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Preface

With the increase in the complexity and prevalence of modern communication tech-
nology, security faces bigger challenges than ever. New security concepts and no-
tions have been developed and are continuously seeing deployment in practice.
Some of these new security mechanisms root in game theory, whose application to
security dates back almost two decades, and which has proven itself as a powerful
and fruitful field to tackle the natural competition and complex interaction between
those who protect and those who attack assets.

While the idea behind game theory is simple in the sense of optimizing opposing
goals and efforts towards them, using the theory for security appears as a natural
step. Applying the respective models, however, is a different story, and the chal-
lenges arising in security are different from those in economics, where game theory
originates. Indeed, exactly this difference is what brings an interesting viewpoint
on security, if we no longer consider security as the absence of threats (a state that
would not be reachable anyway), but rather as a state in which the expenses for an
attack outweigh the gains from it. This economic view on security is not new, but
somewhat surprisingly, much research on security is still focused on preventing all
known attacks (at any cost), rather than optimizing the defender’s efforts and limited
resources to gain the maximal security achievable. The difficulty of security man-
agement is the difficulty of quantifying security. It may not be plausible to claim
that security can be measured like a physical quantity, but can it at least be scored
(i.e., assigned a number that has no meaning by itself, but lets us compare and rank
different situations based on their scores)? The difficulty of finding good security
metrics may partly be due to an overly strong requirement implicitly imposed here.
Certainly, management would like to talk about numbers that show trends, say to
recognize if we are slowly becoming more and more exposed to certain threats, but
security is not a physical quantity or measurable in experiments. It is a property of
a system that undergoes an evolution and must be continuously checked and kept
up. Note that this simple view by no means limits the diversity of what security or
vulnerability means. The goals of attacks can be manifold and monetary losses (say,
by physical damage or theft of information) are only one possibility. Various games
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may be played for reputation, where the attacker’s goal is destroying the victim’s
credibility, but without any intention to cause physical damage or steal anything.
Risk is therefore an equally diverse term, and risk management is usually a matter
of control towards optimizing multiple indicators of interest.

Risk management can be viewed as a certain kind of control problem. The condi-
tions and constraints under which the controller tries to put or keep the system state
at a defined level are a matter of choice and decision making, based on numbers
that quantify risks (in all aspects of interest). The decision making itself is based
on a model that describes the system (typically a whole enterprise, whose internal
dynamics is often too complex to be put into equations or other simple terms),
and depending on the expressiveness and power of the model, it ships with various
parameters. In any case, a good model helps to establish a comprehensive protection
strategy that can flexibly adapt itself to changing conditions and new innovations.
While the existing theory is huge, practitioners and nonexperts in game theory
may face severe difficulties in unleashing the power of game theory in their daily
business.

This volume is intended to fill this gap by telling a story in three acts, being
parts in the book, and contributed by a total of 38 authors, whom we hereby greatly
acknowledge.

Part I is composed of selected models of games and decision making. Here, models
can be distinguished according to their components. Let us fix the defender (possi-
bly being a multitude of physical entities, persons, etc.) as a fixed component, play-
ing against an adversary (also physically allowed to appear as multiple and likely
collaborating actors). If the adversary acts irrationally, we can consider it as being
an act of nature, since there is no incentive to cause harm to the defender, and the
defender is simply exposed to some ecosystem and subject to changing environ-
mental conditions. Finding optimal strategies in a changing and uncertain but not
hostile environment is subject of decision theory. Game theory changes the picture
by endowing the environment with its own incentives, which are (in the most typical
cases) in conflict with the defender’s intentions (though not necessarily opposite).
Decision theory can thus, in a simplified perspective, be viewed as optimization of
one (or more) goals by one player, while game theory does optimization of usually
conflicting goals of at least two or more players.

The temporal aspect adds further distinctions here, since the defender’s problem
can be finding an optimal decision for now, or an optimal plan to materialize towards
a longer term goal in future. The simpler case is obviously making a decision for
the moment, and disregarding the consequences that it may have in future. In that
case, we arrive at the simplest form of static games (against rational opponents)
or simple decisions (to deal with nature). If the consequences of an action taken
now will matter for the future, then we have either a control problem (against an
irrational adversary like nature) or a dynamic game, if the adversary acts rationally.
Extensions and combinations of these types lead to more complex (and hence more
powerful) models like Markov decision processes and relatives. All these models
are to be treated individually, and the chapters in Part I cover theoretical basics to
make a start with some selected candidates.
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Specifically, Part I of this volume is divided into the following chapters:

Chapter 1: Utilizing Game Theory for Security Risk Assessment, by L. Rajbhandari
and E.A. Snekkenes
The opening of the book is dedicated to making the connection between risk man-
agement and game theory explicit. The similarities between a game-theoretic anal-
ysis of best behavior and risk management are striking, yet not obvious and this
chapter opens the book by making the connection explicit. At the same time, it
points at various problems of decision making (covered in Part I of this book) and
model building, which the whole Part II of the book is dedicated to. Concrete ap-
plications up to tool support for game-theoretic risk management are reported in
Chapters 16, 12, 13 and 4, among others.

Chapter 2: Decision Making When Consequences Are Random, by S. Rass
The dynamics in an enterprise or general process that is subject to risk manage-
ment are rarely open to accurate descriptions in formal terms. Thus, much of risk
management is a matter of taking decisions whose consequences are hardly deter-
mined or foreseeable to a decent extent. Game theory’s hypothesis of rationality
being induced by utility maximization is herein generalized towards a decision-
making framework that builds upon fuzzy and vague knowledge, and introduces
random variables themselves as objects for optimization. The framework established
is essentially a possible replacement for conventional numbers used in optimization,
such as eloquently described in Chapters 5, 10 or 11. Applications of the framework
laid out in this chapter are found in Chapters 12, 13, 14, 15 and 16.

Chapter 3: Security Strategies and Multi-Criteria Decision Making, by S. Rass
A considerable deal of attention in risk management is dedicated to an assessment
of the attacker’s intention or the general incentive as to why an infrastructure may be
under attack. If such information is available, then a tailored defense can be defined.
However, lacking an idea about who is attacking us or why, the best we can do is us-
ing our own incentives as guideline to model the hypothetical adversary. This leads
to the concept of security strategies, which, roughly speaking, are the best defense
possible against a set of known threats, whose concrete incarnations depend on the
unknown incentives of the unknown attacker. Finding such an optimal defense w.r.t.
several assets to be protected and several goals of security is the main body of this
chapter. The technique established reduces the problem of security strategy compu-
tation to a standard equilibrium computation problem, which all other chapters in
this book revisit and discuss in different variations.

Chapter 4: A Scalable Decomposition Method for the Dynamic Defense of Cyber
Networks, by M. Rasouli, E. Miehling, and D. Teneketzis
Picking up at a similar point as Chapter 3, this also adopts the defender’s point of
view when a defense against cyber-attacks shall be defined. The uncertainty afore-
mentioned in Chapter 2 is, however, made much more precise here in assuming the
defender not having full information about the network status at all times. The addi-
tional complexity issue of determining security strategies in large-scale networks is
a story on its own, and a core contribution of this chapter is a method to handle the
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scalability issue in the computation of worst-case defenses (i.e., security strategies,
similar to Chapter 3), obtained from treating the issue as a security control problem.

Chapter 5: Factored Markov Game Theory for Secure Interdependent Infrastructure
Networks, by L. Huang, J. Chen, and Q. Zhu
The diversity and scalability issues that Chapter 4 talks about are discussed by this
chapter from a different angle of view. While networks may grow large in size and
thus entail complex models, additional complexity (different in nature) may also
arise from the diversity of devices and from extending the view to include cross-
layer considerations spanning purely logical but also physical parts of the network.
The most typical example of such a system is the internet-of-things (IoT). The cyber-
physical perspective generally reveals scalability issues that call for efficient treat-
ment, which this chapter approaches by designated game-theoretic models. Like
Chapter 4, decompositions and approximations of problems to handle practically
intractable models are in the center of attention here, supported by numeric exam-
ples.

Part II begins at the point where the model has been selected, and now we are asking
ourselves how to set the parameters, or more generally, how a concrete such model
should be defined. Let us consider game-theoretic models as an example to illustrate
the issue: suppose that player 1 runs an IT network, whose administrator has recently
been informed about a new malware “in the wild.” Irrespectively of whether there
is an infection already, we are already in a game between the system administrator
and the attacker. A game-theoretic model would require three ingredients:

1. The action set of the defender: this is typically a known item, since the system
administrator can consult standard catalogues such as those shipping with risk
management standards like ISO31000.

2. The action set of the attacker: this is typically more involved to specify, based
on domain expertise and experience and supported by catalogues in risk man-
agement standards like the “BSI Grundschutzkatalog” of the German Federal
Office for Information Security (www.bsi.bund.de)

3. A valuation of the consequences that the actions of the defender and attacker
will have. A standard game model asks for this consequence to be described
by a number, but how shall we do this? What numeric measure would be ac-
curate to describe the effects of malware in a system. If it causes damage and
outages, how would we quantify the loss that the company suffers from this?
If the malware spreads in a electricity network and shuts down parts of it,
how much would the total damage be in customer’s households? If the prob-
lem is with a water supplier, who is obliged to inform customers, how would
the supplier’s reputation be affected (damaged) upon this incident? While the
game-theoretic model itself may be useful to describe the management decision
challenge, parameterizing the model to accurately describe the effects of actions
taken is a different challenge and needs its own treatment and theory.

www.bsi.bund.de
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Part II of this volume is dedicated to work concerned with the instantiation of game-
theoretic models and how to define their parameters appropriately. To this end, con-
tributions have been collected from different domains, all dealing with matters of
quantifying utilities or shaping game-theoretic models in general.

Specifically, Part II of this volume is divided into the following chapters:

Chapter 6: G-DPS: A Game-Theoretical Decision-Making Framework for Physical
Surveillance Games, by A. Alshawish, M.A. Abid, H. de Meer, S. Schauer, S. König,
A. Gouglidis, and D. Hutchison
Taking surveillance systems as a showcase example, this chapter demonstrates how
to put the abstract theory of risk management (Chapter 1) and the decision making
(Chapter 2) to more concrete terms. In essence, the work exemplifies how uncer-
tainty in surveillance can be modeled concretely and how to apply the decision
and computational framework laid out in Chapters 2 and 3. Moreover, the decision-
making framework approached in this chapter illustrates straightforwardly how the
Hybrid Risk Management (HyRiM) process (Chapter 12) can be tailored to specific
scenarios and use cases such as surveillance games.

Chapter 7: A Game-Theoretic Framework for Securing Interdependent Assets in
Networks, by A.R. Hota, A.A. Clements, S. Bagchi, and S. Sundaram
The initial point of treating security as an economic issue is picked up in this chapter
by asking for how much security can be obtained under limited budgets, and what
is the minimal expense to achieve a desired level of security. Both problems are
analyzed, exposing the solutions to be an instance of moving target defense, whose
optimal pattern can be determined from applying game theory. As in Chapters 4
and 5, matters of interdependence are a main aspect to consider, and this chapter (as
the entirety of Part II) goes into concrete terms and examples on how to model and
valuate the interplay of components, particularly in settings with multiple defenders
managing different parts of the system. The showcase example is power grids, which
complement the so far drawn picture of networks (Chapter 4) and the internet-of-
things (Chapter 5).

Chapter 8: Random Damage in Interconnected Networks, by S. König and
A. Gouglidis
Large-scale cyber-attacks usually start slowly and barely noticeable, by a single
infection occurring somewhere in a system, from which the problem grows slowly
and steadily. The question of how much impact such an infection has is natural,
yet not easy to answer. This chapter proposes a simulation framework to study and
analyze malware infection scenarios, which typically make up the initial phases of
advanced persistent threats (APT). The resulting data is a set of possible scenarios
rather than guaranteed consequences, and the text shows how to directly use these
many possibilities for decision making (based on the methods laid out in Chapter 2).
A related APT case study is later revisited in Chapter 13.
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Chapter 9: Optimal Dispatch of Electric Transmission Systems Considering Inter-
dependencies with Natural Gas Systems, by T. Hong, F. de Léon, and Q. Zhu
Extending the treatment of interdependencies between layers of an infrastructure of
different kinds (where Chapter 5 made a start), it is not always easy for a practitioner
to acquire the information needed to reach a rational decision (using game theory).
Similar to Chapter 8 but with a different focus, co-simulation is the core object
of interest here, which this chapter exposes as an indispensable tool to assess the
outcome of actions towards optimized defense design. Since any such simulation
must be tailored to the application (in general), the technicalities of this chapter
relate to modeling the dynamics of power grids (similar methods are later used in
Chapter 10). This emphasizes the interdisciplinary flavor of risk management and
game theory, which are applicable together, but in any case need to rest on domain
expertise.

Chapter 10: Managing Security Risks Interdependencies Between ICT and Electric
Infrastructures: A Game Theoretical Analysis, by Z. Ismail, J. Leneutre, D. Bateman,
and L. Chen
While Chapter 9 stays at a technical level of power grid dynamics, this chapter
covers the more high level management aspects that need consideration in addition
and in parallel. Leaving the technical details of simulation shifted to a designated
framework and simulation platform, the issue discussed here relates to the question
of which actions should be taken on the components of the system for an optimal
defense from a more central perspective of the transmission system operator (TSO).
Like Chapter 4, this is also the defender’s view, but now focused on the “where”
and “how” domain expertise can be expressed to go into a game-theoretic model (as
parameters).

Part III completes the picture by showing case studies regarding a few selected
successful applications of game-theoretic models to real life problems. The core of
Part III is thus neither on theoretical basics (Part I) nor on practicalities of the models
(Part II), but rather on showcase examples where models have been successfully
applied in practice. The boundaries between Part II and Part III are occasionally
fuzzy and may overlap in the form of case studies also found in Part II of the book.

Part III of this book is composed of the following contributions:

Chapter 11: Security and Interdependency in a Public Cloud: A Game-Theoretic
Approach, by C.A. Kamhoua, L. Kwiat, K.A. Kwiat, J.S. Park, M. Zhao, and M.
Rodriguez
Heterogeneity of a system may not exclusively root in diversity within the system,
but can also be due to outsourcing and external resources. Cloud computing is a
prominent example and a highly complex topic for risk management. Indeed, game
theory is applicable to various threat scenarios in this context, and this chapter shows
how to define proper games upon virtualization. The insights obtained are driven by
an economic perspective, similarly to the introductory thoughts in this preface, and
to what Chapter 7 did (only with a different domain of application). The chapter thus
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underlines once more the economic view on security that is essential for a practically
effective defense. At the same time, the discussion of cloud computing adds to the
range of applications so far (electricity networks, internet-of-things, water supply,
information and communication networks, and many more).

Chapter 12: A Risk Management Approach for Highly Interconnected Networks, by
S. Schauer
With several technical models of interdependence treatment having been described
in Part II (Chapters 7 and 9), this chapter continues along the same route as Chap-
ter 10, but staying at the more general level of risk management (thus continuing
the topic of Chapter 1). Essentially, it is thus a report about how the theory laid out
in Chapters 1, 2, 3, and 8 can be put to practice. This work is later complemented in
Chapter 16, culminating in a practical tool support.

Chapter 13: Protecting Water Utility Networks from Advanced Persistent Threats:
A Case Study, by A. Gouglidis, S. König, B. Green, K. Rossegger, and D. Hutchison
A major problem of security risk assessments is the intrinsic fuzziness of informa-
tion. Whenever decisions in risk management refer to controlling interdependent
systems (composed of various subsystems of different nature), domain expertise
from a single source only would be limited usefulness. The latter is mainly due to
the fact that a single person may not be in position to take into consideration all the
aspects of an interdependent system. Consequently, the decision maker may have to
inquire several experts to get a complete picture of the interdependent system that
no single expert could provide. To accomplish this goal, the framework from Chap-
ter 12 is used. Specifically, this chapter presents the applicability of the framework
through a water utility case study, where the risk management goal is the avoidance
of an APT scenario. The results of the case study are computed using the methods
described in Chapters 2 and 3.

Chapter 14: Assessing the Impact of Malware Attacks in Utility Networks, by S.
König, A. Gouglidis, B. Green, and A. Solar
The impact of malware is essentially an economic one and depends on what the
malware actually does. For a decent understanding of an infection’s impact in a
system, this chapter studies a concrete network and the ingredients to put the simu-
lation framework of Chapter 8 to work. The parameters for a game-theoretic model
of malware infection and insights gained from computing security strategies are the
primary items of discussion in this chapter.

Chapter 15: Game-Theoretic Optimization for Physical Surveillance of Critical In-
frastructures: A Case Study, by A. Alshawish, M.A. Abid, and H. de Meer
Chapter 6 discussed the surveillance problem in the context of risk management and
left the practicalities thereof partly open. This gap is closed in this chapter, where
a simulation method for surveillance is described based on the prepared decision
making (Chapter 2) and risk management (Chapter 6). In addition, the chapter dis-
cusses a form of handling mixed strategies: if there is no purely optimal defense
action, then the configuration of defense measures may admit the definition of new
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defense strategies from a mix of currently available ones. The surveillance (simu-
lation) framework put forth in this chapter is an example where strategies can be
“purified” by proper re-parameterization, an option and method that is appealing for
practice and usually left undiscussed elsewhere in the literature.

Chapter 16: Smart SECPLAN: A Process Implementation Tool for Hybrid Risk Man-
agement, by A. Zambrano, S. Caceres, and A.I. Martinez
The final chapter closes the loop back to the initial Chapter 1 by presenting a full
featured tool support to cover the entire workflow cycle of risk management. It
embodies all matters of theory (Part I in this book), concrete model parameter setting
(basically being the formulae and methods to put risk in numeric or categorical
terms; Part II in this book), and matters of practically doing the risk management
(scheduling of actions, etc.). It thus constitutes the closing discussion in this book,
by letting all theory converge to a practical solution.

The Overall Picture

Risk management is a complex process that spans various research domains and en-
tails highly diverse tasks. Risk management standards provide a valuable guideline
here, and the connection between these and game theory is wrapped up in Chapter 1
of this book. The workflow into which the book’s contributions can be integrated is
shown on the next page and follows a top-down direction: things start with the deci-
sion maker’s duty of keeping risk under control, which entails various subtasks and
is based on resources that the contributions of this book shall give practical insights
to. The picture is in no way meant to quantitatively reflect the amount or importance
of research done on any topic, yet it shall illustrate the diversity, complexity, and
“size” of the “risk management problem.”

After all, all risk management is only about creating a feeling of safety and se-
curity, underpinned by the assurance that best practices are adhered to and inter-
national standards have been followed. Naturally, one wants to do this in the most
economic way possible, and this connects risk management to game theory: since
risk management standards prescribe to take certain actions in a certain sequence,
but leave wide degrees of freedom in how these actions are accomplished, what
could be more natural than using optimization theory to find the best way of doing
risk management? Concrete steps along this connection all the way from theory to
practice make up the content of this book.

Klagenfurt, Austria Stefan Rass
Klagenfurt, Austria Stefan Schauer
December 2017
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e-mail: ahota@control.ee.ethz.ch

Linan Huang
Department of Electrical and Computer Engineering, New York University, 2
Metrotech Center, Brooklyn, 11201, USA
e-mail: lh2328@nyu.edu

David Hutchison
School of Computing and Communications, InfoLab21, Lancaster University,
Lancaster, United Kingdom, LA1 4WA
e-mail: d.hutchison@lancaster.ac.uk

Ziad Ismail
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Chapter 1
Utilizing Game Theory for Security Risk
Assessment

Lisa Rajbhandari and Einar Arthur Snekkenes

1.1 Introduction

Organizations are influenced by many factors that may hinder the accomplishment
of their business objectives and cause loss of reputation, money, confidential data,
etc. In today’s sophisticated technological advancement with mobile computing,
cloud computing, big data, bring your own device, Internet of things, etc., the im-
portance of information security is even higher. To combat the growing number of
threats, organizations need to stay a step ahead. With security risk assessment, orga-
nizations may get a credible picture of risks to their information systems and make
decisions to allocate their resources to secure their systems against severe risks.
Thus, security risk assessment is an approach that is of great value to organizations
that want to withstand the current threat environment. If we can identify, estimate,
and evaluate risks properly, we can better mitigate or treat them.

In most of the risk assessment approaches (e.g., ISO/IEC 27005:2011 [2]), risk
is measured as the combination of consequence and likelihood of an incident. The
values of likelihood and consequence are expressed in qualitative or quantitative
forms. For instance, a scoring approach is used where qualitative scores such as low,
medium, and high or ordinal scale of 1–5 are used in determining the likelihood or
consequence of a risk event. However, in the absence of statistical data or the current
statistical data being inadequate or irrelevant, the likelihood values are gathered
using expert elicitation. In addition, the adaptive nature of the adversary may lead
these assessments being based on subjective judgment. Cox also points out that risk
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matrices based on “frequency” and “severity” have the following limitations: poor
resolution, errors, suboptimal resource allocation, and ambiguous inputs and outputs
[9]. Further, in [8] Cox explains the limitations of “Risk= Threat x Vulnerability x
Consequence” combination for the analysis of terrorist attacks. The other limitation
of classical risk assessment methods is the lack of consideration of opportunity risks.
Opportunity risk is “the concern that something desirable might not happen because
the other player may not have the incentive to play a certain strategy as he has to
bear loss or his gain may be insignificant” [27, 23].

With game theory, we can consider how players with conflicting interest inter-
act in situations of interdependence, the strategies they choose, and how they assess
the values of outcomes by choosing those strategies. Using game theory, we can
utilize the existing robust mathematical noncooperative game models for risk as-
sessment without the reliance on subjective probabilities. However, this is seldom
used in organizations. The reliance on subjective judgment when determining like-
lihood is one of the main limitations of traditional risk assessment methods. Thus,
it is important to investigate how game theory can be integrated with traditional
risk assessment methods. Moreover, the reasons behind the occasional use of game
theory for risk assessment in organizations might be the difficultly of adapting to a
different approach and lack of required skills to implement it, among others as we
discuss in Section 1.5.

This chapter shows how three existing risk assessment/management methods,
ISO/IEC 27005:2011, NIST Special Publication 800-30 Revision 1 (NIST 800-
30r1) [3], and CORAS [5], can be mapped to general risk assessment process and
terminology. This shows how most of the traditional risk assessment methods have
some common steps. The use of game theory for security has been highlighted in
many works as [6, 17]. However, to our knowledge besides [25], no works have
been published that show how the game theoretical steps can be mapped with the
existing risk assessment approach. In [25], ISO/IEC 27005:2008 was used to show
how game theoretical approaches can be used for risk assessment by mapping each
game theoretical step with that of the ISO/IEC 27005:2008 and determining where
a correspondence was missing. The intent of this chapter is to adapt the mapping
to general risk assessment and game theoretical approach to introduce how game
theory can be utilized for risk assessment and highlight some key points.

Games mainly between the attackers and defenders are mostly investigated in
security as shown in [26, 17]. A cooperative game theoretical model can be used
to capture the opportunity risks faced by the organization. However, cooperative
game models are seldom considered when addressing security games. For instance,
there is an opportunity risk for the organization, as the chief information security
officer (CISO) wants to increase security awareness, but a staff has less incentive
to go through the security training as he needs to spend time going through the
online material and pass the quiz. This setting between the CISO and staff can be
modeled as a cooperative game to determine the strategy that the CISO needs to
take to address this security problem.

The remainder of this chapter is structured as follows. In Section 1.2, we pro-
vide a brief outline of risk assessment process and phases and the mapping between
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the common risk assessment steps and three selected approaches. Section 1.3 out-
lines the game theoretical steps for risk assessment with an example and shows the
mapping between the game theoretical steps and general risk assessment steps (as
derived in Section 1.2). An insight into the cooperative game model to address op-
portunity risks is explained in Section 1.4. We discuss some of the challenges of
using game theory for risk assessment and conclude the chapter in Section 1.5. A
literature review is provided in Section 1.6.

1.2 Risk Assessment

Even though risk is often related with the possibility of something bad, it can include
both positive and negative aspects. This perspective of risk is defined in the field of
economics in general or in project management [12].

There are different definitions for terminologies that are used in the risk manage-
ment domain. We view risk assessment as a systematic process that consists of
three steps – risk identification, risk analysis, and risk evaluation – as considered
in the ISO/IEC 27005:2011 standard [2]. Further, risk management program con-
sists of initial preparation (context establishment), risk assessment, risk treatment,
risk monitoring and review, and risk communication and consultation.

In the following subsections, we first describe the phases of the general risk
assessment. Then, we show how three selected approaches to risk assessment –
ISO/IEC 27005:2011, NIST 800-30r1, and CORAS – can be viewed within a com-
mon framework. This view is also supported in [28], which provides a framework to
show how the different risk assessment methods cover in terms of comprehensive-
ness of parts of steps. These methods are selected as these relate to information secu-
rity risk management process. Apart from the selected methods, there are many risk
assessment/management standards or methods such as the ISO 31000:2009 standard
[1] which provides a common guideline on conducting risk management and Risk
IT [14] framework which focuses on IT risk scenarios. The common framework can
be extended to ISO 31000:2009 and Risk IT framework as well.

1.2.1 General Risk Assessment Phases

As mentioned above, there are numerous methods to conduct risk assessment, each
with their subsequent steps. Even though the assessment can be accomplished in
different sequences, they all have some common steps. From the literature review
of the existing methods, the broader view of the general risk assessment process
can be represented by the following phases: initial preparation, identification of risk
scenario (identify threats, vulnerabilities, consequences), estimation of risk (assess
likelihood, assess consequence, and determine risk), and evaluation of risk. These
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four phases are derived to simplify the risk assessment process and create a common
framework of the different approaches stated above.

1. Initial Preparation: This phase includes defining scope, risk appetite, and ob-
jectives of the organization, identifying assets and their owners, and gathering
documentation of the system or application or project in the scope of the risk
assessment. One of the key challenges of this step is scope creep which may
lead to unnecessary resource utilization and increased workload undermining
the successful completion of the risk assessment process. The key stakeholders
(apart from the asset owners) and their responsibilities are also identified for
establishing communication and cooperation throughout the risk assessment
process.

2. Identify Risk Scenarios: This phase consists of three sub-phases: identify
threats, identify vulnerabilities, and identify consequences. Threats to the
assets determined in the previous step are identified. It is followed by the iden-
tification of the vulnerabilities in assets which might be exploited (taking into
consideration the existing controls). Then, the consequences if a threat source,
e.g., an attacker, successfully exploits a vulnerability are also identified. This
provides a clear picture of the risk scenario to be analyzed.

3. Estimate Risk: This phase consists of three sub-phases: assess consequence,
assess likelihood, and determine risk. The consequence and likelihood of oc-
currence of identified risk scenarios are assessed using either a qualitative scale
or quantitative values. The likelihood of the risk is assessed considering threats,
vulnerabilities, consequences, and currently implemented controls (if any). The
consequence to an organization may be determined in the form of financial loss,
reputation damage, and loss of customers or in terms of loss of confidentiality,
integrity, or availability (CIA). Finally, the risk level is determined usually as a
combination of likelihood and consequence as given below.

Risk = Likelihood ·Consequence

4. Evaluate Risk: In this phase, total exposure of all risks of interest is reviewed
and prioritized. A risk matrix with the x-axis representing the likelihood and
the y-axis representing the consequence and color schemes of red, orange, and
green representing high, medium, and low levels of risks may be used for easy
visualization and communication.

Risk assessment is followed by the risk treatment phase (which is outside the
scope of this chapter). In this phase, the categorization of the identified risks is
carried out. The categorization documents whether the risks should be accepted,
mitigated, avoided, or transferred [2] based on the cost-benefit criteria and the risk
appetite of the organization. The accept option relates with retaining the risk as it is,
the mitigate option relates with reducing the risk by applying security control mea-
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sures, the avoid option relates with excluding the tasks that result in risk, and the
transfer option relates with sharing the risk with another party, e.g., buying insur-
ance. Then, the risk control plan is developed. The risk profile should be regularly
monitored and reviewed whenever there is a significant change, e.g., in the system or
project in scope. Moreover, the entire process should be carried out periodically for
effective risk management. In addition, as stated in the ISO/IEC 27005:2011, risk
communication and consultation should be carried out throughout the risk manage-
ment program [2].

1.2.2 Mapping Between the General Risk Assessment and Three
Selected Approaches

We map the process and terminology of the following three risk assessment/
management standards or methods: ISO/IEC 27005:2011, NIST 800-30r1, and
CORAS with the general risk assessment steps mentioned above. The mapping is
based on the authors’ understanding of the three methods and limited to cover the
assessment steps, while the risk treatment, risk communication, and risk monitor-
ing/maintaining phases are excluded.

ISO/IEC 27005:2011 is an international standard for risk management developed
by the International Organization for Standardization/International Electrotechnical
Commission. The risk management process consists of the following phases: con-
text establishment, risk assessment, risk treatment, risk acceptance, risk communi-
cation, and risk monitoring and review.

NIST 800-30r1 developed by National Institute of Standards and Technology
provides guidance for conducting risk assessments and supports the NIST 800-39
standard. The risk assessment process consists of the following steps: prepare for the
assessment, conduct the assessment, communicate assessment results, and maintain
the assessment.

CORAS is a model-based method for conducting security risk analysis. It uses
Unified Modeling Language (UML) for modeling threat and risk. It consists of seven
steps: introduction, high-level analysis, approval, risk identification, risk estimation,
risk evaluation, and risk treatment.

The mapping as depicted in Table 1.1 shows that all the risk assessment steps
of the ISO/IEC 27005:2011 standard, NIST 800-30r1, and CORAS can be mapped
with the general risk assessment steps. As mentioned above, this point is also sup-
ported in [28] which provides a unified framework for different risk assessment
methods. The identification of existing controls is implicitly included when identi-
fying vulnerabilities in the general risk assessment steps, so it is not mentioned as a
separate step. Apart from the ISO/IEC 27005:2011, other methods also do not men-
tion this step explicitly. Besides, none of these methods consider the identification
of opportunities.
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1.3 Game Theory for Security Risk Assessment

A game-theoretic model includes the players, the strategies they can take, and the
payoffs they gain by making the move. In some situations when conducting risk
assessment, there is a lack of historical data, or the existing data may be insufficient
or irrelevant. However, we may have insight into how the various stakeholders value
the outcomes of the different actions they may engage in. Game theory provides a
way to convert these payoff values to probabilities, under the assumption that the
stakeholders are rational. Thus, game theory may offer a link between information
available (strength of preferences) and what is required by typical risk assessment
methods (probabilities). The translation from preference strengths to probabilities is
obtained by “solving” the game, e.g., by computing the game’s Nash equilibrium.

In the following subsections, we provide the game theoretical steps for risk as-
sessment and elaborate the steps with an example of a simple two-player game
between an administrator and an attacker. Then, we do the mapping of the game
theoretical steps and the general risk assessment steps.

1.3.1 Game Theoretical Steps

The game theoretical steps for risk assessment are given below (adapted from [25]).
The steps should be carried out systematically, and the process can be repeated. For
each step, we provide a short description and elaborate by explaining how the data
is collected (where feasible).

1. Investigate the scenario: The scope and assets that need to be protected along
with its owners are identified when investigating the scenario. In addition, the
criteria for repeated analysis with alternative strategies or payoffs are deter-
mined.

2. Identify the players: The decision-makers whose actions affect each other are
identified. These include the player who gets the benefit or must bear loss (risk
owner (RO)) and players with conflicting incentives to that of the RO (strategy
owners (SO)). We assume the players are rational.

3. For each player, the following data is gathered. To get the full picture of the
players, their motivation, capabilities (e.g., resources to implement or defend
the attack), and experiences need to be considered:

a. Determine the information gained: Information the players have when they
decide are gathered. In relation to the information they have when they
make decisions, the games can be classified into perfect or imperfect and
complete or incomplete information games. In perfect information game,
each player knows the previous moves of all other players (vice versa for
imperfect information game). In complete information game, each player



10 L. Rajbhandari and E. A. Snekkenes

knows both the strategies and payoffs of all the players but might or might
not know the previous moves (vice versa for incomplete information game).

b. Determine the strategies: The strategies related to the actions of the players
(i.e., RO and SO) are determined. These may include strategies to overcome
threats, to cause threats, or to gain opportunities. The actions can be based
on an individual or a group. It is important to understand that one player can
limit the options of another. Moreover, these options can be negotiated.

c. Identify the preferences: The players may value multiple orthogonal aspects
of outcome (e.g., money, reputation, privacy, trust, etc. or confidentiality,
integrity, availability (CIA)). These are also referred to as utility factors.
These can be obtained by asking how they value the outcomes in work-
shops, through surveys, or investigating the research in psychology.

d. Represent by payoff/utility: Scale, measurement method, and weight for
comparing outcomes are defined. Then, the preferences are ordered accord-
ing to the obtained rank and represented by utility. Usually, the players have
the incentive to maximize their payoff/utility. The utility can be estimated
using additive utility function of multi-attribute utility theory (MAUT) [7].
The additive utility function for a player is defined to be the weighted aver-
age of its individual utility factors as given below.

U(a) =
m

∑
k=1

wk ·ak . (1.1)

where
m is the number of utility factors of the player,
wk is the assigned weight of utility factor ak, and ∑m

k=1 wk = 1.

4. Formulate the game: The scenario is formulated, e.g., in normal form as shown
in Figure 1.1, assuming that the RO and SO are not aware of the other players’
choice when he makes his own choice.

5. Find the optimized strategies/equilibrium: The optimized strategies for each
player are identified. The main point with the use of game theory is to bring
forward strategies or incentivize the other player so that the best equilibrium is
reached. The combination of optimum or best strategies chosen by the players
is the pure-strategy Nash equilibrium. The equilibrium specifies the outcome
of the game to the players. However, pure-strategy Nash equilibrium may not
exist, and the other way of computing the equilibrium solution is to find the
mixed-strategy Nash equilibrium which always exists. Utilizing it, we can ob-
tain the probabilities, expected outcome the players get by playing each of the
strategy, and the expected outcome of the game [29].

These steps can be iterative until the results are satisfactory (even though this
is outside the scope of this chapter, we include it to provide an idea of how the
results of game theoretical steps for risk assessment can be assessed). A satisfactory
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outcome may be the value of the game for the RO (or alternatively the RO payoff in
equilibrium) that is within the limit set by the criteria, or “do nothing” may be the
best strategy for the RO.

If the outcome is not acceptable, alternative controls may be added and the pro-
cess repeated. Note, however, that the whole process assumes that both players
have common knowledge relating to which strategies are contemplated by the other
player. For example, computing the equilibrium involving a strategy not known to
the other player breaks the validity of the analysis. Thus, it is recommended to do
sensitivity analysis to determine to what extent small changes to player knowledge
may influence the outcome of the equilibrium computations.

1.3.2 An Example Elaborating the Game Theoretical Steps

We elaborate the above game theoretical steps with an example of a two-player
game.

1. Investigate the scenario: Our example is based on a scenario in which an orga-
nization is conducting a risk assessment of one of its system (asset) which has
been attacked over the past years. The administrator (asset owner) is responsi-
ble for the protection of the system.

2. Identify the players: In our example, the players are an administrator (RO) and
an attacker (SO). We assume the players are rational.

3. For each player (here, the administrator and attacker), the following data is gath-
ered:

a. Determine the information gained: We assume the given scenario between
the administrator and attacker as a game of complete but imperfect infor-
mation.

b. Determine the strategies: The administrator may limit his actions to use
existing controls (i.e., “do nothing”) or implement new control measures
to mitigate the risks. The implemented controls are categorized as the
“do nothing” (here, NotDefend) option. The strategies of the attacker are
based on the vulnerabilities he can exploit in the system and threats he can
cause to the organization. Thus, the strategy space for the administrator is
{Defend, NotDefend} and for the attacker is {Attack, NotAttack}.

c. Identify the preferences/utility factors: For this scenario, we simply assume
the administrator is concerned about the financial loss and reputation of the
organization, and the attacker is concerned about his financial gain.

d. Represent by payoff/utility: For this scenario, we assume w1 and w2 as
the weights assigned by the administrator for financial loss and reputation
of the organization, respectively, where (w1 > w2). As the attacker is con-
cerned only about his financial gain, his assigned weight is w1 = 1. The
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Fig. 1.1: Normal form representation of the scenario

scale for financial gain/loss is currency unit, and reputation is % which can
be obtained from interview as it is assumed that the system has been at-
tacked before. Thus, using the given scales and measurement methods (if
any), we can obtain the value of the utility factors for both the administrator
and the attacker. The details regarding some of the measurement methods
and scales for utility factors like reputation are found in [24]. We apply
Equation 1.1 to the attribute vectors produced by each of the strategies, for
all the players. This is illustrated in Figure 1.1. Let the number of strategies
for the administrator and attacker be r and s. The utility functions for the
administrator and attacker are represented in the form U1(xi, j) and U2(yi, j),
respectively, where i = 1..r, j = 1..s, xi, j, and yi, j are utility factor vectors.

4. Formulate the game: We assume that neither RO nor SO can observe the other
players’ decision before he implements his own decision; thus it is appropriate
to frame the setting as a normal-form game as shown in Figure 1.1. As this is
the game of imperfect information, the players form belief about the strategies
the other players choose. The administrator believes that the attacker plays the
strategies Attack and NotAttack with probabilities q and 1−q, respectively,
where (0≤ q≤ 1). Likewise, the attacker believes that the administrator plays
the strategies Defend and NotDefend with probabilities p and 1− p, respec-
tively, where (0≤ p≤ 1). Both players have an incentive to win or to maximize
their utility. The strategies of the administrator are placed in the rows and the
attacker in the columns. The pair of variables in each cell of the matrix repre-
sents the utility functions for the administrator and the attacker, respectively, as
obtained in the step above.

5. Find the optimized strategies/equilibrium: Let’s assume a pure-strategy Nash
equilibrium with the strategy profile (Defend, Attack) is the outcome of the
game. This suggests that there is a risk of the system being attacked, but by
employing the Defend strategy, the administrator can mitigate the risk.
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1.3.3 Mapping Between Risk Assessment and Game-Theoretic
Approaches

In general, both the game theoretical and classical risk assessment methods con-
sist of three phases: data collection, risk assessment/game theoretical model, and
decision-making. We do the mapping of the game theoretical steps and the general
risk assessment steps (as described in Section 1.2.1). We include the identification
of opportunities apart from identification of threats in the risk assessment process.

The mapping as depicted in Table 1.2 shows that all the risk assessment steps
are covered in the game theoretical approach. However, the game theoretical steps,
such as the information gained by the strategy owners, and their beliefs and incen-
tives are not explicitly considered in the traditional risk assessment. Depending on
the used game model, one considers what information the SO might have about the
RO in terms of his previous actions, strategies and payoffs, and vice versa. This
strategic thinking of the players should be considered in security risk assessment as
this will help to get a complete picture of the scenario being analyzed. In general,
these corresponds to the lack of explicit consideration of behavior and motives of
the opponent when conducting the risk assessment [22]. Even though some methods
consider the motives of the opponent at the start of the process to determine threats,
these human factors are not explicitly considered during the assessment phase. Fur-
ther, the optimization of the strategies of the players is not included in the classical
risk assessment methods.

In addition, the mapping shows that the probabilities are computed when using
game-theoretic process. Thus, it addresses one of the main limitations of traditional
risk management approaches. The mapping clearly depicts that game theory can be
used for security risk assessment.

1.4 Cooperative Game to Address Opportunity Risks

The incentives of the players may differ according to the situations they face. Like-
wise, in economics, incentives of the players matter in maintaining security in an
organization. Usually, the players have the incentives to win or to maximize their
utility. However, the players might negotiate and come up with group incentives
besides having their private incentive. Cooperative game theory helps to model the
outcome of negotiation as a joint action [29]. It is mainly used to study contractual
relations, e.g., a job contract between an employer and a staff in an organization
may help to avoid conflicts and align incentives. In a noncooperative game, play-
ers’ actions are regarded as individual behavior, whereas in a cooperative game, the
players can and will collaborate or communicate to form coalitions enforced by an
umpire [19] or a contract.

Games mainly between the attackers and defenders are mostly investigated in
security [17, 26, 10]. However, cooperative game models are seldom considered
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Table 1.2: Mapping between risk assessment and game-theoretic approaches
(Adapted from [25])

General risk assessment process and terminology Game-theoretic process and ter-
minology

Initial preparation Define scope, risk appetite, objec-
tives of the organization

Investigate the scenario, define
scope, define criteria for repeated
analysis with alternative strategies
or payoffs

Identify assets and asset owners Identify who owns the asset and
who will get the benefit/bear loss
(RO)
Identify players – RO and SO (i.e.,
player(s) with opposing incentives
to that of the RO)

Identify risk sce-
narios

Identify threats and opportunities Determine strategies for the SO;
also determine strategies for the
RO (control measures already im-
plemented and to be implemented)

Identify vulnerabilities Identify options that can be ex-
ploited by threats. Included while
determining the strategies for the
SO

Identify consequences Identify how the players value mul-
tiple orthogonal aspects of out-
comes
Identify the preferences or utility
factors for each player

Estimate risk Assess consequences Define scale, measurement
method, and weight for comparing
outcomes and ranking preferences
Represent by payoff/utility

Assess likelihoods Computed probabilities for each
strategy of the players

Determine risk Computed expected outcome for
each of the strategy of the SO is the
risk to RO and vice versa

Evaluate risk Prioritize identified risk scenarios Prioritize the expected outcome for
the players

Not explicitly included for SO Determine the information gained
by the players

Not explicitly included for SO Determine the beliefs and incen-
tives of the players

Not included Find the optimized strategies
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when addressing security games. As mentioned above, one of the limitations of
classical risk assessment methods is the lack of consideration of opportunity risks.
Cooperative game theoretical models can be used to capture the opportunity risks
faced by the organization.

For instance, there is an opportunity risk for the organization, as the CISO wants
to increase security awareness, but a staff has less incentive to go through the secu-
rity training as he needs to spend time going through the online material and pass
the quiz. This gives rise to a situation of interdependence as the behavior of the staff
may negatively affect the organization. This setting between the CISO and staff can
be modeled as a cooperative game to determine the strategy that the organization
needs to take to address this security problem.

The organization can help align the incentive of the staff to go through the train-
ing by awarding some points for completing the training based on the obtained quiz
scoring instead of taking the other way that may be counterproductive. This strat-
egy of the organization may lead to a win-win situation. Thus, strategic uncertainty
of obtaining the opportunity to the organization (increasing security awareness of
staff) may be obtained by using the cooperative model that benefits both the players
and maximize their utility.

1.5 Discussion and Conclusion

Security risk assessment is a widely used approach to identify and deal with security
threats that an organization may face or is facing. The decision to allocate budget
to mitigate or treat risk is often based on the severity of the risk. Thus, it is of
utmost importance to identify and assess risk scenarios properly. However, the lack
of statistical data and the adaptive nature of the adversary may lead the assessment to
be based on subjective judgment when using the traditional security risk assessment
methods. Besides, most of these methods do not consider opportunity risks.

The increase in security risks to organizations has opened a path for new ap-
proaches to guide its security risk assessment and investments. With the limitations
of current risk assessment methods, the use of game theoretical models can be ben-
eficial as it is based on mathematical models.

The result from mapping of the different risk assessment methods showed that the
different approaches can be generalized to some common steps. Even though three
risk assessment methods are mapped in this chapter, the mapping could be extended
to cover other approaches such as ISO 31000:2009 [1] and Risk IT framework [14].
Further, the mapping between the common risk assessment process/terminology and
that of the game-theoretic steps highlighted some of the game theoretical steps that
lacked correspondence with the risk assessment steps. The mapping clearly depicted
that game theory can be used for analyzing risk scenarios. However, the use of game
theory does not come without challenges.

Many organizations have their own risk assessment methods, so adapting to an-
other method with a completely different approach is a challenge. Moreover, staffs
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need to acquire the skills to use the method. In game theory, the strategies of a
player are based on what he believes the other player might do and vice versa. Thus,
modeling real-world scenarios might be complex. It is even harder without the avail-
ability of a tool. Even though some tools such as Gambit [18] or GAMUT [30, 20]
are available, these tools need to be incorporated with risk assessment to formulate
and analyze the risk scenarios. However, the benefits of game theory outweigh the
above stated challenges, and considering a practical game-theoretic approach in risk
assessment can provide exclusive insight on security risks.

More research needs to be done for organizations to utilize game theory for risk
assessment. Further, work on cooperative models to address opportunity risks needs
to be investigated which will benefit organizations to focus on both threats and op-
portunities.

1.6 Chapter Notes and Further Reading

Game theory is used in many disciplines such as economics, biology, political sci-
ence, and information security. Studies have been conducted for merging or using
game theory with traditional risk assessment [11, 4, 13, 10]. Game theory has also
been applied in general for information security to capture an attacker’s incentive
[15] or to quantify security risk [6]. Moreover, it has been specifically used for net-
work security [21, 31, 26, 16, 17].

According to Hausken, game theory can be merged with probabilistic risk anal-
ysis considering the individual-collective conflicts that affect risk [11]. Banks et al.
highlight that the traditional risk analysis approach is not reliable in most of the
cases and have suggested to use statistical risk analysis integrated with game theory
[4]. They analyzed strategies for a smallpox attack by modeling it as a zero-sum
game with random payoffs and utilized both the minimax and the Bayesian ap-
proaches to solve it. The research by Insua et al. involved both game-theoretic con-
cept and statistical risk analysis for solving adversarial risk analysis (ARA) [13].
They also put forward the Bayesian approach to ARA. In [10], Cox states that using
game theory models, ARA may be improved in allocating limited resources com-
pared to using the classical risk scoring models.

Liu et al. used the incentive-based method to model attacker intent, objectives,
and strategies (AIOS) and developed a game-theoretic approach to interfere AIOS
[15]. The QuERIES methodology was developed to quantify cybersecurity risk so
that organizations can come up with proper investment strategies [6].

A game-theoretic model has been used for analyzing intrusion detection in mo-
bile ad hoc networks by Patch et al. using a multistage dynamic noncooperative
game with incomplete information [21]. Xiaolin et al. proposed a risk assessment
model based on Markov game theory for network information system [31], while
Maille et al. explain various noncooperative game-theoretic aspects with security
games to cover network security issues [16]. The two surveys in [26, 17] show the
extensive use of game theory for network security. In [17], Manshaei et al. provide
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a survey of network security games between attackers and defenders. Roy et al. [26]
survey the existing game theoretical solutions applied to network security which
falls under noncooperative games.

Some of the tools that exist for game theory applications are Gambit and
GAMUT. Gambit is a software comprising of a set of game theory tools with
which games can be constructed and analyzed in both the normal and extensive
forms [18]. Among other features, there are tools for computing Nash equilibria
and quantal response equilibria. GAMUT consists of tools for generating game and
testing game-theoretic algorithms [30, 20].
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Chapter 2
Decision Making When Consequences
Are Random

Stefan Rass

2.1 Introduction

The intricacy of decision making is often due to uncertainty about the data to base a
decision upon, and the consequences that the decision implies. Commonly, decision
options are rated based on their expected utility. This approach is intuitive and suc-
cessful in many cases, but has difficulties when the utility to be associated with an
action is unknown or at least uncertain. Both problems can be addressed by accept-
ing randomness as an intrinsic part of the utility itself, leading to defining optimal
decisions in terms of stochastic orders rather than upon benchmark figures (only).
For one such (even total) stochastic order, we will give a complete construction in
this chapter, accompanied by examples and procedures how to get a (stochastically
optimal) decision.

Mathematical decision making is typically a matter of making an optimal choice
w.r.t. some measure of utility or damage. In the simplest case, a decision problem is
the question for the best choice among at least two (among finitely many) options
a1, . . . ,an, the entirety of which is called the decision space or action space A. Each
action has an associated utility u(a1), . . . ,u(an), being a value in some ordered set.
The most common choice for that set is R, for its natural ordering that makes it
useful in optimization. However, numbers are only one among several possibilities
to quantify a decision (i.e., its outcome), and we shall develop probability (distribu-
tions) as a full-fledged (and richer) substitute for real numbers here. For the moment,
however, let us stick with R to quantify actions, to keep things simple.

Whenever the utilities associated with the actions can be ordered, the deci-
sion problem boils down to taking the action ai that maximizes u(a j) among all
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j ∈ {1,2, . . . ,n}. By endowing the action space with a utility function u : A → R,
A becomes an ordered set via ai � a j :⇐⇒ u(ai)≤ u(a j), and looking for optimal
decisions becomes an obvious matter of optimizing the function u over the set A.

The existence of u, however, needs to be clarified and the classical von Neumann-
Morgenstern approach to this end is axiomatic and based on a set of properties that
a choice relation on A should have, which induces the existence of the function u
(see [19, Sec.2.2] for a detailed treatment). Here, our focus will not be on assuring
u’s existence, but rather its concrete specification, which typically is the more chal-
lenging issue in practice. While numbers are easy to work with, their specification
can create difficulties, since actions are not always obvious to quantify. For exam-
ple, social risk replies to press releases, or “trust” in general, are difficult to model
and measure by crisp numbers. Qualitative security risk management usually speaks
about losses in terms of categories rather than precise figures (e.g., a severe damage
may happen once at least one person is deadly injured by an incident, no matter how
much monetary loss is associated with the incident besides).

The difficulty in fixing a number to measure the consequence of an action a is
often due to random influences on the action’s outcome. This makes it more natural
to model the consequence as a random variable U associated with the action a. In a
simple conversion to the numeric setting, we can humbly replace U by a representa-
tive number for it (usually the expected value), but this burns lots of information that
U contains besides E(U). A more informed decision making can take into account
further moments of U , such as the variance, but the best possibility would be using
the whole random variable U itself to measure the utility of the action a. Indeed,
random variables may obey so-called stochastic orders [22]. One such order that
has particularly nice properties for risk management is developed hereafter.

It is easy to imagine situations where there is no unique optimal decision, say,
when the respective utilities are indifferent or the utility is not exclusively deter-
mined by our own choice. This is the particular setting of game theory, where a
player’s choice is also quantified by a utility u, but this depends on the actions of (at
least one) opponent too. Games typically assume rational behavior of players so that
the additional inputs that determine a player’s utility are chosen by others to max-
imize their own welfare. Decision theory admits a more general view by allowing
any kind of influence from outside, and asking only for the best action advisable in
a given situation. By letting the outcome of the utility function be random, we can
technically replace the utility space R by the set Δ(R) of probability distributions
supported on R. Moreover, we shall assume that the supports of distributions in
Δ(R) are bounded (and hence compact). This technical restriction is indeed consis-
tent with the subjective perception of utility by individuals; for example, if the gain
is monetary, then revenues above, then many individuals may become quite indiffer-
ent about their options if they range in utilities above 100,000,000 $ [19]. While this
threshold is clearly different between individuals, and again different for enterprises
or whole countries, the assumption of some (problem-specific) upper bound appears
nonetheless reasonable for every finite set of actors involved in a specific decision
problem.

The idea of letting the utility function be random for fixed actions can equiva-
lently be materialized by letting the actions be random but each giving a determin-
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istic utility. In that setting, we let the decision space be the set Δ(A) of distributions
supported on the action space A, and consider the utility function as a mapping into
R again. This view is justified by the symmetry in a decision problem in which
several actors, perhaps unbeknownst to each other, are interacting: each actor takes
actions to optimize its own expected utility, but actually sees a randomly different
outcome due to other influences to one’s own utility. Experience (or learning) may
then suggest to take different actions in future situations of the same kind. Formaliz-
ing the term “expected utility” here leads to the usual way of ordering utilities under
randomized decisions: let P1,P2 be two distributions over the same action space,
then we prefer P1 over P2, based on the function u : A→R as a loss measure, if and
only if

EP1(u(X))≤ EP2(u(X)), (2.1)

when X is the random action chosen from A under either P1 or P2, respectively.
Relation (2.1) is convenient as casting the issue of uncertain outcomes back into

a scalar (numeric) utilities that can easily be compared. But is this always helpful in
decision making? The answer is no, since the expectation can hide information that
may be critical for the decision maker.

Example 2.1. Consider the distributions sketched in Figure 2.1, both corresponding
to the random quantity u(Z) under two different distributions of Z, hereafter denoted
by the symbols X ∼ P1 and Y ∼ P2. For simplicity, let us assume Gaussian distribu-
tions X ∼N (μ = 2,σ = 2) and Y ∼N (3,1). Clearly, the expectation of X is less
than that of Y , so (2.1) would point to X as the preferred choice. However, X admits
much larger loss than Y in high ranges; specifically, Pr(5≤Y ≤ 9)≈ 0.0228, while
Pr(5 ≤ X ≤ 9) ≈ 0.0666, so if we take prefer a more “stable” outcome at the cost
of accepting a slightly larger risk, Y would be preferable, opposed to what (2.1)
indicates. Likewise, (2.1) is of no help if the expectations are equal, and we can
construct examples like the previous one with equal means but different standard
deviations.
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Fig. 2.1: Example Comparison of two Gaussian Distributions
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Naturally, one could propose extending the ordering (2.1) to account for stan-
dard deviations too. Note that some special forms of uncertainty treatment in deci-
sion making such as interval arithmetic appear as special cases here (e.g., compact
intervals can be modeled as uniform distributions). However, using variances only
reshapes the issue but leaves new problems behind, since skewness could tip the
scale when the mean and variances are perceived as secondary (cf. [5]).

A different route is thus offered by ordering the distributions themselves, rather
than ordering some derived quantities thereof. The most prominent such stochastic
ordering is obtained from (2.1) by demanding this relation to hold for all nonde-
creasing functions u instead to only for some fixed utility function. This approach
orders two random variables as X �Y if and only if (2.1) holds for all nondecreasing
functions u. An equivalent definition of X � Y is

Pr(X ≤ x)≤ Pr(Y ≤ x) for all x ∈R. (2.2)

This ordering is not total in general: it is not difficult to construct two (multimodally
distributed) random variables X ,Y that violate condition (2.2) in either direction.

Our example above went into a similar yet less restrictive direction by arguing
that preferences may depend only on utilities with large magnitudes. This “asymp-
totic” approach will be revisited later.

We refer the reader to [22] for an excellent overview about rich body of liter-
ature related to such stochastic orders, and will again take a different route than
usual at this point. Let us pick up the idea of using moments for a comparison (like
in Example 2.1). Observe that the full sequence of moments uniquely pins down
a distribution under quite mild conditions already. To rigorously formulate those,
recall that a random variables X may have an associated moment-generating func-
tion mX (s) := E(exp(s ·X)), where the expectation is over the distribution of X (let
us assume that this expectation exists; otherwise, we may resort to characteristic
functions doing equally well for our purposes). A combination of well-known facts
about moment generating functions and Taylor-series expansions thereof delivers
the following result:

Proposition 2.1. Let two random variables X ,Y have their moment generating func-
tions mX (s),mY (s) exist within a neighborhood Uε(0) = {x ∈R :−ε < x < ε}. As-
sume that EXk = EY k for all k ∈N. Then X and Y have the same distribution.

This suggests that we can use the full moment sequence (E(U)k)k∈N as a valid
replacement for a random utility U = u(a), when a is chosen according to some
(randomized) decision rule P ∈ Δ(A) over the action space A. Alas, the space of
sequences is not ordered in general, but this can be fixed with reasonable effort.
Before that, however, let us become more specific on the application context that we
are aiming at.
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2.2 Decision Making for Security: Loss Minimization

Risk management is a broad term that is often associated with financial losses, but
also extends to many other fields like security. Although security is a term with a
mostly qualitative meaning (with many different technical definitions found in cryp-
tology [8]), it closely relates to economic matters upon taking a proper view on it.
While the cryptographic understanding of security is rendering an attack practically
impossible (often conditional on certain assumptions), we can alternatively define
security as a state where the cost for an attack outweighs its quantitative utility. This
is the decision-theoretic understanding of security, where decision-theoretic tools
lay the (heuristic) foundations of quantitative security risk management.

Although tempting, there is no obvious way of defining risk in statistical terms,
despite the usual understanding of risk as “expected damage” elegantly corresponds
to a definition like

risk = impact× likelihood, (2.3)

which is commonly used to resemble the term EP(u(r)) in decision making based
on (2.1). The difference to the previous discussion is the understanding of “impact,”
which corresponds to loss, defined as negative utility, i.e., −u. In fact, it is precisely
(2.3), combined with (2.1) as a decision rule that quantitative security risk manage-
ment [24] is based on. Good reasons to discourage such an approach in risk manage-
ment have been discussed by [11], giving examples where even solid numeric data
can lead to implausible decisions.

Example 2.2 ([11]). From long-term records, it is known that the probability of a
lightning strike in the area around Munich (Germany) is approximately 1.26×10−6.
Given an estimate of 10,000 $ repair costs, (2.3) leads to an expected damage (risk)
of≈ 0.12 $; a damage that we would certainly not be too concerned about. However,
not investing in a lightning protection in a housing for sensitive electronic equipment
appears not advisable either.

Due to examples like the above, security risk management is typically recommended
to use categorical scales to quantify damage, but also likelihood, in order to avoid
numerical imprecisions and the illusion of accuracy where there is none. Unlike
in financial risk management, where sophisticated distribution models are available
based on underlying stochastic processes, security risks not necessarily correspond
to nearly as well understood dynamics and are often subjectively determined by
personal experience, perception, reported incidents, and other vague sources of in-
formation.

Categorical scales like { “negligible” < “low” < “medium” < “high” < “very
high” } would (in a rigorous treatment) call for order statistics to define a utility
function, or more commonly a loss function in security (we will nonetheless write u
to mean utility or loss, where the concrete understanding will become clear from the
context). While the term EP(u(X)) remains well-defined if u maps (random) actions
into ranks corresponding to loss categories, expression (2.3) no longer makes sense
in multiplying ranks (since the likelihood presumably comes on a rank scale too,
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according to what most risk management standards recommend). As such, (2.3)
deteriorates into a (nevertheless plausible) heuristic that can no longer rest on solid
decision-theoretic foundations.

To refurbish the framework of quantitative security risk management, stochastic
orders can help. The task is constructing a well-defined decision rule that lets us find
the best decision when the outcome is uncertain. Whenever there may be no single
optimal action, we shall look for randomized decisions that inherently convexify the
action space so that the existence of optima is assured again.

2.2.1 A Total Stochastic Ordering Based on Moments

Towards generality, let us consider the action space to be an (in)finite family of
distribution functions A = {F1,F2,F3, . . .}, where each Fi has a bounded support in
R. The decision problem defined hereby is picking the “best” option from A, given
that the ranking must (and can) be based only on random outcomes as described by
the distribution functions in A. For simplicity, let us consider A as being finite with n
elements. Then, each Fi corresponds to a random variable Xi, within some bounded
range −∞ < ai ≤ Xi ≤ bi < ∞ (as would, for example, be the case for categorical
units of loss, such as are common in security risk management). If Xi measures
the loss (whether categorical or continuous), a reasonable choice preference rule
should be invariant w.r.t. additive shifts. That is, shifting all scales by the same
additive amount should obviously leave the relative preferences unchanged. Under
this requirement, we can w.l.o.g., assume all Xi ≥ 1 and to range within the compact
interval [1,max{bi : i = 1,2, . . . ,n}]. The latter condition assures the existence of
moments of all orders for all Xi ∼ Fi, so that Proposition 2.1 delivers a well-defined
characterization of a random variable Xi by its moment sequence ri := (EXk

i )k∈N.
Let us think of the whole sequence ri as describing the risk associated with the i-th
choice, and being described by a full distribution object, rather than an expectation
thereof or any other derived quantity (such as variance or similar; note that the third
moment seems to play its own distinct role in how preferences are made and risk is
perceived [5, 23]).

Given distributions as sequences of numbers, we ought to order them somehow.
Most obvious is a standard lexicographic order, putting ri <lex r j if and only if there
is an index t ∈N for which E(Xk

i ) = E(Xk
j ) for k < t and E(Xt

i )< E(Xt
j). Obviously,

ri ≤lex r j implies (2.1), and also meets the intuition to look at variances or skewness
if the lower moments provide no guidance. Still, decisions made under this ordering
can be misleading, since the choice made in Example 2.1 remains the same, as does
the argument against it.

A different way of ordering sequences while at the same time casting them into
arithmetic objects is offered by non-standard calculus [20]. This theory embeds the
ordered field (R,+, ·) into a larger and still ordered field (∗R,+, ·), by associating a
number x∈R by an infinite sequence of the form (x,x,x, . . .). The set ∗R includes all
infinite sequences, hereafter denoted as R∞ (in analogy to the set of n-dimensional
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vectors being Rn), and defines arithmetic over them in a canonical way: for two
sequences a= (ak)k∈N,b= (bk)k∈N ∈R∞, we put a+b := (ak+bk)k∈N and a ·b :=
(ak ·bk)k∈N. An ordering cannot be defined in the same way, since, for example, the
alternating sequences (0,1,0,1, . . .) and (1,0,1,0, . . .) obviously do not uniformly
satisfy ≤ or ≥ on their elements. To resolve this, we have to specify which indices
matter for the comparison and which are irrelevant. Filters will be the technical
vehicle to do this.

A filter is a subset U ∈P(N) so that /0 /∈ U and for all A,B ∈ U we have
A∩B ∈ U (closure under intersection), and A ⊆ B implies B ∈ U (closure under
set-inclusion). If, whenever A /∈ U we have the complement set A� ∈ U , then U
is an ultrafilter. If, in addition, U contains no finite sets, then U is called free.
That is the kind of filter that we will work with in the following: let two sequences
a= (ak)k∈N,b= (bk)k∈N and a free ultrafilter U be given. We define a≤ b (modulo
U ), if and only if {i ∈N : ai ≤ bi} ∈U . Equivalence modulo U , denoted as ≡U ,
is defined analogously with the equivalence class of a sequence a being written as
[a]U . The hyperreal number space ∗R is then defined w.r.t. U as the quotient space
∗R = {[a]U : a ∈R∞} =R∞/U . For a better understanding how ≡U differs from
= in ∗R, reconsider the sequences a = (0,1,0,1,0,1, . . .), and b = (1,0,1,0, . . .).
By definition of the multiplication, a ·b = (0,0,0,0, . . .), which is obviously an ad-
ditively neutral element. So either a or b or both must be equivalent to the zero
sequence (0,0, . . .) in ∗R, though neither is identically zero.

The existence of a free ultrafilter follows from Zorn’s lemma (e.g., by going for
the ⊇-maximal cover of the Fréchet-Filter F = {A : A� is finite}), but nonconstruc-
tively so. Even worse, it is so far unknown if several non-isomorphic models of ∗R
exist, each of which may therefore have its own (individual) ordering.

Fortunately, however, it can be shown (Theorem 2.1) that the ordering restricted
on the set of distributions compactly supported in the range [1,∞) is ordered in the
same way in all models of ∗R. Let us postpone the proof of this until a little later, to
first give the definition of a stochastic order, based on the hyperreal ordering of the
representative moment sequences.

Definition 2.1. Take a > 1 and let X ∼ F1,Y ∼ F2 be two random variables taking
values in a (common) compact set [1,a] ⊂ R. Let the distributions F1,F2 be either
both continuous or both discrete (or categorical). For such random variables, we
define the stochastic order X �Y , equivalently denoted as F1 � F2 (for distributions)
or f1� f2 (for densities), to hold if and only if (EF1(X

k))k∈N≤ (EF2(Y
k))k∈N, where

the latter ordering is in the hyperreal space, upon treating the moment sequences as
hyperreal numbers.

The totality of this ordering follows from the total ordering of the set ∗R, but the
lack of dependence of the order on the model of ∗R is not as obvious. An addi-
tional difficulty comes in as we cannot decide the ordering without knowing a free
ultrafilter, and today, no such filter is known explicitly. So, in order to work with
Definition 2.1, we will convert it into a “more handy” form upon which a variety of
useful features of the ordering will become evident.
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First, let us study the (in)dependence of Definition 2.1 on models of ∗R, by look-
ing at how two continuous or two discrete distributions compare by their moment
sequences.

Lemma 2.1. Let X ,Y be random variables as in Definition 2.1 with either both con-
tinuous or both discrete (categorical) distribution functions. Then, there is an inte-
ger K so that either [∀k ≥ K : E(Xk)≤ E(Y k)] or [∀k ≥ K : E(Xk)≥ E(Y k)].

Proof (from [13]). We discuss the case of two continuous distributions first. Let
f1, f2 denote the densities of the distributions F1,F2. Fix the smallest b∗ > 1 so that
Ω := [1,b∗] covers both the supports of F1 and F2. Consider the difference of the
k-th moments, given by

Δ(k) := EXk−EY k =
∫
Ω

xk f1(x)dx−
∫
Ω

xk f2(x)dx =
∫
Ω

xk( f1− f2)(x)dx. (2.4)

Towards a lower bound to (2.4), we distinguish two cases:

1. If f1(x) > f2(x) for all x ∈ Ω, then ( f1 − f2)(x) > 0 and because f1, f2 are
continuous, their difference attains a minimum λ2 > 0 on the compact set Ω.
So, we can lower-bound (2.4) as Δ(k)≥ λ2

∫
Ω xkdx→+∞, as k→ ∞.

2. Otherwise, we look at the right end of the intervalΩ, and define a∗ := inf{x≥ 1 :
f1(x)> f2(x)}. Without loss of generality, we may assume a∗ < b∗. To see this,
note that if f1(b∗) �= f2(b∗), then the continuity of f1− f2 implies f1(x) �= f2(x)
within a range (b∗ − ε ,b∗] for some ε > 0, and a∗ is the supremum of all these
ε . Otherwise, if f1(x) = f2(x) on an entire interval [b∗ − ε ,b∗] for some ε > 0,
then f1 �> f2 on Ω (the opposite of the previous case) implies the existence of
some ξ < b∗ so that f1(x) < f2(x), and a∗ is the supremum of all these ξ (see
Figure 2.2 for an illustration). In case that ξ = 0, we would have f1 ≥ f2 on Ω,
which is either trivial (as Δ(k) = 0 for all k if f1 = f2) or otherwise covered by
the previous case.
In either situation, we can fix a compact interval [a,b] ⊂ (a∗,b∗) ⊂ [1,b∗] = Ω
and two constants λ1,λ2 > 0 (which exist because f1, f2 are bounded as being
continuous on the compact set Ω), so that the function

�(k,x) :=

{−λ1xk, if 1≤ x < a;
λ2xk, if a≤ x≤ b.

lower-bounds the difference of densities in (2.4) (see Figure 2.2), and

Δ(k) =
∫ b∗

1
xk( f1− f2)(x)dx≥

∫ b

1
�(x,k)dx

=−λ1

∫ a

1
xkdx+λ2

∫ b

a
xkdx

=− ak+1

k+1
(λ1 +λ2)+λ2

bk+1

k+1
→+∞,
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Fig. 2.2: Lower-bounding the difference of densities (the right most region where
the densities are identical in this example is irrelevant; the growth of the moment
sequence is determined by the difference of the density functions (dashed line),
to which we only need a simple (crude) bound being positive only in a sub-region
(thick step function �) to verify the divergence of the moment difference for growing
indices.

as k → ∞ due to a < b and because λ1,λ2 are constants that depend only on
f1, f2.
In both cases, we conclude that, unless f1 = f2, Δ(k) > 0 for sufficiently large
k ≥ K where K is finite. This finishes the proof for continuous distributions.

If both, X and Y are discrete (in fact categorical) variables, then f1, f2 give probabil-
ity masses located at x = 1,2, . . .. Inspecting the argument made above reveals that
the growth of the moment sequence (difference) is determined by the (difference
between) the masses put on the highest ranks (since the support is still finite). The
argument thus remains the same, and so does the conclusion. ��

Lemma 2.1 provides various key-insights, the first of which is useful in proving
that the ordering of Definition 2.1 is independent of the model underlying ∗R:

Theorem 2.1. Let F1,F2 be any two continuous or categorical distributions that
are compactly supported on [1,a] ⊆ R with a > 1. Then, the ordering of the
respective random variables X ∼ F1,Y ∼ F2, based on the canonic embedding
X �→ (E(Xk))k∈N ∈ ∗R and ≤-ordering in ∗R=R∞/U , is invariant of U .

Proof. Let F1,F2 be two probability distributions, and let R1 ∼ F1,R2 ∼ F2.
Lemma 2.1 assures the existence of some K ∈ N so that, w.l.o.g, we may de-
fine the ordering F1 � F2 iff mR1(k) ≤ mR2(k) whenever k ≥ K. Let L be the set of
indices where mR1(k) ≤ mR2(k), then complement set N\L is finite (it has at most
K− 1 elements). Let U be an arbitrary ultrafilter. Since N \ L is finite, it cannot
be contained in U as U is free. And since U is an ultrafilter, it must contain the
complement a set, unless it contains the set itself. Hence, L ∈ U , and the claim
follows. ��
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Theorem 2.1 enables working without an ultrafilter, which would practically be un-
available anyway. Using the arguments in the proof of Lemma 2.1 in a different way
reveals the physical interpretation of the � ordering:

Theorem 2.2. Let X ,Y have distributions F1,F2 with supp(F1),supp(F2) ⊆ [1,∞).
Then, if F1 � F2, then there exists some x0 ∈ supp(F1)∪ supp(F2) so that

for all x≥ x0, we have Pr(X1 > x)≤ Pr(X2 > x). (2.5)

Proof. Let f1, f2 be the density functions of F1,F2. CallΩ= supp(F1)∪ supp(F2) =
[0,a] the common support of both densities, and take ξ = inf{x∈Ω : f1(x)= f2(x)=
0}. Suppose there were an ε > 0 so that f1 > f2 on every interval [ξ−δ ,ξ ] whenever
δ < ε , i.e., f1 would be larger than f2 until both densities vanish (notice that f1 =
f2 = 0 on the right of ξ ). Then the proof of Lemma 2.1 delivers the argument by
which we would find a K ∈ N so that EXk

1 > EXk
2 for every k ≥ K, which would

contradict F1 � F2. Therefore, there must be a neighborhood [ξ − δ ,ξ ] on which
f1(x) ≤ f2(x) for all x ∈ [ξ −δ ,ξ ]. The claim follows immediately by setting x0 =

ξ −δ , since taking x≥ x0, we end up with
∫ ξ

x f1(t)dt ≤ ∫ ξ
x f2(t)dt, and for i = 1,2

we have
∫ ξ

x fi(t)dt =
∫ a

x fi(t)dt = Pr(Xi > x). ��
Theorem 2.2 puts the stochastic order � into the landscape of other stochastic

orders, as well as the context of security risk management. Notably, although we
did not demand condition (2.5) not on the entire real line, but somewhat recover it
asymptotically and coming from a completely different direction (based on an em-
bedding into the space of hyperreals). This is consistent with a common view in risk
management to consider potential large damages as more demanding than taking
actions against low risks. Since security has mostly an implicit return on investment
(in the sense of avoiding costs rather than producing revenue), one would certainly
not invest much in guarding against risks that are already low anyway. Risk eval-
uation is the process of ranking risks in terms of their potential to cause damage.
In the vocabulary of distributions, we would thus put more importance on actions
against risks with high(er) likelihood for high(er) damages. A risk value computed
using formula (2.3) clearly has such a positive correlation with impact (damage) and
likelihood, which justifies it as a heuristic decision rule to rank risks. Theorem 2.2
points out� as a decision rule following the same rationale. Reversing the approach,
one could think of using condition (2.5) as a starting point to define � as a straight-
forward generalization of the usual stochastic order (2.2). This method (though left
unexplored here) may avoid any appeal to ∗R, but comes at the cost of having to
manually prove all properties of orders that we are interested in (the totality of the
order can, however, get lost on this route, as Remark 2.1 will explain later). In let-
ting the ordering root in the order of hyperreal numbers (which, by Theorem 2.1
may be even called canonic), we get all properties of the ordering “for free,” since
� behaves on the hyperreals like ≤ behaves on R. Most importantly, moment se-
quences present a common representation for both, continuous and discrete random
variables. Assuming that there is a meaningful common support for both kinds of
distributions (continuous and discrete), the �-relation is well-defined even between
distributions of different kinds.
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2.2.2 Deciding the Stochastic Order

Inspecting the proof of Lemma 2.1 a last time under a different perspective equips
us with a variety of simple criteria to decide � between categorical or between two
continuous distributions (under some smoothness assumption on the densities).

In the following, let X ∼ F1,Y ∼ F2 be two distributions whose supports are
S1 = [1,a] and S2 = [1,b]. Clearly, if a < b then F1 � F2, since the growth of the
moment sequence (difference) is determined by the lot of mass that F2 puts on the
region [b−a,b]. Note, however, that an analogous conclusion by an overlap on the
left of the interval would be flawed: suppose the supports to be [a,c] and [b,c], where
a < b. Either, F1 � F2 and F2 � F1 is possible under this setting, since what tips the
scale is the lot of mass that a distribution puts on the right neighborhood of b, i.e.,
the interval (b− ε ,b] for ε > 0.

So, the interesting case to decide � occurs when the supports of F1,F2 both
extend to the same limit a > 1 on R. Let X1 ∼ F1,X2 ∼ F2 throughout the following
discussion.

Categorical Distributions

Let the support of F1,F2 be an ordered setΩ= {cn > cn−1 > .. . > c2 > c1}, i.e., the
category of lowest rank (e.g., lowest damage) is c1. Let f1 = (p1,1, . . . , p1,n), f2 =
(p2,1, . . . , p2,n) be the respective probability mass functions. Typically, those could
be empirical distributions (normalized histograms). The moment sequences are
EFi(X

k
i ) = ∑n

j=1 jk · pi, j. Suppose (w.l.o.g.) that p1,n < p2,n, then the growth of

the sum EFi(X
k
i ) in k is determined by the fastest growing exponential terms

nk · p1,n < nk · p2,n (note that n is constant here). Thus, F1 � F2 in that case. Upon
equality p1,n = p2,n, we can subtract the (now equal) terms nk · pi,n from both
sums, leaving the second-largest probability masses pi,n−1 to determine the order
in the same way as before. In this special case, the �-ordering is thus identical
to the lexicographic ordering on the vectors of probability masses: F1 � F2 ⇐⇒
(p1,n, p1,n−1, . . . , p1,1)<lex (p2,n, p2,n−1, . . . , p2,1)

Continuous Distributions

We can invoke Lemma 2.1 to conclude F1 � F2 if we find some x0 for which
PrF1(X1 > x0) ≤ PrF2(X2 > x0). Finding this value explicitly is quick if the sup-
ports overlap as discussed before (e.g., if F1 lives on [1,a] and F2 lives on [1,b] with
b > a, then x0 = a is the sought threshold). If both random variables range up to
the same point a > 1, then x0 can be worked out by intersecting the survival func-
tions of F1,F2, which is Si(t) := PrFi(Xi > t) = 1−Fi(t) for i = 1,2. An admissible
choice for x0 is any value ≥ inf{t : S1(x)< S2(x) for all x≥ t}. The shaded areas in
Figure 2.3a mark the region ≥ x0, which determines the preference.
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Since we do not actually need an optimal value for x0, approximations thereof
using numerical evaluations of the survival functions can be used to decide x0. Al-
ternatively, if the densities of F1,F2 are sufficiently smooth, the lexicographic order
can be used again:

Lemma 2.2 ([14]). Let f ,g∈C∞([1,a]) for a real value a > 1 be probability density
functions. If

((−1)k · f (k)(a))k∈N <lex ((−1)k ·g(k)(a))k∈N,

then f � g.

Proof (from [15]). The argument will look for which distribution is below the other
in a right neighborhood of a. To simplify matters, however, let us “mirror” the func-
tions around the vertical line at x = a and look for which of f (x),g(x) grows faster
when x becomes larger than a, using an induction argument on the derivative order
k. Clearly, whichever function grows slower for x ≥ a in the mirrored view is the
�-preferable one. Furthermore, we may assume a = 0 without loss of generality (as
this is only a shift along the horizontal line). For k = 0, we have f (0)< g(0) clearly
implying that f � g, since the continuity implies that the relation holds in an entire
neighborhood [0,ε) for some ε > 0. Thus, the induction start is accomplished.

For the induction step, assume that f (i)(0) = g(i)(0) for all i < k, f (k)(0) <
g(k)(0), and that there is some ε > 0 so that f (k)(x) < g(k)(x) is satisfied for all
0≤ x < ε . Take any such x and observe that

0 >
∫ x

0

(
f (k)(t)−g(k)(t)

)
dt = f (k−1)(x)− f (k−1)(0)−

[
g(k−1)(x)−g(k−1)(0)

]

= f (k−1)(x)−g(k−1)(x),

since f (k−1)(0) = g(k−1)(0) by the induction hypothesis. Thus, f (k−1)(x) <
g(k−1)(x), and we can repeat the argument until k = 0 to conclude that f (x) < g(x)
for all x ∈ [0,ε).

For returning to the original problem, we must only revert our so-far mirrored
view by considering f (−x),g(−x) in the above argument. The derivatives accord-

ingly change into dk

dxk f (−x) = (−1)k f (k)(x). ��
The smoothness assumption made in Lemma 2.2 is practically weaker than it ap-

pears at first glance. To see this, consider nonparametric models based on empirical
data: Let f̂ be a density function that is perhaps discontinuous. Let Kh ∈C∞(R) be
the density function of a Gaussian distribution with zero mean and variance h > 0.
We define the smoothed version f := f̂ ∗Kh, and observe that fh ∈C∞ for all h > 0
by the differentiation theorem of convolution. Furthermore, it is not difficult to ver-
ify that by letting h → 0, fh is L1-convergent to f , and since the support of f̂ is
compact, the convergence is uniform.

The Gaussian density offers the particular appeal of letting us work out the
derivatives of all orders even analytically, since (by the differentiation theorem),

f (k) = f̂ ∗K(k)
h , and all we need is the k-th order derivative of the Gaussian density.

This is directly given by [17]
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f (k)(x) =
1

h ·√2π
dk

dxk exp

(
− 1

2h2 (x j− x)2
)
, (2.6)

in which the k-th derivative of the exponential term can be expressed in closed form
using Hermite polynomials. Those are defined recursively by Hk+1(x) := 2xHk(x)−
2Hk−1(x) upon H0(x) = 1 and H1(x) = 2x. The k-th derivative in (2.6) can then be
computed from the relation

(−1)k exp

(
x2

2

)
dk

dxk exp

(
−x2

2

)
= 2−

k
2 Hk

(
x√
2

)
. (2.7)

Most useful is this representation if it is applied to nonparametric kernel den-
sity estimates, in which the density in question is a sum of Gaussian densities. The
derivatives arising there can be computed via (2.7) (see [17] for details). The order-
ing should, however, be used with care when the support of the respective densities
is a disconnected interval (i.e., has holes in it). In such cases, decisions may be im-
plausible and games can be difficult to construct and solve. We will give examples
of such unpleasant effects and develop respective remedies in Chapter 3.

A general issue with parametric losses is their representation of an arbitrary
amount of information by a fixed number of parameters. This inevitably incurs a
loss of information, and calls for partly sophisticated methods of parameter fitting
or similar. On the contrary, nonparametric losses like kernel densities come with
the appeal of preserving all information upon which they are constructed, as well
as offering the flexibility of allowing for adjustments to model uncertainty in the
expert’s answers more explicitly. For example, if a set of risk estimates r1,r2, . . . ,rN

from N experts is available, and ships with an additional information σ1,σ2, . . . ,σN

about the individual (subjective) certainty of each expert, then a kernel density can
be constructed from Gaussian curves, each centered at ri and with bandwidth σi.
The resulting model is, strictly speaking, an opinion pool that preserves all infor-
mation, incorporates all subjective uncertainty, and is perfectly useful with the �
ordering and all criteria related to its decision.

2.2.2.1 Comparing Distributions to Numbers (Randomness vs. Determinism)

If some deterministic (fixed) value a ∈ R shall be compared to a random outcome
Y ∼ F , the ordering depends on the support Ω = [1,b] of Y (assuming that Y has
a continuous and hence non-degenerate density over Ω). For the constant a, we
can easily work out the moment sequence to be (ak)k∈N. Comparing this to the
respective moment sequence of Y then uses only the range of Y ’s support:

1. If a < b: since f is continuous, we can choose a value 0 < ε < (b−a)/3 so that
f is strictly positive on the interval [b− ε ,b−2ε ]. Then, the k-th moment of Y
satisfies the lower bound
∫ b

1
yk f (y)dy≥ ( inf

[b−2ε ,b−ε ]
f ) ·

∫ b−ε

b−2ε
ykdy =

1
k+1

[
(b− ε)k+1− (b−2ε)k+1

]
.
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The bound is positive since f is positive everywhere on the chosen interval. The
respective exponential function has a base larger than a, since b− 2ε > a, so
a� Y since the moment sequences diverge accordingly.

2. If a > b, then Y can never take on values larger than b, which makes its moment
sequence necessarily grow slower than that of (the constant) a. Formally, we
can upper bound the moment sequence:

∫ b

1
yk f (y)dy≤ (sup

[1,b]
f ) ·

∫ b

1
ykdy = (sup

[1,b]
f )

1
k+1

bk+1.

Since a > b, the function ak grows faster than the upper bound, which gives the
ordering Y � a.

3. If a = b, then we must work out the moment sequence explicitly by virtue of
the mean-value theorem: we find some ξ ∈ [0,a] so that

EY k =
∫ a

0
yk f (y)dy = ξ k

∫ a

0
f (y)dy

︸ ︷︷ ︸
=1

= ξ k ≤ ak

for all k. Hence, Y � a in that case. Intuitively, this can be explained by out-
comes less than a being possible under the random variable Y , which is there-
fore preferable over the alternative where the maximal loss a is always occur-
ring.

2.2.2.2 Distribution Mixes and Comparing Mixed Types

Distribution mixes of the form F = λ1F1 + λ2F2 + . . .+ λnFn, where ≤ λi ≤ 1 for
i = 1,2, . . . ,n and λ1 + . . .+ λn = 1 require no particular treatment here by virtue
of our embedding into the hyperreal space ∗R. Since � is nothing else than ≤ in
∗R, the properties of this ordering are the same as those of ≤ on R (by the transfer
principle [20]), and hence carry over to �. This demonstrates the benefit gained by
the embedding into ∗R.

Comparing distributions of mixed type, i.e., comparing categorical to continuous
distribution is technically possible, since both are representable by the same objects.
The physical meaning of such a comparison, however, is in many cases doubtful,
since categorical distributions mostly refer to ranks, while continuous distributions
can represent much different quantities. A meaningful comparison appears thus only
possible if reals shall be compared to integers; however, given absolute continuity
w.r.t. the Lebesgue measure, the masses that the two distributions assign to integers
may be too different to lead to any meaningful comparison.
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2.2.3 Distributions with Infinite Support

For risk management, we require distribution models for extreme events, which calls
for heavy, long or fat tails. Common choices are the Gumbel-, Weibull-, or Frechet-
distribution, or also the (a,b,0)-class of distributions (see the example below). The
method of comparing distributions by moments comes with the appeal of being
applicable even in cases where there is no analytical expression for the distribution
itself (such as happens for stable distributions).

If we compare a distribution with compact support to one with infinite support
(such as extreme value distributions or ones with long or fat tails), then the com-
pactly supported distribution is always preferred, by the same argument as used
above (and in the proof of the invariance of � w.r.t. the ultrafilter used to construct
∗R; see [14, Lemma 2.4]).

In some cases, it can be sufficient to look at the tail masses directly, without
having to compute any moments explicitly.

Example 2.3. A popular family of loss distributions in risk management is the
(a,b,0)-class of distributions [10, 9], having their probability masses defined re-
cursively by Pr(X = k) = Pr(X = k− 1) · (a+ b

k ) for k = 1,2,3, . . .. This class in-
cludes (only) the Poisson, binomial, and negative binomial distributions. A com-
parison under � is here particularly easy, depending on the values of a and b. Let
F1 ∼ (a1,b1,0) and F2 ∼ (a2,b2,0) be two distributions. If b1 < b2 and a1 = a2, then
Pr(X = k|a,b1)< Pr(X = k|a,b2), and F1 � F2. If a1 < a2 and b1 = b2, then F1 � F2

also. More involved conditions allowing for both parameters to be different are not
difficult to work out.

The unfortunate occasions are those where:

• both distributions have infinite support, and
• neither Lemma 2.3 nor any direct criterion (like (2.9)) applies, and
• an approximation or truncation (see Section 2.2.3) cannot be done (for whatever

reason).

Then we have to work out the moment sequences explicitly. This situation is in-
deed problematic, as without assuming bounded supports, we can guarantee neither
existence nor divergence of the two moment sequences.

Appropriate examples illustrating this problem can easily be constructed by
defining distributions with alternating moments from the representation by the
Taylor-series expansion of the characteristic function (see [14] for an exam-
ple). Mixes of such distributions (discussed previously) can perhaps replace an
otherwise unhandy model (up to any desired precision; see [19]). Further and im-
portant examples relate to catastrophic events, and the class of distributions with
heavy, fat, or long tails. Some of these do not even have moment-generating func-
tions (though characteristic functions can be used as well), but all of them have their
individual importance and applications in risk management.
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Indeed, a compact support is not a necessary circumstance for all moments to
exist, as the Gaussian distribution shows. This distribution is characterized entirely
by its first two moments, and thus can easily be compared in terms of the�-relation.

A compact support is, however, a sufficient condition for the moment sequence to
exist, and any distribution with infinite support can be approximated by a truncated
distribution. The following arguments are from [14]: Given a random variable X
with distribution function F , then the truncated distribution

F̂(x) = Pr(X ≤ x|a≤ X ≤ b).

is the distribution of X conditional on X falling into a finite range [a,b]. Likewise,
the truncated density is scaled by f (x)/(F(b)−F(a)) whenever x ∈ [a,b] and zero
elsewhere.

It is easy to see that upon choosing the interval [a,b] large enough, we can ap-
proximate every distribution up to a maximal error ε > 0 that we can choose in
advance (the size of the interval will of course depend on ε). However, if two distri-
butions F1,F2 with infinite supports shall be compared, then both must be truncated
on a common interval [a,b], for otherwise, it is straightforward to truncate the dis-
tributions differently so that both F̂1 � F̂2 and F̂1 � F̂2 are possible. See [14] for a
more detailed explanation.

Since the comparison obviously still depends on the chosen interval used for the
truncation, we could let ε go to zero and look at a sequence of truncations to approx-
imate the original distribution in the limit. If the sequence of (common) truncations
ultimately runs into a fixed �-relation, we can define the original distributions to
satisfy the same limiting �-relationship. This motivates the following definition:

Definition 2.2 (Extended Strict Preference≺). Let F1,F2 be distribution functions
of nonnegative random variables that have infinite support and continuous density
functions f1, f2. We strictly prefer F1 over F2, denoted as F1 ≺ F2, if for every se-
quence an → ∞ there is an index N so that the truncations (approximations) F̂i,n on
the common interval [1,an] for i = 1,2 satisfy F̂1,n ≺ F̂2,n whenever n≥ N.

The �-relation is defined alike, i.e., the ultimate preference of F2 over F1 on any
sequence of approximations.

Definition 2.2 is intuitively motivated but not necessarily handy in practice. We
can, however, avoid the labor of working out the truncation sequence, as the follow-
ing Lemma shows:

Lemma 2.3. Let F1,F2 be two distributions supported on [1,∞) with continuous
densities f1, f2. Let (an)n∈N be an arbitrary sequence with an → ∞ as n→ ∞, and
let f̂i,n for i = 1,2 be the truncated distribution fi supported on [1,an].

If there is a constant c < 1 and a value x0 ∈ R such that f1(x) < c · f2(x) for
all x ≥ x0, then there is a number N such that all approximations f̂1,n, f̂2,n satisfy
f̂1,n ≺ f̂2,n whenever n≥ N.

Proof (adapted from [14]). Let i ∈ {1,2}. The truncated distribution density that
approximates fi is fi(x)/(Fi(an)−Fi(1)), where [1,an] is the common support of
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n-th approximation to f1, f2. By construction, an,i → ∞ as n → ∞, and therefore
Fi(an)−Fi(1)→ 1 for i = 1,2. Consequently,

Qn =
F1(an)−F1(1)
F2(an)−F2(1)

→ 1, as n→ ∞,

and there is an index N such that Qn > c for all n≥ N. In turn,

f2(x) ·Qn > f2(x) · c > f1(x),

and by rearranging terms,

f1(x)
F1(an)−F1(1)

<
f2(x)

F2(an)−F2(1)
, (2.8)

for all x≥ x0 and all n≥N. The last inequality (2.8) lets us compare the two approx-
imations easily by the same arguments as have been used in the proof of Lemma 2.1,
and the claim follows. ��

By virtue of Lemma 2.3, we can decide the strict preference relation to distribu-
tions by checking the hypothesis of the lemma but need not work out any trunca-
tions.

Remark 2.1. The assumption of bounded supports is crucial for the totality of the
resulting order. Even the extension defined above admits pairs of distributions that
are not ≺- nor �-related in either way. A simple counterexample are the densities
f (x) ∝ e−x(1+ sin(x)) and g(x) ∝ e−x(1+ cos(x)). Those alternatingly exceed one
another, and it is not difficult to construct a sequence an→∞ for which the truncated
densities fn,gn satisfy fn ≺ gn for even n, but fn � gn for odd n.

The same example also shows that Theorem 2.2 cannot be used as a starting point
for a definition to drop the boundedness condition or the assumption that X ≥ 1 for
all random variables of interest. The same sequence an as above also provides an
unbounded infinitude of x0 values for which condition (2.5) would fail.

An example showing a case when Lemma 2.3 is inapplicable is the following:

Example 2.4 (from [14]). Take the “Poisson-like” distributions with parameter
λ > 0,

f1(k) ∝

{
λ k/2

(k/2)! e−λ , when k is even;
0, otherwise.

, f2(k) ∝

{
0, when k is even;
λ (k−1)/2

((k−1)/2)! e−λ , otherwise

Obviously, no constant c < 1 can ever make f1 < c · f2 and that all moments exist.
However, neither distribution is preferable over the other, since finite truncations to
[1,an] based on the sequence an := n will yield alternatingly preferable results.

A stronger condition that implies the hypothesis of Lemma 2.3 is the following
[14]:
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lim
x→∞

f1(x)
f2(x)

= 0. (2.9)

To see this, note that if the condition of Lemma 2.3 were violated, then there is
an infinite sequence (xn)n∈N for which f1(xn) ≥ c · f2(xn) for all c < 1. In that
case, there is a subsequence (xnk)k∈N for which limk→∞ f1(xnk)/ f2(xnk) ≥ c. Let-
ting c → 1, we can construct a further subsequence of (xnk)k∈N to exhibit that
limsupn→∞( f1(xn)/ f2(xn)) = 1, thus contradicting condition (2.9). Indeed, (2.9)
puts � into the proximity of the likelihood ratio order [22] in the sense that this
condition implies both, a likelihood ratio and ≺-ordering. Note that, however, a
likelihood ratio order does not necessarily imply a ≺-order, since the former only
demands f (t)/g(t) to be increasing, but not a <-relation among the densities.

Though the above criteria only relate to strict preferences, there is no conceptual
difficulty in defining the �-order and equivalence as done in Definition 2.2:

Definition 2.3. Let F1,F2 be two distributions supported on the entire nonnegative
real half-line R+ with continuous densities f1, f2. Let (an)n∈N be a diverging se-
quence towards ∞, and let F̂i,n for i = 1,2 denote the density Fi truncated to have
support [1,an]. We define F1 � F2 if and only if for every sequence (an)n∈N there is
some index N so that F̂1,n � F̂2,n for every n≥ N.

Like before, this definition simply asks for the �-relation to hold ultimately on
every sequence of common truncations. Given distributions with finite support, a
truncation will not do any change once the interval fully overlaps the support. Thus,
the sequence of truncations will converge to the original distributions within a finite
number of steps, so that the extended≺ and�-relations for infinite supports include
the same relations for finitely supported distributions as a special case.

2.2.4 Implausible Comparisons

Not all distributions compare equally plausible, and Theorem 2.2 can be even con-
sistent with implausible and unexpected �-orders. According to the theory, we
would in any case prefer the distribution with smaller support or lighter tails, but
this is not necessarily also consistent with our intuition.

Figure 2.3a illustrates the issue using a χ2-distribution with 3 degrees of freedom
for F1 and a Gaussian distribution with mean 8 and standard deviation 0.4 for F2. The
relation F2 � F1 is obvious since F1 assigns more mass to events with larger losses.
Precisely, it is the point x0 where the residual mass left under F1 equals the residual
mass under F2 (i.e., the survival functions intersect) is the threshold x0 that Theo-
rem 2.2 speaks about. This limit is x0 ≈ 8.74. These apparently rare cases, however,
extend beyond the support of distribution F1, which based on the characterization
by a sequence of would clearly let us prefer F2 over F1 (Figure 2.3a). Indeed, it is
easy to see that such a result is not what we would expect or want in practice.
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Fig. 2.3: Correcting Implausible Comparisons by Quantile-Based Approximations
[15]

Now, we can fix the issue by truncating the loss distributions upon saying that
we simply accept events that occur in less than 5% of the cases. This amounts to
truncating both distributions at their individual 95% quantiles, giving the picture
in Figure 2.3b. Obviously, the implausible preference is hereby corrected, since F̂1

gives less damage in all cases than F̂2.
Note that this individual and distinct risk acceptance for F1,F2 is seemingly in-

consistent with our previous remark that distributions with infinite supports should
be compared based on a common truncation. However, we stress that we are, at this
point, still involved in the model building. This is where a risk acceptance thresh-
old can be used to truncate the distribution accordingly and to get a model with
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bounded support. On the contrary, Section 2.2.3 speaks about situations where the
appropriate models are (for whatever reason) necessarily ones with infinite support;
and those, for the sake of a risk preference analysis, must then be truncated on a
common interval.

2.3 Game Theory Based on �

Let F be the set of all distributions of bounded support within [1,∞). To lift game
theory to the abstract space F of distributions, we require continuity of payoff func-
tionals defined over F . This would be the “expected” payoff distribution, which –
for the special case of a finite two-player game, is actually given by the law of total
probability, but let us do some warm-up first.

Since � is a total ordering, it induces a topology on the set of distributions given
by the family T of open sets enclosed “between” two distributions F1,F2 as

(F1,F2) := {F ∈F : F1 ≺ F ≺ F2} ,

and the topology is denoted as T = {(F1,F2)|F1,F2 ∈F where F1 ≺ F2}.
Suppose that the strategies in a game to form a partition of the action space

(which is the mild assumption that strategies are mutually excluding each other but
are exhaustive concerning what a player can do). With the payoff matrix being A ∈
F n×m, we are interested in the distribution of the revenue obtainable from the game.
Call this random variable R. To the complete game description, let both players take
random actions (mixed strategies) from the (convex) action spaces S1 = Δ(A1) and
S2 = Δ(A2) for player 1, and player 2, respectively. Let both A1 and A2 be compact
sets (pure action spaces).

Since a player’s move is a random choice of row or column in the payoff matrix
A, let us think of player 1 choosing rows with likelihoods as specified by p, and let
player 2 draw columns with likelihoods q. Then, the law of total probability gives
us the outcome R to satisfy,

Pr(R≤ r) =∑
i, j

Pr(Ri j ≤ r|i, j)Pr(i, j), (2.10)

where Pr(Ri j ≤ r|i, j) is the conditional probability of Ri j given a particular choice
(i, j), and Pr(i, j) is the (unconditional) probability for this choice to occur. As-
suming independence, we have Pr(i, j) = pi · q j when the mixed strategies of both
players over finite action spaces A1,A2 are the vectors p,q. Stochastic indepen-
dence of these choices is a common assumption, but letting them be dependent
(and connected by a continuous copula) does not invalidate the upcoming results
(we nonetheless leave this direction unexplored here for simplicity).

Denote by F(p,q) the distribution of the game’s outcome under strategies
(p,q) ∈ S1×S2, then Pr(R≤ r) = F(r) depends on (p,q), and (2.10) can be rewrit-
ten as

Pr(R≤ r) = (F(p,q))(r) =∑
i, j

Fi j(r) Pr
p,q

(i, j), (2.11)
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Optimizing the payoff distribution w.r.t. � means shaping the distribution F of the
random damage R via proper playing. According to Theorem 2.2, this means for
player one to “push” the mass of R towards lower losses, while player two has the
opposite incentive. The game is in that sense “constant sum,” though thinking about
it as “zero sum” requires care: Obviously, player two is here not rewarded with
−F(p,q), since this would not necessarily correspond to a meaningful distribution
any more.

An equilibrium can be defined in the natural way, and so can its existence be
proven, based on the prior verification that a distribution-valued utility function
F(p,q) is continuous in p and q. To this end, we show that any set in the topol-
ogy T , i.e., any open set in F , has a preimage under F that is open w.r.t. the
product topology. The following lemma establishes the important steps towards this
conclusion by exploiting the ordering and arithmetic within ∗R.

Lemma 2.4. Let r1, . . . ,rk ∈F for k ≥ 1 be a set of fixed elements, and take α =
(α1, . . . ,αk)∈Rk. If two elements �,u∈F bound the weighted sum �≺∑k

i=1αiri =
αT r≺ u, then there is some strictly positive δ ∈R so that �≺ α̃T r≺ u for every α̃
within a δ -neighborhood of α in Rk.

Proof (from [14]). Define Δ :=min
{
αT r− �,u−αT r

}� 0 and r :=max{r1, . . . ,rk}.
Suppose that we would modify all weights αi to αi + δi = α̃i. If so, then the so-
modified sum differs from the given one by

∣∣α̃T r−αT r
∣∣≤∑k

i=1 |δi|ri ≤ r ·∑k
i=1 |δi|.

Now, suppose that all |δi| ≤ δ , then the change alters αT r by a magnitude of no
more than r ·∑k

i=1 δi ≤ r · k · δ . As k and r are fixed, we can choose δ sufficiently
small to satisfy r · k · δ ≺ Δ, in which case we must have

∣∣α̃T r−αT r
∣∣ < Δ, and

therefore � ≺ α̃T r ≺ u for any choice of α̃ within an δ -neighborhood of α in the
maximum-norm on Rk. ��

With Lemma 2.4, the continuity of F(p,q) in (p,q) can be established:

Proposition 2.2. Let i, j be integers and define the function Di j : S1× S2 → R as
Di j(p,q) = Prp,q(i, j). If Di j is continuous and all Fi j are compactly supported in
[1,∞) and have a (continuous or categorical) density function, then the mapping
F : S1×S2 →F ; (p,q) �→∑i, j Di j(p,q)Fi j is continuous w.r.t. the product topology
on S1×S2 and the order topology on F .

Proof (adapted from [14]). Without a metric on F , we need to show that the preim-
age of every open set in F under F is open to prove that F is continuous in (p,q).
For that sake, let the open set (�,u)∈T be arbitrary and contain some point F(p,q)
(which must exist, for otherwise, the set of preimages would be empty). To ease no-
tation, let us flatten the double-sum ∑i, j into an ordinary sum (say, by introducing
a multiindex ν) over k = n ·m elements, where n,m are the limits in the original
expression. Then, the mapping takes the form F(p,q) = ∑k

ν=1 Dν(p,q)Fν . With
the weights α being defined by the individual values of Dν(p,q), we can apply
Lemma 2.4 to establish a bound δ > 0 within which we can arbitrarily alter the
weights towards α̃ without leaving the open set (�,u). Since D is continuous on
the compact set S1×S2 it is also uniformly continuous, and we can fix a δ ′ > 0 so
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that ‖Dν(p′,q′)−Dν(p,q)‖ < δ whenever ‖(p,q)− (p′,q′)‖ < δ ′, independently
of the particular point (p,q). The sought pre-image of the open set (�,u) is thus the
(infinite) union of open neighborhoods constructed in the way described, and thus
itself open. ��

Equipped with continuity of the payoff functions, at least for matrix games, all
the known results on existence of Nash equilibria, such as the following, apply:

Theorem 2.3 (Glicksberg [6, 7]). If for a game in normal form, the strategy spaces
are nonempty compact subsets of a metric space, and the utility-functions are con-
tinuous w.r.t the metric, then at least one Nash-equilibrium in mixed strategies exists.

Defining games is thus a canonic matter, though this generalized class of games
has some unusual properties. We will revisit the matter in more detail in Chapter 3.
Note that up to this point, we have only used the compatibility of the ordering with
arithmetic (freely shipping with ∗R), and different stochastic orders may not come
equally handy here.

2.4 Application of � in Risk Management

Risk management in general can be well supported by statistics, but security risk
management is different. Unlike in many other branches, there is typically no un-
derlying physical process determining the risk, and much of the assessment is sub-
jective. Predictions by experts usually rely on experience, expertise, and are also
influenced by recent information, media, and many other factors. Collecting such
information is a challenge on its own that in a traditional approach would be fol-
lowed by opinion pooling [4, 3]. The latter is required for a meaningful comparison
of the consensus distilled from the pooling. The use of a stochastic order, however,
elegantly avoids this need at all, and thus spares the need to find a consensus. That
also allows for expert polls to happen in an essentially different form as usual, since
a discussion is not required until a decision recommendation (based on �) is avail-
able.

The advantages induced by the use of a stochastic order (over a plain numeric or-
der following an opinion pooling) are summarized by the questioning being doable
individually, separately, asynchronously, and anonymously. That entails the follow-
ing features, among an improvement of the data quality as such [12]:

1. Expert interviews can be conducted “offline,” i.e., without personal meetings
or open discussion. While this saves time for the participant, it also reduces
biases and influences occurring in the presence of others (say, induced by
cultural, behaviorial habits, superiors/subordinate relations, or similar). Unin-
formed guesses triggered in meeting situations “just to say something” are thus
less likely. Whenever personal meetings are intended, methods of qualitative
data collections like the Delphi method remain perfectly applicable.
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2. Exploitation of skill diversity: statistics knows a lot of methods to compile mod-
els in the presence of missing data. In questioning experts on different aspects,
and allowing them to leave out any part of the survey that they have no reliable
clue about (also supported since the opinion needs not be uttered against an au-
dience of others), the data collected from multiple people may be individually
incomplete but in total draw a still complete picture.

3. Enlargement of the expert pool: since there is no need to involve people in inter-
nal (and hence mostly confidential) meetings, it is possible to involve external
stakeholders and experts in the risk data collection (say, to measure reputation
by collecting customer feedback).

4. In using distributions as the object to manage, we avoid loss of information by
compiling a whole data set into a single representative figure. Thus, there is no
need for any consensus finding, and all available opinions and data count go
into the final decision with the same importance.

An independent advantage of game theory itself lies in the models being inde-
pendent of any particular details to the strategies. That is, the assessment of risks
would normally require a disclosure of the details about threats and countermea-
sures. Such information is, however, highly confident for good reasons. The models
themselves, as well as their analysis, can work in abstract terms so that the labor and
information related to risks and countermeasures remains under confidentiality with
the customer, while the expertise on the algorithmic details and matters of decision
support can rest with the service provider.

Regarding the practical use of the theory laid out here, observe that some of
the (abstract) parameters indeed have natural instances in risk management. For
example, the cutoff point a where distributions are truncated (see Sections 2.2.2
and 2.2.4) corresponds to a risk acceptance threshold, i.e., any damage beyond a is
considered as so unlikely that the risk is simply taken. We will revisit the issue in
part two of this book, when we discuss how to properly parameterize the games for
risk management.

Stochastic orders have various applications in risk management, such as for op-
timized surveillance accounting for uncertainty [16], defense against advanced per-
sistent threats [17] in water and electricity supply networks (Chapters 13 and 14
in this book), protection against malware infections in networks (Chapter 8 in this
book), or optimized surveillance (Chapter 15).

2.5 Extensions and Outlook

It is a well-recognized issue of traditional game theory that the perfect rationality
induced by a utility maximization assumption is not necessarily a good prediction of
human behavior. Experimental verifications of such deviations have motivated the
entire field of behavioral game theory [2], which studies behavior induced by other
means than utility maximization. The replacement of numeric by stochastic orders
may, though this is not verified yet, bring closer together traditional and behavioral
game theory by changing the understanding of what utility maximization, or equiv-



44 S. Rass

alently, loss minimization actually means. Our stochastic order was here developed
from a purely technical idea, but naturally carries a meaning that is quite intuitive in
risk management, since it pessimistically focuses on extreme outcomes in a strong
sense. Consequently, equilibria under the stochastic order on the full distribution
objects may be quite different from equilibria computed in numeric orders of aver-
ages or other statistics. Studying the extent to which these are accurate in explaining
human behavior is a matter of future research and outside the scope of this chapter
and book.

In general, the use of stochastic orders can simplify and complicate matters (yet
hardly at the same time), and the application or extension of � to other types of
games, like in extensive form or continuous games, is theoretically possible (indeed,
Glicksberg’s extension to Nash’s theorem that given above as Theorem 2.3 applies
to continuous games). The practical challenges along such aisles are twofold (yet
can be overcome): (i) by working in the hyperreal field, we are equipped with well-
defined yet partly undoable arithmetic (additions and scalar multiplications are easy
to do, yet divisions require an explicit ultrafilter, which we do not have), and (ii)
establishing the counterparts to results known from traditional game theory requires
care and potentially even new proofs. The transfer principle [20] (or more generally,
Łoś theorem; see [1]) directly lifts every first-order logic expression valid in R to a
related claim in ∗R. We could hope for this to imply all results on traditional games
to hold analogously for distribution-valued games based on the �-ordering intro-
duced here. Alas, such hope is wrong due to counterexamples: for instance, iterative
algorithms for equilibrium computation, such as fictitious play, are known to con-
verge for games over (R,≤) [21]. By the transfer principle, the same convergence
claim holds in ∗R, but with the subtle yet striking difference: the convergence in R

is along a sequence of integers, whereas convergence in ∗R is, by the transfer prin-
ciple, along a sequence of hyper-integers. The latter extend beyond integer infinity,
which means that a practical implementation of fictitious play would be required to
count beyond N, which is clearly not achievable. The issue can, however, be circum-
vented with the help of Lemma 2.2, and Chapter 3 gives the full details on this. In
fact, it is possible to convert a distribution-valued game into a traditional game, such
that the equilibria in the classical game is an approximation to the �-equilibrium,
up to arbitrary precision (Theorem 3 in Chapter 3). In using such a conversion, we
can also bypass the aforementioned issues of practical arithmetic in ∗R, since in
converting a �-minimizing game into one with payoffs from R, the full armory and
results for traditional games are regained as well.

An independent aspect of interest may concern the modeling of uncertainty by
information sets. Indeed, if a move in an extensive form game carries uncertainty
since a player does not know the exact state of another player, then the outcome may
be random (due to this missing information). So, notions like subgame perfectness
of equilibria may be reconsidered in stochastic orders, which is a new way of dealing
with information sets in extensive form games.

Applications of stochastic orders in game theory are recent and, today, mostly
relate to risk management (where the idea originally emerged from). On a purely
theoretical level, the framework was recently applied to study the cost of moves
when playing a mixed equilibrium. That is, if a player’s strategy entails changing
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a state against some (natural) inertia, then a player may prefer to deviate from a
mixed equilibrium, simply because it is perceived as “too expensive” to change
the strategies as frequent as the equilibrium would prescribe (thus offering another
connection to behaviorial game theory). In a way, this view extends games in a
way similar to how algebraic equations are generalized into differential equations
by introducing the derivative in the equation. In [18], the same idea of a cost related
to changes in a player’s behavior (similar to a first-order derivative of a function) is
easily modeled and studied within the framework of distribution-valued games.

Stochastic elements are ubiquitous in real life game-theoretic models, and much
effort is typically spent on capturing randomness in expressive statistics that game
theory can subsequently optimize. In changing the approach into using the random-
ness “as is,” the very same applications could be analyzed within the framework
of stochastically ordered payoffs. Whether or not this method would contribute to
closing the gap between the predictions of traditional and behaviorial game theory
is an unsolved question so far, but surely one with an interesting answer.
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Chapter 3
Security Strategies and Multi-Criteria
Decision Making

Stefan Rass

3.1 Introduction

The essence of security is defending assets against an adversary that may behave
almost arbitrarily. Game theory can help finding optimal strategies against any pos-
sible behavior, provided that the attacker stays within a known action space. This
is the typical domain and case of security risk management, where a set of threats
is identified, against which a uniformly best defense is sought. In game-theoretic
terms, the threat list corresponds to an action space, and the best defense against
that list is a security strategy. This chapter discusses how such strategies can be
computed for single and multiple protection goals, even when the effects of the
defense actions are nondeterministic (random). The latter especially admits a treat-
ment of uncertainty in three forms, being about the adversary (form and number),
the attacker(s) incentives, and – to a limited extent – also the action space (threat
list) itself. Our goal in the following is looking at suitable game-theoretic models
and methods to compute best defenses under uncertainty.

In many cases, the information available to a decision maker is uncertain in di-
verse manners. If at least some information is available, then Bayesian choices [21]
appear as the natural way to go, since they aim at minimizing the residual uncer-
tainty given all available information.

What if the information is not uncertain but rather not there at all? In that case,
assumptions must be made, but how can we be sure that these are even remotely
close to reality? The answer is that this verification problem has no general solu-
tion, and cannot be circumvented either. Even the Bayesian approach relies on the
specification (assumption) of some a priori distribution (or hyperpriors, in higher
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order Bayesian methods), which is nothing else but an informed guess about the
yet unknown parameters. Alternative to informed guesses that Bayesian decision
theory speaks about, minimax decision theory seeks to optimize decisions against
any incarnation of the uncertain factors. That is, whatever happens after we made
our decision, we have prepared ourselves for the worst and decided for the best
in that (worst) case. Such a choice is called a security strategy. It comes with the
price tag of being presumably pessimistic, and even disregarding much information
that would be available perhaps. Indeed, (informed) Bayesian decisions and (un-
informed) minimax decisions are closely connected to one another, and both find
themselves reflected in the framework of game theory.

In general, any decision being made against a rational opponent or simply against
nature (an irrational opponent) can be viewed as a game. The set of actions to choose
from makes up the action set AS1 (synonymously called a strategy set) for the first
player. The extent to which that player anticipates what its opponent can do con-
stitutes the action set AS2 for the second player (in the simplest case). Toward a
conventional game, described between two players for simplicity, letting the gen-
eral case follow soon, let us assume that both players can specify a utility value
(payoff) function u1,u2 : AS1×AS2 → R that, for each combination of actions, re-
turns a (deterministic) value u1 for player 1, and u2 for player 2. This completes the
description of a classical game as a triple (N,S,H), in which N = {1,2, . . .}, is the
set of players, each of which has an associated action set in S = {AS1,AS2, . . .}, and
another associated utility function in H = {ui : ASi×AS−i →R : i ∈ N}. The sym-
bol AS−i is the joint action set of i’s opponents, being the cartesian product of all
A j for j ∈ N \ {i}. Typically, theoretical considerations are simplified by assuming
a fixed (finite) number of players (in our case, |N|= 2), or a fixed (finite) number of
strategies. In that case, the game itself is called finite.

Our main interest in this chapter will concern the sources of uncertainty, in light
of which security strategies need to be found. So, which would be cases, where any
of the three ingredients (or a combination thereof) is uncertain?

• Uncertain number of players: A player surely knows that it is engaging in some
sort of competition, but the opponents may not be visible or even classifiable
as rational. An example for a game with known players are (classical) auctions,
in which all bidders personally face each other (unless the auction happens on-
line). The converse extreme is found in computer security, where attackers are
notoriously stealthy, and the exact number of them can fluctuate and is almost
always unknown.

• Uncertain strategy spaces: In simple auctions, the game dynamics are clearly
defined with precise rules, and a fair auction endows all players with the same
strategy spaces, so that there is no uncertainty on this point. Again, computer
security is an example of the opposite, where the actions for the defending party
are known, while not so for the adversary: from the defender’s perspective, there
is an unpleasant and even unquantifiable residual chance that the attacker comes
up with something completely unexpected. Such an attack is launched “zero
days after its discovery,” that is, at a time when the defender is still unaware of
it. For this reason, this is called a zero-day exploit.

• Uncertain utility functions: For the positive extreme, simple auctions allow for
an almost exact utility value, which is the same for all players and equal to
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the value of the good for which the bidders run. The only uncertainty here is
the potentially incorrect pricing of that good, but considering the price itself as
the utility, this matter becomes negligible. Computer security games, again, are
located at the other end of the spectrum, which becomes evident considering
that security has a hardly measurable return on investment. The main purpose
of security is to prevent possible losses, rather than to generate revenues. This
makes the entire objective of increasing security difficult to argue, and makes
things more intricate for decision makers: They cannot choose the action that
surely rewards them the most, but must rather find the action that potentially
saves them from large cost. In addition, these costs may be difficult to quantify
(which is another independent issue).

It is fair to note here that the auctions mentioned above are considered in their sim-
plest form, and the mechanisms and dynamics underneath auctions are sufficiently
rich to span all extremes in all three cases above. Our focus in the following, how-
ever, will be on computer security, and the related security games. We stress that the
coincidence of the naming is what it is here, a mere coincidence. The term “security
strategy” has per se nothing to do with (computer) security, and exclusively relates
to a minimax choice. That is, a choice against the worst case that could happen.
Computer security is only one (among many) natural field of application that we
shall use for running illustrations.

A convenient common denominator in the representation of all three of the above
cases is obtained by letting the utilities, hereafter also called payoffs, be uncertain,
or more precisely random variables (r.v.s). With random utility functions, the other
two cases become covered:

• Uncertain number of players: If a player faces a varying and unknown number
of opponents, it may perceive unexpected payoff fluctuations due to unknown
people having taken influence. If the distribution of these fluctuations can be
pinned down, then the whole world against which player 1 competes can be
viewed as a single player with an unknown action set (physically consisting
of many players with individual different capabilities and actions). Here, we
assume the adversaries to gain their revenue as a team without negatively im-
pacting each other, so that the payoff for the physical adversary 2,3, . . . ,N is
only coming from the defending player 1. In reality, this may not be the case,
which effectively results in the game being not zero-sum (between player 1 and
the “team” acting as player 2). As we will show below (rigorously stated by
inequality (3.3)), this violation nonetheless leaves the results and properties of
security strategies unchanged and intact.

• Uncertain strategy spaces: Those correspond to unknown (undiscovered) parts
in the domain on which the utility functions are defined, thus making them
appear random to the extent at which the unknown actions are chosen at random.

The framework of stochastic orders, for example, the one put forth in Chapter 2,
can be used for maximal flexibility in replacing the utility functions by random
variables. We will switch between talking about real-valued or distribution-valued
payoffs, whichever is more convenient.
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3.2 Security Games with a Single Objective

Noncooperative players usually look for equilibria, that is, a strategy profile
(x∗1, . . . ,x

∗
n) for all players i ∈ N = {1,2, . . . ,n} so that

∀i ∈ N : ui(x
∗
i ,x

∗
−i)≥ ui(xi,x∗−i), for all xi ∈ ASi (3.1)

that is, no player gains by unilaterally deviating from the optimum x∗i . In absence
of any information about the number of opponents or their utility functions, we
will need to view the opponent(s) as one big and vague entity, acting as player 2.
Since this makes the payoffs necessarily unknown too, we ought to use the only
information that is certain, which is our own payoff. In the best case, the opponent’s
intentions are completely unrelated to our own ones, in which case we can selfishly
maximize our own revenue without anyone interfering (or us disturbing someone
else). In the worst case, the intentions of us and the other player are opposite, and
we both pull at different ends of the same rope. This is a zero-sum competition, in
which we put u1 =−u2 =: u. For that class of two-player games, let the equilibrium
be (x∗,y∗), and condition (3.1) boils down to

u(x,y∗)≤ u(x∗,y∗)≤ u(x∗,y), (3.2)

for all x,y ∈ AS1 × AS2. The existence of either, the zero-sum or general (Nash)
equilibrium above is not assured without additional assumptions on the strategy
spaces. Usually, we convexify those by turning to randomized strategies from the
set (simplices) Si := Δ(ASi) for all i ∈N, and redefine the utilities into expectations,
again denoted as U = E(u(X ,Y )), where the expectation is w.r.t. the distributions of
the random strategies X ,Y chosen from AS1,AS2.

The intuition of a zero-sum game being a valid worst-case model is an almost
immediate consequence of (3.2): let Γ = ({1,2} ,{S1,S2} ,{u1,u2}) be a general
game, and call Γ0 =({1,2} ,{S1,S2} ,{u1,−u1}) its associated zero-sum game from
player 1’s perspective. That is, player 1 does have no clue whatsoever on the payoff
and incentives of player 2, yet the action space of both players is common knowl-
edge. So, the best that player 1 can do is engage in Γ0, while player 2 is actually
playing Γ. Call v = val(Γ0) = E(u1(X∗,Y ∗)) the saddle-point value of Γ0 upon
equilibrium strategies X∗,Y ∗ played there. Since player 2 engages in Γ, it prob-
ably has a different equilibrium strategy Y ∗Γ �= Y ∗ and hence unilaterally deviates
from (X∗,Y ∗), thus increasing player 1’s revenue v≤ u1(X∗,Y ∗Γ ). Conversely, from
player 2’s perspective, player 1 deviates from its optimum X∗Γ �= X∗ and hence can
only decrease its own revenue upon this. So, the chain of inequalities continues as
u1(X∗,Y ∗Γ )≤ u1(X∗Γ ,Y

∗
Γ ), and in total, leads to

v = val(Γ0)≤ u1(X
∗,Y ), (3.3)

for all Y ∈ S2 that player 2 could follow. That means that whatever incentives player
2 may have, it can never decrease player 1’s revenue below v = val(Γ0), as long as
player 1 follows its zero-sum optimal equilibrium strategy X∗. This X∗ is the sought
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security strategy for player 1, and it can only fail if the strategy space for player 2,
which is necessary to compute X∗, is inaccurate. Likewise, the associated zero-sum
game for player 1 is called a security game.

Remark 3.1. Assuming the action spaces of both players to be mutual knowledge
may appear hard and even unjustified in light of zero-day attacks, whose sole char-
acteristic is the action’s unexpectedness. To a limited extent, taking payoffs as ran-
dom variables, the tails of the payoff distribution (see Chapter 2 or [18]) admits
losses beyond what the actions would be known to imply. The tail region of the loss
distribution is then where zero-day exploits would occur. A concrete valuation for
zero-day risks is given by [28].

Remark 3.2. Nash equilibria are typically applied in games with full information,
but security is essentially a competition with lack of information on both sides.
There are several ways to resolve this seeming issue; one is the use of distributions
in the payoff structure, another is the transition to stochastic games themselves (such
as partially observable Markov decision processes with full or partial observability
[29, 12]). Occasionally, the uncertainty is not about what can happen (the system
administrator may have quite a decent idea about the entry points in the system, so
that the strategy spaces of both players are not too uncertain), but only about what
will happen. If the strategy spaces are known, yet only the adversary’s incentives
are uncertain, then Nash equilibria can be applied in this special case. The point of
security strategies is the assumption that the adversary’s incentives are opposite to
that of the defenders (and hence known to the defender). However, the defender does
not even need to be sure that s/he engages in a zero-sum competition, since if the
game is not zero-sum, then (3.3) will only become a more pessimistic overestimate
of the actually suffered loss.

Definition 3.1 (Single-Goal Security Game). Let Γ = ({1,2} ,{S1,S2} ,{u1,u2})
be a two-player game. The security game (for player 1) associated with Γ is the
zero-sum game Γ0 = ({1,2} ,{S1,S2} ,{u1,−u1}). If Γ0 admits a Nash equilibrium
(x∗,y∗) ∈ S1×S2, then x∗ is called a security strategy (for player 1).

Note we assumed nothing about the strategy spaces (not even finiteness), except
for them to admit an equilibrium to exist (one suitable condition is compactness of
all Si and continuity of the payoff functions w.r.t. the same topology [7]).

The bound (3.3) that a security strategy implies is generally sharp, as simple
examples show:

Example 3.1 ([14]). Consider the two-person nonzero-sum game with payoff struc-
ture as in Figure 3.1.

This game has multiple equilibria with values v1 ∈ E1 =
{

2,4, 8
3 ,

18
7 , 9

4 ,
14
5

}
for

player 1, and v2 ∈ E2 = {2,3} for player 2, with respective strategies and payoffs as
listed in Table 3.1. Now, consider the associated security games from player 1, and
player 2’s perspective (either being the adversary to the other in both cases), having
the payoff structures as shown in Figure 3.2.
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Player 1

Player 2
(2,0) (2,0) (1,4) (3,1) (2,3)

(1,1) (2,3) (2,1) (2,3) (4,2)

(0,2) (3,2) (0,1) (2,3) (2,1)

(0,2) (4,2) (1,0) (0,2) (1,2)

(2,3) (2,1) (4,3) (4,1) (3,0)

Fig. 3.1: Example Nonzero-Sum Game

Security game for player 1: Security game for player 2:

2 2 1 3 2

1 2 2 2 4

0 3 0 2 2

0 4 1 0 1

2 2 4 4 3

0 0 4 1 3

1 3 1 3 2

2 2 1 3 1

2 2 0 2 2

3 1 3 1 0

Fig. 3.2: Security Games Associated with the bimatrix game in Figure 3.1

Table 3.1: Equilibria (and Security Strategies) for Example 3.1, computed using [2]

#
player 1 equilibrium player 2 equilibrium

x∗1 x∗2 x∗3 x∗4 x∗5 u∗1 y∗1 y∗2 y∗3 y∗4 y∗5 u∗2
1 0 0 0 1 0 2 1/2 1/2 0 0 0 2
2 0 0 0 1 0 4 0 1 0 0 0 2
3 0 0 0 1 0 8/3 0 2/3 0 1/3 0 2
4 0 0 0 1 0 18/7 0 4/7 0 1/7 2/7 2
5 0 0 0 1 0 9/4 1/4 1/2 0 0 1/4 2
6 0 0 0 1 0 14/5 0 3/5 0 0 2/5 2
7 0 0 0 0 1 2 1 0 0 0 0 3
8 0 0 0 0 1 4 0 0 1 0 0 3

(a) Bimatrix Game Equilibrium (Payoffs as in Figure 3.1)

#
player 1 equilibrium player 2 equilibrium

x∗1 x∗2 x∗3 x∗4 x∗5 u∗1 y∗1 y∗2 y∗3 y∗4 y∗5 u∗2
1 2/3 0 0 0 1/3 2 1 0 0 0 0 -2
2 2/3 0 0 0 1/3 2 1/2 1/2 0 0 0 -2
3 0 0 0 0 1 2 1 0 0 0 0 -2
4 0 0 0 0 1 2 1/2 1/2 0 0 0 -2

(b) Security Game Equilibrium for Player 1 (Payoffs as in Figure 3.2)

#
player 1 equilibrium player 2 equilibrium

x∗1 x∗2 x∗3 x∗4 x∗5 u∗1 y∗1 y∗2 y∗3 y∗4 y∗5 u∗2
1 1/6 1/4 0 1/3 1/4 5/3 1/3 1/6 1/6 0 1/3 -5/3

(c) Security Game Equilibrium for Player 2 (Payoffs as in Figure 3.2)
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The value of the security game for player 1 is v1 = 2 = minE1, so the bound (3.3)
is sharp. Switching roles and looking at the security game for player 2, its value is
v2 =

17
10 < 2 = minE2, so the bound can be loose as well.

For the sake of simplicity only, let the strategy spaces be finite in the following,
so that the optimal randomized actions X∗ can be specified as categorical distribu-
tions, vectors, x∗ = (x1, . . . ,x|AS1|) and y∗ = (y1, . . . ,y|AS2|). The saddle-point value
exists under these assumptions and can be rewritten as v = maxx miny E(u(X ,Y )) =
minx maxy E(u(X ,Y )) with X ∼ x,Y ∼ y. This form reveals why we call the point
x∗,y∗ at which v is attained with equality a minimax decision. For finite games
with a payoff matrix A = (ai j), we can write E(u(x,y)) = xT Ay = ∑i, j xiy jai j and
v = (x∗)T Ay∗. Bayesian decisions can be framed into this by letting y∗ be a “least
favourable distribution,” so that the Bayes’ optimal decision becomes the minimax
decision. While the details of this are intricate, a more intuitive link is discovered
by letting the payoffs be random variables. As in Chapter 2, let us replace u(x,y) by
a probability distribution F(x,y) of the random revenue R, so that

Pr(R≤ r) = F(x,y)(r) =
n

∑
i, j

Pr(R≤ r|i, j)Pr(i, j) =
n

∑
i, j

xiy jFi j(r), (3.4)

where Pr(i, j) is a shorthand for the likelihood of player 1 choosing action i and
player 2 taking action j, and Fi j is the payoff distribution in the i j-th entry of the
payoff matrix in a distribution-valued game. Note the striking similarity of (3.4)
with the version for finite (matrix) games mentioned just before.

The beauty of Bayesian decisions lies in their natural capability of improvement
upon new information. This corresponds to an a priori distribution π becoming an
a posteriori distribution π(·|D) upon the data D. The very same concept can be
used in games when the payoff is distribution-valued, since there is no conceptual
barrier preventing us from calling Pr(R ≤ r) = F(x,y)(r) an a priori distribution,
and upon new information D coming in, switching to Pr(R ≤ r|D) = F(x,y,D)(r)
as the a posteriori distribution. A Bayesian decision then goes for a minimization
of some loss function applied to the posterior. If that loss function is quadratic,
then the Bayes decision is the posterior expectation, which is the same as in regular
game theory. Other choices, say, the absolute value loss, yield to the median as a
replacement for the expectation. Any such design choice can be avoided at all if we
resort to stochastic orders to let the distribution itself be the sole payoff (from which
any quantity of interest can be computed afterward).

3.3 Multi-Objective Security Games

Decisions are hardly ever made with only one goal in mind of the defender,
but the equilibrium definition cannot straightforwardly be extended to vector-
valued payoffs, since those are no longer totally ordered. For any two vectors
u = (u1, . . . ,un),v = (v1, . . . ,vn) ∈ Rn, we will write u ≤ v iff ui ≤ vi for all
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i = 1,2, . . . ,n. The converse relation in which there is at least one index i for which
ui ≥ vi, irrespectively of what the other components do, is denoted as u ≥1 v. The
relations ≥ and (its complement) ≤1 are defined in the obvious way. In replacing
≤ by ≤1 in (3.1), we obtain a Pareto-Nash equilibrium, in which any unilateral
deviation from the equilibrium will decrease the payoff for the respective player for
at least one of its goals.

Security games and security strategies can be defined by turning the previous
observations made for single-goal security games into requirements, toward an ax-
iomatic definition. In this regard, we will demand the bound (3.3) to hold for each
goal (we call this assurance), and to be optimal as in Example 3.1 (this will be the
efficiency axiom) [15].

Definition 3.2 (Multi-Goal Security Strategy (MGSS)). A strategy x∗ ∈ S1 in two-
player game with continuous vector-valued payoff u1 : S1×S2 →Rd for d ≥ 1 for

player 1. Let us denote the i-th coordinate function in u1 as u(i)1 : S1 × S2 → R.
The competition in which player 1 engages is called a MGSS with assurance v =
(v1, . . . ,vd) if two criteria are met:

1. The assurances are the component-wise guaranteed payoff for player 1, that is,
for all goals i = 1,2, . . . ,d, we have

vi ≤ u(i)1 (x∗,y) ∀y ∈ S2, (3.5)

with equality being achieved by at least one choice y∗i ∈ S2.
2. At least one assurance becomes void if player 1 deviates from x∗ by playing

x �= x∗. In that case, some y0 ∈ S2 exists such that

u1(x,y0)≤1 v. (3.6)

Constraint (3.5) can be stated in a more compact, yet weaker, form by saying that

v≤ u1(x∗,y), ∀y ∈ S2. (3.7)

The idea to assure existence of a MGSS follows similar lines as before: Let player
1 engage in a hypothetical one-against-all competition where each goal for player
1 relates to its own zero-sum game against a hypothetical opponent. The opponents
themselves act independently of each other, and each optimizes only a single goal.
This leads to the sibling of the associated zero-sum game Γ0 from above, which we
call the security game here to distinguish it from Γ0 (in previous literature [15], the
same concept has been coined an “auxiliary game”; we use the new name here for
consistency):

Definition 3.3 (Multi-Objective Security Game (MOSG)). Let Γ be a two-person
game, in which only the strategy space and payoff function u1 : S1× S2 → Rd for

player 1 is known. Let the coordinate functions of u1 be u(1)1 , . . . ,u(d)1 . The MOSG
associated with Γ is the game ΓΓΓ0 composed from the following ingredients:

• A set of d +1 players, in which player 0 is the first player in Γ, having d oppo-
nents, each of which corresponds to another of the d goals in Γ.
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• An (ordered) multiset of d +1 strategy sets being {S1,S2,S2, . . . ,S2}
• A set of payoff functions H = {f0, f1, . . . , fd}. Player 0 is the only one with a

vector-valued utility f0 = ( f (1)0 , f (2)0 , . . . , f (d)0 ), whose j-th coordinate function

is determined by its own action and that of the j-th opponent, that is, f ( j)
0 :=

u( j)
1 (x,y j). Likewise, the j-th opponent has the scalar payoff f j := −u( j)

1 , and
the same strategy space S2 as all other opponents.

Definition 3.3 is made to materialize its foregoing intuition in the way of exhibit-
ing each Pareto-Nash equilibrium (as defined above) in the security game to be an
MGSS in the original game. The proof is based on the following result:

Lemma 3.1. Let Γ be as in Definition 3.3, where the strategy spaces for both players
are compact, and let x∗ be a MGSS with assurance v, assuming that one exists. Then,
no vector ṽ < v is an assurance for x∗.

Proof (from [15]). Let ṽ < v, put ε := min1≤i≤k {vi− ṽi} and observe that ε > 0.
The function u1 is uniformly continuous on S1× S2 (being compact), so a δ > 0
exists with ‖(x,y)− (x′,y′)‖∞ < δ implying ‖u1(x,y)−u1(x′,y′)‖∞ < ε

2 .
Consider the mapping uy : S1→Rk,uy(x) := u1(x,y), which is as well uniformly

continuous on S1 by the same argument. So, ‖(x∗,y)− (x′,y)‖∞ = ‖x∗ −x′‖∞ < δ
implies ‖uy(x∗)−uy(x′)‖∞ = max1≤i≤k

∣∣∣u(i)1 (x∗,y)−u(i)1 (x′,y)
∣∣∣ < ε

2 ∀y ∈ S2. It

follows that
∣∣∣u(i)1 (x∗,y)−u(i)1 (x′,y)

∣∣∣ < ε
2 for i = 1, . . . ,k and all y ∈ S2, and conse-

quently maxy∈S2

∣∣∣u(i)1 (x∗,y)−u(i)1 (x′,y)
∣∣∣< ε

2 . Now, selecting any x′ �= x∗ within an

δ -neighborhood of x∗, we end up asserting u(i)1 (x′,y) ≥ u(i)1 (x∗,y)− ε
2 for every i

and y ∈ S2.
Using u(i)1 (x∗,y)≥ vi, we can continue by saying that u(i)1 (x′,y)≥ vi− ε

2 > vi−ε .

By definition of ε , we have vi− ṽi ≥ ε , so that u(i)1 (x′,y)> ṽi for all i, contradicting
(3.6) if ṽ were to be a valid assurance vector. ��
Theorem 3.1. Let Γ be as in Lemma 3.1. The vector x∗ constitutes a MGSS with
assurance v for player 1 in the game Γ, if and only if it is a Pareto-Nash equilibrium
strategy for player 0 in the MOSG ΓΓΓ0 according to Definition 3.3.

Proof (from [15]). Throughout the proof, we will put a bar on top of components,
that is, payoff functions, that belong to the security game ΓΓΓ0, to distinguish these
from their counterparts in Γ (showing no horizontal bar accent).

(“⇐”) Let s∗ := (s∗0,s
∗
1, . . . ,s

∗
d) be a Pareto-Nash equilibrium in ΓΓΓ0, and set the

assurances to
vi := u(i)1 (s∗0,s

∗
i ) for all i = 1,2, . . . ,d. (3.8)

We prove that s∗0 is a MGSS with assurance v. Consider the i-th opponent’s point
of view. By construction (Definition 3.3), we have his utility independent of the
other player’s deviations. So regardless if any other opponent deviates, as long as
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player 0 (his sole rival) plays s∗0, his strategy s∗i is (Pareto-)optimal (notice that his
payoff is scalar), thus

−u(i)1 (s∗0,si) = ui(s∗0,s
∗
1, . . . ,s

∗
i−1,si,s∗i+1, . . . ,s

∗
d)

≤ ui(s∗0,s
∗
1, . . . ,s

∗
i−1,s

∗
i ,s

∗
i+1, . . . ,s

∗
d) =−u(i)1 (s∗0,s

∗
i ) =−vi

for every si ∈ S2. As this holds for every i = 1, . . . ,d, we can conclude v≤ u1(s∗0,s2)
for all s2 ∈ S2. Thus, the first part of Definition 3.2 is verified, since the average
outcome of the game cannot undercut its minimum. On the other hand, from player
0’s point of view, his strategy s∗0 is as well Pareto-optimal, that is, by playing s0 �= s∗0,
he ends up with

u( j)
1 (s0,s∗j) = u( j)

0 (s0,s∗1, . . . ,s
∗
d)≤ u( j)

0 (s∗0, . . . ,s
∗
d) = u( j)

1 (s∗0,s
∗
j) = v j

for at least one component j, and condition (3.6) of Definition 3.2 is verified.
(“⇒”) Put I := {1,2, . . . ,d}. Let x∗ be a MGSS with assurance v. Let i ∈ I be

arbitrary, and assume that vi > miny∈S2 u(i)1 (x∗,y). In the light of condition (3.7),
this is impossible, for otherwise the i-th opponent could play a strategy y′i to en-

force an outcome u(i)1 (x∗,y′i) = miny∈S2 u(i)1 (x∗,y)< vi, invalidating v as the assured

outcome. The strategy y′i necessarily exists because u(i)1 is continuous. Since Defi-

nition 3.2(assurance) implies miny∈S2 u(i)1 (x∗,y) ≤ vi and strict inequality has been
ruled out, we must have equality to the minimum and some y∗i exists such that

vi = u(i)1 (x∗,y∗i ) = min
y∈S2

u(i)1 (x∗,y) = max
y∈S2

−u(i)1 (x∗,y)︸ ︷︷ ︸
=ui(x∗,y)

= ui(x∗,y∗i ).

Therefore, y∗i must be an optimal strategy for the i-th opponent if player 0 acts
according to x∗. Put y∗ := (y∗1, . . . ,y

∗
d). Assume the existence of some MGSS x′ �=

x∗ with uniformly better assurance v′ > v. Then, v ≤ v′ ≤ u1(x′,y) for all y ∈ S2,
because (3.7) applies to x′. Take any x′′ ∈ S1 with x′′ �= x′. We distinguish two cases:
if x′′ �= x∗, then property (3.6) implies that there is an index j and some y such that

u( j)
1 (x′′,y) ≤ v j ≤ v′j. If x′′ = x∗, then by the above argument, we can just use y∗j

to assert that u( j)
1 (x′′,y∗j) = u( j)

1 (x∗,y∗j)︸ ︷︷ ︸
=v j

≤ v′j for any index j, thus verifying (3.6). It

follows that v < v′ is as well an assurance for x′, contradicting Lemma 3.1. Hence,
there is no x′ for which the assurance v = argminx∈S1

u1(x,y) (in Pareto’s sense)

with yi = argminy∈S2
u(i)1 (x,y) is better than for x∗ in Pareto’s sense, proving that

the profile (x∗,y∗) is a Pareto-Nash equilibrium of ΓΓΓ0. ��
Theorem 3.2 ([10]). Let Γ = (N,S,H) be a Multi-Objective Game (MOG), where
each ASi ∈ S is convex and compact, and each ui ∈H is continuous. For each player

i ∈ N, let every individual payoff u( j)
i (si,s−i) for 1≤ j ≤ ri be a concave function of
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si on ASi, whenever the remaining values s−i are fixed. Then, Γ has a Pareto-Nash
equilibrium.

The existence of MGSS is assured under the usual conditions, for example, finite-
ness of the game (which reproves a known result of [1] by a simple application of
Theorems 3.1 and 3.2):

Corollary 1 (Existence of MGSS in matrix games). Every finite MOSG has a
MGSS in mixed strategies.

Observe that Definition 3.2 is axiomatic and not limited to finite games or games
with a finite number of players. In that sense, the characterization Theorem 3.1 can
be combined with other existence conditions for (normal) Nash equilibria to extend
the existence of MGSS to various other classes of games.

The proof of Theorem 3.2 is “constructive” in the sense of equating the set of
Pareto-Nash equilibria to the set of Nash equilibria in a scalarized version of the
MOG. Specifically, [10] prescribe the following steps to find a Pareto-Nash equilib-
rium in a MOG ΓΓΓ, in which there are n players, the i-th of which having a set of ri

goals to optimize:

1. Fix an arbitrary set of real numbers α11,α12, . . . ,α1r1 ,α21, . . . ,α2r2 , . . . ,αn1,
. . . ,αnrn that satisfy condition (3.9):

∑ri
k=1αik = 1 for i = 1,2, . . . ,n, and
αik > 0 for k = 1,2, . . . ,ri and i = 1,2, . . . ,n.

}
(3.9)

2. Form a (scalar) game Γs = (N,S,H ′) with H ′ = { f1, . . . , fn} and

fi =
ri

∑
k=1

αiku(k)i . (3.10)

3. Find a Nash-equilibrium x∗ = (x∗1, . . . ,x
∗
n) in Γs, which is then a Pareto-Nash

equilibrium in ΓΓΓ.

Notice that the Nash equilibria found by the above algorithm depend on the partic-
ular choice of weights. Indeed, the full set of equilibria is given as the union of all
equilibria over all admissible choices of α’s in (3.9) [10].

It is not difficult to verify that by letting player 1 be minimizing (up to here, we
implicitly assumed a maximizing first player), all arguments work identically after
being rephrased in terms of a total stochastic order such as that from Chapter 2. The
results are all the same up to obvious (and purely syntactic) changes toward using
� in place of≤. Some qualitative similarities, unfortunately, are lost from this point
onward, as shown in Section 3.4.2.1, but can be recovered in an approximate form,
as we will discuss in Section 3.4.3.
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3.4 Computing Equilibria and Security Strategies

The existence of equilibria in single-goal games is assured by Nash’s theorem or
generalizations thereof, and methods to compute such equilibria, and hence security
strategies, are reviewed below. Computing Pareto-Nash equilibria for getting MGSS
(via Theorem 3.1) can, with a little more effort, be reduced to the computation of
(regular) Nash equilibria thanks to results in [10]. Thus, it suffices to dig into details
about how (normal) Nash equilibria are computed, which we do next.

It must be emphasized that the methods to compute equilibria in the follow-
ing validly apply without any problems for traditional games over R, but when we
switch to distribution-valued games (based on a stochastic order), some methods
may no longer work. Conversely, the stochastic �-order of Chapter 2 includes ≤ as
a special case, so that the respective algorithms can, w.l.o.g., be stated in terms of�,
where the respective version for R can be obtained by the simple syntactic change
of � into ≤ everywhere. Still, since there are qualitative differences in the use of ≤
or � for the optimization, we let the “problematic” procedures use � to point at the
issues with that ordering, letting respective solutions follow.

3.4.1 Solution by Linear Programming

Let the zero-sum games of interest be with finite strategy spaces for both players,
so that the payoff structure is a matrix A ∈Rn×m, and consider mixed strategies to
ensure the existence of equilibria in all cases. Let these random (mixed) equilib-
rium strategies X∗,Y ∗ be characterized by their (categorical) distributions x∗ ∈ S1 =
Δ(AS1)⊂Rn,y∗ ∈ S2 =Δ(AS2)⊂Rm. It is not difficult to find the saddle-point value
of the game to be u(x∗,y∗) = maxx∈S1 miny2∈S2 xT Ay = miny2∈S2 maxx∈S1 xT Ay (by
strong duality).

For security games, we adopt player 1’s perspective, and suppose that player 2
has chosen the (pure and minimizing) strategy y. Then Ay is a vector, and player 1’s
objective is the maximization maxx∈S1 Ay = maxi=1,...,n eT

i Ay, where ei is the i-th
unit vector in Rn. Note that we hereby converted the optimization over a continuum
into the much simpler task of choosing the best from a set of finite alternatives (as
we previously discussed in Chapter 2). The only constraints added were x ≥ 0 and
1T x = 1, where 1 is the vector of all 1’s. Substitute v := maxi=1,...,n eT

i Ay, then the
saddle point condition directly translates into the linear program that player 1 needs
to solve for finding a security strategy:

(P1) max˙X v
s.t.
v≤ eT

i Ax ∀i = 1,2, . . . ,n
1T x = 1
x≥ 0

(3.11)
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This simple formulation admits an exact computation of an equilibrium even in
polynomial time for security games as laid out in Section 3.2. For MGSS, the linear
programming approach fails because we are dealing with a (d + 1)-player game,
which includes at least three actors in the simplest multi-goal setting. There, we can
resort to iterative methods. Similarly, games defined over stochastic orders may not
admit the arithmetics needed to solve Equation 3.11, so iterative (learning) methods
are the usual method of choice in that cases too (indeed, the stochastic order� from
Chapter 2 comes with the full-fledged arithmetic in the hyperreal space, yet lacking
an ultrafilter, we have severe difficulties in doing the calculations practically).

3.4.2 Iterative Solutions by Learning

Iterative methods of computing Nash equilibria by online learning (see [8] for a con-
crete application) let all players start from a suboptimal strategy, and act according
to the best of their so-far recorded knowledge to improve their (randomized) strate-
gies. The usual coupled learning method starts from an initial guess for the optimal
strategies and utilities, denoted by xi,0, ûi,0 for the i-th player. As the (discrete) time
t ∈N goes by, both players choose their respective next moves according to some
learning rule (cf. [9, Chp.14])

xi,t+1 =Πi,t(ui,t , ûi,t ,xi,t ,λi,t ,ai,t), (3.12)

and update their corresponding utility estimates as

ûi,t+1 = Σi,t(ui,t , ûi,t ,xi,t ,λi,t ,ai,t), (3.13)

where Πi,t ,Σi,t are learning rules that in the most general form depend on the player
i, the current time t, the action ai,t , and utility ui,t observed for it, as well as the so-
far existing estimates for the utility ûi,t and (randomized) actions xi,t at time t. The
remaining parameter λi,t covers additional input, for example, a learning rate (to dif-
ferently weigh recent against past observations) or similar; it will be of no concrete
use for us here but is relevant in several other instances of (3.12) and (3.13). We
refer the reader to [9] for an in-depth treatment, and confine ourselves to the sim-
plest learning rule called FP. Other such learning regimes can be studied with help
of Lyapunov theory applied to the dynamical system that (3.12) and (3.13) induce
[9, Chp.14]. Finally, one should bear in mind that the learning model assumes in-
centive compatibility of the involved players, so that neither player has an incentive
to deviate from the learning rules. Deviations thereof that are observable in practice
are studied in behaviorial game theory [3], which is outside of our scope here. The
broader area treating techniques like this is algorithmic game theory [11, 24] and
learning [4, 6].

Let us instantiate (3.12) and (3.13) for two players, let their action history from
time 0 to time step �∈N be x0,x1, . . . ,x� ∈ AS1 for player 1, y0,y1, . . .y� ∈ AS2. Both
players alternatingly (or simultaneously) choose their actions to maximize the so-far
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long-run average, relative to the recorded behavior of the opponent so far. At time
t, player 2 takes its move, followed by player 1 who is assumed to observe what its
opponent does. Initially, player 1 takes any choice for a pure strategy as a kickoff:

yt = argmax j∈AS2
1
t ∑

t
�=1 u2(y�, j)

xt+1 = argmaxi∈AS1
1
t ∑

t
�=1 u1(x�, i)

}
(3.14)

where u1,u2 are the payoffs for players 1 and 2, respectively. The learning regime
(3.14) corresponds toΠi,t in (3.12), while the arithmetic means appearing in both ex-
pressions correspond to the updating of observed revenues in (3.13). It can be shown
that FP via (3.14) converges under alternating moves (as stated here) or synchronous
moves (where both players choose their next actions at the same time). Various con-
ditions under which (3.14) converges are known, such as the game having a poten-
tial, being zero-sum [23] or being general (nonzero-sum) with |AS1| = |AS2| = 2.
In a practical implementation, a careful distinction must be made regarding con-
vergence of the values vs. convergence of the strategies. While the saddle point
approximations (3.13) in FP are assured to converge to each other, this is not neces-
sarily happening for the strategies (3.12) as well. Hence, the convergence threshold
used to stop the iteration should be imposed on the so-far averaged payoff(s) ut , say
if ut differs from ut+1 only by a residual amount of some a priori chosen ε > 0 in
some norm.

Algorithm 1 shows a version of FP for a minimizing first player, implicitly mak-
ing player maximizing and assuming a zero-sum competition. For generality, the
algorithm is formulated over the stochastic order� from Chapter 2 and distribution-
valued games here. The�-relation orders two random variables X ,Y as X �Y if and
only if the moment sequence (EY k)k∈N “diverges faster” than the moment sequence
(EY k)k∈N. Practically, it can be shown that the probability mass assigned to the tails
of the distributions of X and Y determines the order, so that X � Y holds if and
only if extreme events are less likely to happen for X than to occur under Y (see
Theorem 2.2 in Chapter 2).

One reason to look at FP in stochastic orders is that finding equilibria in games
over those orders is a widely undiscussed issue in the literature, but could offer in-
sights into why real players may not always follow a utility-maximization behavior
(either because the utility was not accurately modeled, or the order imposed on the
utilities is different from the ordering on R; the latter of which is a yet unverified
hypothesis and as such a possible subject of research). Also, it pays to formulate the
algorithm in more generality, since this version is capable of solving standard games
over R upon a simple tweak that we will describe and justify after the algorithm.
Let us first see how and why it works.

In fact, FP over � works exactly as usual, only having the ≤-order on R be-
ing replaced by the stochastic �, and imposing a pointwise addition of distribution
functions where the standard algorithm would only add payoff values. Note that this
pointwise addition is crucial here, and perhaps somewhat counterintuitive, since we
do not add random variables as usual by convolution. The pointwise addition is due
to the sum occurring in the law of total probability (3.4).
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Algorithm 1 Fictitious Play

Require: an (n×m)-matrix A of payoff distributions A = (Fi j)
Ensure: an approximation (x̃, ỹ) of an equilibrium pair (x∗,y∗) and two distributions vlow,vup so

that vlow � F(x∗,y∗)� vup. Here, F(x∗,y∗)(r) = Pr(R≤ r) = ∑i, j Fi j(r) · x∗i · y∗j .
1: initialize x← 0 ∈Rn, and y← 0 ∈Rm

2: vlow ← the �-minimum over all column-maxima
3: r←the row index giving vlow
4: vup ← the �-maximum over all row-minima
5: c← the column index giving vup

6: u← (F1,c, . . . ,Fn,c)
7: yc ← yc +1 � y = (y1, . . . ,ym)
8: v← 0 � initialize v with m functions that are zero everywhere
9: for k = 1,2, . . . do

10: u∗ ← the �-minimum of u
11: r← the index of u∗ in u
12: vup ← the �-maximum of {u∗/k,vup} � pointwise scaling of the distribution u∗
13: v← v+(Fr,1, . . . ,Fr,m) � pointwise addition of functions
14: xr ← xr +1 � x = (x1, . . . ,xr, . . . ,xn)
15: v∗ ← the �-maximum of v
16: c← the index of v∗ in v
17: vlow ← the �-minimum of {v∗/k,vlow} � pointwise scaling of the distribution v∗
18: u← u+(F1,c, . . . ,Fn,c) � pointwise addition of functions
19: yc ← yc +1 � y = (y1, . . . ,yc, . . . ,ym)
20: exit the loop upon convergence of the strategy vectors (in some norm)
21: end for
22: Normalize x,y to unit total sum � turn x,y into probability distributions.
23: return x̃← x and ỹ← y � F(x̃, ỹ)≈ F(x∗,y∗) = (x∗)T Ay∗

How can Algorithm 1 be applied to a normal form game over the reals? Simply
by conversion into a game with stochastic payoffs and the same equilibria. The trick
is the following: let A = (ai j) ∈ Rn×m be the (real-valued) payoff matrix, where
we can assume ai j ≥ 1 w.l.o.g. Put a∗ := max

{
ai j
} ≥ 1, and from ai j, define a

corresponding Bernoulli random variable Ri j ∼ Fi j with Pr(Ri j = 1) = λ · ai j and
Pr(Ri j = 0) = 1−Pr(Ri j = 1). The factor λ > 0 is the same for all rows and columns.
Why does this work? It has been shown in Chapter 2 that � on categorical distri-
butions (and the Bernoulli distribution is one) is essentially a lexicographic order
on the probability mass vector, starting from the highest (rightmost) category in de-
scending order. This renders Pr(Ri j = 1) the relevant quantity to choose best actions
and add up into a cumulative sum. Since this probability is proportional to ai j by the
same factor λ > 0 for all elements in the payoff structure, the resulting game, when
decided upon λ ·ai j, is strategically equivalent to the original game with payoff ma-
trix A. Thus, it shares the same equilibria. For distributions with more categories, the
payoffs are merely vectors, and using � as a lexicographic order is equal to playing
FP on a “stack” of games. In the first place, the decision about a best reply is made
on the matrix containing the probability masses for the highest loss categories. If
the decision can be made (lines 12 and 17 in Algorithm 1), then we are done for this
iteration. Upon a tie, the probability mass assigned to the second-highest category
counts (in the lexicographic order), and the best reply is sought in this (new) matrix.
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If there is a tie again, the next level (third highest matrix of category masses) is taken
and so on. The process works just the same for continuous distributions, with the
only difference of the stack being made for derivatives of increasing order, starting
at the 0th derivative (see Lemma 2.2 in Chapter 2). Figure 3.3 illustrates the stack
on which FP is done graphically for the case of continuous (in fact, differentiable)
payoff densities fi j in the game.
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Fig. 3.3: Applying Fictitious Play over a Stochastic Order [18]

The depth of the stack is theoretically unlimited for continuous payoff distribu-
tions, thus the algorithm could get stuck within a single iteration during the decision
of�. In practical applications, we would thus have to fix a finite depth for the stack,
and the concrete choice will be discussed later in Section 3.4.2.2.

Example 3.2 ([16]). We construct a 2×2 zero-sum game with payoff matrix A given
in Figure 3.4 and a minimizing player 1.

Player 1

Player 2
2 5
3 1

Fig. 3.4: Example Zero-Sum Game; Payoff Structure A

To use Algorithm 1, the respective payoff distributions representing the
game would be (all Bernoulli) F11 = Ber(0.8,0.2),F12 = Ber(0.5,0.5),F21 =
Ber(0.7,0.3), and F22 =Ber(0.9,0.1), with λ = 1/10.
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Fictitious play starts from the (arbitrary) choice x0 = (1,0) for the first (row)
player. This choice causes player 2 to choose the second column in the first time
step, to reward player 1 with u1,t=1 = 0.5. Given player two’s history of choices
being yt=1 = (0,1), player 1 goes for the second row and chooses xt=1 = (0,1).
Player 2 updates its records to make its next choice as a best reply to the so-far
observed mixed strategy x = (0.5,0.5). The switch between the two strategies is
essentially due to the game having a circular structure.

It is a straightforward matter to compute the sequence of action choices ac-
cording to (3.14), verifying them to converge to the equilibrium x∗ = (0.4,0.6),
y∗ = (0.8,0.2), and val(A) = 2.6.

To verify this as being a security strategy (for player 1), let us assume that player
2 has different incentives causing it to play y′ = (0.4,0.6) or y′′ = (0.1,0.9). For
y′, the payoff for player 1 is x∗Ay′ = 2.6, and y′′ gives x∗Ay′′ = 2, both of which
are damages ≤ val(A) = 2.6. So, in these two cases (at least), player 1 receives no
more than the assured maximal damage of val(A) = 2.6. Furthermore, the example
shows that worst-case strategies for player 1’s opponent are not necessarily unique,
and that the bound implied by them can be sharp (as is the case for y′ �= y∗).

3.4.2.1 Failure of FP in Distribution-Valued Zero-Sum Games

Let us consider what happens if we add uncertainty to the payoffs in Example 3.2.
According to the initial discussion, this should cover most interesting cases of un-
certainty in the game; however, some qualitative properties such as convergence of
FP in zero-sum games are lost upon this transition. We show an example to shed
light on the issue and its cause.

Example 3.3 ([16]). Concretely, let each payoff value be uncertain within a certain
range, where we model a limited amount of uncertainty by an Epanechnikov ker-
nel (K(x) := 3

4 (1− x2) for |x| ≤ 1 and K(x) := 0 otherwise) centered around the
respective value x0. The resulting payoff structure in this game with probability-
distribution valued is thus a 2×2 matrix of functions displayed in Figure 3.5.

Note that the game has a circular structure, so that the expected behavior of FP
should roughly be the following: player 1 choosing the first row will make player 2
choose the second column. In turn, player 1 will go for the second row, which player
2 will reply to by choosing the first row, and so on.

The actual FP algorithm, however, runs elsewhere: let the start be made for player
2 by choosing the�-maximum in each row, from which player 1 would select the�-
minimum. This gives F21 as an upper bound to the saddle-point value of this game.
Likewise, player 1 will choose the�-minimum of the�-maxima per column, which
gives F11 as a lower bound to the saddle-point value. Comparing those to the value
2.6 in Example 3.2, both appear plausible, since F11 is centered around 2 and F21 is
centered around 3, with the value 2.6 lying in between. Moreover, since the upper
and lower bounds do not coincide, an equilibrium must be in mixed strategies. Un-
fortunately, FP will not find it, because the iteration gets stuck at choosing xt =(1,0)
ultimately for all t, since the losses “accumulate” into ∑k

j=1 F1y j for player 1, but we
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Fig. 3.5: Game from Example 3.2 with uncertainties in the payoffs

have the awkward inequality F11 � 1
k u∗ for all k despite F11 and u∗ remaining both

constant, as Figure 3.6 illustrates! The relation never fails because the tails of the
distribution 1

k u∗ will retain a positive (though decreasing) mass no matter how large
k gets; see Figure 3.6 for an illustration. That is, although the losses accumulate, this
effect will never justify another choice of strategies, so FP becomes stationary at an
incorrect result. Why so? One could think that by the transfer principle [22], the
convergence of FP, being a proposition in first-order logic, would equivalently hold
in the hyperreals. Indeed, FP does converge (as it does classically) by this argument,
but for a sequence of hyperreal integers, rather than (regular) iterations toward infin-
ity within N. An inspection of the arguments in [23] reveals that the iteration count
where convergence occurs is determined by the maximum element in the payoff
matrix. Since our distributions are represented by infinite hyperreal numbers, con-
vergence kicks in once the iteration count becomes infinite in the hyperreal sense,
which clearly cannot happen in any practical implementation.
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Fig. 3.6: Convergence Failure of FP (situation shown here after k = 10 iterations)

The problem outlined in Example 3.3 disappears for distributions with unbounded
tails, or if all payoff distributions share the same support Ω = [a,b] with positive
mass assigned in a left neighborhood of b.

3.4.2.2 Restoring Convergence of FP

For the sake of simplicity, let us resort to finite games with continuous payoff dis-
tributions, such as the one that caused FP to fail in Section 3.4.2.1. The conver-
gence issue was due to the distribution’s tail not reaching out until the point where
the stochastic order is decided. Namely, if we consider losses on a bounded scale
[a,b]⊂R (which is a mild and practically handy assumption), the vanishing of the
mass located near the end b of the scale along iterations of FP will not be noticed
in regions near a (cf. Figures 3.5 and 3.6). To avoid this unpleasant situation, the all
relevant distributions must assign strictly positive mass to the entire range [a,b] (so
that no “gaps” are near the end or anywhere in the middle of the interval [a,b]).

The easiest way of achieving that is convolution by an approximate Dirac mass,
say, a Gaussian distribution with small variance, and truncating the resulting den-
sity functions. In language of nonparametric statistics, this is nothing else but a
standard kernel density estimation (for categorical distributions, a properly dis-
cretized Gaussian kernel also works well, but so do more sophisticated methods,
e.g., [13, 5], either). In the continuous case, Gaussian kernels come particularly
handy for the convolution (see Chapter 2 for the reason), so from here on, we will
focus on how and why this also restores convergence of FP. The kernel function is
thus K(x) := 1√

2π exp
(− 1

2 x2
)
, that is, a humble normal density with zero mean and

unit variance.
Let us consider the case of two continuous distributions supported on a compact

set [a,b] first, and call them f̃ , g̃. We allow both to vanish on entire intervals within
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the compact set [a,b]. Also, let Kh : R→ R be a Gaussian density with variance h
that we will use as a mollifier to put f := f̃ ∗Kh and g := g̃ ∗Kh. It is well known
that letting h → 0 makes fh → f and gh → g in the L1-norm, and since both are
supported on a compact set, the convergence is even uniform. Moreover, since Kh is
a C∞-function, f and g have derivatives of all orders, so that we have f � g (being
a shorthand for the relation X �Y between the random variables whose distribution
densities are f and g), if and only if the derivatives are lexicographically ordered as
f = ((−1)k f (k)(b))k∈N <lex ((−1)kg(k)(b))k∈N = g. In the following, let us use the
shorthand terms fk := (−1)k f (k)(b), and gk := (−1)kg(k)(b) to ease notation.

We approximate the infinite sequence by a Taylor polynomial f̂ of degree N
for f ,

f̂ (x) = f (b)+
N

∑
k=1

f (k)(b)
k!

(x−b)k, (3.15)

and do the same for the function g. The choice of the degree N will be discussed
later. Let the resulting approximations be f̂ and ĝ. Since there are only finitely many
coefficients fk =

1
k! f (k)(b),gk =

1
k! g(k)(b) for k = 0,1, . . . ,N taken to represent the

continuously differentiable densities f and g, we can find a (common) bound M > 0
so that −M ≤ fi,gi ≤M for all k = 0,1,2, . . . ,M. Shifting both by the same amount
M puts the numbers fi +M,gi +M into the interval [0,2M] and leaves their relative
ordering unchanged, so that we can consider them as being in excess representation.
Fix a precision and round off all numbers fi +M,gi +M up to � bits, giving the
approximate numbers f̂i, ĝi with a roundoff error of

∣∣ fi− f̂i
∣∣ , |gi− ĝi| < εM for all

i. Using f̂i, ĝi in the series representation (3.15) for f (i)(b) and g(i)(b), call the re-
sulting approximation polynomials f̂ε and ĝε . The error from this roundoff is found
from (3.15) to be

max
x∈[a,b]

∣∣ f̂ (x)− f̂ε(x)
∣∣≤ εM +

∞

∑
k=1

εM

k!
bk = εM · eb,

and the same for the error between ĝ and ĝε . Observe that εM can be made as small
as we desire by using a larger bitsize � in the numeric representation, so for any
ε > 0 there is an � resulting in a roundoff error εM so that εM · eb < ε . So f̂ and f̂ε
can brought together arbitrarily close. Likewise, in choosing N sufficiently large, we
can make the difference between f and f̂ as small as we wish, so that the cumulative
error by the Taylor polynomial and the roundoff errors can be kept under control.

For a number x, let us write (x)2 to mean its binary representation. Using this no-
tation, define the number y f := ( f̂0 f̂1 f̂2 . . . f̂N)2 ∈ R and yg := ( f̂0 f̂1 f̂2 . . . f̂N)2 ∈
R by a humble string concatenation of the binary excess representations of the
(rounded) coefficients in the Taylor polynomials, assuming that they are all repre-
sented with the same number of bits. The resulting bitstring is then again interpreted
as a real number. Clearly, the information in y f and yg can be chosen to represent f
and g at arbitrary accuracy, but the numeric order between y f and yg is the same as
the lexicographic order between f and g. This in turn equals the �-ordering of the
original densities f and g.
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Wrapping up, we have found real-valued representatives y f ,yg for f and g so
that y f ≤ yg “implies” f � g, where the quotes are a reminder for the relation to be
decided on proxima to the original densities.

The goodness of fit is here determined by the number N of coefficients necessary
for an accurate approximation by the Taylor polynomial, and the number of bits � in
the excess representation (that controls M and hence εM). We can thus think of the
so-obtained numbers to act as substitutes in games where payoffs are distribution-
valued. In other words, we could convert a game with distribution-valued payoffs
into a normal game with real-valued payoffs, at the cost of getting only an approxi-
mation of the original game, but at any precision that we desire. This equips us with
further methods like linear programming (see Section 3.4.1) to solve these games
too. Most importantly, in having transformed a game with distribution-valued pay-
offs into a regular one over R, convergence of fictitious play now follows from
standard arguments again [23].

Practically, the number N of required terms in the Taylor approximation, or the
number � of bits may become intractably large to be useful any more. Fortunately,
however, there is no need to do either a roundoff, excess representation, or binary
concatenation into real values, since we can equally well work with vector repre-
sentations of the series. Then, we can work at machine precision and can compute
the derivatives only on demand and up to the index where the decision can be made
(exploiting the lexicographic order to be fixed at the time when the first index with
a strict relation between fi and gi is obtained. Looking at Figure 3.3, we would thus
dig only as deep into the stack as we need to make a choice but no deeper than N).
Since we expanded the densities around the point b, in whose neighborhood � is
determined, the approximation is expectedly accurate in the region relevant for �,
even for low orders N, though the Taylor polynomial f̂ may badly deviate from the
real density f when we get far from b. That is, the decision of � based on smooth-
ing and on-demand computation of derivatives is in many cases quite efficient and
accurate.

For discrete distributions, matters are considerably simpler, since the smoothing
with a density whose support is the entire line Z of integers (say, by discretizing
a Gaussian density to shift their mass from the continuous interval [n,n+ 1) to the
integer n), the support of the distribution extends until the (category/rank) b, and
the lexicographic order kicks in again in replacement for �. Like before, it is not
difficult to assemble the masses together into a single number whose numeric order
equals the � ordering, and all theory related to standard games reapplies.

Summing up our arguments (and framing them in more formal terms) leads
the following result that relates distribution-valued games to standard (real-valued)
games:

Theorem 3.3 (Approximation Theorem [18]). Let Ω ⊂ [1,∞) be a compact set
(finite or continuous). Let Δ(Ω) be the set of all distributions for which a density
function exists (and is continuous if Ω is continuous). Then, for every ε > 0,δ >
0 and every zero-sum matrix game Γ1 = A ∈ (Δ(Ω))n×m with distribution-valued
payoffs in the set, there is another zero-sum matrix game Γ2 = B ∈Rn×m so that an
equilibrium in Γ2 is an (ε ,δ )-approximate equilibrium in Γ1 in the following sense:
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• The equilibrium (x̃∗, ỹ∗) in Γ1 differs from the equilibrium (x∗,y∗) in the ma-
trix game represented by A by ‖(x∗,y∗)− (x̃∗, ỹ∗)‖1 < ε , where the norm is on
R|AS1|+|AS2|,

• The saddle point val(B) = F̃∗ differs from the saddle point val(A) = F∗ by∥∥F̃∗ −F∗
∥∥

L1 < δ .

3.4.3 FP for Multi-Goal Security Strategies

For MGSS, it has been shown in [25] that equilibria can be computed by FP for
certain one-against-all games, in which a designated player “zero” faces opponents
that are acting independently among themselves, but all against player zero. The
security game of Definition 3.3 can be modified to fall into this class (cf. [20]).

For a two-player MOG ΓΓΓ, let ΓΓΓ0 denote its associated security game. Toward
enabling fictitious play in ΓΓΓ0, we need to make it zero-sum. Remember that the de-
fender inΓΓΓ has d≥ 1 goals to optimize, each corresponding to another distinct oppo-
nent in the security game ΓΓΓ0. From these, we define the payoffs in a one-against-all
compound game, while making the scalar payoffs vector-valued to achieve the zero-
sum property. The payoff for player 0 is left unchanged, but the payoff for the i-th
opponent is “vectorized” into

ui = (0,0, . . . ,0,−u(i)1 ,0, . . . ,0), (3.16)

without affecting any equilibria in the game (again, the bar accent on top of u is to
mark this and other items with the same accent to belong to the security game ΓΓΓ0).

To numerically compute an equilibrium in it according to the recipe of [10], we
scalarize as follows: to each of player 0’s d goals, we assign a weight α01, . . . ,α0d

according to (3.9). The scalarization in (3.10) is via

α ji := α0i for i = 1,2, . . . ,d and j = 1,2, . . . ,d.

With these weights, the payoffs in the scalarized compound game are

• for player 0: f0 = α01u1 +α02u2 + · · ·+α0dud ,
• for the i-th opponent, where i = 1,2, . . . ,d

fi = α01 ·0+α02 ·0+ · · ·+α0,i−1 ·0+α0i · (−u(i)1 )+α0,i+1 ·0+α0d ·0
= −α0i ·u(i)1 (3.17)

Concluding the transformation, we obtain a scalar compound game

Γsc = ({0,1, . . . ,d} ,{AS1,AS2, . . . ,AS2} ,{ f0, . . . , fd}) (3.18)

from the original two-person MOG Γ with payoffs u(1)1 , . . . ,u(d)1 that can directly be
be plugged into expressions (3.16) and (3.17).
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Toward a numerical computation of equilibria in Γsc, we need yet another trans-
formation due to [25]: for the moment, let us consider a general compound game
Γc as a collection of d two-person games Γ1, . . . ,Γd , each of which is played in-
dependently between player 0 and one of its d opponents. With Γc, we associate a
two-person game Γcr that we call the reduced game. The strategy sets and payoffs of
player 0 in Γcr are the same as in Γc. Player 2’s payoff in the reduced game is given
as the sum of payoffs of all opponents of player 0 in the compound game. The fol-
lowing result links the convergence of FP in one-against-all games to convergence
in their reduced forms.

Lemma 3.2 ([25]). A fictitious play process approaches equilibrium in a compound
game Γc if and only if it approaches equilibrium in its reduced game Γcr.

For the reduced version Γscr of the (by (3.16) vectorized) scalarized security
game Γscr, this sum is always zero. Since FP converges in such games [23], we get
the final conclusion:

Theorem 3.4 ([20]). Fictitious play in the scalarized compound game Γsc defined
by (3.18) converges to an equilibrium.

Any Nash equilibrium obtained in Γsc upon FP in Γsrc is by Theorem 3.1, a Pareto-
Nash equilibrium in the security game ΓΓΓ0 and as such a MGSS in the game that we
started from. So, Theorem 3.4 induces the following algorithm to compute multi-
criteria security strategies according to Definition 3.2:

Given a two-player MOG ΓΓΓ with d payoffs u(1)1 , . . . ,u(d)1 for player 1 (and possi-
bly unknown payoffs for player 2), we obtain a MGSS along the following steps:

1. Assign strictly positive weights α01, . . . ,α0d to each goal, and set up the scalar-
ized compound game Γsc by virtue of expressions (3.18), (3.16), and (3.17).
Observe that, as we can choose the weights arbitrarily, these give us a method
to prioritize different goals.

2. Run the FP Algorithm 1 in Γsc, stopping when the desirable precision of the
equilibrium approximation is reached.

3. The result vector x∗ is directly the sought multi-criteria security strategy, whose
assurances are given by the respective expected payoffs of the opponents. In
case of matrix games, where the i-th payoff is given by a matrix Ai, the sought
assurances are vi = (x∗)T Aiy∗i for i = 1,2, . . . ,d, where y∗1, . . . ,y

∗
d are the other

player’s equilibrium strategy approximations obtained along FP.

Example 3.4. For ease of presentation and an intuitive validation of the results, let us
consider a 2× 2 MOG with two goals. The payoff structures, shown in Figure 3.7,
are composed from categorical (Bernoulli) distributions. For the example purpose,
those cover three possible cases of games: 1) classical games with real-valued out-
comes (via the aforementioned representation by Bernoulli random variables), 2)
games with random payoffs that are converted into classical games by taking ex-
pectations, and 3) the general case of probability-distribution-valued games with
categorical distributions compared according to �.
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Fig. 3.7: Example Multi-Objective Distribution-Valued 2×2 Game
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The following results (and the plots in Figures 3.4 and 3.7) have been obtained
with R, version 3.4.4 [27], using the package HyRiM [17], which implements ex-
actly the procedure outlined above with Algorithm 1 at the core. Running Algo-
rithm 1 with equal importance on both goals (i.e., taking the weights α01 = α02 =
1/2) on these games digs up the (approximate) equilibrium x∗ = (1/4,3/4) and
y∗1 = (1,0) for the first goal, and y∗2 = (1/2,1/2) for the second goal. The mixed
strategy x∗ is herein the security strategy for player 1, being told the worst-case sce-
narios for each of his goals to be y∗1 and y∗2, respectively. Conditional on the defender
playing x∗, the assurances are the (Bernoulli) distributions v1 = (0.625,0.375) = v2

for both goals.
The security strategy is not too sensitive to a change in the goal prioritization.

For example, taking α01 = 0.9 and α02 = 0.1 to express high importance of the first
goal (relative to the second) leaves the security strategy unchanged. Only, the worst-
case scenario for the second goal changes into y∗2 ≈ (0.39,0.61), and its assurance
v2 adapts itself accordingly.

The entire set of equilibria can be discovered by (theoretically) running through
all values for the importance weights α0i for i = 1,2, . . . ,d goals [10]. In a practical
setting, one would thus be advised to try different goal priorities in order to find
perhaps more plausible equilibria than upon the first try.

3.5 Final Remarks

The assurance offered by a security strategy against whatever behavior of the oppo-
nent within its action space is bought at the cost of this being a rather pessimistic
approach. As with any minimax decision, this disregards all auxiliary information
available to both players, which could improve the decision making. Bayesian de-
cision theory starts from this observation and is developed around the idea of up-
dating loss distributions with incoming data, so as to improve the decisions over
time. The same trick, however, can be mounted in game theory, when the game’s
payoff structures become updated between repetitions. Technically, this makes the
games dynamic, but not necessarily stochastic (at least not in the sense of [26]).
For distribution-valued games, those can be updated in a Bayesian way, in order to
improve the accuracy of the payoff structures. Still, this is not the same as using
prior knowledge about the attacker’s behavior. However, the same framework al-
lows to integrate that knowledge into the payoff distributions by proper modeling.
The details are beyond the scope of this chapter and fall into the domain of general
adversary modeling. Hints on how to construct the payoff distributions for several
practical cases, however, are subject of Part II of this book. Specifically, the data can
be obtained from simulation (Chapters 8, 9, 10, 14, and 15), expert surveys, or other
sources. Chapters 8, 14, 15, and 16 report on a practical use of the method, as it is
implemented in R [17].

A final remark on security strategies relates to the cost of playing them. Imagine
that the equilibrium is mixed and that it prescribes to frequently change configura-
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tions or even reset or revert a certain part of the system to some initial state. Frequent
such actions may be undesirable and may lead to unreasonably high cost for the de-
fense. Taking into account the cost of playing strategies besides their actual benefits
is a matter of multi-objective game theory and can be handled in similar ways as
described here. A rigorous treatment of this, however, is beyond the scope of this
chapter, but has recently been done in the literature [19].
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8. Klı́ma, R., Kiekintveld, C., Lisý, V.: Online Learning Methods for Border Pa-

trol Resource Allocation. In: R. Poovendran, W. Saad (eds.) Decision and
Game Theory for Security, Lecture Notes in Computer Science, vol. 8840, pp.
340–349. Springer International Publishing, Cham (2014)

9. Lewis, F.L., Liu, D.: Reinforcement Learning and Approximate Dynamic Pro-
gramming for Feedback Control. John Wiley & Sons, Inc, Hoboken, NJ, USA
(2012)

10. Lozovanu, D., Solomon, D., Zelikovsky, A.: Multiobjective Games and Deter-
mining Pareto-Nash Equilibria. Buletinul Academiei de Stiinte a Republicii
Moldova Matematica 3(49), 115–122 (2005). ISSN 1024-7696

11. Nisan, N. (ed.): Algorithmic game theory, repr., [nachdr.] edn. Cambridge
Univ. Press, Cambridge (2008). URL http://reference-tree.com/book/
algorithmic-game-theory?utm source=gbv&utm medium=referral&utm
campaign=collaboration

12. Puterman, M.L.: Markov Decision Processes: Discrete Stochastic Dynamic
Programming, Wiley Series in Probability and Statistics, vol. v.414. John
Wiley & Sons Inc, Hoboken (2009). URL http://search.ebscohost.com/login.
aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=294454

http://gbv.eblib.com/patron/FullRecord.aspx?p=765287
https://doi.org/10.1017/CBO9780511546921
https://doi.org/10.1017/CBO9780511546921
http://reference-tree.com/book/algorithmic-game-theory?utm_source=gbv&utm_medium=referral&utm_campaign=collaboration
http://reference-tree.com/book/algorithmic-game-theory?utm_source=gbv&utm_medium=referral&utm_campaign=collaboration
http://reference-tree.com/book/algorithmic-game-theory?utm_source=gbv&utm_medium=referral&utm_campaign=collaboration
http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=294454
http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=294454


References 73

13. Rajagopalan, B., Lall, U.: A Kernel Estimator For Discrete Distributions 4,
409–426 (1995). Gordon and Breach Science Publishers SA

14. Rass, S.: On Information-Theoretic Security: Contemporary Problems and So-
lutions. Ph.D. thesis, Klagenfurt University, Institute of Applied Informatics
(01.01.2009)

15. Rass, S.: On Game-Theoretic Network Security Provisioning. Springer
Journal of Network and Systems Management 21(1), 47–64 (2013).
https://doi.org/10.1007/s10922-012-9229-1. URL http://www.springerlink.
com/openurl.asp?genre=article&id=doi:10.1007/s10922-012-9229-1

16. Rass, S.: On Game-Theoretic Risk Management (Part Two) – Algorithms
to Compute Nash-Equilibria in Games with Distributions as Payoffs (2015).
ArXiv:1511.08591

17. Rass, S., König, S.: R package ‘HyRiM’: Multicriteria risk management using
zero-sum games with vector-valued payoffs that are probability distributions
(2017). URL https://hyrim.net/software/

18. Rass, S., Konig, S., Schauer, S.: Defending Against Advanced Persistent
Threats Using Game-Theory. PLoS ONE 12(1), e0168,675 (2017). https://
doi.org/10.1371/journal.pone.0168675. Journal Article

19. Rass, S., König, S., Schauer, S.: On the cost of game playing: How to control
the expenses in mixed strategies. In: Proceedings of the 8th International Con-
ference on Decision and Game Theory for Security (GameSec), LNCS 10575,
pp. 494–505. Springer (2017)

20. Rass, S., Rainer, B.: Numerical Computation of Multi-Goal Security Strate-
gies. In: R. Poovendran, W. Saad (eds.) Decision and Game Theory for Secu-
rity, LNCS 8840, pp. 118–133. Springer (2014)

21. Robert, C.P.: The Bayesian choice. Springer, New York (2001)
22. Robinson, A.: Non-standard Analysis. Princeton Landmarks in Mathemat-

ics and Physics. Princeton University Press, Princeton (1996). URL http://
gbv.eblib.com/patron/FullRecord.aspx?p=4626045. Luxemburg, W. A. J.
(BeteiligteR)

23. Robinson, J.: An iterative method for solving a game. Annals of Mathematics
54, 296–301 (1951)

24. Roughgarden, T.: Twenty lectures on algorithmic game theory. Cam-
bridge University Press, Cambridge (2016). URL http://dx.doi.org/10.1017/
CBO9781316779309

25. Sela, A.: Fictitious play in ‘one-against-all’ multi-player games. Eco-
nomic Theory 14(3), 635–651 (1999). URL http://dx.doi.org/10.1007/
s001990050345

26. Shapley, L.S.: Stochastic Games. Proceedings of the National Academy of
Sciences 39(10), 1095–1100 (1953). https://doi.org/10.1073/pnas.39.10.1095.
URL http://www.pnas.org/content/39/10/1095.short

27. Team, R.D.C.: R: A Language and Environment for Statistical Computing
(2016). URL http://www.R-project.org. ISBN 3-900051-07-0

https://doi.org/10.1007/s10922-012-9229-1
http://www.springerlink.com/openurl.asp?genre=article&id=doi:10.1007/s10922-012-9229-1
https://hyrim.net/software/
https://doi.org/10.1371/journal.pone.0168675
https://doi.org/10.1371/journal.pone.0168675
http://gbv.eblib.com/patron/FullRecord.aspx?p=4626045
http://gbv.eblib.com/patron/FullRecord.aspx?p=4626045
http://dx.doi.org/10.1017/CBO9781316779309
http://dx.doi.org/10.1017/CBO9781316779309
http://dx.doi.org/10.1007/s001990050345
http://dx.doi.org/10.1007/s001990050345
https://doi.org/10.1073/pnas.39.10.1095
http://www.pnas.org/content/39/10/1095.short
http://www.R-project.org


74 S. Rass

28. Wang, L., Jajodia, S., Singhal, A., Noel, S.: k-zero day safety: Measuring
the security risk of networks against unknown attacks. In: D. Hutchison,
T. Kanade, J. Kittler, J.M. Kleinberg, F. Mattern, J.C. Mitchell, M. Naor,
O. Nierstrasz, C. Pandu Rangan, B. Steffen, M. Sudan, D. Terzopoulos, D. Ty-
gar, M.Y. Vardi, G. Weikum, D. Gritzalis, B. Preneel, M. Theoharidou (eds.)
Computer Security – ESORICS 2010, Lecture Notes in Computer Science, vol.
6345, pp. 573–587. Springer Berlin Heidelberg, Berlin, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-15497 35

29. White, D.J.: Markov decision processes. Wiley, Chichester (1993). URL http://
www.loc.gov/catdir/description/wiley033/92001646.html

https://doi.org/10.1007/978-3-642-15497_35
http://www.loc.gov/catdir/description/wiley033/92001646.html
http://www.loc.gov/catdir/description/wiley033/92001646.html


Chapter 4
A Scalable Decomposition Method for the
Dynamic Defense of Cyber Networks

Mohammad Rasouli, Erik Miehling, and Demosthenis Teneketzis

4.1 Introduction

The defense of computer systems (cyber-security) plays a crucial role in their effi-
cient/normal operation. One class of cyber-security problems concerns the security
of networks of computers (cyber networks), which are typically very large. In this
work, we investigate the development of defense policies for the security of cyber
networks.

There are several approaches to addressing the cyber-security problem. These ap-
proaches can be categorized into static vs. dynamic and control theoretic vs. game-
theoretic. The static approach considers a one-stage/single-period decision problem
where the goal is to determine a defense policy. The dynamic approach considers
a multi-period decision problem where the goal is to determine a feedback defense
policy that takes into account the evolution of the system and the available infor-
mation over time. Both the static and dynamic approaches can vary in the assump-
tions on the attacker’s behavior (strategic vs. nonstrategic). Strategic behavior leads
to a game, e.g., [1, 15, 16], whereas nonstrategic behavior leads either to an opti-
mization problem in the static case or a control problem in the dynamic case, e.g.,
[14, 17, 19, 20]. In each of the above categories, there exist various assumptions on
the problem’s information structure, that is, the information each agent possesses at
each time instant. The information structure can be symmetric (both agents possess
the same information) or asymmetric (agents possess differing information).

In this chapter, we approach the security of cyber networks as a control problem
from the defender’s point of view. We model the attacker as nature. The security sta-
tus of the cyber network evolves over time as a function of both the defender’s and
nature’s actions. We assume that the defender does not possess perfect information
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of the security status of the network at any given time. Due to the defender’s lack of
perfect information of the security status, we take a conservative approach to deter-
mining a defense policy. Specifically, we seek to minimize the worst-case damage
that the attacker/nature can inflict on the cyber network. Therefore, we determine
a defense policy as the solution of a minmax control problem with imperfect infor-
mation. Due to the high dimensionality of the minmax control problem, we cannot
solve it precisely. As a result, we develop a scalable approach to its solution, re-
sulting in a suboptimal/approximate solution of the original problem. The approach
is based on the concept of an influence graph (which quantifies the functional
dependencies among the problem’s variables) and uses a clustering algorithm to de-
compose the original, high-dimensional minmax control problem into a collection
of lower-dimensional minmax problems that are computationally feasible.

Our approach captures the dynamic nature of attacks and the fact that the de-
fender does not possess perfect knowledge of the security status of the network.
Even though we do not model the attacker as a strategic agent, we compensate (in
part) for the lack of this feature by adopting a minmax performance criterion, which
leads to a conservative defense approach. This conservative approach differs from
the game-theoretic approaches of Chapters 1, 3, 5, 6, 7, 10, 11, and 15.

Our work is distinctly different from the existing literature. From a security per-
spective, our work falls within the category of intrusion response systems (IRSs),
where there is a rich literature (see [10, 11, 21] and references therein). The goal of
an IRS is to take in security information from the environment and translate it into
a defense action, with the goal of interfering with an attacker’s objective(s). To the
best of the authors’ knowledge, our work is the first to investigate the design of an
IRS from a minmax control perspective. From a control theory point of view, our
model and problem are similar to those of [2, 3, 4, 5, 6, 7, 8, 9, 23, 24], in particular,
[3, 5, 7, 8]. The key difference between our model and those of [3, 5, 7, 8] is in
the timing of events and the nature of the information gathered by observations (see
Figure 4.1) which allows us to capture essential features of cyber-security problems.

The objective of this chapter is to provide a heuristic approach for solving large-
scale minmax control problems. This approach is used to determine conservative
defense policies in cyber-security domains.

4.1.1 Organization of the Chapter

The chapter is organized as follows. In Section 4.2, we introduce the security model.
In Section 4.3, we formulate the defense problem, define the notion of an informa-
tion state for the problem, and describe a sequential decomposition procedure for
the problem’s solution. In Section 4.4, we describe our approximation approach to
the defense problem. This includes defining the influence graph and the process for
constructing the local defense problems. We also discuss the scalability of our ap-
proach. In Section 4.5, we present an example illustrating some of the concepts used
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in our approach. In Section 4.6, we discuss our results and provide some concluding
remarks.

4.1.2 Notation

The table below (presented for later reference) describes the notation used through-
out the chapter.

X =X 1×X 2×·· ·×X n State space of the problem
N = {1,2, . . . ,n} Set of state elements
X i = {xi,1,xi,2, . . . ,xi,ni

x} State space of element i ∈N
T = {0,1, . . . ,T} Time horizon of length T
W = {w1,w2, . . . ,wnw} Set of nature’s events
W (x) Set of nature’s events admissible from state x ∈X
U =U 1×U 2×·· ·×U n Action-space
U i = {ui,1,ui,2, . . . ,ui,ni

u} Action-space of element i ∈N
Y = Y 1×Y 2×·· ·×Y n Set of event observations

Y i = {yi,1,yi,2, . . . ,yi,ni
y} Set of event observations for element i

Z =Z 1×Z 2×·· ·×Z n Set of action observations
Z i = {zi,1,zi,2, . . . ,zi,ni

z} Set of action observations for element i
K = {1,2, . . . ,nk} Set of local defense problems
Nk State indices of local defense problem k’s internal state

space
Lk State indices of local defense problem k’s local state

space
¯Nk Exogenous state indices for local defense problem k

X Nk Internal state space of local defense problem k
X Lk Local state space of local defense problem k
X

¯Nk Exogenous state space of local defense problem k
U Nk Internal action space of local defense problem k
Y Nk Internal event observation space of local defense prob-

lem k
Z Nk Internal action observation space of local defense

problem k
mkl

t Message sent from local defense problem k to l at t

m
¯Nk

t Aggregate message of local defense problem k
ht = {x0,u0:t−1,z0:t−1,y0:t} Realized history at time t

hk
t = {xNk

0 ,uNk
0:t−1,z

Nk
0:t−1,y

Nk
0:t ,m

¯Nk
0:t } Realized history for local defense problem k at time t

Ht Space of histories for defender at time t
H k

t Space of histories for local defense problem k at time t
R Space of information states
BLk Space of approximate information states for local de-

fense problem k
ψ Information state update function
φ k Approximate information state update of local defense

problem k
Γ Space of admissible defense policies
γ Element of Γ , admissible defense policy
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Γ k Space of admissible defense policies for local defense
problem k

γk Element of Γ k, admissible defense policy for local de-
fense problem k

Γ ′k Space of admissible approximate defense policies for
local defense problem k

γ ′k Element of Γ ′k, admissible approximate defense pol-
icy for local defense problem k

c(x,u) State-action cost
ci(xi,ui) State-action cost of element i
xt:t+s The sequence xt ,xt+1, . . . ,xt+s

P(A ) The powerset of set A
vA The collection of elements vi, i ∈A , from vector v
v−i,v−(i, j) All elements of v excluding element i, resp. excluding

elements i and j

We denote variables by upper-case letters and their realizations by their correspond-
ing lower-case letter, e.g., x is a realization of variable X .

4.2 The Security Model

Consider a system consisting of n elements operating in discrete time. Let N :=
{1,2, ...,n} denote the set of the system’s elements. Consider a discrete, finite
state space X := X 1 ×X 2 · · · ×X n, where X i := {xi,1,xi,2, . . . ,xi,ni

x} repre-
sents the (finite) state space of element i ∈ N . Let T denote the time horizon
over which we consider the system’s operation; T may be finite or infinite. Define
T = {0,1, . . . ,T}. The state of the system at any given time t is given by

xt = (x1
t ,x

2
t , . . . ,x

n
t ) ∈X . (4.1)

There are two agents: a controller (the defender) and nature (the adversary). The
agents interact according to the following timing diagram, shown in Figure 4.1.

t + 1t

yt

ut

zt

xt xt+1

Fig. 4.1: Timeline of events for a given time-step.
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The system state, xt , evolves due to both the defender’s decisions (control actions)
and nature’s events. For a given time-step (following the notation used in Fig-
ure 4.1), nature first generates an event, wt(xt); nature’s set of feasible events at
any time t depends on the system’s state xt , hence the notation wt(xt). The set of all
events due to nature is denoted by W := {w1,w2, ...,wnw}. The set of events that are
admissible from state xt is denoted by W (xt) ⊆W . To simplify the notation in the
rest of the chapter, we use wt instead of wt(xt). The defender is not able to perfectly
observe the event wt , but instead receives an observation yt , termed an event obser-
vation,generated according to the function θ :X ×W →Y =Y 1×Y 2×·· ·×Y n

yt = θ(xt ,wt)

=
(
θ 1(x1

t ,wt), . . . ,θ n(xn
t ,wt)

)
(4.2)

where θ i : X i×W → Y i, Y i = {yi,1,yi,2, . . . ,yi,ni
y}, and ni

y is the total number of
possible observations for yi

t . The defender then takes a defense action

ut ∈U =U 1×U 2×·· ·×U n (4.3)

based on its current information, where it is assumed (for simplicity) that the action
space decomposes over the elements of the state space. Each space U i consists of
a finite set of defense alternatives U i = {ui,1,ui,2, . . . ,ui,ni

u}. We assume that, for a
given element i, each action ui, j ∈ U i, j ∈ {1,2, . . . ,ni

u}, only has an effect on the
state xi of element i. The defender incurs a state-dependent cost for each defense
action ut , denoted by

c(xt ,ut) = ∑
i∈N

ci(xi
t ,u

i
t), (4.4)

We assume that |c(x,u)| ≤ cmax for all x ∈ X and u ∈ U . This cost is incurred
immediately after the defense action is selected. The defender then receives an ob-
servation zt , termed an action observation, following the defense action, that is gen-
erated by the function ζ : X ×W ×U →Z =Z 1×Z 2×·· ·×Z n as

zt = ζ (xt ,wt ,ut)

=
(
ζ 1(x1

t ,wt ,u
1
t ), . . . ,ζ n(xn

t ,wt ,u
n
t )
)

(4.5)

where ζ i :X i×W ×U i→Z i, Z i = {zi,1,zi,2, . . . ,zi,ni
z}, and ni

z is the total number
of possible observations for zi

t . The action observation provides additional informa-
tion about the system’s state (see [19]). The defense action, ut = (u1

t , . . . ,u
n
t ), causes

the system to transition to the system state xt+1 according to the state update func-
tion π : X ×W ×U →X , that is,

xt+1 = π(xt ,wt ,ut)

=
(
π1(xt ,wt ,u

1
t ), . . . ,πn(xt ,wt ,u

n
t )
)
. (4.6)
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where each π i : X ×W ×U i →X i is the update equation state element i. Note
that at any time t, each π i depends on the global system state xt , not only on xi

t ,
because, as we pointed out above, the set of nature’s feasible events at t depends
on xt .

4.3 The Defense Problem

The optimal defense action at any given time-step is dictated by an optimal de-
fense policy. The defense policy at time t, denoted by γt , is a function of the de-
fender’s information available at time t. This information, termed the history and
denoted by ht , consists of the initial state x0, all previous control actions, u0, . . . ,ut−1

(denoted compactly by u0:t−1), and all observations y0:t , and z0:t−1. Formally,
ht = {x0,u0:t−1,z0:t−1,y0:t}, where the initial state x0 is known by the defender. A
defense policy, γ = (γ1,γ2, . . . ,γT ), maps the available information at any time t to
a defense action ut , that is, γt : Ht →U , where Ht is the information space of the
controller at time t (the space of histories up to time t). The space of admissible
defense policies is given by Γ = {γ = (γ1,γ2, . . . ,γT ) |γt : Ht →U for all t ∈T }.

An optimal defense policy is a policy γ that solves the following partially observ-
able minmax control problem (P).

min
γ∈Γ

max
{XT ∈X γ

T }

{
∑

t∈T
β t c(Xt ,Ut

)∣∣∣∣X0 = x0

}
(P)

subject to Xt+1 = π(Xt ,Wt ,Ut) (P-i)

Yt = θ(Xt ,Wt) (P-ii)

Zt = ζ (Xt ,Wt ,Ut) (P-iii)

Ut = γt(Ht) (P-iv)

Ht = {x0,U0:t−1,Z0:t−1,Y0:t} (P-v)

for all t ∈ T , where β is the discount factor, 0 < β < 1. The set X γ
T denotes the

space of all sequences of system states (trajectory) generated by a given defense
policy γ . The maximization is taken over all families of state trajectories generated
by the defense policy γ , denoted by {XT = {X1,X2, . . . ,XT} ∈X γ

T }. We consider
all such families of trajectories (each one associated with a defense policy) and
choose the policy that minimizes the highest-cost (worst-case) trajectory among all
families.

The remainder of this section is devoted to determining more compact descrip-
tions of the defender’s information. Such descriptions may either permit the compu-
tation of an optimal defense policy or provide guidelines/insights for computation-
ally tractable approximations of Problem (P).
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4.3.1 Information State

In order to prescribe an optimal defense action at time t for Problem (P), we need
to determine an information state sufficient for performance evaluation. One such
information state is the history ht . Unfortunately, due to the unbounded growth of
the domain of ht (see Figure 4.2), the computation of a defense policy based on
ht is intractable for infinite-time horizon problems (and large finite horizons). This
motivates the search for a more compact (albeit still sufficient) summary of the
current information (the need for finding a compact information state is even more
critical in modern dynamic security environments where the rate of events is high,
causing ht to grow rapidly in size).

Fig. 4.2: The information, Ht , consisting of the initial state x0, observations Y0:t ,
Z0:t−1, and previous defense actions U0:t−1 grows rapidly as a function of t, as can
be seen by the tree structure above. The number of information realizations at time
t is equal to the number of leaf nodes in the tree at depth t. A realized information
trajectory, ht = (x0,y′,u′,z′,y′′, . . . ,y′′′), is a path from the root of the tree, x0, to a
leaf, in this case y′′′, as shown by the bolded line.

An alternate information state for Problem (P) can be defined. This alternate
information state offers insight into the source of computational difficulty associated
with the defender’s problem and forms the basis for later approximations that bring
the problem into the realm of computational tractability.

We now define this information state, denoted by Rt , in the context of
the defense problem and describe its update equations. Consider a realization
ht := {x0,u0:t−1,z0:t−1,y0:t} of the defender’s information at time t. Denote by

{J 1
t , . . . ,J

l̂(ht )
t } to be the set of distinct event-action trajectories from 0 to

t that are compatible with x0 and ht (see Remark 1); J i
t = {x0,u0:t−1,

iw0:t},
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i= 1,2, . . . , l̂(ht). Each trajectory J i
t leads to a system state ix̂t := (ix̂1

t , . . . ,
ix̂i,n

t ), i=
1,2, . . . , l̂(ht). Denote by iκ̂t the cost of reaching ix̂t ; iκ̂t := ∑t−1

τ=0β
τc(ix̂τ ,uτ),

where ix̂τ is the system state at τ due to J i
t . Define R̂t(ht) := {(1xt ,

1wt ,
1κ̂t), . . . ,

(l̂(ht )xt ,
l̂(ht )wt ,

l̂(ht )κ̂t)}. Apply the following reduction process to R̂(ht). If R̂(ht)
contains components ( j1xt ,

j1wt ,
j1κt), . . . ,(

jqxt ,
jqwt ,

jqκt) such that ( j1xt ,
j1wt) =

. . . = ( jqxt ,
jqwt) and jp κ̂t = max j∈{ j0, j1,..., jq}{ jκt}, then omit ( ji xt ,

jiwt ,
jiκt),

ji �= jp, from R̂t(ht). This reduction process results in

Rt(ht) = {(1xt ,
1wt ,

1κt), . . . ,(
l(ht )xt ,

l(ht )wt ,
l(ht )κt)}

where (1xt ,
1wt), . . . ,(

l(ht )xt ,
l(ht )wt) are distinct and Rt(ht) is an alternative infor-

mation state at t along ht for Problem (P). From the construction of Rt(ht), we
conclude that for all history realizations ht and for all t, an information state Rt

has the form {(1xt ,
1wt ,

1κt), ...,(
axt ,

awt ,
aκt)}, where {(1xt ,

1wt), ...,(
axt ,

awt)} ∈
P(X ×W ) = P(X 1×X 2× ...×X n×W ), iκt ∈ [0, cmax

1−β ], for all i, for all t,
and P(·) denotes the power set. We denote by R the space of information states at
any time t, specifically

R =P(X ×W )×
[

0,
cmax

1−β
]
. (4.7)

We now describe how to obtain Rt+1 from Rt and the new information Ht:t+1

that becomes available to the defender at time t + 1. Let ht be a realization of
Ht and ht:t+1 = ht+1\ht = {ut ,zt ,yt+1} be a realization of Ht:t+1. Denote by

{J 1
t:t+1, ...,J

p(ht:t+1)
t:t+1 } the set of distinct action-event trajectories from t to t+1 that

are compatible with R(ht) and ht:t+1; J i
t:t+1 := {ut ,

iwt+1}, i = 1,2, ..., p(ht:t+1).

Using R(ht), {J 1
t:t+1, . . .J

p(ht:t+1)
t:t+1 }, and the system dynamics, Equation (4.6),

we can construct R̂(ht+1) :=
{
(rx̂t+1,

rŵt+1,
rκ̂t+1),r = 1,2, . . . ,a} (see Re-

mark 2) where rx̂t+1 = π((rxt ,
rwt ,ut), (ut ,

rwt+1) ∈ {J 1
t:t+1, . . .J

p(ht:t+1)
t:t+1 },

rwt+1 ∈ W (rx̂t+1), rκ̂t+1 = rκt + β t c(rxt ,ut), and rκt is the cost associated with
(rxt ,

rwt), where (rxt ,
rwt ,

rκt) ∈ R(ht). Apply the above-described reduction pro-
cess to R̂t+1(ht+1) to obtain the alternative information state

Rt+1(ht+1) = {(1xt+1,
1wt+1,

1κt+1), . . . ,(
l(ht+1)xt+1,

l(ht+1)wt+1,
l(ht+1)κt+1)}

for Problem (P) at time t + 1 along ht+1. The recursive update process described
above can be summarized by an update equation

Rt+1(ht+1) = ψ(Rt(ht),ht:t+1) = ψ(Rt(ht),ut ,zt ,yt+1). (4.8)

The information state described above summarizes the information ht available to
the defender at time t by including all system states at t that are compatible with
ht , the maximum cost that is incurred in order to reach each of these states, and the
events in nature that follow each of the possible states at t; these events must be
feasible conditioned on the state rxt , that is, rwt must be in the set W (rxt).
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Remark 1. Compatibility implies that the following requirements are satisfied; each
event-action trajectory {u0:t−1,

iw0:t} is consistent with x0, the observations y0:t and
z0:t−1 (through θ and ζ , respectively), the system dynamics described by Equa-
tion (4.6), and for every τ ≤ t, wτ ∈W (xτ), where xτ is the system state at τ reached
via x0, u0:τ−1, w0:τ−1.

Remark 2. The number of components a of R̂(ht+1) depends on R(ht), ht:t+1, the
system dynamics, and the sets W (x), x ∈X .

4.3.2 Sequential Decomposition and Dynamic Programming

We discuss a sequential decomposition for Problem (P) using dynamic program-
ming. To specify the dynamic program for the finite horizon problem, denote by
rt the information state at time t ≤ T . Define by Vt(rt), rt ∈ Rt , the minmax value
of Problem (P) from time t on when the information state at t is rt . Then, when
rT = ((1x, 1w, 1κ),(2x, 2w, 2κ), . . . ,(l(hT )x, l(hT )w, l(hT )κ)),

VT (rT ) = max
j∈{1,2,...,l(hT )}

jκ (4.9)

For t = 0,1, . . . ,T −1,

Vt(rt) = min
ut∈U

[
max

(xt ,wt ,κt )∈rt

Vt+1(rt+1)

]

= min
ut∈U

[
max

(xt ,wt ,κt )∈rt

[
max

wt+1∈W (π(xt ,wt ,ut ))

Vt+1

(
ψt
(
rt ,ut ,ζ (xt ,wt ,ut),θ(π(xt ,wt ,ut),wt+1)

))]]
. (4.10)

Equations (4.9) and (4.10) define the dynamic program for the finite (T) horizon
Problem (P).

To specify the dynamic program for the infinite horizon problem, we let r ∈R
denote the current information state and V (r) denote the minmax value of the infinite
horizon Problem (P). Then,

V (r) = min
u∈U

[
max

(x,w,κ)∈r

[
max

w′∈W (π(x,w,u))
V
(
ψ
(
r,u,ζ (x,w,u),θ(π(x,w,u),w′)

))]]

(4.11)

Because of the high dimensionality (see Equation (4.7)), the solution of the fi-
nite and infinite-time horizon dynamic programs is computationally intractable. For
this reason, in the next section, we provide a scalable approach for the solution of
Problem (P).
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4.4 Approximation to the Defense Problem

Even though the alternate information state described in Section 4.3.1 above leads to
an intractable problem even for small systems (cf. Equation (4.7)), it forms the basis
for a scalable approach to the solution of Problem (P). The approach consists of two
key steps: (i) using the concept of an influence graph, we analyze the functional
dependencies among state elements and split elements with weak dependencies, de-
composing the original problem (P) into a number of local defense problems (Pk);
(ii) we further approximate the solution of each local defense problem in order to
permit computation of (suboptimal) local defense policies. We discuss the compu-
tational complexity of each of the local defense problems and comment on how to
use the features of our approach so as to end up with problems that are compatible
with the defender’s computational capabilities.

4.4.1 Local Defense Problems

4.4.1.1 Preliminaries

In order to define the local defense problems, denoted by (Pk), we first introduce
some necessary notation and describe, at a high level, how the local defense prob-
lems interact with one another. Then, in the remaining subsections, we describe in
detail how the local defense problems are formed.

Consider a collection of nk local defense problems, denoted by the set K =
{1,2, . . . ,nk}. Each local defense problem k ∈ K has an associated set of states
termed the internal state space of problem k, denoted by X Nk ⊆ X , where
Nk ⊆ N is the set of internal state indices for problem k. By construction (de-
scribed later), X Nk , k ∈K form a partition of the original state space X , that is,
X Ni ∩X N j = /0 for i �= j and ∪k∈K X Nk = X . Under this partition, the action
and observation spaces for each local defense problem k ∈K are denoted by U Nk

and Y Nk , Z Nk , respectively.
Each local defense problem (Pk) is associated with a local defense policy γk. In

computing the local defense policies, we assume that the local defense problems can
exchange information over time via messages. We denote by mkl

t the message local
defense problem k receives from local defense problem l at time t. The message-
exchange process occurs immediately before each local defense action is taken, as
shown in the timing diagram of Figure 4.3.

The local defense action, uNk
t ∈U Nk , causes the internal states of local defense

problem k, denoted by xNk
t = {x j

t | j ∈Nk}, to transition to xNk
t+1 according to the

state update function πNk :X ×W ×U Nk →X Nk . The function πNk is simply de-
fined as the collection of functions π j, j ∈Nk, as described in Equation (4.6). Note
that the dynamics of the internal states of each local defense problem (Pk) depend,
in general, on the state of the overall system. This means that, without exploiting



4.4 Approximation to the Defense Problem 85

t + 1t

message 
exchange

Fig. 4.3: Timeline of events for the local defense problem (Pk) for a given time-step.

any additional structure of the problem, the state space of each local defense prob-
lem is just as large as that of the original problem (P). To address this, we define an
influence graph (in Section 4.4.1.2) in order to quantify the functional dependencies
among state elements. Using the structure of the influence graph, each local defense
problem can restrict attention to the state elements that directly influence the evolu-
tion of its internal states. The remainder of Section 4.4 is devoted to describing how
the local defense problems are formed.

4.4.1.2 Functional Dependencies and the Notion of an Influence Graph

To form the local defense problems, we first analyze the functional dependencies
among the state elements i ∈N . To this end, we provide the following definition.

Definition 1 (Functional Dependency). State element i is said to have a functional
dependency on state element j, if there exists an action ui ∈ U i, an event w ∈ W ,
and two states x = (x1, . . . ,x j−1,x j,x j+1, . . . ,xn), x̂ = (x1, . . . ,x j−1, x̂ j,x j+1, . . . ,xn)
differing only in element j, x j �= x̂ j, such that

π i(x,w,ui) �= π i(x̂,w,ui),

where π i is the state update function of element i, given by Equation (4.6).

In other words, state element i is said to be functionally dependent on state element
j if a change in the state element j influences the update for state element i for some
action ui ∈U i and some event w ∈W . The relationships expressed by Definition 1
can be summarized by a graph, termed the influence graph, defined below.

Definition 2 (Influence Graph). The influence graph, G = (V ,E ,ξ ), is a weighted
directed graph that consists of nodes V =N , edge set E , and edge weights ξ . The
edge set E contains edge e = (i, j) if and only if state element j is functionally
dependent on state element i, as described by Definition 1. Each edge e = (i, j) ∈ E
in the influence graph is assigned a weight ξe ∈ (0,1], computed as
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ξe =
1
d ∑

x−(i, j)∈X −(i, j)
xi∈X i

x j∈X j

w∈W
ui∈U i

x̂ j∈X j\{x j}

1
({π i(x,w,ui) �= π i(x̂,w,ui)}) (4.12)

where 1(A) is the indicator function of event A and d is the normalization term; d is
the number of all possible terms in the summation of Equation (4.12), and therefore,
its value is equal to d = (∏l �=i, j nl

x)n
i
xn j

xnwni
u(n

j
x−1).

The influence graph summarizes the dependencies among all state elements for all
possible defense actions and events. A directed edge e = (i, j) ∈ E exists from ele-
ment (node) i to element j if there exists an assignment of values to states, events,
and actions such that state element j functionally depends on state element i. The
weight of edge (i, j) ∈ E quantifies the strength of the functional dependency of
element j on element i.

4.4.1.3 Formulating the Local Defense Problems

We form local defense problems by partitioning the influence graph into clusters of
nodes (state elements). The clustering algorithm should place state elements with
strong dependencies into a single cluster. Since the weights of the edges in the in-
fluence graph quantify the strength of the functional dependencies between state
elements, application of the (normalized) min-cut algorithm [12] splits elements
with weak functional dependencies, achieving the desired goal. A single application
of the (normalized) min-cut algorithm decomposes a graph into two separate graphs
using a minimum weight cut. Continued application of the min-cut algorithm results
in increasingly finer partitioning of nodes, resulting in clusters with fewer nodes and
eventually leading to a partitioning of the state space that permits computation of
local defense policies (this procedure is described in detail in the example of Sec-
tion 4.5). For each cluster of elements, we formulate a local defense problem (Pk)
and aim to solve for the corresponding local defense policy.

In order to formulate each local defense problem (Pk), k ∈ K , we must first
describe its associated state space and dynamics. Using the influence graph, one can
analyze the functional dependencies between state elements. Specifically, given a
set of internal state indices Nk, one can determine the state elements outside the set
of internal states, i ∈N \Nk, that influence the evolution of states within Nk (as
described by Definition 1). Formally, this set of elements is defined as

¯Nk = {i ∈N \Nk | (i, j) ∈ E , j ∈Nk}

where E is the influence graph’s set of edges. From this, one can define the set
of local state element indices as the state elements in Nk combined with the state
elements that directly influence the evolution of any element in Nk, that is,
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Lk =Nk ∪ ¯Nk.

The state space corresponding to indices Lk is written as X Lk ⊆X and is termed
the local state space of problem k. Since, by construction, there are no edges from
any elements in N \Lk to elements in Nk, the update of the internal states xNk is
independent of the states in X N \Lk . Therefore, with some abuse of notation, the
state update function for the internal states can equivalently be written using the
function πNk : X Lk ×W ×U Nk →X Nk as

xNk
t+1 = π

Nk(xLk
t ,wt ,u

Nk
t ). (4.13)

It is important to note that the local state-space X Lk of each local defense prob-
lem k ∈K is an approximation to the state space that would be necessary for com-
puting an optimal local defense policy. Although the states xNk can be updated pre-
cisely using the local states xLk , as evidenced by Equation (4.13), computation of
an optimal local defense policy requires knowledge of how xLk evolves over time.
Due to the computational limitations of the defender, one is unable to take into ac-
count the state dynamics associated with the state elements outside its internal state
space, X Nk , for the purpose of computing a local defense policy. As a result, we
approximate the state dynamics by introducing a message-exchange procedure in
which neighboring defense problems communicate relevant elements of their inter-
nal states.

The messages that local defense problems exchange consist of the possible states
that are consistent with each local defense problem’s history (more on this in Sec-
tion 4.4.2). Before formally defining the messages, define the set

¯Nkl = ¯Nk ∩Nl .

The set ¯Nkl represents the set of state indices within Nl that can influence the
evolution of a state element in Nk. Note that ¯Nkl is only nonempty if there is an
edge (i, j) ∈ E in the influence graph such that i ∈Nl and j ∈Nk. Also, note that
{ ¯Nkl , l ∈K } forms a partition of ¯Nk. The message that local defense problem k
receives from local defense problem l at time t, mkl

t , lives within the set of all possi-
ble states of x ¯Nkl , that is, mkl

t ∈P(X
¯Nkl ). Local defense problem l constructs this

message as the set of possible states that are consistent with its local information
(built in part using its imperfect internal observations).

In this sense, local defense problem k receives a summary of local defense
problem l’s local information that is relevant for taking an internal defense action
uNk = {ui | i∈Nk}∈U Nk =∏i∈Nk

U i, permitting local defense problem k to com-
pute a (suboptimal) local defense policy γk. The complete set of messages that local
defense problem k receives from neighboring local defense problems are combined
to form an aggregate message, denoted by

m
¯Nk

t ∈P

(
∏

l∈K
X

¯Nkl

)
=P(X

¯Nk).
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The aggregate message allows local defense problem k to update its exogenous state

elements in a way that is consistent with the exchanged information, that is, x
¯Nk

t+1 ∈
m

¯Nk
t+1. Combined with the state update of its internal states, given by Equation (4.13),

the defender is able to (approximately) model the evolution of its local states xLk .
For each local defense problem k ∈K , an optimal local defense action at any

given time-step is dictated by an optimal local defense policy. The local defense pol-
icy at time t, denoted by γk

t , prescribes an action based on its available information

at time t. This information, given by hk
t = {xNk

0 ,uNk
0:t−1,z

Nk
0:t−1,y

Nk
0:t ,m

¯Nk
0:t }, consists of

the initial value of the internal states xNk
0 , all internal defense actions uNk

0:t−1 up to

and including t−1, all internal action observations zNk
0:t−1 = {zi

0:t−1 | i ∈Nk} up to

and including t− 1, all internal event observations yNk
0:t = {yi

0:t | i ∈Nk} up to and
including t, and all received messages up to and including t, summarized by the ag-

gregate messages m
¯Nk

0:t . A local defense policy, γk = (γk
1 ,γ

k
2 , . . . ,γ

k
T ), maps the avail-

able information at any time t, hk
t , to a defense action uNk

t , that is, γk
t : H k

t →U Nk ,
where H k

t is the information space of the local defense problem at time t. The
space of admissible local defense policies for local defense problem k is given by
Γ k = {γk = (γk

1 ,γ
k
2 , . . . ,γ

k
T ) |γk

t : H k
t →U Nk for all t ∈ T }. The optimal local de-

fense policy for local defense problem k, k ∈ K , is a policy γk that solves the
following partially observable minimax control problem (Pk).

min
γk∈Γ k

max{
X
Lk
T ∈X Lk ,γk

T

}
{
∑

t∈T
β t cNk(XNk

t ,UNk
t

)∣∣∣∣XLk
0 = xLk

0

}
(Pk)

subject to XNk
t+1 = π

Nk(XLk
t ,Wt ,U

Nk
t ) (Pk-i)

X
¯Nk

t+1 ∈M
¯Nk

t+1 (Pk-ii)

YNk
t = θNk(XNk

t ,Wt) (Pk-iii)

ZNk
t = ζNk(XNk

t ,Wt ,U
Nk
t ) (Pk-iv)

UNk
t = γk

t (H
k
t ) (Pk-v)

for all t ∈ T , where the local states are defined as collection of internal and exoge-

nous states, XLk
t =(XNk

t ,X
¯Nk

t ). The functions θNk , ζNk are defined as the collection
of event and action observation functions θ i, ζ i, i∈Nk, as defined in Equations (4.2)
and (4.5), respectively. The function cNk(xNk ,uNk) represents the state-action cost
of local defense problem k and is defined as the sum of the internal state-action

cost functions, that is, cNk(xNk ,uNk) = ∑ j∈Nk
c j(x j,u j). The set X Lk,γk

T denotes
the space of all sequences of local system states under local defense policy γk. As
described earlier for Problem (P), the optimal policy is the policy that minimizes the
worst-case cost over all state trajectories.

Each local defense problem (Pk), defined above, is of the same form as Prob-
lem (P). Consequently, the information state for the internal state space X Nk is
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of the same form as the one described in Section 4.3.1; that is, the space of infor-

mation states for Problem (Pk) is Rk = P(X Nk ×W )× [0,
cmax
Nk

1−β ] where cmax
Nk

=

maxx∈X Nk ,u∈U Nk c(x,u). Such an information space precludes computation of an
optimal local defense policy. As a result, we approximate the information state of
each local defense problem (Pk) so as to end up with a modified problem that is
computationally tractable. This is the topic of the following subsection.

4.4.2 Approximating the Local Defense Problems

We use the information state described in Section 4.4.1 to form an approximate
information state for each local defense problem k. For a given realization of the
local history hk

t ∈H k
t , we consider only the set of states that are compatible with hk

t
(we omit the set of nature’s events and the maximum cost associated with each
compatible state). That is, each local defense problem constructs the set of all
possible local states, xLk = (xNk ,x ¯Nk), consistent with the history of internal de-
fense actions and observations and messages that it has received from neighbor-
ing local defense problems. We denote this approximate information state at time
t by bLk

t ∈ BLk = P(X Lk), where BLk is the space of approximate informa-
tion states for local defense problem k. Using the new information from time t

to t + 1, given by hk
t:t+1 = {uNk

t ,zNk
t ,yNk

t+1,m
¯Nk

t+1}, local defense problem k can up-

date its approximate information state as follows. We note that bLk
t has the form

bLk
t = {(1xNk

t , 1x
¯Nk

t ), . . . ,(lxNk
t , lx

¯Nk
t )}. We use (1xNk

t , . . . , lxNk
t ), uNk

t , zNk
t , yNk

t+1 to

determine (1xNk
t+1, . . . ,

rxNk
t+1) according to the update process ψ described in Sec-

tion 4.3.1. We combine (1xNk
t+1, . . . ,

rxNk
t+1) with the message m

¯Nk
t+1 =(1x

¯Nk
t+1, . . . ,

qx
¯Nk

t+1)

to form bLk
t+1 = {(ixNk

t+1,
jx

¯Nk
t+1), i = 1,2, . . . ,r; j = 1,2, . . . ,q}. Thus

bLk
t+1 = φ

k(bLk
t ,hk

t:t+1)

= φ k(bLk
t ,uNk

t ,zNk
t ,yNk

t+1,m
¯Nk

t+1).

With this new approximate information state, each Problem (Pk) is approximated
by the following minmax control problem (P′k).

min
γ ′k∈Γ ′

max{
X
Lk
T ∈X Lk ,γ ′k

T

}
{
∑

t∈T
β t cNk(XNk

t ,UNk
t

)∣∣∣∣XLk
0 = xLk

0

}
(P′k)

subject to XNk
t+1 = π

Nk(XLk
t ,Wt ,U

Nk
t ) (P′k-i)

X
¯Nk

t+1 ∈M
¯Nk

t+1 (P′k-ii)

YNk
t = θNk(XNk

t ,Wt) (P′k-iii)
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ZNk
t = ζNk(XNk

t ,Wt ,U
Nk
t ) (P′k-iv)

UNk
t = γ ′kt (B

Lk
t ) (P′k-v)

for all t ∈ T , where the local states are given by XLk
t+1 = (XNk

t+1,X
¯Nk

t+1), and Γ ′k =
{γ ′k = (γ ′k1,γ ′

k
2, . . . ,γ ′

k
T ) |γ ′kt : BLk →U Nk for all t ∈ T } represents the set of ad-

missible approximate local defense policies γ ′k.
For finite horizon T , we solve Problem (P′k) backward in time via the following

set of recursive equations. Let bLk
t ∈ BLk be the approximate information state

at t and V k
t (b

Lk
t ) denote the minmax value of Problem (P′k) from time t on when

the approximate information state at t is bLk
t , t = 0,1, . . . ,T + 1. Then, for each

bLk
T+1 ∈BLk ,

V k
T+1(b

Lk
T+1) = 0, (4.14)

and for t = 1,2, . . . ,T , and each bLk
t ∈BLk ,

V k
t (b

Lk
t ) = min

u
Nk
t ∈U Nk

[
max

x
Lk
t =(x

Nk
t ,x

¯Nk
t )∈b

Lk
t

[
cNk(xNk

t ,uNk
t

)
+

β max
wt∈W (x

Lk
t )

m
¯Nk

t+1∈P(X
¯Nk )

[
max

x
¯Nk

t+1∈m
¯Nk

t+1

[
max

wt+1∈W
(
πNk (x

Lk
t ,wt ,u

Nk
t ),x

¯Nk
t+1

)

V k
t+1

(
φ
(
bLk

t ,uNk
t ,ζNk

(
xNk

t ,wt ,u
Nk
t

)
,θNk

(
πNk(xLk

t ,wt ,u
Nk
t ,wt+1

)
,m

¯Nk
t+1

))]]]]

(4.15)

where W (xLk
t ) is defined as the set of events possible from any state x such that the

elements Lk of the state are equal to xLk
t .

For the infinite horizon case, we solve Problem (P′k) via the set of equations

V k(bLk) = min
uNk∈U Nk

[
max

xLk=(xNk ,x
¯Nk )∈bLk

[
cNk(xNk ,uNk

)
+

β max
w∈W (xLk )

m
¯Nk∈P(X

¯Nk )

[
max

x
¯Nk∈m

¯Nk

[
max

w′∈W
(
πNk (xLk ,w,uNk ),x

¯Nk
)

V k
(
φ
(
bLk ,uNk ,ζNk

(
xNk ,w,uNk

)
,θNk

(
πNk(xLk ,w,uNk ,w′

)
,m

¯Nk
))]]]]

(4.16)

for all bLk ∈BLk .
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Solving the above recursive equations (Equations (4.14) and (4.15) for the finite
horizon case, or Equation (4.16) for the infinite horizon case) for each k ∈K yields
a set of (suboptimal) local defense policies {γ ′1,γ ′2, . . . ,γ ′nk} for Problem (P).

4.4.3 Scalability

Our approach to the solution of Problem (P) consists of two main steps: (i) the par-
tition of the influence graph into clusters and the formulation of approximate local
defense problems (P′k) and (ii) the solution of each problem (P′k). This approach
can provide a (suboptimal) solution to the defense problem (P) associated with net-
works of arbitrarily large size, as we explain below. Suppose that the designer of
the defense policy knows its (limited) computational capability. To implement our
approach, the designer must be able to solve the problems associated with the above-
described steps.

Forming the influence graph requires the computation of all of the edge weights,
ξe, as described in Section 4.4.1.2; the complexity of such a computation is of the
order of O(∑ j,i∈N , j �=i |X ×X j ×W ×U |) = O(n2nwnu). Creating clusters re-
quires the use of the min-cut algorithm, the complexity of which is of the order
O((nk− 1)n2), where nk is the number of clusters. The computational complexity
of each of the Problems (P′k) is of the order O(|P(X Lk)×Y Nk ×Z Nk ×U Nk ×
W |) =O(2|Lk|nw∏i∈Nk

(ni
yni

zn
i
u)). The problems (P′k) can be solved in parallel. The

above arguments show that the computational complexity associated with the solu-
tion of each Problem (P′k) is the main bottleneck in the application of our approach
to the solution of Problem (P). If the computational complexity of each of the prob-
lems (P′k), k ∈K , does not exceed the designer’s computational capability, then our
approach can be used to provide a suboptimal solution to Problem (P).

From the above discussion, it is clear that an increase in number nk of clusters will
on one hand decrease the computational complexity of each (P′k), as the dimension-
ality of each X Nk ,Y Nk ,Z Nk ,W ,U Nk will decrease, but, on the other hand, will
decrease the accuracy of the solution of Problem (P) and increase the complexity of
the min-cut algorithm. Therefore, in the application of our approach to Problem (P),
one has to explore the above-described tradeoff between computational complexity
and solution quality so as to end up with the best approximation that is compatible
with the defender’s computational capabilities.

Depending on the structure of the influence graph, modifications to the approach
can be taken. In some problems, the influence graph may exhibit some sparsity; in
this case the computational complexity associated with clustering can be reduced
using spectral clustering with non-backtracking matrix [13] (the spectral clustering
with non-backtracking matrix algorithm has lower complexity than the min-cut al-
gorithm for super-sparse graphs). In situations where the influence graph is densely
connected, one can use approximations, in addition to those described in this chap-
ter, so as to end up with a scalable approximation to Problem (P). We briefly describe
such approximations in the conclusion of the chapter (Section 4.6).
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4.5 Example

Consider a system of five hosts. Each host can be in one of four security states (a
measure of its security level), ranging from the most secure state, s1, to the least
secure state, s4. At each time-step, the attacker (nature) can choose to attack the
hosts through selection of various attack actions. The attacker is assumed to have
access to three types of attack actions: a null action, corresponding to not attacking
the host; probe actions, which increment the security state of the attacked host; and
spread actions, which allow the attacker to use a host in a degraded security state to
attack another host. Following the attack action (nature’s event), the defender selects
its defense action. The defender has access to three types of defense actions: a null
action, corresponding to not specifying any defense action; a sense action, which, if
invoked on a host, reveals the true security state of the host to the defender; and a
reimage action, which resets the security state of the host to s1.

The five host system described above can be modeled using the security model
of Section 4.2. Formally, using the notation of our model, each host corresponds to
a state element, that is, N = {1,2,3,4,5}. The state space of each element reflects
the possible security states that each host can be in, that is, X i = {s1,s2,s3,s4}.
The state space of the problem is X = ∏i∈N X i. The set of attack actions W is
assumed to decompose into attacks on each host, that is, W =∏i∈N W i. Note that
in our model of Section 4.2, the attacks are not necessarily decomposable into at-
tacks on each element; however, for the purposes of our example, we assume (for
simplicity) that the system-wide attack can be described as the collection of attacks
on each element. Each set W i consists of attacks W i = {wi

∅
,wi

p1
,wi

p2
,wi

p3
,w ji

s ,w
ji
s′ }

on host i, where wi
∅

represents no attack on host i; wi
pk

represents a probe action,

incrementing the security state of host i from xi
t = sk to xi

t+1 = sk+1; and both w ji
s

and w ji
s′ represent spread actions, allowing the attacker to use another host j if it

is in state x j
t = s4 to attack host i. Specifically, w ji

s brings the state of host i from
xi

t = s1 to xi
t+1 = s3, and w ji

s′ brings the state of host i from xi
t = s2 to xi

t+1 = s3. To
make the example more interesting (resulting in a more diverse set of weights in the
influence graph), we assume that the attacker has limited spreading capabilities, that
is, W 1 contains the spreading actions {w5,1

s ,w5,1
s′ }, W 2 contains {w1,2

s ,w1,2
s′ ,w

3,2
s },

W 3 contains {w1,3
s ,w4,3

s }, W 4 contains {w3,4
s }, and W 5 contains {w1,5

s }. The set of
defense actions U =∏i∈N U i is described in terms of the action-space of each el-
ement. Specifically, U i = {ui

∅
,ui

s,u
i
r}, where ui

∅
represents the defender not taking

any action on host i, ui
s represents the sense action on host i, and ui

r represents the
reimage action on host i. Neither the null actions nor the sense action has an effect
on the evolution of the state.

In terms of the state update function of Equation (4.6), the evolution of each state
element can be written as follows:
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xi
t+1 = π

i(xi
t ,wt ,u

i
t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

s1 if ui
t = ui

r

s3 else if (w ji
s ∈ wt , x j

t = s4, xi
t = s1) or

(w ji
s′ ∈ wt , x j

t = s4, xi
t = s2)

sk+1 else if wi
t = wi

pk
, xi

t = sk, k = 1,2,3
xi

t otherwise.

We assume that the defender is only able to observe the spreading actions, but cannot
observe the attacker’s null or probe actions. Formally,

yi
t = θ i(xi

t ,wt) =

{
w if for any w = w ji

s or w = w ji
s′ in wt

∅ otherwise.

The defender’s action observations are

zi
t = ζ i(xi

t ,u
i
t ,wt) =

⎧⎨
⎩

s1 if ui
t = ui

r
xi

t else if ui
t = ui

s
∅ otherwise.

Finally, the (instantaneous) cost that the defender incurs at time t is sim-
ply c(xt ,ut) = c1(x1

t ,u
1
t ) + · · ·+ c5(x5

t ,u
5
t ), where xt = (x1

t ,x
2
t , . . . ,x

5
t ) and ut =

(u1
t ,u

2
t , . . . ,u

5
t ). The defense problem (P) can now be written. In previous work

[19], we were able to obtain a defense policy for a similar problem with n = 3
elements using the approximate information state (the set of states compatible with
the defender’s information at t) described in Section 4.4.2. For larger problems (for
instance, the n = 5 problem just described), we must employ the decomposition
approach proposed in this chapter to permit computation of approximate defense
policies.

The influence graph for the example problem can now be constructed. Assume
that the computational capability of the defender is such that it can solve Prob-
lem (P) for systems consisting of nmax = 3 or fewer elements. The quantity nmax

is determined by taking into account the defender’s computational capability and
the computational complexity of Problem (P′k), as described in Section 4.4.3. In
the current example n = 5 > 3 = nmax, so we must decompose the problem into
local defense problems and determine local defense policies. As described in Sec-
tion 4.4.1.2, the construction of the influence graph is performed by analyzing the
functions and the sets of actions of both the defender and attacker with the weights
computed according to Equation (4.12). For illustration purposes, we show how to
compute one of the weights, specifically ξ5,1. The remaining edge weights are cal-
culated in a similar fashion. To calculate ξ5,1, we need to count the cases where the
state update of element i = 1 functionally depends on the state of element i = 5, as
described by Definition 1. To do this, we enumerate over all values of x1, u1, w1,
x5, x̂5 �= x5, u5, w5, x−(1,5), and w−(1,5). The normalization term in Equation (4.12)
is d = (∏l∈N \{i, j} nl

x)n
i
xn j

x(n
j
x− 1)nwni

u = (43) · 4 · 4 · (4− 1) · (6 · 7 · 6 · 5 · 5) · 3 =
58060800. Only in the cases that all of the following conditions are satisfied, the
event within the indicator function of Equation (4.12) is true: (i) A spread attack
is launched from element j = 5 to i = 1, while the state of element i = 1 is such
that the spread attack is effective, i.e., (w5 = w5,1

s , x1 = s1) or (w5 = w5,1
s′ , x1 = s2).
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(ii) The state of element j = 5 allows the attack to be launched in x5 but does not al-
low it in x̂5 or vice versa, i.e., (x5 = s4, x̂5 ∈{s1,s2,s3}) or (x5 ∈{s1,s2,s3}, x̂5 = s4).
(iii) There are no similar effective spread attacks on element i = 1 from other ele-
ments k ∈ {2,3,4}; since there exists no spread attack from elements k ∈ {2,3,4}
to element i = 1, their state and attack events can take any possible value, i.e.,
x−(1,5) ∈X −(1,5) and w−(1,5) ∈ W −(1,5). (iv) The defender does not deploy a de-
fense action that nullifies the effect of the spread attack from element j = 5 to ele-
ment i = 1, that is, u1 ∈ {u1

∅
,u1

s}. The above conditions ensure the evolution of ele-
ment i= 1 conditioned on x5 is different from its evolution condition on x̂5. The total
number of such cases is 2 ·2 ·(1 ·3+3 ·1) ·43 ·(7 ·6 ·5 ·5)= 1612800. The normalized
weight, computed using Equation (4.12), is thus ξ5,1 = 1612800/58060800≈ 0.03.
The complete influence graph is depicted in Figure 4.4.

Using the edge weights in the influence graph, the min-cut algorithm [12] can
now be applied in order to partition (cluster) the graph. The first application of the
min-cut algorithm, shown in Figure 4.4(a), results in the clusters {1,2,5} and {3,4}.
Notice that under this clustering, the existence of edges (3,2) and (4,5) would result
in one of the local defense problems containing all 5 elements in its local state space,
violating the nmax = 3 limit. As a result, we apply the min-cut algorithm once more,
as shown in Figure 4.4(b). With the new cut, we can see that the resulting set of
clusters, N1 = {3,4}, N2 = {2}, and N3 = {1,5}, shown in Figure 4.4(c) satisfy
the nmax limit. This can be seen by writing the set of state indices for the local
defense problems, L1 = {1,3,4}, L2 = {1,2,3}, and L3 = {1,4,5}, and noticing
that |L1|= |L2|= |L3|= 3 = nmax.

Using the clusters of Figure 4.4(c), the corresponding local defense problems
can be defined. The internal state spaces of each problem are defined by the set of
nodes within the corresponding cluster, that is, X N1 = X 3×X 4, X N2 = X 2,
and X N3 =X 1×X 5. The corresponding state update functions are

πN1
t+1 = π

N1(xL1
t ,wt ,u

N1
t )

=
(
π3(xL1

t ,wt ,u
3
t ),π4(xL1

t ,wt ,u
4
t )
)

πN2
t+1 = π

N2(xL2
t ,wt ,u

N2
t )

= π2(xL2
t ,wt ,u

2
t )

πN3
t+1 = π

N3(xL3
t ,wt ,u

N3
t )

=
(
π1(xL3

t ,wt ,u
1
t ),π5(xL3

t ,wt ,u
5
t )
)

where the local states are xL1
t = {x1

t ,x
3
t ,x

4
t }, xL2

t = {x1
t ,x

2
t ,x

3
t }, and xL3

t =

{x1
t ,x

4
t ,x

5
t } and the internal actions are uN1

t ∈U N1 =U 3×U 4, uN2
t ∈U N1 =U 2,

and U N3 = U 1 × U 5. The cost functions of each local defense problem
are cN1(xN1

t ,uN1
t ) = c3(x3

t ,u
3
t ) + c4(x4

t ,u
4
t ), cN2(xN2

t ,uN2
t ) = c2(x2

t ,u
2
t ), and

cN2(xN2
t ,uN2

t ) = c1(x1
t ,u

1
t )+c5(x5

t ,u
5
t ). Similarly, each local defense problem’s ob-

servations are yN1
t = (y3

t ,y
4
t ), zN1

t = (z3
t ,z

4
t ), yN2

t = y2
t , zN2

t = z2
t , and yN3

t = (y1
t ,y

5
t ),

zN3
t = (z1

t ,z
5
t ). The message sent from local defense problem l to local defense prob-



4.6 Discussion and Conclusion 95

1

2

34

5 0.02

0.04

0.02

0.02

0.02

0.
02

0.0
3

0.0
2

(a) First cut.
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(c) Final set of clusters.

Fig. 4.4: Repeated application of the min-cut algorithm to obtain three clusters,
N1 = {3,4}, N2 = {2}, and N3 = {1,5}

lem k at time t, denoted by mkl
t , belongs to the power set of states that can influence

the evolution of elements in the internal state space Nk. Specifically, for example,
local defense problem k = 1 receives a message from problem k = 3, described
by m13

t ∈P(X
¯N13) =P(X 1) (representing all possible states the element i = 1

can be in). Similarly, local defense problem k = 2 receives two messages, one
from problem k = 1, m21

t ∈P(X
¯N21) = P(X 3), and one from problem k = 3,

m23
t ∈P(X

¯N23) =P(X 1) (these messages can be summarized by the aggregate
message mN2

t ∈P(X 3)×P(X 1)). Lastly, local defense problem k = 3 receives
a message from problem k = 1, m31

t ∈P(X
¯N31) = P(X 4). No other messages

are exchanged. The approximate information state spaces for the local defense
problems are BL1 = P(X 1 ×X 3 ×X 4), BL2 = P(X 1 ×X 2 ×X 3), and
BL3 = P(X 1×X 4×X 5). The dynamic programs (for the finite horizon de-
fense problem) can be written in a similar fashion to Equations (4.14) and (4.15) and
can be addressed by methods in the literature for minmax control problems [7, 24].

4.6 Discussion and Conclusion

We studied a cyber-security problem from the defender’s point of view. This is a
control problem where the defender’s goal is to determine a defense policy to pro-
tect the system against an attacker that is modeled by nature. The system’s security
status evolves dynamically over time; its evolution depends on the defender’s actions
and the attack events. The defender has imperfect information about the system’s se-
curity status and takes a conservative approach to the system’s defense. Specifically,
the defender’s goal is to minimize the worst possible damage to the system caused
by attack (nature’s) events. Therefore, the defender has to solve a minmax control
problem with imperfect observations so as to determine an optimal defense policy.
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The defender’s imperfect observations combined with the high dimensionality
of the system’s state and the minmax objective result in a complicated information
state that renders the computation of an optimal defense policy intractable, necessi-
tating approximations. The approximation we present is based on decomposing the
defense problem into local defense problems and solving for local defense policies.
We form local defense problems by first forming the influence graph – a weighted
directed graph quantifying the dependencies among the system’s elements. Next,
we cluster the influence graph into clusters of strongly dependent elements using
the min-cut algorithm. Using the clusters and the dependencies among them, we
form a local defense problem for each cluster. The control of each local defense
problem is further approximated by focusing on an approximate information state
that allows the computation of a policy sequentially using dynamic programming
ideas.

Our approach has two computational requirements: (i) forming the influence
graph and clusters and (ii) computing a defense policy for the local defense problem
associated with each cluster. Given the defender’s computational capabilities, we
can address these requirements irrespectively of the system’s size (the dimension-
ality of the system’s state) as follows: we can form a large number of clusters so
that the size of each local defense problem is compatible with the defender’s com-
putational capability. Consequently, the approach to the dynamic defense problem
of cyber networks described in this chapter is scalable.

For some instances of our security model, the resulting influence graph may not
permit a partitioning into clusters that satisfy the designer’s computational capabil-
ity. For example, consider a completely connected influence graph. In such a graph,
each local state space X Lk would be equal to the complete state space X . In such
a situation, no clustering that satisfies the constraint would exist, and we would not
be able to compute local defense policies. However, we believe that, for practical
purposes, influence graphs will have at least some sparsity that can be exploited,
allowing our decomposition to be applied to obtain a suboptimal defense policy.
In the rare event that the influence graph doesn’t permit the required clustering,
one can employ alternate (more aggressive) approximation techniques that summa-
rize the available information (e.g., collapsing all exogenous elements into a single
worst-case element).

In the cyber-security model studied in this chapter, the attacker’s behavior is fixed
in advance and modeled by the (state-dependent) events that occur in nature. The
situation where both the defender and the attacker are strategic and have different
objectives is not captured by the model of Section 4.2. Such a situation gives rise to
a dynamic game with asymmetric information. Preliminary results on such games
can be found in [18, 22].

Acknowledgements This research was partially supported by NSF grant CNS-1238962, ARO
MURI grant W911NF-13-1-0421, and ARO grant W911NF-17-1-0232. The authors are grate-
ful to Michael P. Wellman, Hamidreza Tavafoghi, Ouyang Yi, and Ashutosh Nayyar for useful
conversations.



References 97

References
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Chapter 5
Factored Markov Game Theory for
Secure Interdependent Infrastructure
Networks

Linan Huang, Juntao Chen, and Quanyan Zhu

5.1 Introduction

Recent advances in information and communication technologies (ICTs) have wit-
nessed a tight integration of critical infrastructures with sophisticated information
technologies (IT) to improve the quality of infrastructure services and the opera-
tional efficiency. However, the direct application of off-the-shelf IT systems exposes
the critical infrastructures to cyber vulnerabilities, which can compromise the func-
tionalities of the infrastructures and inflict a significant economic loss. For example,
the cyberattacks on Ukrainian power systems have successfully disrupted electricity
supply and left 230,000 people without power. The WannaCry ransomware attacks
have infected thousands of computers worldwide and invalidated critical services
such as hospitals and manufacturing plants, causing an estimated loss of $4 billion.

The cyber-physical nature of the interdependent infrastructure systems shown in
Figure 5.1 enables the exploitation of the coordinated attacks that leverage the vul-
nerabilities in both systems to increase the probability of the attacks and the failure
rates of the infrastructure. For example, a terrorist can use cyberattacks to compro-
mise the surveillance camera of an airport, government building, or public area and
stealthily plant a bomb without being physically detected. The physical damage of
infrastructure systems can also assist attackers intrude into cyber systems such as
data centers and control rooms. Hence both cyber and physical failures of the in-
frastructure can create significant consequences. Moreover, the cyber, physical, and
logical connectivity among infrastructures create dependencies and interdependen-
cies between nodes and components within an infrastructure and across the infras-
tructures. As a result, the failure of one component can lead to a cascading failure
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Fig. 5.1: Cyber networks on the top are interdependent with physical systems on
the bottom which consists of critical infrastructures such as the power grid, sub-
way, and communication networks. The healthy functioning of components of the
physical system, e.g., subway stations, depends on the well-being of other subway
stations and cross-layer nodes (e.g., power substations and surveillance cameras).
This interdependency allows adversaries to attack different types of nodes to com-
promise the entire cyber-physical system.

over multiple infrastructures. To mitigate such cyber-physical threats, it is essen-
tial to design effective defense mechanisms to harden both the cyber and physical
security at the nodes of the infrastructure to protect them from failures.

To this end, we first develop a framework to capture the adversarial interactions
between the attack and the defense of the interdependent critical infrastructures
(ICIs). Zero-sum games provide a natural framework to model the conflicting ob-
jectives of the players. The attacker aims to compromise the cyber and physical
components of ICIs that are under his control and inflict maximum loss on the
system. The defense of the ICIs seeks to invest resources to minimize the loss
by implementing cost-effective defense mechanisms. To capture the dynamics of
the ICIs, we use a binary state variable to describe the state of each node. The
attacker’s strategy can affect the transition probability of a node’s state from a
normal operation mode to a failure mode. The saddle-point equilibrium analysis of
the zero-sum dynamic game provides a systematic way to design defense strategies
for the worst-case attack schemes.

In our work, we focus on the class of Markov games whose transition ker-
nel is controlled by the attacker, yet the defender can choose state-dependent ac-
tions to mitigate the economic loss or increase attacking costs at each state. The
single-controller assumption reduces the computation of the saddle-point equilib-
rium strategies into a linear program. One challenge in computing security strate-
gies arises from the large-scale nature of the infrastructure systems together with an
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exponentially growing number of global states. To address it, we use linear func-
tion approximation techniques for the value function and exploit the sparse network
structure to formulate the factored Markov game to reduce the computational com-
plexity. Another challenge is the implementability of the security strategies. The
global stationary policies of both players are difficult to implement since the knowl-
edge of the global state of each infrastructure is not often accessible. Hence we
restrict the security strategies to a decentralized and local information structure and
use the factored Markov game framework to compute approximately distributed
policies for each node in the multilayer infrastructure networks.

Our analytical results show that the optimal attacker’s policy obtained in the dual
of the exact LP is pure, and the suboptimal attacker’s policy is distributed assuming
a restricted information structure of the defender. Besides, the computation com-
plexity is provided for each linear program. Numerical results illustrate the imple-
mentable distributed policies, significant computation reductions, reasonable accu-
racy losses, and impacts of different information structures and the interdependent
networks.

Firstly, we observe that fewer attacks happen when defenders are present in the
system because attacks tend to avoid attacking nodes equipped with safeguard pro-
cedures. The security strategy for the infrastructure defender developed using the
game framework yields a proactive protection as the nodes mitigate their losses
even at the working state when their neighbors are observed to be attacked. Sec-
ondly, the numerical experiments have shown that the approximation scheme yields
a significant reduction of the complexity while maintaining a reasonable level of ac-
curacy. Thirdly, we observe that a node can improve its security performance with
more information about the global state of the multilayer infrastructures. Besides,
when strengthening every node is too costly, we choose to consolidate every other
node in a ring network to mitigate cascading failures as shown in Section 5.4.4.

5.2 Mathematical Model

This section introduces in Subsection 5.2.1 a zero-sum Markov game model over
interdependent infrastructure networks to understand the interactions between an
attacker and a defender at the nodes of infrastructures. The solution concept of the
saddle-point equilibrium strategies is presented in Subsection 5.2.2, and the compu-
tational issues of the equilibrium are discussed in Subsection 5.2.3.

5.2.1 Network Game Model

The dynamic and complex infrastructure networks can be represented by nodes and
links. For example, in an electric power system, a node can be a load bus or a
generator, and the links represent the transmission lines. Similarly, in a water dis-
tribution system, a node represents a source of water supply, storage or users, and
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Fig. 5.2: In this overall structural diagram, blue squares show a sequence of tech-
niques used in the problem formulation. The linear programming technique yields
the exact value functions and the optimal defender’s policy. The factored approxi-
mate linear program yields an approximate value function and distributed subopti-
mal defender’s policy. The greedy search method solves for the attacker’s policy.

the links can represent pipes for water delivery. Consider a system of I interdepen-
dent infrastructures. Let G i = (N i,E i) be the graph representation of infrastructure
i ∈ I := {1,2, · · · , I}, where N i = {ni

1,n
i
2, · · · ,ni

mi
} is the set of mi nodes in the

infrastructure and E i = {ei
j,k} is the set of directed links connecting nodes ni

j and

ni
k. The directed link between two nodes indicates either physical, cyber, or logical

influences from one node to the other. For example, the state of node ni
j in the elec-

tric power system can influence the state of node ni
k through the physical connection

or the market pricing. The dependencies across the infrastructures can be captured
by adding interlinks. Let E i, j be the set of directed interlinks between nodes in in-
frastructure i and infrastructure j. In particular, let ε

ni
k,n

j
l
∈ E i, j denote the interlink

between ni
k and n j

l . Hence, the composed network can be represented by the graph
G = (N ,E ), where N = ∪I

i=1N
i and E =

(∪I
i=1E

i
)⋃(∪i �= jE

i, j
)
.
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Denote by Xi
j ∈X i

j the state of node ni
j that can take values in the state space X i

j .
We let X i

j = {0,1} be binary random variables for all i = 1,2, · · · , I and j ∈N i.
Here, Xi

j = 1 means that node ni
j is functional in a normal mode; Xi

j = 0 indi-
cates that node ni

j is in a failure mode. The state of infrastructure i can be thus
denoted by Xi = (Xi

1,X
i
2, · · · ,Xi

mi
) ∈ X i := ∏mi

j=1X
i
j , and the state of the whole

system is denoted by X = (X1,X2, · · · ,XI) ∈ ∏I
i=1X

i. The state transition of a
node ni

j from state xi
j
′ ∈X i

j to state xi
j ∈X i

j is governed by a stochastic kernel

Pri, j(xi
j
′|x,di

j,a
i
j) := Pr(Xi

j = xi
j
′|X = x,di

j,a
i
j), which depends on the protection

policy di
j ∈ D i

j adopted at node ni
j as well as the adversarial behavior ai

j ∈ A i
j ,

where D i
j,A

i
j are feasible sets for the infrastructure protection and the adversary,

respectively. The state transition of a node depends on the entire system state of
the interdependent infrastructure. It, in fact, captures the interdependencies between
nodes in one infrastructure and across infrastructures. The infrastructure protection
team or defender determines the protection policy with the goal of hardening the
security and improving the resilience of the interdependent infrastructure. On the
other hand, an adversary aims to create damage on the nodes that he can compro-
mise and inflict maximum damage on the infrastructure in a stealthy manner, e.g.,
creating cascading and wide-area failures. Let M i

a⊆N i and M i
d ⊆N i be the set of

nodes that an adversary can control, and the system action vector of the adversary is
a= (ai

j) j∈M i
a,i∈I ∈A :=∏i∈I ∏ j∈N i Ai

j with |M i
a|= m̄a,i. The system action vec-

tor for infrastructure protection is d = (di
j) j∈M i

d ,i∈I ∈ D := ∏i∈I ∏ j∈N i Di
j with

|M i
d |= m̄d,i. At every time t = 1,2, · · · , the pair of action profiles (dt ,at) taken at t

and the kernel Pr defined later determine the evolution of the system state trajectory.
Here, we use add subscript t to denote the action taken time t. The conflicting objec-
tive of both players can be captured by a long-term cost J over an infinite horizon:

J := ∑
i∈I , j∈N i

∞

∑
t=1
γ t ci

j(Xt ,d
i
j,t ,a

i
j,t), (5.1)

where γ ∈ (0,1) is a discount factor, Xt ∈ X is the system state at time t, and
ci

j : X ×D i
j×A i

j →R+ is the stage cost function of the node ni
j. Let U i

j ,V
i
j be the

sets of admissible strategies for the infrastructure and the adversary, respectively.
Here, we consider a feedback protection policy μ i

j ∈U i
j as a function of the infor-

mation structure Fi
j,t , i.e., di

j,t = μ i
j(F

i
j,t). Likewise, we consider the same class of

policies for the adversary, i.e., ai
j,t = ν i

j(F
i
j,t),ν i

j ∈ V i
j .

The policy can take different forms depending on the information structure. For
example, if Fi

j,t = Xt , i.e., each node can observe the whole state across infrastruc-
tures, then the policy is a global stationary policy,
denoted by μ i,GS

j ∈ U i,GS
j , where U i,GS

j is the set of all admissible global sta-
tionary policies. If Fi

j,t = Xi
j,t , i.e., each node can only observe its local state, then

the policy is a local stationary policy, denoted by μ i,LS
j ∈ U i,LS

j , where U i,LS
j

is the set of all admissible local stationary policies. If Fi
j,t = Xi

t , i.e., each node
can observe the infrastructure-wide state, then the policy is an infrastructure-
dependent stationary policy, denoted by μ i,ID

j ∈ U i,ID
j , where U i,ID

j is the set of
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all admissible infrastructure-dependent stationary policies. Similarly, an adver-
sary chooses a policy ν i

j,t , i.e., ai
j,t = ν i

j(F
i
j,t). Denote by μ i = (μ i

1,μ
i
2, · · · ,μ i

mi
),

ν i = (ν i
1,ν

i
2, · · · ,ν i

mi
) the protection and attack policies for infrastructure i, respec-

tively, and let μμμ = (μ1,μ2, · · · ,μ I) and ννν = (ν1,ν2, · · · ,ν I). Note that although
both policies are determined only by the information structure and are indepen-
dent of each other, the total cost function J depends on them both because of the
coupling of the system stage cost c(Xt ,d,a) := ∑i, j ci

j(Xt ,di
j,t ,a

i
j,t) and the system

state transition probability Pr(X ′ = x′|X = x,d,a) := ∏i∈I , j∈N i Pri, j(xi
j
′|x,di

j,a
i
j).

Therefore, with U =∏i∈I , j∈Ni
U i

j and V =∏i∈I , j∈Ni
V i

j , the total cost function

J : X ×U ×V → R+ starting at initial state x0 can be written as the expectation
of the system stage cost regarding the system state transition probability, i.e.,

J(x0,μ ,νμ ,νμ ,ν) :=
∞

∑
t=0
γ tEμ ,νμ ,νμ ,ν ,x0 [c(Xt ,d,a)]. (5.2)

Remark: Notice that there is a difference between policy μ ,νμ ,νμ ,ν and action d,a.
A policy or strategy is a mapping and an action is the outcome of the mapping.
Besides, since the information structure is the state information available to attack-
ers or defenders, we can abstract it from the entire state information Xt at time t.
Given a policy and an information structure, we can uniquely determine the action.
Therefore, we write d,a instead of μ ,νμ ,νμ ,ν in the RHS of (5.2). We use the same ter-
minology in the following equations such as (5.6) where the solution provides us
the optimal action pair d∗,a∗ at every state x. With the knowledge of the mapping
outcome and corresponding information structure as the input of the mapping, the
policy functions μμμ∗, ν∗ν∗ν∗ are uniquely defined.

Hence a security strategy for the infrastructure protection achieves the optimal
solution J∗(x0) to the following minimax problem, which endeavors to minimize
the system cost under the worst attacking situation maxννν∈V J(x0,μ ,νμ ,νμ ,ν), i.e.,

J∗(x0) = min
μμμ∈U

max
ννν∈V

J(x0,μ ,νμ ,νμ ,ν). (5.3)

5.2.2 Zero-Sum Markov Games

The noncooperative objective function (5.3) leads to the solution concept of saddle-
point equilibrium in game theory.

Definition 1. A saddle-point equilibrium (SPE) (μ∗,ν∗μ∗,ν∗μ∗,ν∗)∈U ×V of the discounted
zero-sum Markov games with two players satisfies the following inequalities:

J(x0,μ ,ν∗μ ,ν∗μ ,ν∗)≥ J(x0,μ∗,ν∗μ∗,ν∗μ∗,ν∗)≥ J(x0,μ∗,νμ∗,νμ∗,ν),∀ννν ∈ V ,μμμ ∈U ,∀x0 ∈
I

∏
i=1

X i. (5.4)
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The value J∗(x0) achieved under the saddle-point equilibrium of the game (5.3) for
a given initial condition x0 is called the value function of a two-player zero-sum
game, i.e.,

J∗(x0) := J(x0,μμμ∗,ννν∗) = min
μμμ∈U

max
ννν∈V

J(x0,μ ,νμ ,νμ ,ν) = max
ννν∈V

min
μμμ∈U

J(x0,μ ,νμ ,νμ ,ν). (5.5)

By focusing on the class of global stationary policies, i.e., μ i,GS
j ∈ U i,GS

j and

ν i,GS
j ∈ V i,GS

j , the value function J∗(x0) can be characterized using dynamic pro-

gramming principles. The action pairs d∗,a∗ with di∗
j = μ i∗,GS

j (x) and ai∗
j = ν i∗,GS

j (x)
satisfy the following Bellman equation:

J∗(x) = c(x,d∗,a∗)+ γ ∑
x′∈∏I

i=1 X
i

Pr(x′|x,a∗,d∗)J∗(x′),∀x. (5.6)

The first term is the reward of current stage x, and the second term is the expectation
of the value function over all the possible next stage x′. The optimal action pairs
(d∗,a∗) guarantee that the value function starting from x equals the current stage
cost plus the expectation starting at the next stage x′. By solving the Bellman equa-
tion (5.6) for every state x, we can obtain the saddle-point equilibrium strategy pairs
(μμμ∗,ννν∗) in global stationary policies.

The global stationary saddle-point policies in pure strategies may not always
exist. The Bellman equation (5.7) can be solved under mixed-strategy action spaces.
Let the mixed-strategy actions for the attacker and the defender be φ a(x,a) and
φ d(x,d), where φ d(x,d) (resp., φ a(x,a)) denotes the probability of taking action
d (resp., a) at the global state x for a defender (or an attacker). The saddle-point
mixed-strategy action pair (φ a∗(x,a),φ d∗(x,d)) satisfies the following generalized
Bellman equation:

J∗(x)= ∑
a∈A

φ a∗(x,a) ∑
d∈D

⎡
⎣c(x,d,a)+ γ ∑

x′∈∏I
i=1 X

i

Pr(x′|x,a,d)J∗(x′)
⎤
⎦φ d∗(x,d),∀x.

(5.7)
The existence of the mixed-strategy action pair is guaranteed when the action spaces
A and D are finite. Hence solving (5.7) for every state x, we can obtain the mixed-
strategy saddle-point equilibrium strategy pairs (μ̂μμ∗,ν̂νν∗) in global stationary poli-
cies, where μ̂μμ,ν̂νν are the mixed strategy extension of μμμ,ννν , respectively.

5.2.3 Mathematical Programming Perspective

One way to compute the mixed-strategy equilibrium solutions for zero-sum games
is to use a mathematical programming approach. Given a defender’s policy φ d(x,d),
the attacker solves the following maximization problem for every state x:
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J∗(x) = max
φa(x,a)

∑
a∈A

φ a(x,a) ∑
d∈D

[
c(x,d,a)+ γ∑

x′
Pr(x′|x,a,d)J∗(x′)

]
φ d(x,d),∀x.

(5.8)

Define f (x,a) := ∑d∈D
[
c(x,d,a)+ γ ∑x′∈∏I

i=1 X
i Pr(x′|x,a,d)J∗(x′)

]
φ d(x,d)

and f ∗(x,a) when the defender’s policy is optimal. We have the following lemma:

Lemma 1. The optimal attacker’s policy φ a∗(x,a) of (5.8) is a pure policy
φ a(x,a)1{a=a∗} when the defender’s policy is given, where a∗ ∈ argmaxa f (x,a).

Proof. There exists an optimal action a∗ ∈ argmaxa f (x,a) and f (x,a∗) ≥
f (x,a),∀a. As a probability measure, all elements of φ a(x,a) are positive and
∑a∈A φ a(x,a) = 1,∀x. Multiply both sides of the equation f (x,a∗) ≥ f (x,a) by
φ a(x,a) and sum over all possible a, we arrive at

∑
a∈A

φ a(x,a) f (x,a)≤ ∑
a∈A

φ a(x,a) f (x,a∗) = 1 · f (x,a∗)

= ∑
a∈A

φ a(x,a)1{a=a∗} f (x,a), ∀a.

Therefore, the optimal attacker’s policy is deterministic, i.e., φ a(x,a)1(a=a∗).

Lemma 1 is true for arbitrary defender’s policy, thus true for the optimal one.
Therefore, J∗(x) = f ∗(x,a∗)≥ f ∗(x,a),∀a. Now, we can form a bilinear program:

min
J∗(x),φd(x,d)

∑
x∈∏I

i=1 X
i

α(x)J∗(x)

subject to

(a) J∗(x)≥ ∑
d∈D

⎡
⎣c(x,d,a)+ γ ∑

x′∈∏I
i=1 X

i

Pr(x′|x,a,d)J∗(x′)
⎤
⎦φ d(x,d), ∀x,a

(b) ∑
d∈D

φ d(x,d) = 1, ∀x

(c) φ d(x,d)≥ 0, ∀x,d

(5.9)

Constraints (b)(c) reflect φ d(x,d) as a probability measure. Constraint (a) guar-
antees that (5.8) is achieved under the optimal defender’s policy. State-dependent
weights α(x) are positive and satisfy ∑xα(x) = 1. Solutions of this program pro-
vide us the value function J∗(x) and the optimal defender’s policy φ d∗(x,d).

5.2.4 Single-Controller Markov Game

In the single-controller game, one player’s action entirely determines transition
probabilities. This structure captures the fact that the failure probability of a node
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in the infrastructure depends on the action taken by the attacker once the node is
attacked.

The single-controller assumption fits the infrastructure protection application be-
cause of the deficiency in real-time attack countermeasure after infrastructure net-
works are designed. Thus, defenders may not be capable of decreasing the proba-
bility of node failures under attacks once the network is established. However, the
protection term can positively enhance the system security by mitigating the attack
loss or increase the cost of an attacker. For example, defenders can apply for the
cyber-insurance for high-risk nodes or set up “honeypot” to increase the cost of the
adversaries once trapped.

We focus on an attacker-controlled game Γ a where the stochastic kernel for each
node possesses Pri, j(xi

j
′|x,di

j,a
i
j) = Pri, j(xi

j
′|x,ai

j),∀xi
j
′
,x,di

j,a
i
j and the system tran-

sition probability Pr(X ′ = x′|X = x,d,a) = Pr(X ′ = x′|X = x,a). Because the sys-
tem transition probability is independent of d and ∑d φ d∗(x,d) ≡ 1, the bilinear
program (5.9) can be reduced into a linear program (LP) where the primal LP is
described as follows:

min
J∗(x),φd(x,d)

∑
x′∈∏I

i=1 X
i

α(x′)J∗(x′)

subject to
(a) J∗(x)≥ ∑

d∈D
c(x,d,a)φ d(x,d)+ γ ∑

x′∈∏I
i=1 X

i

Pr(x′|x,a)J∗(x′) ∀x,a

(b) ∑
d∈D

φ d(x,d) = 1, ∀x

(c) φ d(x,d)≥ 0, ∀x,d

(5.10)

After solving (5.10), we obtain the value functions J∗(x′) and the optimal defender’s
policy φ d∗(x,d), and we resort to the dual LP for the attacker’s policy:

max
z(x),φa(x,a)

∑
x∈∏I

i=1 X
i

z(x)

subject to
(d) ∑

a∈A
φ a(x′,a)− ∑

x∈∏I
i=1 X

i
∑

a∈A
γ Pr(x′|x,a)φ a(x,a) = α(x′), ∀x′

(e) z(x)≤ ∑
a∈A

φ a(x,a)c(x,d,a) ∀x,d

( f ) φ a(x,a)≥ 0, ∀x,a

(5.11)

We normalize φ a∗(x,a) = φa(x,a)
∑a φa(x,a) to obtain the optimal policy for attacker. Analo-

gous to the optimality principle of the value function (5.6), constraint (d) in the dual
LP can be interpreted as the occupancy equality. The total occupancy frequency
of state x′, ∑a∈A φ a(x′,a), is equal to the initial probability distribution of state
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x′, α(x′), plus the discounted expected visit from any other state x to state x′, i.e.,
∑x∈∏I

i=1 X
i∑a∈A γ Pr(x′|x,a)φ a(x,a).

Theorem 1. The optimal policy of attacker φ a(x,a) solved by (5.11) is a pure pol-
icy, i.e., for each system state x, φ a(x,a∗)> 0 and φ a(x,a) = 0,∀a �= a∗. The explicit
form is

a∗ = argmax
a∈A

[
∑

d∈D
c(x,d,a)φ d∗(x,d)+ γ∑

x′
Pr(x′|x,a)J∗(x′)

]
.

Proof. Lemma 1 has shown that the optimal policy is deterministic, and thus here
we only need to show that φ a∗(x,a) = φa(x,a)

∑a φa(x,a) is the optimal policy for the attacker.

Following the proof of [6], we show that φ a∗(x,a) is the saddle point of the zero-sum
game (5.4).

First, φ a∗(x,a) is well defined since the constraint (d) shows that ∑a φ a(x,a) ≥
α(x′),∀x′. By the complementary slackness of the dual linear program, we require
J∗(x) strictly equal to ∑

d∈D
c(x,d,a)φ d∗(x,d)+γ ∑

x′
Pr(x′|x,a)J∗(x′) for all state x and

the corresponding action a such that φ a(x,a) is strictly positive, which is equiv-
alent to φ a∗(x,a) > 0. Then, by multiplying both side by φ a∗(x,a) and summing
over a ∈ A , we obtain the vector equation J∗ = J(x0,μμμ∗,ννν∗). Next, we multi-
ply an arbitrary φ a(x,a) to both sides of constraints (a), sum over a, and ob-
tain a vector inequality J∗ ≥ J(x0,μμμ∗,ννν). Therefore, we arrive at the right hand
side (RHS) of saddle-point condition J(x0,μμμ∗,ννν) ≤ J(x0,μμμ∗,ννν∗). Similarly, the
complementary slackness of the primal LP together with constraints (e) leads to
c(x,a∗,d∗) ≤ c(x,a∗,d). Because the transition probability is independent of de-
fender’s policy, we can obtain the left hand side (LHS) of the saddle-point condition
by computing (5.1).

The major challenge to solve the LP is the large-scale nature of the infrastruc-
ture networks, which is known as the curse of dimension. Take (5.10) for an in-
stance, we have |∏I

i=1X
i| variables in the LP objective and a constraints number

of |∏I
i=1X

i|× |A |+ |∏I
i=1X

i|+ |∏I
i=1X

i|× |D |. If we have n nodes in the net-
work of CIs and all nodes can be attacked and defended, then we will have N := 2n

variables and N2+N+N2 constraints, which both grow exponentially with the num-
ber of nodes. The high computation cost prohibits the direct computation using the
LP with a large number of nodes.

5.3 Factored Markov Game

To address the issue of the combinatorial explosion of the state size or the curse of
dimensionality, we develop a factored Markov game framework in this section by
leveraging the sparsity of the transition kernel. We first use factor graphs to repre-
sent the sparse structure of the probability transition matrix. Next, we introduce an
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approximation method for the value function and then reorganize terms and elimi-
nate variables by exploiting the factored structure. We focus on the linear program-
ming formulation of the attacker-controlled game. However, the technique can be
extended to a bilinear form for the general zero-sum game to reduce computational
complexity. Finally, we refer our reader to an overall structure diagram of this work
in Figure 5.2.

5.3.1 Factored Structure

Define Ωl as the set that contains all the parent nodes of node l. Parent nodes re-
fer to the nodes that affect node l’s state at the following time step through physi-
cal, cyber, or logic interactions. The network example in Figure 5.3 is a bidirected
graph that represents a 3-layer interdependent critical infrastructures. Then, Ωl con-
tains node l itself and all its neighbors, e.g., Ω1,1 = {n1

1,n
1
2,n

2
1,n

3
7}. Node l can

affect itself because if, for instance, node l fails at time t, then it remains faulty
in probability one without proper actions at next time step t + 1. Note that we do
not distinguish the dependence within (links in black) and across (links in blue)
layers when considering the stochastic kernel. Recall mi as the total number of
nodes in layer i. We use a global index l to unify the 2D index of {i, j}, e.g.,

l :=
i
∑

i′=1
i′mi′ + j, which transforms the multilayer network into a larger single net-

work with n = ∑i∈I mi nodes. In this way, we can write Ω1,1 = {n1
1,n

1
2,n

2
1,n

3
7}

as Ω1 = {n1,n2,n6,n19} and Pri, j(xi
j
′|x,di

j,a
i
j),∀i ∈ I , j ∈ N i equivalently as

Prl(xl
′|x,dl ,al),∀l = 1,2, · · · ,n. Define xΩl := (xl)l∈Ωl as the state vector of the

nodes inside set Ωl , e.g., xΩ1 = (x1,x2,x6,x17). Then, each node’s kernel will be
Pri, j(xi

j
′|x,di

j,a
i
j) = Pri, j(xi

j
′|xi

j,xΩi, j ,d
i
j,a

i
j) due to the sparsity, or in the global in-

dex Prl(xl
′|x,dl ,al) = Prl(x′l |xl ,xΩl ,dl ,al).

Fig. 5.3: The left network shows a 3-layer example of CIs with blue lines repre-
senting the interdependencies across layers. The right bipartite graph shows a fac-
tor graph representation of the sparse transition probability. The total node number
n = ∑i=1,2,3 mi = 5+5+7 = 17.
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5.3.2 Linear Function Approximation

We first approximate the high-dimensional space spanned by the cost function vec-
tor J = (J∗(x′))x′∈∏I

i=1 X
i through a weighted sum of basis functions hl(x′), l =

0,1, · · · ,k, where k is the number of “features” and h0(x′)≡ 1,∀x′. Take infrastruc-
ture networks as an example. We choose a set of basis which serves as an indicator
function of each node ni

j’s working state, e.g., hi, j(x′) = xi
j
′
,∀i ∈ I , j ∈N i

j . We

unify the index with l :=
i
∑

i′=1
i′mi′ + j and k equal to n, the total node number in the

network. To this end, we can substitute J∗(x′) = ∑k
l=0 wlhl(x′) into (5.10) to obtain

an approximate linear programming (ALP) with k variables wl , l = 0,1, · · · ,k.

min
w,φd(x,d)

∑
x′∈∏I

i=1 X
i

α(x′)
k

∑
l=0

wlhl(x
′)

subject to

(a)
k

∑
l=0

wlhl(x)≥ ∑
d∈D

c(x,d,a)φ d(x,d)+ γ ∑
x′∈∏I

i=1 X
i

Pr(x′|x,a)
k

∑
l=0

wlhl(x
′), ∀x,a

(b) ∑
d∈D

φ d(x,d) = 1, ∀x

(c) φ d(x,d)≥ 0, ∀x,d
(5.12)

The feature number k is often much smaller than the system state number 2n. Hence
the ALP reduces the involving variables in the LP objective. However, the expo-
nentially growing number of constraints still makes the computation prohibitive. To
address this issue, we further reduce the computational complexity in the following
sections with similar techniques in [8].

Remark: The ALP approximates minμμμ∈U maxννν∈V J(x0,μ ,νμ ,νμ ,ν). The minimax
strategy yields the optimal defensive strategy for the worst-case attacks, which is
achieved by searching the entire feasible attackers’ actions of all possible system
states in constraint (a) of (5.12). Thus, the approximate solution ∑k

l=0 wlhl(x′) is an
upper bound to J∗(x′).

5.3.3 Term Reorganization

The system transition matrix Pr(x′|x,a) has the dimension of N×N×|A | in con-
straint (a) of (5.10). Here, we choose indicator functions of each node hl(x′) =
xl ,∀x′, l = {1,2, · · · ,n} as the set of basis functions, which yields a good trade-off
between the accuracy and computation complexity as shown in Section 5.4. We ob-
serve that the rightmost term of constraint (a) of (5.10) can be rewritten as follows:
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∑
x′∈∏I

i=1 X
i

Pr(x′|x,a)
n

∑
l=0

wlhl(x
′)

(1)
= w0 +

n

∑
l=1

wl

⎡
⎣ ∑

x′1,··· ,x′n

n

∏
k=1

Pr
k
(x′k|xk,ak)xl

⎤
⎦

(2)
= w0 +

n

∑
l=1

wl

⎡
⎣∑

x′l

Pr
l
(xl
′|xl ,xΩl ,al)xl ∑

{x′1,··· ,x′n}\{x′l}

n

∏
k=1,k �=l

Pr
k
(x′k|xk,ak)

⎤
⎦

(3)
= w0 +

n

∑
l=1

wl

⎡
⎣∑

x′l

Pr
l
(xl
′|xl ,xΩl ,al)xl

n

∏
k=1,k �=l

∑
x′k

Pr
k
(x′k|xk,ak)

⎤
⎦

(4)
= w0 +

n

∑
l=1

wl

⎡
⎣∑

x′l

Pr
l
(xl
′|xl ,xΩl ,al)xl

⎤
⎦

= w0 +
n

∑
l=1

wl

[
Pr
l
(xl
′ = 1|xl ,xΩl ,al) ·1+Pr

l
(xl
′ = 0|xl ,xΩl ,al) ·0

]

= w0 +
n

∑
l=1

wl

[
Pr
l
(xl
′ = 1|xl ,xΩl ,al)

]
:= w0 +

n

∑
l=1

wlgl(xl ,xΩl ,al),

where gl(xl ,xΩl ,al) := Prl(xl
′ = 1|xl ,xΩl ,al).

Equation (1) represents the vector x′ with the set of its elements {x′i}, writes the
system transition probability in its factored form, and separates the first constant
item w0. The symbol ∑{x1,··· ,xn}\{xl} in Equation (2) means the summation over all
variables except xl . Equation (3) exchanges the summation and multiplication, and
Equation (4) is true because ∑x′k Prk(x′k|xk,ak) ≡ 1. To this end, we reduce N = 2n

summations over the huge dimension system transition matrix into n+ 1 summa-
tions over the local stochastic kernel.

5.3.4 Restricted Information Structure

The second step is to deal with ∑d c(x,d,a)φ d(x,d) in constraint (a) of (5.10). The
saddle-point strategies studied in Section 5.2.2 belong to a class of global station-
ary policies in which the actions taken by the players are dependent on the global
state information. The implementation of the policies is often restricted to the lo-
cal information that is specific to the type of the infrastructure. For example, the
Metropolitan Transportation Authority (MTA) may not be able to know the state of
nodes in the power grid operated by Con Edison. Thus, MTA cannot make its policy
based on the states of power nodes. Therefore, one way to approximate the optimal
solution is to restrict the class of policies to stationary policies with local observa-
tions. We consider a time-invariant information structure of the defender Fi

j,t ≡ Fi
j .
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By unifying with the global index in Section 5.3.1, we let l := ∑i
i′=1 i′mi′ + j and

Fl := Fi
j . Define φ d

l (x,dl) as the probability of node l choosing dl at state x. There-

fore, φ d(x,d) =∏n
l=1 φ d

l (x,dl) =∏n
l=1 φ d

l (Fl ,dl) and Fl = (xΩ̄l
), where Ω̄l is the set

of nodes which node l can observe. Note that not all nodes can be protected, i.e.,
|D | ≤ N. We let dl ≡ 0 if node l cannot be defended.

∑
d∈D

c(x,d,a)φ d(x,d) = ∑
d∈D

n

∑
k=1

ck(xk,dk,ak)
n

∏
l=1

φ d
l (Fl ,dl)

=
n

∑
k=1

[
∑

dw,w=1,··· ,|D|
ck(xk,dk,ak)φ d

k (Fk,dk)
n

∏
l=1,l �=k

φ d
l (Fl ,dl)

]

=
n

∑
k=1

[
∑
dk

ck(xk,dk,ak)φ d
k (Fk,dk)

n

∏
l=1,l �=k

∑
dl

φ d
l (Fl ,dl)

]

=
n

∑
k=1

[
∑

dk∈{0,1}
ck(xk,dk,ak)φ d

k (Fk,dk)

]
.

(5.13)

Therefore, the ALP with the restricted information structure can be further rewrit-
ten as follows to form the factored ALP:

min
w,φd

l (Fl ,dl)

n

∑
l=0

α(wl)wlhl(x)

subject to

(a) 0≥
n

∑
k=1

∑
dk∈{0,1}

ck(xk,dk,ak)φ d
k (Fk,dk)+

n

∑
l=0

wl [γgl(xl ,xΩl ,al)−hl(x)], ∀x,al

(b) ∑
di∈{0,1}

φ d
l (Fl ,dl) = 1, ∀l,Fl

(c) 0≤ φ d
l (Fl ,dl)≤ 1, ∀l,Fl ,dl

(5.14)
To this end, the number of constraints (b) n×|Fl | and (c) n×|Fl |×2 relates only

to the node number n and the domain of each node’s information structure.
Remark: For a general zero-sum game with bilinear programming formula-

tion (5.9), we can extend constraint (a) as follows with the same factored technique:

0≥
n

∑
k=1

∑
dk∈{0,1}

ck(xk,dk,ak)φ d
k (Fk,dk)

+
n

∑
l=0

wl [γ ∑
dl∈{0,1}

gl(xl ,xΩl ,al)φ d
l (Fl ,dl)−hl(x)], ∀x,al ,

where the second term is bilinear in the variables of wl and φ d
l (Fl ,dl).
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5.3.5 Variable Elimination

Constraint (a) of (5.14) can be further rewritten as one nonlinear constraint using
the variable elimination method (see Section 4.2.2 of [7]) as follows:

0≥ max
a1,··· ,an

max
x1,··· ,xn

n

∑
k=1

∑
dk∈{0,1}

ck(xk,dk,ak)φ d
k (Fk,dk)+

n

∑
l=0

wl [γgl(xl ,xΩl ,al)−hl(x)].

(5.15)
For simplicity, we have provided above an inequality for the case of a local infor-
mation structure φ d

l (Fl ,dl) = φ d
l (xl ,xΩl ,dl) and |Fl |= 2|Ωl |+1.

First, we eliminate the variables of the attackers’ action. Define fl(xl ,xΩl ,al) :=
wl [γgl(xl ,xΩl ,al)− hl(xl)] +∑dl

cl(xl ,dl ,al)φ d
l (xl ,dl), l = 1,2, · · · ,n. We separate

w0, the weight of the constant basis, to the left-hand side and (5.15) becomes

(1− γ)w0 ≥ max
x1,··· ,xn

max
a1,··· ,an

n

∑
l=1

fl(xl ,xΩl ,al)

= max
x1,··· ,xn

n

∑
l=1

max
al

fl(xl ,xΩl ,al)

:= max
x1,··· ,xn

n

∑
l=1

el(xl ,xΩl ).

(5.16)

To achieve the global optimal solution of (5.14), we impose the following con-
straints for each l:

el(xl ,xΩl )≥ fl(xl ,xΩl ,al), ∀xl ,xΩl ,al . (5.17)

Note that if node nl cannot be attacked, we take al ≡ 0 and arrive at a simplified
form:

el(xl ,xΩl ) = fl(xl ,xΩl ,1), ∀xl ,xΩl . (5.18)

The second step is to eliminate the variable of each node’s state following a given
order of O = {p1, p2, · · · , pn}, where O is a permutation of {1,2, · · · ,n}. The RHS
of (5.16) is rewritten as

max
x1,··· ,xn

n

∑
l=1

el(xl ,xΩl )

= max
xp2 ,··· ,xpn

∑
l={1,··· ,n}\K

ek(xk,xΩk)+max
xp1
∑

k∈K
ek(xk,xΩk)

= max
p2,··· ,pn

∑
l={1,··· ,n}\K

ek(xk,xΩk)+E1(E ),

(5.19)

where the set K := {k : p1 ∈ {Ωk ∪ {k}}} and E1’s domain E := {x j : j ∈
{{∪k∈K Ωk}∪{k} \ {p1}}}. The variable xp1 is eliminated, and similar new con-
strains are generated to form the new LP, i.e., E1(E ) ≥ ∑k∈K ek(xk,xΩk), for all
variables included in E .
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2 431

Unattackable a2 ≡ 0

xΩ1 = ∅ xΩ2 = [x1] xΩ2 = [x2, x4] xΩ2 = [x3]

Fig. 5.4: A four node example with node 2 unattackable. Assume a local information
structure for each node Fl = xl , l = 1,2,3,4.

We repeat the above procedure of variable eliminations and constraints genera-
tion for n times following the order O and finally reach the equation (1−γ)w0 ≥ En,
where En is a parameter independent of state and action variables. This method is
suitable for a sparse network where each el has a domain involving a small set of
node variables.

Example 1. Consider a four-node example in Figure 5.4 for the illustration of the
variable elimination. With node 2 being immune to attacks, (5.18) can be reduced
to e2(x1,x2) = f1(x1,x2,0),∀x1,x2. For node 1, (5.17) leads to four new inequality
constraints e1(x1) ≥ f1(x1,a1),∀x1,a1. Similarly, we have 24 = 16 inequalities for
node 3, i.e., e3(x2,x3,x4)≥ f3(x2,x3,x4,a3),∀x2,x3,x4,a3 and 23 = 8 for node 4, i.e.,
e4(x3,x4) ≥ f3(x3,x4,a4),∀x3,x4,a4. After that, we eliminate all action variables
and (5.16) becomes

(1− γ)w0 ≥ max
x1,x2,x3,x4

e1(x1)+ e2(x1,x2)+ e3(x2,x3,x4)+ e4(x3,x4). (5.20)

With an elimination order O = {3,2,4,1}, the RHS of (5.20) can be rewritten as

max
x1,x2,x4

e1(x1)+ e2(x1,x2)+max
x3

e3(x2,x3,x4)+ e4(x3,x4)

= max
x1,x2,x4

e1(x1)+ e2(x1,x2)+E1(x2,x4).

The new constraints are generated, i.e., E1(x2,x4) ≥ e3(x2,x3,x4) + e4(x3,x4),
∀x2,x3,x4. Then, we can repeat the above process and eliminate x2,x4,x1 in seq-
uence, i.e.,

max
x1,x2,x4

e1(x1)+ e2(x1,x2)+E1(x2,x4)

= max
x1,x4

e1(x1)+max
x2

E1(x2,x4)+ e2(x1,x2)

= max
x1,x4

e1(x1)+E2(x1,x4)

= max
x1

max
x4

e1(x1)+E2(x1,x4)

= max
x1

E3(x1) = E4.
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Along with the above process, new constraints appear: E2(x1,x4) ≥ E1(x2,x4) +
e2(x1,x2),∀x1,x2,x4; E3(x1)≥ e1(x1)+E2(x1,x4),∀x1,x4; and E4 ≥ E3(x1),∀x1.
Finally, (5.20) becomes (1− γ)w0 ≥ E4.

The new LP in this example contains 51 constraints, while the original constraint
(a) includes 2(4+3) = 128 inequalities. With the increase of the node number and
a sparse topology, our factored framework greatly reduces the exponential compu-
tation complexity. Note that the order of {1,2,3,4} introduces the least number of
constraints in this case, yet choosing the optimal order is shown to be NP-hard.

5.3.6 Distributed Policy of Attacker

Similar to Lemma 1, we search for the approximate saddle-point policy of the at-
tacker as follows:

a∗ ∈ arg max
a1,··· ,an

n

∑
k=1

∑
dk∈{0,1}

ck(xk,dk,ak)φ d∗
k (Fk,dk)+

n

∑
l=0

wlγgl(xl ,xΩl ,al),∀x1, · · · ,xn

Separate w0 in the second term, and we obtain

a∗ ∈ γw0+arg max
a1,··· ,an

n

∑
k=1
∑
dk

ck(xk,dk,ak)φ d∗
k (Fk,dk)+wkγgk(xk,xΩk ,ak),∀x1, · · · ,xn.

Exchanging the argmax and the summation, we arrive at

a∗ ∈ γw0 +
n

∑
k=1

argmax
ak
∑
dk

ck(xk,dk,ak)φ d∗
k (Fk,dk)+wkγgk(xk,xΩk ,ak),∀x1, · · · ,xn.

Therefore, we can obtain a distributed attack policy of node k which is fully de-
termined by the state of itself and its parent nodes xk,xΩk and the state of nodes
observable for the defender Fk, i.e.,

ak = argmax
ak

∑
dk∈{0,1}

ck(xk,dk,ak)φ d∗
k (Fk,dk)+wkγgk(xk,xΩk ,ak),∀xk,xΩk ,Fk.

Note that the approximate policy can be different from the optimal policy in Theo-
rem 1. However, as long as the computation reduction surpasses the approximation
error of the value function, it is worthwhile to equip with this suboptimal policy.

Remark: Under a local information structure with Fl = xl , the defender decides
its action at node l based on xl , and yet the attacker requires the state information of
xl and xΩl . The difference in the structures of the policies is caused by the distinct
factored structures of the cost function and the attacker-controlled transition proba-
bility matrix. The former ck(xk,dk,ak) contains only xk, and the latter gl(xl ,xΩl ,al)
contains both xl and xΩl .
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5.3.7 Approximate Dual LP

We compute the dual of the ALP (5.12) by the Lagrange function. Our objective is
to find a function l(w,φ a(x,a),z(x)) such that l(w,φ a(x,a),z(x)) = 0 when the con-
straints of (5.12) is satisfied and unbounded otherwise. Then, the following equation
is equivalent to (5.12) :

L (w,φ a(x,a),z(x)) = min
w

[
∑
x′
α(x′)

k

∑
l=1

wlhl(x
′)+ max

φa(x,a),z(x)
l(w,φ a(x,a),z(x))

]
.

Let

l(w,φ a(x,a),z(x)) =∑
x

z(x)(1− ∑
d∈D

φ d(x,d))+

∑
x
∑
a
φ a(x,a)

[
∑

d∈D
c(x,d,a)φ d(x,d)+∑

x′
γ Pr(x′|x,a)]

k

∑
l=1

wlhl(x
′)−

n

∑
l=1

wlhl(x)

]
,

(5.21)

where φ a(x,a) ≥ 0,∀x,a are multipliers for the inequality constraint (a). Next, we
reorganize the term and follow the minimax theorem to obtain

L (w,φ a(x,a),z(x)) = max
z(x)
∑
x

z(x)

+ max
φa(x,a),z(x)

{∑
x
∑
d
φ d(x,d)[∑

a
φ a(x,a)c(x,d,a)− z(x)]

+min
w ∑

l

wl [∑
x′
α(x′)hl(x

′)

+ γ∑
x
∑
a
φ a(x,a)∑

x′
Pr(x′|x,a)hl(x

′)−∑
x
∑
a
φ a(x,a)hl(x)]}.

(5.22)

Finally, we can obtain the dual of (5.12) as follows:

max
z(x),φa(x,a)

∑
x∈∏I

i=1 X
i

z(x)

subject to
(a)∑

x
α(x)hl(x)+ γ∑

x
∑
a
φ a(x,a)∑

x′
Pr(x′|x,a)hl(x

′) =∑
x
∑
a
φ a(x,a)hl(x), ∀l

(b) z(x)≤∑
a
φ a(x,a)c(x,d,a), ∀x,d

(c) φ a(x,a)≥ 0, ∀x,a
(5.23)

The dual of the ALP reveals the fact that constraint (a) approximates constraint
(d) of (5.10) while the objective and other constraints remain the same. The term
γ ∑x∑a φ a(x,a)∑x′ Pr(x′|x,a)hl(x′) sums over both x and x′ in the same domain of
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∏I
i=1X

i, and thus we can exchange x and x′ in this term. Let x(i), i = 1, · · · ,N
be N = 2n possible values of the system state and hl = (hl(x(i)))i=1,··· ,N . De-
fine qi(x(i)) := α(x(i)) + γ ∑a φ a(x(i),a)∑x′ Pr(x(i)|x′,a)−∑a φ a(x(i),a) and q :=
(q1(x(1)), · · · ,qN(x(N)))T .

Then, constraint (a) can be rewritten in matrix form as Hq = 0, where H =
(h1,h2, · · · ,hk)

T ∈ Rk×N , and we can regard (5.23) as a relaxation of (5.11). If
we select k = N basis functions hl(x), l = {1,2, · · · , |∏I

i=1X
i|} to be an indicator

function of each possible value of the system state x(l), i.e., hl(x) = 1{x=x(l)}, l =
1, · · · ,N, matrix H turns out to be an N ×N identity matrix. Then, we arrive at
q = 0, i.e., N constraints qi(x(i)) = 0,∀i = 1, · · · ,N, which is the same as constraint
(a) in (5.11). Actually, as long as k = N and H is of full rank, we have q = 0.
However, we obtain k constraints if we choose k less than N in the approximation
form (5.23) with a reduced number of constraints. For each equation, according to
the basis function selection, the corresponding elements in q sum up to 0.

Remark: Analogous to the explanation of (5.11), constraint (a) in (5.23)
achieves the occupancy equality for each feature rather than at each system state. For
example, with the choice of the basis functions as hl(x′) = xl ,∀x′, l = {1,2, · · · ,n},
the lth equation of constraint (a) in (5.11) becomes ∑x(i)∈X qi(x(i)) = 0.

5.4 Numerical Experiments

We implement our framework of the factored single-controller game and investigate
the LP objective function as well as the policy of the attack and defender. Besides,
we compare the approximation accuracy and the computation time. The LP objec-
tive shows in average the accuracy of the value functions starting at different initial
states, which reflects the security level of the system. This risk analysis can have
applications in areas such as cyber-insurance where risky systems have high pre-
mium rates. We use the pseudocode to summarize the algorithm for computing the
saddle-point equilibrium policies for the factored single-controller game framework
as follows.

5.4.1 Transition Probability and Cost

To illustrate the algorithm, we take one node’s failure probability proportional to
the failure number of its neighboring nodes. After one node is attacked, it can infect
the connecting nodes and increase their failing risks. Besides, a node has a larger
failure probability if it is targeted directly by attackers. In an attacker-controlled
game, the defender cannot change the failure probability yet can positively affect
the cost function.
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procedure INITIALIZE

Initialize topology G , elimination order O , vector aflag (and dflag) to indicate whether a node is
controllable by attackers (and defenders).

Define ALP variables w = {w0,w1, · · · ,wn} and φ d = {φ d
i (xi,di)}i=1,··· ,n.

Note that φ d
i (xi,di) is a LP variable whose value depends on the value of xi,di. Thus, we set up

a n×n matrix to list all possible values for each φ d
i (xi,di).

Determine the domain of g = {gi(xi,xΩi ,ai)}, i = 1, · · · ,n, based on the topology G .

Set up an n-dimensional cell for functions fi(xi,xΩi ,ai), i = 1, · · · ,n.

loop over each cell i:

Create a table of fi’s value based on the value of variables involved in fi’s domain, i.e., xi,xΩi ,ai.

Compute the value of functions gi,hi,ci according to fi(xi,xΩi ,ai) = wl [γgl(xl ,xΩl ,al) −
hl(xl)]+∑dl

cl(xl ,dl ,al)φ d
l (xl ,dl) in Section 5.3.5.

if a f lag(i) = 0 (or d f lag(i) = 0) then
ai ← 0 (or di ← 0)

end if
goto loop.

Eliminate action variables ai.
Generate n new LP variables ei, i = 1, · · · ,n and set up a table based on the value of variables in
its domain. Add constraints (5.17) or (5.18) according to aflag.

Eliminate state variables xi according to the elimination order O .
Generate another n new LP variables Ei, i = 1, · · · ,n and setup a table based on the value of
variables in its domain. Add constraints (5.19).

Solve the new ALP (5.14) to get the value function and the optimal defender’s policy.

Use greedy search for the distributed attacker’s policy (5.3.6).
end procedure

The system stage cost is the sum of the local stage cost of each node c(x,a,d) =
∑n

l=1 cl(xl ,al ,dl), where cl(xl ,al ,dl)= ξ1(1−xl)−ξ2al +ξ3dl−ξ4aldl . The explicit
form consists of four terms: the loss for faulty nodes, a cost of applying attacks,
protection costs, and a reward of protecting a node which is being attacked. Since
cl is the cost function of node l in the defender’s perspective and weights ξi >
0, i = 1,2,3,4, the second and fourth terms are negative. The ordering of ξ1 > ξ4 >
ξ3 > ξ2 is assumed because the functionality of nodes serves as our primary goal.
Protections are more costly than attacks; however, once an adversary attacks the
node that possesses defensive strategies, e.g., a honeypot, it will create a significant
loss for the attacker.
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Fig. 5.5: Directed ring topology of six nodes with index 1 to 6.

Table 5.1: Time cost (units: seconds) for the directed ring with a increasing node
number.

Network Size 2 3 4 5 6 7
Exact LP 0.214229 0.629684 3.329771 34.51808 178.6801 1549.016

ALP 2.664791 2.755704 2.749961 2.769759 3.238778 3.534943

5.4.2 Approximation Accuracy

We use a directed ring topology as shown in Figure 5.5 to show the accuracy of
the linear function approximation under the local information structure assumption.
The comparison is limited to a network with 7 or fewer number of nodes due to
the state explosion of the exact LP as shown in Table 5.1. The computational time
is recorded by tic and toc function in MATLAB and indicates the efficiency of the
approximate algorithm as node number increases.

Figure 5.6 illustrates the fact that the growth of the network size causes an in-
crease of the absolute error ob j(ALP)− ob j(exact) ≥ 0. This increasing absolute
error is inevitable due to the growth of difference 2n− n as n grows. In particular,
the linear growth of the ALP variables wi, i ∈ {0,1, ...,n} may not catch up with the
exponential growth of the exact LP variables v(x),x ∈X .

However, the linear function approximation remains suitable when we take a look
at the relative error (ob j(ALP)−ob j(exact))/ob j(exact). We observe a decrease in
the value of the objective function when the number of nodes in the network is larger
than 3. Therefore, the error becomes negligible with a massive node number, which
serves well for our large-scale infrastructure networks.

Besides accuracy, we see that for the ring topology, increasing the network size
brings a higher cost to the attacker. Exponential function f (x) = 18.25e0.6178x pro-
vides a good fitting to the green line with the root mean squared error (RMSE) of
10.64.
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Fig. 5.6: Approximation accuracy for a directed ring topology. The red and green
lines are the value of the objective function of the exact and approximate LP,
ob j(exact) and ob j(ALP), respectively. The black arrow shows the value of the
absolute error, while the blue number is the percentage of the relative error. The
ALP achieves the upper bound for the exact LP as the size of network grows, i.e.,
ob j(ALP)≥ ob j(exact) for the same network size.

5.4.3 Various Information Structure

In Figure 5.7, we compare the influence of global and local information structure
of the defender to the exact LP. Recall that the y-axis shows the optimal cost of the
system and a smaller value introduces a more secure system. Then, a local informa-
tion structure in red brings a higher system cost than a global information structure
in green for all initial states.

It shows that more knowledge can help defender better respond to the threat from
the attacker. We can understand this with an example of the information structure
of its neighboring nodes. Since the failure of its neighboring nodes increases its
risk of being attacked, it tends to defend itself even when it is still working, yet all
his neighbors fail. Apparently, a defender with local information structure cannot
achieve that. Besides, with the increasing of node number, the difference grows
between global and local information structures.
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Fig. 5.7: Value functions of different initial states in a four-node-directed ring topol-
ogy. State 0,1, · · · ,15 is a decimalization of 24 different states from (0,0,0,0) to
(1,1,1,1). Because the topology is symmetric, the number of working nodes deter-
mines the value. For example, state 1,2,4,9 share the same value in either global or
local information structure because they all just have one working node. Besides, a
better initial state (1,1,1,1) with all nodes working causes less loss of the system.

5.4.4 Network Effect

We reorganize the value-initial state pair (J∗(x0),x0) of a 6-node ring topology
in the top of Figure 5.8 in an increasing order. Then, we see that the number of
faulty nodes dominates the order of value. However, when the number of fail-
ures is the same, the location of the failure has an impact on J∗(x0), and a high
degree of the failure aggregation results in a less secure system. For example,
J∗(x0 = (1,1,1,0,0,0)) > J∗(x0 = (1,1,0,0,1,0)) > J∗(x0 = (1,0,1,0,1,0)) be-
cause the dense pattern of the state vector (1,1,1,0,0,0) is more likely to cause
a cascading failure in the network than a sparse one (1,0,1,0,1,0). These results
suggest an alternating node protection if we cannot consolidate every node due to a
limited budget. Specifically as shown in Figure 5.5, we choose to consolidate every
other connecting node in the 6-node ring network, i.e., node 1,3,5.

5.4.5 Optimal Policy

The global stationary policies of defenders and attackers for a 6-node ring topology
is shown in Figure 5.8 in red and green, respectively. We observe that the size of
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Fig. 5.8: Value function J∗(x0) and the number of defending nodes at the optimal
policy for different initial states x0 in a 6-node ring example. From the value function
(the blue line), the size of failures (the number of failure nodes) and the location of
the failures affect the security level of the system. At the equilibrium policy, the size
of defenses (the red line) is proportional to the number of the working nodes in the
network. The attacker (the green line) decreases the number of nodes to attack as
more nodes have been taken down, but the green line is not aligned with the top two
figures. The initial states between dotted lines share the same number of working
nodes.

defense is proportional to the number of working nodes in the network, while the
attacker compromises fewer nodes when the failure size increases.

Remark: Since the defender can only affect the system through the reward func-
tion, the defense’s policy follows an opposite pattern of the value function. The at-
tacker, on the other hand, has a more irregular pattern because it can also influence
the transition of the system.

Other results of the approximated policy are summarized below. The local sta-
tionary defender’s policy is to defend a normal node with a higher probability. The
defender does not defend the faulty nodes since the recovery of a failed node cannot
mitigate the loss. Furthermore, if we reduce the cost of state failure ξ1 or increase
the defense cost ξ3, we observe that the defender is less likely to defend.

The suboptimal distributed attacker’s policy avoids attacking node l when nodes
in Ωl are working. With an increase in ξ4, the total number of attacks decreases to
avoid attacking protected nodes. Thus, the presence of the defender results in fewer
attacks. Besides, if node k cannot be attacked, then, naturally node k will not be
defended, and attacker tends to decrease attack levels at the parent nodes of k.
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5.5 Conclusion

In this work, we have formulated a zero-sum dynamic game model to design protec-
tion mechanisms for large-scale interdependent critical infrastructures against cyber
and physical attacks. To compute the security policies for the infrastructure design-
ers, we have developed a factored Markov game approach to reduce the computa-
tional complexity of the large-scale linear programming (LP) problem by leveraging
the sparsity of the transition kernel and the network structure. With techniques such
as linear function approximations, variable elimination, and the restriction of the
local information structures, we have significantly reduced the computational time
of the defender’s saddle-point policy. The saddle-point strategy of the attacker can
be computed likewise using the dual LP.

Numerical experiments have shown that the defender’s policy can successfully
thwart attacks. The lack of defenders gives rises to the attack number because the
attack cost is negligible comparing to the system loss. As more nodes equip with
protections, the attack number decreases. Besides, attackers avoid attacking nodes
with healthy neighboring nodes because they have a larger probability of survival
and are also more likely to be protected. The global stationary policy of defender of
each state depends on the security level at that state because of the single-controller
assumption.

Moreover, with more information or observations of the system states available
to the defender, the infrastructure is shown to be more secure under the saddle-
point equilibrium security policy. Finally, a ring topology example has illustrated an
increase in approximation accuracy when the number of nodes grows as well as an
acceptable approximation error introduced by the localized information structure.

Future work would incorporate the design of resiliency mechanism to enable the
infrastructures to recover after the attack. It would be of interest to investigate the
inherent trade-off between the security and resiliency design objectives by jointly
studying the defender-controlled recovery process into the attacker-controlled fail-
ure process. Another important research direction is on the development of the the-
oretical foundations on the approximation schemes and the extension of the frame-
work to nonzero-sum games.

5.6 Chapter Notes and Further Reading

A lot of works have been devoted to understand the interdependent networks by
concept identification [16]; dependency classification including physical, cyber, ge-
ographic, and logical types [20]; and input-output or agent-based model construc-
tion [19]. The authors in [3, 1] have also proposed a game-theoretic framework to
capture the decentralized decision-making nature of interdependent CIs. To analyze
and manage the risks of CIs due to the interdependencies, various models have been
proposed, e.g., based on network flows [12], numerical simulations [9], dynamic
coupling [21], and the ones summarized in [17].
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Game-theoretic methods have been extensively used to model the cyber security
with applications to infrastructures [15, 23, 25, 26]. Zhu et al. have proposed a
proactive feedback-driven moving target defense mechanism to secure the computer
networks [22]. In [18], a FlipIt game framework has been used to model the security
in cloud-enabled cyber-physical systems. The authors in [2, 4] have addressed the
multilayer cyber risks management induced by attacks in Internet of things through
a contract-theoretic approach. In [24, 25], Markov games model have been used to
deal with network security. Our work differs from the previous works by proposing
a factored Markov game framework and developing computational methods for the
dynamic protection policies of large-scale interdependent CIs.

The computation limitation caused by the curse of dimension urges researchers to
find scalable methods. A number of works have focused on the linear programming
formulation of Markov decision processes (MDP) and complexity reduction of the
objective and constraints of the linear programming [7, 14, 11]. In [5], the authors
have reduced the number of constraints by proper sampling and derived its error
bound. [13] has formulated a linear program of the asymmetric zero-sum game and
reduced its computational complexity to polynomial time. In [10], the authors have
used a factored approach to approximate the value function.
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Chapter 6
G-DPS: A Game-Theoretical
Decision-Making Framework for
Physical Surveillance Games

Ali Alshawish, Mohamed Amine Abid, Hermann de Meer, Stefan Schauer, Sandra
König, Antonios Gouglidis, and David Hutchison

6.1 Introduction

Critical infrastructure protection becomes increasingly a major concern in govern-
ments and industries. Besides the increasing rates of cybercrime, recent terrorist
attacks bring organizations operating in such environments in a critical state. There-
fore, risk management plays an important role in operations of such infrastructures
(see Chapter 1). The risk management process mostly requires a deep understand-
ing of the system’s functions, processes, and assets as well as their mutual depen-
dencies. Therefore, situational awareness turns out to be a core component of risk
management approaches since it provides the means to develop a constantly updated
understanding of the current state of the system of interest. Situational awareness en-
ables involved security operators or risk managers to keep track of what is currently
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happening and to understand it or interpret it depending on what happened in the
past time in order to foresee what could happen in the future and thus to be able
to make decision and take a proper action [16]. Thus, understanding the current
situation has a considerable impact on the proper prediction of future events and
subsequently on the operator’s decision-making. In the context of security, a proper
anticipation of the potential adversary’s actions can give the security personnel a
good advantage to get ahead of the adversary in a security game and to eventually
stop the whole attack chain at a very early stage. Nevertheless, the irrationality level
of the adversary has a significant impact on the perfectness of our knowledge on
his attack preferences. Generally, the substance that glues past, present, and future
phases of the situational awareness process together is data, which varies across
multiple scales in space and time (i.e., historical and real-time data). Further, data is
an important element for accomplishing a precise risk assessment process. Broadly
speaking, one of the key approaches to collect and obtain data and information is
monitoring and observation, henceforth referred to as surveillance. Therefore, most
critical infrastructures, in particular those operating large industry complexes, incor-
porate increasingly different surveillance technologies to operate as an early inci-
dent warning or even prevention systems [42]. Surveillance systems, such as video
surveillance and malicious behavior detection, have been long used for perimeter
protection as a first line of defense. Traditional perimeter security solutions typi-
cally monitor the outer boundary structures and lines, thus ignoring threats from the
inside [6]. Moreover, the deterrent effect of surveillance systems like closed-circuit
television (CCTV) becomes considerably less important due to the inflexibility in-
duced by their fixed installations. Hence, an infrastructure’s surveillance policy is
more predictable, and a potential adversary has a better opportunity to observe and
bypass it subsequently. Therefore, it is important to maintain situational awareness
within such environments so that potential intruders can still be detected. In this
chapter, the main focus is laid on physical surveillance scenarios, in which mo-
bile agents perform repetitive spot-checks within the infrastructure boundaries to
improve flexibility and intrusion detection probabilities. These mobile agents, con-
ducting random inspection activities, play an important role in ensuring a persistent
monitoring and on-site observation. However, this requires an effective planning of
inspection schedules in order to reach the envisaged goals taking into account chal-
lenges such as uncertainty (due to unforeseen events or dynamic system nature) and
potential existence of multiple competing goals or criteria that need to be optimized
simultaneously. This problem already has a natural reflection in game theory known
as “cops-and-robbers” game, but these models always assume a deterministic out-
come of the gameplay. Regardless of whether personnel (e.g., security guards, etc.)
or technical solutions (e.g., cameras, etc.) are applied, surveillance systems have
an imperfect detection rate, leaving an intruder with the potential to cause some
damage to the infrastructure. Hence, the core problem is to find surveillance con-
figurations that could provide an optimal solution in minimizing the damage caused
to the organization. Therefore, we present a decision-making framework, which as-
sesses possible choices and alternatives toward finding an optimal surveillance con-
figuration and hence minimizing addressed risks. The decision is made by means
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of a game-theoretic model for optimizing physical surveillance systems and min-
imizing the potential damage caused by an intruder with respect to the imperfect
detection rates of surveillance technology. With our approach, we have the advan-
tage of using categorical (or continuous) distributions instead of a single numerical
value to capture the uncertainty in describing the potential damage of an intruder
as in Chapter 2. This gives us the opportunity to model the imperfection of surveil-
lance systems and to optimize over large collections of empirical or simulated data
without losing valuable information during the process.

The structure of the chapter is as follows. In Section 6.2, a general overview of
surveillance technologies is introduced. In Section 6.3, the term of physical surveil-
lance games is presented. Section 6.4 describes the game-theoretic approach for
risk minimization. The six-step decision-making framework for physical surveil-
lance games (G-DPS framework) is comprehensively explained in Section 6.5. Sec-
tion 6.6 illustrates the application of G-DPS framework to minimize the risk of fare
evasion in public transportation systems. Finally, chapter notes and further reading
are discussed in Section 6.7, before Section 6.8 concludes the chapter.

6.2 Overview of Surveillance

Surveillance is commonly described as the careful watching of objects, persons,
and areas, due to a crime that has happened or is expected to happen. Surveillance
has been explained as “the systematic investigation or monitoring of the actions or
communications of one or more persons. Its primary purpose is generally to collect
information about them, their activities, or their associates. There may be a sec-
ondary intention to deter a whole population from undertaking some kinds of activ-
ity” [13]. The process of surveillance consists basically of five activities, as depicted
in Figure 6.1. These activities include sensor selection and placement, which helps
identify the set of proper surveillance devices matching the envisioned purposes
and objectives of the surveillance system of interest. There is a wide spectrum of
existing surveillance technologies including, but not limited to, visual surveillance,
auditory surveillance, biometric surveillance, location-based surveillance, and ubiq-
uitous surveillance, among others. In addition to sensor selection, the deployment
layout of sensors and surveillance entities represents a major step toward achiev-
ing the predefined goals of any surveillance system. The subsequent activity is data
collection, which is more relevant to the events of interest. Since collected data can
be provided by sources of different types, the process of data integration or data fu-
sion is therefore of vital importance, in particular, for hybrid surveillance systems,
in which traditional and most-advanced monitoring techniques are leveraged simul-
taneously. Data fusion is required in order to bring the collected data into the same
semantic and, hence, to extract more meaningful information. The next phase refers
to the activity of employing the available data into further processing procedures, re-
ferred to as decision-making process, which identifies and assesses possible choices
and alternatives based on the available and organized information from the preced-
ing phase. As a result, “first response” activities can be managed and coordinated
more effectively toward minimizing potential risks.



132 A. Alshawish et al.

6.2.1 Categorization of Surveillance Systems

Currently, a wide range of surveillance technologies is used in order to provide end
users with different levels of functionality. Hence, for us to identify the various
surveillance technologies, we conducted a systematic literature review in [19]. This
review method is capable of providing a valid and comprehensive categorization of
existing technologies and also helps in overcoming the difficulty of assigning vari-
ous technologies with homogeneous groups. Specifically, the analysis resulted in the
identification of six main categories of surveillance technologies, namely, biomet-
rics, dataveillance, visual surveillance, communication surveillance, location track-
ing, and ubiquitous surveillance. Brief information about each of these categories is
provided in the following:

• Biometrics is concerned with automated methods in order to identify or rec-
ognize the identity of a living person, based on his/her physiological and/or
behavioral characteristics [50, 49, 30]. Their main objective is to identify, ver-
ify, or authorize an individual, which is accomplished through the application
of pattern-matching algorithms on a set of gathered data.

• Visual surveillance technologies are characterized by their wide variety of tech-
nologies, e.g., video, imaging scanners, photography, satellites, or unmanned
aerial vehicles (UAVs), and are closely coupled with the concept of territorial
privacy [10].

• Dataveillance technologies are mostly utilized in the context of data systems
that collect personal information. This information could be used subsequently
in the investigation or monitoring of the actions or communications of one or
more persons. Hence, dataveillance technologies are highly applicable by secu-
rity agencies and bodies to perform pattern recognitions and predictions [7].

• Communication surveillance is used to monitor, intercept, collect, preserve, and
retain information that has been communicated, relayed, or generated over com-
munication networks to a group of recipients by a third party [41]. These types
of technologies have introduced a high level of ambiguity, mostly when consid-
ering them as a mean to protect nations against terrorism.

• Location tracking surveillance technologies are used to monitor position and
movements, e.g., proximity sensing, scene analysis, and triangulation [22].

Fig. 6.1: A general overview of the basic activities of a surveillance system

Such technologies appear to be useful in military operations, espionage, or
policing.
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• Ubiquitous surveillance is related to the unilateral gathering of data on people
in their living environment through the use of various embedded sensors [31].
The application areas of ubiquitous surveillance and computing devices are nu-
merous since they are applicable to any type of objects (e.g., on people).

6.2.2 Limitations of Traditional Surveillance Systems
in Critical Infrastructures

Generally, there are several challenges facing surveillance systems including per-
formance, accuracy, or working in harsh environments. For example, many infras-
tructures (e.g., supply networks and large-scale enterprises) spread over a large ge-
ographic area and across long distances connecting regions which are geographi-
cally very far apart. Hence, full coverage of large-scale areas is a very challenging
aspect, as well. Surveillance coverage is strictly limited by the number of available
resources such as sensors, processing devices, or human resources. Therefore, avail-
able surveillance resources have to be strategically allocated to achieve envisaged
goals.

Such organizations constantly tend to extend beyond their physical existence to
include other entities like vendors, business partners, service providers, or even cos-
tumers. Thus, it is very common to have external entities inside their sites such
as temporary workers, interns, independent contractors and subcontractors, or even
visitors. In general, people are more interested in getting their job done, and if the
security measures and the security perimeter are slowing them down or limiting
them, they will certainly find ways to circumvent it. Moreover, it is very likely
that employees behave and perform inappropriately, resulting in direct breaches
of an organization’s security policy. For example, adversaries can exploit the fact
that the issued badges of terminated employees, temporary visitors, or workers are
not always timely recovered before leaving the site and the access of stolen or
lost badges are similarly not revoked in a timely manner. As a consequence, the
perimeter-centric physical security measures such as traditional surveillance tech-
nologies (e.g., closed-circuit television (CCTV) systems or access control solutions)
that use static surveillance devices mounted at specific locations are not adequate to
detect and prevent such potential intruders [32]. Due to the inflexibility and fixed
installation of these systems, their deterrent effect will be considerably less, and
hence an intruder’s chance of successfully circumventing security controls located
at the perimeter is significantly higher. Therefore, it is important to maintain situa-
tional awareness within the industrial complexes of such infrastructures so that the
potential intruders can still be detected.

To cope with the dynamic nature of critical infrastructure and to achieve ade-
quate level of situational awareness in such large-scale areas taking into account
the limited available resources (e.g., security guards and checking devices), surveil-
lance strategies have to exhibit two key features, namely, risk-based and on-demand
strategies. Risk-based strategies are necessary to allocate and focus resources and
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capabilities in the high sensitive areas and against severe threats and therefore to ef-
fectively and efficiently mitigate risks [27, 28]. On-demand strategies, on the other
hand, are required to randomize security and inspection checks to improve flexibility
and detection probability and hence to enhance the organization’s security posture.
These features can be achieved by mobilizing the required surveillance resources
(e.g., security personnel).

6.3 Physical Surveillance Games

Critical infrastructure systems can be characterized by closed structural environ-
ments (e.g., power plant, refinery, and airports) or open structural environments
(e.g., public transit systems and nation’s borders). In either case, the disruptions
of these systems could have widespread and devastating consequences on the na-
tional economy and public health. Therefore, safety, security, and service continuity
of these systems are of utmost importance. Although there are several advanced
biometric and access control techniques, which can be used to secure facilities of
interest, visual monitoring and on-site observation are still indispensable practices to
ensure persistent surveillance in such environments. However, covering a moderate-
sized environment requires a substantial number of static cameras, which induces a
heavy monitoring activity for security personnel behind monitoring screens, leading
to poor efficiency due to potential fatigue [8]. In this chapter, we target mainly sce-
narios in which mobile agents can be deployed in the environment for surveillance
applications. In such scenarios, while potential adversaries are seeking for causing
a maximum damage to the target infrastructure, the defenders or first responders
are to the contrary seeking optimal resource allocation in an attempt to thwart any
potential adversarial plans. Mostly, the security resources (mobile agents) are not
adequate to track all targets at once. Thus, these resources have to be strategically
assigned to maximize the benefits for the system’s defenders. This problem has al-
ready been reflected in several game-theoretical models, but current models always
assume a deterministic outcome of the gameplay. However, the decision-making
process in such application has to consider uncertainty since even if the defender
and the adversary share the same site, there is a probability that the defender misses
the adversary inducing randomness in the player’s outcomes. Modeling this random-
ness based on domain knowledge usually culminates in an expected payoff (e.g., a
success rate for the patroller, average damage for the attacker) for the players, but
this is basically a reduction of information from the full-fledged probabilistic model
(a distribution) back to a real value.

Therefore, throughout this chapter, we understand physical surveillance games
as distribution-valued games that model the interaction between at least two
players (i.e., defenders/first responders/security personnel and potential adver-
saries/attackers/criminals) each equipped with a finite action set (i.e., strategies).
Additionally, the chance is deemed as a “hypothetical” third player that induces
randomness in the real player’s outcome. Thus, a distribution-valued game takes
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the random outcome distribution as the payoff itself to avoid any information re-
duction [3]. That is, instead of computing the behavior that maximizes a numeric
revenue, we can compute the behavior that shapes the payoff distribution at best (cf.
Chapter 2). Further, the equilibrium strategy of a game will deliver the defenders
with optimal surveillance policies and strategic allocation of the available resources
within the environment of interest. Regarding the general setting of physical surveil-
lance games, we consider a large environment, e.g., an industry complex of a utility
provider, consisting of several areas/sectors/working lines of different importance
and having a number of security guards, who are patrolling these areas to detect
potential violations. Broadly speaking, physical surveillance games have several
important real-life manifestations such as physical border patrolling, scheduling
random security checkpoints, mobile robot path planning, public transit security,
and fare enforcement planning, among others.

6.3.1 Overview of Risk Management Challenges

A core difficulty in managing risk is the inherent uncertainty and fuzziness of the
information that is available to risk managers; see Chapters 1 and 2. Knowing the
assets that require protection and assuming to have limited resources to perform
this task, a core issue is resource allocation in terms of scheduling the route and
frequency of patrol inspections. Obviously, the frequency of inspections should cor-
relate with the value of the asset. In other words, if highly sensitive business assets
are stored at location X, while relatively less sensitive data resides at location Y,
then it makes sense to check X more often than Y, at frequencies proportional to the
value of the respective goods. Extending the problem to a whole infrastructure call-
ing for an all-encompassing protection quickly induces the need for a surveillance
strategy which performance can be optimized.

When thinking of physical surveillance, this can be done at different locations
and at different levels of granularity (e.g., ranging from quickly inspecting to thor-
oughly examining an area, with the latter being more time consuming) and vari-
able rates (e.g., hourly, every two hours, or every six hours). Intruders will in turn
react on the surveillance patterns by allocating their efforts to places that are (cur-
rently) not under surveillance. The game-theoretic model of our surveillance games
is essentially a simplified version of a pursuit-evasion (“cops-and-robbers”) game
[33, 9], in which the security guard is the “cop” and the intruder is the “robber.”
However, the issue in real-world scenarios is that an intruder may not always be
detected by the surveillance system (Section 6.2.2 discusses the limits in detail).
Hence, let us here confine ourselves and state that there is an intrinsic likelihood of
missing the intruder in every round of the game and thus for the intruder to be able
to cause a certain amount of damage in the specific area. In essence, if some zones
are known to be under stronger surveillance than others, the natural reaction would
be to focus intrusion efforts on spots with weakest supervision and detection mech-
anisms. Therefore, the overall goal is to avoid damage suffered from intrusions by
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managing the surveillance activities accordingly. Consequently, the performance of
surveillance has to be quantified in terms of damage prevention to make surveillance
activities comparable.

Quantifying the damage expected from an intrusion is usually the most difficult
part in a practical application of game theory in the context of physical surveillance.
Obviously, we cannot simply define the effect of a successful intrusion as a payoff
being equal to the negative value of the stolen good, simply because this value may
be unknown or difficult to quantify. Likewise, we cannot straightforwardly assign
a non-negative payoff upon thwarting an intrusion, as this event may not even be
noticed in practice. Often, we end up with a purely nominal quantification of both,
value and probability, according to fuzzy terms like “damage is high if the intruder
enters a high-security area; however, this is expected only with very low proba-
bility.” For setting up a game-theoretic model to optimize the surveillance system’s
configuration, we require something crisper and more reliable. The latter is achieved
by querying a maximum of available sources of information and aggregating the re-
sults.

Combining the multiplicity of potential sources usually leads to a detailed and
thus difficult picture to manage risk minimization. For example, cameras may raise
alarms upon detection of unusual behavior or even classify the current image se-
quence in terms of criticality (e.g., if a person is showing up at some place at a time
when this place is supposed to be empty or if a car remains parked when all oth-
ers left the place). This information and its classification are by themselves subject
to some errors and presented to human operators to decide upon taking action or
not. Additionally, a purely static surveillance system cannot avoid having dead an-
gles or shadowed spots so that the static surveillance data is usually combined with
“dynamic” information obtained from the security staff patrolling the premises. The
immediate question here is concerned with how to do the surveillance optimally,
i.e., where to place the surveillance equipment, what data to collect and how often,
etc. Assuming that every such choice is among finitely many alternatives only, we
can rephrase the issue as a game-theoretic (i.e., an optimization) problem.

6.3.2 Our Contribution

As pointed out in Section 6.2.2, real-life surveillance systems have limitations and
fuzziness in their detection mechanisms. An accurate description often relies on
a collection of categorical values describing different performance possibilities.
Hence, to set up a standard game-theoretic model using the performance of a surveil-
lance system as a measure of payoff, an ambiguous (fuzzy or probabilistic) descrip-
tion has to be converted into a representative number. For example, taking the ex-
pected detection rate amounts to averaging ranks of the respective categories. The
major drawback of such a conversion is its implied loss of information (the results
of the surveillance can become somewhat blurred) and potential deviations between
the semantics of the original model and the representative numerical figure.
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To avoid these issues, we present a comprehensive decision-making framework
based on a game-theoretic model that ensures the calculation of optimal security
measures being physical surveillance systems against adversaries. This will lead to
minimizing the potential damage caused by an adversary (i.e., an intruder) and thus
provide a strategy for risk minimization. We will explicitly address the uncertainty
in assessing the potential damage caused by the adversary by making use of em-
pirical data (i.e., diverging expert opinions, inaccuracies of detection mechanisms,
random misclassification of incidents, etc.). As such, our approach falls into the cat-
egory of empirical game theory but with the particularity that the game is played
over a function space instead of the (usual) real numbers. In more detail, we apply a
specially tailored framework for game theory over abstract spaces of probability dis-
tributions (cf. Chapters 2 and 3). This framework allows us to integrate uncertainty
and allows the use of distribution-valued payoffs in game theory, by playing games
toward utility maximization (or risk minimization) over stochastic orders, rather
than over real numbers, as well as allows optimizing over different goals (e.g., dam-
age caused by the adversary, costs for security measures, acceptance of the security
measures by the end users). This is especially interesting and relevant in the use-
case of surveillance systems, some of which are “privacy-friendly,” whereas others
may have impacts that are perceived as uncomfortable by people (in terms of their
privacy). Likewise, costs are different depending on which type of surveillance is
done. Therefore, the actual problem of optimal surveillance is more diversified than
asking for a pure maximal detection rate. In fact, additional factors have to be taken
into account, e.g., the maximum must be achieved at minimum cost or maximal
privacy for the honest users. Since not all of these goals are measurable in numeric
terms (such as privacy), a model capable of handling categorical data in the game
seems to be necessary. To detail the picture on the different aspects that influence the
gameplay, Section 6.2 will discuss the notion of surveillance and its various types
to illustrate their impact and relevant aspects.

Furthermore, this model explicitly avoids assumptions on the attacker’s behavior
apart from potential ways to attack. In particular, we do not model his preferences
with regard to which attacks are more likely than others (as it is common practice)
since such predictions are often wrong but may significantly influence the result
of the analysis. Rather, we assume a worst case scenario saying that the adversary
tries to cause as much damage as possible (i.e., we play a zero-sum game). Besides
the optimal defense strategy and the worst case damage, the computed equilibrium
returns the optimal strategy for an attacker. This gives some hints how the attacker
might behave (i.e., which of his strategies he is likely to choose). However, there
is no guarantee that he will indeed act rational. Also if we optimize several goals
simultaneously, he may have to follow different strategies at the same time (i.e.,
he has one optimal strategy per goal) which is not possible. Luckily, any deviation
from his optimal behavior yields a lower damage to the defender as long as he plays
according to his optimal strategy.
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6.4 Game-Theoretic Approach for Risk Minimization

There has been several research works done in the field of game theory and surveil-
lance. Hence, before going into detail on our risk minimization approach respecting
the uncertainty in surveillance systems, we start with sketching a more basic game-
theoretic model for this topic (cf. Section 6.3 for further details on the general setting
of physical surveillance games).

6.4.1 Basic Game-Theoretic Model of Physical Surveillance Games

It is convenient to think of the infrastructure environment as a finite undirected graph
G = (V,E) with V being the set of nodes corresponding to physical areas (buildings
or vehicle trips in the context of public transit systems) and E the set of edges rep-
resenting connection paths among them. Without loss of generality, we may assume
edges to be without surveillance, since we can always model any path (e.g., an aisle)
under surveillance as another node in the middle of the edge. More formally, if ar-
eas A and B are connected by an aisle and that aisle is under surveillance (e.g., by a
camera), then it is treated as a third place C with the graph model having the edge
sequence A−C−B, instead of the single edge A−B in which the aisle would be
assumed without any protection or detection mechanism. In this view, the intruder
may (randomly) walk on the graph in an attempt to reach his goal (the area with
the valuable business assets) while avoiding meeting the security personnel at any
node. In case the intruder is captured, it gets kicked out of the area (removed from
the graph), and the gameplay starts afresh again.

Putting this in a more formal way, let a single pure strategy in the standard model
be a circle in the infrastructure graph G so that the strategy space of the surveil-
lance person is a (not necessarily minimal) set of circles C1, . . . ,Cn that spans G.
Likewise, let the attacker’s action set be a set of paths P1, . . . ,Pm which, without
loss of generality, all end at a specific valuable target node v0 ∈ V . In the classical
version of the pursuit-evasion game, the payoff in the game would correspond to
the outcome of the detection of the intruder. In this case, the game itself becomes a
simple matrix game, whose payoffs are stochastic in the sense that the payoff ma-

trix A = (Ai j)
(n,m)
(i, j=1) is one of the Bernoulli random variables Ai j ∼ Ber(pi j) with the

semantic that:

Ai j :=

{
0 if the intruder is missed;

1 if the intruder is caught.
(6.1)

in which the parameter pi j tells how likely a detection of the path Pj along the
tour Ci is. Packing all temporal matters and detection errors into the simulation
or other assessment methodologies (as discussed in Section 6.5), it is an easy yet
laborious matter of working out the specific distributions. Solutions in the sense of
Nash equilibria of the resulting “nondeterministic” game can be obtained in various
ways. The most obvious one is to convert the matrix of random variables into a
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real-valued matrix by taking the expectation per element. This results in a real-
valued matrix B = (pi j)

n,m
i, j=1 = (E[Ai j])

n,m
i, j=1 that can be treated with the entire well-

known machinery of game theory (von Neumann’s minimax theorem and linear
optimization).

6.4.2 Game-Theoretic Model Using Uncertainty

The basic model sketched in the previous section deviates from reality for exactly
the reasons already mentioned in Section 6.2.2 above. In real-world surveillance sys-
tems, there are several practicalities and imperfections that can significantly result
in a fluctuating detection performance of the system. There are pieces of uncertainty
that must be reflected in a good model.

To describe the uncertainty stemming from these various limitations of surveil-
lance systems, we assume the payoff of our game not to be quantified by a single
number. Rather, it is described by a set of possible outcomes that either stem from
simulations, surveys, or expert interviews. In any case, a real-valued payoff matrix,
similar to matrix B and based on the Bernoulli random variables from matrix A in
Equation (6.1), is no longer appropriate. And we need to resort to a more expressive
categorical distribution to avoid information loss.

Putting this in a more formal way, we assume that T1,T2, · · · ,TMax are differ-
ent types of areas tagged with their respective security demands. Accordingly, let a
single pure strategy in the model be a set of frequencies f = ( fT1 , fT2 , · · · , fTMax) rep-
resenting the amount of times a security guard is performing a security check in the
different security demand areas, respectively. Hence, the strategy space is the col-
lection f1 . . . fn of all admissible (i.e., practically reasonable and doable) frequency
tuples. Accordingly, the adversary’s strategy space comprises paths to the set of
target security zones Z1 . . .Zm, where the adversary wants to cause some damage.
Suppose that either by simulation or by other means of assessments (expert domain
knowledge, crowd sourcing, penetration testing, etc.), we have obtained a collec-
tion of data dati j that refers to the effectiveness of defense strategy i against attack
strategy j. This information may include the aforementioned indicators like detec-
tion events, correct incident recognition, correct classification, or similar. From this

data, we can construct the payoff matrix A = (Ai j)
(n,m)
(i, j=1) by specifying probability

distributions as payoffs instead of single numbers. An easy (nonparametric) choice
is kernel density estimates Fi j, based on dati j, which make the random payoff Ai j

to be
Ai j ∼ Fi j(dati j). (6.2)

Note that this approach can also be described in the terms introduced
in Section 6.4.1, where circles C1, . . . ,Cn represent the tour of the security
guard and P1, . . . ,Pm represent the intruder’s paths. The set of frequencies
f = ( fT1 , fT2 , · · · , fTMax) can be translated to a sequence of areas the security guard
has to check, thus corresponding to a circle Ci in the infrastructure graph. On the
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other hand, an intruder often has to pass several security areas before he reaches
his target Z. This set of areas he has to pass can be translated to an attack path, Pj,
which is a strategy in the game model (determining the random outcome distributed
according to Fi j if the defender plays its i-th move to protect).

To preserve all the information provided in the probability distribution Fi j, we
invoke the more flexible framework put forth in Chapters 2 and 3 alternatively to
the standard minimax and optimization approach described in Section 6.4.1 above.
This allows us to play the game directly with the distribution-valued payoffs rather
than having to convert them into “representative” real numbers. Moreover, we can
add several more dimensions to the gameplay optimization, such as cost to traverse
round trip Ci, i.e., to go to a specific zone and perform the security checks therein,
or of the inconvenience caused by unwanted and too frequent identity checks (since
they might interrupt the current work of a person or might not be possible immedi-
ately). However, the most important benefit from directly working with the distri-
bution is gained when the Bernoulli distribution is replaced by a more general, cat-
egorical, or even continuous distribution model over the categorical damage scale
that applies to the different indicators (e.g., detection rates, privacy infringement,
comfort, etc.).

For convenience of the reader, we will relate the basic notions put forth in Chap-
ters 2 and 3 to the context of physical surveillance games. Let the random variable
X , which can be continuous, discrete, or categorical, represent a(ny) payoff in the
matrix structure, and assume that X is supported on a compact set (and has a contin-
uous probability density function in case that X has an infinite yet compact support
within R). We represent X by the sequence of its moments, treating this sequence
as a hyperreal number x = (E(Xn))(n∈N). It is an easy matter to verify that X and,
respectively, its distribution function FX are uniquely represented by the sequence
of moments and that any two variables are ≤-ordered in the hyperreal space ∗

R.
Transferring this ordering to random variables X1,X2 with distributions F1,F2, we
write X1 � X2, respectively, F1 � F2, if the corresponding hyperreal representatives
are x1 ≤ x2 (cf. Chapter 2). Under this embedding of distributions into ∗R, we can
play the game “as usual,” only bearing in mind that the gameplay itself is now over
a new algebraic structure. Things are, however, greatly simplified in the sense that
we do not have to deal with hyperreal arithmetic, based on the following facts (see
Chapter 2 for proofs):

• Two distributions can be compared by looking at their tails. Specifically,

– if the distributions are categorical, written as F1 = (p1 . . . pn) and F2 =
(q1 . . .qn), where both distributions are ordered along descending ranks,
then F1 � F2 if and only if the vector F1 is less or equal to the vector F2 in
terms of the usual lexicographic ordering;

– if the distributions are discrete or continuous (with compact support), then
we can truncate them to become supported on a compact set. Truncated dis-
crete distributions then compare as categorical distributions, and continuous
distributions compare lexicographically under a slightly more complicated
representation that we do not look at here (as being not required for our
current application);
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– if one of the two distributions is degenerate, say X1 = a is a constant (say, a
deterministic outcome in the game) and X2 is random and ranges within the
set [x1,x2]⊂ [1,∞), then X1 � X2 if and only if a < x2 (conversely, X2 � X1

if and only if x2 ≤ a).

In any case, the decision F1 � F2 can be made without using any hyperreal
arithmetic.

• There are modified versions of the fictitious play (FP) algorithm to solve zero-
sum matrix games with probability distribution-valued payoffs (note that [12]
gives an example demonstrating that regular FP like in [43] can fail to converge
although the game is zero-sum; cf. Chapter 3).

It should be noted that the special case of Bernoulli distributions is canonically
covered by the framework using uncertainty [39], since the lexicographic ordering
on this distribution (with only two categories) equals the natural ordering of the real-
valued expectations. Thus, the simple approach of converting 0–1-valued random
values into their averages for a game-theoretic treatment is an easy special case of
the framework that we use.

To facilitate analysis of such game with uncertain payoffs in risk management
applications, all of the functionalities of the framework have been implemented in
R [46]. The HyRiM package allows applying the game-theoretic framework for risk
manager, keeping away the burden of data aggregation or consensus finding. Us-
ing an implementation of the generalized fictitious play algorithm in the R package
HyRiM (see Chapter 3 or [38]), a risk manager can conveniently rely on theory and
algorithms to support his decisions purely based on all the available data.

6.5 Decision-Making Framework for Physical
Surveillance Games

Risk management based on surveillance involves a decision-making process, which
identifies and assesses possible choices and alternatives toward finding an optimal
usage pattern of surveillance and hence minimizing risks of a scenario of inter-
est. In this section, we describe a six-step decision-making framework (in short,
G-DPS framework) that applies the game-theoretic approach described in Sec-
tion 6.4.2 to find an optimal solution for risk minimization through playing surveil-
lance games with stochastic outcomes. The G-DPS framework illustrates how the
generic HyRiM Risk Management Process described in Chapter 12 can be tailored
to specific scenarios and application cases. A schematic representation of the G-DPS
framework is depicted in Figure 6.2. For the sake of clarity, an illustrative applica-
tion of the framework, including the usage of games over distribution spaces, is
briefly described in Section 6.6. An extensive and detailed view of the application
of the G-DPS framework is presented in Chapter 15.
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6.5.1 Context Establishment

The first step toward risk management is to understand the environment of interest as
well as the different objectives that should be achieved. This involves (i) identifying
the boundaries of the environment and hence the overall scope of the risk manage-
ment framework, (ii) identifying the different parties involved in the game (i.e., po-
tential game players), and (iii) identifying the different functions, units, processes,
and resources relevant to the system under investigation. Broadly speaking, this step
represents the basis for identifying possible exposures to risks of any kind and mit-
igation actions and strategies preventing those risks in later steps. Techniques, such
as business process analysis, ethnographic studies, vulnerability assessment, or or-
ganizational architecture analysis, can be used to acquire the aforementioned rele-
vant information.

Fig. 6.2: Schematic representation of the game-theoretic decision-making frame-
work for physical surveillance games (G-DPS)



6.5 Decision-Making Framework for Physical Surveillance Games 143

6.5.2 Identification of Strategies

This phase involves identification and parameterization of possible configurations,
layouts, and operational patterns for the surveillance infrastructure. This is a purely
technical issue and is based on domain knowledge about the infrastructure, enter-
prise, premises, environment, etc. at hand. The outcome of this step should describe
the action sets of the various players involved in the game (i.e., defensive and offen-
sive strategies).

6.5.3 Identification of Goals

Identification of relevant indicators related to the surveillance technology may in-
clude but are not limited to the following indicators (the nature of the indicator
(quantitative or qualitative) is given in brackets):

• Probabilities to detect/prevent an intrusion (quantitative indicator);
• Costs induced by implementing surveillance strategies (quantitative indicator):

it indicates the expenses of conducting surveillance activities relevant to the
identified strategies (e.g., base salaries of inspectors). Generally, cost indicator
aims at measuring the efforts of enforcing different configurations and strate-
gies;

• Potential privacy breaches for end users (qualitative indicator): the more data
is collected, the more private information may accumulate (and leak); since
the division of data into “sensitive” and “insensitive” uses already qualitative
terms, measuring privacy infringements usually happens on a nominal scale (in
absence of a quantitative measure of privacy);

• Willingness to support (or maybe also leverage) upon the surveillance system
and health-related issues (qualitative indicator). If people feel uncomfortable
upon the surveillance, then they will either avoid the system, find work-arounds,
or ask for deactivation (at least temporarily). Similarly with respect to privacy,
the gained comfort by security balances against the feeling of being watched.
The only viable measure here may as well be a qualitative score (e.g., ranging
from 1 = “no problem” up to 10 = “unacceptably uncomfortable”);

• Legal regulations that concern employees (qualitative scale). For example, if
surveillance is either forbidden by law or the collection of too much data is
against some internal regulations of the company.

6.5.4 Assessment of Strategy Effectiveness

For each known configuration (i.e., strategies identified in Section 6.5.2), the effec-
tiveness with regard to all aspects identified in Section 6.5.3 is determined. Given
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the wide variety of possible goals, there are different qualitative, quantitative, and
semi-qualitative assessment methodologies of the various scenarios. For example,
since the response dynamics of the game, e.g., people’s reactions, etc., may be un-
known, the damage/outcome of a certain situation in the game can be assessed with
aid of a “soft” indicator. In other words, if simulations of surveillance systems are
possible and feasible, a more or less reliable risk estimate (e.g., given in terms of
probabilities) may be achievable, but not necessarily so for all goals of interest. A
“soft” indicator like the degree to which end users appreciate the surveillance or
feel uncomfortable upon such monitoring is one example of a goal that may not be
measurable by simulation. In such cases, empirical data, e.g., coming from classical
surveys and expert and stakeholder opinions, or historical and statistical data may
be the way to go and measure the effects of certain configurations. For example, the
end users may be asked how they feel upon having installed cameras somewhere or
whether or not they would be willing to have their own devices become part of the
surveillance infrastructure. Even if a user consents, an involved surveillance device
(e.g., a mobile device) may not always be connected, may be out of power, etc.,
which adds an intrinsic element of randomness to the outcome in every scenario.

In either case, the damage quantified in this step is a categorical (or continuous)
probability distribution including all available information but must be constructed
under the following constraints:

1. All assessments are made in the same scale. This is required for the multicrite-
ria optimization to work (using scaling of the vector-valued payoffs). Numeric
indicators are thus discretized onto a common categorical scale (that all cate-
gorical indicators use as well). For technical reasons the scale used should not
contain values smaller than 1;

2. The data source is reliable with regard to the intended risk assessment.

6.5.5 Identification of Optimal Configuration

This step involves basically the process of computing equilibria (more specifically,
Pareto-Nash equilibria) and can be implemented based on standard theory (refer-
enced in Section 6.4.2). More precisely, the stochastic outcome of the assessment
process of the strategy effectiveness (cf. Section 6.5.4) should be leveraged to con-
struct the distribution-valued payoff matrix of the applied game-theoretical model.
Finding Nash equilibria in games with distribution-valued payoffs works similarly
as in classical game theory but with a few qualitatively differences in the behavior
of these games. For example, under a proper modification of payoff distributions,
fictitious play (FP) can be used to solve distribution-valued games (Section 6.4.2
and the literature cited therein deliver more details on solving such games). In the
presence of multiple goals, the Nash equilibrium is replaced by a Pareto-Nash equi-
librium, meaning that any unilateral deviation from the equilibrium will result in a
degeneration of at least one of the payoff measures for the deviating player. Tech-
nically, Pareto-Nash equilibria are computed by scalarizing the game into one with
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a single goal and computing (normal) Nash equilibria there [29]. That scalarization
is nothing else than a weighted sum of all goal payoffs, where the weights can be
set to reflect priorities of each goal, under the sole constraint of the weights to be
all strictly positive (for a zero weight, we can simply exclude the respective goal
from the analysis completely). Observe the neat side effect here: the scalarization
induces a set of variables for theoretical reasons, yet these variables have a perfectly
meaningful practical use in the specification of the importance of each goal. This is
an independent benefit of the particular method applied here to compute multi-goal
optimal surveillance configuration.

6.5.6 Implementation of Optimal Configuration

Having found an optimal solution to the configuration of the surveillance system,
such as optimal surveillance routes and frequencies, etc., the daily business requires
to implement the static precautions, e.g., building the surveillance system according
to its optimal layout and configuration and adhering to random reconfigurations and
daily operation. However, in some cases, the assessment process (cf. Section 6.5.4),
applied to assess effectiveness of involved players’ strategies (cf. Section 6.5.2),
could be leveraged at this step to analyze and validate the efficiency and feasibil-
ity of the obtained optimal solution. For example, if the assessment is conducted
using simulation, the game equilibrium strategy can be similarly implemented in
the developed simulation environment and then contrasted with results obtained in
early steps. Toward a practical implementation of equilibrium strategies, remember
that all we require is a certain frequency of actions to happen over repetitions of
the game. To this end, let us fix a time unit, say T hours, and then if the equilib-
rium prescribes action a1 to happen with probability p1, this means an average of
p1 · T actions during a day. Taking the pauses between repetitions of action a1 as
exponentially distributed with rate parameter 1/p1, it is a simple matter of draw-
ing exponentially distributed pause times to get the time when action a1 is to be
launched next. In turn, the number of actions is a Poisson distributed variable with
the same rate parameter, as desired to play the equilibrium. For the other strategies,
the procedure works analogously and ultimately gives a (randomized) schedule of
actions that assures the optimal frequencies as prescribed by the equilibrium [3].

6.6 Illustrative Scenario: Risk of Fare Evasion in Public
Transportation Systems

For the sake of better understanding of our presented decision-making framework,
we will devote the present section to apply it on an illustrative use-case. We choose
to consider the case of a “public transportation system” (PTS) already described
in [3], where the ultimate goal is to make the best decision on how to schedule
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fare checking/inspections in a way that we minimize the risk of fare evasion while
mastering induced costs. For this purpose, we will apply our presented framework,
step by step, until we come up with the best way to realize this goal.

As aforementioned, our framework presents six main steps that we need to go
through. Thus, we structure the present section into six subsections, corresponding
to these respective steps (cf. Section 6.5).

6.6.1 PTS’ Context Establishment

Our considered PTS is a basic public transportation network illustrated in Figure 6.3.
It consists of 24 stops served by 4 lines named A, B, C, and D. The lines exhibit
statistically different utilization rates, depicted by the thickness of the edges repre-
senting them (the thicker the edge, the higher the average passenger volume over
this line). This means Line A is on average the most crowded line, while Line D has
the least passenger volume.

After presenting the architecture of our PTS, we will move to analyze its business
process. The administrative entity running this transportation system has basically
two main concerns that are tightly related: (i) how to master overall costs and (ii)
how to stop fare evasion as it is causing high losses (e.g., in 2016, the revenue
loss of the Massachusetts Bay Transportation Authority has been estimated around
$42 million annually simply because of fare evasion on various public transport
means [15]).

In most public transportation systems, customers are required to purchase a ticket
and carry it during the trip as a proof of paying a proper fare. To detect potential
evaders, transportation companies traditionally employ inspectors to perform phys-
ical checking on “randomly” selected trips. The number of employed inspectors
depends basically on two factors, namely, the size of the network and the passen-
ger volume. Based on available knowledge in this domain, it is valid to assume that
the fraction of potential offenders and ticket-less passengers is generally propor-
tional to the passenger volume on each line since crowded vehicles give a potential
fare evader a pretty decent chance of avoiding being caught. Therefore, trips with
higher passenger volumes are checked more frequently to discourage potential vi-
olations and to compensate the revenue losses due to fare evasion. As a result, the
more inspection activities performed on a certain line, the more likely passengers
purchase valid tickets [47]. However, increasing the rate of checks and/or number
of employed inspectors incurs higher expenses. Therefore, an effective scheduling
mechanism should take into account the aforementioned trade-off between revenue
and cost. For the sake of simplicity, we will suppose that the maximum number of
inspectors to be deployed by our transportation system is 4. Note that this scenario
can also be described in the terms introduced in Section 6.4.1, where V represents
the set of single trips of the transportation systems’ vehicles (e.g., bus, train, or
metro). Additionally, the circles C1, . . . ,Cn represent the tour of the fare inspectors
and P1, . . . ,Pm represent the fare dodgers paths.
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6.6.2 PTS’ Identification of Strategies

In this step, we seek to list the different possible strategies to be adopted by our two
players (i.e., potential evaders vs. inspectors). Strategy parameters can include, but
not limited to:

• Inspection frequency: the frequency at which the inspector will inspect a spe-
cific line or station.

• Inspection duration: the time spent by the inspector to check specific line or trip
in terms of number of stops.

• Line selection: How an inspector chooses the next line to be checked? Here, we
can distinguish between two basic methods, UNIFORM and MOST-CROWDED.
The latter indicates that the lines with higher passengers’ volume will be
checked more frequently than others (recall that the risk of fare evasion is pre-
sumably proportional to the expected passenger volume on each line or trip).
For this reason, statistical data is used to help define a probability distribution
over the whole transportation grid. The former, i.e., UNIFORM method, stipu-
lates that all lines share the same importance. Hence, the inspectors will have
no preference of a certain line over others.

• Total number of inspectors: it indicates the number of inspectors employed to
check the whole transportation network.

• Collaboration: it indicates whether the inspectors are conducting their inspec-
tion activities individually or collaboratively as a team.

Fig. 6.3: A basic public transportation network with 4 lines
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Further parameters can be defined, such as type of clothing (uniform or plain
clothes), movement of the team during checks, and number of possible switches
between different lines in each inspection schedule. For this illustrative example,
we will limit ourselves to the following strategy parameters:

• Total number of inspectors (maximum 4): {2, 4} inspectors having a daily duty
of 8 inspection hours. This parameter is denoted in the strategy label by xPERS,
where x is the number of inspectors.

• Collaboration: the inspectors have the possibility to carry out the inspection
actions either individually (denoted by I) or jointly as a team (denoted by T ).

• Line selection: we define P(A), P(B), P(C), and P(D) the respective probabil-
ities of selecting Line A, B, C, or D. UR denotes the application of UNIFORM
method (i.e., P(A) = P(B) = P(C) = P(D) = 25%). CRW , in turn, refers
to MOST-CROWDED, in which the following probabilities’ profile is applied
P(A) = 45%, P(B) = 30%, P(C) = 17%, P(D) = 8%. MOST-CROWDED strate-
gies can be seen as risk-based strategies with the goal of inspecting lines with
higher passengers’ volume at a higher rate.

Combining only these parameters leads us to the action set of the inspectors (i.e.,
inspection strategies), summarized in Table 6.1.

Table 6.1: List of possible ticket inspection strategies

#No. Strategy label #No. Strategy label

Strategy 1 2PERS-T-UR Strategy 5 4PERS-T-UR
Strategy 2 2PERS-I-UR Strategy 6 4PERS-I-UR
Strategy 3 2PERS-T-CRW Strategy 7 4PERS-T-CRW
Strategy 4 2PERS-I-CRW Strategy 8 4PERS-I-CRW

Next, we need to identify the various possible ticket evasion strategies. For the
sake of simplicity, an evader strategy would be simply to choose a single line where
he will never pay the fares. This gives us 4 different strategies labeled line A, line B,
line C, and line D, respectively.

6.6.3 PTS’ Identification of Goals

The main goal of this step is to identify the key performance indicators (KPIs) to
be used in the assessment step. There are several competing goals relevant to fare
inspection strategies, such as:

• Inspection Intensity: the number (volume) of spot-checking missions carried
out on a certain line. This goal should be maximized.

• Costs: the expenses of the spot-checking activities (inspectors’ base salaries,
additional bonuses, etc.). This goal should be minimized.
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• Detection intensity: the number of penalty fares claimed from ticket-less pas-
sengers. It is noteworthy that detection intensity is not linearly related to inspec-
tion intensity indicator due to varying passenger volumes on the different lines.
This goal should be maximized.

6.6.4 PTS’ Assessment of Strategies

We aim now at assessing the identified strategies with respect to our fixed goals.
Even if the assessment could be done in variant ways (i.e., simulation, experts and
stakeholders opinions, historical and statistical data, or social surveys), we choose to
rely on evaluations done by a set of experts using the nominal rating {VL= very low,
L=low, LM=low to medium, M=medium, MH= medium to high, H= high, and VH=
very high}. The assessment results (from 15 experts) are included in the Appendix,
in Tables 6.2, 6.3, and 6.4, with respect to the goals inspection intensity, detection
intensity, and costs, respectively.

6.6.5 PTS’ Optimal Configuration

This step is about playing the game itself. First, the collected data is used to de-
fine the distribution-valued payoffs required by our framework (recall here that data
will not be aggregated to avoid any loss of information). Then, priorities among
goals need to be set. For our case, we assume that all goals are equally important.
Finally, we apply HyRiM risk management tool implemented as R package [38]
(cf. Section 6.4.2 for further details on the model) which results on the outcome
(i.e., Pareto-Nash equilibrium) presented by Figure 6.4. It corresponds to a nontriv-
ial mixed strategy inducing a probability distribution over the different identified
inspection strategies. Figure 6.4 shows that the most effective strategies are those
with non-zero probabilities (i.e., “4PERS-I-UR,” “4PERS-T-CRW,” and “4PERS-I-
CRW”). This implies that we should avoid the set of strategies with a zero proba-
bility since they are useless with regard to the addressed goals. This mixed strategy
should correspond to the best way to schedule trip inspections as it should avoid
making the inspectors predictable by potential evaders.

6.6.6 PTS’ Implementation of Optimal Configuration

For the implementation part, the transportation system authority should schedule
inspections with respect to this resulting mixed strategy. One possible way of im-
plementation would be randomly affecting one of these three effective strategies
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to the inspectors such that the probabilities of selecting each of them corresponds
to the probabilities given by the equilibrium. In this way, and after a long run, the
applied schedule should be aligned with our optimal mixed strategy.

6.7 Chapter Notes and Further Reading

In the past years, there have been several approaches introducing game-theoretic
concepts and algorithms in the general field of security and risk management (cf.
[2, 34, 35, 40], as well as the literature cited therein). Similarly, the application
of game theory to optimize surveillance has been subject to a quite considerable
amount of prior work. This includes observing evading targets [8], optimal surveil-
lance resource allocation under imperfect information for the attacker [5], sensor
and mobile ad hoc network surveillance [45, 21], purely camera-based pursuit-
evasion models [44], or the more general area of counter-terrorism [51], to mention
only a few. Furthermore, several Stackelberg games have been employed to schedule
randomized patrol schedules to ensure security and fare collection in public trans-
portation systems [14, 11, 24, 48]. All these approaches have two main aspects in
common: first, the modeling is always crisp, and outcomes are measurable in num-
bers. Second, the focus is purely on the game theory side, leaving out the specifics
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Fig. 6.4: The optimal inspection (mixed) strategy (equilibrium strategy for a multi-
objective inspection game)
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and limitations of surveillance systems that can dramatically change the gameplay
due to their imperfections (cf. Section 6.2.2 for details). Our approach presented in
this chapter differs from these two aspects. We assume that the impact of surveil-
lance systems cannot be expressed completely in a numeric utility to the defender
or the attacker. Further, we take the specifics of current surveillance technologies
into account and tailor the game-theoretic model to the specifically fuzzy terms in
which the quality of the surveillance is usually expressed. In this context, we apply
the game-theoretic framework based on distribution-valued payoffs, which has been
developed along precursor work [13, 12, 39] (cf. Section 6.4.2, Chapters 2, and 3
for further details).

In the context of game theory and surveillance, the general cops-and-robbers
game has been studied in a variety of different forms. These include asking for the
minimal number of cops to catch one (or more) robber(s) [20], relating structural
properties of the graph to winning strategies for either party [1], or discussing the
benefit of (in)visibility for either player [26]. Given the vast amount of available
research, we refer to surveys such as [18, 4] as well as the references in the cited
literature. Further interesting applications outside the scope of this work have also
been reported, e.g., in the domain of robotics [23, 12]. We leave this application
area aside here but mention reachability games [25] since they are closely related
to the described surveillance games (cf. Section 6.3). In reachability games, a slid-
ing token in a graph shall reach a particular goal position before getting caught
by the other player. This is conceptually close to our settings but usually assumes
perfectness of payoffs (even though not necessarily assuming perfect information),
whereas we are dealing with imperfect and uncertain payoffs. Different to most pre-
vious work, we are more constrained in not having the freedom to choose the graph
(the topology). Moreover, in light that the decision about winning strategies depend-
ing on the number of cops is known to be NP-complete [17], we ought to work with
whatever number of surveillance people is available and on how to act optimally in
the given infrastructure. Thus, our focus is on laying out the surveillance technol-
ogy optimally, using cops-and-robbers as the optimization framework to account for
intrinsically detecting errors.

6.8 Conclusion

People become increasingly dependable on public services supplied by critical in-
frastructure systems. Hence, public safety and security of such systems are of utmost
importance. This implies that risks like terrorism, criminal offenses, and business
revenue loss should be managed and kept at a minimum. Risk management, in its
turn, involves maintaining a high level of situational awareness. Therefore, the work
presented in this chapter addresses the possibility of enhancing situational aware-
ness by means of surveillance and on-site observation. In addition, game theory
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concepts are leveraged toward finding an optimal configuration and usage pattern of
the surveillance system of interest. Modeling surveillance as a pursuit-evasion game
(cops-and-robbers) is quite common; however, assuming perfectness of detection or
a crisp assessment of the occurring damage appears to be an overly strong assump-
tion to really match reality. Real-life surveillance systems have fuzziness in their
detection mechanisms. For example, every surveillance camera system has blind
spots, and not every person in an inspected zone may be caught or available for a
quick automated identity check. Emergency and unforeseen events, such as human
errors or undisciplined inspection staff, and irregular (random) behavior of potential
intruders are all factors that can significantly affect the ability of inspectors to adhere
to planned schedules as well as the ability to deterministically assess the effective-
ness and performance of specific surveillance (i.e., inspection) strategy, resulting in
noticeable performance fluctuations and stochastic strategy effects. To turn game
theory into a practically effective tool that accurately describes real surveillance
scenarios, the modeling needs to account for the characteristics and technical de-
tails of the surveillance system in charge. Doing so generically appears out of reach,
since the diversity of surveillance systems is far too large to be captured by a single
model. To address this issue, we are proposing to include the intrinsic uncertainty of
surveillance systems and of the respective risk assessment into the game-theoretic
model itself. Therefore, we presented a game-theoretic framework capable of deal-
ing with random payoffs and showed how it can be applied in a standard surveillance
scenario. This additional degree of freedom provided by the game-theoretic frame-
work allows us to work with several and not equiprobable outcomes in the same
scenario of attack and defense. Hence, we have the advantage to model the practical
imperfections of surveillance systems and to account for the subjectivity of expert
opinions. Furthermore, the game-theoretic framework optimizes not only over the
whole distributions characterizing this uncertainty but also over different security
goals like damage, costs, detection rate, privacy aspects, or end-user acceptance.
Thus, the optimal security strategies resulting from the presented game-theoretic
approach provide risk managers with the information they need to make better de-
cisions and take several aspects into account at the same time. Finally, issues such
as implementing and validating optimal security strategies are further discussed in
Chapter 15.
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Appendix

Table 6.2: Expert judgments of the identified strategies with regard to expected in-
spection intensity

Line A Line B Line C Line D

expert ID

1 2 6 7 10 3 8 9 12 14 2 5 10 11 12 13 14 15

St
ra

te
gi

es

2PERS-T-UR VL L L VL L M L VL L L L LM VL VL L M L M
2PERS-I-UR M LM LM L L M LM L L L L M L L L M LM M
2PERS-T-CRW M LM M LM LM LM LM L L L VL L VL VL VL VL L VL
2PERS-I-CRW M LM M M LM LM LM L LM M L LM VL VL VL L L VL
4PERS-T-UR VL L LM VL L LM LM VL L L LM LM L VL VL LM L M
4PERS-I-UR H H LM M MH M LM LM LM LM M LM LM M MH H MH M
4PERS-T-CRW VH H H M M M LM H M LM LM LM L VL L L L LM
4PERS-I-CRW VH H VH MH MH MH VH VH MH M LM L L L LM L L M

Table 6.3: Expert judgments of the identified strategies with regard to expected de-
tection intensity

Line A Line B Line C Line D

expert ID

1 2 6 7 10 3 8 9 12 14 2 5 10 11 12 13 14 15

St
ra

te
gi

es

2PERS-T-UR VL L L VL L M L VL L L L LM VL VL L M L M
2PERS-I-UR L LM LM L LM M LM LM LM LM L LM L VL L M L M
2PERS-T-CRW L L VL L L M VL M L L L M L VL M M M LM
2PERS-I-CRW M M H M LM MH LM M L L VL L VL LM L L L VL
4PERS-T-UR M M L M LM M LM L H M LM L M M M L L L
4PERS-I-UR LM M LM M L M VL M M M LM M M LM M MH M M
4PERS-T-CRW H MH MH VH L LM M LM M LM VH H MH LM L M M MH
4PERS-I-CRW M H H MH LM MH H H H H H H MH M L M M M

Table 6.4: Expert judgments of the identified strategies with regard to expected in-
curred costs

Line A Line B Line C Line D

expert ID

1 2 6 7 10 3 8 9 12 14 2 5 10 11 12 13 14 15

St
ra

te
gi

es

2PERS-T-UR L LM L VL LM M L LM LM L VL LM L VL VL LM L M
2PERS-I-UR L LM LM L LM M LM LM LM LM L LM L VL L M L M
2PERS-T-CRW L LM L VL LM M LM LM LM L VL LM VL VL VL M L M
2PERS-I-CRW L LM LM L LM M LM LM LM LM LM LM L VL L M LM M
4PERS-T-UR H MH M MH M M LM MH M M L M MH H LM M LM H
4PERS-I-UR H MH M MH MH M LM MH M MH L M H H LM M L M
4PERS-T-CRW H H MH MH H H M MH M MH LM L VL VL VL VL L M
4PERS-I-CRW VH H H VH MH MH M MH H H LM LM L VL L VL VL L
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Chapter 7
A Game-Theoretic Framework
for Securing Interdependent Assets
in Networks

Ashish R. Hota, Abraham A. Clements, Saurabh Bagchi, and Shreyas Sundaram

7.1 Introduction

The prevalence of networked engineered systems in the twenty-first century has
made it increasingly challenging to ensure their security and resiliency. While the
growing interdependency between cyber and physical entities has led to improved
system performance, it has also led to new avenues for attackers to target a large
number of entities by exploiting those interdependencies. The magnitude, sophisti-
cation, and scope of such cyber-attacks have seen rapid growth; examples include
a cyber-attack on the power grid in Ukraine [14] and a distributed denial of service
(DDOS) attack launched via Internet of Things devices [36].

In a preliminary version of this work [20], we only investigated the security risk minimization
game, and considered different sets of case studies.
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These large-scale attacks share several important characteristics: these attacks (i)
proceed in multiple stages, (ii) exploit interdependencies between diverse entities
(e.g., vulnerabilities in devices made by third-party vendors have been exploited in
an attack [36]), (iii) are stealthy, and (iv) often exploit unknown or zero-day vulner-
abilities. The existing literature has investigated approaches to protect against indi-
vidual attack characteristics mentioned above. Vulnerabilities and their interdepen-
dencies are often modeled as attack graphs [42]. Bayesian networks are often used
to determine how to defend against attacks within the attack graph representation
[33]. The authors in [43] quantify security risks due to zero-day vulnerabilities in
multistage attacks. Mathematical models of stealthy attacks include the framework
of FlipIt games [40]. Dynamic defense strategies, such as moving target defense
(MTD) [23], are increasingly being deployed to prevent stealthy [3] and multistage
attacks [18, 44]. Note that under MTD, the system being protected is reconfigured
either periodically or based on some events so that it is harder to penetrate by an
external adversary.

Most of the existing literature has focused on network security aspects from the
perspective of a single or centralized defender. However, large-scale cyber-physical
systems are seldom managed by a single entity, and instead, they are operated by
multiple self-interested stakeholders. For instance, different independent system op-
erators (ISOs) are responsible for managing different portions of the power grid.
Nonetheless, assets that belong to these different stakeholders remain interdepen-
dent, a fact which is exploited by attackers to increase the magnitude and spread
of their attacks. There is a growing body of work that applies tools and ideas from
game theory in network security in order to model decentralized decision-making by
multiple stakeholders. We provide a short summary of the existing literature that is
relevant for our setting. A more comprehensive discussion of the literature is beyond
the scope of this chapter, and for this, we refer interested readers to [1, 26, 39].

Most of the existing work can be classified into two distinct paradigms. In the
first class of games, referred to as interdependent security games [25, 26], each
node in the network is treated as an independent decision-maker responsible for
protecting itself. In the context of interdependent security games, the existing litera-
ture has investigated inefficiency of equilibria [24], effectiveness of cyber insurance
[37], impacts of behavioral decision-making [19], and applications in industrial con-
trol systems [2], among others. In the second class of games, there are typically two
players, an attacker and a defender, who compete over attacking and defending mul-
tiple targets. Game-theoretic models in this second framework include Stackelberg
security games [39], Colonel Blotto games [34], and network interdiction games
[21]. Applications of these models include protecting physical assets [39], analyz-
ing military conflict [34], and securing cyber [9] and cyber-physical systems [15].

However, these models do not adequately capture interactions between multiple
defenders each protecting multiple nodes in the network while simultaneously fac-
ing strategic adversaries. In order to bridge this gap, we present a game-theoretic
framework that (i) incorporates essential features of both the above paradigms,
(ii) systematically captures the characteristics of sophisticated attacks discussed
above, and (iii) allows us to quantify the security risk of interdependent assets under
both centralized and decentralized (game-theoretic) allocation of defense resources.
While there are a few recent papers on multi-defender security games [27, 28], these
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papers assume that the strategy space of a defender is discrete, leading to very dif-
ferent analysis compared to our work.

We model the interdependencies between the assets that belong to possibly dif-
ferent defenders as a directed graph referred to as an interdependency graph. We
present two complementary game-theoretic formulations. In both settings, the de-
fenders assign defense resources to reduce attack success probabilities on the edges
of the interdependency graph but with different objectives. In the first class of
games, referred to as the security risk minimization game, the defenders minimize
their expected loss (formally defined in Section 7.2) due to cyber-attacks on a subset
of assets that they own (or are valuable to them). In the second class of games, re-
ferred to as the defense cost minimization game, each defender minimizes the cost
of defense allocation subject to a maximum security risk (referred to as its risk tol-
erance) it is willing to tolerate on each asset it values. In this second class of games,
the set of feasible strategies for a defender is a function of the strategies of other
defenders, which makes it an instance of a generalized Nash equilibrium problem
(see the chapter appendix for a discussion on this class of problems).

We establish the existence of a pure Nash equilibrium (PNE) in the security risk
minimization game and a generalized Nash equilibrium (GNE) (Definition 1 in the
appendix to the chapter) in the defense cost minimization game. For both settings,
we show that a defender can compute its best response (i.e., its optimal defense
allocation for a given allocation by other defenders) by solving appropriately defined
convex optimization problems. We demonstrate how our framework can be used to
identify certain important aspects of MTD deployment, specifically, how frequently
the configurations should be updated to meet security requirements.

We illustrate the application of our framework in two case studies arising in di-
verse applications. First we consider the IEEE 300 bus power grid network topology
with three ISOs who manage different subsets of the buses. We compare the Nash
equilibrium outcomes in both games with the outcomes where a central authority
minimizes the sum of expected losses (and defense cost) of all defenders. For the
security risk minimization game, we show that as the total budget decreases, the
total expected losses under centralized and Nash equilibrium defense allocations in-
crease exponentially. For the defense cost minimization game, we show that as the
risk tolerance decreases, the total defense cost increases much faster under a Nash
equilibrium allocation compared to the centralized allocation. We also study the in-
crease in total defense cost at an equilibrium when multiple assets are supplied by a
common vendor that can be compromised directly by an attacker. The second case
study is on an e-commerce system adapted from [29]. We compute optimal MTD
deployment by applying our framework and investigate how security risk varies as
a function of the defense budget.

7.2 Model

In this section, we introduce the mathematical framework that captures the different
network security scenarios discussed above. We introduce the notion of an interde-
pendency graph to model network interactions at different levels of abstractions.
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For example, interdependency graphs capture essential features of attack graphs
[17] where a node represents a single attack step or vulnerability that can be ex-
ploited. Similarly, the nodes can also correspond to cyber or physical entities, such
as firewalls or Human Machine Interfaces (HMIs), present in enterprise networks
and industrial control systems. Edges capture whether two nodes communicate with
each other. At a higher level of abstraction, the interdependency graph can model
large-scale networks such as the electric power grid where nodes represent buses,
and edges represent physical interconnections between them.

Formally, an interdependency graph is a directed graph G = {V,E}. We refer
to each node v ∈ V as an asset. The presence of a directed edge (v j,vi) ∈ E (with
index j �= i) indicates that when the asset v j is compromised, it can be used to launch
an attack on asset vi. In the absence of any defense action, this attack succeeds with
a probability p0

j,i ∈ (0,1]. The success of attack on an edge is independent of the
success of attacks on other edges.

We consider strategic attackers who launch sophisticated cyber-attacks, such as
advanced persistent threats (APTs), into the network. These tools exploit the in-
terdependencies between the assets to move within the network and compromise
valuable assets. Without loss of generality, let s be the source node from which an
attacker launches the attack from outside the network. If there are multiple entry
points to the network, we can effectively replace them by a single entry point s by
adding edges from s to all neighbors of all entry points in the original graph (with
attack probabilities on these edges same as the original graph).

For an asset vi ∈V , let Pi be the set of directed paths from the source s to vi on
the graph; a path P∈Pi is a collection of edges {(s,u1),(u1,u2), . . . ,(ul ,vi)}where
u1, . . . ,ul ∈V . The probability that vi is compromised due to an attacker exploiting
a given path P ∈Pi is ∏

(um,un)∈P
p0

m,n which is the product of probabilities (due to our

independence assumption) on the edges that belong to the path P.

Remark 1. There are systematic ways to assign initial attack probabilities depending
on the application. For instance, in the attack graph representation, initial attack
probabilities are typically defined based on Common Vulnerability Scoring System
(CVSS) scores [33]. The CVSS score is a widely adopted metric for assessing the
severity of computer system security vulnerabilities. It incorporates the factors of
how a vulnerability may be exploited, how difficult it is to exploit a vulnerability,
what level of authentication is needed by an adversary, and which of the security
dimensions of confidentiality, integrity, and availability are affected by the exploit.

Strategic Defender(s): Let D be the set of defenders; we use the index k to repre-
sent a defender. Defender Dk ∈D is responsible for the security of a set Vk ⊆V \{s}
of assets. For each asset vm ∈Vk, there is a financial loss Jm ∈R≥0 that defender Dk

incurs if vm gets compromised. If an asset vm is not considered valuable, we can set
Jm = 0. A defender allocates its resources to reduce the attack probabilities on the
edges interconnecting different assets on the interdependency graph.

Let the feasible (defense) strategy set of defender Dk be R
nk
≥0, where nk repre-

sents the (finite) different dimensions of responses that the defender can deploy.
The defense resources reduce the attack probabilities on the edges of the interde-



7.2 Model 161

pendency graph. Accordingly, we introduce a transformation matrix Tk ∈ R
|E|×nk
≥0

which maps a feasible defense strategy xk ∈ R
nk
≥0 to a defense allocation on edges.

By appropriately defining the matrix Tk, we can capture very general classes of
defense strategies. We discuss two such examples.

Edge-Based Defense Strategy: In this case, a defender Dk allocates defense
resources on a subset of edges Ek ⊆ E of the graph G, and accordingly nk = |Ek|.
For example, Ek can represent the set of all the edges that are incoming to nodes
in Vk, i.e., defender Dk can reduce the attack probabilities on all the edges that are
incoming to the nodes under its ownership. In general, it is not required to assume
Ek’s to be mutually disjoint; certain edges can potentially be managed by multiple
defenders.

Node-Based Defense Strategy: In this case, a defender Dk allocates defense re-
sources to the set of nodes in Vk, and accordingly, nk = |Vk|. Specifically, the defense
resource xk

i being allocated to node vi implies that all the incoming edges to vi in
the graph G have a defense allocation xk

i . Here Tk maps the allocation on a node
into the edges that are incoming to it. An example of node-based defense strategy
is IP-address randomization, an MTD technique where xk

i potentially captures how
frequently the IP-address on vi is updated.

s

1 2

3

Fig. 7.1: Interde-
pendency graph

We now illustrate the concepts defined above. Consider the
interdependency graph shown in Figure 7.1 with a source node
and three nodes or assets. Let there be two defenders; defender
1 is responsible for assets 1 and 3, while defender 2 is respon-
sible for asset 2. Under edge-based defense, let E1 be all edges
incoming to nodes 1 and 3, and accordingly, n1 = 4, while un-
der node-based defense, n1 = 2. The respective transformation
matrices are

Te,1 =

⎡
⎢⎢⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎥⎥⎦ , Tn,1 =

⎡
⎢⎢⎢⎢⎣

1 0
1 0
0 0
0 1
0 1

⎤
⎥⎥⎥⎥⎦ .

Both matrices have five rows corresponding to the edges in the graph in the order
(s,1),(2,1),(s,2),(1,3), and (2,3). Note that under edge-based defense, defender
1’s defense resources are not applied on the (s,2) edge. Under node-based defense,
both incoming edges to node 1 (as well as 3) receive identical defense resources.

We now introduce our assumptions behind defense effectiveness and cost.
Defense Effectiveness: Let x = (x1,x2, . . . ,x|D |) be a joint defense strategy of

the defenders. The attack success probability of an edge (v j,vi) under this joint
defense strategy is denoted by p j,i(x). Note that, in our framework, it is possible to
have multiple defenders simultaneously reducing the attack probability on a single
edge. We make the following assumption on p j,i(x):

p j,i(x) := p0
j,i exp(−

|D |
∑
k=1

tk
j,ixk), (7.1)
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where exp is the exponential function and tk
j,i ∈R

1×nk is the row vector in the trans-
formation matrix Tk that maps the defense allocation xk to the edge (v j,vi). In the
example pertaining to Figure 7.1, t1

1,3 =
[
0 0 1 0

]
under edge-based defense.

Under our assumption, the marginal reduction in attack probability decreases
with increasing security investment.

Defense Cost: For a defender Dk and feasible defense strategy xk, we define the
cost of defense allocation

ck(xk) :=
nk

∑
i=1

gk
i (x

k
i ). (7.2)

We assume that gk
i is strictly increasing and convex for every defender Dk and ev-

ery i ∈ {1,2, . . . ,nk} and gk
i (0) = 0. The convexity assumption captures increasing

marginal cost of deploying more effective mitigation strategies.

Remark 2. Our assumptions on the defense cost and effectiveness are motivated by
a recurring assumption in the security economics literature that probability of suc-
cessful attack is decreasing and convex (similar to (7.1)) as a function of security
investment [12, 24]. Under this interpretation, x represents investments in monetary
or dollar amount, and it suffices to assume that g(x) = x. Our motivation behind
choosing g(x) to be increasing and convex is twofold.

1. It enables us to indirectly capture a broader class of defense effectiveness func-
tions than (7.1). For example, suppose every edge is defended by at most
one defender, and security investment reduces attack probability as p(x) =
p0 exp(−√x). We can capture such a scenario indirectly by defining w =

√
x

as the defense resource and cost function g(w) = w2.
2. On the other hand, x could represent the unit of defense resource deployed,

and g(x) is the (possibly nonmonetary) cost to the system. For example, in the
context of IP-address randomization, x might represent the rate at which the IP-
addresses are updated, while g(x) could capture certain types of implementa-
tion overhead that are often nonlinear in x; examples of convex overhead costs
include probability of genuine connection loss [6] and decrease in bandwidth
[41].

Security Risk of an Asset: For an asset vm, we define its security risk as

rm(x) := max
P∈Pm

∏
(v j ,vi)∈P

p j,i(x). (7.3)

In other words, the security risk of an asset is given by the highest probability of
attack on any path from the source to that asset on the interdependency graph. This
is motivated by practical cyber-physical systems that face sophisticated adversaries
and APTs and the security maxim that any interdependent system is only as se-
cure as its weakest link. Our choice of defining security in terms of the worst case
attack probabilities on an asset in (7.3) implicitly captures strategic attackers who
aim to compromise valuable assets and choose a plan of attack that has the highest
probability of success for each asset.
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We consider two complementary problems that the defenders face.
Security Risk Minimization: In this problem, a defender minimizes its expected

loss, where security risk on every asset is defined in Equation (7.3), subject to a
budget constraint on defense allocation. Let x−k denote the defense allocation profile
of all defenders except Dk. Then, the objective of Dk is to

minimize
xk∈Rnk

≥0

φk(xk,x−k) := ∑
vm∈Vk

Jm ·
⎛
⎝ max

P∈Pm
∏

(v j ,vi)∈P

p j,i(xk,x−k)

⎞
⎠ (7.4)

subject to
nk

∑
i=1

gk
i (x

k
i )≤ bk, (7.5)

where bk > 0 is the security budget of Dk. Note that the feasible strategy set
Xk := {xk ∈ R

nk
≥0|∑nk

i=1 gk
i (x

k
i ) ≤ bk} is nonempty, compact, and convex. Further-

more, the cost function φk(xk,x−k) depends on the strategy profile of all defenders.
In Section 7.3.2, we analyze the existence of pure Nash equilibria (PNE) of the game
between multiple defenders and show how to compute the best response of a player.

Defense Cost Minimization: In this problem, a defender minimizes its cost of
defense allocation subject to constraints on the security risk on each asset it values.
Let θm ∈ (0,1] be the risk tolerance of asset vm ∈Vk; it captures the maximum secu-
rity risk (3) defender Dk is willing to tolerate on vm. A smaller value of θm indicates
that the defender prefers vm to have a smaller security risk and must choose its de-
fense allocation accordingly. When θm = 1 for an asset, the defender is essentially
indifferent to whether the asset is attacked or remains secure. Thus, the defender
can choose to not defend a subset of assets, e.g., by defining θm = 1 for an asset vm

with Jm = 0. Note that θm �= 0 since the probability of successful attack is always
nonzero under our assumptions.

Let x−k denote the vector of defense allocation by all defenders other than Dk.
The objective of Dk is to

minimize
xk∈Rnk

≥0

fk(xk) :=
nk

∑
i=1

gk
i (x

k
i ) (7.6)

subject to rm(xk,x−k)≤ θm, vm ∈Vk. (7.7)

In other words, Dk has a risk tolerance for every asset it owns (denoted by the vector
θ ), and it wants to allocate the defense resources with minimum cost to achieve the
desired risk tolerance.

Note that the cost function for defender Dk is independent of the strategies of
other players, but the set of constraints in (7.7) is a function of the strategies of all
other players. This class of problems is referred to as generalized Nash equilibrium
problems (GNEPs). A brief overview is presented in the appendix to the chapter.
In Section 7.4, we establish the existence of a generalized Nash equilibrium (GNE)
in the game between defenders and discuss how to compute the best response of a
defender.
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7.3 Security Risk Minimization Game

The analysis in this section relies on establishing the convexity of the optimization
problem defined in Equations (7.4) and (7.5). We start by introducing certain aux-
iliary variables. We define the length or distance of an edge (v j,vi) in terms of the
attack probability under the given joint defense allocation x as,

l j,i(x) :=− log(p j,i(x))≥ 0, (7.8)

where p j,i(x) is given by (7.1). A higher probability of an attack on an edge leads
to smaller length for the edge. It follows from (7.1) that the modified length of the
edge under a joint strategy profile x is given by

l j,i(x) := l0
j,i + ∑

Dk∈D
tk

j,ixk := l0
j,i + x j,i, (7.9)

where l0
j,i :=− log(p0

j,i) and x j,i =∑Dk∈D tk
j,ixk captures the total defense allocation

on the edge (v j,vi). Recall that tk
j,i is the row vector corresponding to edge (v j,vi) in

the transformation matrix Tk. We denote the vector of modified lengths of the graph
under joint defense strategy x as L(x) = L0 +∑Dk∈D Tkxk, where L0 is the vector
of lengths in the absence of any defense allocation.

With this additional notation, we can express the probability that a node vm is
compromised via a given P ∈Pm by

∏
(v j ,vi)∈P

p j,i(x) = exp

⎛
⎝− ∑

(v j ,vi)∈P

l j,i(x)

⎞
⎠ . (7.10)

Accordingly, the security risk on asset vm is given by

rm(x) = max
P∈Pm

∏
(v j ,vi)∈P

p j,i(x) = exp

⎛
⎝− min

P∈Pm
∑

(v j ,vi)∈P

l j,i(x)

⎞
⎠ . (7.11)

In other words, the path with the largest probability of successful attack is the path
that has the smallest length under the transformation stated in Equation (7.8). This
observation enables us to utilize concepts from shortest path problems on graphs,
discussed subsequently.

7.3.1 Existence of a Pure Nash Equilibrium

We are now ready to show the existence of a PNE in the game between multiple
defenders.
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Proposition 1. The strategic game with multiple defenders where a defender mini-
mizes its cost φk(xk,x−k) defined in (7.4), subject to xk ∈ Xk defined in (7.5), pos-
sesses a pure Nash equilibrium.

Proof. From our transformation of attack probabilities into lengths on edges given
in (7.8) and (7.9), the probability of successful attack on a node vm ∈ Vk due to a
path P ∈Pm and joint defense strategy x is equal to

∏
(u j ,ui)∈P

p j,i(x) = exp

⎛
⎝− ∑

(v j ,vi)∈P

[
l0

j,i + ∑
Dk∈D

tk
j,ixk

]⎞
⎠ .

Following (7.11), we can express the cost function of a defender Dk, defined in (7.4),
as a function of its strategy xk and the joint strategy of other defenders x−k as

φk(xk,x−k) = ∑
vm∈Vk

Jm exp

⎛
⎝− min

P∈Pm
∑

(v j ,vi)∈P

(l j,i(x−k)+ tk
j,ixk)

⎞
⎠ , (7.12)

where l j,i(x−k) = l0
j,i +∑Dl∈D ,l �=k tl

j,ixl for an edge (v j,vi).

Note that ∑(v j ,vi)∈P

[
l j,i(x−k)+ tk

j,ixk

]
is an affine and, therefore, concave func-

tion of xk. The minimum of a finite number of concave functions is concave [5].
Finally, exp(−z) is a convex and decreasing function of z. Since the composition
of a convex decreasing function and a concave function is convex, φk(xk,x−k) is
convex in xk for any given x−k. Furthermore, the feasible strategy set Xk = {xk ∈
R

nk
≥0|∑nk

i=1 gk
i (x

k
i ) ≤ bk} is nonempty, compact, and convex for every defender Dk.

As a result, the game is an instance of a concave game and has a PNE following
Theorem 1 of [35]. ��

7.3.2 Computing the Best Response of a Defender

The best response of Dk at a given strategy profile x−k of others is defined as
x∗k := argminxk∈Xk

φk(xk,x−k). While the previous proposition shows that φk(xk,x−k)
is convex in xk, the cost function in (7.4) is non-differentiable. We now present an
equivalent formulation of the problem below with a smooth cost function. Let
L(x−k) = L0 +∑Dr∈D ,r �=k Trxr be the vector of edge lengths under defense alloca-
tion x−k. For a given x−k, consider the following convex optimization problem:



166 A. R. Hota et al.

minimize
y∈R|V |≥0,xk∈Rnk

≥0

∑
vm∈Vk

Jme−ym (7.13)

subject to By−Tkxk ≤ L(x−k), (7.14)

ys = 0, (7.15)
nk

∑
i=1

gk
i (x

k
i )≤ bk, (7.16)

where B is the node-edge incidence matrix of the graph G. Note that the constraint
in (7.14) is affine. This formulation is motivated by similar ideas explored in the
shortest path interdiction games literature [21, 38].

Remark 3. For a directed graph G, its incidence matrix is B ∈ R
|E|×|V |, where the

row corresponding to the edge (v j,vi) has entry −1 in the jth column and 1 in the
ith column.

Remark 4. We refer to the vector {yu}u∈V as a feasible potential if it satisfies (7.14)
for every edge in the graph. We make the following observations.

1. The inequality in (7.14) for an edge is precisely the inequality that the Bellman-
Ford algorithm tries to satisfy in every iteration. As shown in (7.8), the length of
every edge is nonnegative in our setting. Therefore, the Bellman-Ford algorithm
terminates with a feasible potential [8]. Note that we don’t actually use the
Bellman-Ford (or Dijkstra’s) algorithm in solving the above problem.

2. Consider a path P from s to a node v ∈V . Then, yv−ys ≤∑(v j ,vi)∈P l j,i(xk,x−k).
In other words, when ys = 0, yv is a lower bound on the length of every path
(and consequently the shortest path) from s to v.

3. In the absence of negative cycles, there always exists a feasible potential where
yv is equal to the length of the shortest path from s to v [8, Theorem 2.14] for
every v ∈V (the solution of the Bellman-Ford algorithm).

We now prove the following result.

Proposition 2. A defense strategy x∗k ∈ R
nk
≥0 is the optimal solution of the problem

defined in Equations (7.13) to (7.16) if and only if it is the minimizer of φk(xk,x−k)
defined in (7.4) subject to constraint (7.5).

Proof. Consider a strategy profile x−k of all defenders other than Dk. Consider
a feasible defense allocation vector xk satisfying the constraint in (7.16). The joint
strategy profile x = (xk,x−k) defines a modified length vector
L(xk,x−k) = L(x−k) +Tkxk on the edges of G. Let {yx

u}u∈V be the feasible po-
tential where yx

u is equal to the length of the shortest path from s to u under the joint
defense allocation x for every u ∈V . Now consider a path P from s to vm ∈Vk, and
let P∗ be a path of shortest length s to vm. From Remark 4, we have
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yx
vm
≤ ∑

(u j ,ui)∈P

l j,i(xk,x−k) =− ∑
(u j ,ui)∈P

log(p j,i(x))

=⇒ e−yx
vm ≥ ∏

(u j ,ui)∈P

p j,i(x), (7.17)

with equality for the path P∗. Accordingly, if x∗k is optimal for the problem in

Equations (7.4) and (7.5), {x∗k ,{y
(x∗k ,x−k)
u }u∈V} is feasible for the problem in Equa-

tions (7.13) to (7.16), and both have identical cost. Therefore, the optimal cost
for the problem in Equations (7.13) to (7.16) is at most the optimal cost of Equa-
tions (7.4) and (7.5).

Now let {x∗k ,{y∗u}u∈V} be the optimal solution of the problem defined in Equa-
tions (7.13) to (7.16) for a given x−k. We claim that y∗vm

is equal to the length of the
shortest path from s to vm for every vm with Jm > 0.

Assume on the contrary that y∗vm
is strictly less than the length of the shortest path

from s to vm, under the defense allocation x∗k . From Remark 4 we know that there
exists a feasible potential {ŷu}u∈V such that ŷvm is equal to the length of the shortest
path from s to vm for every node vm ∈Vk with length of every edge (u j,ui) given by
l j,i(x∗k ,x−k). As a result, we have y∗vm

< ŷvm , and the objective is strictly smaller at
ŷvm , contradicting the optimality of {x∗,{y∗u}u∈V}.

Therefore, at the optimal {x∗k ,{y∗u}u∈V}, the cost in (7.13) is equal to the cost
in (7.4) with defense allocation x∗k (following similar arguments as the above para-
graph). Furthermore, x∗k is feasible for the problem in Equations (7.4) and (7.5).
Accordingly, the optimal cost for the problem in Equations (7.4) and (7.5) is at most
the optimal cost of Equations (7.13) to (7.16). Combining both observations, we
have the required result. ��

We now discuss the security risk minimization problem from the perspective of
a central authority.

Centralized Defense Allocation to Minimize Security Risk: The security
risk minimization problem for a central authority is to find a defense allocation

xOPT ∈ {R∑Dk∈D nk

≥0 |∑Dk∈D ∑
nk
i=1 gk

i (x
k
i ) ≤ ∑Dk∈D bk} which minimizes ∑Dk∈D φk(x).

This problem can also be solved via an analogous reformulation as Equations (7.13)
to (7.16), and the equivalence result from Proposition 2 applies for this case as well.
In our case study in Section 7.6, we compare the security risks under both central-
ized and game-theoretic defense allocations.

Nash Equilibrium Computation: We compute the PNE strategy profile by it-
eratively computing the best responses for the defenders. This family of algorithms
is referred to as best response dynamics [11]. Specifically, we apply the sequential
best response dynamics in our case studies, and this scheme converges in all consid-
ered instances. However, proving theoretical guarantees on the convergence of best
response-based update schemes is challenging for the following reasons. First, the
expected loss of a defender represented in (7.12) is non-differentiable. Second, in
the equivalent formulation Equations (7.13) to (7.16), the players’ cost minimiza-
tion problems are coupled through their constraints which makes it an instance of
a GNEP. Analysis of best response schemes for GNEPs is challenging with few
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algorithms that provide convergence guarantees. Therefore, a theoretical investiga-
tion of convergence of best response dynamics is beyond the scope of this chapter.

7.4 Defense Cost Minimization Game

In this section, we analyze the defense cost minimization game between multiple
defenders. We start by showing that the risk tolerance constraints (7.7) are equivalent
to a set of affine constraints in the defense allocation vector x, and this fact will be
useful in our proofs. Consider a node vm ∈ Vk. Let Pm ∈Pm be a path from the
source node s to vm. Let r0

Pm
:= ( ∏

(v j ,vi)∈Pm

p0
j,i)
−1.

Now consider the transformation matrix Tk for a defender Dk. Let tk
j,i be

the row vector that corresponds to the edge (v j,vi) as before. Furthermore, let
tk
Pm

:= ∑(v j ,vi)∈Pm tk
j,i. We assume that for every node vm ∈ Vk, and every path

Pm ∈Pm, tk
Pm

has at least one nonzero entry, i.e., for every path from s to vm, there
exists at least one edge that Dk can defend. We compute

rm(x) = max
Pm∈Pm

∏
(v j ,vi)∈Pm

p j,i(x)≤ θm

⇐⇒ ∏
(v j ,vi)∈Pm

p j,i(x)≤ θm, ∀Pm ∈Pm

⇐⇒
⎛
⎝ ∏

(v j ,vi)∈Pm

p0
j,i

⎞
⎠exp

⎛
⎝− ∑

(v j ,vi)∈Pm

∑
Dl∈D

tl
j,ixl

⎞
⎠≤ θm, ∀Pm ∈Pm

⇐⇒ exp

(
− ∑

Dl∈D
tl
Pm

xl

)
≤ θmr0

Pm
, ∀Pm ∈Pm

⇐⇒ ∑
Dl∈D

tl
Pm

xl ≥− log(θmr0
Pm
), ∀Pm ∈Pm. (7.18)

Therefore, each constraint in (7.7) can be expressed as a set of affine constraints.

7.4.1 Existence of a Generalized Nash Equilibrium

We now prove the existence of a GNE. Note that in the chapter appendix, we have
formally defined the notion of a GNE and provided a general result on the existence
of a GNE (Theorem 1). First observe that Theorem 1 requires each Xk (for defender
Dk) to be compact, while R

nk
≥0 is unbounded. In the proof, we define an appropriate

compact subset of Rnk
≥0 for every player that contains the optimal defense allocation

irrespective of the strategies of others.
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Proposition 3. The defense cost minimization problems contains a GNE.

Proof. Let x0
k be the optimal defense allocation of defender Dk when the allocation

by every other player is 0. Let βk ∈ R
nk
>0. Then x̂k := x0

k +βk satisfies

tk
Pm

x̂k ≥− log(θmr0
Pm
)+ tk

Pm
βk, ∀Pm ∈Pm,∀vm ∈Vk, (7.19)

and tk
Pm
βk > 0 following our assumption that tk

Pm
has at least one nonzero entry. We

now define
Xk := {xk ∈ R

nk
≥0| fk(xk)≤ fk(x̂k)}, (7.20)

where fk(xk) is the cost of defense allocation xk defined in (7.6). From the definition,
it is easy to see that Xk is nonempty, convex ( fk is convex and Xk is its sublevel set),
and compact ( fk is strictly increasing). In particular, x0

k and x̂k belong to the set Xk

because (i) fk(x0
k)< fk(x̂k) by the optimality of x0

k and (ii) fk is strictly increasing.
Now consider the set of constraints (7.7) for Dk that depend on the defense allo-

cation of others. Formally, these constraints can be represented as a correspondence

Ck(x−k) := {xk ∈R
nk
≥0| tk

Pm
xk≥− log(θmr0

Pm
)− ∑

Dl∈D ,l �=k

tl
Pm

xl ,∀Pm ∈Pm,vm ∈Vk}.
(7.21)

First observe that for any x−k ∈ R
∑l �=k nl
≥0 , x0

k ∈Ck(x−k) since entries in Tk are non-
negative for every Dk ∈ D . Therefore, the optimal solution of the problem Equa-
tions (7.6) and (7.7), denoted by x∗k(x−k), has cost fk(x∗k(x−k)) ≤ fk(x0

k), and ac-
cordingly x∗k(x−k) ∈ Xk. Therefore, without loss of generality, we can consider Xk to
be the set of feasible defense allocation and redefine the constraint correspondence
as Ĉk(x−k) :=Ck(x−k)∩Xk ⊆ Xk.

Now, suppose x−k ∈ R
∑l �=k nl
≥0 . Then Ĉk(x−k) is nonempty (contains x̂k follow-

ing (7.19) and (7.21)), closed, and convex (intersection of closed and convex sets
Xk and Ck(x−k)). In addition, the constraint correspondence Ĉk is stated in terms of
a set of inequalities where the associated functions (7.21) are continuous and affine
(thereby, convex). Furthermore, from the definition of x̂k in (7.19), it satisfies all of
the affine inequalities in (7.21) with strict inequality. Therefore, from Theorem 2 (in
the chapter appendix), Ĉk is both upper and lower semicontinuous in X−k.

Finally, the cost function fk is independent of x−k and is continuous and convex in
Xk. Therefore, a straightforward application of Theorem 1 establishes the existence
of a GNE. ��

7.4.2 Computing the Best Response of a Defender

Recall that the cost function fk(xk) in (7.6) is independent of the strategies of other
defenders and is convex. The set of constraints in (7.18) are affine. Note that (7.18)
defines one constraint for every path Pm from s to a given node vm. Thus, the num-
ber of such constraints can be exponentially large in the worst case. We therefore
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propose the following equivalent problem where the number of constraints is equal
to the sum of the number of nodes and edges in the interdependency graph.

Consider the following problem:

minimize
y∈R|V |,xk∈Rnk

≥0

nk

∑
i=1

gk
i (x

k
i ) (7.22)

subject to By−Tkxk ≤ L(x−k), (7.23)

ys = 0, (7.24)

ym ≥− log(θm), ∀m ∈Vk, (7.25)

where B is the incidence matrix and L(x−k) is the vector of edge lengths under the
defense allocation x−k by defenders other than Dk. We now prove the following
equivalence result.

Proposition 4. A defense strategy x∗k ∈ R
nk
≥0 is the optimal solution of the problem

defined in Equations (7.22) to (7.25) if and only if it is the minimizer of the problem
defined in Equations (7.6) and (7.7).

Proof. Let x−k be the defense allocation by other defenders. Let (xk,y) be feasible
for the problem defined in Equations (7.22) to (7.25). We show that xk is feasible
for the problem defined in Equations (7.6) and (7.7). In particular, consider a path
Pm ∈Pm from s to vm ∈Vk. For every (v j,vi) ∈ Pm, (7.23) is equivalent to

y j− yi− ∑
Dl∈D

tl
j,ixl ≤− log(p0

j,i)

⇐⇒ ym− ∑
Dl∈D

tl
Pm

xl ≤− log( ∏
(v j ,vi)∈Pm

p0
j,i) (adding over all (v j,vi) ∈ Pm)

⇐⇒ ∑
Dl∈D

tl
Pm

xl ≥− log(θm)+ log( ∏
(v j ,vi)∈Pm

p0
j,i)

⇐⇒ ∑
Dl∈D

tl
Pm

xl ≥− log(θmr0
Pm
),

which satisfies (7.18). Therefore, xk is feasible for the problem defined in Equa-
tions (7.6) and (7.7), and the optimal cost of the problem Equations (7.6) and (7.7)
is at most that of the problem Equations (7.22) to (7.25).

Now, let xk be feasible for the problem Equations (7.6) and (7.7). Define

ym := min
Pm∈Pm

[ ∑
Dl∈D

tl
Pm

xl− log( ∏
(v j ,vi)∈Pm

p0
j,i)],

and ys = 0. In other words, ym is the length of the shortest path from s to vm under
the joint strategy profile (xk,x−k). Thus, it satisfies (7.23). In addition, it follows
from (7.18) that for every Pm ∈Pm,
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∑
Dl∈D

tl
Pm

xl− log( ∏
(v j ,vi)∈Pm

p0
j,i)≥− log(θm)

=⇒ ym ≥− log(θm).

Thus, (xk,y) is feasible for the problem Equations (7.22) to (7.25). Therefore, the
optimal cost of the problem Equations (7.22) to (7.25) is at most that of the problem
Equations (7.6) and (7.7).

Combining both observations, we have the desired result. ��
Centralized Defense Allocation to Minimize Defense Cost: The defense cost

minimization problem for a central authority is to find a defense allocation xOPT ∈
R
∑Dk∈D nk

≥0 which minimizes ∑Dk∈D fk(x) subject to risk tolerance constraints for ev-
ery vm ∈Vk, Dk ∈D . This problem can be solved via an analogous reformulation as
Equations (7.22) to (7.25); the equivalence result from Proposition 4 applies in this
case.

In our case studies, we compute GNE defense allocations by employing the se-
quential best response algorithm as discussed earlier and compare the security risks
under both centralized and game-theoretic defense allocations.

In the following section, we show how to compute optimal deployment of MTD
by applying the framework developed thus far.

7.5 Moving Target Defense

As discussed in the introduction, one of our goals is to consider MTD techniques
that eliminate the advantage that strategic adversaries have against a static defended
system. This advantage arises from the fact that the adversary can seek to breach
such a static system repeatedly, with different (and likely continually learning) at-
tack techniques. In order to capture this mathematically, we consider the notion of
time-to-compromise of an asset [30]. Specifically, the time to successfully compro-
mise an asset vi, via an attack launched from v j, is a random variable denoted Q j,i

with an associated distribution function Fj,i. We assume that the support of Q j,i is
[0,∞) for every (v j,vi) ∈ E. As before, we denote the baseline attack probability
on vi, launched from v j, by p0

j,i ∈ (0,1]; this represents the probability of successful
attack when (i) there is no defense allocation on the edge (v j,vi) and (ii) the attacker
has an infinite amount of time-to-compromise vi.

While deploying MTD, a key variable that determines its effectiveness as well as
the deployment cost is how fast the configuration is changed dynamically. For in-
stance, consider the class of Dynamic Network defense techniques that relies on
randomizing network IP addresses that have been shown to be effective against
many types of attacks [3, 22]. If the network addresses are changed more slowly
(for instance, once every few months), it gives the attacker sufficient time to learn
about system vulnerabilities and execute its attack. On the other hand, if the ad-
dresses are changed more frequently, then it deters certain types of attacks more
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effectively. However, this also increases the overhead cost, such as the number of IP
addresses that the defender must own, as well as the cost to legitimate clients, e.g.,
due to disconnections of network sessions. We now formalize this idea.

For ease of exposition, we only discuss an edge-based defense strategy where
each edge receives an independent MTD deployment. We denote τ j,i ∈ [0,∞) as the
time period between two successive changes of configuration of the edge (v j,vi)
under a certain MTD deployment. A smaller τ j,i represents a higher frequency of
configuration changes. While evaluating the effectiveness of MTD, we only con-
sider attacks that succeed within a given configuration in this section. A change of
configuration while the attack is in progress (i) prevents the attack from succeeding
and (ii) enables the defender to detect the attack and take corrective measures. In
other words, for the attack on vi to succeed, we must have Q j,i ≤ τ j,i. Accordingly,
the probability of a successful attack on vi is given by

p j,i(τ j,i) = p0
j,iFj,i(τ j,i). (7.26)

More generally, we refer to τ j,i as the defense allocation on the edge (v j,vi) and
τE as the vector of defense allocations on all edges. As before, we assume that the
success of this attack is independent of the success of attacks propagating through
other edges in the graph.

The defender incurs a cost gm
j,i(τ j,i) for its choice of MTD allocation τ j,i on the

edge (v j,vi). We make the following assumptions on the function gm
j,i.

Assumption 1 The functions gm
j,i have the following properties.

1. gm
j,i is strictly decreasing and convex.

2. gm
j,i(0) = ∞ and gm

j,i(τ)> 0 for any finite τ ∈ [0,∞).

In other words, the defender incurs a higher cost for more frequent configura-
tion updates, and this cost is infinite for updating continuously. For finite choice
of period τ , the defender incurs a nonzero cost. As an example, the functions
gm

j,i(τ) = e−ατ ,α > 0 and gm
j,i(τ) =

1
τ satisfy the above assumption.

In the context of MTD deployment, we will consider both security risk mini-
mization and defense cost minimization problems stated in Section 7.2. Formally,
the security risk minimization problem for a single defender is to

minimize ∑
vm∈V

Jm ·
⎛
⎝ max

P∈Pm
∏

(v j ,vi)∈P

p j,i(τ j,i)

⎞
⎠ (7.27)

subject to τ j,i ≥ γ j,i, (v j,vi) ∈ E, (7.28)
nk

∑
i=1

gm
j,i(τ j,i)≤ b, (7.29)

where γ j,i is a bound on how fast the configuration can be updated, possibly due to
physical constraints, and b is the budget. The game-theoretic setting and the defense
cost minimization problem can be defined in an analogous manner and are omitted.
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7.5.1 Convexity Under Exponential Distributions

Many probability distribution functions (for instance, exponential and Laplace) are
log-concave [4]. Log-concavity does not necessarily imply that the function is con-
vex. Nonetheless, for exponentially distributed Q j,i’s, we obtain sufficient condi-
tions under which the problem defined in Equations (7.27) to (7.29) is in fact
convex.

Let Fj,i be any continuous strictly monotone distribution function, such as the
distribution function of an exponential random variable. Similar to Section 7.3.2,
we define the length of an edge (vi,v j) under defense allocation τ j,i as

l j,i(τ j,i) :=− log(p j,i(τ j,i)) =− log(p0
j,i)− log(Fj,i(τ j,i))

:= l0
j,i + x j,i(τ j,i)). (7.30)

In other words,

x j,i(τ j,i)) :=− log(Fj,i(τ j,i)) (7.31)

⇐⇒ e−x j,i = Fj,i(τ j,i) ⇐⇒ τ j,i = F−1
j,i (e

−x j,i). (7.32)

Note that l0
j,i is the length of the edge without any defense allocation and the quantity

x j,i (a function of τ j,i) increases the length linearly. Let L0 be the vector of lengths
without any defense allocation, and let x be the vector of x j,i variables. We now
state the following assumptions on cost functions g j,i and exponentially distributed
time-to-compromise random variable Q j,i.

Assumption 2 For every edge (v j,vi), i) g j,i(τ) = e−α j,iτ ,α j,i > 0, ii) Fj,i(τ) = 1−
e−β j,iτ ,β j,i > 0, and iii) β j,i < α j,i.

Now consider the following optimization problem.

minimize
y∈R|V |≥0,x∈R

|E|
≥0

∑
vm∈V

Jme−ym (7.33)

subject to By−x≤ L0, (7.34)

ys = 0, (7.35)

∑
(v j ,vi)∈E

(1− e−x j,i)

α j,i
β j,i ≤ b, (7.36)

0≤ x j,i ≤ log(
α j,i

β j,i
), (7.37)

where B is the incidence matrix of the interdependency graph. Our main result in
this subsection shows that the above problem is convex and solves the optimization

problem stated in Equations (7.27) to (7.29) when γ j,i =
−1
β j,i

log
(

1− β j,i
α j,i

)
. We start

with the following lemmas. We drop the subscript i, j in the following analysis.
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Lemma 1. Under Assumption 2, the function g(F−1(e−x)) := (1− e−x)
α
β is convex

in x over the domain x ∈ [0, log(αβ )].

Proof. For the exponential distribution function, we have

F(τ) = 1− e−βτ =⇒ e−βτ = 1−F(τ) =⇒ τ =
−1
β

log(1−F(τ))

=⇒ F−1(w) :=
−1
β

log(1−w),

where w := F(τ). Then, the cost function can be expressed as

g(F−1(e−x)) = g

(−1
β

log(1− e−x)

)
= exp

(
α
β

log(1− e−x)

)
= (1− e−x)

α
β .

We now verify that the function h(x) := g(F−1(e−x)) = (1− e−x)
α
β is increasing

and convex for x ∈ [0, log(αβ )]. We denote α
β = z and compute

h′(x) = z(1− e−x)(z−1)(e−x)

h′′(x) = z(z−1)(1− e−x)(z−2)e−2x + z(1− e−x)(z−1)(−e−x)

= z(1− e−x)(z−2)e−x[(z−1)e−x− (1− e−x)]

= z(1− e−x)(z−2)e−x[ze−x−1].

We need z > ex for h′′(x)> 0, or equivalently, x < log(z) = log(αβ ). ��

Lemma 2. Let β < α , and then, x≤ log(αβ ) ⇐⇒ τ ≥ −1
β log(1− β

α ) = γ .

Proof. Recall from (7.31) that x =− log(F(τ)) =− log(1− e−βτ). Then,

x =− log(F(τ))≤ log(
α
β
) ⇐⇒ F(τ) = 1− e−βτ ≥ β

α
,

⇐⇒ e−βτ ≤ 1− β
α
⇐⇒ −βτ ≤ log(1− β

α
) ⇐⇒ τ ≥ −1

β
log

(
1− β

α

)
.

This concludes the proof. ��
We now prove the following result.

Proposition 5. Suppose Assumption 2 holds, and let γ j,i =
−1
β j,i

log(1− β j,i
α j,i

). Then

Equations (7.33) to (7.37) represent a convex optimization problem that is equiva-
lent to the security risk minimization problem stated in Equations (7.27) to (7.29).

Proof. From Lemma 1, we observe that the constraints (7.29) and (7.36) are equiva-
lent and are convex. Similarly, from Lemma 2, we observe that the constraints (7.28)
and (7.37) are equivalent. We reach the desired result following identical arguments
as the proof of Proposition 2. ��
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In the following section, we compare centralized and PNE defense allocation in
a case study on the IEEE 300 bus power grid network. In Section 7.7, we com-
pute optimal MTD deployment for an e-commerce system for both security risk and
defense cost minimization problems.

7.6 Case Study 1 - IEEE 300 Bus Power Network

A large-scale network, such as the power grid, contains thousands of cyber and
physical entities. Therefore, many different types of attacks are possible against
such a system. Our first case study illustrates how our framework is applicable in
this context via the following stylized example. Note that the following choice of
the interdependency graph, cost functions, and attack probabilities is only made for
illustrative purposes. Depending on the setting, a practitioner must instantiate the
model appropriately.

We consider the widely used benchmark IEEE 300 bus power grid network [7].
We define the network itself as the interdependency graph where each node rep-
resents a bus (i.e., the network has 300 nodes) and the physical interconnection
between the buses represents the edges. Each bus has generators and/or load centers
associated with it. The 300 bus network data divides the buses or nodes into 3 dif-
ferent regions containing 159, 78, and 63 nodes, respectively [7]. We assume that
each region is managed by an independent entity or defender. The defenders want
to protect the buses within their region that contain the generators; each generator
is valued at its maximum generation capacity. The attacker can directly access three
nodes (specifically, bus 39, 245, and 272).

All computations in this section are carried out in MATLAB using the convex
optimization solver CVX [13].

We first consider the security risk minimization problem. We assume that the
cost function is g(x) = x. Here x potentially represents the monetary amount spent
on securing an asset, while our assumption in (7.1) (p(x) = p0 exp(−x)) captures
how effective the monetary investment is in reducing the attack probability. We fur-
ther assume that every edge has an initial probability of successful attack of mag-
nitude 1. For a given total budget, we compute the centralized defense allocation
that minimizes the total expected loss. We divide the total budget among the play-
ers proportional to the number of nodes they control and compute the PNE defense
allocation by iteratively computing their respective best responses. We observe that
both simultaneous and sequential best response dynamics converge to PNE within
25 iterations starting from random initial defense allocations. Figure 7.2a shows the
total expected loss (in the logarithmic scale with base e) experienced by all three
players at the PNE and under the centralized defense allocation for different total
budgets. The total expected loss is larger at the PNE, and the relative change in the
total expected loss at the PNE grows from 1.8% to over 7500% as the budget in-
creasesfrom 1 to 100. When the total budget is 100, the total expected loss at the
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Fig. 7.2: Comparison of centralized and PNE defense allocations for the IEEE 300
bus power grid network. Figure 7.2a and Figure 7.2b correspond to the security risk
minimization and defense cost minimization games, respectively. The costs are in
an abstract unit

social optimum is 0.35, while it is 27.56 (or 3.3164 in the log scale as shown in the
plot) at the PNE.

We then consider the defense cost minimization problem. We assume that the
cost function is given by g(x) = x2 for every defender and for every edge in the
network. Our motivation behind this choice is the crash overdrive malware attack
on the Ukraine power grid [14]. MTD techniques such as IP-address randomiza-
tion are effective against reconnaissance scans which the above malware relies on;
here x potentially represents the rate at which IP-addresses are updated. Following
the discussion in Remark 2, we choose g(x) = x2 which better captures nonlinear
growth of certain types of overhead costs [6, 41]. Since g(x) could be interpreted
as both monetary as well as overhead costs, we assume that it is in an abstract unit.
In Figure 7.2b, we compare the total defense cost required to enforce a given toler-
ance level (shown in the x-axis) at each generator node under centralized and PNE
defense allocations. As the risk tolerance decreases, the defense cost at the PNE
increases faster than the defense cost under the centralized defense allocation.

7.6.1 Interdependency Through Common Vendor

As we discussed earlier, strategic attackers have exploited vulnerabilities in assets
prepared by a common vendor to increase the spread of their attacker in recent
years. In this subsection, we show how our framework can be used by practitioners
to quantify the (potentially higher) security risk they face when multiple assets are
from a common vendor. This is a common occurrence in practice where the same
hardware or software (or both) is in use at multiple sub-systems owned by different
stakeholders and any vulnerability in it can affect multiple assets. We again consider
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Fig. 7.3: Total defense cost at a PNE for the IEEE bus power grid network with
common vendor. The probability of successful attack on the vendor directly from
the attacker is represented as pv. Initial probabilities of successful attack on all edges
are 1 and 0.75, respectively. The defense cost is in an abstract unit.

the IEEE 300 bus network with g(x) = x2 (with an abstract unit). We represent the
vendor by a new node and connect the vendor to eight different generator nodes
(belonging to different players), i.e., if an attacker successfully compromises the
vendor, it can launch attacks on the generators directly. The attacker can directly
attack the vendor node.

We first assume that p0
j,i = 1 on every edge in the network, except for the edge

from the attacker node to the vendor node. In Figure 7.3a, we show the total de-
fense cost at the PNE to meet a given risk tolerance; the quantity pv represents the
probability of successful direct attack on the vendor by the attacker. The case where
the vendor is not present is denoted by pv = 0 (which is the case from Figure 7.2b).
As pv increases, it becomes easier for the attacker to attack the generators via the
vendor, and accordingly the budget required to meet a given tolerance increases. We
find identical trends when the p0

j,i = 0.75 on every edge in the network (except the
edge from the attacker node to the vendor node) the results for which are shown in
Figure 7.3b. When the risk tolerance is 0.5, the figure shows that the total defense
costs are equal when pv = 0, pv = 0.1, and pv = 0.5, which is expected because the
attack probability via the vendor is smaller than 0.5.

The practical implication of this result is that quantifying the security risks due
to assets from third-party vendors could lead to designing adequate countermea-
sures and financial incentives (such as adding appropriate security requirements in
procurement and support contracts with the vendors), which will then potentially
reduce the likelihood and spread of such attacks in the future. Our treatment enables
any stakeholder to quantitatively calculate the risk of compromise of its asset due to
shared vulnerability at a vendor.
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7.7 Case Study 2 - Moving Target Defense of E-Commerce
System

Defense
Nodes Devices Attack DN DP DE DS DD CD

1,2 Web Server Network Reconnaissancea x
3 Web Server Vulnerability Exploitb x x x
4 Web Server Credential attackc x
5 Internal Network Network Reconnaissance x
6 Web Server Credential attack x

7,8 DB or App. Server Exploit a service x x x
9,11 DB or App. Server Credential attack x

10,12 Database Server Read from Database x
T Database Server Read credit card data No Defense

(a) Description of attack steps and respective MTDs

(b) E-commerce distributed system [29]

a Network reconnaissance actively or passively probes the network con-
figuration to identify vulnerable systems.
b Exploitation relies on vulnerabilities in software which enable attack-
ers to perform otherwise prohibited operations.
c Credential attacks involve obtaining valid credentials (e.g. passwords)
to a system (for example, by brute force).

S
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(c) Attack graph representation

Fig. 7.4: Representation of e-commerce network. In the attack graph, Figure 7.4c
colors indicate the targeted device, and shapes indicate type of attack. For mapping
see Figure 7.4a; defenses used in Figure 7.4a, are: dynamic networks (DN), dynamic
platforms (DP), dynamic environments (DE), dynamic software (DS), dynamic data
(DD), and credential defense (CD)

We consider an e-commerce distributed system studied in [29] to illustrate how
our framework can be used to compute optimal MTD deployment. Figure 7.4b
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shows the devices, and Figure 7.4c shows the corresponding attack graph for the
e-commerce system. The attacker aims to obtain the customer information, such as
credit card numbers, from a database. The attacker needs to find a suitable subset of
the twelve attack steps on four devices to achieve this goal. The devices are a web
server (located in a DMZ), the internal network, a database server, and an applica-
tion server; both servers are located on the internal network. For each node in the
attack graph, we describe the type of attack that can compromise it, and the type of
MTD from [32] that can be deployed in Figure 7.4a.

We treat the attack graph in Figure 7.4c as the interdependency graph. The at-
tacker has a single entry point into the network at node S, and it targets node T . We
assume that the initial probability of successful attack on every edge is 1. In prac-
tice, these initial probabilities can be defined in terms of their CVSS scores [33]. We
consider a node-based defense strategy. At every node, the frequency at which the
corresponding MTD is updated represents a decision variable.

We consider the setting in Section 7.5 where a higher frequency of updating the
MTD reduces the attacker’s advantage. We assume that the cost function and dis-
tribution of time required for successful compromise satisfy Assumption 2. Specif-
ically, for every edge (v j,vi), we assume that the random variable Q j,i is expo-
nentially distributed with distribution function Fj,i(τ) = 1− e−τ , i.e., the parameter
β j,i = 1. We also consider an identical cost function g j,i(τ) = e−ατ for every edge
in an abstract unit and consider three different values of α ∈ {3,5,10} in our simu-
lations. We consider both security risk minimization and defense cost minimization
problems from the perspective of a single (centralized) defender. We used MAT-
LAB’s fmincon routine with active-set and sqp solvers to compute optimal defense
allocation for both problems. Numerical results show that nodes 1,2,4,6, and 10
receive higher defense allocation than other nodes. This is expected because the ini-
tial attack probabilities are identical, and these nodes lie on a path with the smallest
number of edges.

Figure 7.5a shows how the attack probability on the target node decreases under
the optimal defense allocation with a given budget. First observe that at a given
budget, when α is larger, the attack probability is smaller. For a given β , higher
values of α imply that we can assign a larger defense allocation on the edges (i.e.,
x j,i’s) without violating constraints (7.36) and (7.37). As a result, we obtain a smaller
attack probability at the target node. Note further that, as the budget increases, the
attack probability initially decreases, but it gets saturated beyond a certain budget.
The reason for this is the constraints on the defense allocation (7.37) limits how fast
the MTD configuration can be updated. While the constraint in (7.37) is imposed to
preserve the convexity of the optimization problems, qualitatively similar behavior
will emerge when the constraints are due to physical limitations on the frequency of
configuration updates.

Figure 7.5b shows the cost of defense allocation to enforce that the probability of
attack on the target is smaller than the risk tolerance. We observe that the relation-
ship between the two is approximately piecewise linear in the logarithmic scale. As
before, a higher value of α implies a smaller budget requirement for a given level
of risk tolerance.
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Fig. 7.5: Optimal MTD deployment on e-commerce network. Figure 7.5a corre-
sponds to the security risk minimization problem, and Figure 7.5b corresponds to
the defense cost minimization problem. The budget is in an abstract unit

7.8 Conclusion

In this chapter, we presented two complementary game-theoretic models to study
the security of networked systems. We considered multiple self-interested defend-
ers, each of whom manages a set of assets represented by nodes in a directed graph.
Attacks spread through the network via the interconnecting links in the graph. In
the first class of games, each defender minimizes its expected loss subject to budget
constraints on the defense investments, while in the second class of games, each
defender minimizes its cost of defense investment subject to upper bounds on the
probability of successful attack on its assets (or its risk tolerance). Under suitable
assumptions on the effectiveness of defense investments in reducing attack probabil-
ities, we showed the existence of (generalized) Nash equilibria in both settings and
showed that each defender can compute its optimal defense allocation for a given
allocation by other defenders by solving a convex optimization problem.

We demonstrated how our framework can be applied in diverse settings, includ-
ing large-scale cyber-physical systems such as the power grid as well as enterprise
networks. Motivated by recent cyber-attacks that exploit vulnerabilities in assets
supplied by third-party vendors, we specifically studied the impact of such vendors
on the Nash equilibrium defense allocation in a case study on the IEEE 300 bus
power grid network. As the probability of successful attack on the vendor increases,
the defenders need to invest more to meet a given risk tolerance constraints. In a
second case study on an e-commerce network, we computed optimal deployment of
moving target defense using our framework.

Our framework leaves several interesting avenues for future research. The impact
of incentive mechanisms, such as imposing fines on defenders or vendors who do not
take adequate security measures, can be studied within our framework. Another im-
portant future direction is to consider real-time interaction between attacker(s) and
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defender(s) in a dynamic game framework. Such interaction can proceed in multi-
ple stages and can consider various levels of misinformation about the strategies of
different parties.

Acknowledgements We thank Dr. Shaunak Bopardikar (United Technologies Research Center)
and Dr. Pratyusha Manadhata (HP Labs) for fruitful discussions.

Chapter Appendix: Generalized Nash Equilibrium

In this section, we give a formal definition of a generalized Nash equilibrium (GNE)
and state the required existence result that will be useful in our analysis.

Let there be N players. The strategy set of player i is denoted as Xi ⊆ R
ni . Let

X := ΠN
i=1Xi, and X−i := ΠN

j=1, j �=iXj. Let Ci : X−i → 2Xi be the set-valued map or
correspondence that defines the feasible strategy set for player i at a given strategy
profile of all other players. Let fi : X → R denote the cost function for player i. We
denote this game as Γ (N,{Xi},{Ci},{ fi}).
Definition 1. A strategy profile x∗ ∈ X is a GNE of Γ (N,{Xi},{Ci},{ fi}) if for
every player i,

x∗i ∈ argmin
xi∈Ci(x∗−i)

fi(xi,x
∗
−i). (7.38)

Our proof of GNE existence in this chapter is based on the following general
result.

Theorem 1. Consider the game Γ (N,{Xi},{Ci},{ fi}). Assume for all players we
have

1. Xi is a nonempty, convex, and compact subset of an Euclidean space,
2. Ci is both upper and lower semicontinuous,
3. Ci(x−i) is nonempty, closed, and convex for every x−i ∈ X−i,
4. fi is continuous on the graph of Ci, and
5. fi(xi,x−i) is quasiconvex on Ci(x−i) for every x ∈ X.

Then there exists a GNE.

The proof of the above theorem relies on Kakutani fixed-point theorem and
Berge’s maximum theorem and is presented in [10, Theorem 3.1].

In many application, including for the defense cost minimization game studied
in this chapter, we encounter a parametrized constraint set, i.e., Ci(x−i) = {xi ∈
Xi|gi j(xi,x−i)≤ 0, j = {1,2, . . . ,mi}}. For this class of constraints, we have the fol-
lowing sufficient conditions for the upper and lower semicontinuity of Ci [16, The-
orem 10,12].
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Theorem 2. Let Ci : X−i → 2Xi be given by Ci(x−i) = {xi ∈ Xi|gi j(xi,x−i) ≤ 0, j =
{1,2, . . . ,mi}}.

1. Let Xi ⊆R
ni be closed and all components gi j’s be continuous on X. Then, Ci is

upper semicontinuous on X−i.
2. Let gi j’s be continuous and convex in xi for each x−i. If there exists x̄ such that

gi j(x̄i, x̄−i) < 0 for all j, then Ci is lower semicontinuous at x̄−i and in some
neighborhood of x̄−i.

Remark 5. Some authors use the term hemicontinuity instead of semicontinuity
[31]. The definitions coincide for closed and compact-valued correspondences,
which is the case here.
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Chapter 8
Random Damage in Interconnected
Networks

Sandra König and Antonios Gouglidis

8.1 Introduction

Over the past few years, Industrial Control System (ICS) networks such as con-
trol networks supervising utility networks (e.g., SCADA systems) appear to have
an increasing interconnection between different types of networks, i.e., between in-
formation technology (IT) and operational technology (OT) networks. While this
development is useful in many ways, it also involves several risks. Specifically, it
provides more opportunities with regards to deploying cyberattacks in these envi-
ronments. Such attacks may range from simple types of malware and ransomware
to more sophisticated attacks, such as advanced persistent threats (APTs). Recent
incidents, as the WannaCry [24] and Petya [26] ransomwares, provide evident in-
formation that the number of attacks in critical infrastructures has increased and that
we shall investigate approaches that may increase our level of awareness.

Besides cyberattacks, the increasing interconnection between different networks
makes it even harder to analyze incidents. However, learning from past incidents
and finding optimal ways to protect a system is a crucial task. In case of an inci-
dent, such a task will eventually help in finding the best way to reduce its expected
damage. In interconnected networks, the consequences of an incident are not obvi-
ous, and their estimation involves a lot of uncertainty. Therefore, when looking at
security incidents in ICS networks, it appears that the interplay between an attacker
and a defender can be modeled using a game-theoretic approach. Setting up a game
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requires several steps, including the definition of attack/defense strategies, estima-
tion of payoffs, etc. Specifically, during the preparation of a game, the estimation of
payoffs (i.e., damage) for each possible scenario is one of its core tasks. However,
damage estimation is not always a trivial task since it cannot be easily predicted, pri-
marily due to incomplete information about the attack or due to external influences
(e.g., weather conditions, etc.). Therefore, it is evident that describing the payoffs
by means of a probability distribution may be an appropriate approach to deal with
this uncertainty. These generalized payoffs contain more information than the crisp
values used traditionally.

In this chapter, we elaborate on how the consequences of an infection of a net-
work can be modeled during the process of risk analysis in the HyRiM framework
(cf. Chapter 12) and therefore describe how to estimate the payoff distributions of
such a game. The applied model captures two main characteristics of incidents with
regard to its spreading on interconnected networks. Firstly, in case of a concrete
problem, the behavior of the network is not always exactly predictable, which is
why we choose a stochastic model to adequately describe the spreading. Allowing
transmission of an error (or more general any kind of problem) yields a model that
also captures external influences such as weather conditions. And secondly, an in-
terconnected network can hardly be seen as one big homogeneous network since it
contains several subnetworks that may have very different properties. We take this
into account by classifying edges depending on their properties with respect to er-
ror transmission. Note that such a distinction between different connection types is
indeed a common practice in risk analysis [3, 4, 19, 22, 27].

The remainder of this chapter is organized as follows: Section 8.2 elaborates
on the random error spreading model used in the HyRiM framework. The model
is applied to investigate how an infection (e.g., a malware) could propagate and
how it spreads in networks. The model requires – among other – an estimation of
the likelihood of transmission for each type of edges in a network (the network
being represented as a graph). Ways of estimating the likelihood are described in
Section 8.3. Specifically, the section provides information on how to assess the like-
lihood of transmission on the basis of existing threat models, experts’ opinion, and
different levels of trust. The various estimation approaches are required when mod-
eling heterogeneous networks that depict not only the likelihood of technical threats
to propagate on a device but also the likelihood for people to propagate a threat to
each other through social interactions. Further, the choice of a specific estimation
method to a large extent depends on the data being available. An implementation of
the stochastic model that describes the error spreading is provided in Section 8.4,
and simulations are carried out. Subsequently, it is shown in Section 8.5 how these
simulations can be used for estimating random payoffs in security games, in com-
bination with other means of assessing uncertain consequences of an incident and
costs. Finally, we provide concluding remarks in Section 8.6.



8.2 Random Error Spreading on Interconnected Networks 187

8.2 Random Error Spreading on Interconnected Networks

Several epidemic models have been used to describe how an infection (such as a
malware) can spread over a network [2, 14, 23, 28, 6, 29]. However, these models
assume homogeneous spreading (just as the underlying epidemic models usually
do), which is not suitable in most real-life situations. The reason why they are con-
sidered to be unsuitable is that the structure of networks is usually heterogeneous.
A couple of approaches that take into account heterogeneity in the case of disease
spreading are described in [12] and [15]. In this section, we briefly summarize a
general model for random error spreading on an heterogeneous network that was
introduced in [10]. Subsequently, we illustrate how it can be used in various situ-
ations (e.g., to describe consequences of a cyberattack) and discuss several issues
that might arise when applying it.

8.2.1 Random Spreading on a Heterogeneous Network

Let an interconnected network be modeled as a graph G(V,E) with a finite set V
of nodes and a set E of directed edges between these nodes. Due to the diversity
induced by several subnetworks, we distinguish edges depending on their proper-
ties concerning the spreading of an error. We therefore choose a finite number n of
classes and assign a type tk to every edge that belongs to class k ∈ {1, . . . ,n}. In
order to describe the spreading of an error, we assign a characteristic likelihood pk

to each class that represents the probability that the error is transmitted over an edge
of type k, i.e., the probability that an infection in one node causes an infection of a
neighbor connected by an edge of type k. Having this description of a heterogeneous
network, we can model the spreading of an infection by assuming that edges inde-
pendently convey the infection with their characteristic likelihood. To formulate the
results, we need the following
Notation: The topology of the network is described by the degree distribution
P(x1, . . . ,xn;y1, . . . ,yn) that gives the number of incoming and outgoing edges of
each type, respectively. Let the function G be the generating function of the de-
gree distribution of the network, and let Hi denote the generating function of the
so-called excess degree distribution, i.e., the degree distribution that results when
removing an edge of type ti over which the infection reached a specific node. Fur-
ther, let Hi be the generating function for the number of affected nodes due to failure
of an edge of type ti, and let the random variable S denote the actual damage (mea-
sured through the number of affected nodes).

This model yields the following main results (formal proofs can be found in [8]).

(i) In case the error spreads tree-like (i.e., does not loop back), the amount of in-
fected nodes remains bounded in the long term. The expected number of in-
fected nodes is
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E[S] = 1+
n

∑
j=1

∂
∂y j

G (1, . . . ,1;1, . . . ,1) ·H ′
j(1),

where H ′
i (1) is a solution of the linear equation system

H ′
i (1) = 1+

n

∑
j=1

∂
∂y j

Hi(1, . . . ,1;1, . . . ,1) ·H ′
j(1).

(ii) In case the error spreads fast enough to loop back, the probability of an epidemic
is

Pep = 1−G (1, . . . ,1;H1(1), . . . ,Hn(1)),

where for all i the value Hi(1) is a solution of the system

Hi(1) =
∂
∂xi

G (1, . . . ,1;H1(1), . . . ,Hn(1))/zi,

where zi is the average in- and out-degree of edges of type ti. This system can
be solved numerically.

These general results simplify for the case where the network can be modeled by
the well-known Erdős-Rényi model [5].

Example 1 Consider a network in which an edge of type i exists with probability qi.
Computation of the corresponding degree distribution yields the expected number
of infected nodes

E[S] =
1

1−np1q1− . . .−npnqn
,

where pi denotes the probability that an edge of type i fails. Specifically, we get the
following simple criterion:
An epidemic will not occur if

1−np1q1− . . .−npnqn > 0

is satisfied.

8.2.2 Components of Different Importance

While the basic model captures the intrinsic randomness of the error spreading pro-
cess, it does not distinguish between different components of the network. However,
the damage resulting from a fixed number of infected components of the network
may vary depending on the importance of these affected components. For exam-
ple, if we look at a ransomware that encrypts files on a computer, the type of data
stored on the computer is a significant differentiator. Specifically, if that computer
contains sensitive data of the organization or of its customers, the actual damage to
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the organization is higher compared to encrypting a computer that is mainly used
for basic administrative operations. In order to capture this diversity, we assign a
value to each component before investigating the spreading process. This enables
a more precise estimation of the actual damage than the simple number of affected
components.

Assigning an exact value to a single component may be a cumbersome process
since consequences of a failure are often not clear before an incident happens.
Nevertheless, since the infection of a specific node is a random event (due to the
stochastic nature of the spreading process), the overall damage is random, and there
is no need to specify a precise value. Moreover, it is often not feasible to assign a
different value to each and every part of the network since this makes a plausibility
check among the different values very difficult. Both issues can be solved by spec-
ifying a fixed number of categories, such as “cheap,” “normal,” and “expensive.”
Thus, each component falls in one of these categories, and a comparison between
the various parts of a network becomes more straightforward by comparing the
corresponding categories.

Performing a simulation of the error spreading process will enable the estimation
of the number of affected nodes for each category and thus yields a more accurate
estimation of the damage to the network.

8.2.3 Time Until Infection

Besides the number of infected nodes due to an outbreak, it is also helpful to get
some information about the time it takes until a specific node is infected. Since the
transmission of an error is random, so is the remaining time during which the com-
ponent still works correctly. We call this random variable time-until-infection and
denote it by Tui. The simulation of the error spreading model that we will describe
in Section 8.4 yields an empirical distribution that allows direct estimation of the
mean waiting time T̂ui = x̄, where xi is the recorded time until infection in the i-th
of total N simulations, i ∈ {1, . . . ,N}. Alternatively, the mean can also be estimated
by a trimmed mean or by the median.

While the time-until-infection can intuitively be seen as a waiting time, it does
not follow a simple geometric distribution with one parameter since the infection
may arise from various neighboring nodes. Thus, when describing the distribution
of Tui formally, we need a bit more notation. To this end, let Ti denote the time
until infection of a fixed node due to infection of neighbor i and denote by Fi the
corresponding distribution function. Then it holds

Tui = min{T1, . . . ,Tnb},

where nb denotes the number of neighbors of that node. Then the cumulative distri-
bution function Fui satisfies

Fui(t)≤C(F1(t1), . . . ,Fnb(tnb)),
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where t = min{t1, . . . , tnb} and C is the copula C(u1, . . . ,un) = min{u1, . . . ,un}, i.e.,
the upper Fréchet–Hoeffding bound.

8.3 Assessing the Likelihood of Transmission

The biggest challenge when applying the model described in Section 8.2 is the es-
timation of the likelihoods of transmission for each type of edges. This estimation
heavily depends on the structure of the network and its different components. While
complexity of networks is increasing in a more and more connected world, data
about such interconnections are rare (in fact, existing interconnections are not al-
ways recognized when analyzing a network). Type and quality of available data are
very diverse, requiring various ways to handle them. We discuss the most common
sources of information for interconnected networks and how to deal with them in
this section. In particular, we consider the case where information about the devices
of the network is available, e.g., when performing a vulnerability analysis. Another
source of information is expertise of employees familiar with the organization. In
this section, we show how to assess the likelihood of failure for different situations
and various types of data.

In real-life situations, it is often difficult or even impossible to exactly assess
the likelihood for an error to spread over a specific type of edges. Thus whenever
possible we take into account all information available and estimate the likelihood
based on all data available, as illustrated in Section 8.3.2.

8.3.1 Estimation Based on Threat Models

One of the facing challenges when applying threat modeling processes is how to
estimate the “likelihood” of an adverse event to happen. It can be said that likelihood
is closely connected with the easiness of obtaining knowledge that is required to
successfully exploit a vulnerability [7]. When it comes to information technology
(IT) systems, such information can be easily checked by automated tools, which are
able to scan a system and discover the existence of already known vulnerabilities
(e.g., vulnerability analysis). Another way to collect such information is by applying
threat risk modeling approaches.

The Common Vulnerability Scoring System (CVSS) provides a way to calculate
the risk of announced vulnerabilities and reflect their severity. CVSS defines three
metric groups, i.e., base, temporal, and environmental. Each of the groups lists a
number of specific metrics to capture the different characteristics of a vulnerability.
Although all of them are required to calculate the overall score of a vulnerability,
only the “exploitability” metric is required to be calculated to indirectly measure the
“likelihood” of exploiting a vulnerability [7]. Specifically, exploitability in CVSS
“measures the current state of exploit techniques or code availability” [11].
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In addition to the above threat modeling system, the DREAD [13] threat risk
model by Microsoft is also able to provide information with regard to the likelihood
of an attack. DREAD stands for Damage potential, Reproducibility, Exploitability,
Affected users, and Discoverability. Unlike CVSS, the likelihood of an attack in
DREAD can be indirectly measured on the basis of several ratings, i.e., reproducibil-
ity, exploitability, and discoverability [7]. Specifically, reproducibility is related to
the easiness of reproducing an attack; exploitability is related to the easiness of
launching an attack; and discoverability is related to the easiness of finding a vul-
nerability.

From the above, it is obvious that – depending on the approach/model in use –
same terms may refer to different things, e.g., exploitability appears to differ be-
tween CVSS and DREAD. However, in both approaches, the “likelihood” of an
adverse event may be estimated, either using one or collating more metrics.

In the following, we briefly describe how to estimate the likelihood of exploiting
a vulnerability using CVSS. In Figure 8.1, we depict several software and hardware
components, such as a laptop that can be connected to various devices (e.g., pro-
grammable logic controllers (PLCs)) through specific software. In order to identify
existing vulnerabilities on the software or hardware components, automated vulner-
ability scanners can be used, such as NESSUS [25], OpenVAS [18], etc. The results
of a vulnerability scanner include detailed information about known vulnerabilities
of a system. The identified vulnerabilities are commonly described by Common Vul-
nerabilities and Exposures (CVEs) [16]. Each CVE is uniquely identified by a num-
ber, a summary description of the vulnerability, and information about the CVSS
severity of the vulnerability. The latter can be used to extract the value of the ex-
ploitability metric – information for individual CVSS metrics is provided by online
vulnerability databases (e.g., NIST’s National Vulnerability Database (NVD) [17]).

After conducting the vulnerability scanning and collecting all the prerequisite
information, potential attack paths can be defined, and their likelihood can be es-
timated. Note that this likelihood is of informative nature rather than modeling the
attackers’ intension. In the HyRiM framework, the likelihood of the different attacks
is a byproduct of the game-theoretic analysis (if the attacker acts rationally). How-
ever, it is not a major goal to calculate this since any behavior of the attacker that is
not optimal only decreases the damage to the defender.

More information on how the likelihood is extracted from vulnerabilities in soft-
ware or hardware components and used in a network is provided in Chapter 13.

8.3.2 Estimation Based on Expert Opinions

Most of the time, the only source of information about a network can be collected
from experts. Since such expert opinions are subjective and sometimes vague, the
resulting data is a collection of different and possibly contradicting assessments. It
is common to deal with this diversity by agreeing on one single value (e.g., by tak-
ing the maximum). However, such approaches lose a lot of information that might
bias the entire analysis of the network. The methods described here try to reduce
such information loss.
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Fig. 8.1: Representation of likelihood using CVSS’s exploitability

More precisely, we consider the transmission probability pk to be a random vari-
able Xk distributed according to the expert’s opinions about edges of type tk. As in
[9], we will assume that the estimates of the transmission probability can be mapped
from a qualitative scale (e.g., “low,” “medium,” or “high”) to values in [0,1]. The
expert opinions pk,1, . . . , pk,nk are then nothing but samples from the (unknown) dis-
tribution Fk of Xk. A natural approach is to set

pk := E[Xk] (8.1)

and look for suitable estimates. The most commonly used arithmetic mean has the
disadvantage of not being robust, i.e., a single outlier has the potential to signifi-
cantly influence the estimate. To avoid this effect, we choose

p̂k = p̃k (8.2)

where p̃k denotes the median of the observed values pk,1, . . . , pk,nk .
In case of a qualitative assignment, this estimate can be interpreted as illustrated

in Figure 8.2 (cf. [9]). Several experts’ opinions using a scale (i.e., “negligible,”
“low,” “medium,” “high,” “major”) have been collected and represented by the (ar-
bitrary) values {0,0.25,0.5,0.75,1}. The estimate (8.2) can then be interpreted as
the sum of the gray bars that represent the likelihood of each of the values. There-
fore, the likelihood of the opinion can be interpreted as being “higher than medium”
and thus agrees with the intuition of a higher likelihood to transmit an error. Unlike
the mean, a single outlier will not affect this estimate.
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pk = Pr(Xk > 0.5)
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Fig. 8.2: Ambiguous experts’ assessments

8.3.3 Estimation Based on Different Levels of Trust

Experts often find it difficult to characterize a type of connection by a single number.
Rather, they often say “it depends” and give quite different reasons on which their
assessment actually depends. In order to capture this fuzziness, we extend the basic
model from Section 8.2 by introducing different levels of trust. Depending on this
level, a different probability of error transmission is assessed to the specific type of
edge. For example, the level may be “low” for non-reliable connections, “medium”
for those that usually work, and “high” for very reliable ones.

Technically, the transmission probability pk for an edge of type k from the basic
model of Section 8.2 is replaced by a set pk,1, . . . , pk,nl of probabilities where nl gives
the number of different trust levels. We assume the same number of levels for all
classes since this refinement of likelihood assessment rather depends on the expert
doing it than on the edge class. The corresponding probabilities of transmission are
monotonic in the sense that edges with a lower level of trust are more likely to fail.
Again, if expert opinions on these values vary, it is possible to work with an estimate
as described in Section 8.3.2.

An illustration of this approach is given in Chapter 14.

8.4 Simulation of Random Error Spreading

The model of random error spreading on a network can straightforwardly be imple-
mented in a software such as R [10]. This simulation can be used to estimate both
the number of infected nodes and the time-until-infection. In particular, it allows
estimation of random payoffs as we will demonstrate in Section 8.5.

The simulation algorithm for the basic model from Section 8.2 also works for the
extension described in Section 8.3.3 since we still work with real-valued transmis-
sion probabilities. As soon as the transmission probabilities are random themselves,
things may change.
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8.4.1 Simulation of Random Transmissions

If the transmission probabilities depend on how much trust is put in a connection as
described in Section 8.3.3, the algorithm has to be adapted slightly. In pseudo-code,
this can be implemented as follows:

1: t ← 0
2: while t < T
3: for each infected node v in V
4: set N(v)←{u ∈V : (v,u) ∈ E};
5: for each neighboring node u ∈ N(v)
6: let k be the class in which the edge v→ u falls into;
7: let l be the level of trust of the edge v→ u;
8: with likelihood pk,l, infect u;
9: t ← t +1;
10: endfor
11: endfor
12: endwhile

The result of this simulation is a network containing infected and non-infected
components. The situation can be visualized by marking non-infected nodes (some-
times called “healthy” nodes) of the representing graph as green and randomly col-
oring neighbors of infected components as red nodes [9].

8.4.2 Simulation for Components of Different Importance

If nodes are of different importance, as described in Section 8.2.2, the simulation
described in the last section has to be adapted. In R, this can be done conveniently
by using the network package that enables the assignment of different attributes
to a network (both for nodes and edges). In the basic simulation, this package can
be used to set the vertex attribute “infected” to either "yes" or "no" depending
on whether the component is infected or not. As for the different importance of
components, we define a value vector that holds the value of each node. Then we
use the command
set.vertex.attribute(nw,"value",value)

to set these values for all nodes (vertices) of the network nw. Adapting the sim-
ulation in this way, it returns not only the total number of infected nodes but rather
a list of how many nodes and of which importance are affected. For example, the
nodes of a network of size 29 are classified as “cheap” (5 nodes), “normal” (13
nodes), and “expensive” (11 nodes). The adapted algorithm then returns a table as
shown in Table 8.1.
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Table 8.1: Number of infected nodes per class

Cheap Normal Expensive
5 12 11

In this case, only a single normal node has not been infected, while all other
components are affected by the incident. Therefore, even without having explicit
knowledge on which nodes are affected, we can acknowledge the importance of the
incident and argue on the need for strategies toward reducing the damage. In the
next section, we explain how this simulation may contribute to a game-theoretical
analysis of cyberattacks with the aim to optimally protect the system under attack.

8.5 Estimating Payoffs of a Security Game

Security incidents are conveniently modeled as a game between an attacker and a
defender (e.g., the security manager of a company). The advantage of such a model
is its ability to find an optimal defense and at the same time to minimize the cost
of implementing possible defense strategies. One of the biggest challenges when
putting these models into practice is to assess the damage imposed in each possible
scenario. While an exact assessment is hardly possible (or at least inaccurate), it is
often useful to treat the payoffs as random variables and estimate their distribution.
This yields a distribution-valued payoff matrix with entries as shown in Figure 8.3
for the discrete case. In this representation, each row corresponds to a defense strat-
egy, while the columns represent the attack strategies, as in classical game theory.
The game may then be solved with the generalized framework of distribution-valued
games [21] (cf. Chapter 2). These games can be solved with the generalized ficti-
tious play algorithm [20] (cf. Chapter 3).

In this section, we present different ways to estimate such random payoffs, in-
cluding simulation of error spreading.

8.5.1 Simulation of Payoffs

When security incidents in an interconnected network are modeled as a game be-
tween an attacker and a defender, it is useful to work with distribution-valued pay-
offs. This is particularly true, if the aim is to reduce the caused damage. The latter is
intrinsically random due to external influences or missing knowledge about conse-
quences to new forms of attacks. For example, if a computer node in the IT network
is infected with a malware, it is much more likely for other computer nodes in the
same network to be infected, as opposed to computer nodes or components that re-
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Fig. 8.3: Distribution-valued payoffs

side on a different network (e.g., in the operational technology (OT) network) of a
utility network. The level of infection depends highly on the malware’s capabilities.

On the other hand, the transmission probabilities are influenced by both an at-
tacker and a defender. If we assume that the attack starts in a specific node (e.g., by
plugging an infected USB stick to a PC), then the corresponding node in the graph
representation is the first to be infected. On the other hand, any action taken by the
defender aims to reduce the transmission probabilities for at least one type of edges.
For example, the company decides to do training sessions with all employees to re-
duce the chance that an unknown USB stick is plugged to a computer and thus put
the company network at risk. In our model, this can be represented by reducing the
likelihood of transmission for logical connections as an employee is less likely to
convey the threat to his or her laptop or PC. These two factors influence the sim-
ulation of the error spreading as illustrated in [10] by defining a starting point as
well as a set of transmission probabilities. We illustrate the interplay between the
game-theoretic model and this simulation in Chapters 13 and 14.

There are many other situations where payoffs are stochastic, especially if the
actual damage to a utility provider is determined by the reaction of people, such as
consumers, that influence each other. Additionally, external influences such as news-
paper reports may have an impact on risk perception of people and thus influence
their behavior.
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8.5.2 Expertise

In many cases, simulation of the payoffs is not possible, e.g., due to missing infor-
mation about the network. In this situation, the best we can do is ask for experts
opinions on the expected damage. It is beneficial to use a nominal scale, say the
5-tier scale “very low,” “low,” “medium,” “high,” and “very high”, that can be
represented by a scoring from 1 (to represent “very low”) to 5 (to represent “very
high”). Both experts and employees familiar with the everyday routine in the orga-
nization are asked to estimate the potential damage for each combination of attack
and defense strategy (i.e., for each scenario). All these assessments are collected
and represented in a histogram.

We explicitly refrain from aggregating the different opinions but rather use all
available data. Assessments from people with different background and experiences
may help in reducing a potential bias in the assessment and help in estimating the
uncertainty about the assessment (i.e., the uncertainty is high if there is a big vari-
ance in the data). Further, our approach avoids the consensus problem that often
appears in classical risk management where a single representative risk assessment
is needed.

8.5.3 Additional Sources of Information

Many other ways exist to estimate payoff distributions of a security game. One
model to describe the behavior of a population is the agent-based model applied in
[1] for the analysis of security risks of critical utilities. It describes the risk beliefs of
customers for different situations and thus helps the utility to analyze which option
of risk communication is optimal.

8.5.4 Comparing Random Payoffs

In order to solve a security game with histogram payoffs, it is necessary to use the
same scale for all goals. Only then, we are able to compute the weighted sums of
all the different utility functions that occur during the generalized fictitious play
algorithm. Besides, the use of the same scale for different assessments makes it
easier for the experts to provide consistent information. However, the various ways
used above to estimate payoffs yield very different data. While we can choose a
suitable scale for expert assessments, the simulation algorithm returns a number of
affected nodes, and things get even more involved if we allow those nodes to have
different values. In this case, it is helpful to choose a common scale – i.e., a 5-tier
scale that can be interpreted as “very low,” “low,” “medium,” “high,” and “very
high” – and then define a mapping from all possible results of the simulation to this
chosen scale.
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An example of such a mapping for a network consisting of 3 cheap, 18 normal,
and 8 expensive nodes is shown in Table 8.2. This table is most conveniently read
from right to left: if at least one of the conditions in the last column is satisfied,
we assign a scale of 5 representing a very high damage. If none of these conditions
is satisfied, we go to the column left to it and check any of these conditions are
fulfilled. Again, if at least one condition is satisfied, we assign a 4 as a measure
for the damage; otherwise we move on to the column left of the current one. Cells
marked with "N/A" (not applicable) represent the situation that a failure of any
number of nodes of this type never causes a damage in the corresponding category.
For example, even if all cheap nodes fail the caused damage cannot be higher than
1. In a similar manner, if at least one expensive node fails the caused damage cannot
be lower than 3.

Table 8.2: Mapping average number of infected nodes to a 5-tier scale

Cost of nodes / Scale 1 2 3 4 5
Cheap up to 3 N/A N/A N/A N/A

Moderate up to 4 at least 5 at least 10 at least 12 at least 15
Expensive N/A N/A at least 1 at least 3 at least 5

Following this procedure, we end up with a triple that describes the damage for
each type of nodes on the 5-tier scale, e.g., with regard to the small example from
Section 8.4.2, Table 8.2 returns a score of 1 for the cheap node and a score of 5 for
both the normal and the expensive nodes. Since we want to measure the damage with
a single number in each simulation, we apply the maximum principle here and set
an overall score of 5 in this situation. Iterating the simulation of the error spreading
process yields an empirical distribution of this score, corresponding to the situation
where a precise prediction is not possible and the damage is random.

The resulting histograms of payoffs that use the same scale and can be compared
with the stochastic ordering defined earlier (cf. Chapters 2 and 3). For example,
considering experts’ opinions for two different scenarios as shown in Figure 8.4, we
can see that scenario 2 is “preferred” from scenario 1 since fewer experts expect a
“very high” = 5 damage.

8.6 Conclusion

In this chapter, we have demonstrated how to apply a spreading model on intercon-
nected and heterogeneous networks. Specifically, the described approach assumes
that different edges in a network have different likelihoods to transmit a threat to
a neighboring node. To this extend, we have described different ways of assessing
the likelihood of transmitting threats, i.e., using information stemming from vul-
nerability scanners (i.e., extract the exploitability metric from CVSS) or from ex-
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Fig. 8.4: Comparing two different experts’ assessments

perts. Having this information, simulation of the infection is possible. Further, we
demonstrated how our spreading model can be used in combination with a general-
ized game-theoretic model. This included the estimation of payoffs as distributions
instead of single values and eventually depicted their use in calculating optimal de-
fense strategies in the presence of specific attack vectors. With regard to the appli-
cation areas of the described model, these may vary due to its abstract formulation.
Examples of current application areas include the investigation of cyber security
threats (cf. Chapters 13 and 14) and dependencies between critical infrastructures.
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Chapter 9
Optimal Dispatch of Electrical
Transmission Systems Considering
Interdependencies with Natural Gas
Systems

Tianqi Hong, Francisco de León, and Quanyan Zhu

9.1 Introduction

Early in the twentieth century, the fundamental models for major civil infrastruc-
tures were developed and are now well-established. However, most of the managers
still plan and operate their infrastructures individually even when those systems are
physically interconnected. In the past decades, engineers in different areas devoted
themselves to decouple the interdependencies between different infrastructures. In-
terdependencies have been reduced but not eliminated. Frequently, when one type
of interdependency is reduced, other or several other interdependencies are intro-
duced. Perhaps it is now, in the era of the smart grid (and smart everything), the time
to stop eliminating the interdependencies between different infrastructures. Rather,
one should be thinking about how to manage the response of the system of systems,
including interconnected infrastructures in the analysis and optimization.

As the central link between different systems, electric power systems are cus-
tomers and/or suppliers to other infrastructures. A robust electric power system
is a prerequisite to improve the reliability of the combined system. Hence, en-
hancing the reliability of the electric power system by considering the interdepen-
dency impact (IDI) coming from other interconnected systems is necessary. In this
chapter, we focus on the study of interconnected electric-natural gas (ENG) sys-
tem. Figure 9.1 illustrates the structure of an example ENG system. Previous re-
searchers have noticed the critical nature of the electric power system and inves-
tigated the interdependencies between the electric power and natural gas systems
[1, 2, 3, 4]. In references [2, 3, 4], a unified model was established to model the
coupled ENG system in normal operation by considering their interdependency. In-
stead of modeling the interdependencies, some researchers introduced the concept
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of energy hub [5, 6, 7]. They proposed several methods under different scenarios
to allocate the energy hub and reduce the operational cost for the coupled system.
Uncertainties, such as human activities, of the combined system are considered in
[2, 8, 9, 10].

Instead of the interdependency impact (IDI) in normal operating condition, some
groups have also put their efforts in modeling and analyzing the post-contingency
interdependency impacts (PCIDIs) in the coupled networks. The authors of [10,
11, 12] have proposed various formulations to reduce the PCIDIs and improve the
robustness of the joint systems.

All of the previous studies assume that their linked system is working under a
co-dispatch operation scheme, meaning the utilities of the natural gas and electric
power systems share their information and operate their systems together. In prac-
tice, this assumption may not be true for two reasons: First, the operational time
scales of natural gas and electric power systems are quite different. Electric power
systems can be dispatched every hour. In contrast, natural gas systems are normally
dispatched on a period of several days. Second, only limited data can be shared
between different utilities or departments for security reasons. To assess the IDIs
with the limitations aforementioned, different models and solutions for enhancing
the robustness of the electric power system are investigated in this chapter.

The original contributions of this chapter are as follows: (a) a detailed natural gas
flow model is proposed for the evaluation of the IDIs from the natural gas transmis-
sion system – we model natural gas flow with long transmission pipelines (medium
length for electrical lines); (b) a decentralized operating pattern with limited data

Fig. 9.1: Structure of the electric-natural gas system
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exchanges between the natural gas and electrical transmission systems is analyzed;
(c) several novel constraints for the integration of the PCIDIs into the electric power
system are proposed and evaluated, for example, interdependency with compressor
stations and gas-fired generation; and (d) the corresponding solution is provided.

9.2 Modeling of Natural Gas Transmission System

A natural gas system can be considered both a customer and a supplier of the in-
terconnected electric power system. As a supplier, the natural gas system provides
fuel to power plants to generate electricity. As a customer, the natural gas system
consumes electricity that powers the pressure pumps. This interdependent relation-
ship benefits each other and may cause instability on both systems. In this chapter,
we only concentrate on reducing IDIs to the electric power system. To develop a
physical model representing the IDIs generated by the natural gas system, we first
establish a physical model of the natural gas system.

9.2.1 Physical Relationships of Natural Gas Transmission Systems

Different from [2] to [12], the Panhandle A equation is chosen to model the relation-
ship between natural gas flow rate and pressure drops. The Panhandle A equation
has higher accuracy than other equations for systems with large pressure drops. The
natural gas flow rate from node k to node m (Fkm) in steady state is given by [13]:

Fkm = ANG
km

[|r2
km p2

k− r2
mk p2

m|
]0.5394

, (9.1)

where:

ANG
km =

4.5965×10−3η p
kmD2.6182

km

sign(pk− pm)(G0.854T f LkmZkm)0.5394

(
T b

pb

)
. (9.2)

Fkm is the flow rate of pipeline km in m3/day; rkm is the compression ratio of pipeline
km at node k (note that rkm is different with rmk, where rkm represents compression
station installed at node k ); pk and pb are the pressure at node k and base pressure
in kPa; Dkm is the inside diameter in mm; Lkm is the length of the pipe in km; Zkm

is the compressibility factors of pipeline km; η p
km is the efficiency of the pipeline;

T f and T b are the average gas flow temperature and base temperature in K; G is the
specific gravity of the gas delivered by pipeline; and sign(x) is a function to extract
the sign of variable “x.”

Compressor stations are important elements for compensating the pressure drop
in the natural gas transmission system. Centrifugal and positive displacement com-
pressors are the most commonly used. By converting electric power into mechanical
power, the compressor station is a critical link between the electrical and natural gas
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systems, especially at the transmission level. The relationship between the electric
power and compression ratio is given in [13] as

PE
km =

Zk +Zm

2ηc
km

(
γ

γ−1

)
4.0639FkmTk

106

[
(rkm)

γ−1
γ −1

]
(9.3)

where PE
km is the electric power consumption of compressor at pipeline km in kW;

Zk is the compressibility factors at node k; ηc
km is the efficiency of the compressor

station; Tk is the temperature at node k; and γ is the ratio of specific heats of gas
according to [13], which is 1.4 for natural gas. Based on (9.3), the electric power
consumption PE

km has direct relationships with flow rate Fkm and compression ratio
rkm. The electric power consumption changes when the flow rate Fkm or compression
ratio rkm changes.

Based on (9.3), the electric power consumption PE
km has direct relationships with

flow rate Fkm and compression ratio rkm. The electric power consumption changes
when the flow rate Fkm or compression ratio rkm change.

Natural gas-fired generators are other links between natural gas systems and elec-
tric power systems. Since all generators are equipped with an automatic generation
controller (AGC), the flow rate consumption of the generators is constant.

Similar to the nodal constraints in the electric power system, the summation of
the gas flow rate at each node must be zero at all times. Therefore, we arrive at:

FI
k = FD

k +
NN

∑
m=1
m�=k

Fkm, (9.4)

where FI
k and FD

k are the flow rates of the injection and demand of node k and NN
is the number of nodes in the natural gas system.

9.2.2 Modeling the Natural Gas System Under Normal Operation

In normal operation, managers of a natural gas transmission company expect to
operate their systems efficiently. To reduce the operational costs and improve the
total efficiency of a natural gas transmission system, the gas dispatch becomes an
optimization problem.

The dispatchable parameters in natural gas systems can be clustered in three
types. The first variable is the pressure of the source. The natural gas source is nor-
mally considered as the gas plant or large gas storage where its pressure can be kept
constant and its capacity is assumed to be infinite; see the natural gas well in Fig-
ure 9.1. The second variable is the flow rate of short-term storage. Since the manager
can dispatch the flow rate of a short-term storage to improve the performance of the
system, the terminal pressure of the storage varies according to the working status
of the natural gas system. Naturally, the gas price of short-term storage is higher
than that of a natural gas well. Thus, the flow rates from a natural gas source and
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short-term storage can be considered flow injections with different prices. The third
variable is the compression ratio of each station. Compressor stations can regulate
the flow rate or terminal pressures of a pipeline by adjusting the compression ra-
tio. Note that the compressor station allocation problem is beyond the scope of our
Chapter.

Considering the dispatchable parameters discussed above, an optimal natural gas
flow (ONGF) problem can be formulated as:

min
pw,FI ,r

MNG = min
pw,FI ,r

NN

∑
k=1

(
CNG

k FI
k +CE

k

NP

∑
m

PE
km

)
, (9.5)

where MNG is the operational cost of the natural gas system, FI is a column vector
consisting of the flow rate injection at each node, r is a column vector consisting
of compressor station ratios, pw is a column vector consisting the pressure of the
natural gas well, CNG

k is the price of natural gas at node k in $/Mm3/s, CE
k is the

price of electricity at node k in $/MW/s, and NP is the number of the pipelines.
The equality constraints of problem (9.5) are the flow rate nodal constraints pre-

sented in (9.4). The major inequality operation constraint of a natural gas transmis-
sion system is to keep pressures, flow rates, and injections within limits. These are
expressed mathematically as:

pk ≤ pk ≤ pk, (9.6)

Fkm ≤ Fkm ≤ Fkm, (9.7)

FI
k ≤ FI

k ≤ FI
k , (9.8)

where x and x are the upper and lower bounds of variable “x”.
The lower and upper bounds of the natural gas pipeline flow are calculated ac-

cording to the erosional velocity of each pipeline. The erosional velocity μkm,k of
the pipeline km with reference to the node k is (under the assumption that natural
gas flow is an isothermal flow) [13]:

μkm,k = 100

√
ZkR(Tk +460)

199.96pkG
, (9.9)

where μkm,k is in the unit of m/s and R is a constant that equals to 8.314 J/K/mol.
The relationship between the maximum velocity and upper bound of the flow rate
can be described as [13]:

Fkm = min
{

Fkm,k,Fkm,m
}
, (9.10)

where

Fkm,x =
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D2

kmμkm,x

14.7349

)(
Tb
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px

Zx

)∣∣∣∣
x=k,m

. (9.11)

To solve the non-convex optimization problem (9.5), some simplifications have
been made as follows:
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(1) The compressibility factor Zx at each bus x is considered to be a constant value
(Z = 0.9 for the natural gas [13, p. 67]);

(2) The inner temperature at each node is considered to be constant (Tk = 293 K);
(3) All natural gas pipelines are considered in a horizontal placement, therefore

removing the gravity effect.

The simplifications listed above are used to reduce the computational complexity
of solving natural gas flow problems, which remain very general and are believed to
be more accurate than existing formulations.

Problem (9.5) can be solved using the Primal-Dual Interior Point Algorithm
(PDIPA) [14] with truncated Newton step. The convergence of PDIPA is ensured
and the first-order optimality conditions can be satisfied [15, 16, 17]. Normally, a
current working status of natural gas transmission systems can be used as a feasible
initial point for the ONGF problem. It is worth noting that the final solution may not
be the global optimum due to the non-convexity of the original ONGF problem.

After obtaining the solution of the ONGF problem, the electricity consumption
of each compressor station in normal operation can be obtained from (9.3). We can
then construct a column vector e(0) to represent the normal electricity consumption
as:

e(0) =
(
PE

1 , . . . ,PE
NN

)
, (9.12)

where

PE
k =

NN

∑
m=1
m�=k

PE
km. (9.13)

9.2.3 Modeling the Natural Gas System Under Contingency

Since the combined systems are operated independently, we assume that the two
systems cannot communicate with each other frequently. Additionally, the opera-
tional time scales of the two systems are different, and the electric power system
cannot estimate when the PCIDI hits the electrical system. Hence, it is essential to
consider the worst post-contingency impact of the natural gas system in the opera-
tion of the electrical system.

In pre-contingency scenarios, the natural gas system operates based on the ONGF
results discussed in Section 9.2.2. When a contingency occurs, the pressures of each
node and the flow rates of each pipeline may change. Consequently, the electrical
consumptions of the compressors will change. Since generators are modeled as the
customers of the natural gas system with constant flow rate demands, the natural
gas system needs to satisfy the requirements from the connected generators unless
the pressures of the nodes are reduced below certain limits. As a result, the impacts
on the electrical system come from the electricity demand variations and the loss of
generators regardless on how the natural gas system is dispatched. This is true for
the original dispatch or re-dispatch after contingency. Hence, the worst PCIDI can
be obtained through an exhaustive “what if” analysis.
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In normal condition, the natural gas system is dispatched according to the so-
lution of problem (9.5). For all the possible contingency scenarios, the pressure at
each generator is checked to build the preindicator matrix Dpr, where dpr

(k)( j) is the

(k, j)th element in matrix Dpr. Element dpr
(k)( j) = 1 means the generator at node k

needs to be disconnected from natural gas system when the jth contingency oc-
curs. The consumption impact of each compressor station is recorded to form a
pre-consumption impact matrix Epr where epr

( j)−e(0) is the jth column of the matrix

Epr. Vector epr
( j) can be built based on (9.12) under the jth contingency. Then, we

assume that the natural gas system would be re-dispatched according to the solution
of (9.5) with the natural gas system in post-contingency configuration. Similarly, a
post-indicator matrix Dpo and post-electrical consumption matrix Epo can be con-
structed. Figure 9.2 shows the flowchart of the proposed “what if” analysis. All the
matrices can be built a day ahead or online according to load profiles.

Note that the electrical consumption of the compressor station changes regardless
of whether the natural gas system is dispatched based on the security-constrained
optimal natural gas flow [12] or just optimal natural gas flow, since the natural gas
flow rate in (9.3) would change depending on the system operating status. Current
literature has ignored this critical PCIDI between the natural gas system and the
electric power system.

Matrices D = (Dpr,Dpo) and E = (Epr,Epo) are the interdependency impact
model to the electric power system. To protect the network data of natural gas sys-
tems, the gas utilities can build all the matrices and only share numerical matrices
with electric power utilities.

9.3 Electric Power System Modeling

After the IDI model has been obtained from the natural gas system, the IDIs on
the electric power system needs to be solved. Hence, a set of interdependency con-
straints is formulated in this section. The interdependency constraints provide a tool
to integrate the impact into the power system dispatch analysis. To illustrate this, we
start from the traditional formulation of optimal power flow (OPF) problem.

9.3.1 Traditional Optimal Power Flow and Sensitivity Factors

To reduce the operational cost of the electrical transmission system, the power injec-
tions should be optimally dispatched. The classic operational cost of the electrical
transmission system is defined as [16]:

ME =
NB

∑
i=1

[
aE

i

(
PG

i

)2
+bE

i PG
i + cE

i

]
(9.14)
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Fig. 9.2: Flowchart of “what if” analysis

where PG
i is the active power of generator at bus i; aE

i , bE
i , and cE

i are the cost
coefficients of the thermal generator at bus i; and NB is the number of the buses in
the electric power system.

According to [16] and [17], the optimal power flow problem can be formu-
lated as:

min
PG,QG

ME (9.15)

subject to:
PG

i −PD
i = Pi (9.16)

QG
i −QD

i = Qi, (9.17)

Vi ≤Vi ≤Vi, (9.18)

Ii j ≤ Ii j ≤ Ii j, (9.19)
(

PG
i ,QG

i

)
≤ (

PG
i ,QG

i

)≤ (
PG

i ,QG
i

)
, (9.20)

where QG
i is the reactive power of the generator at bus i; PG and QG are the decision

column vector generated by sequences
{

PG
i

}NB

i and
{

QG
i

}NB

i ; PD
i and QD

i are the
active and reactive demand at bus i; Pi and Qi are the active and reactive power flow



9.3 Electric Power System Modeling 211

at bus i; Vi is the voltage at bus i; and Ii j is the current of the line i j. It is worth to
mention that the relations “≤” and “≥” are defined to hold component-wise in (9.20)
and following discussion.

Apart from looking for an economic optimal dispatch solution to achieve min-
imal operational cost, most utilities also want to improve the reliability of their
systems, i.e., to increase the robustness of their system and satisfy the n− 1 con-
tingency criterion (all loads can be restored if any single component fails). Hence,
the security-constrained optimal power flow (SCOPF) is proposed [16, 18, 19].

The sensitivity factors are the major tools for solving the SCOPF problem. The
fundamental sensitivity factors are the power transfer distribution factor (PTDF)
[17, 20]. The PTDF is a sensitivity matrix. Element JP

ik in the PTDF describes the
change of the active power flow in transmission line i when there is a change of
power injection at bus k. According to [17], the element JP

ik is calculated with the dc
power flow as:

JP
ik =

1
Xi

(
dθi:1

dPk
− dθi:2

dPk

)
, (9.21)

where Xi is the reactance of transmission line i and θi:1 and θi:2 are the angles of the
from-bus i : 1 and to-bus i : 2 of the line i, respectively. In matrix form, we have:

ΔaG = PTDF ·ΔPG, (9.22)

where ΔaG is a column vector representing the linearized change of active power
flow of each transmission line induced by generator outage, ΔPG is a column vector
representing the changing of active power injection at each bus.

The PTDF can be used to indicate the post-contingency status of generator out-
ages in a given electric system. To indicate a line outage scenario, a line outage
distribution factor matrix (LODF) is developed [21]. The element JL

i j in the LODF
describes the change of the active flow in transmission line i when there is a change
of active power flow of transmission line j. The element JL

i j is calculated as [21]:

JL
i j =

⎧⎪⎨
⎪⎩

JP
i, j:2

1− JP
j, j:2

∣∣∣∣∣
i �= j

−1|i= j

, (9.23)

where JP
i, j:2 is the sensitivity of active power flow in line i with respect to the injec-

tion at the to-bus j : 2 of line j, which can be found in the PTDF matrix. For each
scenario of the electric system, a new constraint can be generated based on PTDF
and LODF. By incorporating all scenario constraints into problem (9.15), a classic
model of SCOPF problem can be obtained [19].
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9.3.2 Integration of the Interdependency Model into the Power
Dispatch Problem

According to (9.21), the PTDF matrix can be utilized for the estimation of system
impacts from changes in power injections. The changes of a load can be seen as
a negative power injection. Hence, substituting ΔPG by the impact ΔeNG

( j) obtained
from Section 9.2.3, the linearized active power flow impact of all the electrical trans-
mission lines can be computed from:

aNG
( j) = a(0) +ΔaNG

( j) = a(0) +PTDF ·ΔeNG
( j) , (9.24)

where aNG
( j) is a column vector representing the IDI of active power flows under the

jth scenario in the natural gas system, a(0) is a column vector of the active power
flows in normal operation, and ΔeNG

( j) is the jth column vector in matrix E.
The PCIDI of the currents in each transmission line can be modeled according to

LODF factor:
ING
( j) = I(0) +ΔING

( j) = I(0) +LODF ·ΔaNG
( j) , (9.25)

where ING
( j) is the column vector corresponding to the impact of the current of the

jth scenario in the natural gas system and I(0) is a column vector of all the currents
in normal operation. Comparing ING

( j) with the upper-bound limit of current I, the
interdependency constraints of the line currents can be obtained from:

|I| ≤
{

I+(I− ING
( j) )

I
i f I− ING

( j) < 0
else

∀ j, (9.26)

where I is a column vector constructed from the Ii j. The repeated current constraints
in (9.19), SCOPF, and (9.26) are removed, and the number of the constraints can be
reduced. The line current constraints are ensured by the ac power flow.

The PCIDI of the natural gas-fired generators can be obtained similarly:

PG
( j) =−PG

(0) ·dNG
( j) , (9.27)

where PG
( j) is a column vector representing the PCIDI of all the generator outputs

under jth scenario in the natural gas system, PG
(0) is column vector of all the gen-

erator outputs in normal operation, and dNG
( j) is the jth column vector in matrix D.

Substituting ΔeNG
( j) by PG

( j) in (9.24), and going through the same process, the upper
and lower bounds of the line currents considering the natural gas-fired generator
failure can be obtained.

The PCIDIs also affect the voltage profile of the electric system. To evaluate this
type of impacts, the Jacobian matrix JE of the Newton power flow is introduced.
According to [22], we have:
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[
ΔP
ΔQ

]
= JE

[
Δθ
ΔV

]
, (9.28)

where ΔP and ΔQ are the change on active and reactive powers and Δθ and ΔV are
the linearized corresponding change on the phase angles and voltage amplitudes.

Based on matrix E built in Section 9.2.3, ΔQ equals zero. Thus, the ΔV can be
solved from (9.28):

ΔV = HV PΔP (9.29)

where HV P is a sub-matrix obtained from the inverse of Jacobian matrix JE . Accord-
ing to (9.29), the voltage constraints generated by a natural gas contingency can be
described as:

V≤ V(0) +HV PΔaNG
( j) ≤ V, (9.30)

where V(0) is the vector of voltage at each bus of OPF results. By integrating the
interdependency constraints of the line current (9.26) and voltage profile (9.30) into
either the OPF problem or SCOPF problem, a more robust dispatch solution can
be obtained; see the flowchart in Figure 9.3. It is worth pointing out that one can
easily implement the proposed impact constraints into other types of OPF problems.
Instead of replacing the original method, the proposed tool provides a new view for
the operator to dispatch the system.

Fig. 9.3: Flowchart of interdependency based optimal power flow
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9.4 Case Study

In this section, the IEEE 14-bus electric power system and an artificial 14-node nat-
ural gas transmission system are used for illustration purposes. Figure 9.1 illustrates
the structure of the combined system. The detailed data of the 14-node natural gas
transmission system are shown in the Appendix of this chapter.

Some modifications are applied to the IEEE 14-bus electric power system as fol-
lows: (1) the synchronous condensers at buses 3, 6, and 8 are replaced by distributed
generators denoted G3, G6, and G8; (2) the generators at buses 1 and 2 are assumed
to be fired by natural gas; and (3) the voltage upper and lower bounds are 1.06 and
0.94 pu.

The cost coefficients of each generator are shown in Table 9.1. We assume that
the costs of generators G3, G6, and G8 are identical.

Table 9.1: Cost coefficients of generators

Generator aE
i [$/MW2h] bE

i [$/MWh] cE
i [$/h]

G1 0.043 20 100
G2 0.25 20 100
G3,G6,G8 0.01 40 50

Table 9.2: “What if” contingency analysis for the outage of pipeline 1-5

Case:
1-5 outage

pw
1

[kpa]
FI

8
[Mm3/day]

r2,3 r12,13
MNG

[$/s]
PE

2,3
[MW]

PE
12,13
[MW]

Normal 5000 0.4 1.17 1.16 30.67 1.55 1.57
Pre-redispatch 5000 0.4 1.17 1.16 31.17 2.48 2.10
Post-redispatch 5114 4.13 1.28 1.20 32.21 2.67 1.98

The nodes of a natural gas system are numbered using the same order of the elec-
trical transmission system; see Figure 9.1. The entire natural gas transmission sys-
tem is a looped structure with a gas well and a short-term storage, which can ensure
the possibility to satisfy the n−1 criterion. Two compressor stations are installed in
the natural gas system to regulate the pressure at pipelines 2–3 and 12–13, respec-
tively. The power consumed by those compressor stations is directly purchased from
the electrical transmission system. The electricity price for all compressor stations
is considered to be 0.05 $/kW·h.

According to the detailed data of the natural gas system, one can solve the non-
linear flow problem by Newton’s method. With the PDIPA, the optimal dispatch
solution (normal operation) is shown in the first row of Table 9.2. To simulate the
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contingency scenario of the outage of pipelines 1–5, we follow the procedure pro-
posed in Section 9.2.3. To illustrate the impact to the electric system generated by
the natural gas system contingency, the system working statuses in the normal opera-
tion, pipeline outage contingency, and re-dispatch operation are shown in Figure 9.4.
Table 9.2 provides the corresponding “what if” analysis results. When the fault oc-
curs, the natural gas system works with operating violations (pressure and gas flow
violations occur); see Figure 9.4. The power consumptions of the compressor sta-
tions increase due to the increased flow rates. After the manager re-dispatches the
natural gas system, the flow rate of the short-term storage FI

8 and ratio of compres-
sor stations are increased to force the system back to a safe operation. As a result,
the electricity consumption of the compressor station C2,3 further increases; see the
electricity consumption variation in Table 9.2.

Impact matrices D and E can be computed following the procedure proposed in
Section 9.2.3. The electrical consumptions during the natural gas contingency after
re-dispatching are shown in the Appendix of this chapter. According to the “what if”
studies, D is a zero matrix, meaning the generators can be connected to the natural
gas system during the fault in natural gas system. The maximum power consump-
tion of CS2,3 is 2.67 MW, and the maximum consumption of CS12,13 is 2.61 MW
based on matrix E. According to 9.26 and 9.30, two extra sets of interdependency
constraints can be obtained.

New dispatch results can be found in Table 9.3 after integrating the interdepen-
dency constraints into the OPF problem. The current upper bounds in the case are
shown in Figure 9.5(b). The differences in the dispatch strategies and the opera-
tional cost of electric power system are very small. However, the robustness of the
electric power system increases substantially; see Figure 9.5. When a contingency
scenario occurs in the interconnected natural gas system, say pipeline 12-13 is out,
the electricity consumptions of the compressor stations change. Correspondingly,
two voltage violations occur in the electric power system; see the dotted arrows in
Figure 9.5(a). Meanwhile, there is a line current violation at branch 19 (transmission
line 12-13); see the dotted arrow in Figure 9.5(b). When considering the PCIDIs, the

Fig. 9.4: Comparison between normal operation, post-contingency, and re-dispatch
results
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burden on transmission lines 7-8 and 6-13 reduced under normal condition. Conse-
quently, the two voltage violations are eliminated as well as the line current violation
when the outage occurs.

Table 9.3: Solutions of different formulations without the consideration of the con-
tingency of the electric power system

G1 G2 G3 G6 G8 ME [k$/h]

OPF
MW 194.3 36.7 28.7 0 8.5
Mvar 0 23.7 24.1 11.5 8.3

8.0815

OPF+NG
MW 194.0 36.7 28.4 0 9.2
Mvar 0 25.9 25.2 8.0 8.8

8.0821

Fig. 9.5: Behavior of the electrical system after outage of pipeline 12-13 under OPF
dispatch and proposed dispatch methods: (a) Voltage profile of the electrical system
(b) Current profile of the electrical system

Fig. 9.6: Behavior of the electrical system following the outage of pipeline 12-13
under OPF dispatch, SCOPF dispatch, and proposed dispatch method: (a) Voltage
profile of the electrical system (b) Current profile of the electrical system
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Table 9.4: Solutions of different formulation with the consideration of the contin-
gency of the electric power system

G1 G2 G3 G6 G8 ME [k$/h]

OPF
MW 194.3 36.7 28.7 0 8.5
Mvar 0 23.7 24.1 11.5 8.3

8.08

SCOPF
MW 127.1 41.8 75.6 16.4 3.0
Mvar 6.4 14.4 17.0 12.7 −0.4

8.37
(+3.6%)

SCOPF+NG
MW 120.7 27.7 90.0 25.5 0
Mvar 10 28.0 15.4 −5.3 7.3

8.49
(+5%)

The dispatch results of the IEEE 14-bus system are obtained solving the SCOPF
problem with the interdependency constraints. Since the system parameters in the
previous example cannot satisfy the n− 1 criterion, we increased the capacities of
the electrical transmission lines. Hence, the line current upper bounds in this case
are adjusted to the line shown in Figure 9.6(b). The operational costs and their corre-
sponding dispatch solutions (OPF problem, SCOPF problem, and SCOPF problem
with interdependency constraints) can be found in Table 9.4. The behavior of the
electric power system under those different scenarios can be seen in Figures 9.6
and 9.7, respectively. Comparing the operational cost for different dispatch results,
we can see that the operational cost of the OPF is the smallest. The operational costs
of the SCOPF and proposed dispatch method increase 3.6% and 5%, respectively.
However, the proposed dispatch method provides more robust systems than the OPF
and SCOPF methods. When the outage of the pipelines 12–13 occurs, voltage vi-
olations happen when the electric power system is dispatched based on the OPF
and SCOPF solutions; see Figure 9.6(a). In contrast, the proposed dispatch method
solves the voltage violation problems (see Figure 9.6(b)). When the worst contin-
gency scenario (the outage of transmission lines 1–2) in the electric power system

Fig. 9.7: Behavior of the electrical system after the outage of transmission line 1-2
under SCOPF dispatch and proposed dispatch methods: (a) Voltage profile of the
electrical system (b) Current profile of the electrical system
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occurs, the OPF dispatched system fails, and blackout occurs. The proposed dis-
patched system not only prevents the blackout but also resolves the voltage profile
problem and the line current violations; see Figure 9.7(b). Through the proposed
analysis method, the system operator can make an intelligent choice between the
operational cost and robustness of the systems.

9.5 Discussion on Game Theory Formulation

In the game theory point of view, the proposed interdependency study can be for-
mulated as a minimax problem. The fault in the electrical system and natural gas
system acts as a maximizer who maximizes the operational cost of the electrical
system. The electrical transmission system is a minimizer who wants to minimize
its operational cost. Hence, the proposed problem can be formulated as:

min
PG,QG

max
O

ME (9.31)

subject to ({
PG

i

}NB

i
,
{

QG
i

}NB

i
,
{

PG
i

}NB

i
,
{

QG
i

}NB

i

)
= f(O) (9.32)

and (9.16)-(9.20), where O is a set that concludes all the types of faults, and function
f() is a map which builds up the relationship between faults and the impacts to the
strategy space of the electrical transmission system. An example of the function f()
is Table 9.5 which links pipeline faults in the natural gas systems to the electricity
load. Through (9.16), the electricity load links to the strategy space of the electrical
transmission system.

Hence, the whole Section 9.2 can be concluded as the description of how to
derive the fault mapping function f() from the faults in the natural gas system to
the electrical system. It is worth to point out that the method used in Section 9.3
may not be the exact solution to solve the game problem due to the convexity and
nonlinearity of the problem.

9.6 Conclusion

A co-simulation platform has been proposed, and two impact matrices have been
introduced to model the interdependency impacts from interconnected natural gas
system to electric power system. To enhance the stability of the target electric power
system and eliminate the impacts, interdependency constraints have been proposed
to provide new dispatch options to the system operator. The IEEE 14-bus system
and a natural gas transmission system have been used to evaluate the impact of
interdependencies and illustrate the advantages of the proposed interdependency
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constraints. The electric power system has been found to be more robust when con-
sidering the interdependencies. The discussion regarding the game formation of the
interdependency problem is also proposed in this chapter.

It is worth pointing out that the solution of the interdependency analysis approach
is more expensive than OPF and SCOPF. The proposed formulation integrates the
existing models and provides a choice to utilities who aim to operate their systems
more reliably in the presence of interdependencies with other systems.

Appendix

The electrical consumption data after re-dispatch are shown in Table 9.5. The in-
formation on the buses of the artificial natural gas system is presented in Table 9.6.
The constant pressure node in the natural gas system is denoted as “CP,” and the
constant flow rate node is denoted as “CQ.” The regular nodes are denoted as “L.”
All pipelines are assumed to have equal lengths of 80 km and equal inner diameters
of 635 mm. The upper bounds of the pipeline are set to be 15 Mm3/day. The data of
the sources in the natural gas system are provided in Table 9.7.

Table 9.5: Electrical consumption data after re-dispatch

Contingency
Scenario
Pipeline index (from, to)

PE
2,3
[MW]

PE
12,13
[MW]

Contingency
Scenario
Pipeline index (from, to)

PE
2,3
[MW]

PE
12,13
[MW]

1. (1, 2) fail fail 09. (6, 13) 2.38 2.36
2. (1, 5) 2.67 1.98 10. (7, 8) 1.55 1.57
3. (1, 12) fail fail 11. (7, 9) 1.93 1.50
4. (2, 3) 0 1.29 12. (9, 10) 2.27 1.75
5. (3, 4) 0.26 1.18 13. (9, 14) 1.94 1.80
6. (4, 7) 0.65 1.15 14. (10, 11) 2.00 1.64
7. (5, 6) 2.67 2.15 15. (12, 13) 1.74 0
8. (6, 11) 1.66 1.59 16. (13, 14) 1.59 1.98

Table 9.6: Artificial 14-bus natural gas system data sheet of buses

Bus no. Bus type Load [Mm3/day] (pr, pr) [kPa]

1 CP 2 (4500, 6000)
2–7 L 2 (4500, 6000)
8 CQ 2 (4500, 6000)
9–14 L 2 (4500, 6000)
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Table 9.7: Artificial 14-bus natural gas system data sheet of sources

Bus No. Source Type (F,F) [Mm3/day] Price [$/Btu]

1 CP - 2.70
8 CQ (0.4, 10) 3.71

List of Abbreviations and Symbols

Abbreviations
IDI Interdependency impact
ENG system Electric natural gas system
PCIDI Post-contingency interdependency impact
ONGF Optimal natural gas flow
PDIPA Primal-dual interior point algorithm
OPF Optimal power flow
SCOPF Security-constrained optimal power flow
PTDF Power transfer distribution factor
LODF Line outage distribution factor

Symbols
FI

k ,F
D
k ,Fkm Flow rates of injection, demand of node k, and pipeline

km in m3/day
pb, pk, pw

k Base pressure, pressure at node k, and well pressure at
node k in kPa

rkm Compression ratio at node k of pipeline km
G Specific gravity of the gas delivered by pipeline, unitless
R Ideal gas constant equals to 8.314 J/K/mol
γ Ratio of specific heats of gas
Dkm,Lkm Pipe inside diameter in mm, length of pipe in km
Zk,Zkm Compressibility factors of nodes k and pipeline km
η p

km,η
c
km Efficiencies of pipeline and compressor station of

pipeline km
T b,T f ,Tk Base, average gas flow temperature; temperature at node

k in K
NN,NC,NP Number of nodes, number of compressors, and number

of pipelines
NS Number of total contingency scenarios in natural gas sys-

tem
MNG Operational cost of natural gas system
CSkm Compressor station at pipeline km
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PE
km Electric power consumption of compressor at pipeline km

in kW
PG

i ,QG
i Active and reactive powers of generator at bus i

PD
i ,QD

i Active and reactive power demands at bus i
Pi,Qi Active and reactive power flows at bus i
Vi, Ii j Per unit voltage of bus i and per unit current of line i j
aE

i ,b
E
i ,c

E
i Coefficients of the thermal generator at bus i

NB Number of buses
ME Operational cost of electrical system

Functions and Operators
sign(x) Function to extract the sign of variable x
x,x Lower and upper limits of variable x
≤,≥ Component-wise operators
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Chapter 10
Managing Security Risks
Interdependencies Between ICT and
Electric Infrastructures: A Game
Theoretical Analysis

Ziad Ismail, Jean Leneutre, David Bateman, and Lin Chen

10.1 Introduction

The power grid stands as one of the most important critical infrastructures on which
depends an array of services. It uses a supervisory control and data acquisition
(SCADA) system to monitor and control electric equipment. To that purpose, a
SCADA system uses several telecommunication infrastructures such as telephone
lines, cellular networks, etc. This renders the power system dependent on the re-
liability and security of the telecommunication system. An attack on a communi-
cation equipment used to control an industrial process can have severe impact on
the power grid. Such attack recently targeted the Ukraine power grid on December
2015 [1]. Using a new variant of the malware BlackEnergy [2], attackers success-
fully compromised the information systems of several energy distribution compa-
nies and disrupted electricity supply to approximately 225,000 customers up to 6
hours. Reciprocally, an electrical node responsible of providing power to a set of
communication equipment is important to the communication infrastructure: if the
power source of these equipment is compromised, the communication nodes will
not be able to achieve their objectives. Citing the Italian blackout of 2003, which
impacted 56 million people, Rosato et al. [3] showed that a blackout can result
from a cascade of failures between the power grid and the communication system.
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In particular, some switches in the communication system can lose their power and
fail because of failures in the power grid. As a consequence, due to a lack of control,
some nodes in the power grid will fail.

Traditionally, the reliability of the power grid and the security of the ICT in-
frastructure are assessed independently using different risk methodologies, for in-
stance, [4, 5] and [6, 7], respectively, for electric and ICT infrastructures.

In the last decade, a growing body of research has been dedicated to the analysis
of interdependencies between critical infrastructures, focusing in particular on com-
munication and electric systems. An overview of such work is provided in [8]. In
what follows, we briefly recall related works. In one of the first work on this topic,
Laprie et al. [9] proposed a qualitative model to address cascading, escalating, and
common cause failures due to interdependencies between electric and communi-
cation infrastructures. In the case of quantitative models, we can distinguish two
main categories: analytical-based and simulation-based models. In the first category
of models, we find the work of Buldyrev et al. [10] in which a theoretical frame-
work was developed to study the process of cascading failures in interdependent
networks caused by random initial failures of nodes. Another work presented in [11]
studies the minimum number of node failures needed to cause a total blackout: this
problem is shown to be NP-hard in case of unidirectional interdependency between
the networks but can be solved in polynomial time in case of bidirectional inter-
dependency. In simulation-based models, the main techniques used include agent-
based [12], Petri nets [13], Stochastic Activity Networks (SANs) [14, 15], and co-
simulation [16]. Numerous works also focused on defining metrics to characterize
the level of interdependencies between critical infrastructures and quantify their ro-
bustness (see for instance [17, 18, 19]).

In complex interdependent systems, the interactions between the attacker and the
defender play an important role in defining the optimal defense strategy. In this con-
text, game theory offers a mathematical framework to study interactions between
different players with the same or conflicting interests. For example, Law et al. [20]
investigate false data injection attacks on the power grid and formulate the problem
as a stochastic security game between an attacker and a defender. Amin et al. [21]
present a framework to assess risks to cyber-physical systems when interdependen-
cies between information and physical systems may result in correlated failures.

In this chapter, we address the issue of the security risk management of interde-
pendent communication and electric infrastructures in the smart grid by proposing
an analytical model for hardening security on critical communication equipment
used to control the power grid. Using noncooperative game theory, we analyze the
behavior of an attacker and a defender. The attacker tries to compromise commu-
nication equipment to cause the maximum impact on the power grid. On the other
hand, the defender tries to protect the power system by hardening the security on
communication equipment, while taking into account the existence of backup con-
trol equipment in the communication infrastructure. In [22] and [23], we proposed
an analytical model based on game theory for optimizing the distribution of defense
resources on communication equipment taking into account the interdependencies
between electric and communication infrastructures and defined a methodology to
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assess some of the parameters of the model. In this chapter, we make a number of
extensions to this model in an attempt to answer the following questions: Is security
by obscurity a good strategy for the defender? Under which conditions can a player
guarantee a certain payoff? How can we strategically assess the initial security risk
on communication equipment? Is deception required from the part of the defender
to better protect the system? As we will see, while some of these questions can be
analyzed analytically in the general case, some answers to these questions are sys-
tem dependent and will therefore be analyzed in the case study. Throughout this
chapter, the communication system refers to the telecommunication infrastructure
responsible of controlling and monitoring the electric system.

The chapter is organized as follows. We start by presenting the interdependency
and the risk diffusion models in Sections 10.2 and 10.3, respectively. In Section 10.4,
we present the game theoretical model and analyze different equilibrium concepts.
We propose an approach to evaluate the values of a number of parameters used in the
analytical model in Section 10.5. In Section 10.6, we validate our model via a case
study based on the Polish electric power transmission system. Finally, we conclude
the chapter in Section 10.7.

10.2 Interdependency Model

We refer by initial risk, the risk on a node before the impact of an accident or an
attack propagates between system nodes. We will denote by re

i (0) and rc
j(0) the

initial risk on electrical node i and communication equipment j, respectively. In the
rest of this section, we assume that the initial risk on a system node is a nonnegative
real number and has been evaluated using risk assessment methods. However, in
Section 10.5.3, we propose a security game between the attacker and the defender
to assess the initial risk on communication equipment. Therefore, instead of relying
on subjective probability assessments, the evaluation of the probability of attacking
a particular equipment is formally derived.

We use the framework proposed in [24] as a basis to represent the risk depen-
dencies using a graph-theoretic approach. We model the interdependency between
the electric and the communication infrastructures as a weighted directed interde-
pendency graph D = (V, E, f ), where V = {v1,v2, . . . ,vN} is a finite set of vertices
representing the set of electrical and communication nodes, E is a particular subset
of V 2 and referred to as the edges of D , and f : E → R

+ is a function where f (ei j)
refers to the weight associated with the edge ei j.

Let V = {T e,T c} where T e = {v1,v2, . . . ,vNe} represents the set of electrical
nodes in the grid and T c = {vNe+1,vNe+2, . . . ,vNe+Nc} represents the set of communi-
cation nodes. Let D be represented by the weighted adjacency matrix M = [mi j]N×N

defined as follows:

M =

(
B D
F S

)
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where B = [bi j]Ne×Ne , D = [di j]Ne×Nc , F = [ fi j]Nc×Ne , and S = [si j]Nc×Nc . Matrix M
represents the effects of nodes on each other and is a block matrix composed of
matrices B, D, F, and S. Elements of these matrices are nonnegative real numbers.
Without loss of generality, we assume that these matrices are left stochastic matrices.
Therefore, for each node k, we evaluate the weight of other nodes to impact node
k. Finally, matrices B and S represent the dependency between electrical nodes and
communication nodes, respectively.

10.3 Risk Diffusion and Equilibrium

We consider that the first cascading effects of an attack on communication equip-
ment take place in the communication infrastructure itself. In the communication
system, we consider that a set of Intrusion Detection Systems (IDSs) exists. We as-
sume that devices that assure a security function, such as IDSs, have security mech-
anisms protecting the availability of their function. The attacker tries to compromise
a set of communication nodes in order to control or disrupt the power system. The
probability of being detected increases each time the attacker attempts to compro-
mise a new equipment. Therefore, we consider that the payoff of future attacks
decreases at each attack step. Let γc be a nonnegative real number that represents
the weight of the impact payoff of future attacks s.t γc ∈ [0,1]. γc is a function of the
probability of detection of the IDS and attacker’s profile.

We introduce a metric tc in the communication system that refers to the average
time for the impact of an attack on communication equipment to propagate in the
communication infrastructure. In this model, as opposed to our model in [22], we do
not consider the average time te in the electric system that refers to the average time
elapsed between the failure of a set of electric equipment and the response time of
safety measures or operators manual intervention to contain the failures and prevent
them from propagating to the entire grid.

Let re(t) = [re
i (t)]Ne×1 and rc(t) = [rc

i (t)]Nc×1 be the electrical and communica-
tion nodes risk vectors at time t, respectively. We take discrete time steps to describe
the evolution of the system. Let Sl = [sl

i j]Nc×Nc be the l-th power of the matrix S.
At attack step r, the payoff is decreased by a factor of γr

c . In fact, we consider that
each action of the attacker in the system increases the probability of him being de-
tected. Let the matrix Smax = [smax

i j ]Nc×Nc represent the maximum impact of an attack
on communication equipment to reach communication nodes during time tc, where
smax

i j = max
l=1,...,�tc�

γ l
csl

i j. Let Smax
n be the normalized matrices of Smax with respect to

their rows s.t. ∀ j, ∑
i

smax
n i j = 1.

Therefore, the system of equations for inter- and intra-infrastructure risk diffu-
sion is given by:
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⎧⎪⎪⎨
⎪⎪⎩

rc(t+1) = Smax
n rc(t)

rc(t+1) = Fre(t)
re(t+1) = Bre(t)
re(t+1) = Drc(t)

(10.1)

Solving the system of equations in (10.1), we will have:
rc(t+4) = Smax

n FBDrc(t) = Hrc(t) where H = [hi j]Nc×Nc = Smax
n FBD.

Lemma 10.1. Matrix H = Smax
n FBD is a left stochastic matrix.

Proof. Let Z = [zi j]m×n and Y = [yi j]n×m s.t ∀ j, ∑
i

zi j = 1 and ∑
i

yi j = 1. Let

X = [xi j]m×m = ZY. Therefore:

∑
i

xi j =∑
i
∑
m

zimym j = (∑
m

ym j)(∑
i

zim) =∑
m

ym j = 1

Similarly, we can prove that matrix H, which is the product of matrices Smax
n , F,

B, and D, is a left stochastic matrix. ��
We take a similar approach to [24] by balancing the immediate risk and the future

induced one. Let β and τ refer to the weight of the initial risk on communication
nodes and the weight of the diffused risk from electrical nodes to communication
nodes at time t = 0, respectively, and δ the weight of future cascading risk with
respect to the value of the total risk on communication nodes. The value of risk
on communication equipment at a given time is given by rc(t+4) = δHrc(t) +
βrc(0)+ θDTre(0), where β , τ , and δ are nonnegative real numbers and β + τ +
δ = 1.

Theorem 10.1. The iterative system of the cascading risk converges. An equilibrium
solution exists whenever δ < 1 and is given by:

rc∗ = (I−δH)−1(βrc(0)+θDTre(0)) where H = Smax
n FBD (10.2)

Proof. The spectral radius of any matrix is less than or equal to the norm of the ma-

trix. The 1-norm of the matrix H = [hi j]Nc×Nc is defined as ‖H‖1 = max
0≤ j≤Nc

{
Nc

∑
i=1
|hi j|}.

From Lemma 10.1, we know that H is a left stochastic matrix. Therefore, ‖H‖1 = 1
and the spectral radius ρ(H)≤ 1. The matrix H has at least one eigenvalue equal to 1
since (1,e) is an eigenpair of HT (where e = [1 . . .1]T ). Since the matrix H is multi-
plied by δ < 1, so are the eigenvalues of H. Therefore, the sequence converges. The
equation of the cascading risk rc(t+4) = δHrc(t)+βrc(0)+θDTre(0) converges
to the value rc∗ given by rc∗ = δHrc∗+βrc(0)+θDTre(0).

The solution of the problem is given by lim
t→+∞

rc(t) = (I− δH)−1(βrc(0) +

θDTre(0)). The existence of the solution depends on the existence of the inverse of
the matrix (I−δH). However, we can notice that | 1−δhii |>| δ ∑

i �= j
hi j |=| δ−δhii |

∀i is true whenever δ < 1. In this case, the matrix (I−δH) is a strictly column di-
agonally dominant matrix and therefore nonsingular. As a result, (I−δH)−1 exists.
��
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From Theorem 10.1, we can predict how the risk on communication equipment
diffuses between nodes of the communication and electric systems. If an attacker has
access to H, he can choose his targets in the communication system intelligently
to maximize the impact of his attacks on the power system. In the next section,
we propose a security game between an attacker and a defender and analyze the
behavior of both players in this scenario.

10.4 Security Game

We formulate the problem as a noncooperative game between the attacker and
the defender. The attacker’s/defender’s objective is to distribute attack/defense re-
sources on the communication nodes in order to maximize/minimize the impact of
attacks on the power system.

We associate, for each communication equipment, a load li that represents the
amount of computational work the equipment performs. Let L = diag(li)Nc×Nc be
the load matrix. The existence of redundant equipment in the communication system
increases the resilience of the power grid against cyberattacks. Let W = [wi j]Nc×Nc

be the redundancy matrix where ∀i, wii =−1 and ∑
j, j �=i

wi j ≤ 1. If i �= j, wi j represents

the fraction of the load of node i node j will be responsible of processing when node
i is compromised.

10.4.1 Game with Symmetric Information

In this section, we consider the worst-case scenario where both players have com-
plete knowledge of the architecture of the system. We will assume that the players’
utilities are composed of three parts: the payoff of an attack taking into account
both players’ actions and the cascading impact of the attack in the communication
and electric systems, the cost of attacking/defending, and the impact of redundant
equipment in ensuring the control of the power system when a set of communication
nodes is compromised.

Let p = [pi]1×Nc refer to the attacker’s strategy where 0≤ pi ≤ 1 is the attack re-
source allocated to target i ∈ T c, and let q = [q j]1×Nc refer to the defender’s strategy
where 0≤ q j ≤ 1 is the defense resource allocated to target j ∈ T c. Let Rc

D(0), Rc∗
D ,

Ca, and Cd be diagonal matrices. The diagonal elements of matrices Rc
D(0) and Rc∗

D
refer to the initial risk rc

i (0) and the equilibrium solution of the cascading risk rc∗
i on

each communication node i, respectively. Ca and Cd refer to the cost of attacking
and defending communication nodes, respectively. Let I refer to the identity matrix
and let e = (1, . . . ,1)1×Nc .

The utilities ua and ud of the attacker and the defender, respectively, can be de-
fined as follows:

ua(p,q) = pRc∗
D (eT−qT)−pRc

D(0)C
apT−ψpL(WqT− I(eT−2qT))

ud(p,q) =−pRc∗
D (eT−qT)−qRc

D(0)C
dqT +ψpL(WqT− I(eT−2qT))
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The parameter ψ ∈ [0,1] represents the impact of compromising the load of com-
munication equipment and the existence of backup equipment in computing players’
utility functions. ψ can be a function of the probability that backup equipment are
able to take charge of the load of compromised communication equipment.

First, we analyze the interactions between the attacker and the defender as a one-
shot game [25] in which players take their decisions at the same time. Let Γ o refer to
this game. We are interested in particular in the concept of Nash equilibrium (NE),
in which none of the players has an incentive to deviate from unilaterally [25].

Let p∗ and q∗ denote the attacker and defender strategies at the Nash equilibrium,
respectively. We have the following theorem:

Theorem 10.2. If rc
i (0), ca

i , and cd
i are real positive numbers ∀i, a unique NE of the

game Γ o exists and is given by:

q∗ =
1
2

e(Rc∗
D +ψL)(Rc

D(0)C
a)−1M[

1
2

MT(Rc
D(0)C

a)−1M+2Rc
D(0)C

d]−1

p∗ = e(Rc∗
D +ψL)[

1
2

M(Rc
D(0)C

d)−1MT +2Rc
D(0)C

a]−1

where M = Rc∗
D +ψL(W+2I)

Proof. Let ∇ be the pseudogradient operator of U = ua(u)+ud(u) where u = [p q].

Let g(u) = ∇U =

[
∇pua(u)
∇qud(u)

]
and let G(u) be the Jacobian of g(u).

G(u) =
( −diag(2rc

i (0)c
a
i ) −Rc∗

D −ψ(WT +2I)L
Rc∗

D +ψL(W+2I) −diag(2rc
i (0)c

d
i )

)

Since rc
i (0), ca

i , and cd
i are real positive numbers ∀i, (G(u)+G(u)T) is a negative

definite matrix. As a result, U is diagonally strictly concave. Based on [26], an
equilibrium of the game in pure strategy exists and is unique.

To characterize the equilibrium, we need to find vectors p∗ and q∗ in which the
gradients ∇ua and ∇ud are equal to 0. Solving these equations, we find q∗ and p∗
given in Theorem 10.2.

Let M=Rc∗
D +ψL(W+2I). The existence of p∗ and q∗ depends on the existence

of the inverses of matrices ξξξ and ζζζ , where:

ξξξ = 1
2 [M(Rc

D(0)C
d)−1MT +4Rc

D(0)C
a]

and ζζζ = 1
2 [M

T(Rc
D(0)C

a)−1M+4Rc
D(0)C

d]

The diagonal matrix 4Rc
D(0)C

a is a positive definite matrix (diagonal matrix with
strictly positive elements). To prove that M(Rc

D(0)C
d)−1MT is a positive definite

matrix, we need to show that:

∀x �= 0, xTM(Rc
D(0)C

d)−1MTx > 0

Let y = MTx. Therefore, we need to prove that:

∀y �= 0, yT(Rc
D(0)C

d)−1y > 0 (10.3)
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However, (Rc
D(0)C

d)−1 is a positive definite matrix, and equation (10.3) holds.
Therefore, the matrix M(Rc

D(0)C
d)−1MT is a positive definite matrix. Finally, the

matrix ξξξ is a positive definite matrix because it is the sum of two positive definite
matrices. Since ξξξ is a positive definite matrix, the inverse ξξξ−1 exists. Similarly, we
prove that ζζζ−1 exists. ��

The analytical solution has multiple advantages. From a scalability point of view,
the complexity resides in evaluating the input parameters of the model. In fact, by
proving the existence and uniqueness of the Nash equilibrium and characterizing the
solution analytically, we avoided the complexity of searching the set of all possible
strategies to find the NE. Using an analytical solution, we can compute the optimal
strategies of both players directly and be able to assess the sensitivity of players’
strategies to estimation errors on the values of parameters used in the model.

In the rest of this section, we analyze the interactions between players as a Stack-
elberg game [25]. In this type of games, a leader chooses his strategy first. Then, the
follower, informed by the leader’s choice, chooses his strategy. The leader tries to
anticipate the follower’s response. In our case, the defender is the leader who tries
to secure communication equipment in order to best protect the power system. Let
Γ s refer to this game.

Stackelberg games are generally solved by backward induction. The solution is
known as Stackelberg equilibrium (SE). We start by computing the best response
strategy of the follower as a function of the leader’s strategy. Then, according to the
follower’s best response, we derive the optimal strategy of the leader.

The attacker solves the following optimization problem:

p(q) = argmax
p∈[0,1]Nc

ua(p,q)

On the other hand, the defender solves the following optimization problem:

q(p) = argmax
q∈[0,1]Nc

ud(p(q),q)

We have the following theorem:

Theorem 10.3. The game Γ s admits a unique Stackelberg equilibrium (pS,qS)
given by:

qS = e(Rc∗
D +ψL)(Rc

D(0)C
a)−1M(Q+2Rc

D(0)C
d)−1

pS =
1
2

e(Rc∗
D +ψL)(Rc

D(0)C
a)−1[I−M(Q+2Rc

D(0)C
d)−1MT(Rc

D(0)C
a)−1]

where Q = MT(Rc
D(0)C

a)−1M

Proof. The solution can be found by solving the system by backward induction.
We start by finding pS by setting ∇ua(p,q) = 0. Then we solve the equation
∇ud(pS,q) = 0 to find qS.

Similarly to the proof of Theorem 10.2, we can prove that (Q+ 2Rc
D(0)C

d)−1

exists. ��
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10.4.2 Game with Asymmetric Information

In the previous section, we made a strong assumption about the knowledge that both
the attacker and the defender have about the architecture of the system. In particular,
we assumed that the attacker has knowledge about the existence of backup equip-
ment and can accurately assess the backup dependencies between the different com-
munication equipment. In this section, under asymmetry of information between the
attacker and the defender, we try to analyze whether unique Nash and Stackelberg
equilibriums of the games exist. An answer to this question will have a direct impact
on whether it is optimal for the defender to mislead the attacker about dependencies
relationships between communication equipment. While it is challenging to answer
this question in the general case analytically, we will analyze in the case study two
variations of the game where that scenario arises.

Information asymmetry between the attacker and the defender can involve infor-
mation about the electric system or the architecture of the communication system.
In what follows, we analyze the general case where any of the following parameters
are different for each player: the initial risk matrix Rc

D(0), the cascading risk ma-
trix Rc∗

D , the load matrix L, and the redundancy matrix W. This assumption follows
from the observation that, contrary to the defender, the attacker can have incomplete
information about the system, which yields incorrect assessment of these matrices.
While the defender can also have incomplete information in practice, in this section,
we are interested in the case where only the attacker has incomplete information
about the system (as if assuming a best-case scenario for the defender’s knowledge
about the system). The objective is to analyze the impact of the asymmetric nature
of information about the system on the strategy of both players. In this game, there’s
an assumption that the defender knows about the attacker’s inaccurate beliefs about
the architecture of the system. It is as if the defender has deliberately published in-
accurate information about the system publicly before the start of the game with the
objective of misleading the attacker.

Let Rc†
D (0), Rc∗†

D , the load matrix L†, and the redundancy matrix W† refer to
the attacker’s evaluation of matrices Rc

D(0), Rc∗
D , L, and W, respectively. Let Γ o

IA
and Γ s

IA refer to the one-shot and Stackelberg games where information asymmetry
exists between the attacker and the defender. We note that Γ s

IA is a game in which
the defender is the leader and the attacker is the follower.

We have the following theorem:

Theorem 10.4. The game Γ o
IA (resp. Γ s

IA) can have 0, 1, or an infinite number of
Nash (resp. Stackelberg) equilibriums.

Proof. The utility of the attacker and the defender are given by:

uIA
a (p,q) = pRc∗†

D (eT−qT)−pRc†
D (0)CapT−ψpL†(W†qT− I(eT−2qT))

uIA
d (p,q) =−pRc∗

D (eT−qT)−qRc
D(0)C

dqT +ψpL(WqT− I(eT−2qT))

Setting ∇uIA
a = 0, we find 2pRc†

D (0)Ca + qM†T = e(Rc∗†
D +ψL†), where M† =

Rc∗†
D +ψL†(W† +2I). Similarly, setting ∇uIA

d = 0, we find pM−2qRc
D(0)C

d = 0.
Therefore, we get:
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p[2Rc†
D (0)Ca + 1

2 M(Rc
D(0)C

d)−1M†T] = e(Rc∗†
D +ψL†)

q[ 1
2 M†T(Rc†

D (0)Ca)−1M+2Rc
D(0)C

d] = 1
2 e(Rc∗†

D +ψL†)(Rc†
D (0)Ca)−1M

For a NE to exist and be unique, the matrices [2Rc†
D (0)Ca + 1

2 M(Rc
D(0)C

d)−1M†T]

and [ 1
2 M†T(Rc†

D (0)Ca)−1M + 2Rc
D(0)C

d] must be nonsingular. Otherwise, either
0 or an infinite number of NE exist. Similarly, we can prove that for a Stack-
elberg equilibrium to exist and be unique, the matrix [M†T(Rc†

D (0)Ca)−1M +

MT(Rc†
D (0)Ca)−1M† +4Rc

D(0)C
d] must be nonsingular. ��

In some cases where an infinite number of NE exists, it is possible that one of the
players chooses the same strategy at each NE. This case is particularly disadvanta-
geous for the defender if a unique strategy for the defender exists while an infinite
number of strategies for the attacker at the NE exist. In this case, playing the NE
strategy for the defender will not give him any insight on the potential strategy that
will be played by the attacker, and therefore, predicting his payoff from playing a
NE strategy will be challenging.

From the proof of Theorem 10.4, we can state the following lemma:

Lemma 10.2. If M(Rc
D(0)C

d)−1M†T and M†T(Rc†
D (0)Ca)−1M are positive definite

matrices, then unique Nash and Stackelberg equilibriums exist for the gamesΓ o
IA and

Γ s
IA, respectively.

We note that the games in Section 10.4 are special cases of Γ o
IA and Γ s

IA and where
Lemma 10.2 holds.

10.4.3 Maximin Strategies

In this section, we analyze the maximin strategies of both the attacker and the de-
fender in the game where both players have complete knowledge about the architec-
ture of the system. The maximin strategy of a player is the maximum payoff that he
is guaranteed to get in the worst-case scenario for any strategy played by the other
player.

In the rest of this section, we suppose that rc
i (0), ca

i , and cd
i are real posi-

tive numbers ∀i. We start by analyzing the maximin strategy of the attacker p =
argmax

p′
min

q
ua. Let κi = (rc∗

i +ψli)pi +ψ ∑
j �=i

l jw ji p j ∀i.

Theorem 10.5. When there are no constraints on the defender budget ∑
i

qi, the at-

tacker cannot guarantee any positive payoff from attacking the system. Otherwise,
if ∑

i
qi = Kd ≤ Nc, there exists a sensible target set Xd that will be of interest to the

defender.

Proof. The utility of the attacker can be written as ua = ∑
i
{pi(rc∗

i − rc
i (0)c

a
i pi +

ψli)−κiqi}. When there are no constraints on the defense budget ∑
i

qi, since κi ≥
0 ∀i, the defender can minimize the utility of the attacker by setting qi = 1 ∀i. In this
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case, ua ≤ 0 ∀p, and as a result, the attacker cannot guarantee getting any positive
payoff from attacking the system.

In the case of a constrained defense budget ∑
i

qi = Kd , in order to minimize ua,

the defender will allocate his resources on the set of communication equipment with
the highest values of κi ∀i. Let Xd refer to this set. Therefore, ∀t ∈ T c\Xd , we have
qt = 0. If ∑

i
qi = Kd < 1, we have κi = argmax

j
κ j ∀i ∈ Xd . ��

The sensible target set Xd can actually be controlled by the attacker. In particular,
adjusting the attacker’s strategy p will determine the set Xd that will be of interest
to the defender. Therefore, we have the following lemma:

Lemma 10.3. If ∑
i

qi = Kd < 1, the complexity of finding a maximin strategy for the

attacker is O(2Nc).

Lemma 10.3 follows from the fact that the attacker needs to check all possible
combinations of Xd to find his maximin strategy. For a given sensible target set Xd ,
we have the following theorem:

Theorem 10.6. If Kd < 1, then for a given set Xd, there is at most one maximin
strategy for the attacker.

Proof. Let Kd < 1 and m ∈ Xd . Since ∀i, j ∈ Xd , we have κi = κ j, ua can be writ-
ten as ua = ∑

i
{pi(rc∗

i − rc
i (0)c

a
i pi +ψli)− (rc∗

m pm +ψlm pm +ψ ∑
j �=m

l jw jm p j)Kd}.
Therefore, finding a maximin strategy for the attacker is equivalent to solving the
following optimization problem:

max
p

ua

s.t. κt −κm ≤ 0 ∀t ∈ T c\Xd

κi−κ j = 0 ∀{i, j} ∈ Xd

pi ∈ [0,1] ∀i ∈ T c

The utility function ua is strictly concave and the constraints form a convex set.
Therefore, there exists at most one optimal solution to the problem. ��

Let S be a large positive number. By analyzing the attacker’s utility function ua,
we have the following lemma:

Lemma 10.4. In the case of a constrained defense budget Kd < 1, finding a max-
imin strategy for the attacker is equivalent to solving the following mixed integer
quadratic program (MIQP):

max
p,q,y,b

ua

s.t. 0≤ b−κi ≤ (1− yi)S
qi ≤ yiS
∑
i

qi = Kd

yi ∈ {0,1}, pi ∈ [0,1], qi ∈ [0,Kd ], b ∈ IR
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We now analyze the maximin strategy of the defender max
q

min
p

ud . Let

ηi =−(rc∗
i +ψli)(1−qi)+ψ ∑

j �=i
liwi jq j ∀i. We have the following theorem:

Theorem 10.7. Independent of whether there are constraints on the defense budget
∑
i

qi, the complexity of finding a maximin strategy for the defender is O(2Nc).

Proof. The utility of the defender ud can be written as ud = ∑
i
{piηi− rc

i (0)c
d
i q2

i }.
The attacker will allocate his resources on the set of communication equipment i
where ηi < 0. Let Xa refer to this set. Since the set Xa depends on the strategy of the
defender q, the defender needs to check all possible subsets of the Nc communica-
tion equipment to find his maximin strategy. ��

In the rest of this section, we will analyze the case where we a have a constrained
defense budget ∑

i
qi = Kd ≤ Nc.

By analyzing the defender’s utility function ud , we have the following lemma:

Lemma 10.5. Finding a maximin strategy of the defender is equivalent to solving
the following mixed integer quadratically constrained program (MIQCP):

max
q,p

ud

s.t. 0≤ 1− pi ≤ ηi(1− pi)S
0≤ pi ≤−ηi piS
∑
i

qi = Kd

pi ∈ {0,1}, qi ∈ [0,min(1,Kd)]

Let Y be an integer in the range �0,Nc�. Through the change of variables zi j =
piq j ∀{i, j} ∈ T c in the MIQCP problem in Lemma 10.5, we have the following
lemma:

Lemma 10.6. Finding a maximin strategy of the defender is equivalent to find-
ing the maximum value of Nc mixed integer quadratic programs, where for each
Y ∈ �0,Nc�, the MIQP is given by:

max
z,p

∑
i
{−(rc∗

i +ψli)(pi− zii)+ψ ∑
j �=i

liwi jzi j− rc
i (0)c

d
i

Y 2 (∑
j

z ji)
2}

s.t. 0≤ 1− pi ≤
(− (rc∗

i +ψli)(1− 1
Y ∑

j
z ji)+

ψ
Y ∑

j �=i
liwi j∑

m
zm j

+(rc∗
i +ψli)(pi− zii)−ψ ∑

j �=i
liwi jzi j

)
S

0≤ pi ≤
(
(rc∗

i +ψli)(pi− zii)−ψ ∑
j �=i

liwi jzi j
)
S

∑
i
∑
j

zi j = Y Kd

pi ≤ 1
Kd
∑
j

zi j ≤ 1

∑
i

zi j ≤ Y min(1,Kd)

∑
i

pi = Y

pi ∈ {0,1}, zi j ∈ [0,min(1,Kd)]
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We note that we can find a lower bound for max
p

min
q

ua and max
q

min
p

ud by re-

placing the quadratic cost functions in both ua and ud with linear cost functions
∑
i

pirc
i (0)c

a
i and ∑

i
qirc

i (0)c
d
i , respectively, and solving the mixed integer linear pro-

grams derived by analyzing the resulting utility functions.

10.5 Parameters Evaluation

In this section, we present an approach to assess the impact of attacks in the electric
and communication infrastructures and therefore evaluate matrices B and S, respec-
tively. In addition, we propose a game between the attacker and the defender to
assess the initial security risk on communication equipment. While the problem of
the assessment of the other parameters of the model remains, we discuss at the end
of this section potential avenues for their evaluation.

10.5.1 Evaluation of Matrix B

We assess the impact of cascading failures in the power grid by solving power flow
equations using the DC power flow approximation [27]. Following a similar ap-
proach as in [28], we simulate individual failures and assess their impact on the
power grid such as identifying generators with insufficient capacities to meet the
demand and overloaded lines.

In our model, we analyze the impact of tripping transmission lines or losing gen-
erators on the power grid. The flowchart diagram in Figure 10.1 shows the cascading
algorithm used in our model to analyze the impact of tripping transmission lines. In
general, this could have a significant impact on the power grid and could lead to the
formation of islands in the electric system. In our algorithm, we shut down islands
where the demand (denoted as d in Figure 10.1) exceeds the maximum generation
capacity in the island (denoted as max(g) in Figure 10.1). We then solve the DC
power flow problem in the electric transmission system using MATPOWER [29]
and check the existence of overloaded lines. These lines are tripped, and the process
is repeated until a balanced solution emerges. Similarly, we assess the impact of
losing generators on the power grid.

In our approach, we consider the worst-case scenario where load shedding is
not an option when we conduct our analysis of the impact of cascading failures on
the power grid. Further work taking into account more fine-grained analysis of the
behavior of the power grid will allow us to quantify more precisely the values of
elements of matrix B.
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Optimal
power flow

Initial
line tripping

Identify islands

Solve Power Flow

Shut down islands
where max(g)<d

Check linesFinish
Cut

overloaded lines
violationno violation

Fig. 10.1: Flowchart of the cascade algorithm in the case of tripped transmission
lines

10.5.2 Evaluation of Matrix S

To address the challenge of evaluating the impact of cyberattacks on the commu-
nication infrastructure, attack graphs [30] are a promising solution to generate all
possible attack steps to compromise a target node. These graphs could be used in
conjunction with risk assessment methods to evaluate the impact of each attacker
action on the communication infrastructure.

Let G = (X ,E ) be an attack graph where X refers to the set of nodes in the
graph and E refers to the set of edges. In our case, a node x ∈X in the graph refers
to a state of the attacker in the system, and an edge e = (xi,x j) ∈ E refers to an
action executed by the attacker after which the state of the attacker in the system
changes from xi to x j. A state of the attacker refers to his knowledge at a particular
time of the topology and the configuration of the system, the set of access levels
acquired on equipment, and the set of credentials at his disposal. G represents all
attack paths that can be used by the attacker to compromise a set of equipment or
services in the system. In [31], we defined such graph and implemented a proof of
concept for constructing it.

Let θ r
lm be the number of paths of length r an attacker can use to compromise

communication equipment m from communication equipment l. LetΘlm = ∑
r
γr

cθ r
lm

refer to the impact metric of a communication equipment l on a communication
node m. Θlm is a measure of the cumulated impact on communication equipment
m of an attack originating from equipment l. We consider that each action of the
attacker in the system increases the probability of him being detected. Therefore, at
attack step r, the payoff is decreased by a factor of γr

c representing the uncertainty
for the attacker of getting the payoff of the rth future attack step. In this case, slm =
Θlm

∑
i
Θim

, where S = [slm]Nc×Nc .
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10.5.3 Evaluation of the Initial Risk

In this section, we present a game between the attacker and the defender to assess
the initial security risk on communication equipment before the impact of an at-
tack propagates to the electric system. To simplify notations, we assume that in this
game, both players have knowledge about the architecture of the communication
system. The general case where the information about the architecture is asymmet-
rical or incomplete can be analyzed similarly.

The security risk is generally defined as the product of the probability of an attack
occurring times its impact. Let gi refer to the impact of compromising communica-
tion equipment i and p0 and q0 two vectors referring to the strategies of the attacker
and the defender, respectively, where 0 ≤ p0

i ,q
0
i ≤ 1 ∀i. p0

i and q0
i can be viewed

as the probability of attacking and defending equipment i, respectively. The impact
of compromising an equipment will eventually depend on the amount of defense
resources allocated to defend it. Therefore, the security risk on equipment i can be
defined as rc

i (0) = p0
i (1−q0

i )gi. The challenge for evaluating rc
i (0) resides in evalu-

ating p0
i and q0

i . From the point of view of the defender, estimating the risk is closely
related to estimating the potential distribution of the attacker’s resources on system
equipment. Therefore, to best protect the system against a powerful and a strate-
gic adversary, it is important to evaluate this distribution as a result of a strategic
interaction between the attacker and the defender.

In general, attacking and defending a target i can depend not only on the im-
pact gi on i but also on the cost associated with attacking and defending i. In the
case of interdependent communication equipment i and j, an attack on equipment
i can have an impact on the cost of attacking equipment j. In what follows, we as-
sume that this cost is proportional to si j where S = [si j]Nc×Nc represents the depen-
dency between the communication equipment. Assessing p0 and q0 can therefore
be the result of analyzing a strategic game between the attacker and the defender.
In this game, the utility of the attacker can be defined as u0

a = ∑
i

(
p0

i (1− q0
i )gi−

(p0
i )

2ca,0
i gi+φ ∑

j
s ji p0

j(1−q0
j)
)
, where 0≤ φ ≤ 1 and 0≤ ca,0

i ≤ 1 ∀i. (p0
i )

2ca,0
i gi−

φ ∑
j

s ji p0
j(1−q0

j) represents the cost of attacking equipment i, where φ represents the

extent in which compromising the dependent neighbors j of equipment i can have
on reducing the cost of attacking equipment i. Similarly, the utility of the defender
can be defined as u0

d = ∑
i

(− p0
i (1−q0

i )gi− (q0
i )

2cd,0
i gi−φ ∑

j
s ji p0

j(1−q0
j)
)
, where

0≤ cd,0
i ≤ 1 ∀i. In this case, compromising the dependent neighbors of equipment i

will increase the cost of defending equipment i.
One of the challenges for evaluating p0 and q0 will be the choice of the type of

interactions that can take place between the attacker and the defender. If the attacker
scans the system to assess its defenses, his interaction with the defender can be
viewed as a Stackelberg game Γ s,0 where the leader is the defender and the attacker
is the follower. In this case, the interaction between the attacker and the defender can
be viewed as taking place in two stages. q0 can be seen as a first allocation of defense
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resources on system equipment, while the result q of the game in Section 10.4 can
be viewed as a security hardening measure to minimize the residual risk taking into
account the impact of an attack on the electric system. The interaction can also take
place in two stages when the knowledge of both players about the electric system is
incomplete. Therefore, the game in this section is played before playing the game
in Section 10.4 when players’ knowledge about the electric system is updated.

The Stackelberg game Γ s,0 can also refer to the case where the defender signals
to the attacker his allocation of defense resources on communication equipment.
When scanning the system or the defender’s signaling does not take place, the game
can be viewed as a one-shot game Γ o,0. Let ∑

i
q0

i refer to the defense budget and let

σi = (gi +φ ∑
j

si j)
2 +4ca,0

i cd,0
i g2

i . We have the following theorem:

Theorem 10.8. In the absence of constraints on the defense budget, a unique NE of
the game Γ o,0 exists and is given by:

q0
i
∗
=

(gi +φ ∑
j

si j)
2

σi
p0

i
∗
=

2(gi +φ ∑
j

si j)c
d,0
i gi

σi
∀i ∈ T c

The result in Theorem 10.8 follows directly from setting ∇ua = 0 and ∇ud = 0.
Similarly, by solving the system by backward induction, we have the following the-
orem:

Theorem 10.9. In the absence of constraints on the defense budget, a unique Stack-
elberg equilibrium of the game Γ s,0 exists and is given by:

q0,s
i =

(gi +φ ∑
j

si j)
2

σi−2ca,0
i cd,0

i g2
i

p0,s
i =

(gi +φ ∑
j

si j)c
d,0
i gi

σi−2ca,0
i cd,0

i g2
i

∀i ∈ T c

In the case of a constrained defense budget ∑
i

q0
i = K0

d , we have the following

theorem:

Theorem 10.10. If ∑
i

q0
i = K0

d < 1, the games Γ o,0 and Γ s,0 admit at most one Nash

and one Stackelberg equilibrium, respectively.

Proof. A necessary condition for a NE for Γ o,0 to exist and be unique is having

−min
k

( (gk+φ ∑
j

sk j)
2

2ca,0
k gk

)
∑
i

2ca,0
i gi
σi

≤∑
i

(gi+φ ∑
j

si j)
2

σi
−K0

d ≤min
k

(
2cd,0

k gk
)
∑
i

2ca,0
i gi
σi

. This re-

sult can be found by solvingΓ o,0 and verifying that 0≤ q0
i ≤ 1 ∀i. Similarly forΓ s,0,

we can verify that a necessary condition for a Stackelberg equilibrium to exist and

be unique is having−min
k

( (gk+φ ∑
j

sk j)
2

2ca,0
k gk

)
≤

K0
d −∑

i

(gi+φ ∑
j

si j)
2

σi−2ca,0
i cd,0

i g2
i

∑
i

2ca,0
i gi

σi−2ca,0
i cd,0

i g2
i

≤min
k
(cd,0

k gk). ��
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10.5.4 Other Parameters

In our case study, we rely on experts’ knowledge to evaluate matrices D and F,
which represent the dependency relation on communication nodes by electrical
nodes and vice versa, respectively. However, at the end of the case study in the
next section, we conduct a sensitivity analysis to evaluate errors in the outputs of
our model to estimation errors on the values of the elements of matrix F.

In our model, we introduced parameters β and τ , which represent the weight of
the initial risk on communication nodes and the weight of the diffused risk from
electric equipment to communication equipment at time t = 0, respectively, and δ
which reflects the weight of future cascading risk with respect to the value of the to-
tal risk on communication equipment. These parameters can be evaluated as a result
of the application of a risk assessment method coupled with quantitative metrics de-
rived from the attack graph of the communication infrastructure. In fact, depending
on the assessment of the efficiency of deployed defense mechanisms in thwarting
threats, the value of β and τ with respect to δ can be adjusted. In particular, by
analyzing the attack graph, we can evaluate the probability of compromising critical
communication equipment given existing defense measures in the system.

10.6 Case Study

In this section, we validate our model on a case study based on the data set of
the Polish electric transmission system at a peak load in the summer of 2004 pro-
vided in the MATPOWER computational package [29]. The data set consists of 420
generators and 3504 transmission lines. The analysis of an electric system at a peak
load is important, as it allows us to assess the maximum impact on the power grid
as a result of a cyberattack.

10.6.1 System Architecture

We made a number of assumptions on the architecture of the communication in-
frastructure that we use in our case study to assess the impact of attacks on the
power grid. In addition, to simplify our analysis, we combined a set of commu-
nication equipment in a single communication node depending on their functions,
thus reducing the number of nodes to be represented in each electric transmission
system control center. Let Y represent the Polish electric transmission system. We
assume that Y is controlled by 10 TSO (Transmission System Operator) control
centers. Each center controls 42 generators and about 350 transmission lines in a
specific area of the power grid. We assume that communication equipment in con-
trol centers are vulnerable to attacks, and the attacker has enough resources and both
players know the architecture of the system. As we study the impact of attacks on
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the power grid in the worst-case scenario, this assumption holds. A unique TSO
ICT control center is introduced to manage all communication equipment in TSO
control centers. The communication architecture of the electric transmission system
is represented in Figure 10.2.

Fig. 10.2: Example of a control network of an electric transmission system

TSO ICT Control Center. In the TSO ICT control center, four types of com-
munication equipment are represented. A Time Server synchronizes the clocks in
all communication equipment. A Domain and Directory Service manages access
controls on communication equipment. The Remote Access Application is used by
ICT administrators to access equipment remotely via secured connections. Finally,
the Configuration Management System is responsible of pushing OS and software
updates to equipment. Updates can be installed automatically or require specific
authorizations on equipment performing critical operations.

TSO Area Control Centers. We represent four types of communication equip-
ment in each TSO area control center: a SCADA HMI, a SCADA server, a SCADA
frontend, and a SCADA historian. The SCADA HMI is a human-machine inter-
face that provides a graphics-based visualization of the controlled area of the power
system. The SCADA server is responsible of processing data collected from sen-
sors in the power grid and sending appropriate control commands back to electrical
nodes. The SCADA frontend is an interface between the SCADA server and electri-
cal nodes control equipment. It formats data in order to be sent through communi-
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cation channels and to be interpreted when received by control equipment and vice
versa. Finally, the SCADA historian is a database that records power state events.

Impact Matrix. We use the algorithm presented in Section 10.5.1 to assess the
impact of stopping generators or tripping transmission lines on the electric trans-
mission system and compute matrix B. We rely on experts’ knowledge to evaluate
matrices F and D. In the communication infrastructure, we consider that each equip-
ment in a TSO control center is also the backup of an equipment in another TSO
control center. Therefore, if a communication equipment i fails, another communi-
cation equipment j takes charge of processing the load of equipment i.

In this case study, we assume that the values of the initial risk on communication
equipment have been computed, and for each communication equipment, the cost
to defend is always greater than the cost to attack. We fix β = 0.4, τ = 0, δ = 0.6,
and ψ = 0.5. Therefore, the future cascading risk has more weight than the initial
risk with respect to the value of the total risk on communication equipment.

10.6.2 Results

Figure 10.3 shows the value of risk on communication equipment in each TSO area
control center after the impact of attacks propagates in the interdependent commu-
nication and electric infrastructures. We can notice that the highest risk values in
TSO control centers are on SCADA servers. In particular, risk values on SCADA
servers in TSO 1 and TSO 2 control centers are significantly higher than risk values
on SCADA servers in the other TSO control centers.

1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

TSO Area Control Center ID

Risk

Scada Frontend
Scada Server

Scada Historian
Scada HMI

Fig. 10.3: Risk on communication equipment in TSO area control centers

In order to understand the values of risk on communication equipment, we intro-
duce the impact betweenness centrality Λ c

t of communication node t. Λ c
t represents

the weight of node t to propagate the impact of attacks originating from the com-
munication infrastructure on other communication equipment. Before giving the
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expression of Λ c
t , we introduce λi j =

+∞
∑

r=0
δ r(Hr)i j as the impact metric of a com-

munication node i on a communication node j. λi j represents the possible impact
of an attack on the communication node i to affect another communication node j
taking into account the interdependent electric and communication infrastructures.
λi j is a measure of the cumulated impact on communication node j of an attack
originating from node i. This measure takes into account all possible cascading im-
pact paths that could exist between nodes i and j. At each step r, the weight of
the payoff of the future impact is multiplied by δ , which represents in a sense the
uncertainty for the attacker of getting the payoff of the rth future step. Similarly to

Table 10.1: Nash and Stackelberg equilibriums for Γ o and Γ s

rc∗
i One-Shot game Stackelberg game

p∗ q∗ pS qS

T
SO

IC
T Time Server 2.547 0.287 0.972 0.146 0.986

Domain Server 2.885 0.183 0.972 0.093 0.986
Remote App. 2.089 0.202 0.966 0.103 0.9823

Config. Manag. 3.073 0.21 0.985 0.106 0.992

T
SO

1 SCADA Fontend 0.226 0.275 0.537 0.15 0.591
SCADA Server 0.844 0.295 0.688 0.156 0.744

SCADA Historian 0.266 0.315 0.515 0.177 0.584
SCADA HMI 0.305 0.329 0.51 0.187 0.586

T
SO

2 SCADA Fontend 0.339 0.302 0.648 0.162 0.697
SCADA Server 1.888 0.213 0.895 0.108 0.909

SCADA Historian 0.379 0.344 0.618 0.189 0.684
SCADA HMI 0.451 0.358 0.631 0.197 0.7

the proof of Theorem 10.1, we can prove that λi j = (I− δH)−1
i j . Let H(l) be the

matrix identical to H while removing elements relative to the edges of node l. The
importance λil j of a communication node l in diffusing the impact of an attack on
communication node i to reach communication node j can be computed as follows
λil j = (I−δH)−1

i j − (I−δH(l))−1
i j . Therefore, the impact betweenness centrality of

a communication node t is given by Λ c
t = ∑

r �=t
∑

s �={t,r}
λrts
λrs

where {r,s, t} ∈ T c. Λ c
t can

be thought of as a measure of the importance of node t in diffusing the impact of an
attack on any node r to reach any node s with respect to all possible ways that the
attack on r can reach s, where {r,s} ∈ T c, r �= s, and {r,s} �= t.

In our analysis, the values of risk on a communication node i are highly correlated
to ∑

j
hi jΛ c

j (correlation coefficient of 99.76% between rc∗ and HΛ c). In fact, the risk

on communication node i depends on the identities of the nodes it will eventually
impact following an attack. The more critical these nodes are in propagating the
impact of attacks in the interdependent electric and communication infrastructures,
the higher the risk value is on node i.
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Table 10.1 presents the results of the one-shot and Stackelberg games between
the attacker and the defender for the TSO ICT and TSO area 1 and area 2 control
centers.

One-Shot game Γ o. From Figure 10.3 and Table 10.1, we notice that the Time,
Configuration, and Domain Servers have the highest risk values. These equipment
are often connected to the internet which significantly increases their attack surface.
In addition, given their functions, compromising these equipment could lead to im-
portant disruptions in the communication infrastructure. As a result, at equilibrium,
the defender allocates a large amount of defense resources to protect these equip-
ment. However, this does not prevent the attacker from allocating attack resources
on these equipment considering their potential impact on the power grid in the case
of a successful attack.

The utilities of the attacker and the defender in the one-shot game are ua = 0.941
and ud =−6.151, respectively. In addition to the risk on communication equipment,
the cost to attack and defend and the existence of a backup play an important role
in the strategy of both players. In our case study, we noticed that in the case where
the values of risk on equipment in two different TSO control centers are similar,
the attacker/defender allocate more resources to attack/defend backup equipment.
Therefore, by attacking backup equipment, the attacker improves the efficiency of
his attacks and increases the probability of succeeding in his attempts to disrupt the
power system. On the other hand, the defender responds by allocating more defense
resources to protect backup equipment.

Stackelberg game Γ s. The utilities of the attacker and the defender in the Stack-
elberg game are uS

a = 0.307 and uS
d = −5.746, respectively. Compared to the one-

shot game, the defender allocates more defense resources on each communication
equipment, which forces the attacker to reduce his attack resources on these equip-
ment. In fact, an additional security investment by the defender by 2.908 reduced
the attacker’s allocated resources by 6.082. As a result, from the point of view of
the defender, the benefits of operating at the Stackelberg equilibrium outweigh the
additional cost of increasing security investments on communication equipment.

Impact of redundancies. Figure 10.4 shows the variation of total attack and
defense resources in Γ o and Γ s with respect to the weight of the existence of redun-
dancies in players’ utility functions ψ . We notice that ψ has a negative effect on the
total amount of resources allocated by the attacker. This is consistent with the fact
that increasing the weight of redundancies in player’s utilities leaves the attacker
with fewer choices to achieve a better payoff since the defender will increase the
protection of backup equipment. In addition, we notice that when the value of ψ
increases, the difference between the one-shot and Stackelberg games total defense
resources allocation decreases. However, we do not notice any significant change in
the difference of the total attack resource allocations between the two games. When
ψ approaches 1, the total amount of defense resources in the one-shot game ap-
proaches those allocated in the Stackelberg game. In this case, the defender is better
off playing a Stackelberg game, thus reducing the total amount of attack resources
allocated on communication equipment.

Figure 10.5 shows the variation of the attacker and the defender strategies on two
communication equipment in TSO area 2 control center with respect to variation of
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elements of the redundancy matrix W. We analyze the behavior of the attacker and
the defender when varying elements wi j, the fraction of the load of node i, node j
will be responsible of processing when node i is compromised. We notice that the
behavior of the attacker and the defender depends on the type of the communication
equipment. For example, the behavior of both players does not change significantly
with respect to W for critical equipment such as the SCADA server. However, this
behavior is different for the other equipment in TSO area 2 control center. Finally,
increasing wi j leads both the attacker and the defender to decrease their attack and
defense resources on communication equipment.
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Fig. 10.4: Variation of attack and defense resources with respect to ψ in Γ o and Γ s
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Fig. 10.5: Variation of attack and defense resources on TSO 2 with respect to redun-
dancy matrix W in Γ o and Γ s

Sensitivity analysis. We conducted a sensitivity analysis of the diffused risk rc∗,
the NE in Γ o, and the Stackelberg equilibrium in Γ s with respect to the values of
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the initial risk rc(0) and the elements of matrices S and F. We averaged the results
of 10000 iterations. At each iteration, we assume that a random number of elements
of rc(0) deviate from their correct values by ±10% (sign of the deviation is chosen
randomly). We repeat the experiment taking into account errors in a random number
of elements in matrices S and F.

Sensitivity to rc(0). The maximum error on the values of rc∗ was around 4%.
The attacker strategy seems more sensitive than the defender strategy with respect to
errors in rc(0) at equilibrium. In Γ o, the maximum error on the attacker strategy was
about 4.1%, whereas the error on the defender strategy was about 2.1%. However,
in Γ s, we noticed that the maximum error on the attacker strategy has increased
compared to Γ o and was about 5.1%. In the case of the defender, the maximum
error has decreased and was about 1.2%.

Sensitivity to matrices S and F. The maximum error on the values of rc∗ was
around 3.4%. We do not note a significant change in the maximum errors on the
attacker and defender strategies in the case of the one-shot game Γ o compared to the
Stackelberg game Γ s. The maximum error on the attacker and defender strategies
was about 2.1% and 1.3%, respectively.

Game with asymmetric information. We analyze two variants of the game ΓIA

with asymmetric information. In the first variant ΓNB, we assume that the attacker
does not know or does not have access to the redundancy matrix W . Let Γ o

NB and
Γ s

NB refer to the corresponding one-shot and Stackelberg games. The utility of the
attacker can be written as uNB

a (p,q) = pRc∗
D (eT−qT)−pRc

D(0)C
apT +ψpL(eT−

qT). This utility represents what the attacker assumes he will get and not necessarily
what he will eventually get by attacking the system if backups exist. Let RΓ (ua) refer
to the utility the attacker will eventually get after attacking the system in game Γ .

In the second variant ΓEB of the game, the attacker’s assessment of the matrix
W is imprecise. The source of the errors on W can originate from the attacker’s in-
complete information about the architecture of the communication system or by er-
roneous information communicated by the defender. For example, before the game
starts, the defender provides false information about the architecture of the commu-
nication system. Let Γ o

EB and Γ s
EB refer to the corresponding one-shot and Stackel-

berg games. In this case study, we assume that the attacker overestimates the backup
ratios by 10%.

In both variants of the game ΓIA in this case study, we can prove the existence
and uniqueness of Nash and Stackelberg equilibriums. Let the L1-norm ‖x‖Γ1 of a
strategy x of a player refer to the amount of resources deployed by the player in
game Γ . Tables 10.2 and 10.3 present the total deployed resources and the utilities
of players in the one-shot and Stackelberg games, respectively.

Table 10.2: Resources and utilities at the NE

‖q‖Γ1 ‖p‖Γ1 ud ua RΓ (ua)

Γ o 25.281 14.025 -6.1506 0.94146 0.94146

Γ o
NB 31.468 17.918 -6.4319 1.5463 -1.2637

Γ o
EB 24.702 13.661 -6.0991 0.89283 1.0912
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Table 10.3: Resources and utilities at the Stackelberg equilibrium

‖q‖Γ1 ‖p‖Γ1 ud ua RΓ (ua)

Γ s 28.189 7.9435 -5.7462 0.30673 0.30673

Γ s
NB 31.687 17.403 -6.3864 1.4743 -1.3503

Γ s
EB 27.877 6.8006 -5.6054 0.22681 0.34018

In the case of the game Γ o
NB, at the NE, an increase in the attacker’ resource allo-

cation by 3.893 units translates in an increase in the defender’s resources allocation
by 6.187 units with respect to Γ o. However, while the attacker thinks he is getting
a higher payoff with respect to Γ o, he is actually getting a negative payoff. In this
case, he is better off not attacking the system. The defender’s utility at the NE also
decreased in Γ o

NB with respect to Γ o. Therefore, an assumption about the nonexis-
tence of backup equipment by the attacker leads to an increase in the amount of
attack resources deployed, thus making both players worse off than the case where
they both know the architecture of the system. As a result, in case of multiple in-
teractions between the two players, if the defender signals the existence of backups
before the start of the game, he needs to weigh the additional costs incurred by
misleading the attacker with the potential benefits of this strategy in the future.

In the case of the game Γ o
EB, the attacker overestimated the backup ratios in the

communication system. As a result, at the NE, we notice that he tends to decrease
his total resources on equipment with respect toΓ o. This decrease leads the defender
to decrease his total allocation of defense resources to maintain the NE. While the
attacker thinks that his utility decreased with respect to Γ o as a result, he is actually
getting an improvement in his utility which is 3 times the improvement observed in
the defender’s utility.

We observe a different behavior for the attacker when analyzing the Stackelberg
equilibriums in Table 10.3. In Γ s

NB, the attacker significantly increased his total re-
sources deployed to attack the system with respect to Γ s. In addition, the payoff
he will eventually get is negative. Therefore, he is better off not attacking at all.
As a result, the defender can take advantage of the leading role and harden secu-
rity on communication equipment before any attack attempt takes place. When such
attack occurs, and in the absence of any knowledge about the existence of backup
equipment, the attacker spends significant resources without being able to achieve a
positive payoff.

A interesting scenario can occur when the attacker gets information about the ex-
istence of backups from different sources. For example, one of the sources provides
him with a certain configuration of backup equipment in the system. The attacker
cannot be sure in general whether he received the correct configuration. It may hap-
pen that, before the start of the game, the defender sends a public signal describing
a configuration of backup equipment in the system. In this case, the attacker can
either believe his first source or the public signal sent by the defender. Let us con-
sider the case where the first source provided a configuration where backups do not
exist in the system, while the defender communicated the correct configuration via
the public signal. Let ϒ be the belief of the attacker in the defender’s public sig-
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nal. Figure 10.6 shows the variation of the total allocated resources and utilities of
both players at the Nash and Stackelberg equilibriums in the one-shot game and the
Stackelberg game (where the defender is the leader and the attacker is the follower),
respectively. We notice that the amount of allocated defense resources is signifi-
cantly reduced when the attacker believes the defender’s signal. Therefore, in this
case, security by obscurity is not an optimal strategy for the defender who is better
off being transparent about the configuration of backups in the system. This allows
him to optimize the allocation of his resources without overspending to defend cer-
tain equipment due to the uncertainty related to the attacker’s knowledge about the
system. While this case study was restricted to one-time interactions between play-
ers, the attacker’s trust in the defender’s public signal can be more important in
cases where players can have feedbacks about the impact of their actions after each
interaction taking place between them.
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Fig. 10.6: Variation of resources and payoffs with respect to the beliefϒ

10.7 Conclusion

In this chapter, we presented a quantitative model, based on game-theoretic anal-
ysis, to assess the risk associated with the interdependency between the cyber and
physical components in the power grid. We proposed a methodology to evaluate the
values of parameters used in our model to assess the impact of equipment failures in
the power system and attacks in the communication infrastructure. The structure of
player’s utility functions, taking into account the existence of backups in the com-
munication system, allows us to characterize analytically players’ strategies at the
NE. Therefore, we are able to evaluate potential changes in the behavior of players
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to estimation errors on the values of a set of model parameters. We validated our
model via a case study based on the Polish electric transmission system.

The model presented in this chapter is an initial step to analyze the cyber-physical
interdependencies in the power grid, and future work must take into account more
fine-grained analysis of the behavior of the power grid. In addition, in this chap-
ter, we studied different types of games and solution concepts. However, it is still
challenging to provide strict guidelines on the type of game to use to analyze the
interactions between the attacker and the defender and the choice of the best solu-
tion concept to compute. Many factors can affect these choices, which include the
type of the adversary, his knowledge about the system, and the timing of his attacks.
However, in practical scenarios, when hardening the system’s defenses, analyzing
the interactions between the players as a Stackelberg game seems more reasonable
than a one-shot game. In particular, the defender is in general better off including
the reaction of the attacker to his defense strategy in his analysis, thus bounding the
potential impact of attacks in the case of a rational attacker. Finally, as we have seen
in the case study, depending on the features of the system to be protected, the de-
fender might need to disclose some information about the architecture of the system
publicly. This will ensure that the behavior of a rational attacker can be correctly as-
sessed and the computed payoffs will match the real payoffs of the players’ actions,
thus optimizing the deployment of valuable defense resources.
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Chapter 11
Security and Interdependency in a Public
Cloud: A Game-Theoretic Approach

Charles A. Kamhoua, Luke Kwiat, Kevin A. Kwiat, Joon S. Park, Ming Zhao,
and Manuel Rodriguez

11.1 Introduction

As cloud computing thrives, many organizations – both large and small – are taking
advantage of the multiple benefits of joining a public cloud. Public cloud comput-
ing is cost effective: a cloud user can reduce spending on technology infrastruc-
ture and have easy access to their information without an up-front or long-term
commitment of resources. Despite such benefits, concern over cyber security de-
ters many large organizations with sensitive information to use a public cloud such
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as the Department of Defense. This is because different public cloud users share
a common platform such as the hypervisor. An attacker can compromise a virtual
machine (VM) to launch an attack on the hypervisor which, if compromised, can in-
stantly yield the compromising of all the VMs running on top of that hypervisor. In
this chapter we evaluate the cloud user-attacker dynamic using game theory, which
models competition among rational agents. This work will show that there are mul-
tiple Nash equilibria of the public cloud game. The Nash equilibrium profile that
results will be shown to depend on several factors, including the probability that the
hypervisor is compromised given a successful attack on a user and the total expense
required to invest in security.

With software being one of the fastest-growing industries in the United States
[1], the drive for growth in software technologies can easily outpace the informa-
tion security needed to safely and reliably function. This can have far-reaching im-
plications, from infrastructure protection to the home computer system. When infor-
mation security is overlooked, the inattentiveness can be attributed to both the pro-
ducer and consumer. Information security suffering due to under investment from
both sides of the market can be counterintuitive since prevailing economic forces
normally would indicate that both sides of the market have an inventive to invest.
This can be explained by several factors, including perverse incentives, asymmetri-
cal information, and interdependency (we will elaborate on the meanings of these
terms from economics in the appropriate parts of our chapter). However, it will be
seen that interdependency underpins all these causes and influences information and
network security in general. The preliminary version of this chapter was published
in [2].

Due to the fast-paced nature and rapid expansion of new technology in the soft-
ware realm, first mover advantages can be enormous. This can create a software
creator’s philosophy where “they’ll ship it on Tuesday and get it right by version 3”
[3]. This philosophy clearly can cause suppliers to neglect many security aspects in
their product. Frequently, the producers do not even know the true security of their
own product [3]. This is especially true with emerging fields of technology, such as
cloud computing [4]. Consumers, in turn, cannot truly know what they are purchas-
ing, since many vulnerabilities created by the supplier can go undetected. Suppliers
are not solely to blame, however. The idea of “get it out now and fix it later” is an
unintended consequence that is created by the demanding aspects of consumers of
the Internet economy. Although arguments can be made for who is more at fault
for improperly secure products – the producers who produce it too quickly or the
consumers who demand it too rapidly—there are real effects that result. Growth in
up-and-coming sectors in the technology field, such as cloud computing, is severely
hampered. It is indeed a sizable problem, as fears of leakage of sensitive or confiden-
tial data pose a “significant barrier to the adoption of cloud services” [5]. This fear
prevents major industry entities from switching to cloud platform services, stifling
its growth.
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The concerns of individual organizations (hereby alternatively referred to as
users) joining the cloud hold significant merit. What is notable of the cloud infras-
tructure compared to a regular network is that public clouds exhibit a unique type of
interdependency between otherwise unassociated users. In a cloud network, an at-
tacker has the ability to propagate his attack through shared resources on the cloud
(i.e., attacking a hypervisor and then attacking all virtual machine on the shared
hypervisor). This eliminates a very important aspect of regular network security in
which an attacker would have to go through a multi-hop process in order to launch
an indirect attack on multiple, unlinked users. Thus, a public cloud at its current
stage leaves its users more susceptible to a “bad neighbor” effect where an unse-
cured cloud user might allow another to be indirectly attacked. Although our focus
is on public clouds, the same research problems may also exist in private clouds, and
our solution is also applicable. We focus on public clouds only because the problems
are more pronounced in public clouds.

In an infrastructure of virtual machines (henceforth referred to as VMs) utilizing
a common resource (usually a hypervisor), an attacker may launch an indirect attack
on a User j by first compromising the VMs of User i and then attacking User j as
a prime target. This creates a risk connection between the users of a cloud where a
“large” user (one who has a high potential loss associated with successful compro-
mise of his VM) may not be willing to use cloud services due to the risk imposed
by a “small” user (low potential loss from a successful compromise). This threat
is worsened when a small player will not invest in security measures since it could
(correctly) rationalize that an attacker will attack the larger user anyway, so investing
would be pointless. Definitely, a single user of a public cloud cannot protect itself if
other users are not doing the same. This means that a user will be protected only if
other users are also defending themselves. Given these scenarios, it is apparent that
the security of one user is affected by another’s actions on the cloud.

It is clear that the cloud platform unintentionally creates interactions between
users due to the nature of shared resources. When there are two or more rational
entities that face interdependent choices, we can use game theory to model their
behaviors, as it is indeed “the study of mathematical models of conflict and coop-
eration between intelligent rational decision-makers” [6]. A survey of game theory
applied to cyber security and privacy is available in [28].

There are several main contributions this chapter makes. Primarily, it aims to
model the behaviors that govern the actions of different users in the cloud using
game theoretical concepts. Along with modeling the choices of cloud users, it will
be shown that the “small” user imposes a negative externality or a cost imposed
unwittingly upon an otherwise uninvolved party—most notably the “larger” user.
This will, in turn, spur the large user to invest more often than the small player since
the large player is usually the prime target. The outcome is as follows: there is no
Nash equilibrium in which all the players will fully invest in security. Lastly, we
will prove that the probability that the hypervisor of a cloud is compromised given a
successful attack on a VM will determine if we have a pure or mixed strategy Nash
equilibrium.
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11.2 Background

The background is divided into five sections. Section 11.2.1 looks at the interde-
pendent nature of the critical infrastructure network in the United States and its
connection to cyberspace. Section 11.2.2 discusses game theory and its connec-
tion to interdependency. Section 11.2.3 applies game theory to network security.
Section 11.2.4 discusses interdependency in the context of cloud computing. Sec-
tion 11.2.5 evaluates interdependency and cross-side channel attacks between VMs.

11.2.1 Critical Infrastructure Defense

Generally, the US government does not interfere in the affairs or operations of the
Internet unless it pertains to national security. However, even when national secu-
rity is at stake, the government is ill-prepared for a response, as Dave Clemente
argues [7]. The main problem, he reasoned in his thesis, is that the infrastructures
critical to the operations of the United States are mislabeled and overstated due to
miscommunication at the local and national governmental levels. This causes many
infrastructures that are not critical to be labeled critical (this is nicely stated in his
aphorism: “When everything is critical, nothing is”). The problem is compounded
by tying all these infrastructures together through a dense network of interconnect-
edness, making one network of infrastructure dependent on another. The backbone
of this connected network is the Internet, which is becoming increasingly relied
upon and only furthering the deep ties these sub-networks already have. Unfortu-
nately, Clemente argues the Internet securitization process is not keeping pace with
the current expansion of the Internet due to industry pressures to sacrifice long-
term security needs for short- and mid term speed and efficiency needs. And until
the critical infrastructure is taken out of private interests (which would cause much
more harm than good), this problem will persist. And although no major solution
was mentioned by Clemente—other than something must be done—a much more
comprehensive solution was laid out by Kenneth Cukier [8].

The work done by Cukier and his colleagues addressed many of the issues raised
by Clemente. The main issue was that there is an underinvestment of security within
the critical information infrastructure of the United States. This problem was dis-
cussed at length and was cast as a symptom rather than a cause. The underinvestment
was due to many underlying factors such as informational asymmetry (companies
do not know the extent of their problem), conflict of interest (government interests
vs. private), and interdependent security (this will be further analyzed in the con-
text of game theory later). All these problems aggregate into a general deficiency of
investment in cyber security. Although this seems like an economically counterin-
tuitive outcome, it is a rational one given the constraints of various aforementioned
forces. The solution offered by Cukier was essentially an insurance market for se-
curity risk, facilitated by a favorable environment created by the government.
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Cukier goes on to state that many private companies do not know the extent of
their risk because of a reluctance to share their vulnerabilities with others. Insurance
companies will not insure the risk since they do not have access to the information to
quantify it. This creates a cat-and-mouse game where neither the insurance market
nor the companies in need of security will make the first move. This, according to
Cukier, is where the government can step in and facilitate transactions of sensitive
information as well as preserve anonymity. The creation of a beneficial environment
through incentives and information exchange can create a market for risk, which by
definition will reduce risk of infrastructure sectors (insurance premiums will dis-
courage risky business and encourage security investing). Forrest Hare [9] reflects
these sentiments as he argues that there is an underinvestment due to a conflict of in-
terests. He contends that a public-private partnership should be formed to facilitate
the transfer of information and to increase the incentives of private firms to invest in
security. This will lead to noticeable positive externalities on the public (since they
will be more secure) and everyone will be better off as a result.

Under the new Executive Order 13636—Improving Critical Infrastructure Cyber
security [10]—the White House would like to provide incentive to private compa-
nies to voluntarily adopt a Cyber security Framework. The framework is a part-
nership with the owners and operators of critical infrastructure to improve cyber
security information sharing and collaboratively develop and implement risk-based
standards. The framework’s goal is to share cyber security information such that
the US government and the private sector may better protect and defend themselves
against cyber threats and reduce cyber risk to critical infrastructure. In fact, a secu-
rity breach on a government contractor (i.e., a private company) can compromise
multiple government programs, which shows the interdependency between govern-
ment and private sector security. The White House’s Cyber security Framework is
currently under development at the National Institute of Standards and Technology.
The Cyber security Framework includes a set of standards and technological ap-
proaches to be adopted by each organization to minimize cyber risks.

11.2.2 Game Theory and Interdependency

Through globalization, firms are becoming increasingly dependent upon each other.
Thus, it would be logical to assume that their choices would reflect the actions of
their competitors and benefactors sharing a given set of information. Game theory
accurately describes these conditions, as it is poised “the study of mathematical
models of conflict and cooperation between intelligent rational decision-makers”
[6]. This makes the case for interdependency among firms, as the actions of one
affect the actions of many. The examples of interdependency observed here will
include airline security, bankruptcy, and vaccinations.

Two of the papers from the National Bureau for Economic Research (NBER)
carefully looked at multiple scenarios involving game theory and the subsequent
interdependency of the players [11, 12]. The first paper looked at discrete and mostly
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static games [11]. It was shown that with airline security, one’s own investment in
baggage security was heavily dependent on the choices of the other airline in a
simple two player game. In this analysis, one’s own security is either compromised
due to another airline’s lack of security or complemented by the reinforcement of
the rival’s airline security. It was shown that the two Nash equilibria that exist in
a simple two firm game occur when both airlines invest in security and when both
airlines do not invest in security. As stated in the previous subsection, clearly only
the outcome of both investing is desirable. However, economic costs and initial
conditions can influence the firms to not invest. With government regulation or other
methods to tip incentives toward investing, an economically-optimal situation can
be achieved with certain modifications. Similar results were found with more than
two firms, since the investing of one firm can cause multiple firms to change their
decision to invest. This creates a ‘cascade effect’ in which one firm causes another
to invest and so on. Within the same analysis [11], similar results were derived from
firm bankruptcy. If each division of a large firm, such as bank, were to undergo risk
reduction individually, the collective risk of a firm would be reduced. However, if
one branch takes exceptional risks it can cause bankruptcy for the whole firm if the
other divisions succumb to the cascading effect.

The second of the NBER papers demonstrated the cascading effect [12]. It was
further shown that the incentive to invest is heavily dependent on the cost of invest-
ing compared to the benefit derived from both investing in security. The cost could
be manipulated both by lowering the cost of investing as well as raising the cost of
not investing.

Unlike an organization having exclusive use of computational resources, the re-
source sharing that occurs in the cloud enables unforeseen exploitation of weak-
nesses by attackers. Similarly, the commonality of computational resources without
an equal commonality of user-instantiated security creates an avenue for launching
an attack on other tenants i.e., a negative externality due to interdependency and
resource sharing.

11.2.3 Applying Game Theory to Cyber Security

Sun et al. presented a model of investment security [13] where they simulated a
security game between two companies deciding whether to invest or not invest in
information security. The payoffs for each company were based on several inputs,
such as cost of investing and the possible loss from a security compromise. The most
important parameter discussed was a penalty parameter p for not investing. It was
shown that the 3 Nash equilibrium strategies produced from the game were two pure
and one mixed strategy (a pure strategy is one that is played with certainty whereas
a mixed strategy is two or more different strategies played probabilistically).The
parameter p was shown to have the ability to effect the mixed strategy outcome. This
could skew the results from what could be considered ‘normal’ and demonstrated
that an outside force such as the government could manipulate the penalty parameter
in order to achieve a more favorable outcome.
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Though the previous example would have used a central manager or network
administrator to decide if investing was the correct choice, Kamhoua et al. applied
game theory to autonomous nodes in networks [14]. They used similar constraints
to yield similar results: 3 Nash equilibria, two pure and one mixed with the mixed
strategy being an unstable equilibrium. The main distinction was instead of a penalty
parameter such as in Sun et al. [13], there was a trust parameter in which the result-
ing strategies heavily depended on. The trust parameter depended on how much the
deciding node believed that other node will participate in a security mechanism.
The main conclusion to drawn from the simulations was that it is impossible to
move from the low trust state to a high trust state through an evolutionary process.
In the replicator dynamic model [15], the final state depended entirely on the initial
condition. As will be seen, this result can have broad reaching implications, from
network security to cloud computing.

In Tamer Basar’s and Tansu Alpcan’s book [16], they explain the devastating
costs of failure to properly protect a network. They show how an attacker can in-
filtrate a network at one node, and spread to other nodes (or infrastructures) due to
contagion. This can cause a spillover effect where one node affects another and so
forth. Since one unprotected node causes risks at all the other nodes, the decision of
one affects the outcomes of many. Game theory was used to minimize the effects of
the interdependency inherent in a node network.

Basar and Tansu only applied network security in a traditional computer setting.
The rise and expansion of cloud computing has led to many questions about its secu-
rity. To raise concerns further, cloud computing’s annual growth is rapidly outpacing
regular computing methods by a significant margin [17]. In the next subsection we
will outline details on its expansion, tradeoffs in switching to cloud platforms, and
further research in cloud security.

11.2.4 Interdependency Analysis in Cloud Computing

According to the National Institute of Standards and Technology some of the ‘es-
sential characteristics’ that come with the term ‘cloud computing’ include resource
pooling, elasticity, resource optimization, network access and on-demand self-
service [18]. Though these characteristics can overcome many constraints posed by
traditional computing, the emerging field of cloud computing currently carries some
profound tradeoffs. Pearson and Benameur outlined several important drawbacks in
cloud technology such as privacy, security, and trust concerns [19]. However, these
three problems are not unrelated to each other. Security within the cloud is based
on trust associated with the provider, and privacy is based on the relevant security
issues. Trust is in turn built on the relationship of security and privacy that the cloud
operator provides.

Not all types of cloud technology has these aforementioned problems due to their
diverse nature. Zissis et al. [20] differentiate between public and private cloud struc-
tures by stating that private cloud technology is for inter-organizational operations
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(which requires no third party provider) while public and community cloud comput-
ing utilizes a third party for a variety of service platforms. Such service platforms
that are provided can include Infrastructure as a Service (IaaS), Software as a Ser-
vice (SaaS), and Platform as a Service (PaaS).

An IaaS cloud provides a user access to virtualized hardware, presented by a hy-
pervisor (e.g., VMware, Xen, KVM) and encapsulated in a VM, where the user is
able to deploy and run arbitrary software including operating systems and applica-
tions on the underlying shared hardware. A PaaS cloud provides a user a language-
specific platform (e.g., JVM, .Net) to deploy and run arbitrary applications devel-
oped using the given language on the underlying shared platform. A SaaS cloud
provides a user access to a particular application (e.g., web-based email, document
editor) where the user can use the functionality provided by the underlying shared
application. Although these different levels of cloud services can be built separately,
it is increasingly common to build a high-level cloud service using resources pro-
vided by a lower-level one (e.g., build a SaaS on resources from PaaS and a PaaS
on resources from IaaS), so that the former can benefit from the elasticity and eco-
nomics provided by the latter. Therefore, although our chapter focuses on VM-based
hosting of mission-critical applications in an IaaS setting, its outcomes can also gen-
erate an impact to other models of cloud computing (further information can be seen
in [20]). Although private clouds do share some of the benefits and drawbacks of
public clouds, the issues of privacy, security, and trust arise from mainly public
cloud platforms, as many of the users’ computing capabilities are outsourced to a
third party owner who leases the technology in a variety of ways. Therefore we fo-
cus on the public cloud; so in this chapter private cloud entities will not be discussed
further. In fact, private clouds allow users from the same organization to run their in-
ternal applications on shared resources. Therefore, in a game-theoretic sense, there
should be less conflict of interest among private cloud users since they belong to the
same organization.

As stated before, these problems that involve the public cloud are not unrelated
as they all underpin a unique relationship between the third party provider and the
cloud user. This can give rise to interdependency between the user and the operator
of the cloud. If we apply the behavior of network nodes as described in [14] to
a cloud’s VMs, then we can see that cloud computing yields very interdependent
structure. Cloud computing gives way to two types of interdependent relationships:
cloud host-to-client and cloud client-to-client.

Client-to-client interdependency is much less studied than to the above-
mentioned cloud host-to-client relationship. Although, it can still carry the negative
externalities provided by the first relationship since a security compromise is the
same no matter where it has originated. A simple example of this involves the
airline security problem found in [11] and [12] where a bomb infused baggage is
sent through an unsecured airline, which in turn reaches a heavily secure airline
because no inter-airline security screening is used (and it usually is not). Thus,
an under-secure airline can impose negative externalities onto a seemingly secure
airline. Similarities can be drawn to two clients operating in the same cloud envi-
ronment. An attacker can compromise an unsecured client and make its way to the
more secure and larger client through the hypervisor. However, unlike the airline
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interdependent security problem where a bomb can only destroy one airline, a virus
in a public cloud or computer network can compromise many VMs including the
VM in which the attack originated.

We have already seen that interdependency lays the foundation for game theory
in previous subsections. Indeed, this scenario between two clients also involves two
or more intelligent rational entities with conflicting incentives. Analogous to the
previous example, a small firm with high overhead will see little point to invest in
security since its cost to invest is most likely diminished by the fact it has lower
possible loss from being compromised. However, a larger firm has a much higher
potential loss from being compromised, especially if they carry sensitive informa-
tion (This has been seen in [4] when large firms refuse to use cloud computing be-
cause of its risks). Thus, a rational attacker might attack a smaller firm, compromise
the hypervisor, and then target the larger firm if the potential gain from a successful
indirect attack outweighed the potential gain from a direct attack.

11.2.5 Interdependency and Cross-Side Channel Attacks Between
VMs

The support for security isolations from existing cloud systems is limited. The dif-
ferent VMs sharing the same resources may belong to competing organizations as
well as unknown attackers. From the perspective of a cloud user, there is no guaran-
tee whether the underlying hypervisor or the co-resident VMs are trustworthy. The
shared resource makes privacy and perfect isolation implausible. There is a risk that
a covert side channel be used to extract another user’s secret information [21, 22].
Cross-side channel attacks between VMs are possible in a public cloud when the
VMs share the same hypervisor, CPU, memory, and storage and network devices.
Some of the resources can be partitioned (e.g., CPU cycles, memory capacity, and
I/O bandwidth). VMs also share resources that cannot be well partitioned such as
last-level cache (LLC), memory bandwidth, and IO buffers. The shared resources
can be exploited by attackers to launch cross-side channel attack. Although a multi-
tenant public cloud-computing environment provides various advantages, it also in-
troduces new challenges and concerns, especially on security issues. For instance,
the security problems on a shared cloud resource (e.g., cloud storage devices, net-
work services, software components, etc.), which are originally rooted from one of
the tenants via internal vulnerabilities or external cyber-attacks, may eventually af-
fect the service quality and security of all the tenants in the same cloud-computing
environment. Unfortunately, we cannot simply assume that there would be a sin-
gle authority who could comprehensively maintain all the possible issues, not only
technical but also non-technical, across the tenants.

Moreover, existing cloud service providers do not provide sufficient security
guarantees to their tenants. In fact, the service-level agreements (SLAs) of repre-
sentative cloud providers (e.g., Amazon EC2/S3, Windows Azure, Google Com-
pute Engine) specify only the provisions related to service up time, and there is no
mentioning of security in these SLAs at all.
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Many researchers have investigated the cache based side channel. Ristenpart et al.
[21] show that a malicious user can analyze the cache to detect a co-resident VM’s
keystroke activities and map the internal cloud infrastructure and then launch a side-
channel attack on a co-resident VM. Bates et al. [22] demonstrate the ability to
initiate a covert channel of 4 bits per second, and confirm co-residency with a target
VM instance in less than 10 seconds. Li et al. [23] proposed several techniques
to protect VMs from untrusted management VM, which includes modifying the
hypervisor to restrict access of the privileged domain to the memory mappings of
the VM, encrypting all of the memory pages and vCPU registers before they are
accessed by the privileged domain, and providing a hash value of the kernel image to
be compared with the one residing on the VM. HyperSentry [24] enables stealthy in-
context measurement of hypervisor integrity using a hardware channel to trigger the
measurement and, using the system management mode, to protect the measurement
agent’s base code and critical data.

Given the danger of a cross-side channel attacks, some users may require phys-
ically isolated resources from the cloud provider. Zhan et al. [25] introduce Home-
Alone - a defensive tool that helps users determine if their VMs have an exclusive
use of a physical machine. HomeAlone can detect the activity of an intruder’s co-
resident VM by analyzing a portion of the L2 memory cache set aside by his VMs.
The same technique can be used to detect adversarial VMs which try to extract in-
formation through the side channel due to their usual cache activity pattern. This
solution, however, requires that all the user VMs to be co-resident which is often
difficult to achieve and makes them more vulnerable to hardware and hypervisor
failures.

Approaches that dedicate a physical machine to a specific user also greatly limit
some of the benefit of a public cloud such as the on-demand dynamic resource
allocation. This means that a user can no longer purchase exactly the capacity they
require when they require it. Therefore this chapter only considers schemes in which
the VMs from different users share the same resources. We can see that a cross-side
channel attack between VMs is closely related to the problem of interdependency
when many users share the same resource that they depend on. This chapter pro-
vides a comprehensive analysis of direct vs. indirect attack, collateral damage, and
negative eternality in a public cloud. Finally, there are other prior work that have
investigated cloud security based on game theory [29, 30, 31, 32], cloud security
certifications [33, 34, 35], and Blockchain technology [36, 37, 38, 39].

11.3 System Model

Figure 11.1 illustrates our system model: A public cloud with n users that we denote
User 1, User 2 . . . User n. Each user runs several applications illustrated by Appli-
cation 1 . . . Application k in Figure 11.1. Technically, the users may run a different
number of applications without any impact on this model. The different applications
require an operating system to function and that operating system, in turn, manages
a VM in the cloud. In practice, a single user may use several operating systems or
numerous VMs.
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However, we consider the architecture in Figure 11.1 to simplify the exposition.
As it is a common practice in a public cloud, we consider that the different VMs
from the different users share the same hypervisor and hardware as in Figure 11.1.
The hypervisor can be of different types such as the Kernel-based Virtual Machine
(KVM), Xen, and VMware. The common factor is that the VMs share one or more
platforms that expose each VM user to collateral damage. We consider the possi-
bility of a random hardware failure to be a rare event and neglect that possibility in
our analysis. It is well known that the users’ security heavily depends on the cloud
provider. We are analyzing security interdependency among the users; therefore our
model considers that the attacker compromises the hypervisor in two steps. The first
step is to compromise a user’s VM, or masquerade as legitimate user to obtain a
VM in the public cloud. The second step is to use the compromised VM to attack
the hypervisor.

Fig. 11.1: System model illustration

This means that the public cloud provider takes all the necessary measures to
prevent an attacker from directly compromising the hypervisor without using a com-



264 C. A. Kamhoua et al.

promised VM. This is to separate cloud client-to-client interdependency and cloud
host-to-client interdependency. However, any model that analyzes cloud host-to-
client interdependency can be superimposed to our model. We distinguish two types
of attack depending on the extent of the consequence: a restricted attack and an un-
restricted attack. A restricted attack on User i only compromises the applications,
operating system and VM that belong to User i; the hypervisor is not affected after
a restricted attack. An unrestricted attack has consequences that can cross a VM to
reach the hypervisor, i.e. the hypervisor is compromised [21]. We consider that all
the users suffer the consequences (damage) if the hypervisor is compromised. This
is because an attacker that compromises the hypervisor can then freely compromise
all the VMs on that public cloud.

We can see that an unrestricted attack causes collateral damage. A direct attack on
User i can go through that user’s VMs to compromise the hypervisor and ultimately
affect the VM of another User j. We also refer to this as an indirect attack on j. Thus,
each user in a public cloud can suffer from two types of attack. A direct attack on a
User i is when an attacker’s primary target is User i. Furthermore, an indirect attack
on User i happens when an attack that is launched on another User j compromises
the hypervisor before compromising User i’s VM.

This system model clearly shows that cyber security in a public cloud depends
not only on a particular user but also on any other user of the cloud. This is the
problem of interdependency. Section 11.4 will analyze the interdependency problem
from a game-theoretic perspective.

11.4 Game Model

This section considers a game with three players: An attacker and two users (User i
and User j). Section 11.7 will extend this model to more than two users and multi-
ple attackers. The three players are assumed to be rational, which means that each
player has an understanding of the system and has the ability to perform the nec-
essary calculation to only take the actions that maximize his expected payoff. The
attacker has two strategies: launch an unrestricted attack on User i (Ai) and launch
an unrestricted attack on User j (A j). The attacker can only use one of the two
strategies at a time. The attacker strategy to launch an attack on User i may consist
of a multi stage process involving steps such as scanning, collecting information,
credential compromising, executing attack payload, establishing backdoor, cleaning
footholds, and avoiding firewalls. Choosing to invest is a binary decision for each
user in which the two users can either invest (I) in security to maintain a minimum
security standard and increase their protection or not invest (N), i.e., there is no par-
tial investment in security. The strategy invest may consist of multiple actions such
as system monitoring, reconfiguration, patching, updating software, and buying a
new antivirus. Investment in security requires a total expense e. A strategy profile
is a 3-tuple that indicates the action of each player. For instance, the strategy pro-
file (N, I,A j) indicates that User i does not invest (N), User j invests (I), and the
attacker launches an attack on User j(A j).
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The probability of a successful attack on a user, given that he has invested in
security, is qI , and the probability of a successful attack on a user, given that he has
not invested, in security is qN . We assume that

0≤ qI < qN ≤ 1. (11.1)

We have qI < qN because any rational user will only invest in security measures
that diminish his chance to get compromised. It can also be seen that this model
assumes that User i and j hold the same risk of being compromised if they have the
same strategy (in other words, qI is the same for both users and qN is the same for
both users). This was done in order to make the calculations that follow in the game
analysis tractable, whereas the effect on the numerical results and interpretation will
be negligible.

The probability that the hypervisor is compromised given a successful attack on a
user is denoted π . Our model considers that at least some successful attack on a VM
will reach the hypervisor or that π > 0. In fact π = 0 means that a successful attack
on a VM would never reach the hypervisor which would be a strong assumption.
We also consider that not all the successful attacks on a VM can compromise the
hypervisor (π < 1). Thus we have

0 < π < 1 (11.2)

We consider that there is a high profile User j and a low profile User i. In case of a
security breach, the high profile user incurs more loss than the low profile user. The
high profile User j’s expected loss from a security breach is L j, and the expected
loss from User i is Li. Then we consider that

0 < Li < L j (11.3)

We will show that this imbalance affects the investment decision of each player
and may yield positive and negative externalities. A positive (negative) externality
is an action of a player that transfers a positive (negative) effect onto a third party.
In fact, when (high profile) users in a public cloud invest in security to protect their
applications, operating systems, and VMs, they also protect the hypervisor which in
turn protects other users from an indirect attack or cross-side channel attack. This
yields a positive externality to other users in a public cloud. On the contrary, if a
(low profile) user chooses not to invest in security, then an easy attack path to the
hypervisor is created and thus exposes all other users operating on the hypervisor
to a cross-side channel attack. This yields a negative externality to other users in a
public cloud.

The accuracy of our model depends on the correct estimation of the probabil-
ities qI ,qN ,andπ and the loss Li and L j. We propose two different approaches to
estimation. The first approach is the QuERIES approach [26]. The QuERIES ap-
proach estimates the probabilities and costs of successful attacks by first build-
ing an attack graph represented as a partially observable Markov decision process
(POMDP). Then QuERIES uses a controlled red-team experiment and information
market mechanisms to estimate the POMDP parameters. The outcome of an infor-
mation market is a collective estimate of a quantity. The red-teams have real finan-
cial incentives for making correct predictions of the POMDP probabilities. Finally,
the POMDP’s optimum policy is calculated to derive the different probabilities and
cost.
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The second approach to estimate the relevant probabilities and cost associated
with our model is based on historical data. In fact, in October 2011, the US Secu-
rities and Exchange Commission (SEC) issued a new guidance [27] requiring that
companies disclose cyber incidents including a description of the costs, other con-
sequences, and the relevant insurance coverage. Those data can now be aggregated
to estimate the relevant probabilities and costs associated with our model.

Each user has a reward R from using the cloud computing services. The reward R
can be calculated as a function of a user’s multiple benefits of using the cloud such
as reduced spending on technology infrastructure, easy access to their information
without up-front or long-term commitment of resources, and dynamically growing
and shrinking the resources provisioned to an application on demand. While we do
not have to assume a constant R across different users as different users will have
different benefits, we will take R as the same for user i and j for simplicity in future
calculations.

We consider that a user can detect and identify a co-resident VM from another
user in the cloud via side-channel analysis as in HomeAlone [25]. Further, a skill-
ful attacker will first scan a public cloud to learn about the different users – gain-
ing knowledge of their weaknesses and vulnerabilities before launching an attack.
Also, each of the following can be made known or can be estimated about a player
[26, 27]: the expected loss from a security breach and the related probability, the
total expense required to invest in security, and the reward from using the cloud.
Therefore, our model assumes that a player’s identity, strategy, and payoff are com-
mon knowledge among the players.

Table 11.1: Game model in normal form

Attack j
User j

I N

User i

I
{R− e−qIπLi;
R− e−qIL j;
qIπLi +qIL j}

{R− e−qNπLi;
R−qNL j;
qNπLi +qNL j}

N
{R−qIπLi;
R− e−qIL j;
qIπLi +qIL j}

{R−qNπLi;
R−qNL j;
qNπLi +qNL j}

Attack i
User j

I N

User i

I
{R− e−qILi;
R− e−qIπL j;

qILi +qIπL j}

{R− e−qILi;
R−qIπL j;
qILi +qIπL j}

N
{R−qNLi;

R− e−qNπL j;
qNLi +qNπL j}

{R−qNLi;
R−qNπL j;
qNLi +qNπL j}

Table 11.1 shows the game model in normal form. We can see that Table 11.1
is a combination of two tables (top and bottom). The top table shows the game
model when the attacker targets User i. On this part of the table, User j can only
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be subject to collateral damage after a successful attack on User i and then the
hypervisor (which can happen with probability qIπ if User i invests or probability
qNπ if User i does not invest). Similarly, the bottom table shows the game model
when the attacker targets User j. Likewise, User i can only be subject to collateral
damage on this side of the table. The first row in each table shows when User i
chooses to invest while the second row shows when User i chooses not to invest.
The decision of User j to invest and not invest is represented in the first and second
columns, respectively. The payoffs in each block are represented in three lines. The
first line is User i′s payoff, the second line is User j’s payoff, and the third line is
the attacker’s payoff.

The payoffs are calculated as follows: if the strategy profile is (I, I,Ai), then both
users get the reward R and incur expense e because both of them have invested in
security. Since the attacker targets User i, he will be compromised with probability
qI (because User i has invested) and will incur a loss Li if compromised. This will
result in an expected loss of qILi. User j is not targeted but can incur a loss L j

if the attack on User i is successful (which happens with probability qI) and the
hypervisor is compromised (which happens with probability π). This is an expected
loss of qIπL j and represents collateral damage or loss from an indirect attack. The
attacker’s payoff is the sum of the expected loss of all the users: qILi +qIπL j. The
attacker’s partial payoff qILi comes from a direct attack on User i while the second
part of his payoff qIπL j is the result of an indirect attack on User j through the
hypervisor.

Taking another example, strategy profile (N, I,Ai), we can see User i has not in-
vested (N), User j has invested (I), and the attacker targets User i (Ai) (top table,
second row, first column). User i does not incur any expense e because the user has
not invested in security. However, his likelihood of being compromised increases to
qN . Moreover, although User j has invested in security, his potential losses from col-
lateral damage increases to qNπL j. The attacker’s payoff resulting is qNLi +qNπL j.
The inequality holds because of (11.1). The players’ payoffs in the other six strat-
egy profiles are calculated in a similar way. It is worthy to note that the difference
qIπL j−qNπL j = (qI−qN)πL j is a negative externality that User i imposes on User
j by not investing while User i is the prime target of the attacker.

11.5 Game Analysis

The main goal of this analysis is to derive the different Nash equilibria of the game
in Table 11.1 and understand the consequences for both users. At a Nash equilibrium
profile, no player’s payoff can be increased by a unilateral deviation. As a result, at
Nash equilibrium, each player is playing his best response to every other players’
best strategies. Therefore, the Nash equilibrium can help predict the behavior of any
rational player (i.e., that want to maximize their payoff in a game).

We observe that a user that is the prime target must be hurt before the other user
suffers any collateral damage. Recall that the prime target’s VM must be compro-
mised before the hypervisor is compromised. Thus, we consider in the remainder of
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this analysis that each user prefers to invest instead of not investing when he believes
that he is the attacker’s prime target. For User i this translates to

R− e−qILi ≥ R−qNLi ⇒
e≤ (qN −qI)Li (11.4)

Similarly, for User j this translates to

R− e−qIL j ≥ R−qNL j ⇒
e≤ (qN −qI)L j (11.5)

Also observe that investing in security is the best option for either User i or User
j if and only if the user believes that he will be the attacker’s prime target. The
attacker targets the player that gives the higher total payoff (consisting of a direct
and indirect payoff).

Theorem 1. If π ≤ π0 =
qIL j−qN Li
qN L j−qILi

, then the game in Table 11.1 admits a pure strategy

Nash equilibrium profile (N, I,A j).
If π > π0, there are three possible mixed strategy Nash equilibria depending on

the required expense for security e.

Proof. We start by analyzing the eight different pure strategy profiles for possible
Nash equilibrium.

Case 1: Both users invest,

Ua (I, I,A j)−Ua (I, I,Ai) =

(qIπLi +qIL j)− (qILi +qIπL j) = qI (1−π)(L j−Li)

Then by considering (11.2) and (11.3), we have

Ua (I, I,A j)−Ua (I, I,Ai) = qI (1−π)(L j−Li)> 0. (11.6)

Therefore, the attacker gets a higher payoff by targeting User j when both users
invest. Thus the strategy profile (I, I,Ai) can never be a Nash equilibrium because
the attacker can increase his payoff by changing his strategy to A j. This gets us
to the strategy profile (I, I,A j) which cannot also be a Nash equilibrium because
User i (not being the attacker’s prime target) can increase his payoff by changing
his strategy from I to N. This yields the strategy profile (N, I,A j) that we study in
Case 4.

Case 2: Both users do not invest,

Ua (N,N,A j)−Ua (N,N,Ai) =

(qNπLi +qNL j)− (qNLi +qNπL j) = qN (1−π)(L j−Li)
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Then by considering (11.2) and (11.3), we have

Ua (N,N,A j)−Ua (N,N,Ai)

= qN (1−π)(L j−Li)> 0. (11.7)

Thus, the attacker gets a higher payoff by targeting User j. The strategy profile
(N,N,Ai) cannot be Nash equilibrium because the attacker can increase his payoff
by changing his strategy to A j. This gets us to the strategy profile (N,N,A j) which
cannot also be a Nash equilibrium because User j, being the attacker’s prime target,
can increase his payoff by changing his strategy from N to I (because of (11.5)).
This yields again the strategy profile (N, I,A j) that we study in Case 4.

Case 3: User i invests while User j does not.
We can see from Table 11.1 that

Ua (I,N,Ai) =Ua (I, I,Ai) = qILi +qIπL j. (11.8)

Moreover,

Ua (I,N,A j)−Ua (I, I,A j) = (qNπLi +qNL j)− (qIπLi +qIL j)⇒
Ua (I,N,A j)−Ua (I, I,A j) = qN (L j +πLi)−qI (L j +πLi)

= (qN −qI)(L j +πLi)> 0. (11.9)

Note that the last inequality in (11.9) holds because of (11.1).
Combining (11.8) and (11.9), we have

Ua (I,N,Ai) =Ua (I, I,Ai)

and
Ua (I,N,A j)>Ua (I, I,A j)⇒

Ua (I,N,A j)−Ua (I,N,Ai)>Ua (I, I,A j)−Ua (I, I,Ai) .

Taking (11.6) into consideration, we have

Ua (I,N,A j)−Ua (I,N,Ai)> 0. (11.10)

From (11.10), the attacker gets a higher payoff by targeting User j. Thus the
strategy profile (I,N,Ai) cannot be Nash equilibrium because the attacker can in-
crease his payoff by changing his strategy to A j. This gets us to the strategy profile
(I,N,A j) which also cannot be a Nash equilibrium because User j (being the at-
tacker’s prime target) can increase his payoff by changing his strategy from N to I
(because of (11.5)). We come back to the strategy profile (I, I,A j) that we study in
Case 1, which yields Case 4.

Case 4: User j invests while User i does not.

Ua (N, I,A j)−Ua (N, I,Ai) = (qIπLi +qIL j)− (qNLi +qNπL j)

= (qILi−qNL j)π+(qIL j−qNLi) = f (π) .
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We can see that f (π) is a linear function with slope (qILi−qNL j) and initial
value (qIL j−qNLi). From (11.1) and (11.3), we have the slope qILi− qNL j < 0.
Thus, f (π) is decreasing. Moreover, there is a unique value of π such that

f (π) = 0⇒ π = π0 =
qIL j−qNLi

qNL j−qILi
, (11.11)

Furthermore, we have f (π)> 0 for π < π0 and f (π)< 0 for π > π0. Also,

f (1) = (qILi−qNL j)+(qIL j−qNLi)

= (qI−qN)(Li +L j)< 0. (11.12)

The last inequality holds because of (11.1).
In addition, the initial value is

f (0) = qIL j−qNLi, (11.13)

which can be either negative or positive. Observe that because of (11.2) the condi-
tion π ≤ π0 can hold if 0 < π0 < 1, and by the intermediate value theorem and based
on (11.12) and (11.13), it is only possible when f (0)> 0⇒ qNLi < qIL j ⇒

Li <
qI

qN
L j. (11.14)

Then we can distinguish two subcases (4a) and (4b).

Subcase (4a) If π ≤ π0, then we have Ua (N, I,A j)−Ua (N, I,Ai) ≥ 0. Thus the
attacker prefers to attack User j than to attack User i. User j prefers to invest than
not to invest (see (11.5)). User i, not being the attacker’s prime target, prefers not to
invest. Thus, the strategy profile (N, I,A j) is the pure strategy Nash equilibrium of
the game because no player can increase his payoff by a unilateral deviation.

Subcase (4b) If π0 < π (regardless of the sign of f (0)), we have f (π)< 0 and then
Ua (N, I,A j)−Ua (N, I,Ai) < 0. The attacker prefers to attack User i than to attack
User j. Thus the strategy profile (N, I,A j) cannot be Nash equilibrium because the
attacker can increase his payoff by changing his strategy to Ai. This gets us to the
strategy profile (N, I,Ai) which also cannot be a Nash equilibrium because User i,
being the attacker’s prime target, can increase his payoff by changing his strategy
from N to I (see (11.4)). This brings us to Case 1 above, which you recall brings
us to Case 4. Therefore, this circular reasoning tells us that there is no pure strategy
Nash equilibrium. However, there will be a mixed strategy Nash equilibrium that
we analyze next.

Mixed Strategy Nash Equilibrium
To find the mixed strategy Nash equilibrium, we set three variables α,β ,andλ

with
0≤ α,β ,λ ≤ 1. (11.15)
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α represents the probability by which the User i plays I. Since User i has only two
strategies, User i plays N with probability 1−α . Similarly, User j plays I with
probability β and plays N with probability 1− β . Likewise the attacker attacks j
with probability λ and attacks i with probability 1−λ .

By definition, User i plays a mixed strategy if and only if his payoff Ui (I) when
playing I is equal to his payoff Ui (N) when playing N. This translates to

Ui (I) =Ui (N)⇒ (1−λ )β (R− e−qILi)+(1−λ )(1−β )(R− e−qILi)

+λβ (R− e−qIπLi)+λ (1−β )(R− e−qNπLi) =

(1−λ )β (R−qNLi)+(1−λ )(1−β )(R−qNLi)

+λβ (R−qIπLi)+λ (1−β )(R−qNπLi)

⇒ λ = λi =
(qN −qI)Li− e
(qN −qI)Li

. (11.16)

(11.4) shows that 0≤ λi ≤ 1. Also,

Ui (I)<Ui (N)⇒ 0≤ λi < λ ≤ 1, (11.17)

and
Ui (I)>Ui (N)⇒ 0≤ λ < λi ≤ 1. (11.18)

This means that, if the attacks on User j are more frequent than λi(and User i is
attacked less often), then User i prefers to play N. User i plays I otherwise.

Similarly, User j plays a mixed strategy if and only if his payoff Uj (I) when
playing I is equal to his payoff Uj (N) when playing N. This translates to

Uj (I) =Uj (N)⇒ λ = λ j =
e

(qN −qI)L j
. (11.19)

(11.5) shows that 0≤ λ j ≤ 1. Also,

Uj (I)<Uj (N)⇒ 0≤ λ < λ j ≤ 1, (11.20)

and
Uj (I)>Uj (N)⇒ 0≤ λ j < λ ≤ 1. (11.21)

Further, the attacker plays a mixed strategy if and only if his payoff Ua (Ai) when
attacking User i is equal to his payoff Ua (A j) when attacking User j. This translates
to

Ua (Ai) =Ua (A j)⇒ β (L j +πLi)−α (Li +πL j)

=

(
qN

qN −qI

)
[(L j +πLi)− (Li +πL j)] . (11.22)

Given the condition in (11.16), (11.19), and (11.22), we can distinguish three
cases that we denote M1, M2, and M3 depending if λ j = λi, λ j < λi, or λ j > λi.
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Furthermore, we will see that the total expense required to invest in security e de-
termines which of the mixed strategy is used.

Case M1 If λ j = λi ⇒
e = e0 =

(qN −qI)LiL j

Li +L j
, (11.23)

then any strategy profile
{
αI +(1−α)N;β I +(1−β )N;λ jA j +(1−λ j)Ai

}
, with

α and β set according to (11.22) is a mixed strategy Nash equilibrium. Recall that
(11.15) must hold.

We can see that when λi �= λ j, the conditions in (11.17), (11.18), and (11.20),
(11.21) dictates that only one user plays a mixed strategy at a time while the other
plays a pure strategy. Moreover, the attacker chooses the value of λ that corresponds
to the user playing the mixed strategy. This consideration is critical to understand
the next two cases.

Case M2 If λ j < λi ⇒
e < e0 =

(qN −qI)LiL j

Li +L j
, (11.24)

and λ = λi, then according to (11.21), User j plays the pure strategy I. This means
that β = 1. Setting β = 1 in (11.22) yields

α = α0 =
qN (Li +πL j)−qI (L j +πLi)

(qN −qI)(Li +πL j)
. (11.25)

We can verify that 0 < α0 < 1 when π > π0 and (11.1), (11.2), and (11.3) hold.
Therefore, the strategy profile

{
α0I +(1−α0)N; I;λiA j +(1−λi)Ai

}
is a mixed

strategy Nash equilibrium. Observe that the low profile User i is more likely to
invest in this mixed strategy Nash equilibrium compared to the pure strategy Nash
equilibrium (N, I,A j). In this scenario, it is relatively cheap to invest in security as
shown in (11.24).

However, if λ j < λi and λ = λ j, then according to (11.18), User i plays the pure
strategy I. This means that α = 1. Setting α = 1 in (11.22) yields

β =
qN (L j +πLi)−qI (Li +πL j)

(qN −qI)(Li +πL j)
> 1. (11.26)

The last inequality in (11.26) holds when (11.1), (11.2), and (11.3) hold. This is
a contradiction with (11.15).

Case M3 If λ j > λi ⇒
(qN −qI)LiL j

Li +L j
< e < (qN −qI)Li. (11.27)

Note that the last inequality must hold because of (11.4). Thus according to
(11.17), when λ = λ j, User i plays the pure strategy N. This means that α = 0.
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Setting α = 0 in (11.22) yields

β = β0 =
qN [(L j +πLi)− (Li +πL j)]

(qN −qI)(L j +πLi)
. (11.28)

We can verify that 0 < β0 < 1 when π > π0 and (11.1), (11.2), and (11.3) hold.
Therefore, the strategy profile

{
N;β0I +(1−β0)N;λ jA j +(1−λ j)Ai

}
is a mixed

strategy Nash equilibrium. Observe that the high profile User j is less likely to
invest in this mixed strategy Nash equilibrium compared to the pure strategy Nash
equilibrium (N, I,A j). In this scenario, it is relatively more expensive to invest in
security as shown in (11.27).

However, if λ j > λi and λ = λi, then according to (11.20), User j plays the pure
strategy N. This means that β = 0. Setting β = 0 in (11.22) yields

α =−qN [(L j +πLi)− (Li +πL j)]

(qN −qI)(Li +πL j)
< 0 (11.29)

The last inequality in (11.29) holds when (11.1), (11.2), and (11.3) hold. This is
a contradiction with (11.15).

We have shown that the low profile User i imposes two different types of negative
externalities on the high profile User j in the cloud. If Li is low enough in such a
way that (11.14) holds and π ≤ π0, then the pure strategy profile (N, I,A j) shown
in subcase (4a) results and the attacker targets the high profile user even though
the high profile user (User j) invests in security while the low profile user (User i)
does not invest. User j is the attacker’s only target. This is the first type of negative
externality. When Li is high enough in such a way that (11.14) does not hold, then
π > π0, and the attacker is forced to play a mixed strategy. The specific mixed
strategy is determined by the total expense required to invest in security e. However,
User i produces the second type of negative externality by investing less often than
User j in all those mixed strategies. In fact, there is no Nash equilibrium in which
the low profile user (User i) plays the pure strategy I.

Furthermore, with low value of e (Case M2), it can be shown that User i’s proba-
bility to invest α0 (see (11.25)) increases with Li to the benefit of User j. Recall that
in Case M2, User j always invests. However, if the value of e is high (Case M3),
it is easy to verify that User j’s probability to invest in security β0 (see (11.28))
decreases with Li. Recall that in Case M3, User i does not invest (play N). A high
value of e causes an under investment problem in cloud security.

In summary, it is important for users to be aware of who they are sharing the
cloud with, because of the externalities inadvertently imposed onto them. It can be
seen that some users can have a direct effect on the decisions and as a result the level
of security of other users.
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11.6 Numerical Results

Our game analysis has provided a detailed exposition of our game model and its
equilibrium properties. The main variables used in calculating pure and mixed
strategies equilibria were R,qI ,qN ,Li,L j,π , and e. For our numerical analysis, we
selected eL j, and π for further discussion. These variables were selected for our
numerical analysis to most accurately convey the current attacker-user dynamic as
seen in our game analysis. We will analyze how changes in their magnitude affect
the payoffs and strategies of User j. As will be seen, a minor shift in the values of
these variables will yield major results to interpret.

11.6.1 Changes in User j’s Payoff with Probability π

In this first scenario, we will take the value of π to be variable while setting values
for all the other parameters. We will take qN = 0.5;qI = 0.1;R= 1.2;Li = 1;andL j =
10. Those values are chosen to illustrate some of the non-intuitive implications of
our game model. Using (11.11), we can see that π0 = 0.102. Furthermore, with
(11.23) we can see that e0 = 0.3636. Moreover, (11.27) gives us 0.3636 < e < 0.4.
Recall that in case of a mixed strategy Nash equilibrium (π > π0 = 0.102), the
value of e determines which of the mixed strategy Nash equilibrium (Case M1, M2,
or M3) is selected by the players. In Figure 11.2, we set e = 0.3 (e < e0) so that
once the critical value of π is reached, the mixed strategy Nash equilibrium will be
as Case M2.

We immediately see that the payoff for User j in pure Nash equilibrium is nega-
tive. When the payoff of a rational user is negative, he prefers not to use the cloud.
So, for all values of π ≤ 0.102, the User j, which is assumed to be rational in
our model, will not use the cloud because the risk of a security breach and nega-
tive externalities of using the cloud are greater than the multiple benefits that cloud
computing provides. Recall that in the pure strategy Nash equilibrium, User j is at
a disadvantage because he is the attacker’s only target.

However, at π = 0.102, there is a strategy change from pure to mixed due to
(11.11), and as at this point, the strategies shift. With a shift in Nash equilibrium
and players’ strategies, there is a concurring change in the function used as it is a
new set of equations governing the strategies. This allows for a positive payoff for
0.102 < π ≤ 0.47837 and implies that User j will participate in the cloud for the
aforementioned values of π . These results are seemingly counterintuitive since the
hypervisor has a higher probability of being compromised when User j participates
in cloud activities than when he does not. This is explained by the equilibrium shift
to a mixed strategy where the attacker is not only attacking User j but also User i.
This lowers User j’s potential loss and thus shifts his payoff upward.

Examining Figure 11.2, the payoff becomes negative again as π crosses 0.47837,
which shows that User j will again not participate in the cloud for all values of
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0.47837< π ≤ 1 since the probability of being compromised from an indirect attack
is now too high to justify cloud usage.

By setting e = 0.38 and upholding (11.27), Figure 11.3 shows the strategy shift
from pure Nash equilibrium to the mixed Nash equilibrium in Case M3. Still, for
values of π ≤ 0.102, User j will not participate in the cloud because of his negative
payoff. Although once π crosses 0.102, a change in payoff from negative to positive,
as in Figure 11.2, makes the cloud a viable option. Interestingly, the payoff does not
cross over again to become negative after this original movement of equilibriums.
This means that for all values of 0.102 < π ≤ 1, User j will participate in the cloud
if 0.3636 < e < 0.4. Another surprising result is that User j’s payoff is higher in
Figure 11.3 compared to Figure 11.2 although the required expense in security e in
Figure 11.3 is higher.
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Fig. 11.3: Changes in User j’s payoff with probability π with e > e0
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11.6.2 Changes of User j’s Payoff with the Expense in Security e

We have already examined the case of pure Nash equilibrium and two cases of mixed
strategy equilibrium dependent on the varying values of π . We will now make π a
constant while varying the levels of e. As stated before, the value of π0 = 0.102 is a
focal point between mixed and pure strategy equilibrium. In this case of π ≤ 0.102,
User j has only one (pure) strategy, whose payoff of R− e− qIL j yields the linear
function in Figure 11.4.

The “x” intercept where the payoff is 0 (at e = 0.2) is yet another turning point
where User j will no longer use the cloud. For values 0≤ e≤ 0.2, User j will par-
ticipate in the cloud because of the low overhead of investing in security. However,
for e > 0.2, the cost is too great to allow for a positive payoff, and User j will not
use the cloud. For .102 < π ≤ 1, the players’ strategies are switched, and the entire
payoff map changes as seen in Figure 11.5.

In Figure 11.5, we have set π = 0.11 > π0, and thus we can see the three different
cases of mixed strategy: Case M2 (e< 0.3636), Case M1 (e= 0.3636), and Case M3
(3636 < e < .4). The major shift from Case M2 to Case M3 occurs at the threshold
of e = 0.3636 (Case M1) due to (11.23) stated in the previous analysis. For 0≤ e <
0.3636, the change from using to not using the cloud occurs at e = 0.08606 when
the payoff becomes negative.
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When the expense e increases and 0.3636< e< 0.4, the shift in mixed Nash equi-
librium from Case M2 to Case M3 causes the payoff to change and become positive.
Thus it becomes possible for User j to profitably use cloud services. This is a counter
intuitive result from this analysis. One may expect an increase of the expense e to
never benefit User j. However, in this game-theoretic setting, User j’s payoff de-
pends not only of his own action but also on the action of User i and the attacker.
The increase of the expense e changes User i’s and the attacker’s strategy in such a
way that it has an overall positive effect on User j’s payoff. In Case M3, User j in-
vests with probability β0 as opposed to 1 in Case M2. This yields some savings that
increase User j’s overall payoff. Recall that moving from Case M2 to M3 changes
the mixed strategy Nash equilibrium from

{
α0I +(1−α0)N; I;λiA j +(1−λi)Ai

}
to
{

N;β0I +(1−β0)N;λ jA j +(1−λ j)Ai
}

. Note also that for e≥ 0.4, Case M3 no
longer applies as consistent with (11.4).

11.6.3 Changes in User j’s Payoff with His Loss from Security
Breach L j

Now that the variability of π and e—and their resulting equilibrium shifts they
cause—have been examined, we will examine Figure 11.6 and the equilibrium
changes associated with varying values of L j. Since L j is a variable in both the
equations that govern the values of π0 (Equation (11.11)) and e0 (Equation (11.23)),
we must set specific values for π and e in order to avoid a problem of double vari-
ables. For the rest of the analysis of L j, we will set π = 0.1 and e = 0.3. Recall
that we have set Li = 1. Therefore, L j is a direct indication of how much time L j is
bigger than Li.

Unlike the previous two problems in which a certain change in the discrete value
of π with a varying e could cause an equilibrium shift, there is no such change here.
Here the values of π and e are constant and L j is the unique variable. As can be
seen in Figure 11.6, any value of L j ≥ 9.8 will result in a pure Nash equilibrium
due to (11.11). Further, (11.23) shows that when 3 < L j < 9.8 the mixed strategy
Nash equilibrium profile of Case M2 will hold, Case M1 holds for L j = 3, and if
1 < L j < 3, then Case M3 will be used.

These results show that Case M3 is the “best” of all the equilibriums because
User j’s potential loss L j is so close to User i’s loss Li. An obvious result is that
User j’s payoff is maximized in Case M3 when L j is close to Li = 1. That is because
there is no imbalance between Li and L j, and thus the negative externalities are
minimized. The negative externality in a public cloud security can be mitigated by
putting VMs that have similar potential loss from a security breach in the same
physical machine. However, a surprising result is that User j’s payoff jumps up
concurrent with switching from the mixed Nash equilibrium (Case M2) to the pure
Nash equilibrium despite the fact that L j becomes substantially greater than Li. For
instance, User j’s payoff when L j = 4Li equals User j’s payoff when L j = 10Li.
This prediction is not possible without a thorough game-theoretic analysis.
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Fig. 11.6: Changes in User j’s payoff with his loss from security breach L j

11.6.4 Changes in User j’s Payoff with His Reward from Using the
Cloud

For the constant R, changing it will have a trivial effect on any of the given graphs
shown. As seen in Figure 11.7, a change in the value of R will cause the graph to
translate upward or downward depending on the new value of R selected. For this
particular instance, if the reward for using the cloud is increased from 1.2 to 4.4, the
entire payoff scheme from 1 ≤ L j ≤ 14 becomes positive since the increased level
of reward increases the payoff.
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11.6.5 Interpretation of Results

Since π is the probability the hypervisor will be compromised and an indirect attack
must be launched through the hypervisor, we use the value π to represent an esti-
mation of potential negative externalities present in the cloud. Figures 11.2 and 11.3
both show that an increasing π causes a clear equilibrium shift that changes not
only the user’s Nash equilibrium strategy but also his propensity to use the cloud
entirely. From a security and cloud provider standpoint, these are not beneficial re-
sults, as ideal conditions for a cloud user would command no equilibrium shifts
across a wide range of externality conditions. This is because no equilibrium shifts
would give a sense of stability and robustness in the user’s investment strategy.

When a user has to account for multiple strategies and adjust accordingly, it can
raise overhead (lower R), causing them to opt out of cloud services entirely. If this
assurance of strategy consistency cannot be given to the user, it only hinders in-
vestment opportunities in the cloud that otherwise could have been possible. The
numerical results only solidify the idea that negative externalities are imposed onto
cloud users.

11.7 Model Extension and Discussion

The model we have presented so far has considered two users and one attacker.
However, our model can be extended to more than two users and multiple attackers.

11.7.1 Model Extension to More Than Two Users and a Single
Attacker

All the assumptions made in our game model in Section 11.4 remain valid except
that we increase the number of users from 2 to n. The n users are denoted as User
1, User 2, . . ., User n−1, User n. Their potential loss from a security breach is
L1,L2, . . . ,Ln−1,Ln, respectively. We consider that L1 ≤ L2 ≤ . . .≤ Ln−1 ≤ Ln. The
attacker targets one of the n users. A similar analysis as above shows that the game
admits a pure strategy Nash equilibrium if Ln is substantially greater than Ln−1. In
this Nash equilibrium, User n is the attacker’s only target. The attacker plays the
strategy An, User n invests (plays I) while all the other users do not invest (play N).
Regarding the threshold value of π below for which we have a pure strategy Nash
equilibrium, (11.11) translates to

π∗0 =
qILn−qNLn−1

qNLn−qILn−1
. (11.30)
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As before, the game admits a multitude of mixed strategies if π > π∗0 . The ex-
pense e will determine the specific mixed strategy the players choose.

11.7.2 Model Extension to More Than Two Users and Multiple
Attacker

In a game with multiple independent attackers, each attacker maximizes his own
payoff. If π < π∗0 , each attacker plays the strategy An, and User n invests (plays
I) while all the other users do not invest (play N). However, the game complexity
increases if the attackers collude by coordinating their action and sharing the payoff.
Nevertheless, an increase in the number of attackers increases the likelihood that a
given user can be targeted by one attacker and eventually compromised. As the
number of attackers increases, the cloud environment becomes more hostile, and
more users will be forced to invest (because of (11.4) and (11.5)).

Another consideration is the users’ payoff structure. There are applications in
which a user incurs the same loss after being compromised by a single attacker or
multiple attackers, e.g., information integrity can be lost when either a few bits or
when many bits of a data item become useless.

11.8 Conclusion

The lack of an accurate evaluation of the negative externalities stemming from a
high profile organization using the cloud could result in the refusal of such orga-
nizations from joining a public cloud in spite of the many advantages that cloud
computing offers. The negative externalities of using a public cloud come from the
fact that the users are not perfectly isolated from one another. They share common
resources such as the hypervisor, the last-level cache (LLC), memory bandwidth,
and IO buffers that cause interdependency.

This research has used game theory to provide a quantitative approach to perform
a cost-benefit analysis of cloud services while taking into account the action of other
cloud users and their different potential losses from a security breach. Our model
takes into account the potential collateral damage from an indirect attack and cross-
side channel attack. The game has multiple possible Nash equilibria that can be in
pure or mixed strategy. Our research finds that an increase in the probability that the
hypervisor is compromised, given a successful attack on a user’s VM, may force
the small cloud participant to protect their VM and thus increases the overall cloud
security to yield better outcome to high profile users.

Additionally, this research has also shown that there is an intricate relationship
between the total expenses required to invest in security and a high profile user’s
payoff. A change in security expense changes the game Nash equilibria that the
players adopt with some of those equilibria being more desirable to high profile
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users. Most importantly, it was discovered that present cloud user-attacker dynamic
causes equilibrium shifts to occur with only relatively minor changes in variables.
At the raw implementation of this game model, the cloud is not conducive to users
who seek stable results that are safe and secure across many factors.

According to Ross Anderson, information security is hard because defenders
have to defend everywhere and attackers could attack anywhere [3]. This leads to
many problems for network defenders, network users, software used in critical in-
frastructures, small businesses, or even the US government. Moreover, these security
problems are exacerbated when using cloud computing. By utilizing game theory,
we can more accurately describe the nature of the attacker and his motives. How-
ever, sometimes our best friend can be our worst enemy. Other players’ behaviors
can be seemingly erratic and even counterintuitive, which can be very dangerous
when your decisions are based on the decisions of others. With game theory, we can
quell some of this contradictory behavior that is characteristic of network security
and bring clarity to this complex topic.
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Chapter 12
A Risk Management Approach for
Highly Interconnected Networks

Stefan Schauer

12.1 Introduction

Today, critical infrastructures together with their utility networks are maintaining the
backbone supply chains of modern society like the electrical power production and
distribution, water and gas supply, as well as telecommunication networks, among
others, operational. These critical infrastructures apply physical and cyber-based
systems to monitor and control their underlying utility networks. Hence, these orga-
nizations are heavily relying on information and communication technology (ICT)
as well as supervisory control and data acquisition (SCADA) systems for providing
their services. Despite the fact that utility providers operate these interconnected
networks, most of today’s risk management tools only focus on one of these net-
works.

Over the last years, utility providers have become more and more the target of
hackers, cyber criminals, and cyber terrorists, and the number of attacks on utility
providers has increased [34]. In general, recent studies show that social engineer-
ing and malware are the most successful attack types [30]. Such attack vectors are
used when deploying random attacks for opportunistic profit, e.g., the spread of ran-
somware, as it has been shown during the recent global ransomware infections with
WannaCry [5, 24] and (Not)Petya [25, 8, 16] in 2017. Further, social engineering
or phishing are often applied when planning targeted attacks, i.e., advanced persis-
tent threats (APT) attacks, on organizations to get a foothold within their system.
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In particular, APT attacks on utility providers might have huge effects on the gen-
eral operation of their utility networks, as recent events have shown in the Ukraine
[48, 23, 10, 9] and Japan [38, 20] as well as in earlier incidents (cf. Chapter 13 for
more details on APT attacks). Therefore, protecting and assuring the security of a
utility provider’s ICT and SCADA infrastructure is of the utmost importance for
maintaining the availability of its service.

In the context of protecting utility networks and their connected ICT and SCADA
systems, risk management has become a core duty in critical infrastructures. In the
USA, the need for protection of critical infrastructure has been recognized, and the
National Infrastructure Protection Plan [21], which is introduced to help critical
infrastructure communities, develops technologies, tools, and processes that address
near-term needs for the security and resilience. In Europe, the “Directive on security
of network and information systems” (also known as the NIS Directive) [11] was
adopted by the European Parliament. The objectives of the NIS Directive are to
ensure a high level of network and information security, to improve the security of
the Internet and the private networks, and to improve properness and cooperation
between the member states of the EU.

12.1.1 Problem Overview

When looking at utility providers and the networks they are operating, we see that
these networks rely on a high integration and a heavy interrelation among each other.
This becomes more visible when considering the three main network layers within
utility providers (cf. also Figure 12.1):

• the utility’s physical network infrastructure, consisting of, e.g., gas pipes, water
pipes, or power lines;

• the utility’s control network including SCADA systems used to access and main-
tain specific nodes in the utility network;

• the ICT network, collecting data from the SCADA network and containing the
organization’s business logic

In more detail, the individual systems in the SCADA network are controlling the
physical systems in the utility network, e.g., switching pumps on and off or admin-
istrating entire electrical substations. Further, SCADA systems are communicating
with the ICT network, reporting status updates of the utility network or submitting
monitored data required for billing. Due to these interconnections and communica-
tion pathways, an incident in one network might affect not only the network itself
but might also have cascading effects on several other networks as well.

Certainly, most utility providers are aware of these interrelations between their
networks and the potential risks caused by them. They are implementing security
and risk measures according to state-of-the-art frameworks and guidelines to in-
crease the security and be prepared for incidents. Nevertheless, current risk manage-
ment frameworks like the ISO 31000 [27], the ISO/IEC 27005 [28], the NIST
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SP800-30 [46], and the COBIT 5 for Risk [29] are mostly a matter of best prac-
tices. These standards and guidelines are compiled by experts and are tailored to
classical business sectors and companies. Hence, they cover best practices but are
not based on a well-defined basis.

Fig. 12.1: Illustration of the interconnected networks operated by a utility provider

Additionally, the abovementioned standards and guidelines are often focusing
only on one specific topic. For example, the ISO/IEC 27005 is specialized on the
risk assessment for ICT systems and networks, the general focus of COBIT 5 for
Risk lies on the business processes, and the ISO 31000 is deliberately generically de-
signed to be applicable to organizations in a broad number of different fields. More-
over, there exist specific risk (or safety) policies for the utility networks, which are
governing specialized issues within these networks. Therefore, the special require-
ments of utility providers (or critical infrastructures in general) with regard to the
highly interconnected nature of their network infrastructure are not accounted for
explicitly.

12.1.2 Hybrid Risk Management

With the Hybrid Risk Management (HyRiM) process we are describing in this chap-
ter, we want to tackle in particular the two main shortcomings of standard risk
management frameworks mentioned above. First, our approach is focusing specifi-
cally on the sensitive interconnection points between different networks operated by
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a utility provider. Moreover, besides the three network layers mentioned above (i.e.,
utility, SCADA, and ICT network), we are also including the human factor and the
social interrelations (i.e., the social network) between employees in our considera-
tions. Hence, by taking the technical as well as the social and organizational aspects
within a utility provider into account, we are choosing a holistic or “hybrid” view
on these networks and thus refer to our approach as “Hybrid Risk Management.”

Second, we are setting the HyRiM process on a well-defined mathematical basis
instead of a best practice approach. In this connection, game theory is our method
of choice, since it provides feasible concepts to describe the combating situation
between an attacker and the organization’s security officer. Further, it particularly
improves the process of risk mitigation, which is only dealt with marginally in most
of the standards. We will describe how the HyRiM process implements a risk min-
imization algorithm resulting in an optimal defense strategy against worst case sce-
narios. As an additional advantage, the game-theoretic framework integrated in the
HyRiM approach is based on an extension to standard games, which facilitates the
use of distribution-valued payoffs to model the non-deterministic behavior within
the interconnected networks [39, 41] (cf. also Chapters 2 and 3 for details on the
game-theoretic framework).

The HyRiM Process is one major output of the FP7 project HyRiM (“Hybrid
Risk Management for Utility Networks”) [1]. In this project, we have also been de-
veloping novel concepts and tools to identify and assess cascading effects within a
complex network infrastructure. These tools have been integrated into the HyRiM
process as an example on how to obtain the required results for the individual pro-
cess steps. We will describe where the respective tools might be applied and how
their results can be used in the overall process.

12.1.3 Chapter Outline

In the following Section 12.2, the general structure of the HyRiM process is de-
scribed. The seven steps, which build up the HyRiM process, are sketched in the
Sections 12.2.1 to 12.2.7. Section 12.3 summarizes several concepts, algorithms,
and tools, which are used in the individual steps of the HyRiM process. Therein,
precise methods like simulation methodologies or the game-theoretic framework as
well as “softer” techniques like ethnographic studies are illustrated. A conclusion
wraps up the main strengths and opens gaps of the HyRiM process.
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Fig. 12.2: Illustration of the two-tier structure of the ISO 31000 risk management
process

12.2 The HyRiM Process

The Hybrid Risk Management process (in short HyRiM process) presented here is
based on and compliant with the general ISO 31000 process for risk management
[27] and most standards referencing the ISO 31000, for example, the ISO 27005 for
risk management in ICT security [28] and the ISO 28001 for supply chain security
[26]. The process is particularly suited for organizations operating highly intercon-
nected networks at different levels, such as utility providers or critical infrastructure
operators. In short, the generic risk management process of the ISO 31000 frame-
work (as depicted on the right side in Figure 12.2) is adopted, and each step of the
process is extended to address recurring challenges within interconnected networks
(cf. Figure 12.3 below for an overview of the individual steps). Therefore, tools and
concepts developed in the HyRiM project [1] are used, which cover different social
and technical analysis techniques and simulation methodologies that facilitate the
risk process (a mapping of these tools and concepts can be found in Figure 12.9 in
the following Section 12.3). Due to the direct relation to international standards, the
process can be integrated into existing risk management processes already running
in the aforementioned organizations. Further, this makes it applicable in various op-
erational areas.
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Fig. 12.3: Illustration of the HyRiM process including all sub-steps

The general framework applied in the HyRiM process to model the interplay be-
tween different networks is game theory. In this context, the process takes advantage
of the sound mathematical foundation of game theory. By falling back onto a zero-
sum game and a minimax approach [35], a precise model of an adversary’s inten-
tions and goals is not necessary. Moreover, the game-theoretic framework [40, 39]
at the core of the HyRiM process allows modeling the intrinsic uncertainty and ran-
domness encountered in the real-life application of interrelated (utility) networks.
This is realized by collecting data describing consequences and likelihoods in dis-
tributions and working with these payoffs in the game [41, 42].

In the following subsections, we will describe in detail the specific steps of the
HyRiM process. We will break up the five main steps of the process into more
fine-grained sub-steps and highlight the core activities, inputs, and outputs of these
sub-steps. More detailed information on potential tools supporting the activities in
the respective steps are provided later on in Section 12.3.

12.2.1 Establishing the Context

The HyRiM process starts by defining the objectives which should be achieved and
attempting to understand the external and internal factors that may influence the
goal. In detail, the information about SCADA and IT communication networks (e.g.,
a network architecture diagram), components of the utility network (e.g., a detailed
architecture of the physical utility network layer), industrial control functionalities,
and information assets are taken into account. Besides the technical aspects, the
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HyRiM process is designed to integrate also soft factors, e.g., the social and organi-
zational aspects, into the risk management (cf. Figure 12.4).

Fig. 12.4: Illustration of the first step “Establishing the Context”

The first sub-step, “External Context,” deals with all external influences and
stakeholders, which impinge on an organization from the outside. These relations
between the external stakeholders and the organization can be of different type. For
example, an external company might provide some resources or services for the or-
ganization or a regulatory body is enforcing a legal framework, which defines how
the organization’s processes have to be designed.

Extending the information from the external context, all interrelations and in-
terdependencies among the internal structures within an organization are described
in the second sub-step “Internal Context.” This includes technical, organizational,
and social aspects and describes communication channels as well as dependencies
between different technical and social networks.

The third sub-step, “Context of the Risk Management Process,” inspects the rel-
evant parts of the organization, which are covered by the risk management pro-
cess. Whereas the previous sub-steps focus more on assets and their interrelations,
this sub-step relates to the organization’s management structure. These can include,
for example, the organizational units under examination, the depth of the risk as-
sessment process, or the resources and responsibilities required for the risk assess-
ment process. The external and internal context together with the context of the
risk management provides a detailed picture of the environment relevant for the risk
management process.

Finally, some meta-information about the risk management process itself is re-
quired. This information is collected in the last sub-step “Criteria of the Risk
Management Process” and includes the relevant criteria to evaluate the significance
of a specific risk. These criteria can be based on the general characteristics describ-
ing the organization (e.g., size, revenue, legal form, etc.), as well as the organiza-
tion’s resources, objectives, and goals. This information will influence, for example,
how the likelihood or the impact of an event is characterized or how the limits of the
risk levels are defined during the later step “Risk Analysis” (cf. Section 12.2.3).

12.2.2 Risk Identification

Risk identification involves the application of systematic techniques to understand
a range of scenarios describing what could happen, how, and why. Therefore, the
information on organization’s infrastructure relevant for the risk assessment pro-
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cess coming from the previous Step 1 “Establishing the Context” is required. This
includes technical assets, organizational roles, and individual personnel as well as
their interdependencies. Gathering this information is done in three sub-steps of the
process: “Assets Identification,” “Threat Identification,” and “Vulnerability Identifi-
cation.” Based on that, potential vulnerabilities and threats can be identified (cf. Fig-
ure 12.5).

Fig. 12.5: Illustration of the second step “Risk Identification”

The first sub-step, “Asset Identification,” looks at all the relevant assets of the
organization’s infrastructure based on the internal context discussed in the previous
Step 1. In this context, an “asset” is anything of value to the organization (cf. also
ISO 27005 [28]). Hence, an asset can be, for example, a part of the utility network,
a cyber-physical system in the ICT or SCADA network, or an employee of the
organization when considering at the social network. These assets and their different
types of interconnections (e.g., technical, logical, social, etc.) need to be modeled
using a proper representation, most conveniently, an interdependency graph.

Based on this list of relevant assets, a list of potential threats affecting the organi-
zation’s infrastructure, i.e., the identified assets, is collected in the second sub-step
“Threat Identification.” The information on these threats can be gathered from exter-
nal sources as well as internal sources. Such sources can be existing threat catalogs,
for example, provided by the German BSI [6], online threat databases, or simply
data collected on incidents which already happened to the organization in the past.
An additional but maybe more subjective way to collect threat information is to use
knowledge from (internal or external) experts.

In parallel to the collection of threat information, data on all vulnerabilities of the
relevant assets is gathered in the third sub-step “Vulnerability Identification.” Sim-
ilarly to the threat information, data on vulnerabilities can also be found in online
vulnerability databases like the National Vulnerability Database (NVD) [3] main-
tained by the National Institute of Standards and Technologies [2], closed (area-
specific) discussion forums or expert knowledge. In general, most technical assets
(e.g., software or hardware) have vulnerabilities due to a poor configuration or pro-
gramming errors. This concept can also be extended to social assets (like employees)
when thinking of social engineering attacks.
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12.2.3 Risk Analysis

Risk analysis is concerned with developing an understanding of each risk, its conse-
quences, and the likelihood of occurrence. In general, the level of risk is determined
by taking into account the present state of the system, existing controls, and their
level of effectiveness. Whereas in a classical risk analysis approach both the con-
sequences and the likelihood of an incident are aggregated into a single value, in
the HyRiM process, both are described by distributions or histograms including all
the relevant information coming from different sources. In general, the more in-
formation is available to build up these distributions, the higher the quality of the
results. Nevertheless, since most of the time only scarce information about potential
threats and vulnerabilities is available within an organization, the HyRiM process is
designed to work also with limited information (cf. Figure 12.6).

Fig. 12.6: Illustration of the third step “Risk Analysis”

Carrying on from the previous step, the connection between the identified assets,
threats, and vulnerabilities is determined in the first sub-step “Threat Scenario Defi-
nition.” This connection is understood as the following: a particular threat affecting
a specific asset within the organization’s infrastructure can only be effective if the
asset has a vulnerability relevant for the specific threat (i.e., which the threat can
exploit). Every such combination of threat, assets, and vulnerability is referred to
as threat scenario. The first sub-step delivers a fine-grained list of potential threat
scenarios as an output.

In the next step, “Consequence Analysis,” the potential impacts of each single
threat scenario are evaluated. This can be supported by quantitative results coming
from a structured mathematical analysis, e.g., using percolation theory (cf. [32, 33]),
a co-simulation approach (cf. [14]) or an intrusion simulation (cf. [4] and Chapter 6
as well). Additionally, the consequences can also be estimated full qualitatively by
experts from within the organization or external advisors. To include all information
gathered from the simulations as well as the experts, the consequences are repre-
sented as histograms or, more general, as distribution functions.

Similarly to the “Consequence Analysis,” the likelihood for a specific threat sce-
nario to occur is estimated in the last step “Likelihood Analysis.” In comparison to
the structured analysis of the consequences, determining the likelihood of an event
is more vague since it is difficult, in particular in the context of ICT-related threat
scenarios, to assign a specific number to that. Therefore, the HyRiM process is based
on a fully qualitative estimation process carried out by experts from within the orga-
nization or external advisors. Nevertheless, information from external sources, e.g.,
reports containing statistical information on the likelihood of specific events, is used
to support the decision-making. To be consistent with the consequence analysis, the
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likelihoods are represented as histograms or, more general, as distribution functions
to include all information gathered from the experts.

12.2.4 Risk Evaluation

Risk evaluation involves making a decision about the level or priority of each risk by
applying the criteria developed when the context was established. In classical risk
management approaches, a cost-benefit analysis can be used to determine whether
specific treatment is worthwhile for each of the selected risks. The game-theoretic
model applied in the HyRiM process allows an optimization according to several
tangible and intangible goals (i.e., not only costs but also employee satisfaction or
social response). Nevertheless, the result can be visualized in a common represen-
tation (i.e., a risk matrix) to provide a high recognition value among the top-level
management. Toward creating this risk matrix, three specific steps are required in
the HyRiM process: “Risk Selection,” “Risk Ranking,” and “Risk Level Determina-
tion” (cf. Figure 12.7).

Fig. 12.7: Illustration of the fourth step “Risk Evaluation”

After all threat scenarios have been evaluated in the previous step “Risk Anal-
ysis,” not all of them need to be considered in the overall risk management. Some
of them might not be significant enough according on the organization’s risk crite-
ria (as described in “Establishing the Context”; cf. Section 12.2.1); others simply
might be out of the scope of the process. The choice which of the threat scenarios
are further evaluated is made in the sub-step “Risk Selection”.

In the second sub-step “Risk Ranking,” the remaining relevant threat scenarios
are ordered according to their respective consequences and likelihood. In general
risk management approaches, this is done based on the combination of their es-
timated consequences and likelihoods, following the commonly accepted formula
risk = likelihood × consequences [37]. Nevertheless, in the HyRiM process, the
consequences as well as the likelihood of each threat scenario are represented by
distributions or histograms (cf. Section 12.2.3 above), and therefore finding an
order is not trivial. To solve this problem, the preference relation � is applied
[40, 39, 41, 42]. The sub-step outputs two ordered lists, one for the consequences
and one for the likelihood, ranking the threat scenarios starting with the least severe
consequences and highest likelihood, respectively.

Based on these two ordered lists, a risk matrix together with an overall priority
list of the most important threat scenarios is created in the third sub-step “Risk Level
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Determination.” The threat scenarios are put into the risk matrix according to their
relative position in the two lists. Hence, the top-ranked risks, i.e., the risks having
the most severe consequences together with the highest likelihood, are located at
the upper right corner of the matrix. Based on this risk matrix, a priority list of all
identified risks can be created, starting from the upper right corner.

It has to be pointed out that in this approach all the identified threat scenarios
are brought in relation to each other. However, the resulting risk matrix does not
relate the individual threat scenarios to an absolute likelihood or impact scale, re-
spectively, which might exist in the organization. Observe that the description of
a threat by a probability distribution over its impact basically admits that a threat
can have impacts of different magnitudes that occur with different likelihoods. The
collection of all these possibilities makes up the loss distribution (the same goes for
the probability distribution over the likelihood of a specific threat scenario to take
place). The two-dimensional ranking of threats in risk matrices boils down to a “lin-
ear ordering” of loss distributions that describe each threat (we simply combine the
likelihood and impact in one compound object that is the loss distribution).

However, it is not difficult to establish the more familiar (two-dimensional) risk
matrices as well. For these, we merely need an individual (and independent) as-
sessment of impacts and likelihoods (as usual) but compile data pairs of (impact,
likelihood) values into two empirical distributions. We can then directly order these
according to the stochastic order of Chapter 2 or confine ourselves to numbers by
taking average impacts and likelihood values from the data. Either way, putting them
in order on the vertical and horizontal axis and labeling the so-defined point in the
2D-plane with a threat, we end up with the common and familiar risk matrix repre-
sentation. Nevertheless, we are not going further into detail on this topic because it
is out of the scope of this chapter.

12.2.5 Risk Treatment

Risk treatment is the process in which existing controls are improved and new con-
trols are implemented. In classical risk management approaches, the aim is to apply
these new or improved controls to reduce either the likelihood of a specific threat
to occur or the magnitude of the consequences. In classical risk management ap-
proaches, the decision about which controls to implement is often a subjective one
carried out by the risk manager. On the contrary, the goal in the HyRiM process is
to identify the optimal set of controls to reduce the maximum damage that can be
caused by an attacker to a minimum. In this context, the optimality of the result-
ing controls is given due to the game-theoretic framework applied in the approach
[40, 39]. Following this game-theoretic approach, the sub-steps “Attack Strategies”
and “Defense Strategies” are carried out to obtain the payoff matrix. Further, the
sub-steps “Mitigation Actions” and “Implementation Strategy” describe how the
optimal solution is implemented in the organization (cf. Figure 12.8).
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Fig. 12.8: Illustration of the fifth step “Risk Treatment”

The attack strategies identified in the first sub-step are based on the threat sce-
narios defined in the previous step “Threat Scenario Definition” (cf. Section 12.2.3).
In more detail, any relevant combination of asset, threat, and vulnerability (as de-
scribed above) represents a potential attack strategy for the game. If an adversary
follows these attack strategies, the respective risks are manifested within the or-
ganization with the respective consequences identified in the step “Consequence
Analysis” (cf. Section 12.2.3).

Accordingly to these attack strategies, related countermeasures are defined in
the second sub-step “Defense Strategies.” Therefore, a number of activities that can
be carried out by the organization to mitigate the respective risks are collected. In
general, the effect of these defense strategies can be diverse: such a strategy can
reduce the damage done to a specific asset, cut down the (cascading) consequences
of the risk, e.g., by lowering the probability to propagate through the networks or
the number of connected (and thus affected) assets, or let a risk vanish completely,
e.g., by closing specific vulnerabilities.

In the third sub-step “Mitigation Actions,” the attack and defense strategies are
used to build up the payoff matrix for the game. The payoff for each combination
of attack and defense strategy is computed by rerunning the consequence analysis
(cf. Section 12.2.3) for the organization’s asset structure assuming that the specific
defense strategy has been implemented. As discussed in the sub-step “Consequence
Analysis” above, different methods (e.g., simulations based on percolation theory,
co-simulation or physical intrusion, as well as expert interviews) can be used to
get to the respective results. The derived payoff matrix is then fed into the game-
theoretic framework, leading to a threefold output: the first result is an optimal se-
curity strategy for the defender, pointing at the optimal choice of defense strategies,
the second is an optimal attack strategy for the attacker identifying the neuralgic
assets within the organization, and the third is the maximum damage that can be
caused by an adversary.

The final sub-step implements the optimal mitigation actions provided by the
game-theoretic framework. In general, the optimal security strategy is a mixture
of several of the identified defense strategies. This mixture indicates the frequency
(or probability) at which these activities have to be performed. To reflect that in
the organization’s day-to-day business, these mitigation activities have to be carried
out by the organization’s employees precisely following the calculated frequencies
(or probabilities). A deviation from the optimal security strategy might give the
adversary an advantage and allow him to cause more damage than predicted by the
game-theoretic framework.
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12.2.6 Communication and Consulting

Concurrent with the five main steps of risk management (described in Sec-
tions 12.2.1 to 12.2.5) runs the Communication and Consultation step. Therein,
the main and partial results of the process are communicated to the respective
stakeholders in the underlying organization (as identified during the Step 1 “Es-
tablishing the Context”). This is a crucial part of the overall process, since it is
of high importance that the stakeholders, in particular the organization’s top-level
management, are kept well-informed about the results from the process. Therefore,
each output of this step needs to be tailored to its target group (e.g., the technical
management, top-level management, etc.) such that the results and also their impli-
cations are understood by the recipients. It is important to maintain awareness for
the risk management activities, since their continued support for the risk manage-
ment process is crucial for the overall risk management framework (as described in
beginning of Section 12.2).

The main results from each individual step of the risk management process repre-
sent the general inputs for this step. Among others, these include the list of potential
threats and vulnerabilities determined in Step 2 of the process (i.e., “Risk Iden-
tification”; cf. Section 12.2.2), the threat scenarios together with their respective
potential consequences, and likelihood of occurrence, which have been identified
in Step 3 (i.e., “Risk Analysis”; cf. Section 12.2.3), the risk matrix and the prior-
itized list of all risks as created in Step 4 of the process (i.e., “Risk Evaluation”;
cf. Section 12.2.4) as well as the list of potential attack strategies and the list of
potential defense strategies, which are the inputs for the game in Step 5 (i.e., “Risk
Treatment”; cf. Section 12.2.5).

The main outputs of the game, i.e., the list of critical nodes based on the optimal
attack strategy, the sequence of mitigation actions implementing the optimal defense
strategy, and the worst case risk level, are also the main outputs of this step. They
are coming directly from the game evaluated in Step 5 (i.e., “Risk Treatment”; cf.
Section 12.2.5).

12.2.7 Monitoring and Review

Besides the “Communication and Consultation” step described above, a second step
running in parallel to the five main steps of risk management is “Monitoring and Re-
view.” Although the outputs of the game-theoretic model are optimal in the context
of the equilibrium of the given attack and defense strategies, they are only as good
as their inputs. Hence, the results from the various steps of the risk management
process need to be evaluated after a certain amount of time. This allows the risk
manager to verify whether the mitigation actions coming out of the risk treatment
are still effective or not. In other words, this step implements a constant feedback
loop into the HyRiM process.

Some modifications in the general organizational structure or the network inter-
connections, which are described in Step 1 (i.e., “Establishing the Context”; cf. Sec-
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tion 12.2.1), can be identified quite easily. Other information, for example, whether
new threats or vulnerabilities are relevant for the inspected infrastructure, or if the
likelihood and/or consequences for existing threat scenarios have changed, might
influence the output of the game-theoretic model drastically. Therefore, all results
need to be revised either by a simple checkup of the organization’s infrastructure, by
a new iteration of expert interviews, or by rerunning the simulations. These activities
could be quite expensive, but even small differences can affect the equilibrium of
the game. Without a review process, the security officer might not be aware that the
optimal defense strategy has changed due to new initial conditions and an adversary
might be able to cause additional damage.

This step produces a report on the effectiveness of the mitigation actions and
changes in the overall scope of the risk management process as a main output. From
a management perspective, this report serves as the basis for the next iteration of the
risk management process (cf. Figure 12.9).

12.3 Supporting Tools and Concepts

12.3.1 Ethnographic Studies

To follow a structured and in-depth risk management process as the HyRiM process
described here, it is important to have a precise overview on the systems, organi-
zational units, and people involved in the areas which should be examined. The

Fig. 12.9: Overview of the HyRiM process including relevant tools for each process
step
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technical aspects, like network diagrams, the ICT, ICS, or SCADA systems running
within the organization as well as the software installed on these systems, are of-
ten more or less documented. Although in the ICT world such documentation (in
particular if it is present in paper form) is outdated quickly, up-to-date information
can often be gathered quickly using tools like network scanners, configuration man-
agers, or vulnerability scanners.

A large part of an organization’s infrastructure cannot be captured by such tools,
i.e., the organizational structure together with the employees and their social inter-
relation. Although documentation on these parts exists (e.g., organization charts,
policies for different areas, role descriptions, etc.), it is a complete different ques-
tion, if these are practiced in the everyday life. Hence, for analyzing social aspects,
it is suggested to use firsthand and more qualitative analysis techniques, like inter-
views or ethnography. This allows to identify the gap between the way policies and
security measures are planned and should be implemented within the organization
and how the organizational structure works in real life.

In particular in the field of ICT security, it has been shown that not the lack of
technical security measures but human behavior represents a major risk factor [30]
and is the central entry point for a multitude of attack scenarios. Therefore, human
and organizational factors were vital parts of the investigations we performed in the
HyRiM project. By carrying out ethnographic studies as part of our use cases, we
gained a holistic and in-depth view on the relevant infrastructures of the involved
end users. This included a visit from an ethnographers to the utility organizations,
where discussions were conducted with employees and observations were made dur-
ing the daily operations. Our studies provided information about the systems used in
the utility organization, an identification of people and their roles, an understanding
of organizational policies, the social relations among employees, and their behavior
under specific circumstances or situations (for specific results from these studies,
we refer to [22]).

These different pieces of information can further be used to extend and enhance
the technical description of systems and networks and increase the insight into the
respective infrastructures as well as all subsequent analyses.

12.3.2 Structured Threat Identification

Over recent years, not only the number but also the complexity of threats and at-
tacks on cyber and physical systems have increased. Keeping up with the speed
of this development is a core issue for organizations. Therefore, a structured ap-
proach to identify upcoming risks is required to avoid missing potential threats or
vulnerabilities. Standardized and constantly updated vulnerability databases (e.g.,
the National Vulnerability Database) [3] have been established and are maintained
by governmental, public, and private organizations.
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In the context of critical infrastructures, we suggest to use an approach not only
focusing on technical aspects but providing a broader perspective, having in mind
the ethnographic studies mentioned in the previous Section 12.3.1. Hence, a threat
awareness architecture was developed [18], which is based on organization, technol-
ogy, and individual (OTI) viewpoints (cf. Figure 12.10). This architecture comprises
a three-stage process, including situation recognition, situation comprehension, and
situation projection. In this process, the OTI viewpoints serve as a basis and in-
clude not only the technical aspects (e.g., the organization’s software and hardware
systems together with the communication among them) but also cover policies and
processes within an organization (i.e., the organization viewpoint) as well as how in-
dividual people behave under particular conditions (i.e., the individual viewpoint).
The findings resulting from the OTI viewpoints are enriched by threat information
coming from external sources, leading to a holistic view on an organization’s threat
landscape.

Fig. 12.10: Illustration of the Threat Awareness Architecture (cf. [18])

12.3.3 Simulation Approaches for Payoff Estimation

In general, there is a plethora of different methodologies for estimating the likeli-
hood and consequences of a specific threat scenario. They range from simple ques-
tionnaires collecting expert opinions up to complex mathematical models. Espe-
cially in the context of utility networks, estimating the potential consequences of
a threat often is quite complex due to the interconnected nature of the networks
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and the related cascading effects. Hence, for the HyRiM process, we suggest four
specific simulation-based approaches, which are well suited for utility networks:
percolation theory, co-simulation, physical surveillance simulation, and agent-based
modeling.

Percolation theory is a common tool to describe, in general, how certain events
trigger other events and, in detail, to analyze the spreading of a disease [45, 36,
31, 44]. Nevertheless, it has only been rarely used in the fields of security and risk
management so far, although certain security incidents (e.g., the propagation of mal-
ware within an ICT network) have similar characteristics as a disease spreading. One
reason for this might be that there is the common assumption in percolation theory
that all nodes in the network are equally likely to trigger an event. While this might
be true for most models of diseases, such an assumptions is too restrictive when
looking at networks within a critical infrastructure.

In the course of the HyRiM project, the standard framework of percolation theory
has been extended such that nodes and edges can be distinguished according to sev-
eral characteristics [32, 33]. Based on these different types, a specific probability of
failure is assigned to each type, and the propagation of an error is modeled according
to these probabilities. This model allows us to compute the probability that an error
affects a significant number of components, i.e., it causes an epidemic or even pan-
demic, as well as how many nodes are indeed affected in this case. A more detailed
description of the percolation theory approach is given in the previous Chapter 8;
specifics on the application in a real scenario use case can be found in Chapter 14.

In contrast to percolation theory, co-simulation is an approach for the joint sim-
ulation of models developed with different tools, where each tool is responsible for
simulating a part of a complex system [15, 13, 12]. Each tool is representing one do-
main within a utility provider’s infrastructure, e.g., the cyber and physical domain,
and the co-simulation framework models and manages the communication between
these tools, e.g., by exchanging variables, data, and status information. In this way,
the separated simulations of the complex system are synchronized.

In the context of utility networks, the simulation message bus framework [13]
has already been used to model the interactions between a smart grid and the ICT
network [14]. In detail, the power grid is described by the DIgSILENT Power Fac-
tory [17], and the ICT network is modeled in OMNet++ [47] (cf. also Figure 12.11).
With this setting, specific attack scenarios against both network layers can be simu-
lated, evaluating their (cascading) effects onto their respective components.

In particular, when looking at the different networks operated by a utility
provider, percolation theory [19, 32, 33] as well as co-simulation [13, 12, 14]
can be used to describe the cascading effects spreading over the different networks.
More precisely, percolation theory is more helpful when only high-level or sparse
(i.e., qualitative) information is available [33]. If more details on the infrastruc-
ture and the communication between certain systems are present, a co-simulation
approach can provide more accurate information about the spreading of a failure
among these networks [14].
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Fig. 12.11: Illustration of the SMB platform integrating the power grid and the ICT
network simulation component

In case of threats against the physical infrastructure of a utility provider, e.g.,
the buildings, machinery, warehouses, tank depots, etc., a simulation framework
for physical surveillance is more applicable. This takes the layout of the utility
provider’s premises, including the buildings and pathways connecting them, and
allows to simulate the movements of an adversary entering the premises. In more
detail, the adversary’s capabilities, potential entry points, and targets can be mod-
eled. Additionally, the security measures (cameras, id badges, etc.) together with the
routes and routines of the security guards within the premises can be represented in
the simulation. Such a framework has been developed in the HyRiM project [4]
and allows reproducing and analyzing different attack scenarios together with the
respective defensive actions. Using this framework, not only the potential physi-
cal damage caused by one or more intruders but also soft factors (like the effect of
increased surveillance on the employees) can be estimated. Further details on the
respective framework can be found in the previous Chapter 6.

Complementary to these methodologies, agent-based modeling is much more
focused on the societal impact of specific actions taken by an organization. Since
utility providers are, in general, critical infrastructures, incidents happening within
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utility providers as well as the respective security actions can directly affect soci-
etal structures in a certain region. As shown in the HyRiM project, an agent-based
model can be used to simulate such social response and provide an overview on the
potential implications on society [7].

12.3.4 Risk Prioritization and Risk Matrices

A general approach toward risk evaluation and the prioritization of risks in risk
management frameworks (like the ISO 31000 [27], the ISO/IEC 27005 [28], and
others) is to compute the risk as the product risk = consequence × likelihood [37].
In this case, the consequence as well as the likelihood are represented by a single
number assigning a specific value to the resulting risk. This makes it easy to compare
several risks and end up with a prioritization, i.e., a list ordered by the magnitude of
the risk value.

As already mentioned in Section 12.2.4 above, in the HyRiM process, the con-
sequences as well as the likelihoods are represented as histograms to prevent the
loss of important information. The game-theoretic framework applied in the HyRiM
process has been specifically designed to handle such histograms as payoffs. Nev-
ertheless, it is nontrivial to find an ordering among these histograms to end up with
a prioritized list of risks.

One direct solution for this is given by the �-ordering, which has been introduced
in [40, 39, 41, 42], and allows comparing two distributions. In the general case, this
is done by mapping distributions onto hyperreal numbers, where the standard ≤-
relation is defined. In the special case of histograms, a lexicographical ordering can
be applied. Further technical details on �-ordering are given in previous Chapter 2
as well as [40, 39, 41, 42]. By applying the �-ordering to the unsorted lists of the
threat scenarios’ consequences and likelihoods, we end up with a ranking of all the
threat scenarios (cf. also Figure 12.12).

In classical risk management frameworks, one core output is a risk matrix, where
all the risks are depicted according to their respective consequences and likelihood.
In the HyRiM process, one goal is to create a similar risk matrix resembling to
the output of classical frameworks. Therefore, the rank of each threat scenario (ac-
cording to the �-ordering) with regard to consequence and likelihood is used. The
more severe the consequences are, the further on the right side of the x-axis (i.e.,
the consequence axis) the threat scenario is placed. This works accordingly for the
y-axis (i.e., the likelihood axis), and thus each threat scenario is placed in the 2D-
coordinate system of the risk matrix (cf. Figure 12.12). Additional critical regions
can be defined, e.g., the upper right corner is usually the most critical. The threat
scenarios falling into this area need to be further addressed by the subsequent risk
treatment (cf. Section 12.2.5 above).
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Fig. 12.12: Illustration of the resulting risk matrix based on the two ordered lists for
the consequences and likelihoods

12.3.5 Game-Theoretic Risk Minimization

Most of the time, general approaches on risk management offer advice regarding the
selection which controls to implement to counter the identified risks. Hence, this
decision is often a subjective one, carried out by the risk manager. In the HyRiM
process, the goal is to identify an optimal set of controls to reduce the damage
that can be caused by an attacker to a minimum. To obtain such an optimal set of
controls, game theory is the method of choice, since it provides several beneficial
characteristics. The game-theoretic approach applied in the HyRiM process allows
not only to identify the optimal choice of controls for a specific risk but also to clus-
ter several risks with similar controls to identify the set of controls, which are most
effective against all of the clustered risk. Additionally, the game-theoretic algorithm
is capable of optimizing over different security goals, e.g., also taking the costs for
implementing the controls into account.

As already mentioned briefly in the beginning of Section 12.2, the game is set
up as a two-player, zero-sum game, applying a minimax approach [35]. With this
setting, the combating situation between the organization’s security officer (i.e., the
defender) and an adversary (i.e., attacker) is modeled perfectly. To integrate also the
uncertainty and the intrinsic randomness within a utility provider’s interconnected
network infrastructure, the game-theoretic approach supporting distribution-valued
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payoffs described in Chapter 2 as well as [40, 39, 41, 42] is applied. Using this ap-
proach, the consequences of a specific scenario can be described as distributions (or,
as histograms, if necessary) and the game. Hence, the subjective opinions of multi-
ple experts as well as the data coming from different simulations (cf. Section 12.3.3)
can be integrated without the need for aggregation and thus without losing relevant
information.

In the context of the HyRiM process, attack strategies are always connected to a
specific node within the interconnected networks and thus are furthermore described
by the identified threat scenarios (cf. Section 12.2.4). These nodes are not necessar-
ily part of the technical network infrastructure, but can also be people handling
physical devices. Due to the vulnerabilities (technical or social) of these nodes, they
can be attacked. The defense strategies are given by the different security measures,
which the organization is able to implement (cf. Section 12.2.5).

To compute the payoff matrix for the game, it needs to be evaluated how much
a security measure influences the effects of an attack strategy. This can be done by
rerunning the consequence analysis and the simulations or expert interviews carried
out therein for each combination of attack and defense strategy. Certainly, some se-
curity measures may not have any effect on a given attack strategy, e.g., updating the
virus scanner won’t mitigate a physical attack on a system in any way. Therefore,
the attack strategies as well as the defense strategies can be clustered to evaluate
only the relevant combinations. In the end, each entry in the payoff matrix con-
sists of a distribution (or histogram) including all the information gathered from the
simulations or interviews (cf. Figure 12.13 as an example for such a payoff matrix).

It has to be noted that the game-theoretic approach is able to optimize over several
quantitative or qualitative goals, e.g., the damage caused by an attacker, the costs
for the mitigation actions, the effect on reputation of the organization, etc. In this
context, the payoff matrix has to be calculated for each of these goals, individually.

In general, the output of the game-theoretic risk minimization algorithm is three-
fold. It yields

• an optimal security strategy for the defender. This can be a pure strategy (i.e., one
single control) or a mixed strategy (i.e., a mixture of several controls) which has
to be applied to reduce a specific risk (or a risk cluster) to a minimum.

• an optimal attack strategy for the attacker. This can also be a pure or mixed strat-
egy indicating where an attacker can cause the highest damage to the system.
This information can be used to identify weak spots and neuralgic points within
the system. It must be noted, however, that this indication is ambiguous and the
so-obtained worst-case scenarios are not the only ones possible. Other equilibria
may be found by (hypothetically) mitigating the worst-case scenario and rerun-
ning the game-theoretic analysis toward revealing other solutions.

• the maximum damage that can be caused by an adversary following the optimal
attack strategy and a defender following the optimal security strategy. For mul-
tiple security goals (e.g., the costs for the implemented controls), the respective
values are given.
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Fig. 12.13: Example of a payoff matrix consisting of distributions (taken from [43])

It must be emphasized that these guarantees hinge on the enforcement of the
optimal defense actions. Some resilience against small deviations from the opti-
mal behavior may be embodied in the randomness of the damage. Nevertheless, the
distribution itself, consisting of the estimated likelihoods for damages of different
magnitudes, is valid only if the optimal defense as delivered in the first of the above
steps is implemented.

12.4 Conclusion

In this chapter, we presented a novel approach toward risk management, the HyRiM
process for highly interconnected network infrastructures, for example, operated by
utility providers. This approach is compliant with the international risk manage-
ment standard ISO 31000 [27] and extends the steps specified therein by activities
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tailored to address the particular requirements utility providers are facing. In detail,
the HyRiM process accounts for the “hybrid” nature of utility networks, i.e., the
strong and complex interrelations between the different networks operated by util-
ity providers. The compliance with the ISO 31000 allows also to directly integrate
the HyRiM process into existing frameworks building on the ISO 31000, e.g., the
ISO/IEC 27005 [28] or the ISO 28001 [26]. Further, it can also be easily adapted to
other standard frameworks like the NIST 800-30 process [46] or the COBIT 5 for
Risk framework [29].

The HyRiM process is unique in its concept of evaluating and handling risks; it
builds upon a game-theoretic framework to improve mitigation actions and to iden-
tify an optimal risk minimization strategy. This game-theoretic framework allows to
estimate the worst-case damage and to determine the corresponding optimal miti-
gation strategy for a given set of potential risks. This sound mathematical basis of
the HyRiM process represents one of the main advantages over the abovementioned
standard processes and frameworks, which are relying mostly on a best-practice ap-
proach. In this context, the HyRiM process also takes one step further by integrating
distribution-valued payoffs into the game [41, 42]. This allows to describe real-life
scenarios of utility providers and capture the intrinsic randomness within the highly
interconnected networks, which is a another core advantage over other frameworks.

To illustrate how the individual steps of the HyRiM process can be carried out
in praxis, we provided a detailed description of each steps. We highlighted tech-
niques, concepts, and tools developed in the course of the HyRiM project [1] as a
support for each of these steps. In this context, several simulation techniques (perco-
lation theory, co-simulation, physical intrusion simulation, etc.) are sketched, which
improve the analysis of the dynamics stemming from the interrelations in the net-
work as well as their resulting cascading effects and serve as an input to the payoff
matrix of the game. Moreover, the HyRiM process does not only focus on technical
aspects but also takes organizational and human factors into account, including anal-
ysis techniques from the field of social and human studies. Therefore, the technical,
individual, organizational, and social impact of risks is evaluated in the HyRiM pro-
cess. Accordingly, the identification of an optimal risk minimization strategy can be
done by optimizing over all these different impact types.

The process’ practicality and applicability have been evaluated in real-life use
case scenarios in the course of the HyRiM project. The following Chapters 13, 14,
15 and 16 show in detail how the steps of the HyRiM process are implemented for
specific scenarios and how data is interchanged among them. Therein, the individual
methodologies for gathering information as well as for simulating the cascading
effects are applied. Further, a detailed formulation of the game according to the
settings of the different use case scenarios can be found in these chapters.

By combining information from several different aspects (technical, organiza-
tional, social), the HyRiM process provides a holistic overview over an organiza-
tion’s risk situation. Due to the application of game theory and the ability of opti-
mizing mitigation actions according to all these different aspects at the same time,
the HyRiM process provides an improved support to the organization’s risk man-
ager.
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Secure IT Systems. 21st Nordic Conference, NordSec 2016, Oulu, Finland,
November 2–4, 2016. Proceedings, pp. 67–81. Springer International Publish-
ing, Cham (2016)

33. König, S., Rass, S., Schauer, S., Beck, A.: Risk Propagation Analysis and Vi-
sualization using Percolation Theory. International Journal of Advanced Com-
puter Science and Applications(IJACSA) 7(1), 694 – 701 (2016)

34. Kovacs, E.: Critical Infrastructure Incidents Increased in
2015: ICS-CERT (2016). URL http://www.securityweek.com/
critical-infrastructure-incidents-increased-2015-ics-cert

35. Maschler, M., Solan, E., Zamir, S.: Game Theory. Cambridge University Press
(2013)

36. Newman, M.E.J.: Spread of epidemic disease on networks. Physical Review
E 66(1), 016,128 (2002). https://doi.org/10.1103/PhysRevE.66.016128. URL
https://link.aps.org/doi/10.1103/PhysRevE.66.016128

37. Oppliger, R.: Quantitative Risk Analysis in Information Security Management:
A Modern Fairy Tale. IEEE Security Privacy 13(6), 18–21 (2015). https://doi.
org/10.1109/MSP.2015.118

38. Paganini, P.: Operation Dust Storm, Hackers Target Japanese Critical Infras-
tructure (2016). URL http://securityaffairs.co/wordpress/44749/cyber-crime/
operation-dust-storm.html

39. Rass, S.: On Game-Theoretic Risk Management (Part One) – Towards a Theory
of Games with Payoffs that are Probability-Distributions. ArXiv e-prints (2015)

40. Rass, S., König, S., Schauer, S.: Deliverable 1.2 - Report on Definition and
Categorisation of Hybrid Risk Metrics. HyRiM Deliverable, Vienna, Austria
(2015). URL https://www.hyrim.net/project-deliverables/

http://m.isaca.org/cyber/Documents/state-of-cybersecurity_res_eng_0316.pdf
http://m.isaca.org/cyber/Documents/state-of-cybersecurity_res_eng_0316.pdf
https://doi.org/10.1103/PhysRevE.76.036113
http://www.securityweek.com/critical-infrastructure-incidents-increased-2015-ics-cert
http://www.securityweek.com/critical-infrastructure-incidents-increased-2015-ics-cert
https://doi.org/10.1103/PhysRevE.66.016128
https://link.aps.org/doi/10.1103/PhysRevE.66.016128
https://doi.org/10.1109/MSP.2015.118
https://doi.org/10.1109/MSP.2015.118
http://securityaffairs.co/wordpress/44749/cyber-crime/operation-dust-storm.html
http://securityaffairs.co/wordpress/44749/cyber-crime/operation-dust-storm.html
https://www.hyrim.net/project-deliverables/


References 311

41. Rass, S., König, S., Schauer, S.: Uncertainty in Games: Using Probability-
Distributions as Payoffs. In: Decision and Game Theory for Security, no. 9406
in Lecture Notes inComputer Science, pp. 346 – 357. Springer, London, UK
(2015)

42. Rass, S., König, S., Schauer, S.: Decisions with Uncertain Consequences - A
Total Ordering on Loss-Distributions. PLOS ONE 11(12), e0168,583 (2016).
https://doi.org/10.1371/journal.pone.0168583. URL http://journals.plos.org/
plosone/article?id=10.1371/journal.pone.0168583

43. Rass, S., König, S., Schauer, S.: Defending Against Advanced Persistent
Threats Using Game-Theory. PLOS ONE 12(1), e0168,675 (2017). https://
doi.org/10.1371/journal.pone.0168675. URL http://journals.plos.org/plosone/
article?id=10.1371/journal.pone.0168675
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Chapter 13
Protecting Water Utility Networks
from Advanced Persistent Threats:
A Case Study

Antonios Gouglidis, Sandra König, Benjamin Green, Karl Rossegger,
and David Hutchison

13.1 Introduction

Advanced persistent threats (APTs) naturally respond to the increasing diversity
of security precautions by mounting attacks in a stealthy and equally diverse fash-
ion to remain under the radar for as long as required and until the target system
has been compromised. They combine a variety of different attack vectors ranging
from social engineering to technical exploits and are tailored to attacking specific
organizations, information technology (IT) network infrastructures, and existing se-
curity measures within organizations [15]. In particular, the application of social
engineering in the opening stages of an APT lets the attacker bypass many tech-
nical measures, such as intrusion detection and prevention systems, to efficiently
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(and economically) get through the outer protection (perimeter) of the IT network.
Thus, countermeasures may come too late to be effective since the sufficient damage
has already been caused by the time the attack is detected. The diversity and usual
stealth of APTs render them a problem of vital importance in critical infrastruc-
tures. Moreover, information on the attack vector(s) (e.g., zero-day vulnerabilities)
may be unavailable, and the incentives of the attacker(s) may often be vague or
impenetrable.

The number and severity of APT attacks against critical infrastructures have in-
creased significantly over time, with the Stuxnet malware being a precursor of many
such attacks [2, 10, 8]. Stuxnet was discovered into Iran’s nuclear plants, sabo-
taging the nuclear centrifuges. In the following years, other APT attacks, such as
Operation Aurora, Shady Rat, Red October, and MiniDuke, have reached public
view [13, 3, 16]. Additionally, the Mandiant Report [12] explicitly stated how APTs
are used on a global scale for industrial espionage, as well as that attackers are often
closely connected to governmental organizations.

With regard to propagation techniques, APTs are not only focusing on a sin-
gle vulnerability of a system (which could be detected and eliminated easily) but
also using a chain of vulnerabilities in different systems to reach high-security areas
within a company network. Adversaries often take advantage of the fact that most
security controls are applied on the perimeter. However, once access to the inter-
nal network is achieved, a threat actor might have a good chance to be unnoticed,
and a series of internal attacks may proceed with little or no resistance. Although
several guidelines and recommendations exist to secure an internal network, e.g.,
using a demilitarized zone (DMZ), the intensity of monitoring them is not always
adequate. Even more, intrusion detection or intrusion prevention systems might re-
quire a large amount of administration and human resources to monitor the output
of these systems and cope with potential true/false negative and true/false positive
notifications.

In this chapter, we apply processes developed within the HyRiM project (see
Chapter 12) to ensure certain goals are met under the threat of an APT. The HyRiM
processes are preventive in the sense of estimating and minimizing the risk of a suc-
cessful APT from the beginning. The game-theoretic framework applied in HyRiM
(see Chapters 2 and 3) is used to optimize the defense against a stealthy invader,
who attempts to penetrate the system on a set of known paths, while the defender
does its best to protect all of these paths simultaneously.

The remainder of this chapter is organized as follows. In Section 13.2, we pro-
vide the description of a case study based on a European water utility organization.
In Section 13.3, we define the main goals for the risk management framework and
establish the context of the water utility organization. Risks are identified and an-
alyzed in Sections 13.4 and 13.5, respectively. An optimal solution is presented in
Section 13.6, and concluding remarks are provided in Section 13.7.
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13.2 Case Study Description

In this case study, we examine an APT in the context of a European utility organiza-
tion that provides its services to more than a hundred municipalities in its region. In
the following, we provide further information with regard to its water department,
which will be considered throughout the chapter. The water department is focused
on the water quality and is responsible for the planning, building, and maintenance
of the whole water network. To ensure a sustainable water quality, the organization
has its own institute for water processing, sewage cleaning, and research. All of
these functions are supported by an industrial control system (ICS).

After analyzing the network of the utility organization, we compiled the collected
data and prepared a high-level network architecture of the organization’s network
and then summarized its main characteristics and security posture. A detailed net-
work diagram is omitted due to privacy and safety concerns. Instead, a high-level
dataflow diagram is provided for this purpose. The dataflow diagram in Figure 13.1
is the result of an analysis of the actual network architecture. Furthermore, it depicts
at a very basic level the variations in dataflows across different field sites and central
systems, which take place between the office (information technology (IT)) network
and the process (operational technology (OT)) networks. The applied layered cat-
egorization refers to the Purdue Enterprise Reference Architecture [6], allocating
devices to their appropriate system levels. The designation of one- or two-way ar-
rows is used to identify the predominant flows of data. While all communications
are two way, in some instances, a one-way arrow is applied due to the predominant
usage of the link in question.

Considering the above infrastructure, we examine the deployment of an APT
within it. To do this, we assume the existence of an adversary who initially col-
lects information about the organization under attack. The collected information
may provide useful indications for deploying targeted attacks, e.g., to initiate so-
cial attacks on selected individuals or even identify contractors that are external to
the organization. Such information may increase the likelihood of a successful at-
tack. Specifically, we assume the following end-to-end scenario, also known as a
kill chain:

• Using open-source intelligence (OSINT), a threat actor (TA), i.e., an individual or
a group posing a threat [7], can identify employees working for the organization,
e-mail structures, partners, and external contractors.

• By deploying a spear-phishing campaign, the TA can target appropriate individ-
uals in order either to capture login credentials or to compromise their devices
(introducing the APT).

• The TA can visit the facilities of partners and external contractors and look for
alternative entry points, if step two yields insufficient results.

• The TA may review the information collected through each of the abovemen-
tioned steps.
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• The TA/APT may explore and expand footholds gained on appropriate devices
and networks to capture as much information about the target organization as
possible.

• The TA may compromise potential WiFi devices on the OT network.
• Via the WiFi device, the TA may launch attacks to cause a failure on the con-

trollers.
• The TA/APT may compromise the management server in the DMZ.
• Via the management server, the TA/APT may launch an attack to modify con-

troller logic, send control requests, etc. achieving the desired change in process
operations.

• Via the management server, the TA/APT may launch an attack to cause a failure
of network switches.

• Via the management server, the TA/APT may launch an attack to cause a failure
of the controllers.

Although the abovementioned end-to-end scenario (kill chain) is defined on the
basis of Figure 13.1, it is further visualized in Figure 13.2 and clarified in the fol-
lowing sections.

13.3 Establishing the Context

Establishing the context is a first step of the HyRiM process (see Chapter 12) that
starts by defining the objectives that should be achieved and attempts to understand
the external and internal factors that may influence the goals. This section summa-
rizes the external and internal environments of the organization.

13.3.1 Definition of Goals

After discussions with experts in the organization, three goals were agreed for fur-
ther investigation. These are:

• Minimize the damage that can be caused by an attack to the provided service, the
service being the provision of water.

• Minimize monetary damage caused by an attack, which may be of technical
nature (e.g., substitute devices), of legal nature (e.g., fines), or of any other cost-
related damage.

• Minimize reputation damage caused to the organization as a result of an attack.
An organization may lose reputation when consumers start to disbelieve in it [1].

Assuming the above goals, several steps are considered in the subsequent risk
management processes to ensure that they are achieved adequately through the
application of a game-theoretic framework (see Chapter 2).
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13.3.2 Data-Flow Based Analysis

In this step, the details of the teams responsible for operating and maintaining sys-
tems used to support core operational technology functions are covered. In line
with concepts derived through our existing work [4], based on the well-documented
Purdue Enterprise Reference Architecture [6], the scope of this exercise was all-
inclusive. This means that it covered systems, a broad range of devices, and em-
ployees across all six levels, yet allowed for a high-level view of security in a more
holistic sense. Due to the focus of HyRiM, more emphasis was spent on discussions
around levels 0 to 4, essentially avoiding enterprise systems beyond the point of
their interaction with the underlying ICS. For the purpose of this chapter, we will
apply again the following terms, operational technology (OT) and information tech-
nology (IT). OT can be seen as any system used for the monitoring, control, and
automation of operational processes, with IT systems covering aspects of computa-
tional resource applied within all other business areas. It is worth noting that while
the participating organization can be seen as an independent body, it operates within
a collective group of other organizations. Cross collaboration and shared service of-
ferings within this group raise different issues when discussing internal and external
resources.

13.3.3 Social Review Activity

Some points worth noting with regard to social factors are listed in the following:

• Physical security monitoring: Across each operational field site, physical secu-
rity is applied. From a physical standpoint, this includes fencing, locks, etc. From
an electrical and remote-monitoring perspective, this includes different types of
security sensors, which feed into one alarm panel which in turn connects to an
operational controller as a standard hard-wired sensor providing a binary state
(intruder/no intruder).

• ICT partner: A partner organization is responsible for the IT equipment pro-
vided across all organizations within the group. While this resource does not
necessarily require access to operational sites, some devices used across such
sites are under their support framework.

• Telecommunication partner: A partner organization is responsible for inter-site
communications, covering their support of some OT controllers at level 1; their
responsibility for all communications and associated security controls is a salient
point. The level of electronic access this partner has is organization wide (levels
1 to 5).
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13.3.4 Business Process Analysis

As a next step, the main process and services carried out by the organization’s em-
ployees are identified and analyzed. The findings listed in the following are the
result of three different activities. The data flow analysis and social review, which
have already been mentioned in the previous paragraphs, resulted in examining the
organization on the basis of the Purdue model and helped in identifying the details
on the teams responsible for operating and maintaining systems used to support core
OT functions. Additionally, a technical review activity was carried out. A major re-
sult of this activity consists of the dataflow diagram (see Figure 13.1). In detail, this
analysis resulted in the identification of the following critical, technical, networked
components:

• Controllers: Different manufacturers’ products are used to monitor, control, and
automate the underlying operational process. For the purpose of standardization
across the OT environment, a single (standard) protocol is applied by all equip-
ment.

• Switches: Network switches provide a resource by which controllers can connect
to the process network, offering two-way communications between field sites and
centralized systems.

• Modems: Modems are used as a communication mechanism between master and
slave controllers.

• Media converters: As with modems, media converters are used to facilitate com-
munications between master and slave controllers. In addition, media converters
are also used to connect controllers to process network switches.

• Radio: Several master radio stations concentrate data collection between master
controllers and their associated slaves.

• Compact Human Machine Interfaces (HMIs): Compact HMIs are used on a
number of field sites for local process monitoring and control.

• WiFi: Wireless technology is enabled in some areas of the network.
• Servers/workstations: Several devices within the OT network were identified as

critical assets, e.g., SCADA servers and a management server used for remote
management of controllers.

• Laptops: Laptops are used by the organization’s employees and partners. The
laptops are supported by a partner organization able to move between the IT and
OT networks while also making use of mobile data technologies providing a level
of remote access.

• Communication mediums: A partner company manages all communications,
which include the use of fiber, copper, radio, etc. This management includes all
currently applied network-based security controls.
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13.4 Risk Identification

Risk identification involves the application of systematic techniques to understand
a range of scenarios describing what could happen, how, and why. Therefore, the
infrastructure within the scope of the risk management process needs to be defined,
including technical assets, organizational roles and individual personnel, as well as
their interdependencies. Based on that, potential threats to the main assets of the
organization can be identified.

13.4.1 Threats to Main Assets

• Radio jamming/data manipulation: Attacking techniques, as described in [11],
could be applied in order to achieve access to the process network. This level
of access would be localized to the field site on which the WiFi is deployed.
However, should vulnerabilities exist within the process network switches, or if
it is possible for the attacker to masquerade as a trusted device, it may be possible
to break out from the local network and access a wider variety of devices in
alternative field sites and central systems. This level of access could be used to
send illegitimate requests to devices across the process network with the ultimate
goal being to manipulate process operations. Alternatively, the attacker could
simply jam wireless signals, preventing devices communicating across the target
link. While accessing the IP network via radio is unlikely, manipulation of data
in transit may be possible, impacting the data sent to and from controllers at each
end of the link. It is more likely, however, that an attacker would situate a radio
jammer at each of the main radio masts, preventing a larger bank of controllers
communicating back to the process network.

• Becoming a HMI: It is noted that one field site contains a HMI trusted to commu-
nicate with controllers locally and across the process network. Where exploitation
of the core network switches, as previously described, may not be achievable,
masquerading as a HMI with the described level of access could be applied to
launch a wider attack. However, this attack would require physical access to the
field site in question.

• Becoming a master: There exist several slave nodes communicating with one
master. Similar to the HMI example described above, should an attacker gain
physical access to a master, it may be possible to masquerade as the master and
communicate with its associated slave nodes.

• Network bridging: Alternative to technical exploits could be the social engi-
neering of trusted systems’ users as an attempt to obtain legitimate credential
sets. This attack would require physical access to the office network. The deploy-
ment of compact battery-powered devices (e.g., Raspberry Pi) could be used to
provide remote access, meaning once deployed, an attacker could continue the
attack while no longer on the organization’s premises.
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• Target external resources: An attacker could target external contractors, respon-
sible for maintaining some of the organization’s controllers and servers. Possibly
seen as weaker in terms of their cybersecurity capabilities, the information they
hold and trusted access they have would be of great value to an attacker. Compro-
mising relevant resources could provide a level of access to field site networks.
For example, should attackers gain access to an engineer’s laptop, they could
modify backups of controllers’ logic/configuration, should those be downloaded.
As a recall, controllers could begin to operate outside of their normal parameters
as per the defined modifications.

• Backup servers: The previously discussed attack scenarios appear relatively
simplistic, i.e., gain access and then attack. Achieving a level of impact, which
would cause significant degradation of service, would likely be more challeng-
ing. It is for this reason an attacker may first need to gain access to configuration
files, network diagrams, etc. Backups of critical resources are often stored on of-
fice network servers. Applying the same principle as described in network bridg-
ing, an attacker could gain access to the office network and seek to compromise
backup servers to retrieve these resources. Once retrieved, the abovementioned
attack scenarios become more achievable and meaningful.

13.4.2 Vulnerability Identification

Conducting penetration testing on devices or systems in a utility network may im-
pose several risks to its operational state, e.g., cause service interruption. Therefore,
we conduct penetration testing activities on devices and systems installed in Lan-
caster University’s ICS test-bed [5] and consider a mapping between the two net-
works (i.e., the emulated and the actual network). This would eventually help us in
identifying the likelihood of vulnerabilities of such devices/systems in an emulated
environment and avoid any privacy and security concerns with regard to the actual
infrastructure of the organization. The estimation of likelihood values for the vul-
nerabilities will be defined through the CVSS exploitability metric (see Chapter 8).
The result of this analysis will be combined with additional semantic information,
using the Purdue model. This process resulted in mapping likelihood values of vul-
nerabilities with elements of a network/system diagram, as depicted in Figure 13.2.
Specifically, the main set of software/hardware components that are assessed for
vulnerabilities in the emulated ICS test-bed are:

• SCADA server: The operating system of this host machine is Windows Server
2008 and has installed the ClearSCADA Server software. The latter is designed
to work in water treatment facilities and provide features for the remote manage-
ment of devices in the OT network and for keeping historical field data from con-
trollers. Known vulnerabilities are CVE-2014-5411, CVE-2014-5412, and CVE-
2014-5413.
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• Network switches: These are ordinary network switches (i.e., not industrial
switches). In the case of our test-bed, these are CISCO Catalyst 2950 switches.
Known vulnerabilities are CVE-2001-0895 and CVE-2005-4258.

• Controllers: We have a diverse set of controllers installed in the emulated
ICS test-bed. For the needs of this case study, we used the following: Siemens
SIMATIC S7-1200 PLC, Siemens SIMATIC S7-300 PLC, ET200S PLC, and
Allen-Bradley (AB) Micro 820 PLC. With regard to the individual hardware com-
ponents:

– Siemens SIMATIC S7-300 PLC: Vulnerabilities are CVE-2015-5698 and
CVE-2016-3949.

– Siemens SIMATIC S7-1200 PLC: Vulnerabilities are CVE-2013-2780 and
CVE-2014-2250.

– Siemens ET 200S PLC: Currently, no vulnerability in the CVE database;
– Siemens SCALANCE X208 WiFi switch: Currently, no vulnerability in the

CVE database.
– Allen-Brandley Micro 820 PLC: Currently, no vulnerability in the CVE

database.

• Human Machine Interface (HMI): The Allen-Bradley PanelView 800 HMI is
used by a human operator to guide the control process on this field site, such
as turning on/off automatic mode for the AB Micro 820 PLC, opening/closing
valves that the PLC is connected to, and turning on/off manual mode of operation.
Currently, no vulnerability exists in the CVE database.

• Media convector: The softing echolink S7-compact is a media converter for
communication with Siemens S7 controllers. Currently, no vulnerability exists
in the CVE database.

• Management server: In the emulated ICS test-bed, the role of the management
server is taken over by the engineer’s laptop, which can be connected in the net-
work and configure controllers remotely by using the appropriate software pack-
ages per controller brand. Those are the SIMATIC STEP 7 SIMATIC Manager
for connecting with SIEMENS S7-300 PLC, SIMATIC STEP 7 TIA Portal for
connecting with SIEMENS S7-1200 PLC, and Connected Components Work-
bench for connecting with Allen-Bradley PanelView 800 HMI. With regard to
the individual software components:

– SIMATIC STEP 7: Vulnerabilities are described in CVE-2014-1594.
– Connected Components Workbench: Currently, no vulnerability in the CVE

database.
– TIA Portal: Currently, no vulnerability in the CVE database.
– Allen-Brandley PanelView 800 HMI: Currently, no vulnerability in the CVE

database.
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13.5 Risk Analysis

Risk analysis is concerned with developing an understanding of each risk, its con-
sequences, and the likelihood of these consequences. In general, the level of risk is
determined by taking into account the present state of the system, existing controls,
and their level of effectiveness.

13.5.1 Likelihood Analysis

Since an APT attack is considered to be highly sophisticated, we can assume that
the attacker can obtain information about the structure and the various devices of
the network of the utility provider (see Section 13.4). Therefore, such an attack is
tailored to the specific company and aims to exploit existing vulnerabilities (see
Section 13.4.2).

However, it can be argued that the likelihood of such an attack is more difficult
to estimate. Generally, the applied model can work with different types of data,
e.g., with vulnerability assessments such as CVSS. Still, in case of an APT, these
likelihoods are fraught with uncertainty since we only have limited knowledge about
the attacker. Thus, the most feasible approach is to ask as many experts as possible,
compile an empirical distribution, and then aggregate the received information to a
single number [9].

Figure 13.2 depicts consolidated information, including the various components
of the OT network, the main systems in the IT network that may provide access to
the process network, as well as the likelihood of vulnerabilities in systems/devices
to be exploited. This results in providing an understanding of the major risks and
gives an indication of potential attack vectors and attack paths.

13.6 Risk Treatment

During risk treatment, existing controls are improved and new controls are imple-
mented. In the HyRiM process, the goal is to identify the optimal set of controls to
reduce the maximum damage that can be caused by an attacker to a minimum. In this
context, the optimality of the resulting controls is given due to the game-theoretic
algorithms applied in the approach. Risk can also be transferred (e.g., purchasing
insurance) or retained.

In the following, we define a list of attack and defense strategies toward achieving
the goals defined in Section 13.3.1.



324 A. Gouglidis et al.

Fi
g.

13
.2

:E
st

im
at

io
n

of
lik

el
ih

oo
d

ba
se

d
on

C
V

SS
’s

ex
pl

oi
ta

bi
lit

y
m

et
ri

c



13.6 Risk Treatment 325

13.6.1 Attack Strategies

Considering the end-to-end scenario in Section 13.2 and the diagram in Figure 13.2,
we define in the following a list of potential attack vectors and attack paths.

A first attack vector may include a social engineering attack on the operator of
the SCADA server. This includes sending a spear-phishing e-mail to the operator
that is read on the server or inserting an infected USB device on the server. In both
cases, a malware will be executed automatically on the host machine and will try to
scan the network for weak points, gain access to them, and escalate.

• Attack vector 1: An attack can be deployed from the SCADA server to all
CISCO switches. This results in a denial-of-service (DoS) attack on each of the
CISCO switches. Using this attack path, the attack cannot propagate further to
the lower end of the OT network. The operation of the physical process is not
affected. In the following, we list potential attack paths for this scenario:

– Operator→ ClearSCADA/Windows PC→ CISCO Catalyst 2950 (x4).

• Attack vector 2: The SCADA server has a logical connection with all the un-
derlying PLCs and the HMI on the OT network. The ClearSCADA software may
collect data from master controllers, and known vulnerabilities on the software
may allow unauthorized modification of data. Another attack vector assumes ex-
ploiting known or zero-day vulnerabilities on the logically connected devices.
Such an attack may impact the normal operation of some devices and sensors
due to existing vulnerabilities, e.g., vulnerabilities related with disruption of ser-
vices and modification of the device’s logic. In the following, we list potential
attack paths for this scenario:

– Attack vector 2.1: Operator → ClearSCADA/Windows PC → Siemens
SIMATIC S7-300 PLC→ Sensor/Actuator (x2).

– Attack vector 2.2: Operator → ClearSCADA/Windows PC → Siemens
SIMATIC ET 200S PLC→ Sensor/Actuator (x2).

A social engineering attack can be conducted on an engineer of the organization
or on an external partner who can visit the various field sites. In these cases, the lap-
top should be physically connected to a device to perform any required maintenance
operations. The attack vector assumes the user of the laptop to be deceived to install
a malware on it. Subsequently, when the laptop is connected on a device of the OT
network, the APT may propagate and escalate to cause damage.

• Attack vector 3: A laptop having the appropriate interfaces and software to con-
nect to devices may be infected by an APT. The APT can scan a device when
the laptop is connected to it and exploit known (or zero-day) vulnerabilities. The
vulnerabilities may be exploited either via the software that is used to maintain
the devices or directly through the host operating system. In the following, we
list potential attack paths for this scenario:
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– Attack vector 3.1
· Engineer/contractor → laptop/Windows PC → SIMATIC STEP 7 →

SIEMENS ET 200S PLC→ sensor/actuator (x2).
· Engineer/contractor → laptop/Windows PC → SIEMENS ET 200S PLC →

sensor/actuator (x2).
– Attack vector 3.2
· Engineer/contractor → laptop/Windows PC → SIMATIC STEP 7 →

SIEMENS S7-300 PLC→ sensor/actuator (x3).
· Engineer/contractor → laptop/Windows PC → SIEMENS S7-300 PLC →

sensor/actuator (x3).

A threat actor can attack the WiFi switches located in the OT network of the organi-
zation. This would require either to exploit a zero-day vulnerability or try to decrypt
the password through brute forcing or rainbow tables.

• Attack vector 4: If a threat actor can gain access to any of the WiFi switches,
it would be possible to attack on devices that are logically connected to the
switches. In the following, we list potential attack paths for this scenario:

– Threat actor → Siemens SCALANCE X208 WiFi Switch → Siemens
SIMATIC ET 200S PLC→ sensor/actuator (x2).

13.6.2 Defense Strategies

In the following, we list countermeasures (i.e., defense strategies) for the abovemen-
tioned attack strategies:

• Status quo (D1): Do not change anything.
• Training (D2-D4): Employees should be aware of potential attack vectors aiming

to them (e.g., social engineering attacks) and how to protect against them. The
frequency of security awareness training courses needs to be examined:

– Annually.
– Once every 2 years.
– Train only new personnel.

• Password change (D5-D7): Computing systems and devices may be password
protected. The frequency of changing passwords needs to be examined:

– Annually.
– Every time a device is changed.
– Every time an operator/engineer/contractor is changed.

• Update (D8-D10): Computing systems require updating the operating sys-
tem, potential software offering protection against attacks (e.g., antivirus, anti-
malware), and software that interfaces with various PLC devices (e.g., SIMATIC
STEP 7):
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– Enable automatic updates.
– Update every year.
– Apply only major updates.

• Patch/replace (D11-D13): Devices such as PLCs, HMIs, switches, etc. may need
to be patched/replaced. The frequency of patching/replacement needs to be ex-
amined:

– When a device fails to operate.
– Annually.
– When major vulnerabilities are known for a device.

• Manual checking of water (D14-D16): Additional checking of the water quality
may be required to ensure the level of provided service to consumers. Although
this information can be collected by the SCADA server, the latter may collect
modified data in the case of an attack. The frequency of manually checking the
water needs to be examined:

– Daily.
– Weekly.
– Monthly.

13.6.3 Estimate Damage in Case of an Attack

For each scenario defined by a pair (di,a j) of a defense strategy di and an attack
strategy a j, the damage is assessed by experts on a five-tier scale representing the
categories very low (1), low (2), medium (3), high (4), and very high (5). Such an
ordinal scale is often used in risk management, especially in cases where exact as-
sessments are not possible. Each expert was asked to estimate the damage for a set
of scenarios. This may result in either collecting or not an estimation from an ex-
pert, with the latter being the case for the expert to refuse to provide information.
In our case study, four experts were asked to estimate the damage for three goals,
i.e., minimize the downtime of a service, minimize monetary damage, and minimize
reputation damage. In case there were no or not enough data for a scenario, we as-
sumed a worst-case situation and considered the damage to be 5 (i.e., very high).
The kernel density estimation used to estimate payoff distributions needs at least
two data points to work properly.

The results from the experts’ assessment on this five-tier scale are shown in Ta-
bles 13.1, 13.2, and 13.3 where AV1, . . . , AV4 denote the attack strategies identi-
fied in Section 13.6.1 and D1, . . . , D16 denote the defense strategies identified in
Section 13.6.2. These assessments build up the random payoffs for the upcoming
game-theoretic analysis.
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Table 13.1: Experts’ opinion on expected damage with regard to service downtime

AV 1 AV 2.1 AV 2.2 AV 3.1 AV 3.2 AV 4

D1 3,5,2,3 5,5,4,4 4,4,4 5,4,3,3 4,3,3 4,3
D2 2,1,2,2 3,3,2,3 3,2,3 2,4,2,2 2,2,2 3,2
D3 2,3,2,2 4,4,3,3 4,3,3 3,4,3,2 3,3,2 4,3
D4 3,4,2,3 5,4,3,4 5,3,4 4,4,3,3 4,3,3 4,3
D5 2,5,2,2 3,5,3,3 3,3,3 3,2,2,2 3,2,2 3,3
D6 3,5,2,2 4,5,3,3 4,3,3 4,3,3,3 4,3,3 4,3
D7 3,5,2,3 4,5,3,4 4,3,4 4,3,2,3 4,2,3 4,3
D8 2,1,1,2 4,1,2,3 3,2,3 3,2,2 3,2,2 2,3
D9 1,3,1,2 3,3,2,3 3,2,3 3,1,2,3 3,2,3 3,3
D10 3,3,2,3 4,3,3,4 4,3,4 4,1,3,3 4,3,3 4,3
D11 3,5,2,3 4,1,2,3 3,2,3 4,2,2 4,2,2 4,2
D12 1,5,2,2 3,3,2,3 3,2,3 2,3,3 2,3,3 2,3
D13 3,5,2,2 4,3,2,3 4,2,3 3,2,3 3,2,3 3,3
D14 1,5,2,3 2,5,4,2 2,4,2 2,4,3 2,3 3
D15 3,5,2,3 3,5,4,2 3,4,2 3,4,3 3,3 3
D16 3,5,2,3 5,5,4,2 5,4,2 4,4,3 4,3 3

Table 13.2: Experts’ opinion on expected cost damage

AV 1 AV 2.1 AV 2.2 AV 3.1 AV 3.2 AV 4

D1 3,4,3,3 4,4,4,3 4,4,3 5,3,4,4 3,4,4 4,4
D2 3,1,2,2 3,1,2,2 3,2,2 2,3,2,2 2,2,2 2,2
D3 3,3,3,3 4,3,3,2 4,3,2 3,3,3,3 3,3,3 3,3
D4 3,4,3,3 4,4,3,3 4,3,3 4,3,3,3 4,3,3 4,3
D5 3,4,3,3 3,4,3,3 3,3,3 2,1,2,3 2,2,3 2,2
D6 3,4,3,2 4,4,3,2 4,3,2 4,2,3,3 4,3,3 3,3
D7 3,4,3,3 3,4,3,3 3,3,3 4,2,3,3 4,3,3 3,3
D8 1,1,2,2 4,1,2,2 4,2,2 2,2,3 2,2,3 2,2
D9 2,3,2,2 3,3,3,2 3,3,2 4,1,3,3 4,3,3 3,3
D10 3,3,3,2 4,3,4,2 4,4,2 5,1,4,3 5,4,3 4,4
D11 3,4,2,2 4,1,2,2 4,2,2 4,2,3 4,2,3 4,2
D12 2,4,3,2 3,2,2,2 3,2,2 3,3,3 3,3,3 3,3
D13 3,4,3,3 4,2,2,3 4,2,3 4,3,3 4,3,3 3,3
D14 4,3,3 4,4,4 4,4 3,4 4 4
D15 4,3,3 4,4,3 4,3 3,4 4 4
D16 4,3,3 4,4,2 4,2 3,4 4 4
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Table 13.3: Experts’ opinion on expected reputation damage

AV 1 AV 2.1 AV 2.2 AV 3.1 AV 3.2 AV 4

D1 4,4,3,4 5,4,2,4 5,2,4 5,2,3,3 4,3,3 5,3,3
D2 2,1,2,2 3,1,2,2 3,2,2 2,2,2,2 2,2,2 3,2
D3 3,3,3,3 5,3,3,3 5,3,3 3,2,3,2 3,3,2 4,3
D4 4,3,2,4 5,3,3,3 5,3,3 4,2,3,3 4,3,3 4,3
D5 3,4,3,2 3,4,3,2 3,3,2 3,2,3,2 3,3,2 3,3
D6 3,4,3,3 4,4,3,3 4,3,3 4,3,3,2 4,3,2 4,3
D7 3,4,3,3 4,4,3,3 4,3,3 4,3,3,2 4,3,2 4,3
D8 2,1,2,3 4,1,3,2 4,3,2 3,2,2 3,2,2 2,2
D9 3,3,2,3 3,3,3,3 3,3,3 3,1,3,3 3,3,3 3,3
D10 4,3,3,3 4,3,3,3 4,3,3 4,1,3,3 4,3,3 4,3
D11 4,4,3,3 4,1,3,4 4,3,4 4,3,3 4,3,3 4,2
D12 2,4,3,3 3,2,3,3 3,3,3 3,3,3 3,3,3 3,3
D13 4,4,3,3 4,2,3,3 4,3,3 4,3,3 4,3,3 4,2
D14 2,4,3,3 2,4,3,2 2,3,2 2,2,3 2,3 3
D15 3,4,3,4 3,4,3,3 3,3,3 3,2,3 3,3 3
D16 4,4,3,4 4,4,3,4 4,3,4 4,2,3 4,3 3

13.6.4 Game-Theoretic Optimization of Defense Actions

Based on the strategies defined in Sections 13.6.1 and 13.6.2 and the payoffs re-
sulting from the data presented in Section 13.6.3, we now set up a game to find the
optimal defense strategy as well as the worst-case damage. To this extent, we apply
a multi-objective security game (MOSG) between an attacker and a defender (e.g.,
a utility provider) with random payoffs. This game is assumed to be a zero-sum
game where the defender tries to minimize his loss (payoff) while the attacker tries
to maximize it.

Computation of an equilibrium is done by means of the generalized fictitious
play algorithm (see Chapter 3). The set of strategies and the payoffs provide ade-
quate input for computing the equilibrium. However, it is possible to prioritize the
different goals. From discussions with experts, the different goals were assigned the
following weights that represent their importance to the company: service 23/40,
cost 6/40, and reputation 11/40.

Applying the adapted fictitious play algorithm contained in the R package HyRiM
[15] with T = 1000 iterations, we find the following optimal defense strategy:

Table 13.4: Optimal defense strategy according to Nash equilibrium

Training yearly Update major Patching failure Patching major

Frequency 0.092 0.710 0.083 0.115
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The defense strategies not listed in Table 13.4 were assigned with a zero fre-
quency in the Nash equilibrium and thus shall not be chosen at all. This identified
solution is optimal in the sense that it minimizes the expected damage, i.e., deviat-
ing from this strategy yields a loss that is never smaller than in this case (in fact, if
only one equilibrium exists, the damage will be even higher). The optimal defense
strategy is illustrated in the top row of Figure 13.3.

Depending on the goal, an APT may have different optimal attack strategies.
These are illustrated in the three lower rows of Figure 13.3 (each labeled with the
corresponding goal) together with the likelihood of damage to the defender in the
case that this optimal strategy is applied (and the defender also follows his opti-
mal strategy). When thinking in terms of service disruption, it may cause maximal
damage by mainly choosing attack vector 2.1 (approximately 37% of time) and at-
tack vector 4 (approximately 51% of time), occasionally applying attack vector 1
(approx. 2% of the time), and rarely playing attack vector 2.2 (approx. 10% of the
time). With regard to the cost caused to the defender, the APT may cause high-
est damage when deploying attack vector 3.2 (which got a weight of 99.7% in the
mixed equilibrium), while for the reputation, the APT is aiming to mix between at-
tack vector 2.2 (67% of the time) and attack vector 4 (33% of the time). Since the
APT may deploy several attack vectors in parallel, it might be able to choose its
strategies according to all three equilibria so that it will not deviate from the optimal
behavior, which in turn causes the worst-case damage for each goal to the defender.

On the defender’s side, the organization should apply the optimal defense strate-
gies described in Table 13.4 to protect against an attack strategy by an APT. Specif-
ically, the defender shall apply only the four strategies listed in Table 13.4 in the
corresponding relative frequency identified per se. To this extent, in 9.2% of the
time, all employees should attend an annual training course. In 71.0% of the time,
major updates of computer systems shall be applied. With regard to patching devices
such as PLCs or HMIs, this is done upon failure in 8.3% of the time, while in 11.5%
of the time, patches shall be applied on devices with known major vulnerabilities.
All the relative frequencies are illustrated on the very top of Figure 13.3 per se.

As long as the overall frequencies correspond to the optimal solution, the de-
fender can randomly choose the order in which these strategies are enforced. This
means that the solution has a certain degree of freedom in the sense that if one strat-
egy cannot be applied at some point in time, e.g., due to the absence of a key person,
it can be postponed, and another defense mechanism can be used instead.

13.7 Conclusion

In this chapter, we reported on a water utility case study and demonstrated how the
HyRiM process can be of benefit when applied in this sort of utility organization.
Throughout the chapter, each of the applied processes is described. With regard to
widely applied assurance activities (e.g., vulnerability scanning, interviews), only
their integration with the process is demonstrated, i.e., presentation of output data.
The application of the HyRiM process on the water utility organization resulted
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in defining optimal protection strategies against an APT and eventually improving
its security posture. Specifically, the analysis showed that — based on the data pro-
vided by the experts — many of the identified defense strategies do not contribute to
reducing the damage within the organization given the identified set of attacks. For
example, only 4 out of 16 potential defense strategies are required for the equilib-
rium. The relative frequencies of application of the selected four defense strategies
have been determined by a generalized game-theoretic framework, and the worst-
case damage has been estimated for each security goal.
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Risk Management for Utility Networks).
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Chapter 14
Assessing the Impact of Malware Attacks
in Utility Networks

Sandra König, Antonios Gouglidis, Benjamin Green, and Alma Solar

14.1 Introduction

Utility networks are nowadays often monitored and operated by industrial control
systems (ICS). While these systems enhance the level of control over utility net-
works, they also enable new forms of attacks, such as cyberattacks. In the past few
years, many cyberattacks appear to employ malwares, and in many cases, the impact
of these attacks is considered to be considerably high, i.e., the damage caused to the
systems under attack is high. The first step toward preventing such incidents is to
increase our awareness and understanding on how a malware can propagate in a net-
work. Malware spreading can be modeled as a stochastic process on a graph where
edges transmit an infection with a specific probability. In practice, this probability
depends on the type of the malware (e.g., ransomware, spyware, virus) as well as on
the connection type between the nodes (e.g., physical or logical connection). In this
chapter, we demonstrate how the abstract model can be put into practice through a
case study. Specifically, the case study refers to a European electricity utility orga-
nization and takes into consideration the parts of the network that can be infected
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by a ransomware. Although this does not consider the infection of devices on the
operational network of the organization, it still considers them when estimating the
level of damage caused to the utility network in the face of a ransomware threat.

In the past, there have been only a few models for malware propagation in a
network, e.g., [1, 2, 3, 6, 14]. However, these models ignore an important property
many attacked networks possess: they are not homogeneous in the sense that the
malware is not equally likely to spread in all parts of the network. For example, if
a utility network is equipped with sensors, a malware attack might yield incorrect
measurements, and these incorrect information may later cause problems in the util-
ity network itself. At the same time, the malware itself is not able to spread over this
link if the sensor is used only for signaling and does not transmit any data.

One way to initiate a malware attack is by trying to infect a personal device of
a member of a company (e.g., by manipulating a USB stick that would be even-
tually connected with an internal system) since this allows to circumvent security
boundaries such as a firewall. Assuming a bring-your-own-device (BYOD) policy,
we can illustrate how such an attack can work in practice: a USB stick infected with
a malware may be used on a system in an organization (“BYOD connection”), and
the malware may spread within the locally connected network through email ex-
change or even by physically connecting the USB stick to other systems. Such an
incident was reported for the Iranian nuclear power plant, where Stuxnet was found
to infect the systems, resulting in destroying the majority of nuclear centrifuges in
the plant [4]. Although BYOD and protection mechanisms against malwares have
received considerable attention in the literature [7, 10, 12], an epidemics-like treat-
ment of malware infections (e.g., caused by the application of a BYOD policy) for
risk management has just started to develop.

In this chapter, we apply the HyRiM risk management framework (cf. Chap-
ter 12) and show how our model for random error spreading (cf. Chapter 8) can
be applied to describe such an incident and, subsequently, how this supports the
analysis of the security of the network with a game-theoretic model (cf. Chapters 2
and 3).

The rest of this chapter is structured as follows: in Section 14.2, we provide
the description of the case study based on a European electricity provider. In Sec-
tion 14.3, we define the main goals for the case study that will be investigated
through the HyRiM risk management framework and identify internal and exter-
nal factors that may influence the defined goals. Risks are identified and analyzed
in Sections 14.4 and 14.5, respectively. An optimal solution is calculated in Sec-
tion 14.6, and concluding remarks are presented in Section 14.7.

14.2 Case Study Description

In this case study, we focus on a ransomware attack on a European electricity
provider since several incidents have been reported recently. Ransomware is a mal-
ware targeting the computing systems of a company with the aim to prevent users
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from accessing their data either by encrypting files or by simply locking the screens.
Recent reported incidents refer to the WannaCry [11] and Petya [13] ransomwares.
In such type of attacks, the user being attacked would be asked to pay a ransom
to the attacker to regain access to her/his data on the infected system. For a util-
ity provider, such an attack may not only affect data of the organization itself but
also may affect customers’ data. Besides the monetary loss, any incident involving
consumer data may yield to a reputation damage for the company.

In the following sections, we evaluate such a (hypothetical) malware attack on an
electricity provider and illustrate how our approach fits with a standard risk manage-
ment process. To this extent, we consider an electricity distribution system that pro-
vides electricity for approximately 5000 users. All these end users are equipped
with smart meters to measure the power consumption remotely and to control the
grid efficiently. Such a network is controlled by SCADA systems.

For modeling the network, it is required to conduct initially an analysis of the net-
work infrastructure of the electricity provider. Therefore, in Figure 14.1, we depict
the – abstract – network diagram of an electricity provider. The diagram includes
the main technical nodes and connection paths between the information technol-
ogy (IT) and operational technology (OT) networks. On the left side of the diagram
resides the main IT network of the organization. It is composed of the “office net-
work” and the “SCADA server”. The main technical nodes of the office network are
workstations, laptops, and mobile devices. The latter type of devices can connect to
the office network through a wireless access point, which is installed in the office
premises. The SCADA server is responsible for the supervision and data acquisition
of the devices located in the OT network. Data collected at the office network is also
forwarded to a cloud computing system, which is external to the organization and
used for analytics and billing services. With regard to the OT network, the bottom of
it includes an electricity substation and camera network, and the top of it represents
the concentrators and distribution network of the electric power toward to its edge
(i.e., consumers).

Based on the abovementioned information, we model the utility provider’s net-
work as a directed graph G(V,E) with nodes in V and edges E between these nodes.
Assume that all edges in E fall into different non-overlapping classes, where each
class has distinct characteristics in how a problem propagates over the respective
edges. These could be social connections that use email communication (class 1),
technical connections in the actual network (class 2), and logical links between a
person and her/his device (class 3) that actually may enable a BYOD attack sce-
nario.

The goal of our case study is to estimate the risk of a malware infection due to
the BYOD policy in place or due to a spear-phishing attack. Specifically, we assume
the following end-to-end scenario:

• A threat actor prepares and releases a ransomware. This includes setting up a
server to communicate with the installed ransomware and exchange keys, which
are used for encrypting the storage space.
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• Attack vectors:

– A first attack vector can be its inclusion in file-sharing networks, e.g., in torrent
files – this attack vector can be related with the BYOD policy in place;

– A second attack vector can be a spear-phishing campaign (in this scenario, we
do not consider the spear-phishing attack to be a targeted attack but instead an
opportunistic one);

• The ransomware is installed on the IT network through any of the previous attack
vectors;

• The ransomware propagates either by email exchange between the employees or
by copying itself on the network file-sharing location;

• The ransomware connects with a remote server, exchanges cryptographic keys,
and starts the encryption process;

• The ransomware displays a screen requesting for an amount of money to be paid
in an untraceable cryptocurrency – the offer is time limited.

14.3 Establishing the Context

Establishing the context is the first step in the risk management process. It defines
the objectives that shall be achieved and attempts to understand the external and
internal factors that may influence the goals. Thus, this summarizes a description of
the external and internal environment of the organization.

14.3.1 Definition of Goals

After discussions with experts in the organization, three goals were defined. These
are:

• Minimize data loss caused by the ransomware. This includes the investigation
of various systems given the fact that data of different importance are kept on
different systems (e.g., laptops, servers);

• Minimize monetary damage caused by the attack. After the exploitation of a ran-
somware, various costs shall be estimated depending on how the organization
responses to the incident and its mitigation actions;

• Minimize reputation damage caused to the organization as a result of an attack,
e.g., due to stolen customer data. Potential reputation lost may be caused when
consumers are informed for the incident from different sources of information.

Assuming these goals, several attack and defense strategies are considered in
the subsequent processes. However, to ensure that the defined goals are achieved,
we attempt to understand the internal and external factors that may influence the
abovementioned goals.
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14.3.2 Ethnographic Studies

Human and organizational factors were vital parts of our investigation, achieved by
carrying out ethnographic studies as part of the case study. This included a visit from
an ethnographer to the utility organization, where discussions were conducted and
observations were made. The results included information about the systems used
in the utility organization, identification of people and their roles, understanding of
organizational policies, social relations among employees, and their behavior under
specific circumstances or situations.

However, in order to preserve the confidentiality and anonymity of participants,
and due to restrictions of the dissemination level of our findings, this information
cannot be presented in this chapter in detail. Nevertheless, some general remarks can
be provided. Briefly, the ethnographic studies along with the results of a penetration
testing produced a technical understanding of some of its vulnerabilities, indicat-
ing certain vulnerabilities that the organization had formerly seemed unconcerned
about. This, on face value, suggests that the organization members had imperfect
mental models or interpretive schemes of the system under their management. But
it is important to recognize that such models are adaptations to a wide variety of
experiences of which technical experts have no knowledge. They cannot therefore
be judged as deficient or otherwise in some general sense. What is more important
is that there is an awareness within the system of how those models contribute and
detract from its security.

14.3.3 Business Process Analysis

The main process and services carried out and provided by the organization’s em-
ployees were identified and analyzed across their regular daily operations. This ex-
ercise serves as a basis to specify the main goals of the risk management process,
discover possible expositions to risks of any kind, and establish possible mitigation
actions preventing those risks in later steps. In detail, technical factors, organiza-
tional factors, and behavioral factors have been identified. Some examples are (the
list is not complete but selected according to the relevance to the examined threat
scenario):

• Technical factors:

– The organization operates an information technology (IT) network (i.e., the of-
fice network) where several PCs (i.e., laptops and workstations) are operating
in it.

– A secure (i.e., password-protected) Wi-Fi connection is offered in the office
premises of the organization;

– The organization may operate surveillance technologies on the Operation
Technology (OT) network to ensure physical security.
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• Organizational factors:

– Some operations (e.g., billing) are outsourced to third-party organization using
cloud services;

– Security controls are in place;

• Behavioral factors:

– Usability is more important than prevention.

14.4 Risk Identification

Risk identification involves the application of systematic techniques to understand
a range of scenarios describing what could happen, how, and why. Therefore, the
infrastructure within the scope of the risk management process needs to be defined,
including technical assets, organizational roles, and individual personnel as well as
their interdependencies. Based on that, potential vulnerabilities and threats can be
identified.

14.4.1 Ethnographic Studies

The results from the ethnographic studies introduced in the previous step can also
be applied and extended here. For privacy and security concerns, comprehensive
information is further omitted. In the following, we provide some of the main risks
identified for the present case study:

• The organization employs a small number of people in their office location. Some
staff (e.g., engineers) may visit local and remote field sites for maintenance pur-
poses;

• The level of trust among the organization’s employees can be considered medium
to high;

• Cyberattacks are not seen as probable, but as very low risk;
• It is believed that the level of security they have is appropriate.

14.4.2 Interview-Driven Questionnaires

Questionnaires were passed to the organization’s employees to understand better
their reaction to specific attack vectors – social engineering resilience. Through
conducting interview-driven questionnaires with individuals in the examined orga-
nization, we identified that 41% of users would action the malicious email (i.e.,
phishing and spear-phishing) content. This increased to 50% when the sender of the
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email was a colleague. In the case of a successful attack, the perimeter breach could
be bypassed, providing direct internal system access and thus reducing even more
the attack path.

14.4.3 Vulnerability Identification

This is the process applied for discovering vulnerabilities in computing systems
or networks. Penetration testing was conducted on selected computing systems of
the office network, resulting in identifying a list of known vulnerabilities for some
of the examined systems. The tool used for performing this process is OpenVAS.
Although several vulnerabilities were identified in the assessed network, we only
refer here to risks that may be of interest to investigate under the assumption of a
ransomware. Specifically, the information that would be relevant to the examined
(ransomware) case study include the employees’ behavior in responding to emails
and examination software that can be exploited by ransomware, e.g., Adobe Flash
and Microsoft Silverlight on Windows-based systems.

14.5 Risk Analysis

Risk analysis is concerned with developing an understanding of each risk, its con-
sequences, and the likelihood of these consequences. In general, the level of risk is
determined by taking into account the present state of the system, existing controls,
and their level of effectiveness.

14.5.1 Likelihood Analysis: Technical

To estimate the likelihood of threats in this case study, we use the “exploitability”
temporal metric from the Common Vulnerability Scoring System (CVSS), which is
an open framework for communicating the characteristics and severity of software
vulnerabilities. The use of such a metric to estimate a threats likelihood is recom-
mended in the ICS-related literature [5]. This information is collected through the
technical vulnerability assessment, which resulted in identifying several vulnerabil-
ities. Common vulnerabilities and exposures (CVEs) were collected from the vul-
nerability reports, and subsequently the exploitability subscore was extracted from
the vulnerability summaries for CVEs. Most of the laptops and workstations op-
erate a version of Microsoft Windows. In the case of examining the infection of a
system by a ransomware, we investigated the ease and technical means by which
the vulnerability can be exploited by such a malware. As mentioned already, a com-
mon attack vector is to exploit an existing vulnerability in Adobe Flash or Microsoft
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Silverlight. These applications are both found to be installed on most computing sys-
tems in the electricity organization. Thus, we have identified the likelihood for some
of the technical nodes, in the examined network, to be infected by such a threat. The
likelihood is extracted by examining the CVE describing the exploits and the CVSS
assigned to it per se. However, due to privacy and security concerns, the details of
these vulnerabilities are not disclosed.

14.5.2 Likelihood Analysis: Social

In addition to the technical analysis, the level of trust between the employees in the
electricity organization was identified (cf. Chapter 8) to estimate the likelihood for
an employee to respond to an email. The likelihood for such an action was identified
via a set of discussions with employees, where relationships between employees
were identified too. Specifically, employees were questioned on the level of trust
they show in opening emails sent by their colleagues, as well as by external senders.
The likelihood for such an action is depicted in Table 14.1, where applicable.

Table 14.1: Likelihood for responding to an email

Receiver← sender Likelihood Receiver← sender Likelihood

User 1← User 2 Medium User 5← User 4 Medium
User 1← User 3 Medium User 5← User 6 Medium
User 2← User 1 High User 5← User 8 Medium
User 2← User 3 High User 5← User 7 Medium
User 2← User 5 High User 6← User 1 Low
User 3← User 1 High User 6← User 2 Low
User 3← User 2 High User 6← User 3 Low
User 3← User 5 High User 6← User 4 Low
User 4← User 5 Low User 6← User 5 Low
User 4← User 6 Low User 6← User 7 Low
User 4← User 7 Low User 8← User 5 Medium
User 5← User 2 Medium User 7← User 4 Medium
User 5← User 3 Medium ALL← External sender Medium

14.6 Risk Treatment

During risk treatment, existing controls are improved and new controls are imple-
mented. The aim of this step in the risk management process is to decide which
controls are used to protect the organization as good as possible. We here apply a
game-theoretic model to make this decision provably optimal.
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In the following, we define attack and defense strategies toward achieving the
goals defined in Section 14.3.1.

14.6.1 Attack Strategies

In our case study described in Section 14.2, we assume that employees are allowed
to use their personal devices (e.g., laptops or mobile phones) at their working place
since it is assumed that this increases efficiency of work. However, this also in-
creases the potential for a malware infection since it enables attack vectors targeting
employees directly.

Here, we consider the most typical ways to conduct a malware attack focusing
on employees. The attacker is considered a random threat actor (and not a targeted
attacker as in case of an APT attack) since she/he sends out these phishing emails at
random. In particular, this type of attack highly depends on the behavior of people in
regard to responding to malicious emails as well as any vulnerable software installed
on their system. Another popular attack consists that of distributing infected USB
sticks. Once plugged into a PC, the ransomware starts spreading as in the case of
spear-phishing emails:

• Attack vector 1: A spear-phishing email is sent to one or more employees asking
to open a link or download an attachment. If the employee follows this instruc-
tion, a ransomware is executed and his personal device is infected. Since the
success of such an attack depends a lot on the employee (i.e., whether she/he
clicks on the link), we distinguish different attack vectors here, depending on the
type of employee and device:

– Attack vector 1.1: Attacker (spear-phishing email) → highly educated em-
ployee→ employee’s PC

– Attack vector 1.2: Attacker (spear-phishing email)→ less educated employee
→ employee’s PC

– Attack vector 1.3: Attacker (spear-phishing email) → average educated em-
ployee→ employee’s PC

Once this device is connected to the company network, the ransomware is behind
the firewall and thus is able to encrypt sensitive files and spread further through
the network by simple propagation mechanisms (e.g., by sending an email with a
malicious link or by copying itself on a shared network directory).

• Attack vector 2: Another option is to infect the shared server, which is used for
file exchange and keeping backups. The success of such an attack also depends
on the employee that receives the spear-phishing email, but since the result is the
same, we combine these different scenarios in one attack vector:

– Attacker (spear-phishing email) → employee → employee’s PC → shared
server (files)
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• Attack vector 3: Infection of the SCADA server, which collects information
from the underlying OT networks (in particular the concentrators), might cause
significant problems. Possible attack paths involve all employees with devices
connected to the SCADA server:

– Attacker (spear-phishing email) → employee 4, 5, or 8 → employee’s PC 4,
5, or 8→ SCADA server

• Attack vector 4: Yet another option is to infect the camera server, which records
information from different field sites. Again, we combine the different paths to
one attack vector causing infection of the camera server:

– Attacker (spear-phishing email) → employee → employee’s PC → company
network→ camera server

• Attack vector 5: An opportunistic ransomware attack can alternatively be exe-
cuted by placing an infected USB flash drive near to a company building. If an
employee collects it and plugs it on her/his PC, the infection with ransomware
starts as in the case of phishing emails. However, this yields an additional attack
vector that might affect the operation of the provided service, namely, infection
of the maintenance laptop. In case there is a problem with one of the concentra-
tors and the infected laptop is used to solve that problem, the availability of the
provided service may be interrupted. Potential attack paths are:

– Attacker (infected USB flash drive) → engineer → maintenance laptop →
concentrator

14.6.2 Available Defense Mechanisms

In order to find an optimal way to protect a system against a ransomware attack or
at least to reduce the damage caused, the very first step is to identify all defense
mechanisms available. Later, the game-theoretic analysis will then show how to
optimally choose among them.

Here, we list countermeasures (i.e., defense strategies) against the abovemen-
tioned attacks:

• Status quo: Do not change anything;
• Training: Since we consider attack vectors targeting employees, an important

defense mechanism is to train employees how to handle their devices (e.g., not
to click on a link in an email that looks suspicious). This reduces the chance that
a private device is infected and thus reduces the probability that a ransomware
reaches the company network. Such trainings need to be repeated in order to be
effective, and we consider different frequencies:

– Annually;
– Once every 2 years;
– Train only new personnel.
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• Backup Policy: Important data shall be backed up to still be available in case
the computing system is encrypted. Different locations and frequencies are ex-
amined:

– Weekly backup on local system (e.g., file server);
– Monthly backup on local system;
– Yearly backup on local system;
– Weekly backup on a remote storage system (e.g., cloud storage);
– Monthly backup on a remote storage system;
– Yearly backup on a remote storage system;
– Weekly backup on external media (e.g., CD, DVD, USB flash drive);
– Monthly backup on external media;
– Yearly backup on external media;

• Update/patch: The most important technical countermeasure is regular patch-
ing. Having less technical vulnerabilities in the network that can be exploited
reduces the chance that a ransomware spreads inside the network. If this like-
lihood decreases, we might possibly avoid an epidemic outbreak where a sig-
nificant part of the network is affected. We distinguish different frequencies of
updating/patching:

– Enable automatic updates;
– Update every year;
– Apply only major updates.

14.6.3 Estimate Damage in Case of an Attack

Each scenario of the game is characterized through a starting point of the infection
given by the attack a j and a probability matrix P representing the impact of defense
di. The defense is useful if at least one probability is lower than in the matrix that
originally defines the network. This point of view allows simulation of the payoffs
from the percolation-based model for error spreading as described in the chapter on
random damage (cf. Chapter 8).

The likelihood of transmitting an error over an edge depends on the type and
level of trust put in this connection. For the current status of the network, these
likelihoods are collected in a matrix:

P =

⎛
⎝0.2 0.4 0.6

0.3 0.6 0.8
0.3 0.4 0.5

⎞
⎠ ,

where pi j gives the likelihood that an edge of type i and trust level j transmits the
error. More explicitly, the first row gives the values for social links, the second row
characterizes the technical links, and the third one characterizes the logical links,
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while the columns correspond to the levels low, medium, and high (from left to
right). Note that P is not a stochastic matrix since its rows do not represent a distri-
bution, but rather describe how the trust level of an edge influences the likelihood of
error transmission. The probabilities are estimations based on interviews with ex-
perts and vulnerability analysis (i.e., based on the exploitability metric in CVSS).
Depending on the defense strategy, these transmission probabilities may change.

In order to play a multi-objective security game (MOSG) that optimizes all iden-
tified goals simultaneously, all payoffs need to be described on the same scale. To
this extent, we define a mapping from the number of infected nodes to a five-tier
scale representing the categories “very low” (1), “low” (2), “medium” (3), “high”
(4), and “very high” (5). In the following, we provide an example of such a mapping
in Table 14.2 for the network under analysis that consists of 5 cheap, 13 normal, and
11 expensive nodes. Cells marked with "N/A" (not applicable) represent the situa-
tion that a failure of any number of nodes of this type never causes a damage in the
corresponding category. For example, for the mapping in Table 14.2, even a failure
of all cheap nodes will not cause a damage higher than 5, and similarly failure of an
expensive node will not cause a damage lower than 3.

Table 14.2: Mapping from the number of infected nodes to a five-tier scale of dam-
age in terms of data loss

Node value Very low Low Medium High Very high

Cheap Residual ≥ 3 ≥ 5 N/A N/A
Normal Residual ≥ 4 ≥ 7 ≥ 9 ≥ 12
Expensive Residual N/A ≥ 1 ≥ 5 ≥ 7

The cost of each defense strategy is assessed by experts on a five-tier scale (as
used above) that represents categories from “very low” (1) to “very high” (5). The
expert assessment on costs for this case study is shown in Table 14.3.

Table 14.3: Experts’ opinion on expected cost of defense

Defense D1 D2 D3 D4 D5 D6 D7 D8

Cost 1,1 2,3 2,2 1,2 3,3 2,3 1,2 4,4

Defense D9 D10 D11 D12 D13 D14 D15 D16

Cost 3,4 3,3 3,3 2,3 2,2 3,3 2,3 1,2

The reputational damage seems to be the most difficult to assess. If possible, it
should be assessed by experts as in the case of cost. However, this is not always
a simple and straightforward task. When interviewing employees, they rather state
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that reputational damage is proportional to the data that is lost. Thus, we apply the
same procedure as for the estimation of data loss, and we slightly adapt the mapping
from the number of infected nodes to the five-tier scale. This is mainly due to the fact
that not all data loss is reported and thus does not necessarily cause a high damage
in the reputation of the organization. The mapping used for this goal is provided in
Table 14.4.

Table 14.4: Mapping from the number of infected nodes to a five-tier scale of dam-
age in terms of reputation

Node value Very low Low Medium High Very high

Cheap Residual ≥ 5 N/A N/A N/A
Normal Residual ≥ 5 ≥ 8 ≥ 10 N/A
Expensive Residual N/A ≥ 3 ≥ 6 ≥ 9

14.6.4 Game-Theoretic Optimization of Defense Actions

Based on the strategies defined in Sections 14.6.1 and 14.6.2, the payoffs resulting
from the simulation and the data presented in Section 14.6.3, we set up a game to
find the optimal defense strategy as well as the worst case damage in case of an at-
tack. To this extend, we set up a multi-objective security game (MOSG) between an
attacker and a defender (e.g., a utility provider) with random payoffs as introduced
in [8]. This game is assumed to be a zero-sum game where the defender tries to
minimize his loss (payoff), while the attacker tries to maximize it.

The set of strategies and the payoffs provide adequate input for computing the
equilibrium. However, it is possible to prioritize the different goals. From discus-
sions with experts, the different goals were assigned with the following weights that
represent their importance to the company: data loss 0.5, cost 0.3, and reputation
0.2.

Computation of an equilibrium is done by means of the generalized fictitious
play algorithm that is implemented in the R package HyRiM [9]. With T = 1000
iterations, we find the optimal defense strategy shown in Table 14.5.

The defense strategies not listed in Table 14.5 were assigned with a zero fre-
quency in the Nash equilibrium and thus shall not be chosen at all. This optimal
defense strategy is illustrated in the top row of Figure 14.2.

The optimal attack strategy on the other hand usually changes with the goal.
Therefore, Figure 14.2 lists both the optimal attack strategy (left) and the worst case
damage (right) for each goal in one row. The worst case damage is the damage that
occurs if both players choose their strategies according to the Nash equilibrium and
is measured on the same five-tier scale as the payoffs. Since the attacker is assumed
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Table 14.5: Optimal defense strategy according to Nash equilibrium

Strategy Train yearly Remote backup yearly External backup monthly

Frequency 0.056 0.134 0.810

to be a single person, he usually is not able to play all optimal defense strategies
simultaneously, so that the worst case damage is a lower bound to the occurring
damage.

In this case study, the attack strategy of “spear-phishing 3” (i.e., targeting an
employee with an average security awareness) is optimal in terms of cost and rep-
utation, and it should be applied in 35.76% of all cases. In 55.65% of the time,
the “spear-phishing 1” attack aiming at a highly security aware employee shall be
deployed, and in the remaining 8.59% of the time the “spear-phishing 2”, attack
shall be played, which will target a less security aware employee.

On the defender’s side, the organization should apply the optimal defense strate-
gies described in Table 14.5 to protect against a ransomware attack. Specifically, the
defender shall apply only the three strategies listed in Table 14.5 in the correspond-
ing relative frequency identified. To this extend, in 5.60% of the time, all employees
shall attend one training course every year; in 81.00% of the time, a monthly ex-
ternal backup should be used; and in the remaining 13.40% of the time, a yearly
remote backup shall be applied.

As long as the overall frequencies correspond to the optimal solution, the de-
fender can randomly choose the order in which these strategies are enforced. In
particular, the solution has a certain degree of freedom in the sense that if one strat-
egy cannot be applied at some point in time, e.g., due to the absence of a key person,
it can be postponed, and thus another defense mechanism can be used instead.

14.7 Conclusion

In this chapter, we have illustrated how to apply the HyRiM’s risk management
framework by examining a case study of a European electricity utility organiza-
tion considering a single security threat, i.e., a ransomware attack. Although such
threats are opportunistic, they pose a great concern to organizations, not least to
utility networks. In this hybrid approach, we have examined the utility organization
from multiple viewpoints and identified existing vulnerabilities to its infrastructure
and potential attack vectors. A set of attack and defense strategies were defined, and
experts’ knowledge was collected to estimate the damage caused to the utility orga-
nization on the basis of three goals. The results indicate that using spear-phishing
as an attack vector (i.e., attack strategy) would result in causing the most damage to
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the utility provider, when compared with other attack vectors. Finally, with regard
to optimal defense strategies, our analysis indicate that performing remote and ex-
ternal backups on a regular basis as well as regular training of employees may serve
as powerful defense mechanisms, when compared with the rest of the examined
countermeasures.

Acknowledgements The research leading to these results has received funding from the European
Union Seventh Framework Programme under grant agreement no. 608090, Project HyRiM (Hybrid
Risk Management for Utility Networks).
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Chapter 15
Game-Theoretic Optimization for
Physical Surveillance of Critical
Infrastructures: A Case Study

Ali Alshawish, Mohamed Amine Abid, and Hermann de Meer

15.1 Introduction

Critical infrastructures are physical or virtual assets that are essential for the proper
functioning of any society and economy. The destruction of such systems and as-
sets can adversely affect several vital sectors such as security, national economy,
public health, and safety. Most countries identify the following critical infrastruc-
tures: telecommunications, electric power systems, natural gas and oil, banking
and finance, transportation, water supply systems, government services, and emer-
gency services [10]. Critical infrastructures interact at multiple levels to enhance
their overall performance. These interactions often create complex relationships,
dependencies, and interdependencies that cross infrastructures’ boundaries. There-
fore, these organizations constantly extend their physical perimeters to include other
entities, such as vendors, business partners, service providers, or even customers,
into their premises. Thus, access to the facilities is allowed to not only regular em-
ployees but also external entities including temporary workers, interns, independent
contractors and subcontractors, or even visitors. Broadly speaking, all these enti-
ties need easy access to their workplaces. Therefore, surveillance and access control
technologies are mostly deployed at the outer layer of the infrastructure system to
ensure efficient mobility inside the facility.
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At the entrance of the facility, the access control process is set according to a pre-
determined policies and procedures. Since the personnel structure changes consid-
erably often, merely personal recognition of authorized persons through the security
staff is not adequate. Therefore, security badges and identification cards are widely
adopted for an easy and prompt access authorization. Although surveillance sys-
tems may be in place and operate within a critical system’s premises, they are prone
to technical as well as organizational failure. For example, security badges might
be stolen without notification to the security personnel or without revoking them in
a timely manner. Moreover, badges issued to temporary visitors and workers, or to
employees that have already left the company, might not always be recovered before
leaving the site. This gives adversaries the possibility to gain an easy access to the
facility. As a consequence, the perimeter-centric physical security measures, such as
traditional surveillance technologies (e.g., closed-circuit television (CCTV) systems
or access control solutions) that use static surveillance devices mounted at specific
locations, are not adequate to detect and prevent such potential intruders [11].

To summarize, surveillance technologies represent a standard practice for the
protection of critical infrastructures such as utility networks. Although surveillance
systems may be in place and operating within a utility provider’s premises, they are
prone to technical as well as organizational failures resulting in a fluctuating per-
formance. Furthermore, several emergency and unforeseen events, such as human
errors, can significantly impact the effectiveness of specific surveillance activities.
Therefore, modeling surveillance needs to account for the characteristics and prac-
ticalities of surveillance systems, especially imperfect detection as well as fuzzy
assessment of the performance.

To cope with this intrinsic dynamic nature of such critical infrastructures, and
to achieve a decent level of situational awareness in such large-scale areas and tak-
ing into account the limited available resources (e.g., security personnel and badge
check devices), badge verification activities have to be randomized to improve the
effectiveness and detection probability. This can be achieved by mobilizing the in-
volved security resources. Additionally, it is vital to implement some risk-based
strategies that allocate and focus resources in highly sensitive areas and against real
threats and therefore to effectively and efficiently mitigate risks of physical intru-
sion [8, 7]. Finding an optimal inspection layout involves simultaneously optimizing
multiple objectives such as detection rate, privacy, damage, and incurred costs. This
special scenario of conducting surveillance by human security staff has a natural
reflection in game theory as the well-known “cops and robbers” game (a.k.a. graph
searching). More details on application of game-theoretic concepts and algorithms
in the general field of security and risk management are included in Chapter 6 as
well as in our previous work [2].

In this chapter, we apply game-theoretic principles to solve zero-sum games
with probability distribution-valued payoffs as a means to integrate the intrinsic
uncertainty of surveillance systems. This model is an essential component of a
comprehensive decision-making framework for physical surveillance games, called
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“G-DPS-framework”. The ultimate goal of this framework is to find the optimal
configuration for physical surveillance system over multiple goals. As an evaluation
scenario, we use an actual setup given within a critical infrastructure, henceforth re-
ferred to as “the company.” For reasons of simplicity, we will focus solely on the use
of security guards, who are controlling the area. Taking into account the details of
the physical infrastructure (buildings, roads, etc.) as well as personnel requirements
(working hours, available number of guards, etc.), we will make use of simulations
to assess various real-life attack and defense scenarios with regards to different iden-
tified goals. Finally, the optimal solution obtained by the model will be implemented
and empirically validated.

15.2 G-DPS: A Game-Theoretical Decision-Making Framework
for Physical Surveillance Games – An Overview

Throughout this work, we apply G-DPS framework, which is a decision-making
framework for physical surveillance games described in Chapter 6. This framework
enables the involved security manager (i.e., defender) to identify and assess possi-
ble alternatives toward finding an optimal allocation of surveillance resources. The
applied game-theoretical model facilitates finding an optimal solution for risk mini-
mization through playing surveillance games with stochastic outcomes. This mainly
addresses the uncertainty component, as the impact of surveillance systems cannot
be fully expressed in a crisp numeric utility, but rather in fuzzy or probabilistic
terms. Hence, the framework allows us to integrate the intrinsic randomness of the
effects of surveillance action and subsequently provides a more realistic view of
handling uncertainty in physical surveillance games. In addition, this framework al-
lows us to optimize across different goals (e.g., damage caused by the adversary,
costs for security measures, acceptance of the security measures by the employees,
etc.). In a nutshell, the framework defines six main steps (cf. Chapter 6 for details):

• Context Establishment aims at understanding the environment of inter-
est as well as the different objectives that should be achieved.

• Identification of Strategies involves identification and parame-
terization of possible configurations, layouts, and operational patterns for the
surveilled infrastructure.

• Identification of Goals involves identification of relevant indicators
related to the inspection activities.

• Assessment of Strategy Effectiveness aims at determining the
effectiveness of identified strategies with regard to all identified goals. This can
be achieved using different qualitative, quantitative, and semi-qualitative as-
sessment methodologies (e.g., simulation, experts and stakeholders opinions,
or social surveys).
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• Identification of Optimal Configuration involves finding
Nash equilibria in games with distribution-valued payoffs.

• Implementation of Optimal Configuration involves imple-
menting and adjusting the surveillance configurations according to the opti-
mal solution as well as analyzing and validating the feasibility of the obtained
optimal strategy.

15.3 Scenario Description: Setup of the End User’s
Infrastructure

In this use case, we consider an industrial complex as a critical infrastructure that
involves several industrial processing units and auxiliary facilities (e.g., petroleum
refining units, a water purification center, a gas production plant, or an electricity
production plant) and is illustrated by the map presented in Figure 15.1. Being sen-
sitive (i.e., the business and the industrial processes), this infrastructure is a potential
target of several attacks of different kinds.

Fig. 15.1: The map of the considered critical infrastructure

In the context of the risk management process, we study the impact of potential
attacks to identify the best defense strategy in order to protect these assets from
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potential external threats. For the sake of simplicity, we confine ourselves to the
risk of physical intrusions. For that purpose, we will apply our aforementioned G-
DPS framework. We may insist here that the use case we consider is derived from
realistic environment settings and based on the knowledge of experts operating in
critical infrastructures. Henceforth, we will refer to the investigated infrastructure
as the company.

15.4 Application of G-DPS-Framework in This Use Case

This section describes the step-by-step application of the G-DPS framework, briefly
introduced in Section 15.2, to infer the optimal configuration for the physical inspec-
tion activities of the company’s industrial complex.

15.4.1 Context Establishment

As a first step, a business process analysis was conducted to identify the main busi-
ness processes in the company. It unveiled that the company carries several crit-
ical industrial processes including water purification as well as critical chemical
engineering processes. These processes represent the basis for identifying possible
expositions to risks, in order to find mitigation actions preventing those risks in
later steps. Furthermore, ethnographic studies were carried out at the company. An
ethnographer at the utility organization conducted several discussions and made ob-
servations, which included the organizational structure and the social interrelations
between the employees. Finally, a study of the company’s layout and architecture
was conducted to better assess its physical environment.

The results of these three steps are described in the following. We first provide
some of the main risks identified for the present use case:

• Most of the company’s employees are field workers, who manipulate highly
dangerous materials and have access to sensitive areas.

• Maintenance staff may visit sensitive fields and sites, even when they are al-
ready evacuated (during maintenance operations, the present personnel might
be kept at its strict minimum, i.e., only maintenance staff).

• The company’s employees are considered as a potential source of leakage of
sensitive information.

• Due to the prevalent believe of the security personnel that the deployed security
solutions (i.e., CCTV cameras and the access control system at the entrance)
are able to prevent any illegitimate access to the company, the risk of physical
intrusions is seriously underestimated. This actually represents a great threat, as
it means that the alert level at the company is very low. Thus, if such infiltration
occurs, it would most likely not be detected early enough.
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As such, the company can be a target of several attacks of different kinds:
(i) attacks aiming to cause physical damage through the destruction of build-
ings/machines that contain highly dangerous materials, (ii) attacks causing damage
to the nearby environment by tampering or disrupting some setup security measures
and thus leading to polluting the area, or (iii) espionage attacks causing the leakage
of sensitive information, either to a competitor, or simply to the public to breach the
company’s reputation.

To deal with all these potential threats, the company set up the following security
measures:

• Surveillance cameras: a network of fixed cameras is installed but rather acts as
a reactive solution than a monitoring platform. It is mainly used to review taped
events that could have happened as it is the case of many other critical infrastruc-
tures.

• Badges scanning and verification system at the entrance gates: to guarantee a
basic level of security, each person entering the complex (i.e., employees of the
company, temporary workers, and visitors) must have a security badge, which is
automatically read at the entrance. These badges are used to grant them access
to the company in the first place, and to working areas with special restrictions.
On the security badge, the owner’s identification number (ID), name, and photo
are stored. All data can be retrieved upon scanning the badge with a specific
verification device.

In this study, we will limit ourselves to potential physical intrusions. We will sup-
pose that a single intruder or a team of intruders succeed in accessing the company
using a stolen badge(s) of an employee(s) or a temporary worker(s) or simply by
forging security badges.

The architecture of the area under surveillance (i.e., the buildings, road, perime-
ter, etc.) is known and depicted in Figure 15.1. Due to the complexity of the actual
map and plant topography, and in order to achieve both simplicity and plausibility
with respect to a complex real scenario, a simplified map layout has been realized
for simulation purposes as shown in Figure 15.2.

The entire area is divided into 47 zones, each of which has a specific security level
indicating its criticality. The security level of a specific zone depends on the assets
located therein (e.g., areas where important machinery is operated or control room)
or on the information stored in that zone (e.g., data centers, record storage rooms,
etc.). Although these zones are equipped with surveillance systems such as video
cameras or access control systems, the presence of security guards is also required.
In particular, these zones need to be checked on a regular basis by a security guard to
prevent unauthorized intrusion (which is partly covered by the technical solutions)
in that zones. Table 15.1 indicates the assigned risk levels associated to each area
presented in Figure 15.2. A risk level equal to 1 indicates a low risk. Obviously, the
higher the risk level, the more critical the zone.

The company counts 180 employees in total. Every employee holds an individual
security badge, or interchangeably an ID card, proving her/his identity and right to
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Fig. 15.2: The company’s simplified map

Table 15.1: Summary of the different subareas’ risk levels

Subarea Label Security Level

Subareas: A1, ...,A4 Level 1
Subareas: B1, ...,B7 Level 2
Subareas: C1, ...,C3 Level 3
Subarea: D1 Level 4
Subareas: E1, ...,E2 Level 5
Subarea: F1 Level 7
Subareas: G1, ...,G14 Level 8
Subareas: H1, ...,H6 Level 9
Subareas: I1, ..., I4 Level 10
Subareas: J1, ...,J5 Level 12

be in a given subarea or zone. They can move between subareas following the lay-
out’s paths connecting them. They are also free to move inside a subarea according
to the following movement pattern:

1. select a random position inside the subarea,



360 A. Alshawish et al.

2. move to this position, and
3. spend some time (a stay) working in this position. This stay is uniformly dis-

tributed between 10 and 60 minutes.

To reinforce these security measures, and to achieve a more efficient protection,
a new on-demand and proactive surveillance system is under investigation to better
assess its effectiveness to detect and reduce the impact of possible intrusions. This
is also the main objective of this use case. The ultimate goal is to set up a preventive
method that helps estimate and minimize the risk of a successful intrusion. It should
provide an estimation of the risk of an intrusion attack under some specific on-
demand surveillance strategies and find the best way to minimize the impact of such
an attack.

For that purpose, the company hired 15 additional employees to serve as security
guards (i.e., 15 represents the available resources to serve as mobile badge inspec-
tion guards). Every guard follows a schedule of checking missions where she/he
is supposed to move around and check the identity of randomly selected employ-
ees located in the different zones. For each mission, she/he will be moving from the
headquarter, pointed out as HQ in Figure 15.2, to a given targeted zone using a vehi-
cle (at a speed not exceeding 20km/h). Once arrived, she/he will step out the vehicle
to check the area on foot. At the end of the mission, the guard returns to the vehi-
cle and drives back to the HQ where she/he waits for the next mission. A schedule
indicates when a mission should start. The number of checking missions, when to
start, and which area to target are further investigated in the upcoming stages. This
defines the defensive strategy to be adopted. Security guards will be equipped with
a mobile device capable of reading security badges and checking whether a person
holding a badge is its rightful owner. This can be done by taking a picture of the
person’s face with the device and using face matching algorithms to compare it to
the photo stored to the badge.

15.4.2 Identification of Strategies

Here, we need to identify the set of strategies of each player (i.e., defender and
intruder). We will start with the intruder and then move to the defender side. As
aforementioned, we will consider two case scenarios regarding the potential target
of intruders:

• Espionage scenario: the intruders try to acquire critical information about the
company. In this scenario, we will assume that intruders are roaming around
and targeting zones randomly.

• Sabotage/vandalism scenario: the intruders target critical assets to manipulate
them and cause physical damage. In this scenario, we will assume that the in-
truders have more knowledge about the zones of specific interest that they will
try to target in the first place.
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As such, we can identify two types of strategies according to the way areas are
targeted: either randomly (R) or based on their criticality by targeting Higher Se-
curity Levels First (HSLF). Moreover, we will investigate attacks where a group
of intruders tries to infiltrate the company and cause potential damage. The size of
such a group can also be seen as a parameter defining different attacker strategies.
In this study, we will consider attacks made by a group of 5, 10, and 15 intruders,
respectively.

On the other hand, security guards will be carrying the mission of performing
random checks in the different zones of the company. Certainly, it would not be
advisable for the security guard to take tours on fixed routes and at fixed times,
since such information can be obtained by an intruder, who then instantly knows
where and when to sneak into the infrastructure. In this case, the intruder would be
able to maximize the time she/he is able to cause harm until the security guard re-
turns to that specific zone. Conversely, taking rounds on random routes or checking
the specific zones for intruders at random times creates sort of a “moving obstacle
defense” [5, 16], since the intruder is confronted with additional uncertainty. Addi-
tionally, since not all zones are of the same importance for the company, zones with
a “high” security level have to be checked more frequently than zones with a “low”
security level. In this context, the security guard may have better chances to catch an
intruder the more often the guard checks a specific area (note that a guard is not able
to check the badges of all persons within a specific zone at a specific time). This
gives us once again two sets of possible strategies: random checks (R) or Higher
Security Levels First checks (HSLF). Nevertheless, a certain number of security
guards have a limited amount of time to check all zones within the complex. In fact,
every security guard would have a limited number of checking missions assigned to
him per day. The number of checking missions per security guard per working day
(also defined as the frequency of checks per working day) can also give us a set of
possible defensive strategies. For our case study, we will consider strategies with 2,
3, 5, and 8 checking missions per day per security guard.

To summarize, for the defender, a strategy is defined by:

• The number of missions per day (frequency of missions): N missions
• How to target a given area: randomly (R) or Higher Security Level First (HSLF)

A defender strategy where we ask our security guards (in our case, their number is
fixed to be 15) to target areas according to X (R or HSLF), Y times a day, is denoted
D-NG15FYTX.

On the other hand, an attacker strategy is defined by:

• The number of attackers
• How to target a given area: randomly (R) or Higher Security Level First (HSLF)

Similarly, an attacker strategy where N attackers enter the site and target areas ac-
cording to X (R or HSLF) is denoted A-NINTX.
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In our case scenario, we enumerate in total the attacker/defender strategies de-
picted in Table 15.2.

Table 15.2: List of the strategies considered for defenders and attackers

# Strategy Label Description

- 8 Defender Strategies:

1 D-NG15F2TR freq = 2 & areas: targeted randomly
2 D-NG15F3TR freq = 3 & areas: targeted randomly
3 D-NG15F5TR freq = 5 & areas: targeted randomly
4 D-NG15F8TR freq = 8 & areas: targeted randomly
5 D-NG15F2THSLF freq = 2 & areas: targeted Higher Sec. Lev. First
6 D-NG15F3THSLF freq = 3 & areas: targeted Higher Sec. Lev. First
7 D-NG15F5THSLF freq = 5 & areas: targeted Higher Sec. Lev. First
8 D-NG15F8THSLF freq = 8 & areas: targeted Higher Sec. Lev. First

- 6 Attacker Strategies:

1 A-NI5TR 5 intruders & areas: targeted randomly
2 A-NI5THSLF 5 intruders & areas: targeted Higher Sec. Lev. First
3 A-NI10TR 10 intruders & areas: targeted randomly
4 A-NI10THSLF 10 intruders & areas: targeted Higher Sec. Lev. First
5 A-NI15TR 15 intruders & areas: targeted randomly
6 A-NI15THSLF 15 intruders & areas: targeted Higher Sec. Lev. First

15.4.3 Identification of Goals

In the given scenario, we focus on more than one single goal, as we have to take
several aspects into consideration to find an optimal solution for the game. In more
detail, the overall game has four goals of interest: the caused damage, the privacy
preservation, the comfort breach, and the detection rate. These goals can be quanti-
fied as follows:

• Detection Rate is the ratio of detected intruders to their total number (i.e., the
number of detected intruders divided by the total number of intruders). Such a
goal is to be maximized.

• Caused Damage is defined as the average time spent inside the targeted subareas
per intruder, weighted with their respective security levels. Formally, if NI is the
number of intruders, and NA is the number of subareas in the company, then the
damage is understood as

CausedDamage =
1

NI
×

NI

∑
i=1

NA

∑
j=1

timeSpent(intruderi,area j)× secLevel(area j)
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where timeSpent(intruderi,area j) represents the total time spent by intruderi

inside area j; and secLevel(area j) gives the security level of area j. Obviously,
this goal is to be minimized.

• Minimum Privacy Preservation is inversely related to the maximum possible
disclosure of employees’ locations. Obviously, the more frequently manual ID
checks are performed, the more effective the system can be. However, this
comes at a price: a frequent ID checking may have an essential impact on lo-
cation privacy of the employees, especially if such an information is leaked.
Therefore, we are more interested in inspection strategies that maximize the
minimum level of privacy preservation. In other words, we prefer strategies that
keep the maximum privacy disclosure at its minimum.

• Maximum Comfort Breach is the maximum comfort breach experienced by the
employees in the company. In fact, the more a worker is checked, the more
uncomfortable she/he will feel. However, it is still a subjective issue after how
many checks a person starts feeling uncomfortable and how much uncomfort-
able an employee would be after several checks. Thus, and to better assess such
a measure, we may relay on the ethnographic studies that we conducted while
establishing the context of our studied company. This particular point will be
discussed in more details in Section 15.4.4. Given that one of the main objec-
tives of the company is to satisfy its employees, this particular goal should be
minimized.

We may insist here that we can define several additional key performance indi-
cators (KPIs) and respective target goals such as resource cost, energy cost of the
mobile checking devices, etc. However, we will limit ourselves to the four afore-
mentioned measures: (i) detection rate, (ii) employees’ comfort breach, (iii) caused
damage, and (iv) minimum privacy preservation. We will have to take into account
the multi-goal aspect while defining the optimal strategy. In fact, these four goals
have to be minimized (e.g., damage) and maximized (e.g., detection rate) at the same
time based on the different attack and defense strategies (cf. Table 15.2). In detail,
more frequent security checks will increase the likelihood of detecting an intruder
but will also cost more location disclosure of the employees and less comfort. There-
fore, an optimization process is required, which necessarily relies on a measure of
quality for the different defensive strategies we could apply. As already described in
Section 15.2, our G-DPS framework is able to solve such a multiobjective game.

15.4.4 Assessment of Strategy Effectiveness: Simulation Setup
and Results

For each known configuration, the effectiveness with regard to all aspects identi-
fied in the previous step needs to be determined. Since the response dynamics of
the game, e.g., people’s reactions, etc., may be uncertain (recall the comfort breach
which remains a subjective feeling after all), we should be careful on how to assess
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our different strategies. For instance, we may rely on some experts opinion that will
evaluate the different strategies in terms of our fixed goals. Another option would
be to rely on simulation, which is the option we chose in this study. Following this
particular method, we may easily quantify the outcome of certain goals: a more or
less reliable risk estimation (e.g., given in terms of probabilities) may be achievable
through simulation, but not necessarily so for all goals of interest. A “soft” indicator,
such as the degree to which employees appreciate the surveillance or feel uncom-
fortable upon such monitoring, is one example of a goal that may not be estimated
by simulation. In such cases, empirical data (e.g., coming from classical surveys or
in our case from the ethnographic study we conducted) may be necessary before
simulating the different configurations.

This subsection will then be devoted to present the simulation we developed to
assess our different strategies. As a first step, let us describe our simulation model.
We choose to use the INET 3.4 framework [3], on top of OMNeT++ 5.0 discrete
event simulator [15] to integrate our model. Through this model, we need to be
able to reproduce a faithful image of the physical environment of our monitored
facility. We also have to reflect all the applied policies (zone restrictions, employees’
profiles, badge checking policies, etc.) as well as actors’ behaviors (security guard,
field worker, or intruder).

15.4.4.1 The Physical Environment

In our developed simulation model, we reproduced the exact same (in terms of num-
ber of areas, their geographic repartition, their sizes, and the routes connecting them)
simplified map layout given by Figure 15.2. In this figure, we can observe 47 zones
plus a headquarter (HQ), reachable through a web of ways/paths to follow when
moving from/toward any of these areas. These areas represent the smallest level
of granularity of our site. Each of which has an attribute, called security level, in-
dicating the criticality of the respective area (as described in Table 15.1). All this
information, i.e., paths, fences, gates, and areas, is described in an XML file, parsed
on the run time, to build and render the physical structure of our site.

15.4.4.2 Actors

In our case study, we can identify two main actor categories: employees and intrud-
ers. An employee can be either a worker or a security guard. They all hold security
badges, meaning that they are known to the system. Unlike an employee, an intruder
is someone from outside the facility. Hence, she/he doesn’t hold a security badge,
has a fake one, or has a stolen card that does not correspond to their biometrics (i.e.,
finger print or facial photo, etc.). In all these cases, she/he will not be recognized by
the system as a regular employee. Thus, she/he should be caught at the first badge
check, whenever it is done and wherever she/he is located inside the facility.
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Depending on their job, employees are allowed to access certain areas of the fa-
cility but may be denied access to others. The restriction varies among employees.
In our simulation model, we define a set of profiles, each of which indicates a subset
of allowed areas. Using an XML file, we assign one of these profiles to each worker,
indicating the areas she/he can access. This information is stored in her/his ID card.
A regular worker is a person who does respect areas’ restrictions. She/he will never
access an area not figuring in his profile. Thus, upon a security check, her/his situ-
ation would always be fine. On the other hand, a malicious worker is an employee
with a valid ID card but who intends to physically harm the facility. In our work,
we suppose that such suspicious behavior manifests in targeting areas that she/he is
denied to access. During a security check, a malicious worker can only be caught
if she/he is behaving suspiciously at that time (i.e., he is in a restricted area when
the check takes place). Such information can be acquired from the first step (i.e.,
context establishment). In our case all workers are allowed to be in all areas of the
company (i.e., one single profile for all employees, all workers are regular).

Conversely, intruders are not authorized to be in any of the zones of our company.
An intruder may choose to remain in the subarea where she/he is or move from one
subarea to another following a given strategy (i.e., randomly or HSLF). At the cost
of being possibly detected by a security guard, staying in the same zone means
adopting a movement pattern similar to a regular employee.

On the other hand, security guards are allowed to access all areas of the facility.
A special profile is then created just for them. A security guard owns two main
devices: a navigation system and an ID checker (they are virtually two separate
devices but could also be integrated into one single physical device). The navigation
system serves as a mission scheduler. Checking missions are assigned to a security
guard using this device. It first indicates which area a security guard needs to check,
shows the way to reach this area, and decides the strategy to be adopted during the
ID check. The ID checker is used to verify the identity of an employee. It starts
with verifying the ID and the biometrics of the employee. If they match, it verifies
whether this employee is allowed to be in the area where the check is performed.

15.4.4.3 Security Badge Checking Mission

In our simulation model, a mission consists of three phases: (i) select a target area,
(ii) visit the targeted area and perform spot checking, and (iii) go back to the head-
quarter.

First phase of a mission: The first phase corresponds to selecting of a target
area and guiding the security guard toward it. This selection is made according
to a given strategy. We implemented the two strategy families identified in the
previous section: random choice (R) and a choice based on the security level of
the areas (HSLF). The navigation device, storing the map of the whole site (i.e.,
areas and paths), guides the security guard initially located at the headquarter
(HQ), toward the gate of the targeted area. This is done by applying any short-
est path algorithm on the graph representing the paths of our site, between the
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current position (the headquarter for the security guard) and the gate of the area
to be checked. In this phase, our security guards are supposed to be equipped
with vehicles and thus moving at a speed of 20km/h at most (recall the speed
limit mentioned at the context establishment step).

Second phase of a mission: The second phase of a mission is checking the
selected area. The security guard needs to walk (at a speed of 3.6 km/h, i.e.,
1 m/sec, in average) all around and meet workers located in this area for an
eventual ID check. Inside an area, we can apply any of the mobility models pro-
vided by the INET framework. Yet, we choose to use the well-known random
waypoint mobility model [6, 4]. Basically, a mobile node inside a selected area
uniformly generates a target position inside the polygon surface of our area, se-
lects a speed, and then moves toward its target. At its arrival, the node waits at
its position for a randomly generated time, before reproducing the same behav-
ior once again. Notice here that all our actors are moving with respect to this
same mobility model. The only difference might be the move-wait pattern. In
fact, a worker would spend most of his time in the same place doing his work
and then moves to another place to do some other work and so on and so forth.
On the other hand, a security guard would spend most of his time moving from
one position to another, with brief waits. A malicious subject, either an intruder
or a worker, would be moving as a regular worker, spending as much time wait-
ing as she/he is supposed to do some harmful work. In our simulation, we set
these values to “10 to 60 min” for workers and intruders, and “few seconds” for
a security guard. While moving, a security guard will meet persons who are in
the checked area. For everyone in his direct vicinity, a security guard decides to
check his ID with a given probability (by default, the probability is set to 0.5).
This probability should be closely related to the security level of the area. Every
selected subject, remains at his current place until the check is performed. If a
malicious person (i.e., intruder or worker) is detected, a handle situation pro-
cedure is triggered. This procedure could be of any type like (i) calling a third
party to drive the caught individual to an interrogation room; (ii) the security
guard stopping the checking mission and driving the checked person back to
the headquarter by himself; (iii) since we are running a simulation, remove the
malicious node from the simulation and continue the checking mission (which
is exactly what we are doing); or (iv) more drastically stopping the simulation.
Besides, to avoid that a security guard repeatedly checks the same person again
and again during one same spot checking mission, we added a memory module
to the security guard. This module, being adjustable, will control the behavior
of a security guard according to three basic features: how easily can she/he re-
member a new face, how long can she/he keep remembering it, and how many
faces can she/he remember? The first feature, called the memory quality, is a
probability-like parameter to be given as an input: it ranges between 0, meaning
that she/he can’t remember anything, and 1, meaning she/he remembers every-
thing. The second feature, called the memory time, is a time duration to be given
as an input. It can either be a fixed duration or a distribution (e.g., a uniform dis-
tribution) which indicates for how long a newly met face is remembered. Every
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new entry to the memory will be associated to a memory time value to decide
when it is forgotten. The third feature represents the size of the memory and
hence called the memory size. It is implemented as a circular buffer, so that if
it is full, the oldest face (having the smallest memory time value) would be for-
gotten first. Based on the estimation of some experts, we set these values to 0.3,
uniform (30min, 2h) (i.e., uniformly distributed between 30min and 2h), and 15,
respectively. The end of the second phase can be determined in several ways: it
can end after a time duration spent inside the area, after a number of checked
persons is reached, or after the checking ratio goes beyond a given threshold (if
the number of workers inside the area is a priori known). In any of these cases,
the security guard announces the end of this phase using his navigator device.
And the mission shifts to its third and final phase.

Third phase of a mission: It only involves guiding the security guard back to the
headquarter using the reserve path stored in the navigation device. The security
guard needs to empty his memory, because in the upcoming missions, she/he
should be able to recheck a person as this person could move from one area to
another at any time.

Moreover, the number of checking missions is equal to N missions per security
guard per day, uniformly spread over the 8 working hours. The different values
given to this variable define the different defender strategies already described in
Subsection 15.4.2. Every mission lasts for a duration between MinDuration (set to
10) and MaxDuration (set to 20) minutes. A checking operation may last between
1 and 3 minutes.

15.4.4.4 Implementation of Our Goals

In Section 15.4.3, we identified four goals to be measured: detection rate (to be max-
imized), caused damage (to be minimized), privacy preservation (to be maximized),
and comfort breach (to be minimized). As already explained, some goals can easily
be integrated to our simulation model as it is the case of the very first two goals.
Others need more attention and a prior work before being able to integrate them to
the simulation. Here after, we will try to explain how we managed to measure such
goals.

Considering the comfort breach, we may rely on the ethnographic study we con-
ducted in step 1, to extract the subjective feeling of workers regarding their comfort
breach because of the repetitive security checks. Through a questionnaire, employ-
ees were asked about their feelings (scored between 0 and 1, where 0 is a total com-
fort preservation and 1 means a maximum comfort breach) if ever they get checked
1, 2, ..., 9 times (or more) a day. The collected data is summarized by the Average
Comfort Breach as a function of the number of checks per day, which is depicted in
Figure 15.3. Using this collected data, we created a multivariate Gaussian of dimen-
sion 9 (to represent the feeling upon 1, 2, 3, ..., and 9 or more checks per day) to
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be used in our simulator as a simple generator of degree of non-satisfaction, so that
we can create as many workers as we want, with different subjective comfort breach
measures, but following the same general shape as the one shown in Figure 15.3.
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Fig. 15.3: Average Comfort Breach as a function of the number of checks per day

Besides, to assess the privacy preservation of a given applied defense strategy, a
model based on the entropy theory and Markov chains was integrated to our simula-
tor (more details on the model can be obtained from our previous work [1]). Briefly,
when a worker is checked, his location is somehow revealed for a given period of
time, and thus this model captures to what extent a checking policy could reveal em-
ployees’ positions over time. Without going into the details of this model, we simply
describe it as follows: it looks at location privacy as the capacity of an attacker, in
the worst case scenario, to estimate/guess the employees’ positions with high con-
fidence at a given instant. It basically uses the Shannon entropy theory to estimate
this maximum disclosure where an attacker may have more insights about how em-
ployees could move inside the facility leading to a more subsequent breach. To
model movement of employees inside the facility, a continuous-time Markov chain
(CTMC) is used. The latter helps in computing the probabilities over time of an
employee to be inside or outside an area, given that she/he has been lately checked
there. These probabilities, combined with the aforementioned entropy-based anal-
ysis, lead to a new metric that effectively measures location privacy as a function
of time. Such a metric is very important as it allows capturing the decreasing sig-
nificance of leaked location information over time. In our simulation we define our
location privacy preservation as the minimum value of this metric that was reached
during the whole run.

Finally, after presenting the simulation environment and the implemented key
performance indicators measuring our four defined goals, we are able to run our
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simulations. Thus, we performed 100 runs (i.e., a big enough number of runs to
obtain a satisfying distribution shape) for each possible configuration of attack and
defense strategy. We may insist here that in a conventional approach, the results of
these simulations would be averaged to get a single value for each of the four goals.
Further, these averaged values would be used to solve the so-arising multiobjec-
tive game using standard methods. However, in our approach, we deviate from this
route by not aggregating the data and calculating the average, but instead compiling
the whole output of the simulation in terms of categorical distributions (effectively
histograms or bar plots), over which the game payoff structures (one per goal) are
defined. We may insist here that by processing our data into categories, we may ob-
viously lose some information; however, we will be able to capture the overall shape
of the distribution function. The main goal here is to have comparable distribution
shapes regardless of the goal they may measure.

15.4.4.5 Simulation Results

As already explained in Section 15.4.2, the specific parameters are encoded in
the string descriptors of each strategy. The resulting data was divided into a to-
tal of five categories that span the numeric range of all four goals, forming a his-
togram/bar plot for each result. The respective matrices displaying all this infor-
mation, i.e., all the histograms/bar plots, are plotted in the Appendix of the chap-
ter as Figures 15.17, 15.18, 15.19, and 15.20 with regard to all goals identified in
Section 15.4.3. This collected data serves to identify the optimal configuration by
applying our multiobjective game.

15.4.5 Identification of Optimal Configuration

To identify an optimal set of defensive actions, we will apply the game-theoretic
model taking as input the results from the simulation of all the physical intrusion
scenarios. As already mentioned, the game-theoretic framework is able to solve a
multiobjective game. Thus, we can take several aspects into consideration and find
an optimal solution for all of them at once. Our intrusion simulation identified the
payoffs for the location privacy preservation of all employees, the maximum com-
fort/satisfaction breach (due to successive or continuous ID checks), the average
time the intruder spends in a specific area/potential physical damage the intruder
can cause (monetary or abstract), and the detection rate.

As a next step, the obtained results of our payoffs will be categorized into 5 fixed
classes as presented in Table 15.3. This categorization is mandatory to be able to
apply the game-theoretical framework capable of computing the optimal strategy
of our multi-goal game [13]. This is simply done by dividing the resulting data
into these five categories that span the numeric range of all goals, forming a his-
togram/bar plot for each result. In other words, the probability distribution including
all available information must be constructed under the following constraint:
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• All assessments are made in the same scale. This is required for the multi-
criteria optimization to work (using scaling of the vector-valued payoffs). Nu-
meric indicators are thus discretized onto a common categorical scale (that all
categorical indicators use as well). Besides, categories of a to-be-maximized
goal are simply inverted to transform our game into a pure minimization prob-
lem.

• The data source is reliable with regard to the intended risk assessment.

Table 15.3: Qualitative Risk Categories

1 2 3 4 5

very low low medium high very high

This categorized data can be seen as a distribution for each combination of
(player 1: defender, player 2: attacker) strategies. These distributions are in fact the
real payoffs of our two players in terms of the respective goals. After deciding on the
priorities among all the different goals (i.e., even priorities in our case), the HyRiM
tool [14] can be directly used to give recommendations regarding the best strategy,
or more correctly the best mixed strategy, to be applied from the defender point of
view, as well as the potential damage that can be caused by a worst case attack.

In general, the resulting solution is a mixture of all possible security strategies
specified in the first step (cf., Subsection 15.4.2 and Table 15.2). In other words,
each strategy of the solution has a specific probability to be carried out. Computing
the equilibrium, the optimal security strategies for both players are as presented by
Figures 15.4 and 15.5, respectively.

As expected, the result is a nontrivial mixed strategy. We have a mixture of
three defense strategies, i.e., strategies #4, #7, and #8 (cf. Table 15.2). In more
detail, strategies #4 (“D-NG1F8TR”), #7 (“D-NG15F5THSLF”), and #8 (“D-
NG15F8THSLF”) have to be applied with respective probabilities 0.1, 0.768, and
0.132. Hence, a practitioner could abandon the remaining strategies. This is also
an interesting observation/lesson from the game: it also tells us which defense
strategies are more relevant than others.

Besides, and as already stated above, the method for computing this equilibrium
is essentially based on multi-criteria optimization for security (cf. [12, 9]). Provided
that the defender plays his optimal strategy, the respective optimal loss distributions
attained under any behavior of the attacker are given in Figures 15.6, 15.7, 15.8,
and 15.9. Here, the optimal attack strategies are different between the four goals,
meaning that the attacker can never cause maximal loss in all four goals at the same
time. She/he can only cause a maximum loss in one or two goals using individ-
ually each identified attack strategy. Such an observation represents another good
information to know, since it indicates that the computed loss distributions are only
pessimistic and reality should look much better (expectedly).

Given these results, the next step should be the implementation of our computed
optimal strategy. This is the object of the next subsection.
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Fig. 15.4: Equilibrium for multiobjective security game (MOSG): optimal defense
strategy

15.4.6 Implementation of Optimal Configuration

In general, the results from the game-theoretic optimization algorithm need to be
implemented precisely since a deviation of the probabilities given in the equilibrium
will increase the potential damage caused by an attacker under the worst case attack
strategy. Therefore, the results from the algorithm can be fed into a random selection
function to obtain the current advice according to the optimal randomized choice
rule for the strategies. In other words, the manager of the security guards will use
some kind of scheduling system, which provides him with an indication about which
of the three security strategies (either #4, #7, or #8) to follow at any decision instant.
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This needs to be done iteratively (e.g., each day or at the beginning of each shift)
and can be pre-computed for several days or weeks to simplify personnel decisions
(e.g., shift rotations, etc.).

Fig. 15.5: Equilibrium for multiobjective security game (MOSG): worst case attack
strategies per goal

The problem of such an approach is that our optimal defense strategy is achieved
only over long period of time. One can think that it would be more interesting
whether we are able apply our optimal strategy even for short terms. This would
be exactly our goal that we will explain in the present section. First, let us recall that
for all our pure strategies, we deployed the whole set of our resources (i.e., 15 secu-
rity guards) during the whole day. In other words, each pure strategy was deployed
at its respective full defense power all the time. Now, when we say that we need to
apply a given strategy, say s, with a given probability, say p, we mean to apply s
at its full power (p ∗ 100)% of the time or, inversely, apply (p ∗ 100)% of the full
power of s all the time. Taking into account such an obvious observation, we only
need to divide our resources (i.e., security guards) according to the optimal defense
strategy. This gives us the mixed strategy (now seen as pure strategy) described by
Table 15.4.
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We insist here that we should respect as much as possible the results given by
the equilibrium while dividing our resources among the detected useful strategies.
This is the reason for which we decided to affect 12 security guards to strategy
“D-NG15F5THSLF” and one single security guard to “D-NG15F8TR.”
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Fig. 15.6: Optimal loss assured for “Privacy Preservation”

15.5 Validation of Optimal Surveillance Configuration

This section is devoted to validate and verify the effectiveness of the implemented
optimal strategy. For that purpose, and to assess the superiority of this strategy over
all the others, we simulated it for 100 runs, extracted its relative distributions, and
replayed the game with our newly added strategy (described in Table 15.4) and all
the previously presented pure strategies (c.f. Table 15.2). As a result, we obtained
the new equilibrium given by Figures 15.10 and 15.11.
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Fig. 15.7: Optimal loss assured for “Maximum Comfort Breach”

This equilibrium clearly shows that our built optimal strategy is indeed the most
effective (99.5%). This result simply confirms that the defender’s best choice to
defend the company is by applying “D-NG15ImplMixed” almost all the time. This
guarantees that the attacker’s worst attack will never cause losses (in terms of our
four considered goals) that exceed those presented in Figures 15.12, 15.13, 15.14,
and 15.15.

A second way to validate our obtained results is to compare all the strategies to
pick up the best one in terms of our considered four goals. For that, we describe
each strategy by a 4-dimensional vector, where each dimension represents one of
our 4 goals. By computing the average values of the respective goals of each of our
strategies, we will be able to place each of them in the 4-dimension space of all
possible strategies. Ideally, the fictive optimal strategy corresponding to the origin
would represent the best possible strategy to apply (as it ensures a minimum value,
0, for all our four goals; bearing in mind the fact that all goals have been minimized
as described in Section 15.4.5). All other strategies occupy the rest of the space, and
assure a non-null value of at least one of the goals. Intuitively, we can say that the
closer a strategy is to the origin, the better it would be (recall here that we considered
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Fig. 15.8: Optimal loss assured for “Caused Damage”

even priorities among all goals). In other words, if we consider two strategies, say
s1 = (g1,1,g2,1,g3,1,g4,1) and s2 = (g1,2,g2,2,g3,2,g4,2), we can say that s1 is better
than s2, if the distance to the origin of s1 is smaller than the distance to the origin of
s2:

dist(s1) =
√

g2
1,1 +g2

2,1 +g2
3,1 +g2

4,1 ≤ dist(s2) =
√

g2
1,2 +g2

2,2 +g2
3,2 +g2

4,2

where gi,s is the average value of goal i for strategy s. For our case study, we plotted
the distance to the origin of all the considered pure strategies, in addition to our
implemented mixed strategy “D-NG15ImplMixed,” to better visualize where our 9
strategies are located in the space of all possible strategies. This plot is presented in
Figure 15.16.

Once again, the obtained results clearly confirm that our computed mixed strat-
egy is the best option that the defender should apply to insure a minimum average
loss in terms of our four goals, as it is the closest to the origin compared to all the
other pure strategies.
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Fig. 15.9: Optimal loss assured for “Detection Rate”

Table 15.4: Implemented Optimal Strategy

Strategy Label #Security Guards Description

D-NG15F8TR 1.5  
1securityguard

freq = 8 & areas: targeted randomly

D-NG15F5THSLF 11.52  
12securityguards

freq = 5 & areas: targeted Higher Sec. Lev. First

D-NG15F8THSLF 1.98  
2securityguards

freq = 8 & areas: targeted Higher Sec. Lev. First

15.6 Conclusion

In this chapter, we presented a realistic case study of a critical infrastructure that we
intend to protect against physical intrusions. Our study is based on a game-theoretic
approach for physical surveillance. Modeling surveillance as a theoretic game (i.e.,
cops and robbers) is quite common; however, in classical games, it is assumed per-
fect or crisp assessment of the payoffs to be used. Such an assumption turns out to
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Fig. 15.10: Validation equilibrium: optimal defense strategy

be strong and do not really match reality. On the other hand, the HyRiM tool [14]
appears to be a practically effective tool that accurately describes real surveillance
scenarios, as it integrates the intrinsic uncertainty of surveillance systems and of
the respective risk assessment into the game-theoretic model itself. Actually, apply-
ing this tool represents one of the six steps of the G-DPS framework, which aims
at finding the optimal configuration for physical surveillance system over multiple
goals.

In this chapter, we went through all the steps of this very decision-making frame-
work, where we started by establishing the context of our targeted infrastructure.
This first step helped us understand and better gauge risks and potential threats
around our infrastructure. We then extracted the set of potential strategies that a risk
manager would want to apply to implement surveillance (8 defense strategies were
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Fig. 15.11: Validation equilibrium: worst case attack strategies per goal

identified for our case study), as well as the potential attacker strategies (we iden-
tified 6 possible attack strategies) that can be adopted by an intruder to fulfill some
of the risks identified in the first step. As a third step, we discussed four different
security goals of capital interest to the company, i.e., caused damage, detection rate,
location privacy preservation, and comfort of the employees, that we need to take
into account while deciding on the optimal defense strategy to apply. The fourth
step, i.e., strategy assessment, was deeply investigated in this chapter. In fact, we
presented a simulation tool that was developed to easily and effectively measure our
different payoffs. After collecting the different results, we moved to the fifth step
which corresponds to applying the HyRiM tool to compute the optimal strategy, op-
timizing our four goals at once. The result was a nontrivial mixed strategy, and its
implementation was described in the final and sixth step.

The last part of the chapter was devoted to validating the obtained results. At
first, we simulated the implemented optimal mixed strategy and replayed our game
once again. The obtained results showed that our newly found strategy is the most
effective among all the considered strategies (i.e., 99.5% most effective). Further-
more, we showed that our strategy represents the closest one to a theoretical fictive
100%-optimal strategy (i.e., having a theoretical best outcome in terms of all the
considered goals), confirming by the same way the results of applying our decision-
making framework.
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Appendix

See Figures 15.17, 15.18, 15.19, and 15.20.
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Chapter 16
Smart SECPLAN: A Process
Implementation Tool for Hybrid Risk
Management

Alberto Zambrano, Santiago Caceres, and Ana Isabel Martinez

16.1 Introduction

Utilities are complex organizations composed by many technical systems like net-
works, devices, controllers, infrastructures, etc. spread around large areas. Despite
their size, utility operators must carry out maintenance activities as well as imple-
ment security measures for their infrastructures. Most of the times, these activities
are based on specific guidelines or standards the utilities need to follow or are based
on expert knowledge gained during the years. Moreover, the influence of cultural
and organizational factors affects the preventive activities carried out. Experience
shows us that the schedule of these activities is often of an “ad hoc” nature and not
optimal in terms of time or cost.

Partly, this may be attributed to risk management essentially being a matter of
preventing losses, rather than creating gains. During well times where there is no
immediate threat to deal with, people may not feel the necessity to become active
toward security. Activities triggered by incidents are inevitably “behind” what is
going on and as such may not be able to reduce damages to the minimum at the same
quality or cost as would have been possible via a priori precautions and security
actions scheduled in advance.

In general, there is no formal risk assessment exercise behind the scheduling of
security measures or maintenance activities. The web-based tool Smart SECPLAN
aims at covering this gap, analyzing in detail the infrastructure implemented and
operated within a utility provider. In this way, Smart SECPLAN helps information
technology (IT) and operations technology (OT) security experts to better under-
stand their assets and take informed and objective decisions on how to spend efforts
and resources for repetitive maintenance tasks given a utility infrastructure.
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In the following sections, a real-life scenario involving a medium-size distribu-
tion system operator (DSO) is provided, discussing each one of the steps from the
HyRiM process (as described in Chapter 12) and how it is carried out in Smart SEC-
PLAN to arrive to the results. In further detail, Section 16.2 provides a short recap
of the HyRiM process, whereas Section 16.3 gives an overview on the Smart SEC-
PLAN tool. The details of the real-life scenarios are described in Sections 16.4, and
16.5 shows the individual steps implemented by the Smart SECPLAN. The results
are then closely inspected and interpreted in Section 16.6, reflecting also on the dif-
ferences between a classical game and the distribution-valued approach followed in
our scenario.

16.2 The HyRiM Process

The Hybrid Risk Management (HyRiM) process presented in the previous chapter,
Chapter 12, is suited for organizations operating highly interconnected networks
at different levels, such as utility providers or critical infrastructure operators. To
achieve that, the HyRiM process is compliant with the general ISO 31000 process
for risk management [7] and thus can also be integrated into existing risk manage-
ment processes already running in the aforementioned organizations. It relies on and
implements the similarities between game theory and risk management, as Chapter 1
outlines.

In detail, the operative risk management process of the ISO 31000 framework is
adopted, and each step of the process is supported with the tools developed in the
HyRiM project (cf. Figure 16.1). These tools cover different social and technical
analysis techniques and simulation methodologies that facilitate the risk process.
The relevant HyRiM tools have been identified and mapped onto the risk manage-
ment process as shown in Figure 16.1. Since the ISO 31000 is a generic process
and is often used as a template in other ISO standards (like in the ISO 27005 [8],
the ISO 28001 [6], or others), the HyRiM process can also be integrated into these
standards. This makes it possible to apply the HyRiM process to multiple fields of
application.

As a general framework to model the interplay between different networks, game
theory is applied in the HyRiM process. Game theory not only provides a well-
sound mathematical foundation but can also be applied without a precise model of
the adversary’s intentions and goals. Therefore, a zero-sum game and a minimax
approach [11] can be used, where the gain of one player is balanced with the loss of
the other. This can be used to obtain a worst-case risk estimation. Further, the game-
theoretic framework developed in HyRiM [13, 12] (cf. also Chapters 2 and 3 for
more details) allows modeling the intrinsic randomness and uncertainty encountered
in real-life scenarios. This is realized using distribution-valued payoffs for the game
[14]. In the HyRiM process, these payoffs are coming from both percolation and co-
simulation analyses, where the results of these stochastic processes are described as
distributions.

The output of the game-theoretic framework is threefold and includes the maxi-
mum damage that can be caused by an adversary, an optimal attack strategy result-
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ing in that damage and an optimal security strategy for the defender. The optimal
defense strategy is, in general, a mixture of several defensive (i.e., mitigation) activ-
ities. These activities, if implemented correctly, provide a provable optimal defense
against the adversary’s worst-case attack strategy. The implementation can be sim-
plified and guaranteed, for example, by the use of a job scheduling tool.

Fig. 16.1: Overview of the HyRiM process including relevant tools for each process
step

16.3 The Smart SECPLAN Tool

The Smart SECPLAN tool is a web-based tool developed in the course of the
HyRiM project allowing any organization to perform a risk assessment over its reg-
ular operations. Smart SECPLAN helps those involved to discover potential expo-
sitions to risks of any kind and establishes possible regular mitigation actions that
help in preventing those risks. As a result, the tool generates a model of the risks to
which the organization is exposed and provides the optimal strategy to perform the
identified mitigation actions (Figure 16.2).
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Fig. 16.2: Smart SECPLAN tool login site

The risk assessment guided by the tool fulfills the HyRiM process as described in
Chapter 12 and also is based on precursor results from the EU FP7 project SECCRIT
[3], where a similar approach for building the risk models was taken with the open-
source tool Verinice [4].

The model consists of a set of elements that may, on one side, support the oper-
ations of the organization and, on the other side, negatively impact those, affecting
therefore the normal behavior of the organization. Once the potential risks faced
by the organization have been identified, the available mitigation actions that may
prevent those risks are also modeled. More in detail, the model is composed of the
following elements, for which the details listed below are considered:

• Goals: objectives to be optimized by the tool (e.g., economic costs or reputa-
tion)

• Processes: activities carried out by the organization in the regular performance
of its business.

– Likelihood of Failure: the likelihood of a failure on the process with a
certain (short, mid, or long) duration

– Impact on Goal: the cost the organization would confront in case of a
failure of the process, in terms of the defined goals and for each temporal
scope

– Supporting Assets (Ratio): the relative weight of each of the supporting
assets contributing to the achievement of the process
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• Assets: the organization’s supporting elements for the processes

– Supported Processes: the relative importance of the contribution of the
asset to each of the processes of the organization

– Affecting Risk Scenarios: list of risk scenarios the asset is affected by

• Scenarios: possible risk scenarios which occurrence may affect the identified
assets

– Affected Assets: list of assets the risk scenarios affects
– Composing Threats: list of particular threats that may trigger the risk sce-

nario

• Threats: individual threats that compose each of the risk scenarios

– Likelihood: qualitative likelihood of the threat (low-medium-high), based
on previous experience or expertise

– Composed Scenarios: list of risk scenarios that may be triggered by this
particular threat

– Mitigating Actions (Ratio): ratio of mitigation of this particular threat by
a particular mitigation action (0% means no effect; 100% means the threat
cannot occur if the mitigation action is performed)

• Mitigation Actions: regular actions the organization can perform to prevent the
identified risks

– Mitigated Threats (Ratio): ratio of mitigation of a particular threat by this
particular mitigation action (0% means no effect; 100% means the threat
cannot occur if the mitigation action is performed)

– Impact on Goal: the cost of the execution of this mitigation action, in terms
of the defined goals

All the elements of the model are combined in order to obtain one distribution-
valued payoff matrix per goal (risk scenarios vs. mitigation actions), each cell con-
taining the probability distribution of the impact for the organization of the occur-
rence of a what-if situation, where the risk scenarios happen while the organization
is taking the corresponding mitigation action.

Specifically, if T is a threat causing some loss L and M is a mitigation action, then
the game speaks about the probability distribution of the random loss L in light of
the threat T becoming reality when mitigation action M is taken. Formally, the game
uses the distribution function FT,M(z) = Pr(L ≤ z|T,M). This function is typically
nontrivial to get in practice but can be estimated in various ways: by simulation (see
Chapters 8, 9, 10, 14, and 15), from data due to experience or expert surveys (such
as supported by the HyRiM package for R [15]), or using heuristics such as in Smart
SECPLAN (Figure 16.3).

At the last step, the distribution-valued payoff matrices are fed into the HyRiM
game theory framework, and from the results, we derive the main outcomes of the
Smart SECPLAN for the organization, i.e.:

• Prioritized mitigation actions: those are given as the equilibrium in the matrix
game and as such assign a probability to each mitigation action model, which
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gives the optimal frequency at which this action should be repeated. Under this
prescription, which a task scheduling tool integrated in Smart SECPLAN con-
verts into task assignments over time, the effect of all threats to the enterprise
is simultaneously minimized. The fact that the mitigation tasks are scheduled
according to a game-theoretic equilibrium guarantees that no alternative sched-
ulecould perform better in terms of risk minimization. The fact that we are

Fig. 16.3: Example of a simple complete model. Weighted relationships among ele-
ments of the model are depicted

playing a zero-sum game for that matter ensures that we do not need to assume
anything about the attacker incentives, since the defense is always optimal re-
gardless of the pattern at which the threats may occur.
Relative to each other, the frequencies (probabilities) of the mitigation actions
can be interpreted as priorities.

• Proposed Gantt chart: taking into account the costs associated to each miti-
gation action, available budget, and results of the model, the tool constructs a
Gantt chart with an optimum yearly maintenance plan.

In order to assist the identification of risk scenarios and threats, the Smart SEC-
PLAN tool also integrates several threat catalogs, namely (Figure 16.4):

• ENISA’s Threat Landscape 2015 [10]
• MAGERIT [1]
• NIST CVE [2]
• FP7 project SECCRIT Cloud threats catalog [3]
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Fig. 16.4: Catalog search functionality within the Smart SECPLAN tool

16.4 Scenario Setup

The scenario discussed in this chapter is built around a medium-size electrical co-
operative which manages the electricity distribution for the inhabitants of a town.
In this context, a cooperative is an autonomous association of persons united vol-
untarily to meet their common economic, social, and cultural needs and aspirations
through a jointly owned and democratically controlled enterprise. Therefore, the
electrical cooperative’s aim is to supply electricity to consumers that are associates
at the same time, with the cheapest costs.

This cooperative can be considered as a distribution system operator (DSO). In
general, a DSO is responsible for the last mile delivery of electricity to the end users.
The DSO’s distribution network carries electricity from the transmission system
and delivers it to consumers. Besides, a DSO provides the adaption of the electric-
ity from the high voltage used by transmission system operators (TSO). Generally
speaking, most of the risks in the implementation of the smart grids relies on the
competence of the DSOs; they are the responsible to manage them and to ensure the
continuity of all the business processes.

Overall, the cooperative supplies about 35 million kilowatts per year, to more
than 6000 end users, by means of more than 40 transformation centers, with an
installed power of 18,000 kW. This company enables the capture of energy in a high
voltage (132,000 kV) for further processing.

As highlights of the scenario, we enumerate the following characteristics:

1. The cooperative can collaborate with other cooperatives to exploit synergies and
reduce costs, so the risk scenario is greater than in an isolated case,
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2. Customers are associates at the same time, so the support to customers is one of
the most important goals in the cooperative, and

3. The cooperative is always trying to reinvest its benefits into a better infrastruc-
ture and new services for its end users.

16.4.1 Component Description

The first component in the distribution system belonging to the cooperative is an
electrical substation at the main energy border point. This substation transforms
all the energy from high to medium voltage and is distributed downward to the
transformation centers located around the town, so the medium-voltage network
covers the major part of the town.

All the transformation centers are connected to the central premises, either
through the private fiber optic link (for those transformation centers that are in
town) or via point to point radio links (for those that are not accessible via the
optical network). This private network is also used to run the supervisory control
and data acquisition (SCADA) system. The SCADA control center is placed at the
main premises of the company.

On the other hand, at low-voltage network, all the end users are equipped with a
smart meter that connects to the concentrator, located at the nearest transformation
center via a programmable logic controller (PLC). Through this connection, both
the measuring of the end user’s consumption and configuration and management
and control of the specific smart meters, as well as the whole grid, can be done
remotely from the central premises. This allows the company not only to measure
the users’ consumption remotely but also to manage and control the whole grid in a
smart and efficient way. Besides, the electrical network is a smart grid, based on PLC
technology. Furthermore, thanks to the smart metering system, all the consumption
measurements are collected remotely and inserted in the enterprise resource plan-
ning (ERP) software for billing purposes.

16.5 Scenario Implementation

In the following subsections, the Hybrid Risk Management Process taken by this
cooperative is presented. All information contained in the model has been extracted
by directly interviewing this DSO personnel and therefore based on real experience
in the field. The definition of the model and the retrieval of the results have been
performed with the support of Smart SECPLAN.
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16.5.1 Establishing the Context

Now, we pick up on the HyRiM process within Smart SECPLAN, starting with the
first two points outlined in Section 16.2.

16.5.1.1 Goals

Failures in the organization processes have consequences which may vary quite a
lot depending on where and when they appear. In addition, these consequences can
be classified according to their impact, e.g., in terms of economic losses, company
reputation, etc. It is hence necessary, as a first step, to define the business goals and
measures thereof, together with the optimization goal being maximization (say, of
revenue) or minimization (say, of damages). In the HyRiM process, as in general
risk management, the focus is usually on damage prevention and hence risk mini-
mization. Thus, the business goals have to be defined accordingly.

In the case of the DSO, two goals are defined: economic cost and reputation.
The economic cost is a goal to be minimized, due to the DSO’s limited budget

available, and also monetary investment has to be kept as low as possible, while
the reputation is a goal to be maximized, since the DSO already counts on a good
reputation from its customers and it is expected to increase over the next years.

16.5.1.2 Processes

After defining the organization goals, all regular processes carried out by the orga-
nization need to be listed in order to carry out a complete analysis. Each process
will have the following properties:

• Failure duration likelihood: expected likelihood of the duration of the failure in
such event

• Impact on goal: the cost the organization would face in case of a failure in terms
of the defined goals

• Supporting assets (ratio): the relative importance of each of the supporting as-
sets contributing to the achievement of the process

Processes relevant to the risk assessment analysis are identified by the DSO and
introduced as input:

• Billing: retrieval of all information needed to bill the customers
• Grid control: sensing and control of the physical elements that compose the

grid (smart meters, SCADA, high-/medium (HV/MV)-voltage substations, etc.)
• Surveillance: video surveillance of critical facilities
• Customer support: all activities related to consumers support
• Human resources: process related to employees of the cooperative
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Their likelihood of failure and impact on objectives are shown in Tables 16.1
and 16.2. The economic impact is measured in Euro and the reputation in a scale of
[-1000, 0]. As the tables show, the greatest probability of failure is in the short term,
and as somehow expected, the impact on the organization is bigger as the duration
of the process failure gets longer.

Table 16.1: Relationship among processes and failures in DSO implementations

Likelihood of failure
Short term Medium term Long term

Billing Medium Low Low
Grid control Low Low Low
Surveillance Medium Low Low
Customer support Medium Low Low
Human resources Medium Low Low

Table 16.2: Relationship among processes and goals in DSO implementation

Economic cost Reputation
Short term Medium term Long term Short term Medium term Long term

Billing 1000 2000 3000 -100 -200 -500
Grid control 1000 2000 3000 -100 -200 -500
Surveillance 1000 1500 2000 -100 -200 -500
Customer support 500 600 700 -200 -500 -1000
Human resources 100 1500 1800 -100 -200 -500

16.5.2 Risk Identification and Analysis

Now, we enter the second phase of the process depicted in Figure 16.1, continuing
with the third of the points outlined in Section 16.2.

16.5.2.1 Assets

At this step, all assets supporting the regular processes carried out by the organiza-
tion need to be listed. Each asset will have the following properties:

• Supported processes: the relative importance of the contribution of the asset to
each of the processes of the organization

• Affecting risk scenarios: list of risk scenarios the asset is affected by
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Assets of the DSO are identified and listed:

• SCADA server: the control software in charge of monitoring and controlling the
field assets of the grid

• Smart meters: devices that record consumption of electric energy in very short
periods of time and communicate that information to the utility for monitoring
and billing

• Concentrators: devices compiling the measurements of the smart meters of a
certain area

• ERP server: server in charge of recovering all metering data from the smart
meters and performing analysis over it as required by the DSO (mainly for
billing purposes)

• Surveillance server: server that controls the video surveillance system
• Office laptops
• Network storage server: used at office premises for information exchange

among the employees
• HV/MV and MV/LV substations: composed of a set of devices dedicated to the

transformation of the voltage. The HM/MV substation transforms energy sup-
plied by the transmission network at high-voltage into medium-voltage lines.
The MV/LV substation transforms medium voltage into low voltage, which is
supplied to the end customers

These assets are related to processes as shown in Table 16.3. A representation of
these relationships, as Smart SECPLAN displays them, is shown in Figure 16.5.

Table 16.3: Percentage of assets support in each of the processes

Billing Grid control Surveillance Customer support Human resources
SCADA
server

0 15 0 0 0

Concentrators 40 10 0 0 0
Smart meters 40 18 0 19 0
ERP server 20 25 0 0 0

Surveillance
server

0 0 80 0 0

Office laptops 0 0 20 61 80
Network stor-
age server

0 0 0 20 20

HV/MV sub-
station

0 16 0 0 0

MV/LV sub-
station

0 16 0 0 0

Total 100 100 100 100 100
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Fig. 16.5: Relationship between assets and processes

16.5.2.2 Scenarios

At this step, all possible risk scenarios to which the organization is exposed have
to be listed. Those scenarios are general descriptions of events that may affect the
organization. Each scenario will have the following properties:

• Affected assets: list of assets potentially affected by the given risk scenarios
• Composing threats: list of particular threats that may trigger the risk scenario
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The identified scenarios are the following:

• WannaCry: in the first quarter of 2017, a serious worldwide cybersecurity prob-
lem arose, WannaCry [5]. This malware affected tens of thousands of devices
around the world. We adopt this scenario as link between threats of malware
and USB infected and assets of IT and electronic devices

• APT: an advanced persistent threat (APT) is a set of stealthy and continuous
computer hacking processes, often orchestrated by a single person or a group
of people targeting a specific entity. We consider under this scenario a targeted
cyberattack onto the organization

• Physical intrusion: vandals or malicious people can try to enter DSO critical
areas. This scenario may affect all physical assets

• Data losses: human errors, sabotages, or illegal manipulation of the billing in-
frastructure entail data losses, among other problems. This scenario links those
threats with IT components

16.5.2.3 Threats

As a next step, all possible threats which may cause the defined risk scenarios need
to be listed. In order to make this task easier, the Smart SECPLAN tool is preloaded
with a number of threat databases. Each threat will have the following properties:

• Likelihood: qualitative likelihood of the threat (low-medium-high), based on
previous experience or expertise

• Composed scenarios: list of risk scenarios that may be triggered by this partic-
ular threat

• Mitigating actions (ratio): ratio of mitigation of this particular threat by a par-
ticular mitigation action (0% means no effect; 100% means the threat cannot
occur if the mitigation action is performed)

After some iterations of analysis, the following list comprises the most relevant
threats according to experts know-how:

• Vandalism and sabotage: Vandalism involves a very high economic cost. In the
same sense, a discontent employee can produce a very high economic cost or
reduce the reputation of the DSO

• Bypass the billing infrastructure: It comprises situations like a customer de-
ciding to pay less through the manipulation of the smart meter or an unhappy
employee modifying billing database

• Cyberattacks and human error: nowadays, cyberattacks must be considered as
a very important risk, especially for organizations managing critical cyber net-
works. In addition, workers can make mistakes during their activities, causing
similar cyber effects. For the case of DSO, four threats are considered in this
category:

– Suspicious redirects
– Denial of service
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– Malware diffusion
– USB infection

Likelihoods of each threat are shown in Table 16.4.

Table 16.4: Likelihood of each threat

Threat Likelihood

Vandalism Low
Sabotage Medium
Bypass the billing infrastructure High
Suspicious redirect Medium
Denial of service Medium
Malware diffusion High
USB infected Medium

Figure 16.6 depicts a graphical relationship among scenarios, assets, and threats.

16.5.3 Risk Evaluation and Treatment

This is the stage (in Figure 16.1) where the game-theoretic analysis, decision, and
algorithmic framework (Chapters 2 and 3) come into play.

16.5.3.1 Mitigation Actions

In this step, all mitigation actions needed to prevent the above identified threats are
listed. A number of mitigation action databases are offered by Smart SECPLAN.
Each mitigation action will have the following properties:

• Mitigated threats (ratio): ratio of mitigation of a particular threat by this par-
ticular mitigation action (0% means no effect; 100% means the threat cannot
occur if the mitigation action is performed)

• Impact on goal: the cost of the execution of this mitigation action, in terms of
the defined goals

Considering all threats and vulnerabilities, and removing defenses with a low-
level impact on threats, the following set of defenses are defined:

• Check data integrity: this action focuses on mitigating data manipulation. For
instance, identify illegal bypassing of the billing infrastructure smart meters or
effects of different kinds of cyberattacks

• Company awareness formation: courses to employees about security
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Fig. 16.6: Scenarios included in DSO model

• Check smart meters: periodically checking if a smart meter is working properly
mitigates problems arising from physical damage

• Software updates: the protection of the IT infrastructure implies to have all soft-
ware resources up to date. An updated software protects against cyber threats.

• Perimeter intrusion detection: a perimeter intrusion detector protects from van-
dalism or sabotages in the physical facilities

• Reviewing historical data: this action is oriented to detect abrupt changes in the
billing process, by identifying patterns of consumption. Historical data can be
checked in order to detect fraud

• Public awareness campaign: if the customer understands the importance of
keeping facilities secure and safe, the risk of vandalism or sabotage will de-
crease

• Server backups: in cases of a software update, malicious actions, human er-
rors, etc., data can be lost, and devices may not work properly. By performing
periodic backups, servers will be protected against those kinds of threats
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Each of these actions does not completely mitigate the threats, but they can partly
reduce the impact of a particular set of threats. In Table 16.5, percentages of mitiga-
tion for each mitigation action and threat/vulnerability are shown.

Table 16.5: Percentage of mitigation for each defense strategy

VandalismSabotageBypassing
the billing
infras.

Suspicious
redirects

Denial of
service

Malware
diffusion

USB
infected

Check data integrity 0 0 89 53 73 0 85
Company aware-
ness formation

22 19 0 88 53 83 75

Check smartmeters 85 80 0 0 0 0 0
Software updates 0 0 0 90 90 90 0

Perimeter intru-
sion detection

95 93 0 0 0 0 0

Reviewing his-
torical data

0 0 95 0 0 0 0

Public awareness
campaign

88 88 89 0 0 0 0

Servers backup 0 0 50 0 0 84 0

Each mitigation action has a different impact on the objectives defined at the
beginning of the process. This impact can be seen in Table 16.6.

Table 16.6: Impact of each defense over objectives

Economic cost Reputation
Check data integrity 1000 50
Company aware-
ness formation

1200 500

Check smart me-
ters

850 500

Software updates 1200 100
Perimeter intru-
sion detection

4000 500

Reviewing historical 900 50
Public awareness
campaign

6000 700

Servers backup 800 100

16.5.3.2 Results of the Process

In Figure 16.7, a graphical representation of the whole process including the inter-
dependencies among assets, threats, scenarios, and mitigation actions is depicted.

Once the model is completed, a payoff matrix per goal is computed. The respec-
tive matrices for the given example can be seen in Figures 16.10 and 16.11 in the
Appendix. In both cases, each combination represents the probability of facing an
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impact (economic cost or reputation) in case that a risk scenario is taking place when
the mitigation action is (regularly) applied. In those cases where a defense mitigates
a threat completely, one single green bar appears. This indicates that the defense
completely mitigates the associated threats and vulnerabilities, and thus the only
cost faced by the organization is the cost of taking the mitigation action. However,
if the defense doesn’t fully mitigate a scenario, different bars appear, representing
the probabilities of facing different costs. The charts are displayed in a color code
ranging from red (worst-case scenario) to green (best-case scenario). Notice that the
worst-case scenario corresponds with high-impact values if the goal is being min-
imized (e.g., economic cost) and vice versa if the goal is being maximized (e.g.,
reputation).

Finally, an optimum security strategy is derived based on the results. In order to
calculate the optimum prioritization of the mitigation actions, the following steps
are followed:

1. With the model in place, a “baseline impact score” per goal and risk scenario
is calculated. The calculation of this score assumes that none of the mitigation
actions is in place and calculates the impact of the occurrence of each scenario
by considering the costs and probabilities defined in the model.

2. Similar “impact scores” are calculated for every goal/risk scenario/mitigation
action combination (i.e., taking into account the protection that a particular mit-
igation action has over a particular scenario, accordingly to the model). By sub-
tracting these “impact scores” to the corresponding “baseline impact score,” an
absolute score of the effects of a mitigation action is obtained. We call it “sav-
ings.”

3. All “savings” are aggregated per mitigation action and goal, which gives the
“overall saving score” per goal of every mitigation action.

4. Since different goals use different metrics, the “overall saving scores” are nor-
malized with respect to the maximum “overall saving score” per goal. This
brings a new range (−∞,1], where the mitigation with score 1 is the best one
(in terms of saved impact) and negative values represent discouraged mitigation
actions (i.e., the organization would face even higher costs if they are taken for
the particular considered goal).

5. At this point, the “overall saving costs” of different goals are expressed in com-
parable terms. In order to get single “overall saving costs” scores per mitigation
action (taking into account the different results per goal calculated so far), aver-
ages per mitigation over all goals are calculated. The range of this score is again
(−∞,1], negative values representing discouraged mitigation actions even after
taking into account all goals (i.e., the organization would face even higher costs
if they are taken).

6. Results are again normalized to the unit range [0,1], with the following ap-
proach:

• Negative “overall saving costs” scores per mitigation action indicate that
this particular mitigation action is discouraged, and scores are normalized
to 0.
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• Positive “overall saving costs” scores per mitigation action indicate that
this particular mitigation action needs to be taken with a particular priority.
Those are normalized so they all sum up to 1.

7. The normalized results directly provide the relative weights of every mitigation
action, which directly represents the optimum strategy.

The results show DSO managers where to invest more effort in a usable way as
given in Table 16.7 and Figure 16.8.

Fig. 16.8: Percentages of application for each defense (screenshot from Smart SEC-
PLAN)

Table 16.7: Percentages of application for each defense

Percentage
Company aware-
ness formation

99,90

Public awareness
campaign

0,10

Perimeter intru-
sion detection

0,00

Reviewing historical 0,00
Servers backup 0,00

Check smart meters 0,00
Check data integrity 0,00

Software updates 0,00
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16.5.3.3 Gantt

Whenever the equilibrium is pure, the advice is obviously to install a static (ever-
repeating) countermeasure. However, when the equilibrium is mixed, then defenses
should be repeated at different frequencies, corresponding to the equilibrium prob-
abilities.

The organization can use the results of Smart SECPLAN to directly design a
maintenance plan. Smart SECPLAN facilitates this task by automatically taking the
results of the model, and different constraints imposed by the organization can be
included (as yearly budget or limits to the frequency of execution of a particular
mitigation action that is not contemplated in the model). As a final result, a Gantt
chart is derived with a yearly maintenance plan (Figure 16.9).

16.6 Game Setup and Analysis: A Manual Background Check

The entire process sketched up to this point is fully embodied in and supported by
Smart SECPLAN. For an understanding of how the risk control according to game-
theoretic methods, especially the theory outlined in Chapters 2 and 3, works, let us
go back and take a closer look at the distribution-valued game model, describing the
two business goals “economic impact” and “reputation” (as Table 16.2 illustrates).

Based on the data gathered in Smart SECPLAN, a multi-objective game is con-
structed, which focuses on economic cost and reputation. These two goals are de-
scribed by the respective game matrices A and B as displayed in Figures 16.12 and
16.13. The Pareto-Nash equilibrium computed from this setup is pure and given by
APT (to raise company awareness). For a visual inspection (and confirmation) to as
why this is an equilibrium, we would need to form the weighted sum 0.5 ·A+0.5 ·B
and verify that the entry in row 2 and column 2 is dominant for the respective player.
This is easy (yet laborious) to do on the full example model, so let us confine our-
selves to only an example comparison based on the figures given.

Why is the payoff for an APT under the fifth defense strategy “perimeter intrusion
detection” worse than under the second “company awareness formation”? Looking
at the plots in column 2, rows 1 and 5, we see that the payoff distribution under the
second defense strategy assigns far less likelihood mass to losses in the range around
80, as opposed to the intrusion detection (defense strategy d5), under which losses
around 90 are much more probable. The stochastic order introduced in Chapter 2, on
which the above equilibrium is based, would thus prefer the behavior under which
large losses are less likely, which is defense strategy d2.

From a practical perspective, this appears plausible, since raising awareness will
most likely entail many of the explicit defense strategies given in the game. Like-
wise, an APT is typically a combination of various attack techniques, to which phys-
ical intrusion and data losses and the outage of an entire operation infrastructure are
examples (as seen, e.g., by this year’s malware attack like WannaCry [5] or last
year’s hack of the Ukrainian power grid [16]). As such, an APT can be considered
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to cause much more damage and is therefore the optimal choice for the attacker
under the stochastic order described in Chapter 2.

Still if the outcome is implausible in light of a more detailed interpretation of the
defense strategies (which may be imaginable in the context of the particular appli-
cation), then the focus of the loss range which represents the basis for the decision
can be changed. That is, in truncating the right tails of the loss distributions at a
threshold a, we implicitly say that losses bigger than a are considered as “simply
too high.” In that case, the stochastic order will be computed depending on which
behavior leads to losses up to a or a little below (mathematically, the left neigh-
borhood (a− ε ,a] of a for some ε > 0 determines the order relation). Practically,
the value of the threshold a could be set to the risk acceptance level, i.e., the value
above which residual risks are simply taken or transferred to an insurance.

For the example here, rerunning the computation with the cutoff (truncation) at
80 out of the full loss range [1,100] (so that the last 20% of the loss range has its
mass squeezed underneath the distribution in the range [0,80]) changes the pure
equilibrium into a mixed one: the optimal defense is then a mix of ≈ 52.2% on
company awareness formation and ≈ 47.7% on software updates. Also, for the two
goals, the worst-case strategies are now different, retaining the APT as most severe
in terms of economic cost, but for the maximal reputation damage, the adversary
would need to play a ≈ 44.55% : 55.44%-mix between WannaCry and the APT.

This change provides an interesting insight, namely, the fact that the first opti-
mal defense (with the full loss range up to 100) has its recommendation(s) based
only on the last 20% of the loss range. Thus, apparently, the defense actions “raise
company awareness” and “software (SW) updates” are effective in the higher loss
regions, as opposed to the other defense strategies that apparently have an impact
on losses with relatively lower magnitudes only. In that sense, the game’s outcome
points at “raise company awareness” and “SW updates” are the two defenses with
the strongest impact and hence the most important. By varying the focus on the loss
range where the optimal defenses are computed (by setting different cutoff points
to truncate the loss distributions), we get a more differentiated picture about the
effectiveness of risk mitigation actions, also with different optimal defenses. This
is indeed not possible for a standard game-theoretic modeling, where there is no
comparable degree of freedom in changing the “loss focus” in any similar way. The
latter (second) Pareto-Nash equilibrium appears no less plausible than the former,
since incidents like WannaCry may have quite an impact on the reputation, regard-
less of whether or not the incident was part of a (larger) APT or not. As such, the
more differentiated picture obtained by changing the angle on which we look at the
loss scale (by truncating the loss distributions before the analysis) can be used with
other settings to get the most plausible among perhaps many possible equilibria, i.e.,
defense schedule.
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16.7 Conclusion

For the practitioner seeking to apply a game-theoretic risk defense, our experiments
deliver the lesson that the most important factor in using a distribution-valued game
is careful modeling of loss distributions. This task is to a considerable extent also
an art besides being a science, and finding good distribution models working as a
basis for the game calls for deep domain knowledge and statistical skills. The en-
forcement of care in this regard can, as we believe, only be beneficial for the risk
manager, since it leads to the drawing of a much more fine-grained and detailed
picture about the risk situation than a classical real-valued game analysis could pro-
vide. This means that for a decent risk analysis based on game theory, much effort
is required for (and shifted to) the loss modeling issues, for which a whole body of
designated literature exists [9]. While such loss models are common and standard in
other sectors like financial or credit risk management, their application in security
is not nearly as intensively studied. The framework of distribution-valued games
opens a close connection that can deliver interesting new insights, some of which
have been outlined above.

The application of classical game theory in risk management is no less fruitful,
and the respective models are certainly easier to set up and understand. This simplic-
ity is traded for a loss of information in the loss models, since the full data available
on a defense consequence needs to be aggregated into a single figure in the pay-
off matrix of the game. However, the results are in both cases to be interpreted in
the same way, so that the main difference between classical and distribution-valued
game theory for risk management lies in the efforts needed for the model build-
ing. Classical games are easier to set up yet contain (and deliver) less information,
while distribution-valued games come with richer information and potentially more
insights, yet with considerably more difficulties in setting up good models.

Acknowledgements This work was supported by the European Commission’s Project No.
608090, HyRiM (Hybrid Risk Management for Utility Networks), under the Seventh Framework
Programme (FP7-SEC-2013-1).

Appendix: Game Matrices

See Figures 16.10, 16.11, 16.12, and 16.13.



414 A. Zambrano et al.

Fi
g.

16
.1

0:
G

am
e

m
at

ri
x

fo
r

ec
on

om
ic

im
pa

ct
(p

lo
tf

ro
m

Sm
ar

tS
E

C
PL

A
N

)



Appendix: Game Matrices 415

Fi
g.

16
.1

1:
G

am
e

m
at

ri
x

fo
r

re
pu

ta
tio

n
(p

lo
tf

ro
m

Sm
ar

tS
E

C
PL

A
N

)



416 A. Zambrano et al.

10 20 30 40 50

0.
00

0.
06

0.
12

WannaCry

0 20 40 60 80

0.
00

0.
06

0.
12

APT

20 25 30 35 40 45 50 55

0.
00

0.
06

0.
12

Physical intrusion

5 10 15 20 25 30 35

0.
00

0.
06

0.
12

Data losses

10 20 30 40 50

0.
00

0.
06

0.
12

20 40 60 80
0.

00
0.

06
0.

12
10 20 30 40 50

0.
00

0.
06

0.
12

5 10 15 20 25 30 35

0.
00

0.
06

0.
12

20 25 30 35 40 45

0.
00

0.
06

0.
12

30 40 50 60 70 80

0.
00

0.
06

0.
12

0 10 20 30 40 50

0.
00

0.
06

0.
12

5 10 15 20 25 30

0.
00

0.
06

0.
12

10 20 30 40 50 60

0.
00

0.
06

0.
12

20 40 60 80

0.
00

0.
06

0.
12

20 25 30 35 40 45 50 55
0.

00
0.

06
0.

12
5 10 15 20 25 30 35

0.
00

0.
06

0.
12

45 50 55 60 65 70

0.
00

0.
06

0.
12

50 60 70 80 90 100

0.
00

0.
06

0.
12

30 40 50 60 70

0.
00

0.
06

0.
12

25 30 35 40 45 50 55

0.
00

0.
06

0.
12

20 25 30 35 40 45 50

0.
00

0.
06

0.
12

30 40 50 60 70 80

0.
00

0.
06

0.
12

20 25 30 35 40 45 50

0.
00

0.
06

0.
12

5 10 15 20 25 30 35
0.

00
0.

06
0.

12

55 60 65 70 75 80

0.
00

0.
06

0.
12

70 80 90 100 110

0.
00

0.
06

0.
12

40 50 60 70 80

0.
00

0.
06

0.
12

35 40 45 50 55 60 65 70

0.
00

0.
06

0.
12

0 10 20 30 40 50

0.
00

0.
06

0.
12

0 20 40 60 80

0.
00

0.
06

0.
12

15 20 25 30 35 40 45 50

0.
00

0.
06

0.
12

0 5 10 15 20 25 30

0.
00

0.
06

0.
12

Economic cost
d 1

d 2
d 3

d 4
d 5

d 6
d 7

d 8

Abbreviation Defense strategy
d1 check data integrity
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Fig. 16.12: Game matrix for goal “economic cost” (defense strategies abbreviated;
see table)
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Fig. 16.13: Game matrix for goal “reputation cost” (defense strategies abbreviated;
see table)
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