
A Tutorial on the Implementations of Linear
Image Filters in CPU and GPU

Alvaro Pardo(B)

Facultad de Ingenieŕıa y Tecnoloǵıas,
Universidad Católica del Uruguay, Montevideo, Uruguay

apardo@ucu.edu.uy

Abstract. This article presents an overview of the implementation of
linear image filters in CPU and GPU. The main goal is to present a self
contained discussion of different implementations and their background
using tools from digital signal processing. First, using signal processing
tools, we discuss different algorithms and estimate their computational
cost. Then, we discuss the implementation of these filters in CPU and
GPU. It is very common to find in the literature that GPUs can easily
reduce computational times in many algorithms (straightforward imple-
mentations). In this work we show that GPU implementations not always
reduce the computational time but also not all algorithms are suited for
GPUs. We believe this is a review that can help researchers and students
working in this area. Although the experimental results are not meant
to show which is the best implementation (in terms of running time),
the main results can be extrapolated to CPUs and GPUs of different
capabilities.

Keywords: Linear image filtering · GPU · CUDA

1 Introduction to Linear Filtering

Image filtering is one of the most studied problems in the image processing
community. Image smoothing, sharpening, feature detection and edge detection
are some of the applications of image filtering. In the literature we can find two
broad categories of image filters: linear and non linear. More recently, non local
methods attracted the attention of researchers in the area. In fact, several of the
state of the art algorithms are both non local and non linear (see [4] for more
details). In this tutorial we will focus on the analysis and implementation, both
in CPU and GPU, of linear filtering methods. The approach will be strongly
connected to the theory of linear systems and digital signal processing. We refer
the interested reader to [1,9] for further details on these areas. First we recall that
a filter, or system, that takes an input image to produce and output one, is said
to be linear if for all linear combinations of inputs produce a linear combination
of outputs with the same weighting coefficients. Before analyzing linear image

c© Springer International Publishing AG, part of Springer Nature 2018
A. E. De Giusti (Ed.): CACIC 2017, CCIS 790, pp. 111–121, 2018.
https://doi.org/10.1007/978-3-319-75214-3_11

112 A. Pardo

filter using tools from linear systems we will describe linear image filters in their
most basic form using sliding windows (convolution masks).

We start with a simple linear averaging filter in which each pixel x = (i, j)
of the output image is computed as the average of all pixels in a 3 × 3 window
centered at x in the input image. Processing the whole image can be expressed
with a sliding window algorithm. Given the pixel x the average filter can be
implemented moving a 3 × 3 window with weights 1/9 across the input image.
Mathematically this can be formulated as:

g(i, j) =
1∑

i′=−1

1∑

j′=−1

w(i′, j′)f(i + i′, j + j′) (1)

where f(., .) and g(., .) are the input and output images and w(., .) is the win-
dow containing the filter weights. In the previous example of linear averaging
w(m,n) = 1/9 for all (m,n). Changing the values of w(m,n) different filters
can be obtained. Inspecting Eq. (1) we can see that is very similar to a two
dimensional convolution. Recalling the theory of linear systems we know that
the output of a linear and invariant system can be obtained convolving the input
f with the impulse response of the system h: g = f ∗h1. The impulse response of
an image filter can be obtained as the output of the filter when the input image
is a discrete impulse. If N is a neighborhood of the same size of the sliding
window centered at pixel (i, j) and h(., .) is the impulse response of the filter,
Eq. (1) can be rewritten as a discrete convolution:

g(i, j) =
∑

(m,n)∈N
h(i − m, j − n)f(m,n). (2)

The main difference between Eqs. (1) and (2) is the range of indexes (i, j) and
(m,n). Both formulations convey useful information; the first one is more suited
for interpretation while the second one enables us to connect linear image filtering
with convolution and the frequency response of the filter.

The Eq. (2) can be reformulated interchanging the role of h and f ; instead of
moving h across f we move f and leave h fixed. To do that we center h around
the origin and extend it filling it with zeros outside the original window range
and extend the input image outside the original range [0,M − 1] × [0, N − 1].
In this way the Eq. (2) turns into: g(i, j) =

∑
(m,n) h(m,n)f(i − m, j − n). In

the next section we will use this formulation to obtain the frequency response of
linear image filters.

1.1 Z Transform and Frequency Response

The Z transform is a very useful tool in the context of linear and invariant sys-
tems, signal processing and discrete control theory [1]. To justify the Z transform
we will first deduce it starting from the convolution product. If we consider an

1 The filter impulse response h is sometimes referred as filter kernel.

A Tutorial on the Implementations of Linear Image Filters in CPU and GPU 113

input image f(i, j) = zixz
j
y with zx and zy arbitrary complex numbers, the out-

put signal is: zixz
j
y

∑
m

∑
n h(m,n)z−m

x z−n
y . This simple result shows that zixz

j
y

are eigenfunctions of linear and invariant filters with corresponding eigenvalues
H(zx, zy) =

∑
m

∑
n h(m,n)z−m

x z−n
y . This expression is known as the Z trans-

form of h(m,n) or transfer function of the filter. One of the most important
properties of the Z transform states that the convolution of two signals is the
product of their respective Z transforms, see [1] for details. Hence, if f and g
are the input and output signals related by g = f ∗ h, their relationship in the
Z space is: G(zx, zy) = H(zx, zy) · F (zx, zy). If we evaluate the Z transform in
the unit sphere we obtain the Fourier transform. The Fourier transform of h is
H(θx, θy) =

∑
(m,n) h(m,n)exp(−j(θxm + θyn)), the frequency response of the

filter. In the following section we will use the Z transform to study image filters
and propose alternative formulations for some of them. The interested reader
can obtain more information about the Z transform in [1].

2 Implementation of Linear Image Filters

In this section we discuss the implementation of linear image filters using the
tools presented in previous sections. We will describe the implementation details
and address the computational complexity of each approach. One of the goals
of the following analysis is to determine the best implementations given the
filter characteristics (window size, symmetry, etc.,). First we show how to imple-
ment the filters in their traditional sequential form used for CPU algorithms.
Later on, we study the parallel versions of the same algorithms suited to GPU
architectures.

2.1 Convolution

The implementation of Eqs. (1) and (2) is straightforward. Basically, the idea is
to visit every pixel in the image and apply the corresponding equations. Typi-
cally, the sliding window approach, Eq. (1), is the first option since is very easy
to understand and code. The trickiest part of the implementation is the manage-
ment of the border conditions. That is, how to process pixels close to the image
borders where part of the filter window falls out of the image.

Convolution Computational Cost. To conclude the description of this
method we will estimate the number of operations needed to implement it. To
simplify the estimation we will assume that the image size is N × N and the
window filter size is (2W + 1) × (2W + 1). It can be easily seen that each pixel
demands (2W + 1)2 operations and therefore the total number of operations is
of order N2(2W + 1)2. To avoid confusions we distinguish computational cost
from computational time.

114 A. Pardo

2.2 Separable Convolution

A filter is said to be separable if its kernel can be broken into two one-dimensional
vectors that multiplied give the original filter response: w(i, j) = u(i)v(j). The
convolution of an image with a separable kernel can be implemented with two
one-dimensional convolutions. First, each row in the image is convolved with v,
then the result is processed across columns convolving it with u. The mathemat-
ical justification can be easily obtained substituting w(i, j) = u(i)v(j) into (2):
g(i, j) =

∑
m u(m) (

∑
n v(n)f(i − m, j − n)) .

Separable Convolution Computational Cost. Convolution with separable
kernels requires N(N(2W +1))+N(N(2W +1)) = 2N2(2W +1) operations. The
reduction in the number of operations is (2W +1)/2 compared to the traditional
two-dimensional convolution. Therefore, the larger the kernel the better speed-
up can be obtained with this approach.

2.3 Special Case: Box Filtering

The box filter is an average filter with uniform weights; the output at pixel
x = (i, j) is the average of all pixels in the filtering window:

g(i, j) =
W∑

i′=−W

W∑

j′=−W

1
(2W + 1)2

f(i + i′, j + j′)

The beauty of this filter is that it can be implemented using integral images
to reduce the number of operations. The integral image of an image f at pixel
(i, j), denoted as Sf (i, j), is the sum of all elements in the rectangular region with
upper-left and lower-right vertices (0, 0) and (i, j): Sf(i, j) =

∑
i′≤i,j′≤j f(i, j)

Given the pixel (i, j), the output of the box filter can be obtained using the
integral image as follows: sum the pixels in the square region defined by the
points (i − W, j − W) and (i + W, j + W) and divide it by the number of pixels
in the window (recall that the filter window is [−W,W] × [−W,W]. This can be
easily implemented with integral images [3]:

g(i, j) =
1

(2W + 1)2
[Sf (i + W, j + W) − Sf (i + W, j − W) (3)

− Sf (i − W, j + W) + Sf (i − W, j − W)].

The computation of the box filter implies two steps: the computation of the
integral image and, after that, the computation of the output using Eq. (3). This
formulation is especially useful when we need to filter the image at different
scales, i.e. with different filter sizes, because the first step can be reutilized and
regardless the filter size, the second step has always the same cost in terms of
operations. In order to estimate the cost, in terms of operations, we have to esti-
mate the cost of computing the integral image and the actual filter, from Eq. (3).

A Tutorial on the Implementations of Linear Image Filters in CPU and GPU 115

It can be easily seen that the computation of the integral image requires N2 oper-
ations. On the other hand, the filtering requires only four operations per pixel
so the total number of operations to apply the filter is 4N2. Therefore, the total
number of operations for the case of the box filter using integral images is 5N2.
As said before, this does not depend on the filter size. This is why integral images
are very attractive to filter the same image at different scales (the work of Viola
and Jones popularized this idea [10]).

Moving Average Filter. Moving Average Filters are in fact an implementa-
tion of the Box Filter. Using the two-dimensional Z transform it can be shown
that the relationship between the Z transforms of input and output images is:

G(zx, zy) =
F (zx, zy)
(2W + 1)2

W∑

i=−W

W∑

j=−W

zixz
j
y

=
F (zx, zy)
(2W + 1)2

zW+1
x − z−W

x

1 − zx

zW+1
y − z−W

y

1 − zy
.

Taking the inverse Z transform the previous equation gives:

g(i + 1, j + 1) = g(i + 1, j) + g(i, j + 1) − g(i, j) +
1

(2W + 1)2
[f(i − W, j − W)

− f(i + W + 1, j − W) − f(i − W, j + W + 1)
+ f(i + W + 1, j + W + 1)] .

The computation cost to process an N × N image in this case is 7N2, similar
cost as the separable convolution.

3 Introduction to GPU Programming Using CUDA

In this section we review the main concepts behind GPUs and the parallel imple-
mentation of algorithms using this technology. In particular we will use CUDA.
For a more detailed presentation we refer to [8].

GPUs are highly parallel processors with many cores and the ability to run
multiple threads that provide high performance computing. The architecture of
the GPUs, traditionally optimized for graphic applications, has some limitations;
less cache and flow control limitations. GPUs provide advantages in applications
where the same computations can be applied in parallel to may data elements.
However, memory transfers from main memory to device memory (GPU) have to
be considered. A GPU implementation pays off if its computation cost it s higher
that memory access cost. To process data with an algorithm implemented in the
GPU the data must be transferred from main memory to the device, process
it in the device and transfer back to main memory. Therefore, the computation
cost must be higher enough to pay the overhead introduced by memory trans-
fers. CUDA (Compute Unified Device Architecture) is a programming language

116 A. Pardo

by nVidia that allows programming the GPUs abstracting the code from the
actual hardware details (OpenCL is another option). Provides the user a high
level interface so that he can take advantage of the capabilities of GPUs with-
out having to directly handle the hardware. The CUDA programming model
allows the user to use GPU capabilities from a simple interface similar to C lan-
guage (C language extension). CUDA proposes three abstractions: a hierarchy of
thread groups, shared memory and synchronization [6]. These abstractions pro-
vide an easy way to understand and handle parallelization. These abstractions
are designed so the actual implementation does not need to know the details
of the hardware (number for cores, etc.) (see Fig. 1). The idea is to divide the
problem in blocks of threads. Then each block of threads works cooperatively
to solve the problem. In this way scalability is easily achieved, see Fig. 1. To
understand image filtering implementations on GPUs, and to make this article
self-contained, we first review the basics using a simple examples of vectors and
matrices addition (This section is based on [6]).

Fig. 1. From [6]: A multithreaded program is partitioned into blocks of threads that
execute independently from each other, so that a GPU with more multiprocessors will
automatically execute the program in less time than a GPU with fewer multiprocessors.

CUDA Kernels. A kernel is a function that runs N times in parallel on N
different threads. In the following code a kernel is used to sum in parallel to
vectors of dimension N using N threads (see Fig. 2).

// Kernel d e f i n i t i o n
g l o b a l void VecAdd(f loat ∗ A, f loat ∗ B, f loat ∗ C){
int i = threadIdx . x ;
C[i] = A[i] + B[i] ;

}
// Kernel invoca t i on wi th N threads
VecAdd<<<1, N>>>(A, B, C) ;

Fig. 2. Kernel to sum two vectors.

A Tutorial on the Implementations of Linear Image Filters in CPU and GPU 117

CUDA threads are three dimensional vectors which enable processing blocks
up to dimensions three. The following code in Fig. 3 shows how to add two
matrices.

g l o b a l void MatAdd(f loat A[N] [N] ,
f loat B[N] [N] , f loat C[N] [N]) {

int i = threadIdx . x ;
int j = threadIdx . y ;
C[i] [j] = A[i] [j] + B[i] [j] ;

}
// Kernel wi th one b l o c k o f NxNx1 threads
int numBlocks = 1 ;
dim3 threadsPerBlock (N, N) ;
MatAdd<<<numBlocks , threadsPerBlock>>>(A, B, C) ;

Fig. 3. Kernel to sum two matrices.

Since the number of threads is bounded (in actual GPUs by 1024) and all
threads of a block reside in the same core, when dealing with large vectors or
matrices, the problem must be organized into several blocks. CUDA blocks can
be organized into one, two or three dimensional grids. In this way, the problem
can be organized into a number of blocks per grid and threads per block. This
allows for flexibility to organize the omputations. The code in Fig. 4 shows how
to add two matrices organizing the computation into blocks of size 16 × 16. The
matrices are divided with a tiling of 16 × 16. Since there is no guarantee that
N is multiple of 16, inside the kernel we must verify that the pixel (i, j) resided
inside the matrices. The choice of blocks of size 16 × 16 can be modified to take
advantage of the GPU capabilities.

g l o b a l void MatAdd(f loat A[N] [N] ,
f loat B[N] [N] , f loat C[N] [N]) {

int i = blockIdx . x ∗ blockDim . x + threadIdx . x ;
int j = blockIdx . y ∗ blockDim . y + threadIdx . y ;
i f (i < N && j < N)
C[i] [j] = A[i] [j] + B[i] [j] ;

}
// Kernel invoca t i on
dim3 threadsPerBlock (16 , 1 6) ;
dim3 numBlocks (N / threadsPerBlock . x , N / threadsPerBlock . y) ;
MatAdd<<<numBlocks , threadsPerBlock>>>(A, B, C) ;

Fig. 4. Kernel to add two matrices using CUDA blocks.

118 A. Pardo

4 Image Filtering in GPUs

This section discussed the GPU implementation using CUDA of the image filters
presented above. We will use the basic notions of GPU programming with CUDA
introduced in previous section.

4.1 Convolution

The code in Fig. 5 is a direct implementation of 3 × 3 linear image filter. The
code is very similar to the one in C used for the CPU. The main difference is
that in this case the pixel indices i and j are obtained from the grid and block
organization of the computation on the device. This implementation follows the
same philosophy of the code seen before to add two matrices. The code snippet
in Fig. 6 shows how to organize the memory allocation and kernel invocation.

g l o b a l void f i l t e r (f loat ∗ f , f loat ∗ g , int rows , int c o l s){
int i = blockIdx . x ∗ blockDim . x + threadIdx . x ;
int j = blockIdx . y ∗ blockDim . y + threadIdx . y ;
. . .
i f (i>=w && j>=w && i<co l s−w && j<co l s−w){

f loat h [3] [3] = { . . . } ;
f loat sum = 0 ;
for (int i i=−w; i i<=w; i i ++){

for (int j j=−w; j j<=w; j j ++){
f loat f i j = f [(i+ i i)∗ rows + (j+j j)] ;
sum += h [i i+w] [j j+w] ∗ f i j ;

}
}

// s t o r e output . sumh i s the sum of a l l we i gh t s h [] []
g [i ∗ c o l s + j] = sum/sumh ;

Fig. 5. Kernel for direct implementation for liner image filtering.

The first two columns of Table 1 show the results of executing the CPU and
GPU version of the sliding window (convolution) method. For small images,
the overhead time of memory transfers is higher than the computation cost
and therefore the GPU implementation does not give any speed up. For larger
images the GPU is an alternative to speed up linear image filtering (the speed
ups factors are shown in parenthesis). Although the breakpoint of when GPU
outperforms CPU can depend on the hardware (CPU & GPU), the main result
holds valid; for small images and filters of low computational demands (small
windows) GPUs are not faster than CPUs due to the memory transfer overheads.

A Tutorial on the Implementations of Linear Image Filters in CPU and GPU 119

// HOST memory
f loat ∗ f = new f loat [a r r ayS i z e] ;
f loat ∗g = new f loat [a r r ayS i z e] ;
// DEVICE memory (GPU)
cudaMalloc ((void∗∗)&df , s i z e ∗ s izeof (f loat)) ;
cudaMalloc ((void∗∗)&dg , s i z e ∗ s izeof (f loat)) ;
// Copy image f from DEVICE to HOST
cudaMemcpy2D(df , p itch , f , s i z e ∗ s izeof (f loat)∗ f i l s ,

cudaMemcpyHostToDevice) ;
// Kernel invoca t i on
dim3 block (16 , 1 6) ;
dim3 gr id (f i l s /16 , c o l s /16) ;
f i l t e r <<<gr id , block>>>(df , dg , f i l s , c o l s) ;
// Copy r e s u l t from DEVICE to HOST
cudaMemcpy(g , dg , s i z e ∗ s izeof (f loat) , cudaMemcpyDeviceToHost) ;

Fig. 6. Kernel to add two matrices using CUDA blocks.

CUDA Texture Memory. Texture memory is a read-only memory that can
be used to improve performance. Optimizing memory access in the GPU pro-
vides benefits in terms of computational time [8]. Texture memory is one of the
most basic improvements that can be added to the code of the image filter.
The only modification in the kernel code is the access to pixel data f[i][j] using
float fij = tex2D(texf, i + ii, j + jj) where texf is a texture connected to array f.
In Table 1 we can see that the use of texture memory reduces the running time.
Once again, we observe that the differences appear for large images.

4.2 Separable Convolution

The GPU implementation of a separable filter needs two kernels; one to filter
by rows and the other by columns. Separable convolution can provide speedups
around 3 times2. According to [7] the use of texture memory and other memory
optimizations an additional speedup of factor 2 can be obtained (see [7] for
details).

5 Results and Discussion

CPU versus GPU. The first result is that when dealing with small images GPU
does not provide advantages over CPU (see columns 1 and 2 from Table 1).
The actual size of the image where one implementation outperforms the other
depends on hardware features. However, the observation holds valid and, as we
said before, is due to memory transfers from host to device and backwards.
Furthermore, on the CPU side there is still room for improvements using, for
2 In https://blog.kevinlin.info/nvidia-cuda-gpu-computing-and-computer-vision/

there is a detailed analysis of the separable implementation.

https://blog.kevinlin.info/nvidia-cuda-gpu-computing-and-computer-vision/

120 A. Pardo

example, parallelization with multicores. Therefore, the GPU implementation
paysoff for large images on when additional operations will be performed in the
GPU with the same data. That is, when other processes will be applied to the
same image. In this case, the data transfer cost is shared among several process
and makes GPU more attractive. Since in many areas we are seeing an increasing
use of high definition images (HDTV, Ultra HDTV), we can expect to have to
process large images and therefore GPUs are obviously a good alternative. This
is the case of mobile platforms which include a GPU to handle image and video
data.

Algorithms. Now we discuss the impact of the algorithms that reduce the com-
putation cost. First we reviewed separable convolution which is a case of interest
since many traditional image filters are separable (Gaussian filters, Sobel filters
for edge detection, etc.). From the data in Table 1 we can observe and speedup of
×1.5 for a filter of size 3 × 3. This factor agrees with the estimation in Sect. 2.2.
In this case W = 1 so the theoretical computation cost reduction is 3/2. As we
mentioned in Sect. 4.2 GPU implementation of separable convolution gives an
additional speed up (see [7]). To illustrate the benefits of applying the correct
algorithms to decrease the computational cost and improve running times, we
discussed Box Filters in Sect. 2.3. Box filters are a special case of linear image
filters with many real applications due to their reduced computational cost [9].
The last column of Table 1 shows the obtained running times for a CPU imple-
mentation. We must be careful when directly comparing this implementation
with the others since this is a special filter (with uniform weights). If we assume
that all algorithms implement the same box filter, using a uniform kernel, we
can see that the implementation of the box filter (MAF) outperforms all other
algorithms. Hence, if the application allows a box image filter then the MAF
is a simple and computational efficient algorithm (there is no need for a GPU
implementation). Finally, if we need a multiscale version of the box filter, the
use of integral images is a good solution. In [2,5] the authors compare GPU and
CPU implementation of integral images.

Table 1. Running times in mseg for a 3×3 filter. GeForce GT 430 (96 cores, 1400Mhz).
Intel i7-2600 3.4 GHz, 16 GB RAM, Windows 7 64 bits. (1) Standard CPU. (2) Direct
GPU. (3) Direct GPU using texture memory. (4) CPU separable convolution. (5) CPU
implementation of MAF.

N CPU
texture (1)

GPU texture (2) GPU texture (3) CPU sep. (4) MAF (5)

512 10 65 (×0.15) 65 (×0.15) 7 (×1.42) 1

1024 42 76 (×0.55) 75 (×0.55) 25 (×1.68) 4

2048 165 105 (×1.58) 91 (×1.83) 105 (×1.58) 17

4096 660 202 (×3.27) 162 (×4.07) 440 (×1.50) 66

A Tutorial on the Implementations of Linear Image Filters in CPU and GPU 121

6 Conclusions

In this paper we presented an overview of linear image filtering, its basic results
based on the theory of linear and invariant systems, and different algorithms to
implement the filter. We reviewed different algorithms to reduce the computa-
tional cost and discussed their CPU and GPU implementations. We discussed
pros and cons of algorithms and their implementations. Based on the results
presented in Table 1 we can see that image size must be considered to select the
most suited implementation. This paper was intended to understand the basics
behind linear image filtering using CPU and GPUs. In real applications, libraries
such as NPP (nVidia Performance Primitives) or ArrayFire to name two, must
be considered.

References

1. Oppenheim, A.V., Schafer, R.W., John, R.B.: Discrete-Time Signal Processing.
Prentice Hall, Englewood Cliffs (1989)

2. Bilgic, B., Horn, B.K.P., Masaki, I.: Efficient integral image computation on the
GPU. In: Intelligent Vehicles Symposium (IV), pp. 528–533. IEEE (2010)

3. Krig, S.: Computer Vision Metrics. Textbook Edition. Springer, Cham (2016)
4. Milanfar, P.: A tour of modern image filtering: new insights and methods, both

practical and theoretical. IEEE Sig. Process. Mag. 30(1), 106–128 (2013)
5. Nehab, D., Maximo, A., Lima, R.S., Hoppe, H.: GPU-efficient recursive filtering

and summed-area tables. ACM Trans. Graph. (TOG) 30(6), 176 (2011)
6. nVidia: Cuda c programming guide (2017)
7. Podlozhnyuk, V.: Image convolution with CUDA. NVIDIA Corporation white

paper, June 2097(3) (2007)
8. Sanders, J., Kandrot, E.: CUDA by Example: An Introduction to General-Purpose

GPU Programming, Portable Documents. Addison-Wesley Professional, Upper
Saddle River (2010)

9. Smith, S.W., et al.: The Scientist and Engineer’s Guide to Digital Signal Process-
ing. California Technical Pub, San Diego (1997)

10. Viola, P., Jones, M.: Rapid object detection using a boosted cascade of simple
features. In: Proceedings of the 2001 IEEE Computer Society Conference on Com-
puter Vision and Pattern Recognition, CVPR 2001, vol. 1, pp. I-511–I-518. IEEE
(2001)

	A Tutorial on the Implementations of Linear Image Filters in CPU and GPU
	1 Introduction to Linear Filtering
	1.1 Z Transform and Frequency Response

	2 Implementation of Linear Image Filters
	2.1 Convolution
	2.2 Separable Convolution
	2.3 Special Case: Box Filtering

	3 Introduction to GPU Programming Using CUDA
	4 Image Filtering in GPUs
	4.1 Convolution
	4.2 Separable Convolution

	5 Results and Discussion
	6 Conclusions
	References

