
Thomas Eisenbarth
Yannick Teglia (Eds.)

 123

LN
CS

 1
07

28

16th International Conference, CARDIS 2017
Lugano, Switzerland, November 13–15, 2017
Revised Selected Papers

Smart Card Research
and Advanced Applications

Lecture Notes in Computer Science 10728

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zurich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7410

Thomas Eisenbarth • Yannick Teglia (Eds.)

Smart Card Research
and Advanced Applications
16th International Conference, CARDIS 2017
Lugano, Switzerland, November 13–15, 2017
Revised Selected Papers

123

Editors
Thomas Eisenbarth
University of Lübeck and WPI
Lübeck
Germany

Yannick Teglia
Gemalto
La Ciotat
France

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-75207-5 ISBN 978-3-319-75208-2 (eBook)
https://doi.org/10.1007/978-3-319-75208-2

Library of Congress Control Number: 2018931376

LNCS Sublibrary: SL4 – Security and Cryptology

© Springer International Publishing AG, part of Springer Nature 2018
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by the registered company Springer International Publishing AG
part of Springer Nature
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

http://orcid.org/0000-0003-1116-6973

Preface

These proceedings contain the papers selected for presentation at the 17th International
Conference on Smart Card Research and Advanced Applications (CARDIS 2017), held
in Lugano, Switzerland, during November 13–15, 2017. The conference was organized
by the ALaRI institute on the campus of Universita della Svizzera italiana in Lugano.

CARDIS has provided a space for security experts from industry and academia to
exchange ideas on security of smart cards and related applications. Those objects have
been part of our daily life for years: banking cards, SIM cards, electronic passports, etc.
But the world is changing; the smartcard, as a secure element, is more and more often
the hardware root of trust of bigger systems. Their applications and use cases are also
increasing through M2M and massive IoT. As such, smartcard security is key since the
security of entire systems relies on it. With the growing use of smartcard technology,
the attack surface is also increasing, from physical attacks to logical attacks, from local
attacks to remote attacks. Combined attacks are also to be considered. It is more
important than ever that we understand how smart cards, and related systems, can be
secured.

This year, CARDIS received 48 papers from 22 countries. Each paper was reviewed
by three independent reviewers. The selection of 14 papers to fill the technical program
was accomplished based on 142 written reviews. This task was performed by the 32
members of the Program Committee with the help of 35 external reviewers. The
technical program also featured three invited talks. The first invited speaker, Pierre
Girard, from Gemalto, France, presented “Security for IoT”; the second speaker,
Matthieu Rivain, from CryptoExperts, presented “White Box Cryptography”; and the
third speaker, Thomas Pöppelmann, from Infineon Technologies, Germany, presented
“Post Quantum Cryptography.”

We would like to thank the general chair, Francesco Regazzoni, for the great venue
and smooth operation of the conference. We would also like to thank the Program
Committee and the external reviewers for their thorough work, which enabled the
technical program to be of such high quality, and the Steering Committee for giving us
the opportunity to serve as program chairs at such a prestigious conference. The
financial support of all the sponsors was highly appreciated and greatly facilitated the
organization of the conference. We would like to thank the platinum sponsor Hasler
Foundation, the gold sponsor Infineon Technologies, the silver sponsors Gemalto,
Idemia, Micron Foundation, and Rambus, and the Fondazione Politecnico di Milano
for the collaboration. Furthermore, we would like to thank the authors who submitted
their work to CARDIS 2017, without whom the conference would not have been
possible.

December 2017 Thomas Eisenbarth
Yannick Teglia

CARDIS 2017

16th International Conference on Smart Card
Research and Advanced Applications Lugano, Switzerland

November 13–15, 2017

General Chair

Francesco Regazzoni ALaRI, Università della Svizzera italiana, Switzerland

Program Chairs

Thomas Eisenbarth University of Lübeck and WPI, Germany
Michael Tunstall Gemalto, France

Program Committee

Guillaume Barbu IDEMIA, France
Alessandro Barenghi Politecnico Di Milano, Italy
Lejla Batina Radboud University, The Netherlands
Sonia Belaïd Thales Communications and Security, France
Guido Bertoni ST Microelectronics, Italy
Alexandre Berzati Invia, France
Begül Bilgin KU Leuven, Belgium
Luca Davi University of Duisburg-Essen, Germany
Elke De Mulder Cryptography Research, USA
Junfeng Fan Open Security Research, China
Jean-Bernard Fischer Nagra Vision, Switzerland
Domenic Forte University of Florida, USA
Aurélien Francillon EURECOM, France
Daniel Genkin University of Pennsylvania and University of Maryland,

USA
Benedikt Gierlichs KU Leuven, Belgium
Vincent Grosso Radboud University, Belgium
Sylvain Guilley Telecom-ParisTech, France
Johann Heyszl Fraunhofer AISEC, Germany
Yier Jin University of Central Florida, USA
Yuichi Komano Toshiba Corporation, Japan
Kerstin Lemke-Rust Bonn-Rhein-Sieg University of Applied Sciences,

Germany
Roel Maes Intrinsic-ID, The Netherlands
Stefan Mangard TU Graz, Austria

Oliver Mischke Infineon Technologies, Germany
Amir Moradi Ruhr University Bochum, Germany
Yossi Oren Ben-Gurion University, Israel
Pedro Peris-Lopez University of Madrid, Spain
Axel Y. Poschmann DarkMatter, UAE
Emmanuel Prouff ANSSI, France
Patrick Schaumont Virginia Tech, USA
Mike Tunstall Cryptography Research, USA
Carolyn Whitnall University of Bristol, UK

Steering Committee

Aurélien Francillon EURECOM, France
Marc Joye NXP Semiconductors, USA
Edouard de Jong n-Count Technology, The Netherlands
Jean-Louis Lanet University of Limoges, France
Stefan Mangard University of Graz, Austria
Konstantinos

Markantonakis
Royal Holloway University of London, UK

Amir Moradi Ruhr Uni Bochum, Germany
Svetla Nikova Katholieke Universiteit Leuven, Belgium
Pierre Paradinas Inria and CNAM, France
Emmanuel Prouff Safran Identity and Security, France
Jean-Jacques Quisquater Université Catholique de Louvain, Belgium
Vincent Rijmen Katholieke Universiteit Leuven, Belgium
Pankaj Rohatgi Cryptography Research, USA
François-Xavier

Standaert
Université Catholique de Louvain, Belgium

Additional Reviewers

Jean-Philippe Aumasson
Yang Cao
Liron David
Danny De Cock
Wieland Fischer
Si Gao
Hannes Gross
Karine Heydemann
Eliane Jaulmes
Anthony Journault
Elif Bilge Kavun
Houssem Maghrebi

Filippo Melzani
Thorben Moos
Jungmin Park
Hervé Pelletier
Peter Pessl
Romain Poussier
Julien Proy
Oscar Reparaz
Bastian Richter
Michael Rodler
Yolan Romailler
Niels Samwel

Manuel San Pedro
Joern-Marc Schmidt
Tobias Schneider
Johanna Sepulveda
Francois-Xavier Standaert
Ruggero Susella
Thomas Unterluggauer
Karine Villegas
Mario Werner
Brecht Wyseur
Xiaolin Xu

VIII CARDIS 2017

Abstracts of Invited Talks

White-Box Cryptography

Matthieu Rivain

CryptoExperts, Paris, France
matthieu.rivain@cryptoexperts.com

The goal of white-box cryptography, as introduced in 2002 by Chow et al., is to protect
a secret key used in a cryptographic software against an adversary that has full access to
the underlying execution environment [CEJvO02, CEJv03]. The basic approach is to
design an obfuscated cryptographic implementation embedding the key so that, even
for such a powerful adversary, key recovery is made difficult. Originally targeting
DRM applications, white-box cryptography has recently gained momentum with the
advent of mobile payment, and especially for solutions without hardware secure ele-
ments (see for instance the HCE technology). More generally, the development of
smart applications running on untrusted environments is very appealing for white-box
cryptography as a building block of wider security solutions. Despite the industrial
deployment of white-box cryptography, the advances have been very limited from the
scientific point of view. As of today, all the proposed white-box implementations in the
public literature have been broken, which has driven the industry to develop
home-made solutions relying on obscurity (i.e. secrecy of the underlying obfuscation
techniques). The theory of cryptographic obfuscation has yet known some progress
and many candidate obfuscation schemes have recently been proposed in the crypto
literature. However, the security of these schemes is still under investigation, and their
performances are far from meeting any practical requirement. This talk1 presents an
overview of the current state of white-box cryptography (as of the end of 2017) in
terms of theory and practice, and with a focus on the recent ECRYPT competition
[ECR17].

White-box cryptography theory. In the first part of this talk, we introduce some basic
definitions and security notions. After introducing the concepts of obfuscator and
white-box compiler, we review the seminal work of Barak et al. [BGI+01]. Specifically,
we recall the notion of virtual black box obfuscation – stating that an obfuscated
program should reveal nothing more that its input/output behaviour – and see why this
notion cannot be achieved by a general-purpose obfuscator. We then recall the alter-
native (weaker) notion of indistinguishability obfuscation – stating that the obfusca-
tions of two functionally equivalent programs should be computationally
indistinguishable – and discuss the meaning of these notions when applied to a
white-box compiler. This stresses the need for further security notions dedicated to
white-box cryptography. We then review some previous works on the subject and in
particular the notions of unbreakability, one-wayness, incompressibility and trace-
ability as formalised in [DLPR14].

1 The slides are available at www.matthieurivain.com/files/slides-cardis17.pdf.

White-box cryptography practice. In the second part of this talk, we focus on
practical white-box designs and attacks. We recall the principle of the original
white-box implementations proposed by Chow et al. – with a closer look at the AES
use case [CEJv03] – and we review different attacks against these designs. We then
consider some generic attacks targeting white-box implementations for which the
design is kept secret. Specifically, we focus on fault analysis – such as e.g. the attack of
[PQ03] – and differential computation analysis which applies side-channel attack
techniques to the white-box context [SMdH15, BHMT16]. We give some insights into
why these attacks are so effective at breaking white-box cryptography. We then discuss
the application of standard countermeasures to the white-box context and exhibit some
related issues.

White-box cryptography competition. The last part of this talk focuses on the recent
white-box cryptography competition organised by the ECRYPT CSA project as the
CHES 2017 CTF challenge [ECR17]. During this competition, developers were invited
to submit their white-box AES implementations (without revealing the underlying
design) and attackers were challenged to break the submitted implementations (i.e.
extract the embedded keys). After giving a wrap up of the rules and the results of the
competition, we describe the break of the winning implementation, i.e. the one that
remained unbroken the longest time (28 days). We depict the different steps of the
break: reverse engineering, circuit minimization, data dependency analysis, and key
recovery [GPRW17].

References

[BGI+01] Barak, B. et al.: On the (Im)possibility of obfuscating programs. In: Kilian, J. (ed.)
CRYPTO 2001. LNCS, vol. 2139, pp. 1–8. Springer, Heidelberg (2001). https://
doi.org/10.1007/3-540-44647-8_1

[BHMT16] Bos, J.W., Hubain, C., Michiels, W., Teuwen, P.: Differential computation anal-
ysis: hiding your white-box designs is not enough. In: Gierlichs, B., Poschmann,
A. (eds.) CHES 2016. LNCS, vol. 9813, pp. 215–236. Springer, Heidelberg
(2016). https://doi.org/10.1007/978-3-662-53140-2_11

[CEJv03] Chow, S., Eisen, P., Johnson, H., Van Oorschot, P.C.: White-box cryptography and
an AES implementation. In: Nyberg, K., Heys, H. (eds.) SAC 2002. LNCS, vol.
2595, pp. 250–270. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-
36492-7_17

[CEJvO02] Chow, S., Eisen, P., Johnson, H., van Oorschot, P.C.: A white-box DES imple-
mentation for DRM applications. In: Feigenbaum, J. (ed.) DRM 2002. LNCS, vol.
2696, pp. 1–15. Springer, Heidelberg (2002). https://doi.org/10.1007/978-3-540-
44993-5_1

[DLPR14] Delerablée, C., Lepoint, T., Paillier, P., Rivain, M.: White-box security notions for
symmetric encryption schemes. In: Lange, T., Lauter, K., Lisoněk, P. (eds.)
SAC 2013. LNCS, vol. 8282, pp. 247–264. Springer, Heidelberg (2014).
https://doi.org/10.1007/978-3-662-43414-7_13

XII M. Rivain

[ECR17] ECRYPT CSA Consortium: The WhibOx Contest – An ECRYPT White-Box
Cryptography Competition. CHES 2017 Capture the Flag Challenge (2017).
https://whibox.cr.yp.to/

[GPRW17] Goubin, L., Paillier, P., Rivain, M., Wang, J.: How to reveal the secrets of an
obscure white-box implementation. Cryptology ePrint Archive (2017). https://
eprint.iacr.org/

[PQ03] Piret, G., Quisquater, J.-J.: A differential fault attack technique against SPN
structures, with application to the AES and Khazad. In: Walter, C.D., Koç, Ç.K.,
Paar, C. (eds.) CHES 2003. LNCS, vol. 2779, pp 77–88. Springer, Heidelberg
(2003). https://doi.org/10.1007/978-3-540-45238-6_7

[SMdH15] Sanfelix, E., Mune, C., de Haas, J.: Unboxing the white-box – practical attacks
against obfuscated ciphers. Black Hat 2015 (2015)

White-Box Cryptography XIII

Post-quantum Cryptography

Thomas Pöppelmann

Infineon Technologies AG, Germany
thomas.poeppelmann@infineon.com

Abstract. Currently, signature schemes or public-key encryption based on RSA
or elliptic curve cryptography (ECC) are used in various internet and industry
standards like transport layer security (TLS), PGP/GPG, IKE, or S/MIME. They
protect communication between smart cards, smart phones, computers, servers,
the cloud, or industrial control systems. However, in case one of the numerous
attempts and approaches to build a powerful enough quantum computer turns
out to be successful, Shor’s algorithm could be used to break RSA and ECC in
polynomial time. At the moment big enterprises like Google, IBM, Intel, and
Microsoft as well as research institutions worldwide are working on the
development of quantum computers. Some experts forecast that the develop-
ment of quantum computers capable to run Shor’s algorithm might be realistic
within a timeframe of 15–20 years. More evidence that concerns about quantum
attacks are realistic is also given by an announcement of the NSA Information
Assurance Directorate that it will initiate a transition to quantum resistant
algorithms in the not too distant future. In addition, the US National Institute of
Standards and Technologies (NIST) is currently running a process to standardize
new quantum resistant algorithms. Such new quantum resistant algorithms that
are supposed to withstand attacks by quantum computers are also called
post-quantum cryptography (PQC). PQC algorithms are executed on classical
computers and are supposed to be based on mathematical problems and foun-
dations that are hard to solve, even for quantum computers. Usually, PQC
schemes have the same or similar high-level behavior as currently available
cryptosystems so that they can act as a drop-in replacement to RSA and ECC.
The five common hardness assumptions or families of algorithms from the
literature that are used to realize asymmetric post-quantum cryptography are
hash-based signatures, code-based cryptography, multivariate cryptography,
lattice-based cryptography, and isogeny-based cryptography. Currently, in the
field of PQC some challenges and opportunity for further optimization exist.
Examples are the reduction of the size of signatures, ciphertexts, and keys as
well as cryptanalysis of currently proposed parameter sets to increase confidence
in the security of the new schemes. Additionally, for practical realization on
smart cards or other adverse environments countermeasures against side-channel
and fault attacks are required. While first works are promising, it appear that the
field is in an early stage and that more work is required to fully understand
secured implementation of PQC. However, already today it seems that PQC will
have a disruptive impact on the security industry and that industry and academia
have to act on it now to be prepared.

Contents

Opening Pandora’s Box: Effective Techniques for Reverse Engineering
IoT Devices . 1

Omer Shwartz, Yael Mathov, Michael Bohadana, Yuval Elovici,
and Yossi Oren

Optimal First-Order Boolean Masking for Embedded IoT Devices. 22
Alex Biryukov, Daniel Dinu, Yann Le Corre, and Aleksei Udovenko

A First-Order Chosen-Plaintext DPA Attack on the Third Round of DES. . . . 42
Oscar Reparaz and Benedikt Gierlichs

A Strict Key Enumeration Algorithm for Dependent Score Lists
of Side-Channel Attacks. 51

Yang Li, Shuang Wang, Zhibin Wang, and Jian Wang

A Novel Use of Kernel Discriminant Analysis as a Higher-Order
Side-Channel Distinguisher. 70

Xinping Zhou, Carolyn Whitnall, Elisabeth Oswald, Degang Sun,
and Zhu Wang

Leakage Bounds for Gaussian Side Channels . 88
Thomas Unterluggauer, Thomas Korak, Stefan Mangard,
Robert Schilling, Luca Benini, Frank K. Gürkaynak,
and Michael Muehlberghuber

Towards Sound and Optimal Leakage Detection Procedure 105
A. Adam Ding, Liwei Zhang, Francois Durvaux,
Francois-Xavier Standaert, and Yunsi Fei

Connecting and Improving Direct Sum Masking and Inner
Product Masking. 123

Romain Poussier, Qian Guo, François-Xavier Standaert,
Claude Carlet, and Sylvain Guilley

May the Force Be with You: Force-Based Relay Attack Detection 142
Iakovos Gurulian, Gerhard P. Hancke, Konstantinos Markantonakis,
and Raja Naeem Akram

Instruction Duplication: Leaky and Not Too Fault-Tolerant! 160
Lucian Cojocar, Kostas Papagiannopoulos, and Niek Timmers

An EM Fault Injection Susceptibility Criterion and Its Application
to the Localization of Hotspots . 180

Maxime Madau, Michel Agoyan, and Philippe Maurine

Fault Analysis of the ChaCha and Salsa Families of Stream Ciphers 196
Arthur Beckers, Benedikt Gierlichs, and Ingrid Verbauwhede

Applying Horizontal Clustering Side-Channel Attacks on Embedded
ECC Implementations . 213

Erick Nascimento and Łukasz Chmielewski

Trace Augmentation: What Can Be Done Even Before Preprocessing
in a Profiled SCA? . 232

Sihang Pu, Yu Yu, Weijia Wang, Zheng Guo, Junrong Liu, Dawu Gu,
Lingyun Wang, and Jie Gan

Author Index . 249

XVI Contents

Opening Pandora’s Box: Effective Techniques
for Reverse Engineering IoT Devices

Omer Shwartz(B) , Yael Mathov(B), Michael Bohadana(B), Yuval Elovici,
and Yossi Oren(B)

Ben-Gurion University of the Negev, Beersheba, Israel
{omershv,yaelmath,bohadana}@post.bgu.ac.il,

{elovici,yos}@bgu.ac.il

Abstract. With the growth of the Internet of Things, many insecure
embedded devices are entering into our homes and businesses. Some of
these web-connected devices lack even basic security protections such
as secure password authentication. As a result, thousands of IoT devices
have already been infected with malware and enlisted into malicious bot-
nets and many more are left vulnerable to exploitation.

In this paper we analyze the practical security level of 16 popular
IoT devices from high-end and low-end manufacturers. We present sev-
eral low-cost black-box techniques for reverse engineering these devices,
including software and fault injection based techniques for bypassing
password protection. We use these techniques to recover device firmware
and passwords. We also discover several common design flaws which lead
to previously unknown vulnerabilities. We demonstrate the effectiveness
of our approach by modifying a laboratory version of the Mirai botnet
to automatically include these devices. We also discuss how to improve
the security of IoT devices without significantly increasing their cost.

1 Introduction

In the early days of computing, low-cost ubiquitous devices were generally pow-
ered by simple microcontrollers. These microcontrollers typically ran a very lim-
ited software stack, ranging from a fixed-function program running in a busy
loop to a limited functionality real-time operating system (RTOS). As technol-
ogy matured, it became more cost-effective to create these devices around a
fully-featured operating system such as Linux, taking advantage of the existing
code base and of the relative ease of development and debugging. This is espe-
cially the case in the Internet of Things (IoT), which can be defined as a network
of smart electronic devices with internet connectivity. In the past years we have
been witnessing a dramatic rise in the amount of connected devices and recently,
wireless connected devices. The number of IoT devices is estimated to reach 50
billion by 2020 [17].

O. Shwartz, Y. Mathov and M. Bohadana contributed equally to this paper.

c© Springer International Publishing AG, part of Springer Nature 2018
T. Eisenbarth and Y. Teglia (Eds.): CARDIS 2017, LNCS 10728, pp. 1–21, 2018.
https://doi.org/10.1007/978-3-319-75208-2_1

http://orcid.org/0000-0002-8913-0607
http://orcid.org/0000-0002-0423-802X

2 O. Shwartz et al.

The task of the device security engineer has also evolved with the move from
ASICs and simple microcontrollers to complete Linux devices. Traditional hard-
ware attack methods which target ICs are less effective in this modern situation,
since the hardware can be assumed to be generic and even shared between dif-
ferent vendors. Ubiquitous network connectivity also changes the attack model,
making it interesting to examine the vulnerability of devices to remote attacks,
or the ability of an attacker to translate a single instance of physical access to
widespread damage to many devices. Indeed, the introduction of these small,
embedded devices unto the web and into residencies and businesses was quickly
followed by emerging security challenges [39]. The rapid growth in the quantity
and variety of IoT devices created a scenario where millions of devices [27] are
deployed while the consumers may know very little about their composition and
security. This is especially crucial since IoT devices are often equipped with a
wide array of sensors, are connected to private networks and control a variety of
physical systems, from entry gates and door locks to HVAC systems (Heating,
Ventilation and Air Conditioning) [29].

In this work we present a general methodology for “black-box” reverse engi-
neering of complete stack IoT devices. The techniques presented should answer
many use cases and can be used as a tutorial for accessing new devices. While
most of the techniques we use are generally well known, this is to the best of our
knowledge the first time they are applied systematically to many different IoT
devices. This allows us to make quantitative arguments about the state of IoT
security today.

In detail, our paper makes the following contributions: We present a system-
atic reverse engineering workflow appropriate for complete-stack IoT devices in a
detailed and tutorial-like manner. We apply this workflow to sixteen IoT devices
produced by different manufacturers and discuss their common characteristics
and security flaws. Finally, we offer some guidance to implementors interested
in making these devices more secure.

1.1 Related Work

Mahmoud et al. [28] present a survey of the current concerns for IoT security.
The authors describe the general architecture of IoT devices and the security
challenges rising from this design, corresponding to the security principles of
confidentiality, integrity, availability and authentication. Sicari et al. [36] claim
that the network communication characteristics of IoT devices, combined with
the increase in exchanged information, multiplies the potential for attacks on
the system privacy leaks. Similar concerns were also raised by Alqassem and
Svetinovic [6] and by Zhang et al. [40]. Interestingly, most of this analysis centers
on security threats to the user of the IoT device (i.e. loss of confidentiality and
availablility) and less on the risks to the device itself (e.g. counterfeiting).

Patton et al. [31] studied the extent of vulnerabilities found in network-
accessible IoT devices. They reviewed several network scanners and focused on
Shodan [35], a publicly available search engine for internet connected services.
Using Shodan, the authors discovered many vulnerable IoT systems including a

Opening Pandora’s Box: Effective Techniques 3

large number of SCADA (Supervisory Control And Data Acquisition) systems.
Similar techniques can also be found in the work of Bodenheim et al. [10].

Tellez et al. [37] focused on WSN (Wireless Sensor Networks) and elements of
their security. For their research, the authors chose the MSP430 MCU and inves-
tigated it. The BSL password (Bootstrap Loader) that protects the MCU from
unauthorized access was presented as a main security feature of the MSP430
MCU. A flaw detected in the BSL password mechanism through reverse engi-
neering techniques allowed the researches to easily break into a secured MCU.
The authors also suggest ways for designing a Secure-BSL that can improve the
MCUs protection.

Gubbi et al. [20] offered an all-in-one review of the WSN terrain along with
the terminology that exists within it. Halderman et al. [21] showed techniques
for recovering secrets from DRAM (Dynamic Random Access Memory) modules
by transferring the modules into a new machine while minimizing data decays.
Lanet et al. [24] showcase methods for reverse engineering EEPROM data of java
memory cards. They describe forensics methods which enable the researcher to
locate critical data within the memory image, account for errors and eventually
rebuild the original applet code that is stored in the card.

Obermaier and Hutle [30] employs reverse engineering techniques on several
wireless security cameras and shows how these are vulnerable to remote attackers
with no physical access to the surroundings of the device. The authors show
various encryption and communication faults that may allow and attacker to
impersonate a camera and eavesdrop or sabotage its communication.

1.2 Embedded Device Software Architectures

Software architecture determines many of a device’s properties and limitations,
the architecture may include an OS (Operating System) or not. We differen-
tiate between three main types of software architectures present in embedded
devices. Full-stack OS based devices contain a modern operating system,
such as Linux, that separates execution into kernel mode and user mode. While
traditionally this architecture was preferred only when versatility and high per-
formance was needed, [22], more and more low-cost devices are now based on
Linux due to falling component costs and the ease of developing for this oper-
ating system. In particular, many of the cameras we surveyed had a complete-
stack Linux implementation. Partial stack OS based devices are devices
with a special-purpose real-time operating system (RTOS) such as VxWorks
or vendor-provided OS implementation. These devices are generally very specifi-
cally crafted for their task [16], and tend to omit some of the features of complete-
stack OS. Some lower-end or single tasked IoT devices use this architecture,
with the RTOS handling WiFi, web protocols, and added vendor code in charge
of gathering sensor data. Finally, devices with no operating system are
embedded devices which directly execute compiled instructions, without any OS
support for functionalities such as threading or interrupts. Devices with no OS
can offer better raw performance and higher run-time predictability than other

4 O. Shwartz et al.

architectures, but tend to have increased difficulty of development, causing a
longer time-to-market.

While it is the authors’ belief that partial stack OS devices have the potential
for security vulnerabilities, full-stack OS devices were chosen as the target for
reverse engineering in this paper. So far, all of the IoT attacks seen in the wild,
and known to the authors, had targeted full-stack OS devices, as these are more
generic and make use of many drivers and open source components that may
have vulnerabilities.

2 Reverse Engineering Methodology

Following is a description of the flow of actions performed in order to gain access
to the software of IoT devices, run foreign applications on it and extract secrets
such as credentials used for accessing the device. This section focuses on reverse
engineering “black-box” devices where no previous knowledge about the device
is required. The tools used for assessing these techniques can be seen in Table 3
in Appendix.

Our black-box reverse engineering process follows a standard workflow that
can be seen in Fig. 1:

1. Physical inspection of the device.
2. Extraction of the device firmware image and file system:

(a) Bypass boot-time security and recover the firmware image.
(b) Recover the data with out-of-band means.

3. Analysis the firmware image and recovery of the secrets inside.

Fig. 1. The building blocks of black-box reverse engineering

2.1 Inspection of the Device

Most of the devices can be carefully opened without damaging neither the exte-
rior of the device nor the internal components.

Locating and Identifying Memory Components. Smart devices that run
the Linux operating system require enough non-volatile memory for storing the
kernel and additional mandatory file system components. A cheap and effi-
cient way for engineering such devices is placing the memory module outside of
the main processor package. Devices engineered in such configurations usually
employ a processor that is capable of loading and running instructions directly

Opening Pandora’s Box: Effective Techniques 5

from SPI (Serial Parallel Interface) Flash memory or EEPROM (Erasable Pro-
grammable Read-Only Memory) devices.

Understanding the memory technology is crucial for performing firmware
extraction when there is no capability to run commands on the tested device,
see more details in Subsect. 2.2.

It is common to find a memory module that uses technology consistent with
the required capacity inside devices. Common examples are: 25XX\26XX series
eight-pin SPI flash memory with up to 32 MB of storage space; larger SPI Flash
devices with sixteen or thirty-two pins; NAND Flash devices that come in various
capacities and shapes and are usually coupled with a 24XX EEPROM module for
holding initial configuration; eMMC (embedded Multi-Media Controller) mod-
ules or cards usually containing more than a GB of data. Examples of memory
modules can be seen in Fig. 2.

Fig. 2. Examples of onboard memory

Identification of the memory module can be performed by searching of the
engraved device codes on the IC (Integrated Chip) package. In most cases
the modules used are commonly known and available off-the-shelf with public
datasheets.

Locating UART Terminals. UART (Universal Asynchronous Receiver/
Transmitter) ports can be found on many smart devices. UART ports are com-
monly used for development and maintenance via a Linux console that the port
is bound to. UART ports’ communication is based on a specified protocol in
predetermined baud rate, typically 9600, 57000, or 115200 bits-per-second.

In many cases, UART terminals are embedded into the PCB (Printed Cir-
cuit Board) in the prototyping stages of a product’s life and are kept in the
design during production either to reduce costs of redesign or maintain access
for future maintenance. In certain cases, UART terminals are placed in a visible
and accessible locations, occasionally marked with their purpose. In other cases
the terminals are purposefully or unpurposefully hidden between many other
test points exposed on the boards for post-production testing. Connecting to

6 O. Shwartz et al.

UART terminals allows easy access for communication with the OS, and may
also form a beachhead for the effort of reverse engineering.

Basic UART communication requires only three electrical lines: TX (Trans-
mit), RX (Receive) and GND (Ground). A typical UART terminal has two to
four exposed copper pads aligned in a row; when having two pads, the TX pad is
pulled electrically towards +1.8V, +3.3V or +5V and the RX pad might not be
pulled to either directions; when having three pads, the additional pad is usually
the GND pad and should have continuity to the ground plane of the PCB; when
having four pads, the last pad is generally VCC and shows up as +1.8V, +3.3V
or +5V when powered on.

By using the known properties and appearances of UART terminals it is
possible to locate suspected terminals using a Multimeter and verify them by
attaching a Digital Analyzer capable of analyzing UART communication. Figures
showing various placements of UART terminals can be seen in Fig. 4.

UART Discovery Assistant Module. In order to assist with the detec-
tion of UART terminals on PCBs that contain a large amount of test points,
a small device that generates audible beeps when probing an active UART TX
line was designed. The device is composed of an ATtiny13A [9] programmable
micro-controller along with auxiliary electronics with custom code that switches
between three popular UART baud rates, and it beeps when encountering a
threshold amount of English printable ASCII characters (characters larger than
0× 20 and smaller than 0× 7F). The device can be seen in Fig. 3 in Appendix.
The source code for the module is publicly available in the authors’ github repos-
itory [8].

2.2 Extraction of Firmware and Data

Handling Bootloader and Linux Passwords. While booting, the bootloader
loads the kernel and passes over the boot arguments to the kernel. Commonly,
within the boot argument is the path for a user-mode process that starts when
the kernel completes booting.

After booting, the Linux kernel transfers control of the console to the user-
mode process. Traditionally, after executing a list of scripts, the init process may
transfer control either to the login or the shell process. When the login process
is started, it requests and verifies the user’s credentials and instantiates a shell
process for the user to control. The login process is protected from brute-force
attempts and employs a delay between consecutive password guessing attempts.

When encountered with a login request in an embedded device, a simple
technique is to replace the init part of the boot argument with a path to /bin/sh
or any other process that can assist with gaining access to the system. This
change can be done from within the bootloader terminal, that can be accessed
when the boot process begins.

Access to the bootloader is usually done by pressing some key at the first
stages of boot. In certain cases the bootloader is protected by password. Since the

Opening Pandora’s Box: Effective Techniques 7

bootloader has a very small memory footprint, it usually lacks the infrastructure
for password hashing and only performs string comparison against a hard-coded
password. The password string may be recovered from memory blobs obtained
via out-of-band methods.

Using Physical Attacks for Bypassing Passwords or Recovering Pass-
words. Fault injections have a significant role in reverse engineering [32]. The
usage of fault injections allows the researcher to generate a hardware fault at any
given time and manipulate the underlying software. Countermeasures for fault
injection attacks are under constant research [19], but they are rarely imple-
mented in devices that are not designed to be tamper-proof. We discovered
that hardware faults which cause the initialization process to fail can cause the
system to fall back into a highly-privileged shell process. This can be done by
disconnecting or shorting various hardware components. For example, shorting
the GND and MISO pins of an SPI Flash module will cause any reads from the
device to be malformed. Of course, this procedure carries the risk of damaging
the device or its memory.

While side-channel attacks can also be used for recovering passwords [15],
they tend to be better suited to systems with a simpler design such as ASICs or
FPGAs. They are more difficult in our black-box scenario which includes a fully-
featured multitasking operating system. Many other physical attacks exist for the
determined researcher, some of which are even effective against tamper-resistant
devices [7], but none of the devices we investigated required these methods.

Uploading Additional Tools into the Device. Embedded systems are often
designed with the minimal set of features and components required for their task,
as such, their software is designed similarly. Embedded Linux may contain only a
small subset of the Linux utilities and features that desktop Linux users are used
to having. BusyBox [38] provides many known Linux utilities in reduced size and
pre-compiled for many common architectures. Using common utilities such as
FTP (File Transfer Protocol utility), TFTP (Tiny File Transfer Protocol utility),
Wget or NetCat can mediate data and file transfer to and from the device and
over the network.

When network utilities are unavailable, data can be infiltrated through crude
methods such as scripting the use of the Unix Bash Echo command for writing
binary data into files. A simple python script that uses Echo for transferring files
over UART is publicly available in the authors’ github repository [8].

Obtaining the Firmware. Extracting a copy of the firmware and file sys-
tem is an important stage for reverse engineering since analysis of the firmware
can reveal secrets and vulnerabilities. Firmware analysis is further discussed in
Sect. 4.

When network connection and console access are available, Flash memory
MTD (Memory Technology Device) partitions can be streamed into NetCat and

8 O. Shwartz et al.

sent to a remote computer. A copy of the file system may also be compressed
using the Tar utility and streamed using NetCat. Doing so will eliminate the
need for unpacking the file system, which is not always a trivial task.

If a network connection is unavilable, memory contents can be read over
UART from bootloader or Linux console. Bootloaders consoles often contain
memory read/write/display primitives and can be used to slowly dump an image
of the memory into the UART console. A script on the receiving end can con-
vert the hexadecimal-displayed data into binary format; such script is publicly
available in the authors’ github repository [8].

When the bootloader and Linux console are inaccessible, flash memory con-
tents can be dumped via out-of-band methods. There are several ways in which
the researcher can gain access to partial or complete data belonging to the
device’s memory. A minimally intrusive option is connecting a logic analyzer
to the pins of the memory module and recording the signals while the device is
booting up. Partial memory images can be extracted from the communications
on the memory bus, depending on the actual addresses that were accessed during
the recording. A simple script can convert the logic analyzer output to usable
binary, such script is publicly available in the authors’ github repository [8].

In order to gain a full and accurate image of the device memory, it is possible
to desolder the memory chip and connect it to off-the-shelf memory readers
such as the CH341A. If the memory module is not compatible with off-the-shelf
readers, a custom reader can be built using a general purpose USB adapter such
as FT2232H or a programmable micro-controller.

More advanced techniques have been proposed [13] but are outside the scope
of this paper due to their costs and effort requirements.

2.3 Analyzing the Firmware

Unpacking Memory Images. Once a memory image had been obtained, it
is necessary to unpack it in order to view the data it holds. The community-
maintained Binwalk utility has the ability to unpack and extract most common
embedded file systems, and even some proprietary file systems. When used with
the ‘−Z’ argument, Binwalk detects raw compression streams that may be hidden
from default scans and is able to extract them. A collection of utilities named
firmware-mod-kit [2] contains several file formats and variations that Binwalk
does not support.

Brute-Forcing Passwords. One of the more interesting feats of reverse engi-
neering is password extraction. Native Linux passwords are used by default over
SSH (Secure Shell) and Telnet (Telecommunication Network) connections and in
cases also for other services such as HTTP and FTP. An observation about the
Mirai IoT malware is that the infection method was connecting to IoT devices
over SSH/Telnet with default credentials. Many devices today have credentials
that are not as trivial as ‘root’, ‘admin’ or ‘123456’ but are still not complex
enough to withstand exhaustive password search.

Opening Pandora’s Box: Effective Techniques 9

Linux user passwords are usually stored in the special file ‘/etc/passwd’ or
its companion ‘/etc/shadow’ in a hashed format, using the crypt(3) [1] utility.
The password hash files can be read freely by users with sufficient credentials
and can also be extracted from the firmware.

crypt(3) supports several hashing algorithms, but two are the most observed
in IoT devices: Descrypt - A DES (Data Encryption Standard) based password
hashing algorithm. A modern high-end GPU (Graphical processing using) is
capable of calculating over 9 * 10ˆ8 descrypt hashes per second. Md5crypt -
An MD5 (Message-Digest Algorithm 5) based password hashing algorithm. A
modern high-end GPU is capable of calculating over 10ˆ6 (Ten million) md5crypt
hashes per second.

While simple passwords can be recovered using a generic password recovery
tools such as John the Ripper [4], advanced password cracking can be done with
Hashcat [3]. Hashcat supports advanced rules and patterns and is designed for
GPU hashing. The usage of Hashcat requires more knowledge than using John
the Ripper ans it is widely used for recovery of difficult passwords.

In order to perform efficient password cracking, a word-list or pattern file is
required. Many patterns and word-lists are available online but none had proved
effective enough against hard to guess IoT device passwords. A few observa-
tions by the authors about known and newly discovered passwords allowed the
creation and sorting of a password pattern list that proved effective against IoT
device passwords. The pattern generation rules consist of: up to two symbol char-
acters; up to two three uppercase characters; any amount of digits and lowercase
characters; up to 8 characters total.

Another observation was that many elements of password difficulty inversely
correlates with password selection. For example: symbol characters are expensive
to search and used less often than other characters; digits are easy to search and
are widely used; uppercase characters are used less than lowercase characters.
This allowed sorting the pattern list according to increasing difficulty levels while
expecting to guess passwords in the early stages of testing the list. More on the
results of password cracking in Sect. 3. A python script for generating and sorting
the pattern list is publicly available in the authors’ github repository [8].

Detecting Vulnerabilities Within the Firmware. As firmware images con-
tain the operating system and code controlling the device behavior, further anal-
ysis may expose underlying vulnerabilities. While in-depth reverse engineering
techniques of the firmware are beyond the scope of this paper, there are many
previous researches done in this field [11,12,25,26,30].

3 Results

3.1 Devices Under Inspection

Table 1 describes 16 IoT devices that were subjected to reverse engineering. As
shown in the Table, the survey included devices from many different vendors

10 O. Shwartz et al.

and with prices which varied by an order of magnitude. Most of the devices
with the properties selected for this work contain cameras. Additionally there
are two smart doorbells that are capable of streaming video, audio, initiating
VOIP sessions and also opening an entry door or a gate. A smart thermostat
was also analyzed. This device can control an entire household’s HVAC systems.
A list of all of the devices and their properties can be seen in Table 1. All of the
devices contained the embedded Linux operating system.

Table 1. List of devices reverse engineered

Device
ID

Device type Manufacturer Model Video
recording

Additional
capabilities

Price
(USD)

1 IP camera Xtreamer Cloud camera Yes None 84

2 IP camera Simple home XCS7 1001 Yes None 54

3 IP camera Simple home XCS7 1002 Yes None 47

4 IP camera Simple home XCS7 1003 Yes None 142

5 IP camera Foscam FI9816P Yes None 70

6 IP camera Foscam C1 Yes None 58

7 IP camera Samsung SNH-1011N Yes None 68

8 IP camera Xiaomi YI Dome Yes None 40

9 IP camera Provision PT-838 Yes None 163

10 IP camera Provision PT-737E Yes None 102

11 IP camera TP-Link NC250 Yes None 70

12 Baby monitor Phillips B120N Yes None 46

13 Baby monitor Motorola FOCUS86T Yes None 145

14 Doorbell Danmini WiFi Doorbell Yes Open
door/gate

80

15 Doorbell Ennio SYWIFI002 Yes Open
door/gate

119

16 Thermostat Ecobee 3 (golden
firmware)

No HVAC
control

170

3.2 Techniques Used on Devices

Table 4 shows a sample of the devices inspected along with the properties that
allow or hinder reverse engineering. In the table there are also the techniques
shown effective against these devices.

3.3 Discoveries Made During the Evaluation

Login Credentials. One of the most significant steps of reverse engineering
an IoT device is to identifying all of the user accounts within the device. Every
device contains at least one effective account which is the root account. The
root account is the most privileged account on a Unix system. The root account

Opening Pandora’s Box: Effective Techniques 11

has the ability to carry out all facets of system administration, including adding
accounts, changing user passwords, accessing the file system, and installing soft-
ware. Once a hashed password is recovered and its underlying plaintext pass-
word revealed, the ability of logging into the device with root user privileges
is achieved. As can be seen in Table 2, eight of the devices contained password
hashed with the descrypt algorithm, while the other eight devices employed
md5crypt. The selection of hashing algorithm is critical for resisting password
cracking, descrypt hashing can be as much as ninety times faster than md5crypt,
as described in Subsect. 2.3.

Table 2. Discovered device properties

Device ID Similar products Password
hash type

Open services
for remote
access

Password
complexity

Contains
private
keys

1 Closeli simplicam descrypt - Medium Yes

2 - md5crypt Telnet Very low -

3 - descrypt Telnet Low -

4 Tenvis TH692 md5crypt Telnet Low -

5 - md5crypt FTP Unknown Yes

6 - md5crypt FTP Unknown -

7 - md5crypt - Unknown -

8 - md5crypt - None -

9 VStarcam D38 descrypt - Low -

10 VStarcam C23S descrypt Telnet Low -

11 - md5crypt - Very low -

12 - descrypt SSH Medium Yes

13 - md5crypt - Unknown -

14 - descrypt Telnet Very low -

15 - descrypt Telnet Very low -

16 - descrypt - Low -

The pattern based password recovery described in Subsect. 2.3 was used
against all of the extracted password hashes. Figure 5 in Appendix shows the
theoretical duration of password recovery using the proposed 48,820 patterns
that cover all of the password possibilities previously mentioned. The patterns
were sorted in order of rising complexity. For example, the pattern for six con-
secutive digits contains 1,000,000 possibilities and was sorted before the pattern
for five consecutive English characters that has 11,881,376 possibilities. As the
figure shows, most observed non-empty passwords were recovered within the first
5,000 patterns, after testing only 5.22e+11 passwords. The theoretical bound
for testing that many passwords on a strong GPU server is 2.4 min for descrypt

12 O. Shwartz et al.

hashes and 217 min for md5crypt. Actual password recovery can have significant
overheads over the theoretical bounds.

Eleven non-empty passwords were recovered, one device contained an empty
password. Four passwords were not yet recovered to the time of writing this
paper and are expected to be revealed within several weeks. Table 2 shows pass-
word complexities that varied between very low complexity (e.g. “abcd”) to
medium complexity (e.g. “AbC123de”), undiscovered passwords were given the
complexity rating “Unknown”. All the discovered passwords were verified as the
credentials in multiple devices of the same model. Two devices made by the
same manufacturer were discovered to have the same passwords but different
hash values due to random salt.

Remote Access. A simple port scan using Nmap [18] revealed that many of
the tested devices have administration services bound to open ports such as SSH
or Telnet, which allows a remote access. Remote access allows a user to log-in to
a device as an authorized user without being in the proximity of the device,
depending on the network topology. Six of the devices maintain a Telnet service,
one device has an accessible SSH port and two devices allow communication to
open FTP ports as can be seen in Table 2. Although some of the devices do not
allow communication through an administration port, by accessing the UART
console it is possible to set up network services performing the desired functions.

WiFi Credentials. IoT devices must be connected to the internet in order
to function properly. In order to maintain wireless connection persistency across
reboots and power shortages, a configuration file that holds the WiFi credentials
is located in all of the tested devices. The configuration file is located in the
mounted file system, usually under the “config” or the “NetworkManager” paths,
and contains all of the WiFi settings, including the SSID (Service Set Identifier)
and non-encrypted password. Retrieval of the correct file from an extracted file
system can be done simply by searching for relevant keywords.

Embedded Private Keys. A private key is an object that is used by an encryp-
tion algorithm for encrypting and decrypting messages and plays an important
role in asymmetric cryptography. In three of the devices a hard-coded private key
used for secure communication were found, as shown in Table 2. With the private
key exposed, secure communication may be rendered insecure and exposed to
violations such as man-in-the-middle attack.

Rebranded Devices. In the IoT market, a rebranded device is one where the
internal design, architecture and file system are purchased from one manufac-
turer, and cosmetic modifications link the device to a new brand and manufac-
turer. Identifying rebranded devices means that discovered private keys, hashed
passwords, account credentials and even the application vulnerabilities may be
identical across several devices. Four devices inspected were found to share a

Opening Pandora’s Box: Effective Techniques 13

non-trivial password or hashed password with products from different manu-
factures, strongly implying a similarity between them. The devices were found
using a simple web search for the passwords and hashes and encountering forum
posts that specify hashes and passwords of other devices.

4 Analysis

The techniques that were shown in Sect. 2 may be used for both malicious and
benign activities. This section serves to demonstrate and discuss some of the pos-
sibilities that emerge from making the reverse engineering process more generic
and streamlined, and considering the results seen in the last section.

4.1 Extension of Existing Attacks into New Platforms

Creation of a Personalized Mirai Botnet with Increased Capabilities.
The infamous Mirai botnet had gained publicity after it was used against sev-
eral online web sites. After witnessing a large-scale DDoS (Distributed Denial
of Service) attack on KrebsOnSecurity.com, Martin McKeay, Akamai’s senior
security advocate was quoted saying “Someone has a botnet with capabilities
we haven’t seen before. We looked at the traffic coming from the attacking sys-
tems, and they weren’t just from one region of the world or from a small subset of
networks—they were everywhere.” [23]. Mirai malware infects IoT devices with
an open Telnet port and default login credentials and add them to the attacker’s
botnet army. The source code for Mirai was leaked to the internet on and can be
modified and used by anyone who desires [5]. By using the reverse engineering
process we were able to extract new and previously unknown Telnet and SSH
credentials belonging to several IoT devices that were never a part of the Mirai
botnet. In order to create a customized version of the Mirai botnet, the source
code was modified by adding the new passwords to the malware’s source code.
After building an isolated network and infecting it with the modified Mirai bot-
net. The bot activity over the network was monitored and the infection could
be seen spreading to the IoT devices that were added to the network.

An interesting example case is that after extracting the login credentials of
the ProVision PT-838 security camera, the modified botnet was able to suc-
cessfully connect to the ProVision PT-737E security camera due to the shared
credentials between the cameras of the same manufacturer. The aforementioned
process allows the number of devices that are vulnerable to Mirai to be extended.

Remote Access to IoT Devices by Unauthorized Parties. Remote con-
nection to an IoT device, via Telnet or SSH, can be performed not only by
malware but also be used as an easy and quick way for an attacker to gain
control over a device remotely. The Philips In.Sight Wireless HD Baby Monitor
(B120N/10) was designed to allow parents to watch, listen and talk to their
newborn [33]. During the reverse engineering process several critical engineering
faults that allows an outsider to use this device were discovered. Credentials

https://krebsonsecurity.com

14 O. Shwartz et al.

were revealed that allows anyone to connect through the open SSH port in all
Philips In.Sight B120N monitors. Additionally, SSL private keys that allow an
attacker to perform a man-in-the-middle attacks on device communication were
discovered. Furthermore, as shown in the previous section, after gaining access
to an IoT device the attacker can extract sensitive information about the device
and its owner such as WiFi credentials.

Execution of Arbitrary Code on IoT Devices. During the reverse engi-
neering process, software is often uploaded into the device in various ways. The
ability to upload software and even have it maintain persistency after restarts
has a great implication on device security. Since it was shown how to gain com-
plete device control when physical access is available, physical access to a device
can be used to modify the device’s behavior even after the device is no longer in
proximity.

4.2 Possible Theoretical Attacks

Discovery of New Vulnerabilities. By using the black-box reverse engineer-
ing process, an attacker with the possession of an unknown device (e.g. a security
camera with no identification markings printed on it) that was obtained from
a public area may extract crucial or sensitive information. While analyzing the
results we found out that many IoT devices had old OS or firmware version
that was outdated, when many issues were fixed in later versions. After learning
about the firmware or OS version, the attacker can search the internet for known
vulnerabilities or even find this information in the release notes of more updated
versions. Furthermore, after obtaining the firmware the attacker can scan the
software for security holes using static analysis methods [12,14].

Extraction of Secrets from Outdoor IoT Devices. Many IoT devices are
marketed for an outdoor installation (e.g. security cameras, smart doorbells etc.).
These products are mounted outside or in large halls and can be accessed by
strangers. For example, the Ennio Doorbell (SYWIFI002) contains a camera,
microphone and speaker in order to monitor and control an entrance and can
also be wired to a door or a gate for remote unlocking. The doorbell is usually
installed outside and may be accessed by a stranger. A direct result of the device’s
accessibility is the ability of an attacker to physically modify sabotage the device.
However, it is not just the device that may be affected, secrets may be extracted
from the device giving the attacker access to the whole network.

Supply Chain Attacks. Malicious activity can also be performed as a part of
the supply chain. An untrustworthy seller or courier can reverse engineer a device
without having any previous knowledge about the it and perform modifications
to the device. The recipient of an IoT device may use it without knowing it was
tampered with, perhaps even equipped with a backdoor, or some other malware.

Opening Pandora’s Box: Effective Techniques 15

4.3 Constructive Uses to the Reverse Engineering Process

There are uses of reverse engineering that can benefit the owner. Lower-end
products are often received with insufficient information about the hardware or
software inside. A concerned customer can use the described process and discover
properties of the device she bought. If the device is rebranded she could search
the internet for the similar devices by well other vendors. The consumer gains the
ability to learn about the device’s vulnerabilities and perhaps even upgrade the
firmware and secure the device. This process can be performed on many types
of IoT devices and may also assist with products that no longer have support.

Learning about the device’s software and hardware can not only help the
customer identify their product, but also allows her to customize it to her own
needs. After gathering the desired information the owner can manipulate the
firmware or configuration. She can also develop her own system that will operate
the device and even add missing functionality. Modification of stock devices can
also be used to hinder censorship and other information blocking instruments.

5 Discussion

The IoT market is evolving and so does the competition among the vendors for
being the first to create better and cheaper devices. This pressure may affect the
product’s design and lead to devices with critical security issues being released.
Time is not the only obstacle for creating a secure product; as competition drives
the prices down, the production process must be become cheaper. Employing
penetration testers and security analysts may be very expensive, while the hard-
ware engineers that built the product might lack knowledge of cyber security.
This trade-off between money and security is usually inclined towards cheaper
but less safe products. The reverse engineering process empowers consumers and
researchers with abilities to discover important details about devices available
in the market and benchmark their security.

5.1 Recommendations for Implementers

The results and analysis shown in this paper support several recommendations
for better securing IoT devices.

1. Disable UART ports or remove their terminals from the board design. If a
UART port is required, it can be set up as read-only.

2. If a UART port is required and must be write-enabled, protect UART ports
in a similar fashion to JTAG protection [34].

3. Use unique strong passwords for every single device hashed with a strong
hashing algorithm. Passwords must be user replaceable in a convenient way.

4. If possible, encrypt all of the device’s writable memory. Otherwise, encrypt
all sensitive data stored on the device.

16 O. Shwartz et al.

5.2 Conclusion

The increase in IoT technology popularity holds many benefits but on the other
hand this surge of new, innovative and cheap devices reveals complex security
and privacy challenges. Vulnerabilities and design flaws in innocent IoT devices
are an opening for an adversary to exploit and misuse. As shown in Sect. 4, an
attacker that gains remote or physical access to an IoT device may snoop on the
owner’s personal or sensitive information and even use the device’s capabilities
for her own desire. The evolution of cyber crime didn’t pass over the IoT and
in the last years we are witnessing new types of cyber attacks that involve IoT
devices. Accessibility of the black-box reverse engineering process may accelerate
the attacker’s work and introduce new IoT cyber threats.

Appendix

Table 3. A list of hardware and software tools used

1 Screwdrivers and plastic spudgers including common and uncommon drive bits
such as Philips, Torx, Security Torx and various star configurations

2 BK 2712 Multimeter

3 FTDI FT232R USB UART interface module

4 Saleae Logic Pro 8 logic analyzer with the Logic 1.2.12 software

5 CH341A USB EEPROM and Flash memory programmer module with software
version 1.29

6 Intel i7-4790 desktop PC running Windows 10 operating system and Ubuntu
16.04.4 on a virtual machine

7 Intel i7-6900K server with four Titan X (Pascal) Nvidia GPUs running Ubuntu
16.04.2 LTS operating system with Nvidia driver version 375.66

8 John The Ripper 1.8.0 CPU password cracking software

9 Hashcat 3.6.0 multiple architecture password recovery software

10 Binwalk Firmware Analysis Tool - latest version pulled from github repository on
30/07/2017 and compiled locally, including all dependencies

11 Firmware-mod-kit - latest version pulled from github repository on 30/07/2017
and compiled locally

Opening Pandora’s Box: Effective Techniques 17

Fig. 3. UART discovery assistant module

Table 4. Inspected devices and the techniques effective on them

Device ID UART
locationa

Bootloader
password

Terminal
password

Terminal
password bypass
technique

Data extraction
technique

2 Marked
pads

No Yes Shorted memory
caused fallback

Used Wget to
download
NetCat

5 Unmarked
padsa

No No - Physically read
the on-board
flash

8 Unmarked
padsa

No No - Used “echo” to
transfer NetCat
over UART

10 Unmarked
padsa

Yesb Yes Set bootcmd in
bootloader

Used NetCat

11 Unmarked
padsa

No Yes Trivial password Used Wget to
download
NetCat

12 Marked
pads

No Yes Set bootcmd in
bootloader

Used NetCat

15 Unmarked
padsa

No Yes Trivial password Used TFTP to
download
NetCat

16 Unmarked
padsa

No No - Used NetCat

a Unmarked pads were discovered by inspection of the PCB assisted with the UART
discovery assistant module Fig. 3.
b Bootloader password was recovered using a logic analyzer that sniffs communication
on the memory bus.

18 O. Shwartz et al.

Fig. 4. Examples of UART terminals

Fig. 5. Password recovery duration using the GPU server described in Table 3. Each
marking on the graph is a successfully recovered password belonging to a device
inspected.

References

1. crypt(3) Man Page: Linux Programmer’s Manual. http://man7.org/linux/man-
pages/man3/crypt.3.html

2. Firmware-mod-kit Github Repository. https://github.com/mirror/firmware-mod-
kit

3. Hashcat Password Recovery Tool. https://hashcat.net/
4. John the Ripper Password Cracker. http://www.openwall.com/john/
5. Mirai Github Repository. https://github.com/jgamblin/Mirai-Source-Code
6. Alqassem, I., Svetinovic, D.: A taxonomy of security and privacy requirements for

the internet of things (IoT). In: 2014 IEEE International Conference on Industrial
Engineering and Engineering Management, IEEM 2014, Selangor Darul Ehsan,
Malaysia, 9–12 December 2014, pp. 1244–1248. IEEE (2014). https://doi.org/10.
1109/IEEM.2014.7058837

http://man7.org/linux/man-pages/man3/crypt.3.html
http://man7.org/linux/man-pages/man3/crypt.3.html
https://github.com/mirror/firmware-mod-kit
https://github.com/mirror/firmware-mod-kit
https://hashcat.net/
http://www.openwall.com/john/
https://github.com/jgamblin/Mirai-Source-Code
https://doi.org/10.1109/IEEM.2014.7058837
https://doi.org/10.1109/IEEM.2014.7058837

Opening Pandora’s Box: Effective Techniques 19

7. Anderson, R., Kuhn, M.: Low cost attacks on tamper resistant devices. In: Chris-
tianson, B., Crispo, B., Lomas, M., Roe, M. (eds.) Security Protocols 1997.
LNCS, vol. 1361, pp. 125–136. Springer, Heidelberg (1998). https://doi.org/10.
1007/BFb0028165

8. Anonymous: The author’s github repository. Details omitted for anonymous sub-
mission (2017)

9. Atmel Corporation: ATtiny13A Datasheet, May 2012. http://www.atmel.com/
images/doc8126.pdf

10. Bodenheim, R., Butts, J., Dunlap, S., Mullins, B.E.: Evaluation of the ability of the
Shodan search engine to identify internet-facing industrial control devices. IJCIP
7(2), 114–123 (2014). https://doi.org/10.1016/j.ijcip.2014.03.001

11. Chen, D.D., Woo, M., Brumley, D., Egele, M.: Towards automated dynamic anal-
ysis for Linux-based embedded firmware. In: NDSS (2016)

12. Costin, A., Zaddach, J., Francillon, A., Balzarotti, D.: A large-scale analysis
of the security of embedded firmwares. In: Fu, K., Jung, J. (eds.) Proceed-
ings of the 23rd USENIX Security Symposium, San Diego, CA, USA, 20–22
August 2014, pp. 95–110. USENIX Association (2014). https://www.usenix.org/
conference/usenixsecurity14/technical-sessions/presentation/costin

13. Courbon, F., Skorobogatov, S., Woods, C.: Reverse engineering flash EEPROM
memories using scanning electron microscopy. In: Lemke-Rust, K., Tunstall, M.
(eds.) CARDIS 2016. LNCS, vol. 10146, pp. 57–72. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-54669-8 4

14. Cui, A., Costello, M., Stolfo, S.J.: When firmware modifications attack: a case
study of embedded exploitation. In: 20th Annual Network and Distributed System
Security Symposium, NDSS 2013, San Diego, California, USA, 24–27 February
2013. The Internet Society (2013). http://internetsociety.org/doc/when-firmware-
modifications-attack-case-study-embedded-exploitation

15. DaRolt, J., Das, A., Natale, G.D., Flottes, M., Rouzeyre, B., Verbauwhede, I.:
Test versus security: past and present. IEEE Trans. Emerging Topics Comput.
2(1), 50–62 (2014). https://doi.org/10.1109/TETC.2014.2304492

16. Davis, R., Merriam, N., Tracey, N.: How embedded applications using an RTOS can
stay within on-chip memory limits. In: 12th EuroMicro Conference on Real-Time
Systems, pp. 71–77 (2000)

17. Gartner: Gartner says 4.9 Billion Connected “Things” will be in Use in 2015.
Gartner.com (2014). http://www.gartner.com/newsroom/id/2905717

18. Gordon Lyon: Nmap Security Scanner. https://nmap.org/
19. Goubet, L., Heydemann, K., Encrenaz, E., De Keulenaer, R.: Efficient design and

evaluation of countermeasures against fault attacks using formal verification. In:
Homma, N., Medwed, M. (eds.) CARDIS 2015. LNCS, vol. 9514, pp. 177–192.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-31271-2 11

20. Gubbi, J., Buyya, R., Marusic, S., Palaniswami, M.: Internet of things (IoT): a
vision, architectural elements, and future directions. Future Gener. Comput. Syst.
29(7), 1645–1660 (2013). https://doi.org/10.1016/j.future.2013.01.010

21. Halderman, J.A., Schoen, S.D., Heninger, N., Clarkson, W., Paul, W.,
Calandrino, J.A., Feldman, A.J., Appelbaum, J., Felten, E.W.: Lest we remem-
ber: cold-boot attacks on encryption keys. Commun. ACM 52(5), 91–98 (2009).
http://doi.acm.org/10.1145/1506409.1506429

22. Hollabaugh, C.: Embedded Linux: Hardware, Software, and Interfacing. Addison-
Wesley, Boston (2002)

23. Krebs, B.: Krebsonsecurity Hit with Record DDoS. https://krebsonsecurity.com/
2016/09/krebsonsecurity-hit-with-record-ddos/

https://doi.org/10.1007/BFb0028165
https://doi.org/10.1007/BFb0028165
http://www.atmel.com/images/doc8126.pdf
http://www.atmel.com/images/doc8126.pdf
https://doi.org/10.1016/j.ijcip.2014.03.001
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/costin
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/costin
https://doi.org/10.1007/978-3-319-54669-8_4
https://doi.org/10.1007/978-3-319-54669-8_4
http://internetsociety.org/doc/when-firmware-modifications-attack-case-study-embedded-exploitation
http://internetsociety.org/doc/when-firmware-modifications-attack-case-study-embedded-exploitation
https://doi.org/10.1109/TETC.2014.2304492
http://www.gartner.com/newsroom/id/2905717
https://nmap.org/
https://doi.org/10.1007/978-3-319-31271-2_11
https://doi.org/10.1016/j.future.2013.01.010
http://doi.acm.org/10.1145/1506409.1506429
https://krebsonsecurity.com/2016/09/krebsonsecurity-hit-with-record-ddos/
https://krebsonsecurity.com/2016/09/krebsonsecurity-hit-with-record-ddos/

20 O. Shwartz et al.

24. Lanet, J.-L., Bouffard, G., Lamrani, R., Chakra, R., Mestiri, A., Monsif, M., Fandi,
A.: Memory forensics of a java card dump. In: Joye, M., Moradi, A. (eds.) CARDIS
2014. LNCS, vol. 8968, pp. 3–17. Springer, Cham (2015). https://doi.org/10.1007/
978-3-319-16763-3 1

25. Ling, Z., Luo, J., Xu, Y., Gao, C., Wu, K., Fu, X.: Security vulnerabilities of
internet of things: a case study of the smart plug system. IEEE Internet Things J.
4, 1899–1909 (2017)

26. Liu, M., Zhang, Y., Li, J., Shu, J., Gu, D.: Security analysis of vendor cus-
tomized code in firmware of embedded device. In: Deng, R., Weng, J., Ren, K.,
Yegneswaran, V. (eds.) SecureComm 2016. LNICST, vol. 198, pp. 722–739.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59608-2 40

27. Lund, D., MacGillivray, C., Turner, V., Morales, M.: Worldwide and regional
internet of things (IoT) 2014–2020 forecast: a virtuous circle of proven value and
demand. International Data Corporation (IDC), Technical report (2014)

28. Mahmoud, R., Yousuf, T., Aloul, F.A., Zualkernan, I.A.: Internet of Things (IoT)
security: current status, challenges and prospective measures. In: 10th Interna-
tional Conference for Internet Technology and Secured Transactions, ICITST 2015,
London, United Kingdom, 14–16 December 2015, pp. 336–341. IEEE (2015).
https://doi.org/10.1109/ICITST.2015.7412116

29. Nest Labs: Nest Learning Smart Thermostat. https://nest.com/thermostat/meet-
nest-thermostat/

30. Obermaier, J., Hutle, M.: Analyzing the security and privacy of cloud-based video
surveillance systems. In: Proceedings of the 2nd ACM International Workshop on
IoT Privacy, Trust, and Security, pp. 22–28. ACM (2016)

31. Patton, M.W., Gross, E., Chinn, R., Forbis, S., Walker, L., Chen, H.: Uninvited
connections: a study of vulnerable devices on the Internet of Things (IoT). In: IEEE
Joint Intelligence and Security Informatics Conference, JISIC 2014, The Hague,
The Netherlands, 24–26 September 2014, pp. 232–235. IEEE (2014). https://doi.
org/10.1109/JISIC.2014.43

32. San Pedro, M., Soos, M., Guilley, S.: FIRE: fault injection for reverse engineering.
In: Ardagna, C.A., Zhou, J. (eds.) WISTP 2011. LNCS, vol. 6633, pp. 280–293.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21040-2 20

33. Philips: Philips In.Sight Wireless HD Baby Monitor. http://www.philips.co.uk/c-
p/B120N 10/in.sight-wireless-hd-baby-monitor/overview

34. Rosenfeld, K., Karri, R.: Attacks and defenses for JTAG. IEEE Design Test Com-
put. 27(1), 36–47 (2010). https://doi.org/10.1109/MDT.2010.9

35. Shodan: Shodan is the world’s first search engine for internet-connected devices.
https://www.shodan.io/

36. Sicari, S., Rizzardi, A., Grieco, L.A., Coen-Porisini, A.: Security, privacy and
trust in internet of things: the road ahead. Comput. Netw. 76, 146–164 (2015).
https://doi.org/10.1016/j.comnet.2014.11.008

37. Tellez, M., El-Tawab, S., Heydari, H.M.: Improving the security of wireless sensor
networks in an IoT environmental monitoring system. In: Systems and Information
Engineering Design Symposium (SIEDS), pp. 72–77. IEEE (2016)

38. Vlasenko, D.: BusyBox: The Swiss Army Knife of Embedded Linux. https://
busybox.net/

https://doi.org/10.1007/978-3-319-16763-3_1
https://doi.org/10.1007/978-3-319-16763-3_1
https://doi.org/10.1007/978-3-319-59608-2_40
https://doi.org/10.1109/ICITST.2015.7412116
https://nest.com/thermostat/meet-nest-thermostat/
https://nest.com/thermostat/meet-nest-thermostat/
https://doi.org/10.1109/JISIC.2014.43
https://doi.org/10.1109/JISIC.2014.43
https://doi.org/10.1007/978-3-642-21040-2_20
http://www.philips.co.uk/c-p/B120N_10/in.sight-wireless-hd-baby-monitor/overview
http://www.philips.co.uk/c-p/B120N_10/in.sight-wireless-hd-baby-monitor/overview
https://doi.org/10.1109/MDT.2010.9
https://www.shodan.io/
https://doi.org/10.1016/j.comnet.2014.11.008
https://busybox.net/
https://busybox.net/

Opening Pandora’s Box: Effective Techniques 21

39. Yu, T., Sekar, V., Seshan, S., Agarwal, Y., Xu, C.: Handling a trillion (unfixable)
flaws on a billion devices: Rethinking network security for the Internet-of-Things.
In: de Oliveira, J., Smith, J., Argyraki, K.J., Levis, P. (eds.) Proceedings of the
14th ACM Workshop on Hot Topics in Networks, Philadelphia, PA, USA, 16–17
November 2015, pp. 5:1–5:7. ACM (2015). http://doi.acm.org/10.1145/2834050.
2834095

40. Zhang, Z., Cho, M.C.Y., Wang, C., Hsu, C., Chen, C.K., Shieh, S.: IoT
security: ongoing challenges and research opportunities. In: 7th IEEE Interna-
tional Conference on Service-Oriented Computing and Applications, SOCA 2014,
Matsue, Japan, 17–19 November 2014, pp. 230–234. IEEE Computer Society
(2014). https://doi.org/10.1109/SOCA.2014.58

http://doi.acm.org/10.1145/2834050.2834095
http://doi.acm.org/10.1145/2834050.2834095
https://doi.org/10.1109/SOCA.2014.58

Optimal First-Order Boolean Masking
for Embedded IoT Devices

Alex Biryukov, Daniel Dinu(B), Yann Le Corre, and Aleksei Udovenko

SnT and CSC, University of Luxembourg, Luxembourg City, Luxembourg
{alex.biryukov,daniel.dinu,yann.lecorre,aleksei.udovenko}@uni.lu

Abstract. Boolean masking is an effective side-channel countermeasure
that consists in splitting each sensitive variable into two or more shares
which are carefully manipulated to avoid leakage of the sensitive variable.
The best known expressions for Boolean masking of bitwise operations
are relatively compact, but even a small improvement of these expres-
sions can significantly reduce the performance penalty of more complex
masked operations such as modular addition on Boolean shares or of
masked ciphers. In this paper, we present and evaluate new secure expres-
sions for performing bitwise operations on Boolean shares. To this end,
we describe an algorithm for efficient search of expressions that have an
optimal cost in number of elementary operations. We show that bitwise
AND and OR on Boolean shares can be performed using less instruc-
tions than the best known expressions. More importantly, our expressions
do no require additional random values as the best known expressions
do. We apply our new expressions to the masked addition/subtraction
on Boolean shares based on the Kogge-Stone adder and we report an
improvement of the execution time between 14% and 19%. Then, we
compare the efficiency of first-order masked implementations of three
lightweight block ciphers on an ARM Cortex-M3 to determine which
design strategies are most suitable for efficient masking. All our masked
implementations passed the t-test evaluation and thus are deemed secure
against first-order side-channel attacks.

Keywords: Boolean masking · Side-channel attack · IoT
Embedded device

1 Introduction

The Internet of Things (IoT) is one of the technical revolutions of our time,
with many IoT devices being deployed every day to create a global network of
smart objects. According to Gartner, 8.4 billion connected things will be in use
worldwide by the end of 2017 [14]. From 2018 onwards, Gartner forecasts that
devices such as those targeted at smart buildings (LED lighting, HVAC, and
physical security systems) will have the biggest market share [14]. In light of the
c© Springer International Publishing AG, part of Springer Nature 2018
T. Eisenbarth and Y. Teglia (Eds.): CARDIS 2017, LNCS 10728, pp. 22–41, 2018.
https://doi.org/10.1007/978-3-319-75208-2_2

Optimal First-Order Boolean Masking for Embedded IoT Devices 23

very recent security vulnerabilities [8,24] discovered in such devices, immediate
action is required to prevent large-scale security incidents similar to the Mirai
botnet [1].

The attack surface of IoT devices is considerably larger than the attack sur-
face of classical Internet-connected systems due to the various use cases these
gadgets, sensors, and actuators are built for. Most of the IoT systems are charac-
terized by low physical security, with devices being deployed in easily accessible
places. As a consequence, attack vectors that exploit these weaknesses came to
light. Side-channel attacks, such as EM and power analysis attacks, fall in this
category of attack vectors that require physical proximity to the target system. If
the target system uses an unprotected implementation of a cryptographic algo-
rithm, the adversary can determine the secret key used by the system from the
leakage generated during the execution of the algorithm. Hence, countermeasures
against side-channel attacks are mandatory for the security of IoT devices.

There are two main categories of countermeasures against side-channel
attacks: masking and hiding [18]. One of the main advantages of masking over
hiding is that the security of masking schemes can be proved under certain
assumptions on the device leakage model and the attacker capabilities [17]. How-
ever, if the masking scheme is not correctly implemented, the implementation
can leak and therefore it is not secure against side-channel attacks [4,21].

Boolean masking is one of the most widely used masking schemes. An (n−1)-
th order Boolean masking scheme with n ≥ 2 is based on the principle of secret
sharing, splitting each variable x into at least n shares xi such that x = x1 ⊕
x2 ⊕ . . . xn. Then, the protected algorithm processes the shares xi in such a way
that no information about the sensitive value x can be learned by an adversary
which can probe up to n− 1 wires. Yet, an (n− 1)-th order masking scheme can
be broken with an n-th order attack. The complexity of a such an attack grows
exponentially with the number of shares since the attacker has to combine n
points to reconstruct the leakage of the sensitive variable [7].

There are two main requirements an implementation of a cryptographic algo-
rithm to be deployed in the IoT has to satisfy. On the one hand, the implemen-
tation must be lightweight (i.e. consume few resources) because of the limited
computational resources of embedded devices for the IoT. On the other hand, the
implementation must be secure against side-channel attacks given the attack sur-
face specific to the IoT. Most implementations of the existing lightweight ciphers
do not satisfy the second requirement, either because the cipher was not designed
to facilitate masking, or because the best existing masking schemes add signif-
icant performance penalties to the unprotected implementation of the cipher.
Therefore, there is a need for more efficient masking schemes. Any improvement
of the existing masking schemes brings us closer to the goal of a secure IoT.

Conceptually, Boolean masking of a block cipher is done by replacing each
unprotected operation by its masked counterpart. The most common operations
used by lightweight block ciphers are logical operations (NOT, AND, OR, XOR),
rotations, and modular addition/subtraction. Masked NOT is equivalent to the
negation of a single share, while masked XOR and rotations can be realized

24 A. Biryukov et al.

by simply applying the operation to each pair of shares independently. To our
knowledge, the best known expression for first-order Boolean masking of bitwise
AND is based on the Trichina AND gate [28]. The same expression of the masked
AND was latter used by Coron et al. in their algorithm for masked addition on
Boolean shares [9]. Since there is almost no reference to a masked OR expression
in the literature, one might try to derive such an expression by applying De
Morgan’s laws to the masked AND expression. Hence, we consider the derived
expression using De Morgan’s laws as the best known expression for masked
OR, although Baek and Noh [3] proposed a masked OR gate that requires six
elementary operations and no random value. The best known masked expressions
of AND and OR require an additional random value.

Gross [16] showed how to design and implement a general purpose arithmetic
logic unit using provably secure threshold implementations. He used an exhaus-
tive search to find the best expression for efficient masking of AND and OR in
hardware using three shares.

The best known algorithm for secure addition on Boolean shares is based on
the Kogge-Stone adder [9]. Won and Han [29] presented a method to improve
the execution time of this algorithm when the register size of the target micro-
controller is smaller than the operand size. Schneider et al. described efficient
hardware modules that perform addition on Boolean shares [26].

In this paper, we study the efficiency of Boolean masking for embedded IoT
devices. Although our work is not limited to a specific microprocessor architec-
ture, we evaluate our implementations on a 32-bit ARM Cortex-M3 since these
microcontrollers are widely used for IoT applications [22].

Our Contributions. Firstly, we present an algorithm for efficient search of
Boolean masking expressions (Sect. 2). Thanks to several algorithmic optimiza-
tions, the search is very fast. As a second contribution, we propose concrete
expressions for Boolean masking of the AND and OR operations (Sect. 2.2).
Our expressions use fewer elementary operations than the best known expres-
sions in the literature. At the same time, unlike the best known expressions, our
expressions for secure AND and OR on Boolean shares do no require any random-
ness. Thirdly, we improve the Kogge-Stone algorithm for addition/subtraction on
Boolean shares [9] by using our masking expressions and by processing the shares
in a clever way that does not require any randomness (Sect. 3.1). When imple-
mented on an ARM Cortex-M3 processor (Sect. 4.1), the addition/subtraction
of 32-bit values using the new algorithm is between 14% and 19% faster than
similar implementations using the original algorithm [9]. Finally, we use our
Boolean masking expressions to write first-order masked implementations of
three lightweight block ciphers, namely Simon, Speck, and RECTANGLE
(Sect. 4.2). By comparing the performance figures of the masked and unmasked
implementations of the three ciphers, we learn which design strategies facilitate
efficient masked implementations.

All software presented in this paper will is placed in the public domain1 to
support reproducibility of results and to maximize reusability.
1 https://github.com/cryptolu/ofom.

https://github.com/cryptolu/ofom

Optimal First-Order Boolean Masking for Embedded IoT Devices 25

2 Search Algorithm

In this section we describe our algorithm for searching optimal masking expres-
sions. We start with a high-level description, then we dive into details. We give a
pseudocode of the full search algorithm. Finally, we provide the optimal expres-
sions we found using the algorithm.

2.1 The Algorithm

The algorithm takes as input a set of variables representing the input shares, a set
of sensitive functions (i.e. functions that combine the shares of a sensitive value
and thus leak the sensitive value) and a target function; it outputs the shortest
sequences of operations required to compute the Boolean shares of the target
function. A sequence is represented as a tuple that contains all intermediate
terms of an expression in the order they are required to compute the expression.
Moreover, any single intermediate value computed in a sequence does not leak
any information about the sensitive functions. Multiple intermediate values may
be considered for higher-order masking.

At its core, the algorithm performs a breadth-first search with several cut-off
conditions. The functions are represented by their truth tables and are stored as
integers for efficiency reasons. Initially, there is only an empty sequence available.
The algorithm expands it into multiple sequences of length one. Afterwards, all
sequences of length one are expanded into sequences of length two and so on,
until the algorithm finds a sequence for which some of its intermediate values
are the Boolean shares of the target function. The search is illustrated in Fig. 1.

()variables: a, b, c, . . .

(a ⊕ b)(¬a) . . .

cost = 0

(¬a,¬a ⊕ b) (¬a,¬a ⊕ c) . . . (¬a, a ⊕ b) . . .

cost = 1

cost = 2

.

Fig. 1. High-level scheme of the search algorithm.

The core function of the algorithm is the extension step, where a given
sequence is extended with one operation using all possible combinations to get
the extended sequences. The new operation may take as its inputs either variables
of the input shares or intermediate values computed in the current sequence. The
cut-off conditions used to reduce the complexity of the algorithm are described
next.

26 A. Biryukov et al.

1. Leakage test. For each new function, the algorithm checks if the new func-
tion leaks information about the sensitive functions. If the function is leaking,
the extended sequence is omitted and not considered anymore. In this way,
the search space is effectively reduced only to non-leaking functions. This
significantly improves the efficiency of the search algorithm and guarantees
that the resulting sequences do not leak.
The check is very efficient since it consists of performing a few bitwise opera-
tions on the truth tables and computing the Hamming weight. For example,
a non-constant function f leaks information about function k if and only if

HW(k ∧ f)
HW(f)

�= HW(k ∧ ¬ f)
HW(¬ f)

,

where HW(g) denotes the Hamming weight of the truth table of function g.
2. Ignoring the order of operations. For any sequence of operations, we

exclude all other sequences that compute the same set of intermediate func-
tions. Indeed, such sequences are equivalent in terms of extension, because
an extension depends only on the set of intermediate functions but not on
the way they are computed. From each such equivalence class we keep the
representative that the algorithm reaches first. Note that this condition also
excludes sequences that compute some function multiple times.
Due to this cut-off, we may miss some optimal sequences. More precisely, from
each such equivalence class we will preserve only one representative sequence.
Since we do not allow to compute the same function twice in a sequence, the
representative will have the shortest length. Hence, the algorithm will find at
least one sequence of optimal length. If all optimal sequences are required,
the full equivalence class can be recovered from its representative.

3. Exploiting the symmetries of shares. The Boolean shares are naturally
symmetric: permuting the shares of a masked value does not change the
masked value. Moreover, when we are masking a symmetric operation (e.g.
AND, OR), swapping the input operands in the whole circuit will still give
a correct circuit. We can exploit these symmetries and explore only one of
the equivalent sequences, similarly to the cut-off condition 2. Again, the same
reasoning shows that we do not miss an optimal sequence.

The pseudocode of the search algorithm is given in Algorithm 1. For simplic-
ity and efficiency reasons, the algorithm keeps track only of computed functions
but not of the applied operations. After the optimal function sequences are found,
it is easy to recover the corresponding expressions. This approach also reduces
the memory usage of the algorithm.

Optimality. We would like to stress that the algorithm is designed to find
optimal expressions, not just to improve the existing ones. It is easy to show that
the algorithm yields optimal expressions when it reaches the optimal cost level.
Any optimal expression has (at least one) non-leaking sequence of operations to
compute it. The algorithm explores all sequences except those omitted during

Optimal First-Order Boolean Masking for Embedded IoT Devices 27

Algorithm 1. Searching for the Optimal Shares
Require:

target function t : Fn
2 → F2; � e.g. t(x0, x1, x2, x3) = (x0 ⊕ x1) ∧ (x2 ⊕ x3)

number of output shares m;
set of sensitive functions K = {ki}, ki : Fn

2 → F2; � e.g. (x0 ⊕ x1), (x2 ⊕ x3), t
set of allowed operations O = {opi}, opi : F2

2 → F2

Ensure:
set of m functions S = {si}, si : Fn

2 → F2 such that
⊕

si∈S si = t;
optimal circuits computing all si without leaking information about the value of
any ki;

1: seqs0 ← {()} � empty sequence
2: visited ← {()}
3: for cost := 1 to ∞ do
4: seqscost ← {}
5: for all seq ∈ seqscost−1 do
6: for all seq′ ∈ Extensions(seq) do
7: if ShouldKeepSequence(seq′) then
8: seqscost ← seqscost ∪ {seq′}
9: if ContainsShares(seq′, t) then � impl. omitted for brevity

10: yield seq′

11: end if
12: end if
13: visited ← visited ∪ {set(seq′)}
14: end for
15: end for
16: end for
17: function Extensions(seq)
18: for all a, b ∈ seq ∪ {x0, x1, . . . , xn−1} do
19: for all op ∈ O do
20: yield seq||op(a, b)
21: end for
22: end for
23: end function
24: function ShouldKeepSequence(seq)
25: if Leaks(last(seq), K) then � Cut-off [1]
26: return False
27: end if
28: seq ← SymmetryRepresentative(seq) � impl. omitted for brevity; Cut-off [3]

29: if set(seq) ∈ visited then � Cut-off [2], [3]
30: return False
31: end if
32: return True
33: end function
34: function Leaks(f, K)
35: for all k ∈ K do
36: if HW(k ∧ ¬f)HW(f) 	= HW(k ∧ f)HW(¬f) then � fraction equality check
37: return True
38: end if
39: end for
40: return False
41: end function

28 A. Biryukov et al.

cut-offs. The first cut-off condition reduces the search to non-leaking sequences.
It is easy to see that the effect of the other two cut-off conditions can be jointly
seen as collapsing large equivalence classes into single representatives. Due to the
breadth-first nature of the algorithm, the representative chosen by the algorithm
has minimum cost.

Note that it is important to search for sequences of operations instead of
expressions. Expressions may contain repeating terms and this reduces the com-
putational cost. Moreover, this effect spreads over the output shares as well:
they also may have common terms. Because of this effect, it is unclear how long
are the expressions one has to consider to find a provably optimal expression.
Searching for sequences of operations solves this problem at the cost of increas-
ing the search space. The described cut-off conditions aim to narrow this gap
and bring the algorithm to feasible complexities.

Instruction Set Architecture (ISA). We distinguish between two classes of
IoT devices depending on the operations supported by the instruction set archi-
tecture (ISA): basic and enhanced devices. Most IoT devices have instructions
only for the following bitwise logical operations: NOT, AND, OR, and XOR. We
call these architectures basic ISAs. In addition to these operations, the enhanced
ISAs have dedicated instructions for other bitwise logical operations, such as
AND NOT or OR NOT. For example, the instruction set of ARM Cortex-M3
includes the bic (AND NOT) and orn (OR NOT) instructions that perform two
basic bitwise logical operations in a single clock cycle instead of two clock cycles.
Most microcontrollers execute all logical instructions in a single clock cycle.

Leakage Model. The power consumption of most microcontrollers is propor-
tional to the number of bits that are set in the processed sensitive value [18].
Therefore, the Hamming weight power model is a reliable method for modeling
the leakage of a sensitive variable. In addition to the bit-level leakage verification
performed by the search algorithm, we performed a t-test leakage assessment [15]
for each valid expression returned by the algorithm to confirm the absence of
any leakage.

Extension to Higher-Order Masking. Our algorithm can naturally be
extended to search expressions for higher-order masking. However, further opti-
mizations might be required to ensure that the algorithm scales well for higher
values of the number of shares.

2.2 Results

We have implemented the algorithm in Python language and ran it using the fast
PyPy interpreter [11]. We searched for expressions for masked AND (SecAnd)
and masked OR (SecOr). For example, to search for masked AND on a basic
platform we used the following inputs to the algorithm:

Optimal First-Order Boolean Masking for Embedded IoT Devices 29

Table 1. Expressions, number of randoms (Rand) and number of operations (Cost)
for different secure operations. Basic cost gives the number of elementary operations,
while the ARM cost gives the number of instructions. Expressions in parentheses have
priority and operations are executed from left to right.

Source Operation Expression Rand Cost

Basic ARM

Best known SecAnd z1 = r

z2 = z1 ⊕ (x1 ∧ y1) ⊕ (x1 ∧ y2) ⊕
(x2 ∧ y1) ⊕ (x2 ∧ y2)

1 8 8

SecOr z1 = r

z2 = ¬z1 ⊕ (x1 ∧ y1) ⊕ (x1 ∧ ¬y2) ⊕
(¬x2 ∧ y1) ⊕ (¬x2 ∧ ¬y2)

1 11 10

Our SecAnd z1 = (x1 ∧ y1) ⊕ (x1 ∨ ¬y2)

z2 = (x2 ∧ y1) ⊕ (x2 ∨ ¬y2)

0 7 6

SecOr z1 = (x1 ∧ y1) ⊕ (x1 ∨ y2)

z2 = (x2 ∨ y1) ⊕ (x2 ∧ y2)

0 6 6

1. target function t(x0, x1, x2, x3) = (x0 ⊕ x1) ∧ (x2 ⊕ x3);
2. number of output shares m = 2;
3. set of sensitive functions K = {s0, s1, s0 ∧ s1,¬s0 ∧ s1, s0 ∧ ¬s1,¬s0 ∧ ¬s1, },

where s0 = x0 ⊕ x1, s1 = x2 ⊕ x3;
4. set of allowed operations O = {∧,∨,⊕,¬}.

The hardest target was the search for SecAnd limited to 6 enhanced ISA oper-
ations which took 30 min and 10 GB RAM on a laptop. The optimal expressions
for masked SecOr use 6 instructions on both platforms, while optimal expressions
for SecAnd have a cost of 7 on a basic device and 6 on ARM.

The optimal expressions for SecOr and SecAnd using basic instructions are
unique up to symmetries of the shares, whereas for ARM there are 48 different
optimal expressions for SecAnd and 50 different optimal expressions for SecOr.
The unique optimal expressions for a basic architecture are actually included in
the optimal expressions for the ARM architecture, which makes them universal.
A comparison of these two expressions with the best known expressions in the
literature is given in Table 1. Besides using less operations than the best known
expressions in the literature, our optimal expressions do not require a random
value. Thanks to these two properties, our expressions have a significant perfor-
mance advantage over the best known ones.

3 Applications

3.1 Modular Addition and Subtraction

Coron et al. [9] proposed a logarithmic-time algorithm for modular addition on
Boolean shares based on the Kogge-Stone adder. Their algorithm for modular

30 A. Biryukov et al.

addition uses the following three secure operations: SecAnd, SecXor, and SecShift.
The expression of SecAnd uses 8 elementary operations, the one of SecXor needs
2 elementary operations, while SecShift can be performed using 4 elementary
operations. Algorithms for all these operations are presented in [9].

Although not described in the original paper [9], the algorithm for modular
subtraction can be obtained from the algorithm for modular addition on Boolean
shares by making several changes. Namely, the SecShift operations from lines 7
and 15 of [9, Algorithm 6] have to be replaced by SecShiftFill (secure operation for
shift to the left by n followed by OR of 2n−1). Similarly, SecXor operations from
lines 9 and 17 of [9, Algorithm 6] must be replaced by SecOr. These changes affect
the performance of the modular subtraction algorithm since operations with a
lower cost are replaced by operations with a higher cost.

Algorithm 2. Improved Kogge-Stone Masked Addition
Require: x1, x2, y1, y2 ∈ {0, 1}k such that x = x1 ⊕ x2 and y = y1 ⊕ y2

Ensure: z1, z2 such that z = z1 ⊕ z2 = (x + y) mod 2k

1: p1, p2 ← SecXor(x1, x2, y1, y2)
2: g1, g2 ← SecAnd(x1, x2, y1, y2)
3: g1, g2 ← (

(g1 ⊕ x2) ⊕ g2, x2

)

4: n ← max
(�log2(k − 1)�, 1)

5: for i := 1 to n − 1 do
6: h1, h2 ← SecShift(g1, g2, 2

i−1)
7: u1, u2 ← SecAnd(p1, p2, h1, h2)
8: g1, g2 ← SecXor(g1, g2, u1, u2)
9: h1, h2 ← SecShift(p1, p2, 2

i−1)
10: h1, h2 ← (

(h1 ⊕ x2) ⊕ h2, x2

)

11: p1, p2 ← SecAnd(p1, p2, h1, h2)
12: p1, p2 ← (

(p1 ⊕ y2) ⊕ p2, y2

)

13: end for
14: h1, h2 ← SecShift(g1, g2, 2

n−1)
15: u1, u2 ← SecAnd(p1, p2, h1, h2)
16: g1, g2 ← SecXor(g1, g2, u1, u2)
17: z1, z2 ← SecXor(y1, y2, x1, x2)
18: z1, z2 ← ((

z1 ⊕ (g1 1)
) ⊕ (x2 1), y2

)

One can improve the algorithms for modular addition/subtraction based on
the Kogge-Stone adder by simply replacing the original expressions for SecAnd
and SecOr with our optimal expressions. Yet, the algorithm can be improved
further by replacing the expression of the SecShift operation, which requires a
random variable, by a more efficient expression that does not require any ran-
domness. Hence, the new versions of the algorithm do not require any random-
ness at all. The improved algorithm for addition on Boolean shares is described
in Algorithm 2, while the analogous algorithm for subtraction is presented in
Algorithm 3. It is important to note that lines 3, 10, and 12 from Algorithm 2 are
required to prevent composition of operations that otherwise will leak. Similarly,
lines 4, 10, 12, 14, and 19 of Algorithm 3 avoid composing operations that leak.

Optimal First-Order Boolean Masking for Embedded IoT Devices 31

Algorithm 3. Improved Kogge-Stone Masked Subtraction
Require: x1, x2, y1, y2 ∈ {0, 1}k such that x = x1 ⊕ x2 and y = y1 ⊕ y2

Ensure: z1, z2 such that z = z1 ⊕ z2 = (x − y) mod 2k

1: y1, y2 ← SecNot(y1, y2)
2: p1, p2 ← SecXor(y1, y2, x1, x2)
3: g1, g2 ← SecAnd(x1, x2, y1, y2)
4: g1, g2 ← (

(g1 ⊕ x2) ⊕ g2, x2

)

5: n ← max
(�log2(k − 1)�, 1)

6: for i := 1 to n − 1 do
7: h1, h2 ← SecShiftFill(g1, g2, 2

i−1)
8: u1, u2 ← SecAnd(p1, p2, h1, h2)
9: g1, g2 ← SecOr(g1, g2, u1, u2)

10: g1, g2 ← (
(g1 ⊕ x2) ⊕ g2, x2

)

11: h1, h2 ← SecShift(p1, p2, 2
i−1)

12: h1, h2 ← (
(h1 ⊕ x2) ⊕ h2, x2

)

13: p1, p2 ← SecAnd(p1, p2, h1, h2)
14: p1, p2 ← (

(p1 ⊕ y2) ⊕ p2, y2

)

15: end for
16: h1, h2 ← SecShiftFill(g1, g2, 2

n−1)
17: u1, u2 ← SecAnd(p1, p2, h1, h2)
18: g1, g2 ← SecOr(g1, g2, u1, u2)
19: g1, g2 ← (

(g1 ⊕ x2) ⊕ g2, x2

)

20: z1, z2 ← SecXor(y1, y2, x1, x2)

21: z1 ←
(
z1 ⊕ (

(g1 1) ∨ 1
)) ⊕ (x2 1)

22: z2 ← y2

Table 2. Comparison of the number of instructions required to perform different secure
operations.

Platform Source Cost

SecNot SecXor SecAnd SecOr SecShift SecShiftFill

Basic Best known 1 2 8 11 4 6

Our 1 2 7 6 2 4

Gain 0 0 1 5 2 2

ARM Best known 1 2 8 10 4 6

Our 1 2 6 6 2 4

Gain 0 0 2 4 2 2

Cost. A comparison between the cost of the secure expressions used by the
original version of the algorithm and the new expressions used by the improved
version of the algorithm is provided in Table 2. Based on these values, one can
compute the total cost of these algorithms for different architectures and make
an estimation of their performance for different values of the operand size k (see
Table 3).

32 A. Biryukov et al.

Table 3. Cost and random numbers (Rand) required for Kogge-Stone addi-
tion/subtraction on Boolean shares for different values of the operand size k. Basic
cost gives the number of elementary operations, while the ARM cost gives the number
of instructions.

Operation Platform Expressions Rand k k = 8 k = 16 k = 32 k = 64

SecAdd Basic Best known 2 28 · log2 k + 4 88 116 144 172

Our 0 22 · log2 k + 6 72 94 116 138

Gain 2 6 · log2 k − 2 16 22 28 34

ARM Best known 2 28 · log2 k + 4 88 116 144 172

Our 0 22 · log2 k + 4 70 92 114 136

Gain 2 6 · log2 k 18 24 30 36

SecSub Basic Best known 2 41 · log2 k + 4 127 168 209 250

Our 0 32 · log2 k + 6 102 134 166 198

Gain 2 9 · log2 k − 2 25 34 43 52

ARM Best known 2 40 · log2 k + 4 124 164 204 244

Our 0 30 · log2 k + 6 96 126 156 186

Gain 2 10 · log2 k − 2 28 38 48 58

Security. We evaluated the secure operations presented in this section, includ-
ing the two improved algorithms for addition and subtraction on Boolean shares,
against first-order attacks using Welch’s t-test [15]. Welch’s t-test is a fast and
robust way to verify the soundness of a masking scheme [12,25]. To determine
if there is any leakage in our first-order implementations, we used a simple tool
similar to the ones described in [20,21,23]. Firstly, we validated the correctness
of our tool by performing evaluations against a set of masking schemes known
to be either secure or broken. Then, we carefully applied the t-test to avoid false
negatives [27]. All our secure implementations passed a set of fixed vs. random
evaluations with up to 106 traces using both Hamming weight and Hamming
distance models for the simulated leakage. See Appendix A for more details.

3.2 Other Applications

Theoptimalexpressions forsecurecomputationofANDandORcanbeusedtomask
more complex structures such as S-boxes. They can also be used to efficiently mask
ciphers thatuseonly logicalbitwiseoperationssuchasSimon [6], aswellasbit-sliced
designs such asNoekeon [10], RECTANGLE [30], or RoadRunneR [5]. In Sect. 4,
we evaluate how these expressions can be applied to unprotected implementations
of several lightweight block ciphers and we determine the performance penalty of
the resulting first-order protected implementations.

Optimal First-Order Boolean Masking for Embedded IoT Devices 33

4 Implementations

In this section we describe our efficient implementations of several first-order
secure algorithms and block ciphers. All our implementations are written in
assembly language for a Cortex-M3 processor for two reasons. Firstly, we wanted
to avoid accidental leakages introduced by the transformations made by the gcc
compiler which is not optimized for masked implementations, but only for effi-
ciency [4]. On the other hand, when coding in assembly language, the imple-
menter has full control of the register allocation and the sequence of instructions
executed by the microcontroller. Hence, she can avoid combining instructions
and registers in a way that leaks [4,21]. Secondly, we wanted to get a clear pic-
ture of the performance figures of our implementations in order to conduct a
fair comparison of the first-order implementations. Hence, the effort spent by a
programmer on a more demanding assembly implementation is paid off in the
end by a better (i.e. more secure and efficient) implementation.

In line with previous work, we do not include the cost of random number
generation for the implementations that need randomness since the cost of ran-
dom number generation is different from one device to the other and we want a
device-independent comparison. We report the execution time and the code size
for protected implementations that do not leak in the Hamming weight model.
The leakage of these implementations in the Hamming distance model can be
fixed with minor changes. These changes have a similar effect on the performance
of the implementations based on our expressions and the implementations based
on the best known expression.

4.1 Masked Addition

We implemented the original algorithms for addition and subtraction on Boolean
shares as well as the improved algorithms presented in this paper. For each
algorithm we wrote a straightforward implementation and an implementation
that unrolls the main loop of the Kogge-Stone adder. The execution time and
code size of our implementations are given in Table 4.

The improved algorithms are between 14% and 19% faster than the original
ones. At the same time, the code size of the improved algorithms is between
12% and 21% smaller than the code size of the original algorithms. Unlike the
original algorithms, which require two random values, the improved algorithms
do not require any random value. The generation of a 32-bit random number
takes between 37 cycles for a XorShift RNG [19] and 85 cycles for the built-
in TRNG [2]. Hence, the improved algorithms for addition and subtraction on
Boolean shares outperform the original algorithms in all categories: execution
time, code size, and required randomness.

4.2 Lightweight Block Ciphers

We selected the top-3 block ciphers that use a 64-bit block from the perfor-
mance evaluation conducted using the FELICS benchmarking framework [13]

34 A. Biryukov et al.

Table 4. Execution time and code size for secure addition and subtraction on Boolean
shares using the Kogge-Stone adder.

Impl. Expressions Rand Time (cycles) Code size (bytes)

Addition Subtraction Addition Subtraction

Rolled Best known 2 275 388 292 416

Our 0 228 333 232 332

Gain 2 47 (17%) 55 (14%) 60 (21%) 84 (20%)

Unrolled Best known 2 203 296 544 812

Our 0 173 241 480 692

Gain 2 30 (15%) 55 (19%) 64 (12%) 120 (15%)

and we protected them against first-order attacks using the best known algo-
rithms for secure operations on Boolean shares as well as the ones introduced
in this paper. Besides their very lightweight software implementations, these
three ciphers (Speck, Simon, and RECTANGLE) have different design strate-
gies. Hence, they facilitate an analysis of the relationship between their design
strategies and the performance figures of their masked implementations.

Speck. Speck [6] is an ARX-based family of lightweight block ciphers designed
for performance in software. Nevertheless, all ciphers of this family perform very
well in hardware also. Speck-64/128 refers to the version of Speck characterized
by a 64-bit block, a 128-bit key, and 27 rounds. The round function of Speck-
64/128 uses only bitwise XOR, addition modulo 232, and rotations:

Rk(x, y) =
((

(x ≫ 8) � y
) ⊕ k, (y ≪ 3) ⊕ (

(x ≫ 8) � y
) ⊕ k

)
,

where x and y are the two 32-bit branches of a Feistel network.
While the unprotected implementation of Speck requires only four registers

in order to process the cipher’s state, the protected implementations need all
13 general-purpose registers of the Cortex-M3 microcontroller. Moreover, the
rolled implementations have to save the content of a register onto the stack at
the beginning of the secure addition/subtraction. The initial value of this register
is recovered at the end of the addition/subtraction operation. A pair of stack
operations (i.e. push and pop) adds 4 cycles to the total execution time of the
algorithm.

The implementations of Speck based on the improved algorithms for modu-
lar addition and subtraction on Boolean shares are faster and use less code space
than the implementations of Speck based on the original versions of the same
algorithms as can be seen in Table 5. When comparing the gain of the improved
expressions over the original ones for rolled and unrolled implementations, we
can see that the gain in the case of rolled implementations is higher than the
gain in the case of unrolled ones. For example, the gain of rolled decryption is
27%, while the gain of unrolled decryption is only 17%.

Optimal First-Order Boolean Masking for Embedded IoT Devices 35

Table 5. Execution time, code size and performance penalty factor for different secure
implementations of Speck-64/128. For each set of expressions (best known, our) we
wrote two implementations that correspond to the two implementation strategies of
the Kogge-Stone adder (KSA): rolled/unrolled KSA.

Impl./Expr. Rand Time (cycles) Code size (bytes) Penalty factor

Enc Dec Enc Dec Enc Dec

Unprotected 0 318 530 44 52 1 1

Rolled KSA/best known 2 7131 11368 340 488 22.42 21.44

Rolled KSA/our 0 5686 8258 272 400 17.88 15.58

Gain (%) 2 1445 (21%) 3110 (27%) 68 (20%) 88 (18%) 4.54 5.86

Unrolled KSA/best known 2 4945 7431 588 876 15.55 14.02

Unrolled KSA/our 0 4666 6188 536 712 14.67 11.67

Gain (%) 2 279 (6%) 1243 (17%) 52 (9%) 164 (19%) 0.87 2.34

Simon. Simon [6] is a family of lightweight block ciphers designed primarily
for optimal performance in hardware, but its instances perform very good in
software as well. The round function of Simon uses only bitwise XOR, bitwise
AND, and rotations:

Rk(x, y) =
(
y ⊕ f(x) ⊕ k, x

)
,

where f(x) = (x ≪ 1) ∧ (x ≪ 8) ⊕ (x ≪ 2). Simon-64/128 is the instance of
Simon that processes a 64-bit block using a 128-bit key in 44 rounds.

The two protected implementations of Simon are very efficient since the
operations used by the cipher can be masked with a little impact on the exe-
cution time and code size. The most costly operation is secure bitwise AND
which, depending on its expression, can be evaluated using 6 or 8 instructions.
The other secure operations require only 2 instructions each. The unprotected
implementation of Simon needs only four registers. The first-order protected
implementation based on the best known expression of AND requires ten regis-
ters, while the one based on our optimal expression of AND takes nine registers.
Consequently, the gain in execution time of the implementation based on the
improved expression of AND over the implementation based on the best known
expression of AND is modest (i.e. 5%). Nevertheless, the gain in code size is
about 25%. The results of these implementations is presented in Table 6.

Table 6. Execution time, code size and performance penalty factor for different secure
implementations of Simon-64/128.

Impl./Expr. Rand Time (cycles) Code size (bytes) Penalty factor

Enc Dec Enc Dec Enc Dec

Best known 1 1736 1737 152 156 1.62 1.62

Our 0 1648 1649 136 140 1.54 1.54

Gain 1 88 (5%) 88 (5%) 16 (27%) 16 (25%) 0.08 0.08

36 A. Biryukov et al.

RECTANGLE. RECTANGLE [30] is a block cipher designed to facilitate
lightweight and fast implementations, both in hardware and software, using
bit-slicing. RECTANGLE processes a 64-bit block in 25 rounds and supports
keys of 80 and 128 bits. We refer to the 128-bit version of RECTANGLE as
RECTANGLE-64/128. The cipher’s state is represented as a matrix of 4 × 16
bits. Each round of RECTANGLE uses three transformations: AddRoundKey (bit-
wise XOR), SubColumn (application of a 4-bit S-box to the state columns), and
ShiftRow (rotations of the state rows by 1, 12 and 13 bits). The S-box of RECT-
ANGLE can be described using a sequence of 12 basic logical instructions and
hence the SubColumn transformation can be implemented in a bit-sliced fashion.

The unprotected implementation of RECTANGLE requires seven registers
for encryption and eight for decryption. The protected implementations use all
available registers of the microcontroller and several pairs of stack operations
(i.e. push and pop). The protected implementation based on the best known
expressions uses five pairs of stack operations, while the one based on our optimal
expressions uses only three pairs for encryption and four pairs for decryption.
The stack operations are necessary because the protected implementations have
to keep track of more intermediate variables than they can fit into the registers
of the ARM microcontroller.

In summary, the implementation based on our optimal expressions uses less
instructions and less stack operations compared to the implementation based on
the best known expression. The performance figures given in Table 7 show that
the gain in execution time is 19% for encryption and 14% for decryption.

Table 7. Execution time, code size and performance penalty factor for different secure
implementations of RECTANGLE-64/128.

Impl./Expr. Rand Time (cycles) Code size (bytes) Penalty factor

Enc Dec Enc Dec Enc Dec

Unprotected 0 945 994 200 160 1 1

Best known 1 3661 3422 632 444 3.87 3.44

Our 0 2584 2954 564 372 2.73 2.97

Gain 1 1077 (19%) 468 (14%) 68 (11%) 72 (16%) 1.13 0.47

Comparison. When comparing the performance results of the unprotected
implementations of the three ciphers (see Fig. 2), one can see that Speck is the
fastest, followed by RECTANGLE and Simon; each of them takes about three
times more cycles than Speck. On the other hand, when comparing first-order
protected implementations, the implementations of Simon and RECTANGLE
take the lead, while the implementation of Speck is the last one. The perfor-
mance degradation of the first-order protected implementation of Speck stems
from the high overhead associated with masking modular addition (see Table 4).
The protected implementation of RECTANGLE is roughly three times slower
than its unprotected implementation. Finally, the protected implementation of
Simon is only 54% slower than its unprotected implementation.

Optimal First-Order Boolean Masking for Embedded IoT Devices 37

Fig. 2. Performance comparison of unprotected and first-order protected implementa-
tions of Speck, Simon, and RECTANGLE.

From this analysis, we learn that lightweight block ciphers that are very fast
in unprotected software implementations (e.g. Speck), might not be the most
suitable ones for first-order masking in software. A second key remark is that a
cipher that uses only bitwise operations can have an efficient first-order masked
implementation only if it has a small number of intermediate variables.

Discussion. Our implementations explored how far one can push the optimiza-
tion level in Boolean masking of various algorithms and ciphers. Consequently,
we lost the benefit of being able to provide strong security proofs for our imple-
mentations. In other words, one can insert a random value in our expressions for
masked AND and OR and they will still be a little bit more efficient than the
best known ones, but provably secure. On the other hand, if one removes the
randomness from the best know expressions for masked AND and OR, they will
leak. We kept the amount of randomness at a minimum level (i.e. one or two
random values for algorithms using the best known expressions and no random
for our expressions). In these settings, the composition problem (i.e. chaining
basic secure operations in an unsecure way) is similar for algorithms and ciphers
masked using the previously best known expressions and our expressions. Finally,
we stress that we put a similar effort in all our implementations.

5 Conclusion

We described an efficient algorithm for searching of optimal Boolean masking
expressions. Then, we proposed optimal expressions for the first-order masking
of bitwise AND and OR. They require less elementary operations and no random
values compared to the best known expressions in the literature. Based on these
optimal expressions, we presented an improved version of the algorithm for mod-
ular addition on Boolean shares proposed by Coron et al. [9]. We implemented
the original and improved algorithms for modular addition/subtraction of 32-bit
values on an ARM Cortex-M3. Our results show that the improved algorithm
is between 14% and 19% faster than the original algorithm of Coron et al. [9].

38 A. Biryukov et al.

Finally, we used our optimal Boolean masking expressions to write first-order
protected implementations of three lightweight block ciphers, namely Simon,
Speck, and RECTANGLE. The evaluation of these implementations revealed
that ciphers with a simple structure, based solely on bitwise logical operations
and rotations, facilitate efficient software implementations of first-order masking.

Acknowledgements. The authors thank the anonymous reviewers for their valuable
comments. The work of Aleksei Udovenko is supported by the Fonds National de la
Recherche, Luxembourg (project reference 9037104).

A Leakage Assessment

The tool we used to assess the security of our implementations against first-order
attacks is inspired from similar tools such as ELMO [20], ASCOLD [21], and the
one described in [23]. The simulated leakages are computed as follows. For each
register ri we store its previous value rj−1

i and its current value rji . At each
step j we dump the leakage as HW(rji) or HD(rj−1

i , rji) = HW(rj−1
i ⊕ rji), where

HW(r) is the Hamming weight of r.
The result of the t-test applied to 106 simulated traces (using the HW model)

from our first-order protected implementation of Speck is exemplarily shown in
Fig. 3. Similar results for Simon and RECTANGLE are given in Figs. 4 and 5,
respectively. All results use our expressions to compute secure AND and OR. We
can see that the value of the t-statistic is inside the ±4.5 interval for each point
in time, which implies that the protected implementations are secure against
first-order attacks.

Fig. 3. The result of the t-test applied to our implementation of Speck.

Fig. 4. The result of the t-test applied to our implementation of Simon

Optimal First-Order Boolean Masking for Embedded IoT Devices 39

Fig. 5. The result of the t-test applied to our implementation of RECTANGLE.

References

1. Antonakakis, M., April, T., Bailey, M., Bernhard, M., Bursztein, E., Cochran, J.,
Durumeric, Z., Halderman, J.A., Invernizzi, L., Kallitsis, M., Kumar, D., Lever, C.,
Ma, Z., Mason, J., Menscher, D., Seaman, C., Sullivan, N., Thomas, K., Zhou, Y.:
Understanding the Mirai Botnet. In: 26th USENIX Security Symposium (USENIX
Security 2017), Vancouver, BC. USENIX Association (2017)

2. Random Number Generator (TRNG) API, October 2012. https://forum.arduino.
cc/index.php?topic=129083.0. Accessed 03 July 2017

3. Baek, Y.-J., Noh, M.-J.: Differential power attack and masking method. Trends
Math. 8(1), 1–15 (2005)

4. Balasch, J., Gierlichs, B., Grosso, V., Reparaz, O., Standaert, F.-X.: On the cost
of lazy engineering for masked software implementations. In: Joye, M., Moradi, A.
(eds.) CARDIS 2014. LNCS, vol. 8968, pp. 64–81. Springer, Cham (2015). https://
doi.org/10.1007/978-3-319-16763-3 5

5. Baysal, A., Şahin, S.: RoadRunneR: a small and fast bitslice block cipher for low
cost 8-bit processors. In: Güneysu, T., Leander, G., Moradi, A. (eds.) LightSec
2015. LNCS, vol. 9542, pp. 58–76. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-29078-2 4

6. Beaulieu, R., Shors, D., Smith, J., Treatman-Clark, S., Weeks, B., Wingers, L.:
The SIMON and SPECK lightweight block ciphers. In: Proceedings of the 52nd
Annual Design Automation Conference, San Francisco, CA, USA, 7–11 June 2015,
pp. 175:1–175:6. ACM (2015)

7. Chari, S., Jutla, C.S., Rao, J.R., Rohatgi, P.: Towards sound approaches to counter-
act power-analysis attacks. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666,
pp. 398–412. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48405-
1 26

8. Constantin, L.: Hackers Found 47 New Vulnerabilities in 23 IoT Devices at
DEF CON, September 2016. http://www.csoonline.com/article/3119765/security/
hackers-found-47-new-vulnerabilities-in-23-iot-devices-at-def-con.html. Accessed
03 July 2017

9. Coron, J.-S., Großschädl, J., Tibouchi, M., Vadnala, P.K.: Conversion from arith-
metic to Boolean masking with logarithmic complexity. In: Leander, G. (ed.) FSE
2015. LNCS, vol. 9054, pp. 130–149. Springer, Heidelberg (2015). https://doi.org/
10.1007/978-3-662-48116-5 7

10. Daemen, J., Peeters, M., Van Assche, G., Rijmen, V.: Nessie proposal: Noekeon.
In: First Open NESSIE Workshop, pp. 213–230 (2000)

11. T. P. Developers: PyPy Interpreter, version 5.1.2 (2016). https://pypy.org/

https://forum.arduino.cc/index.php?topic=129083.0
https://forum.arduino.cc/index.php?topic=129083.0
https://doi.org/10.1007/978-3-319-16763-3_5
https://doi.org/10.1007/978-3-319-16763-3_5
https://doi.org/10.1007/978-3-319-29078-2_4
https://doi.org/10.1007/978-3-319-29078-2_4
https://doi.org/10.1007/3-540-48405-1_26
https://doi.org/10.1007/3-540-48405-1_26
http://www.csoonline.com/article/3119765/security/hackers-found-47-new-vulnerabilities-in-23-iot-devices-at-def-con.html
http://www.csoonline.com/article/3119765/security/hackers-found-47-new-vulnerabilities-in-23-iot-devices-at-def-con.html
https://doi.org/10.1007/978-3-662-48116-5_7
https://doi.org/10.1007/978-3-662-48116-5_7
https://pypy.org/

40 A. Biryukov et al.

12. Ding, A.A., Chen, C., Eisenbarth, T.: Simpler, faster, and more Robust T-test
based leakage detection. In: Standaert, F.-X., Oswald, E. (eds.) COSADE 2016.
LNCS, vol. 9689, pp. 163–183. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-43283-0 10

13. Dinu, D., Corre, Y.L., Khovratovich, D., Perrin, L., Großschädl, J., Biryukov, A.:
Triathlon of Lightweight Block Ciphers for the Internet of Things. IACR Cryptol-
ogy ePrint Archive, 2015:209 (2015)

14. Gartner: Gartner Says 8.4 Billion Connected “Things” Will Be in Use in 2017,
Up 31 Percent From 2016, February 2017. http://www.gartner.com/newsroom/
id/3598917. Accessed 03 July 2017

15. Gilbert Goodwill, B.J., Jaffe, J., Rohatgi, P., et al.: A testing methodology for
side-channel resistance validation. In: NIST Non-invasive Attack Testing Workshop
(2011)

16. Gross, H.: Sharing is caring—on the protection of arithmetic logic units against
passive physical attacks. In: Mangard, S., Schaumont, P. (eds.) RFIDSec 2015.
LNCS, vol. 9440, pp. 68–84. Springer, Cham (2015). https://doi.org/10.1007/978-
3-319-24837-0 5

17. Ishai, Y., Sahai, A., Wagner, D.: Private circuits: securing hardware against prob-
ing attacks. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 463–481.
Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45146-4 27

18. Mangard, S., Oswald, E., Popp, T.: Power Analysis Attacks - Revealing the Secrets
of Smart Cards. Springer, New York (2007)

19. Marsaglia, G., et al.: Xorshift RNGs. J. Stat. Softw. 8(14), 1–6 (2003)
20. McCann, D., Oswald, E., Whitnall, C.: Towards practical tools for side channel

aware software engineering: ‘grey box’ modelling for instruction leakages. In: Kirda,
E., Ristenpart, T. (eds.) 26th USENIX Security Symposium, USENIX Security
2017, Vancouver, BC, Canada, 16–18 August 2017, pp. 199–216. USENIX Associ-
ation (2017)

21. Papagiannopoulos, K., Veshchikov, N.: Mind the gap: towards secure 1st-order
masking in software. In: Guilley, S. (ed.) COSADE 2017. LNCS, vol. 10348, pp.
282–297. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-64647-3 17

22. Public Comments Received on “Profiles for the Lightweight Cryptography
Standardization Process”, June 2017. https://www.nist.gov/sites/default/files/
documents/2017/06/20/public-comments-profiles-i-ii-june2017.pdf. Accessed 03
July 2017

23. Reparaz, O.: Detecting flawed masking schemes with leakage detection tests. In:
Peyrin, T. (ed.) FSE 2016. LNCS, vol. 9783, pp. 204–222. Springer, Heidelberg
(2016). https://doi.org/10.1007/978-3-662-52993-5 11

24. Ronen, E., Shamir, A., Weingarten, A., O’Flynn, C.: IoT goes nuclear: creating
a zigbee chain reaction. In: 2017 IEEE Symposium on Security and Privacy, SP
2017, San Jose, CA, USA, 22–26 May 2017, pp. 195–212. IEEE Computer Society
(2017)

25. Schneider, T., Moradi, A.: Leakage assessment methodology. In: Güneysu, T.,
Handschuh, H. (eds.) CHES 2015. LNCS, vol. 9293, pp. 495–513. Springer, Heidel-
berg (2015). https://doi.org/10.1007/978-3-662-48324-4 25

26. Schneider, T., Moradi, A., Güneysu, T.: Arithmetic addition over Boolean masking.
In: Malkin, T., Kolesnikov, V., Lewko, A.B., Polychronakis, M. (eds.) ACNS 2015.
LNCS, vol. 9092, pp. 559–578. Springer, Cham (2015). https://doi.org/10.1007/
978-3-319-28166-7 27

https://doi.org/10.1007/978-3-319-43283-0_10
https://doi.org/10.1007/978-3-319-43283-0_10
http://www.gartner.com/newsroom/id/3598917
http://www.gartner.com/newsroom/id/3598917
https://doi.org/10.1007/978-3-319-24837-0_5
https://doi.org/10.1007/978-3-319-24837-0_5
https://doi.org/10.1007/978-3-540-45146-4_27
https://doi.org/10.1007/978-3-319-64647-3_17
https://www.nist.gov/sites/default/files/documents/2017/06/20/public-comments-profiles-i-ii-june2017.pdf
https://www.nist.gov/sites/default/files/documents/2017/06/20/public-comments-profiles-i-ii-june2017.pdf
https://doi.org/10.1007/978-3-662-52993-5_11
https://doi.org/10.1007/978-3-662-48324-4_25
https://doi.org/10.1007/978-3-319-28166-7_27
https://doi.org/10.1007/978-3-319-28166-7_27

Optimal First-Order Boolean Masking for Embedded IoT Devices 41

27. Standaert, F.-X.: How (not) to use Welch’s t-test in side-channel security evalua-
tions. Cryptology ePrint Archive, Report 2017/138 (2017). http://eprint.iacr.org/
2017/138

28. Trichina, E.: Combinational Logic Design for AES SubByte Transformation on
Masked Data. IACR Cryptology ePrint Archive, 2003:236 (2003)

29. Won, Y., Han, D.: Efficient conversion method from arithmetic to Boolean masking
in constrained devices. IACR Cryptology ePrint Archive, 2016:664 (2016)

30. Zhang, W., Bao, Z., Lin, D., Rijmen, V., Yang, B., Verbauwhede, I.: RECTANGLE:
a bit-slice lightweight block cipher suitable for multiple platforms. Sci. China Inf.
Sci. 58(12), 1–15 (2015)

http://eprint.iacr.org/2017/138
http://eprint.iacr.org/2017/138

A First-Order Chosen-Plaintext DPA Attack
on the Third Round of DES

Oscar Reparaz1,2 and Benedikt Gierlichs1(B)

1 imec-COSIC, KU Leuven, Leuven, Belgium
{oscar.reparaz,benedikt.gierlichs}@esat.kuleuven.be

2 Square, Inc., San Francisco, USA

Abstract. DPA attacks usually exhibit a “divide-and-conquer” prop-
erty: the adversary needs to enumerate only a small space of the key
(a key sub-space) when performing the DPA attack. This is achieved
trivially in the outer rounds of a cryptographic implementation since
intermediates depend on only few key bits. In the inner rounds, how-
ever, intermediates depend on too many key bits to make DPA practical
or even to pose an advantage over cryptanalysis. For this reason, DPA
countermeasures may be deployed only to outer rounds if performance or
efficiency are critical. This paper shows a DPA attack exploiting leakage
from the third round of a Feistel cipher, such as DES. We require the
ability of fixing inputs, but we do not place any special restriction on
the leakage model. The complexity of the attack is that of two to three
DPA attacks on the first round of DES plus some minimal differential
cryptanalysis.

1 Introduction

Cryptographic implementations on embedded devices are susceptible to side-
channel attacks [Koc96]. Differential Power Analysis (DPA) attacks are a power-
ful strand of side-channel attacks [KJJ99]. DPA is based on the fact that in an
unprotected embedded device, the instantaneous power consumption depends
somehow on the intermediate data handled by the implementation.

The basic working principle of DPA is to compare power consumption mea-
surements from the device when executing the cryptographic implementation
with a key-dependent model of its behavior. When modeling the device behavior,
the practitioner places hypotheses on subkey values (obviously the key is secret
and hence unknown). By comparing a model with the actual device behavior,
DPA allows to verify or reject hypotheses on subkeys, and hence learn the actual
key values. DPA and countermeasures are nowadays topics of intense research
with dozens of scientific papers published per year on conferences devoted to the
field.

Basic DPA attacks target the outer rounds: either the first one (if the input
is known) or the last one (for known output). In outer rounds, every sensitive
intermediate variable depends on only few key bits. Thus, a side-channel adver-
sary can easily model the device behavior when handling such intermediates by
placing hypothesis on only few key bits. A critical property of DPA attacks is
c© Springer International Publishing AG, part of Springer Nature 2018
T. Eisenbarth and Y. Teglia (Eds.): CARDIS 2017, LNCS 10728, pp. 42–50, 2018.
https://doi.org/10.1007/978-3-319-75208-2_3

A First-Order Chosen-Plaintext DPA Attack on the Third Round of DES 43

that they allow the adversary to “divide and conquer”: the adversary just repeats
the same methodology with different intermediates to learn different subkey bits
until he learns enough key material to break the device.

DPA countermeasures aim to prevent DPA attacks, usually by lowering the
SNR of the side-channel and by data randomization. However, countermeasures
come with a considerable implementation overhead, e.g. increased execution time.
Therefore, if performance is of importance, one may consider to protect only
outer rounds until the cipher provides enough diffusion and intermediates depend
on “many” key bits. This prevents basic DPA attacks on outer rounds and allows
to use a more efficient, unprotected implementation for the inner rounds.

There are DPA attacks that target inner rounds. One way to circumvent
the problem of an intermediate depending on too many key bits is to deacti-
vate portions of input texts by fixing them to a constant value. As an exam-
ple, suppose we target an intermediate V that is the xor of four S-box outputs
V = S(p1 + k1) + S(p2 + k2) + S(p3 + k3) + S(p4 + k4). If we set p2, p3 and p4
to constant values, the intermediate V can be rewritten as V = S(p1 + k1) + c
for some constant c. Then, one can perform a DPA on V to jointly recover k1
and the constant c. This is less effort (about 22w for w-bit variables) than jointly
recovering (k1, k2, k3, k4) (about 24w). In many situations, when the practitioner
carefully chooses the appropriate statistical distinguisher tools, it is even possi-
ble to first recover k1 alone, and later, in a separate step, search for the constant
c, further decreasing complexity to 2 × 2w.

Previous work. Kunz-Jacques et al. describe a new DPA attack, called
DMPA [KMV04], based on the Davies–Murphy attack on DES [DM95]. The
basic idea is that the S-box output distribution of adjacent S-boxes is not inde-
pendent, and the joint output distribution depends on (a linear function of) key
bits. DMPA is a higher-order attack that does not need information on plain-
texts but is rather expensive in terms of data and computational complexity.
Handschuh and Preneel [HP06] present a differential attack on DES aided by
collisions detected on power consumption traces. They hence require a device
leakage behavior in the inner rounds that allows to reliably detect collisions on
individual traces. Kim et al. showed that DES is vulnerable if not all rounds are
masked [KLL10], relying also on collisions and subsequent cryptanalysis. Dodis
and Pietrzak introduce highly theoretical attacks on generic Feistel networks in
their CRYPTO 2010 publication [DP10]. Biryukov and Khovratovich present
attacks that exploit leakage from inner rounds of AES in CHES 2007 [BK07].

Our contribution. We describe a simple DPA on the third round output of a
Feistel cipher. The attack uses standard first-order DPA assumptions, and thus,
it is very robust to noise and simple to mount. The attack is performed in
two steps. In the first step, we perform a first-order DPA with chosen input
texts to deactivate parts of the state and apply Jaffe’s trick to push unknown
constants into the key guess [Jaf07]. In the second step, we perform a minimal
cryptanalytical differential attack. Contrary to other approaches, the number of
required traces for our attack is not determined by any differential propagation

44 O. Reparaz and B. Gierlichs

probability, but only by the device SNR. We fully implemented and verified our
attack on a software DES implementation.

2 A First-Order Chosen-Plaintext DPA Attack on the
Third Round of DES

Notation. Figure 1 shows the relevant part of the first three rounds of a Feistel
network and sets the notation for the remainder of this paper. In the case of
DES, the initial permutation (IP) is applied to the 64-bit input, then the input
is placed in two 32-bit words (L0, R0) and the iterated processing begins. The
round function is applied to the right half Ri and the round key ki and the result
is xored to the left part Li. Then, both parts are swapped. This is repeated for
r = 16 rounds.

Ri+1 = Li ⊕ Fki
(Ri) (1)

Li+1 = Ri 0 ≤ i < r (2)

In the last round, there is no swap and a final permutation is applied (IP−1).
The round function results from the composition of an Expansion stage E that
maps 32 bits to 48 bits in a linear way, a key mixing stage that xors 48 subkey
bits ki, a non-linear substitution layer S and a linear permutation P as

Fki
(Ri) = P (S(E(Ri) ⊕ ki)). (3)

Decryption is identical to encryption up to a different key schedule. The obser-
vations of this paper can be applied either way. However, it is not possible to
perform our attack to round 14 since we cannot choose the output.

Setting. In this paper, we assume the adversary acquires side-channel leakage
corresponding to the third round, i.e., processing after (L2, R2). Normally, this
would correspond to a device that deploys effective countermeasures only on the
first two and last two rounds. We aim to recover the full DES key.

Our attack. Our attack consists of two steps. The first step is a DPA attack
with chosen inputs. It recovers the second round key blinded by some unknown
constant. The second step is a differential cryptanalysis that exploits differences
in the unknown constant for different chosen inputs to reveal the first round key.
Once the first round key is revealed, we can compute the blinding term of the
second round key (this value was unknown after the first step) and thus derive
the second round key. From two consecutive round keys, the full DES key is
recovered.

2.1 Step 1

Step 1 consists of a DPA attack with chosen input targeting leakage of L3.
The input is chosen such that after IP we have varying L0 and constant R0.

A First-Order Chosen-Plaintext DPA Attack on the Third Round of DES 45

Fig. 1. First 2.5 rounds of a Feistel cipher.

This enables us to “skip” placing hypotheses on the first round subkey and
instead we place hypotheses on second round keys. Note that L1 = R0 is
known and that R1 = L0 ⊕ Fk0(R0) is only blinded by the unknown constant
C = Fk0(R0). We will for the moment assume that R1 = L0 and recover C later.

With a guess on k1 we are able to compute the output of F in round 2, and
since we know L1 we can compute further until R2. The Feistel construction gives
us the next hop for free: L3 = R2. Therefore we can exploit the leakage of L3 to
recover k1. More precisely, this attack recovers k1 ⊕ E(C) = k1 ⊕ E[Fk0(R0)].

This approach works because one can view the S-box output in the second
round Fk1(R1) as

Fk1(R1) = Fk1(L0 ⊕ C) (4)
= Fk1(L0 ⊕ Fk0(R0)) (5)
= Fk1⊕E[Fk0 (R0)](L0) (6)

46 O. Reparaz and B. Gierlichs

where E is the expansion function inside the round function F . We are hence
pushing the unknown constant C = Fk0(R0) to the key hypothesis k1. This can
be thought of as a variant of Jaffe’s trick [Jaf07].

Before we proceed with step 2, we need to iterate step 1 some small number
of times with different constant values R′

0 and R′′
0 , recovering k1 ⊕ E(C ′) =

k1⊕E[Fk0(R
′
0)] and k1⊕E(C ′′) = k1⊕E[Fk0(R

′′
0)]. The second step will untangle

the two terms k1 and E(C) from the recovered, “blinded”, keys k1 ⊕ E(C).

2.2 Step 2

Step 2 is a classic differential attack on 1-round Feistel to recover the first round
subkey k0 from the constants E(C), E(C ′) and E(C)′′.

Consider the differences

γ = (k1 ⊕ E(C)) ⊕ (k1 ⊕ E(C ′)) (7)
γ′ = (k1 ⊕ E(C ′)) ⊕ (k1 ⊕ E(C ′′)) (8)
γ′′ = (k1 ⊕ E(C ′′)) ⊕ (k1 ⊕ E(C)) . (9)

We have

γ = E(C) ⊕ E(C ′) (10)
= E(Fk0(R0)) ⊕ E(Fk0(R

′
0)) . (11)

The values γ, γ′ and γ′′ are thus the first round output differences after the
expansion E, which is invertible. Note that the adversary knows the first round
input differences R0 ⊕ R′

0. Therefore, given the first round input and output
differences, we can launch a key-recovery differential attack to recover k0. Since
we are targeting only one round, this differential attack can be performed in a
divide and conquer, S-box by S-box, fashion.

In more detail: for each S-box in round 1 we place a 6-bit hypothesis on the
corresponding part of k0 and compute the output difference corresponding to
input R0 and R′

0. If the obtained output difference (after applying the expansion)
is the same as the corresponding part of γ for that S-box, the subkey is kept
as a candidate. Otherwise it is discarded. We repeat the procedure for different
output differences γ′ and γ′′. The intersection of candidates is expected to yield
a unique and correct subkey.

Once k0 is recovered we can resolve C = Fk0(R0), plug it in k1 ⊕ E(C) to
solve for k1 and we are done. We recovered two round keys, thus, we can invert
the key schedule and recover the DES key.

3 Implementation

We have fully implemented and verified our attack on an unprotected software
implementation of DES in an 8-bit microcontroller. Figure 2, top, shows a power
trace.

A First-Order Chosen-Plaintext DPA Attack on the Third Round of DES 47

Step 1 is a classical DPA attack exploiting leakage from L3. We made sure
that this DPA attack does not exploit any leakage of rounds one and two. The
target intermediate L3 also appears as output of round 2, but we are assuming
that the implementation starts leaking after round 2. In Fig. 2, bottom, we plot
the result for the attack on one S-box after 200 traces. The correct value for a
6-bit chunk of k1 ⊕ E(C) is distinguished with a comfortable margin, as Fig. 3,
left, shows.

Fig. 2. Top: power consumption trace, heavily low-pass filtered to make SPA features
more visible. Bottom: correlation traces. Incorrect key guesses in gray, correct key
hypothesis in black. Peaks appear at the end of round 2 and at the end of round 3.

3.1 Step 1

We repeat this step three more times with different fix value R0. The results of
this step are:

– R0 = 88 00 17 FD, recovered key k1 ⊕E[Fk0(R0)] = 25 0D 02 24 15 00 06 1F.
– R′

0 = A9 60 1B 9F, recovered key k1 ⊕E[Fk0(R
′
0)] = 2A 34 11 1A 31 08 05 23.

– R′′
0 = 3E 57 8B 11, recovered key k1⊕E[Fk0(R

′′
0)] = 0B 2B 2D 11 0B 27 37 09.

– R′′′
0 = 3E 3E 3E 3E, recovered key k1 ⊕ E[Fk0(R

′′′
0)] = 0B 2E 39 18 1F 2F 32 19.

(R is given as 4 8-bit values in hexadecimal; k1 ⊕ E[Fk0(R0)] is given as 8
6-bit values, one per S-box).

3.2 Step 2

The differential attack from step 2 applied to the previous results yields the
following four candidates for the k0 round key. From each candidate for k0 we
can derive one candidate for the k1 second round key by resolving C.

48 O. Reparaz and B. Gierlichs

0 10 20 30 40 50 60
key hyp

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Sa
m

pl
e

Pe
ar

so
n

Fig. 3. Left: min/max correlation coefficient for each key, over all timesamples from
round 3. The correct key hypothesis is marked with a circle. Right: cross-correlation
matrix of a single trace, spanning the same time window as Fig. 2. The time sample
for which the Pearson correlation is maximal is marked in the picture.

– k0 = 17 00 21 0C 15 18 3D 0F =⇒ k1 = 14 12 37 30 19 09 1F 0C
– k0 = 17 00 21 1F 15 18 3D 0F =⇒ k1 = 14 12 37 30 19 09 1F 0C
– k0 = 17 00 21 23 15 18 3D 0F =⇒ k1 = 14 12 3F 30 1B 29 1F 0C
– k0 = 17 00 21 30 15 18 3D 0F =⇒ k1 = 14 12 3F 30 1B 29 1F 0C

From every candidate for (k0, k1) we can invert the key schedule. (We could
detect already incorrect candidates if the candidate (k0, k1) do not correspond to
the DES key schedule, but since the number of candidates is so low in our case,
we did not implement this option). The correct round keys are found to be k0 =
17 00 21 0C 15 18 3D 0F and k1 = 14 12 37 30 19 09 1F 0C; this corresponds to
the DES key 3B 38 98 37 15 20 F7 5E. We verified the correctness of the entire
procedure with plaintext/ciphertext pairs.

4 Discussion

Distance leakage. In a typical hardware implementation, the attacker measures
leakage roughly corresponding to HW(L3 ⊕ L2). Exactly the same attack can
be mounted in this case, mutatis mutandis, adjusting predictions in the DPA of
step 1. The practitioner knows that L2 = R1 ⊕ C. This C is unknown at this
stage, but constant, so that he can revert to single-bit DPA (which would ignore
the effect of C) or perform DPA recovering C as well.

If L2 is masked, e.g. because the first two rounds are masked, the Hamming
distance from L2 to L3 is also masked and the attack does not work immediately.
However, a device that exhibits Hamming distance leakage typically exhibits also
Hamming weight leakage (albeit possibly weaker).

A First-Order Chosen-Plaintext DPA Attack on the Third Round of DES 49

Jaffe’s trick. Jaffe [Jaf07] used a similar trick in a different context. He gave a
surprisingly elegant attack on the CTR mode of operation, even when the start-
ing counter value is unknown. (The amusing part here is that his is effectively a
blind DPA attack with unknown inputs and outputs). The basic idea is to push
the unknown counter value to the subkey hypothesis, so that the DPA attack
recovers at the same time the subkey and the initial counter value.

Optimizations. It may be possible to choose clever values for input differences
R0 ⊕ R′

0 to minimize the number of candidate keys output in the second step,
and thus to accelerate the whole attack. However, the gain is very thin. One
condition that the input difference should satisfy is that all first-round S-boxes
should be active (otherwise, the differential attack of step 2 cannot eliminate any
incorrect key guess for the inactive S-box). This can be achieved, for example,
with the easy-to-memorize difference R0 ⊕ R′

0 = FF FF FF FF.

How many different inputs do we need? It is possible to mount the attack with
just one input difference, i.e., one known plaintext and one chosen plaintext. We
have empirically determined that, if the input difference is FF FF FF FF, step 2
will (in the worst case) return 8, 14, 10, 16, 8, 8, 14 and 10 sub-key candidates
for S-box number 1, ..., 8 respectively. This means that the step 2 yields 8×14×
. . . × 10 < 228 keys, which can be easily bruteforced in a matter of seconds in
a workstation. (This is a very rough upper bound, one can cut this number by
first applying a consistency check if k0 and k1 fit the DES key schedule).

Influence of the key schedule. Note that in the process of deriving k1 from k0 by
resolving C in Sect. 2.2, we did not exploit the fact that in DES the round keys
k0 and k1 are heavily correlated (since the DES key schedule is so simple). This
method can thus be used even for other Feistel ciphers with an arbitrary key
schedule algorithm, even when k1 is completely independent of k0. Our method,
as described, recovers the first two round keys k0, k1. If two round keys are not
enough to invert the key schedule, once the adversary learns k0 and k1 he can
iterate the attack peeling off the first two rounds to recover k2 and k3 until he
gets the desired amount of round keys.

5 Conclusion

In this paper, we have described a first-order chosen-plaintext DPA attack on the
DES exploiting leakage stemming from the third round. This stresses, once again,
the necessity of protecting implementations of outer and inner rounds in Feistel
ciphers. Our attack is very easy to carry out, is resilient to noise (we only make
use of first-order statistics), can be carried out with negligible computational
power and recovers the full DES key.

Acknowledgments. The authors wish to thank the anonymous reviewers for their
insightful comments. This work was supported in part by the Research Council KU Leu-
ven: C16/15/058. In addition, this work was supported by the Flemish Government,

50 O. Reparaz and B. Gierlichs

FWO G.00130.13N, FWO G.0876.14N and Thresholds G0842.13; by the Hercules Foun-
dation AKUL/11/19; and through the Cathedral ERC Advanced Grant 695305. Oscar
Reparaz is Postdoctoral Fellow of the Fund for Scientific Research - Flanders (FWO).
Benedikt Gierlichs is Postdoctoral Fellow of the Fund for Scientific Research - Flanders
(FWO).

References

[BK07] Biryukov, A., Khovratovich, D.: Two new techniques of side-channel crypt-
analysis. In: Paillier and Verbauwhede [PV07], pp. 195–208

[DM95] Davies, D.W., Murphy, S.: Pairs and triplets of DES S-boxes. J. Cryptol.
8(1), 1–25 (1995)

[DP10] Dodis, Y., Pietrzak, K.: Leakage-resilient pseudorandom functions and side-
channel attacks on Feistel networks. In: Rabin, T. (ed.) CRYPTO 2010.
LNCS, vol. 6223, pp. 21–40. Springer, Heidelberg (2010). https://doi.org/
10.1007/978-3-642-14623-7 2

[HP06] Handschuh, H., Preneel, B.: Blind differential cryptanalysis for enhanced
power attacks. In: Biham, E., Youssef, A.M. (eds.) SAC 2006. LNCS, vol.
4356, pp. 163–173. Springer, Heidelberg (2007). https://doi.org/10.1007/978-
3-540-74462-7 12

[Jaf07] Jaffe, J.: A first-order DPA attack against AES in counter mode with
unknown initial counter. In: Paillier and Verbauwhede [PV07], pp. 1–13

[KJJ99] Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999).
https://doi.org/10.1007/3-540-48405-1 25

[KLL10] Kim, J., Lee, Y., Lee, S.: DES with any reduced masked rounds is not secure
against side-channel attacks. Comput. Math. Appl. 60(2), 347–354 (2010)

[KMV04] Kunz-Jacques, S., Muller, F., Valette, F.: The Davies-Murphy power attack.
In: Lee, P.J. (ed.) ASIACRYPT 2004. LNCS, vol. 3329, pp. 451–467.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30539-2 32

[Koc96] Kocher, P.C.: Timing attacks on implementations of Diffie-Hellman, RSA,
DSS, and other systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol.
1109, pp. 104–113. Springer, Heidelberg (1996). https://doi.org/10.1007/3-
540-68697-5 9

[PV07] Paillier, P., Verbauwhede, I. (eds.): CHES 2007. LNCS, vol. 4727. Springer,
Heidelberg (2007). https://doi.org/10.1007/978-3-540-74735-2

https://doi.org/10.1007/978-3-642-14623-7_2
https://doi.org/10.1007/978-3-642-14623-7_2
https://doi.org/10.1007/978-3-540-74462-7_12
https://doi.org/10.1007/978-3-540-74462-7_12
https://doi.org/10.1007/3-540-48405-1_25
https://doi.org/10.1007/978-3-540-30539-2_32
https://doi.org/10.1007/3-540-68697-5_9
https://doi.org/10.1007/3-540-68697-5_9
https://doi.org/10.1007/978-3-540-74735-2

A Strict Key Enumeration Algorithm for
Dependent Score Lists of Side-Channel Attacks

Yang Li(B), Shuang Wang, Zhibin Wang, and Jian Wang

College of Computer Science and Technology, Nanjing University of Aeronautics
and Astronautics, Nanjing, Jiangsu, China

li.yang@nuaa.edu.cn

Abstract. Post-processing of side-channel attack trades computational
efforts to recover the secret key even when some subkeys are not ranked
the highest in their score lists. Recently, many key enumeration (KE)
algorithms have been proposed, which attempt to effectively enumerate
the key candidates in the sequence of the score of the combined key.
However, the existing KE algorithm can only combine the score lists of
independent subkeys. In this paper, we consider a more general key enu-
meration algorithm, which can combine the score lists that are internally
restricted by each other. The proposed key enumeration algorithm can
for example combine the score lists for k0, k1 and k0 ⊕ k1, while the
existing KE algorithms cannot be directly extended to solve this prob-
lem efficiently. We propose an efficient strict key enumeration algorithm
that can run recursively for dependent score lists. With simulated side-
channel leakage of AES-128, the proposed KE algorithm can enumerate
the key according to 16 score lists of subkeys and 15 score lists of sub-
key difference. This KE algorithm can enumerate up to 221 keys using
5 h and 128 MB of RAM with a normal PC. By taking advantage of
the dependent score lists, the key recovery experiments using simulated
power data show that the success rate is largely improved in general.
The rank of correct key is statistically higher with the additionally used
score lists.

Keywords: Key enumeration · Correlation-enhanced collision attacks
AES · Side-channel attacks

1 Introduction

Ever since Kocher’s DPA proposal [1], the side-channel attack has been stud-
ied for almost two decades. Fundamentally, the SCA exploits the dependency
between the side-channel leakage in the side-channel measurements and the
key related intermediate values during cryptography calculations. Side-channel
attack against block ciphers usually follows a divide-and-conquer approach, in
which the entire secret key is divided into small subkeys and recovered one by
one. The recovered subkeys are combined to obtain the entire key.

c© Springer International Publishing AG, part of Springer Nature 2018
T. Eisenbarth and Y. Teglia (Eds.): CARDIS 2017, LNCS 10728, pp. 51–69, 2018.
https://doi.org/10.1007/978-3-319-75208-2_4

52 Y. Li et al.

With enough leakage information and appropriate key recovery method, the
entire key is the combination of all the most likely subkeys. When the leakage
information is not enough or the information of the target device is limited, some
of the correct subkeys are not ranked the highest in the score list, but still have
a higher score than many of the other candidates. The adversary can test the
key candidates in the sequence of its likelihood to be the correct key. The key
enumeration (KE) algorithm is used to enumerate the entire key candidate in
a non-increasing order of its score or probability. A reasonable key enumeration
algorithm could largely accelerate the key recovery compared to a naive random
search.

The KE algorithm is one of the post-processing techniques in side-channel
attacks, as described in the unified framework of SCA [2]. It can obtain the
required amount of computation for the key recovery, and can be used to improve
the accuracy in the security evaluation of the cryptography implementations. In
contrast to an unknown key assumption, the key rank estimation algorithm [3]
attempts to locate the rank of a given secret key quickly and accurately. This
work puts more focus on the KE algorithm.

Recently, the KE algorithm has been extensively studied for its great boost
to the key-recovery attack performance. The key enumeration algorithm is inter-
preted by a geometry problem in [4], and transferred to a backpack problem in
[5] and a convolution of histograms in [6]. The existing KE algorithms share
one common fact that they only deal with the score lists corresponding to inde-
pendent key information. For example, for AES-128, usually the input for key
enumeration is 16 score lists corresponding to 16 key bytes.

In 2017, a key rank estimation algorithm that can estimate the key rank
considering dependent score lists has been proposed [7]. In this paper, it proved
that the rank of the correct key decreases when considering dependent score lists.
We consider the KE algorithm should be expanded to be capable of enumerating
the combined key using dependent score lists. Dependent score lists have related
key information that restrict each other, e.g., k0, k1 and k0 ⊕ k1. One possible
application scenario is explained as follows. Two different approaches can be used
to recover the key information in different forms. The attackers can use CPA-like
attack [8] to recover individual key byte, and use correlation-enhanced collision
attack [9] to recover the difference between key bytes. Then, one reasonable
approach of the key enumeration is to consider all the recovered score lists.
When more score lists are used and combined reasonably, the correct key can be
recovered with fewer tests. There lacks an efficient KE algorithm to practically
take advantage of the dependent score lists.

Contributions

This work proposes an efficient KE algorithm that combines the mutually
restricted score lists. Also, this work investigates the advantage of such attack
approach using simulated leakage data. The detailed contributions of this work
are summarized as follows.

A Strict Key Enumeration Algorithm for Dependent Score Lists 53

1. We start from the existing KE algorithm and try to extend it to fit the
general KE problem. The result is a strict key enumeration algorithm that
can enumerate 3 keys lists from the most probable to the least probable one.
However, it cannot be effectively generalized to enumerate more score lists.

2. We propose a new KE algorithm that is efficient in time and memory, which
can also run recursively. This new algorithm has the following features.
(a) It is a deterministic algorithm that allows to strictly enumerate key can-

didates from any number of lists of any size.
(b) It is very flexible to choose the number of combined score lists to trade

for a balance of reasonable complexity.
3. A comprehensive evaluation is applied to verify the complexity of the pro-

posed KE algorithm. In addition, this work demonstrates the key enumera-
tion result by combining both the key-recovery attack and the key-difference
recovery attack. The experimental result confirms the advantage of combin-
ing dependent score lists by statistically ranking the correct key higher in the
enumeration.

The rest of this paper is organized as follows. Section 2 reviews the exist-
ing key enumeration algorithms. Section 3 explains the motivations for the key
enumeration problem of dependent score lists. Section 4 explains the evolution
towards the proposed KE algorithm and Sect. 5 performs a detailed evaluation
of it. Finally, Sect. 6 concludes this paper.

2 Previous Key Enumeration Algorithms

The concept of key enumeration was first proposed in 1991. Meier et al. proposed
a probabilistic key enumeration algorithm [10]. They aimed at stream cipher
and enumerated the pseudo random sequences generated by cellular automata.
However, it is a random selection process which causes useless repetitions.

After this article, key enumeration algorithm had not been extensively stud-
ied until Pan, Woudenberg et al. described a deterministic key enumeration algo-
rithm [11] at SAC 2010. Due to its large memory requirement, the algorithm is
limited to the enumeration of 216 key candidates.

Optimal Key Enumeration. In 2012, Veyrat-Charvillon et al. proposed a
strict key enumeration algorithm [4]. First, the authors proposed a Bayesian
expansion method to obtain the probability information of the subkeys [12]. The
proposed deterministic key enumeration algorithm outputs the full combined
keys in a strict order - from more likely to less likely ones. This intrinsic quality
could leads to a larger consumption about the memory. However, the strict order
minimizes the expected number of key test trials. Any non-strict algorithm incurs
an overhead in terms of trials during the key recovery phase.

Smart and Parallel in Key Enumeration. In 2015, Martin et al. proposed
a key enumeration algorithm based on the knapsack problem [5]. Their solution
can enumerate the keys in a parallel fashion. It needs to turn the floating scores
into the integer type of weight, which could affect the accuracy of the results.

54 Y. Li et al.

Integrated Approach in Key Enumeration. In 2016, Poussier, Standaert
and incent Grosso proposed a key enumeration algorithm based on histogram
[6]. In this article, the probability is divided into equal intervals. They assumed
that all the keys in the same probability range are equivalent, and then the 16
key bytes are combined in the way of histogram merging.

Non-strict Approaches in Key Enumeration. In 2015, Bogdanov et al.
proposed a score-based key enumeration algorithm [13], which is a variation of
the depth first search. Though it is sub-optimal, its memory and running time
requirements are more practical than that in [4]. Meanwhile it can be efficiently
parallelizable.

In 2017, David and Wool proposed a new key enumeration algorithm which
can use less memory space [14]. This algorithm is also a parallelizable algorithm
that enumerates the keys in near-optimal order.

3 General Key Enumeration Problem with Dependent
Score Lists

In this work, we discuss a more general key enumeration problem, in which the
dependent score lists are used together to calculate the score of the combined
key. Assume that the attacked key has n independent subkeys. An attacker can
perform a key-recovery attack on the subkey, i.e. ki, and the difference between
subkeys, i.e. ki,j = ki ⊕ kj . Each key-recovery attack generates a score list that
gives a score to each candidate value. As shown in Fig. 1, one can get n(n+1)/2
score lists in total, which are arranged in a triangular shape.

Existing key enumeration algorithms can only combine independent subkeys.
In other words, selecting any candidate from a score list is independent from
the candidate selection of the other score lists. A few examples of such sets of
independent subkeys are shown in Fig. 1 inside the dotted line boxes.

The key enumeration problem proposed in this paper is to combine subkeys
considering the dependent scores lists. The dependent score lists are mutually
connected and restricted with each other. A few examples of such dependent
score lists are shown inside the slide line boxes in Fig. 1.

In summary, the goal of this work is to propose an efficient strict key enu-
meration algorithm that can combine the arbitrarily selected score lists from
Fig. 1.

Score Function. In this work, we don’t distinguish the multiplication or the
addition in the score calculation of the combined key. Instead, we define a score
function to increase the generality.

Score function S(·) is a mapping from the scores from score lists to the
score of the combined key. Normally, the score function is either a simple addi-
tion or multiplication. However, in our studied case, the score function could
be complicated due to the inner connection between the combined score lists.

A Strict Key Enumeration Algorithm for Dependent Score Lists 55

Fig. 1. Independent and dependent key list combine problem

In order to keep the generality of this paper, we only assume the score function is
a monotonic function along each combined score. That is to say, for S(a, b, c, · · ·),
if a1 > a2, we know S(a1, b, c, · · ·) > S(a2, b, c, · · ·). However, if a1 > a2 and
b1 < b2, then the comparison between S(a1, b1, c, · · ·) and S(a2, b2, c, · · ·) can
only be performed by calculating the scores. Both multiplication and addition
fit this score function definition.

3.1 Significance of General Key Enumeration Problem

A good reason to consider dependent score list is the key recovery result of
correlation-enhanced power analysis collision attack (CECA) [9]. Instead of
recovering the key byte directly, the CECA attack focuses on recovering the
difference between two key bytes, i.e. ki,j = ki ⊕ kj .

In 2003, Schramm et al. first proposed a side-channel attack that applied a
collision attack to a block cipher [15]. Collision attack is used to detect whether
the intermediate value is the same. Whenever the output of the first round
S-box is the same, e.g. S0(i0) = S1(i1), since the S-box is bijective, we have
p0 ⊕ k0 = p1 ⊕ k1 and p0 ⊕ p1 = k0 ⊕ k1. An attacker who knows the plaintext
and can detect the S-box output collision, can get the XOR relationship between
16 key bytes of AES-128. As a result, the key space is greatly reduced from 2128

to 28.
In 2010, Moradi et al. proposed the correlation-enhanced power analysis

collision attack (CECA), which takes advantage of correlation calculation to
put forward a new distinguisher for recovering the subkey difference. The basic
assumption is that the S-box calculations with the same input lead to simi-
lar side-channel leakages. From all of the traces, the CECA attack collects and
averages only those traces where the i-th plaintext byte equals a certain value
α ∈ GF(28). Hence, one can get 28 average traces Mα

i in position i, where Mα
i

is the average of all traces where the i-th S-box input is α ⊕ ki. One can get
28 average traces Mα

j in position j as well. Then, CECA exploits the leakage

56 Y. Li et al.

caused by the collision using all the measured traces for the collision between
i-th and j-th S-boxes.

For positions i and j, whenever the plaintext bytes pi and pj satisfy pi ⊕pj =
ki ⊕ kj = ki,j , the collision occurs for these two S-box calculations. Therefore,
the Mα

i and M
α⊕ki,j

j should have similar side-channel leakage for α ∈ GF(28).
CECA’s approach is to guess ki,j and verify the guess by verifying all resulting
collisions for all α in GF(28) in a correlation calculation. The distinguisher of
CECA is the correlation result of the averaged power consumption Mα

i and the
averaged power consumption Mα⊕ki,j

j for all α ∈ GF(28). The correct key is
expected to have the largest correlation.

CECA can exploit the first order leakage without knowing the precise leakage
model, which fits most practical implementations with SCA countermeasures. In
power analysis, it has been used to evaluate the side-channel leakage through
static power in [16] and to evaluate masking countermeasure in [17]. The same
distinguisher is also used in fault sensitivity analysis in [18,19] since the leakage
model for fault sensitivity is different to model.

The target of CECA-like attack is the difference between key bytes. The key
enumeration algorithm of dependent score lists is the tool to take advantage of
the key-difference recovery attacks in the post-processing of SCA. In 2017, a
key rank estimation algorithm for dependent score lists has been proposed [7],
in which the authors consider combining the results of CPA-like attack and
CECA-like attack in the key rank estimation. They use simulated power traces to
prove that the rank of the correct key become generally higher when considering
dependent key lists.

4 Strict Key Enumeration Algorithms for Dependent
Score Lists

In this section, we first review the strict key enumeration algorithm for indepen-
dent score lists from [4]. Then, we attempt to extend it to solve KE problem of
dependent score lists. Lastly, we finalize our proposed KE algorithm.

4.1 Strict Key Enumeration Algorithm for Independent Score Lists

In [4], Veyrat-Charvillon et al. proposed an optimal (strict) key enumeration
algorithm for independent score lists. The attacker obtains score lists for d inde-
pendent subkeys, each score list taking n different values. The scores are viewed
as the probability, and the score of the combined key is calculated by multi-
plication. The essence of their work can be explained as a 2-dimensional KE
algorithm and a recursive enumeration approach.

A 2-dimensional KE problem is viewed as a geometric problem. Two subkeys
are combined together so that the key space can be identified with a square of
length 1 as shown in Fig. 2. The columns (resp. rows) correspond to the proba-
bility of the possible values of the first (resp. second) subkey, sorted by a non-
increasing order of probability. Width and height correspond to the probability
of the corresponding subkey.

A Strict Key Enumeration Algorithm for Dependent Score Lists 57

Fig. 2. 2-dimensional key enumeration and generalization to multiple lists [4].

Let us denote by k
(j)
i the jth likeliest value of the ith subkey. In the map,

the intersection rectangle corresponds to a combined key, and the area of the
rectangle is the probability of it. The algorithm keeps a frontier set of rectangles
as F , which contains the candidates to be the next key with the largest proba-
bility. To keep the KE efficient in memory of storing F , the KE algorithm takes
advantage of the following Rule 1.

Rule 1. F may contain at most one element in each column and row. For two
elements in the same column or row, one of them definitely has a larger score
than the other one.

The key enumeration starts at the corner close to the origin. Each time when one
element of F is outputted to the plaintext-ciphertext test, the rectangles next to
it are added to F if no element inside F shares the same column or row. Using
this geometric view, a strict key enumeration algorithm outputs compartments
by a non-increasing order of area. This solution is illustrated in Algorithm 1.
When implementing Algorithm 1, the frontier set F can be stored in an ordered
structure and the test of rule 1 can be achieved by storing the arrays of Boolean
values.

In [4], the generalization to multiple lists is achieved by the recursive use
of the 2-dimensional KE algorithm. Taking an example of AES, enumerating
128-bit keys is done by merging two lists of size 264. Such lists can be generated
at the time they are required in the key enumeration. Whenever a new subkey
is inserted in the candidate set, the program obtain it from the enumeration
algorithm applied to a lower level. This ensures that the storage and enumeration
effort are minimized. In this way, merging n lists is done by merging two lists
n − 1 times. For more details, we refer the readers to [4].

58 Y. Li et al.

Algorithm 1. A strict 2-dimensional KE algorithm [4]

1: F ← {(k
(1)
0 , k

(1)
1)};

2: while F �= ∅ do
3: (k

(x)
0 , k

(y)
1) ← most likely candidate in F ;

4: Output (k
(x)
0 , k

(y)
1);

5: F ← F\{(k
(x)
0 , k

(y)
1)};

6: if x + 1 ≤ #k0 and no candidate in row x + 1 then
7: F ← F ∪ {(k

(x+1)
0 , k

(y)
1)};

8: end if
9: if y + 1 ≤ #k1 and no candidate in column y + 1 then

10: F ← F ∪ {(k
(x)
0 , k

(y+1)
1)};

11: end if
12: end while

4.2 Attempt to Extend 2-Dimensional KE Algorithm
to 3-Dimensional KE Algorithm

Similar to [4], our approach first considers a 3-dimensional key enumeration
problem, and then tries to generalize it to more score lists in a recursive approach.
The two subkeys in the 2-dimensional case are independent of each other. We
add a third dimension to the key enumeration that corresponds to the difference
between these two subkeys as shown in Fig. 3.

Fig. 3. Layers in 3-dimensional KE problem (left), concepts in Algorithm 2 (middle)
and Algorithm 3 (right).

In case of 3-dimensional KE problem, a straightforward approach is to treat
it as same as the independent score lists, and to deal with the dependency after
the enumeration. Here, we assume that the score function is the multiplication
so the combined key is a cube in the 3-dimensional space, and its volume is the
score of the merged key. The algorithm locates the cube at the origin, which
corresponds to the cube of the largest volume, and adds to the frontier set F .

A Strict Key Enumeration Algorithm for Dependent Score Lists 59

After this cube is outputted to test, all the neighboring cubes become candidates
to F . Similarly, we use Rule 2 to restrict the memory cost.

Rule 2 (Extended Rule 1). F may contain at most one element in each line
that is parallel to x-axis, y-axis, or z-axis.

This process is repeated so that the cubes can be enumerated from this 3-
dimensional space in a non-increase order of their volumes.

This method is theoretically feasible but inefficient. The main reason is that
most of the cubes in this three-dimensional space are out of practical significance.
For any given cube, the 3 axes represent two subkeys k0, k1 and their difference
k0,1. If k

(x)
0 ⊕ k

(y)
1 �= k

(z)
0,1, the corresponding cube is meaningless. Assume that

the length of each axis is len, only 1/len of all the cubes are meaningful. The
straightforward KE algorithm obviously wastes too much computation at the
meaningless cubes. Thus, one can improve the algorithm by putting the verifica-
tion before the key enumeration. Then, it is not difficult to notice the following
fact.

Rule 3. In the 3-dimensional space, there is only one valid element in each line
that is parallel to x-axis, y-axis, or z-axis.

According to Rule 3, whenever x and y are fixed, there is only 1 meaningful cube
along z-axis. One can directly find the location of this only meaningful point with
(k(x)

0 , k
(y)
1 , k

(x)
0 ⊕ k

(y)
1). Consequently, an improved approach is to bypass all the

meaningless cubes and still use F to achieve the memory control.
We use Fig. 3 to explain the improved KE algorithm. The 3-dimensional

space is divided into different layers along the x-axis. The search starts from the
layer close to the origin and gradually adds cubes to F . For the current layer,
the search goes through y, and directly finds the corresponding meaningful cube
as (k(x)

0 , k
(y)
1 , k

(x)
0 ⊕ k

(y)
1). In this search, we will maintain a boundary B. Only

the cubes inside B could be the candidates of the next cube with the largest
volume. For each added cube to F , the boundary B is updated as well. If a
newly searched cube locates inside B, it will be added to F , and B is updated
accordingly.

For example, as shown in the middle of Fig. 3 the search in layer i ends
when the boundary (black line) excludes all the rest part of layer 0. When the
search restarts at layer 1, the boundary of layer 0 is kept for to the layer 1.
Only the meaningful point inside B can be added to F . Along the search, F
become larger and larger, and the boundary B becomes smaller and smaller.
After no more elements can be added to F , the algorithm outputs the cube with
the largest combined score and update F and B. With each outputted cube,
the boundary expands a little. The following search is applied according to the
updated boundary area.

This algorithm is illustrated in Algorithm 2. Unfortunately, the evaluation
of an implemented Algorithm 2 is not good enough for three reasons. First, the
boundary B is complicated to maintain. Second, the search is slow since many
cubes are checked multiple times. Third, the Algorithm 2 cannot be generalized

60 Y. Li et al.

Algorithm 2. A strict 3-dimensional KE algorithm
1: F = ∅;
2: B ← every point;
3: x = 1, y = 1;
4: repeat
5: repeat
6: if (k

(x)
0 , k

(y)
1 , k

(x)
0 ⊕ k

(y)
1) ∈ B then

7: F = F ∪ (k
(x)
0 , k

(y)
1 , k

(x)
0 ⊕ k

(y)
1)

8: Update(B); // remove all points that are smaller than (k
(x)
0 , k

(y)
1 , k

(x)
0 ⊕k

(y)
1)

9: end if
10: y = y + 1;
11: until k

(x)
0 ⊕ k

(y−1)
1 �= k

(1)
0,1

12: x = x + 1;
13: until k

(x−1)
0 ⊕ k

(1)
1 �= k

(1)
0,1

14: (k
(x)
0 , k

(y)
1 , k

(z)
0,1) ← most likely candidate in F ;

15: Output (k
(x)
0 , k

(y)
1 , k

(z)
0,1);

16: F ← F\{(k
(x)
0 , k

(y)
1 , k

(z)
0,1)};

17: Update(B); // add the removed points caused by (k
(x)
0 , k

(y)
1 , k

(z)
0,1) back to B

18: Goto Step 4;

to more score lists in a recursive approach. The reason is that Algorithm 2
request at least one ordered axis to fast locate the meaningful cube in a line. In
the given example, the z axis should be ordered before the search. When merging
more dependent score lists recursively, the z axis will be the combination of other
score lists that cannot be ordered before the search.

4.3 Strict 3-Dimensional Key Enumeration Algorithm

This section proposes a more efficient and an expandable KE algorithm to solve
the strict 3-dimensional KE problem. First, in order to not check the same
merged key multiple times, we want to store all the checked merged key cubes.
Second, this new algorithm should not require an ordered axis so it can be
performed in a recursive approach.

Still we divide the 3-dimensional space into layers and keep the same search
sequence. The main difference is that we apply a new rule to stop each layer’s
search.

Rule 4. In the search of a certain layer, x is fixed, k
(y)
1 is decreasing when y is

increasing along the search. When S(k(x)
0 , k

(y)
1 ,MaxScorek0,1) ≤ MaxScore, the

search along y-axis stops, in which MaxScorek0,1 is the largest score of k0,1 and
MaxScore is current the largest score of all searched keys except the outputted
ones.

The reason is that when S(k(x)
0 , k

(y)
1 ,MaxScorek0,1) ≤ MaxScore, the rest merged

key along y axis is definitely smaller than MaxScore. For the same reason, k
(x)
0

A Strict Key Enumeration Algorithm for Dependent Score Lists 61

and k
(y)
1 are both decreasing along the search, when S(k(x)

0 , k
(1)
1 ,MaxScorek0,1) ≤

MaxScore, the rest merged key along x axis is definitely smaller than MaxScore.
For the search inside a layer, MaxScore is gradually increasing and k

(y)
1 is

gradually decreasing so that the stop edge can be reached. When the search
goes through different layers, the search stops when S(k(x)

0 , k
(1)
1 ,MaxScorek0,1) ≤

MaxScore, which means the above layers cannot have candidates with a larger
score. After the search over the 3-dimensional space, the combined key with
MaxScore is outputted and MaxScore is updated to the previous second largest
score. The search over 3-dimensional space can re-start from the stop edge of
the previous search.

This search algorithm makes sure that each key candidate is only searched
once so the time complexity is low. However, the memory cost is relative large
since this algorithm keeps all the searched keys.

In order to achieve a balance between time and memory cost, we can apply a
trade-off technique to this enumeration algorithm. Since the key search is applied
in layers that are perpendicular to x-axis. Instead of storing all the searched keys,
the algorithm can store only the keys with the largest score in each layer. The
MaxScore can be easily find from the largest scores in all layers. Every time
when a key candidate is outputted, the largest score of the corresponding layer
becomes zero. Then we need to re-search the layer corresponding to the removed
key and search other layers from the stop edge to find the updated largest score.

This trade-off can balance of space and time complexity and the parameter
for this trade-off can be easily adjusted to fit the practical computational setup.

This efficient strict 3-dimensional KE algorithm after applying the time-
memory trade-off is illustrated in Algorithm 3. Lines 9 to 15 correspond to the
search inside a layer, and lines 7 to 18 correspond the search among different
layers. For each layer, the algorithm stores the key with the largest score that
has not been outputted and the search edge. This KE algorithm neither needs
to store all the searched keys nor to re-search all the keys that are not stored.

Extension to Multiple Lists. Similar to 2-dimensional KE algorithm, the
proposed 3-dimensional KE algorithm of Algorithm 3 can be extended to mul-
tiple lists in a recursive approach. For example, in order to combine k0||k1and
k2||k3, the z-axis can be considered as k0,2, k0,3, k1,2, k1,3. The max score of the
z axis can be a rough estimation by the score function using the max scores of
k0,2, k0,3, k1,2 and k1,3 as the input. Though, this could lead to certain efficiency
loss.

Actually, the 3-dimensional KE algorithm has a very nice feature that the
searched lists can be easily adjusted without changing the KE algorithm. If
the combined key want to ignore a certain score list, one can simply set all the
scores to 0 in this score list. Also, different score lists can have different weights in
order to increase the KE efficiency or to emphasize the significance difference of
different score lists. In the example of combine k0||k1and k2||k3, the KE efficiency
can be largely improved by either adding a low weight to S(k0,2, k0,3, k1,2, k1,3)
or only using some of the four lists.

62 Y. Li et al.

Algorithm 3. An efficient strict 3-dimensional KE algorithm
1: MaxScoreinLayer[1 : 256] = 0;
2: Edge[1 : 256] = 1; //Edge is the search edge of all layers
3: Find MaxScorek0,1 ; // MaxScorek0,1 is the largest score of k0,1

4: MaxScore = 0; // MaxScore is the largest score in MaxScoreinLayer
5: repeat
6: x = 1;
7: while S(k

(x)
0 , k

(1)
1 , MaxScorek0,1) > MaxScore do

8: y = Edge[x];

9: while S(k
(x)
0 , k

(y)
1 , MaxScorek0,1) > MaxScore do

10: if (k
(x)
0 , k

(y)
1 , k

(z)
0,1) is not outputted and S(k

(x)
0 , k

(y)
1 , k

(z)
0,1) >

MaxScoreinLayer[x] then

11: MaxScoreinLayer[x] = S(k
(x)
0 , k

(y)
1 , k

(z)
0,1);

12: if MaxScoreinLayer[x] > MaxScore then
13: MaxScore = MaxScoreinLayer[x] ;
14: end if
15: end if
16: y = y + 1
17: end while
18: Edge[x] = y;
19: x = x + 1;
20: end while
21: Output MaxScore to test;
22: MaxScoreinLayer[x of MaxScore]=0;
23: MaxScore = Max(MaxScoreinLayer);
24: Edge[x of MaxScore] = 1;
25: until Enough key candidates have been generated

If only the independent score lists are used in this algorithm, this algorithm
degenerates into a 2-dimensional KE algorithm with some difference from Algo-
rithm1. The time complexity should be similar since each combined key is still
only checked once. The memory complexity is larger than that of Algorithm 1
since Rule 1 is only applied in 1 axis rather than 2 axes. Still the generality of
the proposed 3-dimensional KE algorithm is a nice feature as a more generalized
KE tool.

4.4 General Strict Key Enumeration Algorithm for AES-128

This section discusses the practical and efficient usage of the proposed efficient
strict KE algorithm of Algorithm 3. The intuition is that with the same mea-
surements, the attackers can target different types of key information to improve
the attack result. As mentioned, for n subkeys, one can get n(n+1)/2 score lists
including the subkeys and the subkey differences. We consider that the key enu-
meration using all these score lists are not reasonable for the following reasons.

– The computational cost (time and memory) is too large for such KE, which
could reduce the overall efficiency of the post-processing. For AES-128, there

A Strict Key Enumeration Algorithm for Dependent Score Lists 63

are in total 136 score lists and the internal relations are too many to be
performed in practice.

– According to the key recovery methods, the information in the recovered
score lists are overlapping with each other. Adding new score lists may not
always lead to better performance of key enumeration. For example, since the
correlation calculation is transitive1, the new information of the newly added
score list could be decreasing due to the overlap. A comprehensive evaluation
of this issue is actually a very interesting topic to exploit as a future work.

In each attack, the attackers have to decide a strategy of the KE according
to its purpose. In this work, we decided to pick up a reasonable approach to
perform the KE strategy for AES-128 as shown in Fig. 4. The KE algorithm
basically covers 2 rows of the score lists triangle, which including 16 key bytes
score lists and 15 key byte difference score lists. To achieve this 31-score-list KE
algorithm, we only need to set all the rest score lists to full zeros.

Fig. 4. 31-score-list key enumeration of dependent score lists

5 Evaluations of Key Enumeration Algorithm
Using Simulated Data

In this section, we investigate the impact of key enumeration to quantify the
reduction in the data complexity of the key recovery. The side-channel leakage is
1 For 3 random variables A, B and C, and denote their correlation coefficients are ρA,B ,

ρB,C and ρA,C . It is known that ρA,B , ρB,C gives an up-bound and a low-bound for
ρA,C .

64 Y. Li et al.

targeted the output of the S-boxes in the first AES round. All our experiments
were performed using i7-6500 CPU running at 2.50 GHz with 8 GB of RAM
on Windows 10. In our experiments, the score function is simply a summation
calculation without any weight.

5.1 Complexity Evaluation

We first verify the performances of 31-score-list KE algorithm in terms of timing
and memory. We repeated the KE algorithm for 100 times with a time limitation
of 5 h. The time and memory cost for these 100 trails are shown in Fig. 5. As
shown in Fig. 5, the KE algorithm can enumerate up to 221 secret keys using
about 5 h within 128 MB memory cost. In our evaluation, the memory cost of
the program is measured using the API function of GetProcessMemoryInfo.

The memory-time trade-off can be adjusted for the proposed KE algorithm.
For example, each layer can be divided into smaller blocks so that the algorithm
stores the largest merged key of each block instead of each layer. Then more
memory is used to reduce the time overhead. Also, for different levels of the
recursive call, different polices of the memory-time balance can be applied to
increase the overall performance.

10 12 14 16 18 20 22
0

5

10

15

log2(key rank)

lo
g 2(T

im
e

in
 s

ec
on

ds
)

(a) Time Overhead

10 12 14 16 18 20 22
2

4

8

16

32

64

128

log2(key rank)

M
em

or
y

co
st

 (M
B)

(b) Memory Cost

Fig. 5. Time overhead and memory cost of 31-score-list KE

5.2 Performance Evaluation for KE of Dependent Score Lists

The simulated leakages following a Hamming weight leakage model on the S-box
output. Our simulation adds two types of noises in the leakage measurement, i.e.
the leakage model noise and the measurement noise. We assume that the leakage
model of the device is not perfectly the same with the leakage model (HW model)
used by the attacker. Instead, the leakage model of device is constructed as

LeakageModel(α) = HW(α) + N (0, 42), (1)

A Strict Key Enumeration Algorithm for Dependent Score Lists 65

for α ∈ GF(28). To simulate the leakage measurement, we add an independent
Gaussian noise to the measurement as well, i.e.

MesauredLeakage(α) = LeakageModel(α) + N (0, 42). (2)

The main reason to add a leakage model noise is to make sure that CPA and
CECA have a similar attack efficiency.

For each set of measurement leakage, we applied 4 types of attack as (1) CPA
using the correlation coefficient as the score to each key byte (2) CECA using
the correlation coefficient as the score of each key byte difference (3) CPA+KE
that uses the CPA score lists and the KE algorithm (4) CPA+CECA+KE that
uses 31 score-lists from CPA and CECA, and the KE algorithm. For every KE
algorithm, the search has a time limitation of 20 min. Note that for CPA+KE,
we are using Algorithm 3 for the key enumeration in which the CECA lists are
set to be all zeros.

Figure 6 illustrates the evolution of the success rate against the used leakage
data for 4 types of key recovery attacks. We have the following observations.

0 100 200 300 400 500 600
0

20

40

60

80

100

Number of power traces

Su
cc

es
s

R
at

e

CECA
CPA
CPA+KE
CPA+CECA+KE

Fig. 6. Success rate curves for CPA, CECA, CPA+KE and CPA+CECA+KE.

– The simulation setting leads to a similar attack efficiency for CPA and CECA.
– Within the same search time, CPA+CECA+KE attack shows better attack

results than CPA+KE. Both attack methods starts to recover the key around
100 traces. Using dependent score lists, the success rate reaches 1 with 250
traces, which is a large improvement compared to 400 traces without using
15 CECA score lists.

We also investigated the rank of the correct key for CPA+KE attack and
CECA+CPA+KE attack. We first ignore the cases in which both attacks ranked
the correct key the first. We also ignore the cases in which either one of the attack

66 Y. Li et al.

failed to enumerate the correct key within the time limitation. Then we compared
the key rank of these two attacks. We calculated the rank improvement between
the key rank in CECA+CPA and the key rank in CPA as log2(

RankCPA
RankCECA+CPA

).
The distribution of the key rank improvement is shown in Table 1. In Table 1,
the first line corresponds to the range of log2(

RankCPA
RankCECA+CPA

). The second line is
the percentage of results within a certain range. The last line is the percentage
of RankCPA < RankCECA+CPA and RankCPA > RankCECA+CPA. It is clear that
the key rank in CECA+CPA is statistically lower than that in CPA, which is a
clear advantage of the 31-score-list KE.

Table 1. Distribution of Key Rank Improvement (bits), 16-list vs 31-list

(∞, −4) [−4, −2) [−2, 0) [0, 2) [2, 4) [4, 6) [6, 8) [8, ∞)

0.2% 0.4% 1.72% 40.11% 24.67% 13.32% 9.37% 10.22%

2.32% 97.68%

The efficiency of CPA-like attack is largely affected by the accuracy of the
leakage model. In order to eliminate the difference in the nature of combined
score lists, we further investigate two types of attacks as (1) CECA+KE attack
using 15 independent subkey difference score lists and (2) CECA+KE attack
using 15 + 14 dependent subkey difference score lists. From 120 score lists of
subkey difference, the 15 independent subkey difference score lists correspond to
k0,1, k1,2, . . . , k14,15. Correspondingly, the other 14 subkey difference score lists
correspond to k0,2,k1,3,. . . ,k13,15. The rest of the experiment is exactly the same
with previous one. The evaluation of success rate is shown in Fig. 7, in which the
attack using 29 lists shows clear advantage.

0 100 200 300 400 500 600
0

20

40

60

80

100

Number of power traces

Su
cc

es
s

R
at

e

CECA
CECA15+KE

CECA29+KE

Fig. 7. Success rate curves for 15-list-CECA and 29-list-CECA.

A Strict Key Enumeration Algorithm for Dependent Score Lists 67

As for the rank of the correct key, the distribution of the logarithm ratio
between key rank using 15 lists and key rank using 29 lists is shown in Table 2,
i.e. log2(

Rank15CECALists
Rank29CECALists

). Table 2 shows that the key rank in 29-list-CECA is
statistically much lower than that in 15-list-CECA, which implies again that the
more score lists are used in KE, the correct key can be ranked higher and the
number of plaintext-ciphertext test can be reduced. For CECA, this reduction
should be multiplied with a factor of 28 as the guess of k0 in the plaintext-
ciphertext test.

Table 2. Distribution of Key Rank Improvement (bits), 15-list vs 29-list

(−∞, 0) [0, 1) [1, 2) [2, 3) [3, 4) [4, 5) [5, 6) [6, ∞)

0.49% 20.42% 25.83% 13.16% 11.44% 9.59% 7.8% 11.07%

0.49% 99.51%

6 Conclusions

This work proposed a strict but efficient key enumeration algorithm to combine
the key-recovery score lists that are dependent with each other. First, we pro-
posed a 3-dimensional strict key enumeration algorithm that shows much better
performance than a straightforward extension of the previous 2-dimensional key
enumeration algorithm. Second, this work generalized this 3-dimensional KE
algorithm to form a 31-score-list key enumeration algorithm for AES-128. The
KE algorithm can enumerate 221 keys using 5 h and 128 MB of RAM using a
normal PC. In the performance evaluation, we demonstrated that the correct
key will be ranked much higher when dependent score lists are used in the key
recovery. As a result, the success rate increases when more score lists are used.
This improvement does not come from increased data complexity, which is sig-
nificant to be noted. In the future work, we’d like to compare our proposal with
other state-of-the-art key enumeration algorithms. This paper presented a new
type of tool in the post-processing of SCA, whose usage scenario requires more
comprehensive study in the future.

Acknowledgement. This research was supported by National Natural Science Foun-
dation of China (No. 61602239) and Jiangsu Province Natural Science Foundation
(No. BK20160808).

68 Y. Li et al.

References

1. Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999).
https://doi.org/10.1007/3-540-48405-1 25

2. Standaert, F.-X., Malkin, T.G., Yung, M.: A unified framework for the analysis of
side-channel key recovery attacks. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS,
vol. 5479, pp. 443–461. Springer, Heidelberg (2009). https://doi.org/10.1007/978-
3-642-01001-9 26

3. Glowacz, C., Grosso, V., Poussier, R., Schüth, J., Standaert, F.-X.: Simpler and
more efficient rank estimation for side-channel security assessment. In: Leander,
G. (ed.) FSE 2015. LNCS, vol. 9054, pp. 117–129. Springer, Heidelberg (2015).
https://doi.org/10.1007/978-3-662-48116-5 6

4. Veyrat-Charvillon, N., Gérard, B., Renauld, M., Standaert, F.-X.: An optimal key
enumeration algorithm and its application to side-channel attacks. In: Knudsen,
L.R., Wu, H. (eds.) SAC 2012. LNCS, vol. 7707, pp. 390–406. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-35999-6 25

5. Martin, D.P., O’Connell, J.F., Oswald, E., Stam, M.: Counting keys in parallel
after a side channel attack. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015.
LNCS, vol. 9453, pp. 313–337. Springer, Heidelberg (2015). https://doi.org/10.
1007/978-3-662-48800-3 13

6. Poussier, R., Standaert, F.-X., Grosso, V.: Simple key enumeration (and rank esti-
mation) using histograms: an integrated approach. In: Gierlichs, B., Poschmann,
A.Y. (eds.) CHES 2016. LNCS, vol. 9813, pp. 61–81. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-53140-2 4

7. Wang, S., Li, Y., Wang, J.: A new key rank estimation method to investigate
dependent key lists of side channel attacks. In: IEEE Asian Hardware Oriented
Security and Trust Symposium (AsianHOST). IEEE (2017)

8. Brier, E., Clavier, C., Olivier, F.: Correlation power analysis with a leakage model.
In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 16–29.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28632-5 2

9. Moradi, A., Mischke, O., Eisenbarth, T.: Correlation-enhanced power analysis col-
lision attack. In: Mangard, S., Standaert, F.-X. (eds.) CHES 2010. LNCS, vol.
6225, pp. 125–139. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
642-15031-9 9

10. Meier, W., Staffelbach, O.: Analysis of pseudo random sequences generated by
cellular automata. In: Davies, D.W. (ed.) EUROCRYPT 1991. LNCS, vol. 547,
pp. 186–199. Springer, Heidelberg (1991). https://doi.org/10.1007/3-540-46416-
6 17

11. Pan, J., van Woudenberg, J.G.J., den Hartog, J.I., Witteman, M.F.: Improving
DPA by peak distribution analysis. In: Biryukov, A., Gong, G., Stinson, D.R. (eds.)
SAC 2010. LNCS, vol. 6544, pp. 241–261. Springer, Heidelberg (2011). https://doi.
org/10.1007/978-3-642-19574-7 17

12. Schindler, W., Lemke, K., Paar, C.: A stochastic model for differential side channel
cryptanalysis. In: Rao, J.R., Sunar, B. (eds.) CHES 2005. LNCS, vol. 3659, pp.
30–46. Springer, Heidelberg (2005). https://doi.org/10.1007/11545262 3

13. Bogdanov, A., Kizhvatov, I., Manzoor, K., Tischhauser, E., Witteman, M.: Fast
and memory-efficient key recovery in side-channel attacks. In: Dunkelman, O.,
Keliher, L. (eds.) SAC 2015. LNCS, vol. 9566, pp. 310–327. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-31301-6 19

https://doi.org/10.1007/3-540-48405-1_25
https://doi.org/10.1007/978-3-642-01001-9_26
https://doi.org/10.1007/978-3-642-01001-9_26
https://doi.org/10.1007/978-3-662-48116-5_6
https://doi.org/10.1007/978-3-642-35999-6_25
https://doi.org/10.1007/978-3-662-48800-3_13
https://doi.org/10.1007/978-3-662-48800-3_13
https://doi.org/10.1007/978-3-662-53140-2_4
https://doi.org/10.1007/978-3-540-28632-5_2
https://doi.org/10.1007/978-3-642-15031-9_9
https://doi.org/10.1007/978-3-642-15031-9_9
https://doi.org/10.1007/3-540-46416-6_17
https://doi.org/10.1007/3-540-46416-6_17
https://doi.org/10.1007/978-3-642-19574-7_17
https://doi.org/10.1007/978-3-642-19574-7_17
https://doi.org/10.1007/11545262_3
https://doi.org/10.1007/978-3-319-31301-6_19

A Strict Key Enumeration Algorithm for Dependent Score Lists 69

14. David, L., Wool, A.: A bounded-space near-optimal key enumeration algorithm for
multi-subkey side-channel attacks. In: Handschuh, H. (ed.) CT-RSA 2017. LNCS,
vol. 10159, pp. 311–327. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-52153-4 18

15. Schramm, K., Wollinger, T., Paar, C.: A new class of collision attacks and its
application to DES. In: Johansson, T. (ed.) FSE 2003. LNCS, vol. 2887, pp. 206–
222. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-39887-5 16

16. Moradi, A.: Side-channel leakage through static power. In: Batina, L., Robshaw,
M. (eds.) CHES 2014. LNCS, vol. 8731, pp. 562–579. Springer, Heidelberg (2014).
https://doi.org/10.1007/978-3-662-44709-3 31

17. Roche, T., Lomné, V.: Collision-correlation attack against some 1st-order Boolean
masking schemes in the context of secure devices. In: Prouff, E. (ed.) COSADE
2013. LNCS, vol. 7864, pp. 114–136. Springer, Heidelberg (2013). https://doi.org/
10.1007/978-3-642-40026-1 8

18. Moradi, A., Mischke, O., Paar, C., Li, Y., Ohta, K., Sakiyama, K.: On the power
of fault sensitivity analysis and collision side-channel attacks in a combined set-
ting. In: Preneel, B., Takagi, T. (eds.) CHES 2011. LNCS, vol. 6917, pp. 292–311.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-23951-9 20

19. Schellenberg, F., Finkeldey, M., Gerhardt, N., Hofmann, M., Moradi, A., Paar, C.:
Large laser spots and fault sensitivity analysis. In: IEEE International Symposium
on Hardware Oriented Security and Trust (HOST), pp. 203–208. IEEE (2016)

https://doi.org/10.1007/978-3-319-52153-4_18
https://doi.org/10.1007/978-3-319-52153-4_18
https://doi.org/10.1007/978-3-540-39887-5_16
https://doi.org/10.1007/978-3-662-44709-3_31
https://doi.org/10.1007/978-3-642-40026-1_8
https://doi.org/10.1007/978-3-642-40026-1_8
https://doi.org/10.1007/978-3-642-23951-9_20

A Novel Use of Kernel Discriminant Analysis
as a Higher-Order Side-Channel Distinguisher

Xinping Zhou1,2(B), Carolyn Whitnall3 , Elisabeth Oswald3, Degang Sun1,2,
and Zhu Wang1,2

1 Institute of Information Engineering,
Chinese Academy of Sciences,

Beijing, People’s Republic of China
{zhouxinping,sundegang,wangzhu}@iie.ac.cn

2 School of Cyber Security, University of Chinese Academy of Sciences,
Beijing, People’s Republic of China
3 Department of Computer Science,

University of Bristol, Merchant Venturers Building, Woodland Road,
Bristol BS8 1UB, UK

{Carolyn.Whitnall,Elisabeth.Oswald}@bristol.ac.uk

Abstract. Distinguishers play an important role in Side Channel Anal-
ysis (SCA), where real world leakage information is compared against
hypothetical predictions in order to guess at the underlying secret key.
However, the direct relationship between leakages and predictions can be
disrupted by the mathematical combining of d random values with each
sensitive intermediate value of the cryptographic algorithm (a so-called
“d-th order masking scheme”). In the case of software implementations,
as long as the masking has been correctly applied, the guessable inter-
mediates will be independent of any one point in the trace, or indeed of
any tuple of fewer than d + 1 points. However, certain d + 1-tuples of
time points may jointly depend on the guessable intermediates. A typical
approach to exploiting this data dependency is to pre-process the trace
– computing carefully chosen univariate functions of all possible d + 1-
tuples – before applying the usual univariate distinguishers. This has
a computational complexity which is exponential in the order d of the
masking scheme. In this paper, we propose a new distinguisher based on
Kernel Discriminant Analysis (KDA) which directly exploits properties
of the mask implementation without the need to exhaustively pre-process
the traces, thereby distinguishing the correct key with lower complexity.
Experimental results for 2nd and 3rd order attacks (i.e. against 1st and
2nd order masking) verify that the KDA is an effective distinguisher in
protected settings.

Keywords: Kernel Discriminant Analysis
Higher-order side channel analysis · Side channel distinguisher

X. Zhou—This work was done while the author was in the Department of Computer
Science, University of Bristol.

c© Springer International Publishing AG, part of Springer Nature 2018
T. Eisenbarth and Y. Teglia (Eds.): CARDIS 2017, LNCS 10728, pp. 70–87, 2018.
https://doi.org/10.1007/978-3-319-75208-2_5

http://orcid.org/0000-0002-8420-5438

A Novel Use of KDA as a Higher-Order Side-Channel Distinguisher 71

1 Introduction

Protecting sensitive information from attacks exploiting the physically observ-
able characteristics of cryptographic devices in operation has been a key aim for
vendors and evaluation labs ever since the devastating effectiveness and simplic-
ity of such attacks began to become apparent with the work of Kocher et al. in
the late 1990s [11]. Software countermeasures such as masking [8] successfully
disrupt the relationship between sensitive intermediate values and single points
of observed leakage – precisely the trace feature that Differential Power Analy-
sis (DPA) in particular targets1. However, tuples of points of size greater than
the number of masks d can still jointly depend on the sensitive intermediates.
This gives rise to so-called ‘higher order’ DPA [14], which typically proceeds by
combining multiple points via some (non-linear) pre-processing function before
applying a standard DPA distinguisher – essentially treating the pre-processed
traces in a univariate manner, albeit with an exponential (in d) increase in the
impact of noise relative to a ‘first order’ attack [22].

Aside from the greater data complexity implied by the inflated noise, higher-
order attacks are also hampered by the increasing difficulty of locating the leak-
ing tuples. The computational complexity of an ‘exhaustive search’ approach –
in which all possible point combinations are computed and analysed – grows
exponentially with d. Heuristics exist to reduce the search problem by placing
informed restrictions on the regions of the trace to be iteratively explored [9]
but, precisely because of their heuristic nature, these do not guarantee to find
the best (or indeed any) exploitable combinations. A recent proposal (presented
at Cardis 2016 [6]) aims to bypass the need for explicit enumeration of the
(d+1)-tuples without recourse to heuristics, using Kernel Discriminant Analysis
(KDA) [15].

KDA is a generalisation of Linear Discriminant Analysis (LDA), a statisti-
cal method to find linear combinations of features (i.e. variables in a dataset,
or points in a trace) that characterise class separations. In particular, it out-
puts projection directions that maximise the ratio of between-group to within-
group scatter, so that ‘interesting’ variation may be concentrated into a reduced-
dimension space for further analysis. LDA has been promoted as one of a number
of methods to extract sensitive data dependent features from side-channel traces
for some years (beginning with [24], to the best of our knowledge). However,
because it only finds linear combinations, it is unable to locate the types of joint
data dependencies exhibited by traces which have been protected by software
masking. By contrast, the ‘kernel trick’ employed by KDA allows to implicitly
map the data into a higher dimensional feature space within which to perform
the discriminant analysis, thereby extracting non-linear combinations of the sort
that (in the case of DPA) do yield sensitive information on further analysis.
Because the mapping of the tuple candidates need not be computed explicitly

1 Hardware masking schemes also exist, which process shares in parallel but shift the
exploitable leakage into higher moments of the (univariate) trace distributions [18].

72 X. Zhou et al.

(by contrast with the preprocessing required by established higher order DPA
methodologies), its complexity is polynomial, rather than exponential, in d.

However, another recent development in the literature has been to demon-
strate the direct applicability of LDA as a side-channel distingisher, not just
a pre-processing method. In this capacity, it shares the advantages of other
‘partition-based’ [25] (aka ‘nominal power model’ based [30]) distinguishers –
namely that it operates needing only a clustering of the intermediates into simi-
larly leaking classes, rather than (e.g.) a proportional approximation of the leak-
age as would be necessary for a correlation DPA attack. It is therefore natural
to suppose that KDA can similarly be extended for use as a distinguisher, with
the same flexibility advantages over higher-order correlation DPA that LDA has
over first-order correlation, as well as the reduction in complexity with respect to
d. Indeed, in the following, we confirm that this is the case – KDA can be used,
not just to locate the interesting leakage prior to an attack, but as a side-channel
distinguisher in its own right. We show how to achieve this, provide experimental
validation of the effectiveness of our methodology, and reason about its potential
as well as its drawbacks.

1.1 Outline

The rest of the paper proceeds as follows. Section 2 covers the preliminaries of
(higher-order) SCA, LDA and KDA. In Sect. 3 we describe the natural connec-
tion between KDA and the higher-order SCA problem, and present a methodol-
ogy to extract sensitive information using KDA, before going on to experimen-
tally verify its effectiveness. Section 4 discusses the efficiency and advantages
(and drawbacks) of our proposed approach, and Sect. 5 concludes the paper.

2 Preliminaries

2.1 Differential Power Analysis

We consider a ‘standard DPA attack’ scenario as defined in [13], and briefly
explain the underlying idea as well as introduce the necessary terminology
here. We assume that the power consumption P = {P1, ..., PT } of a crypto-
graphic device (as measured at time points {1, ..., T}) depends, for at least some
τ ⊂ {1, ..., T}, on some internal value (or state) Fk∗(X) which we call the tar-
get : a function Fk∗ : X → Z of some part of the known plaintext—a random

variable X
R∈ X—which is dependent on some part of the secret key k∗ ∈ K.

Consequently, we have that Pt = Lt ◦ Fk∗(X) + εt, t ∈ τ , where Lt : Z → R

describes the data-dependent leakage function at time t and εt comprises the
remaining power consumption which can be modeled as independent random
noise (this simplifying assumption is common in the literature—see, again, [13]).
The attacker has N power measurements corresponding to encryptions of N
known plaintexts xi ∈ X , i = 1, . . . , N and wishes to recover the secret key k∗.
The attacker can accurately compute the internal values as they would be under

A Novel Use of KDA as a Higher-Order Side-Channel Distinguisher 73

each key hypothesis {Fk(xi)}N
i=1, k ∈ K and uses whatever information he pos-

sesses about the true leakage functions Lt to construct a prediction model (or
models) Mt : Z → Mt.

A distinguisher D is some function which can be applied to the measurements
and the hypothesis-dependent predictions in order to quantify the correspon-
dence between them, the intuition being that the predictions under a correct key
guess should give more information about the true trace measurements than an
incorrect guess. For a given such comparison statistic, D, the theoretic attack vec-
tor is D = {D(L◦Fk∗(X)+ε,M ◦Fk(X))}k∈K, and the estimated vector from a
practical instantiation of the attack is D̂N = {D̂N (L◦Fk∗(x)+e,M ◦Fk(x))}k∈K
(where x = {xi}N

i=1 are the known inputs and e = {ei}N
i=1 is the observed noise).

Then the attack is o-th order theoretically successful if #{k ∈ K : D[k∗] ≤
D[k]} ≤ o and o-th order successful if #{k ∈ K : D̂N [k∗] ≤ D̂N [k]} ≤ o.

2.2 Masking

Since the scale of the threat of (first-order) DPA began to emerge [11], many
countermeasure schemes have been proposed. The principle behind masking is to
split the sensitive intermediate values s = Fk∗(x) into d+1 shares (r0, ..., rd ∈ Z)
satisfying the relation2

s = r0 ⊗ r1 ⊗ ... ⊗ rd

where the ⊗ operation is the bitwise addition (or XOR) in the common case
of Boolean masking. One of the shares, e.g. r0, is sometimes referred to as the
‘masked variable’, with the other shares, (r1, ..., rd) then viewed as the ‘masks’.
For a masking scheme to be sound, it is usually required that the masks are
uniformly and independently generated from Z. In the case of software imple-
mentations, which we focus on here, the shares are processed in sequence so
that side-channel leakages are distributed across multiple points in the measured
traces.

Classical Higher-Order DPA. In the case of a masked implementation, the
leakage of the shares corresponding to the sensitive value s is

l = (l0, l1, ..., ld)

where

l0 = L0 ◦ (s ⊕ r1 ⊕ . . . ⊕ rd) + ε0

li = Li ◦ (ri) + εi, for 1 ≤ i ≤ d.

It can be seen that no single component of the leakage l directly relies on s. The
first order distinguisher will be unable to learn anything about the secret key k∗

in this case.
2 This relation exists implicitly even when it doesn’t manifest directly in the crypto-

graphic algorithm.

74 X. Zhou et al.

During a higher-order DPA, an attacker extracts information about k∗ by
monitoring the leakage of the unknown shares. Generally speaking, the dth order
masking scheme can be attacked by a (d+1)th order attack. Since it is difficult for
the attacker to precisely determine the location of li, we assume that � time point
candidates can be discovered for each share by some reverse engineering or a
priori knowledge about the masked implementation. Thus, (d+1)-tuples of � time
points are available for analysis. To analyse the (d + 1)� time points by classical
higher-order DPA, a ‘combination function’ is required – although it has been
observed that such an approach inevitably incurs loss of information [17,27]. The
most popular combination function is probably the normalised product, shown
in [19] to be the optimal choice in the idealised setting of a correlation attack
against Hamming weight leakage with Gaussian noise; other proposals include
the absolute difference [14], and some more complex expressions involving sine
functions [17].

Note that the combination function operates as a pre-processing procedure
on all possible (d + 1)-tuples of time points. This implies �d+1 computations,
resulting in �d+1 points for analysis via a first order distinguisher D (typically
correlation [3]) paired with a power model (recall Sect. 2.1).

2.3 Kernel Discriminant Analysis

Linear Discriminant Analysis. Linear Discriminant Analysis (LDA) is a
widely-used (supervised) dimensionality reduction method. It seeks the direc-
tions along which the projection of a dataset displays large between-cluster dis-
tances and small within-cluster distances. Suppose Pi is row vector of a matrix
P ∈ R

N×U with labels m ∈ R
N×1; then the LDA problem amounts to finding

ω to maximize J(ω) in (1):

J(ω) =
ωT SBω

ωT SW ω
(1)

This procedure is equivalent to solving (2)

SBω = λSW ω (2)

where SB and SW represent the between-cluster and within-cluster scatter matri-
ces given by (3) and (4) respectively

SB =
∑

m∈M
nm

(
1

nm

∑

mi=m

Pi − 1
N

N∑

i=1

Pi

)T (
1

nm

∑

mi=m

Pi − 1
N

N∑

i=1

Pi

)
(3)

SW =
∑

m∈M

∑

mi=m

(
Pi − 1

nm

∑

mi=m

Pi

)T (
Pi − 1

nm

∑

mi=m

Pi

)
(4)

where nm = #{i|mi = m}, i.e. the number of observations in the data set for
which the label is m (for details see [10]). Performing LDA amounts to calculating

A Novel Use of KDA as a Higher-Order Side-Channel Distinguisher 75

the generalized eigenvalues λ1, . . . , λU (ordered from largest to smallest) and the
corresponding generalized eigenvectors ω1, . . . , ωU .

The applications of LDA to SCA are two-fold. On the one hand, it can be
used for dimensionality reduction, addressing the problem of ‘interesting point
selection’ by (hopefully) projecting relevant leakage information along a small
number of directions prior to further analysis [5,24]. It has been shown to be
the optimal strategy for this purpose – at least in the case of unprotected imple-
mentations, where the leakage of sensitive intermediates resides in the marginal
distributions of single trace points [4]. The procedure is as follows: sort the
total power consumption {Pi}N

i=1 into different clusters {{Pi} |M ◦ Fk(xi) = m}
under the correct key k∗ and power model M ; perform LDA on the labeled clus-
ters; extract the eigenvectors ω1, . . . , ωu (u ≤ U) corresponding with the first
u largest eigenvalues, i.e. the u ‘best’ projected directions. Projecting the data
along these u directions produces a dataset of lower dimension but with minimal
information loss.

On the other hand, it has also recently been proposed for use directly as a
DPA distinguisher [12]. To this end it operates as follows: sort the total power
consumption {Pi}N

i=1 into different clusters {{Pi} |M ◦ Fk(xi) = m} under the
key hypothesis k and power model M ; perform LDA on the labeled clusters;
extract the first (largest) generalized eigenvalue as the distinguisher score for the
key hypothesis. This strategy takes advantage of the fact that, for a correct key
guess, the arrangement produced by the power model should correspond with
the true cluster structure of the leakage measurements, so that the indicator
value stands out by comparison with the wrong key guesses.

Discriminant Analysis with Kernels. LDA can be used to find optimal
linear mappings of high dimensional data but is not applicable when the relevant
information is known to be contained in non-linear combinations of points, as is
the case (e.g.) for side-channel leakages of masked implementations. To extend
LDA to the non-linear case, we consider the problem in a feature space F induced
by some mapping function (this mapping process is implicit as will be seen in
the following subsection), Φ : Rn → F . KDA [15] is used to find non-linear
directions by first mapping the data non-linearly by Φ into some feature space
F within which to compute linear discriminants, thus implicitly yielding a non-
linear discriminant in the input space. To find such a discriminant, the goal (1)
is replaced with:

J(ω′) =
ω′T SΦ

Bω′

ω′T SΦ
W ω′ (5)

where ω′ ∈ F and SΦ
B and SΦ

W are the corresponding matrices in F .

SΦ
B =

∑

m∈M
nm(

1
nm

∑

mi=m

PΦ
i − 1

N

N∑

i=1

PΦ
i)T (

1
nm

∑

mi=m

PΦ
i − 1

N

N∑

i=1

PΦ
i) (6)

SΦ
W =

∑

m∈M

∑

mi=m

(PΦ
i − 1

nm

∑

mi=m

PΦ
i)T (PΦ

i − 1
nm

∑

mi=m

PΦ
i) (7)

76 X. Zhou et al.

where PΦ
i is Φ(Pi) projection of Pi on F by Φ. For a properly chosen Φ, an inner

product < ·, · > can be defined on F , which makes for a so-called ‘reproducing
kernel Hilbert space’,

K(x,y) =< Φ(x), Φ(y) >

where K is known as the kernel function. Widely-used kernel functions include
the Gaussian kernel K(x,y) = exp(−||x − y||2/c) (|| · || is the 2-norm), and the
polynomial kernel K(x,y) = (x · y)d′

, for positive constants c and d′ satisfying
Mercer’s condition [20], as defined in [21].

Procedure of KDA. Generally, given a labelled data set {Pi}i∈[1,N], the corre-
sponding labels mi (for simplicity, we use the notation Pmi

i to denote the label of
ith data sample is mi), and the kernel function K(x,y), the KDA procedure can
be briefly summarised as follows (for more details about the derivation, see [15]):

1. Calculate the between-class scatter matrix M ∈ RN×N

M =
∑

m∈M
nm(Mm − M∗)(Mm − M∗)T

where Mm and M∗ are N × 1 size column vectors given by

(Mm)j =
1

nm

∑

mi=m

K(Pj ,Pmi
i)

(M∗)j =
1
N

N∑

i=1

K(Pj ,Pi).

2. Then calculate the within-class scatter matrix N ∈ RN×N given by

N =
∑

m∈M
Km(Inm

− 1nm
)KT

m

where Km is an N × nm matrix with (Km)ij = K(Pi,P
mj=m
j) (this is the

kernel matrix for class m), Inm
is the nm × nm size identity matrix, and 1nm

is the nm × nm matrix with all entries 1/nm.
3. The eigenvalues λ

′
1, . . . , λ

′
N ′ (N ′ ≤ N) and the eigenvectors α1, . . . , αN ′ can

be extracted by solving
N−1Mαi = λ

′
iαi. (8)

4. Since the matrix N may be singular, it needs regularizing prior to Step 3,
which is done by setting

N = N + μI

for some positive μ.
5. Then the projection of P onto ω′

i is given by

< ω′
i, Φ(P) >=

N∑

j=1

αi(j)K(Pj ,P). (9)

A Novel Use of KDA as a Higher-Order Side-Channel Distinguisher 77

Generally, KDA is used to transform U -dimensional data into C-dimensional
data by taking the C eigenvectors α1, . . . , αC with the C largest eigenvalues and
using Eq. (9) for the projection step.

KDA has been introduced to SCA as a tool for information extraction3 in the
presence of masking [6]. The authors sort the training data set into different clus-
ters according to the sensitive intermediate value under a known power model,
the plaintext and the known key. Then KDA is performed on these clusters to
calculate the eigenvectors and corresponding eigenvalues. The two eigenvectors
with the two largest eigenvalues are chosen as the projection directions (i.e. C
is set to be 2) and used to transform profiling and attack acquisitions prior to
performing a template attack.

3 Methodology

In this section, we introduce our proposed distinguisher to the setting of masked
implementations, and analyse the method theoretically and empirically.

Due to the successful removal of sensitive intermediate values by masking,
classical higher-order side-channel attacks typically proceed by first transferring
the original trace points into a new space using a non-linear combination function
(CF)4. Then, ‘first order’ distinguisher scores are computed in the new space.
In fact, the KDA method combines these two processes (summarised in Figs. 1
and 2) without performing the non-linear mapping explicitly (the kernel trick
embeds it implicitly).

Fig. 1. Classical higher-order SCA.

Fig. 2. Process of KDA.

The calculations of between-class scatter matrix M and the within-class
matrix N are based on the category (see procedure of KDA). And the maxi-
mum eigenvalue in Eq. (8) can be regarded as an indicator of dispersion degree
of between-class and within-class (as can be seen in Eq. (1, 2 and 5)). Thus,
3 Information extraction is typically understood to refer collectively to the similar but

non-identical tasks of dimensionality reduction and interesting point selection.
4 The combination functions mentioned in Subsect. 2.2 all are non-linear.

78 X. Zhou et al.

based on different (correct or wrong) categories, the dispersion degrees will dif-
fer. Therefore, the largest KDA eigenvalue functions as an effective distinguisher
for attacks against masked intermediates.

3.1 General Approach

Let {xi}N
i=1 be the known plaintexts (or ciphertexts) associated with a set of

trace measurements {P1,P2, ...,PN} each containing d� time points as a dth-
order masked implementation encrypts (or decrypts) the xi. The power model
mapping is M : Z → M and the kernel function is chosen as5 K(x,y) = (x · y)d′

(in this paper we set the degree d′ of the polynomial kernel function equal to
the number of shares d + 1 into which each sensitive intermediate is divided). D
denote the KDA distinguisher.

1. For each key hypothesis k ∈ K, do the following:
(a) Calculate the intermediate value zi = Fk(xi) for each plaintext.
(b) Map zi to a power model prediction mi, given by M(zi).
(c) Compute the between-class scatter matrix M and the within-class scatter

matrix N, and regularize N by N = N + μI.
(d) Eigen-decompose the matrix N−1M. Return the largest eigenvalue as the

distinguisher score Dk for k.
2. Rank the pairs (k,Dk) according to Dk.
3. Output the key hypothesis k with the largest Dk as the best guess on the

true subkey.

3.2 Theoretical Rationale

In this subsection, we reason about the ‘soundness’ of the KDA distinguisher.
We consider a distinguisher to be ‘sound’ if, given a sufficient sample of leakages
and a ‘meaningful’ power model6, it reduces the entropy on the unknown secret
key. From an empirical perspective, soundness can be confirmed by observing a
reduction in the mean key rank as the number of traces increases.

The essence of KDA is to transfer the raw data into a new, higher-dimensional
space via an implicit non-linear projection, then compute the linear discriminant
in the new space. This parallels the process of higher-order attacks in SCA.
Thus, the soundness of KDA derives from (1) the effectiveness of the implicit
projection, and (2) the effectiveness of LDA as a distinguisher in the first-order
scenario.

The effectiveness of the projection has been recently demonstrated by the
successful use of KDA to extract exploitable side-channel information [6]. Mean-
while, Mahmudlu et al. [12] have shown that the largest eigenvalue, which mea-
sures the (optimised) between- to within-scatter matrix ratio under a particular

5 We only test this one example kernel function in our analysis; others, such as Gaus-
sian kernel, are also available and may be effective.

6 I.e. one that approximates some true aspect of the leakages; see, e.g. [30].

A Novel Use of KDA as a Higher-Order Side-Channel Distinguisher 79

key guess, is typically higher for a correct guess (which produces a meaning-
ful labelling on the traces) than an incorrect one (which produces a random
labelling), thereby functioning as an effective distinguishing score.

It therefore seems reasonable to expect our proposed KDA distinguisher to
be sound; the following experiments are designed to verify this.

3.3 Experimental Validation

We here present the outcomes of several experiments on simulated leakages and
(in the case of second-order attacks only) on traces from real implementations
to verify the soundness of KDA distinguisher.

We simulate multivariate leakages pertaining to shared intermediates in the
presence of Gaussian noise. The basic principle is to add multivariate Gaussian
noise ε to the hypothetical data-dependent consumption of the intermediate z,

l = M(z) + εG (10)

where M is the leakage model (chosen to be the Hamming weight for the follow-
ing), and z is the intermediate value. The Gaussian noise εG has zero mean and
a covariance Σ given by,

Σ = Q ∗ ρ ∗ Q (11)

where Q is a diagonal matrix whose diagonal elements are the noise standard
deviation σ and ρ is a co-correlation matrix estimated from real power traces.

For a dth order masked implementation, we simulate a trace of d + 1-tuples
of � points with the secret key k∗ as follows:

1. Generate d + 1 random numbers (x, r1, r2, ..., rd) (the first random number,
x, is the plaintext; the rest are masks).

2. For the first � points in the trace, the intermediate values are the output of
the XOR between the sensitive intermediate values s = Sbox(x⊕k∗) and the
masks.

3. For the ith (2 ≤ i ≤ d + 1) sub-part of the trace, the intermediate value is
ri−1.

The Hamming weights of these intermediates are computed and additively com-
bined with simulated noise samples of the specified Gaussian structure.

The real power traces are taken from the DPA Contest v4 [1]. The target is
an 8-bit AVR microcontroller Atmega163 embedded in a smartcard. It contains
16 Kb of in-system programmable flash, 512 bytes of EEPROM, 1 Kb of internal
SRAM and 32 general purpose working registers. The smartcard is read using a
simple reader interface mounted on SASEBO-W board and controlled by Xilinx
Spartan-VI FPGA. The traces are acquired using a LeCroy WaveRunner 6100 A
oscilloscope using an EM probe. The acquisition bandwidth is 200 MHz and the
sampling rate FS = 500 MS/s.

In the following experiments, the kernel function is K(x,y) = (x · y)d+1.

80 X. Zhou et al.

Second-Order Attacks. First, we perform second-order attacks on the simu-
lated leakage. To keep the running time reasonable, we simulate 200,000 traces,
and set � to 5 so that the traces are 10 time points long. The noise deviation
σ of the trace is set equal to 1, and μ for the KDA regularisation is set to be
100,0007. We use the second-order KDA distinguisher with the Hamming weight
power model to attack the traces, the results of all key candidate distinguisher
scores are shown in Fig. 3. The red line indicates the correct key. We can clearly
see that, from 800 traces on, the distinguisher score associated with the correct
key gradually separates from the scores for the alternative candidates, standing
out first from 1500 traces onwards.

200 400 600 800 1000 1200 1400 1600 1800 2000
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
Second−order KDA distinguisher key recovery

Attack sample

K
D

A
 d

is
tin

gu
is

he
r s

co
re

Correct key candidate
Wrong key candidates

Fig. 3. Second-order attack with KDA on the simulated masked implementation leak-
age, with σ = 1. (Color figure online)

Figure 3 just shows the example result of a single trial; it cannot be inter-
preted as a stable indicator of the typical behaviour of the KDA distinguisher.
To evaluate the performance of KDA we repeat the experiment multiple times
(randomly selecting from the pool of 200,000 traces in each repetition). Our
chosen evaluation metric is the Guessing Entropy [26], estimated from the aver-
age rank of the correct subkey. The result can be seen in Fig. 4. The red line
indicates the second-order KDA distinguisher using a Hamming weight power
model. The mean rank of the correct key decreases as the number of attack
samples increases, converging to 1 after about 1900 traces.

Additionally, to further extend the experiments on KDA, we drop the Ham-
ming weight assumption and investigate the performance of KDA when the
attack samples are simply partitioned according to the least significant bit of the
intermediate value8. Thus, the traces are separated into two clusters, labelled 0
and 1. The results are represented by the blue line in Fig. 4: the mean rank of

7 μ = 100, 000 might not be the optimal one; we leave the optimisation μ as further
work.

8 Sometimes referred to as the ‘LSB model’.

A Novel Use of KDA as a Higher-Order Side-Channel Distinguisher 81

200 400 600 800 1000 1200 1400 1600 1800 2000
0

20

40

60

80

100

120

140

Attack sample

G
ue

ss
in

g
en

tro
py

Second−order KDA
Second−order KDA (LSB model)

Fig. 4. Guessing entropy of second-order attack with KDA on the simulated masked
implementation leakage, with σ = 1. (reps: 100) (Color figure online)

the correct key decreases as the number of traces increases, implying that the
KDA distinguisher remains sound under this simpler power model.

Second, we test the performance of KDA against the real power traces from
the DPA contest v4. The mask scheme implemented is the Rotating S-boxes
Masking (RSM; for details, see [16]). The RSM scheme involves random masks
and random offsets. There already exist several methods to attack these traces,
as shown on the website [1]; we don’t promote our KDA distinguisher as the
optimal one, we simply make use of the data as a scenario in which to demon-
strate its effective performance. We focus only on the second-order attack. It is
a characteristic of the RSM scheme that the output of the masked S-box and
the masked value of next sub-plaintext have the same mask, so that their XOR
result can remove the mask. In detail, the first part is MSbox(xi ⊕k⊕ri+offset),
and the second part is xi+1 ⊕ ri+1+offset where MSbox is the masked sbox, i
is the index of the sub-plaintext, offset is a random number, and r is a mask
table. According to the description of the RSM algorithm, the first part can be
expressed as

MSbox(xi ⊕ k ⊕ ri+offset) = Sbox(xi ⊕ k) ⊕ ri+1+offset

Hence, the XOR result of the two parts is Sbox(xi ⊕ k) ⊕ xi+1 which, although
slightly different to the intermediates targeted in the simulated leakage scenario,
can be computed for each given key guess.

We choose 10 time points for each part as guided by a preliminary investi-
gation of the traces. As for the previous experiment, we ran the second-order
KDA distinguisher 100 times with randomly selected sub-samples of the traces.
The guessing entropy results are presented in Fig. 5. We observe that, for a suffi-
cient number of power traces, KDA (with a Hamming weight power model) can
successfully recover the secret key.

82 X. Zhou et al.

0 500 1000 1500 2000 2500 3000
0

20

40

60

80

100

120

140

Attack sample

G
ue

ss
in

g
en

tro
py

Second−order KDA

Fig. 5. Guessing entropy of second-order attack with KDA on DPA v4. (reps: 100)

Third-Order Attacks. In the previous subsection, we verified that KDA can
indeed be used as an effective distinguisher for second-order attack. In this sub-
section, we attempt to extend the KDA into a higher-order attack.

We test the performance of third-order KDA in the simulated leakage sce-
nario. We once more simulate 200,000 traces, but this time with a standard
deviation of 0.01. We run third-order KDA to attack the traces 100 times; the
guessing entropy of the correct key is indicated in Fig. 6. It decreases as the
attack sample increases, as before, converging eventually to 1.

0 1000 2000 3000 4000 5000
0

20

40

60

80

100

120

140

Attack sample

G
ue

ss
in

g
en

tro
py

Third−order KDA

Fig. 6. Guessing entropy of third-order attack with KDA on the simulated masked
implementation leakage, with σ = 0.01. (resp: 100)

4 Discussion

4.1 Complexity Analysis

Let N be the number of power traces, � be the length of the sub-part relevant
to the mask in the trace, and d the number of masks. Thus, for simplicity, the
length of the trace is (d+1)�. The analysis which follows includes computational
complexity and space complexity.

A Novel Use of KDA as a Higher-Order Side-Channel Distinguisher 83

According to the general approach introduced in Sect. 3.1 and the KDA pro-
cedure in Sect. 2.3, for a key guess, the KDA distinguisher needs to compute
two parts: the kernel between-class scatter matrix M and within-class scatter
matrix N, and the eigenvalue decomposition for N−1M ∈ RN×N . The kernel
scatter matrices need N2(d+1)� calculations, and the eigenvalue decomposition
of N × N matrix needs O(N3) computations (92N3 to be more precise [7]). So the
total computational complexity of the KDA distinguisher is O(N2(N+(d+1)�)).
The memory usage in KDA is to store the two kernel scatter matrices, so the
space complexity is 2N2.

The classical higher-order DPA attack first requires preprocessing the original
data, incurring �d+1 (e.g. 108 in the case of a 3rd-order masking with 100 time
points for each tuple) calculations (subtraction or multiplication according to
the combination function) for each trace. So the whole computation for the pre-
processing is N�d+1. Then the computation (via some first-order distinguisher)
of ‘similarity’ between each column of the N × �d+1 matrix and the hypothetical
power consumption vector requires N ×�d+1 calculations in total. Therefore, the
computational complexity of classical higher-order DPA is O(N�d+1). The main
memory usage in classical higher-order DPA is to store the preprocessed traces,
which implies a space complexity of N�d+1.

We can see that the computation complexity of the KDA distinguisher is
polynomial in N , d, and �. It can still be optimized by the method of using
regularized regression to avoid the eigenvalue decomposition in KDA, although
the speed up ratio is 27 times [7]. However, the computational complexity of
classical higher-order DPA is not only polynomial in N , but also exponential in
d. The space complexity of KDA, which depends polynomially on N , represents
another advantage over classical higher-order DPA, which requires additional
exponential in � space. If the mask order d is high and the � is large, the compu-
tation of classical higher order DPA would be extremely high. When only time is
considered, if N(N +(d+1)�) < �d+1 given N , �, d, then the KDA distinguisher
becomes a better choice for the higher-order attack.

4.2 Flexible Power Model

Like other clustering-based distinguishers [2,12,23], the KDA distinguisher can
be performed using different power models. In the dimensionality reduction set-
ting, 256-class, 9-class (Hamming weight), and 3-class KDA have been investi-
gated [6]. In Sect. 3, we investigated the binary power model that was first used
in the seminal power analysis paper [11], as well as the 9-class Hamming weight
model, for different masking orders; the attacks succeeded in all tested cases.

An especially appealing feature of clustering-based distinguishers is that,
unlike classical higher-order DPA, they do not rely on the power model that
they use to be proportionally approximate to the true leakage; any meaningful
partition on the intermediate value will suffice. This property suggests KDA as an
ideal candidate for use in conjunction with the robust ‘semi-profiled’ modelling
proposed by Whitnall et al. at CHES 2015 [29]. The extension of their strategy to

84 X. Zhou et al.

higher-order attacks via the KDA distinguisher would be an interesting avenue
to explore in future work.

4.3 Limitations and Possibilities

As a baseline against which to compare the key recovery performance of KDA,
we also tested higher-order correlation DPA using the ‘normalised product’ com-
bining function (the best among tested alternatives in typical leakage scenarios
[19]) with a Hamming weight power model. In fact, these correlation attacks
substantially outperformed the KDA distinguisher in terms of the number of
traces required to converge to a guessing entropy of 1. At 2nd and 3rd orders,
they were also considerably faster to run.

While the relatively poor trace efficiency is disappointing, it is not surprising
given the idealised (Hamming weight or close to Hamming weight) nature of the
leakage scenarios tested so far. It is well known that correlation-based attacks
perform very efficiently when provided with good proportional approximations of
power data dependencies, while the advantages of ‘partition’-based [25] (a.k.a./
‘nominal power model’-based [30]) DPA distinguishers only emerge as the true
leakage increasingly diverges from standard model assumptions [28]. An inter-
esting avenue for future work will therefore be to deploy the KDA distinguisher
in scenarios where higher order correlation DPA is likely to struggle.

We should also stress that our experiments thus far have been proof of con-
cept, with no attempt (yet) to optimise for KDA parameters, which may make
a substantial difference to the performance of the distinguisher. In particular,
it was shown in the dimensionality reduction setting that the quality of the
projected traces is influenced by the value of the regularisation parameter μ
(Sect. 4.2 in [6]). This is something we plan to explore in future work, along with
alternatives to the polynomial kernel function (such as the Gaussian kernel).

The relatively slow computation time indicates that the overheads of the
eigenvalue decomposition dominate at 2nd and 3rd orders, so that the com-
plexity advantages of KDA may only begin to emerge as d increases beyond 3.
Establishing the threshold at which KDA becomes computationally preferable to
classical higher-order DPA is another interesting avenue for further investigation.

5 Conclusions and Future Perspectives

Following recent separate proposals to extend LDA to the task of directly recov-
ering secret keys from unprotected implementations, and to use KDA for the
extraction of points of (joint) interest from masked implementations, we have
taken the logical next step of extending KDA likewise for application as a dis-
tinguisher. We have shown the natural common ground between higher-order
DPA and the operation of KDA, and reasoned about the soundness of a KDA-
based distinguisher from a theoretical perspective, before verifying its effective-
ness empirically. Complexity analysis reveals a substantial advantage of KDA

A Novel Use of KDA as a Higher-Order Side-Channel Distinguisher 85

(polynomial in the number of traces and the order of the masking scheme) over
higher-order DPA (exponential in the order of the masking scheme).

Although the theoretic complexity advantages of KDA do not translate into
practical advantages in our proof-of-concept 2nd and 3rd order experiments,
there remains considerable scope for enhancing the methodology and for deploy-
ing it in scenarios less vulnerable to classical higher-order DPA. The latter
include yet higher masking orders and alternative masking forms, as well as
data-dependencies which do not conform nicely to standard assumptions. These
represent worthwhile avenues for further investigation. We also anticipate that
fine-tuning the parameters (in particular, the regularization factor μ) and explor-
ing alternative kernel functions will have a positive impact on performance.

Acknowledgements. The authors would like to thank Daniel P. Martin for the
fruitful discussions on the complexity analysis. This work was supported by the
National Natural Science Foundation of China (No.61372062) and by the EPSRC
(EP/N011635/1).

References

1. DPA Contest v4. http://www.dpacontest.org/v4/
2. Batina, L.,Gierlichs,B., Lemke-Rust,K.:Differential cluster analysis. In:Clavier, C.,

Gaj,K. (eds.)CHES2009.LNCS,vol. 5747,pp. 112–127.Springer,Heidelberg (2009).
https://doi.org/10.1007/978-3-642-04138-9 9

3. Brier, E., Clavier, C., Olivier, F.: Correlation power analysis with a leakage model.
In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 16–29.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28632-5 2

4. Bruneau, N., Guilley, S., Heuser, A., Marion, D., Rioul, O.: Less is more: dimen-
sionality reduction from a theoretical perspective. In: Güneysu, T., Handschuh,
H. (eds.) CHES 2015. LNCS, vol. 9293, pp. 22–41. Springer, Heidelberg (2015).
https://doi.org/10.1007/978-3-662-48324-4 2

5. Cagli, E., Dumas, C., Prouff, E.: Enhancing dimensionality reduction methods for
side-channel attacks. In: Homma, N., Medwed, M. (eds.) CARDIS 2015. LNCS,
vol. 9514, pp. 15–33. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
31271-2 2

6. Cagli, E., Dumas, C., Prouff, E.: Kernel discriminant analysis for information
extraction in the presence of masking. In: Lemke-Rust, K., Tunstall, M. (eds.)
CARDIS 2016. LNCS, vol. 10146, pp. 1–22. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-54669-8 1

7. Cai, D., He, X., Han, J.: Efficient kernel discriminant analysis via spectral regres-
sion. In: Seventh IEEE International Conference on Data Mining, ICDM 2007, pp.
427–432. IEEE (2007)

8. Chari, S., Jutla, C.S., Rao, J.R., Rohatgi, P.: Towards sound approaches to counter-
act power-analysis attacks. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666,
pp. 398–412. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48405-
1 26

9. Durvaux, F., Standaert, F.-X., Veyrat-Charvillon, N., Mairy, J.-B., Deville, Y.:
Efficient selection of time samples for higher-order DPA with projection pursuits.
In: Mangard, S., Poschmann, A.Y. (eds.) COSADE 2014. LNCS, vol. 9064, pp.
34–50. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21476-4 3

http://www.dpacontest.org/v4/
https://doi.org/10.1007/978-3-642-04138-9_9
https://doi.org/10.1007/978-3-540-28632-5_2
https://doi.org/10.1007/978-3-662-48324-4_2
https://doi.org/10.1007/978-3-319-31271-2_2
https://doi.org/10.1007/978-3-319-31271-2_2
https://doi.org/10.1007/978-3-319-54669-8_1
https://doi.org/10.1007/978-3-319-54669-8_1
https://doi.org/10.1007/3-540-48405-1_26
https://doi.org/10.1007/3-540-48405-1_26
https://doi.org/10.1007/978-3-319-21476-4_3

86 X. Zhou et al.

10. Fisher, R.A.: The use of multiple measurements in taxonomic problems. Ann.
Eugen. 7(2), 179–188 (1936)

11. Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999).
https://doi.org/10.1007/3-540-48405-1 25

12. Mahmudlu, R., Banciu, V., Batina, L., Buhan, I.: LDA-based clustering as a side-
channel distinguisher. In: Hancke, G.P., Markantonakis, K. (eds.) RFIDSec 2016.
LNCS, vol. 10155, pp. 62–75. Springer, Cham (2017). https://doi.org/10.1007/978-
3-319-62024-4 5

13. Mangard, S., Oswald, E., Standaert, F.X.: One for all-all for one: unifying standard
differential power analysis attacks. IET Inf. Secur. 5(2), 100–110 (2011)

14. Messerges, T.S.: Using second-order power analysis to attack DPA resistant soft-
ware. In: Koç, Ç.K., Paar, C. (eds.) CHES 2000. LNCS, vol. 1965, pp. 238–251.
Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-44499-8 19

15. Mika, S., Ratsch, G., Weston, J., Scholkopf, B., Mullers, K.R.: Fisher discriminant
analysis with kernels. In: Neural Networks for Signal Processing IX, Proceedings
of the 1999 IEEE Signal Processing Society Workshop, pp. 41–48. IEEE (1999)

16. Nassar, M., Souissi, Y., Guilley, S., Danger, J.L.: RSM: a small and fast counter-
measure for AES, secure against 1st and 2nd-order zero-offset SCAs. In: Design,
Automation & Test in Europe Conference & Exhibition (DATE), 2012, pp. 1173–
1178. IEEE (2012)

17. Oswald, E., Mangard, S.: Template attacks on masking—resistance is futile. In:
Abe, M. (ed.) CT-RSA 2007. LNCS, vol. 4377, pp. 243–256. Springer, Heidelberg
(2006). https://doi.org/10.1007/11967668 16

18. Peeters, E., Standaert, F.-X., Donckers, N., Quisquater, J.-J.: Improved higher-
order side-channel attacks with FPGA experiments. In: Rao, J.R., Sunar, B. (eds.)
CHES 2005. LNCS, vol. 3659, pp. 309–323. Springer, Heidelberg (2005). https://
doi.org/10.1007/11545262 23

19. Prouff, E., Rivain, M., Bevan, R.: Statistical analysis of second order differential
power analysis. IEEE Trans. Comput. 58(6), 799–811 (2009)

20. Saitoh, S., Sawano, Y.: Theory of Reproducing Kernels and Applications. DM,
vol. 44. Springer, Singapore (2016). https://doi.org/10.1007/978-981-10-0530-5

21. Schölkopf, B., Smola, A., Müller, K.R.: Nonlinear component analysis as a kernel
eigenvalue problem. Neural Comput. 10(5), 1299–1319 (1998)

22. Schramm, K., Paar, C.: Higher order masking of the AES. In: Pointcheval, D. (ed.)
CT-RSA 2006. LNCS, vol. 3860, pp. 208–225. Springer, Heidelberg (2006). https://
doi.org/10.1007/11605805 14

23. Souissi, Y., Nassar, M., Guilley, S., Danger, J.-L., Flament, F.: First principal
components analysis: a new side channel distinguisher. In: Rhee, K.-H., Nyang,
D.H. (eds.) ICISC 2010. LNCS, vol. 6829, pp. 407–419. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-24209-0 27

24. Standaert, F.-X., Archambeau, C.: Using subspace-based template attacks to com-
pare and combine power and electromagnetic information leakages. In: Oswald, E.,
Rohatgi, P. (eds.) CHES 2008. LNCS, vol. 5154, pp. 411–425. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-85053-3 26

25. Standaert, F.-X., Gierlichs, B., Verbauwhede, I.: Partition vs. comparison side-
channel distinguishers: an empirical evaluation of statistical tests for univariate side-
channel attacks against two unprotected CMOS devices. In: Lee, P.J., Cheon, J.H.
(eds.)ICISC2008.LNCS,vol.5461,pp.253–267.Springer,Heidelberg(2009).https://
doi.org/10.1007/978-3-642-00730-9 16

https://doi.org/10.1007/3-540-48405-1_25
https://doi.org/10.1007/978-3-319-62024-4_5
https://doi.org/10.1007/978-3-319-62024-4_5
https://doi.org/10.1007/3-540-44499-8_19
https://doi.org/10.1007/11967668_16
https://doi.org/10.1007/11545262_23
https://doi.org/10.1007/11545262_23
https://doi.org/10.1007/978-981-10-0530-5
https://doi.org/10.1007/11605805_14
https://doi.org/10.1007/11605805_14
https://doi.org/10.1007/978-3-642-24209-0_27
https://doi.org/10.1007/978-3-540-85053-3_26
https://doi.org/10.1007/978-3-642-00730-9_16
https://doi.org/10.1007/978-3-642-00730-9_16

A Novel Use of KDA as a Higher-Order Side-Channel Distinguisher 87

26. Standaert, F.-X., Malkin, T.G., Yung, M.: A unified framework for the analysis of
side-channel key recovery attacks. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS,
vol. 5479, pp. 443–461. Springer, Heidelberg (2009). https://doi.org/10.1007/978-
3-642-01001-9 26

27. Standaert, F.-X., Veyrat-Charvillon, N., Oswald, E., Gierlichs, B., Medwed, M.,
Kasper, M., Mangard, S.: The world is not enough: another look on second-order
DPA. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 112–129. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-17373-8 7

28. Whitnall, C., Oswald, E.: A fair evaluation framework for comparing side-channel
distinguishers. J. Cryptogr. Eng. 1(2), 145–160 (2011)

29. Whitnall, C., Oswald, E.: Robust profiling for DPA-style attacks. In: Güneysu, T.,
Handschuh, H. (eds.) CHES 2015. LNCS, vol. 9293, pp. 3–21. Springer, Heidelberg
(2015). https://doi.org/10.1007/978-3-662-48324-4 1

30. Whitnall, C., Oswald, E., Standaert, F.-X.: The myth of generic DPA...and the
magic of learning. In: Benaloh, J. (ed.) CT-RSA 2014. LNCS, vol. 8366, pp. 183–
205. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-04852-9 10

https://doi.org/10.1007/978-3-642-01001-9_26
https://doi.org/10.1007/978-3-642-01001-9_26
https://doi.org/10.1007/978-3-642-17373-8_7
https://doi.org/10.1007/978-3-662-48324-4_1
https://doi.org/10.1007/978-3-319-04852-9_10

Leakage Bounds for Gaussian Side Channels

Thomas Unterluggauer1(B), Thomas Korak1, Stefan Mangard1,
Robert Schilling1, Luca Benini2, Frank K. Gürkaynak2,

and Michael Muehlberghuber2

1 Graz University of Technology, Graz, Austria
{thomas.unterluggauer,thomas.korak,stefan.mangard,

robert.schilling}@iaik.tugraz.at
2 Integrated Systems Laboratory, ETH Zürich, Zürich, Switzerland

Abstract. In recent years, many leakage-resilient schemes have been
published. These schemes guarantee security against side-channel attacks
given bounded leakage of the underlying primitive. However, it is a chal-
lenging task to reliably determine these leakage bounds from physical
properties.

In this work, we present a novel approach to find reliable leakage
bounds for side channels of cryptographic implementations when the
input data complexity is limited such as in leakage-resilient schemes. By
mapping results from communication theory to the side-channel domain,
we show that the channel capacity is the natural upper bound for the
mutual information (MI) to be learned from multivariate side-channels
with Gaussian noise. It shows that this upper bound is determined by
the device-specific signal-to-noise ratio (SNR). We further investigate
the case when attackers are capable of measuring the same side-channel
leakage multiple times and perform signal averaging. Our results here
indicate that the gain in the SNR obtained from averaging is exponen-
tial in the number of points of interest that are used from the leakage
traces. Based on this, we illustrate how the side-channel capacity gives
a tool to compute the minimum attack complexity to learn a certain
amount of information from side-channel leakage. We then show that
our MI bounds match with reality by evaluating the MI in multivariate
Gaussian templates built from practical measurements on an ASIC. We
finally use our model to show the security of the keccak-f [400]-based
authenticated encryption scheme Isap on this ASIC against power anal-
ysis attacks.

Keywords: Leakage-resilient cryptography · Leakage model
mutual information · Channel capacity

1 Introduction

Side-channel attacks are a serious threat to cryptographic implementations as
they allow attackers to learn secret information processed inside a device from

c© Springer International Publishing AG, part of Springer Nature 2018
T. Eisenbarth and Y. Teglia (Eds.): CARDIS 2017, LNCS 10728, pp. 88–104, 2018.
https://doi.org/10.1007/978-3-319-75208-2_6

Leakage Bounds for Gaussian Side Channels 89

observing its physical behavior, e.g., the power consumption. In order to protect
implementations from such attacks, one approach actively being researched for
several years now is leakage-resilient cryptography. Leakage-resilient schemes are
designed such as to resist a certain amount of side-channel leakage. This means
that if every invocation of the underlying primitive leaks λ bits of information,
leakage-resilient schemes guarantee that their overall leakage stays within pre-
defined bounds. In addition, the side-channel leakage λ is commonly bounded
by limiting the input data complexity to the internal primitives, as for exam-
ple in leakage-resilient encryption using the 2PRG primitive [15]. However, it is
an ongoing topic of research to specify concrete leakage bounds λ based on the
implementation and its physical properties.

For example, Medwed et al. [9] evaluated a set of practical differential power
analysis (DPA) attacks on simulated leakages from parallel implementations with
unknown in- and outputs. Their resulting success probabilities indicate that even
for identity leakage of the secret state, its exploitation is practically hard once
enough processes happen in parallel. While their specific results also suggest
security for limited data complexities, it is hard to derive a concrete leakage
bound λ in bits. On the other hand, Standaert et al. [14] suggested using the
mutual information (MI) from information theory as a general tool to concretely
state the amount of information learned from side-channel leakage in bits. While
the MI can only be exactly computed once the actual leakage distribution of an
implementation is known, Duc et al. [4] mention an upper bound for the MI for
univariate leakages that solely depends on the device- and measurement-specific
signal-to-noise ratio (SNR). It, however, remains unclear how this bound scales
for multivariate leakages that are exploited in practice.

For a single measurement of the side-channel leakage, physical constraints
such as the SNR will typically bound the MI to suit leakage-resilient schemes.
While most of these schemes indeed confine the attacker to a single measurement
by requiring a fresh initial state on every invocation, there are also schemes allow-
ing attackers to observe the same execution using the same data multiple times,
e.g., as for multiple decryptions in Isap [3]. However, multiple measurements of
the same decryption process allow an attacker to perform signal averaging to
increase the SNR. This can allow unbounded side-channel attackers to distin-
guish tiny variances in the signal to learn the complete secret state. However,
in practice, side-channel attackers are bounded by physical and computational
resources. This gives the interesting question of the actual attack complexity
when the side-channel attacker is capable of observing the same execution mul-
tiple times and performing signal averaging.

Our Contribution. In this work, we present a new approach to give reliable
upper bounds for the leakage from side channels of cryptographic implementa-
tions under a single data input. For this purpose, we map results from communi-
cation theory to the side-channel domain. In particular, we show that the chan-
nel capacity of n-to-m communication channels is the natural upper bound for
the MI in multivariate side-channel leakages with Gaussian noise. Without any
further leakage assumptions, we show that this bound depends on a device- and

90 T. Unterluggauer et al.

measurement-specific SNR that is uniquely determined by the device’s statisti-
cal leakage behavior in the m points of interest (POIs) in the leakage trace. In a
second step, we investigate the effect of signal averaging on this SNR and show
that averaging N leakage traces increases the SNR by a factor Nm. Our results
provide both attackers and implementers with a tool for computing the expected
minimum attack complexity, i.e., the number of leakage traces required to learn
a certain amount of the processed state from side-channel information. We then
show that our model and results fit the reality by evaluating the MI in multivari-
ate Gaussian templates. For this purpose, we used power measurements from a
real system on chip (SoC) that features a keccak-f [400] engine that computes
three rounds per cycle. Last, we use our model to demonstrate the security of the
scheme Isap implemented on this SoC w.r.t. power analysis attacks.

Outline. This paper is organized as follows. Section 2 gives bounds for the infor-
mation leakage of multivariate side channels with Gaussian noise. We analyze
the case of signal averaging and provide a tool to compute the expected mini-
mum attack complexity for side-channel attackers in Sect. 3. The soundness of
our leakage model is shown in Sect. 4 based on power measurements of an ASIC,
and we finally conclude in Sect. 5.

2 Modeling Side-Channel Leakage as a Communication
Channel

In this section, we consider the case of leakage-resilient cryptography where an
attacker can use the side-channel information in a single leakage trace to learn
the secret state of a device. In particular, we adapt the results from communica-
tion theory to fit side-channel leakages and use the channel capacity of n-to-m
wireless channels to give a leakage upper bound for multivariate side channels
with Gaussian noise independent of the underlying leakage function.

2.1 Attack Model

We consider an attacker trying to recover the secret state x from a single leakage
trace lx generated by an implementation I with input complexity q = 1. This
implies that the attacker is unable to perform multi-input attacks such as DPA.
Moreover, attackers are allowed to observe the operation using the secret state
x only a single time, i.e., they are not allowed to average traces to improve their
SNR. However, we consider a profiled attack setting, i.e., the attacker has the
opportunity to build templates before performing the actual attack.

2.2 Mutual Information

A common metric to assess the amount of information about a secret x con-
tained in the leakage lx is the mutual information (MI) [4,14]. We therefore

Leakage Bounds for Gaussian Side Channels 91

introduce the random variables X and Lx to denote the distributions of x and
lx, respectively. The mutual information is then defined as

MI(X;Lx) = H[X] − H[X|Lx]. (1)

Hereby, H[X] and H[X|Lx] denote the entropy of the random variable X and
the conditional entropy of X given the leakage Lx, respectively. Note however
that the (conditional) entropy (and thus the MI) is an average metric depending
on the actual distribution of values xi ∈ X and lx ∈ Lx. This means that the
actual information learned from a side-channel leakage depends on the actually
processed value and might thus for some events even be higher than the MI. Yet,
the MI is a good metric to give bounds on the expected leakage behavior.

2.3 Linear Channel Model

For giving bounds on the MI of side channels, we consider an implementation
that transmits the single bits of a secret state to the attacker via a side chan-
nel. Hereby, the physical leakage behavior and measurement effects define the
mapping of the single bits to the output samples of the side channel. We model
this multivariate side channel as an n-to-m linear communication channel with
Gaussian noise, i.e., it transfers linear combinations of the bits of the secret
state. While this linear channel model allows to adapt results from communica-
tion theory, the resulting bounds are yet independent from the concrete leakage
behavior and Gaussian noise is the sole assumption. Namely, our final bounds
will only depend on the side-channel signal observed by the attacker. Further
note that non-linear mappings can easily be added to this model similar as for
regression techniques [13].

In our linear channel model, the attacker observes an m × 1 leakage trace lx
from the processing of the secret state x in the implementation I. Let x denote
the n×1 vector consisting of the n bits of the secret state x. We then model the
leakage trace lx as the multiplication of the secret state vector x with a m × n
side-channel matrix H plus an m × 1 noise vector ν:

lx = Hx + ν. (2)

The i-th row of H specifies how the n bits of the secret state x map to the i-
th point of the measured leakage lx. The maximum MI that an attacker can learn
from the side-channel leakage according to Eq. 2 depends on the maximum number
of states that are distinguishable at the receiver of this channel. This upper bound
on the MI is typically called the channel capacity. In particular, Telatar [16] states
the channel capacity C as the maximum average mutual information between in-
and output over the choice of the input distribution, i.e.,

C = max
p(X)

MI(X,Lx). (3)

We observe that the side-channel leakage given by Eq. 2 bears some famil-
iarity with the notion of multi-input multi-output (MIMO) channels as used in

92 T. Unterluggauer et al.

wireless communication. For a constant, known channel H, Goldsmith et al. [7]
state the channel capacity for signals in the domain of complex numbers as
follows:

C = max
Σx:tr(Σx)=P

log2 |Im + HΣxHH | (4)

Hereby, Im and Σx denote the m×m identity matrix and n×n signal covari-
ance matrix, respectively. P is the total power constraint of the transmitter, HH

the complex conjugate of H, | · | the determinant, and tr(·) the trace of a matrix.
For Eq. 2 to hold true, the noise vector ν must consist of independent samples
of Gaussian white noise with variance σ2

ν = 1, i.e., the m × m noise covariance
matrix Σν is the identity matrix Im.

We can use the channel capacity of MIMO channels as an upper bound for the
MI in side-channel leakages according to Eq. 2. However, there are different con-
straints for side channels than in wireless communication, requiring some modifi-
cations of Eq. 4. For example, an attacker cannot influence the signal covariance
Σx such as to optimize the capacity C. Moreover, side-channel attacks typically
exploit real-valued information like the power consumption, whereas signals in
communication channels are represented in the domain of complex numbers.
This effectively halves the capacity for the side-channel case. In practice, we also
observe that the samples in the noise vector ν are not necessarily independent
and have different variances. According to [7], dependent samples in the noise
ν can be modeled via a modified channel matrix H̃ = Σ

−1/2
ν H given the noise

covariance matrix Σν . By adapting Eq. 4 according to these considerations, we
extract the special case of linear side channels as in Eq. 2 and state their leakage
upper bound:

C = max
p(X)

MI(X,Lx) =
1
2

log2 |Im + Σ−1
ν HΣxHH |. (5)

2.4 Leakage Bound for Gaussian Side Channels

The side-channel matrix H is typically unknown but fixed. An interesting ques-
tion thus is how to determine the channel capacity if H is unknown. A common
approach to characterize a side channel are multivariate Gaussian templates.
Hereby, for each secret state x, the respective side-channel leakage lx is described
as a multivariate Gaussian distribution. This characterization gives a set of tem-
plates (μi, Σν ,i) with mean μi and noise covariance Σν ,i for all states xi. The
means μi give an estimation of the n×n covariance matrix Σy of the side-channel
signal y = Hx. This covariance matrix Σy equals HΣxHH from Eq. 5. Similarly,
assuming that the noise is independent from the signal and thus has constant
covariance (as in [11]), the single noise covariances Σν ,i give an estimation of
Σν .1 Putting this together, we adapt Eq. 5 to derive our main result. Namely,
1 The constant covariance assumption is invalid in case the covariance carries infor-

mation as, e.g., in masked implementations. However, leakage-resilient cryptography
aims to bound the leakage without the use of countermeasures like masking, and thus
noise will typically be independent from the signal.

Leakage Bounds for Gaussian Side Channels 93

we use the signal and noise covariance matrices Σy, Σν to state the capacity
of a side channel characterized via multivariate Gaussian templates, or more
generally, of multivariate leakages with Gaussian noise.

Main Result (Leakage Bound of a Gaussian Side Channel). The mutual
information of a multivariate side channel with signal covariance Σy and Gaus-
sian noise Σν is bounded by

C =
1
2

log2 |Im + Σ−1
ν Σy|. (6)

Interestingly, the term Σ−1
ν Σy is an SNR taking noise and signal covari-

ances between the POIs into account. The capacity of the side channel is thus
determined by the actual power of signal and noise, and correlations in the sam-
ples of ν and y. Such correlations typically mark redundancies that effectively
reduce the side-channel capacity. Moreover, note that the side-channel capacity
given here depends on the side-channel signal y only. This means that our result
applies to any leakage function/model having the properties given by Σy.

For univariate leakages or when the same leakage is observed in multiple POIs
within the leakage trace, the leakage bound in Eq. 6 can further be simplified.

Univariate Leakage. An attacker exploiting univariate leakage is confined to
the leakage in a single point of the execution of an implementation I. This means
that the side channel degenerates to

lx = hx + ν, (7)

where lx and ν are scalars and the 1 × n channel vector h specifies the leakage
of the single bits of the state x. Let us now assume the channel vector h maps
the n bits in x to y according to the identity of the respective state variable x.
Intuitively, the MI between the secret state x and its leakage lx is here bounded
by the number of different states that an attacker can distinguish in the single
leakage point lx. This number depends both on the distance between the different
states along the measured signal range and the noise. When adapting Eq. 6 for
univariate leakage, we can observe exactly this dependence:

C =
1
2

log2

(
1 +

σ2
y

σ2
ν

)
=

1
2

log2 (1 + SNR) , (8)

where σ2
y is the variance of the signal y = hx and σ2

ν is the variance of the noise ν.
As also noted in [4,10], this upper bound for the MI in univariate leakages solely
depends on the SNR and is better known as the Shannon-Hartley theorem [2].

Identical Leakage in Multiple Points. In many cases, an attacker will try to
exploit the leakage in multiple points of the execution to increase their success
rate. If these points are chosen to be in close vicinity within the leakage trace,

94 T. Unterluggauer et al.

these POIs will often carry highly redundant information. An example where
this case occurs are attackers sampling the side channel at a very high rate and
using several consecutive sampling points in their attack. In such situation, one
can assume the leakage to be the same for all points of the leakage trace. This
case is equivalent to single-input multiple-output (SIMO) channels in wireless
communication. The side-channel matrix is then expressed as the vector multi-
plication H = hgain · hl, where hl states the 1 × n side-channel vector mapping
the n bits of x to a scalar value and hgain is the m × 1 gain vector over the m
POIs used by the attacker. The capacity formula in Eq. 5 degenerates for such
leakage behavior, but can simply be expressed using the vector hgain only [6]:

C =
1
2

log2
(
1 + σ2

zh
H
gainΣ−1

ν hgain

)
, (9)

where σ2
z is the variance of the signal z = hlx such that lx = hgainz + ν.

2.5 Description of Common Leakage Models

Our leakage model in Eq. 2 allows to easily describe linear side-channel leakages.
We now give several examples on how to map existing power models to Eq. 2.
Note that we give these examples without consideration of the effective signal
range in the leakage lx.

Identity Leakage. In identity leakage, the n-bit secret state x leaks linear to
the value x it represents. If x leaks the identity in the i-th sample of lx, the i-th
row in the side-channel matrix H takes the form h =

(
20 21 22 . . . 2n−2 2n−1

)
.

Hamming Weight Leakage. In Hamming Weight (HW) leakage, the secret
state x leaks the number of bits set to one. HW leakage in the i-th sample of
lx results in the i-th row of H to take the form h =

(
1 1 1 . . . 1 1

)
. Hamming

Distance (HD) leakage is modeled in the same way by setting the secret x to be
the xor of the leaking state before and after it toggles.

Time-Serialized Leakage. In time-serialized implementations, an attacker col-
lecting the side-channel leakage at different points in time will be able to learn
different information in the different POIs. One prominent example are byte-
oriented cryptographic implementations, where in each clock cycle a different
byte of the n-bit state x is processed and leaks. For simplicity, let us assume an
8-bit state and HW leakage of a 2-bit chunk processed in the respective clock
cycle. This will give a side-channel matrix of the form

H =

⎛
⎜⎜⎝

1 1 0 0 0 0 0 0
0 0 1 1 0 0 0 0
0 0 0 0 1 1 0 0
0 0 0 0 0 0 1 1

⎞
⎟⎟⎠ .

Localized Leakage. Localized electromagnetic emanation (EM) attacks are a
powerful way to extract information from parts of the secret state. Such localized

Leakage Bounds for Gaussian Side Channels 95

EM leakage can in principal be modeled the same way as time-varying leakage.
For example, consider the leakages lx,1 and lx,2 observed in two different EM
positions. Moreover, assume that lx,1, lx,2 consist each of two samples leaking the
identity of the first or second half of a 4-bit state, respectively. Concatenating the
two leakages lTx = (lTx,1l

T
x,2) means concatenating the respective channel matrices

H1,H2 to a combined side-channel matrix of the form

H =

⎛
⎜⎜⎝

20 21 0 0
20 21 0 0
0 0 20 21

0 0 20 21

⎞
⎟⎟⎠ .

This model underlines the intuition that gathering additional leakage from
observing a parallel implementation in different locations and measuring a serial
implementation at different times is equivalent. In particular, it shows that
side-channel leakage becomes optimal if the leakages in the side-channel sig-
nal y = Hx are independent. In the best case, the signal covariance matrix
becomes a diagonal matrix, i.e., Σy = diag(σ2

y1
, σ2

y2
, ..., σ2

ym
). In the same way,

noise effects are canceled out the best if the noise samples in ν are independent,
i.e., Σν is a diagonal matrix as well.

3 Complexity of State Recovery

The side-channel capacity is an upper bound on the MI to be learned via a side
channel. This bound essentially depends on the implementation’s SNR. While
in most leakage-resilient schemes an attacker is restricted to a single leakage
trace for a specific state, there are schemes, e.g., Isap [3], that allow attackers
to observe the execution of an implementation processing the same data mul-
tiple times. This gives attackers the option to perform signal averaging, which
improves the side-channel SNR and thus side-channel capacity.

In this section, we therefore consider an attacker capable of averaging mul-
tiple leakage traces. We show how averaging improves the side-channel capacity
in multivariate attacks and provide attackers and implementers with a tool to
compute the expected minimum complexity to learn the secret state of a device.

3.1 Attack Model

As in Sect. 2, we assume an attacker trying to recover a secret state x from side-
channel leakages lx generated by an implementation I with input complexity
q = 1 and thus preclude multi-input attacks. However, the attacker is capable of
observing the same execution of I multiple times. This attack setting is observed
when a ciphertext, e.g., a firmware image, must be decrypted multiple times
using a leakage-resilient scheme like Isap.

96 T. Unterluggauer et al.

3.2 Averaging Attacker

An attacker that observes the same processing of the secret state x multiple
times is capable of averaging the side-channel leakage lx to yield a better SNR
and thus higher side-channel capacity. In general, averaging N observations gives
the averaged noise covariance matrix

Σν =
1
N

Σν , (10)

where Σν is the noise covariance matrix valid for a single leakage trace. This
means that the noise (co-)variances reduce linearly with the number of averaged
traces. Note here that for the univariate case Eq. 10 simplifies to the well-known
relation σ2

ν = σ2
ν

N . Given the noise covariance matrix after averaging Σν , we can
now investigate the effect of averaging on the side-channel capacity. Inserting
Eq. 10 into the generic side-channel capacity given in Eq. 4 yields

C =
1
2

log2
∣∣Im + N · Σ−1

ν Σy

∣∣ . (11)

Note that the SNR term N · Σ−1
ν Σy is an m × m matrix and its determi-

nant behaves proportionally to Nm. This means that the side-channel capacity
increases stronger with the number of averaged traces the more POIs are used
in an attack. This is because each POI can potentially transfer completely inde-
pendent data as, e.g., for time-serialized and localized EM leakages.

Identical Leakage in Multiple Points. For identical leakage in all POIs, the
side-channel capacity behaves differently. Inserting Eq. 10 into the SIMO channel
capacity given in Eq. 9 yields

C =
1
2

log2
(
1 + N · σ2

z · hH
gainΣ−1

ν hgain

)
. (12)

It shows that the number of traces N used for averaging has a linear influence
on the SNR and is independent of the number of POIs m.

3.3 Expected Minimum Attack Complexity

In the worst case, physical attackers have unbounded complexity. This means
they can measure and average an unlimited number of leakage traces N → ∞,
leading to zero noise and virtually unlimited channel capacity and MI. This
can be thought of state differences causing vanishingly small differences in the
side-channel signal being distinguishable if the noise is eliminated completely.
It thus seems reasonable to set the side-channel capacity in relation with the
actual attack complexity, i.e., the number of leakage traces N , to learn a certain
amount of bits. This is also the common approach when assessing the security
of masked implementations.

It is yet difficult to determine such attack complexity since it is strongly influ-
enced by the implementation’s leakage behavior, which is commonly unknown.

Leakage Bounds for Gaussian Side Channels 97

For example, it is unknown to what extent information and noise in the single
points of a leakage trace correlate, and as shown in Sect. 2, these effects strongly
influence the side-channel capacity. However, the device- and measurement-
specific multivariate SNR = Σy · Σ−1

ν takes exactly these effects into account
and can thus be used to generically express the expected minimum complexity of
a side-channel attacker without any concrete leakage assumptions. In particular,
we can rewrite the multivariate channel capacity for averaging attackers (Eq. 11)
as follows:

C =
1
2

log2 Nm

∣∣∣∣ 1
N

Im + Σ−1
ν Σy

∣∣∣∣ . (13)

For a large number of averaged traces N , Eq. 13 can be further approximated
to give the side-channel capacity in dependence of a scalar device SNR.

C ≈ 1
2

log2
(
1 + Nm

∣∣Σ−1
ν Σy

∣∣) =
1
2

log2(1 + Nm · SNRm) (14)

An implementation will in practice give some side-channel SNRm = |Σy·Σ−1
ν |

that is observed in m POIs in the leakage traces. This SNR takes into account
all kinds of correlations in both noise and side-channel leakage. For an imple-
mentation that is expected to give a certain SNRm, designers and implementers
can thus compute the expected minimum attack complexity in terms of traces
to measure and average.

Figure 1 gives an overview on the expected side-channel capacity for m =
1, 5, 10 POIs given the number of averaged traces. It shows that the side-channel
capacity rises quickly with the number of averaged traces for multivariate leak-
ages. In particular, it shows that if SNRm is not sufficiently low, a state of

100 101 102 103

0

10

20

30

40

50

Averaged Traces

Si
de

-C
ha

nn
el

C
ap

ac
it
y
[b
it
s]

1 POI
5 POI

10 POI

Fig. 1. Expected side-channel capacity
given the number of averaged leakage
traces for different numbers of POIs and
SNRm = 0.01.

100 101 102 103

0

2

4

6

8

10

Averaged Traces

Si
de

-C
ha

nn
el

C
ap

ac
it
y
[b
it
s]

SIMO Bound (uncorr. noise)
SIMO Bound (corr. noise)

MIMO Bound
Mutual Information

Fig. 2. Mutual information of keccak-
f [400] on Fulmine and side-channel
capacity of different channel models (256
classes, 10 POIs).

98 T. Unterluggauer et al.

virtually any size can theoretically be recovered with practical complexity. How-
ever, this effect is also limited by the available POIs with sufficiently low signal
correlations.

4 Experimental Verification and Security Analysis

The previous sections introduced theoretical leakage upper bounds for multivari-
ate side channels with Gaussian noise. In this section, we show that these bounds
match the real leakage behavior by evaluating the MI on a hardware implemen-
tation of the keccak-f [400]-based scheme Isap [3] on the real system on chip
Fulmine. Our experiments further show the security of this implementation of
Isap in terms of power analysis attacks.

4.1 Evaluation Hardware: Fulmine

At FSE 2017, Dobraunig et al. [3] presented the sponge-based authenticated
encryption scheme Isap to inherently prevent DPA during both en-/decryption.
This is achieved by limiting the number of inputs processed under a single key by
one. To further express their scheme’s capability to cope with side-channel leak-
age from a single data input, the authors proposed using the sponge parameters
themselves. However, in the view of Isap allowing for the multiple decryption
of the same ciphertext and tag, it is an open question how much information an
attacker can learn when averaging multiple leakage traces.

To verify the soundness of our leakage bounds and to evaluate the side-
channel resistance of Isap, we developed and fabricated the multi-core SoC
Fulmine, a prototype ASIC in the UMC 65 nm LL 1P8M technology. Ful-
mine, as shown in Fig. 3, is based on the PULP platform [12] including four gen-
eral purpose processing elements (enhanced OpenRISC cores with DSP exten-
sions [5,8]) and two dedicated hardware accelerators: the Hardware Cryptog-
raphy Engine (hwcrypt) and the Hardware Convolution Engine (hwce). All
processing elements share the same 64 kB level-1 Tightly-Coupled Data Mem-
ory (TCDM) to support a fast and efficient communication and to avoid single
point-to-point channels.

hwcrypt is a flexible, software-programmable hardware accelerator support-
ing various cryptographic primitive functions such as the keccak-f [400] per-
mutation [1]. Moreover, the accelerator supports high-level encryption schemes
such as Isap. The accelerator is designed to achieve maximum throughput. To
achieve that goal, the keccak-f [400] permutation utilizes three fully parallel
round instances to maximize the throughput but to also match the length of
the critical path of other parts of the accelerator. When using Isap, hwcrypt
supports a flexible configuration of the rate (from 1 bit to 128 bits in powers of
two) and the number of permutation rounds in multiples of three including 20
to flexibly trade-off between throughput and security. hwcrypt is configured
and monitored via a set of status registers. A flexible event and interrupt system
indicates other processing elements when an operation has finished.

Leakage Bounds for Gaussian Side Channels 99

Fig. 3. Fulmine SoC and hwcrypt architecture.

4.2 Soundness of Model and Bounds

To verify the soundness of our model and the bounds in Sect. 2, we analyzed the
leakage behavior of the keccak-f [400] permutation on Fulmine. For this pur-
pose, we constructed multivariate Gaussian templates for the power consumption
of Fulmine for 5- and 8-bit parts of the 400-bit state of keccak-f [400]. More
concretely, we target the intermediate state KState of keccak-f [400], depicted
in Fig. 3, such that Fulmine computes three rounds of the permutation before
and after the target state to preclude load-time leakages. The remaining state not
covered by our templates, i.e., 395 and 392 bits respectively, was held constant.
For each class, we used 1400 power measurements in the training phase. The
POIs were chosen as the points of highest variance fulfilling a certain minimum
distance within the leakage trace and include both register and combinatorial
activity. Based on these templates, we computed the side-channel capacity and
evaluated both the MI and the 1st-order success rate of classification. The eval-
uations were done in dependence of the number of leakage traces used for signal
averaging.

Our evaluation results in Fig. 4 suggest that the channel model used to com-
pute the side-channel capacity of multivariate leakages is sound. In particular,
for both 5-bit and 8-bit templates the MI between leakage and secret state
stays within the bounds given by the side-channel capacity. While there is a gap
between the MI and the channel capacity, the MI follows the shape of the side-
channel bound well. Moreover, the first-order classification rate rises accordingly.
However, Fig. 4a also shows that for higher numbers of averaged traces the MI
goes into saturation, and thus the gap between capacity and the learned infor-
mation gets bigger. In particular, it shows that once the MI converges to the
maximum number of bits that could be recovered using the trained template set,
i.e., 5 or 8 bits respectively, the increase in learned information for additional

100 T. Unterluggauer et al.

100 101 102 103
0

2

4

6

8

10

Averaged Traces

Si
de
-C

ha
nn

el
C
ap

ac
it
y
[b
it
s]

Bound 1 POI
Bound 5 POI
Bound 10 POI

MI 1 POI
MI 5 POI

MI 10 POI

(a) 32 classes.

100 101 102 103
0

2

4

6

8

10

Averaged Traces
Si
de
-C

ha
nn

el
C
ap

ac
it
y
[b
it
s]

Bound 1 POI
Bound 5 POI
Bound 10 POI

MI 1 POI
MI 5 POI
MI 10 POI

(b) 256 classes.

100 101 102 103
0

0.1

0.2

0.3

0.4

0.5

0.6

Averaged Traces

1s
t
-o
rd
er

su
cc
es
s
ra
te

1 POI
5 POI
10 POI

(c) 32 classes.

100 101 102 103
0

0.1

0.2

0.3

0.4

0.5

0.6

Averaged Traces

1s
t
-o
rd
er

su
cc
es
s
ra
te

1 POI
5 POI
10 POI

(d) 256 classes.

Fig. 4. Side-channel capacity, mutual information and success rate for the keccak-
f [400] permutation given the number of averaged traces and different numbers of POIs
and number of classes. The remaining state was held constant.

numbers of averaged traces gets successively smaller. This indicates that the
side-channel information is not distributed to perfectly use the channel.

We further investigated how different channel models suit the actual leakage
behavior. We therefore compared the MIMO channel model used in the previous
evaluation with the SIMO channel model, which assumes identical leakages in
the POIs of a leakage trace, e.g., within a clock cycle. For the SIMO channel
model, we analyzed two cases: one taking noise correlations into account, and
one assuming independent noise. The channel capacities of the different channel
models were computed based on the 8-bit templates constructed in the previous

Leakage Bounds for Gaussian Side Channels 101

evaluation. In particular, for the SIMO model we used the signal variance in each
POI, but neglected signal covariances. The results of our evaluations are shown
in Fig. 2. These suggest that the leakages in the single POIs are not identical and
thus the MIMO channel model suits the leakage behavior clearly better than the
SIMO channel model. Moreover, from the plots using the SIMO model one can
observe that there is some noise correlation that lowers the channel capacity.

4.3 Security of ISAP

In most situations, designers and implementers want to assess the security of
a complete cryptographic implementation. However, the state sizes involved in
a cryptographic scheme like Isap are typically large and the channel capacity
computed from a low number of templates cannot be directly used since more
hardware will be active. On the other hand, it is impossible to build templates
for a 400-bit state that would allow to compute the channel capacity exactly.
Yet, we can use the experiments on the keccak-f [400] permutation to estimate
leakage bounds for the full state of Isap.

As we can see from Fig. 4, the channel capacity is practically the same for
both 5- and 8-bit templates. The reason for this is that the SNR we observed
on Fulmine using our measurement setup is the same. This gives the question
whether and how the SNR would change for 400-bit templates. Now if the same
measurement setup was used for constructing 400-bit templates, we can safely
say that the range of the measured noise will not decrease by orders of magnitude.
In the same way, the range of the side-channel signal will definitely not rise by
orders of magnitude using the same setup, especially since the diffusion of three
rounds of keccak-f [400] already causes large parts of the logic to become active
within the profiled clock cycle.

On the other hand, the side-channel capacity from a single power measure-
ment of Fulmine is very low, and thus, even if the channel SNR was 100 times
higher, the channel capacity would hardly rise. We thus scale the SNR with a
factor γ to get a security margin that allows to estimate how many traces an
attacker will at least require to recover the complete state or to exceed the leak-
age bounds. Using the SNRm of the m-variate leakage from the 8-bit templates,
we compute the minimum number of traces needed to learn the state of size S:

N =
(

22S − 1
γ · SNRm

)1/m

. (15)

The authors of Isap state concrete leakage bounds for their re-keying func-
tion and encryption scheme to still provide 128-bit security. We thus evaluated
Eq. 15 on Fulmine for three different state sizes: the full state of keccak-f [400],
the leakage bound for the Isap re-keying function (272 bits), and the leakage
bound for the Isap encryption itself (128 bits). The results in Fig. 5 indicate that
the minimum attack complexity in terms of measurement traces is impracticable
for less than 20 POIs and all mentioned state sizes. However, for higher num-
bers of POIs the minimum attack complexities tend towards practically feasible.

102 T. Unterluggauer et al.

102 105 108 1011 1014 1017 1020 1023 1026 1029 1032 1035

5

10

20

30

100

Minimum Attack Complexity

N
um

be
r
of

P
O
Is

400 bits
272 bits
128 bits

Fig. 5. Minimum attack complexity as the number of measurements needed to average
to recover (parts) of the Isap state from Fulmine. As a security margin we set γ = 100.

Namely, when using 100 POIs, 10 000 measurements can be enough to learn 128
bits of the state, and 500 000 measurements are the minimum to recover the full
state.

However, using that many POIs often hampers template building or leads to
overfitting effects reducing the classification rate. Besides, side-channel leakage
is not distributed such as to perfectly use the channel. This becomes visible
in the gap between channel capacity and MI in Fig. 4. While this might allow
an attacker to recover a few states more easily, in consideration of all possible
states the attack complexity yet stays above the bounds in Fig. 5. Namely, for
non-ideal distributions of the leakage, an attacker will, in general, require even
more measurements to learn the specified amount of information.

From a practical perspective, conducting such powerful attack would require
an attacker to successfully build templates on the respective state. In many cases,
this is however not possible, e.g., when the attacker does not have control over
the state on a suitable device. Even further, the complexity to build, measure,
and evaluate such large set of templates is clearly impractical. In this respect,
the implementation of Isap on Fulmine can for the used measurement setup
be considered secure against power analysis attacks also above the bounds in
Fig. 5.

5 Conclusion

In this work, we presented a novel approach to determine leakage upper bounds
for side channels of cryptographic implementations under a single data input.
Without any further leakage assumptions we showed that the channel capacity
of transmission channels with multiple in- and outputs gives the natural upper
bound for information leakage in multivariate side channels with Gaussian noise.

We then considered the case where attackers are capable of performing mul-
tiple measurements of the same execution in order to improve their SNR. We
showed that the gain in the SNR of multivariate leakages resulting from signal

Leakage Bounds for Gaussian Side Channels 103

averaging is exponential in the number of POIs. This observation gives a tool
for attackers to learn about the feasibility of an attack and for implementors
to assess the minimum attack complexity of state recovery in leakage-resilient
schemes allowing for multiple decryptions like Isap. We verified the soundness
of our model and our bounds using the ASIC Fulmine implementing Isap and
the keccak-f [400] permutation. Finally, we gave lower bounds on the com-
plexity for recovering the Isap state using power analysis. The results indicate
that recovery of the Isap state on Fulmine is practically infeasible with power
analysis and the used measurement setup.

Acknowledgements. This project has received
funding from the European Research Council
(ERC) under the European Union’s Horizon 2020
research and innovation programme (grant agree-
ment No 681402) and from the Austrian Research
Promotion Agency (FFG) under grant number
845589 (SCALAS).

References

1. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: Keccak sponge function
family main document. Submission to NIST (Round 2) 3, 30 (2009)

2. Cover, T.M., Thomas, J.A.: Elements of Information Theory. Wiley, New York
(2012)

3. Dobraunig, C., Eichlseder, M., Mangard, S., Mendel, F., Unterluggauer, T.:
Isap - towards side-channel secure authenticated encryption. IACR Trans. Sym-
metric Cryptol. 2017(1), 80–105 (2017). http://tosc.iacr.org/index.php/ToSC/
article/view/585

4. Duc, A., Faust, S., Standaert, F.-X.: Making masking security proofs concrete -
or how to evaluate the security of any leaking device. In: Oswald, E., Fischlin, M.
(eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 401–429. Springer, Heidelberg
(2015). https://doi.org/10.1007/978-3-662-46800-5 16

5. Gautschi, M., Schiavone, P.D., Traber, A., Loi, I., Pullini, A., Rossi, D.,
Flamand, E., Gürkaynak, F.K., Benini, L.: Near-threshold risc-v core with dsp
extensions for scalable iot endpoint devices. IEEE Trans. Very Large Scale Integr.
(VLSI) Syst. 25(10), 1–14 (2017)

6. Goldsmith, A.: Wireless Communications. Cambridge University Press, Cambridge
(2005)

7. Goldsmith, A., Jafar, S.A., Jindal, N., Vishwanath, S.: Capacity limits of MIMO
channels. IEEE J. Sel. Areas Commun. 21(5), 684–702 (2003). https://doi.org/10.
1109/JSAC.2003.810294

8. Lampret, D., Chen, C.M., Mlinar, M., Rydberg, J., Ziv-Av, M., Ziomkowski, C.,
McGary, G., Gardner, B., Mathur, R., Bolado, M.: Openrisc 1000 architecture
manual. Description of assembler mnemonics and other for OR1200 (2003)

9. Medwed, M., Standaert, F.-X., Nikov, V., Feldhofer, M.: Unknown-input attacks
in the parallel setting: improving the security of the CHES 2012 leakage-resilient
PRF. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016. LNCS, vol. 10031, pp.
602–623. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53887-
6 22

http://tosc.iacr.org/index.php/ToSC/article/view/585
http://tosc.iacr.org/index.php/ToSC/article/view/585
https://doi.org/10.1007/978-3-662-46800-5_16
https://doi.org/10.1109/JSAC.2003.810294
https://doi.org/10.1109/JSAC.2003.810294
https://doi.org/10.1007/978-3-662-53887-6_22
https://doi.org/10.1007/978-3-662-53887-6_22

104 T. Unterluggauer et al.

10. Mizuno, H., Iwai, K., Tanaka, H., Kurokawa, T.: Information theoretical analysis of
side-channel attack. In: Bagchi, A., Ray, I. (eds.) ICISS 2013. LNCS, vol. 8303, pp.
255–269. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-45204-
8 20

11. Rivain, M.: On the exact success rate of side channel analysis in the Gaussian
Model. In: Avanzi, R.M., Keliher, L., Sica, F. (eds.) SAC 2008. LNCS, vol. 5381, pp.
165–183. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04159-
4 11

12. Rossi, D., Conti, F., Marongiu, A., Pullini, A., Loi, I., Gautschi, M., Tagliavini, G.,
Capotondi, A., Flatresse, P., Benini, L.: Pulp: a parallel ultra low power platform
for next generation iot applications. In: Hot Chips 27 Symposium (HCS), 2015
IEEE, pp. 1–39. IEEE (2015)

13. Schindler, W., Lemke, K., Paar, C.: A stochastic model for differential side channel
cryptanalysis. In: Rao, J.R., Sunar, B. (eds.) CHES 2005. LNCS, vol. 3659, pp.
30–46. Springer, Heidelberg (2005). https://doi.org/10.1007/11545262 3

14. Standaert, F.-X., Malkin, T.G., Yung, M.: A unified framework for the analysis of
side-channel key recovery attacks. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS,
vol. 5479, pp. 443–461. Springer, Heidelberg (2009). https://doi.org/10.1007/978-
3-642-01001-9 26

15. Standaert, F., Pereira, O., Yu, Y., Quisquater, J., Yung, M., Oswald, E.: Leak-
age resilient cryptography in practice. In: Towards Hardware-Intrinsic Security -
Foundations and Practice, pp. 99–134 (2010)

16. Telatar, E.: Capacity of multi-antenna Gaussian Channels. Eur. Trans. Telecom-
mun. 10, 585–595 (1999). https://doi.org/10.1002/ett.4460100604

https://doi.org/10.1007/978-3-642-45204-8_20
https://doi.org/10.1007/978-3-642-45204-8_20
https://doi.org/10.1007/978-3-642-04159-4_11
https://doi.org/10.1007/978-3-642-04159-4_11
https://doi.org/10.1007/11545262_3
https://doi.org/10.1007/978-3-642-01001-9_26
https://doi.org/10.1007/978-3-642-01001-9_26
https://doi.org/10.1002/ett.4460100604

Towards Sound and Optimal Leakage
Detection Procedure

A. Adam Ding1(B), Liwei Zhang1, Francois Durvaux2,
Francois-Xavier Standaert2, and Yunsi Fei3

1 Department of Mathematics, Northeastern University, Boston, MA, USA
a.ding@northeastern.edu

2 ICTEAM/ELEN/Crypto Group, Universite catholique de Louvain,
Louvain-la-Neuve, Belgium

3 Department of ECE, Northeastern University, Boston, MA, USA

Abstract. Evaluation of side-channel leakage for cryptographic systems
requires sound leakage detection procedures. The commonly used stan-
dard approach is the test vector leakage assessment (TVLA) procedure.
We first relate TVLA to the statistical minimum p-value (mini-p) pro-
cedure, and propose a sound method of deciding leakage existence in the
statistical hypothesis setting. An advanced statistical procedure, Higher
Criticism (HC), is adopted to improve leakage detection when there are
multiple leakage points. The HC-based procedure is optimal in side-
channel leakage detection, because for a given number of traces with
a given length, it detects the existence of leakage at the signal level as
low as possibly detectable by any statistical procedure. Numerical stud-
ies show that our HC-based procedure perform as well as the mini-p
based procedure when leakage signals are very sparse, and can improve
the leakage detection significantly when there are multiple leakages.

Keywords: Side-channel analysis · Leakage detection
Higher criticism

1 Introduction

Side-channel analysis (SCA) has been shown to be a serious threat to mod-
ern cryptographic implementations. For more than a decade now, researchers
actively invented various side-channel attacks and proposed countermeasures to
protect devices against such attacks. As countermeasures are integrated into
commercial customer devices, evaluating the resistance of devices against SCA
becomes an important issue. A leakage detection test procedure, Cryptography
Research (CRI)’s test vector leakage assessment (TVLA) [1,2], is often used for
blackbox evaluation of SCA resistance. The TVLA procedure scans the leakage
traces (e.g., physical measurements of the power consumption) with a univariate
test, and declares no leakage if the test statistics at all points along the leakage
trace falls below a critical value.

c© Springer International Publishing AG, part of Springer Nature 2018
T. Eisenbarth and Y. Teglia (Eds.): CARDIS 2017, LNCS 10728, pp. 105–122, 2018.
https://doi.org/10.1007/978-3-319-75208-2_7

106 A. A. Ding et al.

It is preferred to use a generic univariate test in the TVLA procedure to
avoid dependence on a specific leakage model. The CRI’s TVLA proposal runs
the Welch’s t-test [1,2] on data sets sampled according to a nonspecific partition,
usually the fixed-vs-fixed sampling or the fixed-vs-random sampling, where the
fixed class of measurements come from encryptions of fixed plaintexts while the
random class of measurements come from encryptions of random plaintexts.
Recently several extensions of the t-test (e.g., higher order and multivariate
leakage detection) have been proposed by researchers [3–6].

Durvaux and Standaert [5] at EuroCrypt2016 proposed a correlation-based
test (ρ-test) to detect exploitable leakage aimed at a particular intermediate
computation. Such a specific test yields sparser leakage relating to this targeted
intermediate value, and is better suited for identifying Point-Of-Interest (POI)
for exploitable leakage. While this identification is necessary for practical SCA,
it is not required for the purpose of leakage detection. Both the specific and
non-specific leakage detection tests can be used in the TVLA framework.

In this work we first study the TVLA procedure itself from a theoretical per-
spective. The TVLA procedure declares a device as leaky, if the maximum test
statistic (over all points on the trace) exceeds a critical value. For the Welch’s
t-test, current TVLA procedure generally uses the critical value of 4.5 [2,7–9],
which corresponds to a statistical significance level of α < 0.00001 for the uni-
variate test. However, this significance level does not consider the total number
of univariate tests, i.e., the total number of points on the trace. The overall sig-
nificance level increases as the number of leakage points on the trace increases.
For long traces, the overall significance level can be quite large, so is the test
statistic value, and therefore a non-leaky device can not pass the TVLA t-testing
with the critical value of 4.5. Hence, Balasch et al. [10] suggested raising the crit-
ical value to 5 for longer traces based on numerical experiments. However, for
even longer traces, the non-leaky devices still can not pass at this higher critical
value of 5 (see Sect. 3.1). The issue is caused by the multiple univariate tests at
all time points which led [3] to suggest using false discovery rate to decide the
detection limit. However, an explicit rigorous way of setting the threshold value
would help for sound application of the current TVLA procedure.

In view of this state-of-the-art, we make two contributions in this paper.
First, we propose a sound method to set the threshold value according to an
overall statistical significance level. The current TVLA procedure makes the
decision (leaky versus non-leaky) based on the largest test statistic, hence it
is a statistical minimum p-value (mini-p) procedure that decides only with the
minimal p-value of all those univariate tests. The threshold can be set through
the mini-p procedure at any given statistical significance level, taking account of
the trace length. For the t-test based TVLA, we provide explicit expression of
this threshold, which also varies with the number of traces (used as the degree
of freedoms in the test).

Second, we propose to improve the (univariate) leakage detection procedure
with a statistically optimal HC metric. For the leakage detection purpose, the
evaluator searches for evidence of key-dependent leakages along the trace, without

Towards Sound and Optimal Leakage Detection Procedure 107

necessarily identifying the POIs exactly. Hence it is very similar as the statistical
independence scanning procedure [11–17] widely used in other high-dimensional
statistical applications. Depending on the signal strength and signal sparsity,
there is an undetectable region [18] where no statistical test can discern the exis-
tence of leakage. An optimal leakage procedure should be able to detect any
leakage outside this minimal theoretical undetectable region. The current TVLA
(mini-p) procedure is not optimal, as its undetectable region is larger. We incorpo-
rate the “Higher Criticism” (HC), a state-of-art statistical method for detecting
sparse and weak signals, into the TVLA procedure.

Our work improves the TVLA procedure to optimally utilize multiple POIs
for leakage detection. This is independent of whether the univariate test itself is
optimal. Both specific and nonspecific leakage detection tests above can be used,
with their relative advantages and limitations [5] still applying. Our work is also
orthogonal to the work of combining multiple leakages for a single attack, e.g.,
[19–24]. Our proposed procedure optimally combines detections of univariate
leakage existence at all points along the leakage trace. It works as well as the
mini-p for very sparse leakage signals, and significantly improves the detection
in scenarios where there are multiple leakage signals.

2 Background and Model Notations

2.1 TVLA Procedure as a mini-p Testing Method

In the TVLA leakage detection setup, an evaluator collects many traces of
physical measurements, and tries to find if some points on the traces leak key
information through a key-sensitive intermediate variable V . Let ntr and nL

denote, respectively, the total number of traces and the total number of points
on each trace. That is, the evaluator has ntr realizations of the random vector
L = [L1, · · · , LnL

]. The scanning procedure such as TVLA do a univariate sta-
tistical test at each time point, and makes decision by combining the results.
That is, we test the null hypothesis (there is no leakage signal):

Li = ri (1)

versus the alternative hypothesis (there is leakage):

Li = V + ri (2)

at the i-th time point, where ri is random noise.
The test is usually done with a test statistic ŝi. Statistically the p-value is the

probability that test statistic value can be observed under null hypothesis, i.e.,
P(|S| ≥ |ŝi|) where S denotes a random variable that follows the distribution of
the test statistic under the null hypothesis (1). For a single hypothesis test, the
null hypothesis is rejected when |ŝi| is too big or equivalently when the p-value
is too small.

The TVLA procedure decides that leakage exists as long as any one of the
tests rejects the null hypothesis. That is, the device is considered leaky when

108 A. A. Ding et al.

max1≤i≤nL
|ŝi| ≥ TH for a threshold value TH (or equivalently when the min-

imum p-value is smaller than a threshold value αTH). Therefore, the current
TVLA procedure is in fact a mini-p test method for considering multiple (nL)
testing but utilizing only the test with the minimal p-value. We will propose
changing this mini-p multiple testing method later.

While the usage of a particular univariate test is not essential to the frame-
work, we first describe two common univariate tests to use as concrete examples
for a better understanding of the overall leakage detection framework.

2.2 Univariate Tests: ρ-test, t-Test, Specific versus Nonspecific
Tests

Given the leakage model (2) with the known intermediate value V , the most
natural attack is the correlation power analysis (CPA) distinguisher. The CPA
uses the Pearson correlation, ρ, which can also be used for leakage detection in
ρ-test. The correlation is:

ρ̂i = Corr(Li, V). (3)

The test statistic is taken as the Fisher’s transformation on ρ̂i scaled by
√

ntr:

ŝi =
1
2

ln
(

1 + ρ̂i

1 − ρ̂i

)√
ntr. (4)

Under the null hypothesis (no leakage at the i-th time point), ŝi approximately
follows the standard normal distribution N(0, 1). So the corresponding p-value
is calculated by:

pi = 2 × (1 − CDFN(0,1)(|ŝi|)), (5)

where CDFN(0,1)(·) is the cumulative distribution function of the standard nor-
mal distribution.

The ρ-test can be considered as an ideal test for perfectly modeled power leak-
age, often Hamming Weight or Hamming Distance of a nonlinear (SBox) output.
A more generic version of ρ-test is proposed by Durvaux and Standaert [5] where
they profiled the leakage on the targeted V , thus allowing implementation in a
blackbox manner.

Another common generic test is the Welch’s t-test [1,2], where the Li mea-
surements are partitioned into two sets Li,A and Li,B , and compared by the test
statistic

ŝi =
Li,A − Li,B

√

ν̂2
i,A

nA
+

ν̂2
i,B

nB

, (6)

where Li,A and Li,B denote the sample means (average values) in each set, ν̂i,A

and ν̂i,B denote the sample standard deviations, nA and nB denote the numbers
of measurements for the set A and B, respectively. The corresponding p-value is
calculated as the probability, under a t-distribution with νt degree of freedom,
that the random variable exceeds the observed statistic value ŝi:

pi = 2 × (1 − CDFt(ŝi, ν̂i)), i = 1, · · · , nL, (7)

Towards Sound and Optimal Leakage Detection Procedure 109

where CDFt(·, ν̂i) is the cumulative distribution function of t-distribution with
the degree of freedom

ν̂i = (ν̂2
i,A/nA + ν̂2

i,B/nB)2/[(ν̂2
i,A/nA)2/(nA − 1) + (ν̂2

i,B/nB)2/(nB − 1)].

In practice, the degree of freedom ν̂i may be big so that the CDFt(·, ν̂i) can be
approximated by CDFN(0,1)(·). In that case, the p-value for t-test can also be
calculated from (5).

Recall that [5] used the ρ-test as a specific test on data partitioned according
to the specific intermediate value. The t-test is naturally used on data with two
classes with nonspecific partition (fixed-vs-fixed and fixed-vs-random). The data
collection methods, specific versus nonspecific, affect how sparse and how strong
the leakage signals are in the data. Those are the two critical factors in the
theoretical analysis in Sect. 4.

3 Methodology

In this section, we first discuss how to set the threshold for the mini-p procedure
correctly. We then describe the higher criticism (HC) procedure.

3.1 Threshold Setting in the mini-p Procedure

The current TVLA procedure declares a device as leaky when max1≤i≤nL
|ŝi| ≥

TH. However, the threshold value TH was not set at a given significance level
(Type I error rate) as in usual statistical methods. The t-test threshold of TH =
4.5 is suggested originally as it corresponds to a significance level of < 0.00001
for each univariate test [1,2]. However, the overall significance level varies with
the number of time points nL on the trace, so that the procedure is not doing
a fair testing for traces with different lengths. Particularly, for a long trace, a
leakage free device is often declared as leaky. For this reason, Balasch et al. [10]
suggested raising the threshold to TH = 5 for long traces. In Table 1(a), we
give the type I error rates under both TH = 4.5 and TH = 5 for the current
TVLA procedure. As the number nL increases, the type I error rate increases.
Particularly when nL = 1, 000, 000, a leakage free device will almost always be
declared as leaky (99.9% Type I error rate) under the threshold TH = 4.5, and
still about 44% chance of being declared as leaky with the higher threshold
TH = 5. Either way, we observe that for any such fixed threshold for the test
statistic, type I error rate varies greatly for different nL. Thus a more formal
way of setting the threshold value according to the trace length is needed, to
allow fair evaluation across different trace lengths.

Realizing that the current TVLA procedure is in fact a mini-p procedure,
the threshold for the minimum p-value should be set as αTH = 1 − (1 − α)1/nL

for an overall significance level α. Then for the t-test, the threshold is TH =
CDF−1

t (1 − αTH/2, νs) where CDF−1
t is the inverse of CDF of t-distribution.

This threshold value depends on the number of traces ntr which affects the

110 A. A. Ding et al.

Table 1. T-test threshold and Type I error rates for varying trace lengths nL.

(a) Type I error rates α under fixed threshold values.
nL 102 103 104 105 106

TH = 4.5 0.00068 0.0068 0.0661 0.4957 0.9987
TH = 5 0.000057 0.00057 0.0057 0.0557 0.4363

(b) Threshold values TH under fixed type I error rates.
nL 102 103 104 105 106 107 108

α = 0.001 4.417 4.892 5.327 5.731 6.110 6.467 6.806
α = 0.01 3.889 4.416 4.891 5.326 5.730 6.109 6.466

degrees of freedom νs in the t-distribution. When νs is big, this can also be
calculated as CDF−1

N(0,1)(1 − αTH/2). In Table 1(b), we list the cutoff values, for
the type I error rate of 0.001 and 0.01 under various trace lengths (assuming νs

is big).
Next, we propose an improved leakage detection method based on the higher

criticism (HC) [11,12] which utilize the information contained in all nL test
statistics more efficiently.

3.2 Higher Criticism

Statistically, the leakage detection can be formulated as testing

H0 : Model (1) holds at all time points (i = 1, ..nL), (8)
versus H1 : Model (2) holds at some time points.. (9)

The current mini-p procedure ignores the information on all other p-values
except for the minimal p-value min1≤i≤nL

pi. The HC method utilizes the infor-
mation stored in the distribution of p-values. Under the null hypothesis (8), all
observed p-values should follow a uniform distribution on the interval [0, 1]. For
the time points where leakage exists as Eq. (2), the expected p-values will be
smaller than those generated from the uniform distribution. Hence under the
alternative hypothesis (9) of some POIs with leakage (a mixture distribution),
the obtained p-values trend to be smaller than those generated under the uni-
form distribution. Figure 1 draws two curves of the ordered p-values under these
two hypothesises. The figure clearly shows the difference of the distributions of
the ordered p-values under H0 and H1.

The leakage detection problem can now be restated as comparing the dis-
tribution of the obtained p-values p1, ..., pnL

with the uniform distribution,
or equivalently as detecting the difference between the two curves in Fig. 1.
Naturally, to detect the difference between the two curves, we can compare
the ordered p-values p(1) ≤ p(2) ≤ ... ≤ p(nL) with their expected values
1/nL, 2/nL, ..., nL/nL under the uniform distribution. The HC procedure is

Towards Sound and Optimal Leakage Detection Procedure 111

0 0.5 1 1.5 2

x 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time Points

P−
va

lu
es

Without real leakage points
With real leakage points mixed

Fig. 1. Comparison of the distributions of ordered p-values under the null hypothesis
and under the alternative hypothesis.

based on the normalized distances for these comparisons,

̂HCnL,i =
√

nL(i/nL − p(i))
√

p(i)(1 − p(i))
, i = 1, ...nL. (10)

The HC procedure makes the detection if the maximum of these normalized
distance ̂HCnL,i exceeds a threshold. In contrast, the mini-p procedure only use
the first distance ̂HCnL,1 corresponding to the smallest p-value p(1) only. That is,
the mini-p procedure focused on the difference between the two curves in Fig. 1
at the lower-left corner only. When nL is big, the maximum normalized distance
often does not occur at ̂HCnL,1. Thus the HC procedure can be more effective
in detecting the difference by comparing the whole curves instead of using only
the pair of extreme points at the lower-left corner.

Formally, the HC procedure is as follows:

(1) Sort the p-values in ascending order p(1) ≤ p(2) ≤ ... ≤ p(nL).
(2) Calculate ̂HCnL,i, i = 1, ...nL, from Eq. (10).
(3) The HC statistic ̂HCnL,max is defined as,

̂HCnL,max = max
1≤i≤nL/2

̂HCnL,i. (11)

(4) Compare the obtained HC statistic ̂HCnL,max with the HC threshold bHC
nL,α

at a given significance level α. When ̂HCnL,max ≤ bHC
nL,α, we accept the

null hypothesis of no leakage. When ̂HCnL,max > bHC
nL,α, we reject the null

hypothesis and declare that leakage exists.

The HC threshold bHC
nL,α is set to the 1 − α quantile of the HC statistic

̂HCnL,max’s distribution under the null hypothesis. Since each ̂HCnL,j asymptot-
ically follows a standard normal distribution N(0, 1) under the null hypothesis,
this quantile bHC

nL,α can obtained by simulation from the nL standard normal ran-
dom variables. For large nL, the threshold bHC

nL,α can be approximated through

112 A. A. Ding et al.

the connection to Brownian bridge, for example the calculation formula provided
in Li and Siegmund [15].

When nL ≥ 100, bHC
nL,α ≈ 10.10 and 31.65 for α = 0.01 and 0.001 respectively.

To compare the mini-p procedure and HC procedure, let us assume that the
HC threshold is achieved at the max T-statistic (same as mini-p procedure),
and translate the HC threshold in terms of the max T-statistic. The thresholds
of maximum T-statistics for mini-p and HC procedures are then listed in the
following Table 2.

Table 2. Thresholds of maximum t-test statistics for mini-p and HC procedures.

α nL 102 103 104 105 106 107 108

0.001 Tmaxmini−p 4.417 4.892 5.327 5.731 6.110 6.467 6.806

TmaxHC 4.418 4.892 5.327 5.731 6.110 6.468 6.807

0.01 Tmaxmini−p 3.889 4.416 4.891 5.326 5.730 6.109 6.466

TmaxHC 3.900 4.426 4.899 5.334 5.737 6.116 6.473

In terms of the maximum t-test statistic, we notice that the thresholds for the
two procedures are almost the same, with the HC threshold being barely higher.
The HC procedure gains more detection power than the mini-p procedure when
̂HCnL,max does not occur at the largest t-test statistic. Particularly for devices
with some countermeasures, the remaining hard-to-detect leakage points may
not have strong leakage signals. Then the test statistics corresponding to those
real leakage points may not become the largest, compared to the test statistics
at other noisy points on a long nL trace. However, they do move the curve
downward in Fig. 1 without becoming the largest one, and these differences can
be picked up by the HC procedure but not by the mini-p procedure.

3.3 HC Framework

Next we present our HC detection framework with salient steps. Figure 2 gives
the flow chart, where the steps within the dash-circled box are common in the
current TVLA procedure as well.

(I) The evaluator collects a set of physical measurements, then calculate a
selected univariate test (e.g., tests in [3–6]) at each time point along the
measurement traces. Therefore, nL statistic values are obtained.

(II) The evaluator finds the cumulative distribution function (CDF) of the
above statistic under the null hypothesis H0 (pure noise model). Using
the CDF, the nL statistic values are translated into nL p-values (which
may also be used by mini-p procedure), e.g., as in Eqs. (5) and (7).

(III) Based on the nL p-values, the HC procedure in Sect. 3.2 is used to decide
if any leakage exists at a given type I error rate α.

Towards Sound and Optimal Leakage Detection Procedure 113

Measured
traces

Statistic
values

ŝi

P-
values

pi

Detection:
max̂HCi >

THHC

Detection:
max |ŝi| >

THs

Current
TVLA

Univariate Test CDF−1
H0

HC procedure

Fig. 2. HC leakage detection flow chart.

The current TVLA does not do step (II) and the threshold is not chosen
according to a statistical type I error rate. We have shown that it is equivalent
to doing step (II) and then conducting a mini-p procedure, which can be made
sound by choosing the threshold as in Sect. 3.1. The proposed approach conduct
the HC procedure in step (III) instead. A computation module to efficiently
calculate the thresholds of HC in step (III) is provided in an extended version
of this paper [25].

4 Theory on Optimal Leakage Procedure Using HC

This section introduces the theory on optimality of the HC procedure in high-
dimensional statistical testing, and apply it to the leakage detection setting.

4.1 Optimality of the HC Procedure in Mixture Gaussian Testing

We first describe the statistical theory on the optimality of the HC procedure
for the common mixture Gaussian setting in literature. That is, we test

H0 : xi ∼ N(0, 1), versus H1 : xi ∼ (1 − q)N(0, 1) + qN(Δ, 1), (12)

for observations xi, i = 1, ..nL. We then show how such theory can be used in
the leakage detection testing of (8) versus (9) in the next subsection.

This mixture Gaussian distribution setting can be considered as testing the
q proportion of signals with strength Δ in a sample of nL dimension. The high-
dimensional statistical theory indicates how strong (Δ) a signal can be detected
for any given sparsity level as nL → ∞. The common notations in literature
re-express the sparsity factor and the signal strength as two parameters β =
− log(q) and γ = Δ2/[2 log(nL)]. On the Euclidean space constructed by these
two factors, statistical theory indicates that there is an undetectable region where
no statistical tests can distinguish H0 and H1 well. More precisely, we first
introduce the following definition.

Definition 1. A statistical test procedure is asymptotically powerless (or asymp-
totically powerful) if the sum of its type I and type II error rates converges to 1
(or 0) as nL goes to infinity.

114 A. A. Ding et al.

Theoretical Boundary. For the mixture Gaussian distribution testing prob-
lem (12), all statistical procedures are asymptotically powerless in the region
below the detection boundary given by equation (1.6) in [11] (proofs in [18]),

g(β) =
{

β − 1/2 1/2 < β < 3/4,
(1 − √

1 − β)2 3/4 ≤ β < 1.
(13)

Detection Boundaries of HC and mini-p Procedures. The HC proce-
dure is optimal [11] for testing (12) because the HC procedure is asymptotically
powerful when γ > g(β), i.e., for all parameters (β, γ) above the theoretical min-
imum detection boundary (13). In contrast, a mini-p procedure is not optimal
since it is asymptotically powerless for all parameters (β, γ) below the following
boundary, according to the Theorem 1.4 of [11],

gmax(β) = (1 −
√

1 − β)2, 1/2 ≤ β < 1. (14)

0.5 0.6 0.7 0.8 0.9 1.0
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

β

γ

HC Test
Mini−p test

Undetectable Region

Detectable Region

Fig. 3. The undetectable/detectable regions for mini-p test and HC test. (Color figure
online)

Figure 3 draws these two detection boundaries (13) and (14). The solid red
line is the detection boundary for HC procedure which coincides with the theo-
retical minimum detection boundary. Below this line (the yellow shade area) is
the undetectable region, and above this line is the detectable region. The mini-p
procedure’s detection boundary curve is plotted as the black dash line, higher
than the red line. In the next subsection, we show that these optimality theory
do apply to the leakage detection setting.

4.2 Leakage Detection Boundaries and Optimal Procedures

For any test statistic ŝi based on Li and for any linear transformation f(Li),
there is always an equivalent test statistics based on f(Li) that gives exactly the

Towards Sound and Optimal Leakage Detection Procedure 115

same p-value. Therefore, without loss of generality, we consider the noise and
the intermediate variables in (1) and (2) are normalized so that

Li = Ṽ δi + ri, i = 1, · · · , nL (15)

where ri ∼ N(0, 1) is standard Gaussian distributed noise, Ṽ is the normalized
intermediate variable so that E(Ṽ) = 0 and V ar(Ṽ) = 1. Hence the model
SNR = V ar(Ṽ δi)/V ar(ri) = δ2i at the i-th time point.

Theoretical Boundary. For simplicity, we consider the simple model where
there are n0 = qnL POIs with same SNR Δ2. That is, q proportion of δi taking
a common non-zero value Δ (and the rest of δi = 0). There are ntr obser-
vations for each Li: Li,1, ..., Li,ntr

. The most powerful test for the i-th uni-
variate hypothesis test must be based on the sufficient statistic [26] for (15):
Ui = (1/ntr)

∑ntr

j=1 ṼjLi,j . Clearly Ui follows the N(δi, 1/ntr) distribution, and
hence ∼ N(0, 1/ntr) at time points with no leakage(δi = 0). Let xi =

√
ntrUi.

Then the leakage detection problem becomes a mixture Gaussian distribution
testing problem, using the sample x1, ..., xnL

, for

H0 : xi ∼ N(0, 1), versus H1 : xi ∼ (1 − q)N(0, 1) + qN(
√

ntrΔ, 1). (16)

This is same as the problem (12) except the factor
√

ntr. Therefore, the theo-
retical minimum detection boundary is given by (13), but with

γ = ntrΔ
2/[2 log(nL)]. (17)

Detection Boundaries of HC and mini-p Procedures. For the earlier
concrete examples in Sect. 2.2, the test statistic ŝi for both the t-test in (6) and
the ρ-test in (4), we can show that ŝi converges to a N(

√

ntrδ2si
, 1) distribution

as ntr → ∞. The detailed proofs are provided in an extended version [25].
Therefore, given a test statistic ŝi, we can consider its test SNR as ntrδ

2
si

. At
non-leaky time points (δi = 0), the test SNR also equals zero, and ŝi ∼ N(0, 1)
as described in Sect. 2.2. At POIs with δi 	= 0, δsi

= δi for the ρ-test statistic
(4) in all cases and for the t-test statistic (6) in the fixed-vs-fixed test setup. In
the fixed-vs-random setting, δsi

= δiṼcons for a constant Ṽcons < 1 (The proofs
are in [25].).

Therefore, for the ρ-test statistic (4) in all cases and for the t-test statistic
(6) in the fixed-vs-fixed test setup, {ŝi : i = 1, ..., nL} consists a data sample of
size nL for (16). Hence the HC-based leakage procedure achieves the theoretical
minimum detection boundary above. But the current TVLA (mini-p) procedure
is not optimal with boundary (14).

Remark 1. For the fixed-vs-random t-test, {ŝi : i = 1, ..., nL} consists a data
sample for a problem similar to (16) but with SNR reduced by a factor Ṽ 2

cons.
Thus the HC-procedure’s detection boundary g(β)/Ṽ 2

cons is the theoretical min-
imum detection boundary given {ŝi : i = 1, ..., nL}. Our proposed HC-based

116 A. A. Ding et al.

leakage procedure is optimal in combining the nL given univariate tests in this
case too. We do not claim that the univariate test itself (such as the fixed-vs-
random t-test, a generic test) is optimal, but rather claim that the procedure
framework is optimal in combining the given univariate tests.

Remark 2. When there is only a single POI (n0 = 1, corresponding to sparsity
β = 1), the detection efficiencies are the same for the HC procedure and for
the mini-p procedure. As more POIs exist on the trace (i.e., as β decreases),
the detection of leakage existence also becomes much easier using HC procedure
than using mini-p procedure, which is reflected by the smaller ntr needed to
raise γ in (17) above the detection boundary g(β) than gmax(β).

Remark 3. To find exploitable leakage about a particular V , [5] sampled random
plaintexts with varying V values for the ρ-test, to detect and locate sparse sig-
nals for this targeted V . The fixed-versus-fixed and fixed-versus-random t-tests,
being nonspecific, would find more leakage signals along the trace. The choice
of sampling scheme and tests affects both the SNR and the sparsity of the leak-
age signals. The HC procedure can lead to better detection than the mini-p
procedure when there are multiple leakages, as likely in the fixed-versus-fixed
and fixed-versus-random settings. Note that the identification of the exploitable
leakage is a harder question than simply detecting leakage existence. For certi-
fication of non-leaky device, the optimal leakage detection procedure proposed
here should be applied. To identify exploitable leakage, after leakage detection,
specific test such as the ρ-test should be conducted and possibly more traces
need to be collected for identification.

Remark 4. The HC procedure above assumed that the noise are independent
among different time points along the trace. However, the performance of HC
procedure is not affected under the likely short-range dependence [27] (i.e., the
dependence among noises is concentrated to nearby time points) in practice.
Extending generalized HC procedure [28] for strongly dependent noise for leakage
detection can be considered in the future work.

5 Numerical Results

In this section, we investigate the performance of HC procedure and mini-p
procedure on synthetic data and real implementations. The results on synthetic
data validate the theoretical analysis on the impact of the signal strength and
the signal sparsity on the leakage detection performances. Then, the experiments
on real traces show the relevance of using the HC metrics in typical case-studies:
(i) an unprotected and (ii) a masked implementation of AES.

5.1 Validation on Synthetic Data

Setup Description. For these experiments, we simulate traces of a complete
execution of a 8-bit AES-128 implementation (10 rounds) with a Hamming

Towards Sound and Optimal Leakage Detection Procedure 117

weight leakage function and Gaussian noise. The 16 Hamming weights corre-
sponding to the 16 intermediate bytes are computed for the plaintext and the
result of every AddRoundKey, SubBytes, and MixColumns operation. Each of the
496 calculated values is uniquely reflected in one time sample (hence dictating
the traces length) on which random noise following a Gaussian distribution is
added. We consider two cases with levels of noise corresponding to SNRs of
0.1 and 0.01. For both cases, the three detection tests discussed in Sect. 4 are
applied: (i) non-specific t-test with fixed-vs-random plaintexts, (ii) non-specific
t-test with fixed-vs-fixed plaintexts, and (iii) specific ρ-test with random plain-
texts.

In order to test the performance of the HC and mini-p procedures, we observe
their evolution when adding more and more traces. If a statistic is greater than
its respective threshold calculated at level α = 0.01 from the method in above
sections, we consider that a leakage is detected (returning 1), otherwise there
is no detected leakage (returning 0). This experiment is repeated 100 times on
independent trace sets. The 100 obtained vectors are then averaged to build
success curves. Figure 4 shows the success rates of the HC (red solid curve) and
mini-p (blue dash curve) procedures that are applied on the p-values outputted
by these three detection tests.

Note: the purpose of these experiments is not to directly compare non-specific
and specific leakage detection tests. They are rather chosen because of the dif-
ferent signals they exploit. In the first case, a non-specific detection test aims
at finding leakages in a non-sparse signal with a larger amplitude: every sample
can lead to detection regardless of its actual usability (i.e. to retrieve the key).

Fig. 4. Success rates curves for the HC (red solid) and mini-p (blue dash) procedures
applied on the fixed-vs-random, fixed-vs-fixed, and ρ leakage detection tests. (Color
figure online)

118 A. A. Ding et al.

In the second case, a specific detection test aims at finding leakages in a
sparse signal with lower amplitude: it only spots the useful points-of-interest.

Results Interpretation. The results depicted in Fig. 4 allow us to make the
following observations:
(I) On the signal sparsity : the detection based on the HC procedure performs
better than the one based on the mini-p only with the non-specific tests, i.e.
when the signal is not sparse (all data-dependent samples can be spotted by the
test, independent of their exploitability). Conversely, the specific test targets a
very specific value. Therefore, the signal is very sparse (there is a single point-
of-interest) and the HC and mini-p success rate curves completely match. This
first observation supports the detectable region boundaries depicted in Sect. 4.
The single point-of-interest in the specific test here is a simulated extreme case.
In practice, a single leaky instruction can also lead to multiple points-of-interest
on the measured traces (e.g., due to high sampling rate). Then, even for the
specific tests, the HC procedure will detect the leakage faster than the mini-p
procedure in practice.
(II) On the impact of the noise: as previously observed in the literature [29],
increasing the noise leads to decreasing the detection speed by the same factor
for a given procedure. Therefore, the ratio between the detection speed of the
HC and mini-p procedures remains constant. However, although it does not
change much for devices with low levels of noise, it can have an impact on the
certification outcome for devices with large levels of noise.
(III) Non-specific detection tests: as previously stated by Durvaux et al. [5] one
can notice that appropriately choosing the input of a non-specific test can lead to
a better detection: the fixed-vs-fixed test performs approximately twice better
than the fixed-vs-random test. Due to our Hamming weight leakage function,
the maximum distances are twice larger with the fixed-vs-fixed than with the
fixed-vs-random test. Similarly to the impact of the noise, the larger the noise,
the bigger the potential impact on a certification outcome.

To summarize, these preliminary results mostly show that there is a clear
practical improvement of the HC procedure over the mini-p in cases where (i) the
signal is not sparse, and (ii) the SNR is low. In the next experiments, we focus
on the ρ leakage detection test.

5.2 Leakage Detection on Real Traces: Unprotected AES

Setup Description. In this section, we investigate the performances of the
HC and mini-p procedures on real power traces for non-sparse signal and high
SNR. For this purpose, we consider an unprotected AES implementation running
on an AVR 8-bit micro-controller embedded on a SASEBO-W board. Power
traces are sampled with a LeCroy WaveRunner 640zi oscilloscope that produces
50, 000-sample leakage traces. The results based on a ρ test are given in Fig. 5(a).
Instead of previous success rate curves, we show statistical values of HC and
mini-p procedures as what an evaluator would use during leakage examination.

Towards Sound and Optimal Leakage Detection Procedure 119

They are displayed with respectively the blue solid and the black dash curves
(scales are respectively labeled on the left and right sides).

Results Interpretation. Under the significance level of 0.01, with nL =
50, 000, the thresholds of maximum ρ test statistic (Fisher’s transformation)
and HC statistic are 5.2 and 10.1, respectively. In Fig. 5, the red line denotes
these cutoffs. Once the obtained statistic value exceeds the red line, evaluators
declare that the leakage is detected. The HC procedure detects the existence of
leakage with about ntr = 350 while the mini-p procedure requires ntr = 450.
HC procedure is a little more efficient than mini-p procedure, and it coincides
with the strong leakage signal strength (estimated SNR around 0.2).

200 250 300 350 400 450 500
1

2

4

6.8

12

22

40

Number of Measurements

H
C

 V
al

ue

200 250 300 350 400 450 500
4.1

4.4

4.7

5.0

5.3

5.6

5.6

M
ax

 S
ta

tis
tic

 V
al

ue
HC
Mini−p

(a) Unprotected AES data

0 2 4 6 8 10

x 10
5

0

2

7

34

158

733

3392

H
C

 V
al

ue

Number of Measurements
0 2 4 6 8 10

x 10
5

4.9

5.4

5.9

6.4

6.9

7.4

7.9

M
ax

 S
ta

tis
tic

 V
al

ue

HC
Min−p

(b) Masked AES data

Fig. 5. Statistic Values of Mini-p and HC procedures on two AES implementations.
(Color figure online)

5.3 Leakage Detection on Real Traces: Masked AES

Setup Description. We then illustrate the application of HC procedure on
detecting second order leakage on a masked AES implementation, i.e. low SNR
(sparsity in this case is hard to estimate, but the results indicate that there
are multiple leakage points for masked values). For this purpose, we make use
of traces available on the website of the TeSCASE project [30]. The masked
implementation of the AES follows the scheme described in [31] and runs on
the Virtex-5 FPGA embedded on a SASEBO-GII board. This set of traces con-
tains N = 1, 400, 000 power traces of nw = 3125 samples. It was previously
verified that the traces embed no first-order leakage. Then, HC and mini-p pro-
cedures are compared for detecting the second-order leakage existence for this
protected implementation. Since the centered-product is the natural candidate
when attacking second-order leakages [32–35], we use it to combine all pairs
of leakages. The result is then used as observations for leakage detection [4].
That is, for a nw long trace, we examine correlations of the nL = (n2

w + nw)/2
centered-product leakages with the Hamming distance of a targeted SBox (1st
SBox byte in last round). The detection results based on ρ test are given in the
Fig. 5(b).

120 A. A. Ding et al.

Results Interpretation. Under the significance level of 0.01, with nL =
(n2

w +nw)/2, the thresholds of maximum ρ test statistic and HC statistic are 6.1
and 10.1, respectively. Compared to unmasked AES, its leakage signal strength
is lower, both mini-p and HC procedure require much more measurements to
detects the existence of second-order leakages. The HC procedure requires about
ntr = 40, 000 measurements while the mini-p procedure requires ntr = 620, 000.
In other words, in this case-study, the HC procedure allows detecting the leakages
15 times faster than the mini-p procedure.

Acknowledgment. This work has been funded in parts by National Science Foun-
dation grants CNS-1314655, CNS-1337854 and CNS-1563697, and by the European
Commission through the H2020 project 731591 (acronym REASSURE) and the ERC
project 724725 (acronym SWORD). François-Xavier Standaert is a senior research
associate of the Belgian Fund for Scientific Research (FNRS-F.R.S.).

References

1. Goodwill, G., Jun, B., Jaffe, J., Rohatgi, P.: A testing methodology for side-channel
resistance validation. In: NIST Non-Invasive Attack Testing Workshop, Septem-
ber 2011. http://csrc.nist.gov/news events/non-invasive-attack-testing-workshop/
papers/08 Goodwill.pdf

2. Cooper, J., DeMulder, E., Goodwill, G., Jaffe, J., Kenworthy, G., Rohatgi, P.:
Test vector leakage assessment (TVLA) methodology in practice. In: International
Cryptographic Module Conference (2013). http://icmc-2013.org/wp/wp-content/
uploads/2013/09/goodwillkenworthtestvector.pdf

3. Mather, L., Oswald, E., Bandenburg, J., Wójcik, M.: Does my device leak infor-
mation? an a priori statistical power analysis of leakage detection tests. In: Sako,
K., Sarkar, P. (eds.) ASIACRYPT 2013. LNCS, vol. 8269, pp. 486–505. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-42033-7 25

4. Schneider, T., Moradi, A.: Leakage assessment methodology. In: Güneysu, T.,
Handschuh, H. (eds.) CHES 2015. LNCS, vol. 9293, pp. 495–513. Springer, Heidel-
berg (2015). https://doi.org/10.1007/978-3-662-48324-4 25

5. Durvaux, F., Standaert, F.-X.: From improved leakage detection to the detection
of points of interests in leakage traces. In: Fischlin, M., Coron, J.-S. (eds.) EURO-
CRYPT 2016. LNCS, vol. 9665, pp. 240–262. Springer, Heidelberg (2016). https://
doi.org/10.1007/978-3-662-49890-3 10

6. Ding, A.A., Chen, C., Eisenbarth, T.: Simpler, faster, and more robust T-test
based leakage detection. In: Standaert, F.-X., Oswald, E. (eds.) COSADE 2016.
LNCS, vol. 9689, pp. 163–183. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-43283-0 10

7. Bilgin, B., Gierlichs, B., Nikova, S., Nikov, V., Rijmen, V.: Higher-order threshold
implementations. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol.
8874, pp. 326–343. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-
662-45608-8 18

8. Nascimento, E., López, J., Dahab, R.: Efficient and secure elliptic curve cryptogra-
phy for 8-bit AVR microcontrollers. In: Chakraborty, R.S., Schwabe, P., Solworth,
J. (eds.) SPACE 2015. LNCS, vol. 9354, pp. 289–309. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-24126-5 17

http://csrc.nist.gov/news_events/non-invasive-attack-testing-workshop/papers/08_Goodwill.pdf
http://csrc.nist.gov/news_events/non-invasive-attack-testing-workshop/papers/08_Goodwill.pdf
http://icmc-2013.org/wp/wp-content/uploads/2013/09/goodwillkenworthtestvector.pdf
http://icmc-2013.org/wp/wp-content/uploads/2013/09/goodwillkenworthtestvector.pdf
https://doi.org/10.1007/978-3-642-42033-7_25
https://doi.org/10.1007/978-3-662-48324-4_25
https://doi.org/10.1007/978-3-662-49890-3_10
https://doi.org/10.1007/978-3-662-49890-3_10
https://doi.org/10.1007/978-3-319-43283-0_10
https://doi.org/10.1007/978-3-319-43283-0_10
https://doi.org/10.1007/978-3-662-45608-8_18
https://doi.org/10.1007/978-3-662-45608-8_18
https://doi.org/10.1007/978-3-319-24126-5_17

Towards Sound and Optimal Leakage Detection Procedure 121

9. De Cnudde, T., Bilgin, B., Reparaz, O., Nikova, S.: Higher-order glitch resistant
implementation of the PRESENT S-box. In: Ors, B., Preneel, B. (eds.) Balkan-
CryptSec 2014. LNCS, vol. 9024, pp. 75–93. Springer, Cham (2015). https://doi.
org/10.1007/978-3-319-21356-9 6

10. Balasch, J., Gierlichs, B., Grosso, V., Reparaz, O., Standaert, F.-X.: On the cost
of lazy engineering for masked software implementations. In: Joye, M., Moradi, A.
(eds.) CARDIS 2014. LNCS, vol. 8968, pp. 64–81. Springer, Cham (2015). https://
doi.org/10.1007/978-3-319-16763-3 5

11. Donoho, D., Jin, J.: Higher criticism for detecting sparse heterogeneous mixtures.
Ann. Stat. 32, 962–994 (2004)

12. Donoho, D., Jin, J.: Higher criticism thresholding: optimal feature selection when
useful features are rare and weak. Proc. Nat. Acad. Sci. 105, 14790–14795 (2008)

13. Fan, J., Lv, J.: Sure independence screening for ultra-high dimensional feature
space. J. Royal Stat. Soc. Ser. B 70, 1–35 (2008)

14. Fan, J., Feng, Y., Song, R.: Nonparametric independence screening in sparse ultra-
high-dimensional additive models. J. Am. Stat. Assoc. 106(494), 544–557 (2011)

15. Li, J., Siegmund, D., et al.: Higher criticism: p-values and criticism. Ann. Stat.
43(3), 1323–1350 (2015)

16. Donoho, D., Jin, J., et al.: Higher criticism for large-scale inference, especially for
rare and weak effects. Stat. Sci. 30(1), 1–25 (2015)

17. Wu, Z., Sun, Y., He, S., Cho, J., Zhao, H., Jin, J.: Detection boundary and higher
criticism approach for rare and weak genetic effects. Ann. Appl. Stat. 8(2), 824–851
(2014). https://doi.org/10.1214/14-AOAS724

18. Ingster, Y.I.: Minimax detection of a signal for i (n)-balls. Math. Methods Stat.
7(4), 401–428 (1998)

19. Archambeau, C., Peeters, E., Standaert, F.-X., Quisquater, J.-J.: Template attacks
in principal subspaces. In: Goubin, L., Matsui, M. (eds.) CHES 2006. LNCS, vol.
4249, pp. 1–14. Springer, Heidelberg (2006). https://doi.org/10.1007/11894063 1

20. Standaert, F.-X., Archambeau, C.: Using subspace-based template attacks to com-
pare and combine power and electromagnetic information leakages. In: Oswald, E.,
Rohatgi, P. (eds.) CHES 2008. LNCS, vol. 5154, pp. 411–425. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-85053-3 26

21. Bär, M., Drexler, H., Pulkus, J.: Improved template attacks. In: International
Workshop on Constructive Side-Channel Analysis and Secure Design (2010)

22. Elaabid, M.A., Meynard, O., Guilley, S., Danger, J.-L.: Combined side-channel
attacks. In: Chung, Y., Yung, M. (eds.) WISA 2010. LNCS, vol. 6513, pp. 175–
190. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-17955-6 13

23. Choudary, O., Kuhn, M.G.: Efficient template attacks. In: Francillon, A., Rohatgi,
P. (eds.) CARDIS 2013. LNCS, vol. 8419, pp. 253–270. Springer, Cham (2014).
https://doi.org/10.1007/978-3-319-08302-5 17

24. Bruneau, N., Guilley, S., Heuser, A., Marion, D., Rioul, O.: Less is more. In:
Güneysu, T., Handschuh, H. (eds.) CHES 2015. LNCS, vol. 9293, pp. 22–41.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48324-4 2

25. Zhang, L., Ding, A.A., Durvaux, F., Standaert, F.-X., Fei, Y.: Towards sound and
optimal leakage detection procedure, Cryptology ePrint Archive, Report 2017/287
(2017). http://eprint.iacr.org/2017/287

26. Lehmann, E.L., Romano, J.P.: Testing Statistical Hypotheses. Springer, New York
(2006). https://doi.org/10.1007/0-387-27605-X

27. Hall, P., Jin, J.: Properties of higher criticism under strong dependence. Ann. Stat.
36, 381–402 (2008)

https://doi.org/10.1007/978-3-319-21356-9_6
https://doi.org/10.1007/978-3-319-21356-9_6
https://doi.org/10.1007/978-3-319-16763-3_5
https://doi.org/10.1007/978-3-319-16763-3_5
https://doi.org/10.1214/14-AOAS724
https://doi.org/10.1007/11894063_1
https://doi.org/10.1007/978-3-540-85053-3_26
https://doi.org/10.1007/978-3-642-17955-6_13
https://doi.org/10.1007/978-3-319-08302-5_17
https://doi.org/10.1007/978-3-662-48324-4_2
http://eprint.iacr.org/2017/287
https://doi.org/10.1007/0-387-27605-X

122 A. A. Ding et al.

28. Barnett, I., Mukherjee, R., Lin, X.: The generalized higher criticism for testing
SNP-set effects in genetic association studies. J. Am. Stat. Assoc. 112(517), 64–76
(2017)

29. Mangard, S., Oswald, E., Standaert, F.X.: One for all - all for one: unifying stan-
dard differential power analysis attacks. IET Inf. Secur. 5(2), 100–110 (2011)

30. Testbed for side channel analysis and security evaluation (2014). http://tescase.
coe.neu.edu

31. Akkar, M.-L., Giraud, C.: An implementation of DES and AES, secure against
some attacks. In: Koç, Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001. LNCS,
vol. 2162, pp. 309–318. Springer, Heidelberg (2001). https://doi.org/10.1007/3-
540-44709-1 26

32. Chari, S., Jutla, C.S., Rao, J.R., Rohatgi, P.: Towards sound approaches to counter-
act power-analysis attacks. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666,
pp. 398–412. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48405-
1 26

33. Schramm, K., Paar, C.: Higher order masking of the AES. In: Pointcheval, D. (ed.)
CT-RSA 2006. LNCS, vol. 3860, pp. 208–225. Springer, Heidelberg (2006). https://
doi.org/10.1007/11605805 14

34. Prouff, E., Rivain, M., Bevan, R.: Statistical analysis of second order differential
power analysis. IEEE Trans. Comput. 58(6), 799–811 (2009)

35. Ding, A.A., Zhang, L., Fei, Y., Luo, P.: A statistical model for higher order DPA
on masked devices. In: Batina, L., Robshaw, M. (eds.) CHES 2014. LNCS, vol.
8731, pp. 147–169. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-
662-44709-3 9

http://tescase.coe.neu.edu
http://tescase.coe.neu.edu
https://doi.org/10.1007/3-540-44709-1_26
https://doi.org/10.1007/3-540-44709-1_26
https://doi.org/10.1007/3-540-48405-1_26
https://doi.org/10.1007/3-540-48405-1_26
https://doi.org/10.1007/11605805_14
https://doi.org/10.1007/11605805_14
https://doi.org/10.1007/978-3-662-44709-3_9
https://doi.org/10.1007/978-3-662-44709-3_9

Connecting and Improving Direct Sum Masking
and Inner Product Masking

Romain Poussier1(B), Qian Guo1, François-Xavier Standaert1, Claude Carlet2,
and Sylvain Guilley3

1 ICTEAM/ELEN/Crypto Group, Université catholique de Louvain,
Louvain-la-Neuve, Belgium

romain.poussier@uclouvain.be
2 LAGA, CNRS, Univ. Paris VIII and Paris XIII, Paris, France

3 Secure-IC S.A.S, TELECOM-ParisTech, Crypto Group,
Paris-Saclay University, CNRS, Paris, France

Abstract. Direct Sum Masking (DSM) and Inner Product (IP) mask-
ing are two types of countermeasures that have been introduced as alter-
natives to simpler (e.g., additive) masking schemes to protect crypto-
graphic implementations against side-channel analysis. In this paper, we
first show that IP masking can be written as a particular case of DSM.
We then analyze the improved security properties that these (more com-
plex) encodings can provide over Boolean masking. For this purpose, we
introduce a slight variation of the probing model, which allows us to
provide a simple explanation to the “security order amplification” for
such masking schemes that was put forward at CARDIS 2016. We then
use our model to search for new instances of masking schemes that opti-
mize this security order amplification. We finally discuss the relevance of
this security order amplification (and its underlying assumption of linear
leakages) based on an experimental case study.

1 Introduction

Masking is among the most investigated countermeasures against side-channel
analysis. It aims at performing cryptographic computations on encoded (aka
secret shared) data in order to amplify the impact of the noise in the adversary’s
observations [10,13,14,31]. For example, in the context of block ciphers, a lot of
attention has been paid to the efficient exploitation of simple encodings such as
additive (e.g., Boolean ones in [12,25,32]) or multiplicative ones (e.g., [19,20]).
Very summarized, the main advantage of these simple encodings is that they
enable efficient implementations [22].

In parallel, an alternative trend has investigated the potential advantages of
slightly more complex encodings. Typical examples include polynomial masking
(e.g., [18,21,33]), Inner Product (IP) masking [1,2,17] and code-based masking
(e.g., [5–9]). While computing over these encodings is generally more expen-
sive [25], the recent literature has shown that their elaborate algebraic structure
also leads to improved security properties. For example, it can decrease the
c© Springer International Publishing AG, part of Springer Nature 2018
T. Eisenbarth and Y. Teglia (Eds.): CARDIS 2017, LNCS 10728, pp. 123–141, 2018.
https://doi.org/10.1007/978-3-319-75208-2_8

124 R. Poussier et al.

information leakages observed in “low noise conditions” [1,2,18,21,33]. Also, it
can improve the “statistical security order” (or security order in the bounded
moment leakage model [3]) in case of linear leakage functions [8,26,38]. So while
it is an open problem to find out which masking scheme offers the best secu-
rity vs. efficiency tradeoff for complete implementations in actual devices, the
better understanding and connection of simple and complex encoding functions
appears as a necessary first step in this direction.

For this purpose, and as a starting point, we note that it has already been
shown in [2] that IP masking can be viewed as a generalization of simpler encod-
ings (Boolean, multiplicative, affine and polynomial). So our focus in this paper
will be on the connection between IP masking and the Direct Sum Masking
(DSM) [5,9], which is a quite general instance of code-based masking. Our con-
tributions in this respect are as follows:

First, we connect IP masking and DSM by showing that the first one can be
seen as a particular case of the latter one. Second, we analyze the security prop-
erties of these masking schemes. In particular, we show that the “security order
amplification” put forward in previous works can be easily explained thanks to (a
variation of) the probing model [27], by considering bit-level security, rather than
larger (field-element-level) security. Thanks to this connection, we then express
how to best optimize the security order amplification (i.e., the bit-level security)
based on the dual distance of a binary code. We further perform an informed
search on code instances which allows us to improve the state-of-the-art param-
eters for IP encodings. We finally propose experiments discussing the interest
and limitations of security order amplification in practice (i.e., the relevance of
the linear leakage assumption).

Cautionary note. Our focus in this paper is on encodings. Admittedly, an
even more important issue is to compute (in particular, multiply) efficiently
over encodings. In this respect, while the literature on IP masking provides
solutions to this problem [1,2], it remains an open challenge to describe efficient
multiplication algorithms for DSM.

2 Connecting DSM and IP Masking

In this section we first introduce the two masking schemes that we will analyze,
namely IP masking and DSM. We then show how these two methods are con-
nected, focusing only on their functional description (security will be investigated
in Sect. 3).

2.1 Notations

We use capital letters for random variables and small caps for their realizations.
We denote the conditional probability of a random variable A given B with
P [A|B]. We use sans serif font for functions (e.g., F) and calligraphic fonts for
sets (e.g., A). Given a field K, we denote by a · b the field multiplication between
two elements a and b. We denote by [a]2 the binary vector representation of some

Connecting and Improving Direct Sum Masking and Inner Product Masking 125

element a ∈ F2k for some k. We use capital bold letters for matrices (e.g., M)
and small bold caps for raw vectors (e.g., v). We denote by v(i) the i-th element
of a vector v. We denote by MT (resp. vT) the transpose of a matrix M (resp.
a vector v). The inner product between two vectors v1 and v2 is noted 〈v1,v2〉.
In the rest of the paper, x denotes a k-bit secret value that we wish to mask and
[x]2 its binary vector representation.

2.2 Inner Product Masking

IP masking was introduced in [1,2,17] as a generalization of Boolean mask-
ing. Instead of simply splitting a secret value as the sum of random shares, it
decomposes the secret as the inner product between random values and a pub-
lic vector. More formally, the first step of the IP encoding is to select a public
vector l = (l0, ..., ln−1) ∈ F

n
2k\{0} (with l0 generally set as l0 = 1 for perfor-

mance reasons), where n is the number of shares. A sensitive variable x ∈ F2k

is then encoded as the vector sIP = (s0, ..., sn−1) ∈ F
n
2k such that x = 〈l, sIP 〉.

Algorithm 1 describes the masking initialization procedure, where the function
rand(F2k) returns a random element uniformly from F2k . Boolean masking is the
particular case of IP masking where li = 1 for i ∈ [0, n − 1].

Algorithm 1. IPMask.
Require: x, l, n
Ensure: sIP such that x = 〈l, sIP 〉

for i = 1 to n − 1 do
si ← rand(F2k)

end for
s0 = x +

∑n−1
i=1 li · si

return sIP

2.3 Direct Sum Masking

DSM [5,9] describes masking from an error correcting code viewpoint. As
opposed to IP masking, this scheme works on the bit level. That is, a sensitive
variable x is viewed as belonging to F

k
2 instead of F2k and is thus represented

as [x]2. It allows adding an arbitrary amount m of bits of randomness to the
encoding of [x]2 (i.e., not necessarily a multiple of k as in IP masking). As a
result, the final encoding sDSM of [x]2 lays in F

k+m
2 . As a first step, the vector

space F
k+m
2 is decomposed in two subspaces C and D of dimensions k and m:

F
k+m
2 = C ⊕ D, (1)

where C and D respectively represent the spaces where the sensitive variable
and the mask lay. That is, the sensitive variables (resp., the mask) are the code
words of C (resp., D) of length of k + m. We denote by G and H the generator

126 R. Poussier et al.

matrices of C and D. The encoding of [x]2 is the vector sDSM = [x]2G + yH,
where y ∈ F

m
2 is a random binary vector. Recovering [x]2 (i.e., decoding) or

y from sDSM can then be achieved thanks to a projection on their respective
space. We stress the fact that while this scheme has been designed to thwart
both side-channel and fault attacks (if C and D are orthogonal), we only focus
on the side-channel part.

2.4 Unifying DSM and IP Masking

From the previous description of IP masking and DSM, we now show how these
two schemes are connected. We recall that the IP encoding of a sensitive variable
x using n shares is the vector sIP = (s0 = x+l1 ·s1+...+ln−1 ·sn−1, s1, ..., sn−1) ∈
F
n
2k . In order to make the connection with DSM, we first have to move its base

field from F2 to F2k . That is, we want the final DSM encoding to belong to F
n
2k .

We next decompose F
n
2k using two supplementary subspaces C and D such that

F
n
2k = C ⊕ D, where the dimension of C is 1 and the dimension of D is n − 1.

As in the previous subsection, we denote by G and H the generator matrices of
C and D that we define as follow (where each element belong to F2k):

G =
(
1 0 . . . 0

)
H =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

l1 1 0 . . . 0

l2 0
.

...
...

...
. 0

ln−1 0 . . . 0 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

· (2)

Equation 3 then shows the encoding vector sMIX of a secret x ∈ F2k using a
randomness vector y = (y1, ..., yn−1) ∈ F

n−1
2k

:

sMIX = xG + yH,

= (x, 0, ..., 0) + (l1 · y1 + ... + ln−1 · yn−1, y1, ..., yn−1),
= (x + l1 · y1 + ... + ln−1 · yn−1, y1, ..., yn−1),
= sIP · (3)

The encoding of an IP masking can thus be written by adapting the DSM scheme
base field and choosing the generating matrices accordingly. However, this mod-
ification discards one property of the original DSM scheme. Namely, the number
of bits of randomness added to the encoding cannot be arbitrarily chosen as it
has to be a multiple of k. Besides, we note that the discussions in [5] additionally
required the codes C and D to be orthogonal. Yet, this additional property is not
required in our discussions that focus only on side-channel security, and where
the secret x can be recovered using a projection: x = 〈l, sMIX〉.

Connecting and Improving Direct Sum Masking and Inner Product Masking 127

3 Probing Security and Bit Probing Security

In this section, we discuss the side-channel resistance of the IP masking and
DSM in the probing model [27]. For each method, we look at the security of the
encoding. In the case of IP masking, we assume that the size k of the base field
corresponds to the word size of the implementation and the probes allow the
adversary to observe such field elements. As the DSM works on the bit level, we
additionally introduce the bit-probing model, where each probe can only look
at one bit of the encoding. We finally make the link between the (general, ie.g.,
field-level) probing security and the bit-probing security of the inner product
masking. This connection will be used in the next section in order to explain the
security order amplification of the IP masking.

3.1 Probing Security

The probing model introduced in [27] formalizes the security improvement
obtained with the masking countermeasure. Informally, dth-order probing secu-
rity ensures that the distribution of any d or less intermediate variables manip-
ulated during the algorithm execution is independent of any secret value. From
an attacker point-of-view, it implies that only the combination of at least d + 1
intermediate variables can give information on the secret. As a result, the practi-
cal security increases exponentially in the number of shares, which is intuitively
explained by the fact that the adversary has to estimate higher-order statistical
moments, a task of which the sampling complexity grows exponentially in the
order [10,13,14,31]. In the case of IP masking with n shares, previous works
showed that the encoding has a probing security of order d = n − 1 [1,2].

3.2 Bit-Probing Security

Thanks to the link exhibited in the previous section, we naturally have that
DSM is secure in the probing model as well, which also follows the analysis
in [5,9]. However, since DSM works at the bit level, we additionally define the
bit-probing security as the security in a tweaked probing model, where each
probe can evaluate only one bit of the encoding (even if this encoding is defined
for larger fields). In this model, the security order is thus the maximum number
d′ such that any combination of d′ bits of sDSM is independent of the secret [x]2.
More formally, the bit-probing security of the DSM scheme is given by:

Proposition 1. Let C and D two codes of generator matrices G and H define
a DSM encoding. Let k and m respectively be the dimensions of C and D. The
bit-probing security of the DSM encoding defined by C and D is equal to the
distance of the dual code (called the dual distance) of D minus 1.

Proof. Let s be the encoding of some value [x]2. We have sDSM = [x]2G + yH,
a vector of k + m bits. The bit-probing security is the number d′ such that at
least d′ + 1 elements of sDSM are required to recover at least one bit of [x]2. If
we consider the system given by Eq. 4:

([x]2G + yH)T = sTDSM , (4)

128 R. Poussier et al.

where only the right part is known, d′ +1 is equal to the smallest number of sub-
equations of this system that allows recovering at least one bit of [x]2. We assume
that the dual distance of D is equal to d + 1, which is the minimum number of
columns of H that can be linearly dependent. This means that at least d + 1
sub-equations of the system in Eq. 4 are required to suppress the influence of
(yH)T , and thus get information on [x]2. As a result, the bit-probing security of
the DSM encoding is equal to d. ��

Note that as will be clear next, the bit-probing security order (which can be
higher than the probing security order) does not always guarantee a higher prac-
tical security order (i.e., in the bounded moment or noisy leakage models [3,31])
than predicted by the (field-level) probing security order. Yet, it will be instru-
mental in explaining the security order amplification for certain types of leakage
functions put forward in [38].

3.3 Inner Product and Bit-Probing Security

We now consider the bit-probing security of the IP masking encoding. In
Sect. 2.4, we showed how IP masking and DSM are linked by changing the
base field of the DSM scheme from F2 to F2k . In order to assess the bit-
probing security of the IP masking by using Proposition 1, we have changed the
base field back from F2k to F2. As a result, we want a new encoding sMIX2

that belongs to F
kn
2 such that each bit of sMIX and sMIX2 are the same:

[sMIX(i)]2 = (sMIX2(ki), ..., sMIX2(k(i + 1) − 1)).
As a preliminary, we first define by Li (with i ∈ [1, n − 1]) the k × k binary

matrices that represent the multiplication by li in F2k . That is, given some value
x ∈ F2k , we define Li such that [li · x]2 = (Li × [x]2

T)T . The matrix Li can be
constructed such that its j-th column is equal to [αj · li]2, where α is a root of
the polynomial used to create F2k .

We now define two codes C and D such that Fkn
2 = C ⊕ D, the dimension of

C is k, and the dimension of D is k(n − 1), with their generator matrix G and
H specified as follow:

G =
(
1 . . . 1 0 . . . 0

)
, H =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

L1 1k 0k . . . 0k

L2 0k
.

...
...

...
. 0k

Ln−1 0k . . . 0k 1k

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (5)

such that the first k columns of G are 1 and the next k(n − 1) are 0. Here,
1k denotes the k × k identity matrix and 0k denotes the k × k zero matrix.
Equation 6 then shows the encoding vector sMIX2 of a secret [x]2 ∈ F

k
2 using a

randomness vector y = (y1, ..., yk(n−1)) ∈ F
k(n−1)
2 :

sMIX2 = [x]2G + yH,

= ([x]2, 0, ..., 0) + ([l1 · y1]2 + ... + [ln−1 · yn−1]2, [y1]2, ..., [yn−1]2),
= ([sMIX(0)]2, ..., [sMIX(n − 1)]2)· (6)

Connecting and Improving Direct Sum Masking and Inner Product Masking 129

From Proposition 1, we know that the bit-probing security of sMIX2 corresponds
to the dual distance of H minus 1 (which depends on the selection of the l =
(l1, ..., ln−1) vector of the IP masking, as already hinted in [38]). As a result, the
best bit-probing security using n shares can be achieved by selecting l such that
the dual distance of H is maximized.

4 Security Order Amplification

Under some physical assumption that will be discussed later, it has been observed
that the concrete security order of the IP encoding (in the bounded moment or
noisy leakage models [3,31]) can be higher than the one given by its probing
security [38]. In this section, we provide a formal explanation of this phenomenon
that we so-far denoted as security order amplification. We first introduce the
bounded moment model that we will use for this purpose [3]. We then apply this
model to the IP masking, and explain its link with security order amplification.

4.1 Bounded Moment Model

The bounded moment leakage model has been introduced in [3], mainly in order
to formalize the security of parallel implementations and to connect probing
security with current (moment-based) evaluation practices such as [35].

For our following discussions, we will consider a n-share masked implemen-
tation with encoding s = (s0, ..., sn−1) of a secret x that manipulates all the
shares within N cycles. As in [3], we denote by Yc the set of shares that are
manipulated during the cycle c (0 ≤ c ≤ N − 1) and by nc the cardinal of Yc.
We assume that the random variable Lc that represents the leakage associated
to the computation during the cycle c follows a linear model:

Lc = α0
cL

0
c(Yc(0)) + ... + αnc−1

c Lnc−1
c (Yc(nc − 1)) + Rc, (7)

where Lic denotes the deterministic leakage part associated to the manipulation
of the share Yc(i) and Rc a random noise variable. Note that by linear model,
we mean that the different Lc’s are summed in Eq. 7, which is needed to ensure
that the leakages corresponding to different shares are independent (otherwise
even the probing security order will not be reflected in the bounded moment or
noisy leakage models). By contrast, so far we do not assume that the Lc’s are
linear (this will be only needed for security order amplification).

A fully serial implementation corresponds to the case N = n and nc = 1, c ∈
[0, N − 1]. On the opposite, a fully parallel implementation would be N = 1 and
n0 = n. In the later case, higher-order probing security can never be achieved
as a single variable contains the information on all shares. Hence, the bounded
moment model has been introduced to characterize the security of such fully
parallel implementations. Basically, having a bounded moment security of order
d means that any statistical moment up to the order d of the leakage distribution
{Lc}N−1

c=0 is independent of the secret. More formally, Definition 1 describes the
bounded moment security.

130 R. Poussier et al.

Definition 1. Let {Lc}N−1
c=0 be the leakages of a N cycles parallel masked imple-

mentation that manipulates a secret x. We denote by E the expectation operation.
This implementation is security at order d if, for all N -tuples di ∈ N

N such that∑N−1
i=0 di ≤ d, we have that E(Ld0

0 × ... × L
dN−1
N−1) is independent of x.

Interestingly, it has been shown in [3] that proving security at order o in the
probing model (for a serial n-cycle implementation) implies security at order o
in the bounded moment model for the corresponding parallel (1-cycle) imple-
mentation. We will use this theorem in the next subsection to prove the security
order amplification of the inner product masking.

4.2 Security Order Amplification for IP Masking

We now assume an implementation of the IP masking with n shares on F
k
2 ,

where one share corresponds to one variable. That is, we consider the encoding
sMIX = (s0, ..., sn−1) such that each si is manipulated independently. We denote
by Li the random variable that represents the leakage on si. We assume that the
different Li’s are independent and are the sum of a deterministic and random
part: Li = Li(si) + Ri, where Li denotes the deterministic part of the leakage
and Ri denotes a random noise variable. As stated in Sect. 3.1, this encoding has
a probing security of order d = n − 1. However, it has been noticed in [38] that
the actual security of the encoding can be higher than d if the leakage function
is linear in the bits of the variable. That is, in this case, information on the
secret can be only obtained by estimating a statistical moment d′ of the leakage
distribution, with d′ ≥ d. This can be intuitively explained by the public vector l
that mixes the bits of the different shares, as opposed to Boolean masking where
knowing the first bit of each share directly reveals the first bit of the secret.
More formally, the security amplification property of the inner product masking
is given by Proposition 2.

Proposition 2. Let sMIX = (s0, ..., sn−1) be the n shares of the IP encoding
vector defined by the public vector l = (1, l1, ..., ln−1). If the functions Li manip-
ulating these shares are linear in the bits of si, the bounded moment security
order d′ of the IP encoding given by sMIX is equal to the bit-probing security of
its equivalent encoding sMIX2.

Proof. As we assume that the Li’s are linear in the bits of si, the leakage Li can
be represented as follows:

Li = Li(si) + Ri,

= αi + α0
i × [si]2(0) + ... + αk−1

i × [si]2(k − 1) + Ri,

= α0
i × ([si]2(0) +

αi

α0
i

) + ... + αk−1
i × [si]2(k − 1) + Ri,

= αj
i × F0

i ([si]2(0)) + ... + αk−1
i × Fk

i ([sk]2(0)) + Ri, (8)

with Fj
i , j ∈ [0, k − 1] a deterministic function in the bit j of si and

(αi, α
0
i , ..., α

k−1
i) ∈ R

k+1. We can see that the last line of Eq. 8 has the same form

Connecting and Improving Direct Sum Masking and Inner Product Masking 131

as Eq. 7. As we have n different leakages Li, each one linearly manipulating k
bits, the full leakages {Li}n−1

i=0 of sMIX can be viewed as the leakages of a paral-
lel implementation of sMIX2 with N = n cycles, each one manipulating nc = k
single-bit variables. As a result, the bounded security of a serial implementation
(called A) of sMIX is the same as a parallel implementation (called B) of sMIX2

with N = n and Nc = k. From [3], we know that proving the bounded security
of B is equivalent to proving the probing security of its serial implementation. As
the probing security of the serial implementation of B corresponds to the case
where one probe can only evaluate one bit, it corresponds to the bit-probing
security of sMIX2, which conclude the proof. ��

Intuitively, this result simply corresponds to the observation that while prob-
ing security at order d implies bounded moment security at order d in case the
leakages of the shares are independent (with each share a field element), bit-
security at order d′ implies bounded moment security at order d′ in the case
where not only the leakages of the shares are independent (with each share being
a field element), but also the different bits of each field element is manipulated
independently (which is ensured by the linear leakage assumption). This result
implies that, under the linear leakage assumption, maximizing the bounded
moment security of the IP encoding sMIX is the same as maximizing the bit-
probing security of sMIX2. The next step is thus to find the best public vectors
l so that the bit-probing security of sMIX2 is maximized.

5 Searching for Good Codes

As shown in Proposition 1, the key parameter characterizing the bit-probing
security is the dual distance of the linear code D with generator matrix:

H =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

L1 Ik 0k . . . 0k

L2 0k
.

...
...

...
. 0k

Ln−1 0k . . . 0k Ik

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (9)

where Ik is an identity matrix with dimension k and Li is the matrix represen-
tation of a finite field element li. Therefore, we have the following proposition.

Proposition 3. The problem of searching for instantiations of an IP masking
scheme with good bit-probing security is equivalent to that of searching for an
[nk, k] linear code Cg over F2 with large minimal distance and generator matrix:

Gg =
(
Ik LT

1 LT
2 . . . LT

n−1

)
. (10)

132 R. Poussier et al.

The best possible linear codes with a small dimension k (e.g., k ≤ 8) are
well-studied in literature, see [4,23,37]. Therefore, the minimal distance of Cg

can be upper-bounded. Moreover, the sub-matrix LT
i in Gg is connected to the

underlying irreducible polynomial g(x) ∈ F2[X], which defines the field extension
from F2 to F2k .

We now consider the practically-relevant case study of implementing the AES
securely, i.e., when k = 8 and we use the AES polynomial x8 + x4 + x3 + x + 1.
In the following subsection, we show that one can choose the li’s to form an
IP masking scheme with bit-probing security that is close to the upper bound
defined by the best possible eight dimensional binary linear codes.

5.1 Application: 8-bit Implementation of the AES

The problem of determining the largest possible minimum distance of an eight
dimensional binary linear code is settled in [4], i.e., it is equal to or slightly
smaller than the distance defined by the Griesmer Bound [24].
The companion matrix (see [28]) of g(x) = x8 + x4 + x3 + x + 1 is defined as:

A =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 1 0 . . . 0

0 0
.

...
...

...
. 0

0 0 . . . 0 1

1 1 . . . 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (11)

whose last row is of the form (1 1 0 1 1 0 0 0). Thus, all the possible field elements
of F28 can be enumerated as:

7∑

j=0

ajAj ,

for all a = (a0, a1, . . . , a7) ∈ F
8
2. We next use three approaches for finding good

linear codes with generator matrix satisfying the constraint in Eq. 10.

Exhaustive search: When n is small, i.e., less than 4, we can do a brute-force
search. That is, we enumerate all possible generator matrices Gg with the
same form as that in Eq. (10), and then test its minimum distance.

Random search: We choose Li at random to construct Gg and then test its
minimum distance.

Inductive search: We construct good [8n, 8] linear codes satisfying Eq. (10)
from good [8(n − n0), 8] linear codes satisfying Eq. (10), where n0 is a small
positive integer (e.g., 1, 2, 3, or 4). That is, we fix the first 8(n − n0) columns
of Gg as the found generator matrix of a good code with length 8(n − n0),
exhaust all possible Li’s, for i = n−n0, . . . , n−1, and then test its minimum
distance.

Connecting and Improving Direct Sum Masking and Inner Product Masking 133

The numerical results by running Magma are shown in Table 1, where the
column n is the number of shares, the column n ·k is the code length, the column
dIP
best is the best minimum distance found from linear codes with a generator

matrix satisfying Eq. (10), the column dU
best is the upper bound derived from

the best achievable minimum distance for any [8n, 8] linear codes, and the last
column Δ is the difference between the prior two columns (i.e., the gap between
IP masking and DSM). It is clear from this table that IP masking can achieve
near-optimal bit-probing security if the number of shares is relatively small.
Actually, most of the interesting choices of n in practice are covered in this
table (since, due to performance reasons, state-of-the-art implementations of IP
masking so far did not go beyond 2 or 3 shares). The constructed good codes
also show an approach to instantiate IP masking with good bit-probing security.
That is, one can determine the finite field elements li’s from the found generator
matrix Gg corresponding to a good linear code. We did exhaustive search for
n = 2, 3, 4, random search for n = 5, 6, and inductive search for n = 7. Therefore,
we cannot rule out the possibility of finding a linear code to reach the upper
bound when n ≥ 6 with more computational efforts.1

Concretely and as an example, this table shows that when considering IP
masking with three shares, the standard probing model guarantees a security
order 2. In case the shares only give rise to linear leakages, the bit-level probing
model guarantees a security of order 7.

6 Experimental Validation

The previous positive results admittedly (highly) depend on a physical assump-
tion (i.e., linear leakages) that may not be perfectly respected. So in order to

Table 1. The best linear codes corresponding to an IP masking scheme found by
Magma. The field extension from F2 to F2k is defined by the AES polynomial.

n n · k dIP
best dU

best Δ

2 16 4 5 −1

3 24 8 8 0

4 32 12 13 −1

5 40 16 16 0

6 48 21 22 −1

7 56 23 24 −1

1 Note that the inductive search allows us to find good linear codes with relatively
large minimum distance rather quickly. For instance, we can easily obtain a desired
[72, 8, 30] linear code by the inductive search with the code length 8n increasing by
16 gradually from 24 to 72. The gap Δ here is only −2. This task takes less than
2min when using the online Magma calculator, while it is almost intractable by the
other two approaches even running on a powerful local Magma server.

134 R. Poussier et al.

validate the theoretical results, we now consider a practical security evaluation
of an IP encoding implementation. In this respect, this case study comes with
the (usual) cautionary note that the only thing we show next is that there
exist implementations for which (essentially) linear leakages are observed for
certain samples. This does not imply that the security order amplification can
be observed for full implementations (which, as mentioned in the introduction, is
left as an important scope for further research). Yet, it shows that this security
order amplification can at least be used to reduce the amount of leaky samples
in an implementation and/or their informativeness.

6.1 Target Implementation

Our experiments are performed on a 32 bits ARM Cortex-M4 microcontroller
using the Atmel SAM4C-EK evaluation kit running at 100 MHz.2 We imple-
mented the IP encoding using two shares. We performed the trace acquisition
using a Lecroy WaveRunner HRO 66 ZI oscilloscope running at 500 megasam-
ples per second. We monitored the voltage variation using a 4.7 Ω resistor set
in the supply circuit of the chip. For each execution and a given value of l1,
we select a random secret x, a random value s1 and compute the encoding
s = (s0 = x+ l1 · s1, s1). We acquire the leakages by triggering the measurement
prior to the successive load of these two shares s0 and s1 into the memory.

6.2 Analysing the Leakages

Leakage Detection. Our first experiments aim at analyzing how the device
leaks. As a preliminary, we start by identifying the points of interest that corre-
sponds to the manipulation of s0 and s1 (in an evaluator-friendly setting where
we know these values). Figure 1 shows the result of the correlation between the
different time samples with the Hamming weight of s0 (left) and s1 (right) using
40,000 traces. Our following analyses only focus on the two samples giving the
maximum correlation for both shares. We refer to the time sample corresponding
to the manipulation of s0 (resp. s1) as t0 (resp. t1).

Linear Regression. The theoretical results on the security order amplifica-
tion of Sect. 4 rely on the assumption that the leakage function is linear. As
this assumption is hardware-dependent, we first evaluated the linearity of the
leakages produced by our target. For a given time sample, linear regression is
perfectly suited for this purpose [34]: it allows estimating how the manipulated
data is leaked at the bit level. Denoting by L : F8

2 → R the deterministic part of
the actual leakage function, a linear regression of degree q gives the function L̂q
that approximate L by using bit combinations of degree up to q. As a results,
it is a suitable tool to estimate the linearity of the leakages, by just comparing

2 http://www.atmel.com/tools/SAM4C-EK.aspx.

http://www.atmel.com/tools/SAM4C-EK.aspx

Connecting and Improving Direct Sum Masking and Inner Product Masking 135

Fig. 1. Detection of points of interest.

regressions of degree 1 and 2. The description of the resulting L̂1 and L̂2 approx-
imations are given by Eq. 12. The coefficients α, αi and αi,j belong to R and are
the results of the linear regression:

L̂1(x) = α +
7∑

i=0

αi × [x]2(i)

L̂2(x) = α +
7∑

i=0

αi × [x]2(i) +
6∑

i=0

7∑

j=i+1

αi,j × [x]2(i) × [x]2(j) (12)

Using the same traces as for the points of interest detection, we computed the
linear regression at t1 using both a linear (L̂1) and a quadratic (L̂2) basis (t0
gave same results and is thus omitted). The left (resp., right) part of Fig. 2
shows the resulting coefficients for the linear (resp., quadratic) basis. The first
value indexed by 0 corresponds to the offset α. The next 8 values indexed from
1 to 8 are the linear coefficient αi. Finally, the quadratic coefficients αi,j are
indexed from 9 to 36 (only in the right figure). We can see that the linear terms
are significantly more dominant than the quadratic ones. As a result, it provides
some confidence that our target (samples) are good candidates for the linear
leakages assumption.

Mutual Information. Evaluating the linearity of the leakage function by only
looking at the coefficients of L̂1 and L̂2 has two drawbacks. First, it is hard to
judge if the models have converged. Secondly, we cannot know if the small values
given by the quadratic coefficients are significant or come from estimation errors.
In order to get rid of these two problems and push the analysis one step further,
we compute the perceived information introduced in [16] arising from L̂1 and
L̂2. The latter metric essentially captures the amount of information that can be
extracted from a model, possibly biased by estimation and assumption errors.
(Because of place constraints, we refer to this previous work for the details).

Figure 3 shows this perceived information for the linear model L̂1 and the
quadratic model L̂2 in function of the number of traces used for the estimation of

136 R. Poussier et al.

Fig. 2. Linear regression results.

the model. As expected, the quadratic model needs more samples to converge as
it is more complex. Interestingly, we can see that both models converge towards
approximately the same value. This now formally confirms that the quadratic
model does not bring significantly more information than the linear one in our
setting. As a consequence, we deduce that the true leakages of our target are
close to linear (and therefore that it is a good candidate to benefit from security
order amplification).

6.3 Concrete Security Assessment

We now present additional results of concrete security analyses performed on our
implementation. For this purpose, and in order to directly evaluate whether the
security order of our IP encoding was amplified, we aim at detecting the lowest
statistical moment in the leakages that reveals information on the secret. To do
so, we apply the ρ-test with K-fold cross-validation as described in [15]. Note
that in order to limit the (high) data requirements for this last experiment, we
used the trick proposed in [36], Sect. 3.2 and performed a preliminary averaging
of our traces (assuming mask knowledge) before trying to detect higher-order
statistical dependencies. Namely, we used a 60× averaging for the second-order
detections and 100× averaging for the third-order ones.

Correlation-Test. Given a leakage L, the ρ-test allows detecting a mean depen-
dency between L and the secret x. The first step is to estimate a model from
a profiling set Lprof of Nprof leakage samples on L. This model corresponds to
the average leakage on L for each value of the secret x. The next step is to use
this model on a test set Latt of Ntest samples. We compute the correlation r
between Ltest and our model applied on the secret values used to generate Ltest.
We then compute the normalized Fisher’s z-transformation on r:

rz =
√

Ntest − 3
2

× ln

(
1 + r

1 − r

)
, (13)

Connecting and Improving Direct Sum Masking and Inner Product Masking 137

Fig. 3. Perceived information from linear and quadratic leakage models.

where ln denotes the natural logarithm. The obtained value rz can be approxi-
mately interpreted as following a normal distribution with mean 0 and variance
1. As in [15], we set the confidence threshold of rz that detects the presence of
a dependency to 5.

K-fold cross validation. We use a 4-fold cross validation in order to reduce
the variability of the ρ-test. That is, we acquire set L of N leakages that we
partition in 4 independent subsets Li, i ∈ [1, 4] of equal size. We then apply the
ρ-test 4 times by using a different test set each time (more precisely, iteration i
uses Li as a test set and ∪j �=iLj as profiling set).

Evaluation results. In our first (reference) experiment, we used l1 equal to
1, which is equivalent to a Boolean masking encoding. The corresponding DSM
representation is such that the dual distance of D is equal to two. As we expect
a second-order dependency, we apply the ρ-test on the center product L =
(Lt1 − L̄t1) · (Lt2 − L̄t2), where L̄t1 (resp. L̄t2) denotes the sample mean of Lt1

(resp. Lt2). Figure 4 shows the result of the ρ-test with 4-fold cross validation.
The x-coordinate shows the number of average traces being used, and the y
coordinate shows the confidence value. The black curves is the line y = 5 that
shows the confidence threshold. Each of the remaining 4 curves represents one of
the cross validation tests. As expected, we quickly detect a second order leakage
after roughly 5,000 average traces.

As a second experiment, we set l1 = 3, which is the hexadecimal representa-
tion of the polynomial x + 1. The corresponding ODSM representation is such
that the dual distance of D is equal to three. That is, we expect the lowest sta-
tistical moment that gives information on the secret to be equal to three, thus

138 R. Poussier et al.

Fig. 4. Results of the ρ-test for IP masking with l1 = 1.

having a security order amplification. We verify this in two steps. First, we apply
the ρ-test on the center product as in the previous experiment to detect if any
second-order dependency can be seen. Secondly, we apply the ρ-test on a new
center product L = (Lt1 − L̄t1) · (Lt2 − L̄t2) · (Lt2 − L̄t2) to detect the presence of
a third-order dependency. The left (resp., right) part of Fig. 5 shows the results
of the ρ-test with 4-fold cross validation for the second-order (resp., third-order)
test. Again, the x-coordinate represents the number of average traces, the y coor-
dinates the confidence value and the black curve the confidence threshold. As
we can see on the left part of the figure, no second-order leakages are detected
with up to 100,000 average traces. However, the right part of the figure shows
a third-order dependency around 60,000 average traces. This confirms both the
high linearity of the leakages of this chip and the relevance of the theoretical
investigations in Sect. 4.

Fig. 5. Results of the ρ-test for IP masking with l1 = 3

Connecting and Improving Direct Sum Masking and Inner Product Masking 139

Discussion. To conclude, we emphasize that the results of the ρ-test experi-
ment for l1 = 3 were based on 100× averaged traces, leading to a Signal-to-Noise
Ratio close to 1 (which is out of the noise levels where masking security proofs
apply [14]). So this experiment does not formally prove that no second-order
dependency could appear for this noise level (without averaging). In this respect,
we recall that this choice was motivated by time constraints (without averaging,
we could not detect third-order dependencies either). Besides, and in view of the
leakage analysis in Sect. 6.2, we are confident that the security order amplifica-
tion put forward in this last section does actually correspond to our theoretical
expectations with (close enough to) linear leakages.

Acknowledgements. François-Xavier Standaert is a research associate of the Belgian
Fund for Scientific Research. This work has been funded in parts by the European
Commission through the H2020 project 731591 (acronym REASSURE), the CHIST-
ERA project SECODE and the ERC project 724725 (acronym SWORD).

References

1. Balasch, J., Faust, S., Gierlichs, B.: Inner product masking revisited. In: Oswald,
E., Fischlin, M. (eds.) [30], pp. 486–510. Springer, Heidelberg (2015)

2. Balasch, J., Faust, S., Gierlichs, B., Verbauwhede, I.: Theory and practice of a
leakage resilient masking scheme. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012.
LNCS, vol. 7658, pp. 758–775. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-34961-4 45

3. Barthe, G., Dupressoir, F., Faust, S., Grégoire, B., Standaert, F.-X., Strub, P.-Y.:
Parallel implementations of masking schemes and the bounded moment leakage
model. In: Coron, J.-S., Nielsen, J.B. (eds.) [11], pp. 535–566. Springer, Cham
(2017)

4. Bouyukliev, I., Jaffe, D.B., Vavrek, V.: The smallest length of eight-dimensional
binary linear codes with prescribed minimum distance. IEEE Trans. Inf. Theor.
46(4), 1539–1544 (2000)

5. Bringer, J., Carlet, C., Chabanne, H., Guilley, S., Maghrebi, H.: Orthogonal direct
sum masking - a smartcard friendly computation paradigm in a code, with builtin
protection against side-channel and fault attacks. In: Naccache, D., Sauveron, D.
(eds.) WISTP 2014. LNCS, vol. 8501, pp. 40–56. Springer, Heidelberg (2014).
https://doi.org/10.1007/978-3-662-43826-8 4

6. Carlet, C., Danger, J.-L., Guilley, S., Maghrebi, H.: Leakage squeezing of order two.
In: Galbraith, S.D., Nandi, M. (eds.) INDOCRYPT 2012. LNCS, vol. 7668, pp.
120–139. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34931-
7 8

7. Carlet, C., Danger, J.-L., Guilley, S., Maghrebi, H.: Leakage squeezing: optimal
implementation and security evaluation. J. Math. Cryptol. 8(3), 249–295 (2014)

8. Carlet, C., Danger, J.-L., Guilley, S., Maghrebi, H., Prouff, E.: Achieving side-
channel high-order correlation immunity with leakage squeezing. J. Cryptogr. Eng.
4(2), 107–121 (2014)

9. Carlet, C., Guilley, S.: Complementary dual codes for counter-measures to side-
channel attacks. Adv. Math. Commun. 10(1), 131–150 (2016)

https://doi.org/10.1007/978-3-642-34961-4_45
https://doi.org/10.1007/978-3-642-34961-4_45
https://doi.org/10.1007/978-3-662-43826-8_4
https://doi.org/10.1007/978-3-642-34931-7_8
https://doi.org/10.1007/978-3-642-34931-7_8

140 R. Poussier et al.

10. Chari, S., Jutla, C.S., Rao, J.R., Rohatgi, P.: Towards sound approaches to counter-
act power-analysis attacks. In: Wiener, M.J. (ed.) CRYPTO 1999. LNCS, vol. 1666,
pp. 398–412. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48405-
1 26

11. Coron, J.-S., Nielsen, J.B. (eds.): EUROCRYPT 2017. LNCS, vol. 10210. Springer,
Cham (2017)

12. Coron, J.-S., Prouff, E., Rivain, M., Roche, T.: Higher-order side channel security
and mask refreshing. In: Moriai, S. (ed.) FSE 2013. LNCS, vol. 8424, pp. 410–424.
Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-43933-3 21

13. Duc, A., Dziembowski, S., Faust, S.: Unifying leakage models: from probing attacks
to noisy leakage. In: Nguyen, P.Q., Oswald, E. (eds.) [29], pp. 423–440. Springer,
Heidelberg (2014)

14. Duc, A., Faust, S., Standaert, F.-X.: Making masking security proofs concrete -
or how to evaluate the security of any leaking device. In: Oswald, E., Fischlin, M.
(eds.) [30], pp. 401–429. Springer, Heidelberg (2015)

15. Durvaux, F., Standaert, F.-X.: From improved leakage detection to the detection
of points of interests in leakage traces. In: Fischlin, M., Coron, J.-S. (eds.) EURO-
CRYPT 2016. LNCS, vol. 9665, pp. 240–262. Springer, Heidelberg (2016). https://
doi.org/10.1007/978-3-662-49890-3 10

16. Durvaux, F., Standaert, F.-X., Veyrat-Charvillon, N.: How to certify the leakage of
a chip? In: Nguyen, P.Q., Oswald, E. (eds.) [29], pp. 459–476. Springer, Heidelberg
(2014)

17. Dziembowski, S., Faust, S.: Leakage-resilient cryptography from the inner-product
extractor. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp.
702–721. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25385-
0 38

18. Fumaroli, G., Martinelli, A., Prouff, E., Rivain, M.: Affine masking against higher-
order side channel analysis. In: Biryukov, A., Gong, G., Stinson, D.R. (eds.) SAC
2010. LNCS, vol. 6544, pp. 262–280. Springer, Heidelberg (2011). https://doi.org/
10.1007/978-3-642-19574-7 18

19. Genelle, L., Prouff, E., Quisquater, M.: Thwarting higher-order side channel anal-
ysis with additive and multiplicative maskings. In: Preneel, B., Takagi, T. (eds.)
CHES 2011. LNCS, vol. 6917, pp. 240–255. Springer, Heidelberg (2011). https://
doi.org/10.1007/978-3-642-23951-9 16

20. Golić, J.D., Tymen, C.: Multiplicative masking and power analysis of AES. In:
Kaliski Jr., B.S., Koç, C.K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp.
198–212. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36400-5 16

21. Goubin, L., Martinelli, A.: Protecting AES with Shamir’s secret sharing scheme.
In: Preneel, B., Takagi, T. (eds.) CHES 2011. LNCS, vol. 6917, pp. 79–94. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-23951-9 6

22. Goudarzi, D., Rivain, M.: How fast can higher-order masking be in software? In:
Coron, J.S., Nielsen, J. (eds.) [11], pp. 567–597. Springer, Cham (2017)

23. Grassl, M.: Tables of linear codes and quantum codes (2015). http://www.
codetables.de/. Accessed 25 Apr 2017

24. Griesmer, J.H.: A bound for error-correcting codes. IBM J. Res. Dev. 4(5), 532–542
(1960)

25. Grosso, V., Prouff, E., Standaert, F.-X.: Efficient masked S-boxes processing – a
step forward –. In: Pointcheval, D., Vergnaud, D. (eds.) AFRICACRYPT 2014.
LNCS, vol. 8469, pp. 251–266. Springer, Cham (2014). https://doi.org/10.1007/
978-3-319-06734-6 16

https://doi.org/10.1007/3-540-48405-1_26
https://doi.org/10.1007/3-540-48405-1_26
https://doi.org/10.1007/978-3-662-43933-3_21
https://doi.org/10.1007/978-3-662-49890-3_10
https://doi.org/10.1007/978-3-662-49890-3_10
https://doi.org/10.1007/978-3-642-25385-0_38
https://doi.org/10.1007/978-3-642-25385-0_38
https://doi.org/10.1007/978-3-642-19574-7_18
https://doi.org/10.1007/978-3-642-19574-7_18
https://doi.org/10.1007/978-3-642-23951-9_16
https://doi.org/10.1007/978-3-642-23951-9_16
https://doi.org/10.1007/3-540-36400-5_16
https://doi.org/10.1007/978-3-642-23951-9_6
http://www.codetables.de/
http://www.codetables.de/
https://doi.org/10.1007/978-3-319-06734-6_16
https://doi.org/10.1007/978-3-319-06734-6_16

Connecting and Improving Direct Sum Masking and Inner Product Masking 141

26. Grosso, V., Standaert, F.-X., Prouff, E.: Low entropy masking schemes, revisited.
In: Francillon, A., Rohatgi, P. (eds.) CARDIS 2013. LNCS, vol. 8419, pp. 33–43.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08302-5 3

27. Ishai, Y., Sahai, A., Wagner, D.: Private circuits: securing hardware against prob-
ing attacks. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 463–481.
Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45146-4 27

28. Lidl, R., Niederreiter, H.: Finite Fields. Encyclopedia of Mathematics and its Appli-
cations. Advanced Book Program/World Science Division. Addison-Wesley Pub-
lishing Company, Boston (1983)

29. Nguyen, P.Q., Oswald, E. (eds.): EUROCRYPT 2014. LNCS, vol. 8441. Springer,
Heidelberg (2014)

30. Oswald, E., Fischlin, M. (eds.): EUROCRYPT 2015. LNCS, vol. 9056. Springer,
Heidelberg (2015)

31. Prouff, E., Rivain, M.: Masking against side-channel attacks: a formal security
proof. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol.
7881, pp. 142–159. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-
642-38348-9 9

32. Rivain, M., Prouff, E.: Provably secure higher-order masking of AES. In: Mangard,
S., Standaert, F.-X. (eds.) CHES 2010. LNCS, vol. 6225, pp. 413–427. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-15031-9 28

33. Roche, T., Prouff, E.: Higher-order glitch free implementation of the AES using
secure multi-party computation protocols - extended version. J. Cryptogr. Eng.
2(2), 111–127 (2012)

34. Schindler, W., Lemke, K., Paar, C.: A stochastic model for differential side channel
cryptanalysis. In: Rao, J.R., Sunar, B. (eds.) CHES 2005. LNCS, vol. 3659, pp.
30–46. Springer, Heidelberg (2005). https://doi.org/10.1007/11545262 3

35. Schneider, T., Moradi, A.: Leakage assessment methodology - extended version. J.
Cryptogr. Eng. 6(2), 85–99 (2016)

36. Standaert, F.-X.: How (not) to use welch’s t-test in side-channel security evalua-
tions. IACR Cryptology ePrint Archive, 2017, p. 138 (2017)

37. van Tilborg Henk, C.A.: The smallest length of binary 7-dimensional linear codes
with prescribed minimum distance. Discrete Math. 33(2), 197–207 (1981)

38. Wang, W., Standaert, F.-X., Yu, Y., Pu, S., Liu, J., Guo, Z., Gu, D.: Inner product
masking for bitslice ciphers and security order amplification for linear leakages. In:
Lemke-Rust, K., Tunstall, M. (eds.) CARDIS 2016. LNCS, vol. 10146, pp. 174–191.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-54669-8 11

https://doi.org/10.1007/978-3-319-08302-5_3
https://doi.org/10.1007/978-3-540-45146-4_27
https://doi.org/10.1007/978-3-642-38348-9_9
https://doi.org/10.1007/978-3-642-38348-9_9
https://doi.org/10.1007/978-3-642-15031-9_28
https://doi.org/10.1007/11545262_3
https://doi.org/10.1007/978-3-319-54669-8_11

May the Force Be with You: Force-Based
Relay Attack Detection

Iakovos Gurulian1(B) , Gerhard P. Hancke2, Konstantinos Markantonakis1,
and Raja Naeem Akram1

1 Information Security Group Smart Card Centre,
Royal Holloway, University of London, Egham, UK

{Iakovos.Gurulian.2014,k.markantonakis,r.n.akram}@rhul.ac.uk
2 Department of Computer Science, City University of Hong Kong,

83 Tat Chee Avenue, Kowloon, Hong Kong
gp.hancke@cityu.edu.hk

Abstract. Relay attacks pose a significant threat against communicat-
ing devices that are required to operate within a short-distance from
each other and a restricted time frame. In the field of smart cards, dis-
tance bounding protocols have been proposed as an effective counter-
measure, whereas, in the field of smartphones, many proposals suggest
the use of (natural) ambient sensing as an effective alternative. How-
ever, empirical evaluation of the proposals carried out in existing liter-
ature has reported negative results in using natural ambient sensing in
distance- and time-restricted scenarios, like EMV contactless payments
that require the proximity to be less than 3 cm and the transaction dura-
tion to be under 500ms. In this paper, we propose a novel approach
for Proximity and Relay Attack Detection (PRAD), using bidirectional
sensing and comparing button presses and releases behaviour (duration
of press and gap between presses and releases), performed by a genuine
user during the transaction. We implemented a test-bed environment to
collect training and analysis data from a set of users, for both the genuine
and attacker-involved transactions. Analysis of the collection-data indi-
cates a high effectiveness of the proposed solution, as it was successful
in distinguishing between proximity and relay-attack transactions, using
thresholds set after analysis of genuine training transaction data. Fur-
thermore, perfect classification of genuine and relay-attack transactions
was achieved by using well-known machine learning classifiers.

Keywords: Mobile payments · Relay attacks · Contactless
Experimental analysis

1 Introduction

Relay attacks [6,7,33] are passive man-in-the-middle attacks, aiming to extend
the physical distance of devices involved in a transaction beyond their operating
environment. Contactless smart cards [7,12,13,15,17], as well as smartphones
c© Springer International Publishing AG, part of Springer Nature 2018
T. Eisenbarth and Y. Teglia (Eds.): CARDIS 2017, LNCS 10728, pp. 142–159, 2018.
https://doi.org/10.1007/978-3-319-75208-2_9

http://orcid.org/0000-0003-2919-8842

May the Force Be with You: Force-Based Relay Attack Detection 143

[6,19,22,23] are susceptible to relay attacks. Using such attacks, an attacker can
gain unauthorised access to services and facilities that a genuine user is eligible
for, like payments and access to buildings.

In the field of smart cards, distance-bounding protocols have been proposed
as an effective countermeasure [14,27]. However, distance bounding protocols
may not be applicable in the field of smartphones due to unpredictable behaviour
related to their multi-tasking architecture and the multitude of hardware com-
ponents [30].

In recent years, a number of proposals suggest the use of ambient sensing
as an alternative Proximity and Relay Attack Detection (PRAD) mechanism
against the off-the-shelf attacker [11,18,25,29,31,32]. Such proposals rely on the
collection of data over a period of time from both transaction devices, using
ambient sensors, and subsequently comparing the collected data for similarity.

Specific scenarios susceptible to relay attacks, like EMV contactless pay-
ments and transport ticketing, have industry-imposed time limits regarding the
completion of a contactless transaction. In the case of EMV, the limit is 500 ms
[2–4], and in the case of transport ticketing, typically between 300 and 500 ms [1].
Recent evaluations of previously proposed PRAD techniques have yielded limited
evidence that ambient sensing can effectively counter relay attacks in contact-
less transactions under 500ms [10,24]. The generation of an artificial ambient
environment (AAE) has been proposed instead, and evaluated using infrared
light, with promising results [9]. However, attacks against ambient sensing (in
sound, WiFi, Bluetooth, temperature, humidity, gas, and altitude) have been
demonstrated in the presence of an attacker with context manipulating capabil-
ities [26]. Even though such attacks might not be able to cause a false positive
in the case of using infrared light as an AAE actuator, denial of service attacks
might be achieved.

In this paper we propose a novel approach towards PRAD based on sensing
button presses on the user’s smartphone by both transaction devices (trans-
action terminal and transaction ‘user’ smartphone) simultaneously. During the
time of the transaction, the user is requested to press four buttons randomly
picked by a smartphone application. The input button sequence, as well as tim-
ings of button presses and between consequent button presses (referred to as
‘releases’) are captured by both transaction devices and used as features for
similarity comparison. Empirical evaluation demonstrated high success rate of
the method as a PRAD mechanism. Using threshold-based evaluation, all the
attack attempts were detected. Perfect classification was achieved by using the
Support Vector Machine classifier. Near-perfect classification (up to 99.8%) was
achieved by other well-known machine learning classifiers.

The main contributions of this paper are:

– Force Sensing Relay Attack Detection: A novel approach for PRAD based on
force sensing by the transaction devices (Sect. 4).

– Evaluation Frameworks: The design of two evaluation frameworks, for eval-
uating the proposed solution as a proximity detection mechanism (Sect. 6),

144 I. Gurulian et al.

and as a relay-attack detection mechanism, by subjecting it against a set of
volunteers attempting to attack the scheme (Sect. 7).

– Two-Fold Evaluation: Threshold- and machine learning-based evaluation of
the proposed system, in the presence of a relay-attacker.

2 Relay Attacks

A variety of applications are affected by relay attacks, like Near Field Com-
munication (NFC) based contactless transactions. During a relay attack, the
goal of the attacker is to relay communication messages between two devices
that are located beyond their designated operational environment, without being
detected.

The relay of the communication messages is performed using some relay
equipment that the attacker possesses. For example, for the case of an NFC con-
tactless payment scenario (Fig. 1), an attacker can present to a genuine user a
masquerading (malicious) payment terminal. At a distant location, the attacker
should present a masqueraded (malicious) payment instrument to a genuine
payment terminal. When the user attempts to perform a transaction, the com-
munication messages of the payment transaction will be relayed between the
attacker’s relay equipment. If the attack is successful, an unauthorised transac-
tion between two genuine parties will be performed.

Fig. 1. Overview of a relay attack

Relay attacks against mobile devices have been demonstrated [6,22,23]. In
order to detect the existence of a relay attack, evidence regarding the co-presence
of the genuine transaction devices should be established. As already mentioned,
in the field of smartphones, establishment of proximity evidence by the assistance
of ambient sensing has demonstrated positive results. This technique requires
the two transaction devices to capture environmental data, using some ambient
sensor, for some predefined period of time.

An alternative approach, by generating an artificial ambient environment
(AAE) using the peripherals of the communicating devices has also demonstrated
positive results. This approach has demonstrated positive results when using
infrared light as an AAE actuator in transactions with industry imposed time
limits of up to 500 ms, like EMV contactless payments and transport ticketing.

May the Force Be with You: Force-Based Relay Attack Detection 145

For both techniques, the data from the two devices is then compared for sim-
ilarity, based on which a decision is made regarding their co-presence. The com-
parison process can be performed either by one of the communicating devices,
or by a trusted third party (TTP).

3 Related Work

In this section, we identify and summarise key pieces of related work that have
suggested using natural ambient sensing as a PRAD mechanism.

Ma et al. [18] proposed the use of GPS (Global Positioning System) as a
means of co-location detection. A time frame of 10 seconds was used for data
collection, and values were recorded every second. High success rate was reported
by the authors for proximity detection.

Halevi et al. [11] proposed the use of ambient light and sound. Values were
captured for 30 and two seconds, respectively. The authors used various com-
parison algorithms, and high success rate was reported.

Varshavsky et al. [32] compared the WiFi networks, along with the signal
strengths, that the devices were able to detect. The main objective of this work
was device pairing, and positive results were reported.

Urien et al. [31] combined ambient temperature and an elliptic-curve based
RFID and/or NFC authentication protocol. No performance results were pre-
sented by the authors, as there was no practical implementation.

Mehrnezhad et al. [20] recorded values using the accelerometer of the devices
involved in a payment transaction in order to detect device co-location. A double
tap was required in their proposal. According to the authors, the transaction time
lasted between 0.6 and 1.5 s, and a high success rate was observed.

Truong et al. [29] assessed a variety of sensors for proximity detection.
The recording time frame was between 10 and 120 s, and positive results were
reported.

Shrestha et al. [25] used a Sensordrone and recorded multiple sensors. The
precise sample duration is not provided in this work, however the authors state
that recordings lasted for a few seconds.

Jin et al. [16] used the magnetometer in order to pair devices that are in
proximity. An average of 4.5 s is required for the pairing to succeed. The authors
only focus on proximity detection, and do not claim that this method can be
used as an effective relay attack detection mechanism.

In [10,24], the effectiveness of recording the natural ambient environment in
short transactions (up to 500 ms) was empirically evaluated, with different results
from the existing literature. Comparison algorithms used in previous works, as
well as machine learning techniques, produced very high false negative results.

Gurulian [9] proposed a relay attack detection framework by using artificial
ambient environments (AAE). Infrared light was evaluated as an AAE actua-
tor. Relay attacks were successfully detected, while the false rejection rate was
approximately 2%.

146 I. Gurulian et al.

4 Force-Sensing PRAD

In this section we present the theoretical foundation of the proposed framework,
and the threat model.

4.1 PRAD Framework

During the course of a transaction, the user is called to position the Transaction
Instrument (TI) on an extension force-sensitive panel of the Transaction Termi-
nal (TT) in order to complete the PRAD procedure. A smartphone application
(running on TI) presents to the user an interface with buttons that the user
is called to tap. Alternative interface design approaches can be followed. For
example, the application might present buttons with numbers and ask the user
to input a provided 4 digit sequence. Alternatively, the application can present
a button at a time that the user has to press in order for the next button to
appear, until all the buttons of the sequence have been pressed. It should be
stressed that even though the aforementioned method was used during the eval-
uation of the proposed framework (Sect. 5), it is not restrictive, as alternative
approaches can be used instead. Figure 2 presents the basic architecture of the
framework, when using the later application design method. Also, the use of
a Personal Identification Number (PIN) and other forms of user identification
codes may pose a threat, as an attacker could potentially capture them if the
user attempts to perform a transaction with a malicious terminal.

Fig. 2. The basic framework architecture

Each button is assigned an ID based on the location of the button (e.g.
the top left button is assigned the ID ‘1’). When the user taps on a button,
both transaction devices record the ID of the button that was pressed, and the
duration of the button press. The duration between subsequent button presses is
also recorded by the two devices. Further features can also potentially be used,

May the Force Be with You: Force-Based Relay Attack Detection 147

like the amount of pressure applied, but were not considered in this work due to
limitations inflicted by the architecture of the majority of modern smartphones
(further discussion in Sect. 8).

In order for device TI to recognise the buttons and timings, simple API calls
are required. Device TT can recognise the buttons and timings based on the
coordinates and duration of the detected pressure on the force-sensitive panel.

The assumption is that the two devices are going to record approximately
the same values, and that an attacker has a low probability of accurately repli-
cating the movement of a genuine user. The accuracy of the system should be at
the millisecond (ms) level. The captured data of the two devices should provide
sufficient proximity evidence when compared against each other, while data cap-
tured when a relay attack is taking place should be detectable at a high rate, in
accordance to the requirements of the deployment scenario.

The proximity verification process can take place during the course of the
transaction by one of the communicating devices, or afterwards, by a Trusted
Third Party (TTP). The captured data should be communicated between the
devices or to the TTP in an encrypted and authenticated form, but discussion
regarding the trusted comparison party’s (i.e. the TTP or one of the transaction
devices) architecture is out of the scope of this work. As the main focus of
this work is to examine the effectiveness of the proposed solution as a PRAD
mechanism, we limit the discussion and do not investigate the integration with
existing applications.

4.2 Threat Model

In this paper, the attacker is of opportunistic nature and requires no prior inter-
action or knowledge of neither TT nor TI. However, the potential implications if
TT or TI are compromised are out of the scope of this paper, since a relay attack
may not be necessary to achieve the same goals under these circumstances. We
focus primarily on the issue of genuine devices requiring proximity assurance in
order to conduct a legitimate transaction.

The attacker only has access to off-the-shelf relay equipment. Usually trans-
action limits apply on mobile transactions, for example a £30 limit on digital
payment transactions in the UK [5]. Moreover, an attacker that might be using
more advanced techniques, like a robotic arm that replicates the movement of a
genuine user with accuracy, is likely going to be detected by the genuine device
operators. Therefore, a very powerful attacker might not be a major concern.

5 Test-Bed Architecture

We designed and built a test-bed in order to evaluate the proposed solution.
Android devices were used to represent TI, and an Arduino-based prototype
was developed and used as TT.

An Android application was built and installed on three devices; a light and
small Android smartphone, a heavier and larger Android smartphone, and an

148 I. Gurulian et al.

Android tablet device. As the first, a Samsung Galaxy S5 Mini (SM-G800F)
was used. It features a 4.5-inch display, and weighs 120 g. A Samsung Galaxy S4
(GT-I9500) device was used as the second device. It features a 5-inch display and
weighs 130 g. Finally, a Nexus 9 was used as the tablet. Its display is 8.9-inches
and weighs 425 g1.

The Android application, running on TI, displayed six equal size zones on the
touch screen (as in Fig. 2). In this paper, we refer to these zones as ‘buttons’.
Initially, a random button on the screen was highlighted using a colour. This
indicated to the user to press the randomly highlighted button on the screen.
Releasing a button would trigger it to disappear, and the application would ran-
domly pick and highlight a second button. A total of four buttons were randomly
highlighted on each transaction. A random shared ID assigned to each transac-
tion, along with the button sequence IDs, and the timings of button presses and
interval duration between subsequent button presses were appended to a local
CSV file that was later extracted from the device for data comparison.

An Arduino Due was used for the TT prototyping. Four Force Sensitive
Resistors (FSRs) were connected to the board’s analog inputs (Fig. 3a). FSRs
can be used to detect pressure or weight. The basic working principle is that the
resistive value of the sensor alternates depending on the amount of force that
is being applied on the sensor. Silicone buffer pads2 were manually attached to
the centre the sensors, as the force resistive area of the FSRs was not reachable
by the surface of the smart devices otherwise. Even though FSRs were used in
this prototype, other sensors might potentially also be used alternatively, for
example capacitive touch sensors.

Initially, when TI was placed on TT and the process started, a calibration
phase had to be conducted, in order to cancel the weight of the device. For one

Fig. 3. Detection of presses by TT

1 All device characteristics found at http://www.gsmarena.com/.
2 Example of buffer pads: https://www.amazon.co.uk/gp/product/B00P11D4VK/

ref=s9u simh gw i2.

http://www.gsmarena.com/
https://www.amazon.co.uk/gp/product/B00P11D4VK/ref=s9u_simh_gw_i2
https://www.amazon.co.uk/gp/product/B00P11D4VK/ref=s9u_simh_gw_i2

May the Force Be with You: Force-Based Relay Attack Detection 149

second after the process initiation, TT would capture values from all four sensors
and the maximum recorded value of each sensor would be used as a reference
point. A LED would indicate the completion of the calibration phase.

After the calibration phase, the user was called to input the sequence on
TI. While a button was being pressed, the calibrated TT sensor(s) closest to
that button were recording the highest values (Fig. 3). The indication used for
detecting that a button was being pressed was that some of the sensors were
recording values above their calibration point. The time during which higher
values than the calibration point were being recorded by some of the FSRs
was considered to be the pressing time. Similarly, the time between subsequent
button presses was the time during which none of the sensors were recording
higher values than the calibration threshold.

After a button was released, TT would estimate the button that was being
pressed. To achieve this, each sensor was assigned a value, which was the average
of all the values captured by that particular sensor during the button press
period. Six virtual buttons had to be detected, corresponding to the buttons
presented by TI. For the detection of the pressed button, the values that were
assigned to each of the four sensors were used.

Algorithm 1 lists pseudocode for detecting the pressed buttons when the
button ID numbers of device TI are per Fig. 2, and the sensor ID numbers of
device TT as per Fig. 3. The input sensor1 – sensor4 is the value assigned on
each of the sensors. Initially, the side (left or right) of the screen on which the
press was on was determined by comparing the sum of the sensor values returned
of each side. Once the side was determined, the proportion of the force applied
on the top sensor was calculated. The proportion was divided in three equal

Algorithm 1. Detection of pressed button
Input : int sensor1, int sensor2, int sensor3, int sensor4
Output: int pressedButtonID

1 leftSide ← sensor1 + sensor2;
2 rightSide ← sensor3 + sensor4;
3 if leftSide > rightSide then
4 force ← sensor1 / leftSide;
5 if force ≥ 0 and force < 0.33 then
6 return 5
7 else if force ≥ 0.33 and force < 0.66 then
8 return 3
9 return 1

10 end
11 force ← sensor3 / rightSide;
12 if force ≥ 0 and force < 0.33 then
13 return 6
14 else if force ≥ 0.33 and force < 0.66 then
15 return 4
16 return 2

150 I. Gurulian et al.

parts. If the proportion was between 0.66 and 1, the top virtual button ID was
returned. Similarly, values between 0.33 and 0.66 corresponded to the middle
virtual button, and between 0 and 0.33 to the bottom one.

When four button presses were detected by the prototype, it would return
the pressed button sequence and the timings to a computer through Arduino’s
serial port. An application written in Python would request from the experiment
operator to manually input the ID that was assigned to the particular transaction
by TI. The returned values and the transaction ID would be appended to a CSV
file with the same format as the one on TI’s side.

Two experimental frameworks were developed, for proximity and relay attack
evaluation. At the end of each phase, the stored data would be extracted form
each of the devices and moved to a computer for the evaluation of the results.

6 Proximity Detection Framework

In order to evaluate the performance of the proposed solution in a proxim-
ity detection scenario, 100 transactions were performed with each of the three
devices listed in Sect. 5. A random sequence was generated and presented by
TI on each transaction. The FSRs were aligned in a set-up for the smallest
device (SM-G800F), and this set-up was maintained throughout the experimen-
tal phase, regardless of the device being used. After the completion of the first
phase, using each of the three TI devices, the collected data in CSV format
was extracted from both transaction devices (the smartphone and the laptop on
which the Arduino was connected).

The aim of the framework was to assess whether sufficient information for
establishing proximity evidence is collected during the process. The results were
used to set acceptable upper and lower bounds for presses and releases.

6.1 Evaluation Methodology

A Python application was developed for the data analysis process, which would
compare the input sequence recorded by both devices, and calculate the differ-
ence of individual corresponding features (button press and release timings). The
minimum and maximum press and release differences were detected for each of
the devices, and all 300 measurements combined. The minimum and maximum
press and release differences were used as limits for distinguishing genuine from
relay attack transactions in the relay attack detection framework.

6.2 Results and Discussion

The results of the proximity detection framework are listed in Table 1. They
refer to the time difference in milliseconds between the timings recorded by TT
and TI. For example, the difference of the first press for a single transaction is
calculated as:

DiffPress1 = TTPress1 − TIPress1

May the Force Be with You: Force-Based Relay Attack Detection 151

Table 1. Proximity detection results – in ms (negative results indicate that TI’s mea-
surement durations were larger than TT’s)

Minimum Maximum Span Average

Press Release Press Release Press Release Press Release

SGS5 mini −46 11 −11 48 35 37 −29.09 28.71

SGS 4 −28 −8 9 30 37 38 −5.32 5.26

Nexus 9 −18 −8 12 23 30 31 −2.16 2.83

Total −46 −8 12 48 58 56 −12.19 12.27

The maximum, minimum, and the average calculated values are listed, as well
as the span between the maximum and minimum observed values. The analysis
has been performed for each of the three devices, as well as for the combination
of all the recordings of the three (referred to as ‘Total’). Negative timings denote
that the measurement of a press or release by TI was longer than that of TT.

Differences among the devices were observed, likely related to their weight.
However, the measured time span was approximately the same for all three
devices. Therefore, a real-world deployment is recommended to take into account
the device model, in order to minimise the attack window approximately by half.

High accuracy was also ascertained in the detection of the input pattern by
device TT. Prior to the initiation of the experimental phase, the pattern detec-
tion of the smaller devices was very high. Failures occurred in a few occasions
where the buttons on device TI were pressed very close to neighbouring buttons.
Slightly reducing the size of the buttons effectively restricted this issue.

The detection of button presses on the tablet required longer presses than
on the smartphones, which had no special input requirements. Even though
perfect detection was recorded when longer button presses were applied, the use
of tablets is not recommended without readjustment of the underlying FSRs.

7 Relay Attack Detection Framework

We subsequently evaluated the effectiveness of the solution as an anti-relay mech-
anism. We gathered 10 volunteers who attempted to attack the system in two
phases, explained below. A separate Android application was developed for the
purposes of the experiments, based on the application used in the proximity
evaluation framework. It was presenting predefined sequences instead of random
ones. Device TT’s architecture did not alter between the two frameworks.

During the first attack phase, a set of videos of a person inputting a sequence
(genuine user) were presented to the volunteers. The sequence timings entered
by the genuine user on TI were stored in a CSV file as per Sect. 6 for later
comparison against relay attack data. The videos were played on a large screen,
and the movement of the genuine user was evident. The camera used to record
the videos was placed on the left of the device, and at a 45 degree angle, in

152 I. Gurulian et al.

order to make the presentation of the three dimensions more clear. Prior to the
initiation of the experiments, the volunteers were asked to choose the rotation
and flip of the video that they preferred. A set of 10 different patterns were
presented to each volunteer, who was asked to attempt to replicate/mimic the
movement of the genuine user with accuracy while the video was playing, or
afterwards. The same pattern was presented on both the video and the device
provided to the volunteers. Also, the same device (SM-G800F) was used on the
video and by the volunteers. Data from both devices was stored in separate CSV
files, separately for each volunteer.

All volunteers were university students and staff who had a good under-
standing of security and relay attacks. Prior to the experiments, their goal and
the principle on which the anti-relay mechanism was based were thoroughly
explained to them. Moreover, four of the volunteers had background in play-
ing some musical instrument (guitar, piano, or both), ranging from medium to
advanced level.

During the second phase, the volunteers were asked to attempt and attack the
exact same video 10 times. Meaning, a genuine user entered a sequence that was
recorded, then the attacker was given 10 tries to train to replicate the sequence
as close to the genuine user as possible. This tested the possibility of whether an
attacker who watches the same pattern being entered a number of times, his/her
potential of replication would increase. The same set-up as in the previous phase
was used. In both phases the attacker was very powerful, as the input sequence
was known, and there was a clear view of the genuine user’s movements.

7.1 Evaluation Methodology

Measurements captured from the TI that the genuine user was using on the video
were compared against measurements from device TT used by the volunteers.
In a relay attack, these two devices would be the genuine devices, the other two,
the devices operated by the attacker.

In order to evaluate the performance of the volunteers, two methods were
used; threshold- and machine learning-based analyses. Initially, we set accept-
able minimum and maximum thresholds for presses and releases, based on the
results of the proximity evaluation framework (Sect. 6.2). The recorded presses
and releases from the two devices were sequentially compared against each other.
If the difference between a press or a release captured by TT and TI was within
the bounds, it was considered to be acceptable. Otherwise a relay attack was
detected. The point at which the inconsistency appeared was the detection point.
For example, if an attacker performed the first press and the first release cor-
rectly, but the second press was out of bounds, the second press would be con-
sidered as the detection point. This part of the evaluation was conducted in two
phases. We first subjected the relay attack data against the thresholds set when
by all the three devices, and then against device specific thresholds (SM-G800F).

Weka [8] was used to apply a suite of well-known classifiers. The classifiers
were trained on a set of feature vectors with corresponding binary labels (gen-
uine or relayed transaction), which were collected beforehand. The trained model

May the Force Be with You: Force-Based Relay Attack Detection 153

was used to classify subsequent transaction data streams as genuine or relayed.
We tested the Random Forest, Näıve Bayes, Logistic Regression, Decision Tree
(grown using the C4.5 algorithm), and Support Vector Machine with the RBF3

kernel (the SVM w/RBF hyper-parameters, C and γ, were established using
standard exhaustive grid search) classifiers. The threshold was based on the
probability estimate output by the learned classification model, i.e. the esti-
mated probability that a transaction is genuine. As genuine transactions were
considered transactions collected during the proximity evaluation phase (Sect. 6).

7.2 Results and Discussion

A total of 200 relay transactions were evaluated. The results of both threshold-
and machine learning-based analyses are presented in this section.

Evaluation 1: Threshold-Based. The results of the threshold-based analysis
are listed in Table 2. ‘General Threshold’ refers to the threshold set by com-
bining the proximity results of all three tested devices, while ‘Device Specific
Threshold’ to the threshold set by SM-G800F, as it was the device used for the
relay attack detection evaluation. ‘Detected’ refers to the percentage of relay
attempts detected at a particular press or release, because the attackers failed
to accurately replicate the movement of the genuine user at that point. ‘Correct’
refers to the percentage of times that a single press or release was successfully
replicated by the attacker. Finally, the first phase refers to the user trying to
attack a different video on each try, and the second phase, the attacker trying
to attack the same video 10 times.

Table 2. Threshold-based relay attack detection results

Press 1 Release 1 Press 2 Release 2 Press 3 Release 3 Press 4 False Accept

General Threshold – Phase 1

Detected 73 24 0 2 1 0 0 0

Correct 27 10 37 10 24 5 31 —

Device Specific Threshold – Phase 1

Detected 84 16 0 0 0 0 0 0

Correct 16 7 25 9 9 4 23 —

General Threshold – Phase 2

Detected 57 37 5 1 0 0 0 0

Correct 43 11 29 24 26 9 20 —

Device Specific Threshold – Phase 2

Detected 65 33 2 0 0 0 0 0

Correct 35 6 21 22 20 6 9 —

None of the volunteers attempted to successfully attack the system, using
threshold-based analysis. Moreover, the volunteers with background in playing
3 RBF: Radial Basis Function.

154 I. Gurulian et al.

a musical instrument did not present improvements over the rest of the user.
However the sample was limited, so further investigation is required.

The best attempt is presented in Fig. 4. Device TI′ in the figure represents
the measurement recorder by the transaction instrument that the volunteer was
using. It illustrates the corresponding proximity transaction, for which all presses
and releases were within bounds. The relay attack was detected on the third
press, using the threshold set by the combination of the three devices. Using
device specific threshold, the attack was successfully detected on the first release.

Fig. 4. Graphical representation of the best attack attempt (TT – TI) versus the
corresponding genuine transaction (TT – TI′)

The majority of the transactions were detected on the first press and release,
using both general, and device specific thresholds, even when the volunteers
attempted to attack the same video multiple times (second phase). During the
second phase, a small incline was observed in the user performance as the same
video was being attacked multiple times, most evident in the performance of
releases. Figure 5 depicts that incline, along with the average, maximum, and
minimum performance of each round’s presses and releases.

Evaluation 2: Machine Learning-Based. The results of the machine
learning-based analysis, obtained by repeating stratified 10-fold cross-validation,
are presented in Table 3. A training set of 300 genuine and 200 relay attack trans-
actions was used. The default settings of each algorithm were used on Weka.
The metrics listed are the classification accuracy (Accuracy), the Area Under
the Receiver Operating Characteristic (ROC) Curve (AUC), the F1-score, and
the Equal Error Rate (EER).

Perfect classification was achieved by using the Support Vector Machine clas-
sifier. Near perfect classification (> 98%) was achieved by the Random Forest,
Näıve Bayes, and Decision Tree classifiers, with best performance observed by the
first three (> 99.5% accuracy). The Random Forest algorithm failed to accurately
classify two relay transactions, the Näıve Bayes one, and the Decision Tree six.

May the Force Be with You: Force-Based Relay Attack Detection 155

Fig. 5. Performance variation of each of the 10 attempts in the second phase

Table 3. Machine learning classification results obtained by repeating 10-fold cross-
validation 10 times

Random forest Näıve bayes Logistic

regression

Decision tree Support vector

machine

Accuracy (%) 99.62 99.80 86.58 98.78 100.00

AUC 0.9999 0.9996 0.8163 0.9873 1.0

F1-score 0.9969 0.9984 0.90 0.9901 1.0

EER 0.0022 0.0047 0.1993 0.104 0.0

8 Discussion and Outcome

The analysis of the experimental data indicated that the effectiveness of the
proposed solution as a PRAD mechanism was high. However, some usability
concerns might arise, especially for visually impaired users, and users with motor
difficulties. Compared to the majority of previous works, additional steps are
required by the user, including the correct placement of device TI on TT.

Since the positioning of device TI on TT is important for the later to accu-
rately detect the ID of the pressed button, device-specific positioning lines were
presented on the TI’s display prior to the process initiation. This assisted in more
equally dividing the mass across the four FSRs. The model of the device could
be determined through API calls, which was used to display the correct posi-
tioning. It should be stressed that the positioning precision had to be performed
with only some degree of accuracy. The detection was found to be very accurate
even without perfect placement of the devices. Figure 6 depicts the guidelines
and the pattern input interface on a SM-G800F device.

Failure to click on the correct button (mistapping) will also lead to inconsis-
tencies between the captured data of the two devices, so the process will have to
be restarted. Moreover, a vibration of the phone during the process will cause

156 I. Gurulian et al.

(a) Device Calibration (b) Pattern Entry

Fig. 6. The evaluation test-bed

inconsistencies, so they should temporarily be disabled, until the completion of
the process. Finally, the performance of the solution might also degrade if phone
cases are used on TI, or the device’s camera is located above the point where an
FSR should touch. However, significant advantages over previous works exist, so
depending on the deployment scenario this technique might be preferable.

The relay attack detection rate was empirically found to be higher than
previously proposed solutions [11,21,25,28]. The detection rate can potentially
improve even further by considering more features, like the amount of pressure
detected by the two devices. Even though this is possible on TT, at the moment
the majority of smartphones are not capable of accurately measuring the amount
of pressure applied on their screen. Some Android devices estimate the amount
of pressure through the number of pixels being covered on the screen by the
user’s finger. This technique is not very accurate, and it is also not available
on all devices. The feature is not supported by the GT-I9500. On the other two
devices, the accuracy was highly dependant on the finger orientation rather than
the amount of pressure being applied on the screen. Moreover, inconsistencies
were observed among the values recorded by the two devices. We concluded that
the technology was not mature enough to provide quality data.

Moreover, no additional or non-standard hardware on the TI side is required,
like in many of the previously proposed solutions, as in [9,25]. Many of the
previously proposed solutions might also be vulnerable in the presence of an
attacker with context manipulating capabilities [26]. Since this solution is not
dependant upon the surrounding environment, such attacks do not apply, unless
the attacker physically tampers with the devices.

9 Conclusion and Future Directions

Communicating devices that require to operate within proximity are vulnerable
to relay attacks. Traditional distance bounding protocols that aim to counter
such attacks might not be applicable in the field of smartphones. Alternative
approaches against the off-the-shelf attacker have been proposed, mostly based

May the Force Be with You: Force-Based Relay Attack Detection 157

on sensing of the ambient environment. However, these might not be suitable or
secure under certain scenarios, like in the presence of an attacker with context
manipulating capabilities. In this work we presented a novel approach for Prox-
imity and Relay Attack Detection (PRAD) by using bidirectional sensing and
comparing of subsequent button presses and releases by the transaction devices.

A test-bed was designed and built for the evaluation of the proposed solution
as a PRAD mechanism. Initially, the effectiveness in proximity detection was
examined. Afterwards, the test-bed was subjected against a set of volunteers
who attempted to attack the system. All the attack attempts were successfully
detected through threshold-based analysis. Moreover, perfect classification was
achieved by using the Support Vector Machine classifier. Classification accuracy
of up to 99.8% was achieved by other well-known machine learning classifiers.

As part of our ongoing investigation, we are planning to conduct a more
extensive user study. We are also planning to examine the use of additional
features that would further minimise the potential of an attacker to perform a
relay attack, like pressure intensity.

References

1. Transit and Contactless Open Payments: An Emerging Approach for Fare Collec-
tion. White paper, Smart Card Alliance Transportation Council, November 2011

2. How to Optimize the Consumer Contactless Experience? The Perfect Tap. Tech-
nical report. MasterCard (2014)

3. EMV Contactless Specifications for Payment Systems: Book A - Architecture and
General Requirements. Spec V2.6. EMVCo, LLC, April 2016

4. Transactions Acceptance Device Guide (TADG). Specification Version 3.1. VISA,
November 2016

5. Digital Payments Solutions Industry Considerations. Online report. The UK
Cards Association, June 2017. http://www.theukcardsassociation.org.uk/wm
documents/Digital%20Wallets%20-%20Industry%20Considerations%20Outline.
pdf

6. Francis, L., Hancke, G., Mayes, K., Markantonakis, K.: Practical NFC peer-to-peer
relay attack using mobile phones. In: Ors Yalcin, S.B. (ed.) RFIDSec 2010. LNCS,
vol. 6370, pp. 35–49. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
642-16822-2 4

7. Francis, L., Hancke, G.P., Mayes, K., Markantonakis, K.: Practical Relay Attack on
Contactless Transactions by Using NFC Mobile Phones. IACR Cryptology Archive
2011, p. 618 (2011)

8. Frank, E., Hall, M.A., Witten, I.H.: The WEKA workbench. In: Data Mining:
Practical Machine Learning Tools and Techniques. 4 edn. Morgan Kaufmann,
Burlington (2016)

9. Gurulian, I., Akram, R.N., Markantonakis, K., Mayes, K.: Preventing relay attacks
in mobile transactions using infrared light. In: Proceedings of the Symposium on
Applied Computing SAC 2017, pp. 1724–1731. ACM, New York (2017)

10. Gurulian, I., Shepherd, C., Frank, E., Markantonakis, K., Akram, R., Mayes,
K.: On the effectiveness of ambient sensing for nfc-based proximity detection by
applying relay attack data. In: The 16th IEEE International Conference on Trust,
Security and Privacy in Computing and Communications, TrustCom 2017. IEEE,
August 2017

http://www.theukcardsassociation.org.uk/wm_documents/Digital%20Wallets%20-%20Industry%20Considerations%20Outline.pdf
http://www.theukcardsassociation.org.uk/wm_documents/Digital%20Wallets%20-%20Industry%20Considerations%20Outline.pdf
http://www.theukcardsassociation.org.uk/wm_documents/Digital%20Wallets%20-%20Industry%20Considerations%20Outline.pdf
https://doi.org/10.1007/978-3-642-16822-2_4
https://doi.org/10.1007/978-3-642-16822-2_4

158 I. Gurulian et al.

11. Halevi, T., Ma, D., Saxena, N., Xiang, T.: Secure proximity detection for NFC
devices based on ambient sensor data. In: Foresti, S., Yung, M., Martinelli, F.
(eds.) ESORICS 2012. LNCS, vol. 7459, pp. 379–396. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-33167-1 22

12. Hancke, G.P.: Distance-bounding for RFID: Effectiveness of ‘terrorist fraud’ in
the presence of bit errors. In: 2012 IEEE International Conference on RFID-
Technologies and Applications (RFID-TA), pp. 91–96, November 2012

13. Hancke, G.P.: Practical attacks on proximity identification systems (short paper).
In: IEEE Symposium on Security and Privacy, pp. 328–333. IEEE Computer Soci-
ety (2006). http://dblp.uni-trier.de/db/conf/sp/sp2006.html#Hancke06

14. Hancke, G.P., Kuhn, M.G.: An RFID distance bounding protocol. In: Proceedings
of the First International Conference on Security and Privacy for Emerging Areas
in Communications Networks, SECURECOMM 2005, pp. 67–73. IEEE Computer
Society, Washington DC (2005)

15. Hancke, G., Mayes, K., Markantonakis, K.: Confidence in smart token
proximity: relay attacks revisited. Comput. Secur. 28(7), 615–627 (2009).
http://www.sciencedirect.com/science/article/pii/S0167404809000595

16. Jin, R., Shi, L., Zeng, K., Pande, A., Mohapatra, P.: MagPairing: pairing smart-
phones in close proximity using magnetometers. IEEE Trans. Inf. Forensics Secur.
11(6), 1306–1320 (2016)

17. Kfir, Z., Wool, A.: Picking virtual pockets using relay attacks on contactless
smartcard systems. In: First International Conference on Security and Privacy
for Emerging Areas in Communications Networks, SecureComm 2005, pp. 47–58.
IEEE (2005)

18. Ma, D., Saxena, N., Xiang, T., Zhu, Y.: Location-aware and safer cards: enhancing
RFID security and privacy via location sensing. IEEE TDSC 10(2), 57–69 (2013)

19. Madlmayr, G., Langer, J., Kantner, C., Scharinger, J.: NFC devices: security and
privacy. In: Third International Conference on Availability, Reliability and Secu-
rity, ARES 2008. pp. 642–647. IEEE (2008)

20. Mehrnezhad, M., Hao, F., Shahandashti, S.F.: Tap-Tap and Pay (TTP): Prevent-
ing Man-in-the-Middle Attacks in NFC Payment Using Mobile Sensors. Technical
report CS-TR-1428. Newcastle University, July 2014

21. Mehrnezhad, M., Hao, F., Shahandashti, S.F.: Tap-tap and pay (TTP): preventing
man-in-the-middle attacks in NFC payment using mobile sensors. In: 2nd Inter-
national Conference on Research in Security Standardisation (SSR 2015), October
2014

22. Roland, M., Langer, J., Scharinger, J.: Relay attacks on secure element-enabled
mobile devices. In: Gritzalis, D., Furnell, S., Theoharidou, M. (eds.) SEC 2012.
IAICT, vol. 376, pp. 1–12. Springer, Heidelberg (2012). https://doi.org/10.1007/
978-3-642-30436-1 1

23. Roland, M., Langer, J., Scharinger, J.: Applying relay attacks to Google Wallet.
In: 2013 5th International Workshop on Near Field Communication (NFC), pp.
1–6, February 2013

24. Shepherd, C., Gurulian, I., Frank, E., Markantonakis, K., Akram, R., Mayes, K.,
Panaousis, E.: The applicability of ambient sensors as proximity evidence for NFC
transactions. In: IEEE Security and Privacy Workshops on Mobile Security Tech-
nologies, MoST 2017. IEEE, May 2017

25. Shrestha, B., Saxena, N., Truong, H.T.T., Asokan, N.: Drone to the rescue: relay-
resilient authentication using ambient multi-sensing. In: Christin, N., Safavi-Naini,
R. (eds.) FC 2014. LNCS, vol. 8437, pp. 349–364. Springer, Heidelberg (2014).
https://doi.org/10.1007/978-3-662-45472-5 23

https://doi.org/10.1007/978-3-642-33167-1_22
http://dblp.uni-trier.de/db/conf/sp/sp2006.html#Hancke06
http://www.sciencedirect.com/science/article/pii/S0167404809000595
https://doi.org/10.1007/978-3-642-30436-1_1
https://doi.org/10.1007/978-3-642-30436-1_1
https://doi.org/10.1007/978-3-662-45472-5_23

May the Force Be with You: Force-Based Relay Attack Detection 159

26. Shrestha, B., Saxena, N., Truong, H.T.T., Asokan, N.: Contextual proximity detec-
tion in the face of context-manipulating adversaries. CoRR abs/1511.00905 (2015).
http://arxiv.org/abs/1511.00905

27. Trujillo-Rasua, R., Martin, B., Avoine, G.: The Poulidor distance-bounding pro-
tocol. In: Ors Yalcin, S.B. (ed.) RFIDSec 2010. LNCS, vol. 6370, pp. 239–257.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-16822-2 19

28. Truong, H.T.T., Gao, X., Shrestha, B., Saxena, N., Asokan, N., Nurmi, P.: Using
contextual co-presence to strengthen zero-interaction authentication: design,
integration and usability. Pervasive Mob. Comput. 16(Part B), 187–204 (2015).
http://www.sciencedirect.com/science/article/pii/S1574119214001771. Selected
Papers from the Twelfth Annual IEEE International Conference on Pervasive
Computing and Communications (PerCom 2014)

29. Truong, H.T.T., Gao, X., Shrestha, B., Saxena, N., Asokan, N., Nurmi, P.: Com-
paring and fusing different sensor modalities for relay attack resistance in zero-
interaction authentication. In: 2014 IEEE International Conference on Pervasive
Computing and Communications, pp. 163–171. IEEE (2014)

30. Umar, A., Mayes, K., Markantonakis, K.: Performance variation in host-based card
emulation compared to a hardware security element. In: 2015 First Conference on
Mobile and Secure Services, pp. 1–6. IEEE (2015)

31. Urien, P., Piramuthu, S.: Elliptic curve-based RFID/NFC authentication with tem-
perature sensor input for relay attacks. Decis. Support Syst. 59, 28–36 (2014)

32. Varshavsky, A., Scannell, A., LaMarca, A., de Lara, E.: Amigo: proximity-based
authentication of mobile devices. In: Krumm, J., Abowd, G.D., Seneviratne,
A., Strang, T. (eds.) UbiComp 2007. LNCS, vol. 4717, pp. 253–270. Springer,
Heidelberg (2007). https://doi.org/10.1007/978-3-540-74853-3 15

33. Verdult, R., Kooman, F.: Practical atacks on NFC enabled cell phones. In: 2011 3rd
International Workshop on Near Field Communication (NFC), pp. 77–82, February
2011

http://arxiv.org/abs/1511.00905
https://doi.org/10.1007/978-3-642-16822-2_19
http://www.sciencedirect.com/science/article/pii/S1574119214001771
https://doi.org/10.1007/978-3-540-74853-3_15

Instruction Duplication:
Leaky and Not Too Fault-Tolerant!

Lucian Cojocar1(B) , Kostas Papagiannopoulos2 , and Niek Timmers3

1 Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
l.cojocar@vu.nl

2 Radboud University Nijmegen, Nijmegen, The Netherlands
k.papagiannopoulos@cs.ru.nl

3 Security Lab, Riscure, Delft, The Netherlands
timmers@riscure.com

Abstract. Fault injection attacks alter the intended behavior of micro-
controllers, compromising their security. These attacks can be mitigated
using software countermeasures. A widely-used software-based solution
to deflect fault attacks is instruction duplication and n-plication. We
explore two main limitations with these approaches: first, we examine
the effect of instruction duplication under fault attacks, demonstrating
that as fault tolerance mechanism, code duplication does not provide a
strong protection in practice. Second, we show that instruction dupli-
cation increases side-channel leakage of sensitive code regions using a
multivariate exploitation technique both in theory and in practice.

1 Introduction

Fault Injection (FI) and Side-Channel Analysis (SCA) attacks are a risk for
microcontrollers operating in a hostile environment where attackers have physi-
cal access to the target. These attacks can break cryptographic algorithms and
recover secrets either by e.g. changing the control flow of the program (FI) or by
monitoring the device’s power consumption (SCA) with little or no evidence.

Multiple countermeasures such as random delays [12], masking [42], infec-
tion [25], data redundancy checks [33,35] and instruction redundancy [6] have
been proposed to tackle these threats, yet their impact, effectiveness and poten-
tial interactions remain open for investigation. Such countermeasures can be
implemented at hardware or at software level, often translating to overheads
in silicon area and execution runtime. This exacerbates the need for a detailed
analysis of the benefits introduced by these countermeasures before their actual
deployment.

1.1 Motivation

In this work, we focus on the Instruction Duplication (ID) countermeasure,
applied as a fault tolerance mechanism in software. The assembly-level redun-
dancy introduced by ID can prevent attacks aiming to skip instructions and
c© Springer International Publishing AG, part of Springer Nature 2018
T. Eisenbarth and Y. Teglia (Eds.): CARDIS 2017, LNCS 10728, pp. 160–179, 2018.
https://doi.org/10.1007/978-3-319-75208-2_10

http://orcid.org/0000-0001-8114-9875
http://orcid.org/0000-0002-5008-1756

Instruction Duplication: Leaky and Not Too Fault-Tolerant! 161

alter the control flow. Recent defenses (e.g., infection [19]) build further on code
redundancy in order to provide a stronger protection.

Manually applying these defenses, however, does not scale well for a large
code base that needs to be protected: it is an error-prone process and it costs
many highly skilled man-hours, therefore, in practice, it is often automated using
compiler techniques [8,32,37]. On top of protecting against fault attacks, com-
pilers can also provide support to reduce the information leakage through side
channels [4,9,10,34,39]. While there is previous work exploring the effect of one
defense mechanism on another [5,30,41], to the best of our knowledge, the effect
of ID on side-channel leakage has not been explored before. We perform an in-
depth investigation of ID, focusing on its applicability against FI as well on its
interaction with side-channel attacks.

Specifically, regarding fault attacks, the defender needs to exercise caution
when applying ID, since the device may not adhere to the “single instruction
skip” model. In such cases, the countermeasure is ineffective and we demonstrate
that it can even benefit certain fault injection strategies. In addition, we highlight
how even an effective application of ID can enhance our capability to perform
side-channel attacks on the underlying implementation. Thus, we establish that
care needs to be taken with respect to the equilibrium between fault injection
defenses and side-channel resistance.

In the process of investigating these software defenses, we built the first open-
source compiler capable of generating duplicated code for any C/C++ program.
In this way, we hope to stimulate further research in this area.

1.2 Contribution

We summarize our contributions as follows:

– We experimentally determine that instruction skipping is not a realistic fault
model for modern ARM Cortex-M4 MCUs.

– We develop and open source1 an instruction duplication compiler for ARM
Thumb2 architectures. To our knowledge, this is the first time that such a
compiler is publicly available.

– We examine the interaction between n-plication and side-channel resistance
and demonstrate the trade-off using an information-theoretic approach. In
addition, we show how horizontal exploitation techniques can leverage the
side-channel introduced by ID-based defenses.

– We examine how the redundancy of infective countermeasures can interact
with side-channel resistance and demonstrate how a Hidden Markov Model
can render infection [19] equivalent to ID from a side-channel point-of-view.

This paper starts with the background (in Sect. 2) and with an overview
of the related work in Sect. 3. Sections 4 and 5 investigate the limitations of the
assumed FI model as well as the limits of compiler-based ID. In Sects. 6 and 7 we
determine the impact of hardening code with ID on SCA attacks. We summarize
our findings in Sect. 8.
1 The code is available at: https://github.com/cojocar/llvm-iskip.

https://github.com/cojocar/llvm-iskip

162 L. Cojocar et al.

2 Background

Software-based instruction redundancy methods for fault detection were pro-
posed by Barenghi et al. [6]. In this technique, the original stream of instructions
to be executed is duplicated (or even triplicated), one instruction after another,
either manually or automatically [8,32,38].

For example a load from memory (ldm r0, [r2, #0]) is transformed by
duplication in two loads originating from the same memory. To provide fault
detection the destination registers must be different and then checked for differ-
ences (Listing 2). Under single instruction skip model, the fault tolerance arises
when using the same register as destination. Indeed, skipping one single instruc-
tion from Listing 1 has the same effect as executing the original instruction.

ldr r0 , [r2 , #0]

ldr r0 , [r2 , #0]

Listing 1. Fault tolerance

ldr r0 , [r2 , #0]

ldr r1 , [r2 , #0]

cmp r0 , r1

bne fault_detected

Listing 2. Fault detection

In practice, Moro et al. [37] showed that every ARM Thumb-1/2 instruc-
tion can be duplicated. We differentiate three classes of instructions: idempotent
instructions, separable instructions and specific instructions. While the idem-
potent instructions are duplicable with no extra transformation, the other two
classes often require an extra register to perform the duplication.

Therefore, on ARM Thumb-1/2, ID is generic and can be applied automati-
cally regardless of the algorithm that the instruction stream implements.

Automatic Deployment. Maebe et al. [32] apply ID for fault detection at
link-time for the ARM architecture. Barry et al. [8] described a compiler able to
produce duplicated instructions, however their tool is not publicly available.

Our LLVM based compiler emits duplicated instructions for the ARM
Thumb2 instruction set. Through code annotations, the hardening can be
enabled or disabled at function level, as instructed by the developer. The mod-
ified LLVM based compiler has a similar architecture as the implementation
described by Bary et al. [8] and it can compile code in any language supported
by Clang (e.g. C, C++) with different optimization levels, including the AES-128
implementation used in this paper. It is designed to be a drop-in replacement
for any LLVM based toolchain. Due to space constraints we omit the implemen-
tation details. The compiler is available as an open-source project.

3 Related Work

ID and the FI Model. Moro et al. [38] practically evaluates instruction dupli-
cation as a defense for FI on a Cortex-M3 Microcontroller (MCU). They use
electromagnetic (EMI) pulses to insert glitches and show the importance of the

Instruction Duplication: Leaky and Not Too Fault-Tolerant! 163

fault model. Riviere et al. [45] show that the single instruction model is invalid
when caches are enabled. The observed skip behavior, in the presence of an EMI
glitch, is: the last 4 instructions are re-executed and 4 instructions are skipped—
this partially invalidates the instruction duplication defense. Dureuil et al. [27]
model the fault injection attack by including the EMI probe position. When
an attack succeeds, the most probable outcome is to skip 1–4 instructions on a
common smart card. They show that a probable outcome is the corruption to 0
of the destination operand of a ld instruction. Yuce et al. [48] show the effect of
a single clock glitch on the ID scheme at clock granularity. They observe that the
first instance of the instruction is corrupted and that its duplicated counterpart
is transformed to a NOP instruction, thus defeating the ID. They use a 7-stage
FPGA based implementation and clock glitches for experiments. Instead, we use
a 3-stage pipeline off-the-shelf device and voltage glitches to investigate ID.

ID and SCA Interaction. Regazzoni et al. [43] first looked at the interaction
between fault injection defenses and Power Analysis (PA) attacks. Specifically,
they studied an AES implementation with parity based error detection circuitry.
They conclude that the presence of a parity error detection circuit will leak
important information to an attacker through PA. One year later, Regazzoni
et al. [44] experimentally show the exploitability of an known-by-the-attacker
error detection circuit. Pahlevanzadeh et al. [40] look at three fault detection
methods designed specifically for AES: double module redundancy, parity checks,
inverse execution; all implemented on an FPGA. They find that parity checks are
actually improving the resistance against standard Correlation Power Analysis
(CPA). Similarly, Luo et al. [31] use CPA to attack an FPGA implementation of
AES which is hardened for fault detection. They conclude that duplication does
not improve the success rate of the attack in respect to the unhardened AES
implementation. However, we stress that the approaches of [31,40] use naive CPA
attacks and do not rely on multivariate, horizontal exploitation of the leakage.
Such attack-dependent techniques do not reveal the full picture and may lure
the side-channel evaluator in a false sense of security.

4 FI Preliminaries

Because ID and n-plication are defenses for faults, we experimentally evaluate
them in a realistic fault injection scenario.

4.1 Fault Injection Background

Fault injection attacks change the intended behavior of a target by manipu-
lating its environmental conditions. This can be accomplished using different
fault injection techniques such as: voltage FI, electromagnetic FI and optical
FI. In this paper we focus only on voltage FI where glitches are introduced in
the voltage signal that powers the subsystem responsible for executing software.
Voltage FI is easy to mount as it does not require sophisticated equipment and
it is invasive.

164 L. Cojocar et al.

FI Model. Faults can target different physical layers of the device: single tran-
sistors, logic gates or computation units [47]. In this paper, we are interested in
the observable effect of faults, namely, in faults that can cause a change in the
program flow and that manifest at the instruction level. We note several types
of faults in respect to instructions: single instruction skip [7], multiple instruc-
tion skip [45,46], instruction re-execution [29,45] and instruction corruption [46].
These types of faults are from now on referred to as the fault model.

Fault Injection Parameters. The following glitch parameters are important
when performing voltage FI:

– the Normal Voltage is the voltage supplied to the target.
– the Glitch Voltage is the voltage subtracted from the Normal Voltage when

the glitch is injected.
– the Glitch Offset is the time between when the trigger is observed and when

the glitch is injected.
– the Glitch Length is the time for which the Glitch Voltage is set.

Finding the right parameters for a target is defined as characterization.

4.2 Experimental FI Setup

Fault Injection Target. All fault injection experiments described in this
section are performed targeting an off-the-shelf development platform built
around an STM32F407 MCU. This MCU is implemented using 90 nm technol-
ogy and includes an ARM Cortex-M4 core running at 168 MHz. This Cortex-M4
based MCU has an instruction cache, a data cache and a prefetch buffer.

Related research used a similar experimentation target. Moro et al. [36,38]
used a development board designed around an 130 nm technology MCU featuring
an ARM Cortex-M3 core running at 56 MHz. The Cortex-M3 and Cortex-M4 are
very similar and we expect the differences to have minimal impact. The latter
includes additional specialized instructions which are not targeted in this paper.
The pipeline size (3 stages) and the rest of the instruction set are the same.

To avoid instruction re-execution, which was shown to be possible by Rivier
et al. [45], all experiments are performed with the prefetch buffer disabled and
with caches enabled, unless otherwise stated.

Fault Injection Tooling. The voltage FI test bed is created using Riscure’s
VC Glitcher product2 that generates an arbitrary voltage signal with a pulse
resolution of 2 ns. Similarly to previous work, in a synthetic setup, we use a
General Purpose Input Output (GPIO) signal to time the attack which allows
us to inject a glitch at the moment the target is executing the targeted code.
The target’s reset signal is used to reset the target prior to each experiment to
avoid data cross-contamination.
2 https://www.riscure.com/security-tools/hardware/vc-glitcher.

https://www.riscure.com/security-tools/hardware/vc-glitcher

Instruction Duplication: Leaky and Not Too Fault-Tolerant! 165

4.3 Fault Injection Characterization

We use the code snippet from Listing 3 for two purposes: (a) to find the glitch
parameters (characterization) and (b) to invalidate the single instruction skip
model for the target described in Sect. 4.2. The code is a copy-loop construction
that is known to be a common target for fault injection because it has significant
duration [46]. The targeted code is executed in a loop to minimize the impact
of the Glitch Offset parameter as it does not matter what iteration of the loop
and which part of the loop is hit.

0: ldm r0 , {r4 -r10}

stm r0 , {r4 -r10}

subs r1 , #1

bne 0b //loop back

Listing 3. Characterization code Fig. 1. Behavior under faults

The target’s susceptibility to voltage FI attack is determined using the fol-
lowing glitch parameters: voltage ∈ [−3.3V,−2.0V], offset ∈ [2µs, 5µs] and
length ∈ [70 ns, 200 ns]. The normal voltage is set to 3.3 V. The results of FI
experiments can be classified in three groups: Expected, Successful and Mute.
The experiments are plotted in Fig. 1 and show a clear relationship between
the voltage and the length of the glitch. For the Successful experiments (black,
the diagonal boundary) we observed a change in the target’s behavior without
affecting its continuation. For all Mute experiments (light gray, above the diag-
onal) the target halted or performed a reset. The Expected experiments (dark
gray, below diagonal) are the ones for which we did not observe a change in the
execution.

Instruction Corruption Model. Executing under faults the code from
Listing 3 yields the following result: the memory pointed by r0 after the loop
is different that its contents before the loop (Successful). If only the instruction
skip fault model applies to the target, then the memory pointed by r0 should
be the same as before the loop executes (Expected). We ran the experiment 20 K
times and, in 15.91% (SE = 25×10−4) of cases were Successful. In 65.59% (SE =
33×10−4) of cases the device crashed or failed to answer and, the rest of the cases
were Expected. The standard error (SE) is computed as

√
P ∗ (1 − P)/N , where

N is the number of experiments (20 K in this case) and P is the success rate.
The non-negligible number of Successful cases indicates that the target

adheres to a more complex fault model than single instruction skip model – i.e.

166 L. Cojocar et al.

the instruction corruption model. We say the instruction corruption fault model
holds iff the observed behavior of the target under faults cannot always be
explained by removing one (or multiple) instructions from the execution stream.
This loose definition captures as well the data corruption fault model.

5 Fault Injection Effectiveness

In this section, we practically evaluate ID under instruction corruption FI model.

5.1 Inaccuracies in the FI Model

We resort to two experiments, that show how ID can negatively affect the fault
tolerance of ID if a different model than single instruction skip holds. Further-
more, we show that when applying ID the runtime configuration of the target
must be considered.

ID and the “real” FI Model. We determine the impact of ID by duplicating
and n-plicating code from Listing 3. For each code instance, we perform 10 K
experiments, using the glitch parameters outlined in Sect. 4.3.

Table 1. Success rate of FI and n-plication levels

Original n = 2 (ID) n = 3 n = 4 n = 5

SR (%) 15.91 15.61 11.59 13.5 11.96

SE (×10−4) 25 25 22 24 22

Table 1 shows that ID does not provide fault tolerance for software for our
target. Even if the instruction is n-plicated three times or more, the fault toler-
ance is not substantially improved. Because we use a real target with no access to
low level hardware features (i.e. flip-flop states), we do not aim to detail the root
cause of this behavior. Instead, we note that the instruction corruption model
captures this result.

Limitations of a Static FI Model. When ID is deployed automatically at
compile time, the compiler is not aware of the runtime configuration (e.g. cache
configuration). In this experiment, we show how ID and n-plication affects the
success of FI when several runtime configurations are used.

In Fig. 2 we enable and disable the prefetch buffer (p), the instruction cache
(i) and the data cache (d) and plot the fault injection success rate on the code
similar to Listing 5. A capital letter in the title of the subplot means that the
specific feature is enabled. We use the color scheme defined in Sect. 4.3.

Because the data on which our test operates is stored in registers, toggling
the data cache has no impact on the fault tolerance. However, we observe four

Instruction Duplication: Leaky and Not Too Fault-Tolerant! 167

Fig. 2. SR of faults vs. multiple n-plication levels and runtime configurations

interesting results. First, ID increases the probability of a successful fault when
the device is used with all its functionality enabled (PID). In this case, n-plication
with n = 3 and n = 4 has the highest fault tolerance. Second, when all features
are disabled (pid), none of the n-plication level improve the fault tolerance.
Thirdly, when the instruction cache is disabled, enabling the prefetch buffer
makes ID the most effective amongst the n-plication levels (pid, piD vs. Pid,
PiD). Finally, comparing the right-most four subplots with the left-most subplots,
the instruction cache offers an improved resilience against voltage glitches.

As a consequence, the compiler must be aware of the runtime configuration
of the device when it emits redundant instructions.

5.2 Impact of Compiler Techniques

We now explore two compiler techniques that affect the effectiveness of ID.

Register Allocation Pressure. Register Allocation (RA) is the process in
which the compiler maps the virtual (unlimited) registers to physical (limited)
registers. This process is highly optimized to yield the best space and runtime
performance. In this section we show that the modified register allocation scheme
that ID requires has a negative impact on the fault tolerance.

add r5 , r5 , #1
add r7 , r7 , #1

Listing 4. Registers are incremented

add r4 , r5 , #1
mov r5 , r4
add r6 , r7 , #1
mov r7 , r6

Listing 5. Code ready for duplication

Listing 5 is the transformation of the code from Listing 4 with the add being
replaced by an idempotent sequence that uses an extra temporary register (see
Sect. 2). We define a successful glitch with respect to the contents of the registers

168 L. Cojocar et al.

r5 and r7. If the contents of the registers is different than what is expected
(i.e. the number of iterations added to the initial value of the registers) then
we count this trial as a success. Otherwise, the glitch was not inserted or the
parameters caused a mute.

The ID aware RA yields a higher success rate for FI (SR = 18.64%, SE =
20 × 10−5) than the unmodified one (SR = 10.63%, SE = 16 × 10−5). Apart
from runtime performance degradation, the increased register pressure induced
by the custom RA has a two fold negative impact on the fault tolerance. First,
it increases the probability of a register to be spilled on the stack. As a conse-
quence, the compiler will likely chose complex multi-memory access operations
over simple load or stores. The multi-memory operations (e.g. ldm, stm) are more
prone to faults than single memory operations [46] or than register to register
operations. Second, an extra instruction to write back the result is needed (mov).
This extra instruction is duplicated, therefore it increases the window in which
a fault can be injected and it adds another leakage point.

In short, not only does the ID register allocation works against the estab-
lished RA optimizations, but it also has a negative effect on the fault tolerance
guarantees. This is a fundamental limitation of ID.

Instruction Ordering. The compiler has the freedom to emit instructions
in any order. This is done either for optimization purposes (e.g. benefit from
a multi-stage pipeline) or to avoid a certain illegal order of instructions. Barry
et al. [8] showed that the correct scheduling of duplicated instructions can reduce
the runtime overhead of the duplicated code, from 2.14X down to 1.70X–2.09X on
a software AES implementation. Yuce et al. [48] hint at the interaction between
ID and the processor pipeline.

To analyze what is the impact of the instruction order on the success rate of
injected faults we compare the success rate of the code Listing 6 and its possible
scheduled version Listing 7. We define a successful trial whenever the memory
pointed by r6 is different than its initial value. Our results show that instruction
scheduling decreases the success rate of injecting a fault, from 8.51% to 4.00%.

Intuitively, the pipeline for Listing 6 contains the protected instruction and its
copy right after another. Therefore, the chances that a fault affects the protected
instruction and its copy at a given clock cycle is higher than in the case when the
protected instruction and its copy are one (or more) instruction apart (Listing 7).
These results are in line with the work of Yuce et al. [48], which shows that ID
can be bypassed with a single glitch because multiple instructions are in the
pipeline at a given clock cycle.

When emitting duplicated code the order is important, yet to date a FI model
that captures the order interaction does not exist, let alone a compiler that uses
this model. We leave the design of such a model and compiler as future work.
We conclude that compiler optimization techniques (e.g. instruction scheduling,
register allocation optimality) interact with the fault tolerance guarantees of ID.

Instruction Duplication: Leaky and Not Too Fault-Tolerant! 169

add r0 , r4 , r1
add r0 , r4 , r1
ldr r5 , [r6 , #0]
ldr r5 , [r6 , #0]

Listing 6. Natural order

add r0, r4 , r1
ldr r5, [r6, #0]
add r0, r4 , r1
ldr r5, [r6, #0]

Listing 7. Possible re-ordering

6 SCA of ID and Infection Countermeasures

This section demonstrates the interactions between the redundancy-based FI
countermeasures and the side-channel resistance of an implementation that is
employing them. In Sect. 6.1 we analyze the theoretical effect of ID and n-
plication on SCA using an information-theoretic approach. Section 6.2 demon-
strates how to perform SCA on infective countermeasures using a Hidden Markov
Model that simplifies the exploitation phase of infection to that of ID. Through-
out this section, capital letters denote random variables and small case letters
denote instances of random variables or constants. Bold letters denote vectors.

6.1 Information-Theoretic Evaluation of ID for SCA

From a side-channel perspective, the ID countermeasure increases the available
leakage in a horizontal manner, either as a fault detection or as a fault tolerance
mechanism. Analytically, in the case of an unprotected implementation (without
ID) a univariate adversary can acquire the leakage of a key-dependent value v,
i.e. observe Lv ∼ N (v, σ), assuming identity leakage model. On the contrary,
when instruction n-plication is implemented (n > 1), the adversary can observe
over time an n-dimensional leakage vector Lv = [Lt=1

v , . . . , Lt=n
v]. The vector

contains n independent observations of value v under the same noise level, i.e.
we assume that Lt

v ∼ N (v, σ), t = 1, . . . , n.
Given that the side-channel adversary has located the sample positions of the

repeated leakages, he can perform a pre-processing step where he averages all
available samples that leak v, i.e. he computes L̄v = (1/n) ∗ ∑n

t=1 Lt
v. The aver-

aging step results in noise reduction of factor
√

n, obtaining L̄v ∼ N (v, σ/
√

n)
and as a result side-channel attacks can be enhanced. Note that noise reduction
can be particularly hazardous even when additional side-channel protection is
implemented. For instance, both masking and shuffling countermeasures [13,14]
amplify the existing noise of a device and will perform poorly if the noise level
has been reduced by a large factor

√
n. In order to demonstrate the effect of

noise reduction, we employ the information-theoretic framework of Standaert
et al. [13] which evaluates the resistance against the worst possible attack sce-
nario. The MI between the key-dependent value V and leakage Lv can be
computed using the following formula: MI(V ;Lv) = H[V] +

∑
v∈V Pr[v] ·

∫

lv∈Ln

Pr[lv|v] · log2 Pr[v|lc] dlv, where Pr[v|lv] = Pr[lc|v]∑
v∗∈V Pr[lv|v∗] .

170 L. Cojocar et al.

From Fig. 4 we derive the following three conclusions. First, we observe that
n-plication (for n > 1) shifts the MI-curve to the right, i.e. the FI countermea-
sure produces repeated leakages which have a direct impact on the side-channel
security of the implementation. Second, we note that if ID translates to more
than two assembly instructions that manipulate the same value, we will likely
observe even more hazardous repetitions. Third, it follows that a countermeasure
designer needs to balance the need for side-channel resistance and FI resistance
by fine-tuning the parameter n.

6.2 Converting Infection to ID for SCA

It is important to point out that, apart from straightforward instruction duplica-
tion, a wide variety of FI countermeasures rely on some form of spatio-temporal
redundancy. For instance, detection methods such as full/partial/encrypt-
decrypt duplication & comparison of a cipher [21] produce repetitions of inter-
mediate values that are exploitable by the side-channel adversary. Thus, an
MI-based evaluation of duplication & comparison is identical to Fig. 4. Similarly,
countermeasures that rely on particular error detection/correction codes [22]
also introduce redundancy that has been evaluated in the side-channel context
by Regazzoni et al. [26].

In this section, we expand in the same direction and examine the interac-
tion between side-channel analysis and the more recent infective countermea-
sure [19]3. Specifically, we demonstrate how the application of a Hidden Markov
Model (HMM) [2,16] in a low-noise setting can render infective countermeasures
equivalent to ID from a side-channel point-of-view.

Infective countermeasures were developed as a solution to the vulnerabili-
ties of the duplicate & compare methods [25]. Instead of vulnerable compar-
isons, infection diffuses the effect of faults in order to make the ciphertext
unexploitable. In particular, we focus on the infective countermeasure of
Tupsamudre et al. [19], which has been proven secure against DFA [24], given
that the adversary cannot subvert the control flow and that certain fault models
are not applicable [20]. The countermeasure is shown in Algorithm 1.

The infective countermeasure alternates between real, redundant and dummy
cipher rounds (step 8). It requires an r bit random number rstr (step 3), consist-
ing of 2n 1’s that trigger computation rounds (redundant or real) and (r − 2n)
0’s that trigger dummy rounds (steps 5–7). In the event of FI, the difference
is detected via function BLFN : size(R) → 1, where BLFN(0) = 0 and
BLFN(x) = 1,∀x �= 0. The error is propagated via step 11.

From a side-channel perspective, the infective countermeasure can be viewed
as a random sequence of r round functions, where only the 2n computation
rounds are useful for exploitation. Thus, the objective of the side-channel adver-
sary is to uncover the hidden sequence of rounds and to isolate the useful
ones. Subsequently, one can exploit e.g. the first redundant and first real round

3 Infective countermeasures in this [19] work do not pertain to the modular arithmetic
infective techniques used by Rauzy and Guilley [3].

Instruction Duplication: Leaky and Not Too Fault-Tolerant! 171

Algorithm 1: Infection
Tupsamudre et al. [19]

Input: Plaintext P , key K, round j
key kj , ∀j = 1, . . . , n, n
number of rounds, dummy
plaintext β, dummy round key
k0

Output: Ciphertext C=Cipher(P, K)
1 Real R0 ← P , Redundant R1 ← P ,

Dummy R2 ← β
2 i ← 1
3 rstr ∈R {0, 1}r //r random bits
4 for q = 1 until r do
5 λ ← rstr[q]
6 κ ← (i ∧ λ) ⊕ 2(¬λ)
7 ζ ← λ�i/2	
8 Rk ← RoundFunction(Rk, kζ)
9 γ = λ(¬(i ∧ 1)) · BLFN(R0 ⊕ R1)

10 δ ← (¬λ) · BLFN(R2 ⊕ β)
11 R0 ← (¬(γ ∨δ) ·R0)⊕ ((γ ∨δ) ·R2)
12 i ← i + λ
13 q ← q + 1

14 end
15 return R0

Fig. 3. The Markov model describing the
states, transition probabilities T and prior
probabilities Tpr.

together via averaging, which is identical to the aforementioned exploitation of
ID. Distinguishing effectively dummy rounds from computational ones is non-
trivial, especially when extra randomization steps are involved [23]. However, the
presence of control logic in the infective countermeasure such as variables λ, ζ
and κ can emit noisy side-channel information about the sequence of rounds. We
model such leakage as Lc = [Λ,Z,K] + N (0,Σ), where the deterministic part
[Λ,Z,K] is defined over {0, 1}3 and N (0,Σ) denotes 3-dimensional noise vector
with zero mean and diagonal covariance matrix Σ.

The suggested HMM is constructed the following way. We encode the
main loop of Algorithm1 using two states, i.e. at a given time t, the state
st = i ∈ {C,D}, where C corresponds to a computational round and D to
a dummy round. The transitions in the sequence of states is described by matrix
T , where Ti,j = Pr(st+1 = j|st = i). Figure 3 shows the state diagram and the
probabilities for matrix T, namely p = 2n/r. We note that it is possible to unroll
the loop and use additional states to describe the transitions, such that we can
fine-tune the probabilities. However, we opt for such simple representation to
minimize the model’s data complexity.

In the HMM, the round sequence s = [s1, . . . , sr] is unknown, but the adver-
sary is assisted by leakage observations [lt=1

c , . . . , lt=r
c]. To exploit the observa-

tions, the HMM associates every state i ∈ {C,D} with an estimated emission
probability function, i.e. emission ei(ltc) = Pr(ltc|st = i).

Having established the HMM for our scenario, we perform a simulated experi-
ment where we try to identify the round sequence for a gradually increasing noise
level. The simulated sequence contains 22 computational rounds and 78 dummy
rounds, i.e. it corresponds to a computation of AES-128 using infection with
r = 100. For every noise level we apply the Viterbi algorithm [1], which can

172 L. Cojocar et al.

Fig. 4. MI of instruction n-plication Fig. 5. Success rate of HMM-
based sequence detection vs.
noise level σ

recover the most probable sequence s of length r, while factoring in the leakage
observations lt=1...r

c and the transition probabilities of T. The simulation (Fig. 5)
shows that for fairly small noise levels (e.g. σ < 0.3) we are able to uncover the
hidden sequence with high probability, making the side-channel exploitation of
infection equivalent to the exploitation of instruction duplication.

7 Practical SCA Results

In this section, we apply the exploitation techniques of Sect. 6.1 in our experimen-
tal setup that protects an AES-128 implementation using ID. We verify the tech-
nique’s applicability to real-world scenarios by showing their increased efficiency
compared to standard SCA methods. We use an AVR MCU (XMEGA128D4)
as the main target for our SCA experiments and we collect power traces using
the open-source ChipWhisperer product4. The clock frequency of the target is
7.3728 MHz and we sample the power consumption of the target 4 times per
clock cycle.

We use three different code patterns to evaluate the interaction between SCA
and ID in different scenarios. Patterns A and B demonstrate how ID affects
different instructions, namely instructions eor and ld respectively. Pattern C
showcases the duplicated key addition and Sbox parts of a lookup-table-based
AES implementation (Fig. 6).

7.1 Horizontal Exploitation Using CPA

For the aforementioned patterns, we perform an experimental evaluation
where we put forward a variant of the traditional Correlation Power Analy-
sis (CPA) [11]. In the case of n-plication, we involve a horizontal averaging
pre-processing strategy as follows.

4 https://newae.com/tools/chipwhisperer/.

https://newae.com/tools/chipwhisperer/

Instruction Duplication: Leaky and Not Too Fault-Tolerant! 173

Fig. 6. Code snippets for
the SCA experiments. Y

is the output buffer and
r17 contains the hardcoded
secret key. Fig. 7. CPA vs. Template on C

1. Locate the intervals pertaining to the n different repeated leakages. In every
interval, heuristically select the point in time with the highest correlation to
the targeted key-dependent value, obtaining vector l = [lt=1, . . . , lt=n].

2. For every vector l compute the average value l̄ = (1/n)∗∑n
t=1 lt, thus reducing

the noise level.
3. Perform CPA using the averaged values (l̄).

In Fig. 8, we observe how the averaged CPA using a Hamming weight model
outperforms naive CPA that ignores horizontal leakage, since it requires less
traces to converge. Thus, the theoretical results of Sect. 6.1 are confirmed in
practice and we conclude that horizontal averaging rejects noise. In addition,
the difference between the naive CPA on the original code and averaged CPA
on the duplicated code is larger on the duplicated eor pattern rather than on
the duplicated ld. This behavior is attributed to the SNR of ld/st instructions,
which is significantly higher compared to the SNR of ALU operations (such as
eor)5, since the later do not manipulate the memory bus. As a result, there is
less need to reject noise on memory instructions. Last, we observe that a naive
CPA attack when ID is in place may be slower to converge due to interference
between duplicated consecutive instructions.

This work focuses on n-plication used as a fault tolerance mechanism, the
same averaging technique can be applied when n-plication is used as a fault
detection mechanism. In the latter case the instruction stream is the same as
in the former case when no faults are injected, therefore, the side channel is
similarly amplified.

7.2 Horizontal Exploitation Using Templates

In order to fully exploit the available horizontal leakage, we also use a template-
based approach [15,18], which comprises two phases for attacking an AES-128

5 SNR(A) = 2.23 and SNR(B) = 18.20.

174 L. Cojocar et al.

Fig. 8. Success rate of the CPA attack. single is CPA on the original code. On dupli-
cated code, no-avg is the naive CPA and avg is the CPA with averaging

implementation: a profiling phase, in which templates are built for 256 key can-
didates of an AES-128 key byte and an extraction phase, where a number of
traces are used to recover the unknown key. In our experiments, for the profiling
phase, we use 3.2 k traces of the device per key candidate and perform dimen-
sionality reduction, selecting Points of Interest (POIs) via Principal Component
Analysis [17]. We deployed the following two template attacks. To ensure that
the side-channel effect of ID is exploited during the heuristic step of POI selec-
tion, the first attack breaks the trace in multiple intervals, each containing a
single assembly instruction and performs POI selection in every interval sepa-
rately. The second template attack considers the full trace as a single interval
and performs POI selection in the whole region.

In Fig. 7, we focus on code pattern C . We perform the CPA attack (naive and
averaged) that exploits the duplication of the ld instruction computing the Sbox
output. Moreover, we perform the multi-interval and single-interval template
attacks. We observe that both template attacks achieve similar performance and
surpass the averaged CPA. Thus, we verify the applicability of templates in a
horizontal context and conclude that they constitute an optimized way to exploit
repeated leakages. We note that template attacks are inherently multivariate
and may often require an extensive profiling phase to effectively characterize the
model. On the other hand, averaged CPA compresses multiple samples, i.e. it is
a univariate technique with a less informative model compared to templates, yet
it has the upside of being faster to train and compute.

8 Conclusion

In this paper we analyzed the limitations of Instruction Duplication (ID) as a
fault tolerance mechanism. First, we proved that the model under which ID oper-
ates has fundamental limitations, rendering the ID ineffective or even harmful.
ID is designed under the assumption of a single fault model. However, in practice
a more complex model can hold for a specific target, thus relying only on ID as
a fault tolerance mechanism is not effective against FI attacks.

Second, the information leakage through side channel is amplified. We showed
that the side channel introduced by instruction by ID, can be successfully
exploited to extract secret information. Moreover, other instruction redundancy
based defenses suffer from the same weaknesses in respect to side channels.

Instruction Duplication: Leaky and Not Too Fault-Tolerant! 175

Finally, while automatically applying redundancy based defenses is promis-
ing, the FI model has to be fine tuned and extended for each targeted device
according to its runtime configuration. The compiler must use this model to
carefully balance fault tolerance guarantees and performance. Whether or not
this is possible is still an open question.

Acknowledgements. This research was supported by the NWO CYBSEC “OpenS-
esame” project (628.001.005) and the NWO project ProFIL (628.001.007). We thank
our anonymous reviewers and our shepherds, Fischer Jean-Bernard and Romailler
Yolan for their invaluable feedback. We also thank Marius Schilder and Dominic Rizzo
from Google Inc. for their support in developing the compiler.

Appendix

Differential Fault Analysis (DFA) Attack on Software AES-128

In Sect. 5 we determined the impact of ID as a fault tolerance mechanism on
synthetic code. Now we show the interaction between ID and the number of
trials needed to conduct a fault based attack. To this extent, we automatically
apply ID on a large and complex code construction, the AES-128 cryptographic
algorithm, and perform the DFA attack described by Dusart et al. [28]. The goal
of the attack is to extract the fixed key by observing the faulty output.

We use the tiny-AES128-C6 implementation of the AES-128 cipher, in ECB
mode for our target to encrypt a fixed input with a fixed key. A trigger is
implemented between the 9th and the 10th round to guarantee we always hit the
right location within the algorithm. Two versions of the AES-128 implementation
are compiled: a hardened version (with ID in place) and an non-hardened version.

A 2 K trace set containing traces with faulty outputs is acquired for each
implementation. We randomly select nt from these trace sets and use them in
the DFA attack. We repeat this process 100 times for each implementation and
we plot how often the attack is successful in Fig. 9.

The non-hardened implementation outperforms the hardened implementa-
tion in terms of FI tolerance. A clear indication that ID is not effective for
protecting the AES-128 algorithm when the instruction corruption fault model
holds. Depending on the time penalty required for a single experiment, the small
difference can have a noticeable effect. If the target needs to be reset before each
experiment then tens of seconds are added for each experiment. Moreover, the
target might remove or change the keys after a limited amount of encryptions.

We analyzed the outputs in more detail and counted how often multi byte
changes are observed in both implementations (Table 2). From the number of all
faults observed (i.e. at least 1 byte difference), 4 bytes faults7 are more probable
to be observed in the hardened implementation.

To conclude, fewer successful faults are needed to attack the hardened AES.

6 https://github.com/kokke/tiny-AES128-C.
7 These are the faults useful for DFA on AES.

https://github.com/kokke/tiny-AES128-C

176 L. Cojocar et al.

Fig. 9. DFA on AES-128

Table 2. Bytes changed in the output

3 or less 4 5 or more

Hardened (ID) 0.2% 64.0% 35.7%

Unhardened 1.1% 41.5% 57.4%

References

1. Viterbi, A.: Error bounds for convolutional codes and an asymptotically optimum
decoding algorithm. IEEE Trans. Inf. Theor. 13(2), 260–269 (1967). https://doi.
org/10.1109/TIT.1967.1054010. ISSN 0018-9448

2. Rabiner, L.R.: A tutorial on hidden Markov models and selected applications in
speech recognition. Proc. IEEE 77(2), 257–286 (1989). https://doi.org/10.1109/5.
18626. ISSN 0018-9219

3. Rauzy, P., Guilley, S.: Countermeasures against high-order fault-injection attacks
on CRT-RSA. In: 2014 Workshop on Fault Diagnosis and Tolerance in Cryptogra-
phy, pp. 68–82, September 2014. https://doi.org/10.1109/FDTC.2014.17

4. Agosta, G., Barenghi, A., Pelosi, G.: Automated instantiation of side-channel
attacks countermeasures for software cipher implementations. In: Proceedings of
the ACM International Conference on Computing Frontiers, CF 2016, Como,
pp. 455–460. ACM (2016). https://doi.org/10.1145/2903150.2911707. ISBN: 978-
1-4503-4128-8

5. Amiel, F., et al.: Passive and active combined attacks: combining fault attacks and
side channel analysis. In: Workshop on Fault Diagnosis and Tolerance in Cryptog-
raphy, FDTC 2007, pp. 92–102. IEEE (2007)

6. Barenghi, A., et al.: countermeasures against fault attacks on software implemented
AES: effectiveness and cost. In: Proceedings of the 5th Workshop on Embedded
Systems Security, p. 7. ACM (2010). http://dl.acm.org/citation.cfm?id=1873555.
Accessed 14 Oct 2016

7. Barenghi, A., et al.: Fault injection attacks on cryptographic devices: theory, prac-
tice, and countermeasures. Proc. IEEE 100(11), 3056–3076 (2012)

8. Barry, T., Couroussé, D., Robisson, B.: Compilation of a countermeasure against
instruction-skip fault attacks. In: Proceedings of the Third Workshop on Cryptog-
raphy and Security in Computing Systems, pp. 1–6. ACM (2016). http://dl.acm.
org/citation.cfm?id=2858931. Accessed 14 Oct 2016

9. Bayrak, A.G., et al.: A first step towards automatic application of power anal-
ysis countermeasures. In: Proceedings of the 48th Design Automation Confer-
ence, DAC 2011, San Diego, pp. 230–235. ACM (2011). https://doi.org/10.1145/
2024724.2024778. ISBN: 978-1-4503-0636-2

https://doi.org/10.1109/TIT.1967.1054010
https://doi.org/10.1109/TIT.1967.1054010
https://doi.org/10.1109/5.18626
https://doi.org/10.1109/5.18626
https://doi.org/10.1109/FDTC.2014.17
https://doi.org/10.1145/2903150.2911707
http://dl.acm.org/citation.cfm?id=1873555
http://dl.acm.org/citation.cfm?id=2858931
http://dl.acm.org/citation.cfm?id=2858931
https://doi.org/10.1145/2024724.2024778
https://doi.org/10.1145/2024724.2024778

Instruction Duplication: Leaky and Not Too Fault-Tolerant! 177

10. Bayrak, A.G., et al.: Automatic application of power analysis countermeasures.
IEEE Trans. Comput. 64(2), 329–341 (2015)

11. Brier, E., Clavier, C., Olivier, F.: Correlation power analysis with a leakage model.
In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 16–29.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28632-5 2

12. Clavier, C., Coron, J.-S., Dabbous, N.: Differential power analysis in the presence
of hardware countermeasures. In: Koç, Ç.K., Paar, C. (eds.) CHES 2000. LNCS,
vol. 1965, pp. 252–263. Springer, Heidelberg (2000). https://doi.org/10.1007/3-
540-44499-8 20

13. Standaert, F.-X., Veyrat-Charvillon, N., Oswald, E., Gierlichs, B., Medwed, M.,
Kasper, M., Mangard, S.: The world is not enough: another look on second-order
DPA. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 112–129. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-17373-8 7

14. Veyrat-Charvillon, N., Medwed, M., Kerckhof, S., Standaert, F.-X.: Shuffling
against side-channel attacks: a comprehensive study with cautionary note. In:
Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp. 740–757.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34961-4 44

15. Choudary, O., Kuhn, M.G.: Efficient template attacks. In: Francillon, A., Rohatgi,
P. (eds.) CARDIS 2013. LNCS, vol. 8419, pp. 253–270. Springer, Cham (2014).
https://doi.org/10.1007/978-3-319-08302-5 17

16. Durvaux, F., Renauld, M., Standaert, F.-X., van Oldeneel tot Oldenzeel, L.,
Veyrat-Charvillon, N.: Efficient removal of random delays from embedded software
implementations using Hidden Markov Models. In: Mangard, S. (ed.) CARDIS
2012. LNCS, vol. 7771, pp. 123–140. Springer, Heidelberg (2013). https://doi.org/
10.1007/978-3-642-37288-9 9

17. Archambeau, C., Peeters, E., Standaert, F.-X., Quisquater, J.-J.: Template attacks
in principal subspaces. In: Goubin, L., Matsui, M. (eds.) CHES 2006. LNCS, vol.
4249, pp. 1–14. Springer, Heidelberg (2006). https://doi.org/10.1007/11894063 1

18. Chari, S., Rao, J.R., Rohatgi, P.: Template attacks. In: Kaliski, B.S., Koç, K.,
Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 13–28. Springer, Heidelberg
(2003). https://doi.org/10.1007/3-540-36400-5 3

19. Tupsamudre, H., Bisht, S., Mukhopadhyay, D.: Destroying fault invariant with
randomization - a countermeasure for AES against differential fault attacks. In:
Batina, L., Robshaw, M. (eds.) CHES 2014. LNCS, vol. 8731, pp. 93–111. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-662-44709-3 6

20. Battistello, A., Giraud, C.: A note on the security of CHES 2014 symmetric infec-
tive countermeasure. In: Standaert, F.-X., Oswald, E. (eds.) COSADE 2016. LNCS,
vol. 9689, pp. 144–159. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
43283-0 9

21. Lomné, V., Roche, T., Thillard, A.: On the need of randomness in fault attack
countermeasures - application to AES. In: FDTC 2012 (2012)

22. Malkin, T.G., Standaert, F.-X., Yung, M.: A comparative cost/security analysis of
fault attack countermeasures. In: Breveglieri, L., Koren, I., Naccache, D., Seifert,
J.-P. (eds.) FDTC 2006. LNCS, vol. 4236, pp. 159–172. Springer, Heidelberg (2006).
https://doi.org/10.1007/11889700 15

23. Gierlichs, B., Schmidt, J.-M., Tunstall, M.: Infective computation and dummy
rounds: fault protection for block ciphers without check-before-output. In: Hevia,
A., Neven, G. (eds.) LATINCRYPT 2012. LNCS, vol. 7533, pp. 305–321. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-33481-8 17

https://doi.org/10.1007/978-3-540-28632-5_2
https://doi.org/10.1007/3-540-44499-8_20
https://doi.org/10.1007/3-540-44499-8_20
https://doi.org/10.1007/978-3-642-17373-8_7
https://doi.org/10.1007/978-3-642-34961-4_44
https://doi.org/10.1007/978-3-319-08302-5_17
https://doi.org/10.1007/978-3-642-37288-9_9
https://doi.org/10.1007/978-3-642-37288-9_9
https://doi.org/10.1007/11894063_1
https://doi.org/10.1007/3-540-36400-5_3
https://doi.org/10.1007/978-3-662-44709-3_6
https://doi.org/10.1007/978-3-319-43283-0_9
https://doi.org/10.1007/978-3-319-43283-0_9
https://doi.org/10.1007/11889700_15
https://doi.org/10.1007/978-3-642-33481-8_17

178 L. Cojocar et al.

24. Patranabis, S., Chakraborty, A., Mukhopadhyay, D.: Fault tolerant infective coun-
termeasure for AES. In: Chakraborty, R.S., Schwabe, P., Solworth, J. (eds.) SPACE
2015. LNCS, vol. 9354, pp. 190–209. Springer, Cham (2015). https://doi.org/10.
1007/978-3-319-24126-5 12

25. Joye, M., Manet, P., Rigaud, J.-B.: Strengthening hardware AES implementations
against fault attacks. In: IET Information Security (2007)

26. Regazzoni, F., Breveglieri, L., Ienne, P., Koren, I.: Interaction between fault attack
countermeasures and the resistance against power analysis attacks. In: Joye, M.,
Tunstall, M. (eds.) Fault Analysis in Cryptography. Information Security and Cryp-
tography, pp. 257–272. Springer, Heidelberg (2012). https://doi.org/10.1007/978-
3-642-29656-7 15

27. Dureuil, L., Potet, M.-L., de Choudens, P., Dumas, C., Clédière, J.: From code
review to fault injection attacks: filling the gap using fault model inference. In:
Homma, N., Medwed, M. (eds.) CARDIS 2015. LNCS, vol. 9514, pp. 107–124.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-31271-2 7

28. Dusart, P., Letourneux, G., Vivolo, O.: Differential fault analysis on A.E.S. In:
Zhou, J., Yung, M., Han, Y. (eds.) ACNS 2003. LNCS, vol. 2846, pp. 293–306.
Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45203-4 23

29. Korak, T., et al.: Clock glitch attacks in the presence of heating. In: FDTC 2014
(2014)

30. Li, Y., Sakiyama, K., Gomisawa, S., Fukunaga, T., Takahashi, J., Ohta, K.: Fault
sensitivity analysis. In: Mangard, S., Standaert, F.-X. (eds.) CHES 2010. LNCS,
vol. 6225, pp. 320–334. Springer, Heidelberg (2010). https://doi.org/10.1007/978-
3-642-15031-9 22

31. Luo, P., et al.: Side-channel power analysis of different protection schemes against
fault attacks on AES. In: ReConfig 2014 (2014)

32. Maebe, J., De Keulenaer, R., De Sutter, B., De Bosschere, K.: Mitigating smart
card fault injection with link-time code rewriting: a feasibility study. In: Sadeghi,
A.-R. (ed.) FC 2013. LNCS, vol. 7859, pp. 221–229. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-39884-1 19

33. Maistri, P., Leveugle, R.: Double-data-rate computation as a countermeasure
against fault analysis. IEEE Trans. Comput. 57(11), 1528–1539 (2008)

34. Malagón, P., et al.: Compiler optimizations as a countermeasure against side-
channel analysis in MSP430-based devices. Sensors 12(6), 7994–8012 (2012)

35. Medwed, M., Schmidt, J.-M.: A generic fault countermeasure providing data and
program flow integrity. In: 5th Workshop on Fault Diagnosis and Tolerance in
Cryptography, FDTC 2008, pp. 68–73. IEEE (2008)

36. Moro, N., et al.: Electromagnetic fault injection: towards a fault model on a 32-bit
microcontroller. In: FDTC 2013 (2013)

37. Moro, N., et al.: Formal verification of a software countermeasure against instruc-
tion skip attacks. J. Cryptogr. Eng. 4(3), 145–156 (2014)

38. Moro, N., et al.: Experimental evaluation of two software countermeasures against
fault attacks. In: HOST 2014 (2014)

39. Moss, A., Oswald, E., Page, D., Tunstall, M.: Compiler assisted masking. In:
Prouff, E., Schaumont, P. (eds.) CHES 2012. LNCS, vol. 7428, pp. 58–75. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-33027-8 4

40. Pahlevanzadeh, H., Dofe, J., Yu, Q.: Assessing CPA resistance of AES with different
fault tolerance mechanisms. In: ASP-DAC 2016 (2016)

41. Patranabis, S., et al.: One plus one is more than two: a practical combination of
power and fault analysis attacks on PRESENT and PRESENT-like block ciphers.
In: FDTC 2017. IEEE (2017)

https://doi.org/10.1007/978-3-319-24126-5_12
https://doi.org/10.1007/978-3-319-24126-5_12
https://doi.org/10.1007/978-3-642-29656-7_15
https://doi.org/10.1007/978-3-642-29656-7_15
https://doi.org/10.1007/978-3-319-31271-2_7
https://doi.org/10.1007/978-3-540-45203-4_23
https://doi.org/10.1007/978-3-642-15031-9_22
https://doi.org/10.1007/978-3-642-15031-9_22
https://doi.org/10.1007/978-3-642-39884-1_19
https://doi.org/10.1007/978-3-642-33027-8_4

Instruction Duplication: Leaky and Not Too Fault-Tolerant! 179

42. Prouff, E., Rivain, M.: Masking against side-channel attacks: a formal security
proof. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol.
7881, pp. 142–159. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-
642-38348-9 9

43. Regazzoni, F., et al.: Power attacks resistance of cryptographic s-boxes with added
error detection circuits. In: DFT 2007 (2007)

44. Regazzoni, F., et al.: Can knowledge regarding the presence of countermeasures
against fault attacks simplify power attacks on cryptographic devices? In: DFT
2008 (2008)

45. Riviere, L., et al.: High precision fault injections on the instruction cache of
ARMv7-M architectures. In: HOST 2015 (2015)

46. Timmers, N., Spruyt, A., Witteman, M.: Controlling PC on ARM Using Fault
Injection. In: FDTC 2016 (2016)

47. Verbauwhede, I., Karaklajic, D., Schmidt, J.-M.: The fault attack jungle-a classi-
fication model to guide you. In: FDTC 2011 (2011)

48. Yuce, B., et al.: Software fault resistance is futile: effective single-glitch attacks. In:
FDTC 2016, pp. 47–58 (2016)

https://doi.org/10.1007/978-3-642-38348-9_9
https://doi.org/10.1007/978-3-642-38348-9_9

An EM Fault Injection Susceptibility Criterion
and Its Application to the Localization

of Hotspots

Maxime Madau1,2(B), Michel Agoyan1,2, and Philippe Maurine1,2

1 Laboratoire d’Informatique de Robotique et de Microélectronique de Montpellier
(LIRMM), Montpellier, France
philippe.maurine@lirmm.fr

2 STMicroelectronics, Rousset, France
{maxime.madau,michel.agoyan}@st.com

Abstract. Electromagnetic (EM) fault injection has been proven effi-
cient in attacking targets such as system-on-chip (SoC) or smartcards.
Nonetheless, security characterisations, performed either by certification
laboratories or by firms, are time consuming and this impacts on the final
result. Indeed complete tests of integrated circuits (ICs) require trying
numerous parameters, from pulse polarity to probes geometry and cou-
pling, hence many maps are required to test all surface of Devices Under
Test (DUT) and are unfortunately rarely performed.

In this paper we propose a criterion to find zones with a high sus-
ceptibility to EM Fault Injection (EMFI). By using preprocessing tools
based on both the effects of EMFI on circuits and the analysis of EM
emission traces, we are able to speed up the search of zones where faults
are more likely to occur hence reducing the time required for security
characterisations.

Keywords: EM fault injection · EM susceptibility
Security characterisation

1 Introduction

Nowadays we are more and more surrounded by embedded devices either in auto-
motive or Internet of Things (IoT). The security of these devices was recently
brought back to the foreground with the Mirai botnet. Thus for security reasons
or for added-market value, firms add cryptographic components in their devices
either in hardware or software form. To ensure these measures are effective,
firms test them in order to avoid being hijacked just after releasing a product on
the market, which would result in very bad advertising for associated systems-
on-chips or microcontrollers. There are also some markets that require security
certifications such as Common Criterion norm or EMVCo. Evaluators must per-
form several tests to certify product’s robustness against threats, including Fault
Attacks (FA).
c© Springer International Publishing AG, part of Springer Nature 2018
T. Eisenbarth and Y. Teglia (Eds.): CARDIS 2017, LNCS 10728, pp. 180–195, 2018.
https://doi.org/10.1007/978-3-319-75208-2_11

An EM Fault Injection Susceptibility Criterion and Its Application 181

Fault Attacks are one of the major threats to electronic devices since they
corrupt data which are normally inaccessible as shown by the recent Rowhammer
attack [7,11]. Additionally faults can also be used to target cryptographic algo-
rithms using correct and faulty ciphertext to obtain secret keys. In this case, we
talk about Differential Fault Analysis (DFA) [1,12].

The most powerful way to induce faults in Integrated Circuits (IC) is the use
of a laser beam because of its high spatial and time resolutions. However, the
use of a laser beam requires access to the die of IC, access which is increasingly
difficult for complex systems.

Another way for inducing faults into ICs has been introduced in 2002 in [14].
In this paper, authors demonstrated that they were able to corrupt memories
using an external EM field. Later an EM Pulse (EMP) was used to inject faults
into a CRT RSA [15].

The main advantages of EM Fault Injection (EMFI) are that it is inexpen-
sive, able to target a chip without having to remove the packaging or perform
additional pretreatments, and above all, it can induce faults on either the front
or the back side.

Nowadays there are two types of EMFI platforms. On one hand there are
harmonic platforms (described later) which have been proven efficient to influ-
ence the behavior of true random generators [2]. On the other hand there are
EMP injection platforms. That deliver a short EMP inducing a parasitic current
into ICs which in return generates faults.

Despite their efficiency, fault attacks are problematic when it comes to their
evaluation. Indeed, both laser and EMP attacks suffer of their combinatorial
complexity, which implies a trade-off between parameters to test and the time
allocated to their characterisation. This complexity comes from the large number
of parameters involved in the setting of an EMFI. To list a few of them related
to EM pulse injection, we can distinguish:

– the pulse amplitude, width and polarity,
– the position, the orientation and the geometry of the injection probe,
– the injection time, etc.

In this paper we propose a technique to ease EMFI characterisations and more
precisely to decrease the spatial complexity by introducing a technique to select
the most susceptible ICs’ coordinates to EMFI.

The proposed method relies on the state of the art related to EMFI and
more precisely on the so called Sampling Fault Model [8]. It also relies on the
exploitation of several EM traces (coarse grain EM maps) collected during the
execution of the algorithm under test. These EM traces are processed according
to an EMFI Susceptibility Criterion (EMFISC) introduced in this paper used
to rank the different coordinates of the IC surface with regards to their EMFI
susceptibility and thus identifying EM hotspots. One key point here is that EMFI
susceptibility is not considered as a constant IC characteristic but rather as a
figure of merit depending on the ICs’ activity. EM susceptibility thus varies in
time with the applications it executes.

182 M. Madau et al.

The method we propose lets evaluators choose a percentage P of the target
IC surface they want to keep or test with regards to the available time for char-
acterisation. It returns the appropriate list of positions over the IC characterized
by the highest EMFI susceptibilities. This method thus identifies the reduced
zone of the device under test (DUT) surface with the highest EMFI susceptibil-
ity. Hence it enables performing more complete tests and to take full advantage
of the time dedicated to security characterisation.

Relying on EM emission maps is not a drawback in terms of characterisation
time because EM maps are fast to acquire. To give an order of magnitude, using
our experimental setup (shown Fig. 1), one can acquire an EM emission map for
three different algorithms within a day, while three days are necessary to acquire
a fault injection map of one executable with only one EM pulse configuration (a
single pulse width, a single pulse amplitude and a single pulse polarity).

This paper is organized as follows. After the short preamble of Sect. 2, Sect. 3
gives the state of the art about EMFI with a focus on EMFI fault models.
Section 4 then details the sampling fault model and introduces the EMFI Sus-
ceptibility Criterion on which relies the hotspot localization method. Section 5
gives experimental results on two different targets (designed with two different
CMOS technologies) running the same kind of algorithms. Finally a conclusion
is drawn in Sect. 6.

Fig. 1. EM analysis & EMFI platform

An EM Fault Injection Susceptibility Criterion and Its Application 183

2 Preamble

For the sake of simplicity, in this paper we extend the term data to all binary
words used by an algorithm. In other words, we do not make a distinction
between data and instructions and they are both denoted by the term data.

Similarly, we use the term fault to refer to any perturbation of the behavior
of the algorithm under test. So faults can either be no-responses, bit sets, bit
resets, instruction corruptions, memory corruptions, etc.

3 Related Works

Two means to induce fault injections recently appeared. The first one is Body
Bias Injection which consists in injecting a voltage spike directly into the sub-
strate of the DUT to produce ground bounces or voltage drops [16]. The second
one is EM injection which, despite the early warning of Quisquater et al. in 2002
[14], only found recently a larger echo in the community thanks to its inherent
advantages highlighted in [15].

Two types of EM injection platforms can be mounted to induce faults into
ICs. Harmonic EMFI platform refers to the first type. It produces continuous
sinusoidal EM waves to induce faults in analogue blocks like internal clock gen-
erators [13] or true random number generators (TRNG) [2].

Pulsed EMFI platform refers to the second type of platform. The assumption
done in this paper is that it produces a single but powerful EMP that creates a
sudden current flow in the power/ground networks of ICs and therefore voltage
drops and/or ground bounces. The efficiency of this type of platform was first
reported in [3] to inject faults into an older microcontroller (designed with 350 nm
technology).

A first analysis of the fault obtained with pulsed EMFI platforms was con-
ducted in [4]. The authors concluded that pulsed EMFI produces timing faults
and more precisely setup time constraint violations. As a result, a delay-based
glitch detector was evaluated against EMFI in [17] and demonstrated partially
efficient. However this result was questioned in [10] that demonstrated that EMFI
can induce faults in a DUT at rest and more precisely when its clock is stopped.
Following this work, authors of [8,9] introduced a specific model for pulsed EMFI
called the Sampling Fault Model. This model was then used in [6] to build a fully
digital EMP detector.

4 Hot-Spots Localization and EMFI Susceptibility
Criterion

Since the Sampling Fault Model is the state of the art to describe how EMFI
interact with ICs it is at the heart of the criterion. Hence, it will be detailed in the
next paragraphs. Then our hotspots localization method is gradually introduced.

184 M. Madau et al.

4.1 The Sampling Fault Model

The sampling fault model, which is illustrated Fig. 2, states that the EM sus-
ceptibility of synchronous ICs is:

– periodic with a periodicity equal to the DUT clock frequency, fCK .
– maximal during short time windows (during which it is therefore much more

easy to inject a fault) centered around rising edges of the clock signal.
– minimal the rest of the time.

This periodic behavior is explained in [8,9] by the fact that DFF are the most
susceptible gates in ICs and especially during their switching. DFF higher sus-
ceptibility over any other standard CMOS logic gates (inverter, nand, ...) is due
to the constraints that must satisfy their input signals and supply voltage for a
correct operation. All DFF’s operation constraints can be summed up by stat-
ing that their input data (D on Fig. 2), their clock input (CK) and their supply
voltage (Vdd and Gnd) must not be disrupted during their switching. Stabil-
ity constraints of D signal are well known from IC designers and are called the
setup time and the hold time constraints of D. They state that D must be stable
tsetupps before the rising clock edge and hold tholdps after clock rising edge.

Fig. 2. Sampling Fault Model: (left) evolution of the EMFI susceptibility with regards
to the clock signal CK, (right) lightnings showing the EMFI injection paths on a DFF

The Sampling Fault Model is therefore a model at functional level which does
not take into account physical details about ICs’ design except one. This excep-
tion is not a drawback and is related to the higher susceptibility of DFF with
regards to other CMOS gates. The sampling fault model thus seems sufficiently
general to be at the heart of an EMFI hotspots localization method.

4.2 Guidelines for Detecting EMFI Hotspots

From the above considerations, one may conclude that the Sampling Fault Model
simply expresses that EMFI mainly induces faults by either disrupting the input
signals D of DFF, their supply voltage (Vdd and Gnd nets) or the clock signal
(CK). It thus appears that identifying EMFI hotspots from EM emission maps
consists in finding on-chip antennas/EM probe positions:

An EM Fault Injection Susceptibility Criterion and Its Application 185

– (guideline 1) emitting the signals which is tightly bind to the execution of the
target algorithm and to the clock frequency (fCK) i.e. the switching of the
DFF involved in the computation of the algorithm,

– (guideline 2) emitting the strongest signal (in terms of power) associated to
the clock signal or clock tree.

Indeed these antennas (made up by interconnects below the EM analysis probe)
emitting the strongest signal (related either to the CK signal or the switching of
DFF) constitute the best entry points for EMFI for two reasons. On one hand
guideline 1 can be viewed as a side channel analysis aiming at looking forward
to areas of IC surface where EM emissions enable to differentiate two runs of
the same algorithm with different data. In other words the goal is to find EMFI
susceptible areas of the running algorithm. On the other hand guideline 2 aims
at finding the best entry point for EMFI according to the reciprocity of antennas.
This property can be stated as follows: the efficiency of a receiving antenna is
as important as its transmitting efficiency. In the present context it means that
if an area of a circuit characterized by powerful EM emissions it is very likely
to receive well the energy of an EM pulse provided the EM emission traces are
collected with the injection probe or with a probe with the same characteristics.

4.3 EMFI Susceptibility Criterion

There are surely different ways of translating these guidelines into a criterion
allowing to process EM analysis maps to disclose EMFI hotspots. The following
paragraphs reports the most efficient criterion we have tested.

Power Spectral Density. The two above guidelines indicate that one has
to rank antennas (EM probe positions above the IC surface) according to the
power related to the clock signal they emit or to the power related to DFF
switching they radiate. The most natural and simplest way is to consider the
Power Spectral Density, psd(f), of EM traces at f = fCK . This of course requires
the knowledge of the clock frequency value, or if this not the case, to deduce it
from EM measurements. This is not a big issue in practice.

Magnitude Squared Incoherence. If the psd(f) at f = fCK allows quan-
tifying the power emitted by DFF on the clock tree, it does not allow deciding
if these DFF are involved or not in the execution of the target algorithm i.e.
are depending or not on the data processed by the algorithm. To discriminate
DFF involved in the target algorithm execution among all DFF one can use a
Student’s t-test on the values of psd(fCK) obtained for different data. One can
also employ the Magnitude Squared Incoherence as suggested in [5] to estimate
how much the power emitted at a position is linked to the data processed by
the target algorithm. However, contrarily to [5] only the Magnitude Squared
Incoherence at the frequency f = fCK must be considered accordingly to our
guidelines.

186 M. Madau et al.

We have chosen to employ the incoherence because with only n = 50 traces
we get 1

2 ·n · (n− 1) = 1225 estimates in total with a stable mean value. Indeed,
we recall that the Magnitude Squared Incoherence (inc) at a frequency f is a
measure of dissimilarity between two time domain signals, s1(t) and s2(t). It is
computed as follows:

incs1,s2(f) = 1 − psds1,s2(f)2

psds1,s1(f) · psds2,s2(f)
= 1 − Cs1s2(f)2

Cs1s1(f)Cs2s2(f)
(1)

where psds1,s1(f) and psds2,s2(f) are the power spectral densities of s1(t) and
s2(t) respectively, and psds1,s2(f) is the cross power spectral density of those
two signals. It can also be seen in terms of correlation in the spectral domain
where Csi,sj

is the Fourrier transform of the cross-correlation of signals si and
sj (or autocorrelation if i = j). At a given frequency f , a incs1,s2(f) value of 0
indicates that the two signal spectra have exactly the same amplitude i.e. are
coherent while a value of 1 means that the signal spectra are fully different i.e.
incoherent.

EMFI Susceptibility Criterion. psd(fCK) and incs1,s2(fCK) are two distinct
criteria allowing to cover the two guidelines of Sect. 4.2, defined to identify EMFI
hot spots thanks to near field EM scans of ICs. However these two guidelines
have to be gathered into a single criterion. Unfortunately, the Sampling Fault
Model does not provide any insight about which type of faults (among faults on
the CK signal and faults on DFF) have to be privileged. To overcome this lack,
we gathered the two distinct criteria in a tunable criterion. It takes the form of
an euclidean distance in a well chosen plan and provide an EMFI Susceptibility
score to each (x, y) coordinate of the IC surface.

To introduce this criterion let us recall that at this stage of our reasoning
we have at disposal two matrices acquired by near field scan of the DUT. The
first one is a matrix associated to Power Spectral Density distribution, PSDx,y

over the IC surface and the second one is the matrix INCx,y related to the
distribution of the Incoherence.

However those two quantities have different order of magnitude which is
expected according to the different nature of the metrics (PSD and Incoher-
ence). This difference is illustrated on Fig. 3(a) which represents values of matri-
ces PSDx,y and INCx,y without taking into account their position on the IC.
Since the re-scaling must be done at the IC surface level and must be robust
to the occurrence of outlier measurements it is done by standardizing these
two distributions (Fig. 3(b)) into two new matrices PSDnx,y = {psdnx,y} and
INCnx,y = {incnx,y} with

psdnx,y =
psdx,y − psd

σ(psd)
(2)

incnx,y =
incx,y − inc

σ(inc)
(3)

An EM Fault Injection Susceptibility Criterion and Its Application 187

with psd (resp. inc) the mean of all psdx,y (resp. incx,y) values and σ(psd) and
σ(inc) the standard deviations of the associated distributions.
This re-scaling done, these two quantities can be combined to get an
EMFI Susceptibility matrix (and therefore a new mono variate distribution),
EMFISCx,y = {emfiscx,y}, with emfiscx,y:

emfiscx,y =

√
√
√
√
√

(1 − a) · (psdnx,y − min
x,y

(psdnx,y))2+

a · (incnx,y − min
x,y

(incnx,y))2
(4)

Where a is an empirical coefficient allowing to give more importance to one
guideline than to the other.

As illustrated on Fig. 3 by the arrows, this criterion defines as highly EMFI
susceptible (x, y) positions characterized by powerful emissions at fCK , or by
emissions highly dependent of the processed data or both. This is in accordance
with our guidelines of Sect. 4.2 and therefore with the Sampling Fault Model.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 2 4 6 8 10
−3

−2

−1

0

1

−2 −1 0 1 2
0

1

2

3

4

0 1 2 3 4

in
cn

(f
C
K
)

psd(fCK)(∗147)

(a)

in
cn

(f
C
K
)

psd(fCK)

(b)

in
cn

(f
C
K
)−

m
in
(i
n
cn

(f
C
K
))

psd(fCK) − min(psd(fCK))

(c)

emfiscx,y

Fig. 3. (a) Joint distributions of raw psdnx,y and incnx,y values, (b) standardized joint
distributions of psdnx,y and incnx,y values and (c) standardized joint distributions of
psdnx,y and incnx,y values after change of the origin. In this example a = 0.5 thus the
norm of red (blue) arrow shows a high (low) EMFI Susceptibility value. (Color f igure
online)

EMFI Hot Spots Selection Method. At that stage of the paper we have a
matrix representing the EMFI susceptibility distribution on the IC surface. The
last point is to define a simple and practical method to select a set of points to
be tested considering that an evaluator just want to test a given percentage β
of the surface for time constraint reasons.

188 M. Madau et al.

Being given the EMFISCx,y matrix, the solution is straightforward. This
evaluator has just to reject the α = (1 − β) % positions of the IC surface
with the lower emfiscx,y values, i.e. all points falling in the quantile qα of the
EMFISCx,y distribution.

EMFISC Protocol. An experimental protocol can thus be drawn from those
metrics and has been used in the experimental part of this paper. To begin with
the application of the criterion introduced in the preceding paragraphs requires
to meet some constraints.

Firstly the running frequency fCK of the target has to be known or deduced
from experiments. Let’s take the example of an evaluator who have to charac-
terise an AES. If it is a hardware AES then the evaluator requires to know its
running frequency which could be different from the rest of the IC while for its
software counterpart the device clock frequency is required.

Secondly the computation of the criterion emfiscx,y, done at several coordi-
nates (x, y) above the IC, is done from raw EM traces of the signal s1, where s1
refers to the EM emissions of the IC during the execution of the algorithm (or
the cryptographic hardware block) under test. However, these EM traces should
satisfy the some properties in order to properly compute psdnx,y and incnx,y.
These properties lead to some experimental rules:

1. rules for psdnx,y : n EM traces of the same signal s1 with fixed input are
required,

2. rules for incnx,y : n EM traces of signal s1 with fixed input (s11) and n EM
traces of s1 with a different set of inputs (s12) are also required.

Thus in the case of our AES example, it means that n EM traces with same key
and plaintext have to be acquired at each coordinate to compute psdnx,y values
and n EM traces with different plaintext and/or keys are required to compute all
incnx,y values. This leads to the experimental protocol Algorithm 1 an evaluator
can follow to get the susceptible parts of an IC under test. It should be observed

Algorithm 1. EMFISC
Input: fCK , matrix of s11 and s12,
α (% chip to keep),
a (weight psd compared to incoherence)
Output: emfiscx,y

1: for X,Y positions do
2: compute psds1(f)
3: compute incs11,s12(f)
4: end for
5: psdnx,y and incnx,y = center reduce psdx,y and incx,y population
6: remap psdnx,y and incnx,y population
7: compute emdiscx,y =

√
(1 − a) ∗ psdn2

x,y + a ∗ incn2
x,y

8: quantile(emfiscx,y,α)

An EM Fault Injection Susceptibility Criterion and Its Application 189

that for the sake of simplicity, the protocol is reduced to two signals s11, s12
but can be easily extended to more signals. Then given the obtained EMFI
susceptible zones, the evaluator can carry on by performing its EMFI campaigns
on a reduced surface. The resulting time reduction can then be used to be more
exhaustive on the other parameters involved in the settings of an EMFI (such
as pulse amplitude or polarity, injection time, etc.) making the characterization
more accurate.

5 Validation Protocol and Experimental Results

To demonstrate the efficiency of our methodology and the correctness of our
EMFI susceptibility criterion, we applied it to two different devices. This section
gives information about these testchips and the algorithm they executed during
our tests. It also introduces metrics used to quantify the efficiency of our method
and the experimental protocol we have followed.

5.1 Devices Under Test

To be as independent as possible of the nature of the testchips during our exper-
imental validation campaign, two testchips were chosen. These testchips, which
are two microcontrollers, were designed in two different CMOS technology nodes
by two different founders. Both testchips have their clock signal generated by an
internal clock signal generator based on a PLL and internal RC oscillator.

The first one (testchip1) features an ARM Cortex M4 core operating at
80 MHz, a Memory Protection Unit (MPU), a Floating Point Unit (FPU) and
a Digital Signal Processor instructions. It also embeds 96 kb of SRAM, 32 kb of
bootable RAM and 1 Mb of flash memory. This testchip, designed in a 90 nm
process technology, has an area around 12mm2.

The second testchip (testchip2) is organized around a ARM cortex M3 core
operating at 64 MHz. It also features a MPU but no FPU. However, it only
embeds 64 kb of SRAM, 512 kb of Flash and does not have an FPU. This testchip,
designed in the same process technology, has an area around 16mm2.

5.2 Algorithm Under Test

During all our experimental validations, EMFI have targeted Algorithm2 that
was executed by the two devices under test. As shown, Algorithm 2 mainly con-
sists in reading a chosen word at a chosen address in a first SRAM (AddrSRAM32
in Algorithm 2), and then in writing the result of the reading in another SRAM
(AddrSRAM96 in Algorithm2) and finally in re-reading it to check if all oper-
ations have been performed correctly. In Algorithm2, we can observe ADD
instructions that are repeated 11 times before and after performing the reads
and the write in the SRAM. This repetition was done to isolate our target from
the rest of the code and be able to interpret what happens during an EMFI.
However, the interpretation of the faults obtained during our experimentations

190 M. Madau et al.

Algorithm 2. Pattern (AddrSRAM32, AddrSRAM96)
1: PUSH { lr }
2: ADD R0,R0,#0; 11 times
3: VLDR.F32 S0,[R0]; read SRAM32
4: VSTR.F32 S0,[R1]; write SRAM96
5: VLDR.F32 S1,[R1]; read back
6: ADD R0,R0,#0; 11 times
7: POP { pc }

falls out of the scope of this paper. It also acts as a hard-coded delay after the
trigger signal delivered to the EMP generator. Finally, it can also be seen as
syntactic sugar to ease the find of the algorithm in the EM traces. One can also
notice that S0 and S1 registers are FPU registers and thus were changed by CPU
registers for testchip2.

5.3 Figures of Merit

To quantify the efficiency of the proposed hotspot localization method, we
defined two figures of merit. This solution was preferred to a visual approach
consisting in comparing EMFISC maps with fault maps.

The first figure of merit we defined is the Coverage Rate (CR). It is the
percentage of all considered coordinates (EM probe positions) above the IC
surface leading to a fault that are discovered by our methodology, i.e. that falls
in the quantile qα. Of course, because CR depends on α, the evolution of CR
with regards to this parameter has to be analyzed rather than particular values.
If the hotspot localization method is efficient CR must remain high for high
values of α.

The second figure of merit is the False Positive Rate (FPR) defined as the
percentage of positions ranked in the category highly EMFI susceptible, i.e.
falling in he quantile qα that do not lead to a fault. Once again, the evolution
of this figure of merit with regards to α is considered in the rest of the paper
rather than a single value. If our localization methodology is correct FPR must
be low for high values of α.

If these figures of merit give scores to measure the efficiency of the hotspot
localization method, they can also give a score to any other localization method.
In order to set a reference and be able to evaluate the performance of the
EMFISC approach, we have choosen to compare it to a random approach con-
sisting in selecting randomly the set of points as highly EM susceptible (in red
on Figs. 4 and 5). We could have considered a smarter approach. However to the
best of our knowledge there is none in the literature aiming at finding EMFI
hotspots.

An EM Fault Injection Susceptibility Criterion and Its Application 191

5.4 Experimental Validation Protocol

The experimental validation protocol has consisted in performing EM near field
scan of testchips with an EMFI probe. The X and Y map steps were of 100µm for
both testchips. At each position, 1000 EM traces corresponding to the execution
of target algorithm with specific input were acquired with a sampling rate equal
to 10 GS/s for testchip1 and 1 GS/s testchip2. This relatively high number of
measurements at each position was imposed by the presence of noise generated
by the analog part of these circuits. Collected traces were then gathered in small
set of traces to generate a reduced set of median traces. In the absence of such
noise a significantly lower number of traces would have be sufficient by position.
So without noise due to analog parts those acquirement have been reduced to
1350 curves divided in 450 acquirement for different sets of value and different
addresses to read/write from. After the EM near field scans, EMFI maps were
performed. They were drawn with different pulse amplitudes using the same
EMFI probe than the one used to perform the near field scans. The X and Y
displacement steps for EMFI maps were fixed to the same values as EM near field
scans. For testchip1 (testchip2) pulse amplitudes of ±50 V and ±130 V (±198 V)
were considered.

5.5 Experimental Results

Figures 4 and 5 give the evolution of the defined figures of merit with regards to
α in % for our two testchips submitted to EMFI. The first panel of these figures
reports an averaged EM analysis traces showing the time windows on which the
EMFISCx,y values are computed. The second panel gives the evolution of CR
with regards to α for a = 0.25, 0.5, 0.75.

As shown, if we do not privilege any guideline and thus consider a = 1
2 ,

the CR remains higher than 80% for α < 50% (and α < 60%) for testchip1
(testchip2) which is a value significantly better than those obtained with a ran-
dom selection of points. This means that more than 80% of positions leading to
faults are captured by our method while keeping only 50% of the IC surface for
testing. For α = 75%, CR remains higher than 60% values which is two to three
times (depending on the considered testchip) the values obtained with a random
selection of points (for a = 1

2). This demonstrates the soundness of the proposed
approach.

Regarding the FPR, one can observe that from α = 50% and a = 0.5, its
value is close to 80%. This value is significantly better than that (90%) obtained
with a random selection of points. One can also be surprised by such high FPR
values. However such values are normal because the number of positions leading
to a fault represent 20% for testchip1 (11% for testchip2) of the IC surface.
One can finally observe that the FPR decreases while α increases. This decrease
demonstrates the soundness of EMFISC based method because we reject more
points that do not lead to a fault than points leading to faults while increasing α.

192 M. Madau et al.

−0.15
−0.1

−0.05
0

0.05
0.1

0.15

0 1000 2000 3000 4000 5000 6000 7000
Alg.2

0
20
40
60
80

100

0 10 20 30 40 50 60 70 80 90

40
60
80

100

0 10 20 30 40 50 60 70 80 90

V

sample

(a)
EM traces

C
R

(%
)

quantile

(b)
a=0.25 a=0.50 a=0.75 random

F
P
R

(%
)

quantile

(c)
a=0.25 a=0.50 a=0.75 random

Fig. 4. Testchip 1 (pulse amplitude ±130 V): (a) averaged EM traces at a given posi-
tion, (b) evolution of CR with regards to α for a = 0.25, 0.5, 0.75 (c) evolution of FPR
with regards to α for a = 0.25, 0.5, 0.75, red curve = randomly selected point over
the IC. (Color figure online)

Finally one can observe that CR and FPR values are much better for a = 0.25
for both testchips. This indicates that antennas with incoherent EM emissions
must be privileged over antennas with strong but coherent EM emissions related
to the clock signal. This suggests that EMFI induces more easily faults on the
datapath of ICs than on the clock tree of processors (glue logic). However this
points must be further investigated to definitively conclude.

An EM Fault Injection Susceptibility Criterion and Its Application 193

−100
−50

0
50

100

0 200 400 600 800 1000 1200 1400 1600
Alg.2

0
20
40
60
80

100

0 10 20 30 40 50 60 70 80 90

40
60
80

100

0 10 20 30 40 50 60 70 80 90

V

sample

(a)
EM traces

C
R

(%
)

quantile

(b)
a=0.25 a=0.50 a=0.75 random

F
P
R

(%
)

quantile

(c)
a=0.25 a=0.50 a=0.75 random

Fig. 5. Testchip 2 (pulse amplitude ±198 V): (a) averaged EM traces at a given posi-
tion, (b) evolution of CR with regards to α for a = 0.25, 0.5, 0.75 (c) evolution of FPR
with regards to α for a = 0.25, 0.5, 0.75, red curve = randomly selected point over
the IC (Color figure online)

6 Conclusion

In this paper a criterion to rank position on a IC according to their electromag-
netic fault injection susceptibility relying on both antennas reversibility and EM
near field scans has been introduced. Moreover metrics to measure the efficiency
of the method as well as to be able to compare future criterion on the same basis
has also been introduced.

Dedicated to pulsed EMFI, it has been deduced from the sampling fault
model introduced in former works. This criterion has been used to define a
method allowing to rationally choose points of ICs surface to be tested against
EMFI. Such method was defined in order to ease the security characterisation

194 M. Madau et al.

of ICs which is time consuming as soon as it involves the evaluation of the
robustness to fault attacks and especially EMFI. It allows rejecting more than
50% of the ICs surface while missing only few EMFI hotspots, i.e. while detecting
more than 80% of positions at which faults where obtained.
Hence it affords to perform many tests with different EMFI parameters at these
positions and therefore a more complete security characterisation in the smart-
card context.

Furthermore this method could also be extended to complex systems on chip
characterized by large surfaces or systems in package as shown in the experi-
mental part of this paper. The criterion could also be extended by fine tuning
it to the DUT and EMFI effect on circuits (probe coupling, ...). For instance,
Sampling Fault Model is by nature a quite general model that relies on a more
fundamental assumption about the effect of EMFI on the circuit. Thus the idea
to add a restriction along with psd and incoherence that is bind to the physical
effect of EMFI and more DUT specific should enhance the accuracy of EMFISC.

References

1. Bar-El, H., Choukri, H., Naccache, D., Tunstall, M., Whelan, C.: The sorcerer’s
apprentice guide to fault attacks. IACR Cryptology ePrint Archive, 2004:100
(2004)

2. Bayon, P., Bossuet, L., Aubert, A., Fischer, V., Poucheret, F., Robisson, B.,
Maurine, P.: Contactless electromagnetic active attack on ring oscillator based
true random number generator. In: COSADE, pp. 151–166 (2012)

3. Dehbaoui, A., Dutertre, J.-M., Robisson, B., Orsatelli, P., Maurine, P., Tria, A.:
Injection of transient faults using electromagnetic pulses - practical results on a
cryptographic system. IACR Cryptology ePrint Archive, 2012:123 (2012)

4. Dehbaoui, A., Dutertre, J.-M., Robisson, B., Tria, A.: Electromagnetic transient
faults injection on a hardware and a software implementations of AES. In: FDTC,
pp. 7–15 (2012)

5. Dehbaoui, A., Lomné, V., Ordas, T., Torres, L., Robert, M., Maurine, P.: Enhanc-
ing electromagnetic analysis using magnitude squared incoherence. IEEE Trans.
VLSI Syst. 20(3), 573–577 (2012)

6. El-Baze, D., Rigaud, J.-B., Maurine, P.: An embedded digital sensor against EM
and BB fault injection. In: 2016 Workshop on Fault Diagnosis and Tolerance in
Cryptography, FDTC 2016, Santa Barbara, CA, USA, 16 August 2016, pp. 78–86
(2016)

7. Gruss, D., Maurice, C., Mangard, S.: Rowhammer.js: a remote software-induced
fault attack in javascript. In: Detection of Intrusions and Malware, and Vulnera-
bility Assessment - 13th International Conference, DIMVA 2016, Proceedings, San
Sebastián, Spain, 7–8 July 2016, pp. 300–321 (2016)

8. Ordas, S., Guillaume-Sage, L., Maurine, P.: Electromagnetic fault injection: the
curse of flip-flops. J. Cryptographic Eng., 1–15 (2016)

9. Ordas, S., Guillaume-Sage, L., Maurine, P.: EM injection: fault model and locality.
In: 2015 Workshop on Fault Diagnosis and Tolerance in Cryptography, FDTC 2015,
Saint Malo, France, 13 September 2015, pp. 3–13 (2015)

An EM Fault Injection Susceptibility Criterion and Its Application 195

10. Ordas, S., Guillaume-Sage, L., Tobich, K., Dutertre, J.-M., Maurine, P.: Evi-
dence of a larger em-induced fault model. In: Smart Card Research and Advanced
Applications - 13th International Conference, CARDIS 2014, Paris, France, 5–7
November 2014, pp. 245–259 (2014). Revised Selected Papers

11. Park, K., Lim, C.S., Yun, D., Baeg, S.: Experiments and root cause analysis for
active-precharge hammering fault in DDR3 SDRAM under 3× nm technology.
Microelectron. Reliab. 57, 39–46 (2016)

12. Piret, G., Quisquater, J.-J.: A differential fault attack technique against SPN struc-
tures, with application to the AES and KHAZAD. In: Cryptographic Hardware
and Embedded Systems - CHES 2003, 5th International Workshop, Proceedings,
Cologne, Germany, 8–10 September 2003, pp. 77–88 (2003)

13. Poucheret, F., Tobich, K., Lisart, M., Chusseau, L., Robisson, B., Maurine, P.:
Local and direct EM injection of power into CMOS integrated circuits. In: FDTC,
pp. 100–104 (2011)

14. Quisquater, J.J., Samyde, D.: Eddy current for magnetic analysis with active sen-
sor. In: Proceedings of ESmart 2002, Eurosmart, pp. 185–194 (2002)

15. Schmidt, J.-M., Hutter, M: Optical and EM fault-attacks on CRT-based RSA: con-
crete results. In: Wolkerstorfer, J., Posch, K.C., (eds.) 15th Austrian Workhop on
Microelectronics, Austrochip 2007, Proceedings, Graz, Austria, 11 October 2007,
pp. 61–67. Verlag der Technischen Universität Graz (2007)

16. Tobich, K., Maurine, P., Liardet, P.-Y., Lisart, M., Ordas, T.: Voltage spikes on
the substrate to obtain timing faults. In: DSD, pp. 483–486 (2013)

17. Zussa, L., Dehbaoui, A., Tobich, K., Dutertre, J.-M., Maurine, P., Guillaume-Sage,
L., Clédière, J., Tria, A.: Efficiency of a glitch detector against electromagnetic fault
injection. In: DATE, pp. 1–6 (2014)

Fault Analysis of the ChaCha and Salsa
Families of Stream Ciphers

Arthur Beckers(B), Benedikt Gierlichs, and Ingrid Verbauwhede

imec-COSIC, KU Leuven, Kasteelpark Arenberg 10, 3001 Leuven-Heverlee, Belgium
{arthur.beckers,benedikt.gierlichs,ingrid.verbauwhede}@esat.kuleuven.be

Abstract. We present a fault analysis study of the ChaCha and Salsa
families of stream ciphers. We first show that attacks like differential fault
analysis that are common in the block cipher setting are not applicable
against these families of stream ciphers. Then we propose two novel fault
attacks that can be used against any variant of the ciphers. We base our
attacks on two different fault models: the stuck-at fault model and the
biased fault model. Each of them is exploited differently by the attacker.
If the attacker knows the plaintexts and the ciphertexts both fault models
can be successfully exploited. If the ciphers operate on fixed yet unknown
plaintexts only the biased fault model can be successfully exploited. We
evaluate exemplary attacks using both models in simulation. Their low
complexity confirms that they are practical. To the best of our knowledge
these are the first fault attacks against ChaCha and Salsa that do not
require faults in the control flow (e.g. instruction skip).

Keywords: ChaCha · Salsa · Stream cipher · Fault analysis

1 Introduction

We analyse fault attacks that target implementations of the Salsa [1] and
ChaCha [2] families of stream ciphers in all their variants. Both stream cipher
families are designed by Dan J. Bernstein. The Salsa family of stream ciphers
was designed in 2005 for the eSTREAM project. In 2009 Salsa20/12 was selected
as one of the stream ciphers for the eSTREAM portfolio [3]. In 2008 the ChaCha
family was proposed as a variant on the Salsa family. The goal of ChaCha was to
increase the diffusion within a single round while maintaining the same perfor-
mance as the Salsa family of ciphers. ChaCha is becoming more widely deployed
since Google implemented it in its openSSL cipher suite [4]. Salsa20 and ChaCha
support both 128- and 256-bit keys. We focus on the ChaCha and Salsa ciphers
but the proposed techniques can be applied to every cryptographic function that
has the same feed-forward and modular addition structure.

Fault attacks were introduced by Boneh et al. [5] in 1996 on RSA signature
generation with CRT. Since then numerous attacks on many cryptographic prim-
itives were published. A fault attack can be split up in three components. The
injection method, the resulting fault model and the exploitation of the fault.
c© Springer International Publishing AG, part of Springer Nature 2018
T. Eisenbarth and Y. Teglia (Eds.): CARDIS 2017, LNCS 10728, pp. 196–212, 2018.
https://doi.org/10.1007/978-3-319-75208-2_12

Fault Analysis of the ChaCha and Salsa Families of Stream Ciphers 197

The most common injection methods include introducing glitches in the
clock [6,7] or power supply [8], laser fault injection [9,10] and EM fault injec-
tion [11,12]. Each of these methods will result in a specific fault model that will
strongly depend on the targeted device, making it hard to predict the outcome
of a certain fault injection method. For our attacks we assume that a fault injec-
tion method is capable of delivering the fault model that we need and build up
our attack from there.

The proposed attacks do not require fault injection in the control flow of the
cipher [25], but they aim to exploit faults injected in intermediate values of the
ciphers operation.

1.1 Background

Although ChaCha and Salsa are software oriented stream ciphers their operation
resembles that of a block cipher in counter mode. Therefore we look at common
fault analysis techniques for both block and stream cipher implementations.

Most stream ciphers have an initial state that holds the key and an ini-
tialization vector (IV). In an initialisation phase the initial state is randomized
such that the key stream resulting from the internal state can not be used to
recover the initial state. After the initialization phase a key stream is produced
starting from the randomized state by updating the state continuously. For the
randomization stream ciphers often use feedback shift registers (FSRs).

Fault attacks on stream cipher implementations generally try to recover the
initial state by either targeting the initialization phase [13,14] or by forcing the
cipher in an unintended state [15,16]. Often cryptanalytic techniques are applied
to the gathered faulted outputs in order to recover the initial state.

The ChaCha and Salsa families of stream ciphers do not rely on FSRs for
their operation. They instead rely mainly on a hash function to generate a pseu-
dorandom key stream. Therefore common fault attack techniques for stream
ciphers are not applicable to ChaCha and Salsa.

Common fault attacks on block cipher implementations are differential fault
analysis (DFA) [17,18], collision fault analysis (CFA) [19], ineffective fault anal-
ysis (IFA) [20] and safe-error analysis (SEA) [21]. All these methods require
multiple encryptions of chosen messages under a fixed key. In the stream cipher
setting this would be possible only if the adversary was able to re-initialize the
stream cipher with the same secret key, nonce and counter values. But of course
this would be against any reasonable stream cipher specification, since in such
a scenario also much more powerful cryptanalytic attacks would be possible.

Recently, statistical attacks against block cipher implementations have been
proposed that do not require an adversary to have any control over the cipher’s
inputs [22–24]. They can be used to target block ciphers that operate for instance
in counter mode. These attacks rely on fault injections in one of the last rounds
of the cipher combined with statistical techniques to retrieve the key. The key
retrieval is possible due to the addition of a round key in the last rounds. This
key addition (XOR) results in an exploitable relationship between the faulted
output and the key. ChaCha and Salsa, however, have a different structure and

198 A. Beckers et al.

use a hash function and not a block cipher as their source of randomness making
the attacks proposed in [22–24] not applicable.

2 The ChaCha and Salsa Ciphers

In this section we describe mainly the ChaCha family of stream ciphers since the
different attacks are simulated using ChaCha. The design of Salsa differs only
slightly, the general structure remains the same. We detail the differences at the
end of this section, but they do not influence the proposed fault attacks.

2.1 ChaCha

The ChaCha stream cipher operates on a state matrix M that contains 16 words.
Each word is 32 bits wide. M is initialized as shown in Eq. (1).

M =

⎛
⎜⎜⎝

m0 m1 m2 m3

m4 m5 m6 m7

m8 m9 m10 m11

m12 m13 m14 m15

⎞
⎟⎟⎠ ⇐

⎛
⎜⎜⎝

c c c c
k1 k2 k3 k4
k5 k6 k7 k8
cnt cnt n n

⎞
⎟⎟⎠ (1)

The first four words denoted by c are constants given by the ChaCha spec-
ification. The next eight words are the key words denoted by ki(i = 1, . . . , 8).
The last row is made up out of two counter words cnt and two nonce words
n. ChaCha works with both 128- and 256-bit key lengths. In the 256-bit case
the key words are copied in order in (k1, . . . , k8) of M . In the 128-bit case
the key words are copied in order in both the second and third row of M ,
(k1, . . . , k4) = (k5, . . . , k8).

M is put through a hash function which has as its basic building block the
quarter-round function (see Algorithm 1). The quarter-round function is made
up out of ARX operations (addition modulo 232, rotation, exclusive-or) and is
the source of non-linearity for the ChaCha stream cipher.

Algorithm 1. Quarter-round function
1 (a, b, c, d) = quarterround(a, b, c, d)
2 begin
3 a ← a � b
4 d ← (a ⊕ d) ≪ 16
5 c ← c � d
6 b ← (c ⊕ b) ≪ 12
7 a ← a � b
8 d ← (a ⊕ d) ≪ 8
9 c ← c � d

10 b ← (c ⊕ b) ≪ 7
11 return a, b, c, d

12 end

Fault Analysis of the ChaCha and Salsa Families of Stream Ciphers 199

One round of the hash function is built from four quarter-rounds. The number
of rounds used in the hash function of ChaChar is a trade-off between security
and efficiency. r is the number of rounds used in the hash function. The rounds
of ChaChar are invertible therefore we need to modularly add M to the round
output to form the hash. We focus on ChaCha20 but the proposed attacks are
independent of the number of rounds used.

Figure 1 shows the general structure of ChaChar. M is permuted using r
rounds. After permuting M , the output of the round function (R) is modulo
added to M which results in the key stream (K). K is xored with the plain text
(PT) or cipher text (CT) for en- or decryption. After every hashing of M the
counter cnt in M must be incremented (Eq. 1, [2]).

M r rounds PT

CT

R
K

Fig. 1. Structure of ChaCha family of stream ciphers.

2.2 Salsa

Salsa differs in the structure of M and has a slightly different round function
design. The Salsa state matrix differs from the ChaCha state matrix in the
ordering of the key, constant, nonce and counter words. The rounds in the Salsa
hash function use a different quarter-round function and order the inputs of
their quarter-rounds differently. We refer to [1,2] for a detailed overview of the
differences.

3 Fault Attacks on ChaCha and Salsa

We describe the attacks on ChaCha, application to Salsa is straightforward. The
attacks are explained from an encryption point of view. Due to the symmetric
nature of ChaCha an attack demonstrated on encryption is equally valid for
decryption.

Our attacks aim to recover the secret key k1, . . . , k8 by exploiting the modulo
addition of the corresponding elements of M and R (mi and ri(i = 4, . . . , 11)).
In the rest of the paper we detail the attacks on one element of M (one key word
ki) but for readability we will write M , R and K without index. Application to
the other key words is straightforward. For our attacks we assume the adversary
has no control over M . The adversary is thus not capable of resetting the cipher
to a previous state by manipulating the counter or nonce words. Note that M
is constant for the relevant mi, i = 4, . . . , 11.

200 A. Beckers et al.

In normal operation R is uniformly distributed and therefore K does not
reveal any information about M . The general idea for both attacks is to change
R’s uniform distribution into a distribution that can be exploited for key
recovery.

Our attacks make use of two different distributions. Firstly the distribution
of the values of R. Under normal operation R has a discrete uniform distribution,
every value is equally likely to occur. Secondly the distribution of the Hamming
weight of the values of R. The Hamming weight distribution of a discrete uniform
distribution is a binomial distribution.

The distribution of R will change due to the fault injection. The resulting
distribution of R and subsequently K and CT will depend on the type of fault.
Throughout the remainder of the paper we will note faulted values with an
asterisk (R∗,K∗, CT ∗). To perform the proposed attacks an attacker has to
make guesses for M , R∗ and K∗. These guesses are denoted with an apostrophe
(M ′, R′,K ′).

The location of the fault injection might be the registers storing the output of
the round function or any arithmetic operation in one of the last quarter-round
functions. We assume a fault is injected somewhere in the last round resulting
in the desired fault model, but we do not make an assumption on which exact
operation is faulted. It is important to note that we do not use the resulting
value of any single fault but the changed distribution of R to retrieve the key.

3.1 Attack for the Biased Fault Model

R is a 32-bit word. The probability that any bit X in R is one or zero is equal:
P (X = 1) = P (X = 0) = 0.5. With the biased fault model we assume that
a fault injection alters these probabilities. The probability distribution could
for instance become P (X = 1) = 0.75, P (X = 0) = 0.25 for every bit of R∗.
This fault model has been used previously in [22,26,27]. The influence of such
a bias on the distribution of an 8-bit word is illustrated in Fig. 2a. The biased
distribution is plotted in blue, here P (X = 1) = 0.35, P (X = 0) = 0.65. The
uniform distribution is plotted in red. The bias introduced on the bit level alters
the distribution on the word level. We get a distribution that is skewed towards
the lowest (in the example) or highest value of the distribution depending on
the bias at bit level. The bias changes the distribution of Hamming weights on
the word level too. It is important to note that the biased distribution on word
level is the consequence of a bias introduced at bit level.

As explained in Sect. 2, R∗ gets modulo added to M resulting in K∗ (Fig. 1).
Recall that we will recover the mi one word at a time but do not write the index.
The addition of R∗ and a constant modulo a power of two merely rotates the
biased distribution of R∗. Figure 2b illustrates the effect of modulo adding 170
to the biased distribution from Fig. 2a.

In order to retrieve the key we make use of the distribution of the Hamming
weight of R∗. Note that this approach does not require any knowledge about the
effect of any single fault injection or the amount of bias. It requires only that
the probability distribution of the bits of R∗ is biased and that the bias is equal

Fault Analysis of the ChaCha and Salsa Families of Stream Ciphers 201

(a) Expected biased distribution (b) Rotated biased distribution

Fig. 2. Biased output distribution. (Color figure online)

for all the bits of R∗. We sample the biased distribution of K∗ and subtract all
possible key guesses from the key stream values in order to compute hypothetical
R′. For each key guess, we look at the resulting distribution of Hamming weights
of R′. The correct key guess will be the one for which the mean Hamming weight
μHW of R′ is maximal if P (X = 1) > 0.5 or minimal if P (X = 1) < 0.5.

The mean Hamming weight of a distribution can be calculated using Eq. (2).
W denotes the values of a word of size n, W = [0, . . . , 2n−1]. P (w), w ∈ W is the
probability that a value w of W occurs. Under a biased bit model this probability
is given by Eq. (3). Pr(q, n, p) (Eq. 4) is the binomial probability mass function
and is used to calculate the probability that a certain HW occurs. p is the
probability that a bit is 1 and thus p is equal to the amount of bias.

μHW =
2n−1∑
w=0

HW (w) × P (w) w ∈ W (2)

P (w) =
Pr(HW (w), n, p)(

n
HW (w)

) w ∈ W (3)

Pr(HW,n, p) =
(

n

HW

)
pHW (1 − p)n−HW (4)

Equation (3) shows that the probability that a value w of W occurs depends
solely on its HW and the bias p. If p �= 0.5 the probabilities of P (w) have
an ascending or descending order depending on the Hamming weight and p as
shown by Eqs. (5) and (6).

Pr(0, n, p)(
n
0

) >
Pr(1, n, p)(

n
1

) > . . . >
Pr(n, n, p)(

n
n

) if p < 0.5 (5)

Pr(0, n, p)(
n
0

) <
Pr(1, n, p)(

n
1

) < . . . <
Pr(n, n, p)(

n
n

) if p > 0.5 (6)

202 A. Beckers et al.

When we make a guess for the key we look at μHW of R′ = R∗ � M � M ′

with M ′ our key guess and R′ our resulting guess for R∗. We can distinguish the
correct key guess since μHW is maximal for p > 0.5 or minimal for p < 0.5 if the
distribution of the HW is binomial and thus if R′ = R∗. The μHW is maximal
for p > 0.5 since the probability that a value occurs rises with its Hamming
weight (Eq. 6). If we permute the labels of a binomial distribution as it happens
for a wrong key guess, for instance by swapping two elements with different
Hamming weights, we inevitably assign a lower probability to the value with
a higher Hamming weight and a higher probability to the value with a lower
Hamming weight, see Eq. (7). i and j in Eq. (7) are the Hamming weights of
two w ∈ W with i �= j.

Pr(i, n, p)(
n
i

) × i +
Pr(j, n, p)(

n
j

) × j >
Pr(i, n, p)(

n
i

) × j +
Pr(j, n, p)(

n
j

) × i (7)

The consequence of the swap will be a lowering of μHW . We provide an
example in Table 1. A similar reasoning can be made for the case of p < 0.5.

Table 1. Example with P (X = 1) = 0.7 and P (X = 0) = 0.3.

value 00 01 10 11
HW 0 1 1 2
prob 0.09 0.21 0.21 0.49
µHW = 0.3725

→ swap 10 and 11 →
value 00 01 11 10
HW 0 1 2 1
prob 0.09 0.21 0.21 0.49
µHW = 0.28

We can thus distinguish a skewed binomial distribution (p �= 0.5) from a
skewed binomial distribution that is permuted. If the permutation however maps
onto a skewed binomial distribution it will be indistinguishable from the original
one.

An example is plotted in Fig. 3. The red curve shows the Hamming weight
distribution if the 8-bit values are uniformly distributed, i.e. when there is no
bias. The blue curve shows the Hamming weight distribution for the correct
key guess and the grey curves show the Hamming weight distributions for all
wrong key guesses. The mean of the Hamming weight of the distribution for
the correct key guess lies farthest from the mean of the Hamming weight of the
uniform distribution. Hence the correct key guess can be easily identified.

Different distinguishers can be used to identify the correct key guess. In [24]
the authors propose to use Maximum likelihood, the mean Hamming weight or
the Squared Euclidean Imbalance (SEI) as distinguishers. The Maximum likeli-
hood approach requires an exact knowledge of the bias and is therefore discarded
as an identifier. We will use the SEI and a standard two sample t-test (Eq. 8)
as distinguishers. The use of the t-test is similar to the mean Hamming weight
distinguisher.

For the standard two sample t-test we can compute the mean and standard
deviation of the uniform distribution using Eq. (9). n is the word size in bits.

Fault Analysis of the ChaCha and Salsa Families of Stream Ciphers 203

Fig. 3. Hamming weight distribution of K. (Color figure online)

z is the number of samples, s is the standard deviation of the Hamming weight
of the sampled values and x is the mean Hamming weight of the sampled values.

t =

∣∣∣∣∣∣
μ − x√

σ2+s2

z

∣∣∣∣∣∣
(8)

μ =
n∑

i=0

[(
n
i

)
2n

i

]
, σ =

√√√√
n∑

i=0

[(
n
i

)
2n

(i − μ)2
]

(9)

In order to compute the SEI we use Eq. (10). Pr(i, n, 0.5) is the binomial
probability mass function from Eq. (4).

SEI =
n∑

i=0

[
#((HW)z = i)

z
− Pr(i, n, 0.5)

]2

(10)

When performing an actual attack the sampling of the distribution becomes
injecting a fault and collecting the faulted output. We can exploit the biased
distribution at two positions either at K or at CT . When attacking at position
K we need to know both PT and CT ∗ for the attack to succeed. When attacking
at position CT we do not need to know PT but we require PT to be constant,
since having a random unknown PT would be the equivalent of a one time pad
making it impossible to retrieve the key.

Attack at Position K. Assume that all bits of K∗ are equally biased. We split
the 32-bit word K∗ in four 8-bit chunks that all have a biased distribution. We
do this to reduce the computational complexity. By splitting up the 32-bit word
in h chunks we need to compute only h232/h t-tests instead of 232. We are of
course not restricted to a chunk size of 8-bits. The presence of a carry when
splitting up a word will influence the bias but does not need to be accounted for
by the attacker.

204 A. Beckers et al.

For every chunk we make a guess M ′ for the corresponding part of the key
in M and compute R′ = PT ⊕ CT ∗ � M ′ = K∗ � M ′ = R∗ � M � M ′. The
only permutations performed on R∗ are rotations due to the modulo additions.
These rotations are not able to map R∗ onto an R′ such that R′ has a probability
distribution as described by Eq. (3) except for the one corresponding to the
correct key guess. Therefore the known PT CT ∗ case will yield a single solution.

Attack at Position CT. We can perform a similar attack if we have a fixed
unknown PT . The main difference is that we have to make a guess PT ′ on the
value of PT too. We compute R′ = CT ∗⊕PT ′�M ′ = R∗�M ⊕PT ⊕PT ′�M ′,
with PT ′ and M ′ our guesses for plaintext and key respectively.

The combination of xor operations and modulo additions maps R∗ onto an R′

that results in a binomial distribution of the Hamming weight in four cases. The
attack will thus recover the correct guess and three false positives. If PT ⊕PT ′ =
0 we have the correct key guess, if PT ⊕ PT ′ = 2n/2 we get a false positive
that has a distribution that is skewed according to the same bias as R∗. If
PT ⊕ PT ′ = 2n − 1 or PT ⊕ PT ′ = 2n/2 − 1 we get a distribution for R′ that
is skewed in the opposite direction (P (X = 1) = 1 − bias). Recall that n is the
size of the chunks in which we split the 32-bit word.

We can group the four key candidates in two sets by looking at the means of
the probability distribution of the Hamming weight. A set with the bits biased
towards zero and a set with the bits biased towards one. If we split up all the 16
words in 8-bit chunks we end up with 2 × 232 key candidates for a 256-bit key.
This reduction of the key space is sufficient to find the 256-bit key by exhaustive
search.

3.2 Attack for the Stuck-At Fault Model

The stuck-at fault model assumes that some bits of R∗ (see Fig. 1) are fixed to
either one or zero. Due to the fixed bits the set of values R∗ can attain will be
limited. We look at a single 8-bit chunk of a 32-bit word R∗. Due to the fixed
value of some of the bits certain values of R will no longer appear. Figure 4 shows
a possible distribution for an 8-bit word with two bits stuck at zero. If we have
enough faulty outputs we can compute the histogram of this distribution and
deduce the amount of bits that are stuck at zero by counting the empty bins.
The number of faults we need is determined by the number of bits that are stuck.
For instance if we fault an 8-bit chunk and two bits get stuck at zero then there
are 26 possible values left. In order to make a correct guess for the number of
bits that are stuck we need to draw sufficiently many samples in order to fill the
remaining bins.

The location of the empty bins in the histogram allows us to reduce the key
space. We can again exploit the effect at two positions, either at K or at CT .

As with the biased fault model K = M � R. This modular addition modulo
a power of two again only rotates the distribution. In order to reduce the key
space we subtract our key guess modularly from K∗ and obtain a hypothetical
R′. Based on our reduction criteria we keep or discard the key guess. By iterating
over all possible key guesses we are able reduce the key space.

Fault Analysis of the ChaCha and Salsa Families of Stream Ciphers 205

Fig. 4. Stuck-at fault model output distribution.

When reducing the key space we use two reduction criteria. The first one is
the distribution of the Hamming weight of the words of R′ for the different key
guesses and the second is the location of the stuck bits. For the first reduction
criterion we look at the Hamming weight distribution for a certain key guess.
There should not be any Hamming weight values higher than the number of bits
that are not stuck (in the case of a stuck-at 0 model) or a Hamming weight value
lower than the number of stuck bits (in the case of a stuck-at 1 model).

From the histogram of the faulty values (K∗ or CT ∗) we can determine the
number of bits that are stuck by counting the empty bins. Besides the number
of empty bins we also need to know whether the bits get stuck at either 0 or 1
since we cannot deduce this from CT ∗ or K∗.

For the second criterion we look at the consistency of the location of the
stuck bits in R′. If the distribution that results from our key guess does not have
a fixed position for its stuck bits we can discard the key guess. The number of
key candidates that remain after applying the reduction criteria depends on the
number of bits that are not stuck and on their location.

As an example of the application of the reduction criteria we consider the fol-
lowing case. We have the distribution of a 4-bit chunk of R∗ that has 2 bits stuck
at 0, thus only 4 bins of the distribution of R∗ are filled. We look at K∗ and make
three guesses for the key. As a result of these guesses we get three distributions R′

which have the following bins filled, (11, 6, 1, 4), (5, 6, 4, 12) and (8, 12, 4, 0). If we
convert these to binary we get, (1011, 0110, 0001, 0100), (0101, 0110, 0100, 1100)
and (1000, 1100, 0100, 0000). The first key guess gets rejected since it fails the
first reduction criteria, 11 has a Hamming weight of three while the maximum
Hamming weight is two. The second key guess passes the first reduction criteria
but fails the second. For the second key guess the location of the stuck bits is
not consistent since there are three bit positions that have both a 1 and a 0, bit
one, three and four. The last key guess results in a distribution R′ that fits both
criteria.

The exploitation of the stuck-at model is deterministic in nature. Using our
reduction criteria we are certain that we do not discard valid key guesses. When
we use a fixed but unknown PT with the stuck-at model we have to guess the
values of PT and M .

206 A. Beckers et al.

Guessing full 32-bit words would require too many faulty outputs since we
have to fill the entire histogram. Therefore we split the words of K∗ or CT ∗ into
smaller chunks. The chunks are not completely independent since there might
be a carry propagating from one chunk to the other. The presence of a carry
might reduce the efficiency of the attack. The carry bit will potentially increase
the Hamming weight observed by the attacker by one. The attacker can not and
does not have to account for this since the attack remains deterministic in the
presence of a carry.

The number of faults needed depends on the number of bits that are stuck
and the number of chunks we divide the 32-bit words in. The probability that
any bin that will not stay empty due to stuck bits has at least one value is given
by Eq. (11). s is the number of possible output values (2 to the power of the
number of non stuck bits), f is the number of faults and b is the probability
that every bin in the histogram that will not stay empty due to stuck bits has
at least one value. We can simplify this equation to Eq. (11) in order to make
an estimate of the number of faults needed to fill the histogram. Table 2 shows
an example. If we have an 8-bit chunk which has 4 non-stuck bits, then we need
149 faults to have a probability of 99.9% that there is at least one value in every
bin of the histogram.

b = 1 −
[

s−1∑
i=1

(
s

i

)(
s − i

s

)f

(−1)i+1

]
=⇒ f =

log 1−b
s

log s−1
s

(11)

Table 2. Number of faults to fill the non-stuck bins (b = 99.9%)

non-stuck bits 1 2 3 4 5 6 7 8

faults 11 29 67 149 326 702 1500 3181

When dealing with larger words such as the 32-bit words used in ChaCha
we need to split up the words in smaller chunks and apply the reduction criteria
described above to each of the individual chunks. The simplest approach is divid-
ing the 32-bit word in four 8-bit chunks and applying the reduction criteria to
each chunk individually. An alternative approach is to divide the 32-bit word in
overlapping chunks, applying the reduction criteria to every chunk. Each chunk
will result in a subset of key candidates. By looking at the intersection of the
different key sets we end up with a single set of key candidates for the 32-bit
word. The sizes of the different chunks do not have to be constant and can be
chosen by the attacker.

4 Simulation Results

For our simulations we assume that with each fault injection an entire 32-bit
word is faulted according to the assumed fault model. We operate the cipher

Fault Analysis of the ChaCha and Salsa Families of Stream Ciphers 207

as described in the specification. For our simulations we use a random key and
nonce for M . The counter is also incremented for every encryption thus we have
a continuously varying and random R∗.

4.1 Biased Fault Model

For our simulation for both the known PT and fixed unknown PT case we set
the bias of the bits at P (X = 1) = 0.75, P (X = 0) = 0.25. We split up the
32-bit word in 8-bit chunks and apply the technique described in Sect. 3.1 to
each chunk.

In the following we report results for a single 8-bit chunk. In the simulated
scenario where all bits of the word are equally affected by the faults the average
number of faults needed to recover 8-bits or an entire word of the key are the
same. Thus the total amount of faults needed to recover the key equals the
number of faults needed to recover the key from an 8-bit chunk times the number
of key words.

Figure 5 shows the result of the two sample t-test for the different key guesses
in case we have a known PT . The correct key guess is depicted in black. The t-
scores for wrong key guesses do not converge towards zero since the distribution
of hypothetical R′ based on a wrong key guess will not be uniform but just the
biased distribution rotated over a number of positions equal to the difference
between the wrong and the correct key guess. The distribution for a wrong key
guess will therefore also be different from the Hamming weight distribution of a
uniform distribution.

Fig. 5. Result of biased fault attack for known PT and CT ∗; t-test values on y-axis in
log scale, number of faults on x-axis.

The number of faulty outputs needed in order to retrieve the key is deter-
mined by the amount of bias there is on R∗. Table 3 shows the average number of
faulty outputs needed for different biases and distinguishers. Once the distribu-
tion is biased the attack always succeeds given sufficiently many faulty outputs.
We can see that the t-test consistently requires less faults than the SEI method
to distinguish the correct key guess.

For the case where we have a fixed but unknown PT we have to make a guess
for both the PT and M . We thus need more faults in order to distinguish the

208 A. Beckers et al.

Table 3. Bias vs. faults for known PT and CT ∗

Bias 50% 55% 60% 65% 70% 75% 80% 85% 90% 95% 100%

faults t-test / 400 115 50 27 11 7 5 5 5 /

faults SEI / 570 173 80 46 35 31 26 36 78 /

correct guess. Table 4 shows the average number of faults needed. The needed
number of faults goes back up if we have a bias > 85%. This is due to the large
probability attributed to singular values with a high or low Hamming weight. If
for a wrong key guess one of those values also maps to a value with a high or
low Hamming weight it will take more faults to distinguish these wrong guesses
with certainty from the correct one. When we use SEI as a distinguisher we need
significantly more faults. When the bias becomes larger than 85% the number
of faults becomes too large to be considered practical.

The result of the two sample t-test between the Hamming weight of one of the
8-bit chunks and the uniform distribution can be seen in Fig. 6. The four possible
key, PT pairs are situated in the two lowest curves. Due to the false positive
and mirrored results we have to do a brute-force search over the remaining key
candidates. As for the known PT case the number faulty outputs needed to
retrieve the key will depend on the amount of bias.

Table 4. Bias vs. faults for fixed but unknown PT

Bias 50% 55% 60% 65% 70% 75% 80% 85% 90% 95% 100%

faults t-test / 1356 420 158 100 77 65 63 78 134 /

faults SEI / 2235 548 367 329 517 877 11720 >20000 >20000 /

Fig. 6. Result of biased fault attack for fixed unknown PT ; t-test values on y-axis in
log scale, number of faults on x-axis.

Fault Analysis of the ChaCha and Salsa Families of Stream Ciphers 209

4.2 Stuck at Fault Model

For the stuck at fault model we use the techniques described in Sect. 3.2 to
reduce the key space. The average number of key bits we can retrieve depends
on the number of bits that are stuck. Figure 7 shows the number of key bits we
can recover in a 32-bit word versus the percentage of bits that are stuck. The
number of faults needed for this attack is dependant on the number of stuck
bits and the chosen chunk size and can be estimated using Eq. (11). Section 3.2
suggests two ways to apply the reduction criteria. We either split up the word in
chunks and apply the reduction criteria on the individual chunks or we run the
reduction criteria iteratively on all possible subsets of chunks. First we consider
the known PT CT ∗ case. The green curve shows the average number of bits
that can be recovered if we split the 32-bit word in individual 8-bit chunks. A
better result, shown by the blue line, can be achieved if we apply the iterative
algorithm. The brown curve shows the result for a fixed but unknown PT for
individual 8-bit chunks. The curve for the iterative algorithm applied to a fixed
but unknown PT is plotted in pink.

Fig. 7. Key space reduction by the stuck at attack. (Color figure online)

In the known PT CT ∗ case the number of unknown bits converges towards
zero as the number of stuck bits increases. In the fixed but unknown PT case
the number of unknown bits has a minimum when half of the bits are stuck.
Intuitively this can be understood as follows. In the known PT CT ∗ case K∗ =
M � R∗. The distribution of R∗ will get sparser, the histogram will have a lot
of empty bins, if more bits are stuck. Thus the key words of M will be easier
to recover the more bits are stuck at one or zero. In the fixed but unknown
PT case CT ∗ = (M � R∗) ⊕ PT . If the distribution of R∗ is sparse then the
distribution of CT will also be sparse. In order to retrieve the key words of M
we have to iterate over all possible PT values. Iterating over all possible PT
values equals making a guess for the distribution of K∗ since K∗ = CT ∗ ⊕ PT .
Since the distribution of CT ∗ is sparse there is a higher probability (increasing
with the number of bits stuck once greater 50%) that a PT guess will result in

210 A. Beckers et al.

a valid stuck at distribution that fits our reduction criteria. The key space will
thus become larger as the number of stuck bits increases.

We assume an attacker can brute force a key space of 260 and the key length is
256 bits. Under these assumptions we end up with an upper limit on the average
number of remaining bits per word of 7.5 in order to make the key retrievable.
This upper limit corresponds to the dashed red line in Fig. 7. In the 128-bit case
we can have up to 15 unknown bits per word. This upper limit is depicted by
the dotted red line. Due to the replication of the key in the 128-bit case we can
also fault both copies of the key and compare the two sets of remaining key
candidates. This allows us to reduce the remaining key space even more since
the correct key guess has to be present in both candidate sets. In the known
PT CT ∗ case we can always recover the key if we have enough stuck bits. In
the fixed but unknown PT case we are able to reduce the number of unknown
bits per word to 17 in the best case. For an 128-bit key this would require an
attacker capable of brute-forcing a key space of 268.

Having all bits stuck at zero or one is a special case of the stuck at model.
When we know both PT and CT ∗ retrieving the key is trivial since then M = K∗

or M = K∗ � 1. When we have a fixed unknown PT however we are xoring two
unknown constants making it impossible to retrieve the key.

5 Conclusion

We presented a fault analysis study of the ChaCha and Salsa families of stream
ciphers. These software oriented stream ciphers gained popularity since ChaCha
was included in google’s openSSL cipher suite. We explained why classical fault
analysis techniques are ineffective against these ciphers. Then we proposed two
novel fault attacks using ChaCha as example. Targeting K proved to be effec-
tive and efficient for both the biased fault model and the stuck-at fault model.
Attacks based on these models however assume an adversary that knows both
PT and CT ∗. In the fixed but unknown PT case only the attack based on the
biased fault model will succeed when we attribute realistic computing powers to
the adversary. The attack based on the stuck-at fault model is able to reduce the
key space but not to identify the key uniquely. The proposed attacks all exploit
a non-uniform distribution of R. An on-line randomness test that detects when
the distribution of R∗ differs significantly from uniform may be a possible coun-
termeasure.

Acknowledgements. We thank the anonymous reviewers for their insightful com-
ments. This work was supported in part by the Research Council KU Leuven:
C16/15/058. In addition, this work was supported by the Flemish Government, FWO
G.00130.13N, FWO G.0876.14N and Thresholds G0842.13; by the Hercules Founda-
tion AKUL/11/19, and through the Horizon 2020 research and innovation programme
under Cathedral ERC Advanced Grant 695305. Benedikt Gierlichs is a Postdoctoral
Fellow of the Fund for Scientific Research - Flanders (FWO).

Fault Analysis of the ChaCha and Salsa Families of Stream Ciphers 211

References

1. Bernstein, D.J.: Salsa20. ECRYPT Stream Cipher Project, 025 edn. (2005). http://
cr.yp.to/snuffle.html

2. Bernstein, D.J.: ChaCha, a variant of Salsa20. In: The State of the Art of Stream
Ciphers, SASC 2008. ECRYPT (2008)

3. http://www.ecrypt.eu.org/stream/
4. Bursztein, E.: Speeding up and strengthening HTTPS connections for

chrome on android. https://security.googleblog.com/2014/04/speeding-up-and-
strengthening-https.html

5. Boneh, D., DeMillo, R.A., Lipton, R.J.: On the importance of eliminating errors
in cryptographic computations. J. Cryptol. 14(2), 101–119 (2001)

6. Bar-El, H., Choukri, H., Naccache, D., Tunstall, M., Whelan, C.: The sorcerer’s
apprentice guide to fault attacks. Proc. IEEE 94(2), 370–382 (2006)

7. Balasch, J., Gierlichs, B., Verbauwhede, I.: An in-depth and black-box characteri-
zation of the effects of clock glitches on 8-bit MCUs. In: 2011 Workshop on Fault
Diagnosis and Tolerance in Cryptography, pp. 105–114, September 2011

8. Schmidt, J.M., Herbst, C.: A practical fault attack on square and multiply. In:
2008 5th Workshop on Fault Diagnosis and Tolerance in Cryptography, pp. 53–58,
August 2008

9. Skorobogatov, S.P., Anderson, R.J.: Optical fault induction attacks. In: Kaliski,
B.S., Koç, K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 2–12. Springer,
Heidelberg (2003). https://doi.org/10.1007/3-540-36400-5 2

10. Agoyan, M., Dutertre, J.M., Mirbaha, A.P., Naccache, D., Ribotta, A.L., Tria, A.:
How to flip a bit? In: 2010 IEEE 16th International On-Line Testing Symposium,
pp. 235–239, July 2010

11. Dehbaoui, A., Dutertre, J.M., Robisson, B., Tria, A.: Electromagnetic transient
faults injection on a hardware and a software implementations of AES. In: 2012
Workshop on Fault Diagnosis and Tolerance in Cryptography, pp. 7–15, September
2012

12. Quisquater, J.J., Samyde, D.: Eddy current for magnetic analysis with active sen-
sor. In: Esmart 2002, Nice, France, September 2002

13. Hojśık, M., Rudolf, B.: Floating fault analysis of trivium. In: Chowdhury, D.R.,
Rijmen, V., Das, A. (eds.) INDOCRYPT 2008. LNCS, vol. 5365, pp. 239–250.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-89754-5 19

14. Debraize, B., Corbella, I.M.: Fault analysis of the stream cipher snow 3G. In:
2009 Workshop on Fault Diagnosis and Tolerance in Cryptography (FDTC), pp.
103–110, September 2009

15. Biham, E., Granboulan, L., Nguyên, P.Q.: Impossible fault analysis of RC4 and
differential fault analysis of RC4. In: Gilbert, H., Handschuh, H. (eds.) FSE 2005.
LNCS, vol. 3557, pp. 359–367. Springer, Heidelberg (2005). https://doi.org/10.
1007/11502760 24

16. Hoch, J.J., Shamir, A.: Fault analysis of stream ciphers. In: Joye, M., Quisquater,
J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 240–253. Springer, Heidelberg (2004).
https://doi.org/10.1007/978-3-540-28632-5 18

17. Biham, E., Shamir, A.: Differential fault analysis of secret key cryptosystems.
In: Kaliski, B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 513–525. Springer,
Heidelberg (1997). https://doi.org/10.1007/BFb0052259

18. Giraud, C.: DFA on AES. In: Dobbertin, H., Rijmen, V., Sowa, A. (eds.) AES
2004. LNCS, vol. 3373, pp. 27–41. Springer, Heidelberg (2005). https://doi.org/10.
1007/11506447 4

http://cr.yp.to/snuffle.html
http://cr.yp.to/snuffle.html
http://www.ecrypt.eu.org/stream/
https://security.googleblog.com/2014/04/speeding-up-and-strengthening-https.html
https://security.googleblog.com/2014/04/speeding-up-and-strengthening-https.html
https://doi.org/10.1007/3-540-36400-5_2
https://doi.org/10.1007/978-3-540-89754-5_19
https://doi.org/10.1007/11502760_24
https://doi.org/10.1007/11502760_24
https://doi.org/10.1007/978-3-540-28632-5_18
https://doi.org/10.1007/BFb0052259
https://doi.org/10.1007/11506447_4
https://doi.org/10.1007/11506447_4

212 A. Beckers et al.

19. Blömer, J., Krummel, V.: Fault based collision attacks on AES. In: Breveglieri, L.,
Koren, I., Naccache, D., Seifert, J.-P. (eds.) FDTC 2006. LNCS, vol. 4236, pp. 106–
120. Springer, Heidelberg (2006). https://doi.org/10.1007/11889700 11

20. Blömer, J., Seifert, J.-P.: Fault based cryptanalysis of the Advanced Encryption
Standard (AES). In: Wright, R.N. (ed.) FC 2003. LNCS, vol. 2742, pp. 162–181.
Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45126-6 12

21. Yen, S.M., Joye, M.: Checking before output may not be enough against fault-based
cryptanalysis. IEEE Trans. Comput. 49(9), 967–970 (2000)

22. Lashermes, R., Reymond, G., Dutertre, J.M., Fournier, J., Robisson, B., Tria, A.:
A DFA on AES based on the entropy of error distributions. In: 2012 Workshop on
Fault Diagnosis and Tolerance in Cryptography, pp. 34–43, September 2012

23. Dobraunig, C., Eichlseder, M., Korak, T., Lomné, V., Mendel, F.: Statistical fault
attacks on nonce-based authenticated encryption schemes. In: Cheon, J.H., Takagi,
T. (eds.) ASIACRYPT 2016. LNCS, vol. 10031, pp. 369–395. Springer, Heidelberg
(2016). https://doi.org/10.1007/978-3-662-53887-6 14

24. Fuhr, T., Jaulmes, E., Lomné, V., Thillard, A.: Fault attacks on AES with faulty
ciphertexts only. In: Proceedings of the 2013 Workshop on Fault Diagnosis and
Tolerance in Cryptography, FDTC 2013, pp. 108–118. IEEE Computer Society
(2013)

25. Kumar, S.V.D., Patranabis, S., Breier, J., Mukhopadhyay, D., Bhasin, S.,
Chattopadhyay, A., Baksi, A.: A practical fault attack on ARX-like ciphers with
a case study on ChaCha20. Cryptology ePrint Archive, Report 2017/1074 (2017).
https://eprint.iacr.org/2017/1074

26. Ghalaty, N.F., Yuce, B., Schaumont, P.: Analyzing the efficiency of biased-fault
based attacks. IEEE Embed. Syst. Lett. 8(2), 33–36 (2016)

27. Järvinen, K., Blondeau, C., Page, D., Tunstall, M.: Harnessing biased faults in
attacks on ECC-based signature schemes. In: 2012 Workshop on Fault Diagnosis
and Tolerance in Cryptography, pp. 72–82, September 2012

https://doi.org/10.1007/11889700_11
https://doi.org/10.1007/978-3-540-45126-6_12
https://doi.org/10.1007/978-3-662-53887-6_14
https://eprint.iacr.org/2017/1074

Applying Horizontal Clustering Side-Channel
Attacks on Embedded ECC Implementations

Erick Nascimento1(B) and �Lukasz Chmielewski2

1 Institute of Computing, University of Campinas, Campinas, Brazil
enascimento.pub@gmail.com

2 Riscure BV, Delft, The Netherlands
chmielewski@riscure.com

Abstract. Side-channel attacks are a threat to cryptographic algo-
rithms running on embedded devices. Public-key cryptosystems, includ-
ing elliptic curve cryptography (ECC), are particularly vulnerable
because their private keys are usually long-term. Well known counter-
measures like regularity, projective coordinates and scalar randomiza-
tion, among others, are used to harden implementations against common
side-channel attacks like DPA.

Horizontal clustering attacks can theoretically overcome these coun-
termeasures by attacking individual side-channel traces. In practice hori-
zontal attacks have been applied to overcome protected ECC implemen-
tations on FPGAs. However, it has not been known yet whether such
attacks can be applied to protected implementations working on embed-
ded devices, especially in a non-profiled setting.

In this paper we mount non-profiled horizontal clustering attacks
on two protected implementations of the Montgomery Ladder on
Curve25519 available in the μNaCl library targeting electromagnetic
(EM) emanations. The first implementation performs the conditional
swap (cswap) operation through arithmetic of field elements (cswap-
arith), while the second does so by swapping the pointers (cswap-
pointer). They run on a 32-bit ARM Cortex-M4F core.

Our best attack has success rates of 97.64% and 99.60% for cswap-
arith and cswap-pointer, respectively. This means that at most 6 and
2 bits are incorrectly recovered, and therefore, a subsequent brute-force
can fix them in reasonable time. Furthermore, our horizontal clustering
framework used for the aforementioned attacks can be applied against
other protected implementations.

Keywords: ECC · EM analysis · ARM · Horizontal clustering

1 Introduction

Public-key cryptosystems based on ECC [23,28] are frequently used in a wide
range of applications, such as: credit card, e-commerce and cryptocurrency.

E. Nascimento—This work was partially done by the author in a research internship
at Riscure BV.

c© Springer International Publishing AG, part of Springer Nature 2018
T. Eisenbarth and Y. Teglia (Eds.): CARDIS 2017, LNCS 10728, pp. 213–231, 2018.
https://doi.org/10.1007/978-3-319-75208-2_13

http://orcid.org/0000-0003-4057-356X
http://orcid.org/0000-0001-8978-5235

214 E. Nascimento and �L. Chmielewski

Running on embedded systems, they are a common target of side-channel
attacks. The main goal of these attacks is to recover the private key, which
is typically the scalar in a scalar multiplication – the main ECC operation in
most protocols.

Horizontal attack (HA) is a methodology for side-channel attacks against
basic cryptographic operations in protocols based on RSA or ECC, the modular
exponentiation and the scalar multiplication (ECSM), respectively. In theory, a
horizontal attack against ECC allows the recovery of secret scalar bits through
the analysis of individual traces, i.e., a single trace from the actual target is suf-
ficient; thus, they are effective against implementations protected by classic and
popular countermeasures such as scalar randomization (SR), coordinate random-
ization (CR), point blinding and scalar splitting. A fundamental requirement for
an attacker to apply HA is the knowledge of the scalar multiplication algorithm;
implementation details, however, are not required. In addition, HA requires to
have a good comparison tool, thereafter referred to as a distinguisher, to effi-
ciently extract parts of the keys. The following methods can be applied, among
others: correlation, collision-correlation, cross-correlation and cluster analysis.

The correlation analysis method [5] follows the same principle as correlation
power analysis (CPA) applied to a set of traces arranged vertically. The differ-
ence in the horizontal context is that a single trace is divided in several segments
and a hypothetical intermediate value is assigned to each segment, based on a
guess about the key value. The correlation between the segment samples and
hypothetical values is computed in the same way as in CPA. This method works
against implementations protected only with scalar randomization, or when coor-
dinate randomization is applied with a short random parameter. The method of
collision-correlation analysis [1,2,4,39,41] computes the correlation or Euclidean
distance between segments of a trace. The goal is to identify the occurrence of the
same intermediate data in different parts of the trace, and by doing so derive the
secret bits. In theory, this method is feasible against the classic countermeasures.

Many side-channel attacks do not work when a stronger version of coordinate
randomization is used, the so-called coordinate re-randomization (CRR) [30].
This countermeasure randomizes the working points coordinates at every ECSM
iteration. Therefore, the correlation or collision-correlation attacks are prevented,
because they rely on the fact that output points of an iteration are equal to the
input points of the next iteration. On the other hand, attacks that target itera-
tions independently, like the attacks presented in this paper, are not influenced
by this countermeasure. The implementations attacked in this paper are pro-
tected with all the aforementioned countermeasures.

Most horizontal attacks require advanced preprocessing of traces, characteri-
zation and leakage assessment before applying distinguishers. The main challenge
of the horizontal approach revolves around extracting meaningful leakage from
a single trace, which usually has strong noise. In this paper we consider the
non-profiled scenario (also called unsupervised) in which the adversary does not
know and cannot change the private key in any test device. Moreover, she is not

Applying Horizontal Clustering Side-Channel Attacks 215

allowed to turn off countermeasures1. Therefore, the second major challenge is
caused by the unavailability of labeled samples. Note that leakage assessment
methods, like TVLA [12], require labeled samples and this is not possible when
scalar randomization is enforced.

Related Work. Unsupervised learning methods, especially those based on clus-
tering, have been applied to solve the aforementioned limitations and they have
been shown to be able to work in practice.

Heyszl et al. [14] apply multi-dimensional K-Means [11,25] clustering to suc-
cessfully attack an FPGA-based ECC implementation by correctly classifying the
scalar bits. Sprecht et al. [37] later improved this attack by using Expectation-
Maximization clustering [7], Principal Component Analysis (PCA) [21] and mul-
tiple EM probes. Both methods target ECC implementations for FPGAs and
work well for low noise measurements. In this paper we do not employ dimension-
ality reduction techniques such as PCA (unsupervised) or LDA [10] (supervised),
but instead we apply a points of interest selection method.

Perin et al. [35], consider a heuristic approach based on unidimensional dif-
ference of means for points of interest selection. This method uses a single
trace for the leakage assessment, which is likely affected by noise. Perin and
Chmielewski [34] propose a methodology for clustering attacks to amend the
aforementioned deficiency by using multiple unlabeled traces for leakage assess-
ment and improving attack robustness in high noise scenarios. Similarly to the
above works we use unidimensional clustering for points of interest selection;
however, for the attack, we evaluate various clustering methods including the
multi-dimensional one.

Jarvinen et al. [20] present an unsupervised clustering attack on m-ary ECSM
with precomputations2. The proposed attack is evaluated using a low noise 8-bit
AVR device. While our attacks target binary ECSM, they can be straightfor-
wardly extended to the m-ary case: instead of using binary clustering, the attack
would need to employ 2m clusters. Most clustering algorithms support an arbi-
trary number of clusters, e.g. K-Means.

Another related work concerns error correction. In [14], to derive the error
locations the authors use a probability for cluster belonging derived from the K-
Means results. Essentially, scalar indexes with the lowest probability are brute-
forced. Similarly, the papers [34,35] use probability density function for various
clustering algorithms to perform error correction.

We have applied the approach from [34] to detect the errors in the recovered
scalar. Unfortunately, this approach does not work for our experiments because
of a presence of strong noise pulses in the EM traces. Essentially, some bit
errors occur even if their probabilities of being correct are high. Therefore, we
have abandoned this approach and applied a brute-force method sped up by the
time-memory trade-off algorithm from [30].

1 Turning off the countermeasures is not always possible in the ICC EMVCo smart
card evaluations [9], for example.

2 In an m-ary method, m bits of the scalar are processed in one iteration of ECSM
while in a standard ECSM a single bit is processed per iteration.

216 E. Nascimento and �L. Chmielewski

Contributions. The main contributions of this paper are summarized below.
First of all, using EM we perform a horizontal clustering attack (HCA) against
the arithmetic-based cswap.3 Curve25519 μNaCl Montgomery Ladder running
on a 32-bit ARM Cortex-M4F. The implementation is additionally protected
with projective coordinate re-randomization and scalar randomization. We com-
pare a wide range of leakage assessment methods and statistical classifiers to find
out the best settings and we achieve the best success rate of 97.64%4. This means
there are at most 6 erroneous bits, which can be brute-forced in a reasonable
time even without knowing error locations.

Secondly, we attack the pointer-based cswap μNaCl Montgomery Ladder
implementation that is protected the same as for the first one. Our best attack
on this implementation has a success rate of 99.60%, i.e., only 2 errors.

Note that in our non-profiled approach, choosing the best settings implies
running the attack for all the considered parameters. This would significantly
increase the attack time. To partially mitigate this issue, we use the same settings
for both implementations. Moreover, the attack can be easily parallelized, for
example, by using cloud computing; significantly improved results justify this.

Thirdly, we improve the unsupervised RSA HCA framework from [34]. This
framework implements the leakage assessment by combining multiple RSA traces
protected with exponent blinding. We extend that framework to ECC by attack-
ing a randomized scalar instead of a blinded exponent. In addition, we propose
the usage of: (i) multiple dimensions clustering; (ii) methods for outlier detection;
and (iii) intrinsic quality evaluation of clusters.

Finally, we generalize the method from [30] to tolerate a certain number of
incorrectly recovered scalar bits without relying on confidence probabilities.

Our attacks demonstrate the feasibility of scalar recovery from the μNaCl-
based ECSM. Breaking ECSM implies that an attacker can compromise the key
exchange protocols: Elliptic Curve Diffie-Hellman (ECDH) and its ephemeral
version (ECDHE). Examples of current publicly known applications using μNaCl
on ARM Cortex-M devices, and thus potentially vulnerable, include: [8,36,40].

Paper Organization. The remainder of this paper is structured as follows. In
Sect. 2, we describe the setup of the attacks. Subsequently, Sect. 3 covers prelim-
inaries and Sect. 4 presents our horizontal cluster framework. The experimental
results are shown in Sect. 5. We describe how to efficiently correct errors in
Sect. 6. Finally, Sect. 7 discusses countermeasures and future work.

2 Attack Setup

2.1 Target Software Implementations

We target μNaCl5, a cryptographic library for ARM Cortex-M that provides
implementations of Curve25519, an elliptic curve at the 128-bit security level
3 Cswap means conditional swap. In a Montgomery ladder ECSM, the cswap condition

value tells whether or not to swap and it depends on the secret scalar bit. Thus, it
should ideally be constant time and not leak through other side channels.

4 We use the term success rate to refer to the percentage of correctly recovered bits.
5 http://munacl.cryptojedi.org/curve25519-cortexm0.shtml.

http://munacl.cryptojedi.org/curve25519-cortexm0.shtml

Applying Horizontal Clustering Side-Channel Attacks 217

Algorithm 1. Montgomery ladder with cswap and coordinate re-randomization.
// ... initialization omitted ..
bprev ← 0
for i = 254 . . . 0 do

re randomize coords(work state)
b ← bit i of scalar
s ← b ⊕ bprev
bprev ← b
cswap(work state, s)
ladderstep(work state)

end for
// ... return ommited ..

and its associated X25519 key exchange protocol based on Diffie-Hellman. This
library provides two ECSM implementations, both based on the Montgomery
ladder algorithm. They differ on how the conditional swap (cswap) operation,
fundamental to implement it in constant time, is performed: either by arithmetic
means (cswap-arith) or pointers swapping (cswap-pointer).

At each algorithm iteration, the cswap condition depends on the secret scalar
bit processed at that iteration and thus its value should not leak. We argue
that in both implementations the cswap condition value leaks. We investigate
and confirm that the leakage is strong enough to be exploited by our proposed
attacks.

In the cswap-arith implementation, the if/else branch is replaced by condi-
tional swaps of the respective coordinate values of the working points, P1 =
(X1, Z1) and P2 = (X2, Z2), to achieve constant time. A high level description
of such strategy is described in Algorithm 1. Another cswap implementation
performs a conditional swap of pointers to the field elements instead (cswap-
pointer)6. In the latter implementation, during each ECSM iteration, the mask
is touched far fewer times by the AND (&) instruction (3 times) than in the cswap-
arith (16 times); thus, in theory, a weaker side-channel leakage is expected.

The ECSM implementations in μNaCl do not provide countermeasures
against power/EM analysis, besides a regular and constant-time implementation.
To evaluate our proposed attacks against properly protected targets, we added
coordinate re-randomization to both implementations7. The re-randomization
countermeasure multiplies a randomly generated λ ∈ Fp with the coordinates of
P1 and P2 at the beginning of every ECSM iteration (Algorithm1).

2.2 Target Device and Measurement Setup

The target software runs on the STM32F4 microcontroller chip on the board,
with a 32-bit ARM-M4 CPU core, clocked at 168 MHz. We acquired electromag-
netic (EM) traces from the ECSM execution by the target device, using a single

6 Selected by preprocessor definition DH SWAP BY POINTERS.
7 Our attack also works against implementations protected with scalar randomization.

We have not implemented this countermeasure, but instead we set a random scalar
for each ECSM execution.

218 E. Nascimento and �L. Chmielewski

EM probe. The setup consisted of a Lecroy Waverunner 8254M oscilloscope, a
Langer RF-U 2.5-2 H-field probe, an amplifier and analog low pass filter (250
MHz).

For the acquisition of each trace, the host PC sends to the target device a
pair of scalar (k) and input point (P), both randomly generated. The device
receives the pair and executes the scalar multiplication, returning the output
point (R = [k]P) to the host PC. We have acquired the traces with the following
settings: 2.5 GS/s sample rate, 16 mV amplitude and 70 million samples. We
have also used a low pass BNC analog filter: BLP-250+ from Mini-Circuits. We
acquired and analyzed traces using Riscure’s Inspector software package.8

3 Preliminaries

3.1 Traces Characterization

The n-th measured side-channel trace, which represents the electromagnetic
emanation (EM) of a device over the time domain, is denoted by the uni-
dimensional (1 × aL) vector tn = {On

1 , On
2 , ..., On

aL}. Here, we consider a trace
tn as being the side-channel information of an ECSM composed by a fixed num-
ber aL of iterations. The factor a depends on the ECSM algorithm and L is
the bit-length of the scalar; for Montgomery Ladder on Curve25519, a = 1 and
L = 255. The trace tn can be described by a set of �-sized sub-vectors:

tn = {On
1 , On

2 , ..., On
a.L} =

{
(tn

1,1, ..., t
n
1,�), (t

n
2,1, ..., t

n
2,�), ..., (t

n
a.L,1, ..., t

n
a.L,�)

}

where tni,j is the j-th element of each sub-vector On
i and � is the number of

samples. The element tni,j can be viewed as a sample in time from the side-
channel trace tn. The set {tni,j}, i = 1..aL, refers to a set of samples where each
element tni,j is extracted from one ECSM iteration On

i for a fixed j. For example,
{tni,10} contains aL samples, each element tni,10 is selected from the 10th sample
of each sub-trace Oi).

A traceset is defined as the set of trace segments of one or more ECSM runs,
and each trace segment consists of the samples from a single ECSM iteration.
A full traceset is a set of traces of multiple ECSM runs, where each trace in the
set consists of the samples from a full ECSM run, i.e., it is a contiguous trace
containing all the samples from all iterations of that ECSM run. The tracesets
are assumed to be unlabeled, except in those traces used for known-key analysis.

Trace Processing. Each full ECSM trace is cut into segments, one per each
algorithm iteration. Since the considered ECSM implementation is based on
Montgomery Ladder, each iteration i corresponds to the processing of a swap
bit (s in Algorithm 1), which depends on the i-th scalar bit. The trace cutting
was done by first applying a low pass filter and then detecting patterns that
appeared repeatedly for 254 times using correlation with a specified threshold;
the patterns were detected visually with ease. A simple time-based trace cutting
did not work in our case, despite the constant time of the implementation, due
8 http://www.riscure.com/.

http://www.riscure.com/

Applying Horizontal Clustering Side-Channel Attacks 219

to visible time drifts in the measured samples, probably due to clock drifting or
measurement imprecisions.

After cutting, we align the traces using Pearson correlation on the pattern
corresponding to cswap. We select the pattern based on the time of a single
Montgomery ladder iteration and source code analysis.

3.2 Clustering

Clustering Algorithms. The clustering algorithms successfully employed so
far in the context of horizontal attacks are K-Means (KM), Fuzzy K-Means
(FKM) and Expectation-Maximization (EM) [14,20,34,35]. K-Means is a rigid
clustering algorithm, meaning that each instance (a sample in the context of
HCA) is assigned (labeled) to a single cluster. On the other hand, Fuzzy K-
Means and EM are soft clustering algorithms, because their output includes an
association probability matrix, where each instance is associated with its degree
of linkage to each cluster.

Intrinsic Cluster Quality Measure. Given a set of clustering outputs from
multiple clustering algorithm runs, an intrinsic cluster quality measure can be
applied to evaluate the best among them. Such measures are called intrinsic or
internal because they consider just the structure of the clusters, and do not take
into account any labeled information that might be available and could be used
for testing. A clustering result with the best intrinsic cluster quality measure
does not guarantee the best results for the application (in this work, for use by
cluster leakage assessment and horizontal cluster analysis). But, it is nevertheless
useful when clustering results cannot be otherwise tested.

Several intrinsic quality measures have been proposed for unsupervised clus-
tering, among them: Silhouette coefficient [22], Calinski-Harabaz index [3] and
Davies-Bouldin (DB) index [6]. We chose to use the DB index, which is based
on the ratio of within-cluster and between-cluster distances, and can be defined
as:

DB =
1

k

k∑

i=1

maxj �=i{Di,j} (1) Di,j =
d̄i + d̄j

di,j
(2)

where Di,j is the within-to-between cluster distance ratio for clusters i and j;
d̄c is the mean distance between the centroid of cluster c and each point in that
cluster; and di,j is the Euclidean distance between the centroids of clusters i and
j. The smaller the DB index, the better is the clustering.

The DB index favors clusters that are compact and distant from each other.
These are exactly the properties we expect to get at points in time where the
clusters provide a good separation of the classes (two classes, one for each pos-
sible value of the swap bit b in Algorithm 1). We applied the Davies-Bouldin
index measure to the clustering outputs of multiple runs of the same random-
ized clustering algorithm, each run with a different RNG seed, and selected the
clustering output with the best (i.e., smallest) index value.

220 E. Nascimento and �L. Chmielewski

3.3 Outlier Detection and Handling

According to Hawkings [13], “An outlier is an observation which deviates so
much from other observations as to arouse suspicions that it was generated by a
different mechanism.” In the HCA context, outliers can appear in the measured
samples due to, e.g., measurement errors or unknown device behavior, and have
a significant impact on clustering. Most clustering algorithms are not intrinsi-
cally robust to outliers, so depending on how large an outlier value deviates from
“normal” values, the resulting labels might be negatively influenced by the out-
lier. Then the resultant clusters might be completely different, and thus wrong,
from what would be expected, leading to potentially misleading results. Hence,
outlier detection is desirable as a preprocessing step before clustering in HCA.

We implemented and tested the following outlier detection methods for HCA:
distance from mean and Tukey’s test. A simple outlier detection method, here-
after called distance from mean, is given by considering the values that are far
from the mean as outliers, i.e., a value x is an outlier if |x − μ| ≥ βσ, for
a non-negative parameter β; μ and σ are the mean and standard deviation,
respectively. We chose β = 2.0.9 Tukey’s range test [33] is a method based on
order statistics. If Q1 and Q3 are the lower and upper quartile, respectively, and
IQ = Q3 − Q1 is the interquartile, any observation outside the closed interval
[Q1 − k · IQ,Q3 + k · IQ] is considered an outlier, for a non-negative parameter
k. We chose k = 1.5, the value proposed in [33].

If an outlier detector flags some samples as outliers, they must be dealt with
in some way, i.e., the outliers have to be handled. Outlier handling methods
are usually heuristic and dependent of the context where they are applied [32].
A simple outlier handling method that could be applied in the context of this
work is to simply exclude the data point from consideration. Albeit simple, the
implementation of this method is potentially inefficient in the HCA context,
due to the need of more complex data structures (e.g., dynamic lists rather
than static arrays). To keep the implementation simple and efficient, we replace
outliers values by the median of non outliers.

4 Horizontal Cluster Analysis Framework

The horizontal attack described in this paper roughly follows the HCA frame-
work from [34], with contributed analysis methods. Figure 1 shows the steps
in the HCA framework. The first step is to run clustering leakage assessment
(CLA). CLA takes as input iteration traces from multiple ECSM runs and finds
points in the traces where the leakage most likely is, known as points of interest
(POIs). Next, key recovery (KR) is run, yielding an approximate scalar. Then,
given the approximate scalar, points-of-interest optimization (POI-OPT) pro-
duces a refined list of POIs. Finally, the final KR step outputs the recovered
scalar.

9 Assuming that the sample values at a given index come from a normal distribution,
choosing β = 2.0 implies that 95% of the values are within the interval [x−μ, x+μ].

Applying Horizontal Clustering Side-Channel Attacks 221

Fig. 1. HCA framework. Fig. 2. The full key recovery process.

Figure 2 shows the full key recovery process in more detail, including the
inputs and outputs at each step. The inputs are a traceset to be used for leakage
assessment and the actual target traceset. The output is the correct recovered
key/scalar, if it could be found.

The “KR final” step takes as input a traceset with traces from multiple ECSM
runs and attacks the sets of segment traces of each ECSM run independently from
one another. This step is a probabilistic algorithm that consists of sequentially
running KR and error correction (Sect. 6) on each trace in the set, and recovering
the correct scalar for at least one of these traces, with a given probability of
success. We call this probability the success rate of the attack.

In our HCA framework, POIs are chosen from a leakage assessment trace,
be it a CLA or t-test trace. They are selected as the time indices of the top m
highest peaks in such traces, where m is a parameter. Suitable values for m are
derived experimentally (cf. Sect. 5 and Fig. 4).

4.1 Cluster Leakage Assessment (CLA)

Leakage assessment (LA) methods are used to determine whether a crypto-
graphic device leaks information through a side-channel and how strong such
leakage is. They are typically employed to find out the points in time (sample
indices) where the leakage is strongest, i.e., the points of interest. The sample
values at those points are used in later steps, e.g. in the key recovery phase, and
they serve two major purposes: (i) for dimensionality reduction, i.e., to use only
the samples that provide useful information and thus reduce computation time;
(ii) to avoid bringing noisy samples to the attack phase (i.e., key recovery), where
they will negatively impact the success rate and potentially turn unfeasible an
otherwise successful attack.

In the HCA and non-profiled attack contexts, leakage assessment methods
should not require knowledge of the secret key or ephemeral secret data (e.g.,
numbers randomly generated by the device). Essentially, these methods assume
that the adversary does not have control over device’s secret information. In par-
ticular, the countermeasures like SR and CRR cannot be disabled. Additionally,
it is desirable that LA methods be non-parametric and do not require leakage
models. That is because in the single-trace HCA attack context the target device
is not known a priori. Combined with the fact that real-world modern microcon-
trollers are complex devices, it means that the estimation of leakage distributions
and thus building an accurate leakage model is not trivial.

222 E. Nascimento and �L. Chmielewski

Distinguishers. Welch’s t-test is a parametric statistical test that can be
employed to this end; e.g., in methodologies like the TVLA [12]. Certain condi-
tions have to be met for Welch’s t-test to be used: normality of the distributions,
equal variances and independence. The Mutual Information Analysis (MIA) is a
distinguisher that does not require a leakage model. Standaert et al. [38] were the
first to propose the use of MI as an statistical leakage assessment tool in the SCA
context. Meynard et al. [27] applied MIA as a method to locate strong leakage
in the frequency domain and, consequently, to find the frequency bands in EM
traces where the differences between modular squares and multiplications are
highest, from a device running RSA modular exponentiation. Mather et al. [26]
compared the statistical power of t-test and the discrete and continuous ver-
sions of MIA for detecting leakage in multiple leakage models. Following [34], we
provide results for four different methods for leakage detection: sum-of-squared
differences (SOSD), sum-of-squared t-values (SOST) and MIA.

CLA. The LA method proposed in [34] shows how multiple traces can be com-
bined utilizing clustering, an unsupervised learning method, and demonstrate
it through an attack on a RSA software implementation. That method, here-
after called clustering-based leakage assessment (CLA), in principle works even
if the device applies any combination of the classic countermeasures for modular
exponentiation, i.e., exponent blinding, message or modulus randomization.

4.2 Key Recovery (HCA-KR)

The key recovery methods implemented in this work can be classified into two
classes, based on the way clustering is applied: single or multi-dimensional. In
either case, the number of clusters output by a clustering algorithm is two, one
cluster for each possible key bit value.

Single-Dimensional Clustering Method. In the first group, we run cluster-
ing on the set of samples at a given single time index (POI), across multiple
trace segments. This is the approach used by [34]. After running the cluster-
ing for every time index, a set of recovered key candidates is obtained, which
are then combined to decide the final key candidate. The following combination
methods are used for this purpose: majority rule (MJ) and log-likelihood (LL).
We refer the reader to [34] for more details.

Multi-dimensional Clustering Method. In the second group, clustering is
run on multiple attributes or dimensions, i.e., the clustering algorithm is run on
all samples, at all points of a set of time indices (POIs), at the same time.

On one hand, the multi-dimensional method has two main advantages over
the single-dimensional. First, the combination step is not required. And second,
it is capable of exploiting higher order leakage, while the first method exploits
only leakage of first order. On the other hand, we verified experimentally that
key recovery based on multi-dimensional clustering is more sensitive to noisy
samples, because a very noisy sample at a given POI can directly negatively

Applying Horizontal Clustering Side-Channel Attacks 223

influence the value of the output key candidate. Note that for the first group of
attacks the noisy sample effect is contained, i.e., only the key candidate at that
POI is affected. Therefore, outlier detection and handling are mandatory in the
multi-dimensional method to achieve satisfactory results.

First key-recovery step (“KR for CLA” in Fig. 1). After points of interest
have been found by CLA, key recovery is run on the “LA traceset” using the
POIs from the CLA trace. The outcome is a list of recovered candidate keys for
those traces (“LA traceset w/ recv.bits”).

POI optimization step (POI-OPT in Fig. 1). The “LA traceset w/ recv.bits”
is used as input for the points of interest selection optimization step. This step
refines the POIs found from CLA by applying a t-test with two groups, the first
group containing the traces whose corresponding candidate key bit is zero and
the second group corresponds to the traces where the candidate key bit is one.
The points with the largest t-statistics are considered the refined POIs.

Final key recovery step (“KR final” in Fig. 1). Finally, given the refined list
of POIs (i.e., the peaks on “t-test trace”), key recovery is applied sequentially
to each trace in the target traceset. For each trace, the key recovery outputs a
(possibly incorrect) key/scalar, over which the probabilistic key error correction
algorithm in Sect. 6 is applied. If the correct scalar is found, it is returned and
the full key recovery process stops. Otherwise, the key recovery is applied to the
next trace in the target traceset and the process is repeated.10

5 Attack Results

We acquired 300 full Curve25519 ECSM traces for the cswap-arith, and the
same number of traces for the cswap-pointer. The traces were preprocessed,
resulting in two tracesets of 76,500 ECSM iteration traces each, that are used
in all experiments described in this section. Each iteration trace used for the
analysis contains 8,000 8-bit samples for cswap-arith. For cswap-pointer, as the
time interval where leakage happens is narrower (cf. Sect. 2.1), we trimmed the
traces to 1,000 samples for efficiency.11

In the evaluation experiments, the recovered scalars are the output of the
last KR step, but before error correction. The reported success rates are, unless
otherwise noted, the maximum success rates, i.e., if the success rate or percent-
age of correctly recovered bits for the target traces is SR1, . . . , SRnt

(where nt

is the number of traces in the target traceset), then the reported success rate is
max{SR1, . . . , SRnt

}. We use the maximum success rates because, as explained

10 We note that the steps POI-OPT and key recovery can be repeated. Due to the high
increase in computational time required to run them more than once, as well as the
fact that the results using a single iteration were already feasible for a successful
attack, we chose not to further investigate whether that could improve the results.

11 We knew where and by how much to trim because we knew from the source code
and binary the approximate location of the cswap in the iteration traces.

224 E. Nascimento and �L. Chmielewski

Table 1. Key recovery max success rate (%) for cswap-arith and cswap-pointer, for
all combinations of CLA distinguishers (SOSD, MIA and SOST) and HCA statistical
combination methods. The best results for each implementation are highlighted.

cswap-arith cswap-pointer

MJ LL MD MJ LL MD

KM SOSD 92.15 94.11 58.03 97.25 60.78 96.47

MIA 60.78 57.64 58.82 96.47 95.68 57.25

SOST 94.11 92.15 57.64 99.60 96.07 100.00

FKM SOSD 87.84 57.25 58.43 57.64 58.82 98.82

MIA 60.78 84.31 59.60 99.60 99.21 56.86

SOST 67.45 59.21 58.03 59.60 98.82 100.00

EM SOSD 60.00 61.56 60.39 97.64 57.64 57.64

MIA 60.39 68.23 60.39 99.21 95.29 99.60

SOST 64.31 61.96 57.64 97.64 95.29 57.64

in Sect. 4, our full HCA key recovery attack framework is probabilistic and recov-
ers the correct scalar for at least one of the target traces with a given probability
of success, the success rate of the attack. By taking the max success rate (SR∗)
in an attack evaluation experiment as the success rate, we guarantee (except
with a negligible chance) that if the full key recovery attack with error correc-
tion is applied to a set of target traces, the recovered key for at least one of them
will have a ratio of at least SR∗ of correctly recovered bits. Therefore, the errors
can be successfully corrected by the error correction algorithm in Sect. 6.

5.1 Initial Attack Evaluation Experiment

To evaluate the effect of different distinguishers for CLA and statistical combina-
tors for HCA-KR, we fixed the clustering algorithm (KM, FKM or EM) and ran
a full key recovery attack varying the value of such parameters. The evaluation
results are shown in Table 1.12

In this experiment we used: 100 traces for CLA; 100 traces and 20 POIs
for “KR for CLA” and “KR final”. We experimented with different numbers
of traces for these operations, but from those we tried, 100 was the minimum
number of traces that resulted in good enough attack success rates; we did not
see any improvement when more traces were used. POI-OPT is enabled. We used
Tukey test and replace by median as outlier detection and handling methods,
respectively. Intrinsic clustering quality evaluation is disabled.

According to Table 1, the cswap-pointer implementation has a very strong
leakage dependent on the cswap bit, in two cases reaching a success rate of 100%,
i.e., all scalar bits were correctly recovered. Despite having obtained 100% success
rate for two combinations of algorithms KM/SOST/MD and FKM/SOST/MD

12 MJ, LL and MD stand for majority rule, log-likelihood and multi-dimensional, resp.

Applying Horizontal Clustering Side-Channel Attacks 225

Fig. 3. Leakage assessment for cswap-arith (top-bottom): KKA, CLA, and POI-OPT.

for the cswap-pointer implementation, similar success rate results for such com-
binations of algorithms on the cswap-arith implementation do not hold. In fact
they were very low for that implementation, with success rates below 60%.

The results obtained in Table 1 do not indicate a single combination of param-
eters where the success rates are high enough (≥97%) for both implementations
simultaneously, so as to enable a successful recovery of the correct scalar in
feasible time even when error correction (Sect. 6) is applied.

Besides, in a practical non-profiled or single-trace attack scenario, where the
attacker do not know details about the implementation targeted, she should
fix/choose beforehand the values of all parameters for the full key recovery13

and run “KR final” for every trace in the target traceset. The motive is the long
computation time required to run a full key recovery, where the most expensive
step, error correction, can take hours to complete on a common desktop machine.

For the aforementioned reasons, we test our attack with more combinations
of parameters values. The results of these experiments are in the full version of
the paper [29]. The values of those parameters that gave the best results are
presented in the next subsection.

5.2 Final Results

Figure 3 illustrates, for cswap-arith, the approximated side-channel leakage
assessed right after the CLA and POI-OPT steps when compared with a known-
key analysis (KKA) trace. The leakage assessment trace after POI-OPT shows
peaks that match or are very close to those in the KKA trace. A known-key anal-
ysis in essence consists of running the clustering algorithm at each sample index
to recover the scalar bit and comparing whether the guessed bit value is equals
the known key bit. The output is a trace with the success rate of these guesses,
which is indicates the strength of the leakage. Such an analysis is used only for
illustrative purposes, we remark that our attacks are completely unsupervised.
13 Among them: number of traces for CLA, “KR for CLA” and “KR final” steps,

clustering algorithms, distinguishers and statistical combination methods.

226 E. Nascimento and �L. Chmielewski

Fig. 4. Success rate versus number of POIs for cswap-arith and cswap-pointer.

Figure 4 shows the success rate evolution as the number of POIs used by
the final HCA-KR step increases, for both cswap implementations. For both
implementations, the number of traces used are 100 for CLA is 100, “KR for
CLA” and “KR final”, the same as in the other experiments. For cswap-arith,
the success rate is 97.64% for 100 POIs. The success rate for cswap-pointer is
above 90% if the number POIs used is in [7, 38]. In particular, it is 99.60% for
38 POIs. Thus, for cswap-pointer a small number of POIs is sufficient to achieve
a very high success rate. The curves in Fig. 4 have quite different shapes. The
cswap-pointer curve shape means that leaks in narrow time intervals, so it is
sensitive to the number of POIs used. In this case, using a lot of POIs means
adding noise to the analysis, which decreases the success rate. On the contrary,
the cswap-arith curve means that it leaks on a wider time interval, so more POIs
can be added without dramatically affecting success rate.

Considering these success rate values and taking into account the fact that
only 251 bits out of the 255 bits of the scalar are unknown (the first bit is always
1 and the last three are fixed to 1002), there are at most 6 and 2 errors in the
recovered scalar for cswap-arith and cswap-pointer, respectively.

6 Error Correction

Due to noise and other aspects interfering with the side-channel analysis (mis-
alignment for example), the scalar derived by the attack contains errors. A naive
brute-force would check all possibilities of 6 and 2 errors in the 251 bits, for each
of the 100 recovered scalars. This totals to 100 · (

251
6

) ≈ 244.9 operations for
cswap-arith and 100 ·(2512

) ≈ 221.6 for cswap-pointer. As we can see, the required
computation effort is quite feasible, especially for the cswap-pointer case.

Note that confidence probabilities coming from clustering can be used to
detect errors, as shown in [14,34,35]. We applied the approach from [34], but
unfortunately this method occurred unreliable: some errors occured with high
confidence probabilities. We suspect that it was caused by strong noise pulses
present in our traces. Therefore, we concentrate on improving the naive brute-
force.

Applying Horizontal Clustering Side-Channel Attacks 227

Efficient Error Correction Based on Precomputations. The above naive
brute-force can be further by using a modified algorithm from [30]. In [30] the
authors use template attack confidence scores to detect errors. Unfortunately, as
mentioned above, we cannot use confidence probabilities and therefore, we need
to modify the approach in [30], as described below.

First let us assume that the number of errors is at maximum 6 (like for cswap-
arith). Now let us divide the scalar in half and assume the errors locations are
uniformly distributed across it. Let us denote R = [k]P , where R is the resulting
point, k the scalar to be recovered, and P is the input point. Then, clearly
R = [k]P = [a ·2|k|/2 +b]P = [a]([2|k|/2]P)+[b]P , where a is the most significant
half of k and b is the least significant one14. If we denote [2|k|/2]P by H, then
the above equation reduces to R − [b]P = [a]H.

Consider all different possible guesses for a assuming that there are at most
4 errors in a: that is

(|k|/2
4

)
guesses. Following [30], for each guess, we compute

[a]H and store all pairs (a, [a]H). We then sort all pairs based on the value of
[a]H and store them in an ordered table. We make a guess for b assuming it
contains at most 4 errors (again

(|k|/2
4

)
guesses) and compute z = R − [b]P . If

our guess for b is correct, then z is present in the second column of some row
in the table – the first column is the corresponding a. If z is present then we
have determined the scalar. Otherwise, we make a new, different guess for b and
continue. The complexity of this attack totals to

(
126
4

) · 2 · 100 ≈ 231 operations,
because there are 251 unknown bits. The required memory is

(
126
4

) · 100 ≈ 230

points.
The above assumption on uniform distribution of errors can be dropped (cf.

Appendix A). We need to estimate the probability that the attack works. The
probability that out of 6 errors, 2, 3, or 4 of them are not in a equals: 14/64;
for details about computing this probability we refer the reader to Appendix A.
Thus, to minimize the error to approximately e.g., 0.0005, it is enough to repeat
the algorithm 5 times. Then the overall complexity of the attack would be 236.

7 Countermeasures and Future Work

In this paper we described horizontal clustering attacks against two Curve25519
Montgomery Ladder ECSM implementations from the μNaCl library. We also
showed how to extend the RSA horizontal clustering framework from [34]. Fur-
thermore, we generalized the method from [30] to tolerate a certain number of
incorrectly recovered scalar bits without relying on normal exhaustive search.

Now we briefly discuss possible countermeasures against our attack. First let
us recall that the following countermeasures do not work against our attack:
point re-randomization, scalar blinding and splitting.

The countermeasure of [31] splits scalar into two parts and to randomly
interleave two scalar multiplications. We believe that our attack might still be
mounted if four clusters are used to recognize which bit is processed and dur-
ing which ECSM. The idea behind the memory-address countermeasure [16] is
14 |k| denotes the length of the base 2 representation of the scalar k.

228 E. Nascimento and �L. Chmielewski

to store sensitive variables at addresses that share the same Hamming weight.
Although this would decrease the effectiveness of the attack, the addresses leak-
age may still be identified by clustering. This countermeasure can be improved
by randomizing not only the addresses but also the memory accesses [17–19].

The countermeasure of [15] protects against localized EM template attacks on
Montgomery ladder ECSM by randomly swapping the ladder registers at the end
of a ladder iteration. This countermeasure is uniform in its operation sequence
what makes our attack infeasible in principle. In addition, several randomization-
based protection techniques for the Montgomery ladder are presented in [24].
Similar to [15], these techniques generate operation sequences independent from
the scalar and thus, our attack might be ineffective against them.

We consider evaluating and improving our attacks with respect to the two
latter countermeasures as future work. We also regard attacking other ECC
implementations improving our attacks with PCA as future developments.

Acknowledgements. This work was supported by the European Union’s H2020 Pro-
gramme under grant agreement number ICT-731591 (REASSURE).

A Probability of Successful Efficient Error Correction

We assumed in Sect. 6 that the errors are uniformly distributed. Now we show
how to drop this assumption. We create a in the following way: we randomly
choose a set A of indices in k such that |A| = |k|/2 and we set the corresponding
bits to zero. Then we create b by setting the remaining indices of the original k to
zero (the set of indices is denoted as B). Now R = [a]P +[b]P holds and if we set
H = P then R − [b]P = [a]H. The attack can be performed as before assuming
that when we guess a and b, we limit the indices to A and B, respectively.

We now compute the probability that the attack from Sect. 6 works correctly,
namely, that the 6 errors are corrected. Without loss of generality let us first
assume that positions of the 6 errors position are fixed, because the partition to
a and b is random. Therefore, the following situations are possible:

– all errors are in a or in b: 2 possibilities;
– one error is in a or b: 12 possibilities;
– two errors are in a or b: 30 possibilities;
– three errors are in both a and b: 20 possibilities.

In the first two cases the numbers of errors in a is 0, 1, 5, or 6. Therefore, the
probability that out of 6 errors, 2, 3, or 4 of them are not in a equals:

1 + 6 + 6 + 1
2 + 12 + 30 + 20

=
14
64

.

References

1. Bauer, A., Jaulmes, É.: Correlation analysis against protected SFM implemen-
tations of RSA. In: Paul, G., Vaudenay, S. (eds.) INDOCRYPT 2013. LNCS,
vol. 8250, pp. 98–115. Springer, Cham (2013). https://doi.org/10.1007/978-3-319-
03515-4 7

https://doi.org/10.1007/978-3-319-03515-4_7
https://doi.org/10.1007/978-3-319-03515-4_7

Applying Horizontal Clustering Side-Channel Attacks 229

2. Bauer, A., Jaulmes, E., Prouff, E., Wild, J.: Horizontal and vertical side-channel
attacks against secure RSA implementations. In: Dawson, E. (ed.) CT-RSA 2013.
LNCS, vol. 7779, pp. 1–17. Springer, Heidelberg (2013). https://doi.org/10.1007/
978-3-642-36095-4 1

3. Caliński, T., Harabasz, J.: A dendrite method for cluster analysis. Commun. Stat.
Theory Methods 3(1), 1–27 (1974)

4. Clavier, C., Feix, B., Gagnerot, G., Giraud, C., Roussellet, M., Verneuil,
V.: ROSETTA for single trace analysis. In: Galbraith, S., Nandi, M. (eds.)
INDOCRYPT 2012. LNCS, vol. 7668, pp. 140–155. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-34931-7 9

5. Clavier, C., Feix, B., Gagnerot, G., Roussellet, M., Verneuil, V.: Horizontal corre-
lation analysis on exponentiation. In: Soriano, M., Qing, S., López, J. (eds.) ICICS
2010. LNCS, vol. 6476, pp. 46–61. Springer, Heidelberg (2010). https://doi.org/10.
1007/978-3-642-17650-0 5

6. Davies, D.L., Bouldin, D.W.: A cluster separation measure. IEEE Trans. Pattern
Anal. Mach. Intell. 1, 224–227 (1979)

7. Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete
data via the EM algorithm. J. R. Stat. Soc. Ser. B (Methodol.) 39, 1–38 (1977)

8. Dürr, F.: Key 2.0 is a Bluetooth IoT Door Lock (2017). https://github.com/
duerrfk/key20

9. EMV: EMVCo Security Evaluation Process, version 5.1, Security Guidelines (2016)
10. Fisher, R.A.: The use of multiple measurements in taxonomic problems. Ann.

Eugenics 7(7), 179–188 (1936)
11. Forgy, E.W.: Cluster analysis of multivariate data: efficiency versus interpretability

of classifications. Biometrics 21, 768–769 (1965)
12. Goodwill, G., Jun, B., Jaffe, J., Rohatgi, P.: A testing methodology for side channel

resistance validation. In: NIST Workshop 2011 (2011)
13. Hawkings, D.: Identification of Outliers. Chapman and Hall, London (1980)
14. Heyszl, J., Ibing, A., Mangard, S., De Santis, F., Sigl, G.: Clustering algorithms

for non-profiled single-execution attacks on exponentiations. In: Francillon, A.,
Rohatgi, P. (eds.) CARDIS 2013. LNCS, vol. 8419, pp. 79–93. Springer, Cham
(2014). https://doi.org/10.1007/978-3-319-08302-5 6

15. Heyszl, J., Mangard, S., Heinz, B., Stumpf, F., Sigl, G.: Localized electromagnetic
analysis of cryptographic implementations. In: Dunkelman, O. (ed.) CT-RSA 2012.
LNCS, vol. 7178, pp. 231–244. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-27954-6 15

16. Itoh, K., Izu, T., Takenaka, M.: Address-bit differential power analysis of cryp-
tographic schemes OK-ECDH and OK-ECDSA. In: Kaliski, B.S., Koç, K., Paar,
C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 129–143. Springer, Heidelberg (2003).
https://doi.org/10.1007/3-540-36400-5 11

17. Itoh, K., Izu, T., Takenaka, M.: A practical countermeasure against address-bit
differential power analysis. In: Walter, C.D., Koç, Ç.K., Paar, C. (eds.) CHES
2003. LNCS, vol. 2779, pp. 382–396. Springer, Heidelberg (2003). https://doi.org/
10.1007/978-3-540-45238-6 30

18. Izumi, M., Ikegami, J., Sakiyama, K., Ohta, K.: Improved countermeasure against
address-bit DPA for ECC scalar multiplication. In: 2010 Design, Automation and
Test in Europe Conference and Exhibition (DATE 2010), pp. 981–984. IEEE (2010)

19. Izumi, M., Sakiyama, K., Ohta, K.: A new approach for implementing the MPL
method toward higher SPA resistance. In: International Conference on Availability,
Reliability and Security, ARES 2009, pp. 181–186. IEEE (2009)

https://doi.org/10.1007/978-3-642-36095-4_1
https://doi.org/10.1007/978-3-642-36095-4_1
https://doi.org/10.1007/978-3-642-34931-7_9
https://doi.org/10.1007/978-3-642-17650-0_5
https://doi.org/10.1007/978-3-642-17650-0_5
https://github.com/duerrfk/key20
https://github.com/duerrfk/key20
https://doi.org/10.1007/978-3-319-08302-5_6
https://doi.org/10.1007/978-3-642-27954-6_15
https://doi.org/10.1007/978-3-642-27954-6_15
https://doi.org/10.1007/3-540-36400-5_11
https://doi.org/10.1007/978-3-540-45238-6_30
https://doi.org/10.1007/978-3-540-45238-6_30

230 E. Nascimento and �L. Chmielewski

20. Järvinen, K., Balasch, J.: Single-trace side-channel attacks on scalar multiplications
with precomputations. In: Lemke-Rust, K., Tunstall, M. (eds.) CARDIS 2016.
LNCS, vol. 10146, pp. 137–155. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-54669-8 9

21. Jolliffe, I.: Principal Component Analysis. Springer Series in Statistics. Springer,
Heidelberg (2002). https://doi.org/10.1007/b98835

22. Kauffman, L., Rousseeuw, L.: Finding Groups in Data. An Introduction to Cluster
Analysis. Wiley, New York (1990)

23. Koblitz, N.: Elliptic curve cryptosystems. Math. Comput. 48(177), 203–209 (1987)
24. Le, D.-P., Tan, C.H., Tunstall, M.: Randomizing the montgomery powering ladder.

In: Akram, R.N., Jajodia, S. (eds.) WISTP 2015. LNCS, vol. 9311, pp. 169–184.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24018-3 11

25. Lloyd, S.: Least squares quantization in PCM. IEEE Trans. Inf. Theory 28(2),
129–137 (1982)

26. Mather, L., Oswald, E., Bandenburg, J., Wójcik, M.: Does my device leak infor-
mation? An a priori statistical power analysis of leakage detection tests. In: Sako,
K., Sarkar, P. (eds.) ASIACRYPT 2013. LNCS, vol. 8269, pp. 486–505. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-42033-7 25

27. Meynard, O., Réal, D., Flament, F., Guilley, S., Homma, N., Danger, J.L.:
Enhancement of simple electro-magnetic attacks by pre-characterization in fre-
quency domain and demodulation techniques. In: 2011 Design, Automation and
Test in Europe, pp. 1–6 (2011)

28. Miller, V.S.: Use of elliptic curves in cryptography. In: Williams, H.C. (ed.)
CRYPTO 1985. LNCS, vol. 218, pp. 417–426. Springer, Heidelberg (1986). https://
doi.org/10.1007/3-540-39799-X 31

29. Nascimento, E., Chmielewski, L.: Applying horizontal clustering side-channel
attacks on embedded ECC implementations (extended version). Cryptology ePrint
Archive, Report 2017/1204 (2017). https://eprint.iacr.org/2017/1204

30. Nascimento, E., Chmielewski, �L., Oswald, D., Schwabe, P.: Attacking embedded
ECC implementations through cmov side channels. In: Avanzi, R., Heys, H. (eds.)
SAC 2016. LNCS, vol. 10532, pp. 99–119. Springer, Cham (2017). https://doi.org/
10.1007/978-3-319-69453-5 6

31. Negre, C., Perin, G.: Trade-off approaches for leak resistant modular arithmetic in
RNS. In: Foo, E., Stebila, D. (eds.) ACISP 2015. LNCS, vol. 9144, pp. 107–124.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-19962-7 7

32. NIST: NIST/SEMATECH e-Handbook of Statistical Methods. Section 7.1.6. What
are outliers in the data? (2013)

33. NIST: NIST/SEMATECH e-Handbook of Statistical Methods. Section 7.4.7.1.
Tukey’s method (2013)

34. Perin, G., Chmielewski, �L.: A semi-parametric approach for side-channel attacks
on protected RSA implementations. In: Homma, N., Medwed, M. (eds.) CARDIS
2015. LNCS, vol. 9514, pp. 34–53. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-31271-2 3

35. Perin, G., Imbert, L., Torres, L., Maurine, P.: Attacking randomized exponen-
tiations using unsupervised learning. In: Prouff, E. (ed.) COSADE 2014. LNCS,
vol. 8622, pp. 144–160. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
10175-0 11

36. T. H. Project: Picotls - TLS 1.3 implementation in C (2017). https://github.com/
h2o/picotls

https://doi.org/10.1007/978-3-319-54669-8_9
https://doi.org/10.1007/978-3-319-54669-8_9
https://doi.org/10.1007/b98835
https://doi.org/10.1007/978-3-319-24018-3_11
https://doi.org/10.1007/978-3-642-42033-7_25
https://doi.org/10.1007/3-540-39799-X_31
https://doi.org/10.1007/3-540-39799-X_31
https://eprint.iacr.org/2017/1204
https://doi.org/10.1007/978-3-319-69453-5_6
https://doi.org/10.1007/978-3-319-69453-5_6
https://doi.org/10.1007/978-3-319-19962-7_7
https://doi.org/10.1007/978-3-319-31271-2_3
https://doi.org/10.1007/978-3-319-31271-2_3
https://doi.org/10.1007/978-3-319-10175-0_11
https://doi.org/10.1007/978-3-319-10175-0_11
https://github.com/h2o/picotls
https://github.com/h2o/picotls

Applying Horizontal Clustering Side-Channel Attacks 231

37. Specht, R., Heyszl, J., Kleinsteuber, M., Sigl, G.: Improving non-profiled attacks
on exponentiations based on clustering and extracting leakage from multi-channel
high-resolution EM measurements. In: Mangard, S., Poschmann, A.Y. (eds.)
COSADE 2014. LNCS, vol. 9064, pp. 3–19. Springer, Cham (2015). https://doi.
org/10.1007/978-3-319-21476-4 1

38. Standaert, F.-X., Malkin, T.G., Yung, M.: A formal practice-oriented model for
the analysis of side-channel attacks. IACR e-print archive 2006/134 (2006)

39. Walter, C.D.: Sliding windows succumbs to Big Mac attack. In: Koç, Ç.K.,
Naccache, D., Paar, C. (eds.) CHES 2001. LNCS, vol. 2162, pp. 286–299. Springer,
Heidelberg (2001). https://doi.org/10.1007/3-540-44709-1 24

40. Wilkinson, T.: HomeKit for Bluetooth Low Energy (BLE) for Nordic nRF51
(2015). https://github.com/aanon4/HomeKit

41. Witteman, M.F., van Woudenberg, J.G.J., Menarini, F.: Defeating RSA multiply-
always and message blinding countermeasures. In: Kiayias, A. (ed.) CT-RSA 2011.
LNCS, vol. 6558, pp. 77–88. Springer, Heidelberg (2011). https://doi.org/10.1007/
978-3-642-19074-2 6

https://doi.org/10.1007/978-3-319-21476-4_1
https://doi.org/10.1007/978-3-319-21476-4_1
https://doi.org/10.1007/3-540-44709-1_24
https://github.com/aanon4/HomeKit
https://doi.org/10.1007/978-3-642-19074-2_6
https://doi.org/10.1007/978-3-642-19074-2_6

Trace Augmentation: What Can Be Done Even
Before Preprocessing in a Profiled SCA?

Sihang Pu1(B), Yu Yu1, Weijia Wang1, Zheng Guo1, Junrong Liu1, Dawu Gu1,
Lingyun Wang2, and Jie Gan3

1 Shanghai Jiao Tong University, Shanghai, China
{push.beni,yyuu,aawwjaa,guozheng,liujr,dwgu}@sjtu.edu.cn

2 Shanghai Viewsource Information Science and Technology Company,
Shanghai, China

lingyun.wang@viewsources.com
3 Beijing Smart-Chip Microelectronics Technology Co., Ltd., Beijing, China

ganjie@sgitg.sgcc.com.cn

Abstract. Preprocessing is an important first step in side-channel
attacks, especially for template attacks. Typical processing techniques,
such as Principal Component Analysis (PCA) and Singular Spectrum
Analysis (SSA), mainly aim to reduce noise and/or extract useful infor-
mation from raw data, and they are barely robust to tolerate differences
between profiling and target traces. In this paper, we propose an efficient
and easy-to-implement approach to preprocessing by applying the data
augmentation method from deep learning, whose appropriate parameters
can be efficiently determined using a simple validation. Our trace aug-
mentation method, when added prior to existing profiling methods, sig-
nificantly enhances robustness and improves performance of the attacks.
Simulation-based experiments show that our approach not only results
in a more robust profiling (even show an enhancement to the known
robust profilings), but also works well in the ideal scenario (no distortions
between profiling and target traces). The results of FPGA-based and
software experiments are consistent to the ones of simulation-based coun-
terparts. Thus, we conclude that the proposed augmentation method is
an efficient performance-boosting add-on to profiled side-channel attacks
in real world.

1 Introduction

1.1 Motivation

The crypto community has witnessed the fast development of Side-Channel
Attacks (SCAs) since Kocher’s original works [11–13], and various more efficient
SCA methods are proposed for different scenarios. Profiled SCA, first proposed
by Chari et al. [5], adds a profiling phase (prior to the online exploitation phase)
to the original SCA and can be considered as the powerful class of power analy-
sis. Since then, various profiled SCA methods have been introduced and studied
(see [6,15,19,24–26] for an incomplete list).
c© Springer International Publishing AG, part of Springer Nature 2018
T. Eisenbarth and Y. Teglia (Eds.): CARDIS 2017, LNCS 10728, pp. 232–247, 2018.
https://doi.org/10.1007/978-3-319-75208-2_14

Trace Augmentation 233

Despite its excellent effectiveness, profiled SCA presumes high similarity
between profiling device and target device, which might otherwise result in less
desirable performance and thus limit their applicability in practice. This issue
was noticed and studied by Standaert et al. [22], Elaabid and Guilley [10] and
Choudhary and Kuhn [7]. Furthermore, Whitnall and Oswald [26] proposed a
robust profiling method by applying clustering technique, and Wang et al. [24]
proposed another robust profiling technique using the ridge regression method.
To the best of our knowledge, all the existing solutions mainly focus on the
profiling phase rather than preprocessing stage.

1.2 Preprocessing Techniques

Preprocessing techniques are widely used to increase the success rate of side-
channel analysis. The most widely used technique is Principal Components Anal-
ysis (PCA), which was first introduced by Archambeau et al. [1] and extended
by Batina et al. [3]. Standaert and Archambeau [21] compared PCA with a more
contrived method named Fisher Linear Discriminant Analysis (LDA). Bruneau
et al. [4] carried out a mathematical analysis of dimensionality reduction methods
(i.e., PCA and LDA), and they concluded that LDA is asymptotically the opti-
mal dimensionality reduction strategy. Choudary and Kuhn [6] compared several
Points of Interest (POI) techniques and discussed the rules of selecting compo-
nents. Recently, Merino Del Pozo and Standaert [17] used Singular Spectrum
Analysis (SSA), a technique originally used in time series analysis, to ameliorate
the Signal Noise Ratio (SNR) of raw traces. We stress that the aforementioned
preprocessing techniques may not work well with deviated target devices, and
they need to rely on subsequent robust profiling techniques. To resolve the issue,
we propose a new preprocessing method based on data augmentation.

1.3 Data Augmentation

The term data augmentation refers to methods for constructing iterative opti-
mization or sampling algorithms via the introduction of unobserved data or
latent variables. This method was popularized in the deep learning community
and it can produce a better profiling set to mitigate overfitting and build a more
robust model. Simard et al. [20] first created a general set of elastic distortions
that vastly expanded the size of the training set. Moreover, in deep learning, it
is the easiest and most common method to artificially enlarge the dataset using
label-preserving transformations (e.g., [8,9,18]) in order to reduce overfitting.
Krizhevsky et al. [14] significantly reduced the error rate using data augmenta-
tion techniques.

1.4 Our Contributions

In this paper, we tackle the following problem:

What can be done during (or even before)
the preprocessing stage to make the subsequent attacks more robust?

234 S. Pu et al.

We answer this question affirmatively. Borrowing ideas from deep learning, we
introduce the “trace augmentation” technique (i.e., applying data augmentation
in the SCA context), which shifts each trace to some random extent and then
combine them all (both original and perturbed traces) to form an augmented
trace set. Our trace augmentation method can be applied prior to existing pre-
processing procedures (e.g., PCA, LDA) and significantly improve the robustness
and performance of the attacks.

Further, we propose a very efficient method (named lazy validation) to find
out an appropriate range of the shift, only based on the profiling traces. Infor-
mally speaking, this method splits the profiling traces into two partitions, profiles
on one distorted partition, validates (by conducting attacks) on the other undis-
torted one, and chooses the largest range of distortion that doesn’t essentially
impact the result of the attack. Intuitively, the resulting suggestion can be seen
as a conservative one that at least doesn’t impact the effectiveness in the ideal
setting (where there are no distortions between profiling and target trace).

At last, we conduct both simulation-based and practical experiments to ver-
ify our approach. They both show that trace augmentation not only improves
the performance of the subsequent attack in scenarios where discrepancy exists
between the profiling device and target device, but also works well in the ideal
case (i.e., without distortions). In addition, simulated-based results suggest that
the improvement of our method is related to the correlation among points of each
trace. In the practical setting, we carry out the experiments on both software
and FPGA implementations, whose results are consistent to the simulation.

2 Trace Augmentation

In this section, we present our trace augmentation method, and show how to
determine the suitable parameters efficiently. We stress that trace augmentation
can either work independently, or can be added prior to any other preprocessing
techniques such as PCA, in order to produce a more robust trace set.

2.1 Trace Augmentation Through Random Shift

Generally speaking, this augmentation approach manages to increase the number
of traces exploitable in profiling phase, in order to improve the robustness and
performance in profiled SCA. This is achieved through random shift of each trace
to form an expanded trace set (i.e. in this process we misalign the traces by
shifting the trace entirely). We visualized this random-shift-based augmentation
approach in Fig. 1 and we sketch its procedure as follows.

1. Shift each trace horizontally at random up to some extent (the shift ratio to
be determined later).

2. Repeat step 1 several times (corresponding to the augmentation ratio) to
yield many perturbed traces.

3. Append these new perturbed traces to original set.

Trace Augmentation 235

Before
augmentation

Augmentation
yields more traces

Shift randomly
then combine

Fig. 1. A visual illustration of trace augmentation.

The above is parameterized by the shift ratio and augmentation ratio,
denoted as γ and C respectively. The shift ratio γ, quantifies the extent of ran-
dom shift: perturb each trace with a horizontal random shift drawn uniformly
from [−γ ·d, γ ·d], where d denotes the number of leakage points. The number of
expanded traces is determined by the augmentation ratio C, shift ratio γ and the
original trace number, that is, we have that Nnew = γC · Noriginal, where Nnew

and Noriginal are the numbers of original and new added traces respectively.
Algorithm 1 presents this approach in formal details.

Intuitively, the more traces to exploit in the profiling phase the more effec-
tive the attack will be (against the target device). This motivates our approach
which, given a fixed number of traces, augments the trace set (and exploit its
information) as much as possible for a better performance in profiled SCA. The
idea to enlarge the existing trace set is to apply perturbations since enlarging the
dataset using such label-preserving method is the most straightforward yet effi-
cient way to reduce overfitting. This approach works well especially when trace
set is small. Moreover, we suggest to combine the trace augmentation approach
with some data selecting (or points of interests) method such as PCA and LDA.

2.2 Search for Appropriate Parameter Though Lazy-Validation

As illustrated above, there are two undetermined parameters (i.e., γ and C), and
it is somewhat tricky to define a general rule for to select them. We noted that the

236 S. Pu et al.

Algorithm 1. Trace augmentation
Input: original trace set L (Noriginal traces), number of leakage points d, shift

ratio γ, augmentation ratio C
Output: augmented trace set Lagmt composed of Noriginal + γ · CNoriginal

traces
1 Append L to Lagmt;
2 for i = 1 to Noriginal do
3 Generate �γC� traces by randomly shift Li;
4 /* Note that each point of same trace shares a common horizontal

shift */

5 Append the new traces to Lagmt;

6 end for
7 return Lagmt;

choice of γ affect the improvement of trace augmentation significantly, whereas
(as verified in Appendix A) the choice of the other one (i.e., C) does not change
the result much. We simply choose C = 10, and (as shown in Algorithm 2) design
a lazy-validation method to yield a conservatively appropriate value for γ. We
sketch the procedure as follows.

1. Select C = 10.
2. Split profiling traces into two (disjoint) partitions at random.
3. Perform trace augmentation on one partition with a certain shift ratio.
4. Build the template from this augmented partition.
5. Perform profiled SCA on the other partition with the template, and calculate

a guessing entropy.
6. Repeat steps 3–5 with varied shift ratios, and obtain guessing entropy for

each.
7. Select γ as the largest shift ratio that doesn’t impact the result of the attack.

The underlying intuition of this procedure is that it is safe to perturb traces
to some certain extent as long as it does not affect the performance in the
ideal setting (no misalignment between profiling and target trace). Thus, the
largest possible γ in respect of this condition can be seen as a conservative one.
The optimal value of γ is highly specific to actual target trace set, whereas our
conservative choice is in general an appropriate one universal for target traces
with different levels of misalignment.

On the other hand, such lazy-validation might cost a little more time to yield
the final parameter (γ). However, these procedures (including both augmentation
and validation) are supposed to be finished at profiling stage, and attackers
just end up getting a robust template. Therefore, attacking time will not be
lengthened in practical.

Trace Augmentation 237

Algorithm 2. Lazy-Validation
Input: original trace set L (Noriginal traces), number of leakage points d, a

vector of candidates of shift ratio Γ in ascending order
Output: an appropriate shift ratio γ̂

1 Split L into two random partitions Lprof and Lvalid;

2 Build template T from Lprof ;

3 ge0 ← CalculateGuessingEntropy(T,Lvalid);
4 γ̂ is initialized to the first element of Γ ;
5 for each γ ∈ Γ do

6 Lagmt ← TraceAugmentation(Lprof , d, γ, C = 10);
7 Build template T ′ from Lagmt;

8 ge ← CalculateGuessingEntropy(T ′,Lvalid);
9 if ge > ge0 then

10 break;
11 end if
12 γ̂ ← γ;

13 end for
14 return γ̂;

3 Experimental Results

We test our approach through simulation-based and practical experiments. In
simulation scenes, we disturb the power model of profiling and attacking stages.
Whereas in practical scenes, since changing power model is knotty to control,
we follow Whitnall and Oswald [26] and conduct the experiments by adding
misalignment between profiling and target traces. We target on the first 8 bits
of the AES’s subkey and the output of the corresponding S-box in the first round.
To evaluate the effectiveness of our method, we compute the guessing entropy
[23] for comparison; in particular, we mount attacks for 100 times on different
inputs and then compute the average rank of the correct key.

3.1 Simulation-Based Experiments

In simulation-based experiments, we assume that the leakage is subject to the
multi-variant Gaussian distribution. Thus, we choose the mean of the distribu-
tion by randomly picking numbers and rely on a refined method named ‘vine’
[16] to simulate the covariance matrix. The ‘vine’ method is an efficient way to
generate random correlation matrices, and correlations between leakage points
are controlled by a single parameter β: higher β value corresponds to the more
dependencies among points of each trace (please refer to Appendix B for more
details). In order to simulate the imperfect case where profiling and attacking
traces exist discrepancies, we perturb the (standardized) leakage function of the
exploitation trace by imposing a ‘noise’ of uniform distribution U(−5, 5). And
then we can generate the deviated exploitation trace using the perturbed leakage
function.

238 S. Pu et al.

Impacts of Correlation Among Points. Our augmentation method is fol-
lowed by LDA (reduced to only one point) to extract the points of interest and
the Gaussian template [5] building is used as the profiling phase. Figure 2 com-
pares the guessing entropies of profiled attacks by varying the power model of
profiling and target traces, using different correlation matrices (reflected by the
value of β), with and without using trace augmentation. It shows that with aug-
mentation the guessing entropies are declining much faster than those without
augmentation (γ = 0), not only in imperfect cases with noise (as expected), but
also in the ideal cases (no noise). A probable reason of this surprising result
might be that more traces (although artificial one) can be accessed in profiling
phase to overcome ‘overfitting’ issue.

Further, we can see that attacks using augmentation are more ‘insensitive’
to β and in contrast, without augmentation, attacks are much more affected and
become less effective while β decreases. We thus conclude that the effectiveness
of this approach is enhanced while correlations among points are increasing (as
β decreases). This means the power of this preprocessing method is correlated
with the characteristics of the trace itself.

(a) perfect case (without discrepancy) (b) introducing noise as discrepancy

Fig. 2. The guessing entropies by varying the distribution between profiling and target
traces (in terms of power model used), where simulation-implementation consists of 50
leaking points; 100 repetitions (to compute the guessing entropies) and 2000 profiling
traces; using Gaussian templates

Enhancing the Robust Profiling Algorithm. We combine the our new
method with the robust profiling algorithm proposed by Whitnall and Oswald
[26]. We use K-means and Differential Cluster Analysis (DCA) introducted in
[2] to perform attacks on target traces, in which the ‘optimal’ cluster number
is according to the silhouette of the attack result. And other simulation facts
are similar to the former simulation instance but β is fixed to 1.0. Figure 3
compares the guessing entropies of profiled attacks by different power models of
profiling and target traces, with and without trace augmentation. It shows that
with augmentation the guessing entropies are declining much faster than those
without augmentation (γ = 0%), even in the ideal cases (no discrepancy). We

Trace Augmentation 239

may conclude that even combining with robust algorithm (such as K-means), our
trace augmentation technique can improve the performance in profiled attacks.
Besides, we also provide comparison with another robust profiling algorithm
(named ridge-based profiling [24]) in real FPGA-based contexts later (see Fig. 6).

(a) perfect case (without discrepancy) (b) introducing noise as discrepancy

Fig. 3. The guessing entropies by varying the distribution between profiling and target
traces (with different γ), where simulation-implementation consists of 50 leaking points;
100 repetitions (to compute the guessing entropies) and 2000 profiling traces; using
cluster-based templates (K-means with DCA)

3.2 Software-Based Experiments

In software scenario, we target the AES implementation on Atmel ATMega-163
whose traces consist of 54 leakage points. Our augmentation method is followed
by PCA (to reduce to 70% principal components [6]) to extract the points of
interest and carry out the Gaussian templates building [5] as the profiling phase.
Particularly, we use Hamming weight of target values as mean values in templates
building, considering of its software implementation.

To provide a more comprehensive evaluation, we vary the parameter (of trace
augmentation) γ from 10% to 35%, and the value γ = 15% is picked by lazy-
validation of Sect. 2.2. For comparison, we also give the guessing entropies with-
out trace augmentation. In such scenes, we follow Whitnall and Oswald [26] and
conduct the experiments by adding misalignment between profiling and target
traces. Note that this ‘misalignment’ (which misalign target traces with same
points) should not be confused with ‘shift’ mentioned before.

As shown in Fig. 4, with trace augmentation the performance of attacks have
been improved in all settings even for those without misalignment. Note that
misaligns of each trace are common for the same trace set. Further, we can
see from following 6 sub-figures that the improvement of trace augmentation
becomes more significant as the misalignment increases. Another observation is
that, despite not always being the optimal, parameter γ chosen by lazy-validation
is good enough for the attacks.

240 S. Pu et al.

(a) no misalignment (b) misalignment = 5%

(c) misalignment = 10% (d) misalignment = 15%

(e) misalignment = 20% (f) misalignment = 25%

Fig. 4. The guessing entropies by varying the amount of deviation between profiling
and target traces (in terms of misalignment), where software-implementation consists
of 54 leaking points; 100 repetitions (to compute the guessing entropies) and 4000
profiling traces; using Gaussian templates

Trace Augmentation 241

(a) no misalignment (b) misalignment = 5%

(c) misalignment = 10% (d) misalignment = 15%

(e) misalignment = 20% (f) misalignment = 25%

Fig. 5. The guessing entropies by varying the amount of deviation between profiling
and target traces (in terms of misalignment), where FPGA-implementation consists
of 20 leaking points; 100 repetitions (to compute the guessing entropies) and 5000
profiling traces; using linear-regression-based profiling

242 S. Pu et al.

3.3 FPGA-Based Experiments

In hardware scenario, we target the AES implementation running on SAKURA-
X board, whose traces contain 20 leakage points. Our attack strategy is simi-
lar to the one in software-based experiments, except for using linear-regression
based profiling (in which the degree of power model is 1) from [19,25]. Compare
to Gaussian template building, linear-regression based profiling can build up a
model more efficiently with less number of measurements thus is more suitable
to the FPGA scenario (with larger noise). In such scenes, we also conduct the
experiments by adding misalignment between profiling and target traces as same
as what we do in software experiments.

As shown in Fig. 5, the results of FPGA-based experiments is very similar
to the software-based and simulation-based ones. Specifically, in the scenarios of
high misalignment, the attacks without trace augmentation hardly distinguishes

(a) no misalignment (b) misalignment = 5%

(c) misalignment = 10% (d) misalignment = 15%

Fig. 6. The guessing entropies by varying the amount of deviation between profiling
and target traces (in terms of misalignment), where FPGA-implementation consists
of 20 leaking points; 100 repetitions (to compute the guessing entropies) and 5000
profiling traces; using ridge-based profiling

Trace Augmentation 243

between correct and incorrect keys, whereas the guessing entropies with trace
augmentation still tend to zero.

The combination of trace augmentation with another known robust profiling
method is also very interesting. Thus in Fig. 6 we present the guessing entropies
of the attacks using ridge-based profiling (in which the degree of power model
is 4) from [24] when combined with trace augmentation (and other experiments
settings are same as the former one using linear regression based profiling).
The result shows that our trace augmentation can also improve known robust
profiling’s performance.

4 Conclusion

In this paper, we show that trace augmentation based preprocessing can effec-
tively improve the performance of profiled SCA, in both scenarios where the
profiling device either deviates significantly from (or behaves close to) the target
device. Further, we use a fast method called lazy-validation to obtain conserva-
tive but appropriate parameters. Finally, we provide simulation-based and prac-
tical experiments to confirm the effectiveness of our approach, and the former
also indicates that the improvement of our approach (over other preprocessing
techniques) depends on the correlation among points of each trace. We leave it
as future work to explore other possible ways to augment the trace without using
distortion, and whether such preprocessing strategies (if exist) can outperform
trace augmentation.

Acknowledgment. This work is supported by the National Natural Science Foun-
dation of China (Nos. 61472249, 61572149, 61572192, U1536103, 61402286, 61472250),
the Major State Basic Research Development Program (973 Plan, 2013CB338004),
the National Cryptography Development Fund MMJJ20170209, Industry & Educa-
tion & Research Cooperation Program of Minhang District (2016MH310) and Inter-
national Science & Technology Cooperation & Exchange Projects of Shaanxi Province
(2016KW-038).

A The Impact of Augmentation Ratio C

Figure 7 shows the impact of augmentation ratio C in trace augmentation, and
we can see that it is insignificant to the improvement.

244 S. Pu et al.

Fig. 7. The guessing entropies by varying augmentation ratio C in ideal scenario (no
misalignment); simulation-based experiment containing 50 leakage points; 100 repeti-
tions (to compute the guessing entropies) and 2000 profiling traces

B Correlation Matrices

‘Vine’ works in this way: off-diagonal values are derived from a beta distribution
whose parameters satisfying α = β, then perform a linear transform of these val-
ues to the interval [−1.0,+1.0] (since beta distribution is defined on the interval
[0, 1]). Correspondingly, values of correlation matrix are controlled by the single
parameter β—higher β value corresponds to the less dependencies among points
of each trace.

The correlation matrices of varied β value are provided as Fig. 8, colored
according to correlations, from [−1.0,+1.0]. It is observed that correlations
among points are enhanced as β decreasing.

Trace Augmentation 245

(a) β = 0.1 (b) β = 1

(c) β = 5 (d) β = 10

Fig. 8. Correlation matrix (50 × 50) of each β parameter: 0.1, 1, 5, 10

References

1. Archambeau, C., Peeters, E., Standaert, F.-X., Quisquater, J.-J.: Template attacks
in principal subspaces. In: Goubin, L., Matsui, M. (eds.) CHES 2006. LNCS, vol.
4249, pp. 1–14. Springer, Heidelberg (2006). https://doi.org/10.1007/11894063 1

2. Batina, L., Gierlichs, B., Lemke-Rust, K.: Differential cluster analysis. In: Clavier,
C., Gaj, K. (eds.) CHES 2009. LNCS, vol. 5747, pp. 112–127. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-04138-9 9

3. Batina, L., Hogenboom, J., van Woudenberg, J.G.J.: Getting more from PCA:
first results of using principal component analysis for extensive power analysis.
In: Dunkelman, O. (ed.) CT-RSA 2012. LNCS, vol. 7178, pp. 383–397. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-27954-6 24

4. Bruneau, N., Guilley, S., Heuser, A., Marion, D., Rioul, O.: Less is more - dimen-
sionality reduction from a theoretical perspective. In: Güneysu, T., Handschuh,
H. (eds.) CHES 2015. LNCS, vol. 9293, pp. 22–41. Springer, Heidelberg (2015).
https://doi.org/10.1007/978-3-662-48324-4 2

5. Chari, S., Rao, J.R., Rohatgi, P.: Template attacks. In: Kaliski, B.S., Koç, K.,
Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 13–28. Springer, Heidelberg
(2003). https://doi.org/10.1007/3-540-36400-5 3

https://doi.org/10.1007/11894063_1
https://doi.org/10.1007/978-3-642-04138-9_9
https://doi.org/10.1007/978-3-642-27954-6_24
https://doi.org/10.1007/978-3-662-48324-4_2
https://doi.org/10.1007/3-540-36400-5_3

246 S. Pu et al.

6. Choudary, O., Kuhn, M.G.: Efficient template attacks. In: Francillon, A., Rohatgi,
P. (eds.) CARDIS 2013. LNCS, vol. 8419, pp. 253–270. Springer, Cham (2014).
https://doi.org/10.1007/978-3-319-08302-5 17

7. Choudary, O., Kuhn, M.G.: Template attacks on different devices. In: Prouff,
E. (ed.) COSADE 2014. LNCS, vol. 8622, pp. 179–198. Springer, Cham (2014).
https://doi.org/10.1007/978-3-319-10175-0 13

8. Ciresan, D.C., Meier, U., Masci, J., Gambardella, L.M., Schmidhuber, J.: High-
performance neural networks for visual object classification. CoRR abs/1102.0183
(2011)

9. Ciresan, D.C., Meier, U., Schmidhuber, J.: Multi-column deep neural networks for
image classification. In: 2012 IEEE Conference on Computer Vision and Pattern
Recognition, Providence, RI, USA, 16–21 June 2012, pp. 3642–3649 (2012)

10. Elaabid, M.A., Guilley, S.: Portability of templates. J. Crypt. Eng. 2(1), 63–74
(2012)

11. Kocher, P.C.: Timing attacks on implementations of Diffie-Hellman, RSA, DSS,
and other systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp.
104–113. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-68697-5 9

12. Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999).
https://doi.org/10.1007/3-540-48405-1 25

13. Kocher, P.C., Jaffe, J., Jun, B., Rohatgi, P.: Introduction to differential power
analysis. J. Crypt. Eng. 1(1), 5–27 (2011)

14. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep con-
volutional neural networks. In: Advances in Neural Information Processing Sys-
tems 25: 26th Annual Conference on Neural Information Processing Systems 2012.
Proceedings of a Meeting Held December 3–6, 2012, Lake Tahoe, NV, USA, pp.
1106–1114 (2012)

15. Lerman, L., Bontempi, G., Markowitch, O.: A machine learning approach against
a masked AES - reaching the limit of side-channel attacks with a learning model.
J. Crypt. Eng. 5(2), 123–139 (2015)

16. Lewandowski, D., Kurowicka, D., Joe, H.: Generating random correlation matrices
based on vines and extended onion method. J. Multivar. Anal. 100(9), 1989–2001
(2009)

17. Merino Del Pozo, S., Standaert, F.-X.: Blind source separation from single mea-
surements using singular spectrum analysis. In: Güneysu, T., Handschuh, H. (eds.)
CHES 2015. LNCS, vol. 9293, pp. 42–59. Springer, Heidelberg (2015). https://doi.
org/10.1007/978-3-662-48324-4 3

18. Sánchez, J., Perronnin, F.: High-dimensional signature compression for large-scale
image classification. In: The 24th IEEE Conference on Computer Vision and Pat-
tern Recognition, CVPR 2011, Colorado Springs, CO, USA, 20–25 June 2011, pp.
1665–1672 (2011)

19. Schindler, W., Lemke, K., Paar, C.: A stochastic model for differential side channel
cryptanalysis. In: Rao, J.R., Sunar, B. (eds.) CHES 2005. LNCS, vol. 3659, pp.
30–46. Springer, Heidelberg (2005). https://doi.org/10.1007/11545262 3

20. Simard, P.Y., Steinkraus, D., Platt, J.C.: Best practices for convolutional neural
networks applied to visual document analysis. In: 7th International Conference on
Document Analysis and Recognition (ICDAR 2003), Edinburgh, Scotland, UK,
3–6 August 2003, vol. 2, pp. 958–962 (2003)

https://doi.org/10.1007/978-3-319-08302-5_17
https://doi.org/10.1007/978-3-319-10175-0_13
https://doi.org/10.1007/3-540-68697-5_9
https://doi.org/10.1007/3-540-48405-1_25
https://doi.org/10.1007/978-3-662-48324-4_3
https://doi.org/10.1007/978-3-662-48324-4_3
https://doi.org/10.1007/11545262_3

Trace Augmentation 247

21. Standaert, F.-X., Archambeau, C.: Using subspace-based template attacks to com-
pare and combine power and electromagnetic information leakages. In: Oswald, E.,
Rohatgi, P. (eds.) CHES 2008. LNCS, vol. 5154, pp. 411–425. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-85053-3 26

22. Standaert, F.-X., Koeune, F., Schindler, W.: How to compare profiled side-channel
attacks? In: Abdalla, M., Pointcheval, D., Fouque, P.-A., Vergnaud, D. (eds.) ACNS
2009. LNCS, vol. 5536, pp. 485–498. Springer, Heidelberg (2009). https://doi.org/
10.1007/978-3-642-01957-9 30

23. Standaert, F.-X., Malkin, T.G., Yung, M.: A unified framework for the analysis of
side-channel key recovery attacks. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS,
vol. 5479, pp. 443–461. Springer, Heidelberg (2009). https://doi.org/10.1007/978-
3-642-01001-9 26

24. Wang, W., Yu, Y., Standaert, F.-X., Gu, D., Sen, X., Zhang, C.: Ridge-based
profiled differential power analysis. In: Handschuh, H. (ed.) CT-RSA 2017. LNCS,
vol. 10159, pp. 347–362. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-52153-4 20

25. Whitnall, C., Oswald, E.: Profiling DPA: efficacy and efficiency trade-offs. In:
Bertoni, G., Coron, J.-S. (eds.) CHES 2013. LNCS, vol. 8086, pp. 37–54. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-40349-1 3

26. Whitnall, C., Oswald, E.: Robust profiling for DPA-style attacks. In: Güneysu, T.,
Handschuh, H. (eds.) CHES 2015. LNCS, vol. 9293, pp. 3–21. Springer, Heidelberg
(2015). https://doi.org/10.1007/978-3-662-48324-4 1

https://doi.org/10.1007/978-3-540-85053-3_26
https://doi.org/10.1007/978-3-642-01957-9_30
https://doi.org/10.1007/978-3-642-01957-9_30
https://doi.org/10.1007/978-3-642-01001-9_26
https://doi.org/10.1007/978-3-642-01001-9_26
https://doi.org/10.1007/978-3-319-52153-4_20
https://doi.org/10.1007/978-3-319-52153-4_20
https://doi.org/10.1007/978-3-642-40349-1_3
https://doi.org/10.1007/978-3-662-48324-4_1

Author Index

Agoyan, Michel 180
Akram, Raja Naeem 142

Beckers, Arthur 196
Benini, Luca 88
Biryukov, Alex 22
Bohadana, Michael 1

Carlet, Claude 123
Chmielewski, Łukasz 213
Cojocar, Lucian 160

Ding, A. Adam 105
Dinu, Daniel 22
Durvaux, Francois 105

Elovici, Yuval 1

Fei, Yunsi 105

Gan, Jie 232
Gierlichs, Benedikt 42, 196
Gu, Dawu 232
Guilley, Sylvain 123
Guo, Qian 123
Guo, Zheng 232
Gürkaynak, Frank K. 88
Gurulian, Iakovos 142

Hancke, Gerhard P. 142

Korak, Thomas 88

Le Corre, Yann 22
Li, Yang 51
Liu, Junrong 232

Madau, Maxime 180
Mangard, Stefan 88
Markantonakis, Konstantinos 142

Mathov, Yael 1
Maurine, Philippe 180
Muehlberghuber, Michael 88

Nascimento, Erick 213

Oren, Yossi 1
Oswald, Elisabeth 70

Papagiannopoulos, Kostas 160
Poussier, Romain 123
Pu, Sihang 232

Reparaz, Oscar 42

Schilling, Robert 88
Shwartz, Omer 1
Standaert, François-Xavier 105, 123
Sun, Degang 70

Timmers, Niek 160

Udovenko, Aleksei 22
Unterluggauer, Thomas 88

Verbauwhede, Ingrid 196

Wang, Jian 51
Wang, Lingyun 232
Wang, Shuang 51
Wang, Weijia 232
Wang, Zhibin 51
Wang, Zhu 70
Whitnall, Carolyn 70

Yu, Yu 232

Zhang, Liwei 105
Zhou, Xinping 70

	Preface
	CARDIS 2017 16th International Conference on Smart Card Research and Advanced Applications Lugano, Switzerland November 13–15, 2017
	Abstracts of Invited Talks
	White-Box Cryptography
	Post-quantum Cryptography
	Contents
	Opening Pandora's Box: Effective Techniques for Reverse Engineering IoT Devices
	1 Introduction
	1.1 Related Work
	1.2 Embedded Device Software Architectures

	2 Reverse Engineering Methodology
	2.1 Inspection of the Device
	2.2 Extraction of Firmware and Data
	2.3 Analyzing the Firmware

	3 Results
	3.1 Devices Under Inspection
	3.2 Techniques Used on Devices
	3.3 Discoveries Made During the Evaluation

	4 Analysis
	4.1 Extension of Existing Attacks into New Platforms
	4.2 Possible Theoretical Attacks
	4.3 Constructive Uses to the Reverse Engineering Process

	5 Discussion
	5.1 Recommendations for Implementers
	5.2 Conclusion

	References

	Optimal First-Order Boolean Masking for Embedded IoT Devices
	1 Introduction
	2 Search Algorithm
	2.1 The Algorithm
	2.2 Results

	3 Applications
	3.1 Modular Addition and Subtraction
	3.2 Other Applications

	4 Implementations
	4.1 Masked Addition
	4.2 Lightweight Block Ciphers

	5 Conclusion
	A Leakage Assessment
	References

	A First-Order Chosen-Plaintext DPA Attack on the Third Round of DES
	1 Introduction
	2 A First-Order Chosen-Plaintext DPA Attack on the Third Round of DES
	2.1 Step 1
	2.2 Step 2

	3 Implementation
	3.1 Step 1
	3.2 Step 2

	4 Discussion
	5 Conclusion
	References

	A Strict Key Enumeration Algorithm for Dependent Score Lists of Side-Channel Attacks
	1 Introduction
	2 Previous Key Enumeration Algorithms
	3 General Key Enumeration Problem with Dependent Score Lists
	3.1 Significance of General Key Enumeration Problem

	4 Strict Key Enumeration Algorithms for Dependent Score Lists
	4.1 Strict Key Enumeration Algorithm for Independent Score Lists
	4.2 Attempt to Extend 2-Dimensional KE Algorithm to 3-Dimensional KE Algorithm
	4.3 Strict 3-Dimensional Key Enumeration Algorithm
	4.4 General Strict Key Enumeration Algorithm for AES-128

	5 Evaluations of Key Enumeration Algorithm Using Simulated Data
	5.1 Complexity Evaluation
	5.2 Performance Evaluation for KE of Dependent Score Lists

	6 Conclusions
	References

	A Novel Use of Kernel Discriminant Analysis as a Higher-Order Side-Channel Distinguisher
	1 Introduction
	1.1 Outline

	2 Preliminaries
	2.1 Differential Power Analysis
	2.2 Masking
	2.3 Kernel Discriminant Analysis

	3 Methodology
	3.1 General Approach
	3.2 Theoretical Rationale
	3.3 Experimental Validation

	4 Discussion
	4.1 Complexity Analysis
	4.2 Flexible Power Model
	4.3 Limitations and Possibilities

	5 Conclusions and Future Perspectives
	References

	Leakage Bounds for Gaussian Side Channels
	1 Introduction
	2 Modeling Side-Channel Leakage as a Communication Channel
	2.1 Attack Model
	2.2 Mutual Information
	2.3 Linear Channel Model
	2.4 Leakage Bound for Gaussian Side Channels
	2.5 Description of Common Leakage Models

	3 Complexity of State Recovery
	3.1 Attack Model
	3.2 Averaging Attacker
	3.3 Expected Minimum Attack Complexity

	4 Experimental Verification and Security Analysis
	4.1 Evaluation Hardware: Fulmine
	4.2 Soundness of Model and Bounds
	4.3 Security of ISAP

	5 Conclusion
	References

	Towards Sound and Optimal Leakage Detection Procedure
	1 Introduction
	2 Background and Model Notations
	2.1 TVLA Procedure as a mini-p Testing Method
	2.2 Univariate Tests: -test, t-Test, Specific versus Nonspecific Tests

	3 Methodology
	3.1 Threshold Setting in the mini-p Procedure
	3.2 Higher Criticism
	3.3 HC Framework

	4 Theory on Optimal Leakage Procedure Using HC
	4.1 Optimality of the HC Procedure in Mixture Gaussian Testing
	4.2 Leakage Detection Boundaries and Optimal Procedures

	5 Numerical Results
	5.1 Validation on Synthetic Data
	5.2 Leakage Detection on Real Traces: Unprotected AES
	5.3 Leakage Detection on Real Traces: Masked AES

	References

	Connecting and Improving Direct Sum Masking and Inner Product Masking
	1 Introduction
	2 Connecting DSM and IP Masking
	2.1 Notations
	2.2 Inner Product Masking
	2.3 Direct Sum Masking
	2.4 Unifying DSM and IP Masking

	3 Probing Security and Bit Probing Security
	3.1 Probing Security
	3.2 Bit-Probing Security
	3.3 Inner Product and Bit-Probing Security

	4 Security Order Amplification
	4.1 Bounded Moment Model
	4.2 Security Order Amplification for IP Masking

	5 Searching for Good Codes
	5.1 Application: 8-bit Implementation of the AES

	6 Experimental Validation
	6.1 Target Implementation
	6.2 Analysing the Leakages
	6.3 Concrete Security Assessment

	References

	May the Force Be with You: Force-Based Relay Attack Detection
	1 Introduction
	2 Relay Attacks
	3 Related Work
	4 Force-Sensing PRAD
	4.1 PRAD Framework
	4.2 Threat Model

	5 Test-Bed Architecture
	6 Proximity Detection Framework
	6.1 Evaluation Methodology
	6.2 Results and Discussion

	7 Relay Attack Detection Framework
	7.1 Evaluation Methodology
	7.2 Results and Discussion

	8 Discussion and Outcome
	9 Conclusion and Future Directions
	References

	Instruction Duplication: Leaky and Not Too Fault-Tolerant!
	1 Introduction
	1.1 Motivation
	1.2 Contribution

	2 Background
	3 Related Work
	4 FI Preliminaries
	4.1 Fault Injection Background
	4.2 Experimental FI Setup
	4.3 Fault Injection Characterization

	5 Fault Injection Effectiveness
	5.1 Inaccuracies in the FI Model
	5.2 Impact of Compiler Techniques

	6 SCA of ID and Infection Countermeasures
	6.1 Information-Theoretic Evaluation of ID for SCA
	6.2 Converting Infection to ID for SCA

	7 Practical SCA Results
	7.1 Horizontal Exploitation Using CPA
	7.2 Horizontal Exploitation Using Templates

	8 Conclusion
	References

	An EM Fault Injection Susceptibility Criterion and Its Application to the Localization of Hotspots
	1 Introduction
	2 Preamble
	3 Related Works
	4 Hot-Spots Localization and EMFI Susceptibility Criterion
	4.1 The Sampling Fault Model
	4.2 Guidelines for Detecting EMFI Hotspots
	4.3 EMFI Susceptibility Criterion

	5 Validation Protocol and Experimental Results
	5.1 Devices Under Test
	5.2 Algorithm Under Test
	5.3 Figures of Merit
	5.4 Experimental Validation Protocol
	5.5 Experimental Results

	6 Conclusion
	References

	Fault Analysis of the ChaCha and Salsa Families of Stream Ciphers
	1 Introduction
	1.1 Background

	2 The ChaCha and Salsa Ciphers
	2.1 ChaCha
	2.2 Salsa

	3 Fault Attacks on ChaCha and Salsa
	3.1 Attack for the Biased Fault Model
	3.2 Attack for the Stuck-At Fault Model

	4 Simulation Results
	4.1 Biased Fault Model
	4.2 Stuck at Fault Model

	5 Conclusion
	References

	Applying Horizontal Clustering Side-Channel Attacks on Embedded ECC Implementations
	1 Introduction
	2 Attack Setup
	2.1 Target Software Implementations
	2.2 Target Device and Measurement Setup

	3 Preliminaries
	3.1 Traces Characterization
	3.2 Clustering
	3.3 Outlier Detection and Handling

	4 Horizontal Cluster Analysis Framework
	4.1 Cluster Leakage Assessment (CLA)
	4.2 Key Recovery (HCA-KR)

	5 Attack Results
	5.1 Initial Attack Evaluation Experiment
	5.2 Final Results

	6 Error Correction
	7 Countermeasures and Future Work
	A Probability of Successful Efficient Error Correction
	References

	Trace Augmentation: What Can Be Done Even Before Preprocessing in a Profiled SCA?
	1 Introduction
	1.1 Motivation
	1.2 Preprocessing Techniques
	1.3 Data Augmentation
	1.4 Our Contributions

	2 Trace Augmentation
	2.1 Trace Augmentation Through Random Shift
	2.2 Search for Appropriate Parameter Though Lazy-Validation

	3 Experimental Results
	3.1 Simulation-Based Experiments
	3.2 Software-Based Experiments
	3.3 FPGA-Based Experiments

	4 Conclusion
	A The Impact of Augmentation Ratio C
	B Correlation Matrices
	References

	Author Index

