Viper: Communication-Layer Determinism
and Scaling in Low-Latency Stream Processing

Ivan Walulya®™ Yiannis Nikolakopoulos, Vincenzo Gulisano®,
Marina Papatriantafilou®, and Philippas Tsigas

Chalmers University of Technology, Gothenburg, Sweden
{walulya, ioaniko,vinmas,ptrianta, tsigas}@chalmers .se

Abstract. Stream Processing Engines (SPEs) process continuous
streams of data and produce up-to-date results in a real-time fashion,
typically through one-at-a-time tuple analysis. When looking into the
vital SPE processing properties required from applications, determinism
has a strong position besides scalability in throughput and low process-
ing latency. SPEs scale in throughput and latency by relying on shared-
nothing parallelism, deploying multiple copies of each operator to which
tuples are distributed based on the semantics of the operator. The coor-
dination of the asynchronous analysis of parallel operators required to
enforce determinism is then carried out by additional dedicated sorting
operators. In this work we shift such costly coordination to the com-
munication layer of the SPE. Specifically, we extend earlier work on
shared-memory implementations of deterministic operators and provide
a communication module (Viper) which can be integrated in the SPE
communication layer. Using Apache Storm and the Linear Road bench-
mark, we show the benefits that can be achieved by our approach in terms
of throughput and energy efficiency of SPEs implementing one-at-a-time
analysis.

Keywords: Data streaming - Low-latency
Shared-nothing and shared-memory parallelism
Stream processing engines

1 Introduction

Data streaming emerged to meet the stringent demands of massive on-line data
analysis in a variety of contexts, such as cloud and edge-computing architectures.
Stream Processing Engines (SPEs) allow programmers to formulate continuous
queries, defined as Directed Acyclic Graphs of interconnected operators, that
process incoming data producing results on a continuous fashion. Examples of
such Stream Processing Engines include StreamCloud [12], Apache Storm [26],
Apache Flink [10] and Saber [19].

Parallelism is key for modern hardware to achieve high-throughput and low
latency in SPEs processing increasingly large data volumes in evolving cyber-
physical infrastructures [16]. The importance of scaling in throughput and keep-
ing low-latency processing in SPEs is clear, manifested also by work in elasticity

© Springer International Publishing AG, part of Springer Nature 2018
D. B. Heras and L. Bougé (Eds.): Euro-Par 2017 Workshops, LNCS 10659, pp. 129-140, 2018.
https://doi.org/10.1007/978-3-319-75178-8_11

http://orcid.org/0000-0002-2136-9179
http://orcid.org/0000-0001-9094-8871
http://orcid.org/0000-0001-9635-9154

130 1. Walulya et al.

of parallelism, e.g. [9,12]. With parallelization, though, careful orchestration of
operators’ execution is required to preserve determinism. An operator’s imple-
mentation is deterministic if, given the same sequences of input tuples, the same
sequence of output tuples is produced independently of the tuples’ inter-arrival
times or the degree of parallelism of the operator [14,15].

The guarantee of determinism in SPEs, under concurrent execution of par-
allel operators, relies on dedicated sorting operators that are either added to
continuous queries by dedicated query compilers [12] or in SPEs such as Apache
Storm [26], or are left to the application developers to place them within their
streaming applications. Minimizing the computational overhead introduced by
such dedicated operators (we refer to this as operator-layer determinism) is nev-
ertheless challenging, especially for one-at-a-time, fine-grained low latency tuple
processing. We address the issue of guaranteeing determinism in a modular,
automated and efficient way. We start from the observation that, commonly in
SPEs, each physical stream is piped from a producer (e.g., an incoming link
from a sensor, or an outgoing link of an operator instance) to its consumer
(another operator instance), without coordination or sharing state. Sharing and
synchronizing efficiently in an automated way is the challenging key to provide
a transparent determinism method to application developers, alleviating them
from the responsibility of developing custom solutions and proof argumentation
as required.

ScaleGate [15] is a data structure introduced for aggregate and join oper-
ators to guarantee determinism in a customized way. The work in this paper
builds upon it and provides the following contributions: (i) It modularly shifts
the procedure of guaranteeing determinism, from the operator-layer to the com-
munication layer of an SPE, thus relieving application developers from the bur-
den of devising application-dependent methods. (ii) It designs and implements a
module, called Viper, which can be transparently integrated in an SPE commu-
nication layer. Building on ScaleGate, it lifts the data-structure’s context into
the communication layer of an SPE architecture. From ScaleGate to Viper, the
novelty is on the transparency provided to the application developer in efficiently
guaranteeing determinism. (iii) It integrates the module in Apache Storm (as a
representative example of SPEs) and demonstrates via an extensive evaluation
the feasibility of the idea of modularly providing determinism, while caring for
efficiency in parallelism. The experimental evaluation of the proposed methodol-
ogy used the Linear Road benchmark and shows the throughput as well as energy
efficiency benefits, the latter being important with respect to sustainability of
the evolution of processing infrastructures for cyberphysical systems.

The rest of the paper is organized as follows. We present preliminary concepts
in Sect.2. We describe our proposal for distinguishing the operator layer and
communication layer in an SPE and discuss the advantages of doing that, we
also introduce the Viper module, in Sect. 3. We evaluate the benefits of the Viper
module in Sect. 4. Discuss related work and conclude in Sects. 5 and 6.

Viper: Communication-Layer Determinism and Scaling 131

2 System Model

A stream is defined as an unbounded sequence of tuples tg,tq,... sharing the
same schema composed of attributes (ts, A;,...,A,). Given a tuple t, ¢.ts repre-
sents its creation timestamp while Ay, ..., A, are application-related attributes.

Continuous queries (or simply queries in the remainder) are defined as DAGs
of operators that consume and produce tuples. Operators are distinguished into
stateless or stateful, depending on whether they keep any state that evolves
with the tuples being processed. Stateless operators include Map (to alter the
schema of tuples) and Filter (to discard or route tuples). Stateful operators
include Aggregate (to compute aggregation functions such as sum or average
over tuples) and Join (to match tuples coming from multiple streams). Due to
the unbounded nature of streams, stateful operations are computed over sliding
windows. Following the data streaming literature (e.g., [5,12,18]), we assume
that streams fed by each data source contain timestamp-sorted tuples.

The performance of an operator depends on its cost and selectivity. That
is, the average time needed to process an input tuple and (optionally) produce
any resulting output tuple and the average number of output tuples produced
upon the processing of one input tuple (e.g., an operator with selectivity 0.5 will
produce, on average, one output tuple each time it processes two input tuples).

To illustrate the aforementioned terms and notions, Fig. 1A presents a sample
streaming query from the Linear Road benchmark [4]. In this example, position
reports are forwarded by vehicles traveling on a highway. The query checks if
the report refers to a vehicle entering, leaving or changing a segment. In the
affirmative case, it updates the number of vehicles and the tolls of the involved
segments. Finally, it notifies the interested vehicles. The schema of each stream
is presented on top of the operators. Aggregate Al enriches each position report
with the previous segment observed for the same vehicle. Subsequently, Filter F
discards reports referring to vehicles that have not changed segment. Aggregate
A2 updates the count for each segment. Finally, Map M computes the toll for a
segment based on the number of vehicles in it and notifies vehicles.

A Centralized continuous query
Highway Position reports

segment <ts,id,seg> <ts,id,segA,segB> <ts,seg,count> <ts,seg,toll>
/_)H n
?/:’:Aggregate _| Filter _|Aggregate | Map S
s o= L Al F A2 I e

B Parallel continuous query

- Stream LEGEND

[] oOperator
@ Merge-sorting step

Fig. 1. Sample centralized and parallel query (Linear Road benchmark [4]).

132 1. Walulya et al.

2.1 Parallel and Deterministic Execution of Queries

A parallel version of a query, e.g. Fig.1, is desirable to cope with large and
fluctuating volume of tuples. Deterministic execution ensures that the results
produced by the parallel query are exactly the same produced by its centralized
counterpart. As explained in [12,13], determinism is enforced if the processing of
each operator composing the query is deterministic. For an operator’s processing
to be deterministic, special merge-sorting steps! are defined before each opera-
tor instance, as shown in Fig. 1B, presenting a parallel version of the centralized
query with two instances for each operator. The M steps merge-sort determinis-
tically the incoming timestamp-sorted input streams of an operator instance into
a single timestamp-sorted stream of tuples, allowing the operator instance’s exe-
cution to be deterministic independently of the arrival interleaving of its input
streams [12] by forwarding tuples when the latter are ready. Formally:

Definition 1 (ready tuple [14,15]). Let tg be the i-th tuple from timestamp-
sorted stream S;. t! is ready to be processed if tl.ts < merges,, where
mergeis = mink{tf.ts} is the minimum timestamp among the timestamps in
the set of tuples comprising the latest received tuples tf from each timestamp-
sorted stream Sy.

2.2 Performance Metrics

We consider metrics that are commonly used to assess the performance of a
streaming framework (from individual operators to queries or SPEs as a whole).
More concretely, we take into account throughput and latency [12,15], as well as
energy consumption [3]. Throughput, commonly measured in tuples per second
(t/s), represents the maximum rate at which tuples can be fed to the operators
composing a given query. Latency, commonly measured in milliseconds, repre-
sents the interleaving time between the forwarding of an output tuple and the
timestamp carried by the latest input tuple contributing to it. For the energy
consumption, we utilize RAPL energy counters [8] to measure power consump-
tion in Watts and take the average over the counter samples during an execution.

3 From Operator- to Communication-Layer Determinism

As we explained in Sect. 1, determinism is typically enforced by SPEs at the
operator layer. That is, the merge-sorting required to enforce determinism (cf.
Sect. 2) is run by dedicated operators that are deployed together with the oper-
ators defined by the application programmer. Alternatively, as we propose and
explain in this section, determinism can be achieved by the communication layer
of an SPE, used for buffering operators’ input and output tuples.

! We use the term steps rather than operators because, as shown in the following
sections, merge-sorting and routing can be both assigned to dedicated operators or
integrated in the communication layer of an SPE.

Viper: Communication-Layer Determinism and Scaling 133

To introduce layering for SPE functionality provisioning, without loss of
generality, we consider in the following the node shown in Fig. 2. The node depicts
the operators F';, A2 and M of Fig. 1B. Our discussion holds independently of
whether other operators are deployed within the SPE running the query and of
whether more than two instances are defined for each operator.

Operator layer

Communication layer

Fig. 2. Parallel query run by an SPE with operator-layer determinism.

3.1 Overheads of Operator-Layer Determinism

The deployment of dedicated merge-sorting operators in-between the query’s
operators results in an increase of the number of threads in SPEs such as
Storm [26] or Flink [10] or in scheduling overheads for SPEs with schedulers
ordering operators’ execution [1,2,12], thus degrading throughput and increasing
energy consumption. A lower throughput and a higher latency are also expected
because of the increased number of operator instances and number of queues
each tuple traverses. Using our example to provide an intuitive reasoning for
the above claim, let us observe that each tuple traverses four queues and three
operator instances from operator F to operator M (Fig. 2).

Moreover, merge-sorting operators might become the processing bottleneck.
The maximum throughput of an operator instance can be observed as long as its
preceding operators are not under-provisioned. That is, as long as the cost of its
preceding merge-sorting operator is not a bottleneck. Unfortunately, the latter’s
cost (which is in the best case logarithmic in the number of input streams [15])
might be comparable to or higher than the query’s operators. It should also be
observed that, opting for a higher degree of parallelism when an operator cannot
cope with its input rate might have a relapse on the throughput and latency of its
downstream merge-sorting operator instances (which will have to merge-sort a
higher number of input streams). For example in Fig. 2, suppose the processing
cost of operator instances A2;, A2, is higher than the cost of merge-sorting
for operator instances A2-M;, A2-Ms. The degree of parallelism for operator A2
could be increased to e.g. four instances. By doing this, each of the four instances
of operator A2-M would then be responsible for the merge-sorting of half of the
input tuples. Nevertheless, each instance of the merge-sorting operator preceding
operator M would now observe a higher cost for the merge-sorting of its input

134 1. Walulya et al.

tuples (coming from four rather than two input streams). Hence, increasing the
degree of parallelism for A2 could overload the merge-sorting of tuples feed to
M, thus decreasing, rather than increasing, the overall throughput of the query.

3.2 Benefits of Communication-Layer Determinism

The aim of communication-layer determinism is to avoid the deployment
of merge-sorting operators in between each operator and its upstream peer
instances. As shown in Fig. 3, this allows for the instances of operator F' to
be directly connected to those of operator A2. Since the merge-sorting would
still need to be run to enforce determinism, a requirement of communication-
layer determinism is to leverage threads that are already deployed by the SPE
and share such operations rather than assigning them to a dedicated one, as this
would in turn result in the previously discussed overheads. As discussed in [15],
shared-memory merge-sorting can be carried out by multiple threads in a scal-
able fashion when the cost and the relapse that merge-sorting itself introduces
is minimized by avoiding coarse-grained locking mechanisms.

[

Communication layer
(Viper)

Operator layer

Fig. 3. Parallel query run by an SPE with communication-layer determinism.

3.3 The Viper Module

The Viper module allows for communication-layer determinism and provides an
API defined by three main methods (Table1). A channel is maintained at the
Viper for any set of source operator instances Si,...,.S,, feeding a reader oper-
ator instance R (we use the term channel to refer to the data object used by a
set of operator instances to share information, such an object can be a queue or
another object). The channel, in our scheme, is either a thread-safe concurrent
queue (when exactly one source S; and the reader R are connected) or a Scale-
Gate [15] object (when at least two source operators S1, Sz and the reader R are
connected). Method add allows tuples from different sources to be merge-sorted
into a single list, assuming that each source delivers tuples in non-decreasing
timestamp order. Method getReady allows the list to be read in timestamp
order by the reader guaranteeing that only ready tuples (cf. Definition 1) will
be delivered. In this work, we extend the original ScaleGate proposing and inte-
grating a flow-control approach using special watermark tuples [17] internally
in the data structure. Such tuples are added periodically by the sources and

Viper: Communication-Layer Determinism and Scaling 135

allow the readers to acknowledge the consumption rate to the sources, through a
handshake mechanism, so that the latter can limit injection rate for slow readers.

With Viper, the merge-sorting cost is efficiently shared by the threads
assigned to the instances of a parallel operator feeding the same downstream
operator instance, thanks to its scalable probabilistically logarithmic lock-
free implementation [15], which minimizes the necessary synchronization over-

heads [6].
Table 1. API of the Viper module

Method Description
void register(channel, sources, Register a new channel, specifying its
reader) sources and the reader retrieving the

timestamp-sorted stream of ready tuples

void add(channel, sourcelD, tuple) | Add a tuple from a given sourcelD to the
specified channel

tuple getReady(channel, readerID) | Retrieve next ready tuple (if any) for the
given readerID from the specified
channel

4 Evaluation

To quantify the benefits of communication-layer determinism over operator-layer
determinism, we integrated the Viper module in Apache Storm [26], studying
its performance in terms of throughput (t/s), latency (ms) and energy consump-
tion (mJ/t). In the following, we refer to operator-layer determinism as OL and
communication-layer determinism as CL. We conducted our experiments on a
dual-socket Intel Xeon E5-2687W 3.4 GHz server, with 8 cores per socket (yield-
ing a total of 16 cores, 32 threads) and 64 GB of RAM. The server runs Scientific
Linux 6.5 (5) based on the Red Hat Enterprise Linux operating systems. We used
likwid [20] to read out RAPL Energy counters for the power metrics presented
in our evaluation. All experiments have been run using Storm version 0.9.7 and
OpenJDK Java version 1.8.0_91. The ScaleGate implementation is the one avail-
able at [23]. For channels accessed by a single source and reader (cf. Sect. 3), the
Viper module relies on Java’s ConcurrentLinkedQueue.

The evaluation runs the Linear Road benchmark [4], an established bench-
mark to study SPEs’ performance that simulates vehicular traffic on a number
of linear expressways, each composed of predefined segments. Position reports
are forwarded every 30s and carry the vehicle’s position and speed. Vehicles are
charged with a variable toll based on the traffic congestion level and the pres-
ence of accidents. The generated data is continuously processed to (i) detect
possible accidents and (ii) compute tolls and notify vehicles. We provide the
evaluation results for both a stateless (pos_rep) and a stateful (new_seg) oper-
ator of the benchmark. Operator pos_rep forwards an incoming tuple if it is a
position report. Its selectivity is 0.99. Operator new_seg checks whether a vehicle
is entering a new segment. Its selectivity is 0.34.

136 1. Walulya et al.

To study the performance of an operator, we start by deploying one instance
of such operator together with one data injector and one sink. The injector is
in charge of forwarding input tuples while maintaining the throughput statistics
(per-second averages). The sink is in charge of maintaining latency statistics
(per-second averages). This initial deployment allows us to measure the per-
formance of the operator’s centralized execution. The performance of its par-
allel counterpart depends on its parallelism degree (i.e., its number of parallel
instances) and the parallelism degree of its upstream operator (i.e., the over-
head introduced by deterministically merge-sorting the streams of the parallel
upstream operator), as discussed in Sect. 3. For this reason, we increase the num-
ber of instances both for the injector and the operator to 2, 4 and 6 (i.e., we
deploy 1 injector and 1, 2, 4 and 6 parallel operator instances, 2 parallel injectors
and 1, 2, 4 and 6 parallel operator instances, ...) for a total of 16 configurations
for each operator. The number of parallel sink instances deployed in each exper-
iment is equal to the number of parallel instances of the operator in order for
the former not to constitute a bottleneck. With OL-determinism provisioning,
a merge-sorting operator is deployed for each instance of the operator if two
or more injectors are deployed. Similarly, a merge-sorting operator is deployed
before each instance of the sink if two or more parallel operator instances are
deployed (no extra merge-sorting operators are needed for CL-determinism pro-
visioning, using the Viper module). The highest degree of parallelism for the
injector and operator is chosen so that the overall number of threads for both
OL and CL that process and forward tuples is in the same order as the number
of logical threads provided by the server.

For each configuration, we measure throughput as the number of tuples gen-
erated over each 5s period and report the average throughput per second. The
experiments are repeated 5 times; the reported values are averages over the runs
of the same configuration.

4.1 Operator pos_rep

Figure 4a presents the performance results for the pos_rep operator for CL (left
column) and OL (right column). Each sub-graph contains 4 lines, for 1, 2, 4 and
6 injectors, respectively. The upper sub-graphs present the throughput for the
increasing number of instances of the parallel pos_rep operator. The middle sub-
graphs present the latency while the lower ones present the energy consumption.

Given that operator pos_rep has a very high selectivity, almost each input
tuple results in an output tuple. Since the operator is also a light stateless
filtering operator, the cycles spent by it communicating (i.e., receiving and for-
warding tuples) are higher than those spent processing tuples. Looking at the
throughput performance of OL when one single injector is deployed, we can
observe a stable throughput lower than 600,000t/s. For the increasing number
of operator instances, the latency increases to 600ms (because the same out-
put rate is shared by an increasing number of threads, thus resulting in longer
times for output tuples to become ready) while the energy consumption sta-
bilizes around 100 W. A similar behavior can be observed for a single injector

Viper: Communication-Layer Determinism and Scaling 137

CL oL CL oL

@« t —— I
= p o
= 600 R I
s =1
2 400- % % 2 400- :%7%‘
[=2] [=2]
=] =3
<] <}
£ 200- F 200+

2000 - —o— inj.=1 —8— inj.=4 2000 4 —o— inj.=1 —8— inj.=4
> o inj=2 —— inj.=6 & e inj=2 —— inj.6
2 1500- 2 1500+
3 Iy
g 1000~ g 1000-
@ ©
- |

500 - 500+

140 4

1204

. 100-%
60 g o —o— 80-

Av. Power (W)
g
Av. Power (W)

NN

2 4 6 2 4 6 2 4 6 2 4 6
of Op. instances # of Op. instances
(a) Operator pos_rep. (b) Operator new_seg.

Fig. 4. Performance evaluation.

for CL, with a higher throughput that stabilizes at 650,000t/s and a latency
that also increases (to ~800ms). However, the energy consumption decreases to
60 W, 60% of that observed for OL, due of the channel shared by Viper between
operator instances.

A different behavior can be observed for OL and CL when an increasing num-
ber of injectors is deployed. As shown in the figure, despite the lower through-
put, due to the sorting overhead introduced to enforce determinism, CL results
in a throughput growing over 500,000 t/s while OL stabilizes around 400,000 t/s.
While still incurring in similar latency (lower in this case for CL than OL), OL’s
energy consumption grows up to 140 W while CL’s achieves a consumption of
90 W due to the shared sorting work performed by the threads already deployed.

4.2 Operator new_seg

Using the same sub-graphs of Fig. 4a, b presents the performance results for OL
and CL and operator new_seg. Differently for the stateless operator pos_rep, the
stateful operator new_seg is characterized by a lower selectivity. This implies
that, for the same input rate, the latter results in a lower output stream rate.

138 1. Walulya et al.

Given also its stateful nature, it results in an higher number of cycles spent pro-
cessing rather receiving and forwarding tuples. As shown in Fig. 4b, the through-
put achieved by CL is always higher than that of OL while observing a lower
latency, both for the increasing number of injectors and the increasing number
of operators. Also for this operator, CL achieves a throughput that is of approx-
imately 100,000t/s higher than that of OL. Finally, CL also results in lower
power consumption, which does not exceed 100 W. On the other hand, OL’s
consumption grows to more than 140 W.

4.3 Power Consumption

Modern architectures deploy dynamic frequency scaling or CPU throttling where
processors in idle state run at low frequency to conserve power and scale up the
frequency on-demand. We observe in Fig. 4, that OL dissipates on average more
power than CL. This is a result of differences in the number of threads utilized
during a computation. With increasing number of execution threads, more cores
are activated at high frequency which ultimately increases the power.

5 Related Work

Parallel execution of streaming operators has been first discussed by Flux [25]
and implemented in StreamCloud [12,13]. The latter provided dedicated merge-
sorting operators (added to queries by a dedicated compiler) to enforce deter-
ministic execution at the operator layer, incurring the limitations discussed in
Sect. 3. The techniques in [12,13,25] are now found in widely-adopted SPEs.

The communication-layer determinism we introduce in this paper is moti-
vated by the increasing research interest in shared-memory parallelism. The
most relevant advances, nonetheless, have so far been only tailored to Aggre-
gates [14,24] and Joins [11,15,21,27]. The principles of the ScaleGate data
object [23] have been proposed in [7] and leveraged in shared-memory paral-
lelism for streaming aggregation [14] and joining [15]. In relation with our work,
papers such as [3,22] discuss and provide evidence of the importance of careful
design decisions for the internal communication mechanisms of SPEs. Differently
from this work, nonetheless, optimizations focus on the reduction of unnecessary
copies of tuples for the Borealis SPE in [3] (not considering determinism) and
in a batching mechanism (complementary to the mechanism we propose) for
Apache Storm.

6 Conclusions

Motivated by the observation that deterministic execution of streaming oper-
ators requires expensive synchronization to merge-sort streams from multiple
operator instances (or data sources), we studied the limitations of operator-
layer parallelism and how these can be overcome by communication-layer paral-
lelism. Reducing the communication and synchronization costs among operator
instances running within an SPE is a key factor in boosting its scale up potential.

Viper: Communication-Layer Determinism and Scaling 139

In this paper, we propose a module, which we call Viper, that encapsulates
and reduces the aforementioned costs, enabling for deterministic execution to be
provided in a transparent way by the communication layer of an SPE. We provide
evidence that such a module can be leveraged by SPEs, by integrating it into
Apache Storm, which is a representative SPE of one-at-a-time analysis paradigm,
for ultra-low latency processing. Our evaluation shows that the throughput of
parallel operators interconnected with the Viper module increases by up to 70%
and results in half of the energy consumption.

Acknowledgments. This work was supported by the Swedish Foundation for Strate-
gic Research under the project “Future factories in the cloud (FiC)”, grant number
GMT14-0032 and the Swedish Research Council (Vetenskapsradet) projects “HARE:
Self-deploying and Adaptive Data Streaming Analytics in Fog Architectures” Con-
tract nr. 2016-03800 and “Models and Techniques for Energy-Efficient Concurrent Data
Access Designs” Contract nr. 2016-05360.

References

1. Abadi, D.J., Ahmad, Y., Balazinska, M., Cetintemel, U., Cherniack, M., Hwang,
J.-H., Lindner, W., Maskey, A., Rasin, A., Ryvkina, E., et al.: The design of the
borealis stream processing engine. In: CIDR, vol. 5, pp. 277-289 (2005)

2. Abadi, D.J., Carney, D., Cetintemel, U., Cherniack, M., Convey, C., Lee, S., Stone-
braker, M., Tatbul, N., Zdonik, S.: Aurora: a new model and architecture for data
stream management. VLDB J. Int. J. Very Large Data Bases 12(2), 120-139 (2003)

3. Akram, S., Marazakis, M., Bilas, A.: Understanding and improving the cost of
scaling distributed event processing. In: Proceedings of the 6th ACM International
Conference on Distributed Event-Based Systems, pp. 290-301. ACM (2012)

4. Arasu, A., Cherniack, M., Galvez, E., Maier, D., Maskey, A.S., Ryvkina, E., Stone-
braker, M., Tibbetts, R.: Linear road: a stream data management benchmark. In:
Proceedings of the Thirtieth International Conference on Very Large Data Bases,
vol. 30, pp. 480—491. VLDB Endowment (2004)

5. Balazinska, M., Balakrishnan, H., Madden, S.R., Stonebraker, M.: Fault-tolerance
in the Borealis distributed stream processing system. In: ACM TODS (2008)

6. Cederman, D., Chatterjee, B., Nguyen, N., Nikolakopoulos, Y., Papatriantafilou,
M., Tsigas, P.: A study of the behavior of synchronization methods in commonly
used languages and systems. In: 2013 IEEE 27th International Symposium on
Parallel and Distributed Processing (IPDPS), pp. 1309-1320. IEEE (2013)

7. Cederman, D., Gulisano, V., Nikolakopoulos, Y., Papatriantafilou, M., Tsigas, P.:
Brief announcement: concurrent data structures for efficient streaming aggregation.
In: Proceedings of the 26th ACM Symposium on Parallelism in Algorithms and
Architectures, SPAA 2014, pp. 76-78. ACM (2014)

8. David, H., Gorbatov, E., Hanebutte, U.R., Khanna, R., Le, C.: RAPL: memory
power estimation and capping. In: Proceedings of the 16th ACM/IEEE Interna-
tional Symposium on Low Power Electronics and Design, ISLPED 2010, pp. 189—
194. ACM, New York (2010)

9. De Matteis, T., Mencagli, G.: Keep calm and react with foresight: strategies for
low-latency and energy-efficient elastic data stream processing. In: Proceedings
of the 21st ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, PPoPP 2016, pp. 13:1-13:12. ACM, New York (2016)

140

10.
11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.
24.

25.

26.
27.

1. Walulya et al.

Apache Flink. https://flink.apache.org/

Gedik, B., Bordawekar, R.R., Philip, S.Y.: CellJoin: a parallel stream join operator
for the cell processor. VLDB J. 18(2), 501-519 (2009)

Gulisano, V.: StreamCloud: an elastic parallel-distributed stream processing
engine. Ph.D. thesis, Universidad Politécnica de Madrid (2012)

Gulisano, V., Jimenez-Peris, R., Patino-Martinez, M., Valduriez, P.: StreamCloud:
a large scale data streaming system. In: 2010 IEEE 30th International Conference
on Distributed Computing Systems (ICDCS), pp. 126-137. IEEE (2010)
Gulisano, V., Nikolakopoulos, Y., Cederman, D., Papatriantafilou, M., Tsigas,
P.: Efficient data streaming multiway aggregation through concurrent algorithmic
designs and new abstract data types. CoRR, abs/1606.04746 (2016)

Gulisano, V., Nikolakopoulos, Y., Papatriantafilou, M., Tsigas, P.: ScaleJoin: a
deterministic, disjoint-parallel and skew-resilient stream join. IEEE Trans. Big
Data (99) (2016)

Gulisano, V., Nikolakopoulos, Y., Walulya, 1., Papatriantafilou, M., Tsigas, P.:
Deterministic real-time analytics of geospatial data streams through ScaleGate
objects. In: Proceedings of the 9th ACM International Conference on Distributed
Event-Based Systems, DEBS 2015, pp. 316-317. ACM, New York (2015)
Johnson, T., Muthukrishnan, S., Shkapenyuk, V., Spatscheck, O.: A heartbeat
mechanism and its application in gigascope. In: Proceedings of the 31st Interna-
tional Conference on Very Large Data Bases, VLDB 2005, pp. 1079-1088. VLDB
Endowment (2005)

Kalyvianaki, E., Fiscato, M., Salonidis, T., Pietzuch, P.. THEMIS: fairness in fed-
erated stream processing under overload. In: Proceedings of the 2016 International
Conference on Management of Data, pp. 541-553. ACM (2016)

Koliousis, A., Weidlich, M., Castro Fernandez, R., Wolf, A.L., Costa, P., Pietzuch,
P.. SABER: window-based hybrid stream processing for heterogeneous architec-
tures. In: Proceedings of the 2016 International Conference on Management of
Data, pp. 555-569. ACM (2016)

LIKWID: Performance measurement and benchmark suite. https://github.com/
RRZE-HPC/likwid

Roy, P., Teubner, J., Gemulla, R.: Low-latency handshake join. Proc. VLDB
Endow. 7(9), 709-720 (2014)

Sax, M.J., Castellanos, M., Chen, Q., Hsu, M.: Aeolus: an optimizer for distributed
intra-node-parallel streaming systems. In: 2013 IEEE 29th International Confer-
ence on Data Engineering (ICDE), pp. 1280-1283. IEEE (2013)

ScaleGate. https://github.com/dcs-chalmers/scalegate

Schneidert, S., Andrade, H., Gedik, B., Wu, K.-L., Nikolopoulos, D.S.: Evaluation
of streaming aggregation on parallel hardware architectures. In: Proceedings of the
Fourth ACM International Conference on Distributed Event-Based Systems, pp.
248-257. ACM (2010)

Shah, M.A., Hellerstein, J.M., Chandrasekaran, S., Franklin, M.J.: Flux: an adap-
tive partitioning operator for continuous query systems. In: Proceedings of the 19th
International Conference on Data Engineering, pp. 25-36. IEEE (2003)

Apache Storm. http://storm.apache.org/

Teubner, J., Mueller, R.: How soccer players would do stream joins. In: Proceedings
of the 2011 ACM SIGMOD International Conference on Management of Data
(2011)

https://flink.apache.org/
https://github.com/RRZE-HPC/likwid
https://github.com/RRZE-HPC/likwid
https://github.com/dcs-chalmers/scalegate
http://storm.apache.org/

	Viper: Communication-Layer Determinism and Scaling in Low-Latency Stream Processing
	1 Introduction
	2 System Model
	2.1 Parallel and Deterministic Execution of Queries
	2.2 Performance Metrics

	3 From Operator- to Communication-Layer Determinism
	3.1 Overheads of Operator-Layer Determinism
	3.2 Benefits of Communication-Layer Determinism
	3.3 The Viper Module

	4 Evaluation
	4.1 Operator pos_rep
	4.2 Operator new_seg
	4.3 Power Consumption

	5 Related Work
	6 Conclusions
	References

