
Chapter 6
Analysis of 3-D Movement Recordings

The first section of this chapter 6.1 will investigate howmovement parameters can be
determined with marker-based systems. Optical Recording Systems (ORS), like the
system from Zeiss shown in Fig. 6.1, can provide high-resolution position informa-
tion for markers attached to objects. This allows to directly determine object position
and orientation in space. In contrast, Inertial Measurement Units (IMUs), which will
be described in more detail in the next Sect. 6.2, indicate linear acceleration and
angular velocity and contain no direct information about the absolute position and
orientation of the object in space.

6.1 Position and Orientation from Optical Sensors

A good overview of the conceptual background underlying the reconstruction of
human skeletal motion is given in the Handbook of Human Motion, in the chapter
by (Camomilla and Vannozzi 2018). And the estimation of dynamic 3-D pose based
on optical motion capture systems is described in (Selbie and Brown 2018). The
presentation here focusses on the kinematic principles underlying the 3-D analysis.

6.1.1 Recording 3-D Markers

To define position and orientation of an object in three dimensions, one needs to
find the positions of three points pi(t) that are firmly connected to the object. The
only requirements for these points are that they (a) are visible, and (b) must not be
arranged along a line.

In the example sketched out in Fig. 6.2, threemarkers are attached to the left lower
arm. Assume that the positions of these markers have been recorded, and stored as
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Fig. 6.1 Optical recording system (with kind permission from Carl Zeiss Optotechnik GmbH)

Fig. 6.2 Recordingmovements of the lower armwith opticalmarkers. (Left)pi indicate the position
of the markers, “◦” the middle of the markers, and “*” the location of the Center of Mass (COM).
(Right) Active markers for 3-D position measurements, for the Optotrak-system

pi(t), i = 0, 1, 2. To investigate the object dynamics, the following questions have
to be answered:

1. What are the positions x(t), linear velocities v(t) = dx(t)
dt , and linear accelerations

acc(t) = d2x(t)
dt2 of the markers, with respect to our chosen space-fixed coordinate

system?
2. What are the resulting orientationR(t), angular velocity ω(t), and angular accel-

eration dω
dt of the markers?

3. What are the locations of the markers relative to the point(s) of interest on the
object, in an object-fixed reference system?
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The position of an object is typically taken to be its “center of mass” (COM),
sometimes also called “center of gravity”. The COM is in general given by

COM(t) =

n−1∑

i=0
mi ∗ xi (t)

n−1∑

i=0
mi

(6.1)

where xi are the locations of the mass elements mi . Since the three markers have the
same “weight” mi , the position of the center of the markers can be calculated as

m(t) =
∑

i=0,1,2
pi (t)

3
(6.2)

In Fig. 6.2, the position of the center of the markers is indicated with “◦”. With
c(t) defined as the location of the COM, the vector r(t) from the markers to the COM
is given by

r(t) = c(t) − m(t) (6.3)

6.1.2 Orientation in Space

To find the orientation of an object, one needs to find the rotation matrixR describing
the orientation of the object. Since a rotation matrix is given by three columns of
orthogonal unit vectors, one needs to find three orthogonal unit vectors which are
uniquely defined through the marker points pi(t) (see Fig. 6.3).

Let the center of the local, marker-fixed—and thereby object-fixed—coordinate
system be determined by p0, and the direction of the positive first coordinate axis
by the vector −−→p0p1. In general, the line −−→p0p2 is not perpendicular to −−→p0p1. So in
order to uniquely define a normalized, right-handed coordinate system characterizing
position and orientation of an object, one can use a procedure called “Gram–Schmidt
Orthogonalization”1:

ax = p1−p0
|p1−p0|

az = ax×(p2−p0)
|ax×(p2−p0)|

ay = az × ax.
(6.4)

The three orthogonal unit vectors ai(t) define the columns of the rotation matrix
R which describes the orientation of the object

R(t) = [
ax(t) ay(t) az(t)

]
. (6.5)

1An alternative way to perform a Gram–Schmidt orthogonalization is given in Appendix A.2.
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Fig. 6.3 Gram–Schmidt Orthogonalization: calculation of three orthogonal unit vectors[
ax , ay, az

]
, uniquely defined by three points

[
p0,p1,p2

]

Denoting the rotation of the object relative to the starting (or reference) orientation
at t = t0 with Rmov leads to

R(t) = Rmov(t) · R(t0). (6.6)

Bringing R(t0) to the other side of Eq. (6.6), the rotation matrix characterizing
the rotational movement is

Rmov(t) = R(t) · R(t0)
−1. (6.7)

Note that rotation matrices are not the only way to describe the orientation of an
object, and/or its angular movement. The same orientation/movement can also be
described with equivalent quaternions (Eq. 4.14) or Gibbs vectors (Eq. 4.20).

6.1.3 Position in Space

Once the location of the markers and their orientation is known, the position of the
COM (or any other point of interest) of the object is uniquely defined, even if the
markers are mounted eccentrically to the COM. The movement of every point is
given by the sum of the COM translation plus its rotation about the COM. With

r(t) = Rmov(t) · r(t0) (6.8)

and using Eq. (6.3), the movement of the COM is given by

c(t) = m(t) + r(t) = m(t) + Rmov(t) · r(t0). (6.9)

This finally provides the 3-D position of the point of interest on the object.
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6.1.4 Velocity and Acceleration

Linear Velocity and Acceleration
The equations for finding linear velocity and linear acceleration of an object are sim-
ple. If the position of an object is denotedwithpos(t), linear velocity and acceleration
are given by (see Sect. 5.2):

vel(t) = dpos(t)
dt

(6.10)

acc(t) = d2pos(t)
dt2

.

Angular Velocity
From the orientation of an object the corresponding angular velocity ω can be cal-
culated. Expressing the orientation with a quaternion q̃, the angular velocity ω can
be found with Eq. (5.13). Equivalently, when the orientation is described with Gibbs
vectors, the angular velocity can be found with Eq. (5.20); and expressing the orien-
tation with the nautical sequence, the angular velocity can be found with Eq. (5.21).

Angular Acceleration
The angular acceleration can be obtained from the angular velocity through simple
differentiation

AngAcc = dω

dt
. (6.11)

Note that while the noncommutativity of rotations requires more complex formu-
las to find the angular velocity from orientation, the angular acceleration is simply
the time derivative of angular velocity!

6.1.5 Transformation from Camera- to Space-Coordinates

Orientation
The first step in the analysis of 3-D movement recordings is the determination of the
position and orientation of the ORSwith respect to the chosen space-fixed coordinate
system.

The output of the data recorded by the ORS cannot be used directly, because
they are relative to the recording system. Commonly the (x/y) directions for the
recorded data are determined by the image plane of the optical sensor. x indicates
the horizontal image direction, y the vertical image direction, and z completes a
right-handed coordinate system CSORS = [x y z] (see Fig. 6.4).
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Fig. 6.4 Position of aMarker as seen from the ORS (m), and as seen from a space-fixed coordinate
system (m′)

To identify the position and orientation of the ORS relative to a space-fixed coor-
dinate system CSspace = [x′ y′ z′], the following procedure can be applied: Let three
marker points be positioned along the space-fixed coordinate system CSspace, such
that

1. p0 is at the center of CSspace.
2. The vector from p0 to p1 defines the space-fixed x-axis, x′.
3. The plane defined by (p0,p1,p2) defines the space-fixed x/y-plane. (In practice,

it is helpful if the vector from p0 to p2 points approximately in the direction of y′.)

p0 indicates the position of the origin of CSspace with respect to the ORS. Using
a Gram–Schmidt orthogonalization, the rotation matrix R indicating the orientation
of CSspace with respect to CSORS is given by (see Fig. 6.4):

R = [x′ y′ z′]. (6.12)

6.1.6 Position

Relative to ORS: If the position of the marker as seen from the ORS is m, and the
location of the center of CSspace is indicated by p0, then the vector from the center
of CSspace to the marker m is given by

m′
ORS = −p0 + m. (6.13)

Note that at this point the components of the vector are still expressed in the
orientation of CSORS!!
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Relative to Space: To get the components of m′ relative to CSspace, one has to take
the orientation of CSspace with respect to CSORS into consideration, to obtain

m′
space = R−1 ∗ m′

ORS. (6.14)

Combining Eqs. (6.13) and (6.14) gives

m′
space = R−1 ∗ (m − p0). (6.15)

6.2 Position and Orientation from Inertial Sensors

This section describes the calculation of the exact orientation and position in space,
given IMU data from ideal linear accelerometers and gyroscopes (Sect. 6.2.1). The
next chapter (“Sensor Integration”, Chap. 7) will present how “Kalman Filters” or
other analysis procedures can be used to find optimal solutions to uncertain informa-
tion, for data from real sensors that can contain offsets and drifts. For a more detailed
comparison of different methods to analyze IMU data, a number of recommendable
surveys are available (Filippeschi et al. 2017; Bergamini et al. 2014).

The information from an IMU supports the analysis of a “well-defined” problem.
For each moment in time ti , the IMU provides six parameters: the three compo-
nents of ω(ti ), plus the three components of acc(ti ). The analysis must resolve six
variables: the three components of the position vector x, and the three parameters
defining the orientation, e.g., the quaternion vector q (see Chap. 4). This poses a
well-defined problem: there are equal numbers of input measurements and output
variables. The solutions for orientation and position are presented in Sects. 6.2.1 and
6.2.2, respectively.

Note that since the IMU only provides information about the derivatives of posi-
tion and orientation, the initial values for position, velocity, and orientation are
required in order to find the unique position and orientation at time ti .

6.2.1 Orientation in Space

Inertial sensors typically provide the linear acceleration acc and the angular velocity
ω of the sensor (in the sensor’s coordinate system). However, these values do not
directly provide themovement of the sensorwith respect to the fixed-space coordinate
system: these values aremeasuredby themoving sensor,whichmeans that oneobtains
linear acceleration and angular velocity in sensor coordinates.

In the upcoming equations, the following notation will be used: xspace is a vector
expressed in space coordinates, and xobject the corresponding vector locally expressed
with respect to the object.
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If the following information is available

• the initial conditions x(t0), R(t0), vel(t0),
• the IMU output accobject(ti ) and ωobject(ti ) in sensor coordinates, and
• the sampling period �t , assuming that this sampling period is constant,

one can calculate the new position and orientation in space, assuming that the lin-
ear acceleration and angular velocity remain approximately constant during a time
interval �t .

Orientation measurements are independent of the linear acceleration, whereas
the measured gravito-inertial acceleration (i.e., the output of the acceleration sensor)
depends on the current orientation (see Eq. 2.7). Therefore, reconstruction of position
and orientation from the sensor data has to start with the determination of object
orientation. The orientation of an object is determined by its starting orientation and
its angular velocity ωobject as described in the following.

Let the object under investigation start with its orientation with respect to space
given by the rotation matrix Rspace

object,start . The subsequent rotation of this object for
a short duration �t about a constant, space-fixed axis n with a constant velocity
ωspace is described by �Rspace, which depends on the current axis of rotation (n), the
rotational speed (ωspace), and the time duration of sampling (�t). Since in combined
rotations the rotation applied first (here the starting orientation) is written on the
right-hand-side of the matrix multiplication (see Sect. 3.4), the new orientation of
the object in fixed-space coordinates is given by

Rspace
object,new = �Rspace · Rspace

object,start. (6.16)

Note that the correct sequence of the matrices in this matrix multiplication is
essential.

The next analysis step is critical for the correct reconstruction of the object orien-
tation in space: if the angular acceleration is recorded in the sensor/object coordinates
(e.g., from an inertial tracking device mounted on the object), it first has to be trans-
formed from the object-fixed reference frame to a space-fixed reference frame. Let
�Robject describe the movement as seen in the object coordinates, and Rspace

object the
orientation of the object with respect to space. Then according to Eq. (A.6), which
describes how a rotation matrix transforms for a change of the coordinate system,
the movement with respect to space is given by

�Rspace = Rspace
object · �Robject ·

(
Rspace

object

)−1
. (6.17)

Inserting Eq. (6.17) into Eq. (6.16), and noting that for short durations Rspace
object ≈

Rspace
object,start leads to

Rspace
object,new = Rspace

object,start · �Robject ·
(
Rspace
object,start

)−1 · Rspace
object,start = Rspace

object,start · �Robject.

(6.18)
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Comparing this to Eq. (6.16), we see that for incremental rotations the only thing
that changes as we switch from an angular movement recorded with respect to space
to an angular movement recorded with respect to the object is the sequence of the
matrix multiplication!

For practical calculations, it is easiest to determine the orientation from the angular
velocity using quaternions, as has been shown in Sect. 5.3.2. There angular velocities
were used that describe the angular movement with respect to space ωspace, and
the final orientation was given by Eq. (5.25). Now if instead angular velocities are
used that have been measured with respect to the object ωobject, Eqs. (6.16) and
(6.18) imply that the only thing that has to be changed is the sequence of rotations.
Using quaternions, the final 3-D orientation of an object with respect to space whose
orientation has been recorded with an IMU is, therefore, given by

q̃(t) = q̃(t0) ◦ �q̃object
(t1) ◦ �q̃object

(t2) ◦ ... ◦ �q̃object
(tn−1) ◦ �q̃object

(tn) , (6.19)

where as in Eq. (5.25) the quaternion vectors are given by

�qobject(ti ) = n(t) sin

(
�φ(ti )

2

)

= ωobject(ti )∣
∣ωobject(ti )

∣
∣
sin

(∣
∣ωobject(ti )

∣
∣ �t

2

)

(6.20)

with q̃(t0) the starting quaternion, and �q̃object
(ti ) the quaternions corresponding to

the vector parts �qobject(ti ).

6.2.2 Position in Space

Initial Orientation
Asmentioned in Sect. 6.2.2, accelerometersmeasure the gravito-inertial acceleration,
not just the acceleration caused by the movement of the object in space. In order
to obtain only the linear acceleration of an object in space from the signals of an
acceleration sensor, one first has to subtract gravity from the measured acceleration
signal. For that, the orientation with respect to gravity first has to be determined from
the gyroscope signals (see Fig. 6.5).

If one knows the initial position x(t = 0) and the initial velocity dx
dt

∣
∣
∣
∣
t=0

, one can

integrate the acceleration signals to obtain velocity and position in space.
If the sensor is rotated, the acceleration component contributed by gravity points

in a direction that depends on the orientation of the sensor coordinate system with
respect to space. Note that a rotation of the sensor about gravity does not change
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Fig. 6.5 Strapdown inertial navigation algorithm

the gravitational acceleration measured. In contrast, a tilt of the sensor with respect
to gravity changes the output of the IMU accelerometer. The application example in
Sect. 4.5.2 shows how to combine the knowledge about the approximate orientation
of the sensor with the measured acceleration signal at t = 0, to obtain the best
possible estimate of the initial sensor orientation.
Finding Acceleration, Velocity, and Position in Space
If the orientation of the sensor with respect to space is denoted by Rspace

sensor, then the
measured direction of gravity is

gsensor = (
Rspace

sensor

)−1 · gspace (6.21)

Rspace
sensor · gsensor = gspace (6.22)

The movement of the sensor in space can be determined from Eq. (2.7). Seen
from a space-fixed coordinate system

accspacemeasured = Rspace
sensor · accsensormeasured , (6.23)

the linear acceleration caused by movement in space is

accspacemovement = Rspace
sensor · accsensormeasured − gspace (6.24)

In many applications, one is interested in the position of the sensor (and thus of
the object under investigation) with respect to space. When the inertial acceleration
with respect to space is known, the positional change from the initial position can be
found through integration.

Note that in the equations above, accspacemovement is the acceleration component caused
by the movement with respect to space (Eq. 6.24), not the acceleration indicated by
the accelerometer!
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Fig. 6.6 Positioning of IMUs on the right leg during the movement recording

6.3 Applications: Gait Analysis

A simple analysis of leg movements while walking on a treadmill can demonstrate
application of the utilities provided with scikit-kinematics. To record the
movement of the upper and lower leg while walking on a treadmill, two IMUs from
XSens were strapped to the upper and lower leg, as indicated in Fig. 6.6.

The following piece of code demonstrates how the orientation of the lower leg
with respect to the upper leg can be calculated. Thereby, the approximate initial
orientation of the IMUs is provided, since the magnetic field signals are not used
for the analysis. This “knee-movement” is expressed with respect to the space-fixed
coordinate system.

Code: C6_gait_analysis.py:Demonstrationof a quick
evaluation of knee movements while walking on a treadmill (Fig. 6.7).

Listing 6.1: C6_gait_analysis.py

’’’
Calculation of 3-D knee orientation from IMU-data
of upper- and lower-leg.

’’’
# author: Thomas Haslwanter, date: Jan-2018, Ver: 1.1

# Import standard packages
import numpy as np

https://github.com/thomas-haslwanter/3D_Kinematics/blob/master/python/C6_gait_analysis.py
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Fig. 6.7 3-D orientation of the knee while walking on a treadmill. (The data still contain small
drift artifacts, which may be due to sensor slippage on the leg.)

import matplotlib.pyplot as plt
import os

# Import skinematics
from skinematics.sensors.xsens import XSens
from skinematics.quat import Quaternion

# Get the data
data_dir = r’D:\Users\thomas\Coding\Python\scikit-kinematics\

skinematics\tests\data’
infile_ll = os.path.join(data_dir, ’walking_xsens_lowerLeg.

txt’)
infile_ul = os.path.join(data_dir, ’walking_xsens_upperLeg.

txt’)

# Provide the approximate initial orientation of the IMUs
initial_orientation = np.array([[0,0,-1], [1, 0, 0],

[0,-1,0]]).T

sensor_ul = XSens(infile_ul, R_init=initial_orientation)
sensor_ll = XSens(infile_ll, R_init=initial_orientation)

# Convert the orientation to quaternions
q_upperLeg = Quaternion(sensor_ul.quat)
q_lowerLeg = Quaternion(sensor_ll.quat)

’’’
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Calculate the 3-D knee orientation, using "Quaternion"
objects

Using the two rules for combined rotations
* From right to left
* From the inside out

we get that the orientation of the
lower_leg = upper_leg * knee

Bringing the "upper_leg" to the other side, we have
knee = inv(upper_leg) * lower_leg

’’’
knee = q_upperLeg.inv() * q_lowerLeg

# Show the results
time = np.arange(len(knee)) / sensor_ul.rate
plt.plot(time, knee.values[:,1:])
plt.title(’Thomas Walking’)
plt.xlabel(’Time [sec]’)
plt.ylabel(’Knee Orientation [quat]’)
plt.legend([’x’, ’y’, ’z’])
plt.show()

6.4 Exercises

Exercise 6.1: An (Almost) Simple Rotation
Assume that the body-fixed coordinate system is such that the x-axis points forward,
the y-axis to the left, and the z-axis up. Before the rotations, the space-fixed coor-
dinate system and the body-fixed coordinate system coincide. Now two rotations
are performed: the body-fixed IMU is read out at 100Hz, and shows the angular
velocities indicated in Fig. 6.8.

Try to answer the following questions:

• How can angular orientation be calculated—in principle—from angular velocity?
• If the cumulative rotation during the first second amounts to 45◦, what are the unit
vectors of the body-fixed coordinate system after 1 s?

• If the rotation during the 2nd second amounts to 30◦, what are the unit vectors of
the body-fixed coordinate system after 2 s?

Exercise 6.2: Pendulum
Consider the signals measured by an IMU that is attached to a perfect pendulum,
with a length l = 20cm.

Try to answer the following questions:

• What are position and orientation of the pendulum as a function of time, if the
pendulum is released at t = 5 s, at a deflection of 5◦?

• What are the corresponding values if the initial deflection is 70◦?
• Which acceleration signals are recorded during the movement?
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Fig. 6.8 Rotation about the z- and the x-axis

Fig. 6.9 IMU attached to a pendulum

• Which angular velocity signals are recorded during the movement?
• Do the expected measurement signals meet your expectation?

The solution to the following exercise shows that it can be almost impossible to
guess the spatial movement from the accelerometer data alone.

Code: C6_examples_IMU.py: Example of working with
data from IMU sensors (p. 153) (Fig. 6.9).

https://github.com/thomas-haslwanter/3D_Kinematics/blob/master/python/C6_examples_IMU.py
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