Chapter 7 ®)
Multi-sensor Integration oo

Under ideal conditions, the algorithms described above work perfectly. From the
initial orientation plus the gyroscope data, they can first determine the orientation.
And knowing orientation, they can cancel out the contribution from gravity, and—
given the initial position and velocity—find the current position in space.

However, the analysis of real sensory signals is not quite that simple. Real sensory
signals include a number of artifacts like offsets and drifts (Woodman 2007). And
since offsets lead to velocity errors that grow linearly with time, and position errors
grow quadratically (as described in Sect. 2.2.2), the analytical solutions rarely get
applied directly.

But a wealth of algorithms exist, using different approaches to deal with gyro-
scope bias drift, inertial acceleration, and magnetic disturbances (e.g. Mahony et al.
2008; Savage 2006; Sabatini 2006; Roetenberg et al. 2007). Two main sensor fusion
approaches have been proposed: stochastic filtering, often implemented in the form of
an extended Kalman filter. And the so-called “complementary filtering” approaches,
which fuse multiple noisy measurements from the gyroscopes, accelerometers, and
magnetometers that have complementary spectral characteristics. For each measure-
ment, the complementary filtering uses only the part of the signal frequency spectrum
that contains useful information. (This is reflected in the name, complementary fil-
ters.) Unfortunately, due to the varying conventions used in the different publications,
such as quaternions, Euler angles, rotation matrices, and rotations of objects versus
rotations of coordinate systems, direct comparisons of the different approaches are
often difficult.

This chapter first provides an introduction to working with uncertain data. After
that the principle of Kalman filters is introduced. In the last section, an example of
a complementary filter that has received much attention for the evaluation of IMU
data is presented, the filter proposed by Madgwick et al. (2011).
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Fig. 7.1 How best to combine the information from a GPS and the speedometer, to obtain the
optimal estimate of the current position?

7.1 Working with Uncertain Data

As! an example application, consider the problem of determining the precise location
of a car (Fig. 7.1). The car can be equipped with a GPS unit that provides an estimate
of the position within a few meters. The GPS estimate is likely to be noisy; readings
“jump around” rapidly, though always remaining within a few meters of the real
position. In addition, since the car is expected to follow the laws of physics, its
position can also be estimated by integrating its velocity over time, determined by
keeping track of wheel revolutions and the angle of the steering wheel. This is a
technique known as “dead reckoning”. Typically, the dead reckoning will provide a
very smooth estimate of the car’s position, but it will drift over time as small errors
accumulate.

What makes this process particularly challenging is that neither the current posi-
tion/velocity of the car nor the GPS measurement are 100% accurate. To prepare the
mathematical ground for working with probabilities, the next section will start with
an introduction on how uncertain information can be described mathematically.

7.1.1 Uncertain Data in One Dimension

Normal Distribution

For simplicity, we start out with a one-dimensional, uncertain piece of informa-
tion: a one-dimensional position measurement. The measurement indicates a certain
value p, but also has an uncertainty o (Fig. 7.2). The probability that the value of a
measurement is correct is characterized by a so-called “probability distribution”. In
many cases, this probability distribution is well described by a “normal probability
distribution”, also called a “Gaussian probability distribution”:
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IThis section is strongly based on the presentation http://www.bzarg.com/p/how-a-kalman-filter-
works-in-pictures/ by Timm Babb.
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Fig. 7.2 Normal distribution, centered about 1, with a standard deviation of o
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where p is the mean or expected value of the distribution, and o is the standard
deviation (o2 is the variance).

Combination of Two Normal Distributions

How can one obtain the best estimate for the position of the car if one has two different
measurements, in our example the prediction from the dead reckoning and the GPS
measurement? Luckily, the product of two Gaussians is again a Gaussian (Fig. 7.3).
Let u; be the best guess of the measurement i, and o; the corresponding standard
deviation. Then, the combined probability distribution can then be obtained with
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Fig. 7.3 The product of two normal probability distributions (solid lines) is again normally dis-
tributed (dotted line)
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N(x | o, 00) - N(x | i, 01) ~ N(x | w', ") (7.2)
Substituting Eq. (7.1) into Eq. (7.2), and normalizing the resulting distribution gives

o (u1 — o)

7.3
002—1—012 (7.3)

W= o+
(7.4)
With

(7.5)

we obtain

w' = o + k(i — o) (7.6)
o”? = (1 —K)og.

The variable k in Eq. (7.6) corresponds to the “Kalman Gain” of the Kalman filter
described in the next section, and the combination of two probability distributions is
equivalent to the action Update in Fig. 7.8, since the information from one system
is combined with that from another system.

7.1.2 Uncertain Data in Multiple Dimensions

In practice systems often have more than one dimension, i.e., they require more than
one parameter to characterize the current state of the system. For the car example
here, Fig. 7.4 shows 500 (hypothetical) position and velocity measurements. Each of
these parameters is normally distributed, as shown by the corresponding histogram.

Plotting not the individual points, but the probability to find a given posi-
tion/velocity measurement gives the corresponding two-dimensional Gaussian
probability distribution (see Fig. 7.5).

In Fig. 7.5, position and velocity are “uncorrelated”, which means that the state of
one variable (e.g. position) tells us nothing about what the other (e.g. velocity) might
be. The example in Fig. 7.6 shows something more interesting. There position and
velocity are “correlated”: the likelihood of observing a particular position depends
on the current velocity.
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Fig. 7.4 500 samples from uncorrelated position and velocity measurements. The projections on
the top and on the right show the corresponding sample histograms
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Fig.7.5 Probability distribution of two uncorrelated variables. The colorbar on the right side shows
the scale how likely it is to obtain a measurement at any given location

This kind of situation might arise if, for example, the estimate of a new position
is based on an old one. If the velocity was high, the car probably moved farther, so
the new position will be more distant. If the car drove slowly, it did not get as far.

This kind of relationship is really important to keep track of, because it provides
more information: one measurement contains information about what the other could
be. This correlation is captured by the so-called “covariance matrix” X. Each element
%;; of the matrix quantifies the degree of correlation between the i state variable
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Fig. 7.6 Probability distribution of two correlated variables

and the j' h state variable. (Note that the covariance matrix is symmetric, which means
that it does not matter if the indices i and j are exchanged.)

To make the notation more concise, let p; be the position at time #, and vy the
corresponding velocity. The “state vector” describing the object is now given by the
vector X, defined as

__ ( position | P
Xk = (velocity) (B) = (vk ) ) 7.7
And the corresponding covariance matrix is
_ | ZwZp
X = [Evpzw . (7.8)

The diagonal elements of the covariance matrix correspond to the variance of the
position and the velocity, respectively. And the off-diagonal elements quantify the
correlation between the two parameters.

The combination of uncertain multidimensional measurements with uncertain
state expectations requires matrix versions of Egs. (7.5) and (7.6).

If X is the covariance matrix of a Gaussian blob, and the vector p its mean along
each axis, then the Kalman gain matrix K is

K=X)- (Zo+Z) ", (7.9)
and the new mean " and the new covariance matrix X’ are (Fig. 7.7)

o=no+ K- — R

¥ =(1-K)- X (7.10)

The subscripts in Eqgs. (7.9) and (7.10) refer to the first and second set of measure-
ments.
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Fig. 7.7 The combination from the information from two higher dimensional probability distribu-
tions reduces the uncertainties in our estimates: the bright area indicates where both measurement_0
(magenta) and measurement_1 (yellow) agree

7.2 Kalman Filter

7.2.1 Idea Behind Kalman Filters

Kalman? filtering is an algorithm that uses a series of measurements observed over
time, containing statistical noise and other inaccuracies, and produces estimates
of unknown variables that tend to be more precise than those based on a single
measurement alone, by using Bayesian inference and estimating a joint probability
distribution over the variables for each time frame. The elegant feature of the Kalman
filter is that the uncertainty in the data is taken into consideration, and the maximum
amount of knowledge is extracted from the given information. The filter is named
after Rudolf E. Kdlman (1930-2016), one of the primary developers of its theory.

The Kalman filter has numerous applications in technology. A common appli-
cation is for guidance, navigation, and control of vehicles, particularly aircraft and
spacecraft. Furthermore, the Kalman filter is a widely applied concept in time series
analysis used in fields such as signal processing and econometrics. Kalman filters are
also one of the main topics in the field of robotic motion planning and control, and
they are sometimes included in trajectory optimization. In neuroscience, the Kalman
filter has found use in modeling the central nervous system’s control of movement.
Due to the time delay between issuing motor commands and receiving sensory feed-
back, use of the Kalman filter provides the needed model for making estimates of
the current state of the motor system and issuing updated commands (Wolpert and
Ghahramani 2000).

The algorithm works in a two-step process (see Fig. 7.8). In the Prediction step,
the Kalman filter produces estimates of the current state variables, along with their

2This section is taken from https:/en.wikipedia.org/wiki/Kalman_filter
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Fig. 7.8 Simplified diagram describing the iterative update of a system

uncertainties. Once the outcome of the next measurement (necessarily corrupted
with some amount of error, including random noise) is observed, the state estimates
are combined with the measurements in an Update step using a weighted average,
with more weight being given to estimates with higher certainty. The algorithm is
recursive. It can run in real time, using only the present input measurements and the
previously calculated state and its uncertainty matrix; no additional past information
is required.

The Kalman filter does not require any assumption that the errors are Gaussian.
However, the filter yields the exact conditional probability estimate in the special
case when all errors are Gaussian distributed.

For Kalman filters, the underlying model is a Bayesian model similar to a “hidden
Markov model”, but where the state space of the latent variables is continuous and
where all latent and observed variables have Gaussian distributions.

Example Application

In the example with the car on a highway, the parameters (position/velocity) describe
the current state of this system, and are sampled at equal time increments Az. Know-
ing the former state of the system (position/velocity), and the external control (posi-
tion of the accelerator pedal), one can calculate the predicted state of the system
At seconds later (Fig. 7.8). Since the car may have encountered, e.g., a steep, bad
section of the road, the predicted state will not match up exactly with the measure-
ments (e.g., the position/velocity information from the GPS signals). In order to get
the best possible estimate of the current position, these two pieces of information are
integrated in the Update, to get the updated predicted state. This is the new starting
point, and the process begins all over again.

In this example, the Kalman filter can be thought of as operating in two distinct
phases: Prediction and Update. In the prediction phase, the car’s old position will be
modified according to the physical laws of motion (the dynamic or “state transition”
model) plus any changes produced by the accelerator pedal and steering wheel.
Not only will a new position estimate be calculated, but a new covariance will be
calculated as well, providing information about the uncertainty of the car’s position.
Perhaps the covariance is proportional to the speed of the car because we are more
uncertain about the accuracy of the dead reckoning position estimate at high speeds
but very certain about the position estimate when moving slowly. Next, in the update
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phase, a measurement of the car’s position is taken from the GPS unit. Along with this
measurement comes some amount of uncertainty, and its covariance relative to that of
the prediction from the previous phase determines how much the new measurement
will affect the updated prediction. Ideally, if the dead reckoning estimates tend to
drift away from the real position, the GPS measurement should pull the position
estimate back toward the real position but not disturb it to the point of becoming
rapidly changing and noisy.

7.2.2 State Predictions

How can state predictions, corresponding to the box Prediction in Fig. 7.8, be imple-
mented? In the following first the equations without external control will be consid-
ered, and then external input will be added. In order to facilitate the overview, and
the correspondence between the equations and Figs. 7.9 and 7.10, the elements in
the following equations will use the same colors as the corresponding elements in
the figures.

Without External Control

In the example the current position/velocity is known at time #,_; (Fig. 7.9, left).
If one wants to know the best estimate for the position/velocity at time #, (Fig. 7.9,
right), one can write that down as

Pk = Pk—1+ At vy (7.11)
3

Vk—1-
Using vector and matrix notation, this can be written as

X = Fk c Xfi—1- (712)

State Transition F

X1 i Bl P _‘\Xk J——
/ _A_’

—

Fig. 7.9 Knowledge of the previous state (left, x;_;) and the state-transition matrix F allows
calculation of the new state (right, x;)
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Fig. 7.10 Simplified scheme describing the iterative update of a system, taking external factors
u;—| and measurements y; into consideration

Borrowing the terminology from the theory of control systems

e X; is the state at time k, containing all the parameters required to describe the
current state of system. (In our example, these are position and velocity, and xg
provides the initial state vector.)

Pk
Xy = .

e F is the state transition model, in our case given by the matrix

1 At
r=[o7]
which is applied to the previous state X;_; in order to get the estimated new state

Xk .
e In the context of Kalman filters, the covariance matrix for the state x;_; is typically

indicated with Pj,_;
2
p=| % %n |,
GUP O-v

If one knows how the state transition affects each individual point (Fig. 7.9),
one can also calculate how the probability distribution develops. Elementary linear
algebra gives

P, = F-P,_ - F. (7.13)

With External Control

If accelerator or brakes are activated, the car will no longer move smoothly forward,
but also undergo an acceleration a. In that case, the new position/velocity are given by

1
Pk = i1 + At kv + 5 xax At? (7.14)

Vp = Ug—1 +a * At.
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Writing these equations in matrix form one obtains
A
X =Fk-X/<,1 +<A2t> *d
=Fi X1 + B uy

(7.15)

where:

e B is called the control matrix
e the control vector uy, (here a simple scalar a) characterizes the external input.

Also the external control is not 100% precise, but also has some variability. Denoting
this external variability with Q, Eq. (7.13) turns into

Py =F P Ff + Q. (7.16)

In words, with the knowledge of the covariance matrix for the previous state vector,
P;._,, the state transition matrix Fy, and the variability in external control, Q;, the
covariance matrix for the new state can be calculated.

To conclude the update cycle, one final step has to be considered: external mea-
surements (see Fig. 7.10, y;):

e v, the observation at time k, is combined with the estimated state x; to form a
new estimate, x;.
e With this new best estimate, the whole process is then repeated.

The next section shows how external measurements are included in the equations.

7.2.3 Measurements and Kalman Equations

Several sensors might provide information about the state of the system. For the time
being it does not matter what they measure; perhaps one reads position and the other
reads velocity. Each sensor says something indirect about the state. In other words,
the sensors operate on a state and produce a set of readings. In the context of Kalman
filters, it is typically assumed that the expected sensor signal is related to the state
estimate x; through a linear transformation

sensor = Hj, - x;. (7.17)

And the uncertainty in the state estimate P propagates into an uncertainty in the
sensor space via
yiemsor =H Py -HJ. (7.18)

expected
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In Kalman equations, the mean sensor signal is typically labelled z;_;, and the
sensor noise (i.e. the covariance of the sensor readings) with R;_;.

Putting It All Together

We have two distributions: the predicted measurement with
(o> o) = (Hy - x¢, Hy - Py - HY)
and the observed measurement with

(per, 1) = (z, Ry).

Plugging these into Eq. (7.10) to find their overlap, we get

Hk-X,ZIHk-X/(—i-K-(ZAfH/(-Xk)

; - r (7.19)
H, - P,-H, =1—-K) -H, P, -H,
And from Egq. (7.9), the Kalman gain is
K=H P, -H - (H-P,-H +R,)~" (7.20)

We can eliminate Hj, off the front of every term in Eqgs. (7.19) and (7.20) (note
that one is hiding inside K), and an H/ off the end of all terms in the equation for P’
(Fig. 7.11).

x, =%, + K - (zp — Hy - x)

, , (7.21)
P,=P,—K -H, P,

K =P, -H -H, P -H +R)™! (7.22)

... giving us the complete equations for the Update step.

And that’s it! x’ is the new best estimate, and can be fed (along with P} ) back into
another round of Prediction and Update.

These equations represent any linear system accurately. And for an implementa-
tion, of all the math above only Eqgs. (7.13) and (7.16), (7.21), and (7.22) are required.
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Fig. 7.11 The Kalman filter keeps track of the estimated state of the system and the variance or
uncertainty of the estimate. The estimate is updated using a state transition model and measurements.
Xi|k—1 denotes the estimate of the system’s state at time step k before the kth measurement y; has
been taken into account; Py ;1 is the corresponding uncertainty (from Wikipedia)

7.2.4 Kalman Filters with Quaternions

For nonlinear systems the math gets more complicated, and methods like extended
Kalman filters and unscented Kalman filters have to be used. These work in principle
by linearizing the predictions and measurements about their mean. These extensions
are particularly important for 3-D kinematics, since there the underlying algorithms
are clearly nonlinear: for example, expressed with quaternions, the combination of
two rotations requires a cross product calculation (Eq. 4.6).

The quaternion-based extended Kalman filter developed by Yun and Bachman
for human body motion tracking (Yun and Bachmann 2006) is implemented in the
scikit-kinematics package imus.

7.3 Complementary Filters

The “complementary filter” is a somewhat different, simple estimation technique
that was developed in the flight control industry to combine measurements (Higgins
1975). This filter is actually a steady-state Kalman filter for a certain class of filtering
problems. It does not consider any statistical description of the signal, but instead
considers how x and y, two noisy measurements of some signal z, can be used to pro-
duce an estimate of the signal, Z, if the filter characteristics of the two measurements
complement each other (see Fig. 7.12).
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Fig. 7.12 In a “complementary filter”, the filter characteristics of two measurements of a signal z,
here labeled x and y, complement each other. Thus the filter outputs can be combined to achieve a
better estimate of the original signal

An example of a complementary filter that takes the kinematic properties of 3-D
orientation into consideration is the approach described by (Madgwick et al. 2011).
That approach makes use of the fact that human movements cannot contain linear
accelerations lasting more than a few seconds. This allows the construction of analysis
algorithms with advantages over Kalman filter approaches.

7.3.1 Gradient Descent Approach

The algorithm for sensor integration developed by Madgwick is computationally
very efficient (Madgwick et al. 2011). It uses a quaternion representation, allowing
accelerometer and magnetometer data to be used in a “gradient descent algorithm”
to compute the direction of the gyroscope measurement error as a quaternion deriva-
tive. The algorithm achieves levels of accuracy matching that of the Kalman-based
algorithms. Open-source implementations of this algorithm are available for C, C#,
and Matlab,? and for Python.*

The idea behind the gradient descent method is illustrated in Fig. 7.13: on an
“error-surface”, walk in the steepest downward direction (=*gradient”) in order to
get to bottom most quickly.

The smart algorithm by Madgwick uses the following assumptions:

e On average, gravity points downward. This provides the direction of the space-
fixed z-axis. And the horizontal component of the local magnetic field can be taken
as the direction of the x-axis.

e Knowing the 3-D angular velocity w,_, one can use a modification of Eq. (5.13),

dg

dt

Gog (7.23)

N =

to get an estimate of the current orientation

~ - dq
9o~ qu,1+\|— * At. (7.24)
’ ' dar /.,

3http://x-i0.co.uk/open-source-imu-and-ahrs-algorithms
“http://work.thaslwanter.at/skinematics/html/imus.htm]
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Gradient descent path

Fig.7.13 (Left) Magnitude of deviation from gravity, forming a quadratic bowl. (Right) The yellow
dots indicate the stepwise “gradient descent” to the bottom of a quadratic bowl, here starting at (x, y)
=(1.8/1.0)

From the point of view of complementary filters, this provides the high-frequency
input.

In Eq. (7.23), one has to be very careful with the sequence: Madgwick defines ¢
to represent the orientation of the earth relative to the sensor, which results in the
inversion of the sequence in Eq. (7.23)!

e Angular velocity sensors in IMUs typically show a substantial amount of drift and
noise. In order to compensate for the resulting cumulative error, Madgwick com-
bines this orientation estimate with a second estimate of orientation: interpreting
the readout of the accelerometers as gravity, and knowing the direction of the local
magnetic field, provides in combination a second orientation estimate, in addition
to the one in Eq. (7.24). Here Madgwick proposes—based on investigations of
the underlying kinematics—to perform the first step of a gradient descent into
that direction, with a fixed magnitude which is set to compensate the typical gyro-
scope errors. Note that the step width for this step was adjusted in (Madgwick et al.
2011) to optimize the filter properties for the frequently used XSens sensor. From
the point of view of complementary filters, this compensates for low-frequency
drifts and errors.

e Since the local surroundings can have a significant effect on the local magnetic
field, Madgwick’s algorithm is modified such that this can only lead to errors in
the heading direction, and no tilt errors.

The decision which filter is “best” for a given application depends on the specific
application requirements. The filter by Madgwick was designed specifically for real-
time implementations of human movement recordings. For other applications, for
example, aerospace or in the automotive area, assumptions inherent in the approach
by Madgwick may not hold.
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