
Benchmarking Head Pose Estimation
in-the-Wild
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Abstract. Head pose estimation systems have quickly evolved from sim-
ple classifiers estimating a few yaw angles, to the most recent regression
approaches that provide precise 3D face orientations in images acquired
“in-the-wild”. Accurate evaluation of these algorithms is an open issue.
Although the most recent approaches are tested using a few challenging
annotated databases, their published results are not comparable. In this
paper we review these works, define a common evaluation methodology,
and establish a new state-of-the-art for this problem.
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1 Introduction

We define head pose as the yaw, pitch and roll angles that determine the ori-
entation of the head in the camera reference system [13]. It has attracted much
research due to its relevance as a pre-processing step of many face analysis
tasks such as alignment of facial landmarks [2,20] or facial expressions recog-
nition [4]. It is also used in video-surveillance [11] and intrinsically linked with
human-computer interaction in social communication [12], gaze [18] and focus
of attention [1] estimation.

There are many approaches for image-based head pose estimation. Some of
them use very low resolution images [11] or 3D range data [5]. In this paper we
only consider methods that use 2D images of average or high resolution. Among
these, manifold embedding and non-linear regression techniques are possibly the
most popular ones. The former assume that separated continuous head pose sub-
spaces exist according to appearance [14]. Non-linear regression methods learn
a mapping from image features to pose angles. Random Forests [5,19] and Con-
volutional Neural Networks (CNNs) [6,10,15] are some of the most prevailing.

At present, the best performing approaches are based on CNNs. Yang
et al. [20] use a small CNN for regression of yaw, pitch and roll angles with
3 convolutional layers, 3 pooling layers and 2 fully connected layers. Ranjan
et al. [15] fuse intermediate feature layers at different resolutions, and use a multi-
task approach to detect faces, estimate facial landmarks, head pose and gender.
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The H-CNN architecture [10] uses an inception module [17] that pools and con-
catenate features from intermediate layers and is jointly trained on the visibility,
facial landmarks and head pose estimation parameters. In Table 1 we show the
performance of these approaches. Although they use the same databases, their
results cannot be immediately compared. This will be further discussed in Sect. 2.

In this paper we review the problem of estimating head pose by regressing the
yaw, pitch and roll head angles from medium/high resolution images acquired
“in-the-wild”, i.e. in realistic unrestricted conditions. Our contributions are:

– A brief survey of the best head pose estimation algorithms.
– Definition of an evaluation methodology and publicly available benchmark to

precisely compare the performance of head pose estimation algorithms.
– The establishment of the state-of-the-art on this benchmark.

2 Benchmarking Head Pose

There are many public databases with face labeled data. However very few of
them provide ground truth head pose, because of the difficulty in accurately
estimating these angles. Traditionally, pose estimation algorithms have been
evaluated with databases acquired in laboratory conditions and with impre-
cise angular information [13]. Later, more realistic and accurate data-sets such
as AFLW [8] emerged. They have images in challenging real-world situations
acquired without any position, illumination or quality restriction.

Here we propose the use of three databases:

– AFLW [8]. It contains a collection of 25993 faces acquired in an uncontrolled
scenario with head poses ranging between ±120◦ for yaw and ±90◦ for pitch
and roll angles. It provides a mean face 3D structure and manual annota-
tions for 21 face landmarks. We compute the pose angles from the labeled
landmarks using the POSIT algorithm [3] and assuming each face has the 3D
structure of the mean face.
We have found several annotations errors and, consequently, removed these
faces from our benchmark. From the remaining faces we randomly choose
21074, 2068 and 1000 instances for training, validation and testing respec-
tively. These images will be available after publication.

– AFW [21]. This small database has been traditionally used only for testing
purposes. It has 250 images with 468 faces in quite challenging settings. It
provides discrete yaw labels ranging from −90◦ to 90◦ with 15◦ intervals, plus
the facial bounding box. These labels were manually annotated, hence often
they are not very accurate.

– 300W1. It includes 689 challenging faces obtained from the testing subsets
of other databases (HELEN, LFPW and IBUG). This is the most popular
face alignment benchmark. It provides face bounding boxes and 68 manually
annotated landmarks. It does not provide any pose information.

1 https://ibug.doc.ic.ac.uk/resources/300-W/.

https://ibug.doc.ic.ac.uk/resources/300-W/
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We use again AFLW mean 3D face and the POSIT algorithm [3] to estimate
the three pose angles for each face instance. This data-set will also be publicly
available.

Table 1. Head pose estimation published results. For AFLW and 300W we show the
Mean Absolute Error (MAE) in degrees. For AFW we show the classification success
rate.

Method AFLW (MAE) AFW 300 W (MAE)

Yaw Pitch Roll Yaw Yaw Pitch Roll

Peng et al. [14] - - - 86.3% - - -

Valle et al. [19] 12.26◦ - - 83.54% - - -

Gao et al. [6] 6.60◦ 5.75◦ - - - - -

Yang et al. [20] - - - - 4.20◦ 5.19◦ 2.42◦

Ranjan et al. [15] 7.61◦ 6.13◦ 3.92◦ 97.7% - - -

Kumar et al. [10] 6.45◦ 5.85◦ 8.75◦ 96.67% - - -

In Table 1 we show the published results of the best head pose estimation
algorithms. AFLW figures are not comparable among any of the cited works.
Some select 1000 test images at random and use the rest for training [10,15].
Valle et al. [19] chose 10% of the images for testing and the rest for training. Gao
et al. [6] use 15561 randomly chosen image faces for training and the remaining
7848 for testing. Moreover, none of these AFLW subsets are publicly available,
hence it is impossible to make a fair comparison among any of these approaches.

Similarly, the results for AFW are not comparable. Some approaches test on
the whole database [15,19]. However, each was trained on a different subset of
AFLW. Moreover, Kumar et al. [10] test on the 341 images whose height is larger
than 150 pixels. Peng et al. [14] test on a different set of 459 faces.

Finally, the head pose labels for 300 W are not available. Yang [20] com-
putes them from an average face composed of 49 3D points. Unfortunately, this
information is not public.

In summary, to have comparable results all algorithms should use the same
train, validation and test data-sets. For our benchmark we propose to use a
single train and validation data-set composed respectively by 21074 and 2068
face images randomly chosen from AFLW. For testing we have three data-sets:
the AFLW test is performed on the remaining 1000 images; when testing with
AFW and 300 W we use respectively all 468 and 689 faces from AFW and 300 W
test sets.

Note also that our labels may also have small errors caused by the assumption
that all faces have the same 3D structure.
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3 Experiments

3.1 Methodology

Following the models used by the best published results [6,10,15,20], we use
a distributed face representation extracted from a deep CNN. Training such a
model from scratch requires a large amount of data and computing power. The
usual approach in computer vision is to use a general architecture already trained
on a related problem and fine-tune it for the task at hand (see Fig. 1).

Fig. 1. Transfer learning methodology to fine-tune ImageNet generic weights.

To build our baseline regressors we use AlexNet [9], GoogLeNet [17],
VGG [16] and ResNet [7] trained architectures, top performers in the image
classification task of the ILSVRC competition. AlexNet was also used by
Ranjan et al. [15], GoogLeNet by Kumar et al. [10], and VGG-Net2 by Gao
et al. [6]. In each architecture we change the last 1000 units Softmax classifica-
tion layer with an Euclidean Loss layer with three units for modeling the yaw,
pitch and roll angles.

For fine-tuning and evaluation we use the Caffe framework with a GeForce
GTX 1080 (8 GB) graphics processor. We followed the same procedure for each
model. We use Nesterov Accelerated Gradient Descent (NVG) method, initialize
the learning rate to α = 10−5 and reduce it with γ = 0.1 factor after “step size”
iterations (see Table 2). Momentum was set to μ = 0.9. Table 2 reports the
remaining optimization of parameters for each architecture. We optimize the
GPU memory occupation by setting the batch length and number of iterations
on the basis of the network size. So, large networks use a small batch and larger
number of iterations (see Table 2). The network weights used for tests are those
at the last iteration. They will be publicly available after publication.

2 They used VGG-Face, a VGG-16 architecture trained on the VGG face database.
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Table 2. Training parameter values for each architecture.

Model Image size Iterations Weight decay Step size Batch

AlexNet [9] 227× 227 25000 0.0005 10000 24

GoogLeNet [17] 224× 224 25000 0.005 10000 24

VGG-16 [16] 224× 224 25000 0.0005 10000 24

VGG-19 [16] 224× 224 25000 0.005 10000 24

ResNet-50 [7] 224× 224 63000 0.000005 21000 10

ResNet-101 [7] 224× 224 126000 0.000005 42000 5

ResNet-152 [7] 224× 224 252000 0.005 84000 2

It takes 8 h for fine tuning the parameters of the largest net, ResNet-152, and
process test images on average at a rate of 4 FPS. In Fig. 2 we show a pair of
learning curves for VGG-19 and ResNet-152 architectures. Validation curves are
more stable because we always process all test images. However, depending on
the batch, the training performance has a larger variance. Vertical dashed red
lines mark the number of iterations required to complete an epoch.

Fig. 2. Sample learning curves for VGG-19 and ResNet-152 architectures.

In Table 3 we present the results of the baseline classifiers for each network
architecture. In general, these results confirm that the deeper the representa-
tion, the better the performance. This is a well-known fact in the deep learning
literature [7].

In AFLW we use the Mean Absolute Error (MAE) of each angle as evaluation
metric. Hence, the baseline model using AlexNet achieves better performance
than Ranjan et al. [15]. Similarly, GoogLeNet results improve those by Kumar
et al. [10]. For VGG-16, results are only marginally better thank those by Gao
et al. [6], although our net was trained on the more general ImageNet data-set.

In AFW, since it provides discrete labels, we use as metric the classification
success rate. Here, although again the results are also not strictly comparable,
the models by Kumar et al. [10] and Ranjan et al. [15] improve those achieved
by our baseline classifiers. This is surprising since in the more precise AFLW
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Table 3. Head pose baseline estimation results.

Method AFLW (MAE) AFW 300 W (MAE)

Yaw Pitch Roll Yaw Yaw Pitch Roll

AlexNet [9] 6.28◦ 5.02◦ 3.36◦ 86.32% 6.86◦ 6.61◦ 5.82◦

GoogLeNet [17] 6.40◦ 5.31◦ 3.74◦ 95.51% 5.71◦ 7.99◦ 6.85◦

VGG-16 [16] 6.23◦ 4.96◦ 3.35◦ 85.68% 6.35◦ 7.02◦ 5.98◦

VGG-19 [16] 5.78◦ 4.79◦ 3.20◦ 94.23% 5.56◦ 6.35◦ 4.65◦

ResNet-50 [7] 6.00◦ 4.90◦ 3.14◦ 94.44% 5.71◦ 5.91◦ 3.23◦

ResNet-101 [7] 5.59◦ 4.79◦ 2.83◦ 94.44% 5.13◦ 5.87◦ 3.03◦

ResNet-152 [7] 5.61◦ 4.79◦ 3.03◦ 94.01% 5.52◦ 6.16◦ 3.18◦

regression case, the result is the opposite. Perhaps in this case the discretization
played against our models or, since AFW was manually labeled, the annotation
error is higher. Hence, the MAE differences are less significant.

60.8 -11.7 1.5
45.0 -12.3 1.0

12.6 20.0 -2.1
-3.6 24.1 0.5

15.2 -19.8 -7.3
-2.4 -21.1 -4.5
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-35.4 5.4 5.2
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-28.4 -11.4 -14.8

Fig. 3. Representative results with yaw errors greater than 15◦ for AFLW (top), AFW
(middle) and 300W (bottom) databases. Below each image we display the yaw, pitch
and roll angle values. Green and blue colors represent respectively estimated and ground
truth angles. (Color figure online)
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The MAEs of Yang et al. [20] in 300 W, although not strictly comparable,
are better than those of our baseline classifiers. This may be caused by the fact
that they train their CNN on the 300 W training data-set and, perhaps, over-fit
to it.

Finally, in Fig. 3 we present some representative face images with head pose
estimation errors greater than 15◦ obtained using ResNet-152 architecture. As
can be noticed, sometimes the estimation seems to be more accurate than the
annotation. This may be caused by the manual annotation error.

4 Conclusions

We have surveyed the state-of-the-art on face pose estimation “in-the-wild”.
Although some of the best performing approaches use the same train and test
data-sets, their results are not comparable.

In this paper we have defined an evaluation procedure and benchmark data-
sets with images captured in unrestricted settings. We have also trained a set
of CNN-based classifiers that provide baseline results for our benchmark. The
results in Table 3 represent the reproducible state-of-the-art for this problem.

The model based on the deepest network architecture, ResNet, provides the
best overall performance. Hence, confirming that deeper representations have
better generalization capabilities. When confronted with the best published
results in the literature, although not strictly comparable, the ResNet model
achieves better performance in the challenging AFLW dataset.

By making publicly available the baseline classifiers and the benchmark data-
sets, we expect that future algorithms will be compared on fair grounds.
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