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Abstract. ECMRE is an extension of CMRE (Concurrent Multi Robot Envi‐
ronment) that adds features related to current parallel architectures: processor
heterogeneity, energy consumption, processor speed change techniques in rela‐
tion to temperature and/or energy consumption.

ECMRE allows incorporating the topics of concurrency and parallelism in a
simple and entertaining manner in beginner classes in the courses of Computer
Science by means of a graphic and interactive environment.

An initial test was carried out in a course with 42 students to analyze how
they adapt to this new environment and how they can use it.
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1 Introduction

Concurrency has been a central issue in the development of Computer Science, and the
mechanisms used to express concurrent processes that cooperate and compete for resources
have been in the core curriculum of Computer Science studies since the seventies, in
particular after the foundational works of Hoare, Dijkstra and Hansen [1–3]. On the other
hand, parallelism, understood as “real concurrency” in which multiple processors can
operate simultaneously on multiple control threads at the same point in time, was for many
years a possibility that was limited by available hardware technology [4]. Classic
Computer Science curricula [5–7] included the concepts of concurrency in various areas
(Languages, Paradigms, Operating Systems), but parallelism was almost entirely omitted,
except to present the concepts of distributed systems.

Changes in technology have produced an evolution of the major topics in Computer
Science, mainly due to the new applications being developed from having access to more
powerful and less expensive architectures and communications networks [8]. For this
reason, international curricular recommendations mention the need to include the topics
of concurrency and parallelism from the early stages of student education, since all
architectures and real systems with which they will work in the future will be essentially
parallel [9]. However, parallel programming (and the essential concepts of concurrency)
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is more complex for students who are starting their studies, and new strategies are
required to teach the topic.

Given the stimuli to which students are exposed from an early age, be it through
video games, computers, mobile phones, tablets, or any other electronic device, the use
of interactive tools to teach core concepts to students in a CS1 course [9–11] has become
essential [12]. In this sense, the possibility to take the initial steps in the world of
programming through a graphic and interactive environment allows reducing the gap
that traditionally existed between abstraction and the possibility of seeing a graphic
representation of how the concepts being learned are applied in an environment that is
conceptually similar to those used in everyday life [8, 13].

CMRE is a graphic environment that has a set of robots that move within a city, and
it has allowed teaching the basic concepts of concurrency and parallelism in a beginner’s
course in Computer Science. In a previous article [14], the idea of adding advanced
features commonly found in current parallel architectures (such as heterogeneity, energy
consumption, temperature generated) to the environment was discussed. As a continu‐
ation of that work, we have implemented such an extension and created ECMRE
(Extended Concurrent Multi Robot Environment), which is presented here.

This article is organized as follows: Sect. 2 details the advanced features present in
modern parallel architectures that have been included in the environment; Sect. 3
describes the original version of CMRE; Sect. 4 discusses the extensions developed to
create ECMRE; and Sect. 5 presents a test carried out with the new environment in a
first-year course. Section 6 discusses the conclusions.

2 Advanced Features of Parallel Architectures

Current parallel architectures come with advanced features that should be included when
teaching the basic concepts of concurrency and parallelism. In particular, architecture
heterogeneity and energy consumption.

2.1 Heterogeneity in Parallel Architectures

Since the early computers, there has been an ever-present desire to increase machine
computational power. However, it is currently hard to increase processor speed by
increasing their clock rate. Hardware architects face two issues: heat generation and
energy consumption. The solution to this problem introduced by designers has been
integrating two or more computational cores within a single chip, which is known as
multicore processor. Multicore processors improve application performance by distrib‐
uting work among the available cores [15, 16].

Currently, research is focusing mainly on heterogeneous multicore architectures
(i.e., architectures whose cores have different performance and energy consumption
characteristics and which may or may not use different sets of instructions), since having
different types of cores allows optimizing performance and, when tasks are appropriately
distributed among cores, higher performance/energy ratio efficiencies are achieved.
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In this type of architectures, heterogeneity is present in various aspects, most signif‐
icantly in core computational power (computation speed), memory access time, and
communication speed among cores. These three aspects determine the time required to
execute the instructions in each core, and thus, the same sentence executed by two
different cores can take different times. On the other hand, since there is a certain degree
of independence of the features that cause heterogeneity, not all instructions are affected
in the same proportion. That is, a floating point operation that is run in core A, may take
a fourth of the time it takes when run in core B, while a writing operation may take half
the time when run in it.

2.2 Energy Consumption in Parallel Applications

Energy consumption is a key aspect of current processors. In general, the performance
of a parallel algorithm is not measured only in its execution time, but also in energy
consumed. Thus, there will be Flops/Watt or Flops/Joule ratios corresponding to a rela‐
tion between computation and instant power or total energy [17, 18].

It is important to teach Computer Science students to always use consumption
metrics as an indicator of algorithm quality. Additionally, they should also understand
the automatic mechanisms developed by processors according to the temperature
reached (which is a direct function of the energy consumed in a period of time) [17].

There are performance adjustment techniques used in current processors that
consider energy consumption, temperature and other values as indicators for decision-
making. Overclocking and underclocking are two of the most widely used techniques
to increase or decrease processor clock rate in order to increase performance or stand‐
ardizing consumption and temperature values when the processor is overloaded.

3 Current Version of CMRE

The main features of CMRE can be summarized as follows [15, 19]:

• There are multiple processors (robots) that carry out tasks and that can co-operate
and/or compete. They represent the cores of a real multiprocessor architecture. These
virtual robots can have their own clock, and different times for carrying out their
specific tasks.

• The environment model (“city”) where the robots carry out their tasks supports
exclusive areas, partially shared areas and fully shared areas. An exclusive area
allows only one robot to move in it, a partially shared area specifies the set of robots
that can move in it, and a fully shared area allows all robots defined in the program
to move in it.

• If only one robot is used in an area that encompasses the entire city, the scheme used
in Visual Da Vinci is repeated [20, 21].

• When two or more robots are in a (partially or fully) shared area, they compete for
access to the corners on their runs, and the resources found there. For this, they must
be synchronized.
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• When two or more robots (in a common area or not) wish to exchange information
(data or control), they must use explicit messages.

• Synchronization is done through a mechanism that is equivalent to a binary sema‐
phore.

• Mutual exclusion can be generated by stating the areas reached by each robot.
Entering other areas in the city, as well as exiting them, is not allowed.

• The entire execution model is synchronous and allows the existence of a cycle virtual
clock which, in turn, allows assigning specific times for the operations, simulating
the existence of a heterogeneous architecture.

• The environment allows executing the program in a traditional manner or with step-
by-step instructions, giving the user detailed control over program execution to allow
them controlling typical concurrency situations such as conflicts (collisions) or dead‐
locks.

• In the step-by-step mode, the effect of the operations can be reflected on physical
robots, communicated through Wi-Fi. The physical robots have Linux as operating
system, which allows running an http server implemented on NodeJS [22]. Thus, the
environment communicates with the robots (each physical robot corresponds to a
virtual one in the environment). These are point-to-point, two-way communications,
i.e., the environment sends instructions to the physical robot and then the robot sends
its response to the environment stating that the instruction given has been fulfilled.

4 CMRE Extension

ECMRE (Extended Concurrent Multi Robot Environment) is an extended version of its
predecessor (CMRE) and, as such, it adds the concepts of heterogeneous multicore
architectures, energy consumption, processor temperature, and overclocking and under‐
clocking techniques to it.

Students can work on ECMRE by representing different types of multicore archi‐
tectures and watch in a graphic and interactive manner the information related to oper‐
ation time for each robot and variations in consumption and temperature values corre‐
sponding to algorithm runs. By analyzing this information, students can modify their
algorithms (for example, they can balance workloads) to obtain solutions that are effi‐
cient as regards energy consumption and temperatures reached.

4.1 Representing Parallel Architecture Heterogeneity

In this section, the main adaptations made to CMRE to address speed and energy
consumption aspects in ECMRE are described.

Processor Performance. In ECMRE there is a Details area (Fig. 1(a)) to adjust the
general parameters for the application and for each robot in particular. It includes a table
called ROBOTS that has a column that allows defining the speed for each robot. This
simplifies working with the robots, which could present variations in their performance
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because they will execute algorithm instructions at different speeds. There are 3 speeds
that can be selected, and they are related as follows:

Fig. 1. Areas in ECMRE: (a) Details, where each robot is configured, (b) Execution Informa‐
tion, where the execution time for the robot is displayed.

• Max is the maximum speed available.
• Med is half the maximum speed.
• Min is half the medium speed.

In ECMRE, T is defined as a unit of time (equivalent to 100 ms) to measure robot/
processor performance. We decided to use a subset of 10 primitive instructions (block‐
Corner, put-downFlower, put-downPaper, right, sendMessage, freeCorner, move,
receiveMessage, pick-upFlower and pick-upPaper) classified based on their complexity,
and an execution time consistent with robot speed was assigned to them.

Also, ECMRE has an Execution Information area that displays updated information
for each robot during the execution of the algorithm (Fig. 1(b)). One of the entries there
corresponds to the execution time measured in T units. This information is extremely
useful to assess algorithm performance.

The ability of controlling the speed for each robot combined with the assignment of
times to primitive instructions in ECMRE allows working with robots/processors with
different performances, simulating one of the features of heterogeneous multicore archi‐
tectures.

Energy Consumption. ECMRE adds a new section called Robot/Processor where
energy consumption options can be set (in Joules) for a set of primitive instructions
(Fig. 2(a)). Based on this, each robot stores its own consumption information and updates
it during algorithm execution, which is displayed in the Execution Information area
(Fig. 2(b)).

Processor speed is a factor that affects consumption (as speed increases, so does
consumption). In ECMRE, the consumption generated by robot r to execute instruction
i is given by the consumption of i previously specified multiplied by a coefficient that
represents the speed of r at that moment (0.25 for Min, 0.5 for Med and 1 for Max).
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4.2 Temperature Representation

In the Robot/Processor section mentioned above, the temperature (in Celsius) produced
when executing each instruction of the set of primitives can also be set for each robot
(Fig. 3(a)).

Fig. 3. ECMRE (a) Temperature by instruction in the Robot/Processor section, (b) Execution
Information, where robot temperature information is displayed. (Color figure online)

The required logic has been implemented so that each robot records and updates its
temperature and then this information can be viewed while the algorithm is being
executed. To this end, a thermometer was added to the Execution Information area of
the robot (Fig. 3(b)) to display the temperature with a numeric value. The thermometer
changes its color (gray, green, orange and red) as temperature increases or decreases,
where gray represents the minimum temperature and red, the maximum.

This feature is also affected by robot speed (as speed increases, so does temperature).
In ECMRE, the temperature of robot r after executing instruction i is given by its
previous temperature plus the temperature generated by instruction i previously speci‐
fied, and this total is multiplied by a coefficient that represents the speed of r at that
moment (0.92 for Min, 0.95 for Med and 0.98 for Max).

4.3 Representation of Overclocking and Underclocking Techniques

On the other hand, ECMRE allows for the possibility of robots using overclocking and
underclocking techniques while the algorithm is being run. In the Robot/Processor section
in ECMRE, the following parameters that enable this functionality are set (Fig. 4):

Fig. 2. ECMRE (a) Energy consumption by instruction in the Robot/Processor section, (b) Execu‐
tion Information area, where robot energy consumption information is displayed
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Fig. 4. ECMRE - Performance adjustment parameters in the Robot/Processor section

• TCase Max: maximum processor temperature. If this value is exceeded:

– An underclock condition will be attempted to help decrease processor temperature.
– If underclock is not admitted, or if the current speed is already the minimum speed,

the robot will stop until its temperature goes back to normal.

• Use Overclock: this enables the use of an overclocking operation in the robot.
• Use Underclock: this enables the use of an underclocking operation in the robot.
• Verification Interval (VI): this indicates how often the increase in energy consump‐

tion should be checked and, if necessary, the corresponding overclocking/under‐
clocking operation applied. The value is expressed in units of time T.

• Expected Consumption Variation (ECV): this indicates the variation in energy
consumption (in joules) expected for the time defined in VI. This value is used to
apply overclocking/underclocking operations.

The performance adjustment algorithm in each robot works as follows: For each
instruction that is executed, it assesses the following:

• If robot temperature is higher than the specified maximum temperature (TCase Max):

– If the robot supports underclocking and its current speed is not the minimum speed,
an underclock operation is applied to help decrease temperature. Note that if robot
speed is already Min, it cannot be further reduced.

– Otherwise, the robot stops until its temperature cools down to 25°C and then resumes
processing.

• If the increased consumption recorded during the verification interval (VI) exceeds
the expected consumption variation (ECV):

– If the robot supports underclocking and its current speed is not the minimum speed,
an underclock operation is applied to help decrease energy consumption and temper‐
ature. Note that if robot speed is already Min, it cannot be further reduced.

• If the increased consumption recorded during the verification interval (VI) is lower
than the expected consumption variation (ECV):

– If the robot supports overclocking and its current speed is not the maximum speed,
an overclock operation is applied to increase performance. Note that if robot speed
is already Max, it cannot be further increased.
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Overclock and underclock operations are not applied while consumption variation
time is lower than the value set for VI. Every time an overclock or underclock operation
is applied, or when the robot stops to cool down, consumption variation and elapsed
time values are reset to 0.

4.4 Processor Logs

The new functionalities added to ECMRE may require an analysis after the algorithm
is run to assess if the result obtained meets expectations. If execution time or energy
consumption are higher than expected, modifications to the implemented solution may
be proposed, or tasks could be reassigned among participating processors to achieve
better results. To facilitate this analysis, ECMRE includes a new section called
Processor Log that shows a user-friendly summary (through tables and charts) of the
execution of an algorithm.

ECMRE records processor information while the algorithm is being run. In the
Robot/Processor section, the option Log Frequency can be set to define how often
(number of instructions) this information is recorded for each robot at runtime.

Recorded events include: processor stopped due to overload, overclock, and under‐
clock. For each recorded log entry, the following robot information is stored: event
(LOG, STOPPED, OVERCLOCK and UNDERCLOCK), speed before and after the
event, temperature, and energy consumption.

The Processor Log section includes the following 5 subsections: Temperature,
Temperature Chart, Consumption, Consumption Chart, and Consumption by Instruction
Chart. For each of these, the user can select the robot to be analyzed.

5 Test Session with Students

ECMRE was presented in the course Programming Workshop of the School of Computer
Science of the UNLP. This is a first-year course that consists of 3 modules. The third of
these modules deals with the introduction to basic concurrent programming concepts,
which is done through the use of CMRE.

The class started with a brief review of the concepts of concurrency and parallelism
addressed by the environment, such as multicore architectures (both homogeneous and
heterogeneous), energy consumption, temperature, performance adjustment techniques
in processors, and load balancing. For each item, the concept and its significance in
relation to current computer architectures were reviewed, and the new elements added
to CMRE (temperature, consumption and speed) to create ECMRE, were introduced.

Once the theoretical review was completed, a practical activity was presented to be
carried out under the supervision of the educator and the group of students. The students
did not interact directly with the environment because it was still under development.
The practical activity consisted in solving a model problem using ECMRE so that
students could see how execution time, energy consumption and temperature changed
based on different robot configurations. To this end, the tables, charts and logs described
in the previous section were used.
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At the end of the practical activity, each student answered a brief, anonymous survey
intended as a first feedback from students, who will be the end users of the tool. This
survey consisted of 5 questions answered on a Likert scale that goes from 1 (fully disa‐
gree) to 5 (fully agree). The survey was taken by the 42 students who attended the class
on the day of the experience; the results obtained are listed in Table 1.

Table 1. Results of the survey taken by students of the Programming Workshop.

Question Results obtained
Fully agree Agree Neither agree nor disagree Disagree Fully disagree

ECMRE helps learning the
concepts presented

36% 57% 7% 0% 0%

Having a practical tool that allows
viewing the theoretical content
learned during the class through
specific examples is useful

55% 38% 7% 0% 0%

The contents in ECMRE are
organized and its use is intuitive

24% 52% 24% 0% 0%

The icons and charts used in the
application are of the right size and
match their associated function

48% 38% 14% 0% 0%

Having this application as a
supplement to theoretical classes is
beneficial

52% 36% 12% 0% 0%

6 Conclusions

The concepts of heterogeneity, energy consumption and temperature in parallel archi‐
tectures are highly relevant, and we have presented an extension of CMRE (ECMRE)
that allows including them.

ECMRE appears as a very useful tool to introduce these concepts in beginner classes
in Computer Science courses of studies. To achieve this, two stages have been carried
out. On the one hand, CMRE was modified to allow including these features in robots
and, on the other, graphical tools were added to allow students view and then analyze
this information in an easy and entertaining manner.

Thus, the complexity level of possible scenarios is increased, which poses a much
more ambitious challenge that matches the technological reality of current processors.
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