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Abstract. Cerebral autoregulation (CA) represents the brain’s capacity to
maintain the cerebral blood flow constant, independent of the activities realized
by an individual. There are pathologies like Alzheimer, vascular dementia,
ischemic stroke, subarachnoid haemorrhage and severe brain injury, where a
degradation of CA can be found. Despite limited understanding of its physio-
logical basis, assessment of CA is relevant for diagnosis, monitoring and
treating some of these pathologies. CA modelling is done by using mean arterial
blood pressure (MABP) as input and cerebral blood flow velocity (CBFV) as
output; the standard model used is transfer function analysis, although CA has
been modelled with support vector machines (SVM) and other methods. In this
work a resistive-capacitive model (R-C) is presented where parameters can be
estimated from MABP and CBFV signals through Genetic Algorithms (GA),
comparing its discrimination capacity against SVM models. Signals from 16
healthy subjects were used with 5 min of spontaneous variations (SV) and
5 min breathing oxygen with 5% of CO2 (hypercapnia). Results show that both
models can capture CA and the degradation induced by hypercapnia. Using the
autoregulation index (ARI), the R-C model discriminates with a ROC area of
0.89 against 0.72 from SVM, thus representing a promising alternative to
assess CA.
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1 Introduction

Human brain is sensitive to changes in its blood supply, where low cerebral blood flow
(CBF ischemia) could lead to loss of consciousness or even death after few minutes. On
the other hand excessive CBF could generate damage on the vessels and cerebral tissue
through intracranial hypertension or even hemorrhage. The mechanism that controls the
level of blood flow in the brain (associated to the energy consumption) independently
of changes in MABP is known as cerebral autoregulation (CA). In patients with
Alzheimer, vascular dementia, ischemic brain stroke, and severe head injury, a
degradation of CA has been reported, but detailed modelling of this system remains
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challenging. In the 80s, the appearance of transcranial Doppler [1] opened up the
possibility of CA assessment through maneuvers to induce changes in MABP of the
subject to get an autoregulatory response [2–5]. These maneuvers are not always
applicable therefore models that can captures CA at rest, based on spontaneous vari-
ations (SV), for example using transfer function analysis (TFA) have been widely used
[3, 6, 7] other non-linear models such as neural networks, Wiener-Laguerre and SVM
[3, 8, 9] had allowed improvements in performance and the comprehension of this
phenomenon during SV. CA is often evaluated through the response of a theoretical
inverse step of MABP, measuring the recovering of CBFV levels by using an
autoregulation index ARI [10]. The lack of more physiological information related to
the understanding of CA, and the high complexity of black box models such as SVM,
makes it attractive to present a new model that parameterizes resistive and capacitive
components (R-C), which could provide greater understanding of the underlying
physiology, by using genetic algorithms (GA). To evaluate CA, the subject breathes
oxygen with 5% of CO2 which produces CA degradation by the effect of CO2 over the
vessels [2, 11]. Considering data of healthy subjects that inhaled CO2, two hypotheses
arise: first, a GA allows learning human cerebral autoregulation pattern by using a
resistive-capacitive model. Second, GA applied over a resistive-capacitive model can
discriminate between a normal and degraded status of cerebral autoregulation, with a
ROC area greater than the one from a linear SVM.

2 Methods

2.1 CA Modelling by Using SVM

CA modelling through black box approach is implemented by using SVM under the
concept of “support vector regression” in which is done an estimation of CBFV bv tð Þ
values, based on MABP p tð Þ using a finite impulse response (FIR) structure:

bv tð Þ ¼ f ðp tð Þ; . . .; p t � np
� � ð1Þ

CBFV estimation bv tð Þ is given by a static SVM with np inputs, corresponding to the
delays number of the model. Each segments signal (SV and under CO2) is normalized
and divided in two, one part for training and the other for validation (balanced cross
validation). Trainings are done for each subject with hyper parameter’s configurations
for SVR, with its proper validation. For hyper parameter’s configurations C, m and np a
grid search is realized and using a Linear Kernel, same behaviour as TFA [6] to
compare under similar conditions. Estimated bv tð Þ and measured v tð Þ are compared
through correlation coefficient and Mean Squared Error (MSE) per each training.
Finally models are selected through normalized inverse MABP step response criteria
where the model selected is the one with higher correlation coefficient in prediction that
satisfies the physiological response of CA as shown in Fig. 1.
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Responses bv tð Þ per each subject from models are evaluated by using an autoreg-
ulatory index ARI [10], with values from 0 (absence of autoregulation) to 9 (best
autoregulation).

2.2 Proposed Model Resistive-Capacitive R-C

The standard for cerebral autoregulation modelling is based on TFA [6, 12], which
behaves as high pass filter over signals, obtaining parameters such as gain, coherence
and phase. Knowing this, the use of a resistive-capacitive circuit is proposed, imple-
menting a second-order high pass filter. MABP represents the voltage input p tð Þ and
CBF corresponds to the input current v tð Þ to C1 capacitor as shown in Fig. 2.

In this hydraulic-electric analogy, to convert CBF into velocity (CBFV), a standard
diameter of 3 mm for middle cerebral artery is considered. The resistive components of
the model are measured in mmHg s/ml (cerebrovascular resistance) and capacitive
components in ml/mmHg (possibly compliance of the vessels). The combination of the
four component’s values is presented as an optimization problem, where the MSE is
minimized in a frequency band from 0–0.2 Hz (where CA phenomenon is present)
[12], comparing CBF estimated and measured. This is a linear model, therefore the
complete signal is used for simulations (SV or CO2), without normalizing them to
estimate CBFV. Literature shows ranges of values for resistive and capacitive com-
ponents for normal subjects [13], but for CA degradations using CO2 are unknown.
Numerical approaches require initial conditions near the optimum to converge and
avoid local minimums, therefore the use of Genetic Algorithms is proposed (GA) since
they have been used in electrical circuit design [14–16], as well as hydraulic design
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Fig. 1. Theoretical response from trained SVM/R-C models to an inverse MABP step.
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Fig. 2. Proposed model for cerebral autoregulation with resistive-capacitive components.
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problems [17], similar to the R-C model proposed. Using this heuristic, a grid is
implemented to establish different ranges for the initial conditions per each component
of the model, where each element of the initial population of the GA is a tuple
composed of random values (within feasible physiological ranges) following a uniform
distribution for R1, R2, C1 and C2 with which the simulation of the circuit will get a
CBFV estimated per each tuple. GA will have a finish condition given by the number
of generations of the algorithm or by not finding a difference greater than the millionth
part in the MSE. Per each combination of initial conditions for the model, the best
model from GA is obtained. To evaluate their learning of CA pattern, an inverse
MABP step is applied to the model, with its maximum and minimum values got from
the subject’s signal, and a model’s response is obtained by measuring CBFV (Fig. 1).
Following the same selection process than SVM and calculating ARI after that.

2.3 Subjects and Measurements

Sixteen healthy subjects aged 31.8 ± 8.5 years were studied. None of them had a
history of hypertension, diabetes, migraine, epilepsy or any other cardiovascular or
neurologic disease. The study was approved by the Leicestershire Research Ethics
Committee and informed consent was obtained in all cases [11]. CBFV-measured was
recorded in the right MCA with transcranial Doppler (Scimed QVL-120) using a
2 MHz transducer. ABP was measured non-invasively using arterial volume clamping
of the digital artery (Finapres 2300 Ohmeda). The signals CBFV-measured and ABP
were recorded for 5 min for SV followed by 5 min recording while subjects breathed a
combination of oxygen and 5% of CO2 inducing an hypercapnic status. By using
average’s heart beat interpolation from CBFV-measured and ABP, CBFV and MABP
are obtained, sampled at 5 Hz. To evaluate the proposed hypotheses different measures
are used. First an analysis of inverse MABP step response dynamic from models will
be realized, followed by repeated measures ANOVA for models between SV and CO2

conditions using ARI. Finally a ROC curve will be obtained for models RC and SVM
to compare their area under the curve.

3 Results

FIR-SVM obtained from a parameter’s grid search that learns physiological CA pattern
gives the following results shown in Table 1.

Table 1. Statistical mode, mean values, parameter’s standard deviation and SVM metrics.

Parameter/metric SV 5% CO2

Mode np 4 [1–8] 8 [1–8]

C 303.5 ± 986.67 46.25 ± 84.7
m 0.32 ± 0.59 0.41 ± 0.34
Correlation coefficient 0.59 ± 0.17 0.66 ± 0.18
ARI 6.29 ± 0.79 5.4 ± 1.05
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Based on component’s values under normal conditions of subjects obtained from
[13], an initial condition grid is defined where the ranges for the components are
R1 = [0.5–100]; R2 = [0.01–1; 1–100]; C1 = [0.02–2; 2–200]; C2 = [0.01–1; 1–100]
realizing 8 executions of GA based on the initial conditions. Calibrating the GA the
size of population changed from 50 to 400, and GA generations from 25 to 175 without
finding greater differences in correlation or MSE in prediction, however a population of
300 and 125 generations are selected due present greater classification power between
normal and CO2 conditions as shown in Table 2.

Average Inverse MABP step response to evaluate CA is shown on Fig. 3 for R-C
and SVM models, trained with SV and CO2 signals, in which the suddenly CBFV drop
happens at 5 s and stabilize at different levels depending on the signal used in training.

Table 2. Mean values and standard deviation of best R-C models per subject.

Parameter/metric SV 5% CO2

R1 mmHg s/ml 40.22 ± 28.00 19.78 ± 16.03
R2 mmHg s/ml 5.31 ± 8.8 8 ± 24.13
C1 ml/mmHg 37.09 ± 50.19 74.07 ± 64.43
C2 ml/mmHg 7.47 ± 22.79 6.79 ± 19.2
Correlation Coef. 0.53 ± 0.17 0.52 ± 0.19
Correlation Coef. [0–0.2 Hz] 0.53 ± 0.17 0.56 ± 0.22
ARI 5.54 ± 2.01 1.92 ± 2.21

Fig. 3. Inverse average step response from R-C and SVM models adjusted under SV and CO2

signals.
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A repeated measures ANOVA, shows differences for models under both conditions
(SV and CO2) with p-value = 0.00034, Fig. 4.

Post-hoc Tukey analysis shows differences for R-C and SVM models
p-value = 0.000186 and p-value = 0.014 respectively.

Also the area under the ROC curve was calculated where R-C models have 0.89
against 0.73 from SVM.

4 Discussion

SVM achieves an accuracy to estimate CBFV of 0.59 in correlation during SV and
slightly higher under CO2, while R-C model presents a correlation near of 0.53 for both
conditions (SV and CO2). The dynamic of the inverse MABP step response with a drop
at 5 s, applied over both models shows a normal autoregulation response for healthy
subjects under normal conditions (SV). SVM responses under CO2 show a behaviour
where after the drop it tends to raise and then stabilize, while R-C response during CO2

drops and keeps in the bottom showing a clear CA degradation.
R-C model’s initial conditions grid enables feasible ranges per each component in

which the combination allows valid physiological responses, decreasing the number of
models to evaluate and giving clarity to the search process.

Repeated measures ANOVA tells that both models present differences among SV
and CO2 conditions. Post-hoc Tukey, shows that despites both models present differ-
ences between subject’s conditions, R-C models discriminate more markedly with a
p-value much lower. Therefore both models can capture CA during SV, but there are
differences between models on capturing CA degradations under CO2. ROC area from
R-C model is 17% larger than SVM which validates the better classification power of
the proposed model.

Fig. 4. Repeated measures ANOVA for R-C and SVM models between SV and CO2
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Limitations of this work makes it necessary to perform comparisons between R-C
model and SVM trained with CBFV under the same frequency band, because the
higher correlation of SVM could be given by higher frequencies than the CA phe-
nomenon and therefore out of a range where the information of CA degradation is
contained. Considering future works, R-C model could have a physiological meaning
from the cerebral haemodynamics perspective, since in Table 2 can be observed a
marked difference in the values of R1 and C1 among SV and CO2. Therefore, the
components R1, R2, C1 and C2 could be studied individually or together because of the
possibility of classifying subjects in different conditions even better than ARI and
improve the understanding of CA. Another approach to be investigated is the use of a
non-linear RC model to be implemented and compared against non-linear models
previously proposed [3, 8, 9].

5 Conclusions

An R-C model has been presented by using an hydraulic-electric analogy through
genetic algorithms to learn the pattern of cerebral blood flow changes in response to
fluctuations in arterial blood pressure. This model also discriminates between normal
and degraded CA conditions (CO2) better than SVM, validating both hypotheses
proposed in this work. From these results, new clinical applications will allow
improvements in differentiating subject’s condition through simulations based on
measured data from subject/patient, improving comprehension of CA phenomenon in
normal as well as pathological conditions.
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