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Abstract. Direct Sum Masking (DSM) and Inner Product (IP) mask-
ing are two types of countermeasures that have been introduced as alter-
natives to simpler (e.g., additive) masking schemes to protect crypto-
graphic implementations against side-channel analysis. In this paper, we
first show that IP masking can be written as a particular case of DSM.
We then analyze the improved security properties that these (more com-
plex) encodings can provide over Boolean masking. For this purpose, we
introduce a slight variation of the probing model, which allows us to
provide a simple explanation to the “security order amplification” for
such masking schemes that was put forward at CARDIS 2016. We then
use our model to search for new instances of masking schemes that opti-
mize this security order amplification. We finally discuss the relevance of
this security order amplification (and its underlying assumption of linear
leakages) based on an experimental case study.

1 Introduction

Masking is among the most investigated countermeasures against side-channel
analysis. It aims at performing cryptographic computations on encoded (aka
secret shared) data in order to amplify the impact of the noise in the adversary’s
observations [10,13,14,31]. For example, in the context of block ciphers, a lot of
attention has been paid to the efficient exploitation of simple encodings such as
additive (e.g., Boolean ones in [12,25,32]) or multiplicative ones (e.g., [19,20]).
Very summarized, the main advantage of these simple encodings is that they
enable efficient implementations [22].

In parallel, an alternative trend has investigated the potential advantages of
slightly more complex encodings. Typical examples include polynomial masking
(e.g., [18,21,33]), Inner Product (IP) masking [1,2,17] and code-based masking
(e.g., [5–9]). While computing over these encodings is generally more expen-
sive [25], the recent literature has shown that their elaborate algebraic structure
also leads to improved security properties. For example, it can decrease the
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information leakages observed in “low noise conditions” [1,2,18,21,33]. Also, it
can improve the “statistical security order” (or security order in the bounded
moment leakage model [3]) in case of linear leakage functions [8,26,38]. So while
it is an open problem to find out which masking scheme offers the best secu-
rity vs. efficiency tradeoff for complete implementations in actual devices, the
better understanding and connection of simple and complex encoding functions
appears as a necessary first step in this direction.

For this purpose, and as a starting point, we note that it has already been
shown in [2] that IP masking can be viewed as a generalization of simpler encod-
ings (Boolean, multiplicative, affine and polynomial). So our focus in this paper
will be on the connection between IP masking and the Direct Sum Masking
(DSM) [5,9], which is a quite general instance of code-based masking. Our con-
tributions in this respect are as follows:

First, we connect IP masking and DSM by showing that the first one can be
seen as a particular case of the latter one. Second, we analyze the security prop-
erties of these masking schemes. In particular, we show that the “security order
amplification” put forward in previous works can be easily explained thanks to (a
variation of) the probing model [27], by considering bit-level security, rather than
larger (field-element-level) security. Thanks to this connection, we then express
how to best optimize the security order amplification (i.e., the bit-level security)
based on the dual distance of a binary code. We further perform an informed
search on code instances which allows us to improve the state-of-the-art param-
eters for IP encodings. We finally propose experiments discussing the interest
and limitations of security order amplification in practice (i.e., the relevance of
the linear leakage assumption).

Cautionary note. Our focus in this paper is on encodings. Admittedly, an
even more important issue is to compute (in particular, multiply) efficiently
over encodings. In this respect, while the literature on IP masking provides
solutions to this problem [1,2], it remains an open challenge to describe efficient
multiplication algorithms for DSM.

2 Connecting DSM and IP Masking

In this section we first introduce the two masking schemes that we will analyze,
namely IP masking and DSM. We then show how these two methods are con-
nected, focusing only on their functional description (security will be investigated
in Sect. 3).

2.1 Notations

We use capital letters for random variables and small caps for their realizations.
We denote the conditional probability of a random variable A given B with
P [A|B]. We use sans serif font for functions (e.g., F) and calligraphic fonts for
sets (e.g., A). Given a field K, we denote by a · b the field multiplication between
two elements a and b. We denote by [a]2 the binary vector representation of some
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element a ∈ F2k for some k. We use capital bold letters for matrices (e.g., M)
and small bold caps for raw vectors (e.g., v). We denote by v(i) the i-th element
of a vector v. We denote by MT (resp. vT ) the transpose of a matrix M (resp.
a vector v). The inner product between two vectors v1 and v2 is noted 〈v1,v2〉.
In the rest of the paper, x denotes a k-bit secret value that we wish to mask and
[x]2 its binary vector representation.

2.2 Inner Product Masking

IP masking was introduced in [1,2,17] as a generalization of Boolean mask-
ing. Instead of simply splitting a secret value as the sum of random shares, it
decomposes the secret as the inner product between random values and a pub-
lic vector. More formally, the first step of the IP encoding is to select a public
vector l = (l0, ..., ln−1) ∈ F

n
2k\{0} (with l0 generally set as l0 = 1 for perfor-

mance reasons), where n is the number of shares. A sensitive variable x ∈ F2k

is then encoded as the vector sIP = (s0, ..., sn−1) ∈ F
n
2k such that x = 〈l, sIP 〉.

Algorithm 1 describes the masking initialization procedure, where the function
rand(F2k) returns a random element uniformly from F2k . Boolean masking is the
particular case of IP masking where li = 1 for i ∈ [0, n − 1].

Algorithm 1. IPMask.
Require: x, l, n
Ensure: sIP such that x = 〈l, sIP 〉

for i = 1 to n − 1 do
si ← rand(F2k)

end for
s0 = x +

∑n−1
i=1 li · si

return sIP

2.3 Direct Sum Masking

DSM [5,9] describes masking from an error correcting code viewpoint. As
opposed to IP masking, this scheme works on the bit level. That is, a sensitive
variable x is viewed as belonging to F

k
2 instead of F2k and is thus represented

as [x]2. It allows adding an arbitrary amount m of bits of randomness to the
encoding of [x]2 (i.e., not necessarily a multiple of k as in IP masking). As a
result, the final encoding sDSM of [x]2 lays in F

k+m
2 . As a first step, the vector

space F
k+m
2 is decomposed in two subspaces C and D of dimensions k and m:

F
k+m
2 = C ⊕ D, (1)

where C and D respectively represent the spaces where the sensitive variable
and the mask lay. That is, the sensitive variables (resp., the mask) are the code
words of C (resp., D) of length of k + m. We denote by G and H the generator
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matrices of C and D. The encoding of [x]2 is the vector sDSM = [x]2G + yH,
where y ∈ F

m
2 is a random binary vector. Recovering [x]2 (i.e., decoding) or

y from sDSM can then be achieved thanks to a projection on their respective
space. We stress the fact that while this scheme has been designed to thwart
both side-channel and fault attacks (if C and D are orthogonal), we only focus
on the side-channel part.

2.4 Unifying DSM and IP Masking

From the previous description of IP masking and DSM, we now show how these
two schemes are connected. We recall that the IP encoding of a sensitive variable
x using n shares is the vector sIP = (s0 = x+l1 ·s1+...+ln−1 ·sn−1, s1, ..., sn−1) ∈
F
n
2k . In order to make the connection with DSM, we first have to move its base

field from F2 to F2k . That is, we want the final DSM encoding to belong to F
n
2k .

We next decompose F
n
2k using two supplementary subspaces C and D such that

F
n
2k = C ⊕ D, where the dimension of C is 1 and the dimension of D is n − 1.

As in the previous subsection, we denote by G and H the generator matrices of
C and D that we define as follow (where each element belong to F2k):

G =
(
1 0 . . . 0

)
H =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

l1 1 0 . . . 0

l2 0
. . . . . .

...
...

...
. . . . . . 0

ln−1 0 . . . 0 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

· (2)

Equation 3 then shows the encoding vector sMIX of a secret x ∈ F2k using a
randomness vector y = (y1, ..., yn−1) ∈ F

n−1
2k

:

sMIX = xG + yH,

= (x, 0, ..., 0) + (l1 · y1 + ... + ln−1 · yn−1, y1, ..., yn−1),
= (x + l1 · y1 + ... + ln−1 · yn−1, y1, ..., yn−1),
= sIP · (3)

The encoding of an IP masking can thus be written by adapting the DSM scheme
base field and choosing the generating matrices accordingly. However, this mod-
ification discards one property of the original DSM scheme. Namely, the number
of bits of randomness added to the encoding cannot be arbitrarily chosen as it
has to be a multiple of k. Besides, we note that the discussions in [5] additionally
required the codes C and D to be orthogonal. Yet, this additional property is not
required in our discussions that focus only on side-channel security, and where
the secret x can be recovered using a projection: x = 〈l, sMIX〉.
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3 Probing Security and Bit Probing Security

In this section, we discuss the side-channel resistance of the IP masking and
DSM in the probing model [27]. For each method, we look at the security of the
encoding. In the case of IP masking, we assume that the size k of the base field
corresponds to the word size of the implementation and the probes allow the
adversary to observe such field elements. As the DSM works on the bit level, we
additionally introduce the bit-probing model, where each probe can only look
at one bit of the encoding. We finally make the link between the (general, ie.g.,
field-level) probing security and the bit-probing security of the inner product
masking. This connection will be used in the next section in order to explain the
security order amplification of the IP masking.

3.1 Probing Security

The probing model introduced in [27] formalizes the security improvement
obtained with the masking countermeasure. Informally, dth-order probing secu-
rity ensures that the distribution of any d or less intermediate variables manip-
ulated during the algorithm execution is independent of any secret value. From
an attacker point-of-view, it implies that only the combination of at least d + 1
intermediate variables can give information on the secret. As a result, the practi-
cal security increases exponentially in the number of shares, which is intuitively
explained by the fact that the adversary has to estimate higher-order statistical
moments, a task of which the sampling complexity grows exponentially in the
order [10,13,14,31]. In the case of IP masking with n shares, previous works
showed that the encoding has a probing security of order d = n − 1 [1,2].

3.2 Bit-Probing Security

Thanks to the link exhibited in the previous section, we naturally have that
DSM is secure in the probing model as well, which also follows the analysis
in [5,9]. However, since DSM works at the bit level, we additionally define the
bit-probing security as the security in a tweaked probing model, where each
probe can evaluate only one bit of the encoding (even if this encoding is defined
for larger fields). In this model, the security order is thus the maximum number
d′ such that any combination of d′ bits of sDSM is independent of the secret [x]2.
More formally, the bit-probing security of the DSM scheme is given by:

Proposition 1. Let C and D two codes of generator matrices G and H define
a DSM encoding. Let k and m respectively be the dimensions of C and D. The
bit-probing security of the DSM encoding defined by C and D is equal to the
distance of the dual code (called the dual distance) of D minus 1.

Proof. Let s be the encoding of some value [x]2. We have sDSM = [x]2G + yH,
a vector of k + m bits. The bit-probing security is the number d′ such that at
least d′ + 1 elements of sDSM are required to recover at least one bit of [x]2. If
we consider the system given by Eq. 4:

([x]2G + yH)T = sTDSM , (4)
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where only the right part is known, d′ +1 is equal to the smallest number of sub-
equations of this system that allows recovering at least one bit of [x]2. We assume
that the dual distance of D is equal to d + 1, which is the minimum number of
columns of H that can be linearly dependent. This means that at least d + 1
sub-equations of the system in Eq. 4 are required to suppress the influence of
(yH)T , and thus get information on [x]2. As a result, the bit-probing security of
the DSM encoding is equal to d. ��

Note that as will be clear next, the bit-probing security order (which can be
higher than the probing security order) does not always guarantee a higher prac-
tical security order (i.e., in the bounded moment or noisy leakage models [3,31])
than predicted by the (field-level) probing security order. Yet, it will be instru-
mental in explaining the security order amplification for certain types of leakage
functions put forward in [38].

3.3 Inner Product and Bit-Probing Security

We now consider the bit-probing security of the IP masking encoding. In
Sect. 2.4, we showed how IP masking and DSM are linked by changing the
base field of the DSM scheme from F2 to F2k . In order to assess the bit-
probing security of the IP masking by using Proposition 1, we have changed the
base field back from F2k to F2. As a result, we want a new encoding sMIX2

that belongs to F
kn
2 such that each bit of sMIX and sMIX2 are the same:

[sMIX(i)]2 = (sMIX2(ki), ..., sMIX2(k(i + 1) − 1)).
As a preliminary, we first define by Li (with i ∈ [1, n − 1]) the k × k binary

matrices that represent the multiplication by li in F2k . That is, given some value
x ∈ F2k , we define Li such that [li · x]2 = (Li × [x]2

T )T . The matrix Li can be
constructed such that its j-th column is equal to [αj · li]2, where α is a root of
the polynomial used to create F2k .

We now define two codes C and D such that Fkn
2 = C ⊕ D, the dimension of

C is k, and the dimension of D is k(n − 1), with their generator matrix G and
H specified as follow:

G =
(
1 . . . 1 0 . . . 0

)
, H =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

L1 1k 0k . . . 0k

L2 0k
. . . . . .

...
...

...
. . . . . . 0k

Ln−1 0k . . . 0k 1k

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (5)

such that the first k columns of G are 1 and the next k(n − 1) are 0. Here,
1k denotes the k × k identity matrix and 0k denotes the k × k zero matrix.
Equation 6 then shows the encoding vector sMIX2 of a secret [x]2 ∈ F

k
2 using a

randomness vector y = (y1, ..., yk(n−1)) ∈ F
k(n−1)
2 :

sMIX2 = [x]2G + yH,

= ([x]2, 0, ..., 0) + ([l1 · y1]2 + ... + [ln−1 · yn−1]2, [y1]2, ..., [yn−1]2),
= ([sMIX(0)]2, ..., [sMIX(n − 1)]2)· (6)
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From Proposition 1, we know that the bit-probing security of sMIX2 corresponds
to the dual distance of H minus 1 (which depends on the selection of the l =
(l1, ..., ln−1) vector of the IP masking, as already hinted in [38]). As a result, the
best bit-probing security using n shares can be achieved by selecting l such that
the dual distance of H is maximized.

4 Security Order Amplification

Under some physical assumption that will be discussed later, it has been observed
that the concrete security order of the IP encoding (in the bounded moment or
noisy leakage models [3,31]) can be higher than the one given by its probing
security [38]. In this section, we provide a formal explanation of this phenomenon
that we so-far denoted as security order amplification. We first introduce the
bounded moment model that we will use for this purpose [3]. We then apply this
model to the IP masking, and explain its link with security order amplification.

4.1 Bounded Moment Model

The bounded moment leakage model has been introduced in [3], mainly in order
to formalize the security of parallel implementations and to connect probing
security with current (moment-based) evaluation practices such as [35].

For our following discussions, we will consider a n-share masked implemen-
tation with encoding s = (s0, ..., sn−1) of a secret x that manipulates all the
shares within N cycles. As in [3], we denote by Yc the set of shares that are
manipulated during the cycle c (0 ≤ c ≤ N − 1) and by nc the cardinal of Yc.
We assume that the random variable Lc that represents the leakage associated
to the computation during the cycle c follows a linear model:

Lc = α0
cL

0
c(Yc(0)) + ... + αnc−1

c Lnc−1
c (Yc(nc − 1)) + Rc, (7)

where Lic denotes the deterministic leakage part associated to the manipulation
of the share Yc(i) and Rc a random noise variable. Note that by linear model,
we mean that the different Lc’s are summed in Eq. 7, which is needed to ensure
that the leakages corresponding to different shares are independent (otherwise
even the probing security order will not be reflected in the bounded moment or
noisy leakage models). By contrast, so far we do not assume that the Lc’s are
linear (this will be only needed for security order amplification).

A fully serial implementation corresponds to the case N = n and nc = 1, c ∈
[0, N − 1]. On the opposite, a fully parallel implementation would be N = 1 and
n0 = n. In the later case, higher-order probing security can never be achieved
as a single variable contains the information on all shares. Hence, the bounded
moment model has been introduced to characterize the security of such fully
parallel implementations. Basically, having a bounded moment security of order
d means that any statistical moment up to the order d of the leakage distribution
{Lc}N−1

c=0 is independent of the secret. More formally, Definition 1 describes the
bounded moment security.
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Definition 1. Let {Lc}N−1
c=0 be the leakages of a N cycles parallel masked imple-

mentation that manipulates a secret x. We denote by E the expectation operation.
This implementation is security at order d if, for all N -tuples di ∈ N

N such that∑N−1
i=0 di ≤ d, we have that E(Ld0

0 × ... × L
dN−1
N−1 ) is independent of x.

Interestingly, it has been shown in [3] that proving security at order o in the
probing model (for a serial n-cycle implementation) implies security at order o
in the bounded moment model for the corresponding parallel (1-cycle) imple-
mentation. We will use this theorem in the next subsection to prove the security
order amplification of the inner product masking.

4.2 Security Order Amplification for IP Masking

We now assume an implementation of the IP masking with n shares on F
k
2 ,

where one share corresponds to one variable. That is, we consider the encoding
sMIX = (s0, ..., sn−1) such that each si is manipulated independently. We denote
by Li the random variable that represents the leakage on si. We assume that the
different Li’s are independent and are the sum of a deterministic and random
part: Li = Li(si) + Ri, where Li denotes the deterministic part of the leakage
and Ri denotes a random noise variable. As stated in Sect. 3.1, this encoding has
a probing security of order d = n − 1. However, it has been noticed in [38] that
the actual security of the encoding can be higher than d if the leakage function
is linear in the bits of the variable. That is, in this case, information on the
secret can be only obtained by estimating a statistical moment d′ of the leakage
distribution, with d′ ≥ d. This can be intuitively explained by the public vector l
that mixes the bits of the different shares, as opposed to Boolean masking where
knowing the first bit of each share directly reveals the first bit of the secret.
More formally, the security amplification property of the inner product masking
is given by Proposition 2.

Proposition 2. Let sMIX = (s0, ..., sn−1) be the n shares of the IP encoding
vector defined by the public vector l = (1, l1, ..., ln−1). If the functions Li manip-
ulating these shares are linear in the bits of si, the bounded moment security
order d′ of the IP encoding given by sMIX is equal to the bit-probing security of
its equivalent encoding sMIX2.

Proof. As we assume that the Li’s are linear in the bits of si, the leakage Li can
be represented as follows:

Li = Li(si) + Ri,

= αi + α0
i × [si]2(0) + ... + αk−1

i × [si]2(k − 1) + Ri,

= α0
i × ([si]2(0) +

αi

α0
i

) + ... + αk−1
i × [si]2(k − 1) + Ri,

= αj
i × F0

i ([si]2(0)) + ... + αk−1
i × Fk

i ([sk]2(0)) + Ri, (8)

with Fj
i , j ∈ [0, k − 1] a deterministic function in the bit j of si and

(αi, α
0
i , ..., α

k−1
i ) ∈ R

k+1. We can see that the last line of Eq. 8 has the same form
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as Eq. 7. As we have n different leakages Li, each one linearly manipulating k
bits, the full leakages {Li}n−1

i=0 of sMIX can be viewed as the leakages of a paral-
lel implementation of sMIX2 with N = n cycles, each one manipulating nc = k
single-bit variables. As a result, the bounded security of a serial implementation
(called A) of sMIX is the same as a parallel implementation (called B) of sMIX2

with N = n and Nc = k. From [3], we know that proving the bounded security
of B is equivalent to proving the probing security of its serial implementation. As
the probing security of the serial implementation of B corresponds to the case
where one probe can only evaluate one bit, it corresponds to the bit-probing
security of sMIX2, which conclude the proof. ��

Intuitively, this result simply corresponds to the observation that while prob-
ing security at order d implies bounded moment security at order d in case the
leakages of the shares are independent (with each share a field element), bit-
security at order d′ implies bounded moment security at order d′ in the case
where not only the leakages of the shares are independent (with each share being
a field element), but also the different bits of each field element is manipulated
independently (which is ensured by the linear leakage assumption). This result
implies that, under the linear leakage assumption, maximizing the bounded
moment security of the IP encoding sMIX is the same as maximizing the bit-
probing security of sMIX2. The next step is thus to find the best public vectors
l so that the bit-probing security of sMIX2 is maximized.

5 Searching for Good Codes

As shown in Proposition 1, the key parameter characterizing the bit-probing
security is the dual distance of the linear code D with generator matrix:

H =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

L1 Ik 0k . . . 0k

L2 0k
. . . . . .

...
...

...
. . . . . . 0k

Ln−1 0k . . . 0k Ik

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (9)

where Ik is an identity matrix with dimension k and Li is the matrix represen-
tation of a finite field element li. Therefore, we have the following proposition.

Proposition 3. The problem of searching for instantiations of an IP masking
scheme with good bit-probing security is equivalent to that of searching for an
[nk, k] linear code Cg over F2 with large minimal distance and generator matrix:

Gg =
(
Ik LT

1 LT
2 . . . LT

n−1

)
. (10)
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The best possible linear codes with a small dimension k (e.g., k ≤ 8) are
well-studied in literature, see [4,23,37]. Therefore, the minimal distance of Cg

can be upper-bounded. Moreover, the sub-matrix LT
i in Gg is connected to the

underlying irreducible polynomial g(x) ∈ F2[X], which defines the field extension
from F2 to F2k .

We now consider the practically-relevant case study of implementing the AES
securely, i.e., when k = 8 and we use the AES polynomial x8 + x4 + x3 + x + 1.
In the following subsection, we show that one can choose the li’s to form an
IP masking scheme with bit-probing security that is close to the upper bound
defined by the best possible eight dimensional binary linear codes.

5.1 Application: 8-bit Implementation of the AES

The problem of determining the largest possible minimum distance of an eight
dimensional binary linear code is settled in [4], i.e., it is equal to or slightly
smaller than the distance defined by the Griesmer Bound [24].
The companion matrix (see [28]) of g(x) = x8 + x4 + x3 + x + 1 is defined as:

A =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 1 0 . . . 0

0 0
. . . . . .

...
...

...
. . . . . . 0

0 0 . . . 0 1

1 1 . . . 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (11)

whose last row is of the form (1 1 0 1 1 0 0 0). Thus, all the possible field elements
of F28 can be enumerated as:

7∑

j=0

ajAj ,

for all a = (a0, a1, . . . , a7) ∈ F
8
2. We next use three approaches for finding good

linear codes with generator matrix satisfying the constraint in Eq. 10.

Exhaustive search: When n is small, i.e., less than 4, we can do a brute-force
search. That is, we enumerate all possible generator matrices Gg with the
same form as that in Eq. (10), and then test its minimum distance.

Random search: We choose Li at random to construct Gg and then test its
minimum distance.

Inductive search: We construct good [8n, 8] linear codes satisfying Eq. (10)
from good [8(n − n0), 8] linear codes satisfying Eq. (10), where n0 is a small
positive integer (e.g., 1, 2, 3, or 4). That is, we fix the first 8(n − n0) columns
of Gg as the found generator matrix of a good code with length 8(n − n0),
exhaust all possible Li’s, for i = n−n0, . . . , n−1, and then test its minimum
distance.
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The numerical results by running Magma are shown in Table 1, where the
column n is the number of shares, the column n ·k is the code length, the column
dIP
best is the best minimum distance found from linear codes with a generator

matrix satisfying Eq. (10), the column dU
best is the upper bound derived from

the best achievable minimum distance for any [8n, 8] linear codes, and the last
column Δ is the difference between the prior two columns (i.e., the gap between
IP masking and DSM). It is clear from this table that IP masking can achieve
near-optimal bit-probing security if the number of shares is relatively small.
Actually, most of the interesting choices of n in practice are covered in this
table (since, due to performance reasons, state-of-the-art implementations of IP
masking so far did not go beyond 2 or 3 shares). The constructed good codes
also show an approach to instantiate IP masking with good bit-probing security.
That is, one can determine the finite field elements li’s from the found generator
matrix Gg corresponding to a good linear code. We did exhaustive search for
n = 2, 3, 4, random search for n = 5, 6, and inductive search for n = 7. Therefore,
we cannot rule out the possibility of finding a linear code to reach the upper
bound when n ≥ 6 with more computational efforts.1

Concretely and as an example, this table shows that when considering IP
masking with three shares, the standard probing model guarantees a security
order 2. In case the shares only give rise to linear leakages, the bit-level probing
model guarantees a security of order 7.

6 Experimental Validation

The previous positive results admittedly (highly) depend on a physical assump-
tion (i.e., linear leakages) that may not be perfectly respected. So in order to

Table 1. The best linear codes corresponding to an IP masking scheme found by
Magma. The field extension from F2 to F2k is defined by the AES polynomial.

n n · k dIP
best dU

best Δ

2 16 4 5 −1

3 24 8 8 0

4 32 12 13 −1

5 40 16 16 0

6 48 21 22 −1

7 56 23 24 −1

1 Note that the inductive search allows us to find good linear codes with relatively
large minimum distance rather quickly. For instance, we can easily obtain a desired
[72, 8, 30] linear code by the inductive search with the code length 8n increasing by
16 gradually from 24 to 72. The gap Δ here is only −2. This task takes less than
2min when using the online Magma calculator, while it is almost intractable by the
other two approaches even running on a powerful local Magma server.
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validate the theoretical results, we now consider a practical security evaluation
of an IP encoding implementation. In this respect, this case study comes with
the (usual) cautionary note that the only thing we show next is that there
exist implementations for which (essentially) linear leakages are observed for
certain samples. This does not imply that the security order amplification can
be observed for full implementations (which, as mentioned in the introduction, is
left as an important scope for further research). Yet, it shows that this security
order amplification can at least be used to reduce the amount of leaky samples
in an implementation and/or their informativeness.

6.1 Target Implementation

Our experiments are performed on a 32 bits ARM Cortex-M4 microcontroller
using the Atmel SAM4C-EK evaluation kit running at 100 MHz.2 We imple-
mented the IP encoding using two shares. We performed the trace acquisition
using a Lecroy WaveRunner HRO 66 ZI oscilloscope running at 500 megasam-
ples per second. We monitored the voltage variation using a 4.7 Ω resistor set
in the supply circuit of the chip. For each execution and a given value of l1,
we select a random secret x, a random value s1 and compute the encoding
s = (s0 = x+ l1 · s1, s1). We acquire the leakages by triggering the measurement
prior to the successive load of these two shares s0 and s1 into the memory.

6.2 Analysing the Leakages

Leakage Detection. Our first experiments aim at analyzing how the device
leaks. As a preliminary, we start by identifying the points of interest that corre-
sponds to the manipulation of s0 and s1 (in an evaluator-friendly setting where
we know these values). Figure 1 shows the result of the correlation between the
different time samples with the Hamming weight of s0 (left) and s1 (right) using
40,000 traces. Our following analyses only focus on the two samples giving the
maximum correlation for both shares. We refer to the time sample corresponding
to the manipulation of s0 (resp. s1) as t0 (resp. t1).

Linear Regression. The theoretical results on the security order amplifica-
tion of Sect. 4 rely on the assumption that the leakage function is linear. As
this assumption is hardware-dependent, we first evaluated the linearity of the
leakages produced by our target. For a given time sample, linear regression is
perfectly suited for this purpose [34]: it allows estimating how the manipulated
data is leaked at the bit level. Denoting by L : F8

2 → R the deterministic part of
the actual leakage function, a linear regression of degree q gives the function L̂q
that approximate L by using bit combinations of degree up to q. As a results,
it is a suitable tool to estimate the linearity of the leakages, by just comparing

2 http://www.atmel.com/tools/SAM4C-EK.aspx.

http://www.atmel.com/tools/SAM4C-EK.aspx
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Fig. 1. Detection of points of interest.

regressions of degree 1 and 2. The description of the resulting L̂1 and L̂2 approx-
imations are given by Eq. 12. The coefficients α, αi and αi,j belong to R and are
the results of the linear regression:

L̂1(x) = α +
7∑

i=0

αi × [x]2(i)

L̂2(x) = α +
7∑

i=0

αi × [x]2(i) +
6∑

i=0

7∑

j=i+1

αi,j × [x]2(i) × [x]2(j) (12)

Using the same traces as for the points of interest detection, we computed the
linear regression at t1 using both a linear (L̂1) and a quadratic (L̂2) basis (t0
gave same results and is thus omitted). The left (resp., right) part of Fig. 2
shows the resulting coefficients for the linear (resp., quadratic) basis. The first
value indexed by 0 corresponds to the offset α. The next 8 values indexed from
1 to 8 are the linear coefficient αi. Finally, the quadratic coefficients αi,j are
indexed from 9 to 36 (only in the right figure). We can see that the linear terms
are significantly more dominant than the quadratic ones. As a result, it provides
some confidence that our target (samples) are good candidates for the linear
leakages assumption.

Mutual Information. Evaluating the linearity of the leakage function by only
looking at the coefficients of L̂1 and L̂2 has two drawbacks. First, it is hard to
judge if the models have converged. Secondly, we cannot know if the small values
given by the quadratic coefficients are significant or come from estimation errors.
In order to get rid of these two problems and push the analysis one step further,
we compute the perceived information introduced in [16] arising from L̂1 and
L̂2. The latter metric essentially captures the amount of information that can be
extracted from a model, possibly biased by estimation and assumption errors.
(Because of place constraints, we refer to this previous work for the details).

Figure 3 shows this perceived information for the linear model L̂1 and the
quadratic model L̂2 in function of the number of traces used for the estimation of
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Fig. 2. Linear regression results.

the model. As expected, the quadratic model needs more samples to converge as
it is more complex. Interestingly, we can see that both models converge towards
approximately the same value. This now formally confirms that the quadratic
model does not bring significantly more information than the linear one in our
setting. As a consequence, we deduce that the true leakages of our target are
close to linear (and therefore that it is a good candidate to benefit from security
order amplification).

6.3 Concrete Security Assessment

We now present additional results of concrete security analyses performed on our
implementation. For this purpose, and in order to directly evaluate whether the
security order of our IP encoding was amplified, we aim at detecting the lowest
statistical moment in the leakages that reveals information on the secret. To do
so, we apply the ρ-test with K-fold cross-validation as described in [15]. Note
that in order to limit the (high) data requirements for this last experiment, we
used the trick proposed in [36], Sect. 3.2 and performed a preliminary averaging
of our traces (assuming mask knowledge) before trying to detect higher-order
statistical dependencies. Namely, we used a 60× averaging for the second-order
detections and 100× averaging for the third-order ones.

Correlation-Test. Given a leakage L, the ρ-test allows detecting a mean depen-
dency between L and the secret x. The first step is to estimate a model from
a profiling set Lprof of Nprof leakage samples on L. This model corresponds to
the average leakage on L for each value of the secret x. The next step is to use
this model on a test set Latt of Ntest samples. We compute the correlation r
between Ltest and our model applied on the secret values used to generate Ltest.
We then compute the normalized Fisher’s z-transformation on r:

rz =
√

Ntest − 3
2

× ln

(
1 + r

1 − r

)
, (13)
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Fig. 3. Perceived information from linear and quadratic leakage models.

where ln denotes the natural logarithm. The obtained value rz can be approxi-
mately interpreted as following a normal distribution with mean 0 and variance
1. As in [15], we set the confidence threshold of rz that detects the presence of
a dependency to 5.

K-fold cross validation. We use a 4-fold cross validation in order to reduce
the variability of the ρ-test. That is, we acquire set L of N leakages that we
partition in 4 independent subsets Li, i ∈ [1, 4] of equal size. We then apply the
ρ-test 4 times by using a different test set each time (more precisely, iteration i
uses Li as a test set and ∪j �=iLj as profiling set).

Evaluation results. In our first (reference) experiment, we used l1 equal to
1, which is equivalent to a Boolean masking encoding. The corresponding DSM
representation is such that the dual distance of D is equal to two. As we expect
a second-order dependency, we apply the ρ-test on the center product L =
(Lt1 − L̄t1) · (Lt2 − L̄t2), where L̄t1 (resp. L̄t2) denotes the sample mean of Lt1

(resp. Lt2). Figure 4 shows the result of the ρ-test with 4-fold cross validation.
The x-coordinate shows the number of average traces being used, and the y
coordinate shows the confidence value. The black curves is the line y = 5 that
shows the confidence threshold. Each of the remaining 4 curves represents one of
the cross validation tests. As expected, we quickly detect a second order leakage
after roughly 5,000 average traces.

As a second experiment, we set l1 = 3, which is the hexadecimal representa-
tion of the polynomial x + 1. The corresponding ODSM representation is such
that the dual distance of D is equal to three. That is, we expect the lowest sta-
tistical moment that gives information on the secret to be equal to three, thus
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Fig. 4. Results of the ρ-test for IP masking with l1 = 1.

having a security order amplification. We verify this in two steps. First, we apply
the ρ-test on the center product as in the previous experiment to detect if any
second-order dependency can be seen. Secondly, we apply the ρ-test on a new
center product L = (Lt1 − L̄t1) · (Lt2 − L̄t2) · (Lt2 − L̄t2) to detect the presence of
a third-order dependency. The left (resp., right) part of Fig. 5 shows the results
of the ρ-test with 4-fold cross validation for the second-order (resp., third-order)
test. Again, the x-coordinate represents the number of average traces, the y coor-
dinates the confidence value and the black curve the confidence threshold. As
we can see on the left part of the figure, no second-order leakages are detected
with up to 100,000 average traces. However, the right part of the figure shows
a third-order dependency around 60,000 average traces. This confirms both the
high linearity of the leakages of this chip and the relevance of the theoretical
investigations in Sect. 4.

Fig. 5. Results of the ρ-test for IP masking with l1 = 3
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Discussion. To conclude, we emphasize that the results of the ρ-test experi-
ment for l1 = 3 were based on 100× averaged traces, leading to a Signal-to-Noise
Ratio close to 1 (which is out of the noise levels where masking security proofs
apply [14]). So this experiment does not formally prove that no second-order
dependency could appear for this noise level (without averaging). In this respect,
we recall that this choice was motivated by time constraints (without averaging,
we could not detect third-order dependencies either). Besides, and in view of the
leakage analysis in Sect. 6.2, we are confident that the security order amplifica-
tion put forward in this last section does actually correspond to our theoretical
expectations with (close enough to) linear leakages.
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