
Chapter 3
Rotation Matrices

3.1 Introduction

Six parameters (degrees of freedom) are required and sufficient to completely
describe the movement of an object in space: three describe the 3-D position of
the object, and three the 3-D orientation, often referred to as “attitude" in aeronau-
tics. When describing movements that are less than a few kilometers, we often use
space-fixed, Cartesian coordinate systems. In these systems, the orientation of each
axis is the same for each point in space, and for all time. For typical industrial applica-
tions and for movement measurements, a system fixed with respect to the surface of
the earth can be regarded as space-fixed, as a convenient substitute of a true “inertial
system”.1 These coordinate systems are sometimes called local-level-local-North,
assuming a flat earth. For larger distances, when the curvature of the earth becomes
significant, the direction of “up” starts to depend on the location, and Cartesian coor-
dinate systems are no longer useful. An example of such a non-cartesian coordinate
system is the geodetic latitude/longitude/height coordinate system.

After choosing an arbitrary point in space as the reference position, the position
of each point is defined by three translations away from the coordinate center, e.g.,
forward, left, and up. Here, it is worth pointing out a seemingly obvious fact: the
final location of the object is independent of the sequence of these translations. If
we move first 10m right and then 15m forward, we end up in the same location as
if we had moved first 15m forward, and then 10m right. This property is referred to
as the commutativity of translations (see also Fig. 5.1).

The description of orientation is done in a similar way (Fig. 3.1). First, an arbi-
trarily chosen orientation is defined as reference orientation. Once that is done, any
other orientation can be described by three parameters: an object can not only be

1An inertial frame is a frame of reference in which a body remains at rest or moves with a constant
linear velocity unless acted upon by forces. An inertial reference frame does not have a single,
universal coordinate system attached to it: positional values in an inertial frame can be expressed in
any convenient coordinate system. In other words, an inertial frame is a frame of reference where
the laws of inertia apply—there is no requirement for specific coordinates.
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Fig. 3.1 Similarity between one-dimensional translations (left) and single-axis rotations (right):
Both require the selection of a reference, and both are characterized by a single parameter

translated along each of the three coordinate axes, but it can also be rotated about
each of these axes. To describe the three-dimensional orientation, two inherently
different approaches can be taken. The first approach is based on Euler’s Theorem,
which states that for every two orientations of an object, the object can always move
from one to the other by a single rotation about a fixed axis (Euler 1775). In that
case, the axis of the rotation is defined by two parameters, and the magnitude of the
rotation defines the third parameter. The second approach is to describe the rotation
from the reference orientation to the current orientation through three consecutive
rotations about well-defined, hierarchically nested coordinate axes (e.g., Goldstein
1980). For a long time, this has been the most common approach to characterize ori-
entation in three dimensions. A detailed analysis of all the rotation angle sequences
is given by (Diebel 2006).

The following section will deal with this three-rotation description of 3-D orien-
tation, while the approach based on Euler’s Theorem will be explained in detail in
Chap. 4 (“Quaternions”).

3.2 Rotations in a Plane

A simple rotation of a point p in a plane can be uniquely described in two ways:

• In Cartesian coordinates through a rotation matrix.
• In polar coordinates, through an angle θ characterizing the rotation about an axis
perpendicular to the plane.
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Fig. 3.2 Rotation in a plane

3.2.1 Rotation in Cartesian Coordinates

In two-dimensional Cartesian coordinates, a point p is defined by its two coordinate

components p =
(

x
y

)
. When that point is rotated by an angle θ into a new point

p′ =
(

x ′
y′

)
(Fig. 3.2), the coordinates of p′ are given by2

(
x ′
y′

)
=

[
cos θ − sin θ

sin θ cos θ

]
·
(

x
y

)
. (3.1)

Defining the “rotation matrix” R as

R =
[
cos θ − sin θ

sin θ cos θ

]
, (3.2)

Equation (3.1) can be rewritten as

p′ = R · p. (3.3)

Note that the columns of the rotation matrix are equivalent to the basis vectors
of the space-fixed coordinate system (nx,ny) rotated by the angle θ (Fig. 3.3)! Or in
other words, the rotation matrix is the projection of the rotated unit vectors onto the
coordinate axes. The rotation matrix is therefore sometimes also referred to as the
“direction cosine matrix (DCM)”.

R = R · [
nx ny

] = [
n′
x n

′
y

]
. (3.4)

2Note for Matlab users: here and in the following, the dash in p′ does NOT mean the vector p
transposed, but rather the vector p rotated!
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Fig. 3.3 Rotation matrix: projection in 2-D

3.2.2 Rotation in Polar Coordinates

Every complex number has a real and an imaginary part

c = x + j ∗ y

and therefore can be represented by a vector in the (x, y)-plane (Fig. 3.4). And
since

e jθ = cos(θ) + j ∗ sin(θ), (3.5)

every complex number can also be represented by a magnitude r and an angle θ :

c = r ∗ e jθ = r ∗ (cos(θ) + j ∗ sin(θ)) , (3.6)

where

r =
√

Re2 + I m2 (3.7)

θ = arctan

(
I m

Re

)
. (3.8)

Fig. 3.4 Complex number, in polar coordinates (r, θ)
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As a result, a rotation of a 2-D-vector, expressed as a complex number c, by an
angle φ, can be written as

c′ = e jφ ∗ c = e jφ ∗ (r ∗ e jθ ) = r ∗ e j (φ+θ). (3.9)

Note: In mathematics and physics, the square root of −1 is typically denoted with
i , whereas in many technical areas j is used. In both Python and Matlab, j can be
used:

x = -1+0j
np.sqrt(x)
>>> 1j

In polar coordinates, the similarity between one-dimensional translations and single-
axis rotations becomes obvious (Fig. 3.1).

3.2.3 Application: Orienting an Object in a Plane

Task: If a gun originally pointing straight ahead along the +x axis is to shoot at a
target at P = (x, y), by which amount does the gun have to rotate to point at that
target (Fig. 3.5)?

Solution:
The gun barrel originally points straight ahead, so the direction of the bullet aligns

with nx.

The rotation of the gun is described by the rotationmatrixR =
[
cos θ − sin θ

sin θ cos θ

]
=[

n′
x n

′
y

]
. The direction of the gun barrel after the rotation is given by n′

x = p
|p| , which

is also the first column of the rotation matrix R.

Fig. 3.5 Targeting with one degree-of-freedom (DOF)
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Combining these two equations leads to the vector equation

(
cos θ

sin θ

)
= 1√

x2 + y2

(
x
y

)
.

They-component of this vector equation is sin θ = y√
x2+y2

→ θ = arcsin y√
x2+y2

Note: For small angles (θ � 1), sin(θ) and cos(θ) can be expanded with a Taylor
series, and one obtains in a linear approximation

sin(θ) ≈ θ + 0(θ2), and (3.10)

cos(θ) ≈ 1 + 0(θ2).

As a result, for small angles, numerical errors are minimized by calculating the
angle from measurements related to sin(θ) as shown above. For angles around 90◦
the component proportional to cos(θ) should be used, to minimize numerical errors
in the computation of θ .

3.3 Rotations About Coordinate Axes in 3-D

3.3.1 3-D Rotations About Coordinate Axes

The same ideas as described above for rotations in a plane can be applied to three
dimensions, leading to the 3-D rotation matrix

R = [
n′
x n

′
y n

′
z

]
, (3.11)

where the n′
i are column vectors. In the following, eye movements will often be used

as an example, as they can be easily visualized. In that case, the reference coordinate
system or space-fixed coordinate system will be the coordinate system provided by
the head, and the eye(body)-fixed coordinate system will here be a coordinate system
fixed to the body of the eye, with the x-axis aligned with the line of sight (often
referred to as gaze direction).

In order to define single-axis rotations in three dimensions about coordinate axes,
first an external, space-fixed coordinate system has to be defined and a body-fixed
coordinate system to describe the three-dimensional orientation of the object with
respect to space. Let S = [

sx sy sz
]
be a right-handed, space-fixed coordinate system

such that sx coincides with the line of sight when the eye is in the reference position,
sy with the interaural axis (i.e., left-right), and sz with earth vertical (Fig. 3.6a).

Let B = [
bx by bz

]
(note: bi i = x, y, z are column vectors!) denote a right-

handed body-fixed coordinate system (i.e., it moves with the object, here the eye)
such that B coincides with the space-fixed coordinate system S when the eye/body
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Fig. 3.6 Horizontal rotation of the eye about the space-fixed axis sz by an angle θ from the reference
orientation (a) to a new orientation (b)

is in the reference orientation. Any horizontal rotation of the body-fixed coordinate
system (and thus of the object) from the reference orientation to a new orientation,
as indicated in Fig. 3.6b, can be described by

bi = R · si, i = x, y, z , (3.12)

or, equivalently
B = R · S. (3.13)

The rotation matrixR describes the orientation of the eye/body (B) relative to the
head (S).

For a rotation of a point about a vertical axis in a space-fixed coordinate system,
as indicated in Fig. 3.6b, the matrix R describes a rotation about sz by an angle of θ .
This matrix, which we here call Rz(θ), is given by

Rz(θ) =
⎡
⎣ cos θ − sin θ 0
sin θ cos θ 0
0 0 1

⎤
⎦ . (3.14)

In the same way, vertical rotation of a point about sy in a space-fixed coordinate
system by an angle of φ can be described by

Ry(φ) =
⎡
⎣ cosφ 0 sin φ

0 1 0
− sin φ 0 cosφ

⎤
⎦ , (3.15)

and torsional rotation of a point about sx in a space-fixed coordinate system by an
angle of ψ by

Rx (ψ) =
⎡
⎣ 1 0 0
0 cosψ − sinψ

0 sinψ cosψ

⎤
⎦ . (3.16)
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Fig. 3.7 Right-hand rule for rotations

With these definitions, and with the positive (x, y, z)-axis pointing forward/left-
/up, respectively, positive θ , φ, and ψ values correspond to leftward, downward, and
clockwise movements. Depending on the context, these three rotations are either
called yaw, pitch and roll angles (in nautical applications, or in eye movement
research), or—equivalently—heading, elevation and banking angles (in aerospace
engineering). In the latter case, the term attitude is used to characterize
3-D orientation.

Notes:

• The direction of positive rotations can easily be remembered with the right-hand
rule (Fig. 3.7): if a body is gripped with the right hand and rotated in the direction
of the curled fingers, the direction of the thumb determines the sign of the rotation.
With the coordinate system as defined in Fig. 3.6, rotations to the left, downward(!),
and clockwise (as seen from the user) are positive.

• Care has to be taken with the implementation of rotations, such as in Eq. (3.13),
if the data are in row format. For example, if data are stored as

Data =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

x0 y0 z0
x1 y1 z1
x2 y2 z2
x3 y3 z3
· · ·
· · ·
· · ·

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3.17)

then using the matrix notation, the rotation of these data has to be implemented as

Data′ = [
R · DataT

]T = Data · RT , (3.18)

because
[A · B]T = BT · AT . (3.19)
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3.3.2 Rotations of Objects Versus Rotations
of Coordinate Systems

The next step is conceptually trivial, but its ramifications have caused consternation
among generations of scientists.

Figure3.8a shows the reference setup, where a picture is taken of a cat, with the
cat’s nose in the center of the image. In Fig. 3.8b, the cat has been rotated by 25◦, and
its nose is now at the lower edge of the captured image. In Fig. 3.8c, the cat remains
stationary, but now the camera coordinate system is rotated by 25◦, this time in the
opposite direction. The image of the cat looks exactly the same as in Fig. 3.8b.

From the definition of our coordinate system (forward, left, and up are the positive
directions), and the choice of the right-hand rule, a “downward” rotation has to be
positive. And in both cases (Fig. 3.8b, c), the final relative orientation between camera
and cat is the same. But now the catch is: should the relative movement shown in
Fig. 3.8b and c be labeled a downward rotation, because the cat is rotated downward
relative to the camera?Or should it be labeled an upward rotation, because the camera
is rotated up with respect to the surroundings? In situations where the measurement
setup is stationary, such as in Fig. 3.8b, it makes sense to call this relative rotation a
downward rotation. (This is the convention used in this book, where R describes the
rotation of an object relative to a space-fixed coordinate system.)!Butwhen a constant
environment is observed from a moving object, as in Fig. 3.8c, it makes more sense
to call this relative rotation an upward rotation, because the camera rotates upward.
(That is the convention often used in theoretical physics, theoretical mechanics, and
aeronautics, where a fixedworld andfixed events are observed fromdifferent,moving
reference systems.) It would be appropriate to describe, for example, the orientation
of a moving aeroplane relative to a fixed-world environment.)

There exists no correct choice here, only two different options. Which one is
chosen depends on the field of research and the application.

When comparing the equations from this book with other literature, carefully
check if the definition of the rotation matrices is consistent with Eqs. (3.14)–(3.16).
If this is the case, everything is fine. But if the definition of the rotation matrices

Fig. 3.8 a Reference picture. b “Object” rotated by 25 ◦. c Camera coordinate system rotated by
−25◦, i.e., in the opposite direction
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is the transposed of Eqs. (3.14)–(3.16), the alternate choice has been made, which
affects all subsequent equations!3

Important Note
Even though I am repeating myself: Care has to be taken, because the exact form
of the rotation matrices depends on the definition of R. Technical applications often
use rotations of the coordinate system for the definition of the rotation matrix, and
the signs of the angles are inverted compared to our definitions in Eqs. (3.14)–(3.16).
In those applications, for example in the excellent summary by (Diebel 2006), the
rotation matrices are exactly the transposed versions of the matrices used here!!

3.4 Combined Rotations

For rotations about a single axis, nodistinctionhas to bemadebetween rotations about
body-fixed or space-fixed axes. Since the body-fixed and space-fixed coordinate
systems coincide when the object is in the reference position, the axis about which
the object rotates is the same in the body-fixed and space-fixed system. But this is
no longer the case for combined rotations about different axes. For such rotations
the elements ofR are no longer determined by the relatively simple formulas in Eqs.
(3.14)–(3.16).

The example in Fig. 3.9 may help to better understand the problem: how should
we distinguish between a downward movement of the object by a rotation about the
space-fixed axis sy (as shown in Fig. 3.9a) and a downward movement by a rotation
about the rotated, body-fixed axis by (Fig. 3.9b)?

Fig. 3.9 In describing a combined horizontal–vertical movement, one has to distinguish clearly if
the vertical movement is (a) a rotation about the space-fixed y-axis sy, which remains fixed, or (b)
a rotation about the object-fixed y-axis by, which moves with the object

3Appendix A.3.3 contains the proof that the body-fixed representation of rotations uses the inverse
(i.e., the transpose) rotation matrix compared to the space-fixed representation.
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Fig. 3.10 Sequences of two rotations. (a) Space-fixed, sz :: sy : 90◦ rotation about the vertical axis
sz, followed by a 90◦ rotation about the horizontal axis sy. (b) Space-fixed, sy :: sz : 90◦ rotation
about the horizontal axis sy, followed by a 90◦ rotation about the vertical axis sz. (c) Body-fixed,
by :: bz : 90◦ rotation about the body-fixed axis by, followed by a 90◦ rotation about the body-
fixed axis bz. The final orientation is the same as in (a). Body-fixed axes and space-fixed axes are
superposed because the size of the rotations in this example is exactly 90◦

Mathematically, the difference between rotations in space-fixed coordinates and
body-fixed coordinates lies in the sequence in which the rotations are executed. This
is illustrated in Fig. 3.10. The upper column (Fig. 3.10a) shows a rotation of an object
about sz by θ = 90◦, followed by a rotation about the space-fixed axis sy by φ = 90◦.
Mathematically, this is described by

bi = Ry(φ) · Rz(θ) · si (3.20)

with θ = φ = 90◦.
Note: The rotation that is executed first is on the right-hand side, because this is

the first matrix to act on the object to be rotated:

Ry(φ) · (Rz(θ) · si) = (Ry(φ) · Rz(θ)) · si . (3.21)

This leads to

Rule 1: Subsequent rotations are written right-to-left.
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Inverting the sequence of two rotations about space-fixed axes changes the final
orientation of the object. This can be seen in Fig. 3.10b, where the sequence of
rotations is inverted: the first rotation is about the space-fixed axis sy, and the second
rotation about the space-fixed sz. This sequence is mathematically described by

bi = Rz(θ) · Ry(φ) · si. (3.22)

Equations (3.20) and (3.22) both describe rotations about space-fixed axes. How-
ever, they can also be re-interpreted as rotations about body-fixed axes in the reverse
sequence: Eq. (3.20) can be re-interpreted as a rotation about the axis by by φ, fol-
lowed by a rotation about the body-fixed axis bz by θ (Fig. 3.10c). Figures3.10a and c
demonstrate that rotations about space-fixed axes and rotations about object-fixed
axes in the reverse sequence lead to the same final orientation. And Eq. (3.22) is
equivalent to a rotation about bz by θ , followed by a rotation about the body-fixed
axis by by φ. A mathematical analysis of this problem can be found in (Altmann
1986).

This can be summarized as

Rule 2: A switch from a representation of subsequent rotations from space-fixed
axes to body-fixed axes has to be accompanied by an inversion of the sequence
of the rotation matrices.

This also gives the answer to the problem raised byFig. 3.9: the combination of two
rotations about the space-fixed axes sz and sy, as shown in Fig. 3.9a, ismathematically
described byEq. (3.20), while the combination of two rotations about the object-fixed
axes bz and by, as shown in Fig. 3.9b, is described by Eq. (3.22).

Rotations about space-fixed axes are often called “rotations of the object” or
“active rotations”, since in successive rotations only the object is rotated, and the axes
of the successive rotations are unaffected by the preceding rotations of the object.
Rotations about object-fixed axes are often referred to as “rotations of the coordinate
system” or “passive rotations”, since each rotation changes the coordinate axes about
which the next rotations will be performed.

3.4.1 3-D Orientation with Sequential Rotations

Systems that use such a combination of three rotations for the description of the
orientation can be demonstrated with gimbal systems. A gimbal is a ring or a frame
that is suspended so it can rotate about an axis. Gimbals are typically nested one
within another to accommodate rotation about multiple axes, and the hierarchy of
sequential rotations is automatically implemented. As pointed out in the Chap. 1, we
will by default use an inertial coordinate system where the positive x-, y-, and z-axes
point forward, left, and up.
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3.4.1.1 Nautical Sequence

In aeronautics (Kuipers 1999) and maritime applications, the yaw–pitch–roll
sequence of rotations, whichwewill refer to as “nautical sequence”, is very common.

The first rotation is about the (vertical) z-axis. This movement is called a “yaw
movement”, and the corresponding angle is sometimes referred to as “heading angle”.
According to the right-hand rule, a positive rotation rotates the nose of the airplane
to the left.

The second movement is about the once-rotated, body-fixed y-axis (when the
object is an airplane, about the line connecting the wings). The movement is called
a “pitch movement”, and the corresponding angle is referred to as “elevation angle”.

The last rotation is about the twice-rotated x-axis (when the object is an airplane,
about the longitudinal axis). This movement is called “roll movement”, and the
corresponding angle is the “banking angle”. If the rotated object is a camera or an
eye, this roll rotation will not change the line of sight or gaze direction, but it will
rotate the image.

This sequence has first been used by the German doctor and physiologist Adolf
Fick (Fick 1854), who worked on eye movements and who also invented the first
contact lenses worn by patients. In eye movement research, the yaw, pitch, and roll
angles for this sequence are therefore often referred to as “Fick angles”. The yaw and
pitch angles together determine the line of sight, and the corresponding direction is
called the “gaze direction”.

The left illustration in Fig. 3.11 shows a gimbal which corresponds to the nau-
tical sequence of rotations. The angles of the nautical sequence will be denoted by
the subscript “N” (θN , φN , ψN ). The rotation matrix corresponding to the nautical
sequence of rotations is

Rnautical = Rz(θN ) · Ry(φN ) · Rx (ψN ), (3.23)

where the rotation matricesRx ,Ry,Rz describe per definition rotations about space-
fixed axes. The discussion of Eqs. (3.20) and (3.22) defines the sequence in which
nested rotations have to be written down: the first rotation (i.e., the one on the
right-hand side) has to be the rotation of the innermost axis, since this is the only
rotation that does not affect the other ones. This can be formulated as

Rule 3: For nested rotations, the sequence of rotations has to be written from
the inside out, in order to ensure rotations about the correct axes.

Inserting Eqs. (3.14)–(3.16) into Eq. (3.23) leads to4

4The requiredwork to find thosematrices ismuch reduced using the symbolic computation packages
offered by many scripting languages. For Python, the implementation is shown in Appendix C.4.2.
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Rnautical =
[

cos θN cosφN , cos θN sin φN sinψN − sin θN cosψN , cos θN sin φN cosψN + sin θN sinψN
sin θN cosφN , sin θN sin φN sinψN + cos θN cosψN , sin θN sin φN cosψN − cos θN sinψN

− sin φN cosφN sinψN cosφN cosψN

]
.

(3.24)

This provides a convenientway to obtain the angles (θN , φN , ψN ) from the rotation
matrix R

φN = − arcsin(Rzx )

θN = arcsin( Ryx

cosφN
)

ψN = arcsin( Rzy

cosφN
).

(3.25)

Helmholtz Sequence
The nautical sequence is not the only sequence to describe the 3-D orientation of
an object. Helmholtz (1867), another German physicist and physiologist from the
nineteenth century, thought itwould be better to startwith a rotation about a horizontal
axis. He characterized eye positions by a rotation about the horizontal interaural axis
(i.e., the y-axis), followed by a rotation about the vertical axis, and then by a rotation
about the line of sight, as shown in the right gimbal in Fig. 3.11:

RHelm = Ry(φH ) · Rz(θH ) · Rx (ψH ). (3.26)

Fig. 3.11 In gimbal systems, the axes of rotation are determined by the geometry of system. Both
gimbals in this figure are in the reference orientation. Letbx,by,bz describe a body-fixed coordinate
system. Left In a nautical (Fick) gimbal, the orientation of the object (the turn on the inner dial)
is completely characterized by a rotation about the vertical axis bz by θN , followed by a rotation
about the (rotated) horizontal axis by by φN , and a rotation about the (twice-rotated) dial-axis bx
byψN .Right In a Helmholtz gimbalh, the orientation of the inner dial is characterized by a rotation
first about the horizontal axis by by φH , followed by a rotation about the (rotated) bz axis by θH ,
and then a rotation about the dial-axis bx by ψH
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The subscript “H” indicates that the angles refer to theHelmholtz sequence of rota-
tions.One should keep inmind that the orientation of the object is characterized by the
values of the rotation matrixR, andRnautical andRHelm only give different sequence
parameterizations for the rotation matrix. But once constructed, the matrix is used
in the same manner. Using Eqs. (3.14)–(3.16) and matrix multiplication, we get

RHelm =
⎡
⎣ cos θH cosφH − sin θH cosφH cosψH + sin φH sinψH sin θH cosφH sinψH + sin φH cosψH

sin θH cos θH cosψH − cos θH sinψH
− cos θH sin φH sin θH sin φH cosψH + cosφH sinψH − sin θH sin φH sinψH + cosφH cosψH

⎤
⎦

(3.27)

When R is given, the Helmholtz angles (θH , φH , ψH ) can be using

θH = arcsin(Ryx )

φH = − arcsin
(

Rzx

cos θH

)
ψH = − arcsin

(
Ryz

cos θH

)
.

(3.28)

Euler Sequence
Yet another sequence to describe 3-D orientation is common in theoretical physics
and mechanics and in other technical literature, and often referred to as Euler
sequence.5

In order to describe the movement of a spinning top rotating on a table, or of
the earth during its rotation around the sun (see Fig. 3.12), three angles are needed:
the intrinsic rotation (γ ), nutation (β), and precession (α). Using these three angles,
the orientation of the spinning object is described by (see Fig. 3.13)

• a rotation about the z-axis, by an angle α,
• followed by a rotation about the rotated x-axis, by an angle β, and
• followed by a rotation about the twice-rotated z-axis, by an angle γ .

REuler = Rz(α) · Rx (β) · Rz(γ ). (3.29)

This leads to the parametrization

REuler =
⎡
⎣ − sin αE cosβE sin γE + cosαE cos γE − sin αE cosβE cos γE − cosαE sin γE sin αE sin βE

sin αE cos γE + cosαE cosβE sin γE − sin αE sin γE + cosαE cosβE cos γE − cosαE sin βE
sin βE sin γE sin βE cos γE cosβE

⎤
⎦

(3.30)

5The expression Euler angles should be used very carefully: sometimes, these angles represent the
Euler sequence, but often that expression is also applied when the nautical sequence is actually
used!
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Fig. 3.12 Basic Euler motions of the earth. Intrinsic rotation (green “R” ), precession (blue “P”),
and nutation (red “N”). (From Wikipedia, original design by Dr. H. Sulzer)

Fig. 3.13 Euler sequence: Left—The xyz (fixed) system is shown in blue, and the XYZ (rotated)
system is shown in red. The line of nodes, labeled N, is shown in green (from Wikipedia). Right
The corresponding gimbal

The corresponding angles can be calculated with

γE = atan2(Rzx , Rzy)

βE = arccos(Rzz)

αE = −atan2(Rxz, Ryz).

(3.31)
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Notes:

• atan2(a,b) is equivalent to arctan( a
b ) where it also takes into account the

quadrant that the point (a, b) is in.
• For β, there are generally two solutions in the interval (π, π ]. The above formula
works only when β is within the interval [0, π).

Other Sequences
Depending on the application, sometimes yet other sequences can be used. For exam-
ple, the most important angles in gait analysis are the knee and hip angles, which
correspond approximately to rotations about the y-axis. Therefore, in gait analysis,
the sequence Rz · Rx · Ry is common.

The names for different gimbal systems may differ significantly, depending on
the area of application. In some contexts, angles of any type of gimbal system are
referred to as “Euler angles”. Angles from rotation sequences that involve all three
axes (x-y-z, y-z-x, z-x-y, x-z-y, z-y-x, y-x-z) can be either called “Tait–Bryan angles”,
in honor of the Scottish mathematical physicist Peter Tait (1832–1901), who was—
together with Hamilton—the leading exponent of quaternions, and the Welshman
George Bryan (1864–1928), the originator of the equations of airplane motion or
“Cardan angles”, after the Renaissance mathematician, physician, astrologer, and
gambler Jerome Cardan (1501–1576), who first described the cardan joint which
can transmit rotary motion. And angles that have the same axis for the first and the
last rotation (like the Euler sequence above) are called “proper Euler angles” (z-x-z,
x-y-x, y-z-y, z-y-z, x-z-x, y-x-y).

3.4.2 Gimbal Lock

Consider tracking a helicopter flying from the horizon toward an aerial gun, as
indicated in Fig. 3.16. The helicopter flies toward the gun site and is tracked by the
gun in elevation (	) and azimuth (
). When the helicopter is immediately above the
gun site, the aerial gun is in the orientation indicated in Fig. 3.14. If the helicopter
now changes direction and flies at 90◦ to its previous course, the gun cannot track this
maneuver without a discontinuous jump in one or both of the gimbal orientations.
There is no continuous motion that allows it to follow the target—it is in “gimbal
lock”. Note that even if the helicopter does not pass through the gimbal’s zenith,
but only near it, so that gimbal lock does not occur, the system must still move
exceptionally rapidly to track the helicopter if it changed direction, as it rapidly
passes from one bearing to the other. The closer to zenith the nearest point is, the
faster this must be done, and if it actually goes through zenith, the limit of these
“increasingly rapid” movements becomes infinitely fast, i.e., discontinuous. Another
way to describe gimbal lock is to consider the inverse of matrices Eqs. (3.24, 3.27,
and 3.30). The mathematical equivalent of a gimbal lock is if the calculation of
the inverse of the matrices in Eqs. (3.24, 3.27, and 3.30) contains a divide by zero
condition.
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Fig. 3.14 Gimbal lock: the orientation of the innermost axis cannot be reoriented in the direction
of the dotted arrows

3.5 Homogeneous Coordinates

3.5.1 Definition

An application where a tremendous amount of 3-D calculations have to be performed
is the rendering of 3-D scenes in computer graphics. With every change in position
and orientation of the observer the appearance of each 3-D surface element of the
scene has to be re-calculated. The calculations require not only translations and
rotations but also scaling and perspective distortions (McConnell 2005).

The mathematical discipline of projective geometry has found a way to perform
all the required calculations efficiently in one step (see Fig. 3.15). For this approach to
work, the number of coordinates for each point has to be increased from three to four,
and the extended coordinates are called “homogeneous coordinates” or “projective
coordinates”:

p →
(
p
1

)
. (3.32)

The additional, fourth element in the coordinates is essentially a scaling factor.
The matrix required to execute a generalized perspective transformation is a 4× 4

matrix. For example, a rotation and translation can be “homogenized”, i.e., executed
in one step, as described in the following. A point p can be rotated and translated by

p′ = R · p + t , (3.33)
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Fig. 3.15 Projection from one plane into another

where p indicates the starting point, R is the rotation matrix, t is the translation, and
p′ is the new location. Using the “homogeneous” coordinates defined in Eq. (3.32),
this can be written in one step as

(
p′
1

)
=

[
R t
0 1

]
·
(
p
1

)
=

(
R · p + t

1

)
. (3.34)

The resulting matrix

[
R t
0 1

]
is a 4× 4 matrix (since R is a 3× 3 matrix, and

one row and one column have been added) and is called “spatial transformation
matrix”. Similarly, geometric projections can be implemented by allowing general
4 × 4 matrices for the transformation.

By moving from 3-D Euclidian coordinates to 4-D homogeneous coordinates,
all those transformations can be achieved with the same type of operation. The
disadvantage: to represent a point, we now need four instead of the previous three
numbers. The advantage: most image manipulations can now be performed in the
same way. This homogeneous treatment of the different operations is reflected in the
name, “homogeneous coordinates”. This has become a huge advantage in computer
vision: graphics cards can perform massive matrix multiplications. For comparison,
modern multi-core CPUs (central processing units, i.e., the processor in a typical
PC) have on the order of 16 pipelines, while GPUs (graphical processing units, the
processors that are used for graphics cards) have on the order of 1024 pipelines.
Thereby, instructions can be executed in parallel and can be dramatically optimized.

An important application of homogeneous coordinates are the "Denavit Harten-
berg parameters". These are used in mechanical engineering to denote position and
orientation of an end-link in robot manipulators (see Appendix B).
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3.6 Applications

A few examples of the application of rotation matrices may help to show how to use
them in practical applications.

3.6.1 Two DOF—Targeting an Object in 3-D

An aerial gun is mounted like a nautical gimbal: the outermost rotation is always
about an earth-vertical axis (Fig. 3.16).

In the starting orientation (θ/φ = 0/0), the barrel of the aerial gun points straight
ahead, i.e., along bx.

Task: When a target appears at p = (x, y, z), we want to reorient the gun such
that the rotated gun barrel, which after the rotation points in the direction of b′

x, points
at the target.

Solution: Taking the rotation matrix in the nautical sequence (Eq. 3.24), with
ψ = 0 since a rotation about the line of the gun barrel is not relevant, we get

Rnautical(ψN = 0) = [
b′
x b

′
y b

′
z

] =
⎡
⎣ cos θN cosφN − sin θN cos θN sin φN N

sin θN cosφN cos θN sin θN sin φN

− sin φN 0 cosφN

⎤
⎦ .

With the first column b′
x = p

|p| , this leads to

φN = − arcsin

(
pz√

px
2+py

2+Pz
2

)

θN = arcsin

(
py√

px
2+py

2+pz
2
· 1
cosφN

)
.

(3.35)

Fig. 3.16 Aerial Gun, tracking a target at p = (x/y/z)
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Note that a combination of a horizontal and a vertical rotation of the object in a
well-defined sequence uniquely characterizes the direction of the forward direction.
With eye movements, this is the line of sight, or gaze direction; with a gun turret on a
ship this is the direction of the gun barrel (see Fig. 3.16). However, this does not com-
pletely determine the three-dimensional orientation of the object, since the rotation
about the forward direction is still unspecified. A third rotation is needed to com-
pletely determine the orientation of the object. This third rotationψ would not affect
the direction in which the gun is pointing, it would only rotate around the pointing
vector. For a quaternion solution to the targeting problem, see also Sect. 4.5.1.

3.6.2 Two DOF—Projection onto a Flat Surface

Another frequent paradigm is a projection onto a flat surface. Consider the following
practical problem (Fig. 3.17).

Two projection systems are mounted at a distance d in front of a flat surface, and
should both project a point at P, located on the screen at the location (hor/ver),
where the positive horizontal direction on the screen is to the right, and the positive
vertical direction up. The lower system is mounted like an aerial gun: it can rotate
about a vertical axis (θN ) and swivel about a (rotating) horizontal axis (φN ). The
system is mounted below cm lower than the center of the screen-based coordinate
system, and when θN = φN = 0 the projector is pointing straight ahead toward the
screen.

The upper projection system is mounted on a disk that hangs on the ceiling, above
cm higher than the center of the screen-based coordinate system. It is mounted on a
horizontal hinge which is parallel to the projection screen, so that it can rotate up and
down (φH ). The projector can swivel on the disk left/right (θH ). And again, when
θH = φH = 0 the projector is pointing straight ahead toward the screen.

Task: What are the projector angles for the lower projector (θN , φN ), and for the
upper projector (θH , φH ), if both should point at the target P = (hor/ver) on the
screen?

Solution: The rotation sequence for the lower projector corresponds to the two
outer rotations of a nautical gimbal, and the sequence of the upper projector to the
two outer rotations of a Helmholtz gimbal, respectively (see also Fig. 3.11). In both
cases, the rotation about the target direction is unimportant, and ψ in the equations
for the nautical- and Helmholtz-rotation matrix can be set to zero. The direction to
the target corresponds to the bx axis after the rotation, and the target point is the
intersection of this axis with a plane parallel to the sy/sz-plane at a distance d. So for
the lower projector, the target is at

p = (d/ − hor/ver + below)

b′
x = p

|p| .
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(The sign before hor is negative, because the positive direction for “horizontal” on
the screen is to the right, but the corresponding positive direction for “horizontal”
for the projector is to the left.) From that the corresponding nautical angles can be
determined with Eq. (3.35) from the previous example with the aerial gun. For the
upper projector, the target is at

p = (d/ − hor/ver − above)

b′
x = p

|p|
and the projector angles can be found by applying the first two equations of Eq.
(3.28):

θH = arcsin

(
py√

px
2+py

2+Pz
2

)

φH = − arcsin

(
pz√

px
2+py

2+pz
2
· 1
cos θH

)
.

(3.36)

A Python solution, with numbers approximating a setup such as Fig. 3.17,
would be

from skinematics import vector
(d, hor, ver, above, below) = (1.5, 0.3, 0.2, 0.7, 1.4)
p_lower = [d, -hor, ver+below]
p_upper = [d, -hor, ver-above]
lower_projector = vector.target2orient(p_lower, orient_type=’

nautical’)
upper_projector = vector.target2orient(p_upper, orient_type=’

Helmholtz’)

Fig. 3.17 Projection onto a flat surface, with different projection systems
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Section 4.5.3 shows the solution of a somewhat more complex, but conceptually
similar problem: orienting a camera in a missile such that it is directed on a selected
target.

3.6.3 Three DOF—3-D Orientation Measurements
with Search Coils

An interpretation of the values of the rotation matrix can be found by looking at
Eq. (3.11): the columns of the rotation matrix R are equivalent to the vectors of
the body-fixed coordinate system

[
bx by bz

]
expressed in the space-fixed coordinate

system
[
sx sy sz

]
. Thus, for eyemovementmeasurements with the search-coil method

illustrated in Fig. 2.18, different values in the rotation matrix R indicate a different
orientation of the eye-fixed coordinate system, i.e., a different orientation of the eye
ball.

Task: What is the orientation of an eye on a gimbal that is rotated 15◦ to the left
and 25◦ down, if it is (i) a nautical gimbal or (ii) a Helmholtz gimbal?

Solution: If an artificial eye ball on a nautical gimbal (Fig. 3.11a) is first turned
15◦ to the left and then (about the rotated axis by) 25◦ down, i.e., (θN , φN , ψN ) =
(15, 25, 0), its orientation will be given by the matrix

Rnautical =
⎡
⎣ 0.88 −0.26 0.41

0.23 0.97 0.11
−0.42 0 0.91

⎤
⎦ .

Putting an eye on a Helmholtz gimbal (Fig. 3.11b), and turning it first 25◦ down
and then 15◦ to the left (about the rotated axis bz ), i.e., (φH , θH , ψH ) = (25, 15, 0),
leads to a different orientation of the eye:

RHelm =
⎡
⎣ 0.88 −0.23 0.42

0.26 0.97 0
−0.41 0.11 0.91

⎤
⎦ .

The orientation of the eye in the two examples is clearly different: on the nautical
gimbal bz is given by (0.41, 0.11, 0.91), whereas on the Helmholtz gimbal it points
in a different direction, (0.42, 0, 0.91).

Interpretation: Experimentally, the three-dimensional orientation of the eye in
space can be measured, for example, with induction coils (see Figs. 2.17 and 2.18).
When an induction coil is put into an oscillatingmagnetic fieldm, a voltage is induced
in the coil (Robinson 1963). If the coil is characterized by a coil vector c, which is
perpendicular to the coil and has a length proportional to the surface surrounded
by the coil, the voltage induced is proportional to the cosine of the angle between
m and c (Fig. 2.16). As pointed out by (Tweed et al. 1990), this leads to a simple
correspondence between the values of the rotation matrix and the voltages induced
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in search coils. This connection can be demonstrated with the experimental setup
shown in Fig. 2.18. Let

mi = si mi sin(ωi t), i ∈ x, y, z

be three homogeneous orthogonal magnetic fields. They are parallel to the axes of
the space-fixed coordinate system

[
sx sy sz

]
, have amplitudes mi , and oscillate at

frequencies ωi . Further, let
[
cx cy cz

]
denote three orthogonal coils parallel to the

body-fixed coordinate system
[
bx by bz

]
and firmly attached to the object (here the

eye). Then, the voltage induced by the magnetic fieldmi in coil cj, Vi j , is given by

Vi j = Ri j ∗ mi ∗ ωi ∗ cos(ωi ∗ t) ∗ c j with i, j ∈ x, y, z

where c j = ∣∣cj∣∣ indicates the length of the vector cj. This gives a direct interpretation
of the elements of the rotation matrix R: the voltage induced by the magnetic field
mi in the coil cj is proportional to the element Ri j of the rotation matrix R, which
describes the rotation from the reference position, where the coils

[
cx cy cz

]
line up

with the magnetic fields
[
mx my mz

]
, to the current position.

Note that for the determination of the 3-D orientation, three matrix elements
suffice: H, V, and T indicate the signals that represent approximately the horizontal,
vertical, and torsional orientation of the object:

R =
⎡
⎣ − − −

H − −
V T −

⎤
⎦ .

3.6.4 Nested or Cascaded 3-D Rotation Sequences

Nested or cascaded sequences are commonly found where one 3-D rotation follows
another 3-D rotation. For example, the moving eye is placed inside a moving head,
or a gimballed camera is mounted on a moving vehicle or missile. How can the
formulas given above be used to derive the composite rotation of the two3-D rotations
combined? Furthermore, given the location of a point in space-fixed coordinates and
eye coordinates, would it be possible to calculate the required rotation to ensure that
the eye/camera looks at the point?

Camera on Moving Base
To describe the orientation of a camera-in-space (described by Rspace

camera), as shown
in Fig. 3.18, one has to combine the orientation of the tilted base, e.g., a Google
maps car (described by Rspace

base ) and the orientation of the camera with respect to
this base (Rbase

camera). To implement this mathematically, one has to use rotations of
the coordinate system. This determines the sequence of the two rotations, and the
rotation matrix describing the orientation of the camera-in-space is–according to the
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Fig. 3.18 A nested or cascaded rotation can, for example, be the orientation of a camera [cxcycz]
on a moving base [bxbybz] fixating a target, here the top of a mountain

discussion following Eqs. (3.20) and (3.22)-given by

Rspace
camera = Rspace

base · Rbase
camera . (3.37)

From this, the orientation of the camera with respect to the base can be determined
as

Rbase
camera = (

Rspace
base

)−1 · Rspace
camera . (3.38)

Theway I personally remember these sequences: Take, for example, the following
equation, which determines the orientation of the line of sight (LOS) of the camera

c′ = Rspace
base · (

Rbase
camera · c) . (3.39)

With base and camera in the reference orientation, c indicates the line of sight (LOS)
of the camera. To find the current LOS, I first rotate the LOS of the camera on the
base

(
Rbase

camera · c). Then, in the second step I rotate the base, with the rotated camera
already on it, to obtain the current orientation of the LOS: Rspace

base · (
Rbase

camera · c).
Eye in Head
Similarly, let Rspace

head be the rotation matrix describing the rotation of the reference
framewith respect to a space-fixed coordinate system, andRhead

eye describe the rotation
of the object in the reference frame (e.g., eye in head). Then

Rspace
eye = Rspace

head · Rhead
eye , (3.40)

and
Rhead

eye = (
Rspace

head

)−1 · Rspace
eye . (3.41)
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3.6.5 Camera Images

Imagine the gaze vector of two cameras mounted on two different-sequenced two-
axis gimbals following the same point in space. As the point moves around, the gaze
vector of the two cameras traces the same locus in space. However, each camera will
view differently rolled images of the world (i.e., the image “up” vector in Camera 1
will be at different angles than in Camera 2). The different gimbal’s camera images
will be rolledwith respect to each other. The gimbaled cameras require all twodegrees
of freedom to follow the target and have no freedom to orientate their images to the
upright orientation. If three-axis gimbals are used, there are no remaining degrees
of freedom, and the images can always be rotated such that the required direction is
pointing “up”.

3.7 Exercises

Exercise 3.1: CT Scanner

A good example of a device that requires 3-D kinematics is a modern CT scanner.
Task: For the exercise, label the rotations about the three axes with α, β, and γ

as shown in Fig. 3.19. With the CT scanner in the starting orientation, the outermost
axis aligns with the z-axis, the middle axis with x, and the inner axis with y.

A patient has been attacked on the streets and has suffered from two gunshot
wounds. When the patient is in a supine orientation (as indicated in Fig. 3.19), the
first shot went through the left eye socket, into the direction

−−−−→
bullet1 = [ 5 2 2 ]; the

second shot also went through the left eye socket, but in the direction
−−−−→
bullet2 =

[ 5 −2 −4 ].
Find out which settings for α, β, and γ bring the scanner into such an orientation

that (i)
−−−−→
bullet1 in the image is oriented along the y-axis of the scan and (ii) the

trajectories of both bullets lie in the scanned plane (Fig. 3.20).

Fig. 3.19 (Left) An image of the Siemens Axiom Artis dTC scanner. (Right) Cartoon indicating
the mathematical representation of this scanner
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Fig. 3.20 CT scan of the head, with the bullet paths from two gunshot wounds schematically
indicated. Note that the path of bullet 1 aligns with the y-axis

Exercise 3.2: Combining Rotation and Translation

This example will provide the first step in the measurement of movements with
video-based systems. In the example, the movement of a comet that moves in a plane
in space is observed with a camera, as shown in Fig. 3.22. The object is a comet that
circles around a planet. The data units are 107 km. The tasks for this exercise are as
follows:

• Read in the data from the file planet_trajectory_2D.txt, and write a
program to calculate the planet velocity in the x- and y-directions. The data can
be found in the scikit-kinematics package for Python users, and in the Kinematics
toolbox for Matlab users, and are shown in Fig. 3.21.

Fig. 3.21 Observed trajectory
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Fig. 3.22 Experimental setup: a particle moving in a tilted plane is observed from two different
camera positions orientations

• External information is provided, which tells us that the data center is 200×107 km
in front of the camera, and the trajectory lies in a plane that is tiled by 30◦ about the
x-axis. Calculate the 3-D position of the trajectory of the particle (see Fig. 3.22).

• Calculate the 3-D position pshifted of the comet in camera coordinates, observed
from a satellite which has traveled 50×107 km toward the planet, and 100×107 km
orthogonally to it.

• Calculate the position pshiftRot (with respect to the camera), if the satellite is rotated
34◦ downward.

Code: C3_examples_rotmat.py: Python examples of different
operations with rotation matrices, such as generating symbolic and numeric rotation
matrices and calculating the corresponding rotation sequences. (p. 141)

https://github.com/thomas-haslwanter/3D_Kinematics/blob/master/python/C3_examples_rotmat.py
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