
Chapter 1
Introduction

Performing an everyday movement, such as reaching for a cup of tea, is so natural
and intuitive to us that it seems to be trivial. But when we try to understand how this
movement is performed, or when we try to follow or imitate such a movement, for
example, with a robotic arm, it quickly becomes obvious that even such seemingly
trivial acts are based on a complex interaction of the relative three-dimensional
(3-D) upper body, arm, and finger orientations. Similarly, looking at the face of an
approaching friend while walking down the street does not seem to be much of an
achievement. But talk to an engineer who has tried to keep a camera on a moving
platform oriented such that it keeps focussing on another moving target, and you
realize that working with objects moving in 3-D space entails many challenges,
especially mathematical and geometric ones.

Surprisingly, little literature exists that provides a researcher or engineer who
wants to work on this type of phenomena with an introduction into the area. On
the contrary, most articles or books focus on one selected way to characterize a
3-D movement, but do not elaborate on alternative ways to describe it. For example,
my own physics education gave me a (confusing) introduction to “Euler angles” or
the “special unitary group of complex 2× 2 matrices”, but never showed how to
work with them in practice, and did not mention alternative descriptions of spatial
orientation, such as quaternions.

This book tries to fill this gap. It will provide an overview of common ways to
characterize movement in 3-D space. In particular, it will provide an introduction to
the different methods that are commonly used to record and analyze human move-
ments, be it for medical applications (such as gait analysis), scientific uses (such as
biomechanical investigations), or for recreational activities (such as the movement
analysis with the sensors built into current smartphones). But it should also be able to
provide programmers working in computer graphics with the necessary background
to choose the optimal algorithms for their kinematic tasks at hand.

To my knowledge, this book is the first one that not only describes the mathemat-
ics of 3-D kinematics but also provides full programming toolboxes (in Python and

© Springer International Publishing AG, part of Springer Nature 2018
T. Haslwanter, 3D Kinematics, https://doi.org/10.1007/978-3-319-75277-8_1

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-75277-8_1&domain=pdf

2 1 Introduction

in Matlab), allowing the reader to focus on the understanding and not on “trivial”
programming details. The Python package scikit-kinematics,1 as well as a corre-
sponding Matlab Kinematics Toolbox,2 contain the algorithms for simulating 3-D
movements, and for importing and analyzing data from different 3-D recording sys-
tems. Code listings and the solutions to the exercises can be found on the website
accompanying this book.3

1.1 Recording Movement and Orientation

Determination and characterization of orientation andmovement in space canprovide
valuable information for numerous applications:

• Smartphones use such measurements to decide whether the display should be in
portrait or landscape mode.

• Fitness trackers, such as Jawbone or Fitbit, use this information to estimate and
quantify the amount of daily movement activities.

• Airbags in cars are triggered by movement sensors.
• In neurology, otorhinolaryngology, and ophthalmology, movement recordings are
used for the diagnoses of medical conditions.

• Autopilot applications in planes and autonomous vehicles requiremovement infor-
mation for their actions.

• Modern prosthetic devices include movement sensors, to control built-in motors
and to regulate the mechanical properties of modern prostheses.

Simple approaches are often sufficient for two-dimensional (2-D) measurements.
A simple protractor is sufficient to find the angles between upper body, upper leg,
and lower leg from a photography of a runner. And a goniometer can quickly indicate
the angle between two objects or shafts.

However, to uniquely characterize the movement of an object in 3-D space, the
measurements are more involved and six parameters are required. For recording
of 3-D position and orientation, which together are sometimes referred to as pose,
two approaches can be taken. First, three or more parts of an object can be marked.
Tracking themovement of thosemarkers in 3-D space provides information about the
movement of the object. And second, if the object is solid, a sensor can be attached
to the object. The signals from this sensor can then be used to find the position and
orientation of the sensor, and thus of the object.

1.2 Conventions and Basics

Movements in 3-D space consist of translations as well as rotations. To describe
them, the following conventions will be used.

1https://github.com/thomas-haslwanter/scikit-kinematics.
2https://github.com/thomas-haslwanter/kinematics_toolbox.git.
3https://github.com/thomas-haslwanter/3D_Kinematics.

https://github.com/thomas-haslwanter/scikit-kinematics
https://github.com/thomas-haslwanter/kinematics_toolbox.git
https://github.com/thomas-haslwanter/3D_Kinematics

1.2 Conventions and Basics 3

1.2.1 Notation

• Axes indexing starts at 0, (0, 1, 2) and corresponds to the (x, y, z) axes, respectively.
• Scalars are indicated by plain letters (e.g., a).
• Columnvectors arewrittenwith bold lowercase letters (e.g., r) or in roundbrackets,
and the components of 3-D coordinate systems are labeled (x, y, z):

r =
⎛
⎝
rx
ry
rz

⎞
⎠ .

(The only exception are the electrical field E and the magnetic field B, which by
convention are written in uppercase Sect. 2.2.5). However, it should be clear from
the context that they are vectors.)

• The length or “norm” of a vector is indicated by the same name but in plain style

|r| =
√∑

i

r2i = r.

• Matrices are written with bold uppercase letters (e.g., RRR) or in square brackets.

RRR =
⎡
⎣
Rxx Rxy Rxz

Ryx Ryy Ryz

Rzx Rzy Rzz

⎤
⎦ .

• Vector and matrix elements are written in plain style, with indices denoted by
subscripts (e.g., rx ; Ryz).

• Multiplications with a scalar are denoted by ∗ (e.g., tan(θ/2) ∗ n).
• Scalar–vector products and matrix multiplications are denoted by · (e.g., p · q).
• Vector cross products are denoted by × (e.g., p × q).
• Quaternions are denoted with bold italics and tilde (e.g., r̃).
• Products of quaternions or Gibbs vectors are denoted by ◦ (e.g., r̃ p ◦ r̃q).

1.2.2 Coordinate Systems

A frequent source of confusion is the choice of coordinate system. Unit vectors in
the direction of the x-, y-, z-axes will be denoted with nx,ny,nz, respectively. The
direction of nx can be chosen freely. For example, it can point forward, left, or up.

Modern texts almost exclusively use right-handed coordinate systems (Fig. 1.1),
butmay attach differentmeanings to the three axes. For example, in image processing
nx is typically chosen pointing right and ny pointing up so that the image plane is the
(x, y)-plane. In aerospace engineering, nx is pointing forward, ny is chosen such that

4 1 Introduction

Fig. 1.1 Right-hand reminder for the direction of the positive coordinate axes. Remember where
“x” is pointing to! (from Wikipedia, by R. Hewitt)

it points to the right, and nz as a result is pointing down. With that convention, nose-
up rotations of an airplane are “positive”, the preferred choice in aeronautics. When
used in navigation the axes ordermay denote East-South-Down orNorth-East-Down.
And in human locomotion analysis nx should point in the direction of progression, ny
upward, and nz to the right (Wu and Cavanagh, 1995). But regardless of the specific
choice, it is very important to make sure which coordinate system has been selected.

In this book, the default coordinate system will be a right-handed coordinate
system with three orthogonal unit vectors. The coordinate system is chosen as it is
commonly used in medical applications and movement analysis. It defines the axes
as follows (Fig. 1.2):

• nx pointing forward,
• ny pointing to the left, so that the x, y-plane (z = 0) is horizontal, and
• nz pointing up.

so that
nx × ny = nz . (1.1)

Wherever possible the axis labels (“x”, “y”, “z”) will be used to avoid labeling
by numbers (“0”, “1”, “2”), since some computer languages (like C or Python) start
with 0, while others (like Matlab) start with 1.

Fig. 1.2 Right-handed coordinate system

1.3 Software Packages 5

Fig. 1.3 For finding a correct mathematical solution to the individual problem at hand, informal
sketches are invaluable! In most cases, the programming should be almost trivial, especially when
using the software provided with this book. But 3-D kinematics is complex to visualize, and the help
provided by simple sketches is hard to overestimate (Here, a sketch for a camera-based recording
of an experimental setup, as will be used in Chap.6.)

1.3 Software Packages

To facilitate and speed up the analysis of 3-D data, this book comes with libraries
in Matlab and Python. These libraries provide frequently used functions for work-
ing with vectors, rotation matrices, and quaternions, and for the data analysis for
measurements from inertial measurement units (IMUs) or from optical recording
systems (e.g., Optotrak or Vicon) (Fig. 1.3).

The application examples in this book are presented in Python. The corresponding
source code can be found on the web-page accompanying this book.4 A list of the
programs included is given in Appendix C.

1.3.1 Python Package scikit-kinematics

The Python core distribution contains only the essential features of a general pro-
gramming language. For example, it does not even contain a package for working
efficiently with vectors and matrices. These packages, and many more that are use-
ful for scientific data analysis, can be installed most easily using so-called “Python
distributions”. Two recommendable Python distributions are

• WinPython for Windows only.
• Anaconda by Continuum, for Windows, Mac, and Linux.

Both distributions are freely available, and neither requires administrator rights. A
list of links for the downloads of these distributions, as well as recommendations for
getting started with Python for scientific applications, can be found in Appendix G.

The relationships between the basic scientific Python packages used by scikit-
kinematics is shown in Fig. 1.4, as well as the role of Jupyter and IPython which are
used for interactive data analysis.

4https://github.com/thomas-haslwanter/3D_Kinematics.

https://github.com/thomas-haslwanter/3D_Kinematics

6 1 Introduction

Fig. 1.4 The structure of the most important Python packages for 3-D kinematics. The standard
scientific packages are written in black; more specialized packages are labeled in gray. sympywill
be used here for working with symbolic matrices

The programs included in this book have been tested with Python 3.6.3 under
Windows and Linux using the following package versions:

• Jupyter 1.0.0 … Framework for interactive work.
• IPython 6.2.1 … Python kernel for interactive work.
• numpy 1.13.3 … For working with vectors and arrays.
• scipy 1.0.1 … All the essential scientific algorithms, including those for basic
statistics.

• matplotlib 2.2.2 … The de-facto standard package for plotting and visualization.
• pandas 0.22.0 … Adds “DataFrames”, which are easy to use data structures, to
Python.

Building on this basis, the Python package scikit-kinematics is intended to facil-
itate the development of programs for the analysis of spatial data. It can be down-
loaded from https://github.com/thomas-haslwanter/scikit-kinematics and is docu-
mentedunder http://work.thaslwanter.at/skinematics/html/. The easiestway to install
it is by typing

pip insta l l scikit−kinematics

on the command line. Updates can be performed with

pip insta l l −−upgrade −−no−deps scikit−kinematics

In the Python applications, scikit-kinematics is for brevity referred to as
skinematics (Fig. 1.5).

1.3.2 Matlab 3-D Kinematics Toolbox

Matlab is the 800-pound gorilla in the room when it comes to scientific computing.
It has been around for a long time (I have used Matlab for more than 20years) and
is well established in many academic and industrial environments. In contrast to

https://github.com/thomas-haslwanter/scikit-kinematics
http://work.thaslwanter.at/skinematics/html/

1.3 Software Packages 7

Fig. 1.5 The scikit-kinematics logo

Python, which is a general programming language, Matlab is tailored to numerical
applications. It is a fully developed integrated development environment (IDE) and
has a wealth of “Toolboxes” available, which are extensions for dedicated program-
ming applications.

The downsides of Matlab are that it is commercial, expensive for those outside
an academic environment, and that—compared to Python—it is a rather old pro-
gramming language. Matlab’s object-oriented programming scheme is unwieldy and
overly complex.

The 3-D Kinematics toolbox accompanying this book can be downloaded from
the Matlab Kinematics Toolbox 5 and can be installed simply by opening the file
3D_Kinematics.mltbx in Matlab. The toolbox files will then be copied to
the correct locations in Matlab, and the corresponding search path added to the
MATLABPATH.

1.3.3 Source Code for Python and Matlab

The Python package scikit-kinematics and the Matlab Kinematic toolbox are shared
via https://github.com/thomas-haslwanter.

A frequent source of confusion is the difference between “git” and “github”. git
is a “version control program”, whereas github is a website.

Version control programs (such as git), also known as revision control programs,
allow tracking only the modifications, and storing previous versions of the source
code under development. If the latest changes cause a new problem, it is then easy to
compare them to earlier versions, and to restore the source code to a previous state.
Git can be used locally, with very little overhead. And it can also be used to maintain
and manage a remote backup copy of the code. While the real power of git lies in its
features for collaboration, it is also powerful and works very smoothly for personal
software development. git is well integrated into most Python IDEs, and in Matlab.

Under Windows tortoisegit (https://tortoisegit.org/) provides a very useful Win-
dows shell interface for git. For example, in order to clone a repository (e.g., scikit-

5https://github.com/thomas-haslwanter/kinematics_toolbox.git.

https://github.com/thomas-haslwanter
https://tortoisegit.org/
https://github.com/thomas-haslwanter/kinematics_toolbox.git.

8 1 Introduction

kinematics or theKinematics Toolbox) from github to a computer where tortoisegit is
installed, one simply has to right click on the folder where one wants the repository
to be installed, select Git Clone ..., and enter the repository name—and the
whole repository will be cloned there. Done!

github is a website frequently used to share code. While one can download source
code from there, it is much more efficient to use git for this task.

Code: C1_examples_vectors.py: Example of work-
ing with vectors. (p.133)

1.4 Warm-Up Exercises

This first batch of examples is intended as a reminder of the basic principles of
geometry, trigonometry, and numerical analysis. Solutions to these exercises are
provided in Appendix E.

Exercise 1.1: A Simple Linear Movement
An accelerometer moving sinusoidally along a single axis indicates an output
(Fig. 1.6)

acc(t) = amp ∗ sin(ωt) . (1.2)

Knowing the initial conditions vel(t = 0) and pos(t = 0), it is possible to deter-
mine the movement of the accelerometer in space. Please try to do that analytically.

Exercise 1.2: Find the Cat
Take the image in Fig. 1.7, showing me and my three-legged cat Felix, and the
following additional information:

• The coordinate center is defined as the center position on the ground between my
legs.

• The Ikea shelf behind me has a height of 1.24m.

Try to answer the following question, using only a simple drafting triangle:
“What are the coordinates of the cat (e.g., the center between the cat eyes) in a

space-fixed coordinate system, defined as (x, y, z) pointing forward, left, and up,
respectively?”

List the required steps, as well as all the assumptions made. Make a sketch of the
geometry of the problem and write down the equations that would be needed to solve
it.

Fig. 1.6 Sinusoidal movement along one dimension

https://github.com/thomas-haslwanter/3D_Kinematics/blob/master/python/C1_examples_vectors.py

1.4 Warm-Up Exercises 9

Fig. 1.7 Me and my cat Felix

Exercise 1.3: Simple Pendulum
At first sight, a pendulum executes a deceptively simple motion. For example, for
small swings the movement is nicely sinusoidal.

Assume that a pendulum with a length of r = 0.2m and a mass of m = 0.5kg,
deflected by an angle of θ0, is released at t=0. Find the position of the pendulum for
times 0 s <= t <= 10 s, with a �t = 1ms, for initial deflections of 5◦ and of 70◦
(Fig. 1.8).

The movement of a pendulum can be simulated using Newton’s second law

L = I ∗ d2θ(t)

dt2
, (1.3)

where L is the torque and I is the moment of inertia. For a pendulum, the moment
of inertia is I = m ∗ r2. And the torque L is given by L = r ∗ F , where F is the
tangential force acting on the pendulum. The equations for deflection θ and angular
velocity ω = dθ

dt can be solved iteratively:

10 1 Introduction

Fig. 1.8 A “simple” pendulum

θ(tn+1) = θ(tn) + ω(tn) ∗ �t (1.4)

ω(tn+1) = ω(tn) + d2θ

dt2

∣∣∣∣
tn+1

∗ �t

= ω(tn) + L

I

∣∣∣∣
tn+1

∗ �t (1.5)

Hints:

• First, write down the implementation of the equations for θ(ti) and ω(ti).
• Note that to improve the stability of the solution, theEuler–Cromer method is used
in Eq. (1.5): this means that for the acceleration term L(tn+1) is used, not L(tn)!

Exercise 1.4: Not-so-simple Pendulum
If Exercise 3 is not challenging for you, try to answer the following question:

If the mass at the end of the pendulum is replaced by an accelerometer, what will
the output of that accelerometer be when we let go of the pendulum, from an initial
deflection of 10◦?

The answer to this question is surprising, and surprisingly difficult to write down.
Do not worry if you have difficulties solving this problem now, but give it a try again
after having completed Chap.6.

	1 Introduction
	1.1 Recording Movement and Orientation
	1.2 Conventions and Basics
	1.2.1 Notation
	1.2.2 Coordinate Systems

	1.3 Software Packages
	1.3.1 Python Package scikit-kinematics
	1.3.2 Matlab 3-D Kinematics Toolbox
	1.3.3 Source Code for Python and Matlab

	1.4 Warm-Up Exercises

