
Chapter 4
Quaternions and Gibbs Vectors

While most readers are familiar with the rotation matrices presented in the previous
chapter, rotation matrices are not the most convenient or efficient way to represent
rotations. Euler had already realized that expressing a rotation with a vector paral-
lel to the axis of rotation was more elegant than using a rotation matrix. And the
mathematical work by Hamilton and Gibbs on alternative representations of rota-
tions, which is presented in this chapter, prepared the way not only for an efficient
representation of rotations, but for the whole modern vector calculus.

4.1 Representing Rotations by Vectors

Rotation matrices are not the most efficient way to describe a rotation: they have
nine elements, yet only three are actually needed to uniquely characterize a rotation.
Another disadvantage of describing 3-D rotations with rotation matrices is that the
three axes of rotation, as well as the sequence of the rotations about these axes,
have to be defined arbitrarily, with different sequences leading to different rotation
angles. Euler’s rotational theorem (Euler 1775) states that a more efficient way to
characterize a rotation is to use a vector: the axis of rotation is defined by the direction
of the vector q, and the rotationmagnitude θ is defined by the vector length (Fig. 4.1).
The orientation is defined by the right-hand-rule (Fig. 4.2). Such a vector has only
three parameters, and no sequence of multiple rotations is involved.

Different conventions can be used to define the vector:

“Euler vectors” |q| = θ Sect. 4.2
“Quaternions” |q| = sin(θ/2) Sect. 4.3
“Gibbs vectors” |q| = tan(θ/2) Sect. 4.4

Rotation matrices are often an easy way to establish a correspondence between
measured values (e.g., induction coil voltages, or images) and the orientation of an
object relative to a given reference orientation. But for working with 3-D orien-
tations and for calculations, quaternions or Gibbs vectors have proven to be more

© Springer International Publishing AG, part of Springer Nature 2018
T. Haslwanter, 3D Kinematics, https://doi.org/10.1007/978-3-319-75277-8_4

57

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-75277-8_4&domain=pdf

58 4 Quaternions and Gibbs Vectors

Fig. 4.1 Description of 3-D eye orientation by a vector: a The eye in the reference orientation
(top) corresponds to the zero vector (bottom). b A different horizontal eye orientation (top) can be
reached by rotating the eye from the reference orientation about the sz -axis. This eye orientation
is, thus, represented by a vector along the sz-axis, with a length proportional to the angle of the
rotation (bottom). Note that usually only the end-point of the vector describing the eye orientation
is shown, not the whole vector

Fig. 4.2 According to the right-hand-rule positive rotations are yaw-rotations to the left
(about sz), pitch-rotations downward (about sy), and roll-rotations clockwise as seen from the
object (about sx)

intuitive and efficient. They are nonredundant, using three parameters to describe the
three degrees of freedom of rotations. And they do not require an arbitrarily chosen
sequence of rotations, but describe orientation by a single rotation from the refer-
ence orientation to the current orientation. In addition, they form an intuitive way of
parameterizing rotations by expressing them by their axis and size, allow for an easy
combination of rotations, and are more accurate when used to integrate incremental
changes in orientation over time.

4.2 Axis-Angle Euler Vectors 59

4.2 Axis-Angle Euler Vectors

A vector x can be rotated by an angle ρ about a vector n through

R(n, ρ) · x = (n · x) ∗ n + n × x ∗ sin(ρ) − n × (n × x) cos(ρ) (4.1)

or equivalently

R(n, ρ) · x = x ∗ cos(ρ) + (1 − cos(ρ)) ∗ (n · x) ∗ n + sin(ρ) ∗ n × x . (4.2)

The development of this parametrization of rotations can probably be attributed
to (Rodrigues 1840), and Eq. (4.2) is, therefore, also called “Rodrigues’ rotation
formula”. The representation of a rotation with an axis n and an angle ρ is sometimes
referred to as “axis-angle representation” of a rotation. And in honor of Euler’s
rotation theorem (see p. 179), a vector with a direction n and a length ρ is called
“Euler vector”.

Note: While Euler vectors give a convenient representation of a rotation, no equa-
tion exists that allows to combine twoEuler vectors. Therefore, practical implementa-
tions of rotations have to be based on rotation matrices, quaternions or Gibbs vectors
(see below).

4.3 Quaternions

4.3.1 Background

The theory of quaternions was invented and developed by Hamilton in the mid-
nineteenth century (Hamilton 1844). Hamilton realized that the complex numbers
could be interpreted as points in a plane (see Fig. 3.3), and he was looking for a
way to do the same for points in three-dimensional space. Points in space can be
represented by their coordinates, which are triples of numbers. For many years he
had known how to add and subtract triples of numbers. However, Hamilton had been
stuck on the problem of multiplication and division for a long time. He could not
figure out how to calculate the quotient of the coordinates of two points in space.
Hamilton found that he could not accomplish this by using 3-component vectors, but
had to use 4 components. He called these quadruples “quaternions”.

A detailed treatment of quaternions and their elegant mathematical properties can
be found in mathematical texts (Brand 1948; Altmann 1986; Kuipers 1999), many
papers on eyemovements (Westheimer 1957; Tweed andVilis 1987;Hepp et al. 1989;
Tweed et al. 1990), and papers in more technical journals (Rooney 1977; Funda and
Paul 1988). Recommendable introductions are also available on the Internet (see
Appendix G).

60 4 Quaternions and Gibbs Vectors

A note for physicists, or for the mathematically more curious reader: quaternions
are four-dimensional representations of Clifford algebras (see also Appendix A.4).
The two-dimensional representations are the complex 2 × 2-matrices, or “Pauli
spin matrices” (SU2, or two-dimensional special unitary group).And the
three-dimensional representations are the rotation matrices (SO3, or special three-
dimensional orthogonal group). Especially in theoretical physics, the advantages of
switching from 3-D representations over to 4-D quaternions can be massive (Girard
1984). For example, using Clifford algebra, the four Maxwell equations can be writ-
ten in just one very compact, elegant equation (see also Appendix A.4):

∇F = μ0 J . (4.3)

4.3.2 Quaternion Properties

The following description of quaternions will cover only their essential properties,
and no mathematical proofs will be given.

A full quaternion q̃ has four components, and is given by

q̃ = q0 + (q1 ∗ ĩ + q2 ∗ j̃ + q3 ∗ k̃) = q0 + q · I, (4.4)

where q =
⎛
⎝
q1
q2
q3

⎞
⎠ , I =

⎛
⎝

ĩ
j̃
k̃

⎞
⎠ , and (ĩ , j̃ , k̃) are defined by

ĩ · ĩ = −1 j̃ · j̃ = −1 k̃ · k̃ = −1

ĩ · j̃ = k̃ j̃ · k̃ = ĩ k̃ · ĩ = j̃ (4.5)

j̃ · ĩ = −k̃ k̃ · j̃ = −ĩ ĩ · k̃ = − j̃

q0 is often called the “scalar component” of the quaternion q̃, and q the “vector
component” of q̃. (Note that the quaternion is written as q̃, and the quaternion vector
as q.)

With Eq. (4.5), one can show (see Appendix A.3) that the multiplication of two
quaternions p̃ and q̃, here denoted “◦”, is given by

q̃◦ p̃ =
3∑

i=0

qi Ii ∗
3∑
j=0

p j I j = (q0 p0 − q · p) + (q0 p + p0 q + q × p) · I .

(4.6)
The right side of Eq. (4.6) is obtained by using the definitions in Eqs. (4.4) and

(4.5). Similar to rotation matrices, the sequence of the quaternions in Eq. (4.6) is
important, and the opposite sequence, p̃ ◦ q̃, would lead to a different quaternion.

4.3 Quaternions 61

The inverse quaternion is given by

q̃−1 = q0 − q · I
|q|2 . (4.7)

The norm of a quaternion is given by the quadrature sum of all four components

|q̃| =
√√√√ 3∑

i=0

q2
i . (4.8)

4.3.3 Interpretation of Quaternions

To interpret quaternions, it is helpful to group them into four classes:

(1) Quaternions with the scalar component equal to 0 correspond to R
3, the space

of three-dimensional vectors. (This group is sometimes also called “pure quater-
nions”.)

(2) Quaternions with a zero vector component 0 correspond to the space of
scalars, R.

(3) Unit quaternions, i.e., quaternions with |q̃| = 1, correspond to SO3, the group of
orthogonal matrices with a determinant of 1. Unit quaternions, sometimes also
called “rotation quaternions”, can be used to describe rotations in space.

(4) General quaternions with scalar and vector components unequal zero, with a
norm unequal to 1. These quaternions describe a combination of a rotation and
scaling of vectors (Rooney 1977). If the norm of the quaternion is > 1, the
objects are stretched; and if the norm is < 1, objects are compressed.

4.3.4 Unit Quaternions

A quaternion describing a pure rotation in 3-D space is a “unit quaternion” and has
a norm of |q̃| = 1.

From Eq. (4.7), the inverse quaternion q̃−1 for a unit quaternion is given by

q̃−1 = q0 − q · I , (4.9)

Comparing Eqs. (4.5) and (3.9) to Fig. 3.3, which describes rotations in the com-
plex plane, one can find a physical interpretation for ĩ , j̃ , and k̃. A rotation of a
complex number c by an angle φ is given by c′ = e jφ · c, where j ∗ j = −1,
and j can be interpreted as a vector pointing perpendicular out of the 2-D-plane. To

62 4 Quaternions and Gibbs Vectors

describe rotations in 3-D, we need three axes to rotate about: ĩ , j̃ , and k̃. It can be
shown that for a quaternion of the form

q̃ =
(

0
θ/2 ∗ v

)
(4.10)

where |v| = 1, the exponential of the quaternion is given by the unit quaternion

exp(q̃) =
(

cos(θ/2)
sin(θ/2) ∗ v

)
(4.11)

generalizing Eq. (3.5).
A unit quaternion describes a rotation by an angle θ around an axis described by

the unit vector n = (ni ĩ, n j j̃ , nk k̃)

q̃ = cos(θ/2) + sin(θ/2)[ni ĩ + n j j̃ + nk k̃] = q0 + q · I, (4.12)

where the orientation of n describes the axis of rotation, as shown in Fig. 4.1b. The
length of the vector component equals sin(θ/2). The unit quaternion has the following
properties:

|q̃| =
√
cos2(θ/2) + sin2(θ/2) = 1 (4.13a)

|q| =
√
q2
1 + q2

2 + q2
3 = sin(θ/2) (4.13b)

q ‖ n (4.13c)

The θ/2 property of rotation quaternions, i.e. the fact that the lengths of a unit
quaternion vector is determined by half the rotation angle, θ/2, can be explained by
interpreting a rotation as a sum of two reflections, see Appendix Fig. A.4. Another
way to explain it is by consideringEq. (4.14) discussedbelow.The rotation quaternion
appears twice. This “double application” of θ/2 leads to a final rotation by an angle
θ .

Examples

40◦ yaw movement to the left: A yaw movement is a rotation about a vertical

axis, so the quaternion vector has to be along the axis n =
⎛
⎝
0
0
1

⎞
⎠. The yaw rotation

to the left is positive (see Fig. 4.2). And since the magnitude of the rotation is 40◦,
the full quaternion is

q̃ =
(
q0
q

)
=

⎛
⎜⎜⎝
cos(40◦/2)

0
0

sin(40◦/2)

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝
cos(20◦)

0
0

sin(20◦)

⎞
⎟⎟⎠ .

4.3 Quaternions 63

90◦ pitch rotation nose-up: A pitch movement is a rotation about the y-axis, so

the quaternion vector has to be along the axis n =
⎛
⎝
0
1
0

⎞
⎠. A pitch rotation nose-

up is negative (Fig. 4.2). And since the magnitude of the rotation is 90◦, the full

quaternion is q̃ =

⎛
⎜⎜⎝
cos(−45◦)

0
sin(−45◦)

0

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

cos(45◦)
0

− sin(45◦)
0

⎞
⎟⎟⎠ .

Relation to Rotation Matrix
The connection between a rotation quaternion q̃ and a rotationmatrixR, both describ-
ing the rotation of a vector x about an axis n by an angle θ , can be derived from the
definition of quaternions in Eqs. (4.4)–(4.13):

x̃′ = q̃ ◦ x̃ ◦ q̃−1 =
(
0
x′

)
(4.14)

x′ = R · x .

The proof of Eq. (4.14) is given in Appendix A.3.
x̃′ in Eq. (4.14) is a full quaternion, but the scalar component evaluates to zero

q0 = 0. Hence, the rotation matrix R corresponding to the quaternion q̃ can be
determined as

R =
⎡
⎣
q2
0 + q2

1 − q2
2 − q2

3 2(q1q2 − q0q3) 2(q1q3 + q0q2)
2(q1q2 + q0q3) q2

0 − q2
1 + q2

2 − q2
3 2(q2q3 − q0q1)

2(q1q3 − q0q2) 2(q2q3 + q0q1) q2
0 − q2

1 − q2
2 + q2

3

⎤
⎦ . (4.15)

The inverse computation is given by

q = 0.5 ∗ copysign

⎛
⎝

√
1 + Rxx − Ryy − Rzz,√
1 − Rxx + Ryy − Rzz,√
1 − Rxx − Ryy + Rzz,

Rzy − Ryz

Rxz − Rzx

Ryx − Rxy

⎞
⎠ , (4.16)

where copysign(x, y) = sign(y) ∗ |x |.
Sequential Rotations with Quaternions
Equation (4.14) is the quaternion equivalent of a matrix multiplication for rotation
matricesR. Therefore, a sequence of quaternion rotations is the same as the sequence
of the corresponding rotation matrices. For combined rotations, care has to be taken
with the sequence of quaternions: the same rules apply as for rotation matrices,
which means that the first rotation acting on a vector is on the right-hand side of the
quaternion multiplication in Eq. (4.6).

Relation to Sequential Rotations
The examples above show how quaternions are related to rotations about coordinate
axes. Using the rules for quaternion multiplication Eq. (4.6), one can calculate the
relationship between rotation angles for the nautical sequence and quaternions:

64 4 Quaternions and Gibbs Vectors

q̃z(θN) ◦ q̃ y(φN) ◦ q̃x(ψN) =

⎛
⎜⎜⎝

cos θN
2 ∗ cos φN

2 ∗ cos ψN
2 + sin θN

2 ∗ sin φN
2 ∗ sin ψN

2
cos θN

2 ∗ cos φN
2 ∗ sin ψN

2 − sin θN
2 ∗ sin φN

2 ∗ cos ψN
2

cos θN
2 ∗ sin φN

2 ∗ cos ψN
2 + sin θN

2 ∗ cos φN
2 ∗ sin ψN

2
sin θN

2 ∗ cos φN
2 ∗ cos ψN

2 − cos θN
2 ∗ sin φN

2 ∗ sin ψN
2

⎞
⎟⎟⎠ .

(4.17)
For the Helmholtz sequence, this leads to

q̃ y(φH) ◦ q̃z(θH) ◦ q̃x(ψH) =
⎛
⎜⎝

cos θH
2 ∗ cos φH

2 ∗ cos ψH
2 − sin θH

2 ∗ sin φH
2 ∗ sin ψH

2
cos θH

2 ∗ cos φH
2 ∗ sin ψH

2 + sin θH
2 ∗ sin φH

2 ∗ cos ψH
2

cos θH
2 ∗ sin φH

2 ∗ cos ψH
2 + sin θH

2 ∗ cos φH
2 ∗ sin ψH

2
sin θH

2 ∗ cos φH
2 ∗ cos ψH

2 − cos θH
2 ∗ sin φH

2 ∗ sin ψH
2

⎞
⎟⎠ .

(4.18)
And for the Euler sequence we get

q̃z(αE) ◦ q̃x(βE) ◦ q̃z(γE) =
⎛
⎜⎝

cos αE
2 ∗ cos βE

2 ∗ cos γE
2 − sin αE

2 ∗ cos βE
2 ∗ sin γE

2
cos αE

2 ∗ sin βE
2 ∗ cos γE

2 + sin αE
2 ∗ sin βE

2 ∗ sin γE
2

sin αE
2 ∗ sin βE

2 ∗ cos γE
2 − cos αE

2 ∗ sin βE
2 ∗ sin γE

2
cos αE

2 ∗ cos βE
2 ∗ sin γE

2 + sin αE
2 ∗ cos βE

2 ∗ cos γE
2

⎞
⎟⎠ .

(4.19)
The inverse relationships, i.e., calculating the angles for the different rotation

sequences, can be obtained by inserting the corresponding matrix elements from
Eq. (4.15) into Eq. (3.24) for the nautical sequence, Eq. (3.27) for the Helmholtz
sequence, and Eq. (3.30) for the Euler sequence.

4.4 Gibbs Vectors

4.4.1 Properties of Gibbs Vectors

Gibbs vectors are named after Josiah Willard Gibbs (1839–1903), the inventor of—
amongmany other things—modern vector calculus.AGibbs vector1 r corresponding
to the rotation matrix R is given by

r = 1

1 + (R11 + R22 + R33)
∗

⎛
⎝

R32 − R23

R13 − R31

R21 − R12

⎞
⎠ . (4.20)

From this one can show that

|r| = tan(ρ/2) . (4.21)

1Some authors call Gibbs vectors “rotation vectors”.

4.4 Gibbs Vectors 65

The coefficients of the Gibbs vectors are sometimes referred to as “Rodrigues
parameters” (Altmann 1986; Dai 2015).

Finding the relationship betweenGibbs vectors and other descriptions of rotations,
such as nautical angles, requires an equation for combined rotations with Gibbs
vectors. Using Eqs. (4.6) and (4.21) gives

rq ◦ rp = rq + rp + rq × rp
1 − rq · rp , (4.22)

where rp is the first rotation (about a space-fixed axis parallel to rp), and rq the
second rotation (about a space-fixed axis parallel to rq).

TheGibbs vector corresponding to the nautical angles inEq. (3.23) can be obtained
by combining three Gibbs vectors with Eq. (4.22). Denoting a Gibbs vector which
describes a rotation about an axis n by an angle θ with r (n, θ), this leads to

r = r(e3, θN) ◦ r(ey, φN) ◦ r(e1, ψN) =

= 1

1 − tan(θN
2) ∗ tan(φN

2) ∗ tan(ψN

2)

⎛
⎝
tan ψN

2 − tan θN
2 ∗ tan φN

2
tan φN

2 + tan θN
2 ∗ tan ψN

2
tan θN

2 − tan φN

2 ∗ tan ψN

2

⎞
⎠ , (4.23)

where (θA, φA, ψA) are the nautical angles. For Helmholtz angles, the corresponding
equation reads

r = r(ey, φH) ◦ r(e3, θH) ◦ r(e1, ψH) =

= 1

1 − tan(θH
2) ∗ tan(φH

2) ∗ tan(ψH

2)

⎛
⎝
tan ψH

2 + tan θH
2 ∗ tan φH

2
tan φH

2 + tan θH
2 ∗ tan ψH

2
tan θH

2 − tan φH

2 ∗ tan ψH

2

⎞
⎠ . (4.24)

Close to the reference position, the relations between nautical angles, Helmholtz
angles, Gibbs vectors, and quaternions can be approximated by the simple formula

⎛
⎝

ψ

φ

θ

⎞
⎠

nautical

≈
⎛
⎝

ψ

φ

θ

⎞
⎠

Helmholtz

≈ 100 ∗
⎛
⎝
r1
ry
r3

⎞
⎠ ≈ 100 ∗

⎛
⎝
q1
qy
q3

⎞
⎠ (4.25)

where θ, φ,ψ are given in degrees.

Example

For example, with rp =
⎛
⎝

0
0.176
0

⎞
⎠ and rq =

⎛
⎝

0
0

0.087

⎞
⎠, Eq. (4.22) (rq ◦ rp) would

describe a rotation of 20◦ about the horizontal axis sy, followed by a rotation of 10◦
about the space-fixed vertical axis sz. According to our discussion above of rotations
of objects and coordinate systems, the same formula can also be interpreted as a first

66 4 Quaternions and Gibbs Vectors

rotation of 10◦ about the vertical axis bz, followed by a second rotation of 20◦ about
the rotated, object-fixed axis by - which corresponds to the horizontal and vertical
rotation in a nautical gimbal.

4.4.2 Cascaded Rotations with Gibbs Vectors

For combined rotations, Gibbs vectors show the same sequences as the corresponding
rotation matrices or quaternions. Using Gibbs vectors, Eq. (3.39) for combined eye–
head movements can be expressed as

rgaze = rhead ◦ reye . (4.26)

This can be rearranged to yield the Gibbs vector describing the orientation of our
object with respect to the reference frame (e.g. eye in head), reye, as

reye = r−1
head ◦ rgaze . (4.27)

The formula for the multiplication of two Gibbs vectors is given by Eq. (4.22),
and the inverse of a Gibbs vector can be determined easily by r−1 = −r.

4.4.3 Gibbs Vectors and Their Relation to Quaternions

The Gibbs vector r which corresponds to the quaternion q̃ describing a rotation of θ

about the axis n is given by

r = q
q0

= tan

(
θ

2

)
q
|q| = tan

(
θ

2

)
n , (4.28)

with |q| the length of q as defined in Eq. (4.13).

4.5 Applications

4.5.1 Targeting an Object in 3-D: Quaternion Approach

Let us revisit the aerial gun application in Sect. 3.6.1, but now assume that we have
a targeting device that can be controlled with a quaternion. In other words, the zero
quaternion describes the orientation where the targeting device is pointing straight
ahead ([1, 0, 0]).

4.5 Applications 67

Fig. 4.3 The shortest rotation (α) that brings a parallel to b is about an axis perpendicular to a
and b

Task: What quaternion would be needed to describe the target orientation, if the
target is in an arbitrary location (x, y, z)?

Solution: To answer that question, one can make use of the fact that the shortest
rotation that brings a vector a into alignment with a vector b is a rotation about the
direction perpendicular to a and b (see Fig. 4.3).

n = a × b
|a × b| (4.29)

by an angle equal to the angle α between the two vectors

α = arccos

(
a · b
|a||b|

)
. (4.30)

Given the rotation axis and angle, the most convenient way to represent that
rotation is the quaternion vector

qadjust = n ∗ sin(α/2) . (4.31)

The corresponding algorithm is implemented in skin.vector.q_shorte
st_rotation. For example, if the target moved along an ∞ loop on a screen in
10m distance, the orientation of the following targeting device could be calculated
with the following code:

Code: C4_targeting.py: projecting an ∞ loop on a screen
(p. 143).

Listing 4.1: C4_targeting.py

"""Orientation of targeting device.

"""
author: Thomas Haslwanter, date: Nov-2017

Import the required packages

https://github.com/thomas-haslwanter/3D_Kinematics/blob/master/python/C4_targeting.py

68 4 Quaternions and Gibbs Vectors

import numpy as np
import matplotlib.pyplot as plt
import skinematics as skin

Generate an "infinity"-loop, in 10m distance
t = np.arange(0,20,0.1) # 20 sec, at a rate of 0.1 Hz
y = np.cos(t)
z = np.sin(2*t)
x = 10 * np.ones_like(y)
data = np.column_stack((x,y,z))

Calculate the target-orientation, i.e. the quaternion that
rotates the vector [1,0,0] such that it points towards
the target
q_target = skin.vector.q_shortest_rotation([1,0,0], data)

Plot the results
fig, axs = plt.subplots(2,1)
axs[0].plot(-y,z)
axs[0].set_title(’Target on screen, distance=10’)
axs[1].plot(q_target)
axs[1].set_xlabel(’Time’)
axs[1].set_ylabel(’Quaternion’)
axs[1].legend([’x’, ’y’, ’z’])
plt.show()

4.5.2 Orientation of 3-D Acceleration Sensor

Task: Given an IMU with an accelerometer and a gyroscope only, what is the ori-
entation of the IMU at the beginning of an experiment, based on the direction of
gravity indicated by the accelerometer? Specifically, what would be the best guess
of the orientation of the sensor in orientation 3 in the example in Fig. 4.4?

Solution: Many inertial sensors are shaped like a match box, and define their long
side as the x-axis (bx), their shorter side as the y-axis (by), and the “thick” side as
the z-axis (bz). As explained in more detail in Sect. 2.2.2, a sensor lying flat and
stationary on the ground (Fig. 4.4, orientation 1.) indicates an acceleration of

accflat =
⎛
⎝

0
0

+9.81

⎞
⎠m/s2. (4.32)

If this sensor is rotated “upright” by exactly 90◦ (Fig. 4.4, orientation 2.), the
readout would indicate (9.81/0/0)m/s2.

4.5 Applications 69

Fig. 4.4 Orientation 1 Sensor aligned with space-fixed coordinate system. To find the orientation
of the sensor on the back, based on the measured accelerations, we first specify the approximate
sensor orientation (here orientation 2, sensor rotated by 90◦). From the measured accelerations in
orientation 3 (sensor on back of subject), the tilt relative to orientation 2 can be determined as
described in the text

A rotation “upright” can be indicated by a quaternion vector

qupright =
⎛
⎝

0
− sin(90◦/2)

0

⎞
⎠ . (4.33)

In Fig. 4.4, orientation 3., this sensor is attached in approximately that orientation
to the back of an upright standing or sitting person. Since the back of a person is
not exactly vertical, the sensor is slightly rotated. What is the best estimate of the
orientation of the sensor, when the readout, with the person stationary, indicates e.g.
(9.75/0.98/ − 0.39)?

To answer this question, we need the shortest rotation q̃adjust that brings the sensor
from the “upright” orientation where the accelerometer indicates (9.81/0/0) to the
current orientation, where it indicates (9.75/0.98/−0.39). Again, this is the rotation
that brings two vectors into alignment, which can be found as in the example above.

Since a rotation about g does not change the output of the accelerometer, the best
estimate of the orientation of the accelerometer is

q̃ total = q̃upright ◦ q̃adjust , (4.34)

70 4 Quaternions and Gibbs Vectors

where ◦ indicates the quaternion multiplication. Using scikit-kinematics, this can be
implemented as

Import the required packages
import skinematics as skin

Enter the measurements
g = [9.81, 0, 0]
g_upright = [9.75, 0.98, -0.39]

Calculate the sensor orientation
q_adjust = skin.vector.qrotate(g, g_rotated)
q_upright = [0, np.sin(np.pi/4), 0]
q_total = skin.quat.quatmult(q_upright, q_adjust)

For some experiments, it may be impossible to mount the inertial sensors in an
orientation approximating a space-fixed coordinate plane. For IMUs in arbitrary
mounting orientation and position Seel et al. have proposed a set of methods that
allow the determination of the local joint axis and position coordinates from arbitrary
motions by exploitation of the kinematic constraints of the joint (Seel et al. 2014).

4.5.3 Calculating Orientation of a Camera on a
Moving Object

Consider the problemwhere a camera in amissilemust be pointed to look at a specific
target. Themissile attitude/orientation has three rotational degrees of freedom relative
to the world. The camera attitude/orientation also has three rotational degrees of
freedom but relative to the missile body. So the missile and camera gimbal forms
a set of cascaded three-axis transformations. The camera gaze direction is (1, 0, 0),
i.e., the optical axis is along the x direction. When the camera is looking at the
object in the world, the target’s location in camera coordinates must, therefore, be
(xcamera

obj , 0, 0).
There are three coordinate systems in this scenario: (1) fixed to the world, (2) fixed

to the missile body, and (3) fixed to the camera on the gimbal. The target direction
in world coordinates is known from the location of the missile and the target. The
target vector in the camera coordinates is tc = [|t|, 0, 0], i.e., the optical axis or gaze
direction. The target direction in the missile body coordinates can be calculated.

In the example below, a missile is located at position (10, 1700, −2200) m with
an attitude (pitch=−1.2, yaw = −0.2, roll = −1.1) rad in Helmholtz sequence (roll–
yaw–pitch fromoutside to inside). The target is located at position (23,−560,−1800)
m. How can one calculate the Helmholtz-sequence camera gimbal attitude, relative
to the missile body, such that the camera optical axis points at the target? (To be on
the optical axis in camera coordinates, the target vector in camera coordinates must
be (2295, 0, 0).)

4.5 Applications 71

4.5.3.1 Calculating Look-at Angles

Code: C4_look_at.py: How to calculate the orientation of a cam-
era on a missile, in order to look in the direction of a given target.

Listing 4.2: C4_look_at.py

""" Given the positions of a missile and a target, and the
missile orientation, calculate the gimbal orientation of a
camera mounted on the missile, such that the camera
points at the target.
The optical axis of the camera is the x-axis.
"""

author: ThH, date: July, 2018, ver: 1.1

Import the required packages
import numpy as np
import skinematics as skin

def camera_orientation(missile_pos, missile_orient,
target_pos):
’’’Find camera orientation re missile, to focus on target.

Inputs

missile_pos : ndarray (3,) or (N,3)

Position of missile in space
missile_orient : ndarray (3,) or (N,3)

Orientation of missile, in Helmholtz angles [rad]
target_pos : ndarray (3,) or (N,3)

Position of target in space

Returns

camera_orientation : ndarray (3,) or (N,3)

Camera orientation, in Helmholtz angles [deg]
’’’

Required camera direction in space is a vector from
missile to target

v_missile_target = target_pos - missile_pos

Camera direction re missile
q = skin.rotmat.seq2quat(np.rad2deg(missile_orient),
seq=’Helmholtz’)
tm_in_missile_CS = skin.vector.rotate_vector
(v_missile_target, -q)

https://github.com/thomas-haslwanter/3D_Kinematics/blob/master/python/C4_look_at.py

72 4 Quaternions and Gibbs Vectors

Required camera orientation on missile, to focus on the
target

camera_orientation = skin.vector.target2orient
(tm_in_missile_CS, orient_type=’Helmholtz’)

return camera_orientation

if __name__==’__main__’:

Set up the system
helm = [-1.2, -0.2, -1.1] # Missile orientation, in

Helmholtz angles [rad]
target = np.r_[10, 1700, -2200]
missile = np.r_[23, -560, -1800]

Find the camera orientation
camera = camera_orientation(missile, helm, target)

Show the results
print(’Camera orientation on missile, in Helmholtz

angles:\n’ +
’pitch={0:4.2f}, yaw={1:4.2f} [deg]’.
format(*camera))

4.5.4 Object-Oriented Implementation of Quaternions

The Pythonmodule scikit.quat also contains a classQuaternionwithmulti-
plication, division, and inversion. A Quaternion can be created from vectors, rotation
matrices, or fromnautical angles, Helmholtz angles, or Euler angles. It provides oper-
ator overloading for mult, div, and inv, indexing, and access to the data in the
attribute values.

import numpy as np
from skinematics.quat import Quaternion

data = np.array([[0,0,0.1], [0, 0.2, 0]])
data2 = np.array([[0,0,0.1], [0,0,0.1]])

eye = Quaternion(data)
head = Quaternion(data2)
gaze = head * eye
print(gaze)
#>> Quaternion [[0.98 0. 0. 0.19899749]
#>> [0.97488461 -0.02 0.19899749 0.09797959]]

4.5 Applications 73

Code: C4_examples_quat.py: Examples of working with
quaternions: quaternion multiplication, conjugation, inversion, etc. (p. 144)

https://github.com/thomas-haslwanter/3D_Kinematics/blob/master/python/C4_examples_quat.py

	4 Quaternions and Gibbs Vectors
	4.1 Representing Rotations by Vectors
	4.2 Axis-Angle Euler Vectors
	4.3 Quaternions
	4.3.1 Background
	4.3.2 Quaternion Properties
	4.3.3 Interpretation of Quaternions
	4.3.4 Unit Quaternions

	4.4 Gibbs Vectors
	4.4.1 Properties of Gibbs Vectors
	4.4.2 Cascaded Rotations with Gibbs Vectors
	4.4.3 Gibbs Vectors and Their Relation to Quaternions

	4.5 Applications
	4.5.1 Targeting an Object in 3-D: Quaternion Approach
	4.5.2 Orientation of 3-D Acceleration Sensor
	4.5.3 Calculating Orientation of a Camera on a Moving Object
	4.5.4 Object-Oriented Implementation of Quaternions

