
Chapter 3
Security Strategies and Multi-Criteria
Decision Making

Stefan Rass

3.1 Introduction

The essence of security is defending assets against an adversary that may behave
almost arbitrarily. Game theory can help finding optimal strategies against any pos-
sible behavior, provided that the attacker stays within a known action space. This
is the typical domain and case of security risk management, where a set of threats
is identified, against which a uniformly best defense is sought. In game-theoretic
terms, the threat list corresponds to an action space, and the best defense against
that list is a security strategy. This chapter discusses how such strategies can be
computed for single and multiple protection goals, even when the effects of the
defense actions are nondeterministic (random). The latter especially admits a treat-
ment of uncertainty in three forms, being about the adversary (form and number),
the attacker(s) incentives, and – to a limited extent – also the action space (threat
list) itself. Our goal in the following is looking at suitable game-theoretic models
and methods to compute best defenses under uncertainty.

In many cases, the information available to a decision maker is uncertain in di-
verse manners. If at least some information is available, then Bayesian choices [21]
appear as the natural way to go, since they aim at minimizing the residual uncer-
tainty given all available information.

What if the information is not uncertain but rather not there at all? In that case,
assumptions must be made, but how can we be sure that these are even remotely
close to reality? The answer is that this verification problem has no general solu-
tion, and cannot be circumvented either. Even the Bayesian approach relies on the
specification (assumption) of some a priori distribution (or hyperpriors, in higher
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order Bayesian methods), which is nothing else but an informed guess about the
yet unknown parameters. Alternative to informed guesses that Bayesian decision
theory speaks about, minimax decision theory seeks to optimize decisions against
any incarnation of the uncertain factors. That is, whatever happens after we made
our decision, we have prepared ourselves for the worst and decided for the best
in that (worst) case. Such a choice is called a security strategy. It comes with the
price tag of being presumably pessimistic, and even disregarding much information
that would be available perhaps. Indeed, (informed) Bayesian decisions and (un-
informed) minimax decisions are closely connected to one another, and both find
themselves reflected in the framework of game theory.

In general, any decision being made against a rational opponent or simply against
nature (an irrational opponent) can be viewed as a game. The set of actions to choose
from makes up the action set AS1 (synonymously called a strategy set) for the first
player. The extent to which that player anticipates what its opponent can do con-
stitutes the action set AS2 for the second player (in the simplest case). Toward a
conventional game, described between two players for simplicity, letting the gen-
eral case follow soon, let us assume that both players can specify a utility value
(payoff) function u1,u2 : AS1 ×AS2 → R that, for each combination of actions, re-
turns a (deterministic) value u1 for player 1, and u2 for player 2. This completes the
description of a classical game as a triple (N,S,H), in which N = {1,2, . . .}, is the
set of players, each of which has an associated action set in S = {AS1,AS2, . . .}, and
another associated utility function in H = {ui : ASi ×AS−i →R : i ∈ N}. The sym-
bol AS−i is the joint action set of i’s opponents, being the cartesian product of all
A j for j ∈ N \ {i}. Typically, theoretical considerations are simplified by assuming
a fixed (finite) number of players (in our case, |N|= 2), or a fixed (finite) number of
strategies. In that case, the game itself is called finite.

Our main interest in this chapter will concern the sources of uncertainty, in light
of which security strategies need to be found. So, which would be cases, where any
of the three ingredients (or a combination thereof) is uncertain?

• Uncertain number of players: A player surely knows that it is engaging in some
sort of competition, but the opponents may not be visible or even classifiable
as rational. An example for a game with known players are (classical) auctions,
in which all bidders personally face each other (unless the auction happens on-
line). The converse extreme is found in computer security, where attackers are
notoriously stealthy, and the exact number of them can fluctuate and is almost
always unknown.

• Uncertain strategy spaces: In simple auctions, the game dynamics are clearly
defined with precise rules, and a fair auction endows all players with the same
strategy spaces, so that there is no uncertainty on this point. Again, computer
security is an example of the opposite, where the actions for the defending party
are known, while not so for the adversary: from the defender’s perspective, there
is an unpleasant and even unquantifiable residual chance that the attacker comes
up with something completely unexpected. Such an attack is launched “zero
days after its discovery,” that is, at a time when the defender is still unaware of
it. For this reason, this is called a zero-day exploit.

• Uncertain utility functions: For the positive extreme, simple auctions allow for
an almost exact utility value, which is the same for all players and equal to
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the value of the good for which the bidders run. The only uncertainty here is
the potentially incorrect pricing of that good, but considering the price itself as
the utility, this matter becomes negligible. Computer security games, again, are
located at the other end of the spectrum, which becomes evident considering
that security has a hardly measurable return on investment. The main purpose
of security is to prevent possible losses, rather than to generate revenues. This
makes the entire objective of increasing security difficult to argue, and makes
things more intricate for decision makers: They cannot choose the action that
surely rewards them the most, but must rather find the action that potentially
saves them from large cost. In addition, these costs may be difficult to quantify
(which is another independent issue).

It is fair to note here that the auctions mentioned above are considered in their sim-
plest form, and the mechanisms and dynamics underneath auctions are sufficiently
rich to span all extremes in all three cases above. Our focus in the following, how-
ever, will be on computer security, and the related security games. We stress that the
coincidence of the naming is what it is here, a mere coincidence. The term “security
strategy” has per se nothing to do with (computer) security, and exclusively relates
to a minimax choice. That is, a choice against the worst case that could happen.
Computer security is only one (among many) natural field of application that we
shall use for running illustrations.

A convenient common denominator in the representation of all three of the above
cases is obtained by letting the utilities, hereafter also called payoffs, be uncertain,
or more precisely random variables (r.v.s). With random utility functions, the other
two cases become covered:

• Uncertain number of players: If a player faces a varying and unknown number
of opponents, it may perceive unexpected payoff fluctuations due to unknown
people having taken influence. If the distribution of these fluctuations can be
pinned down, then the whole world against which player 1 competes can be
viewed as a single player with an unknown action set (physically consisting
of many players with individual different capabilities and actions). Here, we
assume the adversaries to gain their revenue as a team without negatively im-
pacting each other, so that the payoff for the physical adversary 2,3, . . . ,N is
only coming from the defending player 1. In reality, this may not be the case,
which effectively results in the game being not zero-sum (between player 1 and
the “team” acting as player 2). As we will show below (rigorously stated by
inequality (3.3)), this violation nonetheless leaves the results and properties of
security strategies unchanged and intact.

• Uncertain strategy spaces: Those correspond to unknown (undiscovered) parts
in the domain on which the utility functions are defined, thus making them
appear random to the extent at which the unknown actions are chosen at random.

The framework of stochastic orders, for example, the one put forth in Chapter 2,
can be used for maximal flexibility in replacing the utility functions by random
variables. We will switch between talking about real-valued or distribution-valued
payoffs, whichever is more convenient.
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3.2 Security Games with a Single Objective

Noncooperative players usually look for equilibria, that is, a strategy profile
(x∗1, . . . ,x

∗
n) for all players i ∈ N = {1,2, . . . ,n} so that

∀i ∈ N : ui(x
∗
i ,x

∗
−i)≥ ui(xi,x∗−i), for all xi ∈ ASi (3.1)

that is, no player gains by unilaterally deviating from the optimum x∗i . In absence
of any information about the number of opponents or their utility functions, we
will need to view the opponent(s) as one big and vague entity, acting as player 2.
Since this makes the payoffs necessarily unknown too, we ought to use the only
information that is certain, which is our own payoff. In the best case, the opponent’s
intentions are completely unrelated to our own ones, in which case we can selfishly
maximize our own revenue without anyone interfering (or us disturbing someone
else). In the worst case, the intentions of us and the other player are opposite, and
we both pull at different ends of the same rope. This is a zero-sum competition, in
which we put u1 =−u2 =: u. For that class of two-player games, let the equilibrium
be (x∗,y∗), and condition (3.1) boils down to

u(x,y∗)≤ u(x∗,y∗)≤ u(x∗,y), (3.2)

for all x,y ∈ AS1 × AS2. The existence of either, the zero-sum or general (Nash)
equilibrium above is not assured without additional assumptions on the strategy
spaces. Usually, we convexify those by turning to randomized strategies from the
set (simplices) Si := Δ(ASi) for all i ∈N, and redefine the utilities into expectations,
again denoted as U = E(u(X ,Y )), where the expectation is w.r.t. the distributions of
the random strategies X ,Y chosen from AS1,AS2.

The intuition of a zero-sum game being a valid worst-case model is an almost
immediate consequence of (3.2): let Γ = ({1,2} ,{S1,S2} ,{u1,u2}) be a general
game, and call Γ0 =({1,2} ,{S1,S2} ,{u1,−u1}) its associated zero-sum game from
player 1’s perspective. That is, player 1 does have no clue whatsoever on the payoff
and incentives of player 2, yet the action space of both players is common knowl-
edge. So, the best that player 1 can do is engage in Γ0, while player 2 is actually
playing Γ. Call v = val(Γ0) = E(u1(X∗,Y ∗)) the saddle-point value of Γ0 upon
equilibrium strategies X∗,Y ∗ played there. Since player 2 engages in Γ, it prob-
ably has a different equilibrium strategy Y ∗

Γ �= Y ∗ and hence unilaterally deviates
from (X∗,Y ∗), thus increasing player 1’s revenue v ≤ u1(X∗,Y ∗

Γ ). Conversely, from
player 2’s perspective, player 1 deviates from its optimum X∗

Γ �= X∗ and hence can
only decrease its own revenue upon this. So, the chain of inequalities continues as
u1(X∗,Y ∗

Γ )≤ u1(X∗
Γ ,Y

∗
Γ ), and in total, leads to

v = val(Γ0)≤ u1(X
∗,Y ), (3.3)

for all Y ∈ S2 that player 2 could follow. That means that whatever incentives player
2 may have, it can never decrease player 1’s revenue below v = val(Γ0), as long as
player 1 follows its zero-sum optimal equilibrium strategy X∗. This X∗ is the sought
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security strategy for player 1, and it can only fail if the strategy space for player 2,
which is necessary to compute X∗, is inaccurate. Likewise, the associated zero-sum
game for player 1 is called a security game.

Remark 3.1. Assuming the action spaces of both players to be mutual knowledge
may appear hard and even unjustified in light of zero-day attacks, whose sole char-
acteristic is the action’s unexpectedness. To a limited extent, taking payoffs as ran-
dom variables, the tails of the payoff distribution (see Chapter 2 or [18]) admits
losses beyond what the actions would be known to imply. The tail region of the loss
distribution is then where zero-day exploits would occur. A concrete valuation for
zero-day risks is given by [28].

Remark 3.2. Nash equilibria are typically applied in games with full information,
but security is essentially a competition with lack of information on both sides.
There are several ways to resolve this seeming issue; one is the use of distributions
in the payoff structure, another is the transition to stochastic games themselves (such
as partially observable Markov decision processes with full or partial observability
[29, 12]). Occasionally, the uncertainty is not about what can happen (the system
administrator may have quite a decent idea about the entry points in the system, so
that the strategy spaces of both players are not too uncertain), but only about what
will happen. If the strategy spaces are known, yet only the adversary’s incentives
are uncertain, then Nash equilibria can be applied in this special case. The point of
security strategies is the assumption that the adversary’s incentives are opposite to
that of the defenders (and hence known to the defender). However, the defender does
not even need to be sure that s/he engages in a zero-sum competition, since if the
game is not zero-sum, then (3.3) will only become a more pessimistic overestimate
of the actually suffered loss.

Definition 3.1 (Single-Goal Security Game). Let Γ = ({1,2} ,{S1,S2} ,{u1,u2})
be a two-player game. The security game (for player 1) associated with Γ is the
zero-sum game Γ0 = ({1,2} ,{S1,S2} ,{u1,−u1}). If Γ0 admits a Nash equilibrium
(x∗,y∗) ∈ S1 ×S2, then x∗ is called a security strategy (for player 1).

Note we assumed nothing about the strategy spaces (not even finiteness), except
for them to admit an equilibrium to exist (one suitable condition is compactness of
all Si and continuity of the payoff functions w.r.t. the same topology [7]).

The bound (3.3) that a security strategy implies is generally sharp, as simple
examples show:

Example 3.1 ([14]). Consider the two-person nonzero-sum game with payoff struc-
ture as in Figure 3.1.

This game has multiple equilibria with values v1 ∈ E1 =
{

2,4, 8
3 ,

18
7 , 9

4 ,
14
5

}
for

player 1, and v2 ∈ E2 = {2,3} for player 2, with respective strategies and payoffs as
listed in Table 3.1. Now, consider the associated security games from player 1, and
player 2’s perspective (either being the adversary to the other in both cases), having
the payoff structures as shown in Figure 3.2.
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Player 1

Player 2
(2,0) (2,0) (1,4) (3,1) (2,3)
(1,1) (2,3) (2,1) (2,3) (4,2)
(0,2) (3,2) (0,1) (2,3) (2,1)
(0,2) (4,2) (1,0) (0,2) (1,2)
(2,3) (2,1) (4,3) (4,1) (3,0)

Fig. 3.1: Example Nonzero-Sum Game

Security game for player 1: Security game for player 2:

2 2 1 3 2

1 2 2 2 4

0 3 0 2 2

0 4 1 0 1

2 2 4 4 3

0 0 4 1 3

1 3 1 3 2

2 2 1 3 1

2 2 0 2 2

3 1 3 1 0

Fig. 3.2: Security Games Associated with the bimatrix game in Figure 3.1

Table 3.1: Equilibria (and Security Strategies) for Example 3.1, computed using [2]

#
player 1 equilibrium player 2 equilibrium

x∗1 x∗2 x∗3 x∗4 x∗5 u∗1 y∗1 y∗2 y∗3 y∗4 y∗5 u∗2
1 0 0 0 1 0 2 1/2 1/2 0 0 0 2
2 0 0 0 1 0 4 0 1 0 0 0 2
3 0 0 0 1 0 8/3 0 2/3 0 1/3 0 2
4 0 0 0 1 0 18/7 0 4/7 0 1/7 2/7 2
5 0 0 0 1 0 9/4 1/4 1/2 0 0 1/4 2
6 0 0 0 1 0 14/5 0 3/5 0 0 2/5 2
7 0 0 0 0 1 2 1 0 0 0 0 3
8 0 0 0 0 1 4 0 0 1 0 0 3

(a) Bimatrix Game Equilibrium (Payoffs as in Figure 3.1)

#
player 1 equilibrium player 2 equilibrium

x∗1 x∗2 x∗3 x∗4 x∗5 u∗1 y∗1 y∗2 y∗3 y∗4 y∗5 u∗2
1 2/3 0 0 0 1/3 2 1 0 0 0 0 -2
2 2/3 0 0 0 1/3 2 1/2 1/2 0 0 0 -2
3 0 0 0 0 1 2 1 0 0 0 0 -2
4 0 0 0 0 1 2 1/2 1/2 0 0 0 -2

(b) Security Game Equilibrium for Player 1 (Payoffs as in Figure 3.2)

#
player 1 equilibrium player 2 equilibrium

x∗1 x∗2 x∗3 x∗4 x∗5 u∗1 y∗1 y∗2 y∗3 y∗4 y∗5 u∗2
1 1/6 1/4 0 1/3 1/4 5/3 1/3 1/6 1/6 0 1/3 -5/3

(c) Security Game Equilibrium for Player 2 (Payoffs as in Figure 3.2)
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The value of the security game for player 1 is v1 = 2 = minE1, so the bound (3.3)
is sharp. Switching roles and looking at the security game for player 2, its value is
v2 =

17
10 < 2 = minE2, so the bound can be loose as well.

For the sake of simplicity only, let the strategy spaces be finite in the following,
so that the optimal randomized actions X∗ can be specified as categorical distribu-
tions, vectors, x∗ = (x1, . . . ,x|AS1|) and y∗ = (y1, . . . ,y|AS2|). The saddle-point value
exists under these assumptions and can be rewritten as v = maxx miny E(u(X ,Y )) =
minx maxy E(u(X ,Y )) with X ∼ x,Y ∼ y. This form reveals why we call the point
x∗,y∗ at which v is attained with equality a minimax decision. For finite games
with a payoff matrix A = (ai j), we can write E(u(x,y)) = xT Ay = ∑i, j xiy jai j and
v = (x∗)T Ay∗. Bayesian decisions can be framed into this by letting y∗ be a “least
favourable distribution,” so that the Bayes’ optimal decision becomes the minimax
decision. While the details of this are intricate, a more intuitive link is discovered
by letting the payoffs be random variables. As in Chapter 2, let us replace u(x,y) by
a probability distribution F(x,y) of the random revenue R, so that

Pr(R ≤ r) = F(x,y)(r) =
n

∑
i, j

Pr(R ≤ r|i, j)Pr(i, j) =
n

∑
i, j

xiy jFi j(r), (3.4)

where Pr(i, j) is a shorthand for the likelihood of player 1 choosing action i and
player 2 taking action j, and Fi j is the payoff distribution in the i j-th entry of the
payoff matrix in a distribution-valued game. Note the striking similarity of (3.4)
with the version for finite (matrix) games mentioned just before.

The beauty of Bayesian decisions lies in their natural capability of improvement
upon new information. This corresponds to an a priori distribution π becoming an
a posteriori distribution π(·|D) upon the data D. The very same concept can be
used in games when the payoff is distribution-valued, since there is no conceptual
barrier preventing us from calling Pr(R ≤ r) = F(x,y)(r) an a priori distribution,
and upon new information D coming in, switching to Pr(R ≤ r|D) = F(x,y,D)(r)
as the a posteriori distribution. A Bayesian decision then goes for a minimization
of some loss function applied to the posterior. If that loss function is quadratic,
then the Bayes decision is the posterior expectation, which is the same as in regular
game theory. Other choices, say, the absolute value loss, yield to the median as a
replacement for the expectation. Any such design choice can be avoided at all if we
resort to stochastic orders to let the distribution itself be the sole payoff (from which
any quantity of interest can be computed afterward).

3.3 Multi-Objective Security Games

Decisions are hardly ever made with only one goal in mind of the defender,
but the equilibrium definition cannot straightforwardly be extended to vector-
valued payoffs, since those are no longer totally ordered. For any two vectors
u = (u1, . . . ,un),v = (v1, . . . ,vn) ∈ Rn, we will write u ≤ v iff ui ≤ vi for all
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i = 1,2, . . . ,n. The converse relation in which there is at least one index i for which
ui ≥ vi, irrespectively of what the other components do, is denoted as u ≥1 v. The
relations ≥ and (its complement) ≤1 are defined in the obvious way. In replacing
≤ by ≤1 in (3.1), we obtain a Pareto-Nash equilibrium, in which any unilateral
deviation from the equilibrium will decrease the payoff for the respective player for
at least one of its goals.

Security games and security strategies can be defined by turning the previous
observations made for single-goal security games into requirements, toward an ax-
iomatic definition. In this regard, we will demand the bound (3.3) to hold for each
goal (we call this assurance), and to be optimal as in Example 3.1 (this will be the
efficiency axiom) [15].

Definition 3.2 (Multi-Goal Security Strategy (MGSS)). A strategy x∗ ∈ S1 in two-
player game with continuous vector-valued payoff u1 : S1 ×S2 →Rd for d ≥ 1 for

player 1. Let us denote the i-th coordinate function in u1 as u(i)1 : S1 × S2 → R.
The competition in which player 1 engages is called a MGSS with assurance v =
(v1, . . . ,vd) if two criteria are met:

1. The assurances are the component-wise guaranteed payoff for player 1, that is,
for all goals i = 1,2, . . . ,d, we have

vi ≤ u(i)1 (x∗,y) ∀y ∈ S2, (3.5)

with equality being achieved by at least one choice y∗i ∈ S2.
2. At least one assurance becomes void if player 1 deviates from x∗ by playing

x �= x∗. In that case, some y0 ∈ S2 exists such that

u1(x,y0)≤1 v. (3.6)

Constraint (3.5) can be stated in a more compact, yet weaker, form by saying that

v ≤ u1(x∗,y), ∀y ∈ S2. (3.7)

The idea to assure existence of a MGSS follows similar lines as before: Let player
1 engage in a hypothetical one-against-all competition where each goal for player
1 relates to its own zero-sum game against a hypothetical opponent. The opponents
themselves act independently of each other, and each optimizes only a single goal.
This leads to the sibling of the associated zero-sum game Γ0 from above, which we
call the security game here to distinguish it from Γ0 (in previous literature [15], the
same concept has been coined an “auxiliary game”; we use the new name here for
consistency):

Definition 3.3 (Multi-Objective Security Game (MOSG)). Let Γ be a two-person
game, in which only the strategy space and payoff function u1 : S1 × S2 → Rd for

player 1 is known. Let the coordinate functions of u1 be u(1)1 , . . . ,u(d)1 . The MOSG
associated with Γ is the game ΓΓΓ0 composed from the following ingredients:

• A set of d +1 players, in which player 0 is the first player in Γ, having d oppo-
nents, each of which corresponds to another of the d goals in Γ.
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• An (ordered) multiset of d +1 strategy sets being {S1,S2,S2, . . . ,S2}
• A set of payoff functions H = {f0, f1, . . . , fd}. Player 0 is the only one with a

vector-valued utility f0 = ( f (1)0 , f (2)0 , . . . , f (d)0 ), whose j-th coordinate function

is determined by its own action and that of the j-th opponent, that is, f ( j)
0 :=

u( j)
1 (x,y j). Likewise, the j-th opponent has the scalar payoff f j := −u( j)

1 , and
the same strategy space S2 as all other opponents.

Definition 3.3 is made to materialize its foregoing intuition in the way of exhibit-
ing each Pareto-Nash equilibrium (as defined above) in the security game to be an
MGSS in the original game. The proof is based on the following result:

Lemma 3.1. Let Γ be as in Definition 3.3, where the strategy spaces for both players
are compact, and let x∗ be a MGSS with assurance v, assuming that one exists. Then,
no vector ṽ < v is an assurance for x∗.

Proof (from [15]). Let ṽ < v, put ε := min1≤i≤k {vi − ṽi} and observe that ε > 0.
The function u1 is uniformly continuous on S1 × S2 (being compact), so a δ > 0
exists with ‖(x,y)− (x′,y′)‖∞ < δ implying ‖u1(x,y)−u1(x′,y′)‖∞ < ε

2 .
Consider the mapping uy : S1 →Rk,uy(x) := u1(x,y), which is as well uniformly

continuous on S1 by the same argument. So, ‖(x∗,y)− (x′,y)‖∞ = ‖x∗ −x′‖∞ < δ
implies ‖uy(x∗)−uy(x′)‖∞ = max1≤i≤k

∣
∣
∣u(i)1 (x∗,y)−u(i)1 (x′,y)

∣
∣
∣ < ε

2 ∀y ∈ S2. It

follows that
∣
∣
∣u(i)1 (x∗,y)−u(i)1 (x′,y)

∣
∣
∣ < ε

2 for i = 1, . . . ,k and all y ∈ S2, and conse-

quently maxy∈S2

∣
∣
∣u(i)1 (x∗,y)−u(i)1 (x′,y)

∣
∣
∣< ε

2 . Now, selecting any x′ �= x∗ within an

δ -neighborhood of x∗, we end up asserting u(i)1 (x′,y) ≥ u(i)1 (x∗,y)− ε
2 for every i

and y ∈ S2.
Using u(i)1 (x∗,y)≥ vi, we can continue by saying that u(i)1 (x′,y)≥ vi− ε

2 > vi−ε .

By definition of ε , we have vi − ṽi ≥ ε , so that u(i)1 (x′,y)> ṽi for all i, contradicting
(3.6) if ṽ were to be a valid assurance vector. �
Theorem 3.1. Let Γ be as in Lemma 3.1. The vector x∗ constitutes a MGSS with
assurance v for player 1 in the game Γ, if and only if it is a Pareto-Nash equilibrium
strategy for player 0 in the MOSG ΓΓΓ0 according to Definition 3.3.

Proof (from [15]). Throughout the proof, we will put a bar on top of components,
that is, payoff functions, that belong to the security game ΓΓΓ0, to distinguish these
from their counterparts in Γ (showing no horizontal bar accent).

(“⇐”) Let s∗ := (s∗0,s
∗
1, . . . ,s

∗
d) be a Pareto-Nash equilibrium in ΓΓΓ0, and set the

assurances to
vi := u(i)1 (s∗0,s

∗
i ) for all i = 1,2, . . . ,d. (3.8)

We prove that s∗0 is a MGSS with assurance v. Consider the i-th opponent’s point
of view. By construction (Definition 3.3), we have his utility independent of the
other player’s deviations. So regardless if any other opponent deviates, as long as
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player 0 (his sole rival) plays s∗0, his strategy s∗i is (Pareto-)optimal (notice that his
payoff is scalar), thus

−u(i)1 (s∗0,si) = ui(s∗0,s
∗
1, . . . ,s

∗
i−1,si,s∗i+1, . . . ,s

∗
d)

≤ ui(s∗0,s
∗
1, . . . ,s

∗
i−1,s

∗
i ,s

∗
i+1, . . . ,s

∗
d) =−u(i)1 (s∗0,s

∗
i ) =−vi

for every si ∈ S2. As this holds for every i = 1, . . . ,d, we can conclude v ≤ u1(s∗0,s2)
for all s2 ∈ S2. Thus, the first part of Definition 3.2 is verified, since the average
outcome of the game cannot undercut its minimum. On the other hand, from player
0’s point of view, his strategy s∗0 is as well Pareto-optimal, that is, by playing s0 �= s∗0,
he ends up with

u( j)
1 (s0,s∗j) = u( j)

0 (s0,s∗1, . . . ,s
∗
d)≤ u( j)

0 (s∗0, . . . ,s
∗
d) = u( j)

1 (s∗0,s
∗
j) = v j

for at least one component j, and condition (3.6) of Definition 3.2 is verified.
(“⇒”) Put I := {1,2, . . . ,d}. Let x∗ be a MGSS with assurance v. Let i ∈ I be

arbitrary, and assume that vi > miny∈S2 u(i)1 (x∗,y). In the light of condition (3.7),
this is impossible, for otherwise the i-th opponent could play a strategy y′i to en-

force an outcome u(i)1 (x∗,y′i) = miny∈S2 u(i)1 (x∗,y)< vi, invalidating v as the assured

outcome. The strategy y′i necessarily exists because u(i)1 is continuous. Since Defi-

nition 3.2(assurance) implies miny∈S2 u(i)1 (x∗,y) ≤ vi and strict inequality has been
ruled out, we must have equality to the minimum and some y∗i exists such that

vi = u(i)1 (x∗,y∗i ) = min
y∈S2

u(i)1 (x∗,y) = max
y∈S2

−u(i)1 (x∗,y)
︸ ︷︷ ︸

=ui(x∗,y)

= ui(x∗,y∗i ).

Therefore, y∗i must be an optimal strategy for the i-th opponent if player 0 acts
according to x∗. Put y∗ := (y∗1, . . . ,y

∗
d). Assume the existence of some MGSS x′ �=

x∗ with uniformly better assurance v′ > v. Then, v ≤ v′ ≤ u1(x′,y) for all y ∈ S2,
because (3.7) applies to x′. Take any x′′ ∈ S1 with x′′ �= x′. We distinguish two cases:
if x′′ �= x∗, then property (3.6) implies that there is an index j and some y such that

u( j)
1 (x′′,y) ≤ v j ≤ v′j. If x′′ = x∗, then by the above argument, we can just use y∗j

to assert that u( j)
1 (x′′,y∗j) = u( j)

1 (x∗,y∗j)︸ ︷︷ ︸
=v j

≤ v′j for any index j, thus verifying (3.6). It

follows that v < v′ is as well an assurance for x′, contradicting Lemma 3.1. Hence,
there is no x′ for which the assurance v = argminx∈S1

u1(x,y) (in Pareto’s sense)

with yi = argminy∈S2
u(i)1 (x,y) is better than for x∗ in Pareto’s sense, proving that

the profile (x∗,y∗) is a Pareto-Nash equilibrium of ΓΓΓ0. �
Theorem 3.2 ([10]). Let Γ = (N,S,H) be a Multi-Objective Game (MOG), where
each ASi ∈ S is convex and compact, and each ui ∈ H is continuous. For each player

i ∈ N, let every individual payoff u( j)
i (si,s−i) for 1 ≤ j ≤ ri be a concave function of
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si on ASi, whenever the remaining values s−i are fixed. Then, Γ has a Pareto-Nash
equilibrium.

The existence of MGSS is assured under the usual conditions, for example, finite-
ness of the game (which reproves a known result of [1] by a simple application of
Theorems 3.1 and 3.2):

Corollary 1 (Existence of MGSS in matrix games). Every finite MOSG has a
MGSS in mixed strategies.

Observe that Definition 3.2 is axiomatic and not limited to finite games or games
with a finite number of players. In that sense, the characterization Theorem 3.1 can
be combined with other existence conditions for (normal) Nash equilibria to extend
the existence of MGSS to various other classes of games.

The proof of Theorem 3.2 is “constructive” in the sense of equating the set of
Pareto-Nash equilibria to the set of Nash equilibria in a scalarized version of the
MOG. Specifically, [10] prescribe the following steps to find a Pareto-Nash equilib-
rium in a MOG ΓΓΓ, in which there are n players, the i-th of which having a set of ri

goals to optimize:

1. Fix an arbitrary set of real numbers α11,α12, . . . ,α1r1 ,α21, . . . ,α2r2 , . . . ,αn1,
. . . ,αnrn that satisfy condition (3.9):

∑ri
k=1 αik = 1 for i = 1,2, . . . ,n, and

αik > 0 for k = 1,2, . . . ,ri and i = 1,2, . . . ,n.

}
(3.9)

2. Form a (scalar) game Γs = (N,S,H ′) with H ′ = { f1, . . . , fn} and

fi =
ri

∑
k=1

αiku(k)i . (3.10)

3. Find a Nash-equilibrium x∗ = (x∗1, . . . ,x
∗
n) in Γs, which is then a Pareto-Nash

equilibrium in ΓΓΓ.

Notice that the Nash equilibria found by the above algorithm depend on the partic-
ular choice of weights. Indeed, the full set of equilibria is given as the union of all
equilibria over all admissible choices of α’s in (3.9) [10].

It is not difficult to verify that by letting player 1 be minimizing (up to here, we
implicitly assumed a maximizing first player), all arguments work identically after
being rephrased in terms of a total stochastic order such as that from Chapter 2. The
results are all the same up to obvious (and purely syntactic) changes toward using
� in place of ≤. Some qualitative similarities, unfortunately, are lost from this point
onward, as shown in Section 3.4.2.1, but can be recovered in an approximate form,
as we will discuss in Section 3.4.3.
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3.4 Computing Equilibria and Security Strategies

The existence of equilibria in single-goal games is assured by Nash’s theorem or
generalizations thereof, and methods to compute such equilibria, and hence security
strategies, are reviewed below. Computing Pareto-Nash equilibria for getting MGSS
(via Theorem 3.1) can, with a little more effort, be reduced to the computation of
(regular) Nash equilibria thanks to results in [10]. Thus, it suffices to dig into details
about how (normal) Nash equilibria are computed, which we do next.

It must be emphasized that the methods to compute equilibria in the follow-
ing validly apply without any problems for traditional games over R, but when we
switch to distribution-valued games (based on a stochastic order), some methods
may no longer work. Conversely, the stochastic �-order of Chapter 2 includes ≤ as
a special case, so that the respective algorithms can, w.l.o.g., be stated in terms of �,
where the respective version for R can be obtained by the simple syntactic change
of � into ≤ everywhere. Still, since there are qualitative differences in the use of ≤
or � for the optimization, we let the “problematic” procedures use � to point at the
issues with that ordering, letting respective solutions follow.

3.4.1 Solution by Linear Programming

Let the zero-sum games of interest be with finite strategy spaces for both players,
so that the payoff structure is a matrix A ∈Rn×m, and consider mixed strategies to
ensure the existence of equilibria in all cases. Let these random (mixed) equilib-
rium strategies X∗,Y ∗ be characterized by their (categorical) distributions x∗ ∈ S1 =
Δ(AS1)⊂Rn,y∗ ∈ S2 =Δ(AS2)⊂Rm. It is not difficult to find the saddle-point value
of the game to be u(x∗,y∗) = maxx∈S1 miny2∈S2 xT Ay = miny2∈S2 maxx∈S1 xT Ay (by
strong duality).

For security games, we adopt player 1’s perspective, and suppose that player 2
has chosen the (pure and minimizing) strategy y. Then Ay is a vector, and player 1’s
objective is the maximization maxx∈S1 Ay = maxi=1,...,n eT

i Ay, where ei is the i-th
unit vector in Rn. Note that we hereby converted the optimization over a continuum
into the much simpler task of choosing the best from a set of finite alternatives (as
we previously discussed in Chapter 2). The only constraints added were x ≥ 0 and
1T x = 1, where 1 is the vector of all 1’s. Substitute v := maxi=1,...,n eT

i Ay, then the
saddle point condition directly translates into the linear program that player 1 needs
to solve for finding a security strategy:

(P1) max˙X v
s.t.
v ≤ eT

i Ax ∀i = 1,2, . . . ,n
1T x = 1
x ≥ 0

(3.11)
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This simple formulation admits an exact computation of an equilibrium even in
polynomial time for security games as laid out in Section 3.2. For MGSS, the linear
programming approach fails because we are dealing with a (d + 1)-player game,
which includes at least three actors in the simplest multi-goal setting. There, we can
resort to iterative methods. Similarly, games defined over stochastic orders may not
admit the arithmetics needed to solve Equation 3.11, so iterative (learning) methods
are the usual method of choice in that cases too (indeed, the stochastic order � from
Chapter 2 comes with the full-fledged arithmetic in the hyperreal space, yet lacking
an ultrafilter, we have severe difficulties in doing the calculations practically).

3.4.2 Iterative Solutions by Learning

Iterative methods of computing Nash equilibria by online learning (see [8] for a con-
crete application) let all players start from a suboptimal strategy, and act according
to the best of their so-far recorded knowledge to improve their (randomized) strate-
gies. The usual coupled learning method starts from an initial guess for the optimal
strategies and utilities, denoted by xi,0, ûi,0 for the i-th player. As the (discrete) time
t ∈N goes by, both players choose their respective next moves according to some
learning rule (cf. [9, Chp.14])

xi,t+1 = Πi,t(ui,t , ûi,t ,xi,t ,λi,t ,ai,t), (3.12)

and update their corresponding utility estimates as

ûi,t+1 = Σi,t(ui,t , ûi,t ,xi,t ,λi,t ,ai,t), (3.13)

where Πi,t ,Σi,t are learning rules that in the most general form depend on the player
i, the current time t, the action ai,t , and utility ui,t observed for it, as well as the so-
far existing estimates for the utility ûi,t and (randomized) actions xi,t at time t. The
remaining parameter λi,t covers additional input, for example, a learning rate (to dif-
ferently weigh recent against past observations) or similar; it will be of no concrete
use for us here but is relevant in several other instances of (3.12) and (3.13). We
refer the reader to [9] for an in-depth treatment, and confine ourselves to the sim-
plest learning rule called FP. Other such learning regimes can be studied with help
of Lyapunov theory applied to the dynamical system that (3.12) and (3.13) induce
[9, Chp.14]. Finally, one should bear in mind that the learning model assumes in-
centive compatibility of the involved players, so that neither player has an incentive
to deviate from the learning rules. Deviations thereof that are observable in practice
are studied in behaviorial game theory [3], which is outside of our scope here. The
broader area treating techniques like this is algorithmic game theory [11, 24] and
learning [4, 6].

Let us instantiate (3.12) and (3.13) for two players, let their action history from
time 0 to time step �∈N be x0,x1, . . . ,x� ∈ AS1 for player 1, y0,y1, . . .y� ∈ AS2. Both
players alternatingly (or simultaneously) choose their actions to maximize the so-far
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long-run average, relative to the recorded behavior of the opponent so far. At time
t, player 2 takes its move, followed by player 1 who is assumed to observe what its
opponent does. Initially, player 1 takes any choice for a pure strategy as a kickoff:

yt = argmax j∈AS2
1
t ∑t

�=1 u2(y�, j)
xt+1 = argmaxi∈AS1

1
t ∑t

�=1 u1(x�, i)

}
(3.14)

where u1,u2 are the payoffs for players 1 and 2, respectively. The learning regime
(3.14) corresponds to Πi,t in (3.12), while the arithmetic means appearing in both ex-
pressions correspond to the updating of observed revenues in (3.13). It can be shown
that FP via (3.14) converges under alternating moves (as stated here) or synchronous
moves (where both players choose their next actions at the same time). Various con-
ditions under which (3.14) converges are known, such as the game having a poten-
tial, being zero-sum [23] or being general (nonzero-sum) with |AS1| = |AS2| = 2.
In a practical implementation, a careful distinction must be made regarding con-
vergence of the values vs. convergence of the strategies. While the saddle point
approximations (3.13) in FP are assured to converge to each other, this is not neces-
sarily happening for the strategies (3.12) as well. Hence, the convergence threshold
used to stop the iteration should be imposed on the so-far averaged payoff(s) ut , say
if ut differs from ut+1 only by a residual amount of some a priori chosen ε > 0 in
some norm.

Algorithm 1 shows a version of FP for a minimizing first player, implicitly mak-
ing player maximizing and assuming a zero-sum competition. For generality, the
algorithm is formulated over the stochastic order � from Chapter 2 and distribution-
valued games here. The �-relation orders two random variables X ,Y as X �Y if and
only if the moment sequence (EY k)k∈N “diverges faster” than the moment sequence
(EY k)k∈N. Practically, it can be shown that the probability mass assigned to the tails
of the distributions of X and Y determines the order, so that X � Y holds if and
only if extreme events are less likely to happen for X than to occur under Y (see
Theorem 2.2 in Chapter 2).

One reason to look at FP in stochastic orders is that finding equilibria in games
over those orders is a widely undiscussed issue in the literature, but could offer in-
sights into why real players may not always follow a utility-maximization behavior
(either because the utility was not accurately modeled, or the order imposed on the
utilities is different from the ordering on R; the latter of which is a yet unverified
hypothesis and as such a possible subject of research). Also, it pays to formulate the
algorithm in more generality, since this version is capable of solving standard games
over R upon a simple tweak that we will describe and justify after the algorithm.
Let us first see how and why it works.

In fact, FP over � works exactly as usual, only having the ≤-order on R be-
ing replaced by the stochastic �, and imposing a pointwise addition of distribution
functions where the standard algorithm would only add payoff values. Note that this
pointwise addition is crucial here, and perhaps somewhat counterintuitive, since we
do not add random variables as usual by convolution. The pointwise addition is due
to the sum occurring in the law of total probability (3.4).



3.4 Computing Equilibria and Security Strategies 61

Algorithm 1 Fictitious Play

Require: an (n×m)-matrix A of payoff distributions A = (Fi j)
Ensure: an approximation (x̃, ỹ) of an equilibrium pair (x∗,y∗) and two distributions vlow,vup so

that vlow � F(x∗,y∗)� vup. Here, F(x∗,y∗)(r) = Pr(R ≤ r) = ∑i, j Fi j(r) · x∗i · y∗j .
1: initialize x ← 0 ∈Rn, and y ← 0 ∈Rm

2: vlow ← the �-minimum over all column-maxima
3: r ←the row index giving vlow
4: vup ← the �-maximum over all row-minima
5: c ← the column index giving vup

6: u ← (F1,c, . . . ,Fn,c)
7: yc ← yc +1 � y = (y1, . . . ,ym)
8: v ← 0 � initialize v with m functions that are zero everywhere
9: for k = 1,2, . . . do

10: u∗ ← the �-minimum of u
11: r ← the index of u∗ in u
12: vup ← the �-maximum of {u∗/k,vup} � pointwise scaling of the distribution u∗
13: v ← v+(Fr,1, . . . ,Fr,m) � pointwise addition of functions
14: xr ← xr +1 � x = (x1, . . . ,xr, . . . ,xn)
15: v∗ ← the �-maximum of v
16: c ← the index of v∗ in v
17: vlow ← the �-minimum of {v∗/k,vlow} � pointwise scaling of the distribution v∗
18: u ← u+(F1,c, . . . ,Fn,c) � pointwise addition of functions
19: yc ← yc +1 � y = (y1, . . . ,yc, . . . ,ym)
20: exit the loop upon convergence of the strategy vectors (in some norm)
21: end for
22: Normalize x,y to unit total sum � turn x,y into probability distributions.
23: return x̃ ← x and ỹ ← y � F(x̃, ỹ)≈ F(x∗,y∗) = (x∗)T Ay∗

How can Algorithm 1 be applied to a normal form game over the reals? Simply
by conversion into a game with stochastic payoffs and the same equilibria. The trick
is the following: let A = (ai j) ∈ Rn×m be the (real-valued) payoff matrix, where
we can assume ai j ≥ 1 w.l.o.g. Put a∗ := max

{
ai j

} ≥ 1, and from ai j, define a
corresponding Bernoulli random variable Ri j ∼ Fi j with Pr(Ri j = 1) = λ · ai j and
Pr(Ri j = 0) = 1−Pr(Ri j = 1). The factor λ > 0 is the same for all rows and columns.
Why does this work? It has been shown in Chapter 2 that � on categorical distri-
butions (and the Bernoulli distribution is one) is essentially a lexicographic order
on the probability mass vector, starting from the highest (rightmost) category in de-
scending order. This renders Pr(Ri j = 1) the relevant quantity to choose best actions
and add up into a cumulative sum. Since this probability is proportional to ai j by the
same factor λ > 0 for all elements in the payoff structure, the resulting game, when
decided upon λ ·ai j, is strategically equivalent to the original game with payoff ma-
trix A. Thus, it shares the same equilibria. For distributions with more categories, the
payoffs are merely vectors, and using � as a lexicographic order is equal to playing
FP on a “stack” of games. In the first place, the decision about a best reply is made
on the matrix containing the probability masses for the highest loss categories. If
the decision can be made (lines 12 and 17 in Algorithm 1), then we are done for this
iteration. Upon a tie, the probability mass assigned to the second-highest category
counts (in the lexicographic order), and the best reply is sought in this (new) matrix.
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If there is a tie again, the next level (third highest matrix of category masses) is taken
and so on. The process works just the same for continuous distributions, with the
only difference of the stack being made for derivatives of increasing order, starting
at the 0th derivative (see Lemma 2.2 in Chapter 2). Figure 3.3 illustrates the stack
on which FP is done graphically for the case of continuous (in fact, differentiable)
payoff densities fi j in the game.

...

...

...

...

...

...

...

...

...

...

...
...

.. .
.. .

. . .
...

. ..
. ..

.. .
...

.. .
.. .

... ...
... ...

action space AS2

ecaps
noitca

SA
1

k-th matrix game
Ak defined
using

a(k)i j = (−1)k f (k)(a)

a(k)i j

game (primarily) played
on matrix A0

decisions based on higher order
derivatives only in case of ties

1
1

2

2 3

i

n

j m

Fig. 3.3: Applying Fictitious Play over a Stochastic Order [18]

The depth of the stack is theoretically unlimited for continuous payoff distribu-
tions, thus the algorithm could get stuck within a single iteration during the decision
of �. In practical applications, we would thus have to fix a finite depth for the stack,
and the concrete choice will be discussed later in Section 3.4.2.2.

Example 3.2 ([16]). We construct a 2×2 zero-sum game with payoff matrix A given
in Figure 3.4 and a minimizing player 1.

Player 1

Player 2
2 5
3 1

Fig. 3.4: Example Zero-Sum Game; Payoff Structure A

To use Algorithm 1, the respective payoff distributions representing the
game would be (all Bernoulli) F11 = Ber(0.8,0.2),F12 = Ber(0.5,0.5),F21 =
Ber(0.7,0.3), and F22 =Ber(0.9,0.1), with λ = 1/10.
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Fictitious play starts from the (arbitrary) choice x0 = (1,0) for the first (row)
player. This choice causes player 2 to choose the second column in the first time
step, to reward player 1 with u1,t=1 = 0.5. Given player two’s history of choices
being yt=1 = (0,1), player 1 goes for the second row and chooses xt=1 = (0,1).
Player 2 updates its records to make its next choice as a best reply to the so-far
observed mixed strategy x = (0.5,0.5). The switch between the two strategies is
essentially due to the game having a circular structure.

It is a straightforward matter to compute the sequence of action choices ac-
cording to (3.14), verifying them to converge to the equilibrium x∗ = (0.4,0.6),
y∗ = (0.8,0.2), and val(A) = 2.6.

To verify this as being a security strategy (for player 1), let us assume that player
2 has different incentives causing it to play y′ = (0.4,0.6) or y′′ = (0.1,0.9). For
y′, the payoff for player 1 is x∗Ay′ = 2.6, and y′′ gives x∗Ay′′ = 2, both of which
are damages ≤ val(A) = 2.6. So, in these two cases (at least), player 1 receives no
more than the assured maximal damage of val(A) = 2.6. Furthermore, the example
shows that worst-case strategies for player 1’s opponent are not necessarily unique,
and that the bound implied by them can be sharp (as is the case for y′ �= y∗).

3.4.2.1 Failure of FP in Distribution-Valued Zero-Sum Games

Let us consider what happens if we add uncertainty to the payoffs in Example 3.2.
According to the initial discussion, this should cover most interesting cases of un-
certainty in the game; however, some qualitative properties such as convergence of
FP in zero-sum games are lost upon this transition. We show an example to shed
light on the issue and its cause.

Example 3.3 ([16]). Concretely, let each payoff value be uncertain within a certain
range, where we model a limited amount of uncertainty by an Epanechnikov ker-
nel (K(x) := 3

4 (1− x2) for |x| ≤ 1 and K(x) := 0 otherwise) centered around the
respective value x0. The resulting payoff structure in this game with probability-
distribution valued is thus a 2×2 matrix of functions displayed in Figure 3.5.

Note that the game has a circular structure, so that the expected behavior of FP
should roughly be the following: player 1 choosing the first row will make player 2
choose the second column. In turn, player 1 will go for the second row, which player
2 will reply to by choosing the first row, and so on.

The actual FP algorithm, however, runs elsewhere: let the start be made for player
2 by choosing the �-maximum in each row, from which player 1 would select the �-
minimum. This gives F21 as an upper bound to the saddle-point value of this game.
Likewise, player 1 will choose the �-minimum of the �-maxima per column, which
gives F11 as a lower bound to the saddle-point value. Comparing those to the value
2.6 in Example 3.2, both appear plausible, since F11 is centered around 2 and F21 is
centered around 3, with the value 2.6 lying in between. Moreover, since the upper
and lower bounds do not coincide, an equilibrium must be in mixed strategies. Un-
fortunately, FP will not find it, because the iteration gets stuck at choosing xt =(1,0)
ultimately for all t, since the losses “accumulate” into ∑k

j=1 F1y j for player 1, but we
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Fig. 3.5: Game from Example 3.2 with uncertainties in the payoffs

have the awkward inequality F11 � 1
k u∗ for all k despite F11 and u∗ remaining both

constant, as Figure 3.6 illustrates! The relation never fails because the tails of the
distribution 1

k u∗ will retain a positive (though decreasing) mass no matter how large
k gets; see Figure 3.6 for an illustration. That is, although the losses accumulate, this
effect will never justify another choice of strategies, so FP becomes stationary at an
incorrect result. Why so? One could think that by the transfer principle [22], the
convergence of FP, being a proposition in first-order logic, would equivalently hold
in the hyperreals. Indeed, FP does converge (as it does classically) by this argument,
but for a sequence of hyperreal integers, rather than (regular) iterations toward infin-
ity within N. An inspection of the arguments in [23] reveals that the iteration count
where convergence occurs is determined by the maximum element in the payoff
matrix. Since our distributions are represented by infinite hyperreal numbers, con-
vergence kicks in once the iteration count becomes infinite in the hyperreal sense,
which clearly cannot happen in any practical implementation.
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Fig. 3.6: Convergence Failure of FP (situation shown here after k = 10 iterations)

The problem outlined in Example 3.3 disappears for distributions with unbounded
tails, or if all payoff distributions share the same support Ω = [a,b] with positive
mass assigned in a left neighborhood of b.

3.4.2.2 Restoring Convergence of FP

For the sake of simplicity, let us resort to finite games with continuous payoff dis-
tributions, such as the one that caused FP to fail in Section 3.4.2.1. The conver-
gence issue was due to the distribution’s tail not reaching out until the point where
the stochastic order is decided. Namely, if we consider losses on a bounded scale
[a,b]⊂R (which is a mild and practically handy assumption), the vanishing of the
mass located near the end b of the scale along iterations of FP will not be noticed
in regions near a (cf. Figures 3.5 and 3.6). To avoid this unpleasant situation, the all
relevant distributions must assign strictly positive mass to the entire range [a,b] (so
that no “gaps” are near the end or anywhere in the middle of the interval [a,b]).

The easiest way of achieving that is convolution by an approximate Dirac mass,
say, a Gaussian distribution with small variance, and truncating the resulting den-
sity functions. In language of nonparametric statistics, this is nothing else but a
standard kernel density estimation (for categorical distributions, a properly dis-
cretized Gaussian kernel also works well, but so do more sophisticated methods,
e.g., [13, 5], either). In the continuous case, Gaussian kernels come particularly
handy for the convolution (see Chapter 2 for the reason), so from here on, we will
focus on how and why this also restores convergence of FP. The kernel function is
thus K(x) := 1√

2π exp
(− 1

2 x2
)
, that is, a humble normal density with zero mean and

unit variance.
Let us consider the case of two continuous distributions supported on a compact

set [a,b] first, and call them f̃ , g̃. We allow both to vanish on entire intervals within
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the compact set [a,b]. Also, let Kh : R→ R be a Gaussian density with variance h
that we will use as a mollifier to put f := f̃ ∗Kh and g := g̃ ∗Kh. It is well known
that letting h → 0 makes fh → f and gh → g in the L1-norm, and since both are
supported on a compact set, the convergence is even uniform. Moreover, since Kh is
a C∞-function, f and g have derivatives of all orders, so that we have f � g (being
a shorthand for the relation X �Y between the random variables whose distribution
densities are f and g), if and only if the derivatives are lexicographically ordered as
f = ((−1)k f (k)(b))k∈N <lex ((−1)kg(k)(b))k∈N = g. In the following, let us use the
shorthand terms fk := (−1)k f (k)(b), and gk := (−1)kg(k)(b) to ease notation.

We approximate the infinite sequence by a Taylor polynomial f̂ of degree N
for f ,

f̂ (x) = f (b)+
N

∑
k=1

f (k)(b)
k!

(x−b)k, (3.15)

and do the same for the function g. The choice of the degree N will be discussed
later. Let the resulting approximations be f̂ and ĝ. Since there are only finitely many
coefficients fk =

1
k! f (k)(b),gk =

1
k! g(k)(b) for k = 0,1, . . . ,N taken to represent the

continuously differentiable densities f and g, we can find a (common) bound M > 0
so that −M ≤ fi,gi ≤ M for all k = 0,1,2, . . . ,M. Shifting both by the same amount
M puts the numbers fi +M,gi +M into the interval [0,2M] and leaves their relative
ordering unchanged, so that we can consider them as being in excess representation.
Fix a precision and round off all numbers fi +M,gi +M up to � bits, giving the
approximate numbers f̂i, ĝi with a roundoff error of

∣
∣ fi − f̂i

∣
∣ , |gi − ĝi| < εM for all

i. Using f̂i, ĝi in the series representation (3.15) for f (i)(b) and g(i)(b), call the re-
sulting approximation polynomials f̂ε and ĝε . The error from this roundoff is found
from (3.15) to be

max
x∈[a,b]

∣
∣ f̂ (x)− f̂ε(x)

∣
∣≤ εM +

∞

∑
k=1

εM

k!
bk = εM · eb,

and the same for the error between ĝ and ĝε . Observe that εM can be made as small
as we desire by using a larger bitsize � in the numeric representation, so for any
ε > 0 there is an � resulting in a roundoff error εM so that εM · eb < ε . So f̂ and f̂ε
can brought together arbitrarily close. Likewise, in choosing N sufficiently large, we
can make the difference between f and f̂ as small as we wish, so that the cumulative
error by the Taylor polynomial and the roundoff errors can be kept under control.

For a number x, let us write (x)2 to mean its binary representation. Using this no-
tation, define the number y f := ( f̂0 f̂1 f̂2 . . . f̂N)2 ∈ R and yg := ( f̂0 f̂1 f̂2 . . . f̂N)2 ∈
R by a humble string concatenation of the binary excess representations of the
(rounded) coefficients in the Taylor polynomials, assuming that they are all repre-
sented with the same number of bits. The resulting bitstring is then again interpreted
as a real number. Clearly, the information in y f and yg can be chosen to represent f
and g at arbitrary accuracy, but the numeric order between y f and yg is the same as
the lexicographic order between f and g. This in turn equals the �-ordering of the
original densities f and g.
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Wrapping up, we have found real-valued representatives y f ,yg for f and g so
that y f ≤ yg “implies” f � g, where the quotes are a reminder for the relation to be
decided on proxima to the original densities.

The goodness of fit is here determined by the number N of coefficients necessary
for an accurate approximation by the Taylor polynomial, and the number of bits � in
the excess representation (that controls M and hence εM). We can thus think of the
so-obtained numbers to act as substitutes in games where payoffs are distribution-
valued. In other words, we could convert a game with distribution-valued payoffs
into a normal game with real-valued payoffs, at the cost of getting only an approxi-
mation of the original game, but at any precision that we desire. This equips us with
further methods like linear programming (see Section 3.4.1) to solve these games
too. Most importantly, in having transformed a game with distribution-valued pay-
offs into a regular one over R, convergence of fictitious play now follows from
standard arguments again [23].

Practically, the number N of required terms in the Taylor approximation, or the
number � of bits may become intractably large to be useful any more. Fortunately,
however, there is no need to do either a roundoff, excess representation, or binary
concatenation into real values, since we can equally well work with vector repre-
sentations of the series. Then, we can work at machine precision and can compute
the derivatives only on demand and up to the index where the decision can be made
(exploiting the lexicographic order to be fixed at the time when the first index with
a strict relation between fi and gi is obtained. Looking at Figure 3.3, we would thus
dig only as deep into the stack as we need to make a choice but no deeper than N).
Since we expanded the densities around the point b, in whose neighborhood � is
determined, the approximation is expectedly accurate in the region relevant for �,
even for low orders N, though the Taylor polynomial f̂ may badly deviate from the
real density f when we get far from b. That is, the decision of � based on smooth-
ing and on-demand computation of derivatives is in many cases quite efficient and
accurate.

For discrete distributions, matters are considerably simpler, since the smoothing
with a density whose support is the entire line Z of integers (say, by discretizing
a Gaussian density to shift their mass from the continuous interval [n,n+ 1) to the
integer n), the support of the distribution extends until the (category/rank) b, and
the lexicographic order kicks in again in replacement for �. Like before, it is not
difficult to assemble the masses together into a single number whose numeric order
equals the � ordering, and all theory related to standard games reapplies.

Summing up our arguments (and framing them in more formal terms) leads
the following result that relates distribution-valued games to standard (real-valued)
games:

Theorem 3.3 (Approximation Theorem [18]). Let Ω ⊂ [1,∞) be a compact set
(finite or continuous). Let Δ(Ω) be the set of all distributions for which a density
function exists (and is continuous if Ω is continuous). Then, for every ε > 0,δ >
0 and every zero-sum matrix game Γ1 = A ∈ (Δ(Ω))n×m with distribution-valued
payoffs in the set, there is another zero-sum matrix game Γ2 = B ∈Rn×m so that an
equilibrium in Γ2 is an (ε ,δ )-approximate equilibrium in Γ1 in the following sense:
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• The equilibrium (x̃∗, ỹ∗) in Γ1 differs from the equilibrium (x∗,y∗) in the ma-
trix game represented by A by ‖(x∗,y∗)− (x̃∗, ỹ∗)‖1 < ε , where the norm is on
R|AS1|+|AS2|,

• The saddle point val(B) = F̃∗ differs from the saddle point val(A) = F∗ by∥
∥F̃∗ −F∗∥∥

L1 < δ .

3.4.3 FP for Multi-Goal Security Strategies

For MGSS, it has been shown in [25] that equilibria can be computed by FP for
certain one-against-all games, in which a designated player “zero” faces opponents
that are acting independently among themselves, but all against player zero. The
security game of Definition 3.3 can be modified to fall into this class (cf. [20]).

For a two-player MOG ΓΓΓ, let ΓΓΓ0 denote its associated security game. Toward
enabling fictitious play in ΓΓΓ0, we need to make it zero-sum. Remember that the de-
fender in ΓΓΓ has d ≥ 1 goals to optimize, each corresponding to another distinct oppo-
nent in the security game ΓΓΓ0. From these, we define the payoffs in a one-against-all
compound game, while making the scalar payoffs vector-valued to achieve the zero-
sum property. The payoff for player 0 is left unchanged, but the payoff for the i-th
opponent is “vectorized” into

ui = (0,0, . . . ,0,−u(i)1 ,0, . . . ,0), (3.16)

without affecting any equilibria in the game (again, the bar accent on top of u is to
mark this and other items with the same accent to belong to the security game ΓΓΓ0).

To numerically compute an equilibrium in it according to the recipe of [10], we
scalarize as follows: to each of player 0’s d goals, we assign a weight α01, . . . ,α0d

according to (3.9). The scalarization in (3.10) is via

α ji := α0i for i = 1,2, . . . ,d and j = 1,2, . . . ,d.

With these weights, the payoffs in the scalarized compound game are

• for player 0: f0 = α01u1 +α02u2 + · · ·+α0dud ,
• for the i-th opponent, where i = 1,2, . . . ,d

fi = α01 ·0+α02 ·0+ · · ·+α0,i−1 ·0+α0i · (−u(i)1 )+α0,i+1 ·0+α0d ·0
= −α0i ·u(i)1 (3.17)

Concluding the transformation, we obtain a scalar compound game

Γsc = ({0,1, . . . ,d} ,{AS1,AS2, . . . ,AS2} ,{ f0, . . . , fd}) (3.18)

from the original two-person MOG Γ with payoffs u(1)1 , . . . ,u(d)1 that can directly be
be plugged into expressions (3.16) and (3.17).
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Toward a numerical computation of equilibria in Γsc, we need yet another trans-
formation due to [25]: for the moment, let us consider a general compound game
Γc as a collection of d two-person games Γ1, . . . ,Γd , each of which is played in-
dependently between player 0 and one of its d opponents. With Γc, we associate a
two-person game Γcr that we call the reduced game. The strategy sets and payoffs of
player 0 in Γcr are the same as in Γc. Player 2’s payoff in the reduced game is given
as the sum of payoffs of all opponents of player 0 in the compound game. The fol-
lowing result links the convergence of FP in one-against-all games to convergence
in their reduced forms.

Lemma 3.2 ([25]). A fictitious play process approaches equilibrium in a compound
game Γc if and only if it approaches equilibrium in its reduced game Γcr.

For the reduced version Γscr of the (by (3.16) vectorized) scalarized security
game Γscr, this sum is always zero. Since FP converges in such games [23], we get
the final conclusion:

Theorem 3.4 ([20]). Fictitious play in the scalarized compound game Γsc defined
by (3.18) converges to an equilibrium.

Any Nash equilibrium obtained in Γsc upon FP in Γsrc is by Theorem 3.1, a Pareto-
Nash equilibrium in the security game ΓΓΓ0 and as such a MGSS in the game that we
started from. So, Theorem 3.4 induces the following algorithm to compute multi-
criteria security strategies according to Definition 3.2:

Given a two-player MOG ΓΓΓ with d payoffs u(1)1 , . . . ,u(d)1 for player 1 (and possi-
bly unknown payoffs for player 2), we obtain a MGSS along the following steps:

1. Assign strictly positive weights α01, . . . ,α0d to each goal, and set up the scalar-
ized compound game Γsc by virtue of expressions (3.18), (3.16), and (3.17).
Observe that, as we can choose the weights arbitrarily, these give us a method
to prioritize different goals.

2. Run the FP Algorithm 1 in Γsc, stopping when the desirable precision of the
equilibrium approximation is reached.

3. The result vector x∗ is directly the sought multi-criteria security strategy, whose
assurances are given by the respective expected payoffs of the opponents. In
case of matrix games, where the i-th payoff is given by a matrix Ai, the sought
assurances are vi = (x∗)T Aiy∗i for i = 1,2, . . . ,d, where y∗1, . . . ,y

∗
d are the other

player’s equilibrium strategy approximations obtained along FP.

Example 3.4. For ease of presentation and an intuitive validation of the results, let us
consider a 2× 2 MOG with two goals. The payoff structures, shown in Figure 3.7,
are composed from categorical (Bernoulli) distributions. For the example purpose,
those cover three possible cases of games: 1) classical games with real-valued out-
comes (via the aforementioned representation by Bernoulli random variables), 2)
games with random payoffs that are converted into classical games by taking ex-
pectations, and 3) the general case of probability-distribution-valued games with
categorical distributions compared according to �.
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Fig. 3.7: Example Multi-Objective Distribution-Valued 2×2 Game
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The following results (and the plots in Figures 3.4 and 3.7) have been obtained
with R, version 3.4.4 [27], using the package HyRiM [17], which implements ex-
actly the procedure outlined above with Algorithm 1 at the core. Running Algo-
rithm 1 with equal importance on both goals (i.e., taking the weights α01 = α02 =
1/2) on these games digs up the (approximate) equilibrium x∗ = (1/4,3/4) and
y∗1 = (1,0) for the first goal, and y∗2 = (1/2,1/2) for the second goal. The mixed
strategy x∗ is herein the security strategy for player 1, being told the worst-case sce-
narios for each of his goals to be y∗1 and y∗2, respectively. Conditional on the defender
playing x∗, the assurances are the (Bernoulli) distributions v1 = (0.625,0.375) = v2

for both goals.
The security strategy is not too sensitive to a change in the goal prioritization.

For example, taking α01 = 0.9 and α02 = 0.1 to express high importance of the first
goal (relative to the second) leaves the security strategy unchanged. Only, the worst-
case scenario for the second goal changes into y∗2 ≈ (0.39,0.61), and its assurance
v2 adapts itself accordingly.

The entire set of equilibria can be discovered by (theoretically) running through
all values for the importance weights α0i for i = 1,2, . . . ,d goals [10]. In a practical
setting, one would thus be advised to try different goal priorities in order to find
perhaps more plausible equilibria than upon the first try.

3.5 Final Remarks

The assurance offered by a security strategy against whatever behavior of the oppo-
nent within its action space is bought at the cost of this being a rather pessimistic
approach. As with any minimax decision, this disregards all auxiliary information
available to both players, which could improve the decision making. Bayesian de-
cision theory starts from this observation and is developed around the idea of up-
dating loss distributions with incoming data, so as to improve the decisions over
time. The same trick, however, can be mounted in game theory, when the game’s
payoff structures become updated between repetitions. Technically, this makes the
games dynamic, but not necessarily stochastic (at least not in the sense of [26]).
For distribution-valued games, those can be updated in a Bayesian way, in order to
improve the accuracy of the payoff structures. Still, this is not the same as using
prior knowledge about the attacker’s behavior. However, the same framework al-
lows to integrate that knowledge into the payoff distributions by proper modeling.
The details are beyond the scope of this chapter and fall into the domain of general
adversary modeling. Hints on how to construct the payoff distributions for several
practical cases, however, are subject of Part II of this book. Specifically, the data can
be obtained from simulation (Chapters 8, 9, 10, 14, and 15), expert surveys, or other
sources. Chapters 8, 14, 15, and 16 report on a practical use of the method, as it is
implemented in R [17].

A final remark on security strategies relates to the cost of playing them. Imagine
that the equilibrium is mixed and that it prescribes to frequently change configura-
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tions or even reset or revert a certain part of the system to some initial state. Frequent
such actions may be undesirable and may lead to unreasonably high cost for the de-
fense. Taking into account the cost of playing strategies besides their actual benefits
is a matter of multi-objective game theory and can be handled in similar ways as
described here. A rigorous treatment of this, however, is beyond the scope of this
chapter, but has recently been done in the literature [19].
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