higher velocities (at constant elevation), and thus explain
the lift on appropriately curved airplane wings. It also describes why in the static case
with gravitational forces, that pressure decreases with height. Assuming no fluid flow
(that is assuming a static fluid), extending Bernoulli’s argument slightly to include
infinitesimal increments in altitude, using the ideal gas law at constant temperature
(only approximately true), and integrating gives the law of atmospheres.

The Law of Atmospheres is:

p ¼ p0 exp �mgz
kT

� �
ð6Þ

where m is the mass of the molecules (assumed all the same), k is Boltzmann’s
constant, and T is the temperature.
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Heisenberg was supposed to have said that when he died he was going to ask
God about relativity and turbulence. He was hopeful he would get good answers
about the first.

Some Appropriate Equations of Fluid Dynamics
Euler’s Equation

@u
@t
þðu � $Þu ¼ � 1

q
$pþ g

Navier–Stokes Equation

@u
@t
þðu � $Þu ¼ � 1

q
$pþ gþ mr2u; $ � u ¼ 0

(note: qg is force per unit volume assume due to gravitation, so g is
force per unit mass)

Vorticity Equation

Vorticity x ¼ $� u;

with $u ¼ 0;
@x

@t
þx� u ¼ �$H )

@x

@t
þ$� ðx� uÞ or

@x

@t
þðu � $Þx ¼ ðx � $Þu

H ¼ p
q
þ 1

2
u2þrv

where �rv is

acceleration g per unit mass:

Material Derivative

Dx
Dt
¼ ðu � $Þxþ @x

@t

Irrotational

$� u ¼ 0

Solenoidal

$ � u ¼ 0
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Vector Identities Z
V

$ � A dV ¼
Z
s

A � ds
Z
ð$� AÞ ds ¼

I
A � dl

ðF � rÞF ¼ ð$� FÞ � Fþ$ 1
2
F2

� �
r2F ¼ $ð$FÞ � $� ð$� FÞ

Streamline

At each r has direction of uðr; tÞ

Incompressible

$ � u ¼ 0

Helicity Z
u � x dV

Circulation

C ¼
Z
c

udl ¼
Z

x � ds;

for vortex line has x direction.
Reynolds Number

R ¼ uL
m
;

u ¼ typical flow speed;

L ¼ characteristic length

shear stress s ¼ l
du
dy

l 	 viscosity

m ¼ l
q
¼ kinematic viscosity

In addition, appropriate boundary conditions are necessary.
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Condensed Matter Physics Blogs

Blogs come and go so few lists stay current for very long. Probably the best way to
find them is to do a new internet search each the time you are interested in hearing
discussions in some area. Blogs can also differ greatly in quality and accuracy so
treat them with care. They can be very worthwhile when getting grounded in an
area that interests you. Often they may help you to think in a way you had not
considered. Here are a few that we have found are of some use.

1. http://blog.physicsworld.com/
2. http://condensedconcepts.blogspot.com/
3. http://www.damtp.cam.ac.uk/user/tong/qhe.html
4. https://jphysplus.iop.org/
5. http://nanoscale.blogspot.com/2005/06/condensed-matter-physicist-blog-why.

html
6. https://thiscondensedlife.wordpress.com/
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M Problem Solutions

M.1 Chapter 1 Solutions

Problem (1.1) Solution

(a) For example, the shaded area is not enclosed by the stacked pentagons.

(b) They do not form a lattice. We cannot form a lattice that maps into itself by
rotation of 2p/5.

(c) A square, a rectangle.

Problem (1.2) Solution

M ¼ �2
X1
N¼1

ð�1ÞN
N

¼ 2
1
1
� 1
2
þ 1

3
� 1
4
� � �

� �
¼ 2 lnð1þ xÞx¼1
¼ 2 ln 2

Problem (1.4) Solution
A rational number is the ratio of two integers. Zero is excluded. To be a group they
must satisfy four requirements. Let Ni be a rational number (6¼ 0), and � =
multiplication.
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(a) Closure Ni � Nj is a rational number

(b) Associative law ðNi � NjÞ � Nk ¼ Ni � ðNj � NkÞ
(c) Identity ðNi � 1Þ ¼ 1� Ni so 1 = 1/1 is the rational

identity
(d) Inverse “N�1i ” = 1=Ni is a well defined rational

number since Ni 6¼ 0

The second part for addition (+) is similarly done.

(a) Closure If Ni ¼ x
y
;Nj ¼ w

z
; and w; x; y; z are integers

NiþNj ¼ x
y
þ w

z
¼ xzþwy

yz
¼ rational

(b) Associative law ðNiþNjÞþNk ¼ NiþðNjþNkÞ
(c) Identity 0
(d) Inverse N�1i ¼ �Ni

Problem (1.6) Solution
We first construct the group multiplication table.

The table shows the group is closed, associativity is obvious, the identity is 1,
and each element has an inverse.

This group is isomorphic to the group of rotations of a square about an axis
through its center and perpendicular to the square.

1 ¼ ei�0; �1 ¼ ei�p; i ¼ ei�p=2; �i ¼ ei�3p=2

so h in ei�h gives the rotation angle.
A subgroup is (1, −1).
The whole group is cyclic as i generates all elements (i1 = i, i2 = −1, i3 = −i,

i4 = 1 = i0)
(1, −1) is also cyclic.
The order of multiplying the elements of the whole group is unimportant so the

whole group is abelian.

1 −1 i −i
1 1 −1 i −i

−1 −1 1 −i i
i i −i −1 1

−i −i i 1 −1
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Problem (1.7) Solution
The lowest point group consistent with a tetragonal system is 4. 4 means 4-fold
symmetry. 4 mm means 4-fold symmetry with two distinct mirror planes parallel to
a 4-fold axis.

The 4-fold axis is represented by the square. the dots show the lack of mirror
symmetry.

As shown by the dots there are two mirror planes m1 and m2. m′1 is generated by
m1 by a 2p/4 rotation. Similarly for m′2 and m2 the 8 equivalent dots can be
generated from just one by symmetry operations.

Problem (1.9) Solution
To be diffracted k should be approximately equal to the lattice spacing.

k ¼ h
p
¼ hffiffiffiffiffiffiffiffiffi

2mE
p

so
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E � h2

2mk2
:

Say k * 5 Å, m * melectron, so using SI and converting to eV:

E � ð6:6� 10�24Þ2
2ð9:1� 10�31Þð5� 10�10Þ2 �

1 eV
1:6� 10�19 J

� 6 eV:

M.2 Chapter 2 Solutions

Problem (2.2) Solution
See (2.55). We must also limit n to a range equivalent to the first Brillouin zone.
The key is then to use the equation for summing a geometric progression as in the
book:

XN�1
0

cn ¼ 1� cN

1� c

and the rest of the derivation is in the book.

Problem (2.3) Solution
By (2.80)

Cv ¼ 2N�h
p

Zxc

0

xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

c � x2
p exp �hx=kTð Þ

exp �hx=kTð Þ � 1½ �2
�hx
kT2

( )
dx:

Defining x = �hx/kT and xc = �hxc /kT we can write

Cv ¼ 2Nk
p

Zxc
0

x2ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2c � x2

p ex

ðex � 1Þ2 dx:

When T ! 0, xc ! ∞, and we can approximate Cv by

Cv ¼ 2Nk
pxc

Zxc
0

x2ex

ðex � 1Þ2 dx:
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Cv / T since 1/xc = kT/�hxc. Specifically, since

Z1
0

x2ex

ðex � 1Þ2 dx ¼
p
3
;

then

Cv ¼ 2Nk
p

kT
�hxc

p2

3
¼ 2p

3
N
k2T
�hxc

:

Problem (2.6) Solution
From the definitions of aq, with

A ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2M�hxq

p ; B ¼ �i
ffiffiffiffiffiffiffiffiffiffi
Mxq

2�h

r
;

we can write

½aq; aq1 � ¼ ½APq � BXyq ; APq1 � BXyq1 �
¼ ðAPq � BXyq ÞðAPq1 � BXyq1Þ � ðAPq1 � BXyq1ÞðAPq � BXyq Þ
¼ A2½Pq;Pq1 � þB2½Xyq ;Xyq1 � � AB½Xyq ;Pq1 � � AB½Pq;X

y
q1 �:

But

½Xyq ;Pq1 � ¼
1
N

X
l;l0
½Xyl ;Pl0 � e�iqlae�iq0l0a

½Xyl ;Pl0 � ! ½Xl;Pl0 � ! i�hdl
0
l ðXl is Hermitian)

½Xyq ;Pq1 � ¼
i�h
N

X
l

e�ilaðqþ q0Þ

¼ ihd�q
0

q ;

and

½Pq1 ;X
y
q � ¼

1
N

X
l;l0
½Pl0 ;X

y
l � e�iqlae�iq

0l0a

½Pl0 ;X
y
l � ! i�hdl

0
l

½Xyq ;Pq1 � ¼ �ihd�q
0

q :
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Combining these two with

½Pq;Pq1 � ¼ 0; ½Xq;X
y
q1 � ¼ 0;

The result follows (½aq; aq1 � ¼ 0). By taking the Hermitian adjoint, we also find

½ayq ; ayq1 � ¼ 0.

Problem (2.10) Solution

Xb ¼ b1 � ðb2 � b3Þ

and by Problem 2.9,

Xb ¼ 1

X3
a

ða2 � a3Þ � ½ða3 � a1Þ � ða1 � a2Þ�

¼ 1

X3
a

ða2 � a3Þ � ða3 � a1Þ � a2½ �a1 � ða3 � a1Þ � a1|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
! 0

24 35a2
8<:

9=;
¼ ½a1 � ða2 � a3Þ�½a2 � ða3 � a1Þ�

X3
a

:

But the two factors in brackets in the numerator are the same and each equal to Xa so

Xb ¼ 1
Xa

:

Problem (2.12) Solution

mi€xi ¼ �
X3
j¼1

cijxj

Substituting

xi ¼ ui
eixtffiffiffiffiffi
mi
p

and canceling eixt,

�x2mi
uiffiffiffiffiffi
mi
p ¼ �

X3
j¼1

cij
uiffiffiffiffiffi
mi
p :
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So

X3
j¼1

ffiffiffiffiffi
mj
p

x2dij �
cijffiffiffiffiffi
mj
p

 !
uj ¼ 0

or

X3
j¼1

x2dij �
cij
mj

� � ffiffiffiffiffi
mj
p

uj ¼ 0:

The determinantal equation is (using the definitions of cij, mi):

x2 � k=m k=M 0
k=m x2 � 2k=M k=m
0 k=M x2 � k=m

������
������ ¼ 0

or

x2 � k
m

� �
x2 � 2k

M

� �
x2 � k

m

� �
� k2

Mm


 �
� k2

Mm
x2 � k

m

� �
¼ 0;

x2 � k
m

� �
x4 � x2 2k

M
þ k

m

� �
þ 2k2

Mm
� k2

Mm
� k2

Mm


 �
¼ 0:

Thus

x2 x2 � k
m

� �
x2 � 2k

M
þ k

m

� �
 �
¼ 0:

The eigenvalues are

x ¼ 0

x ¼
ffiffiffiffi
k
m

r
x ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2k
M
þ k

m

r
:

For x = 0

�k=m k=M 0
k=m �2k=M k=m
0 k=M �k=m

0@ 1A u1
ffiffiffiffi
m
p

u2
ffiffiffiffiffi
M
p

u3
ffiffiffiffi
m
p

0@ 1A ¼ 0
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or

� kffiffiffiffi
m
p u1þ kffiffiffiffiffi

M
p u2 ¼ 0;

þ kffiffiffiffiffi
M
p u2 � kffiffiffiffi

m
p u3 ¼ 0:

If u1 = c, then u2 = (M/m)1/2c and u3 = c or

u1ffiffiffiffi
m
p ¼ cffiffiffiffi

m
p ;

u2ffiffiffiffiffi
M
p ¼ cffiffiffiffi

m
p ;

u3ffiffiffiffi
m
p ¼ cffiffiffiffi

m
p ;

so this eigenvector is a pure translation.
If x2 = k/m

0 k=M 0
k=m k=m� 2k=M k=m
0 k=M 0

0@ 1A u1
ffiffiffiffi
m
p

u2
ffiffiffiffiffi
M
p

u3
ffiffiffiffi
m
p

0@ 1A ¼ 0;

then u2 = 0 and

kffiffiffiffi
m
p u1þ k

ffiffiffiffiffi
M
p 1

m
� 2
M

� �
u2þ kffiffiffiffi

m
p u3 ¼ 0

or

u1ffiffiffiffi
m
p ¼ � u3ffiffiffiffi

m
p

so in this eigenmode 1 and 3 vibrate out of phase with equal amplitudes and 2 is
stationary.

If x2 = (k/m) + (2k/M) then

2k=M k=M 0
k=m k=m k=m
0 k=M 2k=M

0@ 1A u1
ffiffiffiffi
m
p

u2
ffiffiffiffiffi
M
p

u3
ffiffiffiffi
m
p

0@ 1A ¼ 0;

so

2k
M

ffiffiffiffi
m
p

u1þ k
M

ffiffiffiffiffi
M
p

u2 ¼ 0;

k
M

ffiffiffiffiffi
M
p

u2þ 2k
M

ffiffiffiffi
m
p

u3 ¼ 0:
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Thus

u2 ¼ �2
ffiffiffiffiffi
m
M

r
u1 ¼ �2

ffiffiffiffiffi
m
M

r
u3

If u1 = c, then u2 = −2(m/M)1/2c and u3 = c, and

u1ffiffiffiffi
m
p ¼ cffiffiffiffi

m
p ;

u2ffiffiffiffiffi
M
p ¼ � 2

ffiffiffiffi
m
p

c
M

;
u3ffiffiffiffi
m
p ¼ cffiffiffiffi

m
p :

In this mode 1 and 3 vibrate out of phase with 2 and the center of mass remains
stationary.

Problem (2.13) Solution
In general, the lattice specific heat per unit volume in the harmonic approximation is

Cv ¼ 1
VkT2

X
p

Z1
0

DpðxÞe�hx=kT
ðe�hx=kT � 1Þ2 dx

(compare with 2.217) where Dp(x) is the number of modes per dx of type p. In the
Debye approximation (again per unit volume)

Cv ¼ 9k
NK
V

T
hD

� �3Z hD=T

0

z4ez

ðez � 1Þ2 dz

(see 2.229 and 2.230 for notation). For the first integral using z = �hx/kT and
D(x) =

P
p D(x), we have

Cv ¼ 1
VkT2

ðkTÞ3
�h

Z1
0

DðxÞ z2ez

ðez � 1Þ2 dx:

At very high temperature we can suppose z ! 0 for all x < xc with D(x > xc)
= 0. Therefore z2ez/(ez − 1)2 ! 1 and

Cv ! k2T
V�h

Z
DðxÞdz! k2T

V�h
� �h
kT

Z
DðxÞdx:

or

Cv ¼ k
V
NT :

where NT ¼
R
DðxÞdx is the total number of modes.
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At low temperatures (and thus low energies) only three acoustic modes are not
frozen out and for these modes x / q so D(x)dx / q2dq (where q is the wave
vector). Thus D(x) / x2 / T 2z2 so

Cv / 1
T2 T

3T2
Z1
0

z4ez

ðez � 1Þ2 dz / T3:

The Debye model at low T is similar (hD/T ! ∞)

Cv / T3
Z1
0

z4ez

ðez � 1Þ2 dz / T3:

At high T the Debye mode gives us

Cv ¼ 9k
NK
V

T
hD

� �3 ZhD=T
0

z4ez

z2
dz:

ZhD=T
0

z2ezdz!
ZhD=T
0

z2dz! 1
3

hD
T

� �3

so

Cv ¼ 3k
NK
V
¼ NTk

V
:

since the total number of modes in the notation of the book is 3NK.

Problem (2.15) Solution

a1 � b1 ¼ 1 a1 � b2 ¼ 0

a2 � b2 ¼ 1 a2 � b1 ¼ 0

a1 ¼ a1j ) b1 ¼ 1
a1

j

a2 ¼ a2i ) b2 ¼ 1
a2

i

The reciprocal lattice vectors are of the form
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Gnl ¼ 2pðnb1þ lb2Þ;

where n and l are integers. Thus the reciprocal lattice is also a square lattice
stretched as the equations show.

Problem (2.16) Solution
For the bcc lattice, we have

a1 ¼ a
2
ðiþ j� kÞ; a2 ¼ a

2
ð�iþ jþ kÞ; a3 ¼ a

2
ði� jþ kÞ:

By Problem 2.9

b1 ¼ a2 � a3
Xa

where Xa = a1 � (a2 � a3).

a2 � a3 ¼ a
2
½ð1Þð1Þ � ð1Þð�1Þ�iþ ½ð1Þð1Þ � ð�1Þð1Þ�jþ ½ð�1Þð�1Þ � ð1Þð1Þ�kf g

¼ a
2
ð2iþ 2jÞ ¼ aðiþ jÞ

and

a1 � ða2 � a3Þ ¼ a2

2
ð2Þ ¼ a2

so Xa = a2 and

b1 ¼ 1
a
ðiþ jÞ;

note a1 � b1 = 1 as required. Similarly

b2 ¼ 1
a
ðjþ kÞ;

b3 ¼ 1
a
ðiþ kÞ:

So the reciprocal lattice is the fcc lattice. Again, the bi are stretched by 2p to
become reciprocal lattice vectors.

Problem (2.17) Solution
By the same technique as used in Problem 2.16 we can show the reciprocal lattice
of the fcc lattice is the bcc lattice.
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Problem (2.19) Solution
The reciprocal lattice of the bcc lattice was found in Problem 2.16. It is fcc. The
primitive translation vectors are

b1 ¼ 1
a
ðiþ jÞ; b2 ¼ 1

a
ðjþ kÞ; b3 ¼ 1

a
ðiþ kÞ:

Linear combinations stretched by 2p give us the reciprocal lattice vectors. The first
Brillouin zone is sketched below. It is a rhombic dodecahedron.

kz

kx
ky

Problem (2.21) Solution
By (2.217)

Cv ¼ 1
kT2

X
q;p

ð�hxq;pÞ2e�hxq;p=kT

e�hxq;p=kT � 1
� �2 ;

where xq,p has been determined in Problem 2.20 with xq,p the same for the two
modes p = 1 or 2, and q has replaced k. The number of states per unit area is d 2q/
(2p)2, so we can write for he specific heat per unit volume:

cv ¼ 2
kT2

Z ð�hxqÞ2e�hxq=kT

e�hxq=kT � 1
� �2 dqxdqy4p2

;
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the 2 folds in (accounts for) the two modes.
Let us now evaluate this in the Debye approximation. Let n be the number of

states in a circle of q space of radius q (with A being the area of real space).

n ¼ 1
4p2

Apq2

for each of the two modes.

dn ¼ A
2p

qdq;

but x = cq for small x and assumed in general for Debye approximations,

dn ¼ A
2pc2

xdx:

The density of states is then

DðxÞ ¼ dn
dx
¼ Ax

2pc2
:

The Debye frequency is then determined by (N atoms)

2N ¼
ZxD

0

Ax
2pc2

dx

or

N ¼ Ax2
D

4pc2

or

xD ¼ 4pc2
N
A

� �1=2

Thus

cv ¼ Cv

A
¼ 2

kT2

ZxD

0

ð�hxÞ2e�hx=kT
e�hx=kT � 1ð Þ2

x
2pc2

dx;

At low T this becomes approximately
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cv ffi 2

�h2kT2

ZxD

0

ð�hxÞ2e��hx=kT �hx
2pc2

dð�hxÞ:

Letting x = �h/kT and noting xD ! ∞ as T ! 0, we have

cv ffi 2

�h2kT2

ðkTÞ4
2pc2

Z1
0

x3e�xdx:

or

cv / T2 as T ! 0:

At high T we get

cv ffi 2ðkTÞ4
2pc2�h2kT2

ZxD
0

x3ex

ðex � 1Þ2 dx:

(ex − 1)2 ! x2 for small x, so

cv ffi ðkTÞ4
pc2�h2kT2

ZxD
0

xexdx;

cv ffi ðkTÞ4
pc2�h2kT2

x2D
2
; xD ¼ �hxD

kT

cv ffi ðkTÞ4
pc2�h2kT2

1
2

� �
4pc2

N
A

�h2

k2T2 ¼
Cv

A
:

Sorting through all the factors, we get

Cv ¼ 2Nk;

which is just the law of Dulong and Petit for 2N modes.

Problem (2.23) Solution
At low temperatures only non-dispersive acoustic waves, with x = kc and c being
the constant speed of the waves, need be considered. Since the number of modes
per unit volume in real space is proportional to the volume of k space under
consideration, we then have

DðxÞdx / kn�1dk
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where D(x) is the density of states and n is the dimension. Thus

DðxÞ / kn�1 / xn�1 since
dk
dx
¼ c�1:

For phonons, the internal energy is

u ¼
Z

�hx
expð�hx=kTÞ � 1

;

or at low temperatures

u ffi
Z

�hx
expð�hx=kTÞ � 1

DðxÞdx:

At low temperatures using Cv ¼ @u=@TÞv we find

Cv / @

@T
Tnþ 1

Z1
0

zndz
ez � 1

24 35
where z = �hx/kT, and so

Cv / Tn

Problem (2.24) Solution
The internal energy U is

U ¼
Z1
0

�hxDðxÞdx
e�hx=kT � 1

where D(x) = Kd(x − xE) and xE is the Einstein frequency. But if N is the number
of atoms, in 3D, 3N ¼ K

R
dðx� xEÞdx = K = total number of modes, so

U ¼ 3N�hxE

e�hxE=kT � 1

and per unit volume

u ¼ 3n�hxE

e�hxE=kT � 1
:
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As T ! ∞

u ¼ 3n�hxE
1

1þ �hxE=kT � 1
¼ 3nkT ;

cv ¼ 3nk;

in agreement with the law of Dulong and Petit.
As T ! 0

u ¼ 3n�hxEe��hxE=kT ;

cv ¼ @u
@T
¼ 3n�hxE e��hxE=kT � �hxE

kT

� �
� 1
T2

� �
¼ 3nk

�hxE

kT

� �2

e��hxE=kT ! 0 as T ! 0:

This result is qualitatively correct but does not vanish as T 3. However, this result is
sometimes used for optical phonons.

Problem (2.26) Solution
Here

kx ¼ ky ¼ kffiffiffi
2
p and kz ¼ 0:

The determinantal equation gives

ðc44k2 � qx2Þ ðc11þ c44Þ k
2

2
� qx2


 �2
�ðc12þ c44Þ2 k

4

4

( )
¼ 0:

This gives the following solutions:

m1 ¼ x1

k
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c11þ c12þ 2c44

q

s
ðaÞ

m2 ¼ x2

k
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c11 � c12

2q

r
ðbÞ

m3 ¼ x3

k
¼

ffiffiffiffiffiffi
c44
q

r
ðcÞ

By the same technique as used in Problem 2.25 we find that (a) is a longitudinal
wave, and (b) and (c) are transverse waves [(b) has vibrations along x = −y direc-
tion, and (c) vibrations are along the z-axis].

Appendices 879



M.3 Chapter 3 Solutions

Problem (3.1) Solution
Start with the Hamiltonian:

H ¼ � �h2

2m
ðr2

1þr2
2Þ � 2q2

1
r1
þ 1

r2

� �
þ q2

r12

where

q2 ¼ e2

4pe0
:

Assume a wave function w(r1, r2) = u(r1)u(r2) where the normalized functions are:

uðr1Þ ¼
ffiffiffiffiffi
g31
p

r
e�g1r1

(and assume η1 = η2 = η). The integrals can be evaluated:

E ¼
ZZ

wðr1; r2Þ � �h2

2m
ðr2

1þr2
2Þ � 2q2

1
r1
þ 1

r2

� �
þ q2

r12


 �
wðr1; r2Þ

� �
ds1ds2

¼ �h2g2

m
� 4q2gþ 5

8
q2g:

It is customary to use the variable

y ¼ �h2

mq2
g

so

EðyÞ ¼ 2 y2 � 2 2� 5
16

� �
y


 �
mq4

2�h2
:

The variational principle requires @E=@y = 0 which yields y = 2 − 5/16 and thus

E ¼ �2 2� 5
16

� �2

Ry:

where

1 Ry ¼ mq2

2�h2
:
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Problem (3.6) Solution

Ek � Vð0Þ � �h2

2m
kþK0j j2 �VðK0Þ

�VðK0Þ Ek � Vð0Þ � �h2

2m
k2

�������
������� ¼ 0

Since V(−K′) = V*(−K′), the determinant becomes:

Ek � Vð0Þ � �h2

2m
kþK0j j2


 �
Ek � Vð0Þ � �h2

2m
k2


 �
¼ VðK0Þj j2

Using the definitions of E0
k and E0

k0 we find

ðEk � E0
k0 ÞðEk � E0

kÞ ¼ VðK0Þj j2

or

E2
k � EkðE0

k0 þE0
kÞþE0

kE
0
k0 � VðK0Þj j2¼ 0

Solving the quadratic equation then gives:

Ek ¼ 1
2

E0
kþE0

k0 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðE0

kþE0
k0 Þ2 � 4E0

kE
0
k0 þ 4 VðK0Þj j2

q� �
or

Ek ¼ 1
2

E0
kþE0

k0 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðE0

k � E0
k0 Þ2þ 4 VðK0Þj j2

q� �
QED:

Problem (3.8) Solution
The dispersion relation for tight binding. Defining

E0
0 � a ¼ A;

we start with

E0 ¼ A� c
X
jðn:n:Þ

eik�R
0
j :

For tight binding (sc)13

13Incidentally, only polonium (of all elements) has this structure in the ground state.
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E0 ¼ A� c eikxaþ e�ikxaþ eikyaþ e�ikyaþ eikzaþ e�ikza
� �

¼ A� 2c cos kxaþ cos kyaþ cos kza
� �

:

For bcc:

E0 ¼ A� c eiaðkx þ ky þ kzÞ=2þ eiaðkx�ky�kzÞ=2þ eiað�kx þ ky�kzÞ=2
�
þ eiað�kx�ky þ kzÞ=2þ e�iaðkx þ ky þ kzÞ=2þ e�iaðkx�ky�kzÞ=2

þ e�iað�kx þ ky�kzÞ=2þ e�iað�kx�ky þ kzÞ=2
�

¼ A� cðeiakx=2þ e�iakx=2Þðeiaky=2þ e�iaky=2Þðeiakz=2þ e�iakz=2Þ
¼ A� 8 cos

kxa
2

cos
kya
2

cos
kza
2

:

For fcc:

E0 ¼ A� c eikxa=2eikya=2þ eikxa=2e�ikya=2
�
þ e�ikxa=2eikya=2þ e�ikxa=2e�ikya=2

�
þ cyclic changes x to y; y to z for 4 more termsð
then one more cyclic change for an additional 4 termsÞ

¼ A� c ðeikxa=2þ e�ikxa=2Þðeikya=2þ e�ikya=2Þþ above cyclic changes
h i

¼ A� 4c cos
kxa
2

cos
kya
2
þ cos

kya
2

cos
kza
2
þ cos

kza
2

cos
kxa
2


 �
:

Problem (3.9) Solution
The density of states of free electrons from general formalism:

DðEÞ ¼ 2

ð2pÞ3
Z

dS
rkEðkÞ

EðkÞ ¼ �h2k2

2m

rEðkÞ ¼ �h2k
m

DðEÞ ¼ 2

ð2pÞ3
Z

mdS

�h2k
¼ 2

4p3
m

�h2
4pk2

k
¼ m

p2�h2
k

k ¼
ffiffiffiffiffiffiffiffiffi
2mE

�h2

r
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DðEÞ ¼ 2m

2p2�h2

ffiffiffiffiffiffiffiffiffi
2mE

�h2

r
¼ 1

2p2
2m

�h2

� �3=2 ffiffiffiffi
E
p

This is the density of states, including spin, per unit volume.

Problem (3.11) Solution
As noted in the book, soft X-ray emission gives information about electronic
bandwidth and density of states. The emitted X-rays typically have an energy of
roughly 100 eV corresponding to a wavelength of 100 Å. For soft X-rays, the
emission is typically from a band (say the conduction band for a metal) to a core level.

Normal X-ray emission is of two kinds, continuous and discrete. It may be
caused for example by ‘crashing’ incident (20 or more keV) electrons against a
tungsten target. The wavelengths of the photons in the continuous spectrum are
typically about 0.5 Å or longer. Thus, their energies are roughly 100 times larger
than soft X-rays.

Nowadays the initial electronic excitation that induces soft x-ray emission is
produced by synchrotron radiation. Thus, the experiment can be described as
photon in, photon out soft X-ray emission spectroscopy (XES).

Problem (3.13) Solution

#states inside kj j ¼ A

ð2pÞ2 pk
2 ¼ Ak2

4p
;

NðEÞdE ¼ NðkÞdk; E ¼ �h2k2

2m
;

dE
dk
¼ �h2k

m
;

NðEÞ ¼ NðkÞ dk
dE
¼ d

dk
Ak2

4p

� �
m

�h2k

¼ 2Ak
4p

m

�h2k
¼ 1

2p
Am

�h2
:

Redefine per unit area including spin:

nðEÞ ¼ m

p�h2
	 C;

same as D(E) in the previous problem. For n electrons/area:

n ¼ C
Z1
0

f ðEÞdE ¼ C
Z1
0

1
exp½ðE � lÞ=kT � � 1

dE:
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Let x = (E − l)/kT

n ¼ CkT
Z1

�l=kT

dx
exþ 1

¼ �CkT lnð1þ e�xÞj1�l=kT

n ¼ CkT lnðel=kT þ 1Þ
n

CkT
¼ lnðel=kT þ 1Þ

p�h2n
mkT

¼ lnðel=kT þ 1Þ

or

l ¼ kT lnðep�h2n=mkT � 1Þ:

This evaluates the chemical potential as a function of T. Now we evaluate the mean
energy e per unit area.

e ¼ C
Z1
0

EdE
eðE�lÞ=kT þ 1

¼ C
Z1

�l=kT

ðE � lÞdðE � lÞ
eðE�lÞ=kT þ 1

þCl
Z1

�l=kT

dðE � lÞ
eðE�lÞ=kT þ 1

¼ CðkTÞ2
Z1

�l=kT

xdx
exþ 1

þClkT
Z1

�l=kT

dx
exþ 1

¼ CðkTÞ2
2

Z1
�l=kT

dx2

exþ 1
þClkT lnðel=kT þ 1Þ

from previous work. Now

I ¼
Z1

�l=kT

dx2

exþ 1
¼ x2

exþ 1

� �1
�l=kT

þ
Z1

�l=kT

x2
exdx

ðexþ 1Þ2;

at low T, l/kT ! +∞, from the above expression for l, so
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I ¼ � ðl=kTÞ
2

el=kT þ 1
þ
Z1
�1

x2exdx

ðexþ 1Þ2:

Note

CkT lnðel=kT þ 1Þ ¼ n

(exactly),

l
kT
ffi p�h2n

mkT
!1 as T ! 0

as already used, and also

Z1
�1

x2ex

ðexþ 1Þ2 dx ¼
p2

3
;

so as T ! 0

e ¼ CðkTÞ2
2

p2

3
� l

kT

� �2
 �
þ nl

but

nl !T!0
nkT

p�h2n
mkT

¼ p�h2n2

m
¼ constant,

so

e ¼ 1
2

m

p�h2
p2

3
ðkTÞ2þ a constant:

Thus the specific heat per unit area at constant area

CA ¼ mp2k2T

3p�h2

or

CA ¼ mpk2

3�h2
T

at low T.

Appendices 885



Problem (3.14) Solution
In one dimension

DðEÞdE / Cdk

and

E ¼ �h2k2

2m

so

dE ¼ �h2kdk
m
/

ffiffiffiffi
E
p

d
ffiffiffiffi
E
p
/ 1ffiffiffiffi

E
p dE

so

DðEÞ ¼ Cffiffiffiffi
E
p

where C is a constant. Thus the average energy per electron is

U ¼
ZEF

0

EDðEÞdE:

The Fermi energy is determined

N ¼
ZEF

0

DðEÞdE

where N is the number of electrons so

U
N
¼
R EF

0

ffiffiffiffi
E
p

dER EF

0
dEffiffiffi
E
p

¼
2
3E

3=2
F

2E1=2
F

¼ EF

3
:

Problem (3.15) Solution

dt/s = probability the electron scatters to momentum zero.
1 − dt/s = probability the electron does not scatter so.

It’s momentum will increase by Lorentz’s Law, thus if F represents the force due to
electric and magnetic fields E and B:
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pðtþ dtÞ ¼ ðpðtÞþFdtÞ 1� dt
s

� �
or neglecting higher order terms and dividing by dt

pðtþ dtÞ � pðtÞ
dt

¼ F� pðtÞ
s

or using Lorentz’s Law F = −e(E + v � B),

dp
dt
¼ �eðEþ v� BÞ � pðtÞ

s

M.4 Chapter 4 Solutions

Problem (4.1) Solution
BT is the electronic specific heat. AT 3 is the specific heat due to lattice vibrations
(phonons).

Problem (4.4) Solution

1
r
/ T

h

� �5Zh=T
0

x5dx
ðex � 1Þð1� e�xÞ:

At low T, h/T ! ∞ so

1
r
/ T5

Z1
0

x5dx
ðex � 1Þð1� e�xÞ / T5:

At high T (h/T � 1),

1
r
/ T

h

� �5Zh=T
0

x5dx
ð1þ x� 1Þð1� 1þ xÞ

/ T
h

� �5Zh=T
0

x3dx / T5x
4

4

����h=T
0

/ T5

T4 / T :
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Matthiessen’s Rule is q ≅ qlattice + qimpurities for metals at low T, where
qlattice ! 0, qimpurities ! constant at low T. We interpret the low T residual resis-
tivity as being due to impurities.

M.5 Chapter 5 Solutions

Problem (5.2) Solution

a ¼ 2� 10�8 cm î; A ¼ Âi; A � b ¼ 0

b ¼ 4� 10�8 cm ĵ; B ¼ Bĵ; B � a ¼ 0

Aa ¼ 2p; A ¼ 2p
2� 10�8

¼ p� 108 cm�1

Bb ¼ 2p; B ¼ 2p
4� 10�8

¼ p
2
� 108 cm�1

n ¼ ð2Þ
ð2pÞ2 pk

2
F

¼ 1
2p2

p
p2

16
� 1016

¼ p
32
� 1016

¼ 9:82� 1014 cm�2

(a)

(b)
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Problem (5.5) Solution
For the lower branch

Ek ¼ 1
2
ðE0

k þE0
k0 Þ �

1
2

4VðK 0Þ2þðE0
k � E0

k0 Þ2
h i1=2

E0
k ¼ Vð0Þþ �h2k2

2m
; E0

k0 ¼ Vð0Þþ �h2

2m
ðkþK 0Þ2

Define k = D − K′/2, so

1
2
ðE0

k þE0
k0 Þ ¼ Vð0Þþ �h2

4m
½k2þðkþK 0Þ2�

¼ Vð0Þþ �h2

2m
ðD2þ k2FÞ; ðkF ¼ K 0=2Þ;

ðE0
k � E0

k0 Þ ¼ �
�h2

2m
½K 0ð2DÞ�; ðVðK 0Þ ¼ c1c=2Þ;

Ek ¼ Vð0Þþ �h2

2m
ðD2þ k2FÞ �

1
2

c21c
2þ �h2

2m

� �2

K 024D2

" #1=2

or

Ek ¼ Vð0Þþ �h2

2m
ðD2þ k2FÞ �

c21c
2

4
þ �h2

2m

� �2

ð4k2FÞD2

" #1=2

Problem (5.6) Solution
Starting with (4.160), we see that for metals the higher the concentration of elec-
trons and the higher the relaxation time, the higher the conductivity. At 20 °C the
reciprocal of the conductivity of

Cu � 1.7 � 10−8 x-m and of
Fe � 1.0 � 10−7 X-m.

A major effect comes from the band structure of the conducting electrons in Cu
where the 4s conduction band is half full, while in Fe both 3d and 4s electrons
contribute to conductance but the scattering is more effective in iron than in copper
as shown by relaxation times.

M.6 Chapter 6 Solutions

Problem (6.2) Solution
Substituting x into the neutrality condition, it becomes
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Nce�bEcxþ Nd

1þ aebEd=x
¼ Nd;

Nce�bEcx½xþ aebEd � þNdx ¼ Nd½xþ aebEd �;

Nce�bEcx2þNcae�bðEc�EdÞx� NdaebEd ¼ 0;

x ¼ �Ncae�bðEc�EdÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N2
c a

2e�bðEc�EdÞ þ 4NcNdae�bðEc�EdÞ
p

2Nce�bEc
:

For kT � E − Ec, the higher order terms in b can be ignored and only the lowest
order positive term used:

x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4NcNdae�bðEc�EdÞ

p
2Nce�bEc

¼ ebl;

n ¼ Nce�bðEc�lÞ ¼ Nce�bEc

ffiffiffiffiffiffiffiffiffiffiffiffiffi
aNcNd
p

e�bðEc�EdÞ=2

Nce�bEc
;

n ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi
aNcNd
p

e�bðEc�EdÞ=2:

Problem (6.4) Solution
For n-type semiconductor with l variation, start with some simple results.

(a) Very high T, intrinsic so n = p, if also me = mn then [see (6.6) and (6.12)]

l� Ec ¼ Ev � l or l ¼ 1
2
ðEcþEvÞ:

This means l is half way between the valence band top and the conduction
band bottom.

(b) If also me 6¼ mh the n = p implies

m3=2
e eðl�EcÞ=kT ¼ m3=2

h eðEv�lÞ=kT

or

e2l=kT ¼ eðEc þEvÞ=kT mh

me

� �3=2

so

2l
kT
¼ EcþEv

kT
þ 3

2
ln

mh

me

� �
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or

l ¼ EcþEv

2
þ 3

4
kT ln

mh

me

� �
:

Thus l = lintrinsic has a temperature dependence when me 6¼ mh, unlike Fig. 6.2
in the book.

(c) From the book when Na = 0, x = e bl, 1 � b (Ec − Ed)

n ¼ Nce�bEcx ¼ ffiffiffi
a
p ffiffiffiffiffiffiffiffiffiffiffi

NcNd
p

e�bEc=2ebEd=2

x ¼ ffiffiffi
a
p ffiffiffiffiffiffi

Nd

Nc

r
e�bðEc þEdÞ=2 ¼ ebl

or

bl ¼ b
EcþEd

2

� �
þ 1

2
ln a

Nd

Nc

� �

l ¼ 1
2
ðEcþEdÞþ 1

2
kT ln a

Nd

Nc

� �
and as T ! 0, l is halfway between the donor level and the bottom of the
conduction band. Thus Fig. 6.2 is somewhat justified.

(d) As shown by Dekker [53, p. 313] in case the electron gas is degenerate in the
conduction band, l can actually rise above Ec for a certain low temperature
range. Blakemore [6.4, p. 323] discusses how compensation when Na is not
equal to zero can also effect the low temperature variation of l with T. Sze
[6.41, Chap. 2] also gives a good discussion l(T) for several cases.

Problem (6.5) Solution
The work function u of a metal is the difference between the vacuum potential
energy and the Fermi energy. When two metals (say 1 and 2) are brought into
contact, their Fermi levels equalize as shown.
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The equilibrium condition of equal Fermi energies results from the currents from
1 ! 2 equaling the currents from 2 ! 1. Note negative charge collects on the
surface of 1 and positive charge on the surface of 2. Forward voltage is by definition
when a voltage is applied so V1 − V2 > 0. See the figure.

When V1 − V2 < 0 is the applied voltage, we have the condition shown in the
figure below.

When V1 > V2 note the barrier from 1 ! 2 is the same (as viewed from metal 1)
while the barrier from 2 ! 1 is reduced by e(V1 − V2). Let V1 − V2 	 Vf. Thus

I1!2 ¼ I0

I2!1 ¼ I0eeVf =kT

[compare with (6.205)]. The net forward current (opposite to direction of electron
current) is
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If ¼ I0 eeVf =kT � 1
� �

Similarly when Vr 	 V1 − V2 < 0 the barrier from 1 to 2 is unchanged while the
barrier from 2 to 1 is increased by eVr so the net reverse current is

Ir ¼ I0 1� eeVr=kT
� �

; Vr\0

A sketch of the current is similar to

Clearly rectification has occurred. See e.g. Dekker [53, pp. 348–349].

Problem (6.8) Solution
The resistivity qR is

qR ¼
1
nel

;

with e = 1.6 � 10−19 C the magnitude of the electronic charge, and l = 0.15 m2

V−1 s−1 as given, n the number of electrons/vol = 10−4 nS where nS is the number
Si atoms/vol.

nS ¼ q
mSiatom

;

where q = 2300 kg/m3 is the density of Si. Since there are 6.02 � 1023 atoms in 28
g of Si,

mSi atom ¼ 28� 10�3 kg
6:02� 1023

:
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If we combine everything we get

qR ¼ 8:43� 10�6 X m:

Problem (6.10) Solution
Crystal radios are an interesting concept. Basically, what you need is some wire for
an antenna, a galena (PbS) crystal, a metallic “cat’s whisker” to get the right spot on
the galena crystal, a coil for tuning, headphones since your signal will not be strong
and a ground. The circuit diagram is shown below. The most important part is the
galena which together with the cat’s whisker act as a rectifying Schottky Diode (see
6.3.5). The rectifying action is necessary so the amplitude modulation wave can
give a rectified signal that does not average out and can be heard by headphones.
These were early radio receivers and they were sometimes used by soldiers in the
world wars of the twentieth century. They found that rusty razor blades could be
substituted for the galena. The tricky part was getting the “cat’s whisker” to touch
the right part of the galena or rusty razor blade. See the diagram below.

M.7 Chapter 7 Solutions

Problem (7.2) Solution
For small m/t

tanh
m
t

� �
ffi m

t
� 1
3

m
t

� �3
:

Therefore, near the critical temperature
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m ffi m
t
� 1
3

m
t

� �3
1 ffi 1

t
� 1
3
m2

t3

1
3
m2

t3
ffi 1

t
� 1

1
3
m2

t2
ffi 1� t

m2 ffi 3t2ð1� tÞ ¼ 3 1� ð1� tÞ½ �2ð1� tÞ

m2 ffi 3ð1� tÞ to lowest order in ð1� tÞ

m ffi
ffiffiffi
3
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1� tÞ
p

:

Problem (7.3) Solution

v ¼ rx

L ¼ mvr0 ¼ mr02x

for a mass m at radius r′,

dL ¼ xðr sin hÞ2qdV

dV ¼ ð2pr sin hÞðrdhÞdr
¼ ð2pr2 sin hÞdhdr

dL ¼ xðr sin hÞ2qð2pr2 sin hÞdhdr
¼ xqð2pÞr4 sin3 hdhdr
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L ¼
Z

dL ¼ 2pqx
Z r

0
r4dr

Z p

0
sin3 hdh

¼ 2pqx
r5

5

� �
cos3 h
3
� cos h


 �p
0

¼ 2pqx
r5

5

� �
4
3

� �

q ¼ M
4
3
pr3
¼ 3M

4pr3

L ¼ 2p
3M
4pr3

x
r5

5

� �
4
3

� �
¼ 2

5
Mxr2 L ¼ Ix; I ¼ 2

5
Mr2

� �
l ¼ iA

dl ¼ pðr2 sin2 hÞdi

di ¼ 1
T
dq

dq ¼ qcdV

qc ¼
Q

4
3
pr3
¼ 3Q

4pr3

di ¼ x
2p

qcð2pr2 sin hdhdrÞ

dl ¼ xqcpr
4 sin3 hdhdr

l ¼ xqcp
Z

r4dr
Z

sin3 hdh

l ¼ x
3Q
4pr3

p
r5

5

� �
4
3

� �

l ¼ 1
5
xr2Q
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l
L
¼

1
5
xr2Q

2
5
Mxr2

¼ 1
2
Q
M

:

This is sometimes called the “gyroscopic ratio” (which is for L only, with S = 0). For
an electron in an orbit of radius rwith charge e < 0, the gyromagnetic ratio is (e/2m)!

iA
L
¼ ðex=2pÞpr

2

mr2x

� �
:

Problem (7.6) Solution
Writing out (7.155) in component form and leaving off vector notation on k for
convenience:

�h
dSkx
dt
¼
X
k0

Jðk0Þ½Sk�k0;ySk0;z � Sk�k0;zSk0;y�;

�h
dSky
dt
¼
X
k0

Jðk0Þ½Sk�k0;zSk0;x � Sk�k0;xSk0;z�;

�h
dSkz
dt
¼
X
k0

Jðk0Þ½Sk�k0;xSk0;y � Sk�k0;ySk0;x�:

Now we assume S0x = S0y = 0, S0z ≅ S, Sk6¼0,z ≅ 0. Skx and Sky are first order
(k 6¼ 0) and we neglect second order terms. So to second order

�h
dSkz
dt
¼ 0

�h
dSkx
dt
¼ S½Jð0Þ � JðkÞ�Sky;

�h
dSky
dt
¼ �S½Jð0Þ � JðkÞ�Skx; QED:

Problem (7.8) Solution
By previous work the classical equations of motion of the coupled spins are

�h
dSi
dt
¼ Si �

X
j

JijSj

We consider nearest neighbor coupling between sub-lattices A and B and renumber
so
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A$ . . .2p� 2; 2p; 2pþ 2. . . Sz ¼ S

B$ . . .2p� 1; 2pþ 1. . . Sz ¼ �S

)
In linearized Spin Wave Approx.

For nearest neighbor antiferromagnetic coupling

�h
dS2p
dt
¼ �JS2p � ðS2pþ 1þ S2p�1Þ

�h
dS2pþ 1

dt
¼ �JS2pþ 1 � ðS2pþ 2þ S2pÞ

 a!
. . .2p� 2

"
; 2p� 1

#
j 2p
"
; 2pþ 1

#
j 2pþ 2

"
; 2pþ 3

#
. . .

Linearize (replace Siz by ±S i.e. S2pz = +S, S(2p+1)z = −S, etc.) and collect terms:

dS2px
dt
¼ �jSð�2S2py � Sð2pþ 1Þy � Sð2p�1ÞyÞ; with j ¼ J=�h

dS2py
dt
¼ �jSð2S2pxþ Sð2pþ 1Þxþ Sð2p�1ÞxÞ

dSð2pþ 1Þx
dt

¼ �jSð2Sð2pþ 1Þyþ Sð2pþ 2Þyþ S2pyÞ

dSð2pþ 1Þy
dt

¼ �jSð�2Sð2pþ 1Þx � Sð2pþ 2Þx � S2pxÞ

It is convenient to fold these together using

Sþ ¼ Sxþ iSy

This folds up the four equations to the following two equations

dSþ2p
dt
¼ �ijSð2Sþ2p þ Sþ2p�1þ Sþ2pþ 1Þ

dSþ2pþ 1

dt
¼ þ ijSð2Sþ2pþ 1þ Sþ2p þ Sþ2pþ 2Þ

Following Bloch’s Theorem we seek solutions of the form

Sþ2p ¼ ueiðpka�xtÞ

Sþ2pþ 1 ¼ ueiðpka�xtÞ
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and let xe = 2jS. Substituting and canceling:

ðx� xeÞ �xe

2
ðe�ikaþ 1Þ

�xe

2
ðeikaþ 1Þ �ðxþxeÞ

0@ 1A u
v

� �
¼ 0:

There is a solution if and only if

�ðx2 � x2
eÞ �

xe

2

� �2
ð2þ 2 cos kaÞ ¼ 0;

x2 � x2
e þ

x2
e

2
ð1þ cos kaÞ ¼ 0;

x2 ¼ x2
e

2
ð1� cos kaÞ:

If ka � 1

x2 ¼ xe

2

� �2
ðkaÞ2;

x ¼ xe

2
ka:

Thus for ka � 1

ðx� xeÞ u� xe

2
1þ 1� 2i

ka
2

� �
v ¼ 0;

xe

2
ka� xe

� �
u ¼ xe 1� i

ka
2

� �
v,

1� ka
2

� �
u ¼ 1� i

ka
2

� �
v ffi e�ika=2v,

v ffi 1� ka
2

� �
eika=2u:

Therefore

S2px ¼ u cosðpka� xtÞ;

S2py ¼ u sinðpka� xtÞ;
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Sð2pþ 1Þx ¼ u 1� ka
2

� �
cos pþ 1

2

� �
ka� xt

� �
;

Sð2pþ 1Þy ¼ u 1� ka
2

� �
sin pþ 1

2

� �
ka� xt

� �
:

Note:

(a) Precession is in the same direction with the same frequency.
(b) 1 6¼ 1 − ka/2 so amplitudes are different.
(c) p 6¼ p + 1/2 so phase is shifted.

Problem (7.10) Solution
All we have to show is

A 	 1
2
ðS�j SþjþDþ Sþj S�jþDÞ ¼ SjxSjþDxþ SjySjþDy:

But

Sþ ¼ Sxþ iSy;

S� ¼ Sx � iSy;

so

A ¼ 1
2
ðSj;x � iSj;yÞðSjþD;xþ iSjþD;yÞþ ðSj;xþ iSj;yÞðSjþD;x � iSjþD;yÞ
 �

¼ ðSj;xSjþD;xþ Sj;ySjþD;yÞþ i(Sj;ySjþD;xþ Sj;xiSjþD;yÞ � i(Sj;ySjþD;xþ Sj;xiSjþD;yÞ
¼ ðSj;xSjþD;xþ Sj;ySjþD;yÞ; the desired result:

QED.

Problem (7.12) Solution

(a) The total spin has its maximum value that is allowed by the exclusion principle.
The angular momentum the maximum value allowed by the maximum spin.
Shell f gives l = 3.

ms # " # " # " # " # * # * # *
ml −3 −2 −1 0 1 2 3
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* means occupied. So

S ¼ 3ð1=2Þ ¼ 3=2;

2ð3=2Þþ 1 ¼ 4;

L is X
ml

� �
max
¼ 3þ 2þ 1 ¼ 6:

S P D F G H I
L = 0 1 2 3 4 5 6

The shell is less than half full so

J ¼ L� S ¼ 12=2� 3=2 ¼ 9=2:

The ground state is 4I9/2.

g ¼ 1þ JðJþ 1Þþ SðSþ 1Þ � LðLþ 1Þ
2JðJ þ 1Þ ;

l ¼ �glBJ

g ¼ 1þ
9
2

4
2

� �
þ 3

2
5
2

� �
� 6 7ð Þ

9
11
2

� � ;

g ¼ 0:7273

Effective magneton number ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
JðJþ 1Þ

p
g ¼ 3:618:

Problem (7.14) Solution

3d1 ) 3 n = 3, principal quantum number
l = 2, azimuthal quantum number
1: one electron in 3d subshell

2D ) L = 2 L is the total angular momentum quantum number
2S + 1 = 2: doublet
S = 1/2: S is the total spin quantum number
2D is called a “doublet D” state

(b)
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Problem (7.15) Solution

Ucoupling ffi kTc ¼ kð69Þ ¼ 1:38� 10�23ð69Þ J
¼ 9:52� 10�22 J
¼ 0:006 eV

lB ¼ 7:94lBB ¼ kTc

B ¼ kTc
7:94lB

¼ 9:52� 10�22 J
ð7:94Þð9:274� 10�24 J/T)

ffi 13 T

ffi 13� 104 gauss:

Problem (7.18) Solution
This could be a very long answer, but we will just pull together some ideas from
this book. First, the exchange interaction between spins as described for example by
the Heisenberg Hamiltonian is part of the answer. Of course, iron is a metallic
conductor, so there are aspects of itinerant magnetism involved. Both 3d and 4s
bands are involved. Then the magnetized iron splits into domains, so that the
amount the iron is magnetized depends to some extent on the value of the external
field as shown in Hysteresis loops. The whole process is complicated and much of it
is described in detail in the book

M.8 Chapter 8 Solutions

Problem (8.1) Solution

We represent the superconducting wave function as
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w ¼ ffiffiffi
p
p

eihðrÞ:

Standard quantum mechanics indicates the electron current density should be

j ¼ q
q
m
ð�h$h� qAÞ

where m is the mass of the Cooper pair. Well inside the ring j = 0 so

�h$h� qA ¼ 0;

�h
Z
C
$h � dl ¼ q

Z
C
A � dl;

h2p � h0 ¼ q
�h

Z
ðr � AÞ � ds:

By continuity of the wave equation:

2pn ¼ q
�h

Z
B � ds ¼ q

�h
U:

Thus

U ¼ n
�h
q
; q ¼ 2ej j ðCooper pairÞ

Uj j ¼ n
�h
2e

���� ����:
The unit of flux U0 	 �h/2e is called a fluxoid.

M.9 Chapter 9 Solutions

Problem (9.2) Solution
E1 	 Ea = the field as derived by Gauss law. Using a “pillbox” for a Gaussian
surface and considering only the charge on the surface of the dielectric:
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�EA ¼
Z

E � dA ¼ rA
e0
) E ¼ � r

e0
¼ � P

e0
:

where r is the polarization charge density.

Problem (9.4) Solution
E3 	 Ec sums to zero because of symmetry (for sc, bcc, and fcc lattices). For
example the electric field from a dipole is

E ¼ 1
4pe0

3ðr� r0Þ � p
r� r0j j5 ðr� r0Þ � p

r� r0j j3
" #

where r is a field point and r′ a source point. Suppose the field direction is the
z direction and the field point is at zero, then for a dipole at r′ = rk

Ez ¼ 1
4pe0

½3ð�rkÞ � pk�½ð�rkÞ � ẑ�
r5k

� p � ẑ
r3k
� r2k
r2k


 �
or

Ez ¼ 1
4pe0

1
r5k

3ðxkpkxþ ykpkyþ zkpkzÞðzkÞ � r2k pkz
 �

thus summing over all dipoles in the sphere

Ez ¼ 1
4pe0

X
k

r�5k pkzð3z2k � r2k Þþ pkxð3xkzkÞþ pkyð3ykzkÞ
 �

:

For a simple cubic lattice (with the dipole in the z direction) pkx = pky = 0, pk is
constant, and X

x2k ¼
X

y2k ¼
X

z2k ¼
X

r2k=3

for the spherical cavity. Thus Ez = 0. This result holds for all such field points with
cubic surroundings in the spherical cavity if the dipoles are identical point dipoles.
There are some tricky exceptions for some cubic crystals and some field points such
as in barium titinate (see Dekker [53, p. 143]).

Problem (9.6) Solution
Let x = e/e0 and assume one type of polarization so (9.30) gives

x� 1
xþ 2

¼ Na
3e0

and a ¼ p2

3kT
:
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Solving for x gives

x ¼ 1þ Na

e0 1� Na
3e0

� � :

Substituting for a gives

x ¼ 1þ Np2

3ke0 T � Np2

9e0k

� � ¼ e
e0
;

and thus

Tc ¼ Np2

9e0k
:

This is not very likely to apply to real materials as many simple assumptions are
involved. However, Kittel [23, p. 398] uses the idea to get a simple equation
describing the paraelectric state above a polarization catastrophe in some displacive
ferroelectric transitions.

M.10 Chapter 10 Solutions

Problem (10.1) Solution
The definition of photoconductivity is the increase of electrical conductivity r due
to incident light. The photons of light must have the appropriate energy to create
mobile charge carriers. This commonly means the charge carriers are excited across
the gap between the valence and conduction bands. They could also originate from
impurities that have localized levels in the band gap.

A common experiment is to measure the spectral response of a material. That is,
we measure the variation of photoconductivity with the frequency of the incident
photons.

Materials that show photoconductivity include CdS, ZnS, Si, GaAs, and InSb.

Problem (10.3) Solution
Assumptions:

(1) Normal incidence is in the +E direction, so k � r = ±kz.
(2) Two medium system with boundary at z = 0.
(3) In first medium n ! 1, in second medium n ! nc.
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With the above assumptions, incident, reflected, and refracted waves can be written
(see, e.g., J. D. Jackson, Classical Electrodynamics, John Wiley and Sons, 2nd edn,
New York, 1975, p. 280)

Einc ¼ E1 exp½iðkz� xtÞ� ¼ E1 exp i
x
c
z� xt

� �h i
; k ¼ k0 ¼ x

c
n ¼ x

c
;

Erefl ¼ E2 exp½ið�k0z� xtÞ� ¼ E2 exp i �x
c
z� xt

� �h i
;

Erefr ¼ E0 exp½iðk00z� xtÞ� ¼ E0 exp i �x
c
ncz� xt

� �h i
; k00 ¼ x

c
nc;

To maintain continuity of E and H at the boundary of z = 0, the tangential com-
ponents of each must be equal at the boundary. For E this condition can be
expressed as

ðEincþErefl � ErefrÞ � n ¼ 0

where n is the unit normal to the boundary surface. At z = 0 this immediately gives
the requirement

E0 ¼ E1þE2:

For H this condition can be expressed as

ðHincþHrefl �HrefrÞ � n ¼ 0:

Using

r� E ¼ � @B
@t
¼ � @lH

@t
;

and assuming l is the same in both mediums, the condition can be reformulated
into

ðr � Eincþr� Erefl �r� ErefrÞ � n ¼ 0:

In general

r� E ¼ @Ez

@y
� @Ey

@z

� �
x̂þ @Ex

@z
� @Ez

@x

� �
ŷþ @Ey

@x
� @Ex

@y

� �
ẑ:

To satisfy boundary conditions each component must equate separately. Looking at
the ŷ component:
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ð$� EincÞy ¼ E1
ix
c
exp i

x
c
z� xt

� �h i
;

ð$� EreflÞy ¼ E2
�ix
c

exp i �x
c
z� xt

� �h i
;

ð$� ErefrÞy ¼ E0
ix
c
nc exp i �x

c
ncz� xt

� �h i
:

At z = 0

E1 � E2 � ncE0 ¼ 0;

ncE0 ¼ E1 � E2:

Problem (10.6) Solution

(a) q(m) is the density of photons in the mode m as given by the Planck distribution

qðmmnÞ ¼ 8pn3m2

c3
1

expðhm=kTÞ � 1
:

Bmn is the probability coefficient for induced absorption. Thus Bmnq(mmn) is the
probability factor for induced transitions from m to n. Nm and Nn are the
densities of states at levels m and n, respectively. f(m,n) is the electron
distribution (Fermi) function given by

f ðEÞ ¼ 1
exp½ðE � Ef Þ=kT � þ 1

:

Then Nmfm is the density of electrons in the lower state and Nn(1 − fn) is the
density of holes in the upper state.

(b) The Fermi function is

f ðEÞ ¼ 1
exp½ðE � Ef Þ=kT � þ 1

from which the following can be written:

fn ¼ 1
exp½ðEn � Ef Þ=kT� þ 1

;

fm ¼ 1
exp½ðEm � Ef Þ=kT � þ 1
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So that

fnð1� fmÞ
fmð1� fnÞ ¼

1
exp½ðEn � Ef Þ=kT � þ 1

1� 1
exp½ðEm � Ef Þ=kT � þ 1

� �
1

exp½ðEm � Ef Þ=kT � þ 1
1� 1

exp½ðEn � Ef Þ=kT � þ 1

� � ;

fnð1� fmÞ
fmð1� fnÞ ¼

exp½ðEm � Ef Þ=kT�
fexp½ðEn � Ef Þ=kT � þ 1gfexp½ðEm � Ef Þ=kT � þ 1g

exp½ðEn � Ef Þ=kT �
fexp½ðEm � Ef Þ=kT � þ 1gfexp½ðEn � Ef Þ=kT � þ 1g

;

fnð1� fmÞ
fmð1� fnÞ ¼ exp½ðEm � EnÞ=kT �:

(c) In thermal equilibrium Gmn = Rnm (Generation = Recombination).

Gmn ¼ BmnNmfmNnð1� fnÞqðmmnÞ
fInduced absorptiong

Rnm ¼ BnmNnfnNmð1� fmÞqðmmnÞþAnmNnfnNmð1� fmÞ;
Induced emissionþ Spontaneous emissionf g

Bmnfmð1� fnÞqðmmnÞ ¼ Bnmfnð1� fmÞqðmmnÞþAnmfnð1� fmÞ:

For Bmn = Bnm:

Bnm
fmð1� fnÞ
fnð1� fmÞ � 1

 �

qðmmnÞ ¼ Anm:

Using results from part (b):

Bnm exp
En � Em

kT

� �
� 1


 �
qðmmnÞ ¼ Anm;

and

qðmmnÞ ¼ 8pn3m2mn
c3

1
exp ðEn � EmÞ=kT½ � � 1

;

En � Em ¼ hmmn 	 hm;

A
B
¼ 8pn3m2mn

c3
:
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Problem (10.7) Solution
Phosphors after being hit by an appropriate particle show luminescence, which is
light emission not resulting from heat energy. Zinc sulfide plus an appropriate
activator is a common phosphor. Main applications of phosphors are in Cathode Ray
Tubes, x-ray screens, and even glow in the dark toys. The use of different activators
can result in different colors. The particle can excite an electron from the valence
band to the conduction band leaving a hole in the valence band. Excitons may also be
created. The activators create impurity centers which slow down recombination of
electrons and holes and thus slows down the (usually) visible emission.

M.11 Chapter 11 Solutions

Problem (11.2) Solution

Ground state First excited state

1D
k ¼ 2a ¼ 2p

k
! k ¼ p

a
k ¼ a ¼ 2p

k
! k ¼ 2p

a

3D kx ¼ ky ¼ kz ¼ p
a kx ¼ p

a
, ky ¼ 2p

a
, kz ¼ p

a
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3D Energy:

E ¼ �h2

2m
ðk2x þ k2y þ k2z Þ:

3D ground state energy:

Eg ¼ �h2

2m
p2

a2
þ p2

a2
þ p2

a2

� �
¼ �h2

2m
3p2

a2

� �
:

3D first excited state energy:

Eexcited ¼ �h2

2m
p2

a2
þ 4p2

a2
þ p2

a2

� �
¼ �h2

2m
6p2

a2

� �
:

Taking the difference of the two states:

DE3D ¼ Eexcited � Eg ¼ �h2

2m
3p2

a2

� �
;

exactly as in the previous problem. Numerically:

DE3DðevÞ ¼
3�h2p2

ej j2mea2
¼ 0:75ð6:626� 10�34Þ2
ð1:602� 10�19Þ2ð9:1� 10�31Þð5:63� 10�10Þ2

¼ 3:56 eV:

Problem (11.3) Solution
The angle of tilt is h = b/D where b is the Burger’s vector and 1/D is linear
dislocation density. The Burger’s vector is the shortest lattice translation vector.

b ¼ aGe
ffiffiffi
2
p

2
¼ 5:65A

�ffiffiffi
2
p ¼ 4:0 A

�

D ¼ 4:0� 10�8 cm

20
1
60

1
60

2p
360

ffi 4� 10�4 cm
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Problem (11.6) Solution
The one dimensional diffusion equation is

@C
@t
¼ D

@2C
@x2

:

(a) If

Cðx; tÞ ¼ Affiffi
t
p exp � x2

4Dt

� �
then

@C
@x
¼ Affiffi

t
p exp � x2

4Dt

� �
� x
2Dt

� �
@2C
@x2
¼ Affiffi

t
p exp � x2

4Dt

� �
� x
2Dt

� �2
þ Affiffi

t
p exp � x2

4Dt

� �
� 1
2Dt

� �

Appendices 911



D
@2C
@x2
¼ Affiffi

t
p exp � x2

4Dt

� �
x2

4Dt2

� �
� A
2t3=2

exp � x2

4Dt

� �
@C
@t
¼ � A

2t3=2
exp � x2

4Dt

� �
þ Affiffi

t
p exp � x2

4Dt

� �
� x2

4Dt2

� �
QED.

Z1
�1

Affiffi
t
p exp � x2

4Dt

� �
dx ¼ Q

Z1
�1

Affiffi
t
p exp � x2

4Dt

� �
dx ¼ 2

Affiffi
t
p
Z1
0

exp � x2

4Dt

� �
dx

Then using

Z1
0

e�r
2x2dx ¼

ffiffiffi
p
p
2r

;

the desired result follows:

A ¼ Q

2
ffiffiffiffiffiffiffi
pD
p :

M.12 Chapter 12 Solutions

Problem (12.1) Solution14

xB ¼ peE
�h
ffi 2:37� 1032 s�1

TB ¼ 2p
xB
ffi 2:65� 10�32 s

14See Ashcroft and Mermin [21, p. 210].

(b)
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TTypical for metals
Relax ffi 10�14 s

TRelax  TB

Therefore, many Bloch oscillations are possible before an electron is scattered (at
least in situations where they are possible at all, see text p. 623).

Problem (12.5) Solution
From (3.195) in the text

En;kz ¼
�h2k2z
2m
þ �hxc nþ 1

2

� �
:

Thus under the assumptions of the problem, we can write

En;p ¼ �h2p2n2

2mw2 þ �hxc pþ 1
2

� �
	 enþ ep; xc ¼ eB

m
; e[ 0:

From p. 633, the Landau degeneracy per spin or the number of states per area and
spin is eB/h. Thus the density of states per area and spin is (for n = 1, en = e1)

DðEÞ ¼ qðEÞ
area

¼
X
p

eB
h
dðE � e1 � epÞ;

D2DðE0Þ
per spin

¼ eB
h

X
p

dðE0 � epÞ; E0 ¼ E � e1

(density of states implies per unit energy i.e. it is the number of states per unit of
energy and in our case per spin and area).

Problem (12.5) Solution

(a) For a circle of radius R, K = 1/R and dA = Rdh. So

Z
KdA ¼

Z2p
0

1
R
Rdh ¼ 2p

(b) For a square with rounded (circular arcs) edges
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r

Z
KdA ¼

Z
circular
corners

KdAþ
Z

straight
sides where

K¼0

KdA

¼ 4
p
2

� �
þ 0

¼ 2p

M.13 Appendix B Solutions

Problem (B.2) Solution
This is just a matter of doing simple but tedious matrix multiplication with the
values of N1 and N2 already given [see (B.14a) and (B.14b)].
Note:

ðABÞij 	
X
k

AikBkj

or for 2 � 2 matrices

ðABÞij ¼ Ai1B1jþAi2B2j

for i and j = 1 or 2.
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the student may wish to consult some of them from time to time
41. P.W. Anderson, Concepts in Solids (W. A. Benjamin, New York, 1963). Emphasizes

modern and quantum ideas of solids
42. L.F. Bates, Modern Magnetism (Cambridge University Press, New York, 1961). An

experimental point of view
43. D.S. Billington, J.H. Crawford Jr., Radiation Damage in Solids (Princeton University Press,

Princeton, 1961). Describes a means for introducing defects in solids
44. N. Bloembergen, Nuclear Magnetic Relaxation (W. A. Benjamin, New York, 1961).

A reprint volume with a pleasant mixture of theory and experiment
45. N. Bloembergen, Nonlinear Optics (W. A. Benjamin, New York, 1965). Describes the types

of optics one needs with high intensity laser beams
46. M. Born, K. Huang, Dynamical Theory of Crystal Lattices (Oxford University Press, New

York, 1954). Useful for the study of lattice vibrations
47. L. Brillouin, Wave Propagation in Periodic Structures (McGraw-Hill Book Company, New

York, 1946). Gives a unifying treatment of the properties of different kinds of waves in
periodic media

48. R. Brout, Phase Transitions (W. A. Benjamin, New York, 1965). A very advanced
treatment of freezing, ferromagnetism, and superconductivity

49. F.C. Brown, The Physics of Solids—Ionic Crystals, Lattice Vibrations, and Imperfections
(W. A. Benjamin, New York, 1967). A textbook with an unusual emphasis on ionic crystals.
The book has a particularly complete chapter on color centers

50. M.J. Buerger, Elementary Crystallography (Wiley, New York, 1956). A very complete and
elementary account of the symmetry properties of solids

51. P. Choquard, The Anharmonic Crystal (W. A. Benjamin, New York, 1967). This book is
intended mainly for theoreticians, except for a chapter on thermal properties. The book
should convince you that there are still many things to do in the field of lattice dynamics
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Homopolar bonds, 12
Homostructures, 729
Hopping conductivity, 790
Hubbard Hamiltonian, 473
Hume-Rothery, 308
Hund-Mulliken method, 434
Hydrogen atom, 13, 93, 427, 648, 708, 726,

727
Hydrogen bond, 13, 621
Hydrogen Metal, 309
Hydrogenic wave functions, 712
Hyperfine interaction, 530, 560, 925
Hyperfine splitting, 577
Hysteresis loop, 505, 508

I
Ice, 13
Icosahedron, 24
Ideal crystals, 18
Imperfections, 505, 670
Impurity mode, 85, 122
Impurity states, 232, 275, 790
Index of refraction, 613, 651, 667, 694
Induced transition, 688
Inelastic neutron diffraction, 258
Infinite crystal, 19, 65
Infinite one-dimensional periodic potential, 168
Infrared Absorption, 560
Infrared detector, 334, 364
Inhomogeneous Semiconductors, 380
Injected minority carrier densities, 385
Injection current, 381
Inner product, 18, 224
InP, 368
Interatomic potential, 4
Interatomic spacing, 4, 250, 274
Inter-band frequencies, 614
Internal energy, 9, 73, 115, 420, 819
Interpolation methods, 196, 219
Interstitial atoms, 707
Interstitial defects, 717
Intra-band absorption, 670
Invisibility Cloaks, 699
Ion core potential energies, 148
Ionic conductivity, 7, 13
Ionic crystals, 7, 14, 614, 706, 715
Iron oxypnictides, 506, 605
Irreducible representation, 15, 817
Isomorphic, 18, 26, 44, 91, 363
Isoprene group, 797
Isothermal compressibility, 9, 114

Itinerant electron magnetism, 155

J
Jahn-Teller effect, 534
Jellium, 155, 273, 301, 642
JFET, 399
Joint density of states, 661, 667
Jones zones, 198
Josephson effects, 560, 573, 578
Junction capacitance, 374, 376

K
K, 45, 215, 621
k space, 179, 311
KH2PO4, 621, 626
Kinematic correlations, 148
Kohn anomalies, 647
Kohn Effect, 633
Kohn-Sham Equations, 160, 167
Kondo effect, 320, 406, 547
Korteweg-de Vries equation, 552
Kramers’ Theorem, 534, 760
Kronecker delta, 39, 122, 224, 248, 538
Kronig-Kramers equations, 654
Kronig-Penney model, 168, 813

L
Lagrange equations, 63, 502
Lagrange multiplier, 133, 159
Lagrangian, 62, 69, 87, 165
Lagrangian mechanics, 62, 165
Landau diamagnetism, 186, 189, 406, 720, 750
Landau levels, 753
Landau quasi-particles, 178, 244
Landau theory, 154, 483, 555
Landauer equation, 741
Landau-Lifshitz equations, 529
Lande g-factors, 422
Lanthanides, 301
Larmor frequency, 523
Lasers, 746
Latent heat, 482, 622
Lattice constant, 10, 336, 632, 743
Lattice of point ions, 40
Lattice thermal conductivity, 250
Lattice vibrations, 47, 48, 57, 65, 72, 75
Laughlin, 753, 754
Law of constancy of angle, 14
Law of Dulong and Petit, 74
Law of geometric progression, 40
Law of Mass Action, 339, 372
Law of Wiedemann and Franz, 194, 298
LiF, 7
Light Emitting Diode (LED) 366, 387
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Light holes, 360
Lindhard theory, 637, 641
Line defects, 707
Linear combination of atomic orbitals, 202
Linear lattice, 72, 75, 78, 87, 122
Linear metal, 301, 317
Liquid crystals, 1, 730, 794, 795
Liquid nitrogen, 364, 604
Liquidus branches, 317
Local density approximation, 155, 162, 216,

228, 828
Local density of states, 732
London penetration depth, 563
Longitudinal mode, 75, 107
Longitudinal optic modes, 364
Longitudinal plasma oscillations, 631, 676
Lorentz-Lorenz Equation, 620
Lorenz number, 194
Low Energy Electron Diffraction, 732
Low temperature magnon specific heat, 466
Lower critical field, 557, 570, 607
Luminescence, 686
Lyddane-Sachs-Teller Relation, 683

M
Madelung constant, 8, 43
Magnetic anisotropy, 447
Magnetic charge, 504
Magnetic domains, 497
Magnetic flux, 291, 556, 607
Magnetic hysteresis, 498
Magnetic induction, 35
Magnetic interactions, 132
Magnetic moment, 185, 405, 500, 925
Magnetic phase transition, 482
Magnetic potential, 451
Magnetic resonance, 405, 511, 733
Magnetic specific heat, 420, 483, 551
Magnetic structure, 405, 413, 458, 495
Magnetic susceptibility, 185, 312, 315, 407,

425, 440, 549, 553
Magnetization, 184, 189, 407
Magnetoacoustic, 312
Magnetoelectronics, 543
Magnetoresistance, 311, 544, 546, 547
Magnetostatic energy, 450, 499
Magnetostatic self energy, 451
Magnetostatic Spin Waves, 469
Magnetostriction, 503
Magnetostrictive energy, 499
Magnon-magnon interactions, 458
Magnons, 241, 456, 462
Majorana, 757
Majorana Fermion, 551, 757

Mass defect in a linear chain, 84
Mass of the electron, 53, 178, 807
Mass of the nucleus, 48
Maxwell equations, 35, 297, 450
Mean field theory, 405, 414, 421, 492
Medium crystal field, 531
Meissner effect, 497, 563, 607
Membranes, 794
Mesoscopic, 741
Metal Oxide Semiconductor Field Effect

Transistor, 396
Metal Semiconductor Junctions, 376
Metal-Barrier-Metal Tunneling, 739
Metallic binding, 11
Metallic densities, 153, 217, 273
Mg, 310, 603
MgB2, 555, 603
Microgravity, 364, 725
Miller Indices, 34
Minibands, 742
Minority carrier concentrations, 384, 392
Mobility gap, 789
Models of Band Structure, 360
Molecular Beam Epitaxy, 733
Molecular crystals, 3, 4, 241
Molecular field constant, 415, 416, 472
Monatomic case, 77, 78
Monatomic Lattice, 61
Monoclinic Symmetry, 27
Monomer, 796, 797
Monovalent metal, 148, 178
Moore’s Law, 401
MOS transistors, 396
MOSFET, 380, 396, 753
Mott transition, 196, 791
Mott-Wannier excitons, 241

N
N2, 604
N interacting atoms, 69
Na, 11, 67, 88, 175, 208, 309, 633, 715
NaCl, 7, 10, 32, 685, 714
NaKC4H4O6 4H2O (Rochelle salt), 621
Nanomagnetism, 511
Nanostructure, 510, 698
Narrow gap insulator, 334
Narrow gap semiconductor, 334, 735, 745, 746
N-body problem, 69
Nd2Fe14B, 508
Nearest neighbor repulsive interactions, 8
Nearly free-electron approximation, 196, 210,

226
Néel temperature, 421, 423
Néel walls, 506
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Negative Index of Refraction, 697
Neutron diffraction, 103, 109, 322, 424
Neutron star, 329
Ni, 212, 330, 413, 416, 471, 501
Noble metals, 301, 310
Nonequilibrium statistical properties, 245
Non-radiative (Auger) transitions, 670
Normal coordinate transformation, 5, 68, 89,

100, 809
Normal coordinates, 60, 67, 88, 809
Normal mode, 47, 59, 76, 810, 829
Normal or N-process, 249
Normal subgroup, 18
n-type semiconductor, 376, 403
Nuclear coordinates, 48
Nuclear magnetic resonance, 512
Nuclear spin relaxation time, 560
N-V center, 716

O
O, 378, 796
Occupation number space, 91, 823
Octahedron, 25
One-dimensional crystal, 63, 234
One-dimensional harmonic oscillators, 4
One-dimensional lattices, 57
One-dimensional potential well, 237
One-electron Hamiltonian, 406
One-electron models, 167
One-particle operator, 132, 144, 824
Optic mode, 75, 104, 263, 626, 630
Optical absorption, 663, 715
Optical fibers, 696
Optical lattice, 701
Optical magnons, 464
Optical phenomena, 649
Optical phonons, 242, 650, 677, 693
Orbital angular momentum operator, 408, 823
Order parameter, 493, 549
Order-disorder transition, 626
Orthogonality constraints, 160
Orthogonalized plane wave, 196, 214, 228
Orthorhombic symmetry, 27
Oscillating polarization, 441
Oscillator strength, 617, 660, 666, 704
Overlap catastrophe, 432

P
Padé approximant, 483
Pair tunneling, 610
Parabolic bands, 336, 364, 660
Paraelectric phase, 622, 623
Parallelepiped, 19, 26, 97, 179
Paramagnetic Curie temperature, 416

Paramagnetic effects, 407
Paramagnetic ions, 413, 530
Paramagnetic resonance, 715
Paramagnetic susceptibility, 408, 480
Paramagnetism, 187, 407, 421, 480
Particle tunneling, 610, 611
Particle-in-a-box, 174
Partition function, 72, 113, 189, 444, 553
Passivation, 378
Pauli paramagnetism, 153, 407, 473
Pauli principle, 136, 148, 189, 327
Pauli spin paramagnetism, 184
Pauli susceptibility, 480
Peierls transitions, 317, 321
Peltier coefficient, 287, 289
Penetration depth, 563, 569, 571, 604, 687
Perfect diamagnetism, 610
Periodic boundary conditions, 58, 61
Permalloy, 506
Permittivity of free space, 5, 263
Permutation operator, 136
Perovskite, 33, 622
Perpendicular twofold axis, 29
Perturbation expansion, 50, 829
Phase space, 206, 277
Phase transition, 228, 317, 414, 472, 482, 549,

622, 627
Phonon, 47, 72, 73, 93, 663
Phonon absorption, 258
Phonon current density, 250
Phonon density of states, 112, 258
Phonon emission, 257
Phonon frequencies, 250
Phonon radiation, 250
Phononics, 252
Phonon-phonon interaction, 47, 127, 246, 248
Phosphorescence, 687
Photoconductivity, 703, 715
Photoelectric effect, 195, 391
Photoemission, 195, 649, 686
Photoluminescent, 687
Photon absorption, 659
Photonics, 696
Photons, 195, 671, 688
Photovoltaic effect, 388, 391
Physical observables, 89
Piezoelectric crystals, 621
Pinned, 236, 379, 527
Planar defects, 707
Planck distribution, 688
Plane polarized light, 700, 731
Plane wave solution, 150, 236
Plasma frequency, 242, 301, 620, 632, 672,

702
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Plasmonics, 636
Plasmons, 154, 242, 632, 731
Platinum, 331
Pnictides, 605
pn-junction, 374, 380, 387
Point defects, 706, 715
Point group, 15, 19, 26, 29, 30, 44, 530
Point scatterers, 36, 39
Point transformations, 19
Poisson bracket relations, 87
Polar crystals, 242, 621
Polar solids, 650
Polaritons, 677
Polarization, 263, 613, 619, 628, 671, 681, 701
Polarization catastrophe, 626
Polarization vectors, 101, 104, 126, 258, 268
Polarons, 242, 262, 272
Polyhedron, 24, 208
Polymers, 1, 730, 794, 795
Polyvalent metals, 301
Population inversion, 746
Positive definite Hermitian operator, 130
Positrons, 239
Potential barrier, 378, 381, 664, 724
Potential gradients, 348
Primitive cells, 19
Primitive translation, 19, 26, 96, 306, 730, 816
Principal threefold axis, 31
Projection operators, 203
Propagators, 828
Proper subgroup, 17, 18
Pseudo binary alloys, 360
Pseudo-Hamiltonian, 225
Pseudopotential, 202, 214, 218, 301, 360, 361,

362, 601, 731
p-type semiconductor, 378, 380
p-wave pairing, 603
Pyroelectric crystals, 621

Q
Quantum computing, 545
Quantum conductance, 729, 741
Quantum dot, 729, 735, 736
Quantum electrodynamics, 244, 262, 577, 828
Quantum Entanglement, 690, 782
Quantum Hall Effect, 187, 752
Quantum Information, 545
Quantum mechanical inter-band tunneling, 387
Quantum Phases, 696, 776
Quantum Phase Transitions, 275, 494, 759
Quantum Spin Liquids, 551, 776
Quantum wells, 367, 729, 746
Quantum wires, 729, 735, 786

Quasi Periodic, 24
Quasi-classical approximation, 387
Quasicrystals, 24
Quasi-electrons, 154, 244, 583
Quasi-free electron, 127, 178, 613
Quasi-particles, 153, 244, 828
Qubit, 545

R
Radiation damage, 706
Radiative transitions, 670, 746
Raman scattering, 110, 693, 733
Rare earths, 301, 439, 447, 471, 507, 531
Rashba Effect, 766
Rayleigh-Ritz variational principle, 129
Real orthogonal transformation, 101
Real solids, 7, 196, 274, 452
Reciprocal lattice, 34, 39, 40, 96, 197, 238
Reciprocal lattice vectors, 39, 306, 730
Reciprocal space, 39, 199
Reducible representation, 536
Reflection coefficient, 652
Reflection High Energy Electron Diffraction,

732
Reflection symmetry, 19, 21
Reflectivity, 228, 654, 672, 685
Refractive index, 614
Registry, 733
Regular polyhedron, 24
Relativistic corrections, 132, 216, 217, 231,

273, 822
Relativistic dynamics, 327
Relativistic effects, 49
Relativistic pressure, 327
Relaxation region, 673
Relaxation time, 193, 194, 282, 348
Relaxation time approximation, 283, 286, 298
Remanence, 498, 505
Renormalization, 482, 493, 583, 827
Reptation, 797
Repulsive force, 4, 7
Resonance frequencies, 355, 614
Resonant tunneling, 735, 745
Rest mass, 217, 326, 8210
Restrahl frequency, 79, 685
Restrahlen effect, 614
Reverse bias breakdown, 387
Reversible processes, 9
Richardson-Dushmann equation, 723
Riemann zeta functions, 466
Rigid ion approximation, 258
RKKY interaction, 439
Rochelle salt, 621

Index 951



Rotary reflection, 19
Rotation inversion axis, 29
Rotational operators, 93
Rotational symmetry, 20, 23, 93, 103, 211, 496
Rubber, 796
Rushbrooke inequality, 494

S
Saturation magnetization, 471, 476, 497, 505
s-band, 202, 207, 473
Scaling laws, 483
Scanning Auger microscope, 732
Scanning Electron Microscopy, 507, 732
Scanning Tunneling Microscopy, 732
Scattered amplitude, 44
Schoenflies, 29, 30
Schottky and Frenkel defects, 706
Schottky Barrier, 376
Schottky emission, 724
Screening, 642
Screening parameter, 639
Screw axis symmetry, 21
Screw dislocation, 717, 718, 719
Second classical turning point, 724
Second quantization, 141, 823
Secondary Ion Mass Spectrometry, 732
Second-order phase transitions, 482
Secular equation, 60
Selection rules, 253, 257, 677
Self-consistent one-particle Hamiltonian, 144
Semiconductor, 333, 661, 676, 705, 708, 789
Semimetals, 784
Seven crystal systems, 26
Shallow defects, 336, 707, 709
Shell structure, 131
Shockley diode, 381, 387
Shockley state, 705
Short range forces, 4
Si, 32, 215, 356, 361
Similarity transformation, 536
Simple cubic cell, 29
Simple cubic lattice (sc lattice), 42, 205, 237,

456, 500
Simple monoclinic cell, 27
Simple orthorhombic cell, 27
Simple tetragonal cell, 28
Single crystal, 311, 367, 501, 707
Single domain, 497
Single electron transistors, 736
Single particle wave functions, 160
Single-ion anisotropy, 449, 450
Singlet state, 430, 603
SiO2, 378, 753

Skin-depth, 312
Skyrmions, 793
Slater determinant, 137, 826
Slater-Koster model, 232, 714
Slow neutron diffraction, 258
SmCo5, 508
Sn, 301, 330
Soft condensed matter, 1, 729, 794
Soft mode theory, 622, 627
Soft x-ray emission, 237
Soft x-ray emission spectra, 191
Solar cell, 334, 388
Solid state symmetry, 18
Solitons, 406, 552
Space degrees of freedom, 49
Space groups, 15, 26, 31
Specific heat of an electron gas, 153, 181
Specific heat of an insulator, 62, 111
Specific heat of linear lattice, 72
Specific heat of spin waves, 465
Specific heat of the one-dimensional crystal, 72
Speed of light, 35, 756, 821
Speromagnetic, 507
Spherical harmonics, 211
Spin, 1/2 particle, 49
Spin coordinate, 135, 429
Spin degeneracy, 721
Spin density waves, 322
Spin deviation quantum number, 462, 467
Spin diffusion length, 545
Spin glass, 406, 507, 549
Spin Hall Effect, 352, 759
Spin Hamiltonian, 430
Spin polarization, 543
Spin wave theory, 419, 453, 480, 495
Spin-lattice interaction, 250
Spin-orbit interaction, 230, 531, 821
Spin-polarized transport, 543
Spin-spin relaxation time, 512, 517
Spintronics, 543, 544, 546, 716
Split-off band, 360
Spontaneous emission, 688
Spontaneous magnetism, 413
Spontaneous polarization, 622
Spontaneously broken symmetry, 496, 609
Stark-Wannier Ladder, 744
Steel, 330, 792
Stereograms, 29, 44
Stokes line, 693
Stoner criterion, 479
Stoner model, 473, 543
Strained layer, 742
Strong crystal field, 531
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Strongly Correlated Systems, 275, 482
Structure factor, 39, 42, 200, 227
Subgroup, 18, 26, 44
Substitutional atoms, 81, 707
Superconducting metals, 566
Superconducting wave function, 565, 570
Superconductive state, 555
Superconductivity, 561
Superconductor, high Tc, 275, 604
Superconductors, 555
Superlattice, 742, 744, 746
Surface defects, 705
Surface reconstruction, 732
Surface states, 378, 389, 396, 786
s-wave pairing, 603
Symmetry operations, 19, 20, 26, 31, 216
Symmorphic, 26

T
Tamm states, 705
Tensor effective mass, 178
Tetragonal Symmetry, 28
Tetrahedron, 25
Thermal conductivity, 112, 191, 250, 278, 287
Thermal energy, 194, 670
Thermal neutrons, 33, 257
Thermal resistance, 62, 249
Thermionic emission, 153, 720
Thermodynamic fluctuations, 414, 493
Thermodynamics of irreversible process, 289
Thermoelectric power, 288
Thomas-Fermi approximation, 637
Thomas-Fermi-Dirac method, 155
Three-dimensional lattice vibration, 57, 97
Three-dimensional periodic potential, 167
Threefold axis, 22, 31
Ti, 331
Tight binding approximation, 127, 196, 202,

207, 214, 234
Time Crystal, 22
t-J Model, 481
Topological Insulators, 551, 631, 755
Topological Phases, 759
Total cohesive energy, 9
Total exchange charge, 147
Total reflection, 676
Transistors, 334, 370, 380, 396, 735, 785
Transition metals, 301, 311, 792
Translation operator, 92, 816
Translational symmetry, 18
Transmission coefficient, 723, 740
Transmission Electron Microscopy, 507, 732

Transport coefficients, 243, 279
Transverse and longitudinal acoustic modes,

258
Trial wave function, 131, 214, 273, 589, 592,

648
Triclinic Symmetry, 27
Triglycine selenate, 621
Triglycine sulfate, 621
Trigonal Symmetry, 28
Triplet state, 430
Triplet superconductivity, 323
Two-atom crystal, 60
Two-body forces, 4, 48
Two-dimensional defect, 708
Two-fold axis of symmetry, 29
Two-fold degeneracy, 20, 170, 534
Two-particle operator, 132, 138, 824
Type I superconductors, 557, 569, 608
Type II superconductors, 555, 569, 607

U
UAl2, 322
UBe13, 322, 603, 606
Ultrasonic absorption, 312
Ultrasonic attenuation, 559
Ultrasonic wave, 312
Ultraviolet photoemission, 686
Umklapp process, 249, 261, 283, 582
Uncertainty principle, 6
Unit cells, 19
Unitary transformation, 101, 233, 545
Unrestricted force constants approach, 57
Upper critical field, 557, 568, 604

V
Vacancies, 324, 706, 714, 715, 717
Valence band, 708
Valence crystals, 12, 14, 427
van der Waals forces, 5, 7
Van Hove singularities, 667
Varactor, 375
Variational principle, 129
Variational procedure, 158
Vector potential, 187, 562, 657
Velocity operator, 220
Verdet constant, 703
Vertical transitions, 662
Vibrating dipoles, 5
Virgin curve, 505
Virtual crystal approximation, 360
Virtual excited states, 4
Virtual magnons, 603
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Virtual phonons, 262, 267, 603
Volume coefficient of thermal expansion a, 114
Vortex region, 558

W
W, 331
Wall energy, 502, 503
Wannier excitons, 668
Wannier function, 234, 474
Wave vector, 65
Weak crystal fields, 531
Weak superconductors, 608
Weiss theory, 414, 416, 472, 483
Weyl Fermions, 757
Whiskers, 718
White dwarf, 325
Wiedemann–Franz Law, 191

Wigner-Seitz cell, 208, 210, 260
Wigner-Seitz method, 11, 207, 210
WKB approximation, 664, 723, 740

X
X-ray photoemission, 686
X-rays, 33, 110, 191

Y
YBa2Cu3O7, 604, 606

Z
Zeeman energy, 452
Zener Breakdown, 387, 664
Zero point energy, 6, 73
Zincblende, 334, 364, 365
Zn, 330
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