
Thomas Haslwanter

3D Kinematics

3D Kinematics

Thomas Haslwanter

3D Kinematics

123

Thomas Haslwanter
School of Medical Engineering and Applied
Social Sciences

University of Applied Sciences Upper
Austria

Linz, Upper Austria
Austria

ISBN 978-3-319-75276-1 ISBN 978-3-319-75277-8 (eBook)
https://doi.org/10.1007/978-3-319-75277-8

Library of Congress Control Number: 2018933478

© Springer International Publishing AG, part of Springer Nature 2018
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt from
the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, express or implied, with respect to the material contained herein or
for any errors or omissions that may have been made. The publisher remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Additional material to this book can be downloaded from http://extras.springer.com.

http://extras.springer.com

This book is dedicated to Klaus Hepp,
without whom I would have never worked in
3D kinematics, and to Ian Curthoys, who
gave me the opportunity to apply it to image
processing and to explain the underlying
mathematics to others.

Preface

This book presents an introduction to the measurement and analysis of general
movements in three-dimensional (3-D) space, i.e., movements containing a rotation
and a translation component. It only deals with the “kinematics” of the movements,
i.e., the description of the spatial position and orientation of objects; the body
“dynamics”, i.e., the description of the forces involved in the movements, are not
dealt with here. I have been explaining 3-D kinematics to others almost as long as I
can remember. First as a post-doc, when I was invited to write a review article on
the mathematics of 3-D eye movements (Haslwanter 1995). Then to doctors, when
we developed a computer program to simulate the effects of eye muscle surgeries
on eye movements (Haslwanter et al. 2005). And more recently to students, while
introducing them to the analysis of 3-D movement recordings. As a result of this
background, the measurement techniques and the examples presented in this book
are taken primarily from human movement analysis. But the same principles apply
to calculations regarding 3-D orientation also in other areas, including aeronautics,
astronomy, and computer vision.

Only a relatively small group of people have become comfortable with the
sometimes complex formalisms required to describe orientation in space, and many
researchers without a strong mathematical background have been deterred by the
mathematical structures involved, e.g., quaternions or Euler angles. The geometrical
background is presented here in such a way as to support the reader in developing a
basic intuitive understanding of 3-D rotations. Although most relevant formulas are
discussed, mathematical proofs published elsewhere have been largely omitted.

Since the most common techniques to record movements are measurements with
inertial sensors and optical measurement systems, the book includes examples of
movement recordings with these two types of sensors. I believe that especially the
latter one might be interesting to a wider audience, since today every smartphone
comes with built-in inertial sensors.

vii

Many scientific researchers use either Python or Matlab for their data analysis,
so implementations for most analysis steps are included as program packages for
these two languages. I firmly believe that knowledge should be open and accessible,
so personally I favor Python, as it is free and powerful, and has toolboxes for most
common scientific problems. So for the code examples in this book I chose Python.

How to Use This Book

My most important advice is: sit down, read through the book, and try to do the
calculations and exercises yourself! Only reading the book is not sufficient to gain
understanding. Just as one will never learn how to play the piano by going to
concerts, one also has to sit down, write down the algorithms, and program them in
order to learn them! The software provided with this book should support getting
results quickly.

Chapter 1 introduces the basic conventions and a few hands-on examples of
working with vectors and matrices. For readers who are looking for a basic
reminder of the most important concepts required from linear algebra and
trigonometry, a short brush-up is given in Appendix A. In case of doubt, please go
through it carefully, to make sure that your understanding of basic linear algebra,
trigonometry, and numerical computation is solid enough to make it through the
rest of the book.

Chapter 2 describes the main measurement techniques which can be used to
record 3-D position and orientation.

Chapter 3 introduces rotation matrices for the description of the 3-D orientation
of objects. The practical meaning of rotation matrices is explained, and examples
are given to show their practical applications.

Chapter 4 introduces quaternions, another, more efficient way to characterize
3-D orientation. It also gives a short description of Gibbs vectors and Euler vectors,
yet other ways to describe 3-D rotations.

Chapter 5 describes the algorithms to determine linear and angular velocity, with
a focus on the connection between angular orientation and angular velocity.

Chapter 6 explicitly describes how 3-D position and 3-D velocity can be ana-
lyzed, based on data from either optical marker-based systems or from inertial
measurement units (IMUs).

Chapter 7 presents the concept of sensor integration, which is used in real-life
applications to compensate for drifts, bias, and noise in sensor data. Kalman filters,
the most common approach to solve this problems, are described in more detail.

Appendices contain:

• mathematical details and proofs that are too long for presentation in the main
text,

• descriptions and examples of the programming modules accompanying the
book,

viii Preface

• step-by-step instructions for human movement recordings with optical systems
or with inertial sensors,

• solutions to the exercises at the end of some chapters, and
• a list of online resources, for getting started as well as for further reading.

Acknowledgements

I want to thank Cornelius Willers, for highly valuable input on content and style. He
provided the “outside view” for which I am really grateful. He also substantially
improved my writing style, and supplied me with a practical application example
that improved the manuscript. Thomas Pfandl has generated and rendered the 3-D
images of gimbals and planes in this book, something I could not have done without
him; he also checked some of the algorithms presented here. Andreas Kranzl has
reviewed the chapter on measurements with optical marker-based systems, and
provided helpful feedback based on his extensive experience with those systems.
And my wife Jean has not only taken care of a loving and supportive environment
but also helped me to improve the content and numerous illustrations.

Linz, Austria Thomas Haslwanter

Preface ix

Abbreviations

2-D Two-dimensional
3-D Three-dimensional
AHRS Attitude and heading reference system
COM Center of mass
CPU Central processing unit
CRT Cathode ray tube
CS Coordinate system
CT Computer tomography
DCM Direction cosine matrix
DOF Degrees of freedom
EMF Electromotive force
GPS Global positioning system
GPU Graphical processing unit
IDE Integrated development environment
IMU Inertial measurement unit
IS Inertial system
LOS Line-of-sight
MARG Sensor type providing magnetic, angular rate, and gravity information
MEMS Microelectromechanical systems
ORS Optical recording system
PC Personal computer
SAW Surface acoustic wave
SCS Space-fixed coordinate system
SO3 3-dimensional special orthogonal group
SU2 2-dimensional special unitary group

xi

Contents

1 Introduction . 1
1.1 Recording Movement and Orientation . 2
1.2 Conventions and Basics . 2

1.2.1 Notation . 3
1.2.2 Coordinate Systems . 3

1.3 Software Packages . 5
1.3.1 Python Package scikit-kinematics 5
1.3.2 Matlab 3-D Kinematics Toolbox . 6
1.3.3 Source Code for Python and Matlab 7

1.4 Warm-Up Exercises . 8

2 Measurement Techniques . 11
2.1 Marker-Based Measurements . 11

2.1.1 Image Formation . 13
2.2 Sensor-Based Measurements . 16

2.2.1 Overview . 16
2.2.2 Linear Accelerometers . 17
2.2.3 Gyroscopes . 20
2.2.4 Ultrasound Sensors—Trilateration 22
2.2.5 Magnetic Field Sensors . 23

3 Rotation Matrices . 29
3.1 Introduction . 29
3.2 Rotations in a Plane . 30

3.2.1 Rotation in Cartesian Coordinates 31
3.2.2 Rotation in Polar Coordinates . 32
3.2.3 Application: Orienting an Object in a Plane 33

3.3 Rotations About Coordinate Axes in 3-D 34
3.3.1 3-D Rotations About Coordinate Axes 34
3.3.2 Rotations of Objects Versus Rotations of Coordinate

Systems . 37

xiii

3.4 Combined Rotations . 38
3.4.1 3-D Orientation with Sequential Rotations 40
3.4.2 Gimbal Lock . 45

3.5 Homogeneous Coordinates . 46
3.5.1 Definition . 46

3.6 Applications . 48
3.6.1 Two DOF—Targeting an Object in 3-D 48
3.6.2 Two DOF—Projection onto a Flat Surface 49
3.6.3 Three DOF—3-D Orientation Measurements

with Search Coils . 51
3.6.4 Nested or Cascaded 3-D Rotation Sequences 52
3.6.5 Camera Images . 54

3.7 Exercises . 54

4 Quaternions and Gibbs Vectors . 57
4.1 Representing Rotations by Vectors . 57
4.2 Axis-Angle Euler Vectors . 59
4.3 Quaternions . 59

4.3.1 Background . 59
4.3.2 Quaternion Properties . 60
4.3.3 Interpretation of Quaternions . 61
4.3.4 Unit Quaternions . 61

4.4 Gibbs Vectors . 64
4.4.1 Properties of Gibbs Vectors . 64
4.4.2 Cascaded Rotations with Gibbs Vectors 66
4.4.3 Gibbs Vectors and Their Relation to Quaternions 66

4.5 Applications . 66
4.5.1 Targeting an Object in 3-D: Quaternion Approach 66
4.5.2 Orientation of 3-D Acceleration Sensor 68
4.5.3 Calculating Orientation of a Camera on a Moving Object . . . 70
4.5.4 Object-Oriented Implementation of Quaternions 72

5 Velocities in 3-D Space . 75
5.1 Equations of Motion . 75
5.2 Linear Velocity . 76
5.3 Angular Velocity . 79

5.3.1 Calculating Angular Velocity from Orientation 79
5.3.2 Calculating Orientation from Angular Velocity 82

6 Analysis of 3-D Movement Recordings . 85
6.1 Position and Orientation from Optical Sensors 85

6.1.1 Recording 3-D Markers . 85
6.1.2 Orientation in Space . 87
6.1.3 Position in Space . 88

xiv Contents

6.1.4 Velocity and Acceleration . 89
6.1.5 Transformation from Camera- to Space-Coordinates 89
6.1.6 Position . 90

6.2 Position and Orientation from Inertial Sensors 91
6.2.1 Orientation in Space . 91
6.2.2 Position in Space . 93

6.3 Applications: Gait Analysis . 95
6.4 Exercises . 97

7 Multi-sensor Integration . 99
7.1 Working with Uncertain Data . 100

7.1.1 Uncertain Data in One Dimension 100
7.1.2 Uncertain Data in Multiple Dimensions 102

7.2 Kalman Filter . 105
7.2.1 Idea Behind Kalman Filters . 105
7.2.2 State Predictions . 107
7.2.3 Measurements and Kalman Equations 109
7.2.4 Kalman Filters with Quaternions . 111

7.3 Complementary Filters . 111
7.3.1 Gradient Descent Approach . 112

Appendix A: Appendix—Mathematics . 115

Appendix B: Practical Applications: Denavit-Hartenberg
Transformations . 129

Appendix C: Python and Matlab Programs . 133

Appendix D: Human Movement Recordings—Practical Tips 155

Appendix E: Exercise Solutions . 161

Appendix F: Glossary . 179

Appendix G: Online Resources . 183

References . 185

Index . 189

Contents xv

Chapter 1
Introduction

Performing an everyday movement, such as reaching for a cup of tea, is so natural
and intuitive to us that it seems to be trivial. But when we try to understand how this
movement is performed, or when we try to follow or imitate such a movement, for
example, with a robotic arm, it quickly becomes obvious that even such seemingly
trivial acts are based on a complex interaction of the relative three-dimensional
(3-D) upper body, arm, and finger orientations. Similarly, looking at the face of an
approaching friend while walking down the street does not seem to be much of an
achievement. But talk to an engineer who has tried to keep a camera on a moving
platform oriented such that it keeps focussing on another moving target, and you
realize that working with objects moving in 3-D space entails many challenges,
especially mathematical and geometric ones.

Surprisingly, little literature exists that provides a researcher or engineer who
wants to work on this type of phenomena with an introduction into the area. On
the contrary, most articles or books focus on one selected way to characterize a
3-D movement, but do not elaborate on alternative ways to describe it. For example,
my own physics education gave me a (confusing) introduction to “Euler angles” or
the “special unitary group of complex 2× 2 matrices”, but never showed how to
work with them in practice, and did not mention alternative descriptions of spatial
orientation, such as quaternions.

This book tries to fill this gap. It will provide an overview of common ways to
characterize movement in 3-D space. In particular, it will provide an introduction to
the different methods that are commonly used to record and analyze human move-
ments, be it for medical applications (such as gait analysis), scientific uses (such as
biomechanical investigations), or for recreational activities (such as the movement
analysis with the sensors built into current smartphones). But it should also be able to
provide programmers working in computer graphics with the necessary background
to choose the optimal algorithms for their kinematic tasks at hand.

To my knowledge, this book is the first one that not only describes the mathemat-
ics of 3-D kinematics but also provides full programming toolboxes (in Python and

© Springer International Publishing AG, part of Springer Nature 2018
T. Haslwanter, 3D Kinematics, https://doi.org/10.1007/978-3-319-75277-8_1

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-75277-8_1&domain=pdf

2 1 Introduction

in Matlab), allowing the reader to focus on the understanding and not on “trivial”
programming details. The Python package scikit-kinematics,1 as well as a corre-
sponding Matlab Kinematics Toolbox,2 contain the algorithms for simulating 3-D
movements, and for importing and analyzing data from different 3-D recording sys-
tems. Code listings and the solutions to the exercises can be found on the website
accompanying this book.3

1.1 Recording Movement and Orientation

Determination and characterization of orientation andmovement in space canprovide
valuable information for numerous applications:

• Smartphones use such measurements to decide whether the display should be in
portrait or landscape mode.

• Fitness trackers, such as Jawbone or Fitbit, use this information to estimate and
quantify the amount of daily movement activities.

• Airbags in cars are triggered by movement sensors.
• In neurology, otorhinolaryngology, and ophthalmology, movement recordings are
used for the diagnoses of medical conditions.

• Autopilot applications in planes and autonomous vehicles requiremovement infor-
mation for their actions.

• Modern prosthetic devices include movement sensors, to control built-in motors
and to regulate the mechanical properties of modern prostheses.

Simple approaches are often sufficient for two-dimensional (2-D) measurements.
A simple protractor is sufficient to find the angles between upper body, upper leg,
and lower leg from a photography of a runner. And a goniometer can quickly indicate
the angle between two objects or shafts.

However, to uniquely characterize the movement of an object in 3-D space, the
measurements are more involved and six parameters are required. For recording
of 3-D position and orientation, which together are sometimes referred to as pose,
two approaches can be taken. First, three or more parts of an object can be marked.
Tracking themovement of thosemarkers in 3-D space provides information about the
movement of the object. And second, if the object is solid, a sensor can be attached
to the object. The signals from this sensor can then be used to find the position and
orientation of the sensor, and thus of the object.

1.2 Conventions and Basics

Movements in 3-D space consist of translations as well as rotations. To describe
them, the following conventions will be used.

1https://github.com/thomas-haslwanter/scikit-kinematics.
2https://github.com/thomas-haslwanter/kinematics_toolbox.git.
3https://github.com/thomas-haslwanter/3D_Kinematics.

https://github.com/thomas-haslwanter/scikit-kinematics
https://github.com/thomas-haslwanter/kinematics_toolbox.git
https://github.com/thomas-haslwanter/3D_Kinematics

1.2 Conventions and Basics 3

1.2.1 Notation

• Axes indexing starts at 0, (0, 1, 2) and corresponds to the (x, y, z) axes, respectively.
• Scalars are indicated by plain letters (e.g., a).
• Columnvectors arewrittenwith bold lowercase letters (e.g., r) or in roundbrackets,
and the components of 3-D coordinate systems are labeled (x, y, z):

r =
⎛
⎝
rx
ry
rz

⎞
⎠ .

(The only exception are the electrical field E and the magnetic field B, which by
convention are written in uppercase Sect. 2.2.5). However, it should be clear from
the context that they are vectors.)

• The length or “norm” of a vector is indicated by the same name but in plain style

|r| =
√∑

i

r2i = r.

• Matrices are written with bold uppercase letters (e.g., RRR) or in square brackets.

RRR =
⎡
⎣
Rxx Rxy Rxz

Ryx Ryy Ryz

Rzx Rzy Rzz

⎤
⎦ .

• Vector and matrix elements are written in plain style, with indices denoted by
subscripts (e.g., rx ; Ryz).

• Multiplications with a scalar are denoted by ∗ (e.g., tan(θ/2) ∗ n).
• Scalar–vector products and matrix multiplications are denoted by · (e.g., p · q).
• Vector cross products are denoted by × (e.g., p × q).
• Quaternions are denoted with bold italics and tilde (e.g., r̃).
• Products of quaternions or Gibbs vectors are denoted by ◦ (e.g., r̃ p ◦ r̃q).

1.2.2 Coordinate Systems

A frequent source of confusion is the choice of coordinate system. Unit vectors in
the direction of the x-, y-, z-axes will be denoted with nx,ny,nz, respectively. The
direction of nx can be chosen freely. For example, it can point forward, left, or up.

Modern texts almost exclusively use right-handed coordinate systems (Fig. 1.1),
butmay attach differentmeanings to the three axes. For example, in image processing
nx is typically chosen pointing right and ny pointing up so that the image plane is the
(x, y)-plane. In aerospace engineering, nx is pointing forward, ny is chosen such that

4 1 Introduction

Fig. 1.1 Right-hand reminder for the direction of the positive coordinate axes. Remember where
“x” is pointing to! (from Wikipedia, by R. Hewitt)

it points to the right, and nz as a result is pointing down. With that convention, nose-
up rotations of an airplane are “positive”, the preferred choice in aeronautics. When
used in navigation the axes ordermay denote East-South-Down orNorth-East-Down.
And in human locomotion analysis nx should point in the direction of progression, ny
upward, and nz to the right (Wu and Cavanagh, 1995). But regardless of the specific
choice, it is very important to make sure which coordinate system has been selected.

In this book, the default coordinate system will be a right-handed coordinate
system with three orthogonal unit vectors. The coordinate system is chosen as it is
commonly used in medical applications and movement analysis. It defines the axes
as follows (Fig. 1.2):

• nx pointing forward,
• ny pointing to the left, so that the x, y-plane (z = 0) is horizontal, and
• nz pointing up.

so that
nx × ny = nz . (1.1)

Wherever possible the axis labels (“x”, “y”, “z”) will be used to avoid labeling
by numbers (“0”, “1”, “2”), since some computer languages (like C or Python) start
with 0, while others (like Matlab) start with 1.

Fig. 1.2 Right-handed coordinate system

1.3 Software Packages 5

Fig. 1.3 For finding a correct mathematical solution to the individual problem at hand, informal
sketches are invaluable! In most cases, the programming should be almost trivial, especially when
using the software provided with this book. But 3-D kinematics is complex to visualize, and the help
provided by simple sketches is hard to overestimate (Here, a sketch for a camera-based recording
of an experimental setup, as will be used in Chap.6.)

1.3 Software Packages

To facilitate and speed up the analysis of 3-D data, this book comes with libraries
in Matlab and Python. These libraries provide frequently used functions for work-
ing with vectors, rotation matrices, and quaternions, and for the data analysis for
measurements from inertial measurement units (IMUs) or from optical recording
systems (e.g., Optotrak or Vicon) (Fig. 1.3).

The application examples in this book are presented in Python. The corresponding
source code can be found on the web-page accompanying this book.4 A list of the
programs included is given in Appendix C.

1.3.1 Python Package scikit-kinematics

The Python core distribution contains only the essential features of a general pro-
gramming language. For example, it does not even contain a package for working
efficiently with vectors and matrices. These packages, and many more that are use-
ful for scientific data analysis, can be installed most easily using so-called “Python
distributions”. Two recommendable Python distributions are

• WinPython for Windows only.
• Anaconda by Continuum, for Windows, Mac, and Linux.

Both distributions are freely available, and neither requires administrator rights. A
list of links for the downloads of these distributions, as well as recommendations for
getting started with Python for scientific applications, can be found in Appendix G.

The relationships between the basic scientific Python packages used by scikit-
kinematics is shown in Fig. 1.4, as well as the role of Jupyter and IPython which are
used for interactive data analysis.

4https://github.com/thomas-haslwanter/3D_Kinematics.

https://github.com/thomas-haslwanter/3D_Kinematics

6 1 Introduction

Fig. 1.4 The structure of the most important Python packages for 3-D kinematics. The standard
scientific packages are written in black; more specialized packages are labeled in gray. sympywill
be used here for working with symbolic matrices

The programs included in this book have been tested with Python 3.6.3 under
Windows and Linux using the following package versions:

• Jupyter 1.0.0 … Framework for interactive work.
• IPython 6.2.1 … Python kernel for interactive work.
• numpy 1.13.3 … For working with vectors and arrays.
• scipy 1.0.1 … All the essential scientific algorithms, including those for basic
statistics.

• matplotlib 2.2.2 … The de-facto standard package for plotting and visualization.
• pandas 0.22.0 … Adds “DataFrames”, which are easy to use data structures, to
Python.

Building on this basis, the Python package scikit-kinematics is intended to facil-
itate the development of programs for the analysis of spatial data. It can be down-
loaded from https://github.com/thomas-haslwanter/scikit-kinematics and is docu-
mentedunder http://work.thaslwanter.at/skinematics/html/. The easiestway to install
it is by typing

pip insta l l scikit−kinematics

on the command line. Updates can be performed with

pip insta l l −−upgrade −−no−deps scikit−kinematics

In the Python applications, scikit-kinematics is for brevity referred to as
skinematics (Fig. 1.5).

1.3.2 Matlab 3-D Kinematics Toolbox

Matlab is the 800-pound gorilla in the room when it comes to scientific computing.
It has been around for a long time (I have used Matlab for more than 20years) and
is well established in many academic and industrial environments. In contrast to

https://github.com/thomas-haslwanter/scikit-kinematics
http://work.thaslwanter.at/skinematics/html/

1.3 Software Packages 7

Fig. 1.5 The scikit-kinematics logo

Python, which is a general programming language, Matlab is tailored to numerical
applications. It is a fully developed integrated development environment (IDE) and
has a wealth of “Toolboxes” available, which are extensions for dedicated program-
ming applications.

The downsides of Matlab are that it is commercial, expensive for those outside
an academic environment, and that—compared to Python—it is a rather old pro-
gramming language. Matlab’s object-oriented programming scheme is unwieldy and
overly complex.

The 3-D Kinematics toolbox accompanying this book can be downloaded from
the Matlab Kinematics Toolbox 5 and can be installed simply by opening the file
3D_Kinematics.mltbx in Matlab. The toolbox files will then be copied to
the correct locations in Matlab, and the corresponding search path added to the
MATLABPATH.

1.3.3 Source Code for Python and Matlab

The Python package scikit-kinematics and the Matlab Kinematic toolbox are shared
via https://github.com/thomas-haslwanter.

A frequent source of confusion is the difference between “git” and “github”. git
is a “version control program”, whereas github is a website.

Version control programs (such as git), also known as revision control programs,
allow tracking only the modifications, and storing previous versions of the source
code under development. If the latest changes cause a new problem, it is then easy to
compare them to earlier versions, and to restore the source code to a previous state.
Git can be used locally, with very little overhead. And it can also be used to maintain
and manage a remote backup copy of the code. While the real power of git lies in its
features for collaboration, it is also powerful and works very smoothly for personal
software development. git is well integrated into most Python IDEs, and in Matlab.

Under Windows tortoisegit (https://tortoisegit.org/) provides a very useful Win-
dows shell interface for git. For example, in order to clone a repository (e.g., scikit-

5https://github.com/thomas-haslwanter/kinematics_toolbox.git.

https://github.com/thomas-haslwanter
https://tortoisegit.org/
https://github.com/thomas-haslwanter/kinematics_toolbox.git.

8 1 Introduction

kinematics or theKinematics Toolbox) from github to a computer where tortoisegit is
installed, one simply has to right click on the folder where one wants the repository
to be installed, select Git Clone ..., and enter the repository name—and the
whole repository will be cloned there. Done!

github is a website frequently used to share code. While one can download source
code from there, it is much more efficient to use git for this task.

Code: C1_examples_vectors.py: Example of work-
ing with vectors. (p.133)

1.4 Warm-Up Exercises

This first batch of examples is intended as a reminder of the basic principles of
geometry, trigonometry, and numerical analysis. Solutions to these exercises are
provided in Appendix E.

Exercise 1.1: A Simple Linear Movement
An accelerometer moving sinusoidally along a single axis indicates an output
(Fig. 1.6)

acc(t) = amp ∗ sin(ωt) . (1.2)

Knowing the initial conditions vel(t = 0) and pos(t = 0), it is possible to deter-
mine the movement of the accelerometer in space. Please try to do that analytically.

Exercise 1.2: Find the Cat
Take the image in Fig. 1.7, showing me and my three-legged cat Felix, and the
following additional information:

• The coordinate center is defined as the center position on the ground between my
legs.

• The Ikea shelf behind me has a height of 1.24m.

Try to answer the following question, using only a simple drafting triangle:
“What are the coordinates of the cat (e.g., the center between the cat eyes) in a

space-fixed coordinate system, defined as (x, y, z) pointing forward, left, and up,
respectively?”

List the required steps, as well as all the assumptions made. Make a sketch of the
geometry of the problem and write down the equations that would be needed to solve
it.

Fig. 1.6 Sinusoidal movement along one dimension

https://github.com/thomas-haslwanter/3D_Kinematics/blob/master/python/C1_examples_vectors.py

1.4 Warm-Up Exercises 9

Fig. 1.7 Me and my cat Felix

Exercise 1.3: Simple Pendulum
At first sight, a pendulum executes a deceptively simple motion. For example, for
small swings the movement is nicely sinusoidal.

Assume that a pendulum with a length of r = 0.2m and a mass of m = 0.5kg,
deflected by an angle of θ0, is released at t=0. Find the position of the pendulum for
times 0 s <= t <= 10 s, with a �t = 1ms, for initial deflections of 5◦ and of 70◦
(Fig. 1.8).

The movement of a pendulum can be simulated using Newton’s second law

L = I ∗ d2θ(t)

dt2
, (1.3)

where L is the torque and I is the moment of inertia. For a pendulum, the moment
of inertia is I = m ∗ r2. And the torque L is given by L = r ∗ F , where F is the
tangential force acting on the pendulum. The equations for deflection θ and angular
velocity ω = dθ

dt can be solved iteratively:

10 1 Introduction

Fig. 1.8 A “simple” pendulum

θ(tn+1) = θ(tn) + ω(tn) ∗ �t (1.4)

ω(tn+1) = ω(tn) + d2θ

dt2

∣∣∣∣
tn+1

∗ �t

= ω(tn) + L

I

∣∣∣∣
tn+1

∗ �t (1.5)

Hints:

• First, write down the implementation of the equations for θ(ti) and ω(ti).
• Note that to improve the stability of the solution, theEuler–Cromer method is used
in Eq. (1.5): this means that for the acceleration term L(tn+1) is used, not L(tn)!

Exercise 1.4: Not-so-simple Pendulum
If Exercise 3 is not challenging for you, try to answer the following question:

If the mass at the end of the pendulum is replaced by an accelerometer, what will
the output of that accelerometer be when we let go of the pendulum, from an initial
deflection of 10◦?

The answer to this question is surprising, and surprisingly difficult to write down.
Do not worry if you have difficulties solving this problem now, but give it a try again
after having completed Chap.6.

Chapter 2
Measurement Techniques

This chapter will give an overview of the measurement principles behind the optical-
and sensor-based methods that are most commonly used to record 3-D movements.
Details for human motion capture can be found in the recent Handbook of Human
Motion [Müller et al., 2018].

2.1 Marker-Based Measurements

Essentially, every identifiable feature of an object can be taken as a marker or interest
point:

• In image processing, corners, defined as the intersection of two edges, are often
used as markers, in order to track objects or to compare images for similarity.
(The subsequent mapping of one image to another is called “image registration”.)
A number of algorithms exist for corner detection, such as the Harris–Stephens
algorithm (Harris and Stephens 1988).

• Particles or bubbles in gases or fluids (Hassan and Canaan 1991), or gold beads
inserted into muscles (Miller et al. 2003), can be tracked and have been used
to determine movement and deformation of elastic, viscous, liquid, and gaseous
materials.

• Combined information of images and depth sensors can be used to estimate joint
locations, an approach used very successfully in the Microsoft Kinect (Kar 2010).

• Passive markers, which can be anything from a simple “X” painted onto the item to
be tracked or small 3-D spheres which selectively reflect visible or infrared light,
can also be used to track well-defined parts of an object of interest. In the area
of life sciences, the Vicon system has become almost a gold standard (Fig. 2.1).
Passivemarker systems are easier to handle than activemarker systems (see below),
because the markers do not require any cables.

© Springer International Publishing AG, part of Springer Nature 2018
T. Haslwanter, 3D Kinematics, https://doi.org/10.1007/978-3-319-75277-8_2

11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-75277-8_2&domain=pdf

12 2 Measurement Techniques

Fig. 2.1 A Vicon system for human motion capture. Passive markers, which are small, reflective
spheres, are first attached to interesting points of the human body.Using an array or infrared cameras,
the location of those markers in space can then be reconstructed (With kind permission from Vicon)

• Active markers, which emit light or sound signals at known points in time,
can be attached to subjects or objects, and can be tracked. Active markers can
be sound markers or optical markers. Sound markers are located based on the
runtimes between the pulsed sound signal and three or more microphones. In
contrast, optical markers are typically located with video cameras (Fig. 2.2).
Thereby, high-speed line-scan cameras can be used instead of 2-D imaging sensors,
allowing higher sampling frequencies. The advantage of active marker systems is

2.1 Marker-Based Measurements 13

Fig. 2.2 Left: The Optotrak sensor with three cameras, mounted on a tripod. Right: The corre-
sponding active markers (here three combined), with the communication unit to communicate with
the sensors

that the markers can always be uniquely identified, even if they were obscured
intermittently.

The algorithms to find the location of a marker in 3-D space depend on the type of
marker. Trilateration, i.e., the process of determining absolute or relative locations
of points by measurement of distances, is used for sound markers. This topic will be
covered briefly in Sect. 2.2.4.When signals are obtained by cameras themeasurement
technique is called “stereophotogrammetry”, and image processing is typically used
to find the location of a point of interest in a 2-D image. The underlying principles
of image formation are described below. The reconstruction of a 3-D location by
combining information from two or more cameras is not covered in this book.

2.1.1 Image Formation

Many measurements of 3-D objects are performed with optical systems, which
project 3-D data into a 2-D image plane. Typically, the image plane is assigned the
(x, y)-coordinates, with the positive x-axis pointing right (along image columns),
and the positive y-axis pointing up or down (along image rows), thus placing the
origin in the bottom-left or in the top-left corner, respectively.

Projections describe the mapping of the 3-D object space into the 2-D image
space.

Parallel Projection

The simplest transformation from a 3-D object into the image plane is the “parallel
projection”, for example, the projection of the pupil center of an eye into an image
plane (Fig. 2.3). The location of the pupil center in 3-D is given by

14 2 Measurement Techniques

Fig. 2.3 Parallel projection from3-D into a plane.Note that the coordinate systemof the imageplane
(x, y) is different from the head/space-fixed coordinate system (hx , hy , hz). θ and φ correspond to
the nautical sequence of rotations (see section3.4.1)

cp =
⎛
⎝

x
y
z

⎞
⎠

SpaceFixed

. (2.1)

With the setup in Fig. 2.3, the space-fixed (y, z)-plane is parallel to the image
plane. Visual inspection of Fig. 2.3 shows that

(
x
y

)

ImagePlane

=
(

y
z

)

SpaceFixed

. (2.2)

Generalization: The general case is a bit more complicated. It involves the “rota-
tion matrices” introduced in Chap. 3. Here, the rotation matrix R describing the
rotation from the imaging system to the space-fixed system is given by (see Chap.3)

R =
⎡
⎣
0 1 0
0 0 1
1 0 0

⎤
⎦ . (2.3)

And the equations for the transformation of the coordinates can be derived in the
sameway as Eq. (6.15) in Sect. 6.1.6. The result is presented herewithout proof: If c is
the point under consideration, pC S indicates the center of the space-fixed coordinate
system expressed relative to the imaging system, andR the rotationmatrix describing
the orientation of the space-fixed coordinate system relative to the imaging system,
then the position of the point with respect to the imaging system is

cimage = R · cspace + pC S , (2.4)

and the projection into the image plane is given by

cimage
projected = cimage − (cimage · nz) ∗ nz , (2.5)

where nz is the unit vector along the z-axis of the imaging system.

2.1 Marker-Based Measurements 15

S1 S2
ff

Object

Real Image

Fig. 2.4 Central projection through a thin lens. The red “*” indicates the focal point of the lens

For practical applications, 2-D projections are also implemented in the scikit-
kinematic function vector.project, when it is called with the option
projection_type=’2D’.

Central Projection

The image of an object is typically obtained using optics. In the simplest case, the
optics consist of a single lens. If the object is very close to the camera, a parallel
projection no longer describes the imaging process accurately. The projection of an
object through a lens into the image plane of a camera can be approximated more
accurately by a “central projection” (Fig. 2.4).

For a central projection, object distance S1, focal length f, and image distance S2
are related by the paraxial1 thin lens equation

1

S1
+ 1

S2
= 1

f
. (2.6)

For many practical applications, the objects are much further away than the focal
length S1 >> f . In that cases, the image is located close to the focal plane, and
S2 ≈ f .

The paraxial central projection only holds for objects close to the optical axis.
If objects are located at a significant distance from the optical axis, or for objects
very close to the lens, the technique of “ray-tracing” has to be used to determine the
accurate image of the object computationally.

Note: Images are typically acquired digitally with CCD or CMOS image sensors.
As a result, the image values are expressed in pixels, not in millimeters or meters.
If possible, also the image of a reference object, e.g., a ruler, should be acquired, to
check that the assumed conversion factor from pixels to length is correct.

1In the paraxial approximation, Equations A.7 and A.8 are made, assuming small field angles and
small image heights.

16 2 Measurement Techniques

2.2 Sensor-Based Measurements

2.2.1 Overview

Information about position and orientation of an object can also be obtained by
attaching sensors to the object of interest. If the object is a rigid body, and the sensor
tightly attached to it, sensor information canprovide direct information about position
and/or orientation of the object.

Sensors can be screwed, glued, taped, or strapped to objects in order tomeasure the
movement of the objects. But it is surprisingly difficult to measure the kinematics of
a human body, to decide what exactly should be recorded, and where to firmly attach
sensors.Consider themovement of the lower arm: the lower armhas twobones, radius
and ulna, and those can move with respect to each other (especially with a rotation
of the wrist); and the muscles can contract and thereby change their thickness, even
when the bones are stationary. On top of that, the skin overlying the muscles adds an
additional possible source of sensor movement. Measurements where markers were
actually inserted into the bone (so-called “bone pins”) have tried to quantify the
errors obtained when using surface-mounted markers in biomechanics (Reinschmidt
et al. 1997a, b). But for most applications, such bone pins are not practical.

Sensors such as accelerometers, gyroscopes, Hall sensors (for static magnetic
fields), and induction sensors (for dynamic magnetic fields) are commonly used for
kinematic recordings. Accelerometers and gyroscopes are referred to as “inertial
sensors” (Fig. 2.5), since they provide a signal when the position or orientation of an
object is moved with respect to an inertial system.

Sensors for staticmagnetic fields, like the localmagnetic field of the earth, provide
absolute orientation information, even without any movement of the object. Static
magneticfield sensors use theHall effect for signal generation (seeSect. 2.2.5). Induc-
tion sensors provide orientation information in oscillating magnetic fields, which
have to be generated externally in order to obtain a signal.

Fig. 2.5 Inertial sensor from x-io Technologies (red box/arrow) attached to the wrist during a
physiotherapy exercise

2.2 Sensor-Based Measurements 17

Fig. 2.6 The MTX sensor from Xsens measures linear acceleration, angular velocity, and the local
magnetic field

A very good overview of “inertial measurement units” (IMUs) has been provided
by (Woodman 2007), and a number of the following details have been taken from that
article. The most common type of IMUs in biomedical applications are strapdown2

systems, sensors that can be strapped to the body. They are typically produced with
“microelectromechanical systems” (MEMS) technology, which enables the creation
of very small electromechanical devices using semiconductor fabrication techniques.
Figures2.5 and 2.6 show examples of integrated devices containing three types of
sensors:

• Accelerometers to measure linear accelerations,
• Gyroscopes to measure angular velocity, and
• Magnetometers to measure the 3-D orientation of the local magnetic field.

2.2.2 Linear Accelerometers

Accelerometers sense the “gravito-inertial force” (GIF), i.e., the sum of gravity and
inertial forces caused by linear accelerations.

fGIF = fgravi t y + fLin Acc = m ∗
(
g + d2x

dt2

)
. (2.7)

This gravito-inertial force can be measured either mechanically or with a solid-
state device. Mechanical measurements can be performed based on a number of
electromechanical effects. For example, a mechanical accelerometer can read out
the displacement of a “proof mass”, as shown in Fig. 2.7. Or it can be designed as
a “Surface Acoustic Wave” (SAW) accelerometer (Fig. 2.8). A SAW accelerometer
uses a cantilever beam resonating at a particular frequency. A mass is attached to one

2Strapdown sensors mean that the sensor is firmly fixed to the object being measured, and there are
no gimbals or moving parts.

18 2 Measurement Techniques

Fig. 2.7 A mechanical accelerometer

Fig. 2.8 Sketch of a surface acoustic wave (SAW) accelerometer

end of the beam which is free to move. The other end is rigidly attached to the case.
When an acceleration is applied along the input axis, the beam bends. This causes the
frequency of the surface acoustic wave to change proportionally to the applied strain.
By measuring this change in frequency with identical patterns of surface acoustic
wave delay lines or resonator electrodes on two opposing sides of the beam, the
acceleration can be determined. This type of accelerometer is useful for high impact
and vibration applications.

Sign of Gravitational Acceleration

The linear acceleration forces acting on a sensor are the sum of gravity and the
linear accelerations elicited by movements in space [(Eq. (2.7)]. But since the sensor
cannot distinguish between gravitational and inertial forces, everything is interpreted
as “acceleration”, irrespective of the cause of the force. (An extension of these ideas
would lead to the theory of special relativity.)

Note that according to Newton’s third law “For every action, there is an equal
and opposite reaction”, the direction of the force causing the movement and the
corresponding sensed acceleration have the opposite direction (see Fig. 2.9)! For
example, if you drive a powerful car and accelerate forward, you are pushed backward
into the driver seat. So for a sensor lying stationary on the floor, the gravitational

2.2 Sensor-Based Measurements 19

Fig. 2.9 Acceleration in one direction causes a relative force frel , and a corresponding mass dis-
placement, in the opposite direction

force pulls downward, but the sensor indicates a corresponding acceleration upward.
The output of the accelerometer is then

gspace =
⎛
⎝

0
0

−9.81

⎞
⎠ms−2 ⇒ accspace

gravi t y =
⎛
⎝

0
0

9.81

⎞
⎠ms−2. (2.8)

IMU Artifacts

The analysis of IMU measurements can be affected by measurement noise, mea-
surement offsets, sensor drifts, external interferences, and by errors in the underly-
ing assumptions. The determination of the exact sensor position from IMU signals
requires very high-quality sensors. To obtain orientation or position, the measure-
ment signals have to be integrated once or twice, respectively. Thus any bias on the
measurement signal effects orientation linearly with time, and position even quadrat-
ically with time. For each coordinate direction i ∈ {x, y, z}, we have

veli (t
′) =

∫ t ′

t0

acci (t
′′)dt ′′ + vel(t0)

posi (t) =
∫ t

t0

veli (t
′)dt ′ + posi (t0) (2.9)

=
∫ t

t0

∫ t ′

t0

acci (t
′′)dt ′′dt ′ + veli (t0)(t − t0) + posi (t0).

If acceleration has a small bias, i.e., acci (t ′′) is replaced by acci (t ′′)+�, Eq. (2.9)
leads to

posi (t) =
∫ t

t0

∫ t ′

t0

acci (t
′′)dt ′′dt ′ +veli (t0)(t − t0)+ posi (t0)+�(t − t0)

2 . (2.10)

In words, the calculated position posi (t) includes a position error of� ∗ (t − t0)2

which increases quadratically with time.

20 2 Measurement Techniques

For the same reason, small errors in the orientation signal induce erroneous posi-
tion measurements. For example, a tilt error of 0.05◦ will cause a component of the
acceleration due to gravity with a magnitude of 0.0086ms−2 to be projected onto the
horizontal axes. This residual bias causes an error in the horizontal position which
grows quadratically to 7.7m after only 30 s!

Unfortunately, signals from the IMUs typically used for humanmovement record-
ings often include a significant amount of drift and offset. In order to nevertheless
obtain position and orientation values that are close to the actual values, two options
are available:

• Additional measurement signals can be used to provide information about the
absolute orientation with respect to space. In that case, we are dealing with “over-
determined” systems and uncertain information, and we have to find the optimal
solution to the given measurement data.

• Or information about external restrictions can be used to improve the accuracy.

The first option is for example used by MEMS devices which also include a
magnetometer, which measures the direction of the local magnetic field. This is
approximately the direction of the earth magnetic field. This additional information
provides a constant orientation and allows to partially compensate erroneous mea-
surement signals. An introduction to the ideas behind “sensory integration” will be
presented in Chap.7.

The second option is to use external information to compensate for measurement
errors. For example, one can ask the subject repeatedly to bring the sensor into a
well-known position/orientation. Or one can use knowledge about the experiment,
e.g., that during walking the movement of the sole of the shoe is typically zero while
the shoe is on the ground (Jiménez et al. 2010). Another assumption that is sometimes
applied to human movement recordings is that averaged over 10 or more seconds,
the mean acceleration points almost exactly downward (Madgwick et al. 2011).

2.2.3 Gyroscopes

Gyroscopes indicate the angular velocity with respect to inertial space, but the values
can be expressed in any coordinate system. In most cases, the gyroscope measure-
ments are expressed in a sensor-fixed coordinate system.

MEMS gyroscopes make use of vibrating elements and the “Coriolis effect”,
which states that in a frame of reference rotating at angular velocity ω, a mass m
moving with velocity v experiences a (fictitious) force fc, the Coriolis force (see
Fig. 2.10):

fc = 2 ∗ m ∗ (v × ω) . (2.11)

2.2 Sensor-Based Measurements 21

Fig. 2.10 The best-known application example of the Coriolis force are the trade winds. Winds
blowing from the poles toward the equator (vwind) change their radius, rearth ∗ cos(φ), in
an environment rotating with ω and therefore experience the Coriolis force fC . This deflects
the winds, leading to the commonly observed easterly winds around the equator known as “trade
winds”

Fig. 2.11 A vibrating mass gyroscope makes use of the Coriolis force: a linear movement along
the “Actuation” axis during a rotation causes a torque along the “Sensing” axis

The simplest sensor geometry consists of a single mass which is driven to vibrate
along a drive or actuation axis, as shown in Fig. 2.11. When the gyroscope is rotated,
a secondary vibration is induced along the perpendicular sensing axis due to the
Coriolis force. The angular velocity can be calculated by sensing this secondary
vibration.

22 2 Measurement Techniques

2.2.4 Ultrasound Sensors—Trilateration

The location of a sensor can be detected if the sensor emits short ultrasound pulses.
The physical principle behind this approach is the runtime of sound: for example,
if a lightning strikes the ground at a distance of 1km, the corresponding thunder
can be heard approximately 3s later: the velocity of sound in air is approximately
velsound = 343ms−1. With a runtime of �ti , this gives a distance ri of

ri = velsound ∗ �ti . (2.12)

So a lightning at a distance of 1km would correspond to a thunder with a time
delay of �t = 292ms.

The fact that sound in air propagates isotropically, i.e., in the same way in every
direction, can be used to determine the exact location of the sound source in 3-D
space if runtime measurements are available from three independent microphones.
The method to find the sound source is called “trilateration” (see Fig. 2.13) and
requires the measurement of the time delay with three independent detectors. (The
same principle is also used for GPS systems, with electromagnetic pulses instead of
sound pulses. The pulses are emitted by the satellites, and the runtime is measured
by the observer. Since typical GPS receivers do not have sufficiently accurate clocks,
in practise at least four satellites are required.) For trilateration to work, the three
detectors have to be positioned such that they do not lie on a line. An example for
such a system is the SAM PuttLab system by zebris (Fig. 2.12), which is a dedicated
system for analyzing the putting of golf balls.

Figure2.13 indicates how trilateration works. Without loss of generality, it can be
assumed that the three points pi that indicate the centers of three spheres with radii
ri , all lie in a plane.

Fig. 2.12 The SAM PuttLab by Science & Motion Sports (With kind permission from http://www.
scienceandmotion.com)

http://www.scienceandmotion.com
http://www.scienceandmotion.com

2.2 Sensor-Based Measurements 23

Fig. 2.13 The plane z = 0, showing from the upper left the three sphere centers p0,p1,p2 (open
dots, for clarity no labels); their x, y-coordinates; and the corresponding sphere radii, r0, r1, and r2.
The two intersections of the three sphere surfaces are directly in front and directly behind the point
designated (x, y, z) in the z = 0 plane

• p0 = (0/0/0) forms the center of the coordinate system,
• the line from p0 to p1 = (d/0/0) forms the positive x-axis, and
• the plane spanned by p0,p1,p2 = (i/j/0) is the x–y-plane.

The radius ri of each sphere can be determined from the propagation time of
the signal. For example, with an ultrasound-based system such as the one shown in
Fig. 2.12, a propagation time of�t = 2mswould thus give a radius of approximately
69cm.

It can then be shown that the intersection of the three spheres has the coordinates

x = r20 − r21 + d2

2d

y = r20 − r22 − x2 + (x − i)2 + j2

2 j
= r20 − r22 + i2 + j2

2 j
− i

j
x (2.13)

z = ±
√

r20 − x2 − y2.

2.2.5 Magnetic Field Sensors

Static Magnetic Fields

The IMU inertial sensors (accelerometers and gyroscopes) only provide information
about the change of position and orientation. But due to the earth’s magnetic field,
we have at least a small magnetic field at every location on the planet, so information
about the absolute current orientation of the sensor with respect to space can be
obtained by measuring the orientation of that field.

24 2 Measurement Techniques

Fig. 2.14 Lorentz force (left): A charge q moving with the velocity vel in a magnetic field
B perpendicular to the velocity vel experiences the Lorentz force. This force depends on the
charge q, and the particle gets correspondingly deflected.Hall effect (right): The deflected charges
accumulate on electrodes, resulting in a voltage V that can be measured with a volt meter

Static magnetic fields can be measured with the Hall effect, which can produce a
voltage difference (the Hall voltage) across an electrical conductor (Fig. 2.14, right).

The Hall effect is based on the Lorentz force, the combination of the electric and
magnetic forces on a moving point charge due to electromagnetic fields. With an
electrical field E and a magnetic field B,3 the Lorentz force is

f = q ∗ E + q ∗ v × B, (2.14)

which reduces to

f = q ∗ v × B, (2.15)

in the absence of a static electric field (Fig. 2.14, left). With a magnetic field B
perpendicular to the electric current v, this force is transverse to the current in the
conductor, producing the Hall effect as indicated in Fig. 2.14 (right).

Application: Earth Magnetic Field Typically, the orientation of the local magnetic
field is determined by the earth magnetic field. Figure2.15 shows a sketch of the
inclination of the earth magnetic field, i.e., the angle between the magnetic field
lines and the local earth-horizontal plane. In Austria, for example, the inclination of
the earth magnetic field is approximately 64◦ (i.e., down), similar to the inclination
in San Francisco or New York. The declination of the earth magnetic field is the
deviation of the field relative to true north (“Ng” in Fig. 2.15), and is positive for
an eastward deviation from true north. It is about 3◦ in Austria (i.e., slightly east
relative to true north), 13◦ in San Francisco, and −10◦ in New York. However, in
the presence of devices that produce magnetic fields, such as old “cathode ray tube”

3Note that E and B are vectors, not matrices. Since they are conventionally capitalized, they are
also capitalized here.

2.2 Sensor-Based Measurements 25

Fig. 2.15 Sketch of the variation between magnetic north (Nm) and “true” north (Ng) (from
Wikipedia, “Geomagnetisme.png”)

(CRT) screens, the local magnetic field may be strongly distorted. If you use the
magnetic field data in your analysis, double check the local magnetic field signals!

Dynamic Magnetic Fields

To measure the orientation of a sensor in an oscillating magnetic field the “induction
effect” can be used.

The magnetic flux through the coil, which is sometimes referred to as “search
coil”, is defined by a surface integral:

�B =
∫

�

B · da, (2.16)

where da is an element of the surface � enclosed by the wire loop, and B is the
magnetic field. The dot product B · da corresponds to the magnetic flux through
the surface element da. In more visual terms, the magnetic flux through the wire
loop is proportional to the number of magnetic flux lines that pass through the loop
(Fig. 2.16).

If themagneticfield is approximately uniformwithin the loop,Eq. (2.16) reduces to

�B = B · a = |B| ∗ |a| ∗ cos(α) (2.17)

where a is a vector perpendicular to the loop, with a length given by the area enclosed
by the loop.

26 2 Measurement Techniques

Fig. 2.16 If the area of an induction coil is represented by the vector a, then the magnetic flux
through the coil is given by the scalar product with the magnetic field, a · B

When the flux through the surface changes, Faraday’s law of induction says that
the wire loop acquires an “electromotive force” (EMF) E . The most widespread
version of this law states that the induced electromotive force in any closed circuit
is equal to the rate of change of the magnetic flux enclosed by the circuit:

E = −d�B

dt
. (2.18)

This effect is exploited by differentmeasurement systems. In clinical applications,
the gold standard for the measurement of 3-D eye orientations was for a long time the
“scleral search coil” (Fig. 2.17, left). In these systems, large magnetic field frames
(Fig. 2.17, right) generate an approximately homogeneous oscillating magnetic field
at the center of the coil frame. As explained in Sect. 3.6.3, this allows the recording of
3-D eye movements with high spatial and temporal precision (Collewijn et al. 1985)
(Fig. 2.18). Nowadays, video-based systems have reached a comparable accuracy
and resolution (van der Geest and Frens 2002), and have become the dominant
measurement devices for eye movements recordings.

Fig. 2.17 Left: Scleral search coil from the company Skalar. Right: External magnetic field frame

2.2 Sensor-Based Measurements 27

Fig. 2.18 An idealized experimental setup with three orthogonal magnetic fields and three orthog-
onally mounted induction coils. The induction coils are rigidly attached to the eye, and the coil
vectors

[
cx cy cz

]
are parallel to the axes of the eye-fixed coordinate system

[
bx by bz

]
. The mag-

netic fields
[
mx my mz

]
are parallel to the space-fixed coordinate system

[
sx sy sz

]
. See also the

application example for the analysis of signals from search coils in Sect. 3.6.3

Fig. 2.19 Induction systems with inhomogeneous magnetic fields generated by a small magnetic
field generator can determine not only the orientation of the sensor in space but also its position.
Left: The Aurora system from NDI. Right: the corresponding, tiny sensor coils (inside the tubular
black shielding cover)

Other movement recording systems build on a compact generator of an inho-
mogeneous magnetic field (Fig. 2.19, left). Smart algorithms make use of the field
inhomogeneity to determine position and orientation of sensor coils (Kindratenko
2000). Thereby, the size of the search coils is small enough that they can be used
even for endoscopy applications (Fig. 2.19, right).

Chapter 3
Rotation Matrices

3.1 Introduction

Six parameters (degrees of freedom) are required and sufficient to completely
describe the movement of an object in space: three describe the 3-D position of
the object, and three the 3-D orientation, often referred to as “attitude" in aeronau-
tics. When describing movements that are less than a few kilometers, we often use
space-fixed, Cartesian coordinate systems. In these systems, the orientation of each
axis is the same for each point in space, and for all time. For typical industrial applica-
tions and for movement measurements, a system fixed with respect to the surface of
the earth can be regarded as space-fixed, as a convenient substitute of a true “inertial
system”.1 These coordinate systems are sometimes called local-level-local-North,
assuming a flat earth. For larger distances, when the curvature of the earth becomes
significant, the direction of “up” starts to depend on the location, and Cartesian coor-
dinate systems are no longer useful. An example of such a non-cartesian coordinate
system is the geodetic latitude/longitude/height coordinate system.

After choosing an arbitrary point in space as the reference position, the position
of each point is defined by three translations away from the coordinate center, e.g.,
forward, left, and up. Here, it is worth pointing out a seemingly obvious fact: the
final location of the object is independent of the sequence of these translations. If
we move first 10m right and then 15m forward, we end up in the same location as
if we had moved first 15m forward, and then 10m right. This property is referred to
as the commutativity of translations (see also Fig. 5.1).

The description of orientation is done in a similar way (Fig. 3.1). First, an arbi-
trarily chosen orientation is defined as reference orientation. Once that is done, any
other orientation can be described by three parameters: an object can not only be

1An inertial frame is a frame of reference in which a body remains at rest or moves with a constant
linear velocity unless acted upon by forces. An inertial reference frame does not have a single,
universal coordinate system attached to it: positional values in an inertial frame can be expressed in
any convenient coordinate system. In other words, an inertial frame is a frame of reference where
the laws of inertia apply—there is no requirement for specific coordinates.

© Springer International Publishing AG, part of Springer Nature 2018
T. Haslwanter, 3D Kinematics, https://doi.org/10.1007/978-3-319-75277-8_3

29

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-75277-8_3&domain=pdf

30 3 Rotation Matrices

Fig. 3.1 Similarity between one-dimensional translations (left) and single-axis rotations (right):
Both require the selection of a reference, and both are characterized by a single parameter

translated along each of the three coordinate axes, but it can also be rotated about
each of these axes. To describe the three-dimensional orientation, two inherently
different approaches can be taken. The first approach is based on Euler’s Theorem,
which states that for every two orientations of an object, the object can always move
from one to the other by a single rotation about a fixed axis (Euler 1775). In that
case, the axis of the rotation is defined by two parameters, and the magnitude of the
rotation defines the third parameter. The second approach is to describe the rotation
from the reference orientation to the current orientation through three consecutive
rotations about well-defined, hierarchically nested coordinate axes (e.g., Goldstein
1980). For a long time, this has been the most common approach to characterize ori-
entation in three dimensions. A detailed analysis of all the rotation angle sequences
is given by (Diebel 2006).

The following section will deal with this three-rotation description of 3-D orien-
tation, while the approach based on Euler’s Theorem will be explained in detail in
Chap. 4 (“Quaternions”).

3.2 Rotations in a Plane

A simple rotation of a point p in a plane can be uniquely described in two ways:

• In Cartesian coordinates through a rotation matrix.
• In polar coordinates, through an angle θ characterizing the rotation about an axis
perpendicular to the plane.

3.2 Rotations in a Plane 31

Fig. 3.2 Rotation in a plane

3.2.1 Rotation in Cartesian Coordinates

In two-dimensional Cartesian coordinates, a point p is defined by its two coordinate

components p =
(

x
y

)
. When that point is rotated by an angle θ into a new point

p′ =
(

x ′
y′

)
(Fig. 3.2), the coordinates of p′ are given by2

(
x ′
y′

)
=

[
cos θ − sin θ

sin θ cos θ

]
·
(

x
y

)
. (3.1)

Defining the “rotation matrix” R as

R =
[
cos θ − sin θ

sin θ cos θ

]
, (3.2)

Equation (3.1) can be rewritten as

p′ = R · p. (3.3)

Note that the columns of the rotation matrix are equivalent to the basis vectors
of the space-fixed coordinate system (nx,ny) rotated by the angle θ (Fig. 3.3)! Or in
other words, the rotation matrix is the projection of the rotated unit vectors onto the
coordinate axes. The rotation matrix is therefore sometimes also referred to as the
“direction cosine matrix (DCM)”.

R = R · [
nx ny

] = [
n′
x n

′
y

]
. (3.4)

2Note for Matlab users: here and in the following, the dash in p′ does NOT mean the vector p
transposed, but rather the vector p rotated!

32 3 Rotation Matrices

Fig. 3.3 Rotation matrix: projection in 2-D

3.2.2 Rotation in Polar Coordinates

Every complex number has a real and an imaginary part

c = x + j ∗ y

and therefore can be represented by a vector in the (x, y)-plane (Fig. 3.4). And
since

e jθ = cos(θ) + j ∗ sin(θ), (3.5)

every complex number can also be represented by a magnitude r and an angle θ :

c = r ∗ e jθ = r ∗ (cos(θ) + j ∗ sin(θ)) , (3.6)

where

r =
√

Re2 + I m2 (3.7)

θ = arctan

(
I m

Re

)
. (3.8)

Fig. 3.4 Complex number, in polar coordinates (r, θ)

3.2 Rotations in a Plane 33

As a result, a rotation of a 2-D-vector, expressed as a complex number c, by an
angle φ, can be written as

c′ = e jφ ∗ c = e jφ ∗ (r ∗ e jθ) = r ∗ e j (φ+θ). (3.9)

Note: In mathematics and physics, the square root of −1 is typically denoted with
i , whereas in many technical areas j is used. In both Python and Matlab, j can be
used:

x = -1+0j
np.sqrt(x)
>>> 1j

In polar coordinates, the similarity between one-dimensional translations and single-
axis rotations becomes obvious (Fig. 3.1).

3.2.3 Application: Orienting an Object in a Plane

Task: If a gun originally pointing straight ahead along the +x axis is to shoot at a
target at P = (x, y), by which amount does the gun have to rotate to point at that
target (Fig. 3.5)?

Solution:
The gun barrel originally points straight ahead, so the direction of the bullet aligns

with nx.

The rotation of the gun is described by the rotationmatrixR =
[
cos θ − sin θ

sin θ cos θ

]
=[

n′
x n

′
y

]
. The direction of the gun barrel after the rotation is given by n′

x = p
|p| , which

is also the first column of the rotation matrix R.

Fig. 3.5 Targeting with one degree-of-freedom (DOF)

34 3 Rotation Matrices

Combining these two equations leads to the vector equation

(
cos θ

sin θ

)
= 1√

x2 + y2

(
x
y

)
.

They-component of this vector equation is sin θ = y√
x2+y2

→ θ = arcsin y√
x2+y2

Note: For small angles (θ � 1), sin(θ) and cos(θ) can be expanded with a Taylor
series, and one obtains in a linear approximation

sin(θ) ≈ θ + 0(θ2), and (3.10)

cos(θ) ≈ 1 + 0(θ2).

As a result, for small angles, numerical errors are minimized by calculating the
angle from measurements related to sin(θ) as shown above. For angles around 90◦
the component proportional to cos(θ) should be used, to minimize numerical errors
in the computation of θ .

3.3 Rotations About Coordinate Axes in 3-D

3.3.1 3-D Rotations About Coordinate Axes

The same ideas as described above for rotations in a plane can be applied to three
dimensions, leading to the 3-D rotation matrix

R = [
n′
x n

′
y n

′
z

]
, (3.11)

where the n′
i are column vectors. In the following, eye movements will often be used

as an example, as they can be easily visualized. In that case, the reference coordinate
system or space-fixed coordinate system will be the coordinate system provided by
the head, and the eye(body)-fixed coordinate system will here be a coordinate system
fixed to the body of the eye, with the x-axis aligned with the line of sight (often
referred to as gaze direction).

In order to define single-axis rotations in three dimensions about coordinate axes,
first an external, space-fixed coordinate system has to be defined and a body-fixed
coordinate system to describe the three-dimensional orientation of the object with
respect to space. Let S = [

sx sy sz
]
be a right-handed, space-fixed coordinate system

such that sx coincides with the line of sight when the eye is in the reference position,
sy with the interaural axis (i.e., left-right), and sz with earth vertical (Fig. 3.6a).

Let B = [
bx by bz

]
(note: bi i = x, y, z are column vectors!) denote a right-

handed body-fixed coordinate system (i.e., it moves with the object, here the eye)
such that B coincides with the space-fixed coordinate system S when the eye/body

3.3 Rotations About Coordinate Axes in 3-D 35

Fig. 3.6 Horizontal rotation of the eye about the space-fixed axis sz by an angle θ from the reference
orientation (a) to a new orientation (b)

is in the reference orientation. Any horizontal rotation of the body-fixed coordinate
system (and thus of the object) from the reference orientation to a new orientation,
as indicated in Fig. 3.6b, can be described by

bi = R · si, i = x, y, z , (3.12)

or, equivalently
B = R · S. (3.13)

The rotation matrixR describes the orientation of the eye/body (B) relative to the
head (S).

For a rotation of a point about a vertical axis in a space-fixed coordinate system,
as indicated in Fig. 3.6b, the matrix R describes a rotation about sz by an angle of θ .
This matrix, which we here call Rz(θ), is given by

Rz(θ) =
⎡
⎣ cos θ − sin θ 0
sin θ cos θ 0
0 0 1

⎤
⎦ . (3.14)

In the same way, vertical rotation of a point about sy in a space-fixed coordinate
system by an angle of φ can be described by

Ry(φ) =
⎡
⎣ cosφ 0 sin φ

0 1 0
− sin φ 0 cosφ

⎤
⎦ , (3.15)

and torsional rotation of a point about sx in a space-fixed coordinate system by an
angle of ψ by

Rx (ψ) =
⎡
⎣ 1 0 0
0 cosψ − sinψ

0 sinψ cosψ

⎤
⎦ . (3.16)

36 3 Rotation Matrices

Fig. 3.7 Right-hand rule for rotations

With these definitions, and with the positive (x, y, z)-axis pointing forward/left-
/up, respectively, positive θ , φ, and ψ values correspond to leftward, downward, and
clockwise movements. Depending on the context, these three rotations are either
called yaw, pitch and roll angles (in nautical applications, or in eye movement
research), or—equivalently—heading, elevation and banking angles (in aerospace
engineering). In the latter case, the term attitude is used to characterize
3-D orientation.

Notes:

• The direction of positive rotations can easily be remembered with the right-hand
rule (Fig. 3.7): if a body is gripped with the right hand and rotated in the direction
of the curled fingers, the direction of the thumb determines the sign of the rotation.
With the coordinate system as defined in Fig. 3.6, rotations to the left, downward(!),
and clockwise (as seen from the user) are positive.

• Care has to be taken with the implementation of rotations, such as in Eq. (3.13),
if the data are in row format. For example, if data are stored as

Data =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

x0 y0 z0
x1 y1 z1
x2 y2 z2
x3 y3 z3
· · ·
· · ·
· · ·

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3.17)

then using the matrix notation, the rotation of these data has to be implemented as

Data′ = [
R · DataT

]T = Data · RT , (3.18)

because
[A · B]T = BT · AT . (3.19)

3.3 Rotations About Coordinate Axes in 3-D 37

3.3.2 Rotations of Objects Versus Rotations
of Coordinate Systems

The next step is conceptually trivial, but its ramifications have caused consternation
among generations of scientists.

Figure3.8a shows the reference setup, where a picture is taken of a cat, with the
cat’s nose in the center of the image. In Fig. 3.8b, the cat has been rotated by 25◦, and
its nose is now at the lower edge of the captured image. In Fig. 3.8c, the cat remains
stationary, but now the camera coordinate system is rotated by 25◦, this time in the
opposite direction. The image of the cat looks exactly the same as in Fig. 3.8b.

From the definition of our coordinate system (forward, left, and up are the positive
directions), and the choice of the right-hand rule, a “downward” rotation has to be
positive. And in both cases (Fig. 3.8b, c), the final relative orientation between camera
and cat is the same. But now the catch is: should the relative movement shown in
Fig. 3.8b and c be labeled a downward rotation, because the cat is rotated downward
relative to the camera?Or should it be labeled an upward rotation, because the camera
is rotated up with respect to the surroundings? In situations where the measurement
setup is stationary, such as in Fig. 3.8b, it makes sense to call this relative rotation a
downward rotation. (This is the convention used in this book, where R describes the
rotation of an object relative to a space-fixed coordinate system.)!Butwhen a constant
environment is observed from a moving object, as in Fig. 3.8c, it makes more sense
to call this relative rotation an upward rotation, because the camera rotates upward.
(That is the convention often used in theoretical physics, theoretical mechanics, and
aeronautics, where a fixedworld andfixed events are observed fromdifferent,moving
reference systems.) It would be appropriate to describe, for example, the orientation
of a moving aeroplane relative to a fixed-world environment.)

There exists no correct choice here, only two different options. Which one is
chosen depends on the field of research and the application.

When comparing the equations from this book with other literature, carefully
check if the definition of the rotation matrices is consistent with Eqs. (3.14)–(3.16).
If this is the case, everything is fine. But if the definition of the rotation matrices

Fig. 3.8 a Reference picture. b “Object” rotated by 25 ◦. c Camera coordinate system rotated by
−25◦, i.e., in the opposite direction

38 3 Rotation Matrices

is the transposed of Eqs. (3.14)–(3.16), the alternate choice has been made, which
affects all subsequent equations!3

Important Note
Even though I am repeating myself: Care has to be taken, because the exact form
of the rotation matrices depends on the definition of R. Technical applications often
use rotations of the coordinate system for the definition of the rotation matrix, and
the signs of the angles are inverted compared to our definitions in Eqs. (3.14)–(3.16).
In those applications, for example in the excellent summary by (Diebel 2006), the
rotation matrices are exactly the transposed versions of the matrices used here!!

3.4 Combined Rotations

For rotations about a single axis, nodistinctionhas to bemadebetween rotations about
body-fixed or space-fixed axes. Since the body-fixed and space-fixed coordinate
systems coincide when the object is in the reference position, the axis about which
the object rotates is the same in the body-fixed and space-fixed system. But this is
no longer the case for combined rotations about different axes. For such rotations
the elements ofR are no longer determined by the relatively simple formulas in Eqs.
(3.14)–(3.16).

The example in Fig. 3.9 may help to better understand the problem: how should
we distinguish between a downward movement of the object by a rotation about the
space-fixed axis sy (as shown in Fig. 3.9a) and a downward movement by a rotation
about the rotated, body-fixed axis by (Fig. 3.9b)?

Fig. 3.9 In describing a combined horizontal–vertical movement, one has to distinguish clearly if
the vertical movement is (a) a rotation about the space-fixed y-axis sy, which remains fixed, or (b)
a rotation about the object-fixed y-axis by, which moves with the object

3Appendix A.3.3 contains the proof that the body-fixed representation of rotations uses the inverse
(i.e., the transpose) rotation matrix compared to the space-fixed representation.

3.4 Combined Rotations 39

Fig. 3.10 Sequences of two rotations. (a) Space-fixed, sz :: sy : 90◦ rotation about the vertical axis
sz, followed by a 90◦ rotation about the horizontal axis sy. (b) Space-fixed, sy :: sz : 90◦ rotation
about the horizontal axis sy, followed by a 90◦ rotation about the vertical axis sz. (c) Body-fixed,
by :: bz : 90◦ rotation about the body-fixed axis by, followed by a 90◦ rotation about the body-
fixed axis bz. The final orientation is the same as in (a). Body-fixed axes and space-fixed axes are
superposed because the size of the rotations in this example is exactly 90◦

Mathematically, the difference between rotations in space-fixed coordinates and
body-fixed coordinates lies in the sequence in which the rotations are executed. This
is illustrated in Fig. 3.10. The upper column (Fig. 3.10a) shows a rotation of an object
about sz by θ = 90◦, followed by a rotation about the space-fixed axis sy by φ = 90◦.
Mathematically, this is described by

bi = Ry(φ) · Rz(θ) · si (3.20)

with θ = φ = 90◦.
Note: The rotation that is executed first is on the right-hand side, because this is

the first matrix to act on the object to be rotated:

Ry(φ) · (Rz(θ) · si) = (Ry(φ) · Rz(θ)) · si . (3.21)

This leads to

Rule 1: Subsequent rotations are written right-to-left.

40 3 Rotation Matrices

Inverting the sequence of two rotations about space-fixed axes changes the final
orientation of the object. This can be seen in Fig. 3.10b, where the sequence of
rotations is inverted: the first rotation is about the space-fixed axis sy, and the second
rotation about the space-fixed sz. This sequence is mathematically described by

bi = Rz(θ) · Ry(φ) · si. (3.22)

Equations (3.20) and (3.22) both describe rotations about space-fixed axes. How-
ever, they can also be re-interpreted as rotations about body-fixed axes in the reverse
sequence: Eq. (3.20) can be re-interpreted as a rotation about the axis by by φ, fol-
lowed by a rotation about the body-fixed axis bz by θ (Fig. 3.10c). Figures3.10a and c
demonstrate that rotations about space-fixed axes and rotations about object-fixed
axes in the reverse sequence lead to the same final orientation. And Eq. (3.22) is
equivalent to a rotation about bz by θ , followed by a rotation about the body-fixed
axis by by φ. A mathematical analysis of this problem can be found in (Altmann
1986).

This can be summarized as

Rule 2: A switch from a representation of subsequent rotations from space-fixed
axes to body-fixed axes has to be accompanied by an inversion of the sequence
of the rotation matrices.

This also gives the answer to the problem raised byFig. 3.9: the combination of two
rotations about the space-fixed axes sz and sy, as shown in Fig. 3.9a, ismathematically
described byEq. (3.20), while the combination of two rotations about the object-fixed
axes bz and by, as shown in Fig. 3.9b, is described by Eq. (3.22).

Rotations about space-fixed axes are often called “rotations of the object” or
“active rotations”, since in successive rotations only the object is rotated, and the axes
of the successive rotations are unaffected by the preceding rotations of the object.
Rotations about object-fixed axes are often referred to as “rotations of the coordinate
system” or “passive rotations”, since each rotation changes the coordinate axes about
which the next rotations will be performed.

3.4.1 3-D Orientation with Sequential Rotations

Systems that use such a combination of three rotations for the description of the
orientation can be demonstrated with gimbal systems. A gimbal is a ring or a frame
that is suspended so it can rotate about an axis. Gimbals are typically nested one
within another to accommodate rotation about multiple axes, and the hierarchy of
sequential rotations is automatically implemented. As pointed out in the Chap. 1, we
will by default use an inertial coordinate system where the positive x-, y-, and z-axes
point forward, left, and up.

3.4 Combined Rotations 41

3.4.1.1 Nautical Sequence

In aeronautics (Kuipers 1999) and maritime applications, the yaw–pitch–roll
sequence of rotations, whichwewill refer to as “nautical sequence”, is very common.

The first rotation is about the (vertical) z-axis. This movement is called a “yaw
movement”, and the corresponding angle is sometimes referred to as “heading angle”.
According to the right-hand rule, a positive rotation rotates the nose of the airplane
to the left.

The second movement is about the once-rotated, body-fixed y-axis (when the
object is an airplane, about the line connecting the wings). The movement is called
a “pitch movement”, and the corresponding angle is referred to as “elevation angle”.

The last rotation is about the twice-rotated x-axis (when the object is an airplane,
about the longitudinal axis). This movement is called “roll movement”, and the
corresponding angle is the “banking angle”. If the rotated object is a camera or an
eye, this roll rotation will not change the line of sight or gaze direction, but it will
rotate the image.

This sequence has first been used by the German doctor and physiologist Adolf
Fick (Fick 1854), who worked on eye movements and who also invented the first
contact lenses worn by patients. In eye movement research, the yaw, pitch, and roll
angles for this sequence are therefore often referred to as “Fick angles”. The yaw and
pitch angles together determine the line of sight, and the corresponding direction is
called the “gaze direction”.

The left illustration in Fig. 3.11 shows a gimbal which corresponds to the nau-
tical sequence of rotations. The angles of the nautical sequence will be denoted by
the subscript “N” (θN , φN , ψN). The rotation matrix corresponding to the nautical
sequence of rotations is

Rnautical = Rz(θN) · Ry(φN) · Rx (ψN), (3.23)

where the rotation matricesRx ,Ry,Rz describe per definition rotations about space-
fixed axes. The discussion of Eqs. (3.20) and (3.22) defines the sequence in which
nested rotations have to be written down: the first rotation (i.e., the one on the
right-hand side) has to be the rotation of the innermost axis, since this is the only
rotation that does not affect the other ones. This can be formulated as

Rule 3: For nested rotations, the sequence of rotations has to be written from
the inside out, in order to ensure rotations about the correct axes.

Inserting Eqs. (3.14)–(3.16) into Eq. (3.23) leads to4

4The requiredwork to find thosematrices ismuch reduced using the symbolic computation packages
offered by many scripting languages. For Python, the implementation is shown in Appendix C.4.2.

42 3 Rotation Matrices

Rnautical =
[

cos θN cosφN , cos θN sin φN sinψN − sin θN cosψN , cos θN sin φN cosψN + sin θN sinψN
sin θN cosφN , sin θN sin φN sinψN + cos θN cosψN , sin θN sin φN cosψN − cos θN sinψN

− sin φN cosφN sinψN cosφN cosψN

]
.

(3.24)

This provides a convenientway to obtain the angles (θN , φN , ψN) from the rotation
matrix R

φN = − arcsin(Rzx)

θN = arcsin(Ryx

cosφN
)

ψN = arcsin(Rzy

cosφN
).

(3.25)

Helmholtz Sequence
The nautical sequence is not the only sequence to describe the 3-D orientation of
an object. Helmholtz (1867), another German physicist and physiologist from the
nineteenth century, thought itwould be better to startwith a rotation about a horizontal
axis. He characterized eye positions by a rotation about the horizontal interaural axis
(i.e., the y-axis), followed by a rotation about the vertical axis, and then by a rotation
about the line of sight, as shown in the right gimbal in Fig. 3.11:

RHelm = Ry(φH) · Rz(θH) · Rx (ψH). (3.26)

Fig. 3.11 In gimbal systems, the axes of rotation are determined by the geometry of system. Both
gimbals in this figure are in the reference orientation. Letbx,by,bz describe a body-fixed coordinate
system. Left In a nautical (Fick) gimbal, the orientation of the object (the turn on the inner dial)
is completely characterized by a rotation about the vertical axis bz by θN , followed by a rotation
about the (rotated) horizontal axis by by φN , and a rotation about the (twice-rotated) dial-axis bx
byψN .Right In a Helmholtz gimbalh, the orientation of the inner dial is characterized by a rotation
first about the horizontal axis by by φH , followed by a rotation about the (rotated) bz axis by θH ,
and then a rotation about the dial-axis bx by ψH

3.4 Combined Rotations 43

The subscript “H” indicates that the angles refer to theHelmholtz sequence of rota-
tions.One should keep inmind that the orientation of the object is characterized by the
values of the rotation matrixR, andRnautical andRHelm only give different sequence
parameterizations for the rotation matrix. But once constructed, the matrix is used
in the same manner. Using Eqs. (3.14)–(3.16) and matrix multiplication, we get

RHelm =
⎡
⎣ cos θH cosφH − sin θH cosφH cosψH + sin φH sinψH sin θH cosφH sinψH + sin φH cosψH

sin θH cos θH cosψH − cos θH sinψH
− cos θH sin φH sin θH sin φH cosψH + cosφH sinψH − sin θH sin φH sinψH + cosφH cosψH

⎤
⎦

(3.27)

When R is given, the Helmholtz angles (θH , φH , ψH) can be using

θH = arcsin(Ryx)

φH = − arcsin
(

Rzx

cos θH

)
ψH = − arcsin

(
Ryz

cos θH

)
.

(3.28)

Euler Sequence
Yet another sequence to describe 3-D orientation is common in theoretical physics
and mechanics and in other technical literature, and often referred to as Euler
sequence.5

In order to describe the movement of a spinning top rotating on a table, or of
the earth during its rotation around the sun (see Fig. 3.12), three angles are needed:
the intrinsic rotation (γ), nutation (β), and precession (α). Using these three angles,
the orientation of the spinning object is described by (see Fig. 3.13)

• a rotation about the z-axis, by an angle α,
• followed by a rotation about the rotated x-axis, by an angle β, and
• followed by a rotation about the twice-rotated z-axis, by an angle γ .

REuler = Rz(α) · Rx (β) · Rz(γ). (3.29)

This leads to the parametrization

REuler =
⎡
⎣ − sin αE cosβE sin γE + cosαE cos γE − sin αE cosβE cos γE − cosαE sin γE sin αE sin βE

sin αE cos γE + cosαE cosβE sin γE − sin αE sin γE + cosαE cosβE cos γE − cosαE sin βE
sin βE sin γE sin βE cos γE cosβE

⎤
⎦

(3.30)

5The expression Euler angles should be used very carefully: sometimes, these angles represent the
Euler sequence, but often that expression is also applied when the nautical sequence is actually
used!

44 3 Rotation Matrices

Fig. 3.12 Basic Euler motions of the earth. Intrinsic rotation (green “R”), precession (blue “P”),
and nutation (red “N”). (From Wikipedia, original design by Dr. H. Sulzer)

Fig. 3.13 Euler sequence: Left—The xyz (fixed) system is shown in blue, and the XYZ (rotated)
system is shown in red. The line of nodes, labeled N, is shown in green (from Wikipedia). Right
The corresponding gimbal

The corresponding angles can be calculated with

γE = atan2(Rzx , Rzy)

βE = arccos(Rzz)

αE = −atan2(Rxz, Ryz).

(3.31)

3.4 Combined Rotations 45

Notes:

• atan2(a,b) is equivalent to arctan(a
b) where it also takes into account the

quadrant that the point (a, b) is in.
• For β, there are generally two solutions in the interval (π, π]. The above formula
works only when β is within the interval [0, π).

Other Sequences
Depending on the application, sometimes yet other sequences can be used. For exam-
ple, the most important angles in gait analysis are the knee and hip angles, which
correspond approximately to rotations about the y-axis. Therefore, in gait analysis,
the sequence Rz · Rx · Ry is common.

The names for different gimbal systems may differ significantly, depending on
the area of application. In some contexts, angles of any type of gimbal system are
referred to as “Euler angles”. Angles from rotation sequences that involve all three
axes (x-y-z, y-z-x, z-x-y, x-z-y, z-y-x, y-x-z) can be either called “Tait–Bryan angles”,
in honor of the Scottish mathematical physicist Peter Tait (1832–1901), who was—
together with Hamilton—the leading exponent of quaternions, and the Welshman
George Bryan (1864–1928), the originator of the equations of airplane motion or
“Cardan angles”, after the Renaissance mathematician, physician, astrologer, and
gambler Jerome Cardan (1501–1576), who first described the cardan joint which
can transmit rotary motion. And angles that have the same axis for the first and the
last rotation (like the Euler sequence above) are called “proper Euler angles” (z-x-z,
x-y-x, y-z-y, z-y-z, x-z-x, y-x-y).

3.4.2 Gimbal Lock

Consider tracking a helicopter flying from the horizon toward an aerial gun, as
indicated in Fig. 3.16. The helicopter flies toward the gun site and is tracked by the
gun in elevation () and azimuth (
). When the helicopter is immediately above the
gun site, the aerial gun is in the orientation indicated in Fig. 3.14. If the helicopter
now changes direction and flies at 90◦ to its previous course, the gun cannot track this
maneuver without a discontinuous jump in one or both of the gimbal orientations.
There is no continuous motion that allows it to follow the target—it is in “gimbal
lock”. Note that even if the helicopter does not pass through the gimbal’s zenith,
but only near it, so that gimbal lock does not occur, the system must still move
exceptionally rapidly to track the helicopter if it changed direction, as it rapidly
passes from one bearing to the other. The closer to zenith the nearest point is, the
faster this must be done, and if it actually goes through zenith, the limit of these
“increasingly rapid” movements becomes infinitely fast, i.e., discontinuous. Another
way to describe gimbal lock is to consider the inverse of matrices Eqs. (3.24, 3.27,
and 3.30). The mathematical equivalent of a gimbal lock is if the calculation of
the inverse of the matrices in Eqs. (3.24, 3.27, and 3.30) contains a divide by zero
condition.

46 3 Rotation Matrices

Fig. 3.14 Gimbal lock: the orientation of the innermost axis cannot be reoriented in the direction
of the dotted arrows

3.5 Homogeneous Coordinates

3.5.1 Definition

An application where a tremendous amount of 3-D calculations have to be performed
is the rendering of 3-D scenes in computer graphics. With every change in position
and orientation of the observer the appearance of each 3-D surface element of the
scene has to be re-calculated. The calculations require not only translations and
rotations but also scaling and perspective distortions (McConnell 2005).

The mathematical discipline of projective geometry has found a way to perform
all the required calculations efficiently in one step (see Fig. 3.15). For this approach to
work, the number of coordinates for each point has to be increased from three to four,
and the extended coordinates are called “homogeneous coordinates” or “projective
coordinates”:

p →
(
p
1

)
. (3.32)

The additional, fourth element in the coordinates is essentially a scaling factor.
The matrix required to execute a generalized perspective transformation is a 4× 4

matrix. For example, a rotation and translation can be “homogenized”, i.e., executed
in one step, as described in the following. A point p can be rotated and translated by

p′ = R · p + t , (3.33)

3.5 Homogeneous Coordinates 47

Fig. 3.15 Projection from one plane into another

where p indicates the starting point, R is the rotation matrix, t is the translation, and
p′ is the new location. Using the “homogeneous” coordinates defined in Eq. (3.32),
this can be written in one step as

(
p′
1

)
=

[
R t
0 1

]
·
(
p
1

)
=

(
R · p + t

1

)
. (3.34)

The resulting matrix

[
R t
0 1

]
is a 4× 4 matrix (since R is a 3× 3 matrix, and

one row and one column have been added) and is called “spatial transformation
matrix”. Similarly, geometric projections can be implemented by allowing general
4 × 4 matrices for the transformation.

By moving from 3-D Euclidian coordinates to 4-D homogeneous coordinates,
all those transformations can be achieved with the same type of operation. The
disadvantage: to represent a point, we now need four instead of the previous three
numbers. The advantage: most image manipulations can now be performed in the
same way. This homogeneous treatment of the different operations is reflected in the
name, “homogeneous coordinates”. This has become a huge advantage in computer
vision: graphics cards can perform massive matrix multiplications. For comparison,
modern multi-core CPUs (central processing units, i.e., the processor in a typical
PC) have on the order of 16 pipelines, while GPUs (graphical processing units, the
processors that are used for graphics cards) have on the order of 1024 pipelines.
Thereby, instructions can be executed in parallel and can be dramatically optimized.

An important application of homogeneous coordinates are the "Denavit Harten-
berg parameters". These are used in mechanical engineering to denote position and
orientation of an end-link in robot manipulators (see Appendix B).

48 3 Rotation Matrices

3.6 Applications

A few examples of the application of rotation matrices may help to show how to use
them in practical applications.

3.6.1 Two DOF—Targeting an Object in 3-D

An aerial gun is mounted like a nautical gimbal: the outermost rotation is always
about an earth-vertical axis (Fig. 3.16).

In the starting orientation (θ/φ = 0/0), the barrel of the aerial gun points straight
ahead, i.e., along bx.

Task: When a target appears at p = (x, y, z), we want to reorient the gun such
that the rotated gun barrel, which after the rotation points in the direction of b′

x, points
at the target.

Solution: Taking the rotation matrix in the nautical sequence (Eq. 3.24), with
ψ = 0 since a rotation about the line of the gun barrel is not relevant, we get

Rnautical(ψN = 0) = [
b′
x b

′
y b

′
z

] =
⎡
⎣ cos θN cosφN − sin θN cos θN sin φN N

sin θN cosφN cos θN sin θN sin φN

− sin φN 0 cosφN

⎤
⎦ .

With the first column b′
x = p

|p| , this leads to

φN = − arcsin

(
pz√

px
2+py

2+Pz
2

)

θN = arcsin

(
py√

px
2+py

2+pz
2
· 1
cosφN

)
.

(3.35)

Fig. 3.16 Aerial Gun, tracking a target at p = (x/y/z)

3.6 Applications 49

Note that a combination of a horizontal and a vertical rotation of the object in a
well-defined sequence uniquely characterizes the direction of the forward direction.
With eye movements, this is the line of sight, or gaze direction; with a gun turret on a
ship this is the direction of the gun barrel (see Fig. 3.16). However, this does not com-
pletely determine the three-dimensional orientation of the object, since the rotation
about the forward direction is still unspecified. A third rotation is needed to com-
pletely determine the orientation of the object. This third rotationψ would not affect
the direction in which the gun is pointing, it would only rotate around the pointing
vector. For a quaternion solution to the targeting problem, see also Sect. 4.5.1.

3.6.2 Two DOF—Projection onto a Flat Surface

Another frequent paradigm is a projection onto a flat surface. Consider the following
practical problem (Fig. 3.17).

Two projection systems are mounted at a distance d in front of a flat surface, and
should both project a point at P, located on the screen at the location (hor/ver),
where the positive horizontal direction on the screen is to the right, and the positive
vertical direction up. The lower system is mounted like an aerial gun: it can rotate
about a vertical axis (θN) and swivel about a (rotating) horizontal axis (φN). The
system is mounted below cm lower than the center of the screen-based coordinate
system, and when θN = φN = 0 the projector is pointing straight ahead toward the
screen.

The upper projection system is mounted on a disk that hangs on the ceiling, above
cm higher than the center of the screen-based coordinate system. It is mounted on a
horizontal hinge which is parallel to the projection screen, so that it can rotate up and
down (φH). The projector can swivel on the disk left/right (θH). And again, when
θH = φH = 0 the projector is pointing straight ahead toward the screen.

Task: What are the projector angles for the lower projector (θN , φN), and for the
upper projector (θH , φH), if both should point at the target P = (hor/ver) on the
screen?

Solution: The rotation sequence for the lower projector corresponds to the two
outer rotations of a nautical gimbal, and the sequence of the upper projector to the
two outer rotations of a Helmholtz gimbal, respectively (see also Fig. 3.11). In both
cases, the rotation about the target direction is unimportant, and ψ in the equations
for the nautical- and Helmholtz-rotation matrix can be set to zero. The direction to
the target corresponds to the bx axis after the rotation, and the target point is the
intersection of this axis with a plane parallel to the sy/sz-plane at a distance d. So for
the lower projector, the target is at

p = (d/ − hor/ver + below)

b′
x = p

|p| .

50 3 Rotation Matrices

(The sign before hor is negative, because the positive direction for “horizontal” on
the screen is to the right, but the corresponding positive direction for “horizontal”
for the projector is to the left.) From that the corresponding nautical angles can be
determined with Eq. (3.35) from the previous example with the aerial gun. For the
upper projector, the target is at

p = (d/ − hor/ver − above)

b′
x = p

|p|
and the projector angles can be found by applying the first two equations of Eq.
(3.28):

θH = arcsin

(
py√

px
2+py

2+Pz
2

)

φH = − arcsin

(
pz√

px
2+py

2+pz
2
· 1
cos θH

)
.

(3.36)

A Python solution, with numbers approximating a setup such as Fig. 3.17,
would be

from skinematics import vector
(d, hor, ver, above, below) = (1.5, 0.3, 0.2, 0.7, 1.4)
p_lower = [d, -hor, ver+below]
p_upper = [d, -hor, ver-above]
lower_projector = vector.target2orient(p_lower, orient_type=’

nautical’)
upper_projector = vector.target2orient(p_upper, orient_type=’

Helmholtz’)

Fig. 3.17 Projection onto a flat surface, with different projection systems

3.6 Applications 51

Section 4.5.3 shows the solution of a somewhat more complex, but conceptually
similar problem: orienting a camera in a missile such that it is directed on a selected
target.

3.6.3 Three DOF—3-D Orientation Measurements
with Search Coils

An interpretation of the values of the rotation matrix can be found by looking at
Eq. (3.11): the columns of the rotation matrix R are equivalent to the vectors of
the body-fixed coordinate system

[
bx by bz

]
expressed in the space-fixed coordinate

system
[
sx sy sz

]
. Thus, for eyemovementmeasurements with the search-coil method

illustrated in Fig. 2.18, different values in the rotation matrix R indicate a different
orientation of the eye-fixed coordinate system, i.e., a different orientation of the eye
ball.

Task: What is the orientation of an eye on a gimbal that is rotated 15◦ to the left
and 25◦ down, if it is (i) a nautical gimbal or (ii) a Helmholtz gimbal?

Solution: If an artificial eye ball on a nautical gimbal (Fig. 3.11a) is first turned
15◦ to the left and then (about the rotated axis by) 25◦ down, i.e., (θN , φN , ψN) =
(15, 25, 0), its orientation will be given by the matrix

Rnautical =
⎡
⎣ 0.88 −0.26 0.41

0.23 0.97 0.11
−0.42 0 0.91

⎤
⎦ .

Putting an eye on a Helmholtz gimbal (Fig. 3.11b), and turning it first 25◦ down
and then 15◦ to the left (about the rotated axis bz), i.e., (φH , θH , ψH) = (25, 15, 0),
leads to a different orientation of the eye:

RHelm =
⎡
⎣ 0.88 −0.23 0.42

0.26 0.97 0
−0.41 0.11 0.91

⎤
⎦ .

The orientation of the eye in the two examples is clearly different: on the nautical
gimbal bz is given by (0.41, 0.11, 0.91), whereas on the Helmholtz gimbal it points
in a different direction, (0.42, 0, 0.91).

Interpretation: Experimentally, the three-dimensional orientation of the eye in
space can be measured, for example, with induction coils (see Figs. 2.17 and 2.18).
When an induction coil is put into an oscillatingmagnetic fieldm, a voltage is induced
in the coil (Robinson 1963). If the coil is characterized by a coil vector c, which is
perpendicular to the coil and has a length proportional to the surface surrounded
by the coil, the voltage induced is proportional to the cosine of the angle between
m and c (Fig. 2.16). As pointed out by (Tweed et al. 1990), this leads to a simple
correspondence between the values of the rotation matrix and the voltages induced

52 3 Rotation Matrices

in search coils. This connection can be demonstrated with the experimental setup
shown in Fig. 2.18. Let

mi = si mi sin(ωi t), i ∈ x, y, z

be three homogeneous orthogonal magnetic fields. They are parallel to the axes of
the space-fixed coordinate system

[
sx sy sz

]
, have amplitudes mi , and oscillate at

frequencies ωi . Further, let
[
cx cy cz

]
denote three orthogonal coils parallel to the

body-fixed coordinate system
[
bx by bz

]
and firmly attached to the object (here the

eye). Then, the voltage induced by the magnetic fieldmi in coil cj, Vi j , is given by

Vi j = Ri j ∗ mi ∗ ωi ∗ cos(ωi ∗ t) ∗ c j with i, j ∈ x, y, z

where c j = ∣∣cj∣∣ indicates the length of the vector cj. This gives a direct interpretation
of the elements of the rotation matrix R: the voltage induced by the magnetic field
mi in the coil cj is proportional to the element Ri j of the rotation matrix R, which
describes the rotation from the reference position, where the coils

[
cx cy cz

]
line up

with the magnetic fields
[
mx my mz

]
, to the current position.

Note that for the determination of the 3-D orientation, three matrix elements
suffice: H, V, and T indicate the signals that represent approximately the horizontal,
vertical, and torsional orientation of the object:

R =
⎡
⎣ − − −

H − −
V T −

⎤
⎦ .

3.6.4 Nested or Cascaded 3-D Rotation Sequences

Nested or cascaded sequences are commonly found where one 3-D rotation follows
another 3-D rotation. For example, the moving eye is placed inside a moving head,
or a gimballed camera is mounted on a moving vehicle or missile. How can the
formulas given above be used to derive the composite rotation of the two3-D rotations
combined? Furthermore, given the location of a point in space-fixed coordinates and
eye coordinates, would it be possible to calculate the required rotation to ensure that
the eye/camera looks at the point?

Camera on Moving Base
To describe the orientation of a camera-in-space (described by Rspace

camera), as shown
in Fig. 3.18, one has to combine the orientation of the tilted base, e.g., a Google
maps car (described by Rspace

base) and the orientation of the camera with respect to
this base (Rbase

camera). To implement this mathematically, one has to use rotations of
the coordinate system. This determines the sequence of the two rotations, and the
rotation matrix describing the orientation of the camera-in-space is–according to the

3.6 Applications 53

Fig. 3.18 A nested or cascaded rotation can, for example, be the orientation of a camera [cxcycz]
on a moving base [bxbybz] fixating a target, here the top of a mountain

discussion following Eqs. (3.20) and (3.22)-given by

Rspace
camera = Rspace

base · Rbase
camera . (3.37)

From this, the orientation of the camera with respect to the base can be determined
as

Rbase
camera = (

Rspace
base

)−1 · Rspace
camera . (3.38)

Theway I personally remember these sequences: Take, for example, the following
equation, which determines the orientation of the line of sight (LOS) of the camera

c′ = Rspace
base · (

Rbase
camera · c) . (3.39)

With base and camera in the reference orientation, c indicates the line of sight (LOS)
of the camera. To find the current LOS, I first rotate the LOS of the camera on the
base

(
Rbase

camera · c). Then, in the second step I rotate the base, with the rotated camera
already on it, to obtain the current orientation of the LOS: Rspace

base · (
Rbase

camera · c).
Eye in Head
Similarly, let Rspace

head be the rotation matrix describing the rotation of the reference
framewith respect to a space-fixed coordinate system, andRhead

eye describe the rotation
of the object in the reference frame (e.g., eye in head). Then

Rspace
eye = Rspace

head · Rhead
eye , (3.40)

and
Rhead

eye = (
Rspace

head

)−1 · Rspace
eye . (3.41)

54 3 Rotation Matrices

3.6.5 Camera Images

Imagine the gaze vector of two cameras mounted on two different-sequenced two-
axis gimbals following the same point in space. As the point moves around, the gaze
vector of the two cameras traces the same locus in space. However, each camera will
view differently rolled images of the world (i.e., the image “up” vector in Camera 1
will be at different angles than in Camera 2). The different gimbal’s camera images
will be rolledwith respect to each other. The gimbaled cameras require all twodegrees
of freedom to follow the target and have no freedom to orientate their images to the
upright orientation. If three-axis gimbals are used, there are no remaining degrees
of freedom, and the images can always be rotated such that the required direction is
pointing “up”.

3.7 Exercises

Exercise 3.1: CT Scanner

A good example of a device that requires 3-D kinematics is a modern CT scanner.
Task: For the exercise, label the rotations about the three axes with α, β, and γ

as shown in Fig. 3.19. With the CT scanner in the starting orientation, the outermost
axis aligns with the z-axis, the middle axis with x, and the inner axis with y.

A patient has been attacked on the streets and has suffered from two gunshot
wounds. When the patient is in a supine orientation (as indicated in Fig. 3.19), the
first shot went through the left eye socket, into the direction

−−−−→
bullet1 = [5 2 2]; the

second shot also went through the left eye socket, but in the direction
−−−−→
bullet2 =

[5 −2 −4].
Find out which settings for α, β, and γ bring the scanner into such an orientation

that (i)
−−−−→
bullet1 in the image is oriented along the y-axis of the scan and (ii) the

trajectories of both bullets lie in the scanned plane (Fig. 3.20).

Fig. 3.19 (Left) An image of the Siemens Axiom Artis dTC scanner. (Right) Cartoon indicating
the mathematical representation of this scanner

3.7 Exercises 55

Fig. 3.20 CT scan of the head, with the bullet paths from two gunshot wounds schematically
indicated. Note that the path of bullet 1 aligns with the y-axis

Exercise 3.2: Combining Rotation and Translation

This example will provide the first step in the measurement of movements with
video-based systems. In the example, the movement of a comet that moves in a plane
in space is observed with a camera, as shown in Fig. 3.22. The object is a comet that
circles around a planet. The data units are 107 km. The tasks for this exercise are as
follows:

• Read in the data from the file planet_trajectory_2D.txt, and write a
program to calculate the planet velocity in the x- and y-directions. The data can
be found in the scikit-kinematics package for Python users, and in the Kinematics
toolbox for Matlab users, and are shown in Fig. 3.21.

Fig. 3.21 Observed trajectory

56 3 Rotation Matrices

Fig. 3.22 Experimental setup: a particle moving in a tilted plane is observed from two different
camera positions orientations

• External information is provided, which tells us that the data center is 200×107 km
in front of the camera, and the trajectory lies in a plane that is tiled by 30◦ about the
x-axis. Calculate the 3-D position of the trajectory of the particle (see Fig. 3.22).

• Calculate the 3-D position pshifted of the comet in camera coordinates, observed
from a satellite which has traveled 50×107 km toward the planet, and 100×107 km
orthogonally to it.

• Calculate the position pshiftRot (with respect to the camera), if the satellite is rotated
34◦ downward.

Code: C3_examples_rotmat.py: Python examples of different
operations with rotation matrices, such as generating symbolic and numeric rotation
matrices and calculating the corresponding rotation sequences. (p. 141)

https://github.com/thomas-haslwanter/3D_Kinematics/blob/master/python/C3_examples_rotmat.py

Chapter 4
Quaternions and Gibbs Vectors

While most readers are familiar with the rotation matrices presented in the previous
chapter, rotation matrices are not the most convenient or efficient way to represent
rotations. Euler had already realized that expressing a rotation with a vector paral-
lel to the axis of rotation was more elegant than using a rotation matrix. And the
mathematical work by Hamilton and Gibbs on alternative representations of rota-
tions, which is presented in this chapter, prepared the way not only for an efficient
representation of rotations, but for the whole modern vector calculus.

4.1 Representing Rotations by Vectors

Rotation matrices are not the most efficient way to describe a rotation: they have
nine elements, yet only three are actually needed to uniquely characterize a rotation.
Another disadvantage of describing 3-D rotations with rotation matrices is that the
three axes of rotation, as well as the sequence of the rotations about these axes,
have to be defined arbitrarily, with different sequences leading to different rotation
angles. Euler’s rotational theorem (Euler 1775) states that a more efficient way to
characterize a rotation is to use a vector: the axis of rotation is defined by the direction
of the vector q, and the rotationmagnitude θ is defined by the vector length (Fig. 4.1).
The orientation is defined by the right-hand-rule (Fig. 4.2). Such a vector has only
three parameters, and no sequence of multiple rotations is involved.

Different conventions can be used to define the vector:

“Euler vectors” |q| = θ Sect. 4.2
“Quaternions” |q| = sin(θ/2) Sect. 4.3
“Gibbs vectors” |q| = tan(θ/2) Sect. 4.4

Rotation matrices are often an easy way to establish a correspondence between
measured values (e.g., induction coil voltages, or images) and the orientation of an
object relative to a given reference orientation. But for working with 3-D orien-
tations and for calculations, quaternions or Gibbs vectors have proven to be more

© Springer International Publishing AG, part of Springer Nature 2018
T. Haslwanter, 3D Kinematics, https://doi.org/10.1007/978-3-319-75277-8_4

57

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-75277-8_4&domain=pdf

58 4 Quaternions and Gibbs Vectors

Fig. 4.1 Description of 3-D eye orientation by a vector: a The eye in the reference orientation
(top) corresponds to the zero vector (bottom). b A different horizontal eye orientation (top) can be
reached by rotating the eye from the reference orientation about the sz -axis. This eye orientation
is, thus, represented by a vector along the sz-axis, with a length proportional to the angle of the
rotation (bottom). Note that usually only the end-point of the vector describing the eye orientation
is shown, not the whole vector

Fig. 4.2 According to the right-hand-rule positive rotations are yaw-rotations to the left
(about sz), pitch-rotations downward (about sy), and roll-rotations clockwise as seen from the
object (about sx)

intuitive and efficient. They are nonredundant, using three parameters to describe the
three degrees of freedom of rotations. And they do not require an arbitrarily chosen
sequence of rotations, but describe orientation by a single rotation from the refer-
ence orientation to the current orientation. In addition, they form an intuitive way of
parameterizing rotations by expressing them by their axis and size, allow for an easy
combination of rotations, and are more accurate when used to integrate incremental
changes in orientation over time.

4.2 Axis-Angle Euler Vectors 59

4.2 Axis-Angle Euler Vectors

A vector x can be rotated by an angle ρ about a vector n through

R(n, ρ) · x = (n · x) ∗ n + n × x ∗ sin(ρ) − n × (n × x) cos(ρ) (4.1)

or equivalently

R(n, ρ) · x = x ∗ cos(ρ) + (1 − cos(ρ)) ∗ (n · x) ∗ n + sin(ρ) ∗ n × x . (4.2)

The development of this parametrization of rotations can probably be attributed
to (Rodrigues 1840), and Eq. (4.2) is, therefore, also called “Rodrigues’ rotation
formula”. The representation of a rotation with an axis n and an angle ρ is sometimes
referred to as “axis-angle representation” of a rotation. And in honor of Euler’s
rotation theorem (see p. 179), a vector with a direction n and a length ρ is called
“Euler vector”.

Note: While Euler vectors give a convenient representation of a rotation, no equa-
tion exists that allows to combine twoEuler vectors. Therefore, practical implementa-
tions of rotations have to be based on rotation matrices, quaternions or Gibbs vectors
(see below).

4.3 Quaternions

4.3.1 Background

The theory of quaternions was invented and developed by Hamilton in the mid-
nineteenth century (Hamilton 1844). Hamilton realized that the complex numbers
could be interpreted as points in a plane (see Fig. 3.3), and he was looking for a
way to do the same for points in three-dimensional space. Points in space can be
represented by their coordinates, which are triples of numbers. For many years he
had known how to add and subtract triples of numbers. However, Hamilton had been
stuck on the problem of multiplication and division for a long time. He could not
figure out how to calculate the quotient of the coordinates of two points in space.
Hamilton found that he could not accomplish this by using 3-component vectors, but
had to use 4 components. He called these quadruples “quaternions”.

A detailed treatment of quaternions and their elegant mathematical properties can
be found in mathematical texts (Brand 1948; Altmann 1986; Kuipers 1999), many
papers on eyemovements (Westheimer 1957; Tweed andVilis 1987;Hepp et al. 1989;
Tweed et al. 1990), and papers in more technical journals (Rooney 1977; Funda and
Paul 1988). Recommendable introductions are also available on the Internet (see
Appendix G).

60 4 Quaternions and Gibbs Vectors

A note for physicists, or for the mathematically more curious reader: quaternions
are four-dimensional representations of Clifford algebras (see also Appendix A.4).
The two-dimensional representations are the complex 2 × 2-matrices, or “Pauli
spin matrices” (SU2, or two-dimensional special unitary group).And the
three-dimensional representations are the rotation matrices (SO3, or special three-
dimensional orthogonal group). Especially in theoretical physics, the advantages of
switching from 3-D representations over to 4-D quaternions can be massive (Girard
1984). For example, using Clifford algebra, the four Maxwell equations can be writ-
ten in just one very compact, elegant equation (see also Appendix A.4):

∇F = μ0 J . (4.3)

4.3.2 Quaternion Properties

The following description of quaternions will cover only their essential properties,
and no mathematical proofs will be given.

A full quaternion q̃ has four components, and is given by

q̃ = q0 + (q1 ∗ ĩ + q2 ∗ j̃ + q3 ∗ k̃) = q0 + q · I, (4.4)

where q =
⎛
⎝
q1
q2
q3

⎞
⎠ , I =

⎛
⎝

ĩ
j̃
k̃

⎞
⎠ , and (ĩ , j̃ , k̃) are defined by

ĩ · ĩ = −1 j̃ · j̃ = −1 k̃ · k̃ = −1

ĩ · j̃ = k̃ j̃ · k̃ = ĩ k̃ · ĩ = j̃ (4.5)

j̃ · ĩ = −k̃ k̃ · j̃ = −ĩ ĩ · k̃ = − j̃

q0 is often called the “scalar component” of the quaternion q̃, and q the “vector
component” of q̃. (Note that the quaternion is written as q̃, and the quaternion vector
as q.)

With Eq. (4.5), one can show (see Appendix A.3) that the multiplication of two
quaternions p̃ and q̃, here denoted “◦”, is given by

q̃◦ p̃ =
3∑

i=0

qi Ii ∗
3∑
j=0

p j I j = (q0 p0 − q · p) + (q0 p + p0 q + q × p) · I .

(4.6)
The right side of Eq. (4.6) is obtained by using the definitions in Eqs. (4.4) and

(4.5). Similar to rotation matrices, the sequence of the quaternions in Eq. (4.6) is
important, and the opposite sequence, p̃ ◦ q̃, would lead to a different quaternion.

4.3 Quaternions 61

The inverse quaternion is given by

q̃−1 = q0 − q · I
|q|2 . (4.7)

The norm of a quaternion is given by the quadrature sum of all four components

|q̃| =
√√√√ 3∑

i=0

q2
i . (4.8)

4.3.3 Interpretation of Quaternions

To interpret quaternions, it is helpful to group them into four classes:

(1) Quaternions with the scalar component equal to 0 correspond to R
3, the space

of three-dimensional vectors. (This group is sometimes also called “pure quater-
nions”.)

(2) Quaternions with a zero vector component 0 correspond to the space of
scalars, R.

(3) Unit quaternions, i.e., quaternions with |q̃| = 1, correspond to SO3, the group of
orthogonal matrices with a determinant of 1. Unit quaternions, sometimes also
called “rotation quaternions”, can be used to describe rotations in space.

(4) General quaternions with scalar and vector components unequal zero, with a
norm unequal to 1. These quaternions describe a combination of a rotation and
scaling of vectors (Rooney 1977). If the norm of the quaternion is > 1, the
objects are stretched; and if the norm is < 1, objects are compressed.

4.3.4 Unit Quaternions

A quaternion describing a pure rotation in 3-D space is a “unit quaternion” and has
a norm of |q̃| = 1.

From Eq. (4.7), the inverse quaternion q̃−1 for a unit quaternion is given by

q̃−1 = q0 − q · I , (4.9)

Comparing Eqs. (4.5) and (3.9) to Fig. 3.3, which describes rotations in the com-
plex plane, one can find a physical interpretation for ĩ , j̃ , and k̃. A rotation of a
complex number c by an angle φ is given by c′ = e jφ · c, where j ∗ j = −1,
and j can be interpreted as a vector pointing perpendicular out of the 2-D-plane. To

62 4 Quaternions and Gibbs Vectors

describe rotations in 3-D, we need three axes to rotate about: ĩ , j̃ , and k̃. It can be
shown that for a quaternion of the form

q̃ =
(

0
θ/2 ∗ v

)
(4.10)

where |v| = 1, the exponential of the quaternion is given by the unit quaternion

exp(q̃) =
(

cos(θ/2)
sin(θ/2) ∗ v

)
(4.11)

generalizing Eq. (3.5).
A unit quaternion describes a rotation by an angle θ around an axis described by

the unit vector n = (ni ĩ, n j j̃ , nk k̃)

q̃ = cos(θ/2) + sin(θ/2)[ni ĩ + n j j̃ + nk k̃] = q0 + q · I, (4.12)

where the orientation of n describes the axis of rotation, as shown in Fig. 4.1b. The
length of the vector component equals sin(θ/2). The unit quaternion has the following
properties:

|q̃| =
√
cos2(θ/2) + sin2(θ/2) = 1 (4.13a)

|q| =
√
q2
1 + q2

2 + q2
3 = sin(θ/2) (4.13b)

q ‖ n (4.13c)

The θ/2 property of rotation quaternions, i.e. the fact that the lengths of a unit
quaternion vector is determined by half the rotation angle, θ/2, can be explained by
interpreting a rotation as a sum of two reflections, see Appendix Fig. A.4. Another
way to explain it is by consideringEq. (4.14) discussedbelow.The rotation quaternion
appears twice. This “double application” of θ/2 leads to a final rotation by an angle
θ .

Examples

40◦ yaw movement to the left: A yaw movement is a rotation about a vertical

axis, so the quaternion vector has to be along the axis n =
⎛
⎝
0
0
1

⎞
⎠. The yaw rotation

to the left is positive (see Fig. 4.2). And since the magnitude of the rotation is 40◦,
the full quaternion is

q̃ =
(
q0
q

)
=

⎛
⎜⎜⎝
cos(40◦/2)

0
0

sin(40◦/2)

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝
cos(20◦)

0
0

sin(20◦)

⎞
⎟⎟⎠ .

4.3 Quaternions 63

90◦ pitch rotation nose-up: A pitch movement is a rotation about the y-axis, so

the quaternion vector has to be along the axis n =
⎛
⎝
0
1
0

⎞
⎠. A pitch rotation nose-

up is negative (Fig. 4.2). And since the magnitude of the rotation is 90◦, the full

quaternion is q̃ =

⎛
⎜⎜⎝
cos(−45◦)

0
sin(−45◦)

0

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

cos(45◦)
0

− sin(45◦)
0

⎞
⎟⎟⎠ .

Relation to Rotation Matrix
The connection between a rotation quaternion q̃ and a rotationmatrixR, both describ-
ing the rotation of a vector x about an axis n by an angle θ , can be derived from the
definition of quaternions in Eqs. (4.4)–(4.13):

x̃′ = q̃ ◦ x̃ ◦ q̃−1 =
(
0
x′

)
(4.14)

x′ = R · x .

The proof of Eq. (4.14) is given in Appendix A.3.
x̃′ in Eq. (4.14) is a full quaternion, but the scalar component evaluates to zero

q0 = 0. Hence, the rotation matrix R corresponding to the quaternion q̃ can be
determined as

R =
⎡
⎣
q2
0 + q2

1 − q2
2 − q2

3 2(q1q2 − q0q3) 2(q1q3 + q0q2)
2(q1q2 + q0q3) q2

0 − q2
1 + q2

2 − q2
3 2(q2q3 − q0q1)

2(q1q3 − q0q2) 2(q2q3 + q0q1) q2
0 − q2

1 − q2
2 + q2

3

⎤
⎦ . (4.15)

The inverse computation is given by

q = 0.5 ∗ copysign

⎛
⎝

√
1 + Rxx − Ryy − Rzz,√
1 − Rxx + Ryy − Rzz,√
1 − Rxx − Ryy + Rzz,

Rzy − Ryz

Rxz − Rzx

Ryx − Rxy

⎞
⎠ , (4.16)

where copysign(x, y) = sign(y) ∗ |x |.
Sequential Rotations with Quaternions
Equation (4.14) is the quaternion equivalent of a matrix multiplication for rotation
matricesR. Therefore, a sequence of quaternion rotations is the same as the sequence
of the corresponding rotation matrices. For combined rotations, care has to be taken
with the sequence of quaternions: the same rules apply as for rotation matrices,
which means that the first rotation acting on a vector is on the right-hand side of the
quaternion multiplication in Eq. (4.6).

Relation to Sequential Rotations
The examples above show how quaternions are related to rotations about coordinate
axes. Using the rules for quaternion multiplication Eq. (4.6), one can calculate the
relationship between rotation angles for the nautical sequence and quaternions:

64 4 Quaternions and Gibbs Vectors

q̃z(θN) ◦ q̃ y(φN) ◦ q̃x(ψN) =

⎛
⎜⎜⎝

cos θN
2 ∗ cos φN

2 ∗ cos ψN
2 + sin θN

2 ∗ sin φN
2 ∗ sin ψN

2
cos θN

2 ∗ cos φN
2 ∗ sin ψN

2 − sin θN
2 ∗ sin φN

2 ∗ cos ψN
2

cos θN
2 ∗ sin φN

2 ∗ cos ψN
2 + sin θN

2 ∗ cos φN
2 ∗ sin ψN

2
sin θN

2 ∗ cos φN
2 ∗ cos ψN

2 − cos θN
2 ∗ sin φN

2 ∗ sin ψN
2

⎞
⎟⎟⎠ .

(4.17)
For the Helmholtz sequence, this leads to

q̃ y(φH) ◦ q̃z(θH) ◦ q̃x(ψH) =
⎛
⎜⎝

cos θH
2 ∗ cos φH

2 ∗ cos ψH
2 − sin θH

2 ∗ sin φH
2 ∗ sin ψH

2
cos θH

2 ∗ cos φH
2 ∗ sin ψH

2 + sin θH
2 ∗ sin φH

2 ∗ cos ψH
2

cos θH
2 ∗ sin φH

2 ∗ cos ψH
2 + sin θH

2 ∗ cos φH
2 ∗ sin ψH

2
sin θH

2 ∗ cos φH
2 ∗ cos ψH

2 − cos θH
2 ∗ sin φH

2 ∗ sin ψH
2

⎞
⎟⎠ .

(4.18)
And for the Euler sequence we get

q̃z(αE) ◦ q̃x(βE) ◦ q̃z(γE) =
⎛
⎜⎝

cos αE
2 ∗ cos βE

2 ∗ cos γE
2 − sin αE

2 ∗ cos βE
2 ∗ sin γE

2
cos αE

2 ∗ sin βE
2 ∗ cos γE

2 + sin αE
2 ∗ sin βE

2 ∗ sin γE
2

sin αE
2 ∗ sin βE

2 ∗ cos γE
2 − cos αE

2 ∗ sin βE
2 ∗ sin γE

2
cos αE

2 ∗ cos βE
2 ∗ sin γE

2 + sin αE
2 ∗ cos βE

2 ∗ cos γE
2

⎞
⎟⎠ .

(4.19)
The inverse relationships, i.e., calculating the angles for the different rotation

sequences, can be obtained by inserting the corresponding matrix elements from
Eq. (4.15) into Eq. (3.24) for the nautical sequence, Eq. (3.27) for the Helmholtz
sequence, and Eq. (3.30) for the Euler sequence.

4.4 Gibbs Vectors

4.4.1 Properties of Gibbs Vectors

Gibbs vectors are named after Josiah Willard Gibbs (1839–1903), the inventor of—
amongmany other things—modern vector calculus.AGibbs vector1 r corresponding
to the rotation matrix R is given by

r = 1

1 + (R11 + R22 + R33)
∗

⎛
⎝

R32 − R23

R13 − R31

R21 − R12

⎞
⎠ . (4.20)

From this one can show that

|r| = tan(ρ/2) . (4.21)

1Some authors call Gibbs vectors “rotation vectors”.

4.4 Gibbs Vectors 65

The coefficients of the Gibbs vectors are sometimes referred to as “Rodrigues
parameters” (Altmann 1986; Dai 2015).

Finding the relationship betweenGibbs vectors and other descriptions of rotations,
such as nautical angles, requires an equation for combined rotations with Gibbs
vectors. Using Eqs. (4.6) and (4.21) gives

rq ◦ rp = rq + rp + rq × rp
1 − rq · rp , (4.22)

where rp is the first rotation (about a space-fixed axis parallel to rp), and rq the
second rotation (about a space-fixed axis parallel to rq).

TheGibbs vector corresponding to the nautical angles inEq. (3.23) can be obtained
by combining three Gibbs vectors with Eq. (4.22). Denoting a Gibbs vector which
describes a rotation about an axis n by an angle θ with r (n, θ), this leads to

r = r(e3, θN) ◦ r(ey, φN) ◦ r(e1, ψN) =

= 1

1 − tan(θN
2) ∗ tan(φN

2) ∗ tan(ψN

2)

⎛
⎝
tan ψN

2 − tan θN
2 ∗ tan φN

2
tan φN

2 + tan θN
2 ∗ tan ψN

2
tan θN

2 − tan φN

2 ∗ tan ψN

2

⎞
⎠ , (4.23)

where (θA, φA, ψA) are the nautical angles. For Helmholtz angles, the corresponding
equation reads

r = r(ey, φH) ◦ r(e3, θH) ◦ r(e1, ψH) =

= 1

1 − tan(θH
2) ∗ tan(φH

2) ∗ tan(ψH

2)

⎛
⎝
tan ψH

2 + tan θH
2 ∗ tan φH

2
tan φH

2 + tan θH
2 ∗ tan ψH

2
tan θH

2 − tan φH

2 ∗ tan ψH

2

⎞
⎠ . (4.24)

Close to the reference position, the relations between nautical angles, Helmholtz
angles, Gibbs vectors, and quaternions can be approximated by the simple formula

⎛
⎝

ψ

φ

θ

⎞
⎠

nautical

≈
⎛
⎝

ψ

φ

θ

⎞
⎠

Helmholtz

≈ 100 ∗
⎛
⎝
r1
ry
r3

⎞
⎠ ≈ 100 ∗

⎛
⎝
q1
qy
q3

⎞
⎠ (4.25)

where θ, φ,ψ are given in degrees.

Example

For example, with rp =
⎛
⎝

0
0.176
0

⎞
⎠ and rq =

⎛
⎝

0
0

0.087

⎞
⎠, Eq. (4.22) (rq ◦ rp) would

describe a rotation of 20◦ about the horizontal axis sy, followed by a rotation of 10◦
about the space-fixed vertical axis sz. According to our discussion above of rotations
of objects and coordinate systems, the same formula can also be interpreted as a first

66 4 Quaternions and Gibbs Vectors

rotation of 10◦ about the vertical axis bz, followed by a second rotation of 20◦ about
the rotated, object-fixed axis by - which corresponds to the horizontal and vertical
rotation in a nautical gimbal.

4.4.2 Cascaded Rotations with Gibbs Vectors

For combined rotations, Gibbs vectors show the same sequences as the corresponding
rotation matrices or quaternions. Using Gibbs vectors, Eq. (3.39) for combined eye–
head movements can be expressed as

rgaze = rhead ◦ reye . (4.26)

This can be rearranged to yield the Gibbs vector describing the orientation of our
object with respect to the reference frame (e.g. eye in head), reye, as

reye = r−1
head ◦ rgaze . (4.27)

The formula for the multiplication of two Gibbs vectors is given by Eq. (4.22),
and the inverse of a Gibbs vector can be determined easily by r−1 = −r.

4.4.3 Gibbs Vectors and Their Relation to Quaternions

The Gibbs vector r which corresponds to the quaternion q̃ describing a rotation of θ

about the axis n is given by

r = q
q0

= tan

(
θ

2

)
q
|q| = tan

(
θ

2

)
n , (4.28)

with |q| the length of q as defined in Eq. (4.13).

4.5 Applications

4.5.1 Targeting an Object in 3-D: Quaternion Approach

Let us revisit the aerial gun application in Sect. 3.6.1, but now assume that we have
a targeting device that can be controlled with a quaternion. In other words, the zero
quaternion describes the orientation where the targeting device is pointing straight
ahead ([1, 0, 0]).

4.5 Applications 67

Fig. 4.3 The shortest rotation (α) that brings a parallel to b is about an axis perpendicular to a
and b

Task: What quaternion would be needed to describe the target orientation, if the
target is in an arbitrary location (x, y, z)?

Solution: To answer that question, one can make use of the fact that the shortest
rotation that brings a vector a into alignment with a vector b is a rotation about the
direction perpendicular to a and b (see Fig. 4.3).

n = a × b
|a × b| (4.29)

by an angle equal to the angle α between the two vectors

α = arccos

(
a · b
|a||b|

)
. (4.30)

Given the rotation axis and angle, the most convenient way to represent that
rotation is the quaternion vector

qadjust = n ∗ sin(α/2) . (4.31)

The corresponding algorithm is implemented in skin.vector.q_shorte
st_rotation. For example, if the target moved along an ∞ loop on a screen in
10m distance, the orientation of the following targeting device could be calculated
with the following code:

Code: C4_targeting.py: projecting an ∞ loop on a screen
(p. 143).

Listing 4.1: C4_targeting.py

"""Orientation of targeting device.

"""
author: Thomas Haslwanter, date: Nov-2017

Import the required packages

https://github.com/thomas-haslwanter/3D_Kinematics/blob/master/python/C4_targeting.py

68 4 Quaternions and Gibbs Vectors

import numpy as np
import matplotlib.pyplot as plt
import skinematics as skin

Generate an "infinity"-loop, in 10m distance
t = np.arange(0,20,0.1) # 20 sec, at a rate of 0.1 Hz
y = np.cos(t)
z = np.sin(2*t)
x = 10 * np.ones_like(y)
data = np.column_stack((x,y,z))

Calculate the target-orientation, i.e. the quaternion that
rotates the vector [1,0,0] such that it points towards
the target
q_target = skin.vector.q_shortest_rotation([1,0,0], data)

Plot the results
fig, axs = plt.subplots(2,1)
axs[0].plot(-y,z)
axs[0].set_title(’Target on screen, distance=10’)
axs[1].plot(q_target)
axs[1].set_xlabel(’Time’)
axs[1].set_ylabel(’Quaternion’)
axs[1].legend([’x’, ’y’, ’z’])
plt.show()

4.5.2 Orientation of 3-D Acceleration Sensor

Task: Given an IMU with an accelerometer and a gyroscope only, what is the ori-
entation of the IMU at the beginning of an experiment, based on the direction of
gravity indicated by the accelerometer? Specifically, what would be the best guess
of the orientation of the sensor in orientation 3 in the example in Fig. 4.4?

Solution: Many inertial sensors are shaped like a match box, and define their long
side as the x-axis (bx), their shorter side as the y-axis (by), and the “thick” side as
the z-axis (bz). As explained in more detail in Sect. 2.2.2, a sensor lying flat and
stationary on the ground (Fig. 4.4, orientation 1.) indicates an acceleration of

accflat =
⎛
⎝

0
0

+9.81

⎞
⎠m/s2. (4.32)

If this sensor is rotated “upright” by exactly 90◦ (Fig. 4.4, orientation 2.), the
readout would indicate (9.81/0/0)m/s2.

4.5 Applications 69

Fig. 4.4 Orientation 1 Sensor aligned with space-fixed coordinate system. To find the orientation
of the sensor on the back, based on the measured accelerations, we first specify the approximate
sensor orientation (here orientation 2, sensor rotated by 90◦). From the measured accelerations in
orientation 3 (sensor on back of subject), the tilt relative to orientation 2 can be determined as
described in the text

A rotation “upright” can be indicated by a quaternion vector

qupright =
⎛
⎝

0
− sin(90◦/2)

0

⎞
⎠ . (4.33)

In Fig. 4.4, orientation 3., this sensor is attached in approximately that orientation
to the back of an upright standing or sitting person. Since the back of a person is
not exactly vertical, the sensor is slightly rotated. What is the best estimate of the
orientation of the sensor, when the readout, with the person stationary, indicates e.g.
(9.75/0.98/ − 0.39)?

To answer this question, we need the shortest rotation q̃adjust that brings the sensor
from the “upright” orientation where the accelerometer indicates (9.81/0/0) to the
current orientation, where it indicates (9.75/0.98/−0.39). Again, this is the rotation
that brings two vectors into alignment, which can be found as in the example above.

Since a rotation about g does not change the output of the accelerometer, the best
estimate of the orientation of the accelerometer is

q̃ total = q̃upright ◦ q̃adjust , (4.34)

70 4 Quaternions and Gibbs Vectors

where ◦ indicates the quaternion multiplication. Using scikit-kinematics, this can be
implemented as

Import the required packages
import skinematics as skin

Enter the measurements
g = [9.81, 0, 0]
g_upright = [9.75, 0.98, -0.39]

Calculate the sensor orientation
q_adjust = skin.vector.qrotate(g, g_rotated)
q_upright = [0, np.sin(np.pi/4), 0]
q_total = skin.quat.quatmult(q_upright, q_adjust)

For some experiments, it may be impossible to mount the inertial sensors in an
orientation approximating a space-fixed coordinate plane. For IMUs in arbitrary
mounting orientation and position Seel et al. have proposed a set of methods that
allow the determination of the local joint axis and position coordinates from arbitrary
motions by exploitation of the kinematic constraints of the joint (Seel et al. 2014).

4.5.3 Calculating Orientation of a Camera on a
Moving Object

Consider the problemwhere a camera in amissilemust be pointed to look at a specific
target. Themissile attitude/orientation has three rotational degrees of freedom relative
to the world. The camera attitude/orientation also has three rotational degrees of
freedom but relative to the missile body. So the missile and camera gimbal forms
a set of cascaded three-axis transformations. The camera gaze direction is (1, 0, 0),
i.e., the optical axis is along the x direction. When the camera is looking at the
object in the world, the target’s location in camera coordinates must, therefore, be
(xcamera

obj , 0, 0).
There are three coordinate systems in this scenario: (1) fixed to the world, (2) fixed

to the missile body, and (3) fixed to the camera on the gimbal. The target direction
in world coordinates is known from the location of the missile and the target. The
target vector in the camera coordinates is tc = [|t|, 0, 0], i.e., the optical axis or gaze
direction. The target direction in the missile body coordinates can be calculated.

In the example below, a missile is located at position (10, 1700, −2200) m with
an attitude (pitch=−1.2, yaw = −0.2, roll = −1.1) rad in Helmholtz sequence (roll–
yaw–pitch fromoutside to inside). The target is located at position (23,−560,−1800)
m. How can one calculate the Helmholtz-sequence camera gimbal attitude, relative
to the missile body, such that the camera optical axis points at the target? (To be on
the optical axis in camera coordinates, the target vector in camera coordinates must
be (2295, 0, 0).)

4.5 Applications 71

4.5.3.1 Calculating Look-at Angles

Code: C4_look_at.py: How to calculate the orientation of a cam-
era on a missile, in order to look in the direction of a given target.

Listing 4.2: C4_look_at.py

""" Given the positions of a missile and a target, and the
missile orientation, calculate the gimbal orientation of a
camera mounted on the missile, such that the camera
points at the target.
The optical axis of the camera is the x-axis.
"""

author: ThH, date: July, 2018, ver: 1.1

Import the required packages
import numpy as np
import skinematics as skin

def camera_orientation(missile_pos, missile_orient,
target_pos):
’’’Find camera orientation re missile, to focus on target.

Inputs

missile_pos : ndarray (3,) or (N,3)

Position of missile in space
missile_orient : ndarray (3,) or (N,3)

Orientation of missile, in Helmholtz angles [rad]
target_pos : ndarray (3,) or (N,3)

Position of target in space

Returns

camera_orientation : ndarray (3,) or (N,3)

Camera orientation, in Helmholtz angles [deg]
’’’

Required camera direction in space is a vector from
missile to target

v_missile_target = target_pos - missile_pos

Camera direction re missile
q = skin.rotmat.seq2quat(np.rad2deg(missile_orient),
seq=’Helmholtz’)
tm_in_missile_CS = skin.vector.rotate_vector
(v_missile_target, -q)

https://github.com/thomas-haslwanter/3D_Kinematics/blob/master/python/C4_look_at.py

72 4 Quaternions and Gibbs Vectors

Required camera orientation on missile, to focus on the
target

camera_orientation = skin.vector.target2orient
(tm_in_missile_CS, orient_type=’Helmholtz’)

return camera_orientation

if __name__==’__main__’:

Set up the system
helm = [-1.2, -0.2, -1.1] # Missile orientation, in

Helmholtz angles [rad]
target = np.r_[10, 1700, -2200]
missile = np.r_[23, -560, -1800]

Find the camera orientation
camera = camera_orientation(missile, helm, target)

Show the results
print(’Camera orientation on missile, in Helmholtz

angles:\n’ +
’pitch={0:4.2f}, yaw={1:4.2f} [deg]’.
format(*camera))

4.5.4 Object-Oriented Implementation of Quaternions

The Pythonmodule scikit.quat also contains a classQuaternionwithmulti-
plication, division, and inversion. A Quaternion can be created from vectors, rotation
matrices, or fromnautical angles, Helmholtz angles, or Euler angles. It provides oper-
ator overloading for mult, div, and inv, indexing, and access to the data in the
attribute values.

import numpy as np
from skinematics.quat import Quaternion

data = np.array([[0,0,0.1], [0, 0.2, 0]])
data2 = np.array([[0,0,0.1], [0,0,0.1]])

eye = Quaternion(data)
head = Quaternion(data2)
gaze = head * eye
print(gaze)
#>> Quaternion [[0.98 0. 0. 0.19899749]
#>> [0.97488461 -0.02 0.19899749 0.09797959]]

4.5 Applications 73

Code: C4_examples_quat.py: Examples of working with
quaternions: quaternion multiplication, conjugation, inversion, etc. (p. 144)

https://github.com/thomas-haslwanter/3D_Kinematics/blob/master/python/C4_examples_quat.py

Chapter 5
Velocities in 3-D Space

Typical biomechanical problems involve not only knowledge about the orientation
of an object, but also knowledge about angular and linear position, velocity, and
acceleration. Consider the movement of a rigid object in space, for example, the
lower arm of a person. How can the forces to obtain the observed movement in space
be determined?

The equations of motion involve linear and angular acceleration. This chapter
shows how these can be obtained from position and orientation, and vice versa, how
position and orientation can be calculated from linear and angular velocity.

5.1 Equations of Motion

The movement of an object must fulfill the following equations:

1. For translations of the center-of-mass (COM) of an object with mass m, Newton’s
second law ∑

i

fi = d(m ∗ vel)
dt

= m ∗ acc (5.1)

where fi are the forces acting on the object, and vel and acc the velocity and
acceleration of the COM, respectively.

2. For rotations about the center of mass, with constant moments of inertia

∑
mi = d(� · ω)

dt
= � · dω

dt
. (5.2)

where ω is the angular velocity vector, and mi are the moments acting on the body.

© Springer International Publishing AG, part of Springer Nature 2018
T. Haslwanter, 3D Kinematics, https://doi.org/10.1007/978-3-319-75277-8_5

75

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-75277-8_5&domain=pdf

76 5 Velocities in 3-D Space

For example, for limb movements only two types of forces are acting on the limb:
mass forces, i.e., gravity m ∗g; and the proximal and distal joint reaction forces rprox
and rdist , i.e., the forces acting on the joints.

rprox + rdist + m ∗ g = m ∗ acc. (5.3)

Once the linear and angular accelerations of the object, acc and dω
dt , are known,

Eqs. 5.1 and 5.2 can be used to calculate the forces and the moments involved, and
thus also the work required to move the object in the observed way.

This chapter will show how acc and dω
dt can be found. In order to calculate them

frommeasurement signals, the equations from the previous chapters will be required.
Specific tracking systems, e.g. optical or inertial based systems, will be dealt with in
the next chapter.

5.2 Linear Velocity

The mathematical description of translations is fairly simple, since translations are
always commutative. In other words, one always arrives at the same position, regard-
less of the sequence in which the translations are executed (Fig. 5.1):

posx + posy = posy + posx. (5.4)

This has important consequences. One is that velocity and acceleration for the
translational movement components can be calculated for each axis separately:

vel = dpos
dt

acc = d2pos
dt2

with veli = dposi

dt , and acci = d2 posi

dt2 (i = 1, 2, 3).

(5.5)

Fig. 5.1 Translations are commutative

5.2 Linear Velocity 77

For example, one can calculate when a bullet shot from a gun will fall down on
the ground at −z, without knowing how fast it is flying forward along x .

This will not be the case for rotations!
Depending on the computational requirements, a number of methods are available

to implement Eq. (5.5). For example, the Savitzky–Golay Filter, which is available
in Python and in Matlab,1 offers a very efficient and convenient way to smooth and
to differentiate data, especially for interactive work with experimental data. If the
pos data and the sample rate are given, velocity and acceleration can be calculated
with

from scipy.signal import savgol_filter
dt = 1/rate
vel = savgol_filter(pos, window_length=15, polyorder=3,
deriv=1,delta=dt,axis=0)
acc = savgol_filter(pos, window_length=15, polyorder=3,
deriv=2,delta=dt,axis=0)

The parameter window_length controls the amount of smoothing, and the last
argument, axis=0, is only required if data are stored in column-form.

Savitzky–Golay filters are similar to “finite difference approximations”, which
fit polynomials exactly to a given data window, and calculate the derivatives of
these polynomials exactly. This leads to tables of “finite difference coefficients over
n-point stencils”, such as the ones listed in (Diebel 2006). But in contrast to those
exact calculations, Savitzky–Golay filters determine the best-fit polynomials, typi-
cally to larger samplewindows, and can also calculate the derivatives from those best-
fit polynomials. Surprisingly, this can be done with a fixed Finite Impulse Response
(FIR) filter, whose coefficients only depend on the window size, the order of the
polynomial fit, the order of the derivative, and the sampling rate. This leads to a very
fast and efficient implementation of this filter.

In practice the chosen window_length is often checked visually, to ensure
that there is, on the one hand, sufficient smoothing to eliminate the noise, and on the
other hand that the important signal characteristics are still kept.

Also note that for velocities and accelerations, the reference position no longer
makes any difference, since the differentiation in Eq.5.5 eliminates any offset.

Determination of Position from Acceleration

To understand how angular velocity can be converted into orientation in space,
remember first how linear acceleration can be converted into linear velocity, and
linear velocity in turn into position.

1An easy-to-useMatlab implementation for the Savitzky–Golay filter for smoothing and derivatives
is the command savgol in the Matlab Kinematics Toolbox.

78 5 Velocities in 3-D Space

vel(t) = vel(t0) +
t∫

t0

acc(t ′) dt ′ (5.6)

x(t) = x(t0) +
t∫

t0

vel(t ′′) dt ′′ =

= x(t0) + vel(t0) ∗ (t − t0) +
t∫

t0

t ′′∫

t0

accspace(t ′) dt ′ dt ′′. (5.7)

Starting with a stationary sensor, i.e., vel(t0) = 0, the change in position is given
by

�x(t) = x(t) − x(t0) =
t∫

t0

t ′′∫

t0

accspace(t ′) dt ′ dt ′′. (5.8)

When working with computers, the integral cannot be performed exactly, but only
approximately. Employing the Riemann–Stieltjes integral theorem, splitting the time
between t0 and t into n equal elements with width �t leads to

x(t) = x0 + �x1 + �x2 + · · · + �xn. (5.9)

Measuring the acceleration at discrete times ti (i = 0, .., n), Eqs. (5.6) and (5.7)
have to be replaced with discrete equations:

vel(ti+1) ≈ vel(ti) + accspace(ti) ∗ �t (5.10)

x(ti+1) ≈ x(ti) + vel(ti) ∗ �t + accspace(ti)
2

∗ �t2 (5.11)

with the sampling period �t . The solution to Eq. (5.9) with the approximation in
Eq. (5.11) can be conveniently obtained in Matlab and Python with the cumtrapz
command, which Python users can find in the module scipy.integrate. More
stability can be achieved by modifying Eq. (5.10) with the Euler–Cromer method
(see Exercise 1.3).

Here it is important to note that due to the commutativity of translations, the
sequence of additions has no effect.

x0 + �x1 + �x2 + · · · + �xn = �xn + �xn−1 + · · · + �x1 + x0 . (5.12)

5.3 Angular Velocity 79

5.3 Angular Velocity

5.3.1 Calculating Angular Velocity from Orientation

Just as the value of the current position depends on the chosen reference position,
3-D orientation depends on the choice of the reference orientation. In contrast, the
inertial angular velocity does not depend on the reference orientation, since it only
describes the movement from the current orientation to the next, which does not
involve the reference orientation.

Quaternion Angular Velocity

The simplest formula describing the angular velocity ω is given in the quaternion
notation:

ω̃ = 2 ∗ dq̃
dt

◦ q̃−1, (5.13)

where ω̃ = (0,ω) is a (pure) quaternion, with the vector ω describing the 3-D angu-
lar velocity with respect to space. Note that due to the noncommutativity of rotations
the angular velocity depends not only on the time-derivative dq̃

dt of the orientation,
but also on the current orientation q̃.

Angular Velocity Tensor

If the orientation is describedwith rotationmatrices, the calculation of angular veloc-
ity is less straightforward. Any vector p that rotates around an axis with angular
velocity ω satisfies:

dp(t)

dt
= ω × p . (5.14)

The cross-product, which is a nonlinear operation, can be eliminated by describ-
ing angular velocity with a matrix, the so-called “angular velocity tensor” �. The
components of the angular velocity ω correspond to the off-diagonal elements of the
angular velocity tensor as follows:

�(t) =
⎡

⎣
0 −ωz(t) ωy(t)

ωz(t) 0 −ωx (t)
−ωy(t) ωx (t) 0

⎤

⎦ . (5.15)

This tensor �(t) will act as if it were a (ω×) operator :

ω(t) × p(t) = �(t)p(t) . (5.16)

Given the orientation matrix R(t) of a frame, its instant angular velocity tensor
�(t) can be obtained as follows. We know that

80 5 Velocities in 3-D Space

dp(t)

dt
= �(t) · p . (5.17)

As the angular velocity for the three basis vectors of a rotating frame must be the
same, if we have a matrix R(t) whose columns are the vectors of the frame, we can
write for the three vectors as a whole:

dR(t)

dt
= � · R(t) . (5.18)

As a result, the angular velocity tensor is

� = dR(t)

dt
· R−1(t) . (5.19)

Note the similarity between Eqs. (5.13) and (5.19)!

From Gibbs Vectors

Expressed in Gibbs vectors (Hepp 1990), Eq. (5.13) is equivalent to

ω = 2 ∗
dr
dt + r × dr

dt

1 + r 2
. (5.20)

From Nautical Angles

A more complex formula is required if angular velocity is expressed in nautical
angles (Goldstein 1980):

ω =
⎛

⎜⎝

dψN

dt ∗ cos θN ∗ cosϕN − dϕN

dt ∗ sin θN

dϕN

dt ∗ cos θN + dψN

dt ∗ sin θN ∗ cosϕN

dθN
dt − dψN

dt ∗ sin ϕN

⎞

⎟⎠ (5.21)

Equations (5.13) and (5.21) are equivalent, as they express the same angular veloc-
ity with different parametrizations. The time-derivatives of the orientation coordi-
nates – d

dt q̃ for quaternions, d
dt r for Gibbs vectors, and

⎛

⎜⎝

dθN
dt
dφN

dt
dψN

dt

⎞

⎟⎠ = d

dt

⎛

⎝
θ

φ

ψ

⎞

⎠

N

for nautical angles—are often referred to as “coordinate velocities”. The coordinate
velocity obviously depends on the parameters chosen to describe the orientation. In
contrast, the inertial angular velocity vector ω describes the actual movement of the
object, with its axis given by the instantaneous axis of rotation, and its length by

5.3 Angular Velocity 81

the angular velocity of this rotation, and does not depend on the parametrization of
the orientation. The preceding formulas also show that the coordinate velocity is in
general not equivalent to the inertial angular velocity ω.

Relation Angular Velocity-Orientation

The noncommutativity of rotations can lead to seemingly counterintuitive phenom-
ena. One such phenomenon arises in oculomotor research. If quaternion vectors are
used to describe the 3-D orientation of the eye, one finds empirically that under
typical conditions (i.e., looking around, with the head upright and stationary) all
quaternion vectors describing eye orientations line up along a plane. This plane is
called “Listing’s plane” (Haslwanter 1995). But if the eye rotates from one eye ori-
entation (in Listing’s plane) to another eye orientation (also in Listing’s plane), it has
to rotate about an axis that, in general, does not lie in that plane! This is illustrated
graphically in Fig. 5.2, and is a consequence of the fact that the quaternion multi-
plication required to calculate angular velocity (Eq. 5.13) involves a cross-product
of the quaternion vectors and their time-derivative (Eq. 4.6). Since the tilt of the eye
velocity vector in the example indicated in Fig. 5.2 is half the eccentricity of the eye
orientation, this effect is in oculomotor research referred to as “half-angle rule”.

Fig. 5.2 a Eye in the reference orientation. Rotations from a to b: Under typical conditions,
quaternion vectors describing eye orientation lie in a plane called “Listing’s plane”. Here this plane
is perpendicular to gaze in the reference orientation. Therefore, eye positions in (b) have been
reached from the reference position in (a) by a rotation about axes that lie in that plane, indicated
with solid arrows in (a). But to get from one eccentric eye orientation to another, i.e., b → c, the
eye has to rotate about an axis which does not lie in that plane

82 5 Velocities in 3-D Space

For example, the quaternion vectors of the unit quaternions for q̃start looking
approximately 20◦ up and 20◦ right, and for q̃end looking approximately 20◦ up and
20◦ left are

qstart =
⎛

⎝
0

−0.2
−0.2

⎞

⎠ , qend =
⎛

⎝
0

−0.2
0.2

⎞

⎠ . (5.22)

Both have a 0 component for q1. But the rotation from q̃start to q̃end is given by

q̃move = q̃end ◦ q̃−1
start =

⎛

⎜⎜⎝

0.92
−0.08

0
0.38

⎞

⎟⎟⎠ . (5.23)

Since the axis of this quaternion is also the axis of eye velocity, the eye velocity
is tilting backward, despite the fact that neither qstart nor qend are.

5.3.2 Calculating Orientation from Angular Velocity

Equation (5.9) shows how the current linear position can be determined numerically
from the starting position, with knowledge about the linear velocity of an object.
How can this approximation be applied to a continuous rotational movement with
angular velocity ω(t)?

For a short duration �t the axis of rotation is approximately constant. During
this time, the object rotates about the axis n(t) = ω(t)

|ω(t)| . The angle about which the
object rotates during this period is �φ = |ω(t)| · �t .

The properties of unit quaternions in Eq. (4.13) state that a rotation about n by an
angle of �φ can be described with a quaternion vector q, with its direction given by
n, and with the length sin(�φ

2). So with

�q(ti) = n(ti) sin

(
�φ(ti)

2

)
= ω(ti)

|ω(ti)| sin
(|ω(ti)| �t

2

)
, (5.24)

the current orientation can be approximated by

q̃(tn+1) ≈ �q̃(tn) ◦ �q̃(tn−1) ◦ ... ◦ �q̃(t2) ◦ �q̃(t1) ◦ q̃(t0) . (5.25)

Note that Eq. (5.25) contains full quaternions (written as q̃), while Eq. (5.24)
defines only the corresponding quaternion vectors (written as q).

5.3 Angular Velocity 83

Important Note: In Eq. (5.25) the sequence is important, because rotations are
noncommutative! Hereω is the angular velocity with respect to inertial space. In the
next chapter it will be shown how Eq. (5.25) has to be modified if ω is the angular
velocity as seen from a rotating body.

Code: C5_examples_vel.py: Worked example of
how to calculate angular velocity from 3-D orientation and vice versa (p. 147).

https://github.com/thomas-haslwanter/3D_Kinematics/blob/master/python/C5_examples_vel.py

Chapter 6
Analysis of 3-D Movement Recordings

The first section of this chapter 6.1 will investigate howmovement parameters can be
determined with marker-based systems. Optical Recording Systems (ORS), like the
system from Zeiss shown in Fig. 6.1, can provide high-resolution position informa-
tion for markers attached to objects. This allows to directly determine object position
and orientation in space. In contrast, Inertial Measurement Units (IMUs), which will
be described in more detail in the next Sect. 6.2, indicate linear acceleration and
angular velocity and contain no direct information about the absolute position and
orientation of the object in space.

6.1 Position and Orientation from Optical Sensors

A good overview of the conceptual background underlying the reconstruction of
human skeletal motion is given in the Handbook of Human Motion, in the chapter
by (Camomilla and Vannozzi 2018). And the estimation of dynamic 3-D pose based
on optical motion capture systems is described in (Selbie and Brown 2018). The
presentation here focusses on the kinematic principles underlying the 3-D analysis.

6.1.1 Recording 3-D Markers

To define position and orientation of an object in three dimensions, one needs to
find the positions of three points pi(t) that are firmly connected to the object. The
only requirements for these points are that they (a) are visible, and (b) must not be
arranged along a line.

In the example sketched out in Fig. 6.2, threemarkers are attached to the left lower
arm. Assume that the positions of these markers have been recorded, and stored as

© Springer International Publishing AG, part of Springer Nature 2018
T. Haslwanter, 3D Kinematics, https://doi.org/10.1007/978-3-319-75277-8_6

85

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-75277-8_6&domain=pdf

86 6 Analysis of 3-D Movement Recordings

Fig. 6.1 Optical recording system (with kind permission from Carl Zeiss Optotechnik GmbH)

Fig. 6.2 Recordingmovements of the lower armwith opticalmarkers. (Left)pi indicate the position
of the markers, “◦” the middle of the markers, and “*” the location of the Center of Mass (COM).
(Right) Active markers for 3-D position measurements, for the Optotrak-system

pi(t), i = 0, 1, 2. To investigate the object dynamics, the following questions have
to be answered:

1. What are the positions x(t), linear velocities v(t) = dx(t)
dt , and linear accelerations

acc(t) = d2x(t)
dt2 of the markers, with respect to our chosen space-fixed coordinate

system?
2. What are the resulting orientationR(t), angular velocity ω(t), and angular accel-

eration dω
dt of the markers?

3. What are the locations of the markers relative to the point(s) of interest on the
object, in an object-fixed reference system?

6.1 Position and Orientation from Optical Sensors 87

The position of an object is typically taken to be its “center of mass” (COM),
sometimes also called “center of gravity”. The COM is in general given by

COM(t) =

n−1∑

i=0
mi ∗ xi (t)

n−1∑

i=0
mi

(6.1)

where xi are the locations of the mass elements mi . Since the three markers have the
same “weight” mi , the position of the center of the markers can be calculated as

m(t) =
∑

i=0,1,2
pi (t)

3
(6.2)

In Fig. 6.2, the position of the center of the markers is indicated with “◦”. With
c(t) defined as the location of the COM, the vector r(t) from the markers to the COM
is given by

r(t) = c(t) − m(t) (6.3)

6.1.2 Orientation in Space

To find the orientation of an object, one needs to find the rotation matrixR describing
the orientation of the object. Since a rotation matrix is given by three columns of
orthogonal unit vectors, one needs to find three orthogonal unit vectors which are
uniquely defined through the marker points pi(t) (see Fig. 6.3).

Let the center of the local, marker-fixed—and thereby object-fixed—coordinate
system be determined by p0, and the direction of the positive first coordinate axis
by the vector −−→p0p1. In general, the line −−→p0p2 is not perpendicular to −−→p0p1. So in
order to uniquely define a normalized, right-handed coordinate system characterizing
position and orientation of an object, one can use a procedure called “Gram–Schmidt
Orthogonalization”1:

ax = p1−p0
|p1−p0|

az = ax×(p2−p0)
|ax×(p2−p0)|

ay = az × ax.
(6.4)

The three orthogonal unit vectors ai(t) define the columns of the rotation matrix
R which describes the orientation of the object

R(t) = [
ax(t) ay(t) az(t)

]
. (6.5)

1An alternative way to perform a Gram–Schmidt orthogonalization is given in Appendix A.2.

88 6 Analysis of 3-D Movement Recordings

Fig. 6.3 Gram–Schmidt Orthogonalization: calculation of three orthogonal unit vectors[
ax , ay, az

]
, uniquely defined by three points

[
p0,p1,p2

]

Denoting the rotation of the object relative to the starting (or reference) orientation
at t = t0 with Rmov leads to

R(t) = Rmov(t) · R(t0). (6.6)

Bringing R(t0) to the other side of Eq. (6.6), the rotation matrix characterizing
the rotational movement is

Rmov(t) = R(t) · R(t0)
−1. (6.7)

Note that rotation matrices are not the only way to describe the orientation of an
object, and/or its angular movement. The same orientation/movement can also be
described with equivalent quaternions (Eq. 4.14) or Gibbs vectors (Eq. 4.20).

6.1.3 Position in Space

Once the location of the markers and their orientation is known, the position of the
COM (or any other point of interest) of the object is uniquely defined, even if the
markers are mounted eccentrically to the COM. The movement of every point is
given by the sum of the COM translation plus its rotation about the COM. With

r(t) = Rmov(t) · r(t0) (6.8)

and using Eq. (6.3), the movement of the COM is given by

c(t) = m(t) + r(t) = m(t) + Rmov(t) · r(t0). (6.9)

This finally provides the 3-D position of the point of interest on the object.

6.1 Position and Orientation from Optical Sensors 89

6.1.4 Velocity and Acceleration

Linear Velocity and Acceleration
The equations for finding linear velocity and linear acceleration of an object are sim-
ple. If the position of an object is denotedwithpos(t), linear velocity and acceleration
are given by (see Sect. 5.2):

vel(t) = dpos(t)
dt

(6.10)

acc(t) = d2pos(t)
dt2

.

Angular Velocity
From the orientation of an object the corresponding angular velocity ω can be cal-
culated. Expressing the orientation with a quaternion q̃, the angular velocity ω can
be found with Eq. (5.13). Equivalently, when the orientation is described with Gibbs
vectors, the angular velocity can be found with Eq. (5.20); and expressing the orien-
tation with the nautical sequence, the angular velocity can be found with Eq. (5.21).

Angular Acceleration
The angular acceleration can be obtained from the angular velocity through simple
differentiation

AngAcc = dω

dt
. (6.11)

Note that while the noncommutativity of rotations requires more complex formu-
las to find the angular velocity from orientation, the angular acceleration is simply
the time derivative of angular velocity!

6.1.5 Transformation from Camera- to Space-Coordinates

Orientation
The first step in the analysis of 3-D movement recordings is the determination of the
position and orientation of the ORSwith respect to the chosen space-fixed coordinate
system.

The output of the data recorded by the ORS cannot be used directly, because
they are relative to the recording system. Commonly the (x/y) directions for the
recorded data are determined by the image plane of the optical sensor. x indicates
the horizontal image direction, y the vertical image direction, and z completes a
right-handed coordinate system CSORS = [x y z] (see Fig. 6.4).

90 6 Analysis of 3-D Movement Recordings

Fig. 6.4 Position of aMarker as seen from the ORS (m), and as seen from a space-fixed coordinate
system (m′)

To identify the position and orientation of the ORS relative to a space-fixed coor-
dinate system CSspace = [x′ y′ z′], the following procedure can be applied: Let three
marker points be positioned along the space-fixed coordinate system CSspace, such
that

1. p0 is at the center of CSspace.
2. The vector from p0 to p1 defines the space-fixed x-axis, x′.
3. The plane defined by (p0,p1,p2) defines the space-fixed x/y-plane. (In practice,

it is helpful if the vector from p0 to p2 points approximately in the direction of y′.)

p0 indicates the position of the origin of CSspace with respect to the ORS. Using
a Gram–Schmidt orthogonalization, the rotation matrix R indicating the orientation
of CSspace with respect to CSORS is given by (see Fig. 6.4):

R = [x′ y′ z′]. (6.12)

6.1.6 Position

Relative to ORS: If the position of the marker as seen from the ORS is m, and the
location of the center of CSspace is indicated by p0, then the vector from the center
of CSspace to the marker m is given by

m′
ORS = −p0 + m. (6.13)

Note that at this point the components of the vector are still expressed in the
orientation of CSORS!!

6.1 Position and Orientation from Optical Sensors 91

Relative to Space: To get the components of m′ relative to CSspace, one has to take
the orientation of CSspace with respect to CSORS into consideration, to obtain

m′
space = R−1 ∗ m′

ORS. (6.14)

Combining Eqs. (6.13) and (6.14) gives

m′
space = R−1 ∗ (m − p0). (6.15)

6.2 Position and Orientation from Inertial Sensors

This section describes the calculation of the exact orientation and position in space,
given IMU data from ideal linear accelerometers and gyroscopes (Sect. 6.2.1). The
next chapter (“Sensor Integration”, Chap. 7) will present how “Kalman Filters” or
other analysis procedures can be used to find optimal solutions to uncertain informa-
tion, for data from real sensors that can contain offsets and drifts. For a more detailed
comparison of different methods to analyze IMU data, a number of recommendable
surveys are available (Filippeschi et al. 2017; Bergamini et al. 2014).

The information from an IMU supports the analysis of a “well-defined” problem.
For each moment in time ti , the IMU provides six parameters: the three compo-
nents of ω(ti), plus the three components of acc(ti). The analysis must resolve six
variables: the three components of the position vector x, and the three parameters
defining the orientation, e.g., the quaternion vector q (see Chap. 4). This poses a
well-defined problem: there are equal numbers of input measurements and output
variables. The solutions for orientation and position are presented in Sects. 6.2.1 and
6.2.2, respectively.

Note that since the IMU only provides information about the derivatives of posi-
tion and orientation, the initial values for position, velocity, and orientation are
required in order to find the unique position and orientation at time ti .

6.2.1 Orientation in Space

Inertial sensors typically provide the linear acceleration acc and the angular velocity
ω of the sensor (in the sensor’s coordinate system). However, these values do not
directly provide themovement of the sensorwith respect to the fixed-space coordinate
system: these values aremeasuredby themoving sensor,whichmeans that oneobtains
linear acceleration and angular velocity in sensor coordinates.

In the upcoming equations, the following notation will be used: xspace is a vector
expressed in space coordinates, and xobject the corresponding vector locally expressed
with respect to the object.

92 6 Analysis of 3-D Movement Recordings

If the following information is available

• the initial conditions x(t0), R(t0), vel(t0),
• the IMU output accobject(ti) and ωobject(ti) in sensor coordinates, and
• the sampling period �t , assuming that this sampling period is constant,

one can calculate the new position and orientation in space, assuming that the lin-
ear acceleration and angular velocity remain approximately constant during a time
interval �t .

Orientation measurements are independent of the linear acceleration, whereas
the measured gravito-inertial acceleration (i.e., the output of the acceleration sensor)
depends on the current orientation (see Eq. 2.7). Therefore, reconstruction of position
and orientation from the sensor data has to start with the determination of object
orientation. The orientation of an object is determined by its starting orientation and
its angular velocity ωobject as described in the following.

Let the object under investigation start with its orientation with respect to space
given by the rotation matrix Rspace

object,start . The subsequent rotation of this object for
a short duration �t about a constant, space-fixed axis n with a constant velocity
ωspace is described by �Rspace, which depends on the current axis of rotation (n), the
rotational speed (ωspace), and the time duration of sampling (�t). Since in combined
rotations the rotation applied first (here the starting orientation) is written on the
right-hand-side of the matrix multiplication (see Sect. 3.4), the new orientation of
the object in fixed-space coordinates is given by

Rspace
object,new = �Rspace · Rspace

object,start. (6.16)

Note that the correct sequence of the matrices in this matrix multiplication is
essential.

The next analysis step is critical for the correct reconstruction of the object orien-
tation in space: if the angular acceleration is recorded in the sensor/object coordinates
(e.g., from an inertial tracking device mounted on the object), it first has to be trans-
formed from the object-fixed reference frame to a space-fixed reference frame. Let
�Robject describe the movement as seen in the object coordinates, and Rspace

object the
orientation of the object with respect to space. Then according to Eq. (A.6), which
describes how a rotation matrix transforms for a change of the coordinate system,
the movement with respect to space is given by

�Rspace = Rspace
object · �Robject ·

(
Rspace

object

)−1
. (6.17)

Inserting Eq. (6.17) into Eq. (6.16), and noting that for short durations Rspace
object ≈

Rspace
object,start leads to

Rspace
object,new = Rspace

object,start · �Robject ·
(
Rspace
object,start

)−1 · Rspace
object,start = Rspace

object,start · �Robject.

(6.18)

6.2 Position and Orientation from Inertial Sensors 93

Comparing this to Eq. (6.16), we see that for incremental rotations the only thing
that changes as we switch from an angular movement recorded with respect to space
to an angular movement recorded with respect to the object is the sequence of the
matrix multiplication!

For practical calculations, it is easiest to determine the orientation from the angular
velocity using quaternions, as has been shown in Sect. 5.3.2. There angular velocities
were used that describe the angular movement with respect to space ωspace, and
the final orientation was given by Eq. (5.25). Now if instead angular velocities are
used that have been measured with respect to the object ωobject, Eqs. (6.16) and
(6.18) imply that the only thing that has to be changed is the sequence of rotations.
Using quaternions, the final 3-D orientation of an object with respect to space whose
orientation has been recorded with an IMU is, therefore, given by

q̃(t) = q̃(t0) ◦ �q̃object
(t1) ◦ �q̃object

(t2) ◦ ... ◦ �q̃object
(tn−1) ◦ �q̃object

(tn) , (6.19)

where as in Eq. (5.25) the quaternion vectors are given by

�qobject(ti) = n(t) sin

(
�φ(ti)

2

)

= ωobject(ti)∣
∣ωobject(ti)

∣
∣
sin

(∣
∣ωobject(ti)

∣
∣ �t

2

)

(6.20)

with q̃(t0) the starting quaternion, and �q̃object
(ti) the quaternions corresponding to

the vector parts �qobject(ti).

6.2.2 Position in Space

Initial Orientation
Asmentioned in Sect. 6.2.2, accelerometersmeasure the gravito-inertial acceleration,
not just the acceleration caused by the movement of the object in space. In order
to obtain only the linear acceleration of an object in space from the signals of an
acceleration sensor, one first has to subtract gravity from the measured acceleration
signal. For that, the orientation with respect to gravity first has to be determined from
the gyroscope signals (see Fig. 6.5).

If one knows the initial position x(t = 0) and the initial velocity dx
dt

∣
∣
∣
∣
t=0

, one can

integrate the acceleration signals to obtain velocity and position in space.
If the sensor is rotated, the acceleration component contributed by gravity points

in a direction that depends on the orientation of the sensor coordinate system with
respect to space. Note that a rotation of the sensor about gravity does not change

94 6 Analysis of 3-D Movement Recordings

Fig. 6.5 Strapdown inertial navigation algorithm

the gravitational acceleration measured. In contrast, a tilt of the sensor with respect
to gravity changes the output of the IMU accelerometer. The application example in
Sect. 4.5.2 shows how to combine the knowledge about the approximate orientation
of the sensor with the measured acceleration signal at t = 0, to obtain the best
possible estimate of the initial sensor orientation.
Finding Acceleration, Velocity, and Position in Space
If the orientation of the sensor with respect to space is denoted by Rspace

sensor, then the
measured direction of gravity is

gsensor = (
Rspace

sensor

)−1 · gspace (6.21)

Rspace
sensor · gsensor = gspace (6.22)

The movement of the sensor in space can be determined from Eq. (2.7). Seen
from a space-fixed coordinate system

accspacemeasured = Rspace
sensor · accsensormeasured , (6.23)

the linear acceleration caused by movement in space is

accspacemovement = Rspace
sensor · accsensormeasured − gspace (6.24)

In many applications, one is interested in the position of the sensor (and thus of
the object under investigation) with respect to space. When the inertial acceleration
with respect to space is known, the positional change from the initial position can be
found through integration.

Note that in the equations above, accspacemovement is the acceleration component caused
by the movement with respect to space (Eq. 6.24), not the acceleration indicated by
the accelerometer!

6.2 Position and Orientation from Inertial Sensors 95

Fig. 6.6 Positioning of IMUs on the right leg during the movement recording

6.3 Applications: Gait Analysis

A simple analysis of leg movements while walking on a treadmill can demonstrate
application of the utilities provided with scikit-kinematics. To record the
movement of the upper and lower leg while walking on a treadmill, two IMUs from
XSens were strapped to the upper and lower leg, as indicated in Fig. 6.6.

The following piece of code demonstrates how the orientation of the lower leg
with respect to the upper leg can be calculated. Thereby, the approximate initial
orientation of the IMUs is provided, since the magnetic field signals are not used
for the analysis. This “knee-movement” is expressed with respect to the space-fixed
coordinate system.

Code: C6_gait_analysis.py:Demonstrationof a quick
evaluation of knee movements while walking on a treadmill (Fig. 6.7).

Listing 6.1: C6_gait_analysis.py

’’’
Calculation of 3-D knee orientation from IMU-data
of upper- and lower-leg.

’’’
author: Thomas Haslwanter, date: Jan-2018, Ver: 1.1

Import standard packages
import numpy as np

https://github.com/thomas-haslwanter/3D_Kinematics/blob/master/python/C6_gait_analysis.py

96 6 Analysis of 3-D Movement Recordings

Fig. 6.7 3-D orientation of the knee while walking on a treadmill. (The data still contain small
drift artifacts, which may be due to sensor slippage on the leg.)

import matplotlib.pyplot as plt
import os

Import skinematics
from skinematics.sensors.xsens import XSens
from skinematics.quat import Quaternion

Get the data
data_dir = r’D:\Users\thomas\Coding\Python\scikit-kinematics\

skinematics\tests\data’
infile_ll = os.path.join(data_dir, ’walking_xsens_lowerLeg.

txt’)
infile_ul = os.path.join(data_dir, ’walking_xsens_upperLeg.

txt’)

Provide the approximate initial orientation of the IMUs
initial_orientation = np.array([[0,0,-1], [1, 0, 0],

[0,-1,0]]).T

sensor_ul = XSens(infile_ul, R_init=initial_orientation)
sensor_ll = XSens(infile_ll, R_init=initial_orientation)

Convert the orientation to quaternions
q_upperLeg = Quaternion(sensor_ul.quat)
q_lowerLeg = Quaternion(sensor_ll.quat)

’’’

6.3 Applications: Gait Analysis 97

Calculate the 3-D knee orientation, using "Quaternion"
objects

Using the two rules for combined rotations
* From right to left
* From the inside out

we get that the orientation of the
lower_leg = upper_leg * knee

Bringing the "upper_leg" to the other side, we have
knee = inv(upper_leg) * lower_leg

’’’
knee = q_upperLeg.inv() * q_lowerLeg

Show the results
time = np.arange(len(knee)) / sensor_ul.rate
plt.plot(time, knee.values[:,1:])
plt.title(’Thomas Walking’)
plt.xlabel(’Time [sec]’)
plt.ylabel(’Knee Orientation [quat]’)
plt.legend([’x’, ’y’, ’z’])
plt.show()

6.4 Exercises

Exercise 6.1: An (Almost) Simple Rotation
Assume that the body-fixed coordinate system is such that the x-axis points forward,
the y-axis to the left, and the z-axis up. Before the rotations, the space-fixed coor-
dinate system and the body-fixed coordinate system coincide. Now two rotations
are performed: the body-fixed IMU is read out at 100Hz, and shows the angular
velocities indicated in Fig. 6.8.

Try to answer the following questions:

• How can angular orientation be calculated—in principle—from angular velocity?
• If the cumulative rotation during the first second amounts to 45◦, what are the unit
vectors of the body-fixed coordinate system after 1 s?

• If the rotation during the 2nd second amounts to 30◦, what are the unit vectors of
the body-fixed coordinate system after 2 s?

Exercise 6.2: Pendulum
Consider the signals measured by an IMU that is attached to a perfect pendulum,
with a length l = 20cm.

Try to answer the following questions:

• What are position and orientation of the pendulum as a function of time, if the
pendulum is released at t = 5 s, at a deflection of 5◦?

• What are the corresponding values if the initial deflection is 70◦?
• Which acceleration signals are recorded during the movement?

98 6 Analysis of 3-D Movement Recordings

Fig. 6.8 Rotation about the z- and the x-axis

Fig. 6.9 IMU attached to a pendulum

• Which angular velocity signals are recorded during the movement?
• Do the expected measurement signals meet your expectation?

The solution to the following exercise shows that it can be almost impossible to
guess the spatial movement from the accelerometer data alone.

Code: C6_examples_IMU.py: Example of working with
data from IMU sensors (p. 153) (Fig. 6.9).

https://github.com/thomas-haslwanter/3D_Kinematics/blob/master/python/C6_examples_IMU.py

Chapter 7
Multi-sensor Integration

Under ideal conditions, the algorithms described above work perfectly. From the
initial orientation plus the gyroscope data, they can first determine the orientation.
And knowing orientation, they can cancel out the contribution from gravity, and—
given the initial position and velocity—find the current position in space.

However, the analysis of real sensory signals is not quite that simple. Real sensory
signals include a number of artifacts like offsets and drifts (Woodman 2007). And
since offsets lead to velocity errors that grow linearly with time, and position errors
grow quadratically (as described in Sect. 2.2.2), the analytical solutions rarely get
applied directly.

But a wealth of algorithms exist, using different approaches to deal with gyro-
scope bias drift, inertial acceleration, and magnetic disturbances (e.g. Mahony et al.
2008; Savage 2006; Sabatini 2006; Roetenberg et al. 2007). Two main sensor fusion
approaches have been proposed: stochastic filtering, often implemented in the formof
an extended Kalman filter. And the so-called “complementary filtering” approaches,
which fuse multiple noisy measurements from the gyroscopes, accelerometers, and
magnetometers that have complementary spectral characteristics. For each measure-
ment, the complementary filtering uses only the part of the signal frequency spectrum
that contains useful information. (This is reflected in the name, complementary fil-
ters.) Unfortunately, due to the varying conventions used in the different publications,
such as quaternions, Euler angles, rotation matrices, and rotations of objects versus
rotations of coordinate systems, direct comparisons of the different approaches are
often difficult.

This chapter first provides an introduction to working with uncertain data. After
that the principle of Kalman filters is introduced. In the last section, an example of
a complementary filter that has received much attention for the evaluation of IMU
data is presented, the filter proposed by Madgwick et al. (2011).

© Springer International Publishing AG, part of Springer Nature 2018
T. Haslwanter, 3D Kinematics, https://doi.org/10.1007/978-3-319-75277-8_7

99

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-75277-8_7&domain=pdf

100 7 Multi-sensor Integration

Fig. 7.1 How best to combine the information from a GPS and the speedometer, to obtain the
optimal estimate of the current position?

7.1 Working with Uncertain Data

As1 an example application, consider the problem of determining the precise location
of a car (Fig. 7.1). The car can be equipped with a GPS unit that provides an estimate
of the position within a few meters. The GPS estimate is likely to be noisy; readings
“jump around” rapidly, though always remaining within a few meters of the real
position. In addition, since the car is expected to follow the laws of physics, its
position can also be estimated by integrating its velocity over time, determined by
keeping track of wheel revolutions and the angle of the steering wheel. This is a
technique known as “dead reckoning”. Typically, the dead reckoning will provide a
very smooth estimate of the car’s position, but it will drift over time as small errors
accumulate.

What makes this process particularly challenging is that neither the current posi-
tion/velocity of the car nor the GPS measurement are 100% accurate. To prepare the
mathematical ground for working with probabilities, the next section will start with
an introduction on how uncertain information can be described mathematically.

7.1.1 Uncertain Data in One Dimension

Normal Distribution

For simplicity, we start out with a one-dimensional, uncertain piece of informa-
tion: a one-dimensional position measurement. The measurement indicates a certain
value μ, but also has an uncertainty σ (Fig. 7.2). The probability that the value of a
measurement is correct is characterized by a so-called “probability distribution”. In
many cases, this probability distribution is well described by a “normal probability
distribution”, also called a “Gaussian probability distribution”:

N (x | μ, σ) = 1√
2σ 2π

e− (x−μ)2

2σ2 (7.1)

1This section is strongly based on the presentation http://www.bzarg.com/p/how-a-kalman-filter-
works-in-pictures/ by Timm Babb.

http://www.bzarg.com/p/how-a-kalman-filter-works-in-pictures/
http://www.bzarg.com/p/how-a-kalman-filter-works-in-pictures/

7.1 Working with Uncertain Data 101

Fig. 7.2 Normal distribution, centered about μ, with a standard deviation of σ

where μ is the mean or expected value of the distribution, and σ is the standard
deviation (σ 2 is the variance).

Combination of Two Normal Distributions

Howcan one obtain the best estimate for the position of the car if one has two different
measurements, in our example the prediction from the dead reckoning and the GPS
measurement? Luckily, the product of two Gaussians is again a Gaussian (Fig. 7.3).
Let μi be the best guess of the measurement i , and σi the corresponding standard
deviation. Then, the combined probability distribution can then be obtained with

Fig. 7.3 The product of two normal probability distributions (solid lines) is again normally dis-
tributed (dotted line)

102 7 Multi-sensor Integration

N (x | μ0, σ0) · N (x | μ1, σ1) ∼ N (x | μ′, σ ′) (7.2)

Substituting Eq. (7.1) into Eq. (7.2), and normalizing the resulting distribution gives

μ′ = μ0 + σ 2
0 (μ1 − μ0)

σ 2
0 + σ 2

1

(7.3)

σ ′2 = σ 2
0 − σ 4

0

σ 2
0 + σ 2

1

. (7.4)

With

k = σ 2
0

σ 2
0 + σ 2

1

(7.5)

we obtain

μ′ = μ0 + k(μ1 − μ0) (7.6)

σ ′2 = (1 − k)σ 2
0 .

The variable k in Eq. (7.6) corresponds to the “Kalman Gain” of the Kalman filter
described in the next section, and the combination of two probability distributions is
equivalent to the action Update in Fig. 7.8, since the information from one system
is combined with that from another system.

7.1.2 Uncertain Data in Multiple Dimensions

In practice systems often have more than one dimension, i.e., they require more than
one parameter to characterize the current state of the system. For the car example
here, Fig. 7.4 shows 500 (hypothetical) position and velocity measurements. Each of
these parameters is normally distributed, as shown by the corresponding histogram.

Plotting not the individual points, but the probability to find a given posi-
tion/velocity measurement gives the corresponding two-dimensional Gaussian
probability distribution (see Fig. 7.5).

In Fig. 7.5, position and velocity are “uncorrelated”, which means that the state of
one variable (e.g. position) tells us nothing about what the other (e.g. velocity) might
be. The example in Fig. 7.6 shows something more interesting. There position and
velocity are “correlated”: the likelihood of observing a particular position depends
on the current velocity.

7.1 Working with Uncertain Data 103

Fig. 7.4 500 samples from uncorrelated position and velocity measurements. The projections on
the top and on the right show the corresponding sample histograms

Fig. 7.5 Probability distribution of two uncorrelated variables. The colorbar on the right side shows
the scale how likely it is to obtain a measurement at any given location

This kind of situation might arise if, for example, the estimate of a new position
is based on an old one. If the velocity was high, the car probably moved farther, so
the new position will be more distant. If the car drove slowly, it did not get as far.

This kind of relationship is really important to keep track of, because it provides
more information: onemeasurement contains information about what the other could
be. This correlation is captured by the so-called “covariancematrix”�. Each element
�i j of the matrix quantifies the degree of correlation between the i th state variable

104 7 Multi-sensor Integration

Fig. 7.6 Probability distribution of two correlated variables

and the j th state variable. (Note that the covariancematrix is symmetric, whichmeans
that it does not matter if the indices i and j are exchanged.)

To make the notation more concise, let pk be the position at time tk , and vk the
corresponding velocity. The “state vector” describing the object is now given by the
vector x, defined as

xk =
(
position
velocity

)
(tk) =

(
pk
vk

)
. (7.7)

And the corresponding covariance matrix is

�k =
[
�pp�pv

�vp�vv

]
. (7.8)

The diagonal elements of the covariance matrix correspond to the variance of the
position and the velocity, respectively. And the off-diagonal elements quantify the
correlation between the two parameters.

The combination of uncertain multidimensional measurements with uncertain
state expectations requires matrix versions of Eqs. (7.5) and (7.6).

If � is the covariance matrix of a Gaussian blob, and the vector µ its mean along
each axis, then the Kalman gain matrix K is

K = �0 · (�0 + �1)
−1, (7.9)

and the new mean µ′ and the new covariance matrix �′ are (Fig. 7.7)

µ′ = µ0 + K · (µ1 − µ0)

�′ = (1 − K) · �0.
(7.10)

The subscripts in Eqs. (7.9) and (7.10) refer to the first and second set of measure-
ments.

7.2 Kalman Filter 105

Fig. 7.7 The combination from the information from two higher dimensional probability distribu-
tions reduces the uncertainties in our estimates: the bright area indicates where bothmeasurement_0
(magenta) and measurement_1 (yellow) agree

7.2 Kalman Filter

7.2.1 Idea Behind Kalman Filters

Kalman2 filtering is an algorithm that uses a series of measurements observed over
time, containing statistical noise and other inaccuracies, and produces estimates
of unknown variables that tend to be more precise than those based on a single
measurement alone, by using Bayesian inference and estimating a joint probability
distribution over the variables for each time frame. The elegant feature of the Kalman
filter is that the uncertainty in the data is taken into consideration, and the maximum
amount of knowledge is extracted from the given information. The filter is named
after Rudolf E. Kálmán (1930–2016), one of the primary developers of its theory.

The Kalman filter has numerous applications in technology. A common appli-
cation is for guidance, navigation, and control of vehicles, particularly aircraft and
spacecraft. Furthermore, the Kalman filter is a widely applied concept in time series
analysis used in fields such as signal processing and econometrics. Kalman filters are
also one of the main topics in the field of robotic motion planning and control, and
they are sometimes included in trajectory optimization. In neuroscience, the Kalman
filter has found use in modeling the central nervous system’s control of movement.
Due to the time delay between issuing motor commands and receiving sensory feed-
back, use of the Kalman filter provides the needed model for making estimates of
the current state of the motor system and issuing updated commands (Wolpert and
Ghahramani 2000).

The algorithm works in a two-step process (see Fig. 7.8). In the Prediction step,
the Kalman filter produces estimates of the current state variables, along with their

2This section is taken from https://en.wikipedia.org/wiki/Kalman_filter

https://en.wikipedia.org/wiki/Kalman_filter

106 7 Multi-sensor Integration

Fig. 7.8 Simplified diagram describing the iterative update of a system

uncertainties. Once the outcome of the next measurement (necessarily corrupted
with some amount of error, including random noise) is observed, the state estimates
are combined with the measurements in an Update step using a weighted average,
with more weight being given to estimates with higher certainty. The algorithm is
recursive. It can run in real time, using only the present input measurements and the
previously calculated state and its uncertainty matrix; no additional past information
is required.

The Kalman filter does not require any assumption that the errors are Gaussian.
However, the filter yields the exact conditional probability estimate in the special
case when all errors are Gaussian distributed.

For Kalman filters, the underlying model is a Bayesian model similar to a “hidden
Markov model”, but where the state space of the latent variables is continuous and
where all latent and observed variables have Gaussian distributions.

Example Application

In the example with the car on a highway, the parameters (position/velocity) describe
the current state of this system, and are sampled at equal time increments �t . Know-
ing the former state of the system (position/velocity), and the external control (posi-
tion of the accelerator pedal), one can calculate the predicted state of the system
�t seconds later (Fig. 7.8). Since the car may have encountered, e.g., a steep, bad
section of the road, the predicted state will not match up exactly with the measure-
ments (e.g., the position/velocity information from the GPS signals). In order to get
the best possible estimate of the current position, these two pieces of information are
integrated in the Update, to get the updated predicted state. This is the new starting
point, and the process begins all over again.

In this example, the Kalman filter can be thought of as operating in two distinct
phases: Prediction andUpdate. In the prediction phase, the car’s old position will be
modified according to the physical laws of motion (the dynamic or “state transition”
model) plus any changes produced by the accelerator pedal and steering wheel.
Not only will a new position estimate be calculated, but a new covariance will be
calculated as well, providing information about the uncertainty of the car’s position.
Perhaps the covariance is proportional to the speed of the car because we are more
uncertain about the accuracy of the dead reckoning position estimate at high speeds
but very certain about the position estimate when moving slowly. Next, in the update

7.2 Kalman Filter 107

phase, ameasurement of the car’s position is taken from theGPS unit. Alongwith this
measurement comes some amount of uncertainty, and its covariance relative to that of
the prediction from the previous phase determines how much the new measurement
will affect the updated prediction. Ideally, if the dead reckoning estimates tend to
drift away from the real position, the GPS measurement should pull the position
estimate back toward the real position but not disturb it to the point of becoming
rapidly changing and noisy.

7.2.2 State Predictions

How can state predictions, corresponding to the box Prediction in Fig. 7.8, be imple-
mented? In the following first the equations without external control will be consid-
ered, and then external input will be added. In order to facilitate the overview, and
the correspondence between the equations and Figs. 7.9 and 7.10, the elements in
the following equations will use the same colors as the corresponding elements in
the figures.

Without External Control

In the example the current position/velocity is known at time tk−1 (Fig. 7.9, left).
If one wants to know the best estimate for the position/velocity at time tk (Fig. 7.9,
right), one can write that down as

pk = pk−1 + �t ∗ vk−1 (7.11)

vk = vk−1.

Using vector and matrix notation, this can be written as

xk = Fk · xk−1. (7.12)

Fig. 7.9 Knowledge of the previous state (left, xk−1) and the state-transition matrix F allows
calculation of the new state (right, xk)

108 7 Multi-sensor Integration

Fig. 7.10 Simplified scheme describing the iterative update of a system, taking external factors
uk−1 and measurements yk into consideration

Borrowing the terminology from the theory of control systems

• xk is the state at time k, containing all the parameters required to describe the
current state of system. (In our example, these are position and velocity, and x0
provides the initial state vector.)

xk =
(
pk
vk

)
.

• F is the state transition model, in our case given by the matrix

F =
[
1 �t
0 1

]

which is applied to the previous state xk−1 in order to get the estimated new state
xk .

• In the context of Kalman filters, the covariancematrix for the state xk−1 is typically
indicated with Pk−1

P =
[

σ 2
p σpv

σvp σ 2
v

]
.

If one knows how the state transition affects each individual point (Fig. 7.9),
one can also calculate how the probability distribution develops. Elementary linear
algebra gives

Pk = Fk ·Pk−1·FT
k . (7.13)

With External Control

If accelerator or brakes are activated, the car will no longer move smoothly forward,
but also undergo an acceleration a. In that case, the new position/velocity are given by

pk = pk−1 + �t ∗ vk−1 + 1

2
∗ a ∗ �t2 (7.14)

vk = vk−1 + a ∗ �t.

7.2 Kalman Filter 109

Writing these equations in matrix form one obtains

xk = Fk · xk−1 +
(

�t2

2
�t

)
∗ a

= Fk · xk−1 + Bk · uk
(7.15)

where:

• B is called the control matrix
• the control vector uk (here a simple scalar a) characterizes the external input.

Also the external control is not 100% precise, but also has some variability. Denoting
this external variability with Q, Eq. (7.13) turns into

Pk = Fk ·Pk−1·FT
k + Qk . (7.16)

In words, with the knowledge of the covariance matrix for the previous state vector,
Pk−1, the state transition matrix Fk , and the variability in external control, Qk , the
covariance matrix for the new state can be calculated.

To conclude the update cycle, one final step has to be considered: external mea-
surements (see Fig. 7.10, yk):

• yk , the observation at time k, is combined with the estimated state xk to form a
new estimate, x′

k .• With this new best estimate, the whole process is then repeated.

The next section shows how external measurements are included in the equations.

7.2.3 Measurements and Kalman Equations

Several sensors might provide information about the state of the system. For the time
being it does not matter what they measure; perhaps one reads position and the other
reads velocity. Each sensor says something indirect about the state. In other words,
the sensors operate on a state and produce a set of readings. In the context of Kalman
filters, it is typically assumed that the expected sensor signal is related to the state
estimate xk through a linear transformation

sensor = Hk · xk . (7.17)

And the uncertainty in the state estimate P propagates into an uncertainty in the
sensor space via

�sensor
expected = Hk · Pk · HT

k . (7.18)

110 7 Multi-sensor Integration

In Kalman equations, the mean sensor signal is typically labelled zk−1, and the
sensor noise (i.e. the covariance of the sensor readings) with Rk−1.

Putting It All Together

We have two distributions: the predicted measurement with

(μ0,�0) = (Hk · xk,Hk · Pk · HT
k)

and the observed measurement with

(μ1,�1) = (zk,Rk).

Plugging these into Eq. (7.10) to find their overlap, we get

Hk · x′
k = Hk · xk + K · (zk − Hk · xk)

Hk · P′
k · HT

k = (1 − K) · Hk · Pk · HT
k

. (7.19)

And from Eq. (7.9), the Kalman gain is

K = Hk · Pk · HT
k · (

Hk · Pk · HT
k + Rk

) −1. (7.20)

We can eliminate Hk off the front of every term in Eqs. (7.19) and (7.20) (note
that one is hiding insideK), and anHT

k off the end of all terms in the equation for P′
(Fig. 7.11).

x′
k = xk + K′ · (zk − Hk · xk)

P′
k = Pk − K′ · Hk · Pk

(7.21)

K′ = Pk · HT
k · (Hk · Pk · HT

k + Rk)
−1 (7.22)

... giving us the complete equations for the Update step.
And that’s it! x′ is the new best estimate, and can be fed (along with P′

k) back into
another round of Prediction and Update.

These equations represent any linear system accurately. And for an implementa-
tion, of all themath above only Eqs. (7.13) and (7.16), (7.21), and (7.22) are required.

7.2 Kalman Filter 111

Fig. 7.11 The Kalman filter keeps track of the estimated state of the system and the variance or
uncertainty of the estimate. The estimate is updated using a state transitionmodel andmeasurements.
xk|k−1 denotes the estimate of the system’s state at time step k before the kth measurement yk has
been taken into account; Pk|k−1 is the corresponding uncertainty (from Wikipedia)

7.2.4 Kalman Filters with Quaternions

For nonlinear systems the math gets more complicated, and methods like extended
Kalman filters and unscented Kalman filters have to be used. These work in principle
by linearizing the predictions and measurements about their mean. These extensions
are particularly important for 3-D kinematics, since there the underlying algorithms
are clearly nonlinear: for example, expressed with quaternions, the combination of
two rotations requires a cross product calculation (Eq. 4.6).

The quaternion-based extended Kalman filter developed by Yun and Bachman
for human body motion tracking (Yun and Bachmann 2006) is implemented in the
scikit-kinematics package imus.

7.3 Complementary Filters

The “complementary filter” is a somewhat different, simple estimation technique
that was developed in the flight control industry to combine measurements (Higgins
1975). This filter is actually a steady-state Kalman filter for a certain class of filtering
problems. It does not consider any statistical description of the signal, but instead
considers how x and y, two noisy measurements of some signal z, can be used to pro-
duce an estimate of the signal, ẑ, if the filter characteristics of the two measurements
complement each other (see Fig. 7.12).

112 7 Multi-sensor Integration

Fig. 7.12 In a “complementary filter”, the filter characteristics of two measurements of a signal z,
here labeled x and y, complement each other. Thus the filter outputs can be combined to achieve a
better estimate of the original signal

An example of a complementary filter that takes the kinematic properties of 3-D
orientation into consideration is the approach described by (Madgwick et al. 2011).
That approach makes use of the fact that human movements cannot contain linear
accelerations lastingmore than a fewseconds.This allows the constructionof analysis
algorithms with advantages over Kalman filter approaches.

7.3.1 Gradient Descent Approach

The algorithm for sensor integration developed by Madgwick is computationally
very efficient (Madgwick et al. 2011). It uses a quaternion representation, allowing
accelerometer and magnetometer data to be used in a “gradient descent algorithm”
to compute the direction of the gyroscope measurement error as a quaternion deriva-
tive. The algorithm achieves levels of accuracy matching that of the Kalman-based
algorithms. Open-source implementations of this algorithm are available for C, C#,
and Matlab,3 and for Python.4

The idea behind the gradient descent method is illustrated in Fig. 7.13: on an
“error-surface”, walk in the steepest downward direction (=“gradient”) in order to
get to bottom most quickly.

The smart algorithm by Madgwick uses the following assumptions:

• On average, gravity points downward. This provides the direction of the space-
fixed z-axis. And the horizontal component of the local magnetic field can be taken
as the direction of the x-axis.

• Knowing the 3-D angular velocity ωt−1, one can use a modification of Eq. (5.13),

dq̃
dt

= 1

2
ω̃ ◦ q̃ (7.23)

to get an estimate of the current orientation

q̃ω,t ≈ q̃ω,t−1 +
(
dq̃
dt

)
ω,t

∗ �t. (7.24)

3http://x-io.co.uk/open-source-imu-and-ahrs-algorithms
4http://work.thaslwanter.at/skinematics/html/imus.html

http://x-io.co.uk/open-source-imu-and-ahrs-algorithms
http://work.thaslwanter.at/skinematics/html/imus.html

7.3 Complementary Filters 113

Fig. 7.13 (Left)Magnitude of deviation from gravity, forming a quadratic bowl. (Right) The yellow
dots indicate the stepwise “gradient descent” to the bottom of a quadratic bowl, here starting at (x, y)
= (1.8/1.0)

From the point of view of complementary filters, this provides the high-frequency
input.
In Eq. (7.23), one has to be very careful with the sequence: Madgwick defines q̃
to represent the orientation of the earth relative to the sensor, which results in the
inversion of the sequence in Eq. (7.23)!

• Angular velocity sensors in IMUs typically show a substantial amount of drift and
noise. In order to compensate for the resulting cumulative error, Madgwick com-
bines this orientation estimate with a second estimate of orientation: interpreting
the readout of the accelerometers as gravity, and knowing the direction of the local
magnetic field, provides in combination a second orientation estimate, in addition
to the one in Eq. (7.24). Here Madgwick proposes—based on investigations of
the underlying kinematics—to perform the first step of a gradient descent into
that direction, with a fixed magnitude which is set to compensate the typical gyro-
scope errors. Note that the step width for this step was adjusted in (Madgwick et al.
2011) to optimize the filter properties for the frequently used XSens sensor. From
the point of view of complementary filters, this compensates for low-frequency
drifts and errors.

• Since the local surroundings can have a significant effect on the local magnetic
field, Madgwick’s algorithm is modified such that this can only lead to errors in
the heading direction, and no tilt errors.

The decision which filter is “best” for a given application depends on the specific
application requirements. The filter byMadgwick was designed specifically for real-
time implementations of human movement recordings. For other applications, for
example, aerospace or in the automotive area, assumptions inherent in the approach
by Madgwick may not hold.

Appendix A
Appendix—Mathematics

A.1 Mathematical Basics

A.1.1 Scalar Product

The “scalar product” of two vectors a and b is defined as

⎛
⎝

ax

ay

az

⎞
⎠ ·

⎛
⎝

bx

by

bz

⎞
⎠ = ax bx + ayby + azbz = |a| · |b| · cos(θ) . (A.1)

The geometric interpretation of the scalar product is the projection of one vector
onto another (Fig. A.1, left).

A.1.2 Cross Product

The “cross product” or “vector product” of two vectors a and b is defined as
⎛
⎝

ax

ay

az

⎞
⎠ ×

⎛
⎝

bx

by

bz

⎞
⎠ =

⎛
⎝

aybz − azby

azbx − ax bz

ax by − aybx

⎞
⎠ . (A.2)

The resulting vector is perpendicular to a and b, and vanishes if a and b are
parallel. The length of the vector is given by the area of the parallelogram spanned
by the two vectors (Fig. A.1, right).

© Springer International Publishing AG, part of Springer Nature 2018
T. Haslwanter, 3D Kinematics, https://doi.org/10.1007/978-3-319-75277-8

115

116 Appendix A: Appendix—Mathematics

Fig. A.1 Graphical interpretation of scalar product (left) and vector product (right). Note that
|a| = a, and the same for b

It may be worth noting that the “invention” of the scalar and vector product goes
back to quaternions: for two purequaternions, the quaternion product separates neatly
into the dot product for the scalar part, and the cross product for the vector part: with
ũ = (0,u) and ṽ = (0, v), Eq. (4.6) turns to

ũ ◦ ṽ = (u · v) ∗ 1 + (u × v) · I . (A.3)

A.1.3 Matrix Multiplication

In general, the multiplication of two matrices A and B is defined as

A · B = C (A.4)

with Cik = ∑
j

Ai j B jk .

This equation can also be used for multiplication of amatrix with a column vector,
when the vector is viewed as a matrix with n rows and one column.

Example 1 (Rotation of a Point in Space) If p is a column vector indicating the
position of a point in space, the location of the point rotated by the rotation matrix
R is given by

p′ = R · p . (A.5)

Example 2 (Rotation of a RotationMatrix) IfRrot describes a rotation about a space-
fixed axis, a transformation of this rotation by the matrix Rtrans is given by

R′
rot = Rtrans · Rrot · R−1

trans . (A.6)

For example, if Rrot describes a positive rotation about the x-axis, and Rtrans a
rotation about the z-axis by 90◦, then the result of Eq. (A.6), R′

rot, describes a positive

Appendix A: Appendix—Mathematics 117

rotation about the y-axis. A simple computational proof can be implemented with
Python:

import the required packages
import numpy as np
import skinematics as skin

Define a rotation about the x-axis by "alpha" ...
Rs_rot = skin.rotmat.R_s(’x’,’alpha’)
... and one about the z-axis by "theta"
Rs_trans = skin.rotmat.R_s(’z’, ’theta’)

Now "rotate the rotation", find the result
for "theta"=90deg=pi/2, and show the result

Rs_rot_transformed = (Rs_trans * Rs_rot
* Rs_trans.inv()).subs(’theta’, np.pi/2)

Rs_rot_transformed

Output:
#Matrix(
[1.0*cos(alpha), -6.1e-17*cos(alpha) + 6.1e-17,

1.0*sin(alpha)],
[-6.1e-17*cos(alpha), 3.7e-33*cos(alpha) + 1.0,

-6.1e-17*sin(alpha)],
[-1.0*sin(alpha), 6.1e-17*sin(alpha),

cos(alpha)]])

Ignoring numerical artifacts, which show up as values multiplied with factors
ε < exp(−15), comparison of the output with Eq. (3.15) shows that the result is a
rotation matrix for a positive rotation about the y-axis by α.

A.1.4 Basic Trigonometry

The basic elements of trigonometry are illustrated in Fig.A.2.
For small angles (i.e., θ << 1) a Taylor series expansion of the sine, cosine, and

tangent functions gives

sin(θ) ≈ tan(θ) ≈ θ , and (A.7)

cos(θ) ≈ 1 − θ2

2
. (A.8)

Thus for small angles, the change in the cosine is only a second-order effect.

118 Appendix A: Appendix—Mathematics

Fig. A.2 Basic trigonometry

A.2 Alternative Gram–Schmidt Calculation

The Gram–Schmidt algorithm can be used to calculate a right-handed orthogonal
coordinate system, based on the location of three points pi in space. One possible
implementation has been given in Sect. 6.1.2. Another implementation is shown
below:

ax = p1−p0
|p1−p0| ,

ay = (p02)⊥ax|(p02)⊥ax | ,with (p02)⊥ax = (p2 − p0) − (ax · (p2 − p0)) ∗ ax , and

az = ax × ay .

(A.9)

The second formula in Eq. (A.9) is obtained by looking at the decomposition of
a vector b into one component parallel to a, and one component perpendicular to
a: b = b‖ + b⊥ (see Fig. A.3), and utilizing the fact that |a| = 1

b‖ = a ∗ |b| ∗ cos(α) = a ∗ (b · a)
b⊥ = b − b‖ .

(A.10)

Fig. A.3 Decomposition of a vector b into two components: one parallel to a (b‖), and one per-
pendicular to a (b⊥)

Appendix A: Appendix—Mathematics 119

The three resulting orthogonal unit vectors ai(t) define the rotation matrix R
which describes the orientation of an object in 3-D space:

R(t) = [
ax(t) ay(t) az(t)

]
. (A.11)

A.3 Proofs of Selected Equations

A.3.1 Quaternion Multiplication

Proof of Eq. (4.6) requires the calculation of
3∑

i=0
qi Ii ∗

3∑
j=0

p j I j , using the commu-

tation relationships specified in Eq. (4.5):

p̃ ◦ q̃ =
3∑

i=0

pi Ii ∗
3∑

j=0

q j I j

=
(

q0 ∗ 1 + q1 ∗ ĩ + q2 ∗ j̃ + q3 ∗ k̃) ∗ (p0 ∗ 1 + p1 ∗ ĩ + p2 ∗ j̃ + p3 ∗ k̃
)

=
(

q0 p0 ∗ 1 ∗ 1 + q1 p1 ∗ ĩ ∗ ĩ + q2 p2 ∗ j̃ ∗ j̃ + q3 p3 ∗ k̃ ∗ k̃
)

+ (q0 ∗ 1 ∗ p · I + p0 ∗ 1 ∗ q · I)

+ (q1 p2 ∗ ĩ ∗ j̃ + q2 p1 ∗ j̃ ∗ ĩ

+ q2 p3 ∗ j̃ ∗ k̃ + q3 p2 ∗ k̃ ∗ j̃

+ q1 p3 ∗ ĩ ∗ k̃ + q3 p1 ∗ k̃ ∗ ĩ)

= (q0 p0 − q · p) ∗ 1 + (q0 p + p0 q + q × p) · I . (A.12)

Note that in Eq. (A.12) p̃ indicates a quaternion, and p the corresponding quater-
nion vector. The same style convention is also used for the pair (q̃/q).

A.3.2 Quaternions and Rotation Matrices

Hypothesis The relationship between quaternions and rotation matrices is given by
Eq. (4.14),

x̃′ = q̃ ◦ x̃ ◦ q̃−1 =
(

0
R · x

)
. (A.13)

where q̃ is a unit quaternions

Proof For this proof, the following basic trigonometric relationships will be needed:

sin2(α) + cos2(α) = 1 , (A.14)

120 Appendix A: Appendix—Mathematics

sin(2α) = 2 ∗ sin(α) ∗ cos(α) , (A.15)

cos(2α) = cos2(α) − sin2(α) , and (A.16)

a × b × c = b ∗ (a · c) − c ∗ (a · b) . (A.17)

Equations (A.14) and (A.16) also imply

1 − cos(α) =
(
sin2(

α

2
) + cos2(

α

2
)
)

−
(
cos2(

α

2
) − sin2(

α

2
)
)

= 2 ∗ sin2(
α

2
).

(A.18)
The first part of Eq. (A.13) is

q̃ ◦ x̃ =
(

q0

q

)
◦

(
0
x

)
= (−q · x) + (q0 ∗ x + q × x) · I . (A.19)

Inserting this into Eq. (A.13) leads to

q̃ ◦ x̃ ◦ q̃−1 =
(−q · x

q0 ∗ x + q × x

)
◦

(
q0

−q

)
. (A.20)

The scalar part of Eq. (A.20) is

− q0 ∗ q · x + q0 ∗ q · x + (q × x) · q = 0 . (A.21)

And the vector part of Eq. (A.20) is

(q · x) ∗ q + q2
0 ∗ x + q0 ∗ q × x − q0 ∗ x × q − (q × x × q) =

(q · x) ∗ q + q2
0 ∗ x + 2q0 ∗ q × x − (

x ∗ q2 − q ∗ (q · x)
)
. (A.22)

Since q0 = cos(θ
2) and q = n ∗ sin(θ

2), and using Eq. (A.18), Eq. (A.22) can be
written as

2 ∗ sin2(
θ

2
) ∗ n ∗ (n · x) + x ∗

(
cos2(

θ

2
) − sin2(

θ

2
)

)
+ 2 ∗ sin(

θ

2
) ∗ cos(

θ

2
) ∗ n × x

= (1 − cos(θ)) ∗ n(n · x) + x cos(θ) + sin(θ) ∗ n × x . (A.23)

Since the right side of Eq. (A.23) equals the Rodrigues representation of a rotation
[(Eq. (4.2)], and since the scalar part of the equation is zero [(Eq. (A.21)], this
completes the proof of Eq. (A.13).

Appendix A: Appendix—Mathematics 121

A.3.3 Space-Fixed Versus Body-Fixed Rotations

In a space-fixed, orthogonal coordinate system, the components of a space-fixed
point psf are given by the projection of the point onto the coordinate axes. Assuming
that vectors are by default column vectors

p =
⎛
⎝

px

py

pz

⎞
⎠

sf

(A.24)

then i th component of the vector can be obtained by

ps f,i = pT · ei . (A.25)

Hypothesis The orientation of the basis vectors of a rotated coordinate system is
given by the columns of R. But the vector components of a space-fixed point p
transform with RT into the rotated coordinate system.

Proof Rotation matrices are elements of the special orthogonal group SO3, which
means that

RT = R−1. (A.26)

And since

(A · B)T = BT · AT (A.27)

the coordinates of a space-fixed point p, in a rotated coordinate system e′
i = R · ei,

are given by

p′
b f,i = pT · e′

i

= pT · R · ei (A.28)

= (RT · p)T · ei .

In summary

e′
i = R · ei , (A.29)

but
⎛
⎝

p′
x

p′
y

p′
z

⎞
⎠

bf

= RT ·
⎛
⎝

px

py

pz

⎞
⎠

sf

. (A.30)

122 Appendix A: Appendix—Mathematics

Or expressed in words: the coordinates (Eq. A.30) transform with the inverse of the
transformation of the basis vectors (Eqs. 3.3 and A.29).

A.4 Clifford Algebra

The focus of this book has been to enable the user to work with recordings of
position and orientation in three dimensions. While the equations for working with
translations are predominantly intuitive, working with orientation can raise a number
of questions:

• Why does the numerical cross product use the right-hand rule?
• Why do quaternions use the sine of half the angle, and not of the full angle?
• Where does the relation between imaginary numbers (j2 = −1) and rotations
(e jθt = cos(θt) + j ∗ sin(θt)) come from?

The answers tomany of these questions can be obtained withClifford Algebras. In
the 1870s, William Kingdon Clifford sought to extend and unify Hamilton’s quater-
nions with Hermann Grassmann’s “extensive quantities” (Grassmann 1844) into a
single algebra that Clifford called “geometric algebra”. Clifford’s geometric algebra
has also been named after him in his honor, as “Clifford Algebra”. Advantages of
Clifford algebra include the following:

• The real numbers are a subalgebra of the Clifford algebra.
• Ordinary vector algebra is another subalgebra of the Clifford algebra.
• The complex numbers are another subalgebra of the Clifford algebra.
• Quaternions can be understood in terms of another subalgebra of Clifford algebra,
namely the subalgebra containing just scalars and “bivectors” (see below). This is
tremendously useful for describing rotations in three or more dimensions.

An introduction into Clifford algebras goes beyond the scope of this book. But a
gentle introduction into the thinking underlying these algebras can be provided by
showing how the scalar product and the wedge product (which is the generalization
of the 3-D cross product) can be introduced in a coordinate-free way, independent
of the dimensionality of the underlying vector space.

Also, note the excellent Python package clifford, with good corresponding
documentation (http://clifford.readthedocs.io).

A.4.1 Visualizing Scalars, Vectors, and More

If the dimension is n, then there will be n independent basis vectors in the algebra.
The algebra is generated by the geometric products (for definition see below) of these
distinct basis vectors.

http://clifford.readthedocs.io

Appendix A: Appendix—Mathematics 123

• The product of no basis vectors is the scalar 1. This is called a grade 0 object and
corresponds to a point in space.

• The product of one basis vector is the vector itself. This is called a grade 1 object
and corresponds to a line segment.

• The geometric product of two orthogonal distinct basis vectors is a bivector. This
is called a grade 2 object and corresponds to a patch of surface.

• A trivector is a grade 3 object and corresponds to a piece of space.

Nonzero objects in the algebra can be made up by adding scalar multiples of any
of the terms, drawn from any of the grades. Note that this violates the principle in
vector analysis that a scalar cannot be added to a vector!

In practice, two common sorts of objects are vectors (all grade 1), and quaternions,
which combine a scalar and a bivector.

A.4.2 Geometric Product

We now postulate that there exists a “geometric product” that can be used to multiply
any element of the Clifford algebra with each other element. This geometric product
shall have the following properties:

(AB)C = A(BC) = ABC (A.31)

A(B + C) = AB + AC . (A.32)

Equation (A.31) states that the geometric product is associative, and Eq. (A.32)
that is distributive over addition.

Note that the geometric product is in general not commutative!

A.4.3 Dot Product and Wedge Product

With only these few assumptions, a “dot product” P · Q and a “wedge product”
P ∧ Q of two vectors P and Q can be introduced as follows:

P · Q : = P Q + Q P

2
where P and Q have grade = 1 (A.33)

P ∧ Q : = P Q − Q P

2
where P and Q have grade ≤ 1 . (A.34)

Thewedge product is sometimes called the “exterior product”, and in three dimen-
sions corresponds to the cross product.

124 Appendix A: Appendix—Mathematics

A.4.4 A Practical Application of Clifford Algebra

With the few simple steps above, we have managed to define vectors, planes and
dot and wedge products, for vector spaces with arbitrary dimensions, and without
introducing a coordinate system!

Continuing with this approach, many physical laws can be formulated in a
coordinate-free manner, thereby often massively simplifying the formulation, and
clarifying the transformation properties. Take, for example, the famous Maxwell
equations. In the original paper, Maxwell wrote his equations in component form,
and as a consequence, therewere 20 equations in his publication in 1865.Using vector
notation, Heaviside in 1884 reduces these to the usually known four equations

∇ · E = ρ

ε0
Gauss’s law

∇ · B = 0 Gauss’s law for magnetism

∇ × E = −∂B
∂t

Faraday’s law

∇ × B = μ0J + μ0ε0
∂E
∂t

AmpèreMaxwell law

But using geometric algebra, these can be reduced to the single equation1

∇F = μ0cJ , (A.35)

where F is the multi-vector describing the electromagnetic field, and J is the current
multi-vector describing resting and moving charges. Using this notation, properties
such as the relativistic invariance of this equation with respect to the observer’s time
and space coordinates are much easier to prove than in the vector notation.

A.4.5 Relationship to Rotations

2In all dimensions, rotations are fully described by the planes of the rotation and
their associated angles, so it is useful to be able to determine them, or at least find
ways to describe them mathematically. This section also explains why the length of
the vector part of quaternions is only half the angle of the corresponding rotation.
Mathematical proofs are left away here, in order to facilitate the introduction to the
mathematically more complex arena of Clifford algebras.

1https://en.wikipedia.org/wiki/Mathematical_descriptions_of_the_electromagnetic_field.
2This part has been adopted from https://en.wikipedia.org/wiki/Plane_of_rotation.

https://en.wikipedia.org/wiki/Mathematical_descriptions_of_the_electromagnetic_field
https://en.wikipedia.org/wiki/Plane_of_rotation

Appendix A: Appendix—Mathematics 125

Reflections

Every simple rotation can be generated by two reflections (Fig. A.4). Reflections can
be specified in n dimensions by giving an (n −1)-dimensional subspace to reflect in:
a two-dimensional reflection is a reflection on a line, a three-dimensional reflection
is a reflection on a plane, and so on. But this becomes increasingly difficult to apply
in higher dimensions, so it is better to use vectors instead, as follows.

A reflection in n dimensions is specified by a vector perpendicular to the (n − 1)-
dimensional subspace. To generate simple rotations only reflections that fix the origin
are needed, so the vector does not have a position, just a direction. It also does not
matter which way it is facing: it can be replaced with its negative without changing
the result. Similarly, unit vectors can be used to simplify the calculations.

So the reflection on an (n − 1)-dimensional space is given by the unit vector
perpendicular to it, m, with:

x′ = −mxm, (A.36)

where the product is the geometric product from Clifford algebra.
If x′ is reflected in another, distinct, (n − 1)-dimensional space, described by a

unit vector n perpendicular to it, the result is

x′′ = −nx′n = −n(−mxm)n = nmxmn . (A.37)

This is a simple rotation in n dimensions, through twice the angle between the
subspaces, which is also the angle between the vectors m and n. It can be checked
usinggeometric algebra that this is a rotation, and that it rotates all vectors as expected.

The quantity mn is a called a rotor, and nm is its inverse as

(mn)(nm) = mnnm = mm = 1 . (A.38)

Fig. A.4 Two different reflections in 2-D, one about m and one about n, generating a rotation.
(by Maschen)

126 Appendix A: Appendix—Mathematics

So the rotation can be written as

x′′ = RxR−1, (A.39)

where R = mn is the rotor.
The plane of rotation is the plane containing m and n, which must be distinct

otherwise the reflections are the same and no rotation takes place. As either vector
can be replaced by its negative the angle between them can always be acute, or at
most π/2. The rotation is through twice the angle between the vectors, up to π or
a half-turn. The sense of the rotation is to rotate from m toward n: the geometric
product is not commutative so the product nm is the inverse rotation, with sense
from n to m.

Conversely, all simple rotations can be generated this way, with two reflections,
by two unit vectors in the plane of rotation separated by half the desired angle of
rotation. These can be composed to produce more general rotations, using up to n
reflections if the dimension n is even, n−2 if n is odd, by choosing pairs of reflections
given by two vectors in each plane of rotation.

Bivectors

Bivectors are quantities from Clifford algebra, which generalize the idea of
(line-)vectors. As vectors are to lines, so are bivectors to planes. So every plane
(in any dimension) can be associated with a bivector, and every simple bivector is
associated with a plane. This makes them a good fit for describing planes of rota-
tion. They are behind the rotation by eiθ in the complex plane (Sect. 3.2.2), and the
quaternion vectors in three dimensions.

Every rotation has a simple bivector associated with it. This is parallel to the plane
of the rotation and has a magnitude equal to the angle of rotation in the plane. These
bivectors are summed to produce a single, generally non-simple, bivector for the
whole rotation. This can generate a rotor through the exponential map, which can be
used to rotate an object.

Bivectors are related to rotors through the exponential map. In particular, given
any bivector B the rotor associated with it is

RB = e
B
2 . (A.40)

This is a simple rotation if the bivector is simple, amore general rotation otherwise.
For example, for a rotation in the plane, the bivector is j , and the rotor corresponding
to a rotation by θ is e jθ/2. When squared,

R2
B = e

B
2 e

B
2 = eB (A.41)

it gives a rotor that rotates through twice the angle. If B is simple then this is the
same rotation as is generated by two reflections, as the product mn gives a rotation
through twice the angle between the vectors. (Compare that to Eq. (4.11), which

Appendix A: Appendix—Mathematics 127

shows the exponential of a quaternion.) These can be equated,

mn = eB , (A.42)

from which it follows that the bivector associated with the plane of rotation con-
taining m and n that rotates m to n is

B = log(mn). (A.43)

This is a simple bivector, associated with the simple rotation described. More
general rotations in four or more dimensions are associated with sums of simple
bivectors, one for each plane of rotation, calculated as above.

A.5 Spherical Statistics

In one dimension, (normal) distributions are commonly characterized by their mean
value and their standard deviation. On circles and spheres, though, those parameters
are harder to characterize. Take, for examples, two orientation measurements, the
first one being 10◦, and the second one 350◦.

Calculating the mean value in the classical way, one obtains mean = 10+350
2 =

180◦, while the correct value is 0◦ (see Fig. A.5)! (Note that the problem can only
be shifted, but not solved by using the interval −180◦ to +180◦ instead of 0◦ to
360◦.) Given this problem, which procedure can be used to find the correct average
orientation for multiple points? The solution is remarkably simple: converting every
angle (solid lines in Fig. A.5) to a point on the unit circle (red points in Fig. A.5),
and taking the mean value of those points (black point in Fig. A.5) provides the

Fig. A.5 The mean angle of the red dots on a unit circle is given by the angle of the black dot. And
their dispersion is characterized by the distance of the black dot from the unit circle

128 Appendix A: Appendix—Mathematics

correct mean angle. And the distance of that point from the unit circle provides the
“dispersion”, a parameter that characterizes the spread of the angles. This method
also generalizes trivially to three dimensions.

An application example for directional statistics is provided by (Leong andCarlile
1998). For more involved calculations of spherical statistics, e.g., comparison of two
distributions, characterization of skewed distributions, etc., see the books (Mardia
and Jupp 1999; Ley and Verdebout 2017).

Appendix B
Practical Applications: Denavit-Hartenberg
Transformations

An elegant example of the application of homogeneous coordinates are the Denavit-
Hartenberg transformations. In mechanical engineering, the “Denavit-Hartenberg
parameters” (also called “DH parameters”) are the four parameters associated with
a particular convention for attaching reference frames to the links of robot manipu-
lators.

In this convention, coordinate frames are attached to the joints between two links
such that one transformation is associated with the joint, [Z], and the second is
associated with the link [X]. The coordinate transformations along a serial robot
consisting of n links form the kinematic equations of the robot,

T = Z1 · X1 · Z2 · X2 . . . · Xn−1 · Zn · Xn, (B.1)

where T is the transformation locating the end-link (see Fig. B.1).
So going “from the inside out”, i.e. starting with the rotation-translation that

does not affect any other joints: first the end-link is rotated about the x-axis, by
an angle α. And it is translated along the x-axis by a distance r . (Note that the
sequence in which this translation-rotation is executed has no consequence on the
final position-orientation of the end-link.) This rotation-translation is described by
the spatial transformation matrix

Xi =

⎡
⎢⎢⎣
1 0 0 ri

0 cosαi − sinαi 0
0 sinαi cosαi 0
0 0 0 1

⎤
⎥⎥⎦ , (B.2)

The second rotation-translation is about the original z-axis, by a distance d, and
by an angle θ. That sequence is described by the spatial transformation matrix

© Springer International Publishing AG, part of Springer Nature 2018
T. Haslwanter, 3D Kinematics, https://doi.org/10.1007/978-3-319-75277-8

129

130 Appendix B: Practical Applications: Denavit-Hartenberg Transformations

Fig. B.1 Illustrates the transformation parameters of a pair of reference frames laid out according
to Denavit-Hartenberg convention. (Illustration by Ethan Tira-Thompson, from WikiMedia Com-
mons)

Zi =

⎡
⎢⎢⎣
cos θi − sin θi 0 0
sin θi cos θi 0 0
0 0 1 di

0 0 0 1

⎤
⎥⎥⎦ , (B.3)

The combined state-matrix for one link

Ti = Zi ∗ Xi (B.4)

depends on four parameters (d, θ, r,α).
The equations for practical implementations are available in the functionrotmat.dh

for numerical calculations, and in rotmat.dh_s if the symbolic equations are
required. For example

from skinematics.rotmat import dh_s

T_final = dh_s(’theta’, ’d’, ’r’, ’alpha’)
translation = T_final[:3,-1]
rotation = T_final[:3, :3]
print(translation)

>> Matrix([[r*cos(theta)], [r*sin(theta)], [d]])

Appendix B: Practical Applications: Denavit-Hartenberg Transformations 131

shows that the location of the end-joint depends only on (r, d, θ). And its orien-
tation is given by the rotation matrix R_final.

And a numeric example, with a robotic chain with three links, where the links
have lengths of 30cm, 50cm, 20cm, and the angles of rotations (θ,α) are 45, 30, 60
and 10, 20, 30 deg, respectively, and where there are no offsets from the rotation
axes:

from skinematics.rotmat import dh

rs = [0.3, 0.5, 0.2] # in [m]
thetas = [45, 30, 60] # in [deg]
alphas = [10, 20, 30] # in [deg]
T = np.eye(4) # start in the reference position/

orientation

for r, theta, alpha in zip(rs, thetas, alphas):
T = T @ dh(theta=theta, alpha=alpha, r=r)

translation = T_final[:3,-1]
rotation = T_final[:3, :3]

Appendix C
Python and Matlab Programs

One goal of this book is to provide the reader not onlywith explanations and examples
for 3-D kinematics, but alsowith a list of programs allowing quick implementation of
analytical procedures that are typically encountered while working with 3-D move-
ment recordings.

Programming libraries are available for Python, scikit-kinematics, and Matlab,
3-DKinematics toolbox (see Sect. 1.3). Most functions in theMatlab 3-DKinematics
toolbox have the same name, and use the same arguments, as the corresponding scikit-
kinematics functions. The only exceptions are function names that would collide
with existing Matlab functions, or functions which would have the same name in the
unified Matlab namespace.

Functions are commonly written in such a way that they can be applied to a
single point/vector/quaternion, or simultaneously to a whole data set. Data sets are
thereby always stored such that one row corresponds to one data set (see the first
code example on p. 135).

This section gives an overview of these functions and their application. For
more detailed information, see the documentation on http://work.thaslwanter.at/
skinematics/html/.

C.1 List of Programs

See Appendix TableC.1.

C.2 Vector Calculations

The module vectors in the package scikit-kinematics provides the func-
tionalities shown below.Note that all the functions are vectorized, i.e., theyworkwith
matrix inputs, allowing simultaneous application of the function to each input line.

© Springer International Publishing AG, part of Springer Nature 2018
T. Haslwanter, 3D Kinematics, https://doi.org/10.1007/978-3-319-75277-8

133

http://work.thaslwanter.at/skinematics/html/
http://work.thaslwanter.at/skinematics/html/

134 Appendix C: Python and Matlab Programs

Table C.1 Python and Matlab functions provided with this book

Group Python Matlab

quat Quaternion (class) @quat(class)

calc_angvel calc_angvel

calc_quat calc_quat

convert quat_convert

deg2quat deg2quat

q_conj q_conj

q_inv q_inv

q_mult q_mult

q_scalar q_scalar

q_vector q_vector

quat2deg quat2deg

quat2seq quat2seq

unit_q unit_q

rotmat R R

dh dh

dh_s dh_s

R R

R_s R_s

seq2quat seq2quat

sequence sequence

imus IMU_Base (class) —

analytical analyze_imus

kalman imu_Kalman

Mahony @MahonyAHRS(class)

Madgwick @MadgwickAHRS(class)

imu_Madgwick, or imu_Mahony

markers analyze_3Dmarkers analyze_3Dmarkers

find_trajectory find_trajectory

vector angle vector_angle

GramSchmidt GramSchmidt

normalize normalize

project project_vector

plane_orientation plane_orientation

q_shortest_rotation q_shortest_rotation

rotate_vector rotate_vector

target2orient target2orient

view orientation view_orientation

ts view_ts

utility — (in numpy) copysign

— (in numpy) deg2rad

(in Class IMU) get_XSens

— (in numpy) rad2deg

— (in scipy) savgol

— (in numpy) toRow

Appendix C: Python and Matlab Programs 135

For example, normalizing a single vector one obtains

import skinematics as skin
v = [1,2,3]
skin.vector.normalize(v)
>> array([0.267, 0.535, 0.802])

But this also works for arrays:

import numpy as np
v = np.random.randn(1000,3)
skin.vector.normalize(v)
>> array([[-0.628, -0.663, 0.408],

[0.664, 0.625, -0.41],
[-0.547, -0.038, -0.837],
...,
[-0.205, 0.061, -0.977],
[-0.559, -0.734, -0.386],
[0.105, 0.658, -0.746]])

Below is a list of the functions in themodulevectors, and the preamble required
to execute the examples (note that in Python function names are commonly preceded
by the module they are in):

Import the required packages and functions
import numpy as np
from skinematics import vector

Input data
v0 = [0, 0, 0]
v1 = [1, 0, 0]
v2 = [1, 1, 0]

vector.angle Angle between two vectors.

angle = vector.angle(v1, v2)
print(’The angle between v1 and v2 is {0:4.1f}

degree\n’.format(np.rad2deg(angle)))
>> The angle between v1 and v2 is 45.0 degree

vector.GramSchmidt Gram–Schmidt orthogonalizationof three pointsp0,p1,p2.
In the figure below, ai , i = x, y, z are the unit vectors of an orthogonal coordinate
system (more about that in Chap. 6).

136 Appendix C: Python and Matlab Programs

Gram-Schmidt orthogonalization
gs = vector.GramSchmidt(v0, v1, v2)
print(’The Gram-Schmidt orthogonalization of the points v0,

v1, and v2 is {0}\n’.format(np.reshape(gs, (3,3))))
>> The Gram-Schmidt orthogonalization of the points p0, p1,

and p2 is
[[1. 0. 0.]
[0. 1. 0.]
[0. 0. 1.]]

vector.normalize Normalization of a vector v.

Vector normalization
v2_normalized = vector.normalize(v2)
print(’v2 normalized is {0}\n’.format (v2_normalized))
>> v2 normalized is [0.70710678 0.70710678 0.]

vector.project Projection of a vector v1 onto a vector v2.

Projection
projected = vector.project(v1, v2)
print(’The projection of v1 onto v2 is {0}\n’.format
(projected))
>> The projection of v1 onto v2 is [0.5 0.5 0.]

Appendix C: Python and Matlab Programs 137

vector.plane_orientation Vector n perpendicular to the plane defined by the three
points p0,p1,p2.

Plane orientation
n = vector.plane_orientation(v0, v1, v2)
print(’The plane spanned by v0, v1, and v2 is

orthogonal to {0}\n’.format(n))
>> The plane spanned by p0, p1, and p2 is

orthogonal to [0. 0. 1.]

vector.q_shortest_rotation Quaternion vector q, indicating the shortest rotation
that rotates v1 into v2 (more about that in Chap.4).

Shortest rotation
q_shortest = vector.q_shortest_rotation(v1, v2)
print(’The shortest rotation that brings v1 in alignment

with v2 is described by the quaternion {0}\n’.format
(q_shortest))
>> The shortest rotation that brings v1 in alignment with

v2 is described by the quaternion
[0. 0. 0.38268343]

vector.rotate_vector Rotation of a vector, with a quaternion (more about that in
Chap.4).

138 Appendix C: Python and Matlab Programs

Rotation of a vector by a quaternion
q = [0, 0.1, 0]
rotated = vector.rotate_vector(v1, q)
print(’v1 rotated by {0} is: {1}’.format(q, rotated))
>> v1 rotated by [0, 0.1, 0] is:
[0.98 0. -0.19899749]

Code:C1_examples_vectors.py: Contains the exam-
ples of working with vectors presented above.

C.3 Data Visualization

The module view in the package scikit-kinematics provides a viewer for
3-D data. This module includes two functions:

• An interactive, simple viewer for time-series data (view.ts, see Fig. C.1).
• An animation of 3-D orientations, expressed as quaternions
(view.orientation, see Fig. C.2).

For view.ts the following options are available, in addition to the (obvious)
GUI interactions:

Keyboard shortcuts:

f forward (+ 1/2 frame)
n next (+ 1 frame)
b back (−1/2 frame)
p previous (−1 frame)
z zoom (x-frame = 10% of total length)
a all (adjust x- and y-limits)
x exit

Optimized y-scale: Often one wants to see data symmetrically about the zero-
axis. To facilitate this display, adjusting the Upper Limit automatically sets the lower
limit to the corresponding negative value.

https://github.com/thomas-haslwanter/3D_Kinematics/blob/master/python/C1_examples_vectors.py

Appendix C: Python and Matlab Programs 139

Fig. C.1 Time-series viewer view.tx from scikit-kinematics. The data show the (x, y, z)-
component of the lower arm position during a drinking movement

Fig. C.2 3-D animation of orientation data, from scikit-kinematics

Logging: When Log is activated, right-mouse clicks are indicated with vertical
bars, and the corresponding x-values are stored in the users home-directory, in the
file [varName].log. Since the name of the first value is unknown the first events are
stored into data.log.

140 Appendix C: Python and Matlab Programs

Load: Pushing the Load button shows you all the plottable variables in your
namespace. Plottable variables are:

• ndarrays
• Pandas DataFrames
• Pandas Series

Code: C1_examples_visualization.py: Example

of simple data visualizations with scikit-kinematics.

Listing : C1_examples_visualization.py

"""Visualizing 3-D data. """
author: Thomas Haslwanter, date: July-2017

Import the required packages and functions
import numpy as np
import matplotlib.pyplot as plt
from skinematics import view, quat

2D Viewer -----------------
data = np.random.randn(100,3)
t = np.arange(0,2*np.pi,0.1)
x = np.sin(t)

Show the data
view.ts(data)

Let the user select data from the local workspace
view.ts(locals())

3-D Viewer ----------------
Set the parameters
omega = np.r_[0, 10, 10] # [deg/s]
duration = 2
rate = 100
q0 = [1, 0, 0, 0]
out_file = ’demo_patch.mp4’
title_text = ’Rotation Demo’

Calculate the orientation, for a constant velocity rotation
about a tilted axis
dt = 1./rate
num_rep = duration*rate
omegas = np.tile(omega, [num_rep, 1])
q = quat.calc_quat(omegas, q0, rate, ’sf’)

#orientation(q)
view.orientation(q, out_file, ’Well done!’)

Appendix C: Python and Matlab Programs 141

C.4 Rotation Matrices

C.4.1 Functions in scikit-kinematics.rotmat

The module rotmat in the package scikit-kinematics provides the follow-
ing functionality:

rotmat.R Defines a 3-D rotation matrix for a rotation about a coordinate axis.
rotmat.convert Converts a rotation matrix to the corresponding quaternion (more

about quaternions in Chap.4).
rotmat.sequence Converts a rotation matrix to the corresponding nautical angles,

Euler angles, etc.
rotmat.seq2quat Calculation of quaternions from Euler, Fick/nautical,

Helmholtz angles.
rotmat.R_s Symbolic matrix for rotation about a coordinate axis.

Code: C3_examples_rotmat.py: Example of working

with rotation matrices.

Listing : C3_examples_rotmat.py

"""Working with rotation matrices """

author: Thomas Haslwanter, date: Dec-2017

Import the required packages and functions
import numpy as np
from skinematics import rotmat
from pprint import pprint

Since I use R and R_s repeatedly, I import them directly
from skinematics.rotmat import R, R_s

Rotation about the x-axis, by 30 deg
Rx_30 = R(axis=’x’, angle=30)

print(’Rotation matrix describing a rotation about the x-axis
by 30 deg:’)

print(Rx_30)

Find the rotation matrix for the nautical sequence
"pprint" is required for a nicer, matrix-shaped display
R_nautical = R_s(’z’, ’theta’) * R_s(’y’, ’phi’) * R_s(’x’, ’

psi’)

print(’\nNautical sequence:’)
pprint(R_nautical)

142 Appendix C: Python and Matlab Programs

Rotation matrix for Euler sequence, for given angles
alpha, beta, gamma = 45, 30, 20 # in [deg]
R = R(’z’, gamma) @ R(’x’, beta) @ R(’z’, alpha)

print(’\nRotation matrix, for "Euler-angles" of {0}, {1}, {2}
deg:’.format(alpha, beta, gamma))

print(R)

Corresponding nautical sequence:
nautical = rotmat.sequence(R, to=’nautical’)

... and just to check
euler = rotmat.sequence(R, to=’Euler’)

print(’\nNautical sequence: {0}’.format(nautical))
print(’Euler sequence: {0}’.format(np.rad2deg(euler)))

’’’
Output

Rotation matrix describing a rotation about the x-axis by 30

deg:
[[1. 0. 0.]
[0. 0.8660254 -0.5]
[0. 0.5 0.8660254]]

Nautical sequence:
Matrix([
[cos(phi)*cos(theta), sin(phi)*sin(psi)*cos(theta) - sin
(theta)*cos(psi), sin(phi)*cos(psi)*cos(theta) + sin(psi)*sin

(theta)],
[sin(theta)*cos(phi), sin(phi)*sin(psi)*sin(theta) + cos(psi)

*cos(theta), sin(phi)*sin(theta)*cos(psi) - sin(psi)*
cos(theta)],

[-sin(phi), sin(psi)*cos(phi),
cos(phi)*cos(psi)]])

Rotation matrix, for "Euler-angles" of 45, 30, 20 deg:
[[0.45501932 -0.87390673 0.17101007]
[0.81728662 0.3335971 -0.46984631]
[0.35355339 0.35355339 0.8660254]]

Nautical sequence: [1.06279023 -0.36136712 0.38759669]
Euler sequence: [45. 30. 20.]
’’’

Appendix C: Python and Matlab Programs 143

C.4.2 Symbolic Computations

Calculating 3-D rotationmatrices by hand is not only tedious but also prone to errors.
Luckily, in Python as well as in Matlab tools are available which allow symbolic
computation, in order to produce, e.g., Eq. (3.23) rather easily. In Python, it is the
package sympy (http://www.sympy.org/en/index.html), and inMatlab the Symbolic
Computation Toolbox.

In Python, only two sub-steps are necessary:

1. Symbolic variables have to be declared explicitly, by defining them as objects
from the class sympy.Symbol.

2. For working with symbolic matrices, the matrices have to be generated with
sympy.Matrix.

The module rotmat in the package scikit-kinematics takes care of all
these steps and makes it easy to generate and manipulate symbolic matrices for
rotations about the three cardinal axes. For example, the following listing shows how
the formula in Eq. (3.23) can be generated computationally:

from skinematics import rotmat
from pprint import pprint

Rx = rotmat.R_s(’x’, ’psi’)
Ry = rotmat.R_s(’y’, ’phi’)
Rz = rotmat.R_s(’z’, ’theta’)
R_nautical = Rz * Ry * Rx

pprint(R_nautical)

The package pprint is only used to print the matrices in a more appealing and
easier to read way.

sympy also allows substitution of symbolic variables with the corresponding
values. For example, to obtain the matrix R_nautical for psi = 0, one can
simply type

R_nautical.subs(’psi’, 0)

Code: C2_symbolic_computation.py: Explicit

implementation of how Eq. (3.23) can be determined computationally, to show how
symbolic computations can be implemented.

C.5 Quaternions

The module quat in the package scikit-kinematics provides the following
functionality for working with orientations (functions relating to angular velocity are
described in Chap.5):

http://www.sympy.org/en/index.html
https://github.com/thomas-haslwanter/3D_Kinematics/blob/master/python/C2_symbolic_computation.py

144 Appendix C: Python and Matlab Programs

Working with Quaternions

quat.q_conj Conjugate quaternion.
quat.q_inv Quaternion inversion.
quat.q_mult Quaternion multiplication.
quat.q_scalar Extract the scalar part from a quaternion.
quat.q_vector Extract the vector part from a quaternion.
quat.unit_q Extend a quaternion vector to a unit quaternion.

Conversion routines

quat.convert Convert quaternion to corresponding rotationmatrix orGibbs vector.
quat.deg2quat Convert a number or axis angles to quaternion vectors.
quat.quat2seq Convert quaternions to corresponding rotation angles.
quat.scale2deg Convert quaternion to corresponding axis angle.

In addition, the class Quaternion allows object-oriented programming with
quaternion objects, with multiplication, division, and inverse. A Quaternion can
be created from vectors, rotationmatrices, or from nautical angles, Helmholtz angles,
or Euler angles. The class provides

• operator overloading for mult, div, and inv, with the corresponding quaternion
functions.

• indexing, and
• access to the data, in the attribute values.

Code: C4_examples_quat.py: Example of working

with quaternions.

Listing : C4_examples_quat.py

"""Working with quaternions """

author: Thomas Haslwanter, date: Dec-2017

Import the required functions
import numpy as np
from skinematics import quat
from pprint import pprint
import matplotlib.pyplot as plt

Just the magnitude
q_size = quat.deg2quat(10)
print(’10 deg converted to quaternions is
{0:5.3f}\n’.format(q_size))

Input quaternion vector
alpha = [10, 20]
print(’Input angles: {0}’.format(alpha))

Appendix C: Python and Matlab Programs 145

alpha_rad = np.deg2rad(alpha)
q_vec = np.array([[0, np.sin(alpha_rad[0]/2), 0],

[0, 0, np.sin(alpha_rad[1]/2)]])
print(’Input:’)
pprint(q_vec)

Unit quaternion
q_unit = quat.unit_q(q_vec)
print(’\nUnit quaternions:’)
pprint(q_unit)

Also add a non-unit quaternion
q_non_unit = np.r_[1, 0, np.sin(alpha_rad[0]/2), 0]
q_data = np.vstack((q_unit, q_non_unit))
print(’\nGeneral quaternions:’)
pprint(q_data)

Inversion
q_inverted = quat.q_inv(q_data)
print(’\nInverted:’)
pprint(q_inverted)

Conjugation
q_conj = quat.q_conj(q_data)
print(’\nConjugated:’)
pprint(q_conj)

Multiplication
q_multiplied = quat.q_mult(q_data, q_data)
print(’\nMultiplied:’)
pprint(q_multiplied)

Scalar and vector part
q_scalar = quat.q_scalar(q_data)
q_vector = quat.q_vector(q_data)

print(’\nScalar part:’)
pprint(q_scalar)
print(’Vector part:’)
pprint(q_vector)

Convert to axis angle
q_axisangle = quat.quat2deg(q_unit)
print(’\nAxis angle:’)
pprint(q_axisangle)

Conversion to a rotation matrix
rotmats = quat.convert(q_unit)
print(’\nFirst rotation matrix’)

146 Appendix C: Python and Matlab Programs

pprint(rotmats[0].reshape(3,3))

Working with Quaternion objects

data = np.array([[0,0,0.1], [0, 0.2, 0]])
data2 = np.array([[0,0,0.1], [0, 0, 0.1]])

eye = quat.Quaternion(data)
head = quat.Quaternion(data2)

Quaternion multiplication, ...
gaze = head * eye

..., division, ...
head = gaze/eye
or, equivalently
head = gaze * eye.inv()

..., slicing, ...
print(head[0])

... and access to the data
head_values = head.values
print(type(head.values))
’’’

Output

10 deg converted to quaternions is 0.087

Input angles: [10, 20]
Input:
array([[0. , 0.08715574, 0.],

[0. , 0. , 0.17364818]])

Unit quaternions:
array([[0.9961947 , 0. , 0.08715574, 0.],

[0.98480775, 0. , 0. , 0.17364818]])

General quaternions:
array([[0.9961947 , 0. , 0.08715574, 0.],

[0.98480775, 0. , 0. , 0.17364818],
[1. , 0. , 0.08715574, 0.]])

Inverted:
array([[0.9961947 , -0. , -0.08715574, -0.],

[0.98480775, -0. , -0. , -0.17364818],
[0.99246114, -0. , -0.08649869, -0.]])

Conjugated:

Appendix C: Python and Matlab Programs 147

array([[0.9961947 , -0. , -0.08715574, -0.],
[0.98480775, -0. , -0. , -0.17364818],
[1. , -0. , -0.08715574, -0.]])

Multiplied:
array([[0.98480775, 0. , 0.17364818, 0.],

[0.93969262, 0. , 0. , 0.34202014],
[0.99240388, 0. , 0.17431149, 0.]])

Scalar part:
array([0.9961947 , 0.98480775, 1.])
Vector part:
array([[0. , 0.08715574, 0.],

[0. , 0. , 0.17364818],
[0. , 0.08715574, 0.]])

Axis angle:
array([[0., 10., 0.],

[0., 0., 20.]])

First rotation matrix
array([[0.98480775, 0. , 0.17364818],

[0. , 1. , 0.],
[-0.17364818, 0. , 0.98480775]])

Quaternion [[0.99498744 0. 0. 0.1]]

<class ’numpy.ndarray’>
’’’

C.6 Angular Velocity

The module quat in the package scikit-kinematics provides also the fol-
lowing functionality for working with angular velocities (Figs.C.3 and C.4)

quat.calc_angvel Calculates the angular velocity in space from quaternions.
quat.calc_quat Calculates the orientation from a starting orientation and angular

velocity.

Code:C5_examples_vel.py: Example of workingwith

quaternions.

Listing : C5_examples_vel.py

"""Working with angular velocities """

author: Thomas Haslwanter, date: Sept-2017

148 Appendix C: Python and Matlab Programs

Fig. C.3 Rotating camera, looking downward

Fig. C.4 Quaternion describing the orientation of a camera pointing 10◦ down, on a platform
rotating with 100◦s−1 about an earth vertical axis. Note the dynamic change of the quaternion in
the left figure, despite the fact that the orientation of the camera relative to the platform is fixed,
and that the platform rotates exactly about the vertical axis!

Import the required functions
import numpy as np
from skinematics import quat
import matplotlib.pyplot as plt

Camera Looking 10 deg down, and rotating with 100 deg/s
about an

earth-vertical axis for 5 sec, sample-rate 100 Hz

Appendix C: Python and Matlab Programs 149

Experimental parameters
down = np.deg2rad(10) # deg
duration = 10 # sec
rate = 100 # Hz

Starting orientation of the camera
q_start = np.array([0, np.sin(down/2), 0])

Movement of the platform
dt = 1./rate
t = np.arange(0, duration, dt)
omega = np.tile([0, 0, np.deg2rad(100)], (len(t), 1))

Orientation of the camera in space, during the rotation of
the platform

with a space-fixed ("sf") angular velocity "omega".
Note that this one line does all the calculations required!
q_moving = quat.calc_quat(omega, q_start, rate, ’sf’)

Visualization
fig, axs = plt.subplots(1,2, figsize=(10,6))
axs[0].plot(t, quat.q_vector(q_moving))
axs[0].set(xlabel = ’Time [sec]’,

ylabel = ’Orientation [quat]’,
title = ’Rotation about g, with 100 deg/s’)

axs[0].legend([’q_1’, ’q_2’, ’q_3’])
Note that even for this simple arrangement,

the camera-orientation
in space is difficult to visualize!!

And back from orientation to velocity
omega_recalc = quat.calc_angvel(q_moving, rate=rate)
axs[1].plot(t, np.rad2deg(omega_recalc))
axs[1].set(xlabel = ’Time [sec]’,

ylabel = ’Angular Velocity [deg/s]’,
title = ’Back-transformation’)

axs[1].legend([’ω_x’, ’ω_y’, ’ω_z’])

Save to file
out_file = ’C5_examples_vel.png’
plt.savefig(out_file, dpi=200)
print(’Image from "C5_examples_vel.py" saved to {0}.’

.format(out_file))
plt.show()

150 Appendix C: Python and Matlab Programs

C.7 Data Analysis of Movement Recordings

C.7.1 Analysis of Marker Recordings

The module markers in the package scikit-kinematics provides the fol-
lowing functionality:

markers.analyze_3Dmarkers Kinematic analysis of video-based recordings of
3-D markers.

markers.find_trajectory Calculation of point trajectory, from initial position +
sensor position/orientation.

C.7.2 Analysis of Inertial-Sensor Recordings

The module imus in the package scikit-kinematics implements classes for
IMU data from different producers (at the time of writing XSens, x-IO, YEI, polulu).
These are based on a base-class IMU_Base. (In addition, data can also be entered
directly, with the option manual.)

The advantage of this approach is that it allows to write code that is independent
of the IMU sensor. All IMUs provide linear acceleration and angular velocities,
and most of them also the direction of the local magnetic field. The specifics of each
sensor are hidden in the sensor object (specifically, in the get_datamethod, which
has to be implemented once for each sensor-type). Initialization of a sensor object
includes a number of activities:

• Reading in the data.
• Making acceleration, angular_velocity etc. accessible in a sensor-independentway.
• Calculating duration and totalSamples.
• Calculating the position pos, with the method calc_position.
• Calculating orientation (expressed as quat), with the method specified in
q_type. (See below the description of the function _calc_orientation,
for the different options of q_type.)

The code sample below provides an example of how to use the imus module. It
provides the following functionality:

imus.analytical Calculate orientation and position analytically, from angular
velocity and linear acceleration.

imus.kalman Calculate orientation from IMU data using an Extended Kalman
Filter as described by (Yun and Bachmann 2006).

imus.IMU_Base.calc_position Calculate the current position, assuming that the
orientation is already known.

imus.IMU_Base.get_data Abstract method, to retrieve rate, acc, omega, mag
from the input source. Overwritten with the specific method for each sensor type.

Appendix C: Python and Matlab Programs 151

imus.IMU_Base.set_qtype Sets q_type, and automatically performs the relevant
calculations. (Same options as _calc_orientation.)

imus.IMU_Base._calc_orientation Calculate the current orientation, using one
of the following options:

• analytical ... quaternion integration of angular velocity
• kalman ... quaternion Kalman filter (Yun and Bachmann 2006)
• madgwick ... gradient descent method, efficient (Madgwick et al. 2011)
• mahony formula from Mahony, as implemented by Madgwick

The last two options for orientation calculation require the following classes for
sensor integration, which are also provided:

imus.MahonyAHRS Madgwicks implementation of Mayhonys “AHRS” (atti-
tude and heading reference system) algorithm.

imus.MadgwickAHRS Madgwicks gradient descent filter.

Code:C6_examples_IMU.py: Example of workingwith

sensors. See Fig.C.5.

Listing : C6_examples_IMU.py

"""Example for working with data from an IMU """

author: Thomas Haslwanter, date: Oct-2018

import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns

from skinematics.sensors.xsens import XSens

Read in the recorded data. Here a file from an XSens-system
:

data_file = r’data_xsens.txt’

The easiest way to specify the approximate orientation
is by indicating

the approximate direction the(x,y,z)-axes of the IMU
are pointing at:

x = [1, 0, 0]
y = [0, 0, 1]
z = [0,-1, 0]
initial_orientation = np.column_stack((x,y,z))

initial_position = np.r_[0,0,0]
orientation_calculation = ’analytical’ # Method for

orientation calculation

152 Appendix C: Python and Matlab Programs

Reading in the data, and initializing the ‘‘Sensor’’
object. In this step also

the orientation is calculated.
To read in data from a different sensor, the corresponding

class has to be
imported from skinematics.sensors.
my_imu = XSens(in_file=data_file,
q_type=orientation_calculation,

R_init=initial_orientation,
pos_init=initial_position)

Example 1: extract the raw gyroscope data

gyr = my_imu.omega
time = np.arange(my_imu.totalSamples)/my_imu.rate

Set the graphics parameters
sns.set_context(’poster’)
sns.set_style(’ticks’)

Plot it in the left figure
fig, axs = plt.subplots(1,2, figsize=[18,8])
lines = axs[0].plot(time, gyr)
axs[0].set(title=’XSens-data’,

xlabel=’Time [s]’,
ylabel = ’Angular Velocity [rad/s]’)

axs[0].legend(lines, (’x’, ’y’, ’z’))

Example 2: extract the vector from the orientation
quaternion,

which was calculated using an analytical procedure

q_simple = my_imu.quat[:,1:]

Plot it in the right figure
lines = axs[1].plot(time, q_simple, label=’analytical_’)
axs[1].set(title=’3D orientation’,

xlabel=’Time [s]’,
ylabel = ’Quaternions’)

Example 3: calculate the orientation, using an extended
Kalman filter

Note that the orientation is automatically re-calculated
when the

"q_type" of the Sensor object is changed!

my_imu.set_qtype(’kalman’)
#executes the Kalman-filter

q_Kalman = my_imu.quat[:,1:]

Appendix C: Python and Matlab Programs 153

Fig. C.5 Left: angular velocity. Right: orientation from a sample movement recording with an
XSens-sensor. The solid lines represent quaternions calculated analytically, and the dashed lines
those from aKalman filter. Note that the quaternion values, multiplied with 100, give approximately
the orientation in degrees

Superpose the lines on the right figure
lines.extend(axs[1].plot(time, q_Kalman,’--’,

label=’kalman_’))

Add the direction-info to each line label
dirs = [’x’, ’y’, ’z’]
for ii, line in enumerate(lines):

line.set_label(line.get_label() + dirs[ii%3])

plt.legend(loc=’upper right’)

Save the figure
out_file = ’orientations.png’
plt.savefig(out_file, dpi=200)
print(’Image saved to {0}’.format(out_file))

plt.show()

Appendix D
Human Movement
Recordings—Practical Tips

D.1 Movement Recordings with a Marker-Based System

The goal of human movement recordings is typically to find the bone pose and the
joint kinematics. This can be achieved with an initial calibration, which determines
of the location of distinct anatomical landmarks with respect to the markers attached
to the body. Different experimental approaches can be used for that (Camomilla and
Vannozzi, 2018; Selbie and Brown, 2018. Once that information is available it is
possible to reconstruct the exact limbmovement from themeasuredmarker positions.

The simplified paradigm described below describes how this can be achieved
with three markers attached to the body, and an additional marker to indicate distinct
anatomical landmarks:

1. Choose a space coordinate system (SCS).
2. Find position and orientation of the Optical Recording System (ORS) relative to

SCS.
3. Place markers on the body.
4. Check visibility of markers during whole movement.
5. Find position and orientation of markers with respect to anatomical landmarks.
6. Bring subject in reference position and reference orientation.
7. Record movement.

ad (1) Choosing a Space Coordinate System

The first step in any movement recording is to establish a space-fixed coordinate
system (SCS), and requires the positions of three or more points in space. A natural
choice is a system where three points in the horizontal plane determine the direction
of nx and ny, and direction of gravity determines the z-axis:

• p0 : Origin of chosen inertial system, in ORS coordinates.
• p1 : (Exact) positive direction of x-axis, as the direction from p0 to p1.
• p2 : (Approximate) positive direction of y-axis. (The exact direction will be given
by a Gram–Schmidt orthogonalization.)

© Springer International Publishing AG, part of Springer Nature 2018
T. Haslwanter, 3D Kinematics, https://doi.org/10.1007/978-3-319-75277-8

155

156 Appendix D: Human Movement Recordings—Practical Tips

ad (2) Finding Position and Orientation of ORS

Using these three points as inputs, a Gram–Schmidt orthogonalization [(Eq. (6.4)]
provides the rotation matrix R describing the orientation of the SCS in ORS coordi-
nates.

ad (3) Attaching Markers to the Body

Artifacts in the measured marker position can be caused by skin movement, and by
so-called “soft tissue artifacts”. The first one can be avoided in principle only by
using bone pins, which are screwed into a human bone (Reinschmidt et al. 1997a, b).
However, bone pins are—understandably—not only unpopular with most subjects,
they are also difficult to justify for most ethics committees. Alternatively, movements
of the markers with respect to the bones can be minimized by tightly fixating the
markers to the underlying body part.

The second class of artifacts, soft tissue artifacts, can be caused by movement of
muscles as well as by fat tissues. Those artifacts can be reduced by selecting body
parts with the smallest amount of muscle mass and soft tissue (e.g., the wrist).

ad (4) Checking Marker Visibility

Markers that may be temporarily hidden during movement recordings can cause
significant problems for 3-Dmovement recordings.Markers can be hidden by cables,
by clothes, or by body parts.

In principle, there are four ways to minimize these problems:

• Using a nonoptical recording system.
• Multiple cameras and/or multiple markers.
• Careful planning and checking of the intended movements.

Most magnetic field systems, such as the Aurora or the trakSTAR system (both by
Ascension Technology Corporation, now an affiliate of Northern Digital Inc., NDI),
already provide position and velocity in space, and thereby remove many of the
experimental restriction which can occur when using marker-based systems. Also
IMUs, which are covered in the next chapter, do not require a direct line-of-sight to
the recording system. However, they come at the cost of lacking information about
absolute position (and for IMUs without magnetometers lacking information about
absolute orientation in space).

By using multiple cameras, such as the Vicon system in Fig. 2.1, the problem of
temporarily hidden markers is reduced. And multiple markers, which are mounted
such that in principle always at least three of them are visible, can also compensate
for markers that are temporarily hidden. However, in return, the analysis algorithms
can become more complex.

The last solution suggested in the list above, “checking the intended movements”,
can often be implemented simply by standing behind the recording equipment, and
asking the subject to perform the movement required for the experimental paradigm.
Visibility of all markers during this simple visual check ensures that the experiment
will most likely provide all the data required for a successful analysis.

Appendix D: Human Movement Recordings—Practical Tips 157

ad (5) Recording Anatomical Landmarks

Many applications are not (only) interested in the orientation of the individual body
parts, but instead focus on joint locations. Visualizations of human movements are a
prime example of such applications, as are biomechanical investigations. Denoting
one location for a joint is complicated by the fact that (i) it is impossible to place a
marker inside a joint, and (ii) some joints execute highly complicated movements,
for example, the combined rotation–translation of knee joints.

The most accurate information that can be achieved with ORSs is by determin-
ing the location of one or more anatomical landmarks, in a body orientation where
also the three markers of the corresponding body part are visible. In the example in
Fig. D.1, markers attached to the lower arm can record its position and orientation,
and the location of the inside and the outside of the wrist can be recorded with an
additional sensor, while the lower arm markers also have to be visible. Figure D.2
shows experimental data from such a recording in our laboratories. The correspond-
ing software for the data analysis is provided in scikit-kinematics, in the
module markers.

For example, for the accurate determination of the wrist position with respect to
the lower arm markers, one can proceed as follows:

• While threemarkers are visible, hide the fourthmarker with one hand, and position
it at the inside of the wrist.

• Reveal that marker for a second or so, then hide it again, and place it on the outside
of the wrist.

• Reveal that marker again for a second, and then hide it, before terminating the
recording.

Fig. D.1 To find the position of the wrist with respect to the three markers mounted on the lower
arm, the outer (left) and inner (right) edge of the wrist can be indicated with an additional marker

158 Appendix D: Human Movement Recordings—Practical Tips

Fig. D.2 To identify the center of a joint, a calibration marker can be held to the inner and outer
edges of that joint. Figure D.1 shows how this can be done for the wrist. In the recording shown in
this Figure, this was done for the wrist, elbow, and shoulder, providing six calibration points. From
these, the center of the wrist, the elbow, and the shoulder relative to the markers on the lower or
upper arm can be determined

This sequence can be repeated for each joint of interest.
Figure D.2 shows raw data for such a recording, for that fourth “location”-marker.

With an automated analysis procedure, or with interaction by the user, one point can
be selected for the calculation of the position of the anatomical landmark.

From these data, the vector from the three limbmarkers to the anatomical landmark
can be calculated, applying Eqs. (6.2) and (6.9), replacing the “COM” with the
anatomical landmark.

Note: In practice, this procedure is often substituted by placing markers at well
defined anatomical positions, from which the joint positions can then be calculated.

ad (6) Reference Position

Many artifacts that can complicate the data analysis can be eliminated or reduced
by placing the subject in the reference position/orientation as often as possible. At
the very least, this should be done at the beginning and at the end of each recording.
For example, for eye movement recordings, the subject could be asked to fixate a
known target at the beginning and at the end of each recording session. Or for the
recording of arm or leg movements, the subject could try to stand or sit stationary
at the beginning and at the end of a recording, with the body in exactly the same
location and orientation. (Although in practice this is not always possible.)

For movement recordings with an ORS, such calibration checks can allow the
detection of a marker slip. And for IMU recordings (see next chapter), they can
provide a possibility to eliminate drifts and/or offsets.

ad (7) Movement Recording

Having gone through all the procedures described above increases the chances to
obtain reliable, high-quality recordings of the movement pattern under investigation.

Appendix D: Human Movement Recordings—Practical Tips 159

D.2 Movement Recordings with a Sensor-Based System
(IMU)

The following steps indicate important aspects of experimental paradigms for move-
ment recordings with inertial measurement units (IMUs):

1. Choose the Space Coordinate System (SCS).
2. Bring the subject in a static starting position.
3. Attach the IMU(s) to the body.
4. Document the orientation of the IMU(s).
5. Record the movement.
6. Bring subject again in the static starting position.

ad (1) Choosing a Coordinate System

This is important in order to orient the subject in step (2).

ad (2) Reference/Starting Position

In many applications, the mid-sagittal plane of the subject is parallel to the x-z-plane
of the SCS.

ad (3) Attaching IMU to Body

The raw movement data are significantly easier to interpret if the IMU axes are as
parallel to the axes of the SCS as possible. (See also Sect. 4.5.2, which describes the
determination of the sensor orientation when the subject is stationary.)

ad (4) Documenting the Starting Position and the IMU Orientation

Given the easy availability of smartphones with cameras and/or digital cameras, it is
very advisable to take pictures to document (i) the orientation of the IMU(s) on the
body, and (ii) the starting position of the subject. If those two pieces of information
are missing, IMU data are very hard to interpret!

ad (5) Movement Recording with IMU

• The subject should be stationary at the beginning of the recording.
• The recording sessions should be kept short, since most IMUs show a significant
amount of drift.

• At the end of the recording, the subject should be stationary again, and if possible
in exactly the same position as at the beginning of the recording. If this is the case,
drift artifacts in the IMU signals can be eliminated in the data analysis.

Appendix E
Exercise Solutions

E.1 Warm-Up Exercises

Solution Exercise 1.1: A Simple Linear Movement
Integration of a sine function gives

acc(t) = amp ∗ sin(ωt) (E.1)

vel(t) = −amp

ω
∗ cos(ωt) + c . (E.2)

With the initial condition vel(t = 0) = v0 one gets

v0 = −amp

ω
+ c

c = amp

ω
+ v0 , (E.3)

which gives the velocity

vel(t) = amp

ω
∗ (1 − cos(ωt)) + v0 . (E.4)

Another integration and application of the second initial condition
pos(t = 0) = p0 lead to the final solution

pos(t) = −amp

ω2
∗ sin(ωt) +

(amp

ω
+ v0

)
∗ t + p0 . (E.5)

Code:Ex_1_1_Solution.py: Example of workingwith

quaternions.

© Springer International Publishing AG, part of Springer Nature 2018
T. Haslwanter, 3D Kinematics, https://doi.org/10.1007/978-3-319-75277-8

161

162 Appendix E: Exercise Solutions

Listing : Ex_1_1) 1-D Accelerometer - analytical & numerical solution.

"""Exercise 1.1: Solve equations of motion for sinusoidally
moving accelerometer."""

author: Thomas Haslwanter, date: Dec-2017

Load the required packages
import numpy as np
import matplotlib.pyplot as plt

Set up the parameters
duration, rate = 10, 50 # for the plot
freq, amp = 2, 5 # for the sine-wave
v0, p0 = 0, 15 # initial conditions

Calculate derived values
omega = 2*np.pi*freq
dt = 1/rate
time = np.arange(0, duration, dt)
acc = amp * np.sin(omega*time)

In the following, I put each task in a function, to
facilitate readability

def analytical():
"""Analytical solution of a sinusoidal acceleration

Returns

axs : list

Axes handles to the three plots.
"""

Analytical solution
vel = amp/omega * (1-np.cos(omega*time)) + v0
pos = -amp/omega**2 * np.sin(omega*time) + (amp/omega + v0

)*time + p0

Plot the data
fig, axs = plt.subplots(3,1,sharex=True)

axs[0].plot(time, acc)
axs[0].set_ylabel(’Acceleration’)
axs[0].margins(0)

axs[1].plot(time, vel)
axs[1].set_ylabel(’Velocity’)
axs[1].margins(0)

axs[2].plot(time, pos, label=’analytical’)

Appendix E: Exercise Solutions 163

axs[2].set_ylabel(’Position’)
axs[2].set_xlabel(’Time [sec]’)
axs[2].margins(0)

return axs

def simple_integration(axs):
"""Numerical integration of the movement equations

Paramters:

axs : list

Axes handles to the three plots produced by "
analytical".

"""

Initial conditions
vel, pos = [v0], [p0]

Numerical solution
for ii in range(len(time)-1):

vel.append(vel[-1] + acc[ii]*dt)
pos.append(pos[-1] + vel[-1]*dt) # Euler-Cromer method

Superpose the lines on the previous plots
axs[1].plot(time, vel)
axs[2].plot(time, pos, label=’numerical’)
plt.legend()

plt.show()

if __name__ == ’__main__’:
axs_out = analytical()
simple_integration(axs_out)

input(’Done’) # Without this line Python closes
immedeatly after running

Solution Exercise 1.2: Find the Cat

To find the position of the cat (center between the eyes) in the figure, one has to

• Determine the location of the origin (big white circle in Fig. E.1).
• Fixate the orientation of the chosen coordinate system (horizontal/vertical).
• Measure the vertical/horizontal location (white lines in Fig. E.1), in pixel.
• Measure the size of the Ikea-shelf (yellow bar in Fig. E.1), in pixel.
• Convert the measured dimensions into cm.

With ver = 258 px , hor = 61 px , ikea = 226 px , and the information that the
shelf is 124 cm high, we get

164 Appendix E: Exercise Solutions

Fig. E.1 The cat is 142 cm up, and 33 cm to the right

up = ver ∗ 124

ikea
= 142 cm (E.6)

right = hor ∗ 124

ikea
= 33 cm. (E.7)

The calculations assume that the projection into the 2-D image plane is a parallel
projection, i.e., that the distance d to the camera is much larger than the focal length
f . They also assume that the x-pixels and the y-pixels are symmetrical.

Solution Exercise 1.3: A Simple Pendulum

Code:Ex_1_3_Solution.py: Example of workingwith

quaternions (Fig.E.2).

Appendix E: Exercise Solutions 165

Fig. E.2 Pendulum trajectory, for initial deflection of 5◦ (top) and of 70◦ (bottom)

Listing : Ex_1_3) Movement trajectory for a pendulum, for small and large deviations.

"""Exercise 1.3: Simulation of a "simple" pendulum. """

Author: Thomas Haslwanter, Date: April-2017

First, import the required packages
import numpy as np
import matplotlib.pyplot as plt
import numpy as np
from scipy import constants
import os

Define constants
g = constants.g # gravity, [m/s^2]

def calculate_trajectory(phi_0, length_pendulum=0.2, out_file
=’test.dat’):
"""Simulate a pendulum in 2-D
The equation of motion is:

\frac{d^2 \phi}{dt^2} = -\frac{g}{l} \sin(phi)
Also, writes the data to an out-file.

Parameters

phi_0 : float

starting angle [deg].
length_pendulum : float

length of the pendulum [m]
The default is 0.2 m

out_file : string
name of the out_file

Returns

166 Appendix E: Exercise Solutions

time : ndarray

Time samples [s]
angle : ndarray

Pendulum angle [deg]
"""

tMax = 5 # duration of simulation [sec]
rate = 1000 # sampling rate [Hz]

dt = 1 / rate
time = np.arange(0, tMax, dt)

def acc_func(alpha):
""" Differential equation of motion

Parameters:

alpha : float

Starting angle [deg]

Returns:

time : ndarray

Time values for the movement of the pendulum.
phi : ndarray

Pendulum angle [deg]
"""
acc = -g/length_pendulum * np.sin(alpha)
return acc

Initial conditions
phi = [np.deg2rad(phi_0)] # rad
omega = [0] # rad/s

Numerical integration with the Euler-Cromer method,
which is more stable

for ii in range(len(time) - 1):
phi.append(phi[-1] + omega[-1]*dt)
omega.append(omega[-1] + acc_func(phi[-1])*dt)

return time, np.rad2deg(phi)

if __name__ == ’__main__’:
’’’Main part’’’

pendulum = 0.20 # [m]
’Call the function that calculates the trajectory, and

generate a plot’

Appendix E: Exercise Solutions 167

For multiple plots, I clearly prefer the object oriented
plotting style

More info on that in the book "Introduction to
Statistics with Python",

in Chapter 3
fig, axs = plt.subplots(2,1)

Starting position: 5 deg
time, angle = calculate_trajectory(5)
axs[0].set_xlim([0, np.max(time)])
axs[0].plot(time, angle)
axs[0].set_ylabel(’Angle [deg]’)
axs[0].set_title(’Pendulum’)

Starting position: 70 deg
time, angle = calculate_trajectory(70)
axs[1].plot(time, angle)
axs[1].set_xlim([0, np.max(time)])
axs[1].set_ylabel(’Angle [deg]’)
axs[1].set_xlabel(’Time [sec]’)

Save the figure, and show the user the corresponding
info

outFile = ’pendulum.png’
plt.savefig(outFile, dpi=200)
print(’out_dir: {0}’.format(os.path.abspath(’.’)))
print(’Image saved to {0}’.format(outFile))
plt.show()

E.2 Rotation Matrices

Solution Exercise 3.1: CT Scanner
For the scanner shown in Fig. 3.19, the full rotation matrix is given by

R = Rz(α) · Rx (β) · Ry(γ)

The task can be rephrased as: find the angles α,β, and γ which bring the scanner-
fixed y-axis to align with

−−−−→
bullet1, and the scanner-fixed z-axis with �n = −−−−→

bullet1 ×−−−−→
bullet2. Care has to be taken, because the solution involves angles >90◦.

Code: Ex_3_1_Solution.py: Finding the orientation

of the elements of a CT scanner.

168 Appendix E: Exercise Solutions

Listing : Ex_3_1) CT-scanner.

""" Exercise 3.1: Orientation of the elements of a modern CT
scanner.

"""

Author: Thomas Haslwanter, Date: Dec-2017
import numpy as np
import os

from skinematics.rotmat import R, R_s
from skinematics.vector import normalize
from collections import namedtuple

def find_CT_orientation():
’’’Find the angles to bring an "Axiom Artis dTC" into a

desired orientation.’’’

Calculate R_total
R_total = R_s(2, ’alpha’)*R_s(0, ’beta’)*R_s(1, ’gamma’)

Use pprint, which gives a nicer display for the matrix
import pprint
pprint.pprint(R_total)

Find the desired orientation of the CT-scanner
bullet_1 = np.array([5,2,2])
bullet_2 = np.array([5,-2,-4])
n = np.cross(bullet_1, bullet_2)

ct = np.nan * np.ones((3,3))
ct[:,1] = normalize(bullet_1)
ct[:,2] = normalize(n)
ct[:,0] = np.cross(ct[:,1], ct[:,2])

print(’Desired Orientation (ct):’)
print(ct)

Calculate the angle of each CT-element
beta = np.arcsin(ct[2,1])
gamma = np.arcsin(-ct[2,0]/np.cos(beta))

next I assume that -pi/2 < gamma < pi/2:
if np.sign(ct[2,2]) < 0:

gamma = np.pi - gamma

display output between +/- pi:
if gamma > np.pi:

gamma -= 2*np.pi

Appendix E: Exercise Solutions 169

alpha = np.arcsin(-ct[0,1]/np.cos(beta))

alpha_deg = np.rad2deg(alpha)
beta_deg = np.rad2deg(beta)
gamma_deg = np.rad2deg(gamma)

Check if the calculated orientation equals the desired
orientation

print(’Calculated Orientation (R):’)
rot_mat = R(2, alpha_deg) @ R(0, beta_deg) @ R(1,

gamma_deg)
print(rot_mat)

return (alpha_deg, beta_deg, gamma_deg)

if __name__==’__main__’:

(alpha, beta, gamma) = find_CT_orientation()
print(’alpha/beta/gamma = {0:5.1f} / {1:5.1f} / {2:5.1f}

[deg]\n’.format(alpha, beta, gamma))

Solution Exercise 3.2: Combining Rotation and Translation

Code: Ex_3_2_Solution.py: Combining rotation and

translation.

Listing : Ex_3_2) Combining rotation and translation.

""" Exercise 3.1: Calculate the trajectory of an observed
particle, when location and orientation of the observer
are changing.

The velocities correspond to particle velocities in a central
potential.

"""

Author: Thomas Haslwanter, Date: Nov-2017

import os
from scipy import signal
import skinematics as skin
import numpy as np
import matplotlib.pyplot as plt

def rotate_and_shift(shift=[0,0,0], rotation=0):
"""Get data, and rotate and shift the camera location

Parameters

shift : ndarray, shape (3,)

170 Appendix E: Exercise Solutions

Camera translation [Same units as position recordings]
rotation : float

Camera rotation [deg]
"""

Get the data
inFile = ’planet_trajectory_2d.txt’
data = np.loadtxt(inFile)

Calculate the 3D trajectory
zData = -data[:,1]*np.tan(30*np.pi/180.)
data3D = np.column_stack((data,zData))
data3D[:,2] -= 200

Calculate and plot the 3-D velocity
vel3D = signal.savgol_filter(data3D, window_length=61,

polyorder=3, deriv=1, delta=0.1, axis=0)

Show the data
plt.plot(vel3D[:,0], vel3D[:,1])
plt.axis(’equal’)
plt.title(’x/y Velocity’)
plt.xlabel(’x’)
plt.ylabel(’y’)
plt.show()

Just to show how to elegantly create 3 subplots
fig, axs = plt.subplots(3,1, sharex=True)
for ii in range(3):

axs[ii].plot(vel3D[:,ii])
axs[ii].set_ylabel(’axis_{0}’.format(ii))

axs[ii].set_xlabel(’Time [pts]’)
axs[0].set_title(’Velocities’)
plt.show()

Shift the location of the camera, using the numpy
feature of

"broadcasting" to subtract a 3-vector from an Nx3-matrix
.

data_shifted = data3D - np.array(shift)

Rotate the orientation of the camera
data_shiftRot = (skin.rotmat.R(0, rotation) @ data_shifted

.T).T

Plot the shifted and rotated trajectory
outFile = ’shifted_rotated.png’

plt.plot(data_shiftRot[:,0], data_shiftRot[:,1])
plt.axhline(0, linestyle=’dotted’)
plt.axvline(0, linestyle=’dotted’)

Appendix E: Exercise Solutions 171

plt.xlabel(’x’)
plt.ylabel(’y’)
plt.title(’Shifted & Rotated’)

plt.savefig(outFile, dpi=200)
print(’Data saved to {0}’.format(outFile))
plt.show()

if __name__==’__main__’:
rotate_and_shift([0, 100, -50], 34)

E.3 Analysis of 3-D Movement Recordings

Solution Exercise 6.1: An (Almost) Simple Rotation
For a fixed-axis rotation about a coordinate axis, we can find the orientation by simply
integrating the angular velocity. A 45◦ rotation about the vertical axis therefore gives

Rz(θ = 45◦) =
⎡
⎣
0.71 −0.71 0
0.71 0.71 0
0 0 1

⎤
⎦ .

The answer to the second question requires the correct sequence of two rotations
(Sect. 3.4):

Rcombined = Rz(θ = 45) · Ry(φ = 30◦) =
⎡
⎣

0.61 −0.71 0.35
0.61 0.71 0.35
−0.5 0 0.87

⎤
⎦

Solution Exercise 6.2 Pendulum

Code:Ex_6_2_Solution.py: Simulating themovement

and the forces measured by an IMU on a pendulum. See Fig.E.3.

172 Appendix E: Exercise Solutions

Listing : Ex_6_2) Pendulum

"""Exercise 6.1: Simulation of a "simple" pendulum.
This is not as simple as it looks. The signs are a bugger
(force vs acceleration, up vs down, orientation of coordinate

system). Also, I was surprised how quickly one gets
artefacts in the reconstruction: already with a sample
rate of 1 kHz, artefacts sneak in!

"""

Author: Thomas Haslwanter, Date: Dec-2017

import numpy as np
import matplotlib.pyplot as plt
import numpy as np
from scipy import signal, constants, integrate
import pandas as pd

g = constants.g # gravity, [m/s^2]

def generate_data(length_pendulum, out_file=’test.dat’):
"""Simulate a pendulum in 2D, and write the data to an out

-file.

Parameters

length_pendulum : float

Length of the pendulum [m]
out_file : string

Name of out-file

Returns

df : Pandas DataFrame

Contains ’time’, ’phi’, ’omega’, ’gifBHor’, ’gifBVer’
rate : float

Sampling rate [Hz]

Notes

The equation of motion is

\frac{d^2 \phi}{dt^2} = -\frac{g}{l} \sin(phi)
"""

tMax = 2 # duration of simulation [sec]
rate = 10000 # sampling rate [Hz]

dt = 1 / rate

Appendix E: Exercise Solutions 173

time = np.arange(0, tMax, dt)

def acc_func(alpha):
""" differential equation of motion """
acc = -g/length_pendulum * np.sin(alpha)
return acc

Memory allocation
omega = np.nan * np.ones(len(time))
phi = np.nan * np.ones(len(time))

Initial conditions
phi[0] = 0.1 # rad
omega[0] = 0 # rad/s
tStatic = 0.1 # initial static setup [sec]

Numerical integration
for ii in range(len(time) - 1):

phi[ii + 1] = phi[ii] + omega[ii] * dt
if time[ii] < tStatic: # static initial condition

omega[ii + 1] = 0
else:

Euler-Cromer method, is more stable
omega[ii + 1] = omega[ii] + acc_func(phi[ii + 1]) *

dt

Find the position, velocity, and acceleration
The origin is at the center of the rotation
pos = length_pendulum * np.column_stack((np.sin(phi),

-np.cos(phi)))

vel = signal.savgol_filter(pos, window_length=5, polyorder
=3, deriv=1, delta=dt, axis=0)

acc = signal.savgol_filter(pos, window_length=5, polyorder
=3, deriv=2, delta=dt, axis=0)

Add gravity
accGravity = np.r_[0, g]
gifReSpace = accGravity + acc

Transfer into a body-fixed system
gifReBody = np.array([rotate(gif, -angle) for (gif, angle)

in zip(gifReSpace, phi)])

Quickest way to write the "measured" data to a file,
with headers

df = pd.DataFrame(np.column_stack((time, phi, omega,
gifReBody)), columns=[’time’, ’phi’, ’omega’, ’gifBHor
’, ’gifBVer’])

df.to_csv(out_file, sep=’\t’)
print(’Data written to {0}’.format(out_file))

174 Appendix E: Exercise Solutions

return df, rate

def show_data(data, phi, pos, length):
"""Plots of the simulation, and comparison with original

data

Parameters

data : Pandas DataFrame

Contains ’time’, ’phi’, ’omega’, ’gifBHor’, ’gifBVer’
phi : ndarray, shape (N,)

Angles of the reconstructed movement.
pos : ndarray, shape (N,2)

x/y-positions of the reconstructed movement.
length : float

Length of the pendulum.
"""

fig, axs = plt.subplots(3, 1, figsize=(5,5))

Show Phi
axs[0].plot(data[’time’], phi)
axs[0].xaxis.set_ticklabels([])
axs[0].set_ylabel(’Phi [rad]’)

Show Omega
axs[1].plot(data[’time’], data[’omega’])
axs[1].xaxis.set_ticklabels([])
axs[1].set_ylabel(’Omega [rad/s]’)

Show measured force
axs[2].plot(data[’time’], data[[’gifBHor’, ’gifBVer’]])
axs[2].set_xlabel(’Time [sec]’)
axs[2].set_ylabel(’GIF re Body [m/s^2]’)
axs[2].legend((’Hor’, ’Ver’))
plt.tight_layout()

x,y plot of the position
fig2, axs2 = plt.subplots(1, 2)
axs2[0].plot(pos[:, 0], pos[:, 1])
axs2[0].set_title(’Position plot’)
axs2[0].set_xlabel(’X’)
axs2[0].set_ylabel(’Y’)

axs2[1].plot(pos[:, 0])
plt.hold(True)
axs2[1].plot(length * np.sin(phi), ’r’)

plt.show()

Appendix E: Exercise Solutions 175

def rotate(data, phi):
"""Rotate 2d data in column form

Parameters

data : ndarray, shape (2,)

x/y-data to be rotated.
phi : float

Angle of 2-D rotation.

Returns

rotated : ndarray, shape (2,)

Rotated data.
"""

Rmat = np.array([[np.cos(phi), -np.sin(phi)],
[np.sin(phi), np.cos(phi)]])

rotated = (Rmat @ data.T).T

return rotated

def reconstruct_movement(omega, gifMeasured, length, rate):

""" From the measured data, reconstruct the movement

Parameters

omega : ndarray, shape (N,)

Angular velocity [rad/s]
gifMeasured : ndarray, shape (N,2)

Gravito-inertial force per unit mass [kg m/s^2]
length : float

Length of pendulum [m]

Returns

phi : ndarray, shape (N,)

Angle of pendulum [rad]
pos : ndarray, shape (N,2)

x/y-position of pendulum [m]
"""

dt = 1/rate

Initial orientation
gif_t0 = gifMeasured[0]
phi0 = np.arctan2(gif_t0[0], gif_t0[1])

176 Appendix E: Exercise Solutions

Calculate phi, by integrating omega
phi = integrate.cumtrapz(omega, dx=dt, initial=0) + phi0

From phi and the measured acceleration, get the movement
acceleration

accReSpace = np.array([rotate(gif, angle) - np.array([0, g
]) for (gif, angle) in zip(gifMeasured, phi)])

Position and Velocity through integration
vel = np.nan * np.ones(accReSpace.shape)
pos = np.nan * np.ones(accReSpace.shape)

init = length * np.array([np.sin(phi[0]), -np.cos(phi[0])
])

for ii in range(accReSpace.shape[1]):
vel[:, ii] = integrate.cumtrapz(accReSpace[:, ii], dx=

dt, initial=0)
pos[:, ii] = integrate.cumtrapz(vel[:, ii], dx=dt,

initial=0)
pos[:, ii] += init[ii] # initial condition

return phi, pos

if __name__ == ’__main__’:
’’’Main part’’’

pendulum = 0.20 # [m]
sim_data, sample_rate = generate_data(pendulum)

Get the data: this is just to show how such data can be
read in again

data = pd.io.parsers.read_table(outFile,
skipinitialspace=True)

From the measured data, reconstruct the movement:
First, find the sampling rate from the time
phi_calc, pos_calc = reconstruct_movement(omega=sim_data[’

omega’].values,
gifMeasured=sim_data

[[’gifBHor’, ’
gifBVer’]].
values,

length=pendulum,
rate=sample_rate)

Show the results - this should be a smooth oscillation
show_data(sim_data, phi_calc, pos_calc, pendulum)

Appendix E: Exercise Solutions 177

Fig. E.3 Pendulum angles and angular velocities, and the sensed gravito-inertial accelerations.
Note in the bottom plot that when the pendulum is released, there is zero tangential acceleration
(“Hor”). And in the “Ver” component, the oscillating gravitational component plus the centrifugal
force induces a slight modulation

Appendix F
Glossary

Attitude Expression commonly used for 3-D orientation in aeronautics.

Axis-angle representation Refers to the Euler vector (see below).

Cayley–Klein parameters The parametersα,β, γ, and δ, which provide a way to
uniquely characterize the orientation of a solid body. The Cayley–Klein parame-
ters are isomorphic to the group of unit quaternions. In terms of the Euler param-
eters ei and the Pauli matrices σi , the Q-matrix

Q =
[

α β
γ δ

]

can be written as

Q = e0 ∗ I + j(e1 ∗ σ1 + e2 ∗ σ2 + e3 ∗ σ3).

Euler’s formula e jφ = cosφ + j sin φ.

Euler parameters The four parameters e0, e1, e2, e3 describing a finite rotation
about an arbitrary axis. e0 corresponds to the scalar part of a unit quaternion, and
e = (e1/e2/e3) to the vector part. Euler showed that these parameters define the
rotation matrix via Eq. (4.15).

Euler vector Unique representation of a rotation, by a vector parallel to the axis
of the rotation, and a length proportional to the magnitude of the rotation in radi-
ans. In other words, a quaternion vector, scaled to degree (see Sect. 4.2). Euler
vectors have been mainly avoided in this book, because unlike quaternions and
Gibbs vectors they cannot be used for calculations, e.g., for a combination of two
rotations.

© Springer International Publishing AG, part of Springer Nature 2018
T. Haslwanter, 3D Kinematics, https://doi.org/10.1007/978-3-319-75277-8

179

180 Appendix F: Glossary

Euler–Rodrigues formula Describes the rotation of a vector in three dimen-
sions. It is based on Rodrigues’ rotation formula (see below), but uses a different
parametrization. A rotation about the origin is represented by four real numbers,
a, b, c, d such that a2 + b2 + c2 + d2 = 1. The parameter a may be called the
scalar parameter, while ω = b/c/d is the vector parameter. With this definition

x′ = x + 2 ∗ a ∗ (ω × x) + 2 ∗ (ω × (ω × x)) . (F.1)

Euler rotation theorem There are many Euler theorems. In geometry, Euler’s
rotation theorem states that, in 3-D space, any displacement of a rigid body such
that a point on the rigid body remains fixed, is equivalent to a single rotation about
some axis that runs through the fixed point. It also means that the composition
of two rotations is again a rotation. Therefore, the set of rotations has a group
structure, known as the “rotation group”.

Gibbs vector With q0 the scalar part of a unit quaternion and q the vector part, a
Gibbs vector g is defined as g = q

q0
.

Hamilton’s identity The idea for quaternions occurred toHamilton 1843while he
was walking along the Royal Canal on his way to a meeting of the Irish Academy.
Hamilton was so pleased with his discovery that he scratched the fundamental
formula of quaternion algebra

ĩ
2 = j̃

2 = k̃
2 = ĩ j̃ k̃ = −1, (F.2)

into the stone of the Brougham bridge in Dublin, as he paused on it.

Heading Direction in which an aircraft or ship is heading.

Pauli matrices A set of three complex 2x2 matrices, which are Hermitian and
unitary, and exponentiate to the special unitary group SU (2):

σ1 = σx =
[
0 1
1 0

]

σ2 = σy =
[
0 −i
i 0

]

σ3 = σz =
[
1 0
0 −1

]
.

The algebra generated by the threematricesσ1,σ2,σ3 is isomorphic to theClifford
algebra of R3, called the “algebra of physical space”. The three Pauli matrices of

course go along with a fourth matrix, the unit matrix:

[
1 0
0 1

]
. The exponential of

the Pauli matrices shows their close relation to rotations:

e ja(n·σ) = I cos(a) + j (n · σ) sin(a) (F.3)

Appendix F: Glossary 181

which is analogous to Euler’s formula. n is a unit vector.

Quaternions Four-element algebra, allowing rotation and scaling of a quaternion
by multiplying it with another quaternion. Includes unit quaternions as a subalge-
bra, which describes proper rotations. The (ĩ , j̃ , k̃) quaternions behave like Pauli
matrices multiplied by a factor j , where j := √−1. Specifically, one can verify
that redefining ĩ := j ∗ σx , j̃ := j ∗ σy , and k̃ := j ∗ σz then once again we can

write Hamilton’s identities, namely ĩ
2 = j̃

2 = k̃
2 = ĩ j̃ k̃ = −1.

Rotation vectors This term is used by some authors for Gibbs vectors. Since this
expression is sometimes found misleading (“Is a quaternion vector also a rotation
vector?”), it has been avoided in this book.

Rodrigues parameters Components of Gibbs vector.

Rodrigues’ rotation formula If v is a 3-D vector and k is a unit vector describing
an axis of rotation about which v rotates by an angle θ, the Rodrigues formula
says

vrot = v ∗ cos(θ) + (k × v) ∗ sin(θ) + k ∗ (k · v) ∗ (1 − cos(θ) . (F.4)

Rotation group SO(3) The “special orthogonal group” (SO3) is the group of real-
valued three-dimensional (3 × 3) orthogonal (RRT = RT R = I) matrices with
det (R) = +1. Those are the “rotation matrices”.

Appendix G
Online Resources

G.1 Links Directly Related to this Book

3D_Kinematics Homepage of this book: Code Listings (Python &Matlab), Exer-
cise Solutions, Errata.
https://github.com/thomas-haslwanter/3D_Kinematics

scikit-kinematics Source Code Python package accompanying this book.
https://github.com/thomas-haslwanter/scikit-kinematics

scikit-kinematics Documentation Python package accompanying this book.
http://work.thaslwanter.at/skinematics/html/

Matlab Kinematics Toolbox Matlab toolbox accompanying this book.
https://github.com/thomas-haslwanter/kinematics_toolbox.git

G.2 Other Links

Anaconda Windows/Linux/MacOS distribution for scientific work with Python.
https://www.anaconda.com/download/

Clifford Python package for Clifford algebra.
http://clifford.readthedocs.io

Clifford Algebra—Introduction Good starting point to delf a bit deeper into
Clifford algebras.
https://www.av8n.com/physics/clifford-intro.htm

git Code versioning system.
https://git-scm.com/

© Springer International Publishing AG, part of Springer Nature 2018
T. Haslwanter, 3D Kinematics, https://doi.org/10.1007/978-3-319-75277-8

183

https://github.com/thomas-haslwanter/3D_Kinematics
https://github.com/thomas-haslwanter/scikit-kinematics
http://work.thaslwanter.at/skinematics/html/
https://github.com/thomas-haslwanter/kinematics_toolbox.git
https://www.anaconda.com/download/
http://clifford.readthedocs.io
https://www.av8n.com/physics/clifford-intro.htm
https://git-scm.com/

184 Appendix G: Online Resources

git—Starting instructions Good, short and simple starting instructions to git, in
many languages.
http://rogerdudler.github.io/git-guide/

github Online repository for open-source code.
https://github.com/

IPython Homepage for IPython, the package for interactive work with Python.
http://ipython.org/

IPython Tutorial IPython tutorial.
https://ipython.readthedocs.io

Madgwick Filter -1 C, C#, and Matlab implementation of the Madgwick filter.
http://x-io.co.uk/open-source-imu-and-ahrs-algorithms/

Madgwick Filter -2 Python implementation of the Madgwick filter.
http://work.thaslwanter.at/skinematics/html/imus.html

PyCharm A very good Python IDE.
https://www.jetbrains.com/pycharm/

Python Scientific Lecture Notes One of the best places to get started.
http://scipy-lectures.github.com

Quaternions—Introduction A good starting point for quaternions.
https://en.wikipedia.org/wiki/Quaternion

Quaternions—half-angle rule Explanation of the half-angle rule.
http://math.stackexchange.com/questions/302465/half-sine-and-half-cosine-
quaternions

sympy Python package for symbolic computations.
http://www.sympy.org/en/index.html

TortoiseGit Windows shell interface to git.
https://tortoisegit.org/

Wing My favorite Python IDE.
https://wingware.com/

WinPython Windows distribution for scientific work with Python.
https://winpython.github.io/

http://rogerdudler.github.io/git-guide/
https://github.com/
http://ipython.org/
https://ipython.readthedocs.io
http://x-io.co.uk/open-source-imu-and-ahrs-algorithms/
http://work.thaslwanter.at/skinematics/html/imus.html
https://www.jetbrains.com/pycharm/
http://scipy-lectures.github.com
https://en.wikipedia.org/wiki/Quaternion
http://math.stackexchange.com/questions/302465/half-sine-and-half-cosine-quaternions
http://math.stackexchange.com/questions/302465/half-sine-and-half-cosine-quaternions
http://www.sympy.org/en/index.html
https://tortoisegit.org/
https://wingware.com/
https://winpython.github.io/

References

Altmann, S. (1986). Rotations, quaternions and double groups. Oxford: Clarendon Press.
Bergamini, E., Ligorio, G., Summa, A., Vannozzi, G., Cappozzo, A., & Sabatini, A. M. (2014).
Estimating orientation usingmagnetic and inertial sensors and different sensor fusion approaches:
accuracy assessment in manual and locomotion tasks. Sensors, 14(10), 18625–18649.

Brand, L. (1948). Vector and tensor analysis. New York: Wiley.
Camomilla V., C. A. & Vannozzi, G. (2018). Three-Dimensional Reconstruction of the Human

Skeleton in Motion, chapter 1.2, (pp. 17–45). Springer, Cham.
Collewijn, H., Van der Steen, J., Ferman, L., & Jansen, T. C. (1985). Human ocular counterroll:
assessment of static and dynamic properties from electromagnetic scleral coil recordings. Exper-
imental brain research, 59, 185–196.

Dai, J. S. (2015). Euler-rodrigues formula variations, quaternion conjugation and intrinsic connec-
tions. Mechanism and Machine Theory, 92, 144–152.

Diebel, J. (2006). Representing Attitude: Euler Angles, Unit Quaternions, and Rotation Vectors.
http://www.swarthmore.edu/NatSci/mzucker1/e27/diebel2006attitude.pdf. Accessed: 2017-12-
04.

Euler, L. (1775). Formulae generales pro translatione quacunque corporum rigidorum. Novi
Comm.Acad.Sci.Imp.Petrop., 20, 189–207.

Fick, A. (1854). Die Bewegungen des menschlichen Augapfels. Z Rat Med N F, 4, 109–128.
Filippeschi, A., Schmitz, N., Miezal, M., Bleser, G., Ruffaldi, E., & Stricker, D. (2017). Survey
of motion tracking methods based on inertial sensors: A focus on upper limb human motion.
Sensors, 17(6), 1257.

Funda, J. & Paul, R. (1988). A comparison of transforms and quaternions in robotics. IEEE Trans-
actions on Robotics and Automation, 7, 886–891.

Girard, P. R. (1984). The quaternion group and modern physics. Eur. J. Phys, 5, 25–32.
Goldstein, H. (1980). Classical Mechanics (Vol. 2). Reading, MA: Addison-Wesley.
Grassmann, H. G. (1844). Ausdehnungslehre. Leipzig: Teubner.
Hamilton, W. (1844). On quaternions, or on a new system of imaginaries in algebra. Philosophical

Magazine, 25(3), 489–495.
Harris, C. & Stephens, M. (1988). A combined corner and edge detector. In Alvey vision conference,
volume 15 / 50 (pp. 10–5244).: Manchester, UK.

Haslwanter, T. (1995). Mathematics of three-dimensional eye rotations. Vision research, 35(12),
1727–1739.

© Springer International Publishing AG, part of Springer Nature 2018
T. Haslwanter, 3D Kinematics, https://doi.org/10.1007/978-3-319-75277-8

185

http://www.swarthmore.edu/NatSci/mzucker1/e27/diebel2006attitude.pdf

186 References

Haslwanter, T., Buchberger, M., Kaltofen, T., Hoerantner, R., & Priglinger, S. (2005). See++: A
biomechanical model of the oculomotor plant. Annals of the New York Academy of Sciences,
1039(1), 9–14.

Hassan, Y., & Canaan, R. (1991). Full-field bubbly flow velocity measurements using a multiframe
particle tracking technique. Experiments in Fluids, 12(1), 49–60.

Helmholtz, H. (1867). Handbuch der physiologischen Optik. Leipzig: Voss.
Hepp, K. (1990). On listing’s law. Commun Math Phys, 132, 285–292.
Hepp, K., Henn, V., Vilis, T., Cohen, B., & Goldberg, M. (1989). Brainstem regions related to
saccade generation. In R. Wurtz (Ed.), The neurobiology of saccadic eye movements (pp. 105–
212). Amsterdam: Elsevier.

Higgins, W. T. (1975). A comparison of complementary and Kalman filtering. IEEE Transactions
on Aerospace and Electronic Systems, 3, 321–325.

Jiménez, A. R., Seco, F., Prieto, J. C., & Guevara, J. (2010). Indoor pedestrian navigation using
an ins/ekf framework for yaw drift reduction and a foot-mounted imu. In Positioning Navigation
and Communication (WPNC), 2010 7th Workshop on (pp. 135–143).: IEEE.

Kar, A. (2010). Skeletal tracking using microsoft kinect. Methodology, 1, 1–11.
Kindratenko, V. V. (2000). A survey of electromagnetic position tracker calibration techniques.
Virtual Reality, 5(3), 169–182.

Kuipers, J. (1999). Quaternions and Rotation Sequences. Princeton University Press.
Leong, P., & Carlile, S. (1998). Methods for spherical data analysis and visualization. Journal of

neuroscience methods, 80, 191–200.
Ley, C. & Verdebout, T. (2017). Modern Directional Statistics. Chapman and Hall/CRC.
Madgwick, S. O. H., Harrison, A. J. L., & Vaidyanathan, A. (2011). Estimation of imu and marg
orientation using a gradient descent algorithm. IEEE International Conference on Rehabilitation
Robotics : [proceedings], 2011, 5975346.

Mahony, R., Hamel, T., & Pflimlin, J.-M. (2008). Nonlinear complementary filters on the special
orthogonal group. IEEE Transactions on automatic control, 53(5), 1203–1218.

Mardia, K. V. & Jupp, P. E. (1999). Directional Statistics. Wiley.
McConnell, J. J. (2005). Computer graphics: theory into practice. Jones & Bartlett Learning.
Miller, J., Rossi, E., Konishi, S., & Abramoff, M. (2003). Visualizing ocular tissue movement with
little gold beads. Investigative Ophthalmology & Visual Science, 44(13), 3123–3123.

Müller, B., Wolf, S., Brueggemann, G.-P., Deng, Z., Miller, F., & Selbie, W. S., Eds. (2018).
Handbook of Human Motion. Springer International Publishing.

Reinschmidt, C., vanDenBogert, A. J.,Murphy, N., Lundberg, A., &Nigg, B.M. (1997a). Tibiocal-
caneal motion during running, measured with external and bone markers. Clinical biomechanics
(Bristol, Avon), 12, 8–16.

Reinschmidt, C., van den Bogert, A. J., Nigg, B. M., Lundberg, A., & Murphy, N. (1997b). Effect
of skin movement on the analysis of skeletal knee joint motion during running. Journal of biome-
chanics, 30, 729–732.

Robinson, D. (1963). Amethod ofmeasuring eyemovement using a scleral search coil in amagnetic
field. IEEE Trans. Biomed. Eng, 10, 137–145.

Rodrigues, O. (1840). Des lois gomtriques qui rgissent les dplacements d’un systme solide dans
l’espace, et de la variation des coordonnes provenant de ses dplacements considrs indpendamment
des causes qui peuvent les produire. J de Mathmatiques Pures et Appliques, 5, 380–440.

Roetenberg, D., Slycke, P. J., & Veltink, P. H. (2007). Ambulatory position and orientation tracking
fusing magnetic and inertial sensing. IEEE Transactions on Biomedical Engineering, 54(5), 883–
890.

Rooney, J. (1977). A survey of representation of spatial rotation about a fixed point. Environment
and Planning B, 4, 185–210.

Sabatini, A. M. (2006). Quaternion-based extended Kalman filter for determining orientation by
inertial andmagnetic sensing. IEEE Transactions on Biomedical Engineering, 53(7), 1346–1356.

Savage, P. G. (2006). A unified mathematical framework for strapdown algorithm design. Journal
of Guidance, Control, and Dynamics, 29(2), 237–249.

References 187

Seel, T., Raisch, J., & Schauer, T. (2014). Imu-based joint angle measurement for gait analysis.
Sensors, 14(4), 6891–6909.

Selbie, W. S. & Brown, M. J. (2018). 3D Dynamic Pose Estimation from Marker-Based Optical
Data, chapter 2.1, (pp. 81–100). Springer, Cham.

Tweed, D., Cadera, W., & Vilis, T. (1990). Computing three-dimensional eye position quaternions
and eye velocity from search coil signals. Vision Res., 30(1), 97–110.

Tweed, D., & Vilis, T. (1987). Implications of rotational kinematics for the oculomotor system in
three dimensions. J. Neurophysiol., 58(4), 832–849.

van der Geest, J. N., & Frens, M. A. (2002). Recording eye movements with video-oculography
and scleral search coils: a direct comparison of two methods. Journal of neuroscience methods,
114, 185–195.

Westheimer, G. (1957). Kinematics of the eye. J. Opt. Soc. Am., 47, 967–974.
Wolpert, D. M., & Ghahramani, Z. (2000). Computational principles of movement neuroscience.

Nat Neurosci, 3(Suppl), 1212–1217.
Woodman, O. (2007). An introduction to inertial navigation. http://www.cl.cam.ac.uk/techreports/
UCAM-CL-TR-696.html.

Wu, G., & Cavanagh, P. R. (1995). Isb recommendations for standardization in the reporting of
kinematic data. Journal of biomechanics, 28, 1257–1261.

Yun, X., & Bachmann, E. R. (2006). Design, implementation, and experimental results of a
quaternion-based kalman filter for human body motion tracking. IEEE transactions on Robotics,
22(6), 1216–1227.

http://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-696.html
http://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-696.html

Index

A
Accelerometers, linear, 17
Aerial gun, 48
Anaconda, 5
Anatomical landmarks, 157
Angle, between two vectors, 135
Angular velocity tensor, 79
Artifacts

IMU, 19
ORS, 156

Attitude, 29, 36
Axis-angle representation, 59

B
Banking, 36
Bayesian inference, 105
Bivector, 126
Bone pins, 16

C
Cardan angles, 45
Cardan joint, 45
Cartesian coordinate system, 29, 31
Center of Mass (COM), 87
Clifford algebra, 60, 122
Code versioning, 7
Commutativity, 29
Complementary filters, 111
Coriolis force, 20
Corner detection, 11
Correlation, 104
Covariance matrix, 103
Cross product, 115
CT scanner, 54

D
Dead reckoning, 100
Declination, 24
Denavit-Hartenberg transformation, 129
Direction Cosine Matrix (DCM), 31
Dispersion, 128
Distribution

Gaussian, 100
normal, 100

Dot product, 123

E
Elevation, 36
Equations of motion, 75
Euler angles, 45

proper, 45
Euler–Rodrigues formula, 180
Euler’s theorem, 30
Euler vector, 57, 59
Exterior product, 123

F
Faraday’s law, 26
Fick angles, 41
Filter

Kalman, 105
Savitzky–Golay, 77

Finite difference approximations, 77
Force

Coriolis, 20
gravito-inertial (GIF), 17

G
Gait analysis, 45

© Springer International Publishing AG, part of Springer Nature 2018
T. Haslwanter, 3D Kinematics, https://doi.org/10.1007/978-3-319-75277-8

189

190 Index

Gaussian distribution, 100
2-dimensional, 102
combination of two, 101

Gaze, 41
Geometric algebra, 122
Geometric product, 123, 125
Gibbs vector, 66

relation to quaternions, 66
Gimbal, 40
Gimbal lock, 45
Github, 8
Gradient descent, 112
Gram–Schmidt orthogonalization, 87, 118
Gravito-inertial force, 17
Gyroscope, 20

H
Half-angle rule, 81
Heading, 36
Homogeneous coordinates, 46

I
Image formation, 13
Image registration, 11
IMU

artifacts, 19
inertial measurement unit, 17

Inclination, 24
Induction, 25
Inertial sensor, 16
Inertial system, 29
Interest point, 11

K
Kalman filter, 105

extended, 111
unscented, 111

Kalman gain, 102
Kinect, 11

L
Lens

equation, 15
thin, 15

Listing’s plane, 81
Lorentz force, 24

M
Magnetic flux, 25

Magnetometer, 17, 24
Markers, 11, 86

visibility, 156
Matlab, 6
Matrix multiplication, 116
Movement, 75

N
Newton’s laws

third, 18
Newton’s second law, 9, 75
Noncommutativity, 39
Normalization, of a vector, 136
Nutation, 43

O
Optical Recording System (ORS), 13
Optical sensors, 85
Optotrak, 5
Orientation, 40

in space, 91
of a plane, 137

P
Pendulum, 9, 97
Pitch, 36, 41
Polar coordinates, 32
Pose, 2
Position

in space, 91
Precession, 43
Projection

central, 15
onto a vector, 136
onto flat surface, 49
parallel, 13

Projective coordinates, 46
Python, 5

Q
Quaternion, 57

inverse, 61
pure, 61
relation to rotation matrix, 63
rotation, 61
scalar component, 60
unit, 61
vector component, 60

Index 191

R
Reference orientation, 29
Revision control, 7
Right-hand rule, 36
Rodrigues parameters, 65
Roll, 36, 41
Rotation

2-D, 30
3-D, 34
active, 40
combined, 38
in a plane, 30
nested, 52
of coordinate system, 37
of object, 37
passive, 40
sequence, 40
single axis, 30

Rotation matrix, 29
Rotation quaternion, 61
Rotor, 125

S
Scalar product, 115
Scikit-kinematics, 5
Search coils, 25
Sensor fusion, 99
Sensor integration, 99
Sequence

Euler, 43
Fick, 41
Helmholtz, 42
nautical, 41

Spatial transformation matrix, 47
Spherical statistics, 127
Standard deviation, 101
State prediction, 107

T
Tait–Bryan angles, 45
Trigonometry, 117
Trilateration, 13, 22

U
Unit quaternion, 61

V
Variance, 101
Vector decomposition, 118
Vector product, 115
Vector rotation, 137
Velocity, 75

angular, 79
linear, 76

Version control, 7

W
Wedge product, 123
WinPython, 5

Y
Yaw, 36, 41

	Preface
	How to Use This Book
	Acknowledgements

	Abbreviations
	Contents
	1 Introduction
	1.1 Recording Movement and Orientation
	1.2 Conventions and Basics
	1.2.1 Notation
	1.2.2 Coordinate Systems

	1.3 Software Packages
	1.3.1 Python Package scikit-kinematics
	1.3.2 Matlab 3-D Kinematics Toolbox
	1.3.3 Source Code for Python and Matlab

	1.4 Warm-Up Exercises

	2 Measurement Techniques
	2.1 Marker-Based Measurements
	2.1.1 Image Formation

	2.2 Sensor-Based Measurements
	2.2.1 Overview
	2.2.2 Linear Accelerometers
	2.2.3 Gyroscopes
	2.2.4 Ultrasound Sensors—Trilateration
	2.2.5 Magnetic Field Sensors

	3 Rotation Matrices
	3.1 Introduction
	3.2 Rotations in a Plane
	3.2.1 Rotation in Cartesian Coordinates
	3.2.2 Rotation in Polar Coordinates
	3.2.3 Application: Orienting an Object in a Plane

	3.3 Rotations About Coordinate Axes in 3-D
	3.3.1 3-D Rotations About Coordinate Axes
	3.3.2 Rotations of Objects Versus Rotations of Coordinate Systems

	3.4 Combined Rotations
	3.4.1 3-D Orientation with Sequential Rotations
	3.4.2 Gimbal Lock

	3.5 Homogeneous Coordinates
	3.5.1 Definition

	3.6 Applications
	3.6.1 Two DOF—Targeting an Object in 3-D
	3.6.2 Two DOF—Projection onto a Flat Surface
	3.6.3 Three DOF—3-D Orientation Measurements with Search Coils
	3.6.4 Nested or Cascaded 3-D Rotation Sequences
	3.6.5 Camera Images

	3.7 Exercises

	4 Quaternions and Gibbs Vectors
	4.1 Representing Rotations by Vectors
	4.2 Axis-Angle Euler Vectors
	4.3 Quaternions
	4.3.1 Background
	4.3.2 Quaternion Properties
	4.3.3 Interpretation of Quaternions
	4.3.4 Unit Quaternions

	4.4 Gibbs Vectors
	4.4.1 Properties of Gibbs Vectors
	4.4.2 Cascaded Rotations with Gibbs Vectors
	4.4.3 Gibbs Vectors and Their Relation to Quaternions

	4.5 Applications
	4.5.1 Targeting an Object in 3-D: Quaternion Approach
	4.5.2 Orientation of 3-D Acceleration Sensor
	4.5.3 Calculating Orientation of a Camera on a Moving Object
	4.5.4 Object-Oriented Implementation of Quaternions

	5 Velocities in 3-D Space
	5.1 Equations of Motion
	5.2 Linear Velocity
	5.3 Angular Velocity
	5.3.1 Calculating Angular Velocity from Orientation
	5.3.2 Calculating Orientation from Angular Velocity

	6 Analysis of 3-D Movement Recordings
	6.1 Position and Orientation from Optical Sensors
	6.1.1 Recording 3-D Markers
	6.1.2 Orientation in Space
	6.1.3 Position in Space
	6.1.4 Velocity and Acceleration
	6.1.5 Transformation from Camera- to Space-Coordinates
	6.1.6 Position

	6.2 Position and Orientation from Inertial Sensors
	6.2.1 Orientation in Space
	6.2.2 Position in Space

	6.3 Applications: Gait Analysis
	6.4 Exercises

	7 Multi-sensor Integration
	7.1 Working with Uncertain Data
	7.1.1 Uncertain Data in One Dimension
	7.1.2 Uncertain Data in Multiple Dimensions

	7.2 Kalman Filter
	7.2.1 Idea Behind Kalman Filters
	7.2.2 State Predictions
	7.2.3 Measurements and Kalman Equations
	7.2.4 Kalman Filters with Quaternions

	7.3 Complementary Filters
	7.3.1 Gradient Descent Approach

	A Appendix—Mathematics
	A.1 Mathematical Basics
	A.1.1 Scalar Product
	A.1.2 Cross Product
	A.1.3 Matrix Multiplication
	A.1.4 Basic Trigonometry

	A.2 Alternative Gram–Schmidt Calculation
	A.3 Proofs of Selected Equations
	A.3.1 Quaternion Multiplication
	A.3.2 Quaternions and Rotation Matrices
	A.3.3 Space-Fixed Versus Body-Fixed Rotations

	A.4 Clifford Algebra
	A.4.1 Visualizing Scalars, Vectors, and More
	A.4.2 Geometric Product
	A.4.3 Dot Product and Wedge Product
	A.4.4 A Practical Application of Clifford Algebra
	A.4.5 Relationship to Rotations

	A.5 Spherical Statistics

	B Practical Applications: Denavit-Hartenberg Transformations
	C Python and Matlab Programs
	C.1 List of Programs
	C.2 Vector Calculations
	C.3 Data Visualization
	C.4 Rotation Matrices
	C.4.1 Functions in scikit-kinematics.rotmat
	C.4.2 Symbolic Computations

	C.5 Quaternions
	C.6 Angular Velocity
	C.7 Data Analysis of Movement Recordings
	C.7.1 Analysis of Marker Recordings
	C.7.2 Analysis of Inertial-Sensor Recordings

	D Human Movement Recordings—Practical Tips
	D.1 Movement Recordings with a Marker-Based System
	D.2 Movement Recordings with a Sensor-Based System (IMU)

	E Exercise Solutions
	E.1 Warm-Up Exercises
	E.2 Rotation Matrices
	E.3 Analysis of 3-D Movement Recordings

	F Glossary
	G Online Resources
	G.1 Links Directly Related to this Book
	G.2 Other Links

	 References
	

	Index

