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Abstract. A deep learning approach to glioma segmentation is pre-
sented. An encoder and decoder pair deep learning network is designed
which takes T1, T2, T1-CE (contrast enhanced) and T2-Flair (fluid
attenuation inversion recovery) images as input and outputs the seg-
mented labels. The encoder is a 49 layer deep residual learning architec-
ture that encodes the 240 x 240 X 4 input images into 8 x 8 x 2048
feature maps. The decoder network takes these feature maps and extract
the segmented labels. The decoder network is fully convolutional net-
work consisting of convolutional and upsampling layers. Additionally,
the input images are downsampled using bilinear interpolation and are
inserted into the decoder network through concatenation. This concate-
nation step provides spatial information of the tumor to the decoder,
which was lost due to pooling/downlsampling during encoding. The net-
work is trained on the BRATS-17 training dataset and validated on the
validation dataset. The dice score, sensitivity and specificity of the seg-
mented whole tumor, core tumor and enhancing tumor is computed on
validation dataset. The mean dice score for whole tumor, core tumor
and enhancing tumor for validation dataset were 0.824, 0.627 and 0.575,
respectively.

Keywords: Deep learning - Image segmentation - Computer vision
CNN

1 Introduction

Gliomas are the tumors of the central nervous system which arises from glial
cells. The gliomas are classified into two types depending on the aggressive-
ness of the tumor: high grade (HGG) and low grade (LGG) gliomas, both
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types of tumors are malignant and need treatment [1]. The accurate segmen-
tation of gliomas is important in grading, treating and monitoring tumor pro-
gression. Multiple magnetic resonance (MR) image contrasts are used to evalu-
ate the type and extent of tumors. The different contrasts T1, T2, T1-CE and
T2-Flair are analysed by a radiologist and tumor regions are manually seg-
mented. Segmenting brain tumor is a comprehensive task, and large intra-rater
variability is often reported, e.g. 20% [2]. Thus it is imperative to have a reliable
automatic segmentation algorithm that standardizes the process of segmenta-
tion, resulting in more precise planning, treatment and monitoring.

Manual segmentation by an expert is a time consuming and expensive pro-
cess, thus computer assisted tumor segmentation is imperative to the problem
of brain tumor segmentation. Computer assisted methods [3-8] can be broadly
classified into two categories: semiautomatic brain tumor segmentation and auto-
matic brain tumor segmentation. Semiautomatic approach involves seeding some
initial information by an expert such as a location of the tumor and the fine delin-
eation and computational task is offloaded to a computer. This approach min-
imises the time spent by human experts. However large number of MR images are
generated routinely in clinics, demanding fully automatic segmentation methods.
The automatic segmentation methods require no human intervention and can
segment the brain tumor into different classes such as necrotic tumor, enhancing
tumor, tumor core and edema.

In this work, we present a deep learning based approach to brain tumor
segmentation on the BRATS-17 dataset [9-12]. Deep learning methods [13,14]
based on convolutional neural networks (CNN) [15,16] have demonstrated highly
accurate results in image classification [17,18] and segmentation [19,20]. How-
ever, selection of the number of CNN layers is a complex task. On one hand,
increasing the number of layers improves complexity of the network and leads
to more accurate results. On the other hand, designing deeper CNN may result
in performance degradation due to exploding/vanishing gradients. This prob-
lem is partially solved by the batch normalization layers [21] that minimize the
chances of exploding/vanishing gradients. Another limitation of designing deep
neural network is that the training process becomes difficult and, after a cer-
tain depth the network ceases to converge. However recently introduced residual
networks [22], consisting of short cut connections, can be trained to the larger
depths. In this paper we present an encoder-decoder based CNN architecture to
solve the tumor segmentation problem.

2 Deep Residual Learning Networks

Deep learning CNN uses the layers of convolution as a feature extractor. The
initial layers extract the basic features such as horizontal, vertical and slanted
edges, the later layers extract more complicated features by combining the basic
features. Thus increasing the depth results in more complicated features being
extracted, hence better performance in classification/segmentation. However, it
is found that increasing the network depth does not always increase the accu-
racy. The training error reduces with the depth of the network to a certain
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Fig. 1. If there exist a nonlinear function H (z) between point A and B. (a): a network
with no shortcut connection, here the layers Convl and Conv2 approximate the non
linear function H(z); (b): a network with shortcut connection, here the layers Convl
and Conv2 approximate the nonlinear residual function f(z)= H(z)— z. Both (a)
and (b) approximate the same non-linear function H(x) between A and B, however
individual layers learn different nonlinear functions.

level but the error increasing as further layers are added to the network [23,24].
This behaviour is counter intuitive, one may expect the error to decrease or
stay constant after certain depth. The network may just learn identity mapping
after certain depth and keep the error constant with even further increasing
the depth of the network. Deep learning residual networks overcome this prob-
lem, by inserting the bottleneck units to increase the depth of the network. The
bottleneck units learn the residual function that minimises the error.

Residual functions are realised with shortcut connection (Fig. 1(b)), a short-
cut connection is a direct connection between two layers in a network skipping
one or few layers. Consider that there exists a nonlinear relationship between
the two points A and B in the network given by H(z) as shown in Fig. 1. The
conventional CNN without the shortcut connection (Fig.1(a)), would train the
layers (Convl and Conv2) such that the combined effect of the learning repre-
sents H(x). However in case of the network with shortcut connection (Fig. 1(b)),
the same layers (Convl and Conv2) would learn a residual function given by:

Fz)=H(z)—«x (1)

In both the cases the relationship between the point A and B remains the same,
however the convolution layers have learned different functions. The advantage
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of using a residual network is that it may approximate an identity relation-
ship between the point A and B, if the convolution layers Convl and Conv2
are deemed to be unnecessary. Thus the residual learning in effect avoids the
performance degradation on going to arbitrarily large depths.

DS-4 (Bilinear)

DS-3 (Bilinear)
DS-2 (Bilinear)
DS-1 (Bilinear)

Resnet-50

Data (top 49 layers) — Upsample-1 Upsample-2 Upsample-3 Upsample-4 Upsample-5
Concat-1 Concat-2 Concat-3 < Concat-4 <4— Concat-5
Conv-1la Conv-2a Conv-3a Conv—4a Conv-5a
Conv-1b Conv-2b Conv-3b Conv-4b Conv-5b

Fig. 2. Residual encoder and convolutional decoder network; the encoder is a 49 layer
deep residual network and the decoder is a 10 layer deep fully convolutional network
with bilinear upsampling layers. The input data is also downsampled using bilinear
interpolation and is inserted back into the decoder through concatenation.

3 Proposed Segmentation Method

The method presented here is based on residual learning convolutional neural
network [22] and the design is similar to the Unet encoder-decoder architecture
[25]. The network is a 2D CNN, which performs segmentation on individual
slices taken one by one from the full 3D dataset. The network is designed as an
encoder-decoder pair, the four input images of size 240 x 240 are given as input
to the encoder that encodes them into 8 x 8 x 2048 data. This encoded data
are provided to a fully convolutional decoder network that predict the labels for
the glioma segmentation. The Resent-50 [22] which was the winner of ILSRVC
2015 image classification challenge is used as an encoder network followed by
fully convolutional layers of decoder network.

3.1 Deep Learning Network Architecture

Fig. 2, shows the network architecture; it consists of the first 49 layers of Resnet-
50 as the encoder. Each convolutional layer in the encoder is followed by a
batch normalization and scaling layers [21], which avoids vanishing/exploding
gradients. The first layer of the encoder consists of a larger kernel size 7 x 7
with a stride of 2, and this reduces the input 240 x 240 image to 120 x 120.
The first layer is followed by a max-pooling layer that further reduces the size of
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the data to 60 x 60. The use of larger kernel increases the field of view, at the
same time the stride of 2 and max pooling reduces the size of the data, which
results in reduction on memory requirement and reduces the training time. The
layer parameters for encoder network, which is derived from first 49 layers of
Resnet-50 are presented in [22].

The decoder network consists of upsampling layers that enlarges the dimen-
sion of image by a factor of 2. The weights of upsampling layer are fixed to bilin-
ear upsampling and were not learned. During the encoding process the spatial
information is lost due to pooling/downsampling, therefore the spatial informa-
tion is reintroduced into the decoding network by concating the original images
scaled by bilinear interpolation after each upsampling layer. After each convo-
lutional layer, the batch normalization and scaling is performed followed by an
ReLU non linear activation function. The last layer in the network is a multi-
nomial logistic layer that predicts the probability of a given pixel being either
normal (label 0), necrotic/non-enhancing tumor (NCR/NET, label 1), edema
(label 2) or enhancing tumor (label 4). The decoder networks’ input and output
dimensions of the feature maps and convolutional kernel sizes are shown in the
Table 1. The input to the decoder network is 2048 features of size 8 x 8, which are

Table 1. Decoder network input and output dimensions for each layer, the blob dimen-
sions are width X height x features

Layer Input dimension | Output dimension | Kernel size, Stride

Upsample-1 8 x 8 x 2048 15 x 15 x 2048 | 3x3, 2 (weights fixed to bilinear)
Concat-1 15 x 15 x 2048 |15 x 15 x 2052

Conv-1la 15 x 15 x 2052 |15 x 15 x 1024 3x3, 1

Conv-1b 15 x 15 x 1024 |15 x 15 x 1024 3x3, 1

Upsample-2 15 x 15 x 1024 |30 x 30 x 1024 |3x3, 2 (weights fixed to bilinear)
Concat-2 30 x 30 x 1024 |30 x 30 x 1028

Conv-2a 30 x 30 x 1028 |30 x 30 x 512 3x3, 1

Conv-2b 30 x 30 x 512 30 x 30 x 512 3x3, 1

Upsample-3 30 x 30 x 512 |60 x 60 x 512 3x3, 2 (weights fixed to bilinear)
Concat-3 60 x 60 x 512 60 x 60 x 516

Conv-3a 60 x 60 x 516 60 x 60 x 256 3x3, 1

Conv-3b 60 x 60 x 256 60 x 60 x 256 3x3, 1

Upsample-4 60 x 60 x 256 120 x 120 x 256 |3x3, 2 (weights fixed to bilinear)
Concat-4 120 x 120 x 256 | 120 x 120 x 260

Conv-4a 120 x 120 x 260 | 120 x 120 x 128 |3x3, 1

Conv-4b 120 x 120 x 128 | 120 x 120 x 128 |3x3, 1

Upsample-5 120 x 120 x 128|240 x 240 x 128 |3x3, 2 (weights fixed to bilinear)
Concat-5 240 x 240 x 128 | 240 x 240 x 132

Conv-5a 240 x 240 x 132|240 x 240 x 64 3x3, 1

Conv-5b 240 x 240 x 64 |240 x 240 x 64 3x3, 1

SotmaxwithLoss | 240 x 240 x 64 |240 x 240 x 4
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then passed successively through a series of convolution and upsampling layers,
eventually generating a probability maps for the segmentation labels.

3.2 Dataset

The training dataset [9-12] used to train the network was provided by organ-
isers of BRATS-17 challenge. The data consisted of 3D brain images from 285
subjects with four different contrast: T1, T1-CE, T2 and T2-Flair. There were
210 HGG subjects and 75 LGG subjects. The manually segmented labels were
also provided for each subject. We divided the dataset into two groups:

— Train dataset: 259 subjects consisting of 192 HGG and 67 HGG subjects,
used to train the network

— Test dataset: 26 subjects consisting of 18 HGG and 8 LGG subjects, used to
evaluate the generalisation of the network.

Another two datasets for which the ground truth was not known were provided:
one for validation consisting of 46 subjects and other for testing consisting of
147 subjects.

3.3 Pre-processing

The Caffe [26] deep learning library was used to train the network. The images
provided by the organisers were in the NIFTT format, which were first converted
to HDF5 file format, so that it can be read by Caffe. All the 3D volumes were
normalised using histogram matching [27], the reference histogram for matching
was obtained by averaging histograms of all the training dataset. Only the voxels
with signal were used for computing the reference histogram and matching the
histogram.

3.4 Training

The training was performed on the train dataset using stochastic gradient
descent with momentum in Caffe. The training parameters were: base learn-
ing rate (Irpgse) = 0.01, momentum = 0.9. The weights were decayed using the
formula:

Iriter = IThase * (]— + v * iter)(_POweT) (2)

where, [7je, is learning rate during itert” iteration, v = 0.0001, and power =
0.75. The network was trained for 45 K iterations with the batch size of 8. The
weights were regularized with 5 regularization of 0.0005 during the training. Dif-
ferent base learning rate were experimented and the one that provided minimum
loss was used for the final training.
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3.5 Evaluation Method

The results of segmentation were evaluated using the dice score, sensitivity (true
positive rate) and specificity (true negative rate). All the evaluation matrices
were computed locally to test the local dataset of 26 subjects. The evaluation on
the validation and test dataset was calculated on an online web-portal provided
by the BRATS-17 organisers.

4 Results

The trained network was tested on the validation data and the results of segmen-
tation were uploaded on the computing portal provided by the organisers. The
dice score, sensitivity, specificity and Hausdorff distance were computed on the
segmented labels. The Tables 2 and 3 show the result of segmentation of 46 sub-
jects on the validation dataset and 147 subjects on the test dataset, respectively.
The results of the segmentation from 2 different subjects on the local testing
dataset are shown in Fig.3. The whole tumor is defined as union of label 1, 2,
and 4; the tumor core is defined as the union of label 1 and 4; and enhancing
tumor is defined as label 4.

Table 2. Dice score, sensitivity, specificity and Hausdorfffor distance the segmentation
on online validation dataset of 46 subjects

Metric Whole tumor | Core tumor | Enhancing tumor
Dice Score (mean) | 0.824 0.627 0.575
Dice Score (median) | 0.865 0.728 0.724
Sensitivity (mean) |0.831 0.669 0.595
Sensitivity (median) | 0.885 0.746 0.690
Specificity (mean) | 0.993 0.994 0.999
Specificity (median) | 0.994 0.997 0.999
Hausdorff (median) | 35.38 39.45 25.11

Table 3. Dice scores and Hausdorfffor distance for the segmentation on online test
dataset of 147 subjects

Whole tumor | Core tumor | Enhancing tumor
Dice Score (mean) 0.784 0.577 0.502
Dice Score (Std. Dev) | 0.152 0.280 0.315
Dice Score (median) 0.835 0.667 0.627
Dice Score (25 quantile) | 0.731 0.359 0.200
Dice Score (75 quantile) | 0.888 0.803 0.760
Hausdorff (median) 38.37 55.57 75.07
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Fig. 3. Segmentation results on the test dataset for 2 different subjects; GT: repre-
sents the ground truth segmentation; P: represents the segmentation predicted by the
proposed residual encoder-decoder network. Colour coding scheme: magenta (label 0,
NCR/NET), yellow (label 4, enhancing tumor) and cyan (label 2, edema). (Color figure
online)

5 Discussion

The median of dice score, sensitivity and specificity are all greater than the
mean, which indicates that the proposed method performed well for most of the
dataset but did not performed well for a few, that reduces the overall mean.
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The boundaries of the labels segmented by the proposed algorithm are smooth
compared to the ground truth (Fig.3), and this may be due to the fact that
some of the ground truth were created using automated algorithms rather than
a human rater.

The network was trained only on the 2D axial slices of the 3D volume, thus
it considered each slice as a separate instance and does not learn any correla-
tion across the slices. This is evident from the predicted labels in the sagittal
and coronal slices (Fig. 3), where there are few isolated false positive prediction.
These false positive predictions can be suppressed by incorporating 3D informa-
tion during training. One way to achieve this is to design a 3D residual network
which takes a 3D volume and predicts a 3D label. This approach however would
require large internal memory to store the network and 3D data/feature maps,
which may not be feasible for a large depth. A moderate approach would be to
use more than one slices at a time instead of full 3D volume for training. This
approach would not increase the memory requirement and at the same time pro-
vide 3D information to the network. The number of slices to be used for this
moderate approach would be determined by the available memory of the com-
puting hardware. Ideally, all the slices should be used for the 3D architecture,
but given the limitation of GPU internal memory a trade of would be required
between accuracy and memory.

6 Conclusion

In this paper, we developed a 59-layer deep residual encoder-decoder convo-
lutional neural network that takes 2D slices of 3D MRI images as input and
outputs the segmented labels. The bottleneck residual units make it feasible to
train a 49-layer deep encoder. The bilinear scaling of input images serves as a
guidance for the decoder network to spatially locate the tumor within a image.

Supporting information

The trained caffe model and all the scrips to train/finetune the network presented
in this work are available at: https://github.com/kamleshpawarl7/BratsNet-
2017
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