
Proposal for the Formation of Experimental Pair
Programmers

Mauricio Dávila1(✉), Marisa Panizzi1, and Darío Rodríguez2,3

1 Master’s Degree Program in Information Systems, Universidad Tecnológica Nacional,
Facultad Regional Buenos Aires, Castro Barros 91, C1178AAA C.A.B.A, Argentina

davilamr.80@gmail.com, marisapanizzi@outlook.com
2 Engineering Group for Virtual Workstations and Information Systems Research Group,
Department of Technological Productive Development, Universidad Nacional de Lanús,

29 de Septiembre 3901, B1826GLC Lanús, Buenos Aires, Argentina
dariorodriguez1977@gmail.com

3 Commission for Scientific Research - CIC, Calle 526 e/10 y 11, B1906APP La Plata,
Buenos Aires, Argentina

Abstract. This work proposes a protocol aimed to form homogeneous experi‐
mental pairs of programmers to ensure that two individuals with the same char‐
acteristics are undistinguishable in terms of their abilities as programmers. This
protocol enables the measurement and evaluation of the characteristics of
programming languages independently of the programmers’ skills or the lack of
them. A test case is presented so that it validates the protocol. To this end, the
protocol will be applied to a group of C language programmers to show that the
members of the experimental pairs formed do not show significant differences,
in terms of quality and time, in the coding of a specification.

Keywords: Experimentation in software engineering · Protocol
Experimental pair programmers · Programming

1 Introduction

At present, there is a great diversity of programming languages and this often makes it
difficult to select the language that better adapts to the needs of a given development.
The selection of a programming language to find a solution entails multiple factors of
analysis, many of which are subject to the generated source code and the time employed
to generate it.

Using the systematic reviews method [1], a documentary research has been
conducted on studies which discuss the metrics that can be established on the generated
code with a given programming language [2–5]. When metrics are used to determine
whether a language is the best choice compared to another one, it must not be overlooked
that such metrics only focus on the resulting code and do not take into consideration the
characteristics of the programmer who built the code. This may result in the sub clas‐
sification or over classification of a language as a result of the skills or the lack of them
of the programmers using it. This poses a problem when it comes to designing an

© Springer International Publishing AG, part of Springer Nature 2018
A. E. De Giusti (Ed.): CACIC 2017, CCIS 790, pp. 135–144, 2018.
https://doi.org/10.1007/978-3-319-75214-3_13



experiment to determine the language to be used, since the group of programmers who
use language A may have a higher level of knowledge than the group of programmers
who use language B or vice versa, which would impact on the results of the experiment.
One possible solution to this problem would be to have a group of programmers who
can solve the same task in the languages that are being evaluated.

Beyond the difficulty in gathering this group of individuals with the necessary
knowledge in each language to be evaluated, this solution poses some additional diffi‐
culties which arise when designing experiments.

Both Juristo and Moreno [6] and Wohlin et al. [7] argue that the experiments
performed in the field of software engineering are strongly influenced by the character‐
istics of the individuals, like in other sciences, generally known as social sciences. Juristo
and Moreno [6] enumerate some issues related to social factors and the specific char‐
acteristics of the software development that must be taken into consideration when
designing experiments.

• Learning effect: If an individual should solve the same issue applying different
programming languages, it is highly probable that they will learn more and more
about the issue and that the final result will be better than the first one, simply due to
the fact that the individual knows more about the issue rather than due to the fact that
the programming language is better.

• Boredom effect: the individuals get bored or tired of the experiment and put less
effort and interest as time passes by.

• Enthusiasm effect: It may happen that the individuals who use an old programming
language are not motivated to do a good job while those who use a new programming
language are.

• Experience effect: when performing an experiment that involves programmers, it is
to be expected that there will be different levels of both knowledge and skill about
the programming language used.

• Unconscious formalization: it happens when the same individual uses two or more
programming languages with different levels of definition or formality.

• Setting effect: the emotional state of participating individuals is closely related to
their performance.

A set of actions to consider so as to control the abovementioned effects is described
below:

• Learning effect: do not use the same group of individuals to work on a development
using more than one programming language.

• Boredom effect: motivate the individuals who perform the experiment in the same
way regardless of the group they belong to.

• Enthusiasm effect: do not inform the individuals about the hypotheses or objectives
of the experiment.

• Experience effect: to control this effect, experimental pair programmers who are
undistinguishable in terms of their knowledge and skills regarding the programming
language will be formed.

136 M. Dávila et al.



• Unconscious formalization: aspects regarding the level of knowledge of each indi‐
vidual should be considered when it comes to the programming language employed
when forming the experimental pair.

• Setting effect: it must be taken into consideration that all the steps of the experiment
should be carried out under the same conditions.

In the field of software engineering, it is common to face a need to perform experi‐
ments with a reduced group of people who apply different treatments on the objects of
study. Taking into account that comparing experimental units within homogeneous pairs
not only increases the accuracy of the analysis but also allows us to control most of the
undesired effects [6] when performing an experiment, this work is based on the hypoth‐
esis that it is possible to form homogeneous experimental pairs of programmers and that,
therefore, two subjects with the same characteristics are undistinguishable in terms of
their abilities as programmers. This hypothesis leads to the following research questions:
is it possible to form undistinguishable experimental pairs in terms of abilities and skills
as programmers? If so, do they require the same amount of time to solve the same task
with the same programming language?

In Sect. 2, a protocol for the formation of experimental pairs programmers is
proposed. In Sect. 3, the validation of the protocol is performed through a pilot test; and
in Sect. 4, conclusions and future lines of research are presented.

2 Proposal for the Formation of Experimental Pair Programmers

When it comes to deciding how to form homogeneous pairs of programmers, the authors
adhere to Campbell [8], who argues that many factors may indirectly affect the perform‐
ance of an individual, but only three are direct determinants of performance: knowledge,
skill and motivation. For this reason, a protocol will be designed with the aim to form
experimental pairs of programmers who are homogeneous in terms of both level of
knowledge and skills, and it will be assumed that the participants to be characterized do
not show significant differences regarding motivation.

The first step consists in identifying the methods used to categorize programmers in
other experimental research studies (Sect. 2.1). Then, the guidelines considered for the
design of the categorization instruments used in the experiment are described (Sect. 2.2).
Lastly, (Sect. 2.3) presents a mechanism to form homogeneous experimental pairs of
programmers based on the characterization made.

2.1 Programmers’ Experience

Like in most human activities, individual performance in software development varies
considerably from one person to another and mechanisms should be articulated so that
such variations do not affect the results of the study. Feigenspan et al. [9] conducted a
documentary work which analyzed 161 publications and found nine ways used by
researchers to determine a programmer’s experience. These authors define experience
as the amount of knowledge acquired regarding the development of programs.

Proposal for the Formation of Experimental Pair Programmers 137



• Years: in forty-seven works, the number of years a programmer had been program‐
ming in general or in a company or in a certain language was used to determine their
experience in the programming field.

• Education: In nineteen of the articles reviewed, participants’ education was used to
indicate their experience, which included information about the level of education
obtained (pre-university, undergraduate, graduate, etc.) or the grades obtained in their
course of studies.

• Self-estimation: In twelve works, participants were asked to estimate their own
experience.

• Specific survey: In nine works, the authors applied a survey to evaluate programming
experience.

• Size: the size of the programs written by the participants was used as an indicator in
six articles.

• Exam: In three works, an exam on programming was administered to evaluate the
experience of the participants.

• Supervisor: In two works, in which professional programmers acted as participants,
a supervisor was in charge of estimating their experience.

• Not specified: authors often argue that programming experience was estimated but
they did not specify how. That was the case in thirty-nine works.

• Not controlled: programming experience was not mentioned at all in forty-five works,
which compromises the validity of the corresponding experiments.

2.2 Characterization of Programmers

It is necessary to develop a characterization method that is not based on the perception
that each individual has on their own skill as a programmer since less competent people
tend to overestimate their skills because they do not have enough knowledge to recognize
their own limitations and it is also common for more prepared people to tend to under‐
estimate their achievements and competences [12]. This characterization is aimed at
establishing a set of the programmer’s abilities in order to find programming pairs that
may be considered homogeneous. The purpose of the characterization is to ensure that
two individuals with the same characteristics are undistinguishable in terms of their
abilities as programmers. To this purpose, it was decided that a broad set of skills of the
programmer would be analyzed. The authors agree on the idea that the elaboration of a
characterization based only on few criteria may result in serious errors. Some charac‐
teristics of the programmers are not related to the programming language and others are
dependent upon it. For this reason, guidelines to develop two characterization instru‐
ments will be set, one disregarding the programming language (in Spanish, CILP) and
another taking into account the programming language (in Spanish, CDLP). There exists
a large number of measures to capture attributes of software processes and products
which have traditionally been performed by relying on the experts’ proficiency, and this
situation has frequently led to a certain degree of inaccuracy in the definitions, properties
and assumptions of the measurements, making the use of measurements difficult, their
interpretation dangerous and the results of many validation studies contradictory [10].
For the development of characterization tools, the general procedure for the design of a

138 M. Dávila et al.



measurement instrument proposed by Sampiere [11] and the method for the definition
of valid measurements proposed by Genero et al. [10] were taken into account, adapting
such procedures to the needs of this work.

Due to issues related to the synthesis demanded by this publication, it is not possible
to detail each of the steps followed to define either the instruments or the content of each
of their dimensions.

Table 1 presents the content domains of the variable (dimensions), the indicators for
each dimension and the nomenclature proposed for the dimensions of the instrument
that will be used for the independent characterization of the programming language.

Table 1. Variable, dimensions, nomenclature for each dimension and their indicators.

Variable to be
measured

Dimension Nomenclature Indicator

Characteristics which
are independent of the
programming
language

Education level CILP1 It refers to the
education level
attained by the
participant, whether
formally or informally

Experience CILP2 It refers to the years of
experience as a
programmer and to the
number of languages
the participant
declares to know

Comprehension of a
specification

CILP3 Ability of the
programmer to
understand a simple
specification and the
time spent on it

Comprehension of a
pseudocode

CILP4 Ability of the
programmer to
interpret the operation
of pseudocode blocks
and the time spent on
it

Algorithmic ability CILP5 Ability of the
programmer to
develop a solution
with pseudocode and
the time spent on
developing such
solution

Table 2 shows the content domains of the variable (dimensions), the indicators for
each dimension and the nomenclature proposed for the dimensions of the instrument
that will be used to measure the dependent characterization of the programming
language.

Proposal for the Formation of Experimental Pair Programmers 139



Table 2. Variable, dimensions, nomenclature for each dimension and their indicators.

Variable to be measured Dimension Nomenclature Indicator
Characteristics which
are dependent on the
programming language

Language chosen CDLP1 It refers to the
programming language
that the participant
declares to handle more
fluently and to the years
of experience using it

Theoretical knowledge CDLP2 It refers to the level of
knowledge that the
participant has on
theoretical aspects of the
programming language

Comprehension of the
source code

CDLP3 Ability of the
programmer to interpret
the operation of
pseudocode blocks and
the time spent on it

Regarding the decision on the type and format of the instrument and the context of
its administration, the mixed procedure for data collection will be used, consisting of
two questionnaires (CILP and CDLP) and an interview.

In order to minimize characterization errors, once the participant has answered the
questionnaire, an individual interview will be conducted in which the interviewer will
ask some questions so that the participant can justify their answers. If the participant
provides a correct justification, the interviewer will consider it valid.

The context of administration will be a room with one computer for each programmer
since the first phase, the one related to the questionnaire, is self-administered. Therefore,
this can be done individually or simultaneously with a group of people. Then, the inter‐
view is conducted individually.

2.3 Mechanism to Form Experimental Pairs

It is important to design a mechanism to ensure that the experimental pairs are formed
by homogeneous subjects, which means that, according to their characterization, they
should be undistinguishable or have negligible differences.

Criterion for the use of variables. Multiple variables emerge from the characteriza‐
tion procedure, some of them related to characteristics which are independent of the
programming language and others related to characteristics dependent on the programm‐
er’s performance in a certain programming language.

Normalization. The normalization process consists in converting the values of the
independent variables so that they are expressed in the range [0–10], regardless of their
original scale. This step will ensure that none of the variables included in the distance
calculation is weighted more heavily than the others.

140 M. Dávila et al.



Penalty for time spent. Each of the variables measured is accompanied by the time
spent by the participant to complete the exercises related to such variable. In order to
form experimental pairs which are undistinguishable not only in terms of knowledge
but also in terms of time required to solve a task, a score penalty will be applied according
to the time spent on the it. The score obtained will be reduced by 10% every 5 min.

Distance calculation. In a scenario where multiple variables need to be evaluated, all
of them quantitative and whose values belong to the interval [0, 10] after the normali‐
zation process, the criterion used to determine the distance between two subjects must
be defined. Since an n-dimensional space is being considered, the Euclidean distance
calculation will be applied (Fig. 1).

Fig. 1. Euclidean distance [14]

The calculation of the distance between participants will be performed, where the
value of the module of the difference between variables of the same type does not exceed
a threshold. This restriction will make it possible to establish the maximum distance
tolerated, which shall not entail a significant difference in a single variable.

Algorithm for the selection of experimental pairs. The algorithm follows a sequen‐
tial process in which it makes a decision at each step. It must select the minimum distance
among the options available and then in the next step the algorithm has an identical
problem, but with fewer options than in the previous step, and applies the same selection
function to make the following decision [13].

3 Case for the Validation of the Protocol

A series of actions were taken to demonstrate the level of initial reliability and validity
of the measurement instruments. The characteristics included in the formation of exper‐
imental pairs are: Comprehension of a Specification (CILP3), Comprehension of a
Pseudocode (CILP4), Algorithmic Ability (CILP5), Theoretical Knowledge (CDLP2)
and Comprehension of the Source Code (CDLP3).

To perform the initial pilot test, we recruited people of legal age who declared to
know C programming language, and formed a group of 14 programmers. After each
participant was characterized, they were asked to solve a task of medium complexity.
Then, the protocol for the formation of experimental pairs of programmers was applied
in order to determine whether the members of each experimental pair showed any
significant differences in solving the task. If the experimental pairs formed by applying
the protocol do not present significant differences when solving the same task using the
same language, both the instruments and the protocol for the formation of experimental
pairs can be deemed to have reached a stable version.

Proposal for the Formation of Experimental Pair Programmers 141



The results obtained from the characterization process are shown in Table 3.
Table 4 presents the corresponding distance matrix. The intersections painted in black
represent the subjects who should be ruled out since they have shown a distance over
fifty percent in at least one of their dimensions. The experimental pairs obtained after
applying the algorithm are highlighted in gray. Finally, the time differences between the
programmers in each experimental pair are presented Table 5.

Table 3. Normalized results of the characterization.

Subject CDLP2 CDLP3 CILP3 CILP4 CILP5
1 2.40 0.00 10.00 0.00 1.64
2 8.10 6.75 9.00 5.00 6.36
3 6.40 4.00 7.50 5.00 2.73
4 9.00 9.00 4.50 5.00 6.36
5 6.30 2.25 6.75 7.00 2.18
6 7.20 6.00 4.50 9.00 0.67
7 8.10 0.00 7.50 4.50 1.48
8 5.60 2.25 10.00 4.50 4.43
9 8.00 4.50 6.75 9.00 2.96
10 6.30 4.50 4.50 4.50 7.64
11 7.20 2.50 6.75 5.00 1.86
12 9.00 6.75 9.00 9.00 5.45
13 5.60 0.00 7.50 5.00 7.00
14 6.40 0.00 9.00 4.50 3.87

Table 4. Distance matrix

Table 5. Differences in time spent by each member of the experimental pair

Subjects Difference
Time %

2 4 6 7.06%
5 11 3 2.48%
7 14 5 4.76%
9 12 5 4.35%

142 M. Dávila et al.



With regard to the time spent to perform the characterization, the average time for
the characterization that was independent of the programming language was 28 min; for
the characterization dependent on the programming language, the average was 19 min;
and for the interview, an average of 6 min was used for each participant. In Table 5, it
can be observed that there are no significant differences between the members of the
experimental pairs of programmers in relation to the time spent on solving the same task.

4 Conclusions and Future Work

With the aim of proposing a protocol for the formation of experimental pairs of program‐
mers, a document analysis was conducted on the benefits brought by this type of experi‐
ment to the software engineering sector. Two instruments were designed to characterize
programmers. Using the data obtained from these characterization instruments, a proce‐
dure for the formation of experimental pairs was defined.

Finally, a validation case was implemented to verify whether the members of the
experimental pairs obtained showed any differences in solving the same programming
task.

It can be concluded that in terms of the formation of experimental pairs of program‐
mers, the protocol worked satisfactorily and it is thus considered to have an acceptable
level of reliability, validity and objectivity since it was consistent in the results provided.

The future lines of work identified are the need to: (1) apply the protocol to other
programming languages and (2) use the protocol to form experimental pairs of subjects
using different programming languages in order to determine whether a given program‐
ming language affects computing productivity.

References

1. Argimón, J.: Métodos de Investigación Clínica y Epidemiológica. Elsevier, Barcelona (2004).
ISBN 8174-709-2

2. Halstead, M.: Elements of Software Science. Elsevier Science Inc., New York (1977)
3. McCabe, T.J.: A complexity measure. IEEE Trans. Softw. Eng. 4, 308–320 (1976)
4. Riaz, M., Mendes, E., Tempero, E.: A systematic review of software maintainability

prediction and metrics. In: Proceedings of the 2009 3rd International Symposium on
Empirical Software Engineering and Measurement, pp. 367–377. IEEE Computer Society
(2009)

5. Rilling, J., Klemola, T.: Identifying comprehension bottlenecks using program slicing and
cognitive complexity metrics. In: 10th IEEE Working Conference on Reverse Engineering,
pp. 115–125. IEEE, Oregon (2003)

6. Juristo, N., Moreno, A.M.: Basics of Software Engineering Experimentation. Springer,
London (2013)

7. Wohlin, C., Runeson, P., Höst, M., Ohlsson, M.C., Regnell, B., Wesslén, A.: Experimentation in
Software Engineering. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29044-2

8. Campbell, J.P., McCloy, R.A., Oppler, S.H., Sager, C.E.: A theory of performance. In:
Schmitt, N., Bormann, W.C., et al. (eds.) Personnel Selection in Organizations, pp. 35–70.
Jossey-Bass, San Francisco (1993)

Proposal for the Formation of Experimental Pair Programmers 143

http://dx.doi.org/10.1007/978-3-642-29044-2


9. Feigenspan, J., Kästner, C., Liebig, J., Apel, S., Hanenberg, S.: Measuring programming
experience. In: IEEE 20th International Conference on Program Comprehension (ICPC), pp.
73–82. IEEE (2012)

10. Genero, M., Cruz-Lemus, J.A., Piattini, M.: Métodos de Investigación en Ingeniería del
Software. RaMa (2014)

11. Sampieri, R.H., Collado, C.F., Lucio, P.B.: Metodología de la investigación. McGraw-Hill,
Mexico (2010)

12. Kruger, J., Dunning, D.: Unskilled and unaware of it: how difficulties in recognizing one’s
own incompetence lead to inflated self-assessments. J. Pers. Soc. Psychol. 77(6), 1121 (1999)

13. Soriano, M.A.: Algoritmos Voraces. Facultat d’Informàtica, U.P.C. (2007). http://
www.cs.upc.edu/~mabad/ADA/curso0708/GREEDY.pdf. Accessed 3 Jan 2017

14. Elena, D., Deza, M.M.: Encyclopedia of Distances, p. 94. Springer, Heidelberg (2009). https://
doi.org/10.1007/978-3-642-00234-2

144 M. Dávila et al.

http://www.cs.upc.edu/%7emabad/ADA/curso0708/GREEDY.pdf
http://www.cs.upc.edu/%7emabad/ADA/curso0708/GREEDY.pdf
http://dx.doi.org/10.1007/978-3-642-00234-2
http://dx.doi.org/10.1007/978-3-642-00234-2

	Proposal for the Formation of Experimental Pair Programmers
	Abstract
	1 Introduction
	2 Proposal for the Formation of Experimental Pair Programmers
	2.1 Programmers’ Experience
	2.2 Characterization of Programmers
	2.3 Mechanism to Form Experimental Pairs

	3 Case for the Validation of the Protocol
	4 Conclusions and Future Work
	References




