
Dora B. Heras
Luc Bougé et al. (Eds.)

 123

LN
CS

 1
06

59

Euro-Par 2017 International Workshops
Santiago de Compostela, Spain, August 28–29, 2017
Revised Selected Papers

Euro-Par 2017: 
Parallel Processing 
Workshops



Lecture Notes in Computer Science 10659

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zurich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany



More information about this series at http://www.springer.com/series/7407



Dora B. Heras • Luc Bougé et al. (Eds.)

Euro-Par 2017:
Parallel Processing
Workshops
Euro-Par 2017 International Workshops
Santiago de Compostela, Spain, August 28–29, 2017
Revised Selected Papers

123



Editors
Dora B. Heras
University of Santiago de Compostela
Santiago de Compostela
Spain

Luc Bougé
ENS Rennes
Rennes
France

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-75177-1 ISBN 978-3-319-75178-8 (eBook)
https://doi.org/10.1007/978-3-319-75178-8

Library of Congress Control Number: 2018931883

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

© Springer International Publishing AG, part of Springer Nature 2018, corrected publication 2018
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by the registered company Springer International Publishing AG
part of Springer Nature
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Workshop Editors see next page



Workshop Editors

Auto-DaSP
Gabriele Mencagli
University of Pisa
Italy
mencagli@di.unipi.it

COLOC
Emmanuel Jeannot
INRIA
France
emmanuel.jeannot@inria.fr

Euro-EDUPAR
Rizos Sakellariou
University of Manchester
UK
rizos@manchester.ac.uk

F2C-DP
Rosa M. Badia
Barcelona Supercomputing Center
Spain
rosa.m.badia@bsc.es

HeteroPar
Jorge G. Barbosa
LIACC & Universidade do Porto
Portugal
jbarbosa@fe.up.pt

LSDVE
Laura Ricci
University of Pisa
Italy
laura.ricci@unipi.it

Resilience
Stephen L. Scott
Tennessee Technological University

and Oak Ridge National Laboratory
USA
sscott@tntech.edu

ROME
Stefan Lankes
RWTH Aachen University
Germany
slankes@eonerc.rwth-aachen.de

UCHPC
Josef Weidendorfer
Technische Universität München
Germany
Josef.Weidendorfer@in.tum.de



Preface

Euro-Par is an annual international conference in Europe covering all aspects of parallel
and distributed processing. These range from theory to practice, from small to the largest
parallel and distributed systems and infrastructures, from fundamental computational
problems to full-fledged applications, from architecture, compiler, language, and
interface design and implementation to tools, support infrastructures, and application
performance aspects. The Euro-Par conference itself is complemented by a workshop
program, where workshops dedicated to more specialized themes, to cross-cutting
issues, and to upcoming trends and paradigms can be easily and conveniently organized
with little administrative overhead.

This year, 16 workshop proposals were submitted, and after a careful review
process, which was led by the workshop co-chairs, 13 workshops were accepted. Three
workshops had to be cancelled later due to a low number of submissions.

The workshops took place on the two days before the Euro-Par conference and the
program included the following ten workshops:

1. Workshop on Advanced Parallel Processing Technology for Artificial Intelligence
(APPT)

2. Workshop on Autonomic Solutions for Parallel and Distributed Data Stream
Processing (AUTO-DASP)

3. Open Workshop on Data Locality (COLOC)
4. European Workshop on Parallel and Distributed Computing Education for

Undergraduate Students (EURO-EDUPAR)
5. Workshop on Fog-to-Cloud Distributed Processing (F2C-DP)
6. Workshop on Algorithms, Models, and Tools for Parallel Computing on Hetero-

geneous Platforms (HETEROPAR)
7. Workshop on Large-Scale Distributed Virtual Environments (LSDVE)
8. 10th Workshop on Resiliency in High-Performance Computing with Clouds,

Grids, and Clusters (RESILIENCE)
9. 5th Workshop on Runtime and Operating Systems for the Many-Core Era (ROME)

10. Workshop on Unconventional High-Performance Computing (UCHPC)

All workshops together received a total of 119 submissions from 41 different
countries. Each workshop had an independent Program Committee, which was in
charge of selecting the papers. The workshop papers received more than three reviews
per paper on average (390 reviews in total). Out of the 119 submissions, 71 papers were
selected to be presented at the workshops. One of the presented papers was not
included in the final proceedings because it was considered short paper. Thus, the
acceptance rate was 58%.

The success of the Euro-Par workshops depends on the work of many individuals
and organizations. We therefore thank all workshop organizers and reviewers for the
time and effort that they invested. We would also like to express our gratitude to the



members of the Organizing Committee and the local staff, especially the volunteer PhD
students, who helped us. Sincere thanks are due to Springer for their help in publishing
the proceedings. This volume includes the 55 selected papers of nine workshops and
also a section called Complementary Papers that includes four selected papers
originally sent to the three cancelled workshops. The 11 papers accepted by the APPT
workshop were also published in a separate volume by Springer.

Lastly, we thank all participants, panelists, and keynote speakers of the Euro-Par
workshops for their contribution to a productive meeting. It was a pleasure to organize
and host the Euro-Par workshops 2017 in Santiago de Compostela.

September 2017 Dora B. Heras
Luc Bougé
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The original version of the Book Frontmatter has
been revised: In addition to the first two volume
editors the seven Workshop Chairs have been
added as volume editors. The erratum to the
Book Frontmatter is available at
https://doi.org/10.1007/978-3-319-75178-8_60
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Workshop on Autonomic Solutions for Parallel
and Distributed Data Stream Processing

(Auto-DaSP)

Workshop Description

Auto-DaSP is a forum for researchers and practitioners working on parallel and
autonomic solutions for Data Stream Processing applications, frameworks, and pro-
gramming support tools. The data streaming domain belongs to the Big Data ecosys-
tem, where the so-called data velocity, i.e., the rate at which data arrive at the system
for processing, represents one of the most challenging aspects to be addressed in the
design of applications and frameworks. High-volume data streams can be efficiently
handled through the adoption of novel high-performance solutions targeting today’s
commodity parallel hardware. However, despite the large computing power offered by
the affordable hardware available nowadays, high-performance data streaming solu-
tions need to be equipped with smart logics in order to adapt the framework/application
configuration to rapidly changing execution conditions and workloads. This turns out
in mechanisms and strategies to adapt the queries and operators placement policies,
intra-operator parallelism degree, scheduling strategies, load shedding rate and so forth,
and fosters novel interdisciplinary approaches that exploit Control Theory and Artificial
Intelligence methods. The workshop calls the attention of the data stream processing
and the distributed and parallel computing research communities in order to stimulate
integrated approaches between these two disciplines.

The first edition of the International Workshop on Autonomic Solutions for Parallel
and Distributed Data Stream Processing (Auto-DaSP 2017) was held in Santiago de
Compostela, Spain. The workshop was organized in conjunction with the Euro-Par
annual series of international conferences. The format of the workshop included a
keynote followed by technical presentations. The workshop was attended by around 25
people on average.

The workshop received 20 submissions for reviews, from authors belonging to
more than 15 distinct countries. After an accurate and thorough peer-review process,
we selected 12 papers for presentation at the workshop. The review process focused on
the quality of the papers, their scientific novelty and applicability to existing Data
Stream Processing problems and frameworks. The acceptance of the papers was the
result of the reviewers’ discussion and agreement. All the high quality papers were
accepted, and the acceptance rate was 60%. The accepted articles represent an inter-
esting mix of techniques to solve recurrent problems in Data Stream Processing, such
as the identification of parallel streaming patterns, strategies, and mechanisms to
support elasticity and resource scaling in Stream Processing and Fog Computing
scenarios, and scheduling algorithms for load balancing in presence of stateful
streaming applications.

Last but not least, we would like to thank the Auto-DaSP 2017 Program Com-
mittee, whose members made the workshop possible with their rigorous and timely
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Abstract. In stream processing, elasticity is often realized by adapting
the system scale and topology according to the volume of input data.
However, this volume is often fluctuating, with a high degree of noise,
which can trigger a high amount of scaling operations. Since these scal-
ing operations introduce additional overhead and cost, systems employ-
ing such approaches are at risk of spending a significant amount of time
scaling up and down, nullifying the positive effects of scalability.

To overcome this, we propose an approach for moderating the scal-
ing behavior of stream processing applications by reducing the number
of scaling operations, while still providing quick responses to changes
in input data volume. Contrary to existing approaches, instead of using
linear smoothing techniques, we show how to employ non-linear filtering
techniques from the field of signal processing to pre-process the raw vol-
ume measurements, mitigating superfluous scaling operations, and effec-
tively reducing the number of such operations by up to 94%.

Keywords: Stream processing · Elasticity · TVD · EKF

1 Introduction

A major aspect of modern stream processing systems is elasticity [11], a feature
well-established in cloud computing [6]. In short, an elastic system is capable
of scaling up during times of increased load, and scaling down during times
of reduced load, instead of constantly over- or under-provisioning computational
resources. This allows the system to adapt to new situations, reducing cost while
maintaining Quality of Service (QoS) [10]. A system with less capacity than the
volume is said to be under-provisioned, whereas on the other hand, a system
with more capacity than is needed is called over-provisioned [14]. Scaling is not
limited to cloud computing, but has also been applied in stream processing [12].

In order to make scaling decisions, certain properties of the system are
observed. On the one hand, these properties may be intrinsic to the system,
i.e., its CPU utilization [10], memory usage [5], network traffic [26], or its per-
formance [3]. On the other hand, the observed properties may be extrinsic to
the system, for instance, the amount of incoming data to be processed [12,25],
as observed in our work. Generally, every scaling operation requires resources
c© Springer International Publishing AG, part of Springer Nature 2018
D. B. Heras and L. Bougé (Eds.): Euro-Par 2017 Workshops, LNCS 10659, pp. 5–16, 2018.
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by itself, i.e., it incurs a delay, consumes energy without creating revenue, and
leads to computational overhead [9,18], and therefore additional cost. This is
especially the case for scaling up, since additional operators on corresponding
resources must be activated. Therefore, scaling operations should be kept at a
minimum [5,18].

In cloud computing, current approaches assume thresholds of utilization
between which an operator must be [2]. In stream processing, this translates
to the notion that an operator can only handle a certain amount of input data
volume [13]. For any amount of data exceeding this volume, an additional oper-
ator is instantiated. However, using this threshold-based scaling in a simple way
results in relatively frequent scaling operations, which causes an overhead of
resource usage and cost, as discussed before [5,9,18]. In certain cases, this cost
is necessary in order to benefit from the additional computing power made avail-
able by scaling up, avoiding under-provisioning, or saving power by scaling down,
but on a large scale, excessively frequent scaling operations increase the risk of
losing too much cost on the overhead of scaling.

We consider the volume of incoming data as a time series, and argue that both
long-term trends in volumes, as well as short-term variances (spikes and valleys)
are observable. The long-term trend, for instance, can be the development of
input data depending on the time of day, time of year etc., while short-term
spikes rather represent spontaneous and short-lived events, i.e., noise that we
aim to ignore for scaling decisions.

Following this, we propose to improve classic threshold-based scaling by
changing the way scaling mechanisms react to changes of the input volume.
Instead of using the raw input value of the measured input volume, or using
simple smoothing techniques, we employ advanced, non-linear noise reduction
techniques from the field of signal processing. We apply these techniques to the
raw input values, creating a filter. Using this approach, we aim to separate the
actual data to be used for scaling (the long-term trend) from noise (the short-
term variance), and focus on scaling only based on the long-term trend. The
intuition is that this reduces the frequency of scaling decision while still being
adaptive to the fluctuations in input data volume.

To this end, the remainder of this paper is structured as follows: In Sect. 2,
we discuss work found in literature related to the topic of scaling in stream
processing. In Sect. 3, we present in detail our approach of minimizing the num-
ber of scaling operations in stream processing systems, followed by a detailed
description of our implementation in Sect. 4. We evaluate the approach and its
implementation in Sect. 5. Finally, we conclude and give an overview of possible
future work in Sect. 6.

2 Related Work

A fundamental assumption in our work is the claim that computational overhead
caused by scaling, as explained in Sect. 1, causes significant cost. The general
impact of overhead introduced by frequent scaling of cloud resources has been
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studied by Corradi et al. [5] (in the context of overhead within cloud data cen-
ters) and by Mao and Humphrey [18] (in the context of auto-scaling in cloud
workflows) and the common result is that indeed, such overhead has significant
impact and should be kept to a minimum. Other work in this field has been
presented by Gong et al. [9], where the impact of scaling overhead is quantified
by showing that the CPU consumption using shorter scaling intervals is up to
four times as high, compared to longer intervals.

Scaling in stream processing systems has been thoroughly considered and
surveyed in the literature [1,12]. Abadi et al. [1] present the Borealis stream
processing engine, along with a flexible and QoS-based optimization model. How-
ever, the scaling mechanisms presented do not take into account the volume of
input data. No detailed information is given about whether any pre-processing
of recorded data (e.g., denoising) is used. Hochreiner et al. [12] present a model
for elastic stream processing, and discuss the methodologies, advantages and
drawbacks of scaling within stream processing systems.

Mencagli et al. [19] use the Model-based Predictive Control (MPC) technique
to create a trade-off between reconfiguration stability and amplitude. While the
context (streaming application) is the same, and the aim (reduction of reconfig-
uration overhead) is similar to ours (reduction of the amount of scaling opera-
tions), the authors focus on the use of a distributed and cooperative approach,
while we focus on the noise reduction in the input signal.

The usage of input data volume for scaling decisions has repeatedly been
considered in literature [12,25], as was using threshold-based systems to deduce
concrete scaling decisions [4,13]. All of those approaches, however, suffer from
the same overhead problem as described before.

Some work has been done specifically to tackle this problem of overhead due
to fluctuating input. A general recommendation seems to be the usage of low-pass
filters [5], with a concrete instance of such a filter proposed by Shen et al. [23]. In
this work, the authors employ a moving-average filter, similar to linear smooth-
ing (LS). However, the authors do not use advanced non-linear approaches, like
Total Variation Denoising (TVD) or Extended Kalman Filters (EKF).

Another example of linear filters is found in the work by Gong et al. [9],
where scaling decisions are based on a Fast Fourier Transform (FFT) and pattern
recognition. To avoid overhead, the authors use a delayed scaling mechanism,
i.e., hysteresis. We argue that this is a rather basic approach in the context of
signal filtering, and has the disadvantage of a fixed delay with which even the
most extreme changes in input data volume are processed to scaling decisions.
In contrast, the TVD approach presented in the work at hand reacts quickly to
clear edges in the input data volume signal.

To the best of our knowledge, the only approach explicitly using a non-linear
approach is presented by Khan et al. [16], where workload time series processing
using clustering is proposed. Variations of workload patterns are predicted using
hidden Markov models. Nevertheless, the authors do not take into account any
normalization methods for processing the time series.
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3 Approach

As stated in Sect. 1, the goal of our work is to minimize the amount of scaling
operations performed, based on the volume of incoming data, using methods from
the field of signal processing referred to as noise reduction or regularization.

We consider a stream processing system, which is receiving incoming data,
e.g., from a message queue, processing it using an arbitrary amount of oper-
ators, and forwarding the resulting data as output. As stated in Sect. 1, we
observe the volume of incoming data. This is done at the operators initially
ingesting the data, either explicitly by measuring the incoming data, or by uti-
lizing already-available data, for instance, statistics stemming from the incoming
message queue.

The primary input for our approach is the time series of recorded measure-
ments of input data volume. We denote a volume measurement at a time t as vt.
Figure 1 presents the intuition behind our approach. The dashed line represents
the trend of the volume of input data of a stream processing system. However,
due to temporally local variance and fluctuation, the measured amount varies,
as denoted by the solid line. It is visible that while the recorded data generally
follows the long-term trend, there is a substantial amount of noise overlapping
the signal.

Time

Volume

Raw Measurements v
Trend

Fig. 1. Long-term volume trend (dashed) and actual, measured values (solid).

Naturally, if a stream processing system bases scaling decisions purely on the
raw data, an excessive amount of scaling operations occurs [5,9,18]. In Fig. 2,
this is shown in the lower graph. Our approach applies filters to this process to
reduce the number of scaling operations, i.e., reduce the number of steps in the
operators line in Fig. 2.

Therefore, we formally define our approach as follows. We regard a history
of raw volume measurements, V , at various points in time t out of all measured
times T , where vt, as mentioned above, is the measured volume at time t:
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Time

Volume

Raw Measurements v
Scaling Thresholds

Time

Number of
Operators

1

2

3

4

5

Fig. 2. Scaling of operator count according to thresholds of the actual volume, resulting
in a high amount of scaling operations.

T = {t0, t1, . . . , tn} (1)

V =
⋃

t∈T

vt = {vt0 , vt1 , . . . , vtn} (2)

Based on the raw measurements v ∈ V , we define a filter f , which we apply
to each value. The filter is applied at a given measurement time t and has access
to all other measurement values in V , with the practical limitation that it can
only access past measurements. We therefore define fV (t) as the filtered value
for the time t, given all other values vi ∈ V where i ≤ t. The concrete definition
of f is not fixed, i.e., f is a parameter of our approach. Various concrete filters
are described in the following section.

We then define the set of filtered measurements V :

∀vt ∈ V : vt = fV (t) (3)

V =
⋃

t∈T

vt = {vt0 , vt1 , . . . , vtn} (4)

Figure 3 shows a possible resulting graph of the same volume measurement
data, using a filter, along with the resulting scaling behavior of the system. When
compared to Fig. 2, it becomes clear that the amount of scaling operations has
decreased. Note that this approach does not guarantee that the volume is met
with correct scaling at each point in time. There is the possibility of under-
provisioning for short periods in time, depending on the used filter.
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Time

Volume

Raw Measurements v
Filtered Values v
Scaling Thresholds

Time

Number of
Operators

1

2

3

4

5

Fig. 3. The same scenario, with additional filtering of volume measurements. Instead
of 23 scaling operations, the system only had to perform 7.

4 Implementation

We have implemented the approach described in Sect. 3 in different ways. The
most important distinction between these approaches is the type of filter that
is being used to reduce the noise in the signal, and to smoothen the time series
of observed data volume used for scaling, i.e., the concrete function used for f .
Stemming from the field of signal processing, a common approach of separating
noise from signal is employing a low-pass filter [5]. We seek to improve the perfor-
mance regarding detection of edges and separability in the Fourier domain [17]
by proposing two non-linear filters: TVD [21] and EKF [15].

4.1 Linear Smoothing

Amongst the most basic methods in signal processing is linear smoothing (LS).
Its essence is the smoothing of a noisy signal by setting each time series element
to the arithmetic mean of its neighbors. In scenarios where live data is processed,
only the past neighbors can be used, i.e., the window is set to end at the current
element. Therefore, in its general variant, for a time series v0, v1, . . . , vn, and a
given window width w, each filtered element vx is set to the following:

fV (t) = vt =
1
w

t∑

x=t−w

vx (5)

Alternative versions include weights for more recent elements or exponential
smoothing. However, since all of those methods essentially build a mean over
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a window of past elements, we implemented LS as a baseline reference. A major
flaw of all LS algorithms is the fact that they do not detect edges well. In the
context of elasticity of stream processing, this means that changes in the volume
are not detected immediately, and thus scaling operations are delayed by design.

4.2 Total Variation Denoising

A more advanced approach to smoothing is the approach originally proposed
in [21], commonly called TVD [22], or ROF, after the authors’ names [20]. The
basic notion is that the total variation of a signal is to be minimized. Intuitively,
TVD aims to remove the variation induced by noise while keeping the denoised
signal as close to the original signal as possible, with respect to the least squares
distance function. TVD is insensitive to the frequency ranges of noise and signal,
making it more suitable to detecting sudden changes in near-real time, compared
to linear methods like low-pass and high-pass filters or Fourier transforms.

Similarly to LS, TVD has one hyperparameter. In the case of TVD, this
hyperparameter α determines the degree of smoothing. α = 0 indicates no
smoothing at all, i.e., the output of TVD is equal to its input, while α → ∞
means that more smoothing is performed, and this smoothing converges towards
a steady state which is the denoised signal [21].

In its essence, the underlying TVD minimization problem proposed in the
original work [21] is based on the assumption that the functional

v(x, y) = v(x, y) + n(x, y) (6)

expresses the raw signal v as a function of the actual (smooth) signal v, and
n, the additive noise1. Following this, the minimization problem is stated as a
problem of minimizing the variation (i.e., the integral of changes in gradients):

minimize
∫

Ω

(vxx + vyy)2 (7)

where Ω is the variable domain, vxx denotes the second derivative of v with
respect to x. Two additional constraints provided in [22], binding the mean and
variance of the raw and the reproduced signal to each other, are not shown here.

In our application of TVD, we have no multivariate functions, i.e., our v0, v
and n only depend on one (discrete) variable, which is the time t. Thus, we do not
need to apply partial derivations. Since we record discrete, digital measurements,
our definition of variation is also discretized and reduced, as shown in (8).

minimize
n∑

x=1

|vx − vx−1| (8)

1 Note that in the original work [21], the raw measured signal was named u0, and the
filtered signal was named u. We have adapted the names to v and v, respectively, to
maintain consistency within our work.
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We have used this minimization problem, together with the original con-
straints, and applied the majorization-minimization algorithm described in [22],
which majorizes the total variation minimization problem by its quadratic func-
tion, a methodology described in [7].

4.3 Extended Kalman Filter

The EKF is a nonlinear generalization of the Kalman filter [15]. Kalman type
filters work by defining state transition and state observation models, and taking
into account the noise and its (co-)variance. Again, since we do not have a mul-
tivariate function, we only have one variable, which simplifies the computation.

The EKF is based on the notion that there is a transition model F and an
observation model G:

dx

dt
= F (t)x + G(t)c(t) (9)

z(t) = H(t)x(t) + n(t) (10)

where F (t) denotes the state transition, G(t) is the control (input) transition,
c(t) is the control function, i.e., the input applied to a system, and x is the state.
H(t) is the observation model, i.e., the measurement transformation, n(t) is the
additive noise added to the signal, and z is the observed state2.

In our application, we have simplified the model in that we do not apply any
input to the system, but only observe it. Thus, the entire term G(t)c(t) can be
eliminated. As state x in the EKF notation, we have used the current volume (v
in our notation), as well as the derivative (i.e., change in time, v′) of the current

volume. Therefore, in our application of EKF, x =
[

v
v′

]
.

The term z(t) from the EKF notation corresponds to the resulting, filtered
volume measurement v in our notation. We have used this model in order to
apply an unknown input to the estimation. In our case, the unknown input is
the actual reason for the volume change, which is a factor we are not able to
(generally) include in our model. We therefore allow the change in volume v′

to be estimated by the EKF filter using only measurable data [8]. As a state
transition, we use a matrix applying v′ to v, i.e., we assume that without further
input, the volume change will be constantly applied to the volume. The source
of the change itself is, in this model, part of the noise, i.e., n(t).

5 Evaluation

In order to evaluate our approach, we simulated a stream processing system using
the three presented filters (LS, TVD, EKF) with varying input data volumes,
and measured the resulting performance.
2 Again, in the original approach [15], the control function is denoted as u(t), and the

noise is denoted as v(t). We have changed the names to c(t) and n(t), respectively,
in order to avoid overloading and maintain consistency.
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Fig. 4. Excerpt from a simulation with raw volume and filtered values.

To find commonly used and realistic values, we have surveyed literature, and
decided to use values from [25]. Following this, we used volumes in the range
of 200 to 500 tuples per second, and assumed a scaling threshold was 50 tuples
per second. We introduced noise with varying signal-to-noise ratios (SNR). Since
the Rose criterion states that an SNR of 5 is necessary to discern signal from
noise with 100% confidence [24], we used various SNR values near that value for
our evaluation (0.5, 0.8, 1.0, 5.0 and 10.0). All experiments were executed for a
duration of 1,500 s. Volume measurements and filter applications were performed
every second. An example is shown in Fig. 4, where a few characteristics are
visible. Most prominently, the piecewise constant nature of TVD can be seen.
TVD also visibly misinterprets the mean of certain segments, since TVD depends
on the entire history of the data, not only the values of the range shown, and
those values influence its operation. For EKF, a certain momentum is visible,
with which it reacts to changes in value.

As metrics, we have used the filtered values for scaling decisions, as described
in Sects. 3 and 4, and recorded (i) the number of scale-up and scale-down oper-
ations, denoted as s+ and s−, respectively, and (ii) the amount of time (in sec-
onds) the system spent either over-provisioned, or under-provisioned, denoted as
p+ and p−, respectively. The resulting metrics from the simulations are shown
in Tables 1 and 2 (for SNR = 0.5 and 1.0), as well as Tables 3 and 4 (for
SNR = 5.0 and 10.0). Note that in this work, we did not consider a cost model,
but rather recorded the number of scaling operations performed throughout the
simulation. For the work at hand, we consider each scaling activity as equally
expensive, nevertheless we aim to refine the cost model in our future work.

The primary goal of reducing the frequency of scaling operations (s+ and
s−) has been reached by both TVD and EKF, in high-noise environments even
by over 93% (TVD) and 44% (EKF). However, the results clearly show that
regarding scaling performance alone (p+ and p−), LS still outperforms EKF and
TVD. This was expected, as LS has the tendency to scale without restriction
(heavily impacting s+ and s−). Nevertheless, we argue that the advantages of
reducing scaling frequency outweigh this drawback. For instance, in the case of
SNR = 1.0, using TVD, a reduction of s+ and s− by around 90% causes an
increase of p+ and p− of only around 8%, i.e., the positive impact in s+ and s−

is still one order of magnitude higher than the negative impact in p+ and p−.
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Table 1. Results for SNR = 0.5. Best
result per metric printed in bold.

Filter s+ s− p+ p−

LS (baseline) 208 209 262 332

TVD 13 13 312 335

−195 −196 +50 +3

EKF 115 114 373 335

−93 −95 +111 +3

Table 2. Results for SNR = 1.0. Best
result per metric printed in bold.

Filter s+ s− p+ p−

LS (baseline) 130 130 186 220

TVD 8 7 154 224

−122 −123 +32 +4

EKF 79 78 319 224

−51 −52 +133 +4

Table 3. Results for SNR = 5.0. Best
result per metric printed in bold.

Filter s+ s− p+ p−

LS (baseline) 33 32 54 72

TVD 7 6 115 86

−26 −26 +61 +14

EKF 26 25 110 86

−7 −7 +56 +14

Table 4. Results for SNR = 10.0. Best
result per metric printed in bold.

Filter s+ s− p+ p−

LS (baseline) 27 26 44 64

TVD 7 6 113 73

−20 −20 +69 +9

EKF 23 22 100 73

−4 −4 +56 +9

Considering the difference in performance between TVD and EKF, it
becomes clear that TVD is a promising approach in high-noise situations, espe-
cially if SNR < 1.0. However, with increasing SNR, EKF starts to outperform
TVD, especially in p+ and p−. We can observe this for SNR = 10.0. From a
purely numeric point of view, this means that EKF is the most promising app-
roach in low-noise situations. For s+ and s−, however, EKF, does not reach the
performance of TVD, even in low-noise (high SNR) situations. However, looking
in detail at the excerpt shown in Fig. 4, we also argue that the performance of
EKF can be further fine-tuned if the dynamics of the system, expressed in the
matrices of EKF, are studied better.

6 Conclusion and Future Work

In this work, we have presented a novel approach of scaling in stream processing
systems. Contrary to current state of the art, which uses simple linear filtering to
process the volume of incoming data and applies this to make scaling decisions,
our approach exploits advanced non-linear filtering methodologies from the field
of signal processing to pre-process these volume measurements. This reduces the
amount of scaling operations by 15% for low-noise scenarios, and over 94% for
high-noise scenarios, while maintaining a comparable provisioning performance.

The two filters presented in detail, TVD and EKF, have been used to show
the feasibility of this approach. We therefore propose further research in this
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area. For EKF, we argue that deeper understanding of the dynamics of volume
changes in stream processing would allow for modeling of increasingly precise
transformation matrices, further increasing its performance. Therefore, we plan
to invest more research into different variations of the EKF parameters, possibly
adding QoS metrics from the system itself as inputs for EKF. Furthermore,
our next focus is to investigate in detail the computational complexity of our
approach, and to use a cost model, similar to existing literature [19]. Finally, we
want to evaluate the approach in more detail, and use a real-world data set for
the simulation.
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Abstract. We present a container-based architecture for supporting
autonomic data stream processing application on fog computing infras-
tructures. Our architecture runs applications as Docker containers, and
it exploits the native features of Docker to dynamically scale up/down
the resources of a fog node assigned to the applications running on it.
Preliminary results demonstrate that Docker containers are appropriate
for building migratable autonomic solutions on fog infrastructures.
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1 Introduction

Fog computing [23] aims at distributing computing, storage and networking
resources along the cloud-to-IoT continuum, closer to the edge of the network
where millions of connected devices produce huge data flows. Many applications
(e.g., intelligent transportation, emergency management or e-health) need to
process such data flows by meeting compelling time requirements which cannot
be satisfactorily met by traditional cloud+IoT solutions, typically because of
latency and/or bandwidth limitations [6].

To suitably host autonomic data stream parallel applications on fog infra-
structures, new solutions for the dynamic management of resources within and
across fog nodes are needed. Container-based virtualisation can help solving this
need [18,19], and the objective of this paper is precisely to investigate how to
use it to dynamically manage autonomic applications on fog infrastructures.

We present a container-based architecture for supporting autonomic data
stream processing applications on fog infrastructures. The architecture exploits
containerisation to dynamically scale the resources assigned to each deployed
application. Each fog node hosts a fog node controller, which interacts with the
controllers of the autonomic applications deployed on such node. The objective
of the interaction is to dynamically scale up and down the resources assigned
to hosted applications. Fog node controllers of different nodes also interact to
support the migration of deployed applications. Fog node controllers and appli-
cations are deployed as Docker containers.
c© Springer International Publishing AG, part of Springer Nature 2018
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The rest of this paper is structured as follows. We first discuss two motivating
examples that illustrate needs and benefits of dynamic resource management
within/across different fog nodes (Sect. 2). After introducing Docker (Sect. 3),
we describe the proposed architecture for supporting data stream processing on
fog infrastructures (Sect. 4). We also present the results of two experiments that
show the feasibility of the proposed container-based support (Sect. 5). We finally
discuss related work (Sect. 6) and we draw some concluding remarks (Sect. 7).

2 Motivating Examples

We hereby describe two basic examples that motivate the development of our
architecture. The first example describes a scenario of intra-fog node resource
management and orchestration, through the synergical interaction between a fog
node controller (FNC) and application controllers (ACs), which run the autonomic
logic of the streaming applications deployed on such node. The second example
focuses on the more complex and challenging case of inter-fog node adaptation.

Intra-fog node scenario. Each fog node, besides being interconnected to var-
ious data providers (e.g., sensors, IoT and edge devices), can be connected to an
overlay of fog nodes and eventually to a traditional cloud system (Fig. 1, left).

Within a fog node, various streaming applications can run. Each streaming
application is characterised by (i) a set of data providers that feed the applica-
tion with a continuous flow of data items to be processed, and (ii) a set of data
consumers that will retrieve real-time data analytics produced by the applica-
tion. We also envision that each application should be designed with an auto-
nomic logic inside, responsible for scaling up/down the resources utilised by the
application and/or other application-dependent configuration knobs (e.g., load
balancing policies, scheduling disciplines). While some reconfigurations are exe-
cuted transparently to the fog infrastructure, other reconfigurations may need a
proper interaction with the FNC (e.g., resource scaling).

Things Things

Cloud

Fog Node

FNC

resource allocation 
requests/reply

Streaming app.

AC

Streaming comp.

AC

Streaming comp.

AC
scaling

scaling

scaling

Fog Node

Fig. 1. Fog computing architecture and internal behaviour of a fog node.

Consider an application consuming a data stream generated by a set of mobile
devices localised near to a fog node, and processing the most recent data items
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using a sliding-window model [2] according to a feasible parallel pattern (like
those in [8]). To keep up with the arrival rate, the AC of the considered applica-
tion may decide to increase the parallelism degree of such application in order
to process input data faster. While the AC is in charge of reconfiguring the appli-
cation to exploit additional resources (e.g., by spawning new processes/threads
on-demand), the FNC is responsible for making the resources available to respond
to the dynamic need of applications. To this end, the FNC is in charge of main-
taining a complete vision of the node status (e.g., cores and cpu time available,
memory utilisation [3]), and of processing the requests of AC by finding feasi-
ble agreements. For example, if the AC requires the exclusive utilisation of eight
additional cores, the FNC can serve such request completely, if enough physical
resources are available. Otherwise, the FNC can partially serve the request of the
AC by allocating fewer cores. As extrema ratio, the FNC may unilaterally release
some cores previously assigned to other running applications to serve completely
the request, by informing the corresponding ACs of the decision taken. This sce-
nario is depicted in Fig. 1 (right).

Inter-fog node scenario. Suppose that an application is a composition of two
communicating components. The first (called Filtering) is a small graph of oper-
ators processing items produced by a set of data providers, by discarding inputs
that are deemed to be irrelevant to the rest of the application. This component
processes data items at high speed, thus it must exploit geographical proxim-
ity [21] with the data providers in order to leverage a reduced network cost.
Instead, the Selection component runs a computationally demanding preference
query like a skyline or a top-k query [25], in order to extract the best objects
among the most recent data items received from the preceding phase.

Fog Node 1

FNC

migration request/
reply

Selection Comp.

AC

Fog Node 2

FNC

resource allocation 
requests/reply

Streaming comp.

AC

Streaming comp.

AC

Filtering Comp.

AC
migrated

moving
data providers

Fig. 2. Example of migration between fog nodes.

The infrastructure should be able to support the migration of streaming
components from a fog node to another one properly chosen. This can be the
result of an internal decision of the application itself, or externally triggered
by the resource management control of the fog platform. As in the example
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of Fig. 2, the data providers feeding our Filtering component, which is initially
deployed on FN1, are mobile devices that may enter in the proximity of FN2 at
a certain time instant. The corresponding AC that continuously monitors the
component’s QoS may experience too high network latency and/or insufficient
network bandwidth. Therefore, the AC may opportunistically decide to ask the
FNC of FN1 to start the migration to FN2. As a second case, the decision can be
triggered by the infrastructure itself, for example if the FNC is unable to meet
the resource utilisation requests of the applications running in the first fog node,
and some of them must be migrated to make further local resources available. In
both cases, the underlying infrastructure should provide mechanisms for seamless
migration with minimal intrusion and downtime in the processing flow.

3 Background: Docker

Container-based virtualisation is a lightweight virtualisation technology which
provides near-native performances [24]. Container-based virtualisation exploits
the kernel of the host OS for running multiple isolated user-space instances
(called containers). Since containers share the same kernel of the host OS,
container-based virtualisation adds minimal overhead to the guest applications.

Docker [9] is the de-facto standard technology exploiting container-based
virtualisation. It provides the ability to package any application with all its
dependencies (e.g., libraries, binaries, data files, etc.) into an isolated Docker
container. Docker also (i) permits limiting the resources assigned to a container
in term of memory and CPU (by default, a container has no resource constraints),
and (ii) it provides functionalities for checkpointing and restoring a running
container by exploiting CRIU [7,10,20].

A Docker container is created from a Docker image. From a single Docker
image one or more Docker containers can be started. Docker also permits to
look for existing images instead of building them from scratch. The images can
be stored into Docker registries (e.g., Docker Hub [13]) where other users can
retrieve and use them. Docker registries (as well as tools for automatically dis-
covering Docker images—e.g., [4]) ease the distribution of images across different
environment.

Docker containers can communicate by using Docker container network-
ing [12]. Two containers attached to the same network can communicate with
all other containers attached to the same network. Docker offers various network
drivers depending if the containers reside on a single host or across a cluster of
hosts. Standard sockets can also be used as low-level mechanisms for implement-
ing a communication channel between containers.

Docker has also built-in orchestration tools to deploy multi-container applica-
tions. For instance, Docker compose [11] permits creating and managing Docker
containers on a single host or in a cluster of hosts.
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4 System Architecture

We hereby illustrate the main concepts of the high-level architecture we envision.
Such architecture is composed by four main components: Fog nodes (FNs), fog
node controllers (FNCs), autonomic applications (Apps), and autonomic applica-
tion controllers (ACs). A sample instance of our proposal is depicted in Fig. 3.

*

*

*

*
*

*

*

*

*

*

Fog Node (FN)

FN Controller (FNC)

Application (App)

App. Controller (AC)

FNC-FNC connections

FNC-AC connections

Fig. 3. An example of instance of the proposed architecture.

FNs are devices (e.g., smartphones, laptops, routers) with limited amounts of
available computational resources, which are in charge of running containerised
Apps. Therefore, FNs must be able to decide whether an App can run on a FN,
and how many computational resources to assign to such App (e.g., cores, CPU
time, memory, bandwidth). This is why FNs are equipped with FNCs that are in
charge of scheduling containerised Apps on FNs and of assigning to each App a
certain amount of resources available in the hosting FN.

Each App runs in a Docker container, or alternatively it can be split into vari-
ous interacting components, each running in a Docker container. Each AC running
within a container is also in charge of running the autonomic control loop of the
corresponding App or component, and of interacting with the FNC of the corre-
sponding FN to dynamically scale up/down the set of resources assigned to the
container, and/or to support the migration to another FN (or to the cloud).

Accordingly, FNCs will have to support both FNC-FNC and FNC-AC communi-
cations. FNC-FNC communications are inter-node, hence requiring to be network
communications. FNC-AC communications are instead intra-node, hence allowing
to reduce communication latency by exploiting a shared memory or domain sock-
ets. The latter seems more promising, as FNCs and ACs run in Docker containers,
which can communicate using shared socket files (see Sect. 3).

In the following, we detail the behaviour of the architecture during the execu-
tion of the scenarios sketched in Sect. 2, by distinguishing those only concerning
fog nodes from those also including autonomic applications1.
1 Due to space limitations, we hereafter abstract from the actual policies to be

employed for coordinating FNCs and for deciding how to schedule containerised Apps
within/across FNs depending on available resources.
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Fog nodes. Our architecture is designed to account for FNs freely joining or
detaching from the system. Whenever a new FN is willing to join the system, its
FNCmust connect to one or more of the FNCs already available in the system
(e.g., those of the “geographically closest” FNs, or those that can guarantee a
desired response time). It must then communicate the computational resources
available in the new FN, and this information will be taken into account (by all
FNCs) when deciding how to schedule containerised Apps within/across FNs. At
this point, the new FN is considered to be part of the overlay of FNs, hence being
eligible for deploying containerised Apps on it.

Whenever a FN wishes to detach from the system, its FNC should communicate
to the other FNCs that such FN is going to detach. This will result in disconnecting
FNC of the detaching FN from the overlay of FNs, and in migrating all Apps running
on the detaching FN to the other FNs in the system.

It is worth noting that a FNmay detach from the system without priorly
advertising the FNCs of the other FNs (e.g., because the corresponding device
unexpectedly crashes or shuts-down), and this should also result in migrating
all Apps that were running on the crashed FN to the other FNs in the system.
To enable this, the availability of each FN will have to be monitored (e.g., with
watchdogs or heartbeat services connected to its FNC).

Autonomic applications. Data stream processing applications will be deploy-
able on the proposed architecture after being properly containerised as (possibly
multi-container) Docker applications. The images of the containers forming an
application will have to be available on a remote, publicly accessible Docker
registry (e.g., Docker Hub [13]).

The administrator of an application can issue the deployment of her appli-
cation by connecting to one of the FNCs in the system, and by indicating the
Apps to be executed. The administrator indicates the Docker images used to run
the Apps along with the deployment constraints of each App. For example, the
administrator can constraint the App to be deployed on a certain subset of FNs,
or she can specify that the App must be migrated to cloud whenever all the FNs
do not satisfy the requested resources by the App.

The FNCs will then coordinate themselves to identify a FN satisfying the
deployment constraints of an App, and they will inform the corresponding FNC
to enact the deployment of such App. The FNC will then download the image
of the App from the remote registry, it will start the App by running a Docker
container from the downloaded image, it will assign an initial set of computa-
tional resources to the App, and it will start interacting with the AC to scale the
resources assigned to the App (when necessary).

A FNC can scale up and down the set of resources assigned to an App (e.g.,
by decreasing/increasing the cores, CPU time, and bandwidth assigned to such
App) by simply changing the resources assigned to the corresponding Docker
container (see Sect. 3). This may be driven by exploiting reactive or predictive
control policies [17], and it happens: when a FNC needs to remove some of the
resources that were assigned to an App and to re-assign such resources to other
Apps, or when an AC realises that the App it is controlling requires less/more
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resources (e.g., to change the parallelism degree and adapt it to the data rate
of the input stream). In the latter case, an AC sends a request to the FNC of the
hosting FN, which decides how/whether to scale the resources assigned to the
corresponding App.

It may happen that the computational resources available in a FN are no more
capable of satisfying the requirements of all Apps running on it. If this is the case,
the FNC of the overloaded FNwill interact with the other FNCs in the system to
decide which Apps can be migrated and on which FNs. To migrate them, it then
send a migration request to the AC of each App to be migrated. The ACwill then
start preparing the migration by storing the current state of the App, and it will
answer to the FNC by returning it the current state of the App. The FNC of the
FNwhere the Appmust be migrated will then initiate the procedure for deploying
such App, by exploiting the stored state of App as the initial application state.

It may also happen that no FN is capable of satisfying the requirements of a
to-be-migrated App. If this is the case, the FNCs can decide to migrate an App to
the cloud (with a migration approach very similar to that described above), or
to reduce the resources assigned to an App as much as possible (if such App does
not support fog-to-cloud migration).

Finally, an App can be undeployed from the system by simply informing the
FNC of the FNwhere such App is running. This can either be done by the AC (if it
realises that the App has ended its tasks), or by the administrator of the App.
The FNCwill then just have to remove the corresponding Docker container, hence
freeing the resources assigned to it.

5 Preliminary Results

In this section we show two preliminary results aimed at illustrating that Docker
can help deploying autonomic data stream processing applications in the Fog.
First, we illustrate how Docker can be exploited by a FNC for limiting the physical
resources (viz., CPUs) assigned to a containerised App running on a FN. Second,
checkpoint and restore features offered by Docker (version 17.03.1-CE ) are used
to freeze and restore a containerised App on a FN2.

Intra-fog node test. In this first test, we considered a FNC and an App running
in Docker containers on a FN. The goal of the experiment is to show (i) how a FNC
and the AC of an App can communicate on the same FN, and (ii) how a FNC can
exploit Docker for limiting the CPUs assigned to such App. In this perspective,
the App and the FNC employed in this test work as follows:

– The App is an autonomic application equipped with its AC that consumes the
CPUs of the FN running the cpuburn application (https://patrickmn.com/
projects/cpuburn/). The AC periodically sends a request to the FNC asking
for increasing or decreasing a random number of the CPUs assigned.

2 The source code of the experiments is available on GitHub. https://github.com/di-
unipi-socc/ffdocker.

https://patrickmn.com/projects/cpuburn/
https://patrickmn.com/projects/cpuburn/
https://github.com/di-unipi-socc/ffdocker
https://github.com/di-unipi-socc/ffdocker
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– The FNC waits for incoming requests from the AC and (if available) increases
or decreases the amount of CPUs assigned to the App.

The FNC and the App reside on the same FN and they communicate using a socket
file, where the FNC is the server and the App the client.

As we anticipated above, the App and the FNC are shipped in their own Docker
containers and their images are stored in the Docker Hub registry3. The App is
packaged into the diunipisocc/app image while the FNC is packaged in the
diunipisocc/fnc image. In order to run the experiment, the FNC must be first
executed by running the diunipisocc/fnc image with the following command:

docker run -v /tmp/ffsocket.sock:/tmp/ffsocket.sock
-v /var/run/docker.sock:/var/run/docker.sock
diunipisocc/fnc

When the FNC starts, it waits for requests listening on the
/tmp/ffsocket.sock socket file. The -v option is used to mount a folder from
the host into a container. Instead, the /var/run/docker.sock is the socket used
by the FNC for interacting with Docker to update the CPUs assigned to the App
container. The App can be launched by running the diunipisocc/app image:

docker run -v /tmp/ffsocket.sock:/tmp/ffsocket.sock
diunipisocc/app

The App mounts the /tmp/ffsocket.sock file for communicating with the FNC.
Figure 4 (left) shows the result of the experiment executed on an Intel Linux

machine with 48 cores. In the experiment, the FNC is configured to assign at most
20 cores to the App among the 48 cores available. The App, every 5 s, asks to the
FNC to increase or decrease the cores assigned to it by a random number between
5 and 30. If the number of cores requested by the App are less or equal than 20,
the FNC assigns to the App the cores requested, otherwise the FNC assign to the
App at most 20 cores.

We measured the mean time required by the FNC to increase or decrease the
cores assigned to a container. The time measured for updating the cores is about
80 ms with a standard deviation of 16 ms.

Inter-fog node test. In the second experiment we tested the possibility of
exploiting Docker for implementing live migration of containers. The current
version of Docker only allows to checkpoint and restore a running container into
the same host, whereas it does not support live migration across different hosts
yet. There are other projects that implements live migration on top of CRIU [1],
but they are not yet integrated with Docker.

The experiment reproduces a simplified version of the inter-fog scenario pro-
posed in Sect. 2. The Filtering component sends an integer every 10 ms (100

3 The Docker images used to run the experiments are available in Docker Hub. https://
hub.docker.com/u/diunipisocc/.

https://hub.docker.com/u/diunipisocc/
https://hub.docker.com/u/diunipisocc/
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Fig. 4. Results obtained by running the intra-fog node experiment (left), and by run-
ning the inter-fog node experiment (right).

integers per second) to the Selection component that receives the stream of inte-
gers and prints them. Selection, Filtering and FNC run in their Docker container
and they communicate via the default Docker bridge network (see Sect. 3). In
our test we simulated the situation where the FNC checkpoints and restores the
Filtering component in the same FN, evaluating the downtime experienced by the
Selection component. This situation can happen, for example, if the FNC decides
to temporarily suspend the execution of the Filtering component because it
needs all the resources available on a Fog node to serve a higher priority request
coming from another App.

The FNC triggers the migration of a component using the following steps:

1. The FNC sends a migration request to the Filtering component, notifying that
the migration phase is willing to start.

2. The Filtering component receives the migration request, performs a clean up
phase (e.g., it may notify the data sources to interrupt the data streaming),
and sends a migration reply to the FNC.

3. The FNC receives the migration reply message and performs a checkpoint of
the Filtering component,

4. Immediately after, the FNC restores the Filtering component into the same
host and it continues to produce the stream of integers starting from the last
checkpointed value.

The checkpoint of the Filtering saves both the application internal state
(i.e., the last integer sent in the stream) and the sockets used for the commu-
nication. Figure 4 (right) shows the result of the execution of the experiment in
a single node. The Selection component receives 100 integers every second on
average. After five seconds the Filtering component is forced to perform a migra-
tion by the FNC. The downtime experienced by the Selection component is about
5 s which is still significant though compliant with the measurements described
in https://criu.org/Performance research. However, the checkpoint and restore
mechanisms of Docker are still under development and not yet officially released.
We expect to see further optimisations in the next stable releases.

https://criu.org/Performance_research
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6 Related Work

[21] proposes an architecture for processing streaming applications near-to-the-
edge. The goal is to deploy latency-sensitive streaming operators near to the IoT
devices that generate raw data streams. The infrastructure considers only two
tiers, the first being traditional data centers and clouds, and the second featuring
cloudlets near to IoT devices. The application programmer defines which tier will
preferably execute the distinct operators of a streaming application. With respect
to our work, the distinction in two tiers seems restrictive, and the applications
do not provide any elastic/autonomic support or capability.

Recently, techniques to map streaming applications onto IoT environments
have received a considerable attention, because existing IoT platforms still lack
of advanced features in terms of dynamic resource management and data privacy
that are needed by the streaming context. IoT devices are often considered as
mere data providers, at most enabled to filtering the data in order to save net-
work bandwidth. [15] envisions an interesting approach that has several common
points with our research. Container-based technologies are used to encapsulate
streaming operators and to easily deploy them on a distributed environment. One
of the aspects that distinguishes our approach is that each containerised appli-
cation should have both the processing logic and the autonomic logic inside, the
latter directly connected to our infrastructure management entities. This makes
each running container an autonomous and adaptive entity, and not a static
running code as in [15].

[22] presents Foglets, a programming infrastructure for managing geo-dis-
tributed awareness applications in the Fog. Based on the mobility of the sensors
and the requirements of an application, the paper proposes both algorithms
for deploying the application components on the fog nodes and techniques for
handling the migration of these components between fog nodes. While, Foglets
migrates applications whenever the resources they require are no more available
in a Fog node, our approach tries to accomplish the application requirements by
increasing or decreasing the resources available in a fog node before starting the
migration phase.

A nice application scenario has been described in [5] for a urban video surveil-
lance system deployed on a fog infrastructure. The approach follows a divide-and-
conquer design, where raw data from IoT devices is filtered by applications run-
ning in Fog nodes and forwarded to a centralised cloud for processing. Although
an interesting example, the utilisation of the Fog infrastructure is limited and
does not exploit the full potential of the paradigm.

Other recent papers mainly focus on extensions of the run-time support of
existing and popular stream processing frameworks like Apache Storm and Flink,
in order to make the frameworks able to deploy and run streaming applications
in geographically distributed environments not limited to a single Cloud [14,16].
Differently, our approach is focused around a two-level adaptation approach,
where applications are themselves adaptive with their logic, interacting with our
infrastructure for negotiating agreements in the resource utilisation. Therefore,
our approach is not limited to a single application running exclusively on the
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platform, and it is suitable to manage the execution of general applications and
services, also outside the stream processing domain.

7 Conclusions

Fog computing is becoming a powerful enabler for IoT. Despite the growing
interest, the implications and the advantages of Fog computing in streaming
scenarios must still be explored and analysed. Furthermore, the availability of
new emerging virtualisation concepts, like container-based technology, stimulates
the research of new solutions for efficiently and flexibly deploy streaming appli-
cations in geographically distributed environments. In this paper we proposed a
Docker-based architecture as an enabler for Fog deployment of autonomic appli-
cations. Besides the general overview of our idea, we presented also a concrete
discussion of how the Docker technology can be exploited. Finally, first prelim-
inary results confirmed our expectations about Docker as a viable approach for
a new highly distributed and fog-oriented framework.

Acknowledgements. This work has been partially supported by the EU H2020-ICT-
2014-1 project RePhrase (No. 644235).
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Abstract. This paper presents NOA-AID a network architecture for
targeting highly distributed systems, composed of a large set of dis-
tributed stream processing devices, aimed at adaptive information index-
ing, aggregation and discovery in streams of data. The architecture is
organized on two layers. The upper layer is aimed at supporting the infor-
mation discovery process by providing a distributed index structure. The
lower layer is mainly devoted to resource aggregation based on epidemic
protocols targeting highly distributed and dynamic scenarios, well suited
to stream-oriented scenarios. We present a theoretical study on the costs
of information management operations, also giving an empirical valida-
tion of such findings. Finally, we presented an experimental evaluation
of the ability of our solution to be effective and efficient in retrieving
meaningful information in streams on a highly-dynamic and distributed
scenario.

Keywords: IoT · Stream · Adaptivity · Network overlay
Information aggregation in streams · Distributed indexing

1 Introduction

In recent times we are witnessing the emergence of pervasive computational envi-
ronments in which a huge amount of distributed and heterogeneous devices pro-
duce, transmit and/or observe continuous streams of data. Such streams of data
needs to be processed to detect faults, issue alerts, and trigger management oper-
ations. To achieve an efficient analysis of such data, it is gaining momentum the
exploitation of high-performance solutions tailored on recent commodity parallel
hardware and accelerators typically available on modern IoT and Edge devices.
Even more recently, an increasing interest is coagulating around the methodolo-
gies enabling a fruitful cooperation of such devices, which are no longer limited
to be independent stream processing entities but pieces of a complex and dis-
tributed system. Efficient and effective communication supports for information
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gathering, exchange, indexing and querying are of paramount importance in this
context. As matter of facts, every information discovery process is strongly corre-
lated to its query formulation and resolution mechanism. The query formulation
process has to support an effective way to express needs, whereas the query reso-
lution mechanism must be able to leverage the query expressiveness to efficiently
find the information requested and to limit the overhead introduced by the pro-
cess itself. A common technique for finding data and information, in a highly
distributed and dynamic scenario is based on range queries over a set of different
attributes [1–5]. However, the heterogeneous nature of distributed devices and
the high dynamicity characterizing the information belonging to streams, often
makes the task of query formulation very complex. For instance when an infor-
mation is defined as the combination of many different attributes, it could not
be easy to identify the most relevant and discriminating features. An interesting
alternative consists in defining a simulacrum, representing the archetype of the
information sought. This provides to the search system a mean to identify the
desired set of information into data streams whilst relieving the requester from
specifying complex queries. To this end, the discovery system needs to be organ-
ised accordingly. First, there is a need for a search system supporting approxi-
mated searches on data streams, enabling the system to deliver the best match
against the provided simulacrum. Second, “information providers”, which in our
case are IoT or Edge devices devoted to stream processing, need an efficient dis-
covery infrastructure, i.e., characterised by a reduced cost of maintenance, while
ensuring that information can be easily found by requesters.

To date, several solutions, have been focusing on such approach. They try
to let nodes to self-organise to disseminate the information toward groups of
interested nodes [6] and/or they let each node to be in direct contact with the
ones having similar data [7–12]. However, the local knowledge maintained by
each device usually does not allow a proper identification of the features which
characterise an entire community of nodes sharing a common set of information.
Many existing approaches rely only on the information that each device owns,
without providing any explicit identification of groups of nodes that can be con-
sidered as a community. This work presents a distributed architecture organised
on two layers providing: (i) a flexible query-by-example (the aforementioned sim-
ulacrum) discovery mechanism and (ii) a solution for stream processing devices
easing the information advertisement process. The focus is on scenarios in which
IoT and Edge devices composing the discovery system consist in entities called
Advertising Nodes (AN). Each AN has an associated succinct description of the
information observed by such device: its profile. The proposed solution couples
the flexibility of unstructured overlays with the power of structured networks.
The former offer the advantage of a low maintenance cost, whereas the lat-
ter offer more guarantees on finding the requested resources but at the cost
of a more expansive maintenance. The rest of this paper is organised as fol-
lows. Section 2 presents a review of the relevant literature. Section 3 presents the
overall architecture of NOA-AID. Sections 4 and 5 describe the unstructured-
and structured-layer, respectively. Section 6 presents the conducted evaluation.
Finally, conclusions are given in Sect. 7.
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2 Background and Related Work

The challenge of searching for information in highly distributed environment is
very current and relevant. In spite of this, many work has been proposed so
far. In this section we report some of the most relevant approaches facing this
challenge. Multi-Attribute Addressable Network (MAAN) [1] consists in a struc-
tured system able to support multi-attribute range queries. In MAAN, items are
identified by a set of attribute-value pairs, and each attribute is mapped on a
bucket through a locality preserving function. The node target of such function
stores the full item description so that each item is stored as many times as
the number of its attributes. The resolution of a multi-attribute range query
consists in executing a single one-dimensional query on the dominant (i.e. most
selective) attribute, while the other attributes are checked using the replicated
data. Although MAAN provides a smart routing technique and it has the ability
to perform queries on subsets of the whole attributes domain, it requires large
amount of memory to store resource indices, and a high computational cost to
maintain them up-to-date. This class of solutions requires users to be aware of all
the indexed attributes and their respective domains. Making queries exploiting
only a small subset of them without specifying the other ones, or not defining
the attributes range properly, it may happen that too many results are returned
leading the user to iteratively refine her/his queries. More flexible queries can
be expressed in DHT-based systems. MCAN [13], exploits the CAN architec-
ture, where, in each dimension, coordinates are given by the distance from a
given pivot. Although such solutions allow users to exploit the query-by-example
paradigm, these proposals are other examples of ad-hoc solutions, though to be
used for searching multimedia objects, and thus are unsuitable for more generic
kinds of resources. Pirrò et al. [14] show an approach for a semantic-based service
discovery in P2P networks. It couples a DHT layer with a SON (Semantic Over-
lay Network) overlay. Differently from our solution, here a DHT-based network
allows peers to publish semantically annotated services. Then a SON is incre-
mentally build by using the interactions between peers within the structured
level during the service publication and searching processes. In our solution only
the community representatives are registered in the DHT level. To have only a
subset of the devices composing the network in the DHT layer leads to reduce
the number of messages routed through the DHT to solve a query. GosSkip [15]
is a self-organizing and fully distributed gossip overlay that provides a support to
data storage and retrieval in highly decentralized environments. It is built using
a epidemic protocol that organizes peers to form an ordered double-linked list.
In the overlay network each peer is connected in a skip list where connection are
similarity based. To this end, each node is associated with a single item of data
and it has a name that describes the semantics of the associated object. These
names follow a total and deterministic order. As a consequence, the position
of an element is fully determined by its name. For information dissemination,
its gossip protocol maintains O(log(N)) peer states, and has a message routing
cost of O(log(N)). The association of links to the published object can lead to a
very large number of connections. This is especially true in networks where the
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number of objects shared by each node is large. The main drawback of the above
solutions is the lack of a broader, more recognized measure of similarity. Each
peer only relies on its local view. Thus, it is not able to determine whether a peer
not included in its similarity-based neighbourhood could be regarded as simi-
lar with respect to the overall network organization. More effective information
dissemination cannot be implemented because peers are not able to determine
whether or not there exist between them more latent forms of similarity, even
when they do not consider each other as immediate neighbours. Another type
of unstructured networks organization is given by Semantic Overlay Networks
(SON). Crespo and Garcia-Molina [16] organize peers in clusters of semantically
correlated nodes, on the basis of the semantic content of the document they
share. Each cluster represent a semantic concept, i.e., peers belong to groups that
go beyond their simple neighbourhood. The assignment of peers (and queries) to
a given cluster is made using a hierarchical classifier organised as a tree, where
each node is a concept. Nodes encountered descending such a tree represent
semantic refinements of the concept of their father nodes. A SON is created for
each node of tree of concepts. The main disadvantages of this class of solutions
is the rigid predefined structure of the SON-based overlay network. Crespo and
Garcia-Molina [16] assume that the concept of tree is pre-defined and peers must
use the same classifier in order to join a group. We seek to create more dynamic,
spontaneous communities, dynamically made by the interactions between nodes
and without relying on a priori knowledge on how to classify the shared content.

3 Overall Architecture

The overall architecture of our proposed solution organized on two layers (struc-
tured and unstructured networks) and four different kinds of entities (adver-
tising node, community representative, node belonging to the structured layer
and requesters) realising the NOA-AID ecosystem. The unstructured layer is
based on an highly scalable epidemic protocol, whereas the structured network
is based on a properly defined Distributed Hash Table (DHT). The structured
layer indexes profiles of Community Representatives (CR). Each CR is elected
by a community of Advertising Nodes (AN). Each AN has an associated profile,
i.e., a set of information continuously extracted during the stream processing
phase. The unstructured layer is devoted to build communities by means of a
similarity function applied on the profiles describing the data passed through
of streaming processing devices. Each community elects its own representative,
which is in charge of registering itself on the structured layer, that is the layer to
query in order to search for the information sought. The query resolution process
is organised on two stages. Firstly, it is queried the structured layer providing it
a simulacrum of the information searched. This layer returns the CRs that are
the closer to the simulacrum. Then, the selected CRs, acting as entry points, per-
colate the queries inside their own communities to search for ANs that actually
satisfy the needs expressed by the query. Profiles are used to compare the infor-
mation associated to different devices. To build profiles of streaming processing
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devices, many different functions and profile organizations can be exploited. This
both depends on the ultimate aim of the system and on the type of information
to manage and index. In this work we assume that the streams are made of
textual data, thus the profiles represent collections of words. To measure the
similarity between two different profiles, we adopted a slightly modified version
of the Jaccard similarity coefficient [17], described in Sect. 5. It has proven to
be an effective measure in distributed environments [18]. It is computed as the
size of the intersection of two sets divided by the size of their union. However,
traditional DHTs, providing mechanisms for exact matches, are not efficient for
searching resources in highly heterogeneous and dynamic scenarios. To overcome
this limitation, we instrumented our structured network to perform approximate
matches between a user query and a community profile. To this end we leveraged
a Locality Sensitive Hash (LSH) method. An appropriate representation of pro-
files is important to tailor an information discovery mechanism to a specific aim
or application. However, such investigation is beyond the scope of this paper. In
our study we limit our investigation to two profile representation:

– Weighted Attribute Vector : a collection of words, weighted according to their
relevance with respect to a profile.

– Attribute Adjacency Matrix (hereafter Adjacency Matrix): a profile is repre-
sented with a weighted word of vector enriched with values estimating the
correlation between attributes.

Among the two, the Weighted Attribute Vector is the simplest. It contains
all the attributes describing the stream observed by a node along with their
relevance weight values. Since it is a composition of all the attributes, the rele-
vance weight value should be computed by taking into consideration all the single
attribute values extracted from the stream. The exploitation of the Adjacency
Matrix as profiles permits to represent a relational graph between attributes
by using the co-occurrences of them in the set of information represented by a
device. Each row of the resulting matrix is associated to an attribute Attri. Each
entry j of such a row contains the co-occurrences proportion of Attri with an
attribute Attrj . The i-th entry of the Attri’s row simply gives the relevance value
associated to Attri. Entries are zero-valued when there is no relation between
the referred pair of attributes.

4 The Unstructured Layer

The lower layer is aimed at the detection and the creation of self-emerging com-
munities made up of Advertising Nodes. This layer is based on the GROUP
protocol. GROUP is a protocol we conceived, designed and implemented for
building communities in a completely decentralised way. An in-depth presenta-
tion of GROUP is beyond the goals of this paper. We refer interested readers
to the original paper in which it has been presented and analyzed [19–21]. Here
we briefly present its behaviour and approach. Group carries out communities
of similar Advertising Nodes by achieving a logic partition PI = {P1, . . . , Ps}
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of nodes belonging to a network, such that every Pi includes a subset of nodes
characterised by similar profiles. Each distinct partition Pi represents a different
community. To identify the communities GROUP exploits a distributed voting
algorithm on the overlays built by other epidemic protocols. This process is
driven by the consensus that a certain AN gathers among the other ANs. Each
AN votes for the ANs it considers closer to itself, i.e. the ones with a profile
similar to its own. Each elected AN, together with the ANs that contributed
to its election, constitute a community, which is identified by the profile of the
elected node.

5 Structured Layer

GROUP enables the creation, in a self-emerging, distributed way, of communi-
ties made of devices characterized by similar profiles, namely “communities” of
similar data streams. However, the protocol does not provide any support for
indexing such communities. To overcome this limitation, we introduce a further
layer to our architecture. The idea is to provide a distributed index based on a
DHT specifically instrumented to perform approximate matches between a query
and a community profile. The approximate search is obtained by exploiting a
Locality Sensitive Hash (LSH) approach. This approach allows to find the com-
munity of data streams that is the closest one to that provided by means of a
simulacrum. In fact, traditional DHTs are very efficient to support the search for
exact uni-dimensional data, but they are not conceived for supporting approxi-
mate searches. The idea for achieving a support for approximated multi-attribute
searches on DHTs has been initially proposed by Zhu [18]. The approach con-
sists in applying the Locality-Sensitive Hashing (LSH) method [22], Specifically,
a family of hash functions H ∈ R

d is locality-sensitive if, given a random hash
function h ∈ H, for any pair of points a, b ∈ R

d and a distance threshold r, we
have:

– if ‖a − b‖ ≤ r then Pr[h(a) = h(b)] ≥ p1
– if ‖a − b‖ ≥ r then Pr[h(a) = h(b)] ≤ p2

In other words, fixed p1 > p2 the hash function allows to map with high prob-
ability a and b in the same bucket if they are very close (according to a given
threshold r) or in different buckets if they are quite different. A detailed descrip-
tion of LSH can be found in the paper of Antoni and Indyk [23]. In this paper we
exploit LSH as a mechanism for supporting efficient approximated searches in
DHTs. In particular, for each profile we create n different indices, which are used
to register a profile in a DHT. A submitted query is first indexed with the same
LSH method. Then the community representatives’ profiles registered under the
same indices are retrieved and compared against the query in order to carry
out the most similar representatives. Finally, such representatives forward the
query to the related community of devices that likely manipulated a data stream
close to the one represented by the simulacrum provided as a query. In order
to exploit the potentials of this indexing mechanism, we test this structured
layer with the two different types of profile representations described in Sect. 3.
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All of them are built starting from the attributes collections characterizing the
profile of a node. Clearly, to compare two profiles (and queries against profiles),
proper similarity functions must be used. For the Weighted Attribute Vectors
profile model we use the following function:

SIMV (P1, P2) =

∑

obj∈P1∩P2

min [W 1(obj), W2(obj)]

max(|P1|, |P2|) (1)

where P1 and P2 are the two profiles to compare, and W1(obj),W2(obj) are
the weights associated to obj within P1 and P2, respectively. Like the Jaccard
similarity measure, this similarity is computed only on the intersection of the
attributes shared by P1 and P2. For each of them the minimum weight is consid-
ered. The sum of all those values is weighted with the size of the largest profile.
This is done in order to avoid having a high similarity degree even in case of a
profile is completely or largely contained in the other, or even when it represents
only a small subset of other profiles. In order to compare matrix-based profiles,
i.e. when Adjacency Matrices is used, the previous formula is changed in:

SIMM (P1, P2) =

∑

obj∈P1∩P2

[min (W 1(obj), W2(obj)) · δRel(obj)]

max(|P1|, |P2|) (2)

where

δRel(obj) =

∑

obj′∈P1∩P2

min (Rel1(obj, obj
′), Rel2(obj, obj

′))

max
i=1,2

| {obj′ ∈ P1 ∩ P2|∃Reli(obj, obj′)} |
In such a case, in addition to the two profiles sizes and attribute weights,
we exploit the function δRel(·). It measures the degree of relationship of each
attribute of the Adjacency Matrices-based profile, with the other ones. More
precisely, given an object obj, we consider only the attributes that are in the P1

and P2 intersection. For each attribute we consider the sum over the minimum
relevance weights existing in the two profiles. The relevance with an object obj′

is given by the function Rel(·, ·). This sum is weighted with the maximum size
of the set of objects having a relation with obj. Note that using an adjacency
matrix, this set has the same size on both profiles, because all objects are con-
sidered to have a relation, even when they have a value equals to 0. In order
to analyse the advantages deriving by the usage of all profile models, we per-
formed a theoretical comparison between two different solutions, also comparing
the LSH approach against a naive solution that would work by indexing, storing
and retrieving every attribute of each profiles.

Theoretical Analysis. Table 1 shows the theoretical costs computed consider-
ing the LSH indexing approaches when applied to index node profiles expressed
according to Weighted Attribute Vector and Adjacency Matrix profiles. Such
costs are computed as function of the number of profiles’ attributes, namely a
cost O(n) means n times the amount of memory required to store (or transfer)
an attribute. In our analysis |P | indicates the number of attributes composing
a profile. X indicates the number of peers composing the DHT network, Com
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the total number of registered communities (i.e. groups of similar data streams).
k is the maximum number of profiles returned by a node of the DHT when it
resolves a query. R is the number of accesses performed to update the DHT
when a community profile changes. Each access removes a copy of a community
profile at a certain key (corresponding to a profile attribute) that is no longer
contained in the community profile. n indicates the number of LSH identifiers
associated with each profile.

Table 1. Complexity analysis for indexing profiles.

Operation Profile LSH cost Naive cost

Query A.M. O(n · |P2|
2

· log(X)) O( |P3|
2

· log(X))

T.V. O(n · |P | · log(X)) O(|P |2 · log(X))

Query resolution A.M. O(k · |P |2
2

· n) O(k · |P |3
2

)

T.V. O(k · |P | · n) O(k · |P 2|)
Community insertion A.M. O(n · |P |2

2
· log(X)) O( |P |3

2
· log(X))

T.V. O(n · |P | · log(X)) O(|P |2 · log(X))

Profile update A.M. O((n · |P |2
2

+ R) · log(X)) O(( |P |3
2

+ R) · log(X))

T.V. O(n · |P | + R) · log(X)) O((|P |2 + R) · log(X))

Descriptor removal A.M. O(n · log(X)) O(|P | · log(X))

T.V. O(n · log(X)) O(|P | · log(X))

Index size A.M. O(n · |P |2
2

· Com) O( |P |3
2

· Com)

T.V. O(n · |P | · Com) O(|P |2 · Com)

Weighted Attribute Vector model. Following the naive approach, searching for
a profile to requires to send to the DHT a request for each profile’s attribute.
Thus, the generation of O(|P |2 · log(X)) messages. This derives from the DHT
logarithmic routing approach: for each attribute a profile copy is transferred to
a logarithmic subset of the set of nodes realising the DHT. Each queried node
answers by sending a message of O(k · |P |) elements to the k communities with a
profile that is similar to the received query. As a consequence the total amount of
messages exchanged is O(k · |P 2|). The creation of the distributed index requires,
for each community, to store a copy of its profile, for each profile’s attribute.
This leads to O(|P |2 · Com) messages. When a community profile changes, the
index is updated, |P | copies of the new profile are sent, one for each profile’s
attribute. Moreover, R additional notifications are sent, one for each attribute
that is no longer part of the community profile, aimed at removing old commu-
nity’s profiles. As a consequence, the number of exchanged messages is equal to
O(|P |2 · log(X) + R · log(X)). Storing a new profile requires to sent |P | copies
of that profile, one for each profile’s attribute. Consequently, the total amount
of generated messages is equal to O(|P |2 · log(X)). Removing a community pro-
file requires to send |P | messages, which correspond to the number of profile’s
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attributes that equals to O(|P | · log(X)); Using the LSH model a community
search requires to generate a query for each one of the n LSH identifiers com-
puted for a peer profile. As a consequence the generated number of messages is
independent by the number of attributes within a community’s profile. Since any
message contains a community profile, the total number of generated messages
is equal to O(n · |P | · log(X)). Like the naive solution, to answer a query each
peer sends a message having a maximum size equal to (k · |P |), but only n nodes
of the DHT are involved. This leads to a total amount of generated messages of
O(n · k · |P |). The number of profile copies stored along the distributed index
is equal to the number of the n LSH identifiers associated to a community’s
profile. This implies that the total number of generated messages for storing the
whole distributed index is equal to O(n · |P | · Com). When a community profile
is updated, the DHT is requested to store n copies of the new profile, leading
to an equivalent number of profiles to transfer, and, in the worst case, other n
requests of profile removal are generated for deleting the old profile. However,
due to the LSH properties the number of identifiers exchanged between the old
and new profile is less than n on average. Then, the overall number of generated
messages for updating a community profile is O(n · |P | · log(X)+n · log(X)). The
removal of a community descriptor requires to send n messages that generate a
number of exchanged messages equal to O(n · log(X)).

Attribute Adjacency Matrix model. When a profiles is structured as an adja-
cency matrix, its behaviour in terms of complexity, for the various operations, is
pretty similar to the Weighted Attribute Term Vector model. The only notable
difference is on the amount of information required to represent the profile. In
this case it goes from |P | to |P |2

2 . As a consequence, almost all the complexities
are scaled of a factor |P |

2 , with the only exception on the removal of a descrip-
tor, that is not directly proportional to the profile size but on the number of
attributes.

6 Evaluation

The focus of our solution is on enabling approximate queries over textual data
(coming from data streams) in a distributed system based on IoT and Edge
devices. To this end, we firstly, we measured the ability of our system to main-
tain high-quality community representatives (representatives of a collection of
data streams) when the indexed data changes. Figure 1 shows the average sim-
ilarity of community members with the selected representatives, and with the
other members of the same community. This experiment has been conducted by
varying the actual composition of the information extracted by the stream pro-
cessing devices starting from the simulation cycle #50. Every cycle we changed
the 5% of the information content of a randomly selected set representing the
2% of the nodes. As can be observed, the similarity of nodes with their rep-
resentative is essentially not affected by the changes. Thus the system is able
to adaptively react to changes. Then, we analyse the ability of our system to
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Fig. 1. Dynamic behaviour: internal homogeneity of communities

efficiently resolve textual queries in a distributed fashion. This evaluation is
made in comparison against ERGOT [14]. ERGOT is a DHT-based Semantic
Overlay Network aimed at service discovery structured on two layers (struc-
tured and unstructured). The main difference with our solution relies on the
actual viewpoint. They use a DHT-based structured layer as lower-layer and a
semantic-based unstructured network as higher-layer. To conduct an effective
comparison we directly contacted the authors of ERGOT that provided us the
dataset they used in their evaluation, the source code of their proposed solu-
tion and the complete set of information about the configuration of their testing
environment. The dataset has been built by exploiting the WordNet ontology
and the WordNet domain [24]. It consists of 200 domains labels organized in a
hierarchical structure that categorizes WordNet synsets into domains. The con-
tent of this dataset has been used for generating textual descriptions, which has
been assigned to profiles according to a Zipf distribution. The evaluation has
been focused on the ability of retrieving relevant profiles given an input query.
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Fig. 2. Comparison against ERGOT

A result has been considered as relevant if its degree of similarity with the query
is greater than 0.5. For achieving a fair trial, in our evaluation we compared the
results obtained by ERGOT and NOA-AID, using the set of 20 queries presented
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in the original paper of ERGOT. Figure 2a shows the comparison between the
results achieved by ERGOT and the ones provided by NOA-AID in terms of
Recall. The Recall value for a given query has been computed as the ratio of
the number of relevant profiles obtained on the total number of relevant results
existing in the system. It can be noticed how our solution provides better results
in almost all the submitted queries. Figure 2b shows the results obtained for
the Precision metric by the two approaches. Precision has been computed as the
ratio of the number of relevant peer profiles retrieved on the total number of pro-
files returned. Also in this case using our solution provide a clear advantage with
respect to ERGOT in almost all cases. To validate the efficiency of our proposed
system in providing access to the information sought by a requester (simulacrum
describing the data stream), while minimizing the amount of data transferred
through the network, we measure the actual cost associated with the LSH-based
indexing and query resolution techniques. Their performance are strongly rele-
vant for resource-constrained devices, like the ones we are focusing in this paper.
Table 2 reports both the amount of data needed for storing the whole index of
the communities as well as the communication costs associated with the query
resolution process. Results are compared against the Naive solution. As can be
observed, the experimental results validate the expected theoretical behaviour,
following from the evaluation presented in Sect. 5.

Table 2. Comparison of the theoretical load with the actually measured one.

Parameters Naive NOA-AID Exp. Gain Meas. Gain

Index size

Term vector n= 15; P= 300 3064 148 20 20.6

n= 20; P= 300 3064 190 15 16.11

Adj. Matrix n= 15; P= 300 257557 12728 20 20.2

n= 20; P= 300 257557 16970 15 15.2

Query resolution

Term vector n= 15; P= 300 22165 1210 20 18.3

n= 20; P= 300 22165 1544 15 14.35

Adj. Matrix n= 15; P= 300 1572155 78684 20 19.98

n= 20; P= 300 1572155 104810 15 15

7 Conclusions

In this paper, we propose NOA-AID, a network architecture aimed at providing
a flexible query-by-example indexing and discovery mechanism targeting stream
processing devices belonging to a highly dynamic and distributed environments.
It is based on two overlay networks. At the lower level lies an unstructured,
epidemic-based, network able to autonomously adapt and self-organize, aimed
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at grouping stream processing devices, collecting an heterogeneous set of infor-
mation, into communities. The higher network layer indexes such communities
and provides a query-by-example solution easing their discovery. We provided
both a theoretical as well as a experimental evaluation of the approach showing
its effectiveness and efficiency.
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Abstract. A desirable characteristic of modern parallel applications is
the ability to dynamically select the amount of resources to be used to
meet requirements on performance or power consumption. In many cases,
providing explicit guarantees on performance is of paramount impor-
tance. In streaming applications, this is related with the concept of elas-
ticity, i.e. being able to allocate the proper amount of resources to match
the current demand as closely as possible. Similarly, in other scenarios, it
may be useful to limit the maximum power consumption of an application
to do not exceed the power budget. In this paper we propose Nornir,
a customizable C++ framework for autonomic and power-aware paral-
lel applications on shared memory multicore machines. Nornir can be
used by autonomic strategy designers to implement new algorithms and
by application users to enforce requirements on applications.

Keywords: Autonomic · Power-aware · Quality of Service
Framework

1 Introduction

Nowadays, sensors, social network interactions and heterogeneous devices inter-
connected in the Internet of Things are continuously producing unbounded
streams of data. In Data Stream Processing applications, this flow of information
must be gathered and analyzed “on the fly” in order to produce timely responses.
Systems for high-frequency trading, health-care, network security and disaster
managements are typical examples: a massive flow of data must be processed in
real-time to detect anomalies and take immediate actions.

Usually, the development of stream processing applications requires to exploit
parallel and distributed hardware in order to meet Quality of Service (QoS)
requirements of high throughput (i.e. applications must be able to cope with
high volume of incoming data) and low latency (i.e. results must be computed in
a short period of time). Due to their long-running nature (24 h/7 days), stream
processing applications are naturally affected by “ebbs and flows” in the input
rate and workload characteristics. These variations need to be sustained to pro-
vide the QoS required by the users without interruptions. However, run as fast

c© Springer International Publishing AG, part of Springer Nature 2018
D. B. Heras and L. Bougé (Eds.): Euro-Par 2017 Workshops, LNCS 10659, pp. 42–54, 2018.
https://doi.org/10.1007/978-3-319-75178-8_4



Nornir: A Customizable Framework 43

as possible is not a viable solution in a world in which power consumption man-
agement has become a major concern for data centers due to economic cost,
reliability problems and environmental reasons. In other cases, explicitly appli-
cation’s power consumption may be useful to do not exceed the available power
budget. Not being able to enforce such requirement may lead to hardware fail-
ures and to a system outage. Autonomicity (sometimes referred as adaptivity or
elasticity) is a fundamental feature: applications must be able to autonomously
adjust their resources usage (i.e. their configuration) to accommodate dynamic
requirements and workload variations by maintaining the desired QoS in terms
of performance and/or power consumption.

Existing Stream Processing Systems (SPSs) fall short in handling this prob-
lem. Delegating the decisions to the user (like in [1]) or to applications (as in
[19]) are not wise decisions since they will require a human intervention or a
deep knowledge of the parallel computation to the application programmer. On
the other hand, in the literature there are plenty of proposals of autonomic algo-
rithms (e.g. [6,10,11,17,18]). Implementing such strategies is a cumbersome and
error-prone duty for the application programmer, that has to deal with many
architectural low-level issues related to hardware mechanisms management like
voltage, frequency, cores topology, etc. Even interfacing with applications in
order to collect monitoring data may not be an easy task. Indeed, in many cases
the proposed strategies are only simulated or, even when actually implemented,
they are embedded inside the application code and it is very difficult to port
them on different applications. For these reasons, we believe that providing a
customizable framework would allow the autonomic strategies designers to just
focus on the algorithm, exploiting the infrastructure provided by the framework
to collect the data and to apply the decisions. This is a fundamental step for
building efficient autonomic techniques and for their wide adoption.

In this paper, we propose Nornir, a customizable C++ framework for
autonomic and power-aware parallel applications on shared memory multicore
machines1. Our focus is on applications composed by a single, parallel func-
tionality (an operator). The support for applications that can be expressed as
the composition of different operators will be included in future releases of the
framework. Nornir can be used by different actors:

– Autonomic strategy designers can customize every aspect of Nornir: the
monitoring, the management of hardware mechanisms and the planning poli-
cies. The designer can just focus on the implementation of his new autonomic
strategy by using the provided set of resource management mechanisms and
the application monitoring infrastructure. Designers can develop strategies
to explicitly control power consumption, performance or both of them.

– Application programmers can use it to interface an already existing applica-
tion to Nornir. Nornir also provides a programming interface for parallel
applications, to be used if the application needs to be written from scratch.

1 The framework is released under open source license and publicly available at http://
danieledesensi.github.io/nornir/.

http://danieledesensi.github.io/nornir/
http://danieledesensi.github.io/nornir/
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– Application users specify requirements on performance and/or power con-
sumption of their applications. Nornir will be in charge of monitoring the
application execution and selecting its appropriate configuration (e.g. number
of cores, clock frequency, etc.) to enforce the imposed requirements.

Currently, different state of the art autonomic techniques have been already
implemented in Nornir, allowing the algorithm designer to compare his new
algorithm with other existing ones.

The paper is organised as follows. In Sect. 2 we outline the related work. In
Sect. 3 we describe how the user can express requirements on his application
by using Nornir. In Sect. 4 we show how the programmer can interface a new
or an existing application to Nornir and Sect. 5 describes how Nornir can be
customised by autonomic strategies designers. Some experimental results will be
shown in Sect. 6 and conclusions are eventually drawn in Sect. 7.

2 Background and Related Work

An autonomic or autonomic system is able to alter his behavior according to QoS
requirements and to the surrounding conditions in order to achieve some goal,
without any human intervention. Altering the behavior usually implies changing
the configuration of the application, e.g. the amount of used resources.

Existing algorithms are usually time-driven and, at each time step, act by fol-
lowing a generic Monitor-Analyze-Plan-Execute (MAPE) loop [14]. In the Mon-
itor phase, various measurements are collected from the application (e.g. perfor-
mance and power consumption). In the Analyze phase monitored data, collected
at the current and previous time steps, is compared against the user’s require-
ments. If requirements are violated, the Plan phase a new optimal resources
allocation will be computed. This planned decision is communicated to the Exe-
cute phase, that applies the new resources allocation to the application.

Different autonomic strategies have been proposed, to satisfy user’s require-
ments in terms of performance [11,16–18], power consumption [10] or both of
them [6,9]. Such requirements are usually enforced even in presence of workload
fluctuations or external interferences. However, in many cases, these techniques
are only simulated or implemented for specific applications.

In literature, some proposed framework target a problem similar to the one
we are addressing in this work [12,15,20]. However, they provide very limited cus-
tomization opportunities, are quite outdated and the source code is not publicly
available. Moreover, they do not provide any explicit support for streaming appli-
cations. The work most similar to ours is SEEC [13]. In this work, the authors
describe the design of a framework for self-aware computing. Such framework is
customizable, allowing the autonomic strategy designer to specify custom moni-
toring and execution mechanisms. Nevertheless, there are some limitations with
respect to our work. First of all, there isn’t an explicit concept of stream. As
shown in [9] this can lead to unnecessary reconfigurations, since it would not be
possible to know whether workload fluctuations are caused by intrinsic changes
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in the application or by changes in the arrival rate of data to the application.
In addition to this SEEC allows the customisation of the Monitor and Execute
parts but provides its own Plan algorithm. Albeit being a flexible strategy, it is
not possible to replace it with a different one. On the other hand, in Nornir
this aspect is customizable as well. This is an important feature since allows the
strategy designer to quickly prototype and validate his own planning strategies
and to easily compare it with other existing ones. Lastly, the implementation of
the SEEC framework is not publicly available.

3 User

The user needs to detail which kind of constraints should be enforced by Nornir
on his application by specifying them through an XML file. Requirements can be
expressed on the metrics reported in Table 1.

Table 1. Parameters that can be controlled by the user. ��∞ = Meaningful only if the
stream has finite size. The user needs to specify the expected stream length.

Metric S Description

Bandwidth B Number of stream elements processed per second (number
of iterations executed per second for non streaming,
iterative, applications)

Latency L Time required to process a single stream element

Completion time T Time required to process all the elements on the stream�∞

Utilisation factor ρ Percentage of time spent doing useful work (i.e. processing
stream elements). 100 − ρ is the percentage of time wasted
by the application waiting for new data to arrive from the
stream

Power consumption P Since current operating systems don’t provide mechanisms
to monitor the individual power consumption of each
application, this may correspond to the system level power
consumption

Energy E Power integrated over time�∞

Despite the target of this work is towards Data Stream Processing applica-
tions, Nornir can manage generic iterative applications, for example by enforc-
ing requirements on the latency of one iteration or on power consumption. It
is possible to express constraints on more than one metric at the same time,
for example by asking Nornir to find the configuration characterized by the
lowest power consumption among those with a bandwidth higher than a cer-
tain threshold. Similarly, the user can ask Nornir to find the most performing
configuration among those characterized by a power consumption lower than a
specified bound.
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The XML file can also be used to specify other parameters, like the autonomic
strategy to be used, on which executors Nornir should operate, the duration
of the MAPE step (i.e. the control step), etc. The following code snippet shows
a configuration file example, used to ask Nornir to find the best performing
configuration characterised by a power consumption lower than 50 W and using
a control step of 500 ms:

4 Application Programmer

A controlled parallel application is coupled with a Manager, which is in
charge of executing the MAPE control loop. The Manager runs in a separate
thread/process and interacts with the application to gather monitoring data
and to apply reconfiguration decisions (e.g. changing the number of threads) to
enforce the user’s requirements.

Nornir offers different possibilities to the application programmers for realiz-
ing this interaction, allowing to chose the desired tradeoff between configuration
optimality and required programming effort. In the following, we will discuss
these different opportunities.

Application written from scratch. The programmer can write a parallel
application by using the parallel programming interface provided by Nornir.
This interface allows the programmer to write both structured (i.e. parallel pat-
terns based) and unstructured applications expressed as a graph of concurrent
activities. By doing so, Nornir can access many internal features of the run-
time, thus extending its monitoring capabilities and being able to operate on
additional executors. Details about this API can be found in [5].

Application written using a supported framework. Nornir can easily
interface with existing applications written in one of the supported parallel pro-
gramming environments. At the time being, the only supported framework is
FastFlow2. FastFlow is a pattern based parallel programming framework,
particularly suited for parallel streaming applications. In this case is sufficient
for the programmer to provide to the Manager a handler to the application,
as shown in the following code snippet:

2 http://calvados.di.unipi.it/.

http://calvados.di.unipi.it/
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Instrumented application. If the application is implemented with a non-
supported framework, the programmer can interface it to a Nornir Manager
running in a separate process as a server. The application will act like a client, by
inserting few instrumentation calls in his application, as shown in the following
snippet:

On the left, we have the original, already existing, streaming applications and
on the right the same application after it has been instrumented. In line 1 the
application opens a connection towards the manager and sends to it the param-
eters (e.g. QoS requirements). Then, for each stream element, after receiving it
from the stream (line 3), the processing is wrapped between 2 calls (lines 4 and
6). By doing so, the performance of the application will be monitored and the
data will automatically flow towards the Manager. Eventually, in line 8, the
connection with the Nornir Manager is closed. Note that this approach only
requires inserting 4 instrumentation calls in the already existing application.

Black-box application. In some cases the programmer may not have the pos-
sibility to instrument and recompile his application. In such cases, the only way
Nornir has to monitor the application performances is to rely on performance
counters, for example by monitoring the number of assembler instructions exe-
cuted per time unit (i.e. instructions per second (IPS)). Accordingly, the user
should express his performance requirements for the application in terms of IPS.
Correlating the IPS to the actual application bandwidth is not an easy task and
not so intuitive from the user perspective. Moreover, as shown in [13] perfor-
mance counters may not be a good performance proxy. For these reasons, this
approach should only be used if none of the previous ones can be adopted. Sup-
pose that the user wants to specify some constraint on his streamprocessing
application. Then, he can run it by using the Nornir applications launcher:

manager-blackbox --parameters parameters.xml
--application ./streamprocessing

Note that this doesn’t require any intervention from the programmer.

To summarize, Nornir provides different solutions to interact with applica-
tions. The optimal solution would be to program the streaming application with
the provided programming API or to use a supported framework. By accessing
the runtime support, Nornir can also access other executors (Sect. 5.3) that
would not be available otherwise (e.g. changing the number of threads), thus
improving the quality of the selected configuration, as shown in [3]. If it is not
possible to rewrite the application by using a different framework, the program-
mer can just insert few instrumentation calls inside the application, allowing
Nornir to monitor it. Eventually, if even the instrumentation is not feasible
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(e.g. because the programmer can’t or doesn’t want to change the application
code and/or recompile it), Nornir can still manage the application, not requir-
ing any programming effort. However, we can only monitor system performance
counters and we lose the concept of stream. Moreover, expressing performance
constraints in this scenario could be not intuitive from the user perspective.

5 Strategy Designer

In this section, we describe the design of the framework, focusing on how it can
be customized by the autonomic strategy designer. The general architecture of
Nornir is depicted in Fig. 1.

Fig. 1. General architecture of Nornir framework.

In the upper layer, we have the different types of applications that can be
interfaced to Nornir (Sect. 4). Nornir interacts with the system knobs and
sensors (e.g. power consumption one), by using Mammut [7]3. Mammut is an
object-oriented C++ framework allowing a transparent and portable monitoring
of system sensors as well as management of several system knobs.

The following code snippet shows a simplified version of the main parts of
Nornir implementation4:

3 http://danieledesensi.github.io/mammut/.
4 Actual implementation consists of approximately 18000 lines of code.

http://danieledesensi.github.io/mammut/
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20 virtual ApplicationSample getSample() = 0;
21 };
22

23 class Knob{
24 ...
25 std::vector<double> _knobValues;
26 virtual void changeValue(double v) = 0;
27 };
28

29 class Selector{
30 ...
31 virtual KnobsValues getNextKnobsValues() = 0;
32 }

Source Code 1.1: Simplified version of the main parts of Nornir implementation.

1 typedef enum{
2 KNOB_VIRTUAL_CORES = 0,
3 ...
4 KNOB_NUM
5 }KnobType;
6

7 class Manager{
8 ...
9 void run(){

10 while(isRunning()){
11 sleep(_parameters.samplingInterval);
12 ApplicationSample s = getSample(); // Monitor
13 storeSample(s);
14 KnobsValues k = _selector->getNextKnobsValues(); // Analyze & Plan
15 for(uint i = 0; i < KNOB_NUM; i++){
16 _knobs[i]->changeValue(k[i]); // Execute
17 }
18 }
19 }

The meaning of this code snippet will become more clear after the end of this
section. For the moment, we can focus on the MAPE (lines 10–18) loop. In the
remaining part of this section, we describe how each of the 3 steps is designed
and how they can be customized by the autonomic strategy designer.

5.1 Monitor

As we shown in Sect. 4, the user can get the highest benefits from using Nornir,
by using it on an application written with the Nornir parallel programming
interface or on an application written by using one of the supported frame-
works. At the moment, this only includes FastFlow. To interface Nornir with
other runtimes, the designer needs to define a new manager for the new run-
time support, by defining a subclass of the Manager class and implementing
the getSample function (Code 1.1, line 20). In this function the designer should
implement the retrieval of a new monitored sample from the runtime (i.e. the
metrics in Table 1 and additional custom values). This function will be called by
Nornir (line 12) and the sample will be stored (line 13) in order to be accessible
from the Plan phase (Sect. 5.3).

5.2 Execute

To implement a new executor, the designer must define a subclass of the Knob
class (Code 1.1, lines 23–27). In the constructor, the knobValues vector must be
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populated with the set of values that the knob can assume. When the planning
phase terminates, the function changeValue will be called by the manager on
all the available knobs (lines 15–17), with the parameter v corresponding to the
value that that specific knob must assume according to the planning algorithm.
By implementing the function changeValue, the designer specifies the actual
code to be executed when a request to change the value of that knob is received
by the Manager. For example, if the designer wants to implement a knob to
set the DRAM frequency, in the changeValue function he will insert the code to
perform this action. The new Knob object must then be created and added to
the knobs array (used in line 16). Moreover, a new enumeration value must be
assigned to this knob (lines 1–5). Currently, the following knobs are implemented:

Number of Cores. Turns off (or on) some cores. If possible (e.g. for Fast-
Flow applications), it will also change the number of threads used by the
application (without stopping or restarting it), to have one thread on each
active core. Otherwise, more threads will contest for the same core. Threads
will be allocated to cores through the Threads Mapping knob, while this
knob only enforces the specified number of cores to be active. If the number
of threads is changed, the application programmer must ensure the correct-
ness of the computation (i.e. if the application maintains an internal state,
the semantic of the computation must be preserved after a reconfiguration).

Hyperthreading Level. Number of hardware threads contexts to use on each
physical core.

Threads Mapping. Once the number of cores to use has been decided, this
knob can be used to apply a given placement. For example, to place them on
a set of cores sharing some resources (e.g. last level caches) for minimizing
power consumption, or to place them on a set of cores with the minimum
amount of shared resources, wasting more power but improving performance.

Clock Frequency. Operates on the clock frequency (and voltage) of the cores,
allowing to trade a decreased performance for a lower power consumption.

5.3 Analyze and Plan

To define a custom planning policy, the designer must define a sub-
class of the Selector class (Code 1.1, lines 23–27) and implement the
getNextKnobsValues function. In its own Selector the designer can access
different information provided by the superclass, like: parameters specified by
the user through the XML file, the current configuration of the application and
statistics about the previous monitored samples, to be used during the Analyze
phase. This information is kept consistent by Nornir and should be exploited
by the algorithm designer to decide the next configuration. Once the decision is
made, the next values of each knob are stored into a KnobsValues object, an
array of values (one for each knob) which can be accessed by using the enumera-
tion values identifying the type of the knob (lines 1–5). The returned object will
then be used to set the appropriate values on the available knobs (lines 9–11).
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For example, the following code snippet show how to implement a simple
selector that, when the monitored latency is lower than 100 ms, will force the
application to run on the 25% of the available cores, setting them to work at
50% of their maximum clock frequency. When the latency is higher (or equal)
than 100 ms, it will run the application on the 80% of the available cores and
will set them to work at 100% of their maximum frequency.

Nornir will then automatically translate the percentage values for number of
cores and frequencies in real values, according to the availability of resources on
the target architecture. Alternatively, it is possible to directly express absolute
values for the knobs. By replacing KNOB VALUE RELATIVE with KNOB VALUE REAL
in line 4, Nornir will interpret line 6 as “Run the application on 25 cores and
set their frequency to 100Hz”. samples contains the moving average (simple
or exponential) of the monitored data. The type of moving average as well as
the size of the moving window (or the exponential parameter) can be specified
through the XML file.

This is the most flexible choice from the designer perspective since he can
implement different strategies from scratch. However, it is also possible to cus-
tomize some of the strategies already provided by Nornir. The following state of
the art autonomic strategies are already implemented in Nornir: (i) Two online
learning strategies to enforce requirement on bandwidth and power consumption
[8,9]; (ii) A planning strategy mixing offline and online prediction [18]; (iii) An
heuristic strategy [16] to enforce bandwidth requirements; (iv) Two heuristics
for utilisation factor optimisation [4,5]. Being able to implement such a spec-
trum of different techniques, ranging from heuristics to online machine learning
proves the generality and flexibility of our design.

6 Results

Nornir already provides several autonomic strategies for streaming applica-
tions. We will show the results obtained by using the algorithm described in
[9] on a network monitoring application [4]. This application analyses all the
packets traveling over a network, applying Deep Packet Inspection techniques to
identify possible security threats. For our experiment we used synthetic traffic
data, while the arrival rates are those of a real backbone network5. We asked
5 http://www.caida.org/data/realtime/passive/?monitor=equinix-chicago-dirA, 24 h

of traffic between 03/01/2016 and 04/01/2016.

http://www.caida.org/data/realtime/passive/?monitor=equinix-chicago-dirA
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Nornir to always guarantee a bandwidth equal to the input one, (i.e. to do
not drop any input stream element), while minimizing power consumption. The
application ran for 24 h, and the results are shown in Fig. 2.
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Fig. 2. Time behaviour of an application controlled by Nornir, in presence of fluc-
tuations in the input pressure. Bandwidth is expressed in thousands of packets per
second.

No packets were dropped during this experiment and, as shown in the top part
of the figure, Nornir was able to reconfigure the application so to have a power
consumption proportional to the actual input data workload to be processed. In
the bottom part, we can see that this was possible since the number of used cores
and the clock frequency was dynamically changed according to the workload
intensity. When the autonomic strategy was not applied, the application was
always characterized by the maximum power consumption during the 24 h.

7 Conclusions and Future Work

In this work we presented Nornir, a framework to allow application’s users to
enforce performance and power consumption requirements on streaming appli-
cations. An application programmer will interface the user ’s application to the
Nornir Manager. Moreover, thanks to a modular design, it is possible for
an autonomic strategy designer to embed his own strategies inside Nornir, by
focusing only on the algorithmic part of his strategy, since the monitor and
execute phases are managed by Nornir. Nornir already provides several auto-
nomic strategies and supports different types of applications, proving its flexi-
bility.

As a future work, we would like to support in Nornir applications expressed
as graphs of operators. In this case, decisions taken by an operator manager may
influence the behavior of other parts of the computation, requiring to coordinate
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different managers to find agreements in reconfiguration decisions (e.g. hierar-
chical managers). Another important step would be extending the support to
distributed memory architecture. Eventually, we will provide the user with infor-
mation about the cost of reconfigurations, which may be helpful in mitigating
their impact on performance [2].

Acknowledgements. This work has been partially supported by the EU H2020-ICT-
2014-1 project RePhrase (No. 644235).
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Abstract. The emergence of generic interfaces, encapsulating algorith-
mic aspects in pattern-based constructions, has greatly alleviated the
development of data-intensive and stream-processing applications. In
this paper, we complement the basic patterns supported by GrPPI,
a C++ General and Reusable Parallel Pattern Interface of the state-
of-the-art, with the advanced parallel patterns Pool, Windowed-Farm,
and Stream-Iterator. This collection of advanced patterns is basically
oriented to some domain-specific applications, ranging from the evolu-
tionary to the real-time computing areas, where compositions of basic
patterns are not capable of fully mimicking algorithmic behavior of their
original sequential codes. The experimental evaluation of the advanced
patterns on a set of domain-specific use-cases, using different back-ends
(C++ Threads, OpenMP and Intel TBB) and pattern-specific param-
eters, reports remarkable performance gains. We also demonstrate the
benefits of the GrPPI pattern interface from the usability and flexibil-
ity points of view.

Keywords: Parallel programming framework
Domain-specific parallel pattern · Data and stream computing
High-level API

1 Introduction

The advent of the heterogeneous HPC architectures in the last decade paved the
way in improving performance of data-intensive and stream-processing applica-
tions [21]. This fact, however, posed a number of challenges to developers for
exploiting available resources of parallel hardware. An example among these
challenges is the variety of programming frameworks existing for multi-/many-
core CPUs, GPUs, co-processors, DSPs or FPGAs units present in heterogeneous
platforms [8]. Therefore, it becomes clear that additional expertise is required,
not only to develop applications using those frameworks, but also to select and
tune them optimally to operate on these architectures. The lack of unified inter-
faces, integrating available processor-specific programming frameworks in a stan-
dalone layer, makes the development an even more complex task.
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With the recent emergence of pattern-based programming frameworks,
encapsulating algorithmic aspects using a building blocks approach, this aspect
has been relieved when programming for parallel platforms [16]. Basically, par-
allel patterns offer a way to implement robust, readable and portable solu-
tions while hiding away the complexity behind concurrency mechanisms, e.g.,
thread management, synchronizations or data sharing. Numerous examples of
pattern-based programming frameworks, such as SkePU [9], FastFlow [3] or Intel
TBB [19], can be found in the literature. Nevertheless, most of these frameworks
are not generic enough nor offer unified pattern interfaces [5]. To tackle these
issues, the recent interface GrPPI [20], accommodates a unified layer of generic
and reusable parallel patterns on the top of existing execution environments and
pattern-based frameworks. However, we find that the core patterns offered by
this interface do not fully match in some domain-specific use cases, e.g., evolu-
tionary and symbolic algorithms.

To deal with this issue, we extend GrPPI with a collection of advanced par-
allel patterns targeted to domain-specific applications and evaluate their per-
formance on a set of use cases from different computing areas. Specifically, this
paper contributes with the following:

– We complement the core patterns supported by GrPPI with the advanced
parallel patterns: Pool, Windowed-Farm, and Stream-Iterator.

– We demonstrate the flexibility and the composability of the advanced patterns
in the GrPPI interface context.

– We assess the usability of the patterns with respect to the number of lines of
code (LOCs) that have to be modified in order to parallelize the selected use
cases.

– We evaluate the performance gains by using these patterns on a set of
domain-specific use cases and varying configurations of parallelism degree
and problem-specific parameters.

The remainder of this paper is organized as follows. Section 2 revisits some
related works about parallel programming frameworks and domain-specific pat-
terns. Section 3 states the formal definition of the advanced parallel patterns sup-
ported by GrPPI. Section 4 describes the interface adopted for the new patterns
presented in this paper. Section 5 evaluates these patterns from the usability and
performance points of view under three different use cases. Section 6 gives a few
concluding remarks and future works.

2 Related Work

In the literature, we found numerous works proposing parallel patterns targeted
to modern architectures for developing applications. In a first place, we find
several open-source pattern libraries oriented exclusively to multi-core proces-
sors, e.g., Intel Thread Building Blocks (TBB) [19], RaftLib [4] or Kanga [14],
and others supporting also accelerators, such as, SkePU [9], which allows hybrid
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CPU–GPU configurations. We also encounter commercial solutions in the state-
of-the-art, such as Thrust [17] and SYCL [13] for CUDA and OpenCL devices,
respectively. Simultaneously, standardized interfaces are being progressively
developed. This is the case of C++ STL algorithms, available in the forth-
coming C++17, that start defining parallel versions of already existing STL
algorithms [11]. Similar implementations to the parallel STL can also be found
as third-party libraries, e.g., HPX [12] and GrPPI [20].

All in all, we observe that these frameworks provide a collection of classic
parallel patterns targeted to data and stream-processing applications, e.g., the
Map, Reduce, MapReduce, Pipeline and Farm patterns. However, none of them
natively supplies advanced patterns. As stated in the previous section, we refer
to advanced patterns to those constructions that match the algorithmic behav-
ior of some particular domain-specific applications coming from, e.g., the sym-
bolic computing, control theory, biology, wireless sensor networks or real-time
stream processing domains. In this sense, we find that only some pattern-based
frameworks in the literature have pushed forward the development of complex,
high-level patterns. For instance, the FastFlow [3] library recently provided the
Pool [2] and the Windowed-Farm [7] patterns, two commonly used structures in
evolutionary and stream-intensive applications, respectively. On the other hand,
the MALLBA library [1] offers a collection of high-level skeletons for combina-
torial optimization which deals with parallelism in a user-friendly and efficient
manner. In any case, the high-level patterns offered by these frameworks are
not generic enough to be easily leveraged when developing parallel applications.
The contribution of this paper is mainly focused on complementing the GrPPI
library of basic parallel patterns with a new set of advanced patterns match-
ing the algorithms that commonly appear in, e.g., genetic, sensor networks or
real-time applications.

3 Advanced Parallel Patterns

Patterns have been generally defined as recurring strategies for solving problems
from a wide spectrum of areas, such as architecture, object-oriented program-
ming and software architecture [15,16]. In our case, we take advantage of parallel
software design patterns, since they provide a mechanism to encapsulate algo-
rithmic features and are able to make applications more robust, portable and
reusable. Also, if these patterns are properly tuned, they can achieve a good
balance between parallel scalability and data locality.

As observed, several solutions in the state-of-the-art offer collections of basic
parallel patterns as a “building blocks” modeling strategy for developing stream
processing and data-intensive applications. However, while many of the algo-
rithms found in general-purpose applications match directly those patterns, there
exist situations in which those have to be composed among them in order to com-
ply with the algorithm requirements. Furthermore, we identify some domain-
specific algorithms, in which those basic patterns do not match any of these
constructions or have to be composed in a very complex way in order to sat-
isfy the problem prerequisites. This occurs in many algorithms that come from
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the evolutionary and symbolic computing [10] domain, wireless sensor networks
algorithms [6] or in real-time processing engines [18]. Therefore, we determine
the need for supporting advanced patterns in order to simplify the development
of complex algorithms related to the aforementioned application domains.

In the following, we describe formally three new parallel patterns that can
be eventually incorporated during the parallelization task of such applications:
Pool, Windowed-Farm and Stream-Iterator.

Pool. This pattern models the evolution of a population of individuals matching
many evolutionary computing algorithms in the state-of-the-art [2]. Specifically,
the Pool pattern is comprised of four different functions that are applied iter-
atively to a population P of individuals of type α (see Fig. 1(a)). First, the
selection function S: α∗ → α∗ selects a subset of individuals belonging to P.
Next, the selected individuals are processed by means of the evolution function
E: α∗ → α∗, which may produce any number of new or modified individuals. The
resulting set of individuals computed by E are filtered through a filter function
F: α∗ → α∗, and eventually inserted into the population. Finally, the termina-
tion function T: α∗ → {true, false} determines in each iteration whether the
evolution process should be finished or continued. To guarantee the correctness
of the parallel version of this pattern, both functions S and E should be pure,
i.e., they can be computed in parallel with no side effects.

(a) Pool. (b) Windowed-Farm.

(c) Stream-Iterator. (d) Farm–Stream-Iterator.

Fig. 1. Advanced parallel patterns.

Windowed-Farm. This stream-oriented pattern delivers “windows” of processed
items to the output stream. Basically, this pattern applies the function WF over
consecutive contiguous collections of x input items of type α and delivers the
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resulting windows of y items of type β to the output stream (see Fig. 1(b)).
Optionally, these windows can have an overlap factor, i.e., the number of items
in the window wi that are also part of the window wi+1. The parallelization of
this pattern requires a pure function WF: α∗ → β∗ for processing item collections.

Stream-Iterator. This stream pattern is intended to recurrently compute the pure
function F: α → α on a single stream input item until a specific condition, deter-
mined by the boolean function T: α → {true, false}, is met. Additionally, in each
iteration the result of the function F is delivered to the output stream, depending
on a boolean output guard function G: α → {true, false} (see Fig. 1(c)). Note
that this pattern, due to its nature, does not provide any parallelism degree by
itself and can be classified as a pattern modifier. Therefore, the parallel version
of this construction is only achieved when it is composed with some other core
stream pattern, e.g., using Farm or Pipeline as for the function F. An example of
Stream-Iterator composed with a Farm pattern is shown in Fig. 1(d).

4 Description

In this section, we extend our generic and reusable parallel pattern interface
(GrPPI) for C++ applications, previously presented in [20], with the advanced
parallel patterns described in Sect. 3. In general, GrPPI takes full advantage of
modern C++ features, metaprogramming concepts and generic programming to
act as switch between the parallel programming models OpenMP, C++ threads
and Intel TBB. Its design allows users to leverage the aforementioned execution
frameworks just in a single and compact interface, hiding away the complexity
behind the use of concurrency mechanisms with negligible overheads. Further-
more, the modularity of GrPPI permits to easily integrate new patterns, while
composing them to arrange more complex ones. Thanks to these properties,
GrPPI can be used to implement a wide range of existing stream-processing
and data-intensive applications with relative small efforts, having as a result
portable codes that can be executed on multiple platforms.

Next, we describe in detail the interfaces of the advanced parallel patterns
offered by GrPPI and demonstrate its composability.

Pool. The GrPPI interface designed for the Pool pattern, shown in Listing 1.1,
receives the execution model, the population (popul), the selection (select),
evolving (evolve), filtering (filter) and termination (term) functions, and the
number of selections that will be performed. Initially, the parallel pattern imple-
mentation of GrPPI divides the number of selections among the concurrent
processing entities that will select and evolve the population individuals. After-
wards, the resulting individuals are merged and forwarded to the sequential
filtering and termination functions. Finally, only if the termination condition is
met, the Pool parallel pattern finishes and delivers the resulting population. On
the contrary, the whole process is repeated again with the evolved population.
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The parallelism of this pattern is controlled via the execution model parame-
ter, which can be set to operate in sequential or in parallel, through the different
supported frameworks; e.g. to use C++ threads, the parameter should be set
to parallel execution thr. In this case, any execution model can optionally
receive, as an argument, the number of entities to be used for the parallel exe-
cution, e.g., parallel execution thr{6} would use 6 worker threads. If this
argument is not given, the interface takes by default the number of threads set
by the underlying platform.

Windowed-Farm. The interface for the Windowed-Farm pattern, described in List-
ing 1.2, receives the execution model, the stream consumer (in), the Farm (task)
and the producer (out) functions. This pattern also receives the size and the over-
lap factor of the windows.1 Specifically, the in function reads from the input
stream as many items as required to fill the window buffer. Next, this buffer
is forwarded to one of the concurrent entities, which will compute the func-
tion task in a Farm-like fashion. Therefore, the parallel implementation of this
GrPPI pattern is offered by the Farm construction. Finally, the items collections
resulting from the task function are delivered to the output stream. Note that,
depending on the user requirements, this pattern can deliver items windows in
an ordered way by properly configuring the execution model.

Stream-Iterator. The GrPPI interface for the Stream-Iterator pattern, detailed
in Listing 1.3, takes the execution model, the stream consumer (in), the kernel
(task) and the producer (out) functions. This pattern also receives two boolean
functions: the termination (term) and output guard (guard) functions. In the
first step, the in function reads items from the input stream and a worker thread
executes the kernel task function for each item. Next, the termination function
term is evaluated with the resulting item to determine if the kernel should be
re-executed on the same input item. Additionally, the output guard function
decides whether an item should be delivered to the output stream or not.

As stated in the previous section, the parallelism of the Stream-Iterator pat-
tern is only obtained when it is composed with a basic GrPPI parallel pattern,
e.g., Farm or Pipeline. As an example of composition, the code in Listing 1.4
1 Note that while the current Windowed-Farm pattern only supports count-based win-

dows, in the future we plan to extend its interface to cover time-based, slide-by-tuple
and delta-based windowing models.
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implements a Stream-Iterator, in which the kernel task function has been com-
posed with the Pipeline pattern. Therefore, the kernel is computed in parallel by 2
worker threads. Note that the optional, as for the return type in the consumer
function lambda, is used to indicate the end of the stream when constructed
without arguments. As can be seen, thanks to GrPPI, it is possible to compose
advanced with basic parallel patterns in order to increase the parallelism degree.

5 Evaluation

In this section, we perform an experimental evaluation of the three novel
advanced patterns from the usability and performance points of view. To do
so, we use the following hardware and software components:

– Target platform. The evaluation has been carried out on a server platform
comprised of 2× Intel Xeon Ivy Bridge E5-2695 v2 with a total of 24 cores
running at 2.40 GHz, 30 MB of L3 cache and 128 GB of DDR3 RAM. The OS
is a Linux Ubuntu 14.04.2 LTS with the kernel 3.13.0-57.

– Software. To develop the parallel versions and to implement the proposed
interfaces, we leveraged the execution environments C++11 threads and
OpenMP 4.5, and the pattern-based parallel framework Intel Threading
Building Blocks (TBB). The C++ compiler used to assemble GrPPI is GCC
v5.0.

– Use cases. To evaluate the advanced patterns, we use three different synthetic
use cases targeting problems from different domains.

• The Pool pattern has been evaluated on a benchmark that solves the travel-
ing salesman problem (TSP) using a regular evolutionary algorithm. This
NP-problem computes the shortest possible route among different cities,
visiting them only once and returning to the origin city.

• To evaluate the Windowed-Farm, we use a benchmark that computes aver-
age window values from an emulated sensor readings.

• For the Stream-Iterator, we leverage a benchmark that reduces the resolu-
tion of the images appearing in the input stream, and produces the images
with concrete resolutions to the output stream.
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In the following sections, we analyze the usability, in terms of lines of
code, and the performance of the GrPPI advanced patterns using the above-
mentioned benchmarks with varying configurations of parallelism degree, prob-
lem size and execution frameworks.

5.1 Usability Analysis

In this section we analyze the usability and flexibility of the advanced pattern
interfaces. To analyze these aspects, we assess the number of modified lines of
code (LOCs) required to implement the parallel versions of the use case algo-
rithms. Then, we compare the modified LOCs leveraging the GrPPI interface
with respect to using directly the supported frameworks. Table 1 summarizes
the percentage of modified LOCs in the sequential algorithm in order to imple-
ment the parallel versions of the use cases algorithms. As observed, the OpenMP
and TBB versions require less LOCs, given that these frameworks provide high-
level interfaces hiding away the complexity behind concurrency mechanisms. For
instance, OpenMP 4.5 offers the depend clause in task directives which enforces
additional constraints on the scheduling of tasks. However, the analogous imple-
mentation in C++ threads requires the use of explicit communication channels
(e.g. multiple-produce/multiple-consumer queues) and synchronization mecha-
nisms (e.g. locks, condition variables and atomic variables). On the other hand,
using the GrPPI interface for parallelizing a given application is simpler than
using directly the above-mentioned programming frameworks. On average, the
LOCs that have to be modified in order to incorporate an advanced GrPPI
pattern, is 28%. An additional advantage of GrPPI is its capability to easily
switch among execution frameworks, since it is only required to replace a single
argument in the pattern function call.

Table 1. Percentage of modified lines of code w.r.t. the sequential version.

Advanced pattern % of modified lines of code

C++ Threads OpenMP Intel TBB GrPPI

Pool +55.0% +70.0% +55.0% +22.5%

Windowed-Farm +152.1% +75.8% +51.7% +31.0%

Stream-Iterator +153.5% +56.4% +46.1% +30.8%

5.2 Performance Analysis of the Pool Pattern

Next, we evaluate the Pool pattern on a benchmark that solves the TSP problem
using a population of 50 individuals representing feasible routes. We also set
the benchmark to perform a total of 200 iterations, each of them making 200
selections. Figure 2(a) shows the performance gains when varying the number
of threads, from 2 to 24, and using the three available GrPPI back-ends: C++
threads, OpenMP and Intel TBB, with respect to the sequential version. As
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can be seen, the speedup increases roughly at a linear rate when increasing the
number of threads for all frameworks. Concretely, we observe that between 2
and 12 threads the efficiency is sustained in the range of 91%–98%. However, for
24 threads the frameworks OpenMP and Intel TBB deliver an efficiency of 80%,
while for C++ threads it slightly decreases to 77%. This is mainly due to the
better resource usage made by the OpenMP and Intel TBB runtime schedulers.

As a complementary evaluation, we set the number of threads to 12 and vary
the number of selections from 10 and 200. According to the results shown in
Fig. 2(b), the speedup grows hand in hand with the number of selections, since
the Pool pattern only parallelizes the selection and evolution functions. This
indicates that increasing the number of selections improves the load balance
among the worker threads and pays off the parallelization overheads related to
thread synchronizations and communications.
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Fig. 2. Pool speedup varying with varying number of threads and selections.

5.3 Performance Analysis of the Windowed-Farm Pattern

In this section, we evaluate the performance of the Windowed-Farm using a syn-
thetic benchmark that computes average window values from an input stream
of sensor readings. Specifically, the sensor in this benchmark has been config-
ured to read samples at 1 kHz and the pattern window size has been set to 100
elements with 90% of overlap among windows. Figure 3(a) shows the speedup
when the number of threads increases from 2 to 24. The main observation is
that all execution frameworks scale with the increasing number of threads and
behave similarly, given that the OpenMP and Intel TBB runtime schedulers do
not provide any major advantage over the C++ threads implementation in this
concrete use case. This is because the internal Farm pattern leads, by nature,
to well balanced workloads among threads. Note that a Farm is comprised of a
pool of threads that constantly retrieve items from the input stream and apply
the same function over them. On the other hand, we also observe an almost
linear scaling for increasing number of threads. This is mainly caused because
the Farm pattern can theoretically scale up to Tf

Ta
, being Tf the computation

time of the window average value and Ta the interarrival time of windows in the
input stream. To demonstrate this strong scaling, we experimentally measured
the computation time of the average function, which was, on average, 220 ms
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Fig. 3. Windowed-Farm speedup with varying number of threads and window size.

and the interarrival window time that was 10 ms. Therefore, applying the afore-
mentioned formula, we get 22 as for the maximum theoretical speedup.

As an additional experiment, we evaluate the behavior of the Windowed-Farm
pattern when increasing the window size, using 12 threads and the aforemen-
tioned configuration that uses a fixed overlapping factor of 90%. As can be
observed from Fig. 3(b), the speedup decreases for increasing window sizes, as
the number of non-overlapping items among windows also increases. This basi-
cally occurs because the interarrival time of window Ta increases, restricting
proportionally the maximum parallelism degree.

5.4 Performance Analysis of the Stream-Iterator Pattern

Finally, we analyze the performance of the GrPPI Stream-Iterator pattern using
the above-mentioned benchmark, in charge of processing square images and halv-
ing their sizes on each iteration until reaching concrete resolutions. Specifically,
the size of the input images is fixed to 8,192 pixels, and the output images, for
each input, have sizes of 128, 512 and 1,024. Figure 4(a) illustrates the bench-
mark speedup when varying the number of threads from 2 to 24 for the different
GrPPI back-ends. In this case, when the number of threads ranges between 2
and 12, the efficiency attained is roughly 75%, while for 24 this is degraded to
48% for all programming frameworks. This effect is mainly caused by the fact
that each of the threads involved in the Farm pattern, part of the Stream-Iterator,
are simultaneously accessing to different input images. Therefore, these memory
accesses become a bottleneck due to constant cache misses when the threads
perform the computation of the task function of the pattern. In general, these
results suggest a memory bandwidth limitation in this particular benchmark.

To gain insights into the performance degradation detected in the previous
analysis, we perform an additional experiment in which we set the number of
threads to 24 and vary the input image sizes from 2,048 to 16,384. Figure 4(b)
depicts the performance gains for the different execution frameworks when vary-
ing the image size in the preceding range. Again, we observe a slight speedup
decrease for increasing image sizes, which confirms our prior impressions. As an
example, if we assume 22 worker threads in the internal Farm pattern, individu-
ally processing images with resolution of 2,048 × 2,048 pixels (represented with
matrices of integers), these require about 352 MiB of memory. Therefore, not
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Fig. 4. Stream-Iterator speedup with varying number of threads and image size.

fitting in any of the available cache levels and leading to an increased L2/L3
cache miss rate when they are simultaneously accessed. All in all, this issue is
mainly due to the inherent memory-bound nature of this specific use case.

6 Conclusions

In this paper, we have extended GrPPI, a generic and reusable parallel pat-
tern interface, with the advanced parallel patterns Pool, Windowed-Farm and
Stream-Iterator, targeted to domain-specific applications. With the unified inter-
face, thanks to the use of C++ templates and metaprogramming techniques,
these patterns can be executed in parallel using any of the currently supported
back-ends: C++ threads, OpenMP and Intel TBB. Furthermore, their compact
design facilitates the development of the domain-specific applications, improving
at the same time their portability and maintainability.

As demonstrated through the experimental evaluation, the use cases imple-
mented with the proposed patterns attain remarkable speedup gains compared
with their corresponding sequential versions. Although in some cases, the par-
allelism degree is limited by the pattern nature. We also proved that leveraging
GrPPI reduces considerably the number of LOCs that have to be modified in
the original codes to turn them parallel with respect to using the parallel frame-
works directly. In general, we believe that these advanced patterns can eventually
be incorporated in domain-specific applications so as to easily parallelize them,
without having a deep understanding of existing parallel programming frame-
works or third-party interfaces.

As future work, we plan to support other advanced parallel patterns in
GrPPI, such as the keyed stream farm, stream pool and image convolution. Fur-
thermore, we intend to include other execution environments as for the offered
parallel frameworks, e.g., FastFlow or SkePU. An ultimate goal is to provide
support for accelerators via CUDA Thrust and OpenCL SYCL.
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2013. LNCS, vol. 7835, pp. 112–121. Springer, Heidelberg (2013). https://doi.org/
10.1007/978-3-642-37192-9 12

11. ISO/IEC: Programming Languages - Technical Specification for C++ Extensions
for Parallelism, July 2015. iSO/IEC TS 19570:2015

12. Kaiser, H., Heller, T., Adelstein-Lelbach, B., Serio, A., Fey, D.: Hpx: a task based
programming model in a global address space. In: Proceedings of the 8th Inter-
national Conference on Partitioned Global Address Space Programming Models,
PGAS 2014, pp. 6:1–6:11. ACM, New York (2014)

13. Khronos OpenCL Working Group: SYCL: C++ Single-source Heterogeneous Pro-
gramming for OpenCL. https://www.khronos.org/sycl. (Accessed May 2015)

14. Kist, D., Pinto, B., Bazo, R., Bois, A.R.D., Cavalheiro, G.G.H.: Kanga: a skeleton-
based generic interface for parallel programming. In: 2015 International Symposium
on Computer Architecture and High Performance Computing Workshop (SBAC-
PADW), pp. 68–72, October 2015

15. Mattson, T., Sanders, B., Massingill, B.: Patterns for Parallel Programming, 1st
edn. Addison-Wesley Professional, Boston (2004)

16. McCool, M., Reinders, J., Robison, A.: Structured Parallel Programming: Pat-
terns for Efficient Computation, 1st edn. Morgan Kaufmann Publishers Inc., San
Francisco (2012)

http://www.cs.upc.edu/~mallba
https://doi.org/10.1007/978-3-642-37192-9_1
https://doi.org/10.1007/978-3-642-37192-9_12
https://doi.org/10.1007/978-3-642-37192-9_12
https://www.khronos.org/sycl


Supporting Advanced Patterns in GrPPI 67

17. NVIDIA Corporation: Thrust. https://thrust.github.io/
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Abstract. To efficiently handle a large volume of data, scheduling algo-
rithms in stream processing systems need to minimise the data movement
between communicating tasks to improve system throughput. However,
finding an optimal scheduling algorithm for these systems is NP-hard.
In this paper, we propose a heuristic scheduling algorithm for a het-
erogeneous cluster—T3-Scheduler—that can efficiently identify the com-
municating tasks and assign them to the same node, up to a specified
level of utilisation for that node. Using three common micro-benchmarks
and an evaluation using a real-world application, we demonstrate that
T3-Scheduler outperforms current state-of-the-art scheduling algorithms,
such as Aniello et al.’s popular ‘Online scheduler’, improving throughput
by 20–72% for micro-benchmarks and 60% for the real-world application.

Keywords: Stream processing · Scheduling · Big data
Heterogeneous cluster

1 Introduction

The increasing amounts of data generated by new applications such as social
networks, low latency stock trading and real-time search, have necessitated the
development of new data processing frameworks. Data Stream Processing Sys-
tems (DSPSs) process unbounded streams of data in real-time, as the data arrives
without the need to store it first. Over the last few years, a broad range of
research has advanced stream processing systems [1,2,11]. In a DSPS, an appli-
cation is structured as a DAG, where data streams flow from one processing
element to the next. Each processing element, represented as a vertex in the
DAG, contains multiple tasks in order to perform parallelism. The tasks of two
communicating processing elements are fully connected. The flows of data within
the DAG are represented by the edges.

Task allocation policies in DSPSs have a significant impact on performance
metrics such as data processing latency, maximal memory requirements for pro-
cessing and system throughput [6]. Static data processing systems that store
and later process data, such as Hadoop, consider the issue of data locality dur-
ing scheduling, i.e., stored data and processing tasks are placed close to each
c© Springer International Publishing AG, part of Springer Nature 2018
D. B. Heras and L. Bougé (Eds.): Euro-Par 2017 Workshops, LNCS 10659, pp. 68–79, 2018.
https://doi.org/10.1007/978-3-319-75178-8_6
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other. In a DSPS, the equivalent optimisation is for the scheduling policy to put
the communicating tasks near each other to avoid unnecessary data movement.
A stream processing cluster, usually grows over time as new systems are added,
resulting in multiple generations of hardware, with varying capacities within a
single cluster [13]. Therefore, heterogeneity of a stream processing cluster should
also be taken into account in the scheduling policies in order to improve the per-
formance. A number of scheduling algorithms have been proposed in the litera-
ture to improve the performance of DSPSs. The common practice in these heuris-
tic algorithms is to find communicating tasks and put them in the same node.
However, these methods inspect each communicating pair of tasks or groups of
tasks in isolation, which can leave some nodes underutilised in a heterogeneous
cluster. To address the above issues, we propose T3-Scheduler, a Topology and
Traffic aware Two-level Scheduler for typical DSPSs. T3-Scheduler finds highly
communicating tasks and assigns them to the same compute node in a heteroge-
neous cluster such that each node remains fully utilised. This paper makes the
following contributions:

– We propose T3-Scheduler which can efficiently assign the tasks to the compute
nodes in a heterogeneous cluster where each node is fully utilised. In the
first level of scheduling, T3-Scheduler uses a heuristic algorithm to divide
the application graph into multiple parts where each part has a size relative
to the capacity of the compute node hosting that part of the graph. This
ensures T3-Scheduler utilises each compute node, helping reduce the inter-
node communication. In the second level of scheduling, T3-Scheduler assigns
highly communicating tasks to the same worker process in order to minimise
the communication between the workers within a compute node.

– We run experiments using three micro-benchmarks and one real-world appli-
cation to evaluate T3-Scheduler and compare it with a popular and perfor-
mant adaptive scheduler: Aniello et al.’s ‘Online scheduler’ [4]—for brevity
we refer to this scheme as OLS in this paper. The results show that T3-
Scheduler outperforms OLS, increasing throughput by 20–72% for the micro-
benchmarks and 60% for the real-world application.

2 T3-Scheduler Algorithm

In order to efficiently assign the logical view of a stream application, DAG, to
the physical compute nodes with different capacities, the DAG should be divided
into a number of parts, where each part is sized relative to the capacity of the
respective node, while minimising the number of edge cuts. This problem has
been proven to be NP-hard [10]. While it is possible to use existing graph parti-
tioning algorithms in a heterogeneous environment, such as those used by METIS
[3], these algorithms are dependent upon a priori information. That is, they rely
on knowing the number of tasks to be assigned to each node before the graph
can be partitioned. This is a barrier to practical deployments as it is difficult
to reliably know this information at scheduling time. Many heuristic algorithms
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have been proposed that reduce the amount of communication between nodes
[4,7,12,14]. However, they inspect each communicating pair of tasks or groups
of tasks separately and in isolation. Additionally, in these methods the hetero-
geneity of a cluster is not fully considered and nodes may not be fully utilised.
T3-Scheduler improves upon this situation by inspecting communicating tasks
at a larger scale by building a simplified graph, representing all the communica-
tions between the tasks. T3-Scheduler consists of five main steps, the following
subsections provide a detailed discussion of each step.

2.1 Monitoring

As the first step, T3-Scheduler monitors the execution of the stream application.
This involves measuring the data transfer rate between each of the task pairs,
providing a profile of all communications and also the task loads. The collected
values are stored regularly in a monitoring log which T3-Scheduler can read
periodically when rescheduling.

2.2 Constructing a Simplified Graph

T3-Scheduler constructs a weighted simplified graph, initially similar to the
application graph, using the online profile, collected from the monitoring step.
T3-Scheduler initially aggregates all of the tasks within each processing element
into a single group, representing a vertex in the graph. The weight of the new
group/vertex in the simplified graph is found by summing the load of each task
within the group. Each edge in the graph, connecting two groups, is the aggre-
gation of all the communications between two groups, weighted with the sum
of the data transfer rates of their communicating tasks. This has been made
possible because of the fact that tasks between two communicating processing
elements are fully connected in typical DSPSs.

The simplified graph has the advantage of having a view of the connectivity
between all the tasks. Therefore, a sub-graph, consisting of highly communicating
tasks, can be found and assigned to the same compute node. Additionally, by
considering communicating groups of tasks instead of communicating tasks, a
slight change between some data transfer rates of communicating tasks within
the communicating groups will not result in rescheduling, making the scheduling
more stable. Vertices and edges are updated regularly if any vertex has to be
partitioned in order to fit in a compute node.

2.3 Node Selection

T3-Scheduler considers the capacity and resource availability of each node, select-
ing the highest capacity node. This allows T3-Scheduler to take steps towards
minimising the inter-node communication as a result of placing more commu-
nicating tasks in the higher capacity nodes. If multiple nodes have the same
capacity, ties are broken by selecting a node randomly among the potential
nodes. T3-Scheduler fills a node with as many communicating tasks as possible,
up to its capacity, and then moves to the next highest capacity node.
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2.4 First Level of Scheduling

The goal of first level of scheduling in T3-Scheduler is to divide the simplified
graph into multiple parts where each part consists of highly communicating
groups of tasks. T3-Scheduler takes a heuristic approach to divide up the graph
into multiple parts which are sized according to the capacity of the heterogeneous
node to be scheduled on. For every empty compute node, T3-Scheduler begins by
finding a starting point in the simplified graph and expanding it by repeatedly
selecting the most highly communicating neighbouring groups, forming a sub-
graph, until the node is full. Once the node becomes full, a new compute node
is selected for which a new starting point is found and the same procedure is
applied. By following this approach, T3-Scheduler can find highly communicating
tasks and place them in the same compute node. In the following, we provide
further details of the first level of scheduling.

Forming a Sub-graph. After locating the group pair with the highest weight
as the starting point, we evaluate if the pair of groups is able to fit within the
current compute node. This condition is checked by comparing the sum of the
tasks’ load of each group, and the capacity of the selected compute node. This
will have two possible outcomes. If the compute node has sufficient capacity
to accommodate the group pair, it is assigned to the compute node. However,
in the event of the compute node having insufficient capacity, a fine-grained
partitioning will be performed on the group pair, where the number of tasks
within one or both groups is reduced. This will enable a new, smaller group
pair to be assigned to the current compute node which would not otherwise be
possible. Partitioning a group pair will be explained in more detail shortly.

If the node still has some remaining capacity, we expand the starting point by
finding the most highly communicating neighbours. Having located the imme-
diate neighbour with the highest weight, an evaluation is performed to check if
this group can fit within the compute node. If the node has sufficient capacity
for the neighbouring group, it is added to the sub-graph and the next highest
weighted neighbour will be evaluated. But, in the event that the highest weight
neighbour is not able to fit within the compute node, an additional fine-grained
partitioning will be performed on this group. Partitioning a single group will be
explained in more detail shortly. After performing the single group partitioning,
we add the group to the sub-graph which reaches its capacity at this point and
therefore is fully utilised.

Fine-grained Group Pair Partitioning. To resolve the issue of insufficient
capacity to accommodate the group pair selected as the starting point, we parti-
tion this group pair into two smaller group pairs, thereby allowing a subset of the
initial group pair to be assigned to the compute node. For instance, assume that
the group pair denoted as (A,B), is unable to fit within the current compute
node. Therefore, we have to partition the group pair, (A,B), into two smaller
group pairs (A1, B1) and (A2, B2) such that (A1, B1) cann fit. The aim of parti-
tioning (A,B) is to minimise the edge cuts between (A1, B1) and (A2, B2) while
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maximising the number of tasks in (A1, B1). To achieve this, the task pairs with
the highest rate from (A,B), are repeatedly selected and assigned to (A1, B1)
until the node’s capacity is reached.

However, when selecting a task pair (ti, tj) with the highest data transfer
rate from (A,B), three scenarios are possible. To keep track of which tasks have
been selected from (A,B), selected tasks are marked as ‘selected’ in (A,B) when
they are assigned to (A1, B1).

1. Both tasks, ti and tj , are new and have not been selected before. In this case,
both tasks will be assigned to (A1, B1) if the sum of the load of ti and tj is
less than or equal to compute node’s capacity.

2. One of the tasks is not new and is already marked as selected in A or B.
To simplify the explanation, we assume that ti in task pair (ti, tj) is a task
already marked as ‘selected’ in A and is not new. We first find all the task
pairs, denoted as (tk, tj) from (A,B) where tk in A is not marked as ‘selected’.
Then, among these task pairs, we pick the task pair with the highest rate that
can fit in the compute node and assign it to (A1, B1). By doing this, (ti, tj)
is also included in (A1, B1) due to full connectivity of two communicating
groups. This has the benefit of assigning two new tasks to (A1, B1) at each
step with the highest data transfer rate and therefore minimising the edge
cuts between (A1, B1) and (A2, B2).

3. Both tasks have already been assigned to (A1, B1) and are marked as ‘selected’
in (A,B). In this case, no further processing is done and we move to the next
task pair which has the highest data transfer rate.

If one group is smaller than the other, for example A is smaller than B, we
cannot always find a task pair with two new tasks. In this case, we just assign the
task pair with the highest data transfer rate, that can fit in the compute node,
to (A,B1). After repeatedly selecting the task pairs and reaching the compute
node’s capacity, all the unmarked tasks in B are assigned to B2 which will be
inspected for assignment to another compute node later by T3-Scheduler. The
simplified graph is updated with the new vertices, edges and their weights every
time a partitioning is performed.

Fine-grained Single Group Partitioning. When expanding the sub-graph,
the situation can arise where an entire group, denoted as A, is unable to fit within
the current compute node’s remaining capacity, requiring A to be partitioned.
The aim is to utilise the node by filling it with the most highly communicating
tasks from A. At each step, the task with the highest data transfer rate from
A, which is connected to the sub-graph within the compute node, is found and
assigned to a smaller group, denoted as A1, until the compute node is full.
The selected task from A is marked as ‘selected’ in A after assignment to A1.
In the case that the selected task’s load is higher than available capacity, the
task with the next highest data transfer rate is inspected for assignment. This
process is repeated until we find a task that can fit in the node. Otherwise, the
group partitioning process is complete. The remaining tasks from A, which are
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not marked as selected, form a new group, denoted as A2. Then, the simplified
graph is updated with the new vertex, edges and their weights. The new group,
A2, has this chance to be placed in another compute node with the unassigned
task groups in the simplified graph that it communicates with.

2.5 Second Level Scheduling

It is common in stream processing systems to have multiple tasks in a worker
process which, in Java-based DSPSs such as Apache Storm, is a Java Virtual
Machine (JVM). In such stream processing systems, where each compute node
has multiple workers, T3-Scheduler needs to schedule the tasks within each node.
Therefore, at the second level of scheduling, it is determined which tasks should
be assigned to the same worker. Finding the number of workers per node is hard
to know a priori, because it is dependent upon the number of tasks and tasks’
load which varies between stream applications. In our simple heuristic, we set a
threshold, T , for the maximum number of tasks per worker. For each node, we
divide the number of tasks to be assigned to a compute node, denoted as t, by
T to determine the required number of workers on that compute node, denoted
as w, for the given application:

w =
⌈
t

T

⌉
(1)

T balances the need for fewer tasks per worker, to tolerate failures better,
and the reduced latency from inter-worker communication, where more tasks are
assigned to each worker. The value of T is empirically determined, by observing
which value gives stable performance results. After finding w, we further par-
tition the sub-graphs, found by the first level of scheduling, into w parts using
the graph partitioning tool METIS [3]. The partitions, found by METIS, are of
roughly equal size which means each part may contain fewer than T tasks. The
number of tasks will remain close to T , but will not exceed this threshold value.
Each part is then assigned to a worker, where the most highly communicating
tasks are grouped together, minimising inter-worker communication.

3 Evaluation

In this section, we first provide a brief overview of Apache Storm for the sake
of completeness, then we provide the evaluation of T3-Scheduler which is imple-
mented within the Storm framework and discuss our experimental results. A
stream application in Storm is called a topology. There are two types of process-
ing elements/components in Storm: spouts and bolts. A spout is the source of a
data stream and emits data, while a bolt is the computational unit used to pro-
cess the data, before emitting new data to the next bolt in the DAG. A stream
is defined as an unbounded sequence of tuples where a tuple is a named list of
values. Each component in Storm consists of a number of executors that can
be run in parallel. In other words, each executor is an executing instance of the
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component’s code that can be run in parallel with other executors of the same
component. Each executor normally consists of one task. When a topology, con-
sisting of spouts and bolts, is submitted to a Storm cluster, the tasks are grouped
into a number of JVMs/workers. Each compute/worker node is configured with
a number of slots/ports where each JVM is assigned to one slot.

We implement T3-Scheduler on Apache Storm 0.9.7, running on a hetero-
geneous Storm cluster, configured with one master node, one ZooKeeper node
and eight worker nodes. Ubuntu 12.04 LTS is installed on each node inside a
VirtualBox VM. We use VMs as they allow us to specify the hardware config-
uration, where four worker nodes have 4 cores, 4 GiB of RAM, using four slots
per node, whereas the remaining worker nodes have 2 cores, 2 GiB of RAM,
with two slots per node. Each node has a 2.7 GHz Intel Core i5-3330S processor
and is connected to a 1 Gbps network. Although a heterogeneous environment
typically refers to different models of hardware with different configurations, we
argue that the same hardware, where not all resources are available, can also
be considered a heterogeneous environment. In our experiments we control the
amount of RAM and available CPU cores on the test machines.

We use the average throughput, defined as the average number of tuples
executed in each bolt’s task per 10 s period, as our performance metric. Each
executor in all our topologies has only one task. We limit average CPU usage
of each node to 80%, which prevents any node from becoming overloaded. T
in Eq. 1 is set to 5. These values were empirically determined, by evaluating
multiple configurations in which this configuration provided good stable perfor-
mance. We compare our scheduler with the Aniello et al.’s ‘Online scheduler’ [4]
(referred to as ‘OLS’). Unlike many other adaptive Storm schedulers, the OLS
implementation is publicly available, allowing for a fair comparison. Similar to
our scheduler, OLS considers the communication pattern and is able to handle
cluster heterogeneity which is another reason to compare T3-Scheduler with it.
We use three micro-benchmark topologies and one real-world topology with real
data for our evaluation. Each experimental topology is run ten times for 700 s,
achieving consistent improvements for T3-Scheduler over OLS in the through-
put across all runs. In the following, we describe details of each experiment and
present a typical execution of each topology to demonstrate the results.

3.1 Micro-Benchmarks

To evaluate T3-Scheduler, we first perform our experiments using three micro-
benchmarks that represent common shapes of a Storm topology and evaluate a
different congestion pattern: linear, diamond and star. Linear is one of the most
common types of topology, which consists of a single spout and multiple bolts,
where tuples are passed from one component to the next. Diamond has one
spout which emits tuples to multiple bolts. Each bolt then passes these tuples
to a single sink bolt. Star has multiple spouts which emit tuples to one bolt.
This bolt then emits the received tuples to multiple bolts, passing them along.
We have based our micro-benchmark implementations on the designs originally
presented in [12]. For our experiments, we configure the linear and diamond
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Fig. 1. Experimental results of I/O-intensive micro-benchmarks

micro-benchmark spouts and bolts to have four and eight tasks respectively.
The star micro-benchmark is configured with two and eight tasks for the spout
and bolts respectively. To evaluate T3-scheduler, we run each micro-benchmark
in two different configurations: I/O-intensive and CPU-intensive, described as
follows.

I/O-intensive. In this configuration, the throughput of the system is limited
by the amount of communication between the nodes. We reduce the workload of
each bolt by slowing the rate of the spout, so that each bolt has little processing
to do, causing processing time to be limited by the network latency. The results
for the I/O-intensive micro-benchmark execution for T3-Scheduler and OLS are
presented in Figs. 1a, b, and c. As the results show, T3-Scheduler is able to
achieve a higher average throughput of 45–72% for all of the micro-benchmarks
than OLS. For instance, it can be seen in Fig. 1a that T3-Scheduler executes on
average 45,000 tuples per 10 s in each bolt’s task of the linear micro-benchmark,
while OLS has a lower average throughput of 30,000. T3-Scheduler is able to
increase the throughput by fully utilising the higher capacity nodes by assigning
more communicating tasks to the same node. This allows it to use fewer total
nodes—on average 2—for linear and star micro-benchmarks, and 3 nodes for
diamond micro-benchmark, reducing inter-node communication. This is far fewer
nodes than OLS, which uses all 8 nodes, leaving each node underutilised. T3-
Scheduler further increases throughput by reducing inter-JVM communication,
having on average 3 JVMs per node, calculated by Eq. 1. In comparison, OLS
uses all 8 nodes where each available slot is assigned a JVM, increasing inter-
JVM communication.

CPU-intensive. In this configuration, the throughput of the system is limited
by the CPU utilisation of each node. We increase the workload of each bolt by
supplying tuples at a faster rate, ensuring the bolts are fully loaded, resulting in
a high CPU load. The results for the CPU-intensive micro-benchmark execution
for the T3-Scheduler and OLS are shown in Figs. 2a, b, and c. As can be seen
from the figures, T3-Scheduler outperforms OLS with higher throughput for the
linear and star micro-benchmarks, and has similar throughput for the diamond
micro-benchmark. The throughput for each of the micro-benchmarks is much
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Fig. 2. Experimental results of CPU-intensive micro-benchmarks

higher than was previously seen for the I/O-intensive configuration, which is a
result of a higher rate for the spouts. While this will place a greater load on the
CPUs, T3-scheduler has an average throughput 20–28% higher than OLS for
the linear and star micro-benchmarks. By placing more communicating tasks
closer together, T3-Scheduler is able to fully utilise on average 4 of the higher
capacity nodes, while OLS uses all 8 nodes of the cluster. Furthermore, T3-
Scheduler decreases the inter-JVM communication, having on average 2 JVMs
per compute node while OLS assigns one JVM to each slot. Both T3-Scheduler
and OLS have similar throughput for the diamond micro-benchmark because
of the greater number of tasks than were used by the linear and star micro-
benchmarks, resulting in a higher CPU load. Despite having similar throughput,
T3-Scheduler places more highly communicating tasks in each node, using an
average of 6 nodes, where each node is fully utilised.

In summary, these results demonstrate the ability of T3-Scheduler to effi-
ciently utilise each node by placing more communicating tasks closer together,
improving overall throughput. In comparison, OLS tends to use all the nodes as
a result of inspecting each task pair in isolation, which fails to see the whole com-
munication pattern. Therefore communicating tasks end up in different nodes.

3.2 Real-World Topology

In this experiment, we use a real-world topology to evaluate T3-Scheduler. This
topology is based on the first query of DEBS 2015 grand challenge.1 The query
is to find the top 10 most frequent routes of New York taxis for the last 30 min
using the 2013 dataset. The layout of this topology has a linear shape with one
spout and four bolts. The spout reads the records of each taxi trip from the
dataset and sends the data to the PreProcess bolt with shuffle grouping. Then,
the PreProcess bolt processes each trip record in order to find the start and end
cell numbers based on longitude and latitude coordinates of the pickup and drop
off locations. PreProcess bolt then emits the routes to Rolling Count bolt with
shuffle grouping. This bolt counts the occurrence of each route using a rolling
counter, implemented with a sliding window. The data is then passed to the
Intermediate Rank bolt with fields grouping. This bolt has multiple tasks and is

1 http://www.debs2015.org/call-grand-challenge.html.

http://www.debs2015.org/call-grand-challenge.html
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Fig. 3. Experimental results of top frequent routes topology

used to distribute the load coming from the Rolling Count bolt. Each task of the
Intermediate Rank bolt finds 10 top frequent routes for a specified window. The
Final Rank bolt has only one task, which aggregates the incoming intermediate
rankings from the Intermediate Rank bolt with global grouping into a final
rank. The numbers of tasks for Spout, PreProcess bolt, Rolling Count bolt,
Intermediate Rank bolt and Final Rank bolt are 16, 16, 8, 4 and 1 respectively.
We use a Redis server to store the trip records. We simulate a replay of the taxi
data, by setting a simulation time that is a constant ratio with real time. This
ratio is set so that 1 min is equal to 0.1 s of time in our experiment—thus the
sliding window in Rolling Count bolt is 3 s.

Figure 3 shows the experimental results using T3-Scheduler and OLS. As
it can be seen in the figure, OLS has an average throughput of 9,900 tuples
per 10 s, while T3-Scheduler has a much higher average throughput of 15,800
tuples per 10 s. This represents a 60% improvement on average in throughput
of T3-Scheduler over OLS. T3-Scheduler is able to fully utilise each node by
putting more communicating tasks within each node, helping reduce the inter-
node communication. This results T3-Scheduler using only 3 nodes on average,
while OLS uses all 8 nodes. Additionally, T3-Scheduler is able to reduce inter-
JVM communication by having 3 JVMs per node on average. In comparison, OLS
has four JVMs on higher capacity nodes and 2 JVMs on the lower capacity ones,
resulting in higher inter-JVM communication, contributing additional latency to
processing, increasing the load on each node. In a system configuration that does
not allow for node consolidation because it is already more heavily utilised, we
would still gain in throughput over OLS as T3-Scheduler is better able to place
highly communicating tasks closer together as a result of the overall view taken,
whereas OLS will still suffer from the limitation of only evaluating individual
task pairs in isolation. It can also be seen that this real-world topology has a
lower throughput than the previous I/O-intensive micro-benchmarks. The lower
throughput is the result of extra network latency for each task in the spout, as
it has to pull data from Redis server instead of generating data in the spout.

In summary, our experimental results have shown that T3-scheduler is able to
achieve a higher overall throughput for each of the micro-benchmarks and top fre-
quent routes in a dataset of New York taxi trips. This is a result of T3-Scheduler
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making more efficient placement of tasks within the compute nodes, which leads
to lower amounts of inter-node and intra-node communication. Our experimen-
tal results have shown that we consistently achieve 20–72% improvement over
the OLS due to our improved task assignment. The fluctuations in through-
put that can be seen in the experimental results is similar to the fluctuations
seen in previous work [12]. From the detailed log files, there is no unexpected
characteristics, so we are not concerned by this trend.

4 Related Work

Scheduling in data stream processing systems is similar to scheduling in dis-
tributed systems, however data locality is not an issue in stream processing
systems. Generally, there are three main approaches to tackle the scheduling
problem: Mathematical programming, graph theoretic and heuristics. [5] is an
example of mathematical programming, which formulates the optimal schedul-
ing based on integer linear programming approach, considering heterogeneity of
computing and networking resources and finds the optimal solution for a small
number of tasks. However, in this approach the resolution time for finding opti-
mal scheduler grows exponentially as the problem size becomes larger. Adopting
a graph theoretic approach, P-Scheduler [8] exploits graph partitioning algo-
rithms to schedule the DAG on a homogeneous cluster. More commonly, heuris-
tic algorithms are used which identify the communicating tasks which should be
co-located in the system. Such an approach was used in [4] to put communicat-
ing tasks in the same compute node. Also, [7] inspects communicating groups
of tasks instead of task pairs and has provided some inspiration for this paper.
However, each pair is inspected in isolation and the connections between pairs is
not considered which might results in spreading the pairs across the nodes. There
exist some heuristic schedulers for distributed stream processing systems which
fully utilise the nodes such as R-Storm [12] for homogeneous cluster and T-Storm
[14] for a heterogeneous cluster. Additionally, there are different approaches to
improve performance of a DSPS. For example, DRS [9] finds the optimised num-
ber of tasks for each operator, minimising the processing time for the input
data. Elasticity on-demand approach, used in Stela [15], dynamically changes
the resource allocation based on the load. Each of these algorithms are based
upon varying sets of assumptions and use different optimisation techniques.

5 Conclusions and Future Work

T3-Scheduler utilises nodes effectively when they have different capacities, and
puts as many communicating tasks together as possible on the same node. We
evaluated T3-Scheduler using three micro-benchmarks and one real-world stream
application. The experimental results showed that T3-Scheduler outperformed
Aniello et al.’s state-of-the-art online scheduler significantly, improving through-
put by 20–72% for the micro-benchmarks and 60% for a real-world application.
As future work, we will evaluate T3-Scheduler on a larger cluster with a larger set
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of real-world applications. We will also continue work on run-time performance
monitoring, investigating how workload characteristics change during execution
and when rescheduling should be performed.
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Abstract. Timely processing of streams in parallel requires dynamic
load balancing to diminish skewness of data. In this paper we study
this problem for stateful operators with key grouping for which the pro-
cess of load balancing involves a lot of state movements. Consequently,
load balancing is a bi-objective optimization problem, namely Minimum-
Cost-Load-Balance (MCLB). We address MCLB with two approxi-
mate algorithms by a certain relaxation of the objectives: (1) a greedy
algorithm ELB performs load balancing eagerly but relaxes the objec-
tive of load imbalance to a range; and (2) a periodic algorithm CLB
aims at reducing load imbalance via a greedy procedure of minimizing
the covariance of substreams but ignores the objective of state movement
by amortizing the overhead of it over a relative long period. We evaluate
our approaches with both synthetic and real data. The results show that
they can adapt effectively to load variations and improve latency effi-
ciently comparing to the existing solutions whom ignored the overhead
of state movement in stateful load balancing.

Keywords: Stream processing · Load balancing · State movement

1 Introduction

Timely processing of big streaming data on a cluster of commodity machines
is the major concern for a stream processing engines (SPEs) like Storm [1].
Usually, a streaming computation is represented as an operator graph in which
vertices stand for operators and an arc in the graph represents a data stream
flowing between a pair of operators called producer and consumer respectively.
To handle data deluge, a SPE exploits data parallelism that splits a stream
into a number of disjoint substreams processed independently by a collection of
parallel instances.

Process a stream in parallel relies on the grouping scheme for dispatching
tuples to the instances of its consumer. Typically, there are two primitives of our
interest: (1) shuffle grouping and (2) key grouping [10]. In shuffle grouping, tuples
are randomly routed to downstream instances. It fits for stateless operators like
c© Springer International Publishing AG, part of Springer Nature 2018
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map and filter, which are content-oblivious so that a tuple can be processed by
any instances. In contrast, the key grouping partitions a stream into a number
of substreams based on the key, i.e., a set of attributes, where tuples have equal
values on key will be dispatched to the same instances. Stateful operators like
window-join are content-sensitive since tuples with the same value should be
processed by the same instance. Therefore, key grouping is preferable for stateful
operators.

In this paper, we concern the problem of balancing load for stateful opera-
tors implementing key grouping. For a stateless operator with shuffle grouping,
its load can be balanced evenly in a round-robin manner. However, it becomes
much challenging in our context since the key grouping results in load imbalance.
A substantial feature of stream processing is that data is in a state of cease-
less change [13,15,16]. Load variations like fluctuation of data rate and change
in data distribution are ubiquitous, especially for such applications with their
sources geographically located. If the load distribution is skewed on the partition
key, the number of tuples handled by instances vary greatly. The computation
will often be situated in an erratic state if we do not react to the imbalance,
which is a disaster for processing latency if the state lasts for a long time.

Load balancing has received much attention in distributed stream processing
[2,15,16]. Xing et al. [16] presented a correlation-based load distribution policy
for a homogeneous shared nothing cluster. They focused on balancing load for
a whole operator graph with an implicit assumption that every operator is not
parallelized. In contrast, we focus on balancing load for a single operator with
very high volume of load. In addition, load balancing has been also addressed for
stateless operators with key grouping [10]. The impact of processing state has
been widely studied in parallel stream processing [12,14], but it rarely brings
about any attention to load balancing. In the presence of state, it involves a lot
of state movements in load balancing because we have to change the allocations
for many substreams. This problem is referred to as stateful load balancing and
we formally define it as Minimum-Cost-Load-Balance (MCLB). It associates
two objectives: (1) minimize imbalance of all instances as much as possible; and
(2) minimize the state movements as many as possible.

Unfortunately, the two objectives of MCLB can not be optimized consistently
since they conflict with each other. Timely processing of data stream relies on
efficient algorithms to address this dilemma. We propose two approximate algo-
rithms for MCLB by relaxing the constraint on load imbalance: (1) ELB that
balances the load eagerly, and thus has expensive cost of state movements; and
(2) an algorithm CLB based on a procedure of minimizing correlations, that
performs the load balancing periodically, where the cost for state movement is
amortized and which is negligible when the period length is long enough. We
evaluate the algorithms, with both synthetic streams and real datasets, and
compare them with the exiting solutions. The experimental results justify the
advantage of our solutions.
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1.1 Related Work

Load balancing has received much attention in the last decade for its application
in the peer-to-peer system [4] and cloud computing [11]. These approaches are
static and hence are insufficient for a streaming scenario in which data is in
ceaseless change [5]. Madsen et al. [8,9] recognized the problem of stateful load
balancing while optimizing cluster utilization and minimizing latency for parallel
stream processing. They modeled it as a Mixed-Integer Linear Program (MILP)
problem and derive a solution with a MILP solver by incorporating the overhead
of state movements into the constraints. In addition, there are three existing work
that are analogous to our work [3,10,13].

Shah et al. [13] studied how to process a single continuous query operator on
multiple shared-nothing machines. In this work, load imbalance is distinguished
into short-term imbalance and long-term imbalance. Load balancing is in charge
by an operator Flux that encapsulates adaptive partitioning and routing. To
reduce the state movements, Flux sorts the sites in descending order of load and
pairs them together, where load balance is realized by moving partitions around
the sites in each pair. However, the parallelism in Flux is fixed and the cost for
state movements has also not been quantified.

Nasir et al. [10] investigated the load balancing problem for stateless oper-
ators by applying the “power of two choices” approach. Their solution, namely
Partial Key Grouping (PKG), improves the performance by mapping each key
to two distinct substreams and forwarding each tuple to the less loaded of the
two substreams. This approach can not be applied directly to stateful operator,
because we need an extra operator to consolidate the partial results.

Gedik [3] proposed a partition scheme that is close to our solution. Stream
is split with a partition function 〈Ht,Hc〉, which is a hybrid of consistent hash
and explicit mapping, for multidimensional load balancing in stateful paralleliza-
tion. This strategy can be applied for dynamic load balancing, but it has two
drawbacks: (1) it has to reconstruct a new partition function after each process,
which introduces new overhead for processing latency; and (2) it will result in
expensive state migration since it uses a hash function to rebalance the load as
we addressed.

2 Stateful Load Balancing

2.1 Problem Statement

A streaming computation is usually organized as an operator graph [1]. Each
operator implements a bunch of predefined processing logic, such as join, aggre-
gate, filter, or user-defined functions. A stream s can be written as an opera-
tor pair (us, os), where us and os are the producer and consumer of it respec-
tively. At runtime the consumer o is parallelized into a number of instances
I = {o1, . . . , on}, where n ∈ N

+ is the parallelism. Stream s associates with
a key k, the domain of the partition key ku is split into p partitions with a
hash function H(Ku) : D → [1 . . . p], which separates s into non-overlapping
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substreams S = {s1, . . . , sp}, where p � n and p = O(n). If o is stateful, then
its processing state PS is also split into p partitions ps = {ps1, ps2, . . . , psp}. A
parallel processing of s is defined by the assignment F : S → I.

Stateful load balancing. For a stateful operator with key grouping, the num-
ber of tuples processed by each instance vary greatly if the distribution on the
key is skewed. It is inevitable to balance load for instances. We focus on load
balancing for a single operator o rather than the whole query graph. For conve-
nience of discussion, we suppose that operator o has a unique input stream s.
The assignment F changes at runtime so as to handle load variations. A state
partition psi should be moved to another instance if the allocation of substream
si has been changed. Therefore, the process of load balancing involves a lot of
state movements and we call it as stateful load balancing.

2.2 Minimum Cost Load Balancing

Decision on load balancing relies on statistics about data rate, load distribution,
and state distribution. Statistics are collected periodically over statistic windows
of length Δ. We use a histogram Yt = (y1t, y2t, . . . , ypt)T to record the load
distribution of s1 . . . sp in the t-th window, where yit, i = 1 . . . p, is the number
of tuples of si arrived in this window. Other statistics about s like the mean
ȳt and the variance var(Yt) of Yt can be derived accordingly. With Yt and an
assignment F1, we can measure the load imbalance and the number of state
movements for the t-th statistic window.

Load imbalance. Encoding the assignment F1 as a matrix A = [aij ]p×n,
where aij is a binary variable such that aij = 1 if substream si is assigned to
instance oj and aij = 0 otherwise. Since each substream only can be processed
by an instance, we have

∑n
j=1 aij = 1. Let Lt = (l1t, l2t, . . . , lnt)T be the load

vector for instances (o1, . . . , on) in the t-th window, then it is given by a linear
transformation Lt = AT Yt. If F1 is a balanced assignment, then AT Yt = l̄t ,
where l̄t = (l̄t, l̄t, . . . , l̄t)T and l̄t = 1

n

∑p
i=1 yit is the average load in the t-th

window.
Much work [13] defines the load imbalance in the t-th window as the difference

between the maximum and the average load of instances, i.e., maxi(lit)− l̄t. But
this value is insufficient to reflect the load distribution, which plays an essential
role in changing the assignment. Alternatively, we use the variance of load vector
Lt = (l1t, l2t, . . . , lnt)T to measure the load imbalance in the t-th window. That
is,

var(Lt) =
1
n

n∑

i=1

(lit − l̄t)2, (1)

where Lt = AT Yt, and l̄t is the mean of Lt, i.e., l̄t = E(Lt) = 1
n

∑n
i=1 lit.
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State movement. Consider an adaptation and F2 is a new assignment. A state
partition psi, i = 1 . . . p, will be moved to another instance if the allocations given
by two assignments are different, i.e., F1(si) �= F2(si). Let x = (x1, . . . , xp)T

be a vector of binary variables, where xi = 1 if F1(si) �= F2(si) and xi = 0
otherwise. Let d = (d1, . . . , dp)T be the state distribution at present, where di is
the number of tuples in psi. Then the number of state movements ψ(F1,F2) in
this load balancing is:

ψ(F1,F2) = x · d =
p∑

i=1

xidi (2)

Given a set of substreams S = {s1, . . . , sp} and a number of instances I =
{o1, . . . , on}, we consider a load balancing that replaces the current assignment
F1 : S → I with a new one F2. The decision of load balancing must rely on
statistics of historical data. Assuming we have a sequence of histograms Y =
(Y1, . . . , Ym), m ∈ N, over the latest m statistic windows. We have a sequence of
load vectors L = (L1, . . . , Lm), where the load vector Lj is given by Lj = AT Yj .
The overall imbalance over the statistic windows is �(F1) =

∑m
j=1 var(Lj). In

addition, the cost of state movements of replacing F1 with F2 is given by Eq. 2,
which quantifies the amount of communication required for approaching the load
balancing. Therefore, the stateful load balancing is to compute an assignment
that minimize both simultaneously. We denote this problem as Minimum-Cost-
Load-Balance (MCLB).

MCLB is a bi-objective optimization problem and it has been proved to be
NP-hard. It is apparent that the two objectives conflict with each other: (1)
to minimize ψ(F1,F2), one hopes to change the assignment as less as possible;
(2) to minimize �(F2) one needs more movements for which one can try more
possible plans so as to balance the load. Therefore we cannot compute a feasible
solution that minimizes both objectives simultaneously. Instead, we present two
approximate algorithms for MCLB.

3 Eager Load Balancing

The eager load balancing (ELB) algorithm balances load in each statistic window
and leverages heuristics to reduce state movements as many as possible. In ELB,
the objective of minimizing load imbalance is relaxed to a range [v, u], where v
and u define the lower and upper bounds of load for each instance. For this
relaxation, it is much easier to find a feasible assignment with less state move-
ments. In addition some substreams are being hot spots at runtime, which have
large volume of load and challenge load balancing. Consequently two heuristics
are leveraged by ELB: (1) distribute the hot spots as evenly as possible; (2) fit
the load of each instance into the range [v, u] and make it as close as possible to
u+v
2 . Furthermore, we assume that the load for each substream in any window

satisfy yik ≤ u−v
2 , which can be fulfilled by choosing a suitable value for p and

a partition function.
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Algorithm 1. Eager Load Balancing (ELB)
Input: The rurrent assignment F , Histogram Yt = (y1t, . . . , ypt)

T

Output: New assignment

1 Initialization: OI ← ∅, UI ← ∅, R ← ∅, PQ ← ∅ ;
2 /* Phase 1: preparing */

3 (l1t . . . lnt)
T ← AYt, w ← ∑n

j=1 ljt;

4 π ← � 2w
u+v �, l̄t ← w

π ;

5 o1 . . . on ← sort I in descending order of loads ;
6 if π > n then
7 on+1 . . . oπ ← initialize π − n instances with load of 0;

8 I ← I ∪ {on+1, . . . , oπ}
9 if π < n then

10 R ← oπ+1 . . . on ;
11 I ← I − R ;

12 OI ← all overloaded instances with load larger than l̄t;
13 UI ← I − OI;
14 /* Phase 2: identifying */

15 foreach instance oj in OI do

16 θ ← min{ljt − l̄t,
u−v

2 }, Sk ← the substreams of oj ;

17 while Sk �= ∅ do
18 si ← get the largest substream such that yit < θ ;
19 insert si into PQ;
20 ljt ← ljt − yit, θ ← θ − yit ;
21 Sk ← Sk − {si}

22 foreach substream si is assigned to an instance in R do
23 insert si into PQ;

24 /* Phase 3: reassigning */
25 while PQ is not empty do
26 si ← peek the substream with the largest load from PQ ;

27 oj ← get the least-loaded instance from UI ;

28 F(si) ← oj , ljt ← ljt + yit ;

29 if ljt ≥ u+v
2 then

30 UI ← UI − {oj}, OI ← OI + {oj} ;

31 return F ;

As shown in Algorithm 1, ELB includes three phases. In the first phase, we
first calculate the load vector Lt = (l1t, . . . , lnt) with the latest histogram Yt and
the current assignment F1. Let w be the overall load, then the average load is
l̄ = w

π , where π = 	 2w
u+v 
. If π > n, then π − n empty instances will be added

into I. If π < n, then n−π instances should be removed from I. To reduce state
movements, we pick the n − π least-loaded instances and keep them in a set R.
The substreams assigned to instances in R should be reassigned to the instances
in I −R. All instances in I are sorted in a descending order of loads, and we use
two sets OI and UI to keep track of the overloaded and underloaded instances
respectively. The assignments for substreams are only allowed to changed from
OI to UI, for which state movements reduce efficiently.

The second phase is to identify substreams that should be reassigned (Line
15–23). For an overloaded instance oj , a substream can be removed from it has
load at most ljt − l̄t. Since load for each substream is under u−v

2 , an identified
substream must has load under the threshold θ = min{ljt − l̄t,

u−v
2 }. Each time
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we identify the largest substream of load smaller than θ (Line 18–21) and insert
it to the priority queue PQ. The value of θ and load for oj should be updated
thereafter and then the search repeats until no substream of oj satisfying the
condition (Line 17–21). The substreams assigned to oj are also supposed to be
sorted in a descending order of load, and hence the search completes in one
traversal. Moreover, R is not empty if π < n, therefore the substreams assigned
to the instances in R should be inserted in to PQ as well (Line 22–23).

In the last phase (Line 19–26), we assign the identified substreams to the
underloaded instances in UI. The instances in UI are sorted in a descending
order of load. The assignment completes by repeating the first-fit procedure,
where each time we peek a substream si with the largest load from PQ and assign
it to the least-loaded instance oj ∈ UI that can hold it. If oj get overloaded,
then it will be removed from UI and added into OI.

4 Correlation-Based Algorithm

In contrast to ELB, we present an algorithm that balances load for every m,
m > 1, statistic windows. To reduce load imbalance, we compute an assignment
that fits for a sequence of histograms Y = (Y1, . . . , Ym) over m windows. The
overhead of state movements is amortized over m windows and it is negligible
if m is large enough. Therefore, we can ignore the overhead of state movement
and only focus on minimizing the load imbalance.

We are given an assignment F and a sequence of load vectors L =
{L1, . . . , Lm}. Since var(Lj) = 1

n

∑n
i=1 l2ij − l̄2j , the overall load imbalance can

be written:

m∑

j=1

var(Lj) =
m∑

j=1

( 1
n

n∑

i=1

l2ij − l̄2j
)

=
1
n

m∑

j=1

n∑

i=1

l2ij −
m∑

j=1

l̄2j (3)

Each substream si associates with a load series Xi = (yi1, . . . , yim). Xi can
be viewed as a discrete-time stochastic process Xi = {yit : t ∈ N

+}, where yit is
the number of tuples of si arrived in the t-th window. Let Si = {s1, . . . , sr} be
the substreams that is assigned to instance oi (1 ≤ i ≤ n), then S = ∪n

i=1Si and
Si ∩ Sz = ∅ if i �= z. Let Ni = X1 + · · · + Xr and ηi = E(Ni) =

∑|Si|
si∈Si

E(Xi),
then we have

n∑

i=1

var(Ni) =
1
m

n∑

i=1

m∑

j=1

l2ij −
n∑

i=1

η2
i . (4)

By some transformations of Eqs. (3) and (4), we can prove that
min

∑m
j=1 var(Lj) is equivalent to min

∑n
i=1 var(Ni). In addition, by studying

the variances var(Nk) = var(X1 + · · · + Xr) and var(X) = var(X1 + · · · + Xp),
we have

var(X) −
n∑

k=1

var(Nk) = 2
∑

Xi∈Sk,Xj∈Sz,k �=z

cov(Xi,Xj) (5)
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Algorithm 2. Correlation-based Load Balancing (CLB)
Input: Load series {X1, . . . , Xp}
Output: Assignment {S1, . . . , Sn}

1 Initialization: S1 ← {s1, . . . , sp}, r ← 1 ;
2 foreach substream si do
3 ωi ← 0 ;
4 foreach substream sj (j �= i) do
5 cov(Xi, Xj) ← E[XiXj ] − E[Xi]E[Xj ] ;
6 if cov(Xi, Xk) ≥ θ then
7 ωi ← ωi + cov(Xi, Xk) ;

8 while r ≤ n do
9 sk ← the substream with the maximum weight ωk ;

10 Sh ← get the set containing sk ;
11 foreach substream si of Sh do
12 if cov(Xk, Xi) ≤ θ then
13 Sh ← Sh − {si}, Sr ← Sr ∪ {si} ;
14 ωi ← 0;
15 foreach substream sj ∈ Sh do
16 ωj ← ωj − cov(Xi, Xj)

17 foreach substream sj ∈ Sr do
18 ωj ← ωj + cov(Xi, Xj)

19 if r < n then
20 r ← r + 1 ;
21 Sr ← ∅;
22 else
23 return; // already n subsets

The right component var(X) − ∑n
k=1 var(Nk) in Eq. (5) is denoted as cross

covariance, which counts the covariances of substreams that fall into different
subsets. Since var(X) is a constant, minimizing �(F) is equivalent to finding a
partition of S into subsets S1 . . . Sn that maximize var(X) − ∑n

k=1 var(Nk).
We construct a complete graph G = (V,E) from the load series X1 . . . Xp,

where a vertex vi ∈ V represents the load series Xi and the edge eij ∈ E
connecting vi and vj , vi, vj ∈ V , is assigned a weight 2cov(Xi,Xj). Let n = 2,
then max[var(X) − ∑n

k=1 var(Nk)] is equivalent to computing the Max-cut of
G. However, the Max-cut problem is NP-complete, and thus we present a greedy
solution, as shown in Algorithm2, in which each time we choose a substream sk

based on an alternative metric and split the set containing it to two subsets.
Given a threshold θ, 0 ≤ θ < 1, and a substream s1 ∈ S, we consider a split of

the set S into two subsets S1 and S2, where S1 keeps s1 and any substream si such
that cov(X1,Xi) ≥ θ and S2 includes others otherwise, i.e., S1 = {s1}∪{xi|xi ∈
S, cov(X1,Xi) < θ} and S2 = S−S1. Let ω1 be the contribution of o1 to the cross
covariance in this split, then ω1 =

∑
si∈S,i�=1 cov(X1,Xi), if cov(X1,Xi) ≥ θ.

Calculation of the covariance matrix Σ = [cov(Xi,Xj)]p×p is described by Line
2–7.

The set splitting proceeds in runs (Line 8–23). For each run we choose the
substream with the largest contribution to perform a set splitting rather than
maximizing the overall cross covariance, which is NP-complete as we showed
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earlier. Suppose that substream sk has the largest weight in the current run,
i.e., sk = max{wi|si, i = 1 . . . p}, then the set Sh containing it will be split into
two subsets Sh and Sr, where Sr is an empty set and each substream si such that
cov(Xk,Xi) ≥ θ will be move to Sr from Sk. Since ω changes as set splitting,
we should update its value for each substream of Sh and Sr to prepare the next
run (Line 15–18). Repeat this procedure until n sets are created.

5 Evaluation

We evaluated our algorithms with three metrics: (1) load imbalance var(Lt), (2)
state movements, and (3) processing latency. The processing latency measures
the time for processing each tuple. Based on this measurements, we can also cal-
culate the system throughput 1/avg, where avg is the average processing latency
for a stream of tuples. In the experiments, we compared ELB and CLB with
two existing solutions:

PKG also implements the key grouping but it was designed for stateless LB [10].
UHLB balances load with a universal hash function rather than the key group-
ing in our context. It returns h(t), where h : [p] → [n] is chosen at random from
a family of 2-universal hash functions.

Datasets. Two types of datasets, both real and synthetic, are used in this
evaluation.

Twitter stream. The real dataset consists of a collection of tweets extracted
from an interval around 29 h: Feb 27 15:24:12—Feb 28 20:47:34, 2013. There are
10,637,691 tweets and about 13.9 GB in total. Each tweet is viewed as a tuple
of JSON objects.

Synthetic stream. Two synthetic streams S1 and S2 are used to simulate the
fluctuation of data rate and the change of data distribution respectively. S1 and
S2 conform to a relational schema (ts, a1, a2), where ts is a Unix timestamp,
a1 is an integer falls into [1,100], and a2 is a string of words. The field a1 is
designated as the partition key on which S1 and S2 have been partitioned into
100 substreams. The partition keys of S1 and S2 follow the Gaussian and Zipf
distributions respectively, which are used to simulate various data skewness. The
means for Gaussian and Zipf are set as the same.

In addition, a Poisson process is used to control the data rates of S1 and S2. In
a Poisson process, tuples arrive sequentially and their inter-arrival times Zi are
exponentially distributed with a rate parameter λ : Prob{Zm ≤ τ} = 1 − e−λτ ,
where the parameter is λ = 10000.

5.1 Simulation Results

Experimental results are based on two hours simulation. In this experiment,
we implement a simple topology, as shown in Fig. 1, where the operator u is
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u o v

Fig. 1. A simple topology with 3
operators. The size of state of o is set to
one tenth of the data rate, ψ(o) = 1

10
r(o).
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Fig. 2. Load imbalance with π = 10 and
1/f = 1

responsible for generating tuples or read data from Amazon S3. The operator v
serves as a sink for collecting the statistics for o. Operator o is used for evaluating
the tested algorithms. The length of a statistic window is set to 1 min and thus
we have 120 histograms Y = (Y1, . . . , Y120) for each stream in total. To compare
the load imbalance, the number of instances in the experiment is fixed.

Load imbalance with respect to data distribution—As we claimed earlier,
load imbalance is mainly caused by skewness of data. Therefore, we use S1 and
S2, have different distributions, to investigate the impact of data skewness. Since
S1 and S2 follow the same traffic model, i.e., they have approximately the same
data rates, the load imbalances are only determined by data skewness. Figure 2
shows the change of imbalance over time for CLB when we use 10 instances, i.e.,
n = 10. The results are similar for n = 5 and n = 15. The experiments on other
algorithms also show similar features, and thus we just take CLB as an example.

Let Yi and Y
′
i be the histograms for the i-th statistic windows of S1 and

S2 respectively, where Yi satisfies the normal distribution and Y
′
i satisfies the

Zipf distribution. The variance of Y
′
i is larger than that of Yi, although Y

′
i

and Yi have equal means. The imbalances over statistic windows are plot-
ted in Fig. 2, in which the parallelism n is 10 and 1/f = 1. We calculate the
mean and standard deviation of the imbalances. As we expected, the mean of
var(Li), i = 1 . . . 120, is 2.08983e+10, which is approximately equals to the mean
of var(L

′
i) (2.08325e+10). The standard deviations of var(Li) and var(L

′
i) are

6.76016e+08 and 7.92797e+08 respectively. Therefore, the fluctuation of var(Li)
is much severer than that of var(L

′
i). This is confirmed by the plots in Fig. 2. The

lines labeled “Gaussian-10” and “Zipf-10” in the figure capture the fluctuation
of imbalances var(Li) and var(L

′
i) of CLB on S1 and S2 respectively. The max-

imum and minimum imbalances occur in the line labeled “Zipf-10”. The range
between the maximum and minimum values on “Zipf-10” is colored with blue.
By looking at the figure, all points of var(Li) falls into the range colored with
blue and thus the change of var(Li) is much more moderate. This confirms that
data skewness has significant impact to load imbalance.

Performance comparison of various algorithms—We used the real dataset
to test the performance on load imbalance and state movements for each
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Table 1. Mean and standard deviation

1/f CLB ELB PKG UHLB

1 μ – 5.1E+4 3.1E+4 2.9E+4
δ – 1806.8 1018.8 770.4

24 μ 6.1E+4 – – –
δ 5133.7 – – –

Table 2. Processing latencies (ms)

Latency CLB ELB PKG UHLB

Max 1103.13 1109.51 1551.30 1505.13

Mean 0.76 0.73 0.92 1.01

Median 0.30 0.33 0.38 0.38

95% 1.12 0.68 1.70 1.89

algorithm. The results for n = 10 are plotted in Figs. 3 and 4. In general, as
we expected, UHLB and PKG beat our algorithms on load imbalance, but they
perform much worse on state movements. In terms of CLB, UHLB and PKG
reduce imbalance by at least an order of magnitude. The reason is apparent that
the primary objective of CLB is to minimize state movements rather than load
imbalance.

We have calculated the standard deviation of the imbalance var(Lt) for all
algorithms. In the experiments, the frequency of load balancing is set to 1/f =
24, i.e., there are 5 load balancing in total. Table 1 summarizes the mean μ
and standard deviation δ of imbalance var(Lt) of all algorithms. The average
percentage of state movements for CLB is 48.4% when 1/f = 24. The value drops
to 1.6% when we amortize them over the statistic windows.

By looking at Fig. 3, we can observe that ELB outperforms CLB on load
imbalance, which is determined by their optimization objective and hence justi-
fies the assertion we addressed earlier. CLB aims at minimizing the overall load
imbalance �(L) by greedily reducing the covariance. In contrast, ELB executes
load balancing eagerly at each statistic window. Figure 4 shows the comparison
of state movements. The left figure plots the percentage of movements for ELB,
UHLB, and PKG. By looking at the figure, it is apparent ELB has far less state
movement than UHLB and PKG. The average percentages of PKG, UHLB, and
ELB are 21.2%, 24.2%, and 14.5% respectively. In the right figure, we compared
the average percentages of PKG, UHLB, and ELB with the amortized percent-
age of CLB. As we expected the state movements of CLB is negligible comparing
to the other three algorithms.
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5.2 Processing Latency

We implemented the algorithms in Enorm [6,7], which extends Apache Storm
[1] by integrating the ability of dynamic reconfiguration at runtime [8]. The
experiments were conducted on Amazon’s EC2 with medium VM instances,
where each has 1.7 GB of RAM, moderate IO performance and 1 EC2 compute
unit. We evaluated the metric by explicitly scaling out an operator WordCounter
that counts the occurrence for each word every 1 min over the Twitter stream.
To exclude the interference from other factors, we fix the processing capacity
of each VM to 1000 tuples/s. The data rate of Twitter stream starts at 1000
tuples/s and linearly grows to 16,000 tuples/s, and we add one more instances
for the operator at a scale-out.

Processing latency with respect to data rate—Statistics of processing
latency is illustrated in Table 2, where 95% is the 95-th percentile. By examining
the 95-th percentile, we know that most tuples have processing latency less
than 1.89 ms. In contrast, a small portion of tuples have very high latencies. It
confirms that state movement indeed has significant impact to the processing
latency of tuples. As we can see from the table, the maximum latency reaches
up to 1.5 s. The processing latency is mainly due to stream buffering and replay.
In the implementation of load balancing, we adopt a pause-configuring-resume
procedure, and thus tuples from upstream operators will be buffered and then
replayed to downstream after the completion of the process.

By comparing the mean of processing latency, we can assert that our algo-
rithms outperform the existing solutions. In particular, CLB approaches the least
reduction of 17% and ELB reduces the mean of processing latency up to 50%.
To have better understanding of the processing latency, we calculated the ratio
μ1
μi

, where μ1 is the mean of processing latency of CLB when n = 1 and μ2 is the
mean of processing latency of any algorithm when n = i, i = 1 . . . 15. Figure 5
plots the ratio by varying the number n of instances. It is apparent that UHLB
and PKG fluctuate more severely than CLB and ELB.

Speedup of throughput—The speedup of throughput achieved by each algo-
rithm is illustrated in Fig. 6. In the figure, the line labeled “Ideal” represents
the theoretical speedup of scaling out the operator. The speedups for ELB and
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CLB are approximately linear to the parallelism. In contrast, PKG and UHLB
cannot approach linear speedups. The change of speedups for the latter two
algorithms show interesting features. By looking at the figure, we can observe
remarkable phase transition on the lines labeled “PKG” and “UHLB”. The two
lines can be divided into multiple stages, such as the ranges 3–5, 6–8, and 10–14.
The speedup improves slightly in a stage, but it shows a sudden jump at the
end of that stage. This phenomenon undoubtedly confirms the impact of load
balancing. During the execution of a load balancing, the incoming tuples are
temporarily buffered by the upstream operator. The buffered tuples would get
congested if there are too many state movements involved in the load balancing.
The upcoming tuples are delayed until the congested tuples have been processed
and then we can observe a sudden jump of the speedup.

We also observe that the speedup of CLB gradually deviate from the “Ideal”
line as we scale out the operator. As we can see from the figure, ELB, PKG and
UHLB outperform CLB when n = 15. Since the execution of load balancing is
infrequent, 1/f > 1, for CLB, load imbalance cannot be removed in time. The
overhead is too high for a single load balancing and this problem get worse when
we have more instances. Consequently, the throughput declines seriously due to
the load imbalance. It shows that the frequency f of load balancing is also very
important to throughput. We have to carefully choose the value for f .

6 Conclusion

We have shown that load balancing for stateful stream processing is a bi-objective
optimization problem. It is NP-hard and we proposed two approximate algo-
rithms, ELB and CLB, in which the objectives of minimizing load imbalance
and state movements are relaxed. The evaluation shows that our approaches
outperform the existing solutions in processing latency and throughput even
though them have higher load imbalance.
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Abstract. The Synchronous Data Flow (SDF) programming model is
an established programming paradigm for stream processing applica-
tions. SDF programs are expressed by actors and streams that establish
communication among actors. Streams are implemented as FIFO buffers,
and the size of the FIFO buffers depends on the steady-state schedule.
Finding a steady-state schedule that minimizes the sizes of FIFO buffers,
is of great importance to minimize the memory consumption. The state-
of-the-art provides ad-hoc heuristics only, so finding memory-optimal
steady-state schedules is still an open challenge.

In this work, we study three objective functions capturing the mem-
ory utilization of three different implementations of the FIFO buffers.
We show that one objective is NP-hard to optimize, while the other two
can be solved optimally in polynomial time. The algorithm for comput-
ing these optimal schedules is implementable as an online algorithm.
We show the effectiveness of our new algorithm comparing it with the
state-of-the-art heuristics. Our experiments show that for large synthetic
instances, our algorithm generates schedules that use up to 8 times less
memory.

Keywords: Synchronous Data Flow (SDF) · Scheduling
Optimality · FIFO-buffer

1 Introduction

Stream programming paradigm has its origins in the Kahn’s processing model [5]
and data-flow computing [3]. Stream programs are a natural fit for applications
that process large unbounded regular sequences of data. There are many exam-
ples for established stream programming applications including digital signal
processing, audio, video, graphics, networking and for big data.

Stream programs are expressed by a set of actors and a set of data chan-
nels between actors. Conceptually, actors are independent processing units with
their own memory and program counters. An actor exchanges information with
another actor via a data channel using tokens. The channels fully expose the
dependencies between actors, and are directed: the producer is the actor at the
c© Springer International Publishing AG, part of Springer Nature 2018
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source of a data channel, and the consumer is the actor at the destination of the
data channel. The data channels are commonly implemented as FIFO buffers,
and the size of the FIFO buffers depend on the point in time when actors are
executed (also known as fired).

If the firing of actors is not coordinated, actors may starve or the memory of
FIFO buffers may deplete. To overcome this problem, Synchronous Data Flow
(SDF) Model was introduced [2] to bound the size of FIFO buffers and make
computations of infinite streams of data deterministic and controllable. In the
SDF model, the actor are constrained such that for each actor firing, only a fixed
number of tokens are consumed and produced, respectively. For a well-formed
SDF program, a finite periodic schedule can be constructed [2] that consists
of a finite sequence of actor firings. The schedule can be computed a priori and
invokes each actor of the stream graph at least once, and produces no net change
in the system state after executing the schedule. I.e., the number of tokens in
each data channel is the same before and after executing the schedule. Hence, a
periodic schedule can be executed again and again for unbounded regular streams
without starving actors and without exhausting memory. The state before and
after the execution of a periodic schedule is known as a steady-state. Hence, the
SDF model is a popular model for stream programming because the memory
consumption of the data channels is known a prior at compile time. There are
many different steady-state schedules for an SDF program, and the sizes of the
FIFO buffers for channels depend on the chosen steady-state schedule. Finding
a steady-state schedule that minimizes the sizes of FIFO buffers, is still an open
research problem. The current state-of-the-art algorithms for finding steady-state
schedules are ad-hoc heuristics only [2] that do not optimize for minimal memory.
Hence, stream programs may not fully utilize caches and/or modern massively
parallel architectures (e.g. GPGPUs) may need to utilize slower memory rather
than fast memory. Hence, finding memory-optimal steady-state schedules is of
importance for the SDF model.

Contributions: This work is of theoretic nature and explores the problem of
finding memory optimal steady-state schedules in an algorithmic fashion. We
anticipate large instances of SDF programs in near future that necessitates new
algorithmic contributions for memory-optimal steady-state schedules. We pro-
vide three notions of memory optimality based on how FIFO buffers utilize
memory. We show for each notion of optimality, algorithmic and complexity
theoretic results. We also provide a synthetic set of experiments to show the
effectiveness of our new algorithmic approach in comparison with the state-of-
the-art algorithm for large instances.

2 Motivating Example

The data-flow model [3] represents a program as a stream graph G = (V,E)
whose vertices V are called actors and whose edges E ⊆ V × V are called
channels. A channel (u, v) ∈ E buffers data elements called tokens, which are
passed from the output of actor u to the input of actor v. In Fig. 1(a) a stream
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Fig. 1. Example: stream graph consists of actors a, b, and c; channels are augmented
with numbers of produced and consumed tokens for its adjacent actor when its fires.
Fill-state, repetition for steady-state, and balance equation are given.

graph is depicted whose actors are a, b and c. The directed edges of the example
graph represent channels that transport streams of tokens from the producing
actor to the consuming actor. In the following we denote by n and m the number
of actors and channels, respectively.

Synchronous dataflow [7] restricts the semantics of the dataflow model by
fixing the number of consumed and produced tokens for a single firing of an
actor. The number of consumed tokens for a single firing of actor v from an in-
coming channel (u, v) ∈ E is given by function c : E → N. Function p : E → N

denotes the number of produced tokens for an outgoing channel of an actor. We
also refer to the functions p and c as data rates. The data rates of our motivating
example are shown in Fig. 1(b) and are also depicted as edge annotation in the
graph in Fig. 1(a). A schedule s = 〈u1, . . .〉 ∈ V ∗ is a sequence of actors, where a
given actor may occur several times. Each occurrence ui ∈ V in the schedule is
called an firing of actor ui. A firing of an actor modifies the state of the system
by producing and consuming tokens from the channels adjacent to the actor.
The fill-state of the system is the numbers of tokens on the channels between
actor invocations that have been queued but have not been consumed yet. We
will specify the fill-state of the system at a given point in time with a function
f : E → N. The fill-state is an abstraction of the actual tokens that are stored on
the channels. Let us assume that we have an initial fill-state as given in Fig. 1(c),
which implies that there is a single token in channel (a, b) and there are no tokens
on channel (b, c), and channel (a, c).

A periodic schedule has finite length, includes every actor of the stream graph
at least once, and its execution produces no net change in the fill-state after
executing the schedule. A periodic schedule may be computed a-priori [7], and
executed ad-infinitum without exhausting memory1. We refer to the fill-state
before and after the execution of a periodic schedule as steady-state. A periodic
schedule s has a repetition vector r : V → N that counts the occurrences of
each actor in s. The length of s is given by

∑
u∈V r(u). We denote with S the

set of periodic schedules for a given stream graph instance. Periodic schedules
are constrained by two factors. First, recall that every actor needs to be fired at

1 Under the assumption that the memory consumption for a single actor invocation
is bounded.
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least once. For our example, actor a, b, and c must occur in schedule s. Second,
in order to conserve the fill-state of the FIFO-buffers after the execution of the
schedule, for each buffer the number of tokens put into the buffer must equal
the number of tokens consumed from the buffer. These constraints give rise to
the so-called balance equations:

p(u, v) · r(u) = c(u, v) · r(v) ∀ (u, v) ∈ E (1)
r(u) > 0 ∀u ∈ V (2)

The balance equations of the example in Fig. 1 are given in the Fig. 1(e) with
the additional constraint that r(a) > 0, r(b) > 0, and r(c) > 0 where r(u) are
the repetitions for actor u, i.e., there must be r(u) occurrences of actor u in the
schedule s. Finding the smallest integral repetitions for actors can be expressed
as a problem of finding the smallest integral vector in the null-space of the
topological matrix [7]. It is known that for connected stream graphs, an integral
repetition vector satisfying Eqs. (1) and (2) exists if and only if the topological
matrix of the stream graph has rank n − 1. The repetitions of the motivating
example in Fig. 1(a) is shown in Fig. 1(d).

Algorithm 1. greedy((V,E, p, c), t)
1. L ← ∑

u∈V r(u)
2. let F be the set of fireable actors in V using fill-state t
3. let D be the set of deferrable actors in F
4. for i = 1 to L do
5. if F \ D �= ∅ then
6. u ← an actor from F \ D
7. else
8. u ← an actor in F that increases total number of tokens the least
9. add u to the schedule s

10. r(u) ← r(u) − 1
11. invoke actor u
12. update F and D // An actor u is not fireable if r(u) < 1.
13. return s

For the example, actor a is invoked twice since it produces only one token
on the edge (a, b), but to fire b at least once it needs to consume two tokens on
(a, b). Actor c is invoked twice because a is invoked twice, and c only consumes
a single token for every token produced by a along the channel (a, c). No smaller
repetition vector can be found. To find a schedule s, a greedy heuristic was
devised by Battacharyya et al. [2] (cf. Sect. 3.3.2). The heuristic is outlined
in Algorithm 1. The goal of greedy is to minimize the sum of the maximum
number of tokens required for each channel over a periodic schedule. Given a
graph G, and the initial delay t as part of the input, it returns a schedule s.
Note that we say an actor v is fireable, if for every incoming edge (u, v), f(u, v) ≥
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c(u, v). An actor v is deferrable if it is fireable, and for at least one of its outgoing
edges (v, u) (that is not a transitive edge2) it holds that f(v, u) ≥ c(v, u).

For our motivating example in Fig. 1(a), the greedy algorithm will fail to
find the optimal periodic schedule. For the example we further assume, that
we have an initial delay of one token on edge (a, b). To minimize the memory
consumption the optimal periodic schedule to use is s = 〈a, b, c, a, c〉.

During the firing of these actors, we can keep track of the maximum number
of tokens needed for each channel. For the edge (a, b), the initial fill-state f(a, b)
on the edge is 1. We first fire actor a, and thus the fill on the edge (a, b) is
increased to 2. Similarly, the edge (a, c) is now storing a single token. Next,
actor b is invoked, consuming two tokens from the channel (a, b) and producing
two tokens on the channel (b, c). Actor c fires, which consumes one token from
edge (b, c) and (a, c). At this point, the edge (a, b) has a fill of zero. In order to
ensure this schedule is periodic, we must fire a again, producing a single token
on both (a, b) and (a, c). We return back to our initial fill-state by firing c once
more. Over this execution, we can see that the maximum number of tokens on
the channels (a, b) and (b, c) is two, while the maximum number of tokens on
the channel (a, c) is one. Summing this together, this schedule requires memory
to store at most five tokens during this execution.

However, it is entirely possible that the greedy algorithm could choose the
schedule s′ = 〈a, b, a, c, c〉. By executing each actor in s′ one-by-one, we can
observe that the maximum number of tokens used by the channels (a, b), (b, c)
and (a, c) is two. Thus enough memory will be needed to store six tokens, which
is clearly suboptimal compared to the schedule s.

To see why this is the case, note that the difference between s and s′ is the
order of the 3rd and 4th actors a and c. After firing a and then b, both a and c
are fireable but not deferrable. Notice that a is not deferrable, even though there
is an outgoing edge that meets the consumption requirements (f(a, c) ≥ c(a, c)),
the edge (a, c) is a transitive edge. Since f(a, b) 	≥ c(a, b) at this point in time, a
does not meet the criteria to be marked as a deferrable actor. Thus, the greedy
algorithm can choose to fire either actor a or c. The greedy algorithm could make
the suboptimal choice to fire a again (Line 6 of Algorithm 1), instead of firing
c, which would consume the single token on the channel (a, c). By choosing to
fire a, the greedy algorithm produces a second token on the channel (a, c). This
leads to the schedule s′.

3 Problem Statement

Stream programs admit an exponential number of periodic schedules. In fact,
given a repetition vector r, any sequence of length L =

∑
u∈V r(u) where actor

u occurs r(u) times is a periodic schedule. Therefore, the number of periodic
schedules is given by |S| = L!∏

u∈V r(u)! . Among these schedules some consume less

2 We say that a directed edge (v, u) is a transitive edge in a graph G = (V, E) if there
exists a directed path from v to u in G using only the edges E \ {(v, u)}.
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memory on their FIFO-buffers than others. How much memory a given schedule
consumes will depend on the implementation details of the FIFO-buffers and on
the evolution of the fill-state over the execution of the schedule.

Recall that the fill-state function keeps track of the number of tokens stored
on each channel waiting to be consumed. Given the current fill-state of the sys-
tem, it is possible to determine the fill-state after the execution of the particular
actor. Therefore, given the initial fill-state, we can easily compute the fill-state
after the i-th step of the schedule execution. The fill-state function f i

s : E → N

defines the fill-state of channel (u, v) after the i-th execution step of schedule s
and may be defined as f0

s (u, v) = t(u, v) for the first step, and

f i+1
s (u, v) =

⎧
⎪⎨

⎪⎩

f i
s(u, v) + p(u, v), if u = s(i + 1),

f i
s(u, v) − c(u, v), if v = s(i + 1),

f i
s(u, v), otherwise.

where t(u, v) is initial fill-state of (u, v) at the beginning of the execution of s.
A periodic schedule and an initial fill-state are said to be admissible if the

schedule can be executed without ever running out of tokens on any channel.

Definition 1. Finite periodic schedule s with initial fill-state t is admissible, if

f i
s(u, v) ≥ 0, ∀(u, v) ∈ E, i ∈ {0, . . . , L}

f0
s (u, v) = fL

s (u, v), ∀(u, v) ∈ E

It is worth noting that for each periodic schedule s ∈ S there exists an initial
fill-state that makes it admissible. Therefore, all we need is a method for deciding
which periodic schedule to use.

We study three objective functions that capture the memory utilization of
the system under different implementations of the FIFO buffers. In each case
the goal is to compute an admissible schedule (s, t), the only difference is the
objective being optimized:

(P1) The Min-Max-Max Problem:

min
(s,t)

max
0≤i≤L

max
(u,v)∈E

f i
s(u, v)

(P2) The Min-Sum-Max Problem:

min
(s,t)

∑

(u,v)∈E

max
0≤i≤L

f i
s(u, v)

(P3) The Min-Max-Sum Problem:

min
(s,t)

max
0≤i≤L

∑

(u,v)∈E

f i
s(u, v)
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The objective (P1) minimizes the maximum buffer requirement across all
buffers. This objective captures a simplistic implementation of FIFO buffers
where space is allocated ahead of time and buffers have uniform length. The
objective (P2) minimizes the sum of the maximum requirements. This objective
captures a simple implementation of FIFO buffers where space is allocated ahead
of time, but different buffers can differ in size. The objective (P3) minimizes
the maximum combined size of all buffers at any point in time. This objective
capture a more sophisticated implementation where buffer space can be acquired
and released dynamically.

4 Scheduling to Minimize Memory Usage

In this section we consider the objectives defined in Sect. 3 under the assumption
that the initial fill-state of each buffer can be set arbitrarily. In other words, given
an instance (V,E, c, p), the goal is to compute a schedule s and an initial fill-
state t : E → N so that the schedule is admissible and one of the three objectives
(P1–P3) is minimized.

Our algorithm for Min-Max-Max and Min-Sum-Max assumes the Balance
Eqs. (1) and (2) for the instance are feasible and that we are given the smallest
integral repetition vector r that the instance admits. In addition to the instance
(V,E, p, c) the algorithm take as a parameter a permutation of the actors, we use
π : V → [1, n] to the denote the position of each actor within this permutation.

First, the algorithm computes for each channel the appropriate initial fill-
state that will ultimately make the schedule admissible. Second, each actor u is
added to a priority queue with priority 0. The algorithm then enters an infinite
loop where in each iteration we remove from the priority queue the actor u with
the smallest key x (if there are several actors with the same key, we break ties
using the permutation order), we invoke u, and re-insert u with priority x+ 1

r(u) .
The pseudo-code of the procedure is given in Algorithm 2.

Notice that for each actor u, its priority becomes 1 after r(u) invocations.
Therefore, after L =

∑
u∈V r(u) executions of the while loop every actor has

priority 1. At this point in time, the schedule executed thus far is periodic. We
call this periodic schedule, the canonical schedule induced by π and denote it by
(sπ, tπ). Notice, however, that Algorithm 2 itself never ends. Indeed, after the L-
th iteration the while loop goes on to repeat this periodic schedule ad-infinitum.

The proof of correctness hinges on the following observation on the minimum
buffer size of a channel based on the data rates of its endpoints.

Lemma 1 ([2, Theorem 3.3]). Let (u, v) be a channel. In any admissible sched-
ule, the buffer for channel (u, v) has size at least p(u, v) + c(u, v) − gcd(p(u, v),
c(u, v)) at some point in time during the execution of the schedule.

Proof. For sake of brevity, let us denote p(u, v) with a, c(u, v) with b, and a +
b − gcd(a, b) with lb(a, b). Let (s, t) be an admissible schedule. Since we are
interested in deriving a lower bound on the buffer size for channel (u, v), we
assume without loss of generality that this is the only channel in the graph.
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If a | b then the buffer size has to be at least b = lb(a, b), so the lemma
follows. Let us then assume from now on that 1 < a < b and that b is not a
multiple of a; a symmetric argument can be used to handle the cases b | a and
1 < b < a.

Consider two executions of v in s. If we have two consecutive executions
of v, or the schedule begins and ends with v, then the buffer size is at least
2b > lb(a, b). So let us assume this does not happen. We apply the following
transformation to the schedule: If the schedule starts by executing v, then we
fuse every execution of v with the execution of u that immediately follows it
into a new actor v′; if the schedule starts by scheduling u, then we fuse every
execution of v with the execution of u that immediately precedes it into a new
actor v′. The result is a schedule for a new channel (u, v′) with production rate
a and consumption rate b − a. It is easy to check that if lb(a, b − a) is a lower
bound on the buffer size for the new channel, then lb(a, b − a) + a is a lower
bound on the buffer size for the original channel.

A simple proof by induction finishes the argument if a | b then we are at
the base of the inductive proof. Otherwise, the size of the buffer for the channel
(u, v) must be at least

lb(a, b − a) + a = a + b − a − gcd(a, b − a) + a

= a + b − gcd(a, b − a)
= a + b − gcd(a, b),

where the last equality follows by Euclid’s algorithm.

Now that we have a lower bound on the size of each buffer, we will prove
that these bounds are attained simultaneously by our algorithm.

Lemma 2. For any permutation π, the schedule (sπ, tπ) is admissible and for
each channel (u, v) the maximum size of the buffer during the execution of the
schedule is p(u, v) + c(u, v) − gcd(p(u, v), c(u, v)).

Algorithm 2. canonical((V,E, p, c), π)
1. for (u, v) ∈ E do

2. tπ(u, v) ←
{

c(u, v) − gcd(p(u, v), c(u, v)) if π(u) < π(v)

c(u, v) if π(v) < π(u)

3. let Q be an empty priority queue
4. for u ∈ V do
5. insert u with priority 0 into Q
6. while true do
7. (u, x) ← delete-min(Q) // break ties using the π order
8. execute actor u
9. insert u with priority x + 1

r(u)
into Q
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Proof. We prove the bounds on the size of the buffer for a fixed, but arbitrary,
channel (u, v). For sake of brevity, let us denote p(u, v) with a and c(u, v) with
b. Recall that Balance Eq. (1) for channel (u, v) implies r(u)

r(v) = b
a .

First, consider the case π(u) < π(v). Notice that the 1st execution of v is
preceded by an execution of u. In general, the k+1st execution of v is preceded by

⌊
k 1

r(v)

1
r(u)

⌋

+ 1 =
⌊

k
r(u)
r(v)

⌋

=
⌊

kb

a

⌋

+ 1

executions of u. Therefore, the fill-state of the channel after the k+1st execution
of v is precisely

tπ(u, v) + a

(⌊
kb

a

⌋

+ 1
)

− (k + 1)b.

Using the fact that tπ(u, v) = b − gcd(a, b) when π(u) < π(v), we can show that
the fill-state of the channel is always non-negative:

tπ(u, v)+ a

(⌊
kb

a

⌋

+ 1
)

− (k + 1)b =

= a

(⌊
kb

a

⌋

+ 1
)

− kb − gcd(a, b) ≥ gcd(a, b) − gcd(a, b) = 0,

where the inequality follows from the fact that a
(⌊

kb
a

⌋
+ 1

)−kb > 0 and Bézout’s
Lemma [9].

On the other hand, just before before the k +1st execution of v, the fill-state
of the buffer is

tπ(u, v) + a

(⌊
kb

a

⌋

+ 1
)

− kb.

Again, using the fact that tπ(u, v) = b − gcd(a, b) we get

tπ(u, v) + a

(⌊
kb

a

⌋

+ 1
)

−kb = a+b−gcd(a, b)+a

⌊
kb

a

⌋

−kb ≤ a+b−gcd(a, b),

so the buffer size never exceeds a + b − gcd(a, b).
Now consider the case π(v) < π(u). In this case the i + 1st execution of v is

preceded by
⌈

ib
a

⌉
executions of u. A similar argument (but using the fact that

tπ(u, v) = b when π(u) > π(v)) shows that the schedule is admissible and that
the maximum buffer size is a + b − gcd(a, b).

Combining the lower bound from Lemma1 and the upper bound from
Lemma 2 we get that every canonical schedule is an optimal solution for (P1)
and (P2). The following theorem summarizes the results in this section.

Theorem 1. There is a polynomial time algorithm for computing an optimal
periodic schedule for the objectives (P1) and (P2) with flexible initialization.
Furthermore, the schedule can be computed online using Θ(n) space and O(log n)
time per actor invocation.
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Proof. The optimality of the objectives (P1) and (P2) follows immediately
from Lemmas 1 and 2. The complexity claims follow from using a priority queue
implementation that uses Θ(n) space and performs insert and delete-min
operations in O(log n) time.

We contrast our positive results from the previous section by showing that
it is NP-hard to optimize the Min-Max-Sum (cf. (P3)).

Theorem 2. It is NP-hard to optimize (P3) with flexible initialization.

The theorem can be shown by reducing the Minimum Feedback Arc Set (MFAS)
problem to our problem.

5 Experiments

With the advent of stream programming we anticipate large instances of stream
programs. In the absence of large stream programs, we have generated complete,
directed, acyclic graphs as a synthetic benchmark suite. We generated the graphs
as follows: We start with a directed graph G = (V,E) of n nodes, and number
the vertices v1, v2, . . . vn. For each vertex vi ∈ V , we select a random repetition
value r(vi) uniformly at random from the range {1, . . . , n}. We then iterate
through every pair of vertices vi, vj ∈ V . If i 	= j and i < j, we add the directed
edge (vi, vj) to E, with p(vi, vj) = r(vj)

gcd(r(vi),r(vj))
and c(vi, vj) = r(vi)

gcd(r(vi),r(vj))
.

This generation template guarantees that a repetition vector exists, and the
topological matrix of this directed, acyclic graph has rank n − 1.

Using this approach, we generated graphs of size n = 10, 15, . . . , 50 and ran
both algorithms. As before, we timed the execution of each algorithm, taking the
average over twenty runs. The numerical results of these experiments are shown
in Table 1 and are visualized in Fig. 2.

Table 1. Performance comparison on randomly generated instances.

Instance canonical greedy

|V | (P1) (P2) Time (s) (P2) Time (s)

10 20 586 0.0030 1226 0.0097

15 28 1048 0.0047 2937 0.0362

20 32 2483 0.0081 7818 0.1124

25 48 6131 0.0143 30306 0.5421

30 60 9486 0.0188 47979 1.6658

35 70 16782 0.0291 68126 5.0272

40 80 22927 0.0352 149469 8.3609

45 84 29781 0.0454 244380 17.6809

50 100 46203 0.0567 347676 39.5296
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Fig. 2. Visualizing the performance on randomly generated instances.

Two observations stand out from Fig. 2. First, canonical seems to be
asymptotically faster greedy. We suspect that this is due to the fact that as
the graph becomes denser, there will be many “fireable” actors in each iter-
ation, leading greedy to spend nearly quadratic time per iteration, whereas
canonical, is guaranteed to spend at most logarithmic time. Second, greedy
was never able to find an optimal schedule and the quality of the solutions it
produced deteriorated as n grew.

These experiments strongly support the hypothesis that greedy is slower
and produces worse schedules with respect to memory consumption when more
actors become “fireable” at each iteration.

6 Related Work

Our work is closely connected to the greedy algorithm proposed in [2]. Their
approach is based on a heuristic which keeps track of the set of “fireable” actors.
Our algorithm is based on optimality theorems which produces both the optimal
memory schedule and the required initial delay to achieve optimality. With a
given initial delay, the NP-hard proof of the problem is given in [2]. The approach
in [4] uses a model-checking method to find optimal schedules which requires
a machinery which is outside of the complexity class P. There is a stream of
literature on scheduling of SDF programs with model checking. Other approaches
use time automata to solve the scheduling problem for SDF [1], and variations of
the problem definition taking other metrics such as throughput into account [8].
There is also related work concerning to eliminate buffers via unrolling the finite
periodic schedules [6].

7 Conclusion

In this work, we have studied three mathematical definitions of memory opti-
mality based on how FIFO buffers utilize memory. We started by showing that
two of these objectives can be solved in logarithmic worst-case time per actor
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invoked, and that the last objective is NP-hard. Experiments showed that our
new algorithm drastically outperformed existing heuristics in both speed and
the memory usage of schedules produced on dense instances.

Acknowledgements. This project has been partially supported by the Australian
Research Council Discovery Project DP1096445. We would like to thank our reviewers
for the insightful feedback, and Yousun Ko for her help with the experiments.

References

1. Ahmad, W., de Groote, R., Hölzenspies, P.K.F., Stoelinga, M., van de Pol, J.:
Resource-constrained optimal scheduling of synchronous dataflow graphs via timed
automata. In: Proceedings of the 2014 14th International Conference on Application
of Concurrency to System Design, ACSD 2014, pp. 72–81. IEEE Computer Society,
Washington, DC (2014). https://doi.org/10.1109/ACSD.2014.13

2. Battacharya, S.S., Murthy, P.K., Lee, E.A.: Software Synthesis from Dataflow
Graphs. Kluwer Academic Publishers, Norwell (1996)

3. Dennis, J.B.: First version of a data flow procedure language. In: Robinet, B. (ed.)
Programming Symposium. LNCS, vol. 19, pp. 362–376. Springer, Heidelberg (1974).
https://doi.org/10.1007/3-540-06859-7 145

4. Geilen, M., Basten, T., Stuijk, S.: Minimising buffer requirements of synchronous
dataflow graphs with model checking. In: Proceedings of the 42nd Annual Design
Automation Conference, DAC 2005, pp. 819–824. ACM, New York (2005). https://
doi.org/10.1145/1065579.1065796

5. Kahn, G.: The semantics of simple language for parallel programming. In: IFIP
Congress, pp. 471–475 (1974)

6. Ko, Y., Burgstaller, B., Scholz, B.: LaminarIR: compile-time queues for structured
streams. In: Proceedings of the 36th ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI 2015, pp. 121–130. ACM, New York
(2015). https://doi.org/10.1145/2737924.2737994

7. Lee, E.A., Messerschmitt, D.G.: Synchronous data flow. Proc. IEEE 75(9), 1235–
1245 (1987)

8. Wiggers, M.H., Bekooij, M.J.G., Smit, G.J.M.: Buffer capacity computation for
throughput-constrained modal task graphs. ACM Trans. Embed. Comput. Syst.
10(2), 17:1–17:59 (2011). https://doi.org/10.1145/1880050.1880053
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Abstract. In the Big Data era, Data Stream Processing (DSP) appli-
cations should be capable to seamlessly process huge amount of data.
Hence, they need to dynamically scale their execution on multiple com-
puting nodes so to adjust to unpredictable data source rate. In this
paper, we present a hierarchical and distributed architecture for the
autonomous control of elastic DSP applications. It revolves around a
two layered approach. At the lower level, distributed components issue
requests for adapting the deployment of DSP operations as to adjust
to changing workload conditions. At the higher level, a per-application
centralized component works on a broader time scale; it oversees the
application behavior and grants reconfigurations to control the applica-
tion performance while limiting the negative effect of their enactment,
i.e., application downtime. We have implemented the proposed solution
in our distributed Storm prototype and evaluated its behavior adopting
simple policies. The experimental results are promising and show that,
even with simple policies, it is possible to limit the number of recon-
figurations while at the same time guaranteeing an adequate level of
application performance.
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Hierarchical control · MAPE loop

1 Introduction

Data Stream Processing (DSP) applications can continuously collect and process
data generated by an increasing number of sensing devices, to timely extract
valuable information in many application domains, including health-care, energy
management, logistic, and transportation. These scenarios pose new challenges
to DSP systems in terms of strict latency requirements in face of variable and
high data volumes to process. To deal with operator overloading, a commonly
adopted stream processing optimization is data parallelism, which consists in
scaling-out or scaling-in the number of parallel instances for the operators, so
that each instance can process a subset of the incoming data flow in parallel.
c© Springer International Publishing AG, part of Springer Nature 2018
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Recently, since data sources are in general geographically distributed (e.g.,
in IoT scenarios), we also have witnessed a paradigm shift with the deployment
and execution of DSP applications over distributed Cloud and Fog computing
resources, which de facto bring applications closer to the data, rather than the
other way around, to improve application latency and make better use of the
ever increasing amount of resources at the network periphery. Nevertheless, this
very idea makes it difficult to control DSP application performance. Most of the
approaches proposed in the literature (as detailed below) have been designed
for cluster environments with a centralized control component overlooking the
DSP operations. These solutions typically do not scale well in a distributed
environment given the spatial distribution, heterogeneity, and sheer size of the
infrastructure itself. While scalable decentralized solutions have been proposed,
e.g., [12], their inherent lack of coordination might result in frequent reconfig-
urations which negatively affect the application performance due to continuous
system downtime.

In this paper, to take the best of the two worlds, we propose a hierarchical
distributed approach to the autonomous control of elastic DSP applications in
Fog-based environment. Our contributions are as follows. We present in Sect. 2
a hierarchical distributed architecture for the autonomous control of elasticity,
named Elastic and Distributed DSP Framework (EDF). The control is organized
according to the Monitor, Analyze, Plan and Execute (MAPE) reference model
for self-adapting systems. Specifically, the proposed architecture relies on a high-
level centralized MAPE-based Application Manager that coordinates the run-
time adaptation of subordinated MAPE-based Operators Managers, which, in
turn, locally control the adaptation of single DSP operators.

As a second contribution, we present in Sect. 3 a simple reference control
strategy for each component, we name the local (for the Operator Managers)
and global policy (for the Application Manager), respectively. The first moni-
tors and analyzes the operator performance to determine whether it needs to
be reconfigured by scaling the number of replicas or by migrating a replica. The
global policy identifies the most effective reconfigurations proposed by the Oper-
ator Managers, accepting or declining the proposed reconfigurations in order to
control their number, and hence the application downtime.

As a third contribution, we have implemented EDF on our extension [1,2] of
Apache Storm and evaluated the proposed solution on our prototype. We imple-
mented two simple policies: the local policy employs a threshold approach to
request operator reconfigurations to the Application Manager; the global policy
adopts a token bucket scheme to control the number of allowed reconfigurations
in any control interval. As shown in Sect. 4, our results are promising and show
the effectiveness of the proposed solution in achieving a good trade-off between
application performance and reconfiguration cost.

Related Work. Run-time adaptation of DSP applications achieved through
elastic data parallelism is attracting many research and industrial efforts. Most
approaches that enable elasticity are often implicitly organized as self-adaptive
systems based on the MAPE model. Some works, e.g., [4,6,7], exploit best-effort
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threshold-based policies based on the utilization of either the system nodes or
the operator instances. The basic idea is that when the utilization exceeds the
threshold, the replication degree of the involved operators is modified accord-
ingly. Other works, e.g., [5,10,11,16], use more complex centralized policies to
plan the scaling decisions. Lohrmann et al. [10] propose a strategy that enforces
latency constraints by relying on a predictive latency model based on queueing
theory. Stela [16] relies on throughput-based metric to identify those operators
that need to be scaled-out/in. Heinze et al. [8] estimate latency spikes caused by
operator reallocations through a model and use it to define a heuristic placement
algorithm. In [1] we present a centralized optimization problem for the runtime
elasticity management of DSP applications that minimizes migration costs while
satisfying the application QoS requirements. Differently from the above works
that present reactive scaling strategies, De Matteis and Mencagli [3] propose a
proactive strategy that takes into account a limited future time horizon to choose
the reconfigurations. However, all these works rely on a centralized planner for
the run-time adaptation of DSP applications, that may suffer from network
latencies in a geo-distributed operating environment. Mencagli [11] presents a
game-theoretic approach where the control logic is distributed on each operator,
but it is not integrated in a DSP system.

As regards the deployment of DSP applications in geo-distributed envi-
ronments, we extended Apache Storm [2] with a self-adaptive and distributed
placement heuristics [12], but it suffers from frequent and uncoordinated recon-
figurations. SpanEdge [13] is implemented in Apache Storm, but it does not
support operator migrations. Saurez et al. [14] propose a new Fog-specific
programming model supporting the migration of application components.

2 System Architecture

2.1 Problem Definition

A DSP application can be regarded as directed acyclic graph (DAG), where data
sources, operators, and sinks are connected by streams. An operator is a self-
contained processing element that carries out a specific operation (e.g., filtering,
POS-tagging), whereas a stream is an unbounded sequence of data (e.g., tuple).
We distinguish between stateless and stateful operator whether the operator
computes the output data using only the incoming data or also some internal
state information, respectively. For the execution, multiple replicas can be used
to run an operator, where each replica processes a subset of the incoming data
flow. By partitioning the stream over multiple replicas, running on one or more
computing nodes, the load per replica is reduced, which yields lower application
latency. Since the load can vary over time, the number of replicas can change at
run-time as to optimize some non-functional requirements. As infrastructure on
which DSP applications are executed, we consider computing resources that are
scattered in a geo-distributed environment as Fog computing.

For the execution, a DSP application needs to be deployed on computing
resources, which will host and execute the operators. Since DSP applications are
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usually long-running, the operators can experience changing working conditions
(e.g., fluctuations of the incoming workload, variations in the execution environ-
ment). To preserve the application performance within acceptable bounds, their
deployment should be adapted at run-time, through migration and scaling oper-
ations. A migration moves an operator replica to another computing resource,
so to balance resource utilization. A scaling operation changes the replication
degree of an operator: a scale-out decision increases the number of replicas when
the operator needs more computing resources, whereas a scale-in decreases the
number of replicas when the operator under-uses its resources. The drawback of
reconfigurations is that they cause application downtime; hence, if applied too
often, they negatively impact the application performance.

Being in charge of the application execution, the DSP system (e.g., Storm)
can control the application performance. To agree on satisfying execution condi-
tions, the user and the DSP system provider stipulate a Service Level Agreement
(SLA). We consider that the SLA specifies as Service Level Objective (SLO) the
maximum acceptable response time Rmax, that is the worst end-to-end delay
from a data source to a data sink, and the maximum tolerable downtime during
normal execution conditions. The latter indicates how often the application can
be reconfigured when its response time is far from the critical value Rmax.

2.2 Hierarchical Architecture

The MAPE loop represents a prominent and well-know reference model to
organize the autonomous control of a software system, where four components
(Monitor, Analyze, Plan, and Execute) are responsible for the primary functions
of self-adaptation. When the controlled system is geo-distributed as in Fog com-
puting, a MAPE loop where analysis and planning decisions are centralized on a
single component may not be sufficient for effectively managing the adaptation,
because of the network latencies among the system components. As described
by Weyns et al. in [15], different patterns to design multiple MAPE loops have
been used in practice by decentralizing the functions of self-adaption.

When studying the strategies for placing DSP applications in a geo-
distributed environment, we observed that a fully decentralized approach as
in [2], where a multiplicity of peer MAPE loops autonomously manages the
operator placement, may negatively affect the application performance, because
of too frequent and uncoordinated decisions. This situation can be exacerbated
when scaling operator decisions are involved besides those regarding the operator
placement.

To address such lack of coordination in the multiple MAPE loops, in this
paper we present a hierarchical distributed architecture, named Elastic and
Distributed DSP Framework (EDF), for the autonomous control of elastic DSP
applications in a Fog environment. The proposed solution is organized accord-
ing to the hierarchical pattern for decentralized control described in [15], where
higher-level MAPE components control subordinate MAPE components. Specif-
ically, our proposal revolves around a two layered approach with separation of
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Fig. 1. System architecture

concerns and time scale between layers. Figure 1a illustrates the conceptual archi-
tecture of EDF, highlighting the hierarchy of the multiple MAPE loops and the
system components in charge of the MAPE loop phases.

At the lower level (i.e., at the per-operator grain) and a faster time scale,
the Operator Manager is the distributed entity in charge of controlling the
adaptation of a single DSP application operator/subset of the DSP application
operators through a local MAPE loop. It monitors the system logical and phys-
ical components used by the operator(s) through the Operator Monitor and
the Resource Monitor, and then, through the Local Reconfiguration Manager, it
analyzes the monitored data and determines if and which local reconfiguration
action (among operator scale-in, scale-out, or migration) is needed. When the
Operator Manager determines that some adaptation should occur, it issues an
operator adaptation request to the higher layer.

At the higher level (i.e., at the per-application grain) and a slower time
scale, the Application Manager is the centralized entity that coordinates the
adaptation of the overall DSP application through a global MAPE loop. By
means of the Application Monitor it oversees the global application behavior.
Then, through the Global Reconfiguration Manager it analyzes the monitored
data and the reconfiguration requests received by the multiple Operator Man-
agers, and decides which reconfigurations should be granted. These decisions are
then communicated by the Global Actuator to each Operator Manager, which
can, finally, execute the operator adaptation actions by means of the its local
Reconfiguration Actuator.

The EDF architecture is general enough to not limit the specific internal
policies and goals that can be designed for each component in the two layers.
For example, the planning components can be either activated periodically or
on event-basis, can rely on optimization problem formulation or heuristics with
the goal to minimize the application response time, maximize its availability or
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a combination of the two. As a proof-of-concept of the proposed architecture, we
present, in Sect. 3, simple heuristic adaptation policies whose overall adaptation
goal is to preserve the application performance, avoiding unnecessary or too
frequent reconfigurations which might result in excessive application downtime.

We have implemented the proposed EDF architecture in Apache Storm, an
open source, real-time, and scalable DSP system. Figure 1b shows the high-level
instantiation of the EDF components on the Storm architecture. Due to space
limitations, we omit a description of the basic Storm architecture and refer the
reader to Sect. 6 in [1], where we also describe how to support in Storm elasticity
mechanisms, including the migration of stateful operators. To obtain monitoring
information (including network latencies) we rely on Distributed Storm [2].

3 Multi-level Elasticity Policy

The proposed two-layered architecture for self-adaptive DSP elasticity control
identifies the different macro-components (i.e., Application Manager and Oper-
ator Managers) that, by means of abstraction layers and separation of concerns,
cooperate to adapt the deployment of DSP applications at run-time. By prop-
erly selecting each component internal policy, the proposed solution can address
the needs of different execution contexts, which can comprise applications with
different requirements, infrastructures with different computing resources, and
different user preferences. For example, specific policies can execute the appli-
cation by minimizing its response time, maximizing its availability, or limiting
the adaptation efforts (i.e., executing the application in a best-effort manner).
The Operator Manager works at the granularity of a single DSP operator and
implements what we called a local policy. By monitoring and analyzing the per-
formance of each operator replica, the local policy can plan a reconfiguration of
number and location of the operator replicas. Specifically, by scaling the num-
ber of replicas, the operator exploits parallelism to quickly process its incoming
data, whereas by migrating some of the operator replicas, the operator better
distributes the incoming load among computing resources. The Operator Man-
ager sends the planned reconfiguration to the Application Manager, which runs
periodically and decides, according to its so called global policy, which reconfigu-
ration should be enacted. The global policy works at the granularity of the whole
application, thus it coordinates the reconfigurations so to limit them and avoid
deployment oscillations, if needed. On the basis of the monitored application
performance and the stipulated SLA, the global policy identifies the most effec-
tive reconfigurations proposed by the Operator Managers: it accepts or declines
each reconfiguration with the aim to adapt the DSP application to changing
working conditions while meeting the SLA.

3.1 Local Policy

The Operator Manager local policy implements the Analyze and Plan phases
of the decentralized MAPE loop, which controls the execution of a single DSP
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operator. Running on a decentralized component, this policy has only a local
view of the system, which results from the monitoring components (i.e., Opera-
tor Monitor and Resource Monitor). The local view consists of the status (i.e.,
resource utilization) of each operator replica and of a restricted suitable set of
computing nodes (i.e., located in the neighborhood). By analyzing this informa-
tion, the policy can plan a reconfiguration of the operator deployment, either by
changing the number of replicas, or by migrating some of them. The proposed
reconfiguration plan is then communicated to the centralized Application Man-
ager which, based on all the Operator Manager’s reconfiguration plans and the
global policy, determines which plan can be executed and which not.

Reconfiguration Plan. A reconfiguration plan is expressed through the fol-
lowing information: adaptation actions, reconfiguration gain, and reconfiguration
cost1. We consider two types of adaptation actions: replica migration and oper-
ator scaling. Actions can be of the form: “move replica α of op from ri to rj”,
“add a new replica to op on ri”, or “remove replica α of op from ri”, where op
and ri denote an operator and a computing resource, respectively. The reconfig-
uration gain is a function, adopted by every Operator Manager, which captures
the benefits of the planned adaptation action. It can express, for instance, the
reduction of the operator’s processing latency, the reduction of monetary cost
for running the operator, or the improvement of some utility function. In this
paper, we assume a simple gain function that induces an order relation among
the reconfiguration actions, namely scale-out > migration > scale-in. The
reconfiguration cost expresses the cost of reconfiguring the system. In this paper,
we express it in terms of application downtime. It results from the time required
to add/remove an operator replica, to relocate the operator code, and to migrate
its internal state (if any). We now discuss the two types of adaptation action.

Replica Migration. A computing resource can host replicas of one or more
operators, which, in turn, are controlled by dedicated Operator Managers. When
the computing resource becomes overloaded, the hosted replicas can experience a
performance degradation. To overcome this issue, an Operator Manager proposes
to move some of the operator replicas away from the resource.

We adopt a reactive and threshold-based policy in order to decide when and
how to perform the migration. The local policy analyzes the monitoring data
coming from the computing resources that host at least one operator replica.
We denote with Ur the overall CPU utilization of the resource r. When Ur is
above a critical value Umax, the policy plans to migrate at most one operator
replica to a new location. The latter is identified in two steps. First, the policy
sorts the known neighbor resources according to their distance, measured in
terms of network delay. Then, it selects the new location using a randomized
approach: the closer the resource, the higher the probability of being selected.
The policy checks if the new selected location has room to run the migrating
replica; in negative case, a new resource is selected from the sorted list.

1 For the sake of simplicity, we assume that the local policy proposes, for an operator,
a single reconfiguration decision (i.e., migration, scaling) at a time.
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Reconfiguration Cost. If the operator is stateless, the migration of a replica can
be easily performed by terminating the replica on the old location, moving its
code to the new location, and restarting it. On the other hand, if the operator
is stateful, we also need to efficiently migrate its internal state, so to preserve
the integrity and consistency of the outputted streams. Our migration protocol
follows a pause-and-resume approach with the help of a data store as staging
area for the replica internal state (details on our migration protocol in [1]).

Operator Scaling. When an operator replica receives an increasing workload, it
can saturate the capacity of the hosting computing resource. To prevent the perfor-
mance penalty associated to overloading, the Operator Manager proposes to add
an additional replica and redistribute the incoming workload accordingly. Con-
versely, when the incoming workload decreases, the Operator Manager can reduce
the number of replicas in order to decrease the number of allocated resources, and
redistribute the workload among the remaining ones. Let us denote by Sα the
resource utilization of the hosting resource by replica α, which measures the frac-
tion of CPU time used by α. We adopt a simple threshold-based scale-out policy
to each replica. When the utilization of α exceeds a usage threshold Ss-out ∈ [0, 1]
(i.e., Sα > Ss-out), the Operator Manager proposes to add a new replica. Its place-
ment is computed relying on the same strategy used for the replica migration. Con-
versely, the Operator Manager proposes a scale-in operation, which removes one
of the running n replicas, when the sum of their utilization divided by n − 1 is sig-
nificantly below the usage threshold, i.e., when

∑n
α=1 Sα/(n − 1) < cSs-out, being

c < 1. The replica to be removed is randomly chosen between the two replicas with
the highest utilization.

Reconfiguration Cost: If the operator is stateless, a scaling operation implies only
to start or stop a replica. Conversely, if the operator is stateful, we also need
to reallocate its internal state among the new set of replicas. We assume that
each replica can work on a well-defined state partition [5]. A scale-out operation
redistributes equally the partitions among replicas, whereas a scale-in operation
aggregates the partitions from the merged replicas.

3.2 Global Policy

The Application Manager global policy implements the Analyze and Plan steps
of the centralized MAPE loop. Its main goal is to satisfy the DSP application
SLA, while minimizing the allocated resources (or their cost). To this end, it
monitors the application response time and analyzes its behavior with respect
to the SLO specified in the SLA. In the planning phase, the policy determines
which reconfiguration plans, proposed by the decentralized Operator Managers,
should be enacted as to improve performance while controlling the number of
application reconfigurations (which cause application downtime). In this paper,
we consider a simple global policy scheme which is exemplified in Fig. 2. Time is
divided in control intervals of fixed length T . During each interval, the global pol-
icy collects reconfiguration requests from the Operator Managers: these requests
can take different forms, e.g., replica migrations (the continuous arrows in the
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Fig. 2. Global policy behavior

figure), operator scale-out (the dotted arrow) and operator scale-in (the dashed
arrow). At the end of each interval, the policy determines how many and which
reconfigurations should be enacted by the Operators Managers. In order to con-
trol the number of reconfigurations, and hence the downtime, we adopt a simple
token bucket scheme whereby each reconfiguration consumes a token. Tokens
are generated at the end of each control interval T and are accumulated in a
token bucket, which has a finite capacity (i.e., when the bucket is full, it cannot
store any other token). The number of reconfigurations allowed at the end of
each control interval is thus limited by the number of available tokens. If the
number of requests is higher than the number of available tokens, the global
policy has to identify the most valuable reconfigurations to accept. As simple
scheme, the policy uses a greedy approach by prioritizing the requests according
to the gain to cost ratio; the higher this index, the better the reconfiguration.

In the proposed scheme, a key role is played by the token generation rate.
Ideally, when the application response time is well within the SLO (defined
by Rmax), reconfigurations should be limited since performance is guaranteed
and the possibly sub-optimal behavior is preferable to the downtime caused
by reconfigurations. On the other hand, should the performance degrades, the
system should be more prone to reconfigure itself. As such, the token generation
frequency depends on how far is the response time from Rmax, with increasing
token generation rates as performance gets close to Rmax.

4 Evaluation

We evaluate EDF equipped with the proposed proof-of-concept policies, using
Apache Storm 0.9.3 on a cluster with 5 worker nodes and one further node to
host Nimbus and ZooKeeper (details in [1]). Each node has a dual CPU Intel
Xeon E5504 (8 cores at 2 GHz) with 16 GB of RAM.

The reference application solves a query of DEBS 2015 Grand Challenge [9],
where data streams originated from the New York City taxis are processed to
find the top-10 most frequent routes during the last 30 min. Figure 3 shows the
application DAG. Data source reads the dataset from Redis; parser filters out
irrelevant and invalid data. Then, filterByCoordinates forwards only the events
related to a specific area to computeRouteID, which identifies the routes covered
by taxis. So, countByWindow computes the route frequency in the last 30 min,
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fi

Fig. 3. Reference DSP application

supported by metronome that defines the passing of time. Finally, partialRank
and globalRank compute the top-10 most frequent routes.

We feed the application with a sample dataset provided by DEBS, and pro-
cess real data collected during 2 days. The taxi service utilization significantly
changes during the day, thus the application input rate is variable as well. As
regards the Operator Manager local policy, we set the scale-out and migra-
tion thresholds, Umax and Ss-out, to 0.7 and the scale-in parameter c to 0.75.
Both OperatorManager and ApplicationManager run once every 30 s, respec-
tively proposing and accepting/rejecting reconfigurations. We compare the base-
line approach in which all reconfiguration requests are always accepted by the
ApplicationManager to one in which the global policy in Sect. 3.2 is employed
in order to determine which reconfigurations will be enacted. In particular, the
token bucket stores at most 1 token at any time and the token generation rate
is 1 per min only if the achieved application response time is above βRmax,
where β ∈ [0, 1], otherwise no token is generated. In these experiments we set
Rmax = 200 ms and vary β.

Figure 4a shows the application response time and number of replicas during
the experiment when using the baseline approach. Since every reconfiguration
proposed by any OperatorManager is accepted (like in a fully decentralized pol-
icy), the application is frequently reconfigured. As a consequence, the application
is available only for 93.7% of the time. The measured response time shows many
spikes, which are caused by tuples buffering during reconfiguration.

Figure 4b shows the application response time and number of operator repli-
cas during the experiment using the full reconfiguration policy, with β = 0.5. As
the response time frequently rises above βRmax = 100 ms, the number of granted
reconfigurations is not significantly reduced with respect to the baseline approach
in Fig. 4a (and so the application downtime). Nevertheless, we can observe that,
by performing less reconfigurations, the total number of replicas is never reduced
to 8, due to the lack of tokens and the low priority of the scale-in action.

Figure 4c shows the results when β = 0.75. As tokens are now generated in a
more conservative manner (being βRmax = 150 ms), the number of reconfigura-
tions is significantly reduced. In the initial part of the experiment, the input rate
grows up to 300 tuples/s, resulting in high response time; therefore, EDF gen-
erates tokens for performing a migration and for increasing the total number of
replicas to 10. Then, the application is stable until a new input peak (at around
4000 s), when a scale-in followed by a scale-out of the bottleneck operator are
accepted. The application downtime is limited (only 1.7%), which is beneficial
for response time, but it might lead to higher cost, having more active replicas.
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Fig. 4. Response time and number of replicas using different policies for Application-
Manager: in (a) accepting all the reconfiguration requests, in (b) and (c) generating a
token only when response time is greater than βRmax

5 Conclusions

In this paper, we presented Elastic and Distributed DSP Framework (EDF), a
hierarchical autonomous control for elastic DSP applications. Designed accord-
ing to the decentralized MAPE control pattern, our proposal revolves around a
two layered approach with separation of concerns and time scale between layers.
At the lower level, distributed components control the adaptation of DSP opera-
tors, so to improve their performance by means of scaling and migration actions.
At the higher level, a per-application centralized component oversees the overall
DSP application performance and coordinates its deployment by accepting or
declining the proposed reconfiguration actions. Then, relying on an application
that processes real-time data generated by taxis, we conducted an experimental
evaluation. The results showed the effectiveness of our solution in achieving good
trade-off in terms of application performance and number of application recon-
figurations even adopting simple control policies. As future work, we will further
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investigate the hierarchical approach for adapting DSP applications over geo-
distributed infrastructures. We plan to extend some of the existing distributed
policies to make them more robust to oscillations, and to design hierarchical
multi-time scale policies relying on optimization frameworks such as Markov
Decision Processes and reinforcement learning.
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Abstract. In this paper, we present a new C++ API with a flu-
ent interface called PiCo (Pipeline Composition). PiCo’s programming
model aims at making easier the programming of data analytics applica-
tions while preserving or enhancing their performance. This is attained
through three key design choices: (1) unifying batch and stream data
access models, (2) decoupling processing from data layout, and (3)
exploiting a stream-oriented, scalable, efficient C++11 runtime system.
PiCo proposes a programming model based on pipelines and operators
that are polymorphic with respect to data types in the sense that it is
possible to re-use the same algorithms and pipelines on different data
models (e.g., streams, lists, sets, etc.). Preliminary results show that
PiCo can attain better performances in terms of execution times and
hugely improve memory utilization when compared to Spark and Flink
in both batch and stream processing.

1 Introduction

In the context of Big Data analytics, there is a series of tools aiming at simpli-
fying programming applications to be executed on clusters. Although each tool
claims to provide better programming, data and execution models—for which
only informal (and often confusing) semantics are generally provided1—they all
share some characteristics at different levels. From a high-level perspective, Big
Data is about extracting knowledge from both structured and unstructured data.
Extracting knowledge from Big Data requires tools satisfying strong require-
ments with respect to programmability and performance. The common aim of
Big Data tools is to ensure ease of programming by providing a unique frame-
work addressing both batch and stream processing. Even when they accomplish
1 For instance, consider Spark’s dstream.foreachRDD, which provides access to RDDs

in a DStream, declared as immutable collections of objects, accessible only with
collective operators.
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this task, they often lack of a clear semantics of their programming and execution
model. For instance, users can be provided with two different data models for
representing collections and streams, both supporting the same operations but
often having different semantics. We advocate a new API with a fluent interface
(with method chaining) [11], called PiCo (Pipeline Composition), designed over
the presented layered Dataflow conceptual framework [13,14]. PiCo program-
ming model aims at easing the programming and enhancing the performance
of Analytics applications through three design choices: (1) unifying batch and
stream data access models, (2) decoupling processing from data layout, and (3)
exploiting a stream-oriented, scalable, efficient C++11 run-time system.

These design choices move further the level of abstraction in the programming
and execution model achieved in mainstream approaches for Big Data analytics.
For instance, Spark [18], Storm [15], Flink [10], and Google Dataflow [1] typically
force the specialization of the algorithm to match the data access and layout.
Specifically, data transformation functions (called operators in PiCo) exhibit
different functional types when accessing data in different ways.

For this reason, the source code must often be revised when switching from
one data model to the next. Some of them, such as the Spark framework, provide
the runtime with a module to convert streams into micro-batches (Spark Stream-
ing, a library running on Spark core), but still different code needs to be written
at the user-level. The Kappa architecture advocates the opposite approach, i.e.,
to “streamize” batch processing, but the streamizing proxy has to be coded. As
for the Lambda architecture, it requires the implementation of both a batch-
oriented and a stream-oriented algorithm, which means coding and maintaining
two codebases.

PiCo fully decouples algorithm design from data model and layout. Code
is designed in a fully functional style by composing stateless operators. As we
discuss in the present paper, all PiCo operators are polymorphic with respect
to data types. This makes it possible to (1) re-use the same algorithms and
pipelines on different data models (e.g., streams, lists, sets, etc.); (2) reuse the
same operators in different contexts, and (3) update operators without affecting
the calling context, i.e., the previous and following stages in the pipeline. Note
that in other mainstream frameworks, such as Spark, the update of a pipeline by
changing a transformation with another may not be trivial, since this may require
the development of input and output proxies to adapt the new transformation
for the calling context. Moreover, PiCo relies on FastFlow [3,4,9], a parallel
programming framework designed to support streaming applications on cache-
coherent multicore platforms.

2 Related Work

In this section, we provide background related to Big Data analytics tools from
a stream processing perspective. Apache Spark design is intended to address
iterative computations by reusing the working dataset by keeping it in mem-
ory [18–20]. For this reason, Spark represents a landmark in Big Data tools
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history, having a strong success in the community. The overall framework and
parallel computing model of Spark is similar to MapReduce, while the inno-
vation is in the data model, represented by the Resilient Distributed Dataset
(RDD). An RDD is a read-only collection of objects partitioned across a cluster
of computers that can be operated on in parallel. A Spark program can be char-
acterized by the two kinds of operations applicable to RDDs: transformations
and actions. Those transformations and actions compose the directed acyclic
graph (DAG) representing the application. For stream processing, Spark imple-
ments an extension through the Spark Streaming module, providing a high-level
abstraction called discretized stream or DStream [20]. Such streams represent
results in continuous sequences of RDDs of the same type, called micro-batches.
Operations over DStreams are “forwarded” to each RDD in the DStream, thus
the semantics of operations over streams is defined in terms of batch processing
according to the simple translation op(a) = [op(a1), op(a2), . . .], where [·] refers
to a possibly unbounded ordered sequence, a = [a1, a2, . . .] is a DStream, and
each item ai is a micro-batch of type RDD. All RDDs in a DStream are processed
in order, whereas data items inside an RDD are processed in parallel without
any ordering guarantees.

Formerly known as Stratosphere [5], Apache Flink [7] focuses on stream pro-
gramming. The abstraction used is the DataStream, which is a representation of
a stream as a single object. Operations are composed (i.e., pipelined) by call-
ing operators on DataStream objects. Flink also provides the DataSet type for
batch applications, that identifies a single immutable multiset—a stream of one
element. A Flink program, either for stream or batch processing, is a term from
an algebra of operators over DataStreams or DataSets, respectively. Flink, dif-
ferently from Spark, is a stream processing framework, meaning that both batch
and stream processing are based on a streaming runtime. It can be considered
one of the more advanced stream processors as many of its core features were
already considered in the initial design [7].

Apache Storm is a framework targeting only stream processing [15–17]. It is
perhaps the first widely used large-scale stream processing framework in the
open source world. Storm’s programming model is based on three key notions:
Spouts, Bolts, and Topologies. A Spout is a source of a stream, that is (typically)
connected to a data source or that can generate its own stream. A Bolt is a
processing element, so it processes any number of input streams and produces
any number of new output streams. A topology is a composition of Spout and
Bolts.

Google Dataflow SDK [1] is part of the Google Cloud Platform [12]. Here, the
term “Dataflow” is used by reference to the “Dataflow model”, to describe the
processing and programming model of the Cloud Platform. This framework aims
at providing a unified model for stream, batch, and micro-batch processing. The
base entity is the Pipeline, representing a data processing job consisting of a set
of operations that can read a source of input data, transform that data, and write
out the resulting output. The data model in Google Dataflow is represented by
PCollections, representing a potentially large, immutable bag of elements, that
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can be either bounded or unbounded. The bounded (or unbounded) nature of
a PCollection affects how Dataflow processes the data. Bounded PCollections
can be processed using batch jobs, that might read the entire data set once and
perform processing in a finite job. Unbounded PCollections must be processed
using streaming jobs, as the entire collection may never be available for pro-
cessing at any one time and they can be grouped by using windowing to create
logical windows of finite size.

Thrill [6] is a prototype of a general purpose big data batch processing frame-
work with a dataflow style programming interface implemented in C++ and
exploiting template meta-programming. Thrill’s data model is the Distributed
Immutable Array (DIA), an array of items distributed over the cluster, to which
no direct access to elements is permitted—i.e., it is only possible to apply opera-
tions to the array as a whole. A DIA remains an abstract entity flowing between
two concrete DIA operations, allowing to apply optimizations such as pipelin-
ing or chaining, combining the logic of one or more functions into a single one
(called pipeline). A consequence of using C++ is that memory has to be managed
explicitly, although memory management in modern C++11 has been consider-
ably simplified—for instance, Thrill uses reference counting extensively. Thrill
provides a SPMD (Single Program, Multiple Data) execution model, similar to
MPI, where the same program is run on different machines.

3 PiCo Programming Model

In this section, we present the PiCo C++ API, consisting of two main categories
of elements: Pipelines and Operators—PiCo’s formal semantics is described
in [8]. Note that the design of the Operators API is based on inheritance, follow-
ing faithfully PiCo’s grammar specification [8]—even though the use of template
programming without inheritance might have slightly improved the runtime per-
formance. Thus, the implementation makes use of dynamic polymorphism when
building the semantics DAG, where virtual member functions are invoked to
determine the kind of Operator currently processed.

3.1 Pipe and Operators

A C++ PiCo program is a set of operator objects composed into a Pipe object,
processing bounded or unbounded data.

A Pipeline can be: 1. created as the empty Pipe (default constructor); 2. cre-
ated as a Pipe consisting of a single operator; 3. modified by adding an operator,
through the add function; 4. modified by appending other Pipes, through the to
functions; 5. merged with another Pipe, through the merge function; 6. paired
with another Pipe by means of a binary operator, through the pair function.

Operators can be unary or binary. UnaryOperator is the base class repre-
senting PiCo unary operators, those with no more than one input and/or output
collection. For instance, a Map object takes a C++ callable value (i.e., a kernel)
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1 typedef KeyValue<std::string, int> KV;
2

3 static auto tokenizer = [](std::string& in,FlatMapCollector<KV>& collector) {
4 std::istringstream f(in);
5 std::string s;
6 while (std::getline(f, s, ’ ’)) {
7 collector.add(KV(s,1));
8 }
9 };

10

11 int main(int argc, char** argv) {
12 // Parse command line
13 parse_PiCo_args(argc, argv);
14

15 // Define a generic word-count pipeline
16 Pipe countWords;
17 countWords
18 .add(FlatMap<std::string, std::string>(tokenizer))
19 .add(Map<std::string, KV>([&](std::string in) { return KV(in,1); } ))
20 .add(PReduce<KV>([&](KV v1, KV v2) { return v1+v2; } ));
21

22 // Define I/O operators from/to file
23 ReadFromFile reader();
24 WriteToDisk<KV> writer([&](KV in) {
25 return in.to_string();
26 });
27

28 // Compose the pipeline
29 Pipe p2;
30 p2
31 .add(reader)
32 .to(countWords) // append to...
33 .add(writer);
34

35 // Execute the pipeline
36 p2.run();
37

38 return 0;
39 }

Listing 1.1. Word count example in PiCo.

as parameter and represents a PiCo operator map, which processes a collec-
tion by applying the kernel to each item. Also, ReadFromFile is a sub-class
of UnaryOperator and represents PiCo operators that produce a (bounded)
unordered collection of lines, read from an input text file.

BinaryOperator is the base class representing operators with two input col-
lections and one output collection. For instance, a BinaryMap object represents
a PiCo operator b-map that processes pairs of elements coming from two differ-
ent input collections and produces a single output for each pair. A BinaryMap
object is passed as parameter to Pipeline objects built by calling the pair mem-
ber function.

Listing 1.1 shows a complete example for our Word Count benchmark.
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4 Anatomy of a PiCo Application

When the run() member function is called on a pipeline p1, the semantics
dataflow is processed to create the parallel execution dataflow. This latter graph
represents the application in terms of processing elements (i.e., actors) connected
by data channels (i.e., edges), where operators can be replicated to express data
parallelism. We implemented this intermediate representation directly in Fast-
Flow by using nodes, farms and pipelines patterns.

The creation of the parallel execution dataflow is straightforward. Having an
empty ff pipeline picoDAG that will be executed, we then start visiting the
first node of the semantics dataflow, which can be an input or an entry point
node. On the basis of its role, a new ff node or ff farm is instantiated and
added to picoDAG.

The semantics DAG is recursively visited and the following operations are
performed: 1. A single ff node is added in case of input/output operators; 2.
The corresponding ff farm is added in case of operators different from I/O
operators; 3. If an entry point is encountered, a new ff farm is created and
added to picoDAG: (a) a new ff pipeline is created for each entry point’s
adjacent node; (b) these ff pipelines are built with new ff nodes created by
recursively visiting the input Pipe’s graph, until reaching the last node of each
Pipe visited.

At the end, the resulting picoDAG is thus a composition of ff pipelines and
ff farms.

4.1 FastFlow Network Execution

In this section, we describe the execution of the picoDAG pipeline, starting from
a brief summary of the FastFlow runtime.

From the orchestration viewpoint, the process model to be employed is based
on the Communicating Sequential Processes (CSP)2 model, where processes (i.e.,
ff nodes) are named and the data paths between processes are explicitly iden-
tified (which is thus different from the Actor model). The abstract units of com-
munication and synchronization are known as channels and represent a stream
of data exchanged between two processes. Each ff node is a C++ class entering
an infinite loop through its svc() (service) member function where: 1. it gets a
task from input channel; 2. it executes business code on the task; 3. it puts a
task into the output channel. Representing communication and synchronization
by a channel ensures that synchronization is tied to communication and allows
layers of abstraction at higher levels to compose parallel programs where syn-
chronization is implicit. Patterns to build a graph of ff nodes, such as farms,
are defined in the core patterns level of the FastFlow stack. Since the graph of
ff nodes is a streaming network, any FastFlow graph is built using two stream-
ing patterns (farm and pipeline) and one pattern-modifier (loopback, to build

2 The CSP model describes a systems in terms of component processes operating inde-
pendently, which interact with each other through message-passing communication.
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cyclic networks). As an example, we highlight the key steps during the execution
of the FastFlow network of processes for a simple PiCo application with three
operators: Read from File, Map, and Write to Disk. The first node is the Read
from File (Rff), which reads lines from a file that are then forwarded to their
following node of the pipeline. Tokens are sent out at microbatch granularity (in
this case, a microbatch is a fixed size array of lines read from the input file).
Since also a fixed size dataset is streamized, the Rff node reads the text file and
sends out microbatches until the EOF is reached. The next stage of Rffs is the
Emitter of the map farm, which processes stream of microbatches. Each worker of
the map ff farm processes the received microbatch by applying the user-defined
function. Then each worker allocates a new microbatch to store the result of the
user-defined function, and then deletes the received microbatch. The new micro-
batch is forwarded to the next node. The general behavior of a worker during
its svc() call is that it deletes each input microbatch (allocated by the Emit-
ter) after it has been processed and the results of the kernel function (applied
to all elements of the microbatch) are stored into a new microbatch. When the
Collector receives PICO EOS tokens from all workers—a token specifying that
the stream is finished and that there are no more tokens to process (i.e., end of
file or socket closed)—it then forwards the token to the next stage, namely the
Write to Disk (Wtd) node. This last node is a single sequential ff node—input
and output processing nodes are always sequential—writing the received data to
a specified file. When the Wtd node receives PICO EOS, the file is closed and
the computation terminates.

5 Experiments

We compare PiCo to Flink v1.2.0 and Spark v2.1.0, focusing on expressiveness
of the programming model and on performances in shared memory. We tested
PiCo with both batch and stream applications. A first set of experiments were
made of the following two applications: word count and stock market analysis.

Word count is considered as the “Hello, World!” of Big Data analytics, typi-
cally an example of batch processing. The input is a text file, which is first split
into lines. Then, each line is tokenized into a sequence of words: this is imple-
mented using flatmap, as each line may contain varying numbers of words. Each
of these words from the input file are processed by a map operator that produces
a key-value pair 〈w, 1〉 for each word w. After all words have been processed,
the pairs are grouped by the word from each pair, and then the values (i.e., the
1s) are reduced by a sum. The final result is a single pair for each word, where
the value represents the number of occurrences of the word in the text. (See also
Listing 1.1.) As for the stock market analysis, it implements the “Stock Pricing”
program computing a price for each option read from a text file. Each line is
parsed to extract stock names followed by stock option data. A map operator
then computes prices by means of the Black & Scholes algorithm for each option
and, finally, a reducer extracts the maximum price for each stock name.

The architecture used for experiments is the Occam Supercomputer (Open
Computing Cluster for Advanced data Manipulation) [2], designed and managed
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by the University of Torino and the National Institute for Nuclear Physics. We
used one node having the following characteristics. At hardware side: 4x IntelR©

XeonR© Processor E7-4830 v3 12 core/2.1 GHz, 768 GB/1666 MHz (48 × 16 GB)
DDR4 RAM, 1x SSD 800 GB + 1x HDD 2 TB/7200 rpm, InfiniBand 56 GB + 2x
Ethernet 10 GB. At software side: Linux CentOS v7.3 with Linux kernel 3.10,
gcc v4.8.5 compiler (PiCo has been compiled with O3 optimization flag), and
OpenJDK Server v1.8 Java runtime.

5.1 Batch Applications

The size of the input file for the Word Count application is 600 MB. It is a
text file containing random words taken from a dictionary of 1K words. In the
Word Count pipeline, PiCo instantiates a total of 5 fixed threads (corresponding
to sequential operators), plus the main thread, plus a user-defined number of
workers for the flatmap operator. To exploit at most 48 physical cores, we can
run at most 42 worker threads. We provide a comparison on minimum execution
time obtained by each tool as the average of 20 runs for each application. For
the Stock Pricing application, the size of the input file is 10 MB.
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Fig. 1. (Left) Comparison of best execution times for Word Count and Stock Pricing
obtained by Spark, Flink, and Pico. (Right) Scalability and execution time for Word
Count in PiCo.

Figure 1 (left) shows that PiCo obtains the best execution times when com-
pared to Spark and Flink, for both the Word Count and Stock Pricing applica-
tions. Figure 1 (right) shows scalability and execution times for the Word Count
application: each value represents the average of 20 runs for each number of
workers, the microbatch size is 512, and the thread pinning strategy is physical
cores first.

5.2 Stream Applications

In this set of experiments, we compare PiCo to Flink and Spark when executing
a stream application, the Stock Pricing one. The application is similar to the
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one from the batch experiment, except we added two additional option pricing
algorithms—Binomial Tree and Explicit Finite Difference—and the data comes
from a socket, not from a text file.

In the Stock Pricing pipeline, PiCo first instantiates 6 threads corresponding
to sequential operators, such as read from socket and write to standard output,
plus Emitter and Collector threads for map and p-reduce operators. Then, there
is the main thread, and then k (a user-specified number) workers for the map and
k for the w-p-reduce operators. With 16 workers for the map and 16 workers
w-p-reduce operator mapped on physical cores, PiCo obtains the best average
execution time of 7.348 s and a scalability factor of 14.87. We compared PiCo
to Flink and Spark on the Stock Pricing streaming application. The window is
count-based (or tumbling) and has size 8 in Flink and PiCo. For stream pro-
cessing, Spark implements an extension through the Spark Streaming module,
providing a high-level abstraction called discretized stream or DStream. Such
streams represent results in continuous sequences of RDDs of the same type,
called micro-batches. Operations over DStreams are “forwarded” to each RDD
in the DStream, thus the semantics of operations over streams is defined in terms
of batch processing. All RDDs in a DStream are processed in order, whereas data
items inside an RDD are processed in parallel without any ordering guarantees.
Hence, Spark implements its stream processing runtime over the batch processing
one, thus exploiting the BSP runtime on stream microbatches, without providing
a concrete form of pipelining and reducing the real-time processing feature.

Table 1 presents the best execution times obtained by each tool, showing that
PiCo obtains the best execution time and with a higher scalability compared to
other tools, with a scalability of 14.87 in PiCo while 9.21 for Flink and 2.24 for
Spark. Let us stress that the comparison with Spark is not completely fair since
windowing is not performed in a count-based fashion. Table 1 also shows that
PiCo processes more than 1.3M stock options per second, outperforming Flink
and Spark, as they processes approx. 400K and 200K stock options per second
respectively.

Table 1. Flink, Spark and PiCo performance on Stream Stock Pricing. The execution
time is the best average on 20 runs, For the same configuration, also the scalability
(against Parallelism 1) and the sustained throughput are reported.

Throughput values for 10M stock options

Execution time (s) Parallelism Throughput (stocks/s) Scalability

Flink 24.78 16 403476.35 9.21

Spark 42.22 16 236875.81 2.24

PiCo 7.35 16 1360806.94 14.87
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6 Conclusions

In this paper, we presented PiCo, a new C++ API with a fluent interface for
data analytics pipelines.

One key feature of PiCo is that the data model is hidden to the programmer,
thus making it possible to create a model that is polymorphic with respect to the
data model as well as to the processing model (i.e., stream or batch processing).
This make it possible to (1) re-use the same algorithms and pipelines on different
data models (e.g., stream, lists, sets, etc.); (2) reuse the same operators in dif-
ferent contexts, and (3) update operators without affecting the calling context.
These aspects are fundamental to PiCo, differentiating it from other frameworks
exposing different data types to be used in the same application, forcing the user
to re-think the whole application when moving from one operation to another.

We compared PiCo to Flink and Spark, focusing on expressiveness of the
programming model and on performances in shared memory. The current (pre-
liminary) experiments were performed on shared memory only. By comparing
execution times in both batch and stream applications, PiCo attained the best
execution time when compared to two state-of-the-art frameworks, Spark and
Flink. However, an aspect not mentioned above is that those experiments showed
high dynamic allocation contention in input generation nodes, thus limiting PiCo
scalability, a problem that will be addressed in future work. Also, results for
stream processing showed that PiCo processes more than 1.3M stock options
per second, outperforming Flink and Spark, that process about 400K and 200K
stock options per second respectively.
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Abstract. Stream Processing Engines (SPEs) process continuous
streams of data and produce up-to-date results in a real-time fashion,
typically through one-at-a-time tuple analysis. When looking into the
vital SPE processing properties required from applications, determinism
has a strong position besides scalability in throughput and low process-
ing latency. SPEs scale in throughput and latency by relying on shared-
nothing parallelism, deploying multiple copies of each operator to which
tuples are distributed based on the semantics of the operator. The coor-
dination of the asynchronous analysis of parallel operators required to
enforce determinism is then carried out by additional dedicated sorting
operators. In this work we shift such costly coordination to the com-
munication layer of the SPE. Specifically, we extend earlier work on
shared-memory implementations of deterministic operators and provide
a communication module (Viper) which can be integrated in the SPE
communication layer. Using Apache Storm and the Linear Road bench-
mark, we show the benefits that can be achieved by our approach in terms
of throughput and energy efficiency of SPEs implementing one-at-a-time
analysis.

Keywords: Data streaming · Low-latency
Shared-nothing and shared-memory parallelism
Stream processing engines

1 Introduction

Data streaming emerged to meet the stringent demands of massive on-line data
analysis in a variety of contexts, such as cloud and edge-computing architectures.
Stream Processing Engines (SPEs) allow programmers to formulate continuous
queries, defined as Directed Acyclic Graphs of interconnected operators, that
process incoming data producing results on a continuous fashion. Examples of
such Stream Processing Engines include StreamCloud [12], Apache Storm [26],
Apache Flink [10] and Saber [19].

Parallelism is key for modern hardware to achieve high-throughput and low
latency in SPEs processing increasingly large data volumes in evolving cyber-
physical infrastructures [16]. The importance of scaling in throughput and keep-
ing low-latency processing in SPEs is clear, manifested also by work in elasticity
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of parallelism, e.g. [9,12]. With parallelization, though, careful orchestration of
operators’ execution is required to preserve determinism. An operator’s imple-
mentation is deterministic if, given the same sequences of input tuples, the same
sequence of output tuples is produced independently of the tuples’ inter-arrival
times or the degree of parallelism of the operator [14,15].

The guarantee of determinism in SPEs, under concurrent execution of par-
allel operators, relies on dedicated sorting operators that are either added to
continuous queries by dedicated query compilers [12] or in SPEs such as Apache
Storm [26], or are left to the application developers to place them within their
streaming applications. Minimizing the computational overhead introduced by
such dedicated operators (we refer to this as operator-layer determinism) is nev-
ertheless challenging, especially for one-at-a-time, fine-grained low latency tuple
processing. We address the issue of guaranteeing determinism in a modular,
automated and efficient way. We start from the observation that, commonly in
SPEs, each physical stream is piped from a producer (e.g., an incoming link
from a sensor, or an outgoing link of an operator instance) to its consumer
(another operator instance), without coordination or sharing state. Sharing and
synchronizing efficiently in an automated way is the challenging key to provide
a transparent determinism method to application developers, alleviating them
from the responsibility of developing custom solutions and proof argumentation
as required.

ScaleGate [15] is a data structure introduced for aggregate and join oper-
ators to guarantee determinism in a customized way. The work in this paper
builds upon it and provides the following contributions: (i) It modularly shifts
the procedure of guaranteeing determinism, from the operator-layer to the com-
munication layer of an SPE, thus relieving application developers from the bur-
den of devising application-dependent methods. (ii) It designs and implements a
module, called Viper, which can be transparently integrated in an SPE commu-
nication layer. Building on ScaleGate, it lifts the data-structure’s context into
the communication layer of an SPE architecture. From ScaleGate to Viper, the
novelty is on the transparency provided to the application developer in efficiently
guaranteeing determinism. (iii) It integrates the module in Apache Storm (as a
representative example of SPEs) and demonstrates via an extensive evaluation
the feasibility of the idea of modularly providing determinism, while caring for
efficiency in parallelism. The experimental evaluation of the proposed methodol-
ogy used the Linear Road benchmark and shows the throughput as well as energy
efficiency benefits, the latter being important with respect to sustainability of
the evolution of processing infrastructures for cyberphysical systems.

The rest of the paper is organized as follows. We present preliminary concepts
in Sect. 2. We describe our proposal for distinguishing the operator layer and
communication layer in an SPE and discuss the advantages of doing that, we
also introduce the Viper module, in Sect. 3. We evaluate the benefits of the Viper
module in Sect. 4. Discuss related work and conclude in Sects. 5 and 6.
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2 System Model

A stream is defined as an unbounded sequence of tuples t0, t1, . . . sharing the
same schema composed of attributes 〈ts, A1, . . . , An〉. Given a tuple t, t.ts repre-
sents its creation timestamp while A1, . . . , An are application-related attributes.

Continuous queries (or simply queries in the remainder) are defined as DAGs
of operators that consume and produce tuples. Operators are distinguished into
stateless or stateful, depending on whether they keep any state that evolves
with the tuples being processed. Stateless operators include Map (to alter the
schema of tuples) and Filter (to discard or route tuples). Stateful operators
include Aggregate (to compute aggregation functions such as sum or average
over tuples) and Join (to match tuples coming from multiple streams). Due to
the unbounded nature of streams, stateful operations are computed over sliding
windows. Following the data streaming literature (e.g., [5,12,18]), we assume
that streams fed by each data source contain timestamp-sorted tuples.

The performance of an operator depends on its cost and selectivity. That
is, the average time needed to process an input tuple and (optionally) produce
any resulting output tuple and the average number of output tuples produced
upon the processing of one input tuple (e.g., an operator with selectivity 0.5 will
produce, on average, one output tuple each time it processes two input tuples).

To illustrate the aforementioned terms and notions, Fig. 1A presents a sample
streaming query from the Linear Road benchmark [4]. In this example, position
reports are forwarded by vehicles traveling on a highway. The query checks if
the report refers to a vehicle entering, leaving or changing a segment. In the
affirmative case, it updates the number of vehicles and the tolls of the involved
segments. Finally, it notifies the interested vehicles. The schema of each stream
is presented on top of the operators. Aggregate A1 enriches each position report
with the previous segment observed for the same vehicle. Subsequently, Filter F
discards reports referring to vehicles that have not changed segment. Aggregate
A2 updates the count for each segment. Finally, Map M computes the toll for a
segment based on the number of vehicles in it and notifies vehicles.

Posi on reports
<ts,id,seg>

Aggregate 
A1

Filter 
F

Aggregate 
A2

Map
M

<ts,id,segA,segB> <ts,seg,count> <ts,seg,toll>

Centralized con nuous query

M1MA21MF1MA11M

M2MA22MF2MA12M

Parallel con nuous query 

A

B

Highway
segment

LEGENDStream

Operator

M Merge-sor ng step

Fig. 1. Sample centralized and parallel query (Linear Road benchmark [4]).
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2.1 Parallel and Deterministic Execution of Queries

A parallel version of a query, e.g. Fig. 1, is desirable to cope with large and
fluctuating volume of tuples. Deterministic execution ensures that the results
produced by the parallel query are exactly the same produced by its centralized
counterpart. As explained in [12,13], determinism is enforced if the processing of
each operator composing the query is deterministic. For an operator’s processing
to be deterministic, special merge-sorting steps1 are defined before each opera-
tor instance, as shown in Fig. 1B, presenting a parallel version of the centralized
query with two instances for each operator. The M steps merge-sort determinis-
tically the incoming timestamp-sorted input streams of an operator instance into
a single timestamp-sorted stream of tuples, allowing the operator instance’s exe-
cution to be deterministic independently of the arrival interleaving of its input
streams [12] by forwarding tuples when the latter are ready. Formally:

Definition 1 (ready tuple [14,15]). Let tji be the i-th tuple from timestamp-
sorted stream Sj. tji is ready to be processed if tji .ts ≤ mergets, where
mergets = mink{tkl .ts} is the minimum timestamp among the timestamps in
the set of tuples comprising the latest received tuples tkl from each timestamp-
sorted stream Sk.

2.2 Performance Metrics

We consider metrics that are commonly used to assess the performance of a
streaming framework (from individual operators to queries or SPEs as a whole).
More concretely, we take into account throughput and latency [12,15], as well as
energy consumption [3]. Throughput, commonly measured in tuples per second
(t/s), represents the maximum rate at which tuples can be fed to the operators
composing a given query. Latency, commonly measured in milliseconds, repre-
sents the interleaving time between the forwarding of an output tuple and the
timestamp carried by the latest input tuple contributing to it. For the energy
consumption, we utilize RAPL energy counters [8] to measure power consump-
tion in Watts and take the average over the counter samples during an execution.

3 From Operator- to Communication-Layer Determinism

As we explained in Sect. 1, determinism is typically enforced by SPEs at the
operator layer. That is, the merge-sorting required to enforce determinism (cf.
Sect. 2) is run by dedicated operators that are deployed together with the oper-
ators defined by the application programmer. Alternatively, as we propose and
explain in this section, determinism can be achieved by the communication layer
of an SPE, used for buffering operators’ input and output tuples.

1 We use the term steps rather than operators because, as shown in the following
sections, merge-sorting and routing can be both assigned to dedicated operators or
integrated in the communication layer of an SPE.
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To introduce layering for SPE functionality provisioning, without loss of
generality, we consider in the following the node shown in Fig. 2. The node depicts
the operators F , A2 and M of Fig. 1B. Our discussion holds independently of
whether other operators are deployed within the SPE running the query and of
whether more than two instances are defined for each operator.

Operator layer

M1A21F1

M2A22F2 A2-M2

A2-M1

M-M2

M-M1

Communica on layer

Dedicated merge-sor ng operators

Dedicated channel between 
each pair of operator instances

Fig. 2. Parallel query run by an SPE with operator-layer determinism.

3.1 Overheads of Operator-Layer Determinism

The deployment of dedicated merge-sorting operators in-between the query’s
operators results in an increase of the number of threads in SPEs such as
Storm [26] or Flink [10] or in scheduling overheads for SPEs with schedulers
ordering operators’ execution [1,2,12], thus degrading throughput and increasing
energy consumption. A lower throughput and a higher latency are also expected
because of the increased number of operator instances and number of queues
each tuple traverses. Using our example to provide an intuitive reasoning for
the above claim, let us observe that each tuple traverses four queues and three
operator instances from operator F to operator M (Fig. 2).

Moreover, merge-sorting operators might become the processing bottleneck.
The maximum throughput of an operator instance can be observed as long as its
preceding operators are not under-provisioned. That is, as long as the cost of its
preceding merge-sorting operator is not a bottleneck. Unfortunately, the latter’s
cost (which is in the best case logarithmic in the number of input streams [15])
might be comparable to or higher than the query’s operators. It should also be
observed that, opting for a higher degree of parallelism when an operator cannot
cope with its input rate might have a relapse on the throughput and latency of its
downstream merge-sorting operator instances (which will have to merge-sort a
higher number of input streams). For example in Fig. 2, suppose the processing
cost of operator instances A21, A22 is higher than the cost of merge-sorting
for operator instances A2-M1, A2-M2. The degree of parallelism for operator A2
could be increased to e.g. four instances. By doing this, each of the four instances
of operator A2-M would then be responsible for the merge-sorting of half of the
input tuples. Nevertheless, each instance of the merge-sorting operator preceding
operator M would now observe a higher cost for the merge-sorting of its input
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tuples (coming from four rather than two input streams). Hence, increasing the
degree of parallelism for A2 could overload the merge-sorting of tuples feed to
M , thus decreasing, rather than increasing, the overall throughput of the query.

3.2 Benefits of Communication-Layer Determinism

The aim of communication-layer determinism is to avoid the deployment
of merge-sorting operators in between each operator and its upstream peer
instances. As shown in Fig. 3, this allows for the instances of operator F to
be directly connected to those of operator A2. Since the merge-sorting would
still need to be run to enforce determinism, a requirement of communication-
layer determinism is to leverage threads that are already deployed by the SPE
and share such operations rather than assigning them to a dedicated one, as this
would in turn result in the previously discussed overheads. As discussed in [15],
shared-memory merge-sorting can be carried out by multiple threads in a scal-
able fashion when the cost and the relapse that merge-sorting itself introduces
is minimized by avoiding coarse-grained locking mechanisms.

Operator layer M1A21F1

M2A22F2

Communica on layer
(Viper)

Shared channel between 
each operator instance and 
its upstream peers

Fig. 3. Parallel query run by an SPE with communication-layer determinism.

3.3 The Viper Module

The Viper module allows for communication-layer determinism and provides an
API defined by three main methods (Table 1). A channel is maintained at the
Viper for any set of source operator instances S1, . . . , Sm feeding a reader oper-
ator instance R (we use the term channel to refer to the data object used by a
set of operator instances to share information, such an object can be a queue or
another object). The channel, in our scheme, is either a thread-safe concurrent
queue (when exactly one source S1 and the reader R are connected) or a Scale-
Gate [15] object (when at least two source operators S1, S2 and the reader R are
connected). Method add allows tuples from different sources to be merge-sorted
into a single list, assuming that each source delivers tuples in non-decreasing
timestamp order. Method getReady allows the list to be read in timestamp
order by the reader guaranteeing that only ready tuples (cf. Definition 1) will
be delivered. In this work, we extend the original ScaleGate proposing and inte-
grating a flow-control approach using special watermark tuples [17] internally
in the data structure. Such tuples are added periodically by the sources and
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allow the readers to acknowledge the consumption rate to the sources, through a
handshake mechanism, so that the latter can limit injection rate for slow readers.

With Viper, the merge-sorting cost is efficiently shared by the threads
assigned to the instances of a parallel operator feeding the same downstream
operator instance, thanks to its scalable probabilistically logarithmic lock-
free implementation [15], which minimizes the necessary synchronization over-
heads [6].

Table 1. API of the Viper module

Method Description

void register(channel, sources,

reader)

Register a new channel, specifying its
sources and the reader retrieving the
timestamp-sorted stream of ready tuples

void add(channel, sourceID, tuple) Add a tuple from a given sourceID to the
specified channel

tuple getReady(channel, readerID) Retrieve next ready tuple (if any) for the
given readerID from the specified
channel

4 Evaluation

To quantify the benefits of communication-layer determinism over operator-layer
determinism, we integrated the Viper module in Apache Storm [26], studying
its performance in terms of throughput (t/s), latency (ms) and energy consump-
tion (mJ/t). In the following, we refer to operator-layer determinism as OL and
communication-layer determinism as CL. We conducted our experiments on a
dual-socket Intel Xeon E5-2687W 3.4 GHz server, with 8 cores per socket (yield-
ing a total of 16 cores, 32 threads) and 64 GB of RAM. The server runs Scientific
Linux 6.5 (5) based on the Red Hat Enterprise Linux operating systems. We used
likwid [20] to read out RAPL Energy counters for the power metrics presented
in our evaluation. All experiments have been run using Storm version 0.9.7 and
OpenJDK Java version 1.8.0 91. The ScaleGate implementation is the one avail-
able at [23]. For channels accessed by a single source and reader (cf. Sect. 3), the
Viper module relies on Java’s ConcurrentLinkedQueue.

The evaluation runs the Linear Road benchmark [4], an established bench-
mark to study SPEs’ performance that simulates vehicular traffic on a number
of linear expressways, each composed of predefined segments. Position reports
are forwarded every 30 s and carry the vehicle’s position and speed. Vehicles are
charged with a variable toll based on the traffic congestion level and the pres-
ence of accidents. The generated data is continuously processed to (i) detect
possible accidents and (ii) compute tolls and notify vehicles. We provide the
evaluation results for both a stateless (pos rep) and a stateful (new seg) oper-
ator of the benchmark. Operator pos rep forwards an incoming tuple if it is a
position report. Its selectivity is 0.99. Operator new seg checks whether a vehicle
is entering a new segment. Its selectivity is 0.34.
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To study the performance of an operator, we start by deploying one instance
of such operator together with one data injector and one sink. The injector is
in charge of forwarding input tuples while maintaining the throughput statistics
(per-second averages). The sink is in charge of maintaining latency statistics
(per-second averages). This initial deployment allows us to measure the per-
formance of the operator’s centralized execution. The performance of its par-
allel counterpart depends on its parallelism degree (i.e., its number of parallel
instances) and the parallelism degree of its upstream operator (i.e., the over-
head introduced by deterministically merge-sorting the streams of the parallel
upstream operator), as discussed in Sect. 3. For this reason, we increase the num-
ber of instances both for the injector and the operator to 2, 4 and 6 (i.e., we
deploy 1 injector and 1, 2, 4 and 6 parallel operator instances, 2 parallel injectors
and 1, 2, 4 and 6 parallel operator instances, . . .) for a total of 16 configurations
for each operator. The number of parallel sink instances deployed in each exper-
iment is equal to the number of parallel instances of the operator in order for
the former not to constitute a bottleneck. With OL-determinism provisioning,
a merge-sorting operator is deployed for each instance of the operator if two
or more injectors are deployed. Similarly, a merge-sorting operator is deployed
before each instance of the sink if two or more parallel operator instances are
deployed (no extra merge-sorting operators are needed for CL-determinism pro-
visioning, using the Viper module). The highest degree of parallelism for the
injector and operator is chosen so that the overall number of threads for both
OL and CL that process and forward tuples is in the same order as the number
of logical threads provided by the server.

For each configuration, we measure throughput as the number of tuples gen-
erated over each 5 s period and report the average throughput per second. The
experiments are repeated 5 times; the reported values are averages over the runs
of the same configuration.

4.1 Operator pos rep

Figure 4a presents the performance results for the pos rep operator for CL (left
column) and OL (right column). Each sub-graph contains 4 lines, for 1, 2, 4 and
6 injectors, respectively. The upper sub-graphs present the throughput for the
increasing number of instances of the parallel pos rep operator. The middle sub-
graphs present the latency while the lower ones present the energy consumption.

Given that operator pos rep has a very high selectivity, almost each input
tuple results in an output tuple. Since the operator is also a light stateless
filtering operator, the cycles spent by it communicating (i.e., receiving and for-
warding tuples) are higher than those spent processing tuples. Looking at the
throughput performance of OL when one single injector is deployed, we can
observe a stable throughput lower than 600,000 t/s. For the increasing number
of operator instances, the latency increases to 600 ms (because the same out-
put rate is shared by an increasing number of threads, thus resulting in longer
times for output tuples to become ready) while the energy consumption sta-
bilizes around 100 W. A similar behavior can be observed for a single injector
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Fig. 4. Performance evaluation.

for CL, with a higher throughput that stabilizes at 650,000 t/s and a latency
that also increases (to ∼800 ms). However, the energy consumption decreases to
60 W, 60% of that observed for OL, due of the channel shared by Viper between
operator instances.

A different behavior can be observed for OL and CL when an increasing num-
ber of injectors is deployed. As shown in the figure, despite the lower through-
put, due to the sorting overhead introduced to enforce determinism, CL results
in a throughput growing over 500,000 t/s while OL stabilizes around 400,000 t/s.
While still incurring in similar latency (lower in this case for CL than OL), OL’s
energy consumption grows up to 140 W while CL’s achieves a consumption of
90 W due to the shared sorting work performed by the threads already deployed.

4.2 Operator new seg

Using the same sub-graphs of Fig. 4a, b presents the performance results for OL
and CL and operator new seg. Differently for the stateless operator pos rep, the
stateful operator new seg is characterized by a lower selectivity. This implies
that, for the same input rate, the latter results in a lower output stream rate.



138 I. Walulya et al.

Given also its stateful nature, it results in an higher number of cycles spent pro-
cessing rather receiving and forwarding tuples. As shown in Fig. 4b, the through-
put achieved by CL is always higher than that of OL while observing a lower
latency, both for the increasing number of injectors and the increasing number
of operators. Also for this operator, CL achieves a throughput that is of approx-
imately 100,000 t/s higher than that of OL. Finally, CL also results in lower
power consumption, which does not exceed 100 W. On the other hand, OL’s
consumption grows to more than 140 W.

4.3 Power Consumption

Modern architectures deploy dynamic frequency scaling or CPU throttling where
processors in idle state run at low frequency to conserve power and scale up the
frequency on-demand. We observe in Fig. 4, that OL dissipates on average more
power than CL. This is a result of differences in the number of threads utilized
during a computation. With increasing number of execution threads, more cores
are activated at high frequency which ultimately increases the power.

5 Related Work

Parallel execution of streaming operators has been first discussed by Flux [25]
and implemented in StreamCloud [12,13]. The latter provided dedicated merge-
sorting operators (added to queries by a dedicated compiler) to enforce deter-
ministic execution at the operator layer, incurring the limitations discussed in
Sect. 3. The techniques in [12,13,25] are now found in widely-adopted SPEs.

The communication-layer determinism we introduce in this paper is moti-
vated by the increasing research interest in shared-memory parallelism. The
most relevant advances, nonetheless, have so far been only tailored to Aggre-
gates [14,24] and Joins [11,15,21,27]. The principles of the ScaleGate data
object [23] have been proposed in [7] and leveraged in shared-memory paral-
lelism for streaming aggregation [14] and joining [15]. In relation with our work,
papers such as [3,22] discuss and provide evidence of the importance of careful
design decisions for the internal communication mechanisms of SPEs. Differently
from this work, nonetheless, optimizations focus on the reduction of unnecessary
copies of tuples for the Borealis SPE in [3] (not considering determinism) and
in a batching mechanism (complementary to the mechanism we propose) for
Apache Storm.

6 Conclusions

Motivated by the observation that deterministic execution of streaming oper-
ators requires expensive synchronization to merge-sort streams from multiple
operator instances (or data sources), we studied the limitations of operator-
layer parallelism and how these can be overcome by communication-layer paral-
lelism. Reducing the communication and synchronization costs among operator
instances running within an SPE is a key factor in boosting its scale up potential.
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In this paper, we propose a module, which we call Viper, that encapsulates
and reduces the aforementioned costs, enabling for deterministic execution to be
provided in a transparent way by the communication layer of an SPE. We provide
evidence that such a module can be leveraged by SPEs, by integrating it into
Apache Storm, which is a representative SPE of one-at-a-time analysis paradigm,
for ultra-low latency processing. Our evaluation shows that the throughput of
parallel operators interconnected with the Viper module increases by up to 70%
and results in half of the energy consumption.
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Abstract. Emerging Big Data streaming applications are facing
unbounded (infinite) data sets at a scale of millions of events per sec-
ond. The information captured in a single event, e.g., GPS position
information of mobile phone users, loses value (perishes) over time and
requires sub-second latency responses. Conventional Cloud-based batch-
processing platforms are inadequate to meet these constraints.

Existing streaming engines exhibit low throughput and are thus
equally ill-suited for emerging Big Data streaming applications. To val-
idate this claim, we evaluated the Yahoo streaming benchmark and our
own real-time trend detector on three state-of-the-art streaming engines:
Apache Storm, Apache Flink and Spark Streaming. We adapted the
Kieker dynamic profiling framework to gather accurate profiling infor-
mation on the throughput and CPU utilization exhibited by the two
benchmarks on the Google Compute Engine.

To estimate the performance overhead incurred by current streaming
engines, we re-implemented our Java-based trend detector as a multi-
threaded, shared-memory application in C++. The achieved throughput
of 3.2 million events per second on a stand-alone 2 CPU (44 cores) Intel
Xeon E5-2699 v4 server is 44 times higher than the maximum throughput
achieved with the Apache Storm version of the trend detector deployed
on 30 virtual machines (nodes) in the Cloud. Our experiment suggests
vertical scaling as a viable alternative to horizontal scaling, especially
if shared state has to be maintained in a streaming application. For
reproducibility, we have open-sourced our framework configurations on
GitHub [1].

1 Introduction

The increasing demand for Big Data streaming has become prevalent in Cloud-
based applications where data streams are characterized by sub-second latency,
high density at high velocity, statefulness and near real-time response require-
ments. Social interactions from existing services such as Twitter and Face-
book, real-time click-streams from e-commerce Cloud platforms and GPS posi-
tion information from mobile applications qualify as such data. Traditionally,
c© Springer International Publishing AG, part of Springer Nature 2018
D. B. Heras and L. Bougé (Eds.): Euro-Par 2017 Workshops, LNCS 10659, pp. 141–152, 2018.
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MapReduce-based batch processing was applied with Big Data streaming appli-
cations. In pursuit of programming abstractions tailored specifically for stream-
ing applications, and to support sub-second event response times, the Aurora
and Apache Storm Big Data streaming platforms rapidly became popular for
businesses and with the academic community.

Today’s prominent Big Data streaming engines are programmed in Java,
Scala or related programming languages targeting the Java virtual machine
(JVM). The hardware abstraction provided by the JVM facilitates deployment
in the Cloud. Users are provided with high-level programming primitives to com-
pose streaming applications as a set of nodes (actors) connected by FIFO data
channels. The resulting stream-graph topologies can then be readily deployed on
the underlying, Cloud-based streaming engine. It is the sole responsibility of the
underlying streaming engine to orchestrate a given stream graph topology on a
set of Cloud nodes. The programmer is only required to provide high-level con-
figuration parameters such as the number of nodes or virtual machines (VMs).

To assess the efficiency of streaming applications on current state-of-the-
art streaming engines, and to determine the cost of the provided programming
abstractions, this paper makes the following contributions.

1. We created a Java-based trend detection benchmark for Wikipedia user click-
streams. This benchmark was implemented for the Apache Storm and Flink
streaming engines. We employed the Yahoo streaming benchmark [10] as our
second real-world streaming benchmark.

2. We adopted the Kieker dynamic profiling framework [5] for Spark Stream-
ing and the Apache Storm and Flink streaming engines. To the best of our
knowledge, this is the first detailed evaluation of the throughput and CPU
utilization of two real-world benchmarks on the before-mentioned streaming
engines run on the Google Compute Engine. From our measurements we con-
clude that CPU resources are under-utilized with current Big Data streaming
engines.

3. We re-implemented our Java-based trend detector as a multi-threaded appli-
cation in C++. Through manual performance optimizations such as the adop-
tion of lock-free data-structures, it was possible to maintain shared state and
raise the throughput by a factor of 44x to 3.2 million events per second on
a stand-alone shared-memory multicore server. From this result two conclu-
sions can be drawn: (1) the cost of current stream programming abstractions
is non-negligible, and (2) vertical scaling on a multi-CPU, multicore com-
puter benefits from the high bandwidth of chip interconnects and can thus
be preferable to (pre-mature) horizontal scaling.

The remainder of this paper is structured as follows. In Sect. 2, we present the
constituents of the Yahoo benchmark and how the Kieker framework was incor-
porated to obtain dynamic profiling information. Section 3 introduces our trend
detector for the streaming APIs and the low-level C++ version. We present our
experimental evaluation in Sect. 4, discuss the related work in Sect. 5 and draw
our conclusions in Sect. 6.
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2 Yahoo Streaming Benchmark

The purpose of the Yahoo streaming benchmark [10] is to determine the per-
formance of three state-of-the-art Big Data streaming engines: Apache Storm,
Apache Flink, and Apache Spark Streaming. The benchmark constitutes a
Cloud-deployment of an advertising analytics pipeline. Events arrive through
Kafka, the JSON format is deserialized, and events are filtered, projected and
joined. Windowed counts of events per campaign are stored in the Redis in-
memory database. The Yahoo streaming benchmark consists of three Cloud
components: (1) the Kafka distributed data queue, (2) the analytics pipeline
expressed for one of the three before-mentioned streaming engines, and (3) the
Redis in-memory database.

The Yahoo streaming benchmark as provided on GitHub [10] is configured
to run on a single (Cloud) node. It was a non-trivial, time-consuming process
to adapt this single-node configuration to multiple nodes. To obtain detailed
dynamic profiling information, we incorporated the Kieker dynamic profiling
framework as a system daemon on each Cloud node. We developed the system
daemon to automatically launch at each boot and it starts to sample per-core
CPU utilization every 500 ms. Sampled data is stored locally on each Cloud node
and from this raw data we analyze performance of Cloud streaming applications.
To make our results reproducible, we have open-sourced these configurations on
GitHub [1].

2.1 Kafka Distributed Streaming Queue

Apache Kafka 0.8.2 is deployed as the default data queue with the benchmark.
Kafka is a subscription-based distributed streaming queue platform. Data gen-
erators written in the Clojure programming language subscribe to the Kafka
platform as producers. A streaming application will subscribe to the Kafka plat-
form as a consumer. Kafka works as a Cloud-based global data-queue which
hides underlying details and only exposes a few interfaces to producers and con-
sumers. The queue is constructed as a Kafka cluster which consists of one or
more Kafka broker servers. In this benchmark, we deploy a Kafka cluster of five
Kafka broker servers where each broker server occupies an entire Cloud node.

2.2 Anatomy of Streaming Engines

Streaming engines are the major targets in this streaming benchmark. Because of
the high arrival rate of tuples from Kafka at the streaming engine, the throughput
of the Yahoo streaming benchmark is solely constrained by the throughput of the
streaming engine itself. The streaming engines compared in this experiment are
Apache Storm version 0.9.7, Spark Streaming version 1.6.2, and Apache Flink
version 1.1.3. With the Storm configuration, Storm Nimbus does bookkeeping
and the orchestration of the entire platform. More than one Storm supervisor
instance is assigned to a Nimbus instance and runs a subset of the target stream
topology. Similarly, the Flink platform is operated by two types of managers,
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Job Managers and Task Managers. A Job Manager is responsible for allocating
subsets of the target stream topology to Task Manager entities. Apache Spark
Streaming is an additional layer built upon the Apache Spark platform. This
enables stream processing using traditional batch processing of Apache Spark.
A Spark cluster is managed by the Spark Master. A Spark Master may have
multiple Spark Slaves. Each Slave instance may be assigned to execute a subset
of the target stream application.

3 Trend Detector

Trend detection is a popular technique employed with real-world enterprises to
discover user trends on Cloud services such as social media, e-commerce and
search engines. It is important to note that user-generated data streams have
to be analyzed by the Cloud streaming environment. Therefore, trend detection
has to be implemented and operated in a Cloud environment using streaming
operators.

Monitoring an incoming data stream of user-generated keywords, a trend
detection algorithm analyzes the stream to detect irregularities in the occur-
rences of registered keywords over the most recent consecutive time-windows.
Each and every uniquely distinguished keyword is given its own timebucket to
store and update a series of occurrences and they are constantly evaluated to
list the most trending keyword(s) in the system.

3.1 Java Trend Detector

We implemented a trend detector in Java for the Storm streaming engine. Based
on the original approach from Twitter’s trend detection [4], our implementation
incorporates the point-by-point Poisson model. This Poisson model is employed
to explicitly distinguish locally irregular occurrences of a particular keyword
within the target time-series, where the overall count of the keyword is insignifi-
cant. The point-by-point model is especially applicable to find trending keywords
from a small set of data. We improved this model by introducing a parallel
reduction algorithm. With our approach, we employ trend-detection actors and
aggregator actors as depicted in Fig. 1. They constitute n layers of actors such
that 2n trend-detection actors receive data streams from spout s0. This layer of
trend-detection actors is followed by n− 1 levels of aggregators. Level k consists
of 2n−k−1 aggregators, where k indicates the position of the aggregators in the
topology.

In this parallel reduction, each trend-detection actor evaluates the trendiness
of incoming keywords with its own set of timebuckets of unique keywords. That
is, for a single stream of keywords that are equally distributed into 2n trend-
detection actors, there will be 2n parallel evaluations of trendiness on local sets
of timebuckets. This strategy was necessary in two aspects: first, in a Big Data
streaming application, there is no guarantee on how many “sibling” instances
of an actor exist in the stream graph topology. No exchange of information is
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Fig. 1. Our Java-based trend-detector’s topology of 3 layers. The topology is dynami-
cally created at the beginning of the run-time with given number of layers for specu-
lative parallel reduction.

allowed between actors except for the FIFO data channels connecting producers
to consumers. Thus in such stream graph topologies it is not possible to share
a single global set of timebuckets across all actors (actors cannot have shared
state). Therefore each trend-detection actor is designed to keep its own set of
timebuckets and evaluate it separately. Secondly, by parallel reduction, multiple
actors can jointly conduct the evaluation.

The trend detection layer is followed by layers of aggregator actors. An aggre-
gator actor accepts a tuple which contains a keyword and its trendiness from
a pair of preceding trend-detection actors or aggregator actors. An aggregator
determines a keyword of the highest trendiness from its local list. With the Java
trend detector, the last layer consists of a single aggregator actor. The resulting
keyword from this actor is considered as the most trending keyword.

In our design of the Java trend detector, actors have local state only. Thus
trend detection is based on local decisions and hence semantically incorrect and
speculative. (I.e., the parallel trend detector may not always compute exactly
the same trends as the underlying sequential solution. Nevertheless, differences
materialize only under certain adversary cases of event-distributions, which are
outside of the scope of this paper.)

3.2 C++ Trend Detector

Our goal for the C++ version of the trend detector is to fully utilize the under-
lying hardware of a single multicore node, while focusing on creating a seman-
tically correct, non-speculative trend detector. In conducting an evaluation of
the C++ trend detector, we assumed that all keyword tuples arrive in the right
order between preceding and succeeding tuples in terms of creation time. That
is because, if a tuple arrives too early or too late, it won’t be placed in the right
time window on which trend detection is performed.

As depicted in Fig. 2, one datagenerator is employed per CPU. The program
targets a server with two Xeon E5-2699 v4 CPUs, where one CPU consists of
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Fig. 2. Thread-to-core allocation of the C++ trend detector on a server with two Xeon
E5-2699 v4 CPUs. One datagenerator d[01] is assigned per CPU; the remaining cores
are filled with worker threads w∗.

22 cores. Our design of the C++ trend detector leverages information about the
hardware architecture. To prevent the OS from moving threads between cores,
we pinned one datagenerator thread onto the first core of each CPU and the other
cores are pinned with worker threads. (Pinning was done with the LIKWID-pin
utility [8], which manipulates the CPU affinity of a program’s threads.) At the
worker thread creation stage, allocation of multiple worker threads will take turn
between the two CPUs. The worker threads pinned onto the same CPU receive
tuples in a round-robin fashion from the datagenerator inhabiting the same CPU
through a dedicated queue.

To maximize throughput, we utilize B-Queues [9] as the system-level stream-
ing queues between a datagenerator and its workers. A B-Queue is a lock-free
single-producer, single-consumer queue, and we use one dedicated B-Queue from
a datagenerator to each of its connected workers. We unrolled the innermost loop
of the C++ datagenerator such that tuples are entered into each queue once per
iteration.

Once a worker receives a keyword, it looks up the corresponding, dedicated
timebucket for this keyword in a global hashmap. Then the keyword’s timestamp
of its creation time is inserted into the timebucket and the keyword’s trendiness
is evaluated periodically. The evaluated trendiness is then inserted into the global
trending list and the most trending keyword at the current time is determined
from the list. The global hashmap is a highly-contended shared data-structure
causing serialization from lock contention. We overcame this problem by intro-
ducing a global lock-free hashtable [7].

3.3 An Example Data Set

As an example data set which qualifies as Big Data, we chose a snapshot of
Wikipedia’s traffic from the Amazon web services public data set page [2]. This
data set contains 150 GB of hourly page traffic statistics collected from January
1, 2011 to March 31, 2011. This data set was employed for benchmarking both
the Java and the C++ trend detector.

4 Experimental Results

In this paper, we ran three benchmarks. One is our C++ trend detector which was
evaluated on a CentOS 7 server machine consisting of two Xeon E5-2699 v4 CPUs
with 512 GB of RAM. The other two are Big Data streaming applications—the
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Yahoo streaming benchmark and our Java trend detector (the counterpart of the
C++ trend detector). To evaluate them correctly we referred to Yahoo’s Cloud
setup [3]. First, we configured 30 hypervised machines on the Google Compute
Engine. In this setup, one hypervised machine has 16 virtual CPUs (vCPUs) with
24 GB of RAM. Each vCPU is a hyperthreaded core of an Intel Xeon processor
running at 2.50 GHz. Nineteen hypervised machines are dedicated to “infrastruc-
ture” purposes: three Zookeeper nodes, one Redis in-memory database instance,
five Kafka brokers constituting one Kafka cluster, and 10 Kafka producer nodes
which feed tuple streams into the Kafka cluster. Eleven hypervised machines are
dedicated to the actual application running on the streaming engine under eval-
uation. One coordinator is needed to manage an entire streaming engine and its
workers. Thus we are left with 10 workers which run the streaming application
itself.

We measured the CPU utilization of our Big Data streaming benchmarks
using the Kieker dynamic profiling framework. We configured the Kieker
framework’s periodic sampler facility to measure per-core CPU utilization of
11 streaming engine nodes every 500 ms during the execution of the benchmark
to sample at the double frequency of per-second sampling rate according to the
Nyquist-Shannon sampling theorem. Measurements from the 16 vCPUs of a sin-
gle hypervised machine node are averaged to denote per-node and per-second
CPU utilization during the period of the benchmark execution. From this refine-
ment we produced two graphs: Average (AVG) and Coefficient of Variation (CV)
graphs. Each AVG graph shows per-node CPU utilization of hypervised machines
which run the streaming engine. Each CV graph shows the degree of sparseness
among per-second utilization of each hypervised machine.

To determine the efficiency of each streaming engine’s orchestration of worker
nodes, we generated a diagram where the actor allocation across the 10 worker
nodes is depicted. Each hypervised machine is depicted in a unique color and all
actor instances are included, to provide the complete picture of how a streaming
engine orchestrated actor instances across hypervised machine nodes. Due to
substantial differences with the programming interface, we did not produce actor
orchestration diagrams for the Spark streaming engine.

4.1 Yahoo Streaming Benchmark

Big Data streaming engines require complicated Cloud configurations in which
multiple hypervised machines collaborate to run different types of software com-
ponents which have dependencies to other components. In this benchmark, the
infrastructure consists of Zookeepers, Redis database nodes, the Kafka clus-
ter, Kafka producers, and streaming engines. Thirty hypervised machines are
required to execute a streaming application.

In Fig. 3c and e, CPUs are under-utilized. Most of the worker nodes are only
utilizing 10% or less of their CPU resources. Although Flink has one outlier node
depicted in green, its top CPU utilization is only 40%. On the other hand, Fig. 3a
shows higher CPU utilization. Five worker nodes are utilizing more than 75%
of their CPU resource. It is more clearly depicted in Fig. 4a. With the Storm
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Fig. 3. CPU utilization of Big Data streaming engines with the Yahoo streaming bench-
mark
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Fig. 4. Stream graph topology and actor distribution for the experiment from Fig. 3
(employing the same color code)
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configuration, all participating worker nodes are allocated with actor instances
of the target topology. This is different from Flink’s actor distribution diagram
in Fig. 4b. Flink actors are only partly distributed on five worker nodes. Com-
pared to Storm, this orchestration does not seem efficient. However, Flink in fact
achieved higher throughput than Storm. The throughput of the Yahoo streaming
benchmark with Flink is 282 141 tuples per second whereas Storm only achieved
24 703 tuples per second. In terms of throughput, Flink’s orchestration works
better, however the problem still remains that it did not utilize five worker
nodes at all. In the evaluation of Cloud applications, this is clearly inefficient
because energy resources to run worker nodes are wasted.

4.2 Trend Detector

In comparing the Java trend detector to the C++ trend detector, two key factors
are to be considered: First, the Java trend detector runs on a Big Data stream-
ing platform, which means there will be multiple worker nodes participating in
an execution of the application. Second, by necessity of the streaming engine
programming abstractions, the actors of the Java trend detector are restricted
to local state only. In particular, each trend-detection actor has its own actor-
local set of timebuckets, and the aggregator actors do not share global state.
Local state reduces the communication overhead compared to a shared, global
(distributed) store of timebuckets. Nevertheless—as pointed out before—this
performance advantage comes at the cost of analysis precision.

Fig. 5. CPU utilization characteristics of the Java-based trend detector

To benchmark the Java trend detector, we adopted the Cloud setup that we
employed with the Yahoo streaming benchmark. Although Flink’s throughput
was higher than Storm’s in our experiment with the Yahoo streaming bench-
mark, we chose Storm due to its prevalence in industry. Therefore Storm’s pro-
gramming interface was used to implement our Java trend detector. Because our
implementation is based on Storm APIs, we ran the benchmark on Storm only.
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In the benchmark result of Fig. 5, under-utilization of CPUs is also shown with
the Java trend detector’s average utilization (see Fig. 5a). Except for a few nodes
that reach just under 80%, most nodes stay below 20% average CPU utilization.
In Fig. 5b, abundant sparseness of CPU utilization is depicted. Only two nodes
are utilized more, and those are at 80%. In the CV diagram, one node, i.e., “ ”,
performs well in terms of consistently utilizing CPU resources. The Java trend
detector’s highest throughput is 72 499 tuples per second.

The C++ trend detector was evaluated on a stand-alone Intel Xeon E5-2699 v4
system. The throughput of our shared-memory stateful C++ trend detector
implementation is 3 217 432 tuples per second. It can be evaluated in two ways:
first, even though we chose to use a global timebucket hashtable, because the
hashtable is designed lock-free, it avoids cache coherence overhead from locking.
This way, we achieved correct semantics with state information shared by all
worker threads. Second, we showed that a single C++ trend detector on a single
machine can obtain higher throughput than its Java-based Cloud counterpart.

To determine the maximum possible throughput in terms of tuples emitted
by the datagenerators, we removed all worker threads except one consumer per
queue which had the sole purpose of emptying its queue. This configuration
achieved 309 360 800 tuples per second.

The shared-memory trend detector shows that it is possible to reduce energy
consumption and increase the performance over current Cloud streaming engines.
However, the C++ programming interface is not as easy as developing streaming
applications with Cloud streaming frameworks. Big Data stream programming
interfaces are easier for beginners than C++ programming. Developing efficient
C++ multi-threaded applications requires careful, manual hand-tuning and opti-
mizations to detect and remove performance bottlenecks.

In conclusion, our experiment shows that the raw performance of sending
tuples across processes is two orders of magnitude higher than the performance
of a carefully hand-tuned, multi-threaded C++ streaming application. And the
performance of this C++ streaming application is 44x times higher than what
can be achieved with current state-of-the-art of Cloud streaming frameworks.

In terms of programming effort, the C++ version required the 3-week atten-
tion of a multicore programming expert, whereas the Java version of our trend
detector was created by a group of software capstone students new to stream
programming—in about the same amount of time.

5 Related Work

In [3], Chintapalli et al. introduce the Yahoo streaming benchmark and its pur-
pose to measure the latency for a complete processing of a tuple at different
Kafka emission rates. Although three streaming engines, namely Apache Spark
streaming, Apache Storm and Apache Flink were compared in the paper, because
of architecture and language differences, Spark streaming was evaluated dif-
ferently with regard to micro-batching intervals. Although the micro-batching
interval does affect the result, Spark streaming was the slowest with Flink being
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as the 2nd-slowest of the three. It is important to note that our measurement
of throughput is different from what its authors intended to measure with the
same framework. Chintapalli et al. measured the up-to-date latency at each
stage of tuple process completion. Contrary, in our benchmark, we measured the
throughput of tuples at the source-node of a streaming application.

In [4], the principles of trend detection are explained. Three popular models
are explained with the point-by-point Poisson model being the simplest but the
most effective for a small set of time series. With large-enough sets of time series,
the authors recommend the cycle-corrected Poisson model, which will increase
the precision of the algorithm. Lastly, a data-driven method is introduced for
its stableness and adaptability. In our Java trend detector and the C++ trend
detector, we adapted the point-by-point Poisson model.

In [6], McSherry et al. propose a new paradigm in evaluating the performance
of distributed data processing systems (aka Big Data processing systems). The
authors take examples of parallelized algorithms that scale well compared to
other algorithms, while in fact, the performance of the compared algorithm is
better. They point out the importance of better (highly-optimized) baselines.
If the baseline single-threaded algorithm is of low performance, a parallelized
algorithm will inevitably perform better than this baseline, even if it is only
parallelizing the overhead contained in the baseline. They suggest to improve
the baseline with better algorithms. The paper’s idea aligns well with our intro-
duction of the C++ trend detector. Our Java trend detector and other streaming
applications that scale well within Big Data platforms should be re-evaluated
in terms of energy-efficiency and throughput, because we have shown that our
stateful C++ trend detector showed the highest throughput over the other bench-
marks, although it runs on a single machine.

6 Conclusions

We have shown that existing Big Data streaming platforms exhibit low through-
put and inefficient utilization of the underlying Cloud infrastructure. Measure-
ment data was obtained for the Yahoo streaming benchmark and our real-time
trend detectors with the help of the Kieker dynamic profiling framework. Our
stateful C++ trend detector uses vertical scaling on a shared-memory multi-
core server. It outperformed its Cloud-based counterparts by 44 times higher
throughput. For reproducibility, we have open-sourced our streaming framework
configurations on GitHub [1].
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Abstract. Interconnection networks in parallel platforms can be made
of thousands of nodes and hundreds of switches. The communication
cost between tasks of a parallel application varies significantly with their
actual location in such platforms. Topology-aware process mapping con-
sists in matching the application communication pattern with the net-
work topology to improve the communication cost by placing related
tasks close on the hardware.

We show that our Netloc tool for gathering network topology in a
generic way can be combined with the state-of-the-art Scotch partitioner
for computing topology-aware MPI process placement. Our experiments
with a stencil application on a fat-tree machine show that we are able to
significantly improve the runtime in the vast majority of cases.

Keywords: Topology-aware mapping · Network topology
Process placement · MPI

1 Introduction

Parallel platforms are increasingly complex. They feature deep memory hier-
archies as well as multi-level interconnection networks that cause locality to
severely impact application performance. Topology-aware process placement is
a widely used optimization technique for improving the overall application time
by reducing communication overheads. It requires knowledge of the hardware
organization, of the application needs, and algorithmics to make them match.

The internals of nodes are nowadays well modeled thanks to software tools
such as hwloc [5]. However, there is still a need for a generic way to model
networks and map processes to different compute nodes. We present in this
paper the implementation of topology-aware process placement using the Netloc
tool and the Scotch graph partitioner.

2 Generic Network Topology Discovery

On the road to exascale, parallel platforms are growing. Computing nodes now
contain tens of cores. There is also an increasing number of nodes interconnected
c© Springer International Publishing AG, part of Springer Nature 2018
D. B. Heras and L. Bougé (Eds.): Euro-Par 2017 Workshops, LNCS 10659, pp. 157–166, 2018.
https://doi.org/10.1007/978-3-319-75178-8_13
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with various network technologies and fabric topologies, such as InfiniBand or
Intel Omni-Path fat-trees, or Cray Aries dragonfly. Understanding the organiza-
tion of these networks is required for administration, debugging, and performance
optimization.

The topology inside nodes is well understood problem. It was solved by using
software such as hwloc [5] which builds a hierarchical model of each host by
organizing processors, cores, caches, NUMA nodes and hardware threads as a
tree. Although this strategy is only a structural model of the hardware with-
out performance information such as physical distances between components, it
still provides valuable information for describing hardware affinities and easing
locality-aware task placement [8,9,11].

(a) InfiniBand fabric with 6000 nodes. (b) Plafrim 2 cluster with 88 nodes.

Fig. 1. Network topologies of two machines. Nodes in red and switches in grey. (Color
figure online)

On the network side, each technology has its own custom command-line
administration tools (ibnetdiscover, opareport, xtprocadmin, etc.) with
different outputs or even different notions of nodes, ports and links. Some
technology-specific tools have been proposed [12] for exposing the network topol-
ogy in a convenient manner. However, they cannot be extended to other tech-
nologies because of these different management tools, query APIs, and fabric
topologies.

The Netloc project was designed to manage network topologies in a generic
manner [6]. It uses hardware-specific tools to discover the entire fabric topol-
ogy (nodes, switches, and links) and exposes it to HPC applications and run-
times through an abstracted API. This enables visualization of the topology
as depicted on Fig. 1. However, Netloc was mostly developed for improving the
performance of applications by taking the network locality into account in HPC
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runtimes. Possible optimizations include selecting the best route between peers
or building neighborhoods for mapping hierarchical algorithms to the hierarchy
of nodes and switches. We discuss in the next sections the use of Netloc for
topology-aware process placement.

3 Topology-Aware Mapping in Fat-Trees

In an MPI application, the communication cost between two ranks depends on
where the processes are mapped on the machine. If a task sends a message to a
task on the same processor, it will be faster than if they are on two different nodes
connected to different switches. Hence, it is important to consider the topology
of the machine when placing tasks on a parallel platform. In order to reduce the
communication time, it seems obvious to map processes on close cores if they
communicate a lot. Some applications may also have been optimized for other
criteria (e.g. placing specific tasks near GPUs or I/Os), which can fortunately
usually be combined with our policy.

The vast majority of message-passing applications can potentially benefit
from communication-aware task placement. This has been the subject of several
research projects [7,8,12]. Nevertheless, none of these approaches provide state-
of-the-art network topology discovery tools that can be used on a variety of
hardware, neither state-of-the-art graph partitioning techniques for computing
a good mapping. We propose in this paper to combine Netloc and Scotch to
address this problem.

3.1 Scotch

Scotch [10] is a widely-used library for graph partitioning and mapping. It can
operate on very large graphs (up to billions of vertices) using thousands of cores
in parallel.

In our work, we use Scotch Graphs to model applications (communication
patterns) and Scotch Architecture Graphs to represent platforms. Scotch can
deal with random architectures but works best with regular structures such as
fat-trees, torus, meshes, hypercubes, etc. Scotch is also able to deal with partial
architectures, i.e. a restriction of a regular architecture, for instance to represent
the subset of cluster nodes that were actually allocated by the resource manager.

3.2 Using Scotch from Netloc

The whole topology of a machine is given by the network topology but also by
the node topology. The latter is generally a tree as depicted in the example in
Fig. 2.

Consequently, the whole topology of a platform interconnected through a
fat-tree fabric is a tree as shown in Fig. 3. Thus, we only need to give the right
tree to Scotch.
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Fig. 2. Example of the topology of a node, given by hwloc.

Fig. 3. Example of a fat-tree with node topologies nodes.

The architecture graph needed by Scotch to compute the mapping is then
created from Netloc by exporting the network topology as well as the node
topology provided by hwloc into the Scotch format. Moreover, Netloc is able
to find the currently allocated resources and export them into a Scotch partial
architecture.

We have integrated a tool in Netloc that builds a Scotch architecture repre-
senting the topology of the machine and uses Scotch to generate a good process
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mapping. Then, it converts the mapping returned by Scotch into a rank file for
MPI. Thus, if a user provides a communication matrix between the MPI ranks,
we can give him a rank file that will be used to launch the MPI application in
a topology-aware-optimized way. Instead of manually building a communication
matrix, the user can generate it using existing monitoring tools [4].

4 Evaluation

To see the relevance of our topology-aware mapping, we have conducted tests
and compared our mapping to the default mapping of MPI that is round-robin.

4.1 Setup

The experiments were carried out using Plafrim 2, an 88 node machine with a fat-
tree network, as shown in Fig. 1b. It is an InfiniBand QDR fat-tree network made
of four leaf switches with 22 nodes each. There are 2 spine switches although
they were combined into a single virtual switch on the figure. Each node contains
two Intel Xeon E5-2680 v3 processor (24 cores total, split in 4 NUMA nodes with
6 cores each).

The tested application was miniGhost [3], a miniapp doing stencil computa-
tions. It allows to set a lot of different parameters that will change the commu-
nication pattern.

We use Open MPI with monitoring [4] to build our communication matrices.
Each value in the matrices corresponds to the volume of communication between
a pair of ranks during the overall execution.

4.2 Results

We have run miniGhost with more than 300 parameter sets to see the influence
of our mapping in different configurations. We have changed grid sizes, stencil
patterns, schemes of communication, number of variables, etc. The gain is mea-
sured when using the mapping given by Netloc with Scotch compared to the
default mapping of the MPI implementation. To summarize the gains and make
that more readable, we have computed the percentage of test cases that have a
gain at least greater than a specific value. These results are presented in Fig. 4.

In 92.5% of the test cases, our mapping is at least as good as round-robin
mapping. It means that we lose performance in only 7.5% of the cases. The
largest loss is 3.6%. It can be due, for instance, to cache pollution from more
shared memory communication. Our mapping shows a gain at least equal to
10.1% for 50% of the tested cases, at least 20% for 24.9% of the cases, and at
least 30% for 5.7% of cases. The maximum gain is 33.6%.
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Fig. 4. Percentages of test cases with gain greater than x-value.

5 Mapping on Complex Topologies

As we use Scotch to do the mapping, the architecture of the machine must be a
topology handled by Scotch. Scotch can handle a lot of different structures, as
shown in Sect. 3.1. Nevertheless, the whole topology must be a single topology
and not an aggregation of different kinds. However, as we saw in Fig. 3, the whole
topology is composed of the network topology and the node topologies. Since
the node topology is generally a tree, to have a topology handled by Scotch, it
imposes to the network topology to be a fat-tree.

To tackle this problem, we propose a method to handle architectures com-
posed of different topologies.

5.1 Expression of the Topology

The mapping is done on the cores allocated by the resource manager. Therefore,
to build the mapping, we need to get only the part of the topology with the
current resources. Thus, our description of the topology will contain the lists of
available nodes. For that we chose a hierarchical format, with one line for one
level of the global topology:

<type> <number of dimensions> <dimension1 size> <dimension1 speed>
... <dimensionD size> <dimensionD speed> <number of nodes> <node1
index>...<nodeN index>

The field called type designates the type of topology. For now, it can only
be tree or torus. With that we can handle fat-trees and Cray XE [2]. However,
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we will extend it with composition of simple topologies such as alltoall or
ring to handle more topologies like, for instance, Dragonfly with Cray XC [1].
The node indices represent the available elements in the topology. The index is
a way to identify the position of the element in the topology. Moreover, if the
line describes a compute node, we prefix it with:

node <hostname>
To make it clearer, we consider an example with a 3D torus of size 4 for

each dimension. On each point of the torus, we have a router that connects 6
other routers (two neighbors in each dimension) and 4 local nodes together. This
topology is quite similar to Cray XE but with 4 nodes in a router instead of 2.
A node contains two processors split in 2 NUMA nodes with 4 cores each.

Assuming the resource manager gives us 3 nodes, two on the same router
and the third on another one, this network topology is represented in Fig. 5.

Fig. 5. Example of a 3D torus machine with 3 allocated nodes.
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This topology will be described by the following lines:

torus 3 4 1600 4 1600 4 1600 2 32 52
tree 1 4 800 1 0
node n129 tree 4 2 80 2 40 4 20 2 10 -1
tree 1 4 800 2 0 1
node n208 tree 4 2 80 2 40 4 20 2 10 -1
node n210 tree 4 2 80 2 40 4 20 2 10 -1

The first line (torus) indicates the 3D torus with 4 nodes in each dimension.
32 and 52 indicate the indices of the two used routers in our allocation.

Each line starting with tree describes what is connected to each coordinate
of the torus. Since we have a router with 4 nodes, it is modeled as a tree with
4 leaves. For the first occurrence of the tree line we have 1 0 to indicate that
we have a single node on this router at the index 0. For the other occurrence,
2 0 1 shows that the router has two nodes of indices 0 and 1.

The lines beginning with node give us the hostname of the nodes followed by
their structures that are trees with 4 levels: 2 processors, with 2 NUMA nodes
each, 4 cores each. The value −1 is to avoid putting the complete list of the
cores, it simply means that the node is fully available.

The values 10, 20, 40, 80, 800 and 1600 represent the costs of communication
of their corresponding links.

5.2 Handling Hierarchical Topology

There are two ways to process complex topologies. The first strategy that we pro-
pose is to compute the mapping recursively. We do not create the general graph
of the platform but rather keep the information that it is composed of a torus of
trees on our example. First, we compute a mapping for the top topology. Usually
this is network fabric. On our example, this step consists in mapping processes
to routers on the torus (torus partitioning). Then, we recursively compute the
mapping inside sub-topologies. In our example, this consists in considering all
ranks selected for a router actually mapping them to individual cores on nodes
connected to that router (tree partitioning). This approach has the advantage of
using optimized partitioning technique for each step since both torus and trees
are regular and well-known Scotch architectures.

Unfortunately, it is not possible in Scotch to put weight on nodes on the
predefined architectures and it can lead to unbalanced mapping. In our torus
example, if you use this technique without any weight on the routers, both
routers will have the same amount of processes when the one with only one node
needs one third of the processes, not half.

The other strategy is not concerned with this issue. The principle is to
describe the entire topology, including switches, torus, routers, nodes and cores as
a single graph. Scotch can handle such graphs using the deco architecture but it
is more complex to compute than for regular topologies such as fat-trees or torus.
Nonetheless, the time of computation is very low, since the complexity depends
only on the number of used cores, and the quality of the mapping is preserved.
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6 Conclusion

We showed how to perform a topology-aware mapping using state-of-the-art
topology discovery and graph partioning tools, Netloc with Scotch, and a com-
munication matrix. Tests on a stencil application showed the relevance of this
approach on this kind of applications since we are able to significantly decrease
the runtime in the vast majority of cases.

We are now running more tests with different applications and network tech-
nologies to further show the genericity and usefulness of our proposal. As we have
proven the utility of our model, we are extending Netloc to handle more process
placement algorithms. In the meantime, the user can get the discovered topology
by exporting into a Scotch architecture and converting it into his desired format.

Our implementation is freely available in the current Netloc development
code that can be found in the hwloc git repository at https://github.com/open-
mpi/hwloc. It will be officially released in the upcoming hwloc 2.0 release in the
next months.
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Abstract. Single node hardware design is shifting to a heterogeneous
nature and many of today’s largest HPC systems are clusters that com-
bine heterogeneous compute device architectures. The need for new pro-
gramming abstractions in the advancements to the Exascale era has been
widely recognized and variants of the Partitioned Global Address Space
(PGAS) programming model are discussed as a promising approach in
this respect. In this work, we present a graph-based approach to pro-
vide runtime support for dynamic, distributed hardware locality, specif-
ically considering heterogeneous systems and asymmetric, deep mem-
ory hierarchies. Our reference implementation dyloc leverages hwloc to
provide high-level operations on logical hardware topology based on
user-specified predicates such as filter- and group transformations and
locality-aware partitioning. To facilitate integration in existing applica-
tions, we discuss adapters to maintain compatibility with the established
hwloc API.

1 Introduction

The cost of accessing data in Exascale systems is expected to be the dominant
factor in terms of execution time and energy consumption [11]. To minimize data
movement, programming systems must therefore shift from a compute-centric
to a more data-centric focus.

The Partitioned Global Address Space (PGAS ) model is particularly suitable
for programming abstractions for data locality [3] but differentiates only between
local and remote data access in its conventional form. This two-level abstraction
lacks the expressiveness to model locality of increasingly deep and heterogeneous
machine hierarchies. To facilitate plasticity, the capability of software to adapt
to the underlying hardware architecture and available resources, programmers
must be provided with fine-grained control of data placement in the hardware
topology. The 2014 PADAL report [11] summarizes a wish list on programming
environment features to facilitate this task. This work is motivated by two wish
list items in particular:

– Flexible, memory-agnostic mappings of abstract processes to given physical
architectures

c© Springer International Publishing AG, part of Springer Nature 2018
D. B. Heras and L. Bougé (Eds.): Euro-Par 2017 Workshops, LNCS 10659, pp. 167–178, 2018.
https://doi.org/10.1007/978-3-319-75178-8_14
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– Concise interfaces for hardware models that adjust the level of detail to the
requested accuracy.

This work introduces an abstraction of dynamic distributed locality with spe-
cific support for deep asymmetric memory hierarchies of heterogeneous systems
which typically do not exhibit an unambiguous tree structure. In this context,
dynamic locality refers to the capability to create logical representations of phys-
ical hardware components from run-time specified, imperative and declarative
constraints. Application-specific predicates can be applied as distance- and affin-
ity metrics to define measures of locality. Our approach employs a graph-based
internal representation of hierarchical locality domains. Its interface allows to
request light-weight views which represent the complex locality graph as a well-
defined, consolidated hierarchy.

The remainder of this paper is structured as follows: After a brief review of
related work, we illustrate the need for dynamic hardware locality support using
requirements identified in the DASH library. Section 4 introduces the concept of
a graph-based locality topology and general considerations for implementation.
Addressing dynamic characteristics, Sect. 4 outlines fundamental operations on
locality hierarchies and selected semantic details. To substantiate our concep-
tual findings, we introduce our reference implementation ‘dyloc’ and explain
how it achieves interoperability with hwloc in Sect. 5. Finally, the benefit of the
presented techniques is evaluated in a use case on SuperMIC, a representative
heterogeneous Ivy Bridge/Xeon Phi system.

2 Related Work

Hierarchical locality is incorporated in numerous approaches to facilitate pro-
grammability of the memory hierarchy. Most dynamic schemes are restricted
two levels in the machine hierarchy.

In X10, memory and execution space is composed of places, and tasks execute
at specific places. Remote data can only be accessed by spawning a task at the
target place. Chapel has a similar concept of locales.

The task model implemented in Sequoia [1] does not consider hardware capac-
ity for task decomposition and communication is limited to parameter exchange
between adjacent parent and child tasks.

Hierarchical Place Trees (HPT) [12] extend the models of Sequoia and X10
and increase flexibility of task communication and instantiation. Some funda-
mental concepts of HPT like hierarchical array views have been adopted in
DASH. The HPT programming model is substantially task-parallel, however,
and based on task queues assigned to places. HPTs model only static intra-node
locality collected at startup.

All abstractions of hierarchical locality in related work model the machine
hierarchy as a tree structure, including the de-facto standard hwloc. However,
shortcomings of trees for modeling modern heterogeneous architectures are
known [8] while hierarchical graphs have been shown to be more practicable
to represent locality and hardware capacity in task models [9].
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Notably, the authors of hwloc explain that graph data structures are used in
the network topology component netloc as a tree-based model was too strict and
inconvenient [7]. We believe that this reasoning also applies to node-level hard-
ware. Regarding current trends in HPC hardware configurations, we observed
that interdependent characteristics of horizontal and vertical locality in het-
erogeneous systems cannot be sufficiently and unambiguously represented in a
single, conventional tree. This is already evident for recent architectures with
cores connected in grid- and ring bus topologies.

More important, heterogeneous hosts require communication schemes and
virtual process topologies that are specific to hardware configuration and the
algorithm scenario. This involves concepts of vertical and horizontal locality that
are not based on latency and throughput as distance measure. For example in a
typical accelerator-offloading algorithm with a final reduction phase, processes
first consider physical distance and horizontal locality. For communication in the
reduction phase, distance is measured based on PCI interface affinity to optimize
for vertical locality.

Still, formal considerations cannot disprove the practical benefit of tree data
structures as a commonly understood mental model for algorithms and applica-
tion development. We therefore came to the conclusion that two models of hard-
ware locality are required: an internal physical model representing the machine
architecture in a detailed, immutable graph and logical views resulting from
projections of the physical model to a simplified tree structure.

3 Background and Motivation

The concepts discussed in the following sections evolved from specific require-
ments of DASH, a C++ template library for distributed containers and algo-
rithms in Partitioned Global Address Space. While the concepts and methods
presented in this work do not depend on a specific programming model, ter-
minology and basic assumptions regarding domain decomposition and process
topology have been inherited from DASH. In this section, these are briefly dis-
cussed as motivating use cases for dynamic hardware locality (Fig. 1).

Fig. 1. Team hierarchy created from two balanced splits: numbers in boxes indicate
unit ranks relative to the current team, with corresponding global ranks above
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Virtual Process Topology: DASH Teams. In the DASH execution model,
individual computation entities are called units, a generic name chosen because
terms such as process or thread have a specific connotation that might be mis-
leading for some runtime system concepts. In the MPI-based implementation of
the DASH runtime, a unit corresponds to an MPI rank.

Units are organized in hierarchical teams to represent the logical structure
of algorithms and machines in a program [10]. On initialization of the DASH
runtime, all units are assigned to the predefined team instance ALL. New teams
can be only created by specifying a subset of a parent team in a split operation.
Splitting a team creates an additional level in the team hierarchy [6].

In the basic variant of the team split operation, units are evenly partitioned
in a specified number of child teams of balanced size. A balanced split does
not respect hardware locality but has low complexity and no communication
overhead. It is therefore preferable for teams in flat memory hierarchy segments.
On systems with asymmetric or deep memory hierarchies, it is highly desirable
to split a team such that locality of units within every child team is optimized.
A locality-aware split at node level could group units by affinity to the same
NUMA domain, for example.

Organizing units by locality requires means to query their affinity in the
hardware topology. Resolving NUMA domains from given process IDs can be
reliably realized using hwloc. When collaboration schemes are to be optimized for
a specific communication bus, especially with grid- and ring topologies, concepts
of affinity and distance soon depend on higher-order predicates and differ from
the textbook intuition of memory hierarchies.

This does not refer to experimental, exotic architecture designs but already
applies to systems actively used at the time of this writing. Figure 2 shows the
physical structure of a SuperMIC system at host level and its common logical
interpretation. Note that core affinity to PCI interconnect can be obtained, for
example by traversing hwloc topology data, but is typically not exploited in
applications due to the lack of a locality information system that allows to
express high-level, declarative views.

Adaptive Unit-Level Parallelism. Node-level work loads of nearly all dis-
tributed algorithms can be optimized using unit-level parallelization like mul-
tithreading or SIMD operations. The available parallelization techniques and
their suitable configuration depend on the unit’s placement in the process- and
hardware topology. As this can only be determined during execution, this again
requires runtime support for dynamic hardware locality that allows to query
available capacities of locality domains – such as cache sizes, bus capacity, and
the number of available cores – depending on the current team configuration.

Domain Decomposition: DASH Patterns. The Pattern concept in
DASH [5] allows user-specified data distributions similar to Chapel’s domain
maps [2]. As only specific combinations of algorithms and data distribution
schemes maintain data locality, hardware topology and algorithm design are
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Fig. 2. Hardware locality of a single SuperMIC compute node with host-level physical
architecture to the left and corresponding logical locality domains including two MIC
coprocessors to the right.

tightly coupled. Benefits of topology-aware selection of algorithms and patterns
for multidimensional arrays have been shown in previous work [4].

4 Locality Domain Hierarchies

An hwloc distance matrix allows to express a single valid representation of hard-
ware locality of non-hierarchical topologies. However, it is restricted to latency
and throughput as distance measures. A distance matrix can express the effects
of grouping and view operations but does not support high-level queries and has
to be recalculated for every modification of the topology view. In this section, we
present the Locality Domain Hierarchy (LDH) model which extends the hwloc
topology model by additional properties and operations to represent locality
topology as dynamic graph.

In more formal terms, we model hardware locality as directed, acyclic, multi-
indexed multigraph. In this, nodes represent Locality Domains that refer to any
physical or logical component of a distributed system with memory or compu-
tation capacities, corresponding to places in X10 or Chapel’s locales. Edges in
the graph are directed and denote one of the following relationships:

Containment indicating that the target domain is logically or physically con-
tained in the source domain

Alias source and target domains are only logically separated and refer to the
same physical domain; this is relevant when searching for a shortest path, for
example

Leader the source domain is restricted to communication with the target
domain.
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Fig. 3. Domain nodes in a locality hierarchy with domain attributes in dynamically
accumulated capacities and invariant capabilities

Figure 3 outlines components of the locality domain concept in a simplified
example. A locality hierarchy is specific to a team and only contains domains
that are populated by the team’s units. At initialization, the runtime initializes
the default team ALL as root of the team hierarchy with all units and associates
the team with the global locality graph containing all domains of the machine
topology.

Leaf nodes in the locality hierarchy are units, the lowest addressable domain
category. A single unit has affinity to a specific physical core but may utilize
multiple cores or shared memory segments exclusively. Domain capacities such
as cores and shared memory are equally shared by the domain’s units if not
specified otherwise. In the example illustrated in Fig. 3, two units assigned to a
NUMA domain of 12 cores each utilize 6 cores.

When a team is split, its locality graph is partitioned among child teams such
that a single partition is coherent and only contains domains with at least one
leaf occupied by a unit in the child team. This greatly simplifies implementation
of locality-aware algorithms as any visible locality domain is guaranteed to be
accessible by some unit in the current team configuration.

4.1 Domain Attributes and Properties

The topological characteristics of a domain’s corresponding physical component
are expressed as three correlated yet independent attributes:

category of physical or logical component represented by the domain object
such as “socket” or “L3D cache”

number of logical indirections between the locality domain and the
hierarchy root; not necessarily related to distance

the domain’s hierarchical path from the root domain, consisting of
relative subdomain offsets separated by a dot character.
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Domain tags serve as unique identifiers and allow to locate domains without
searching the hierarchy. For any set of domains, the longest common prefix of
their domain tags identifies their lowest common ancestor, for example. Apart
from these attributes, a domain is associated with two property maps:

Capabilities invariant hardware locality properties that do not depend on the
locality graph’s structure, like the number of threads per core, cache sizes, or
SIMD width.

Capacities derivative properties that might become invalid when the graph
structure is modified, like L3 cache size available per unit.

Dynamic locality support requires means to specify transformations on the
physical topology graph as views. Views realize a projection but must not actu-
ally modify the original graph data. Invariant properties are therefore stored
separately and assigned to domains by reference only. A view only contains a
shallow copy of the graph data structure and only the capacities of domains
included in the view.

4.2 Operations on Locality Domains

A specific domain node can be queried by their unique domain tag or unit.
Conceptually, locality hierarchy model is a directed, multi-relational graph so
any operation expressed in path algebra for multi-relational graphs is concep-
tually feasible and highly expressive, but overly complex. For the use cases we
identified in applications so far, it is sufficient to provide the operations with
semantics listed in Fig. 4, apart from unsurprising operations for node traver-
sal and lookup by identifier. These can be applied to any domain in a locality
hierarchy, including its root domain to include the entire topology.

fi
fi

Fig. 4. Fundamental operations in the locality domain concept on a locality domain
hierarchy d. Modifying operations return the result of their operation as locality domain
view d′.

Operations for selection and exclusion are applied to subdomains recursively.
The runtime interface can define complex high-level functions based on combina-
tions of these fundamental operations. To restrict a virtual topology to a single
NUMA affinity, for example:



174 T. Fuchs and K. Fürlinger

The domain group operation combines an arbitrary set of domains in a log-
ical group. This is useful in various situations, especially when specific units
are assigned to special roles, often depending on a phase in an algorithm. For
example, Intel suggests the leader role communication pattern1 for applications
running MPI processes on Xeon Phi accelerator modules where communication
between MPI ranks on host and accelerator is restricted in the reduction phase
to a single, dedicated process on either side.

As groups are virtual, their level is identical to the original LCA of the
grouped domains and their communication cost is 0. Like any other modifica-
tion of a locality graph’s structure, adding domain groups does not affect mea-
sures distance or communication cost as a logical rearrangement has, of course,
no effect on physical connectivity. Figure 5 illustrates the steps of the domain
grouping algorithm.

Fig. 5. Simplified illustration of the domain grouping algorithm. Domains 100 and 110
in NUMA scope are separated into a group. To preserve the original topology structure,
the group includes their parent domains up to the lowest common ancestor with domain
121 as alias of domain 11.

4.3 Specifying Distance and Affinity Metrics

Any bidirectional connection between a domain and its adjacent subdomains in
the locality hierarchy model represents a physical bus exhibiting characteristic
communication overhead such as a cache crossbar or a network interconnect.
1 https://software.intel.com/sites/default/files/managed/09/07/xeon-phi-coprocessor

-system-software-developers-guide.pdf.

https://software.intel.com/sites/default/files/managed/09/07/xeon-phi-coprocessor-system-software-developers-guide.pdf
https://software.intel.com/sites/default/files/managed/09/07/xeon-phi-coprocessor-system-software-developers-guide.pdf
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Therefore, a cost function cost(d) can be specified for any domain d to specify
communication cost of the medium connecting its immediate subdomains. This
allows to define a measure of locality for a pair of domains (da, db) as the cumu-
lative cost of the shortest path connection, restricted to domains below their
lowest common ancestor (LCA). A domain has minimal distance 0 to itself.

Heterogeneous hosts require communication schemes and virtual process
topologies that are specific to hardware configuration and the algorithm sce-
nario. In a typical accelerator offload algorithm with a final reduction phase,
processes first consider physical distance and horizontal locality. For commu-
nication in the reduction phase, distance is measured based on PCI interface
affinity to optimize for vertical locality.

5 The dyloc Library

Initial concepts of the dyloc library have been implemented for locality discovery
in the DASH runtime. In this, hardware locality information from hwloc, PAPI,
libnuma, and LIKWID has been combined into a unified data structure that
allowed to query locality information by process ID or affinity.

Fig. 6. Using dyloc as intermediate process in locality discovery.

This query interface proved to be useful for static load balancing on heteroge-
neous systems like SuperMIC and was recently made available as the standalone
library dyloc2. Figure 7 outlines the structure of its dependencies and interfaces,
with APIs provided for C and C++.

Fig. 7. Dependencies and interfaces of the dyloc/dylocxx library

2 https://github.com/dash-project/dyloc.

https://github.com/dash-project/dyloc
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The boost graph library3 offers an ideal abstraction for high-level operations
on locality domain graphs. These are exposed in the C++ developer API and
may be modified by user-specified extensions. The boost graph concepts spec-
ify separate storage of node properties and the graph structure. This satisfies
the requirements of the domain topology data structure as introduced in Sect. 4
where domain capabilities are independent from the topology structure. As a con-
sequence, consolidated views on a locality graph do not require deep copies of
domain nodes. Only their accumulative capacities have to be recalculated.

We consider compatibility to existing concepts in the hwloc API a critical
requirement and therefore ensured, to the best of our knowledge and understand-
ing, that configurations of dyloc’s graph-based locality model can be projected
to a well-defined hierarchy and exported to hwloc data structures.

A possible scenario is illustrated in Fig. 6. Topology data provided by hwloc
for separate nodes are combined into a unified dyloc locality graph that sup-
ports high-level operations. Queries and transformations on the graph return a
light-weight view that can be converted to a hwloc topology and then used in
applications instead of topology objects obtained from hwloc directly.

6 Proof of Concept: Work Balancing Min element
on SuperMIC

The SuperMIC system4 consists of 32 compute nodes with identical hardware
configuration of two NUMA domains, each containing an Ivy Bridge (8 cores)
host processor and a Xeon Phi “Knights Corner” coprocessors (Intel MIC 5110P)
as illustrated in Fig. 2. This system configuration is an example of both increased
depth of the machine hierarchy and heterogeneous node-level architecture.

To substantiate how asymmetric, heterogeneous system configurations intro-
duce a new dimension to otherwise trivial algorithms, we briefly discuss the
implementation of the min element algorithm in DASH. Its original variant is
implemented as follows: domain decomposition divides the element range into
contiguous blocks of identical size. All units then run a thread-parallel scan on
3 http://www.boost.org/doc/libs/1 64 0/libs/graph/doc/index.html.
4 https://www.lrz.de/services/compute/supermuc/supermic.

http://www.boost.org/doc/libs/1_64_0/libs/graph/doc/index.html
https://www.lrz.de/services/compute/supermuc/supermic
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their local block for a local minimum and enter a collective barrier once it has
been found. Once all units completed their local work load, local results are
reduced to the global minimum. For portable work load balancing on heteroge-
neous systems, the employed domain decomposition must dynamically adapt to
the unit’s available locality domain-capacities and -capabilities:

Capacities: total memory capacity on MIC modules is 8 GB for 60 cores, sig-
nificantly less than 64 GB for 32 cores on host level

Capabilities: MIC cores have a base clock frequency of 1.1 GHz and 4 SMT
threads, with 2.8 GHz and 2 SMT threads on host level (Fig. 8).

Fig. 8. Trace of process activities in the min element algorithm exposing the effect of
load balancing based on dynamic hardware locality

Listing 1.1 contains the abbreviated modified implementation of the
min element scenario utilizing the runtime support proposed in this work. The
full implementation is available in the DASH source distribution5.

7 Conclusion and Future Work

Even with the improvements to the min element algorithm explained in Sect. 6,
the implementation is not fully portable, yet: the load factor to adjust for the
differing elements/ms has been determined in auto tuning. In future work, we
will extend the locality hierarchy model by means to register progress in local
work loads to allow self-adaptation of algorithms depending on load imbalance
measured for specified sections.

5 https://github.com/dash-project/dash/blob/development/dash/examples/bench.
08.min-element/main.cpp.

https://github.com/dash-project/dash/blob/development/dash/examples/bench.08.min-element/main.cpp
https://github.com/dash-project/dash/blob/development/dash/examples/bench.08.min-element/main.cpp
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Abstract. A Resource and Job Management System (RJMS) is a cru-
cial system software part of the HPC stack. It is responsible for efficiently
delivering computing power to applications in supercomputing environ-
ments and its main intelligence relies on resource selection techniques to
find the most adapted resources to schedule the users’ jobs. In [8], we
introduced a new topology-aware resource selection algorithm to deter-
mine the best choice among the available nodes of the platform based on
their position in the network and on application behaviour (expressed as
a communication matrix). We did integrate this algorithm as a plugin
in Slurm and validated it with several optimization schemes by mak-
ing comparisons with the default Slurm algorithm. This paper presents
further experiments with regard to this selection process.

Keywords: Resource management · Job allocation
Topology-aware placement · Scheduling · Slurm

1 Introduction

Computer science is more than ever a cornerstone of scientific development, as
more and more scientific fields resort to simulations in order to help refine the
theories or conduct experiments that cannot be carried out in reality because
of their scale or their prohibitive cost. Currently, such computing power can be
delivered only by parallel architectures. However, harnessing the power of a large
parallel computer is no easy task, because of several factors. It features most of
the time a huge amount of computing nodes, and this scale has to be taken into
account when developing applications. Then, the nodes architecture has become
more and more complex, as the number of cores per node is in constant increase
from one generation of CPU to the next. One way of dealing with this complexity
would be to take into account the application behavior (e.g. its communication
pattern, or its memory access pattern) and to deploy it on the computer accord-
ingly by mapping processes to cores depending on their affinity [9]. However,
c© Springer International Publishing AG, part of Springer Nature 2018
D. B. Heras and L. Bougé (Eds.): Euro-Par 2017 Workshops, LNCS 10659, pp. 179–186, 2018.
https://doi.org/10.1007/978-3-319-75178-8_15
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since a parallel machine can be very large, it is often shared by many users run-
ning their applications at the same time. In such a case, an application execution
will depend on a nodes allocation that has been determined by the Resources
and Jobs Management System (RJMS). Most of the time, a RJMS works in a
best-effort fashion, which can lead to suboptimal allocations. As a consequence,
we did investigate in [8] the idea of taking into account an application behaviour
directly in the RJMS, in its process of allocation and reservation of computing
resources (nodes). We carried out experimental validation on small scales and
did conduct simulations for larger scales. In this paper, we shall present larger
experiments (not simulations) to confirm our simulations results. This paper is
organized as follows: Sect. 2 gives an overview of the context and background of
this work. It introduces the software elements leveraged by this work before giv-
ing some technical insights about the integration of TreeMatch into Slurm.
Then Sect. 3 shows and explains the results obtained. We discuss the comparison
between simulation and emulation in Sect. 4 while some related works are listed
in Sect. 5. Finally, Sect. 6 concludes this paper.

2 Context and Background

A substantial part of this work deals with the integration of a new resource
allocation and reservation policy within the Slurm [14] RJMS. This policy takes
into consideration application behaviour and a matching between the needed
resources and the behaviour is determined, thanks to a dedicated algorithm
called TreeMatch [10]. We now describe both software elements in this section.

2.1 SLURM

Simple Linux Utility Resource Management (a.k.a SLURM) is a RJMS used and
deployed on a large number of parallel machines.

Its resource selection process takes place as part of the global job schedul-
ing procedure. In particular, this procedure makes use of the plugin/select,
which is responsible for allocating the computing resources to the jobs. There are
various resource selection plugins in Slurm that can take into account the speci-
ficities of the underlying platforms’ architecture such as linear and cons res.
The select/cons res plugin is ideal for multicore and manycore architectures
where nodes are viewed as a collection of consumable resources (such as cores
and memory). In this plugin, nodes can be used exclusively or in a shared mode
where a job may allocate its own resources differently than the other jobs sharing
the same node [1].

2.2 TreeMatch

TreeMatch [10], is a library for performing process placement based on the
topology of the underlying machine and the behaviour of the application. This
behaviour can be expressed in several ways: communication scheme, memory
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accesses pattern, etc. As for the target architectures, TreeMatch is able to
deal with multicore, shared memory machines as well as distributed memory
machines. It computes a permutation of the processes to the processors/cores
in order to minimize some cost function (e.g. communication costs). To be
more specific, it takes as input a tree topology (where the leaves stand for
computing resources and internal nodes correspond to switches or cache lev-
els) and a matrix describing the affinity graph between processes. Such a
matrix can be obtained using an application monitoring tool [2]. A hierarchy
is extracted from this graph that matches the topology tree hierarchy. The
outcome is therefore a mapping of the processes onto the underlying comput-
ing resources. The objective function optimized by TreeMatch is the Hop-
Byte [15], that is, the number of hops weighted by the communication cost:
Hop-Byte(σ) =

∑
1≤i<j≤n ω(i, j) × d(σ(i), σ(j)), where n is the number of pro-

cesses to map, σ is the process permutation produced by TreeMatch (process
i is mapped on computing resource σ(i)), A = (ωi,j) 1 ≤ i ≤ n, 1 ≤ j ≤ n
is the affinity matrix between these entities and hence ω(i, j) is the amount of
data exchanged between process i and process j and d(p1, p2) is the distance, in
number of hops, between computing resources p1 and p2. An important feature
of TreeMatch lies in its ability to take constraints into account. When not
all leaves are available for mapping (because some of them are already used by
other applications as it is the case in this paper), there is a possibility to restrict
the leaves onto which processes can be mapped so that only a subset of nodes is
used for the mapping.

2.3 TreeMatch Integration Within SLURM

We have implemented a new selection option for the Slurm cons res plugin. In
this case the regular best-fit algorithm used for nodes selection is replaced by
our TreeMatch variant. To this end, we need to provide three pieces of infor-
mation: the job affinity matrix, the hardware topology but also the constraints
due to other jobs allocations. The communication matrix is provided at job sub-
mission time through a distribution option available in the srun command. As
for the global cluster topology, it is provided to the controller by a new param-
eter in a Slurm configuration file. Whenever a job allocation is computed, this
topology is completed by the constraints information. These constraints are pro-
vided by the nodes and cores bitmaps used by the Slurm controller to describe
the cluster utilization. TreeMatch then utilizes all these pieces of information
to compute the allocation of resources tailored for the submitted job. However,
as the TreeMatch overhead increases with the size of the hardware topology
(in terms of nodes count), we improve the computation time by restricting the
search in a fitting subtree in the global architecture.

3 Experimental Validation

We presented some preliminary results in [8] that we completed with new exper-
iments described in this section. We carried out experiments on a larger scale
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than previously and we also make comparisons between these real-world results
and the simulations of large-scale experiments shown in [8] to demonstrate the
accuracy of the simulator used in our work. Our experiments have been carried
out on the Edel cluster from the Grid’5000 Grenoble site. Edel is composed of 72
nodes featuring 2 Intel Xeon E5520 CPUs (2.27 GHz, 4 cores/CPU) and 24 GB of
memory. We use the Edel cluster to emulate Curie (a TGCC cluster with 5040
nodes and 80640 cores1) using an Slurm internal emulation technique called
multiple-slurmd initially described and used in [6]. We base our experiments
on a Curie workload trace taken from the Parallel Workload Archive2. Two sets
of jobs are considered: the first one fills the cluster, and the jobs belonging to
this set are always scheduled using Slurm in order to have the same starting
point for all the experiments. The second set, called the workload, is the one
we actually use to compare the different strategies. All the measurements are
done through the Slurm login system which gives us workload traces similar
to the ones obtained from Curie. Finally, we need to provide each job with a
communication matrix in order to use TreeMatch. For these experiments we
use randomly generated matrices featuring various sparsity rates. Since we do
not know the real nature of the jobs executed on Curie, creating random matri-
ces is acceptable as the only available data from the original workload is a job
duration. However, in a real setting, we will need the user to provide the commu-
nication matrix of its application. This can be done through monitoring in the
MPI library with [2]. Moreover, in the real case, it may happen that not every
application can provide their communication matrix. We have studied this in
simulation in [7] and show that the whole system can benefit from this approach
even though only a fraction of the applications provide their communication
matrix.

We made comparisons between three cases: the classical topology-aware
Slurm selection mechanism (SLURM), the same mechanism but using
TreeMatch for process placement after the allocation process and just before
the execution starts (TM-A) and last when TreeMatch is used both for the
allocation process and for the process placement using the subtree technique to
reduce the overhead (TM-Isub).

Three metrics have been used in this performance assessment: two of them
regard the whole workload while the last one concerns each individual job:

– makespan measures the time taken between the submission of the first job
and the completion of the last job of the workload.

– utilization represents the ratio between the CPUs used and the total number
of CPUs in the cluster during the execution of the workload.

– job flowtime (or turnaround time) represents the time taken between the
submission and the completion of a given job.

In our previous work, the workload comprised about 60 jobs. In this paper
we used a much larger workload of 1500 jobs. To keep jobs duration reasonable

1 http://www-hpc.cea.fr/en/complexe/tgcc-curie.htm.
2 http://www.cs.huji.ac.il/labs/parallel/workload/.

http://www-hpc.cea.fr/en/complexe/tgcc-curie.htm
http://www.cs.huji.ac.il/labs/parallel/workload/
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Com SLURM TM-A TM-Isub
50% 51002 38252 37230
33% 50997 45897 41817

(a) Makespan

Com SLURM TM-A TM-Isub
50% 34% 44% 46%
33% 34% 38% 42%

(b) Utilization

Fig. 1. Workload metrics for various strategies and different amounts of communication
ratio. Emulation of the Curie cluster with the Edel cluster (Grid’5000)

we decreased their runtime by a 50% factor. This reduction factor impacts the
flowtime and was used to keep our experiments under the 48 h time limit for
each case. Figure 1 describes the results obtained for this workload and two
different communication ratios of the jobs. The communication represents the
ratio between the communication time over the whole runtime of the application.
These ratios are fixed to 33% and 50% to illustrate the case of a communication
bound application (50% of communication ratio) and more compute-bound cases
(1/3 of communication time). However, as they are not an input of the algorithm,
we will not need to measure it in a real setting. Here, we use these ratios to see
their impact on the performance of the algorithm. Figure 1a shows that using
TreeMatch to reorder the process ranks of the jobs reduces the makespan,
but using it inside Slurm to allocate nodes decreases it even more. We can also
see that the larger the communication ratio, the greater the gain. This is an
expected outcome, as TreeMatch reduces the communication times. Figure 1b
also shows that for the same submission workload, TreeMatch improved the
resource utilization.

(a) 33% of communication (b) 50% of communication

Fig. 2. Statistical comparison of selection methods: flow time. Emulation of the Curie
cluster with the Edel cluster (Grid’5000)

In Fig. 2, we use paired comparisons between different strategies for jobs
flowtime. In this case, we considered job-wise metrics, as we want to understand
if, when we average all the jobs, a strategy turns out to be better than another.
Each strategy is displayed on the diagonal. On the upper right, we have the
average difference between the strategy on the column and the one on the row
and the geometric mean of the ratios. For instance, we see that on average the
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job flowtime is 608.40 s faster with TM-Isub than with SLURM and the average
ratio is 1.13. On the lower left part, we plot the 90% confidence interval of
the corresponding mean. The interpretation is the following: if the interval is
positive, then the strategy on the row is better than the strategy on the column
with a 90% confidence. In this case, the corresponding mean is highlighted in
green. If the interval is negative, the strategy on the line is better than the one
on row and the corresponding mean is highlighted in red. Otherwise, we cannot
statistically conclude with a 90% confidence on which strategy is the best and
we do not highlight the corresponding mean. For example, we can see that using
TreeMatch in SLURM is better than not using it.

4 Comparison Between Simulation and Emulation

As explained in the previous section, we have emulated the Slurm execution of
the Curie machine using the Edel cluster of Grid’5000. As a matter of fact, it
is not possible to experiment new scheduling strategies for a batch scheduler on
a production machine. As the Slurm engine is unmodified, this emulator is, in
any cases, very close to the real behavior of Slurm. On the other hand in [7,8],
we have used a simulator to perform extensive tests on different settings. Here,
we present early results to validate the simulator using emulation measurements.
In Fig. 3 we present the comparison between the simulation and the emulation
flowtime for the 1500 jobs used in experiments of the previous sections. Mea-
suring the average flowtime is very important as this metric assesses each job
independently and is less affected by the last submitted job than the makespan.

Fig. 3. Comparison of the emulated flowtime vs. the simulated one for 1500 jobs of the
Curie trace. Remark that the Y-axis does not start at 0.
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We plot the results for the different strategies (plain Slurm, TreeMatch
after (TMA) or TreeMatch inside Slurm (TMI)). We see that the simulator
keeps the order of the emulator concerning this metric: in both cases, TMI
is better than TMA that is better than plain Slurm. Moreover, we see that
simulation results are very close to emulation results (be aware that the y-axis
does not start at 0). In all cases, the simulator has at least 6% of accuracy.

Having a simulator that is very close to the emulator is very important. This
justifies the use of simulations and hence saves a lot of experimental time and
allows for testing many different settings.

5 Related Works

Many RJMS take advantage of the hardware topology to provide compact and
contiguous allocations (Slurm [14], PBS Pro [12], Grid Engine [11], and LSF [13]
or Fujitsu [5]) so as to reduce the communication costs during the application
execution (switches that are the deeper in the topology tree are supposed to
be cheaper communication-wise than upper ones). Some other RJMS offer task
placement options that can enforce a clever placement of the application pro-
cesses. It is the case of Torque [4] which proposes a NUMA-aware job task place-
ment. OAR [3] uses a flexible hierarchical representation of resources which offers
the possibility to place the application processes upon the memory/cores hierar-
chy within the computing node. However, to the best of our knowledge there is
no work that considers the application communication pattern to optimize the
HPC resource selection and mapping.

6 Conclusion and Future Work

Job scheduling plays a crucial role in a cluster administration and utilization,
enabling both a better response time and a better resource usage. In this paper,
we have presented the results of large-scale experiments using our allocation
policy that allocates and maps at the same time application processes onto
the computing resources, based on the behaviour (a communication matrix in
our case) of the considered application. This strategy has been implemented in
Slurm. We have tested this strategy on emulation and compared it with the
standard Slurm topology-aware policy and the method consisting in mapping
processes after the allocation is determined.

Results show that our solution yields better makespan, flowtime and utiliza-
tion compared to these approaches and especially to the standard Slurm policy,
which is what we had shown through simulation only in our previous work.

To get further insights we plan to compare these large-scale experiments with
the results obtained through simulation in more details.

Acknowledgments. Experiments presented in this paper were carried out using the
Grid’5000 testbed (see https://www.grid5000.fr). Part of this work is also supported
by the ANR MOEBUS project ANR-13-INFR-0001 and by the ITEA3 COLOC project
#13024.
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Abstract. The SCoPE@Scuola initiative was born with the aim to
inspire curiosity in high school students about High Performance Com-
puting (HPC) and Parallel and Distributed Computing (PDC). The
HPC/PDC world could be an interesting matter for students because is
a necessary tool to solve challenging problems in science and technology
and it provides context where a plenty of knowledge acquired at school
can find a real application. In fact, the themes related to HPC/PDC
involve a large range of knowledge and skills: from mathematical mod-
elling of problems to algorithm design, from software implementation to
design and management of complex computer systems. The initiative,
begun at the end of 2014, involved several schools in the Naples (Italy)
district, and has also been used for work-based learning activities and
projects aimed to avoid students “dropouts”. The results collected dur-
ing all the last years make us hopeful that such initiative could be useful
both to increment students awareness about the utility in the real world
of all the knowledge acquired at school and to help them in their future
educational and/or working choices.

Keywords: Education · Scientific computing
Parallel and Distributed Computing

1 Introduction

As expected by “Recommendation of the European Parliament and of the Coun-
cil on key competences for lifelong learning” [16], nowadays students need to be
oriented toward an active participation in building their knowledge with the aim
to acquire some key competences (e.g. skills in math, science and technology).

Teachers and students have to build together a path which, starting from
the acquisition of specific disciplinary skills and passing through the ability to
transfer them into different contexts/fields, finally reaches the target of building
a knowledge able to support students as active and responsible citizens during
c© Springer International Publishing AG, part of Springer Nature 2018
D. B. Heras and L. Bougé (Eds.): Euro-Par 2017 Workshops, LNCS 10659, pp. 191–202, 2018.
https://doi.org/10.1007/978-3-319-75178-8_16



192 G. B. Barone et al.

their life. Along this path the teachers have to play the role of a guide for students
with the aim to increase their awareness and motivation.

The SCoPE@Scuola initiative was created by the Management and Support
Team (the authors of this work) of the SCoPE data center at the University of
Naples Federico II. We intended to offer to secondary school students the chance
to acquire a wider vision on how the use of IT systems allows the solution
of challenging problems and the advancement of knowledge in various fields of
academic and industrial research.

The SCoPE datacenter [14] is an example of computing resources integrated
in international distributed computing infrastructures and usable in various
research contexts. The chance to present SCoPE, and all the issues related
both to High Performance Computing (HPC) and to Parallel and Distributed
Computing (PDC) (outside the academic research environment) represents two
significant opportunities for students and teachers: (1) to “touch” modern and
advanced technologies outside the school context and (2) to develop the “Compu-
tational Thinking” attitude [35] by mean of glance on the real world complexity.

The initiative, conceived and designed during 2013, started at the end of 2014
with the involvement of the first “pilot” schools. The related activities include
some seminars and different kinds of laboratory experiences. The feedback from
students (to date about 400) and their teachers is continuing to confirm the
interest in the initiative, as it provides young students with new skills spend-
able in the short/medium terms (e.g. during stages and final high school exam)
and, in the long term, by helping them in their future choice for university
courses and job. In fact, the topics associated with HPC/PDC involve a large
amount of knowledge areas and skills (from mathematical modelling of problems
to algorithm design, from software implementation to design and management
of complex computer systems) and can be interdisciplinarily linked to various
disciplines at school (from Mathematics to Informatics, from Physics and Earth
Science to Biology and Geography).

This work is organised as follows: in Sect. 2 we describe how the initiative fits
into the context of the HPC/PDC education, in Sect. 3 we describe the initiative
and give details about all the involved “actors” and their “modus operandi”, in
Sect. 4 we give details on how the initiative has been perceived from the students,
in Sect. 5 we explain why the initiative can be considered the starting point for
work-based learning activities and in Sect. 6 we summarise the contents of the
work giving some details about our future activities.

2 Related Works

Much is being done in the international context to strengthen the chance for
students to access curricula or contents related with themes of Parallel and
Distributed Computing [6]. However, at the moment, in Italy it seems difficult
enough to introduce such contents into the school curricula. Nevertheless, in a
few years all students will live and work in a world where problems that mankind
will have to solve will be more and more complex and will be faced only with
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the massive amount of computing power made available by the achieved goal of
the Exascale Computing Project [10].

The approaches used and the contributions given to initiate students to the
HPC/PDC world are many and various: some people have developed tools to
help the teaching of parallel programming (i.e., see [25,27,29]), others built expe-
riences on how to iniziate students to parallel programming by using and com-
paring different paradigms and technologies (i.e., see [4,21,23,33]); some people
realized experiences and programs to initiate students in the building-up and
management of supercomputing systems (i.e., see [22,30]), others used science
demands to motivate the need for the computational simulation (and its related
tools) to solve problems of the present (i.e., [28,31,36]).

In this scenario, SCoPE@Scuola is a framework where activities concerning
almost all of the above-mentioned themes can be carried out. Such activities can
be chosen by the schools that intend to adhere to the initiative on the basis of
their needs. Up to now, SCoPE@Scuola doesn’t want to be the context where
all the above topics are deeply acquired but it intends to play a role in the
approach described in [34]: to realize a sort of “HPC/PDC Immunization” by
giving school students small doses of HPC/PDC themes to help them to feel
familiar and therefore not hostile to HPC/PDC world.

3 The Initiative and Its “Actors”

Too often, the so-called “digital natives” are unaware of the real potential of
the many IT resources they access to via the Internet (such as search engines,
shared storage spaces, social networks, etc.): few of them wonder what’s behind
everything they use daily. Even less of them are able to realize how IT resources
can be used in finding solutions for problems of everyday’s life (such as weather
forecasts, mapping and geo localization systems, traceability and security of bank
transactions, air traffic logistics management, etc. - i.e., [19,20]).

So, the ideators of SCoPE@Scuola initiative some years ago wondered about
the way to motivate young people in studying and in being awareness about
technology usage: we were confident that telling students about the HPC/PDC
world (the world where we enthusiastically work) could be a way. We have also
been driven by the conviction that the HPC/PDC world could be an interesting
matter for school students because (1) it is a necessary tool to solve present chal-
lenging problems both in science and technology, (2) it involves a large amount
of knowledge and skills in an interdisciplinary context, (3) its topics can be
linked, using an interdisciplinary approach, to various disciplines at school. We
contestually decided to address the initiative to students (and teachers) that
are attending (are teaching) the last years of high school and whose studies
(teaching) are related with STEM Education [7].

SCoPE@Scuola, inspired by the ancient Chinese saying “I hear and I forget. I
see and I remember. I do and I understand”, is a “place” conceived both for infor-
mation and for real training activities: the informative part of this initiative pro-
vides two seminars and a guided tour at the SCoPE datacenter, while the training
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activities include laboratory experiences focused on technological/scientific top-
ics related to HPC/PDC. The SCoPE@Scuola’s implementation protocol (see
Subsect. 3.1) outlines all the steps of the interaction between the School Teach-
ers Group and the Academic Team. The activities related with the experiences
to be carried out in laboratories are part of the SCoPE@Scuola’s portfolio (see
Subsect. 3.2).

3.1 SCoPE@Scuola: The Implementation Protocol

During the year 2013, when the initiative was conceived and designed, we worked
to identify the set of contents and procedures that represents the SCoPE@Scuola
“modus operandi” and constitutes the so called “implementation protocol” of
the initiative [18]. The protocol provides the following steps:

Introduction phase

– The first meeting: The SCoPE@Scuola team meets school teachers and discuss
about a possible set of laboratory activities identifying curricola subjects that
might benefit from the experience.

– The second meeting: The SCoPE@Scuola team goes to school to meet students
and to hold a first seminar on the history of supercomputers and on the role
of scientific computing in complex problems solution.

Design phase

– The third meeting: The SCoPE@Scuola team and school teachers define
together the content and calendar of the laboratory activities.

Realization phase

– The fourth meeting: Students and their teachers attend a descriptive seminar
on the SCoPE infrastructure and carry out the guided tour to the SCoPE
datacenter.

– The following meetings: The SCoPE@Scuola team prepares/integrates the
material for the laboratory. Students attend the laboratory activities related
to the HPC/PDC themes.

The initiative promoters expect to have a quite varied audience for school
curricula and students maturity, so in concert with the teachers, they attempt
to develop activities with frequent references to what students acquire at school
(where possible). All the activity’s remaining part, that cannot be referred to
curricola, is made enough easy to be understood by students.

Infact, the objective of the initiative is not to make the students able to
master complex contents (e.g. advanced mathematical tools) but to help young
minds in appreciating the role of each components of science and technology for
the solution of complex problems. In particular, we want put a strong emphasis
on the role of mathematics as a useful tool because it is perceived by most
students as difficult and useless.
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3.2 The Portfolio of the Activities

The portfolio for laboratory activities consists of a set of macro assets that
allow to explore all the aspects of designing, managing and using computing
infrastructures: from the realization of “homemade” (or “schoolmade”) parallel
computer prototypes up to the process that, from the mathematical formaliza-
tion of the problem, leads to the “parallel” software for the “in silico” solution
of the problem itself [24]. The portfolio currently includes the following macro
assets:

1. The “Problem solving steps in Scientific Computation” - From problem to
software, passing through mathematical and numerical modeling: How to use
the computer to simulate and/or describe physical and natural phenomena
(e.g. the simulation of the Tsunami trend).

2. When HPC becomes necessary because the problem is “too big”: Implemen-
tation of simple parallel algorithms (i.e. the computation of the sum of n
numbers, the computation of BLAS operations [3], etc.) and “performance”
evaluation of the implemented software when the problem size varies.

3. A parallel computer “within everyone’s reach”: the realization of a Beowulf
cluster [32] - From the installation of the operating system to the benchmarks
execution to evaluate the implemented system performance.

4. Infrastructures and Platforms for Big Data: Introduction to “Big Data” [26]
theme and practice in using Apache Hadoop [8], and related tools (i.e., Apache
Hive [9]), to manage and use large amount of data.

Each group of students can be involved in laboratory activities related with
one or more themes in one of the above described assets. As described in Sub-
sect. 3.1, all the aspects related with the activities to be performed, are discussed
with the student’s teachers during the first two phases of the initiative.

Such decision-making process can not ignore issues related to the students
knowledge and to the curricula offered in the different schools in order to better
choose both the level of in-depth approach to some themes (e.g. the mathe-
matical tools used to describe physical phenomena) and the type of activities
(technology- or science- oriented).

3.3 The First Involved Schools: The “Pilot” Schools

In September 2014, after a year of reflection and design, the activity of the
SCoPE@Scuola initiative was launched (through the participation at confer-
ences, the production of leaflets and the sending of emails to the School Exec-
utives of the High Schools of Naples district). After about a month, a dozen
schools had shown interest for the initiative. Among them, three schools decided
to join: the Polo Tecnico “E. Fermi - C.E. Gadda”, the Istituto Statale
di Istruzione Superiore “A. Serra” and the Istituto Tecnico Industriale
“A. Righi”. In the following years, also the Istituto Tecnico Industriale
“A. Volta” began to participate to the initiative. With all of the above listed
schools the collaboration still goes on enriching itself with new contents.
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All the above schools have Computer Science curricula of good quality, but
very poor was the amount of HPC/PDC-related contents presented in such cur-
ricula (just some experiences related with the implementation of “naif” parallel
algorithms). To date, the total number of students and teachers involved was
about 400. All the students attended to the informative sections of the initiative
(the seminars on the history of supercomputers and on the SCoPE infrastruc-
ture, the guided tour to the SCoPE data center).

Some students (about 40), and their teachers, of the The Polo Tecnico “E.
Fermi - C.E. Gadda” and the The Istituto Statale di Istruzione Superi-
ore “A. Serra” attended to laboratory activities included in the second asset
of the portfolio (i.e. 2-When HPC becomes necessary because the problem is “too
big”). The activities concerned the implementation, execution and performance
analysis of simple parallel codes (e.g. the sum of n numbers) on different hard-
ware platforms (multi-core and multi-node architectures). The activities were
partially prepared at school. During these activities (of about 5 h), the students
used a small set of computational resources of the SCoPE data center: a cluster
of 8 nodes with 8 core per node and Infiniband connectivity.

Some students (about 50), and their teachers, of the The Istituto Tecnico
Industriale “A. Righi” and the Istituto Tecnico Industriale “A. Volta”
attended to laboratory activities included in the third asset of the portfolio (i.e.
3-A parallel computer “within everyone’s reach”). The activities concerned the
“construction” of a Beowulf cluster for parallel computation. For each school,
the activities were carried out in different meetings (3 meetings of about 4 h)
during which the following topics were dealt with: the Linux operating system
installation and configuration, the network cabling and configuration, the instal-
lation and configuration of the Resource Management System, the installation
and configuration of software library for Message Passing paradigm (MPI) [13],
the execution of parallel software based on the MPI paradigm used to test the
developed cluster. The students, during these activities, used off-the-shelf hard-
ware (PCs end SOHO network switches) and open-source software as the Torque
Resource Management System [15] and the OpenMPI library [1].

During the last school year, the following activities are ongoing with the
students of the Istituto Tecnico Industriale “A. Volta” and of the Istituto
Statale di Istruzione Superiore “A. Serra”:

– from the fourth asset of portfolio (i.e. 4-Infrastructures and Platforms for Big
Data): Introduction to the Big Data theme and practice in using Apache
Hadoop and Apache Hive to manage and use large structured databases
(about 30 students are involved in about 10 h of activities). The students used
a small Hadoop-based infrastructure: a set of 5 * (HDFS DataNode + Yarn
NodeManager) services configured on off-the-shelf hardware.

– from the first asset of portfolio (i.e. 1-The “Problem solving steps in Scien-
tific Computation”): Seminar on the Problem Solving steps in Tsunami case
study and practice in executing basic linear algebra operations using software
computational environment as Matlab/Octave [11,12] (about 15 students are
involved in about 10 h of activities).
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4 Results

At the end of the first year of activity, we have summarised the results of the
initiative using data collected through an online survey submitted to partici-
pants in anonymous form. The results obtained, and related with about 100
survey completed responses, can be classified in terms of: (1) satisfaction of the
initiative, (2) impact of the initiative on awareness of utility, use and structure
of supercomputing systems, (3) impact of the initiative on choices related with
remodulation of the own training path.

Fig. 1. The previous knowledge of the HPC/PDC world (a) - The level of tutorial
comprehension (b)

From the students answers emerges:

– the lack of awareness of the HPC/PDC world before participating in the
initiative: only a few students responded that they knew usefulness of the
HPC/PDC world before their participation (see Fig. 1(a));

– that the contents presented during the seminars was considered by the stu-
dents quite understandable (see Fig. 1(b));

– that the contents presented during the tutorial and preferred by the students
are related with the most technological and practical aspects: much appreci-
ated was in fact the visit to the SCoPE datacenter and the laboratory activity
(see Fig. 2);

– the students said they were significantly interested in the possibility to con-
tinue to explore the issues addressed during the initiative. The most preferred
topics are related with Computer Science (Computational Science is almost
neglected) (see Figs. 3 and 4).

Our survey ended with a question about students desire to take a train-
ing/work experience in an environment where issues related to the HPC/PDC
world could be tackled: even in this case, the interest expressed by the students
was high. Students who have expressed their interest in this kind of experience
have also answered the question “Would you like to be part of the SCoPE data
center management team? To deal with what?”. Here are the students’s answers
that we prefered:
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Fig. 2. The part of tutorial that mostly strikes the attention (a) - The part of tutorial
that mostly is of interest (b)

Fig. 3. Level of interest in deepening the contents (a) - Where to deepen the con-
tents (b)

Fig. 4. Interest in deepening the contents: some details
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– “... to divulge knowledge on supercomputers, I would like to help other people
know about this world ...”

– “... I would like to be able to deepen all the supercomputing system issues with
skilled people because I believe that such people have a lot to teach me ...”

Students also appreciated the initiative because such experience brought
them closer to the university environment in a not formal context, allowing
them to do (with absolute freedom) any useful questions to satisfy both curios-
ity on the university context and to ask for information useful to define their
future training and working path.

The above-described results merely give an idea on how the students per-
ceived the informative part of the initiative and they confirmed that issues
related to HPC/PDC might be of interest to high school students. However,
as the initiative is consolidating, we are thinking about the methods to use
to evaluate how all the proposed contents have actually been acquired by stu-
dents. This is a necessary step to remodel both the contents and the modalities
by which these are presented also in order to make them not just a one-time
extracurricular experience but also an integral part of existing curricula.

5 Other Offered Opportunities

“... The dissemination of high quality work-based learning forms is at the
heart of the most recent European education and training guidelines and
is one of the pillars of the Europe 2020 strategy for smart, sustainable,
inclusive growth ...” [17]

In addition, the Italian Law 107 of July 13, 2015, reiterates the importance
of work-based learning - in a mode called “Alternanza Scuola-Lavoro (aSL)” -
including through internships and quality apprenticeships. The same law enables
these activities to be carried out outside the industrial companies in the strict
sense provided that the host institutions are able to fulfill the aims of the aSL
initiative [2]:

– “to implement educational and learning methods which systematically combine
classroom training with practical experience”;

– “to enrich the training at school by skills that can also be spent on the labour
market”;

– “to foster the orientation of young people to enhance their personal vocations,
interests and individual learning styles”.

The SCoPE@Scuola initiative can be characterised as a suitable context for
the aSL activities for students. Therefore, one of the pilot schools decided to
start aSL path in the SCoPE@Scuola context to teach students, on the job, how
“to configure and to manage a simple system for parallel computing”.

With some schools, SCoPE@Scuola was involved in projects aimed to avoid
students “dropouts” (e.g., see the “Scuola Viva” Project [5] funded by Campa-
nia Italian region). In such context SCoPE@Scuola performed activities which
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aims was: (1) to introduce, or to get stronger, students to the “Computational
thinking” and to the “coding” action, (2) to explain how such skills can be used
to “ask” things with computational capacity to perform useful actions (“smart
object programming”).

6 Conclusions and Future Work

SCoPE@Scuola is a one-time extracurricular experience in a not formal academic
context that provides us the chance to try “to infect” some young minds with
the virus of passion for HPC/PDC world: the students and the teachers could
together know a world that is still too hidden.

Students seem to appreciate all of the content exhibited during meetings,
mostly those related with the technological and practical aspects: the structure
of computing systems and how to handle and maintain them. They also appre-
ciated the need for parallel computation as the only tool to solve “the very
large” problems. There is a lot of work to foster knowledge and appreciation of
the scientific computation and computational simulation, especially respect to
mathematical modelling and numerical aspects, as indispensable tools for solving
current and frontier problems. SCoPE@Scuola hopes to have soon an effective
role in fostering students appreciation for the themes related with Computational
Science.

The main difficulty faced by students is due to the construction of a “forma
mentis” capable of identifying and integrating different knowledge and skills to
solve concrete and complex problems. Often the students have shown that they
possess knowledge and skills but they ignore how to spent them in complex and
interdisciplinary contexts far from the school ones. SCoPE@Scuola wanted, by a
little experience on the field, to provide students and their teachers, a glance on

how to solve a (very large) problem by means of powerful computer, using
an interdisciplinary approach, in an interdisciplinary context.

We hope that this glance on the complexity (made of more simple and inter-
connected pieces) can be effective in generating in many young people what
Wing calls “an attitude” [35]: knowing how to look at problems using the “best”
perspective in formulating solutions that are useful also to the others.
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Abstract. The use of key parallel-programming patterns has proved
to be extremely helpful for mastering difficult concurrent and parallel
programming concepts and the associated syntactical constructs. The
method suggested here consists of a substantial change of more tradi-
tional teaching and learning approaches to teach programming. Accord-
ing to our approach, students are first introduced to concurrency prob-
lems through a selected set of preliminar program code-patterns. Each
pattern also has a series of tests with selected samples to enable stu-
dents to discover the most common cases that cause problems and then
the solutions to be applied. In addition, this paper presents the results
obtained from an informal assessment realized by the students of a course
on concurrent and real-time programming that belongs to the computer
engineering (CE) degree. The obtained results show that students feel
now to be more actively involved in lectures, practical lessons, and thus
students make better use of their time and gain a better understanding of
concurrency topics that would not have been considered possible before
the proposed method was implemented at our University.

Keywords: Parallel design patterns · Teaching innovation
Blended learning · ICT integration lecturing model
Concurrent programming · Parallel programming · Virtual Campus

1 Introduction

An effective teaching and learning in Concurrent and Parallel Programming
(CPP) cannot be only based on theoretical lectures on process management and
their concurrency, but on how to program with specific syntactical constructs
included in concurrent programming languages and libraries. Currently, it is
of paramount importance to include practical education on programming tech-
niques that can provide scalability, speedup and performance to programs for
today’s multi and many-core processors.

To learn many different parallel patterns and syntactical constructs in CPP
is by no means an easy task for students, and thus they tend to avoid taking
c© Springer International Publishing AG, part of Springer Nature 2018
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the courses on the subject or postpone for as long as possible. Current CSE
University Curricula [16], however, recognize the importance of teaching such
subjects early in CS or SE curricula, which would enable future IT professionals
to exploit the parallel potential that multiprocessors now offer.

The use of patterns to teach parallelism is in line with new didactics for
teaching CPP [2,6,16]. The GoF catalog [4] proposes a comprehensive set of
design patterns in the domain of simple object-oriented software design. Our
intention is for the parallel programming pattern (henceforth referred to simply
as pattern) to resemble the parallel design pattern [12] by describing solutions to
recurrent problems in the domain of parallel and distributed software systems.

However, there are several drawbacks to conduct teaching and learning based
on patterns: lack of interoperability, since some patterns are highly dependent
on the platform or memory models (STM, volatile, immortal, etc.); scalabil-
ity issues, especially if big data structures need to be mapped onto multicore
and many-core processor architectures; impossibility of quality and performance
testing, as long as for checking patterns it is necessary to simulate the execution
context of each used pattern within a program code that needs to be verified.

We dealt with these issues by defining a selected set of patterns for obtaining
optimal scalable parallel software code. Our approach is based on a new method
that involves blended learning [7], i.e., students can check/compile/run codes
generated from this set of key patterns. The student’s work is supervised and
evaluated by teachers aided by the Virtual Campus (Moodle supported) plat-
form at our University. Students can therefore import program code into the
programming language environment that they know and start working with the
proposed pattern in order to produce correct program code. Each learning session
is completed with a series of exercises to reinforce the students understanding
of each pattern introduced.

The paper concludes with an evaluation of the satisfaction degree of students
on the pilot course on concurrency, parallelism and real-time programming that
we taught over the last three years. As result of the teaching experience, our
model has been suggested for application to other courses on programming by
the officers in charge of educational issues at the University of Cádiz, and is in
process of implementation as a Massive Open Online Course (MOOC).

The paper is organized as follows: Sect. 2 examines the didactical objectives
of the course; Sect. 3 details the suggested teaching model and its development
in practical tasks and student assignments; Sect. 4 describes the most important
patterns in the set selected for the study; Sect. 5 details how the experiment
was evaluated and results analyzed; and finally, Sect. 6 outlines the conclusions
reached and future work to be developed.

2 Course on Concurrent, Parallel and Real-Time
Programming

The teaching and learning objectives of the experiment outlined in this article
aim not only to generally improve the quality of the theory content of lessons
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but also to increase student involvement in classes through a more practical ICT
integration in classical theory content teaching, which includes the core concepts:

1. Fundamental concurrent programming concepts: mutual exclusion, race con-
ditions, synchronization, concurrent systems properties (15%).

2. Mutual exclusion: algorithms for shared memory multiprocessors (20%).
3. Monitors: Hoare’s model, signal semantics, concurrent property verification

(safety, liveness and fairness) (20%).
4. Message passing and distributed parallel programs: RPC and RMI models,

MPI, rendez-vous (15%).
5. Real-time systems: periodic task scheduling based on static priority assign-

ment, scheduling tests, priority inversion anomaly, aperiodic and sporadic
task scheduling (30%).

Table 1. Lecture hours and a selected set of patterns from the last course

Course topics % Hours
(lectures+ lab)

No. of
patterns used

Pattern names

Fundamentals 15 4.5 + 6 2 Thread creation(*),
race-condition

Mutual exclusion 20 6+8 2 Lamport’s protocol(*),
Peterson’s algorithm

Monitors 20 6+8 2 Readers/writers, passing the
baton

Message passing 15 4.5 + 6 4 Rendez-vous, broadcast,
geometric parallelism, tumor
growth

Real-time systems 30 9+2 2 Observer, priority ceiling

Total 100 30+ 30 12 -

Table 1 shows the number of lecture hours allocated to each course topic, the
number of patterns typically used to teach each one and a possible selection of
patterns that covers all the important concepts of the course. Topics taught on
previous courses and reexamined on this one are labelled with an (*).

As with any lecture on general computer programming techniques, we are
particularly concerned that the content taught on CPP courses is both clear
and conceptually significant. We agree with other authors [5] that the use of pro-
gramming patterns, together with a documentary base of code samples, improves
comprehension of the material taught. These patterns must be easily available
to students in lectures [14,15].

By compiling and executing the program code arising from the application of
one of these patterns once it has been presented by the teacher, students become
more actively involved and participate more in lessons [9], and therefore they
are following a blended learning method that is identified as the most successful
for teaching programming contents effectively [7]. There has been, consequently,
a significant increase of the time that students spent in the practical work done
in our course [11].
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3 Teaching Model for Concurrent Programming

In a previous paper [1], we proposed a new concurrent program development
process, which students undertake to complete the assignments during the lec-
tures. Students are involved in the initial program design although they are not
required to design it from scratch. An initial design was validated by teachers
and the students are provided with pre-selected input data to check their imple-
mentations (following the above development process). With this work students
are ready to apply programming patterns to specific applications.

In our approach, students’ assignments comprise the following parts:

1. a set of active components or processes.
2. a concurrent ADT or shared resource.
3. a localized communication structure.

Students have to develop a solution that uses these elements particularized
for each exercise. Communication and synchronization between processes is only
carried out through this shared resource.

3.1 Predicative Specification Model

The students must develop a formal specification (pre-, post-, invariant) of the
initial shared resource design and its operations. We use a specification lan-
guage that admits a first-order logic semantics as in Logic of Programs [10] but
we decided to keep a similar style of specifications to a single-assignment proce-
dural language. The language also includes Z-like mathematical annotations for
easy specification of data structures and this facilitates translation into an OO
programming language.

Formal resource specification consists of three sections:

1. the declaration of the resource’s operations,
2. the definition of the correct states of the resource as a type invariant (Seman-

tics Domain section) and
3. the specification of the behavior of operations as pre- and post-conditions

(CPre and CPost annotations).

Pre-, post-conditions and type or class invariants are part of the design by con-
tract software construction method [13].

3.2 Validation and Code Generation

First, a model checker can be used to check that the invariant is not violated
as Fig. 1 shows. TLC [8] model checker is given to validate the entire System.
The logic of the processes is encoded into TLA+ and combined with the resource
specification so as to explore the interleavings that the real system can afford. By
considering this validation scenario, stronger invariants can therefore be proved.
Figure 1 points out that a test generation tool can be used for testing a large set
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of traces that explore all the system states up to a given depth. A typical tester
executes between 500 and 1,000 different traces of the system to be checked. By
exploring traces it is also possible to locally detect any malfunction of flawed
parts of the system. Students can use testers to discover what is wrong with
their implementations.

Fig. 1. Suggested development of the teaching model

Students are then instructed to deliver a code snippet that implements the
concurrent shared resource behavior. The programming work done by the stu-
dents has to prove the correct use of the parallel and concurrent constructs
taught during the course and it is graded as the 50% of the assignment. By
doing so, a set of design patterns are used to transform the formal model of a
resource specification into C++11 or Java code. This transformation is suscepti-
ble of being automated for specific cases. Concurrent properties (safety, fairness,
etc.) must have been assured through correct synchronization programming.
Different synchronization idioms are suggested for programming thread interac-
tion (notify–notifyAll, locks and conditions, MPI operations, etc.) to students to
implement the required code.

4 Set of Selected Patterns

Since our programming patterns are aimed at the coding level and, unlike algo-
rithmic skeletons or structured parallel patterns [3], they do not hide concurrent
instructions or synchronization operations. The connection topology or low-level
dependencies are not hidden either in the parallel algorithms used.

The main role of a parallel design pattern is to find solutions for differ-
ent aspects that must be addressed when designing a parallel application or
algorithm, i.e., to be capable of finding concurrency, and then to determine a
suitable algorithm structure and to define its supporting structure (data, com-
munications, user-interface). Finally, the implementation mechanism must be
described.
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In order to give a general overview of our teaching method, we present here
only three of the patterns included in the set of Table 1 and the rest of those can
be found in the prior publication [1].

Initial: #idleThreads ← N; finished(k)← false;
Invariant: #idleThreads <= size(TaskQueue)
Reachability: ��task(•) at finished(•)
Liveness:� � thread(i) at freeThread(i)

Fig. 2. Shared resource model for the executor pattern

4.1 Thread Creation: Executor Pattern

In this pattern tasks can be considered as logical units of work and threads are a
mechanism by which tasks can run asynchronously. A graphical high-level model
of the pattern is shown in Fig. 2.

When students attend first courses on concurrent and parallel programming,
they program by assigning a thread per task, or sequentially executing all the
applications’s tasks on a single thread. Assigning one thread per task is a bad
solution that might lead to poorly performant implementations, and a sequential
approach yields extremely bad application responsiveness. We propose to our
students to learn and use a high-level pattern for obtaining performance for
thread creation and launching in concurrent applications.

The executor pattern can be seen as a variant of the producer-consumer
concurrency paradigm. Application activities that submit tasks to the executor
monitor have a producer -behavior and the executor’s threads that pick up from
the queue and execute tasks have a consumer -behavior. The fundamental idea
that supports the executor pattern is to set up an adjustable number of threads
that sit idle, waiting for any pending work on the task queue that they can
perform.

Predicative Specification of the Executor Pattern. The resource’s opera-
tions are executeTask(), freeThread() and nextTask() and must be defined in the
context of a monitor to synchronize the concurrent access to resource TaskQueue

list. The correct states of the resource are defined as the invariant in the Seman-
tics Domain section of Fig. 3, i.e., the number of pre-created threads cannot
exceed the maximum number of tasks waiting on the queue.
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The behavior of the operations above is expressed in the form of pre- and
post-conditions (CPre and CPost annotations). When an application has a
task to execute, it calls the method executeTask(i), which inserts the task into
the TaskQueue list and informs the executor’s thread-pool that there is a new
executable task. One of the idle threads calls nextTask() and starts executing
the returned task; when the execution of the task-i finishes, the program calls
freeThread(i) method and goes back to waiting for the next task to perform.

After doing the shared resource specification, the student must choose the
correct concurrent language idioms, i.e., notify(), locks, conditions, etc. in order
to correctly synchronize operations on the TaskQueue shared resource and this
part of the exercise will then be completed.

TaskQueueExecutor

Operations

executeTask(processId == i)

freeThread(processId == i)

nextTask ():processId == i

Semantics Domain:

Type: TaskQueue (0..N-1) == seq N, processId: 0..N-1

Invariant: #idleThreads <= size(TaskQueue);

CPre: size(TaskQueue) > 0 and #idleThreads > 0;

int nextTask (){} // operation
CPost: size(TaskQueue) == size(TaskQueue)@pre - 1;

CPre: #idleThreads >0 and size(TaskQueue) >= 0;

void executeTask(i){} // operation
CPost: size(TaskQueue) == size(TaskQueue)@pre + 1;

CPre: size(TaskQueue) >= 0 and #idleThreads > 0;

void freeThread(i){} // operation
CPost: #idleThreads >= 0 and

#idleThreads == #idleThreads@pre - 1

Fig. 3. TaskQueue-monitor specification for the executor

4.2 Monitors: Readers and Writers Protocol

The problem of readers and writers is one of the classic problems in concurrent
programming (Fig. 4). There is a shared resource that two types of processes
try to access: the readers access the resource to obtain information, but do not
modify it; the writers modify the shared resource when they get access to it.
Because the readers do not modify the shared resource, multiple readers may be
accessing it at the same time. However, no other process can access the shared
resource while a writer is already in.
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Initial: #readers, #writers ← 0
Invariant:(#readers == 0 ∨ #writers == 0)∧

#writers <= 1
Safety: Invariant
Reachability:��Process(•) atEnd
Liveness:� � Process(i) at SharedResource

Fig. 4. Shared resource monitor pattern for reader/writer access

Predicative Specification Model. The problem begins from a situation
where there are no processes accessing to the shared resource. When a pro-
cess tries to access it, it must first check that there are no processes of the
other type already accessing to the resource, i.e., the condition #readers ==
0 ∨ #writers == 0 is satisfied. In any case, there can be only one writer access-
ing to the resource at the same time, i.e., the condition: #writers <= 1 has to
be part the invariant.

When processes of both types are trying to access the shared resource it is
necessary to decide which of them can access it. The readers-writers problem
can be solved by giving readers or writers higher priority to access the resource.
In case of prioritizing readers, only when there are no other readers trying to
access the shared resource, the lock of writers is released. On the other hand, if
writers are prioritized, it will be the writers which will unlock the readers when
there are no other writers trying to access the shared resource, as Fig. 5 shows.

SharedResource

Operations

void* read(void* p)

void* writer(void *p)

Semantics Domain:

Type: SharedResource == SQL_Type , readerId: 0..N-1,

writerId: 0..M-1

Invariant: (# readers ==0 or #writers ==0) and #writers <= 1;

CPre: #writers == 0 and #attending_writers == 0;

void* read(void* p){} // operation
CPost: #readers == #readers@pre + 1;

CPre: #writers == 0 and #readers == 0;

void* write(void* p){} // operation
CPost: #writers == 1;

Fig. 5. SQL-SharedResource specification with priority to writers
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Obviously, a third possibility consists of not giving priority to any of these
process categories. The semaphore-based solution to the readers/writers prob-
lem with equal priorities is a little brain teaser. The students are asked to solve
the equal priorities problem in order to motivate the students to follow our sys-
tematic scheme (based on shared resource formal specification) to find a correct
solution by themselves (Fig. 5).

The correct solution to the readers/writers problem with equal priority
includes many aspects of the versions with priorities, but also the need for a
second level of synchronization. Before allowing a process to check the processes
that are already accessing to the shared resource, a stage must be added to deter-
mine the order in which the processes have to proceed. With this problem the
students learn to design multi-level synchronization protocols by using shared
variables.

Invariant: queue.q != null ∧ queue.q.size() = m
if m items were added ∧ queue.q[i] = ki
where ki is the i-th item added

Safety: Invariant
Liveness: � � Subject(i).notifyObservers()
Guarantee: �(Subject(i) at notifiable state∧

Observer(•).notify() → �update())

Fig. 6. ObserversList data structure for the Observer pattern

4.3 Real-Time Systems Design: The Observer Pattern

The standard Observer pattern was considered during the course to introduce
real-time programming to students. Observer pattern serves to map Subject to
Observer entitity-roles in algorithms and applications. The objective of the pat-
tern is to keep consistency between the state of the object with the Subject role
and the state(s) of the object(s) with Observer roles.

Predicative Specification Model. Each Subject entity of the application
maintains a set of references to the observers attached to it. Each Subject

has a ObserverList queue as its representation type, which defines attach()

and detach() methods for adding and deleting observers, respectively, to that
observers-list. Subject entities will provide a notify() method as well, which has
to be immediately invoked whenever the subject’s state experiences a change. A
call to notify() method of the Subject must guarantee that the method update()

is invoked on each of the observers in the list. A call to an observer’s update()

method changes the observers state to make it consistent with the new Subject

state.
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When the Subject’s notify() is called, it is compulsory, according to the
standard specification in Fig. 7, that the update() method is invoked on each
attached observer, which updates the observer state and propagates the call to
its successor on the ObserverList queue. Therefore, the notify() call needs only
invoke update() on the first observer in the chain.

ObserverList

bool[N] notified=false; //N observers attached to Subject
Operations

attach(ObserverId == i)

detach(ObserverId == i)

notify (): {true , false}

Semantics Domain:

Type: ObserverList (0..N-1) == seq N, ObserverId :0..N-1

Invariant: #observers >= size(ObserverList);

CPre: size(ObserverList) >= 0 and #observers > 0;

void attach(i){}

CPost: size(ObserverList) == size(ObserverList)@pre + 1;

CPre: #observers >= 0 and size(ObserverList) > 0;

void detach(i){}

CPost: size(ObserverList) == size(ObserverList)@pre - 1;

CPre: size(ObserverList) > 0 and #observers > 0;

boolean notify(i){}

CPost: notified(i) == true

Guarantee: forall k:0..N-1: notified(k) == true;

Fig. 7. ObserversList and Subject operations specification for the Observer pattern

5 Assessment of the Teaching Experience

Learning concurrency in undergraduate courses is generally difficult for students,
because of the complexity and depth of the set of concepts that they must master
during the course. The main objective of the study proposed here has been to
facilitate the work of the students. For this, we have chosen to conduct a teaching
approach based on demonstrative teaching that uses patterns as the conceptual
guide to ease the communication between teacher and class. In this way, the
student got a pattern that allows her to take in new concepts in concurrent
programming when these concepts are presented anew by the teacher.

The patterns we have been used to develop this study were carefully cho-
sen to illustrate key aspects of concurrent/parallel programming, e.g., driver-
implementer patterns allow the programmer to delegate the entire responsibility
of tasks management to an executor, which also takes in any future asynchronous
computation of those tasks; the executor is therefore a complex design pattern,
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but at the same time it can be considered of enormous usefulness when it is well
understood. Another pattern introduced here amounts to the synchronization of
simultaneous accesses to a shared resource by tasks of reader and writer type.
This is another situation that must be frequently tackled by programmers, and
because of that we have included a specific pattern in the demostrative set that
reflects such synchronization between reader and writer threads.

We assessed how the model improves the final results obtained by the stu-
dents on the subject on completing our course. We also noticed more active
participation of students during lecture-oriented lessons. Additionally, working
time spent in the classroom became actually fun and optimized, and the breadth
and depth of the contents covered increased too.

5.1 Evaluation of the Study Results

To evaluate the results obtained from the course teaching experience, we ellab-
orated a survey form that included four dimensions to be evaluated by the stu-
dents:

(a) The concepts introduced in lectures were better apprehended through the
models provided by our set of parallel patterns.

(b) The number of exercises was adquate.
(c) The time required to complete the assigned exercises was sufficient.
(d) The students were satisfied with this approach to the teaching of concur-

rency and parallelism.

All the four study dimensions were evaluated with a score between 1 (com-
pletely disagree) and 5 (completely agree) with the inclusion of an additional
value (0) for when the student does not want to answer. The survey was made
available to a sample of n = 67 students at the end of the semester. The results
obtained are illustrated in Fig. 8. It is observed that the students significantly
improved their understanding of the concepts explained in the theoretical classes,
the number of programming exercises developed in the laboratories and their

Fig. 8. Students’ assesment
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weekly work assignments were considered as adequate, they had enough time
to finish the assignments and exercices, and thus the satisfaction level with the
pattern-based concurrency/parallelism model was generally high or very high
among the students.

6 Conclusions and Future Work

The outcome of the ICT-based experiment has been a noticeable improvement in
the grades obtained by the students in the final examination of the subject. This
ICT-based interactive teaching approach can easily be applied to other courses
in many different areas beyond the sphere of normal university courses. Teaching
projects such as MOOC could immediately benefit from our approach on many
of their engineering courses since in these cases our method would only require
a simple adaptation of specific course contents.

In the long term, we intend to develop a pattern-based CPP teaching tool in
the Cloud which would facilitate systematic learning for any student or person
interested and which would enable the method and techniques discussed in this
paper to be implemented. Our future work is focused on extending the set of
patterns proposed here, developing a course (MOOC) with exercises in several
programming languages, such as Java, C++ and MPI. We will include new
programming languages that are of interest for industry in the future.
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An Experience and Lessons Learned
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Abstract. Parallel and distributed computing (PDC) has become ubiquitous to
the extent that even common users depend on parallel programming. This points
to the need for every programmer to understand how parallelism and distributed
programming affect problem solving, teaching only traditional sequential pro-
gramming is no longer sufficient. To address the rapidly widening gap between
emerging highly-parallel computer architectures and the sequential program-
ming approach taught in traditional CS/CE courses, the Computer Science
Department at Tennessee Technological University has integrated PDC into
their introductory programming course sequence. This paper presents our
implementation efforts, experience and lessons learned, as well as preliminary
evaluation results.

Keywords: Parallel and distributed computing � Introductory programming
Undergraduate education

1 Introduction

The widespread deployments of multicore and GPU based computing systems in recent
years have changed the computing landscape. Parallel and Distributed Computing
(PDC) now permeates almost all computing activities. The pervasiveness of multicore
computing devices is making even common users dependent on PDC techniques. The
ever-increasing use of web-based services and emerging applications, such as mobile
applications, cloud computing, big data analytics, and the Internet of Things (IoT), has
made high performance computing common. Therefore, the most effective program-
mers understand how parallelism and distributed programming affect problem solving.
Acquiring only traditional sequential programming skills is no longer sufficient, even
for basic programmers. These changes emphasize the need for providing a broad-based
skill set in PDC technology at various levels in Computer Science (CS) and Computer
Engineering (CE) programs, as well as related computational disciplines. However, the
rapid changes in hardware platforms, devices, languages and supporting programming
environments continue to challenge educators in ascertaining appropriate content for
curriculum and how to effectively teach that material.

The computer science education community now recognizes that integrating PDC
concepts in undergraduate curriculums is vital to comprehensive CS/CE education.
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The TCPP curriculum report [1] has identified core and elective PDC topics that a
student graduating with a Bachelor’s degree in CS or CE is expected to have covered.
Furthermore, PDC has been designated as a new ‘required knowledge’ unit in the
ACM/IEEE-CS Curricula 2013 [2]. However, most undergraduate CS/CE/Engineering
programs still do not teach PDC concepts, and such programs typically train students to
think and program exclusively in a sequential manner. Although some CS/CE pro-
grams offer PDC courses as an upper division elective, very few introduce PDC early,
in the introductory programming classes (CS1 and CS2). The gap is rapidly widening
between the emerging parallel computing architectures and the sequential computing
approach taught in traditional undergraduate curriculums. There are currently three
thousand and eleven (3011) 4-year universities in the United States [3] and most of
them offer an undergraduate degree program in CS and/or CE. In addition, one thou-
sand, eight hundred and ninety one (1891) two year community colleges offer CS/CE
pre-university coursework [3]. However, while no statistics are available on how many
institutions are teaching PDC concepts at the undergraduate level, the authors con-
servatively estimate this number at no more than 300. This estimation is based on
grants sponsored by the National Science Foundation, “early adaptor” mini-grants
awarded by the CDER Center [4], and faculty development workshops conducted by
CS in Parallel [1].

This paper presents the PDC topics and related hands on exercises that have been
integrated in traditional CS0, CS1 and CS2 classes taught in the Computer Science
Department at Tennessee Technological University (TTU). The paper further describes
our experiences and lessons learned from this PDC integration effort.

2 Related Works

Researchers are actively seeking methodologies and tools for introducing PDC into
introductory CS courses. In [5], the authors present their effort to implement parallelism
in first and second year CS courses. The authors found that students can learn the
material and enjoyed the experience. However, in [6], the author suggests that CS2 is
the natural place to introduce parallelism, and the author uses minimalistic parallel
programming patterns, called patternlets, to teach the student in CS2.

Some researchers have focused on teaching PDC topics to students in upper
division courses. For example, Geist et al. [7] describes a course for seniors and first
year graduates that covers a real-world problem. Similarly, Lupo et al. [8] focusses on
real world experiences with students working in teams. The authors state that eight of
the ten learning objectives were met, and that the students enjoyed the real-world
experience.

Researchers have also attempted to integrate PDC throughout the curriculum.
Burtscher et al. [9] taught PDC in several lower division courses and a senior capstone
course. The authors show encouraging empirical results that they achieve their goals in
terms of student outcomes, engagement, and interest. Graham [10] used various soft-
ware models and programming options to teach PDC at various levels of the cur-
riculum. The author also states the students show interest in the topics, but that PDC
must be introduced early for the concepts to take root. Neelima and Li [11] present their
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experiences in introducing PDC topics over 6 academic years. The authors state that the
PDC topics were well received by the students. Many students implemented successful
projects, and some participated in conferences. Brown, Shoop [12, 13] and Adams [14]
argue that PDC concepts should be taught at all undergraduate levels. They have
developed a community of PDC educators available at CSinParallel.org [1].

Foley and Hursey [15] state that complex and unfamiliar parallel computing
environments, or PCEs, present a barrier to students. The authors present a web portal,
called OnRamp, which allows students to interactively explore PDC concepts.

The CDER Center [4] is an NSF supported center for PDC Curriculum and edu-
cational resources development. Project personnel chair PDC educational conferences
such as EduPar and EduHPC, as well as workshops. Additionally, the CDER Center
provides competitive grants for early adopters of PDC in CS courses. The center also
provides a book [16] for introducing concurrency in undergraduate courses and pro-
vides downloadable and searchable courseware.

3 PDC Implementation

3.1 CS Curriculum at TTU

TTU is a medium sized, accredited public university with an enrollment of approxi-
mately twelve thousand students. The Computer Science department has approximately
four hundred undergraduate majors and offers BS, MS, and Ph.D. degrees in Computer
Science. The introductory courses offered as part of this degree are Introduction to
Problem Solving and Computer Programming (CS1), Data Structures and Algorithms
(CS2), and Object Oriented Programming and Design (CS3). Multiple sections of these
introductory courses are offered each semester; usually the different sections of these
courses are taught independently by different instructors. To address the high DFW
rates in the 1st and 2nd programming classes, a required Principles of Computing (CS0)
class was added to the curriculum in fall 2013. The students in these courses are usually
first or second semester freshmen and are placed in CS0/CS1 according to their math
aptitude scores. If the students are able to enroll in calculus, they are allowed to take
CS0 and CS1 concurrently. In addition, CE students are required to take CS1 and CS2
but are exempted from CS0. For the majority of students involved, these courses
represent their first real exposure to programming.

In addition to the introductory level coursework, required upper division courses
are typically offered once each school year. Our required upper division courses for the
traditional CS degree include Assembly Language Programming, Operating Systems,
Computer Networks, Computer Architecture, Database Systems, and a two-semester
capstone Software Engineering series.

Beginning in fall 2015, we began introducing parallel concepts into some sections
of our CS0, CS1 and CS2 curriculum. One to two days of lecture per semester have
been dedicated to introducing why PDC programming is necessary, parallel architec-
ture, basic concepts and how PDC programming differs from sequential coding.
Examples are provided to the student outlining parallelism, distributed computing, race
conditions and concurrency. In the weeks following these lectures, hands on PDC
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exercises are introduced into the attached lab portion of the class, or as homework, that
highlight a particular attribute of PDC development.

Following the idea of exposing the students “early and often” to the concepts of
PDC, each class introduces topics that build upon previous coursework. To accomplish
this, we introduce similar concepts in CS0, CS1 and CS2 but at different levels of
depth. This model allows the students to practice one facet of PDC in a manner that
does not lead to confusion over the complex details of any advanced techniques. Each
lab exercise or homework assignment takes as part of the study is worth 8-10% of the
final grade in the lab course. The following sections briefly describe the implementa-
tion in each class with concise descriptions of the hands on exercises. One of the
exercises is described in greater detail for the better understanding of our reader.

3.1.1 Principles of Computing (CS0)
The concepts introduced in the CS0 lecture include serial computing, parallel com-
puting, concurrency, race condition and speed-up, and the need for parallel computing.
We used SNAP [17] to implement the in class examples highlighting these topics.
Using animated sprites, provided in SNAP, to represent which components of the
application are computing and which ones are not. To highlight the benefits of par-
allelism, the students are shows two lists of random numbers and the instructor will
work them through a sort done in parallel. The instructor can spawn the final merge
step for this application in parallel or sequentially after the parallel sort to show that
synchronization is needed to overcome the race condition. The module focuses on
visualization and examples of parallelism, and does not include coding parallel algo-
rithms. Once the students have been exposed to the concepts, a hands on exercise
allows the students to run the sort over data collections and time their results to
demonstrate speed-up.

3.1.2 Introduction to Problem Solving and Computer Programming (CS1)
The objective in the CS1 parallel introduction is to introduce the students to basic
OpenMP coding, the fork-join model of parallel processing, as well as have the student
become more familiar with the ideas of shared v. distributed memory, designing
parallel programs and the differences between concurrency and parallelism. In addi-
tion, the topics covered in CS0 are restated since that course is not a requirement for all
students.

Two modules have been created for use in the CS1 laboratory course. The first is a
simple demonstration of fork-join summation and allows the students to create a basic
parallel program and observe the speed-up PDC allows. The second more complex
module walks the students through the manipulation in parallel of arrays for the means
of image manipulation. Both modules help reinforce the concepts covered in the main
lecture.

Parallel Sum for CS1: The parallel sum lab is designed to introduce students to the
fork-join model of parallel programming. The lab begins by introducing the concepts
and reasoning behind PDC programming and explaining the expected results of the
experiment. The students are instructed to create a program which will create a large
array, at least 1 million elements, of randomly generated integers. A function is created
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to process the array, adding all the elements in a standard sequential manner. A separate
function is created to perform the same process but utilize fork – join through
OpenMP. A timer function placed in the program allows the users to accurately
determine how long each function took to arrive at the answer. The students run the
program multiple times using each of the two functions and are able to see the time
savings adding simple parallel code can have on their programs performance.

Parallel Image Processing for CS1: The lab describes image flipping and gray-
scaling with an example, shown in Fig. 1. In particular, images are represented as
colored dots, known as pixels, on the monitor screen. The color of the pixel is rep-
resented as a mixture of intensities of the colors red, green and blue. Each intensity is
characterized by an 8-bit number in the range from 0 to 255. For example, the value (0,
0, 0) represents the color black, the values (255, 0, 0) represents red, and the values
(255, 255, 0) represent yellow. We call these intensities, the colors RGB (or red, green,
blue) values.

Gray-scaling an image represented as a series of RGB values is easy. Different
methods exist, but an effective method is called the luminosity method. In this method,
if you are given the ith pixel, you gray-scale that pixel with the following formula:

gray value i½ � ¼ 0:21 � pixel i½ �:redþ 0:72 � pixel i½ �:greenþ 0:07 � pixel i½ �:blue ð1Þ

Then, for each i, set the red, green and blue component of pixel[i] to gray_value
[i] to gray-scale the image. Flipping an image is accomplished by flipping the first pixel
with the last pixel, the second pixel with the second-to-last pixel, and so on. The lab
then describes how an image can be flipped and gray-scaled in parallel. An image has
both a height and a width. The array of color values represents rows of pixels, where
each row is a line of pixels that would appear across the screen. The size of each line of
pixels is equal to the image’s width, and the number of lines is equal to the images
height. When writing a parallel application, the programmer must first determine how
to divide the problem among the available processors. Dividing the problem requires
determining (1) how much of the problem each processor should compute, and
(2) determining where, in the input data, the processor should begin and end its
computations. In general, when dividing the rows among processors, the programmer

a) Color original image b) Gray-scaled and flipped image

Fig. 1. Flipping and gray-scaling an image (Color figure online)
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should divide the work equally. So, if the image consists of n rows, and there are
p processors available, then each processor should get roughly n/p rows.

A natural division for an image is to divide the image into chunks, where each
chunk consists of a number of rows of pixels. Then, each processor computes its
assigned chunk. So, if the given machine has four processors and the image file is eight
pixels square, each processor would compute two rows. Processor 1 would compute the
first two rows, starting at index 0 and finishing with index 15, processor 2 would start at
index 16 and process through index 31, and so on.

Next, the lab describes the tools needed to edit and compile a parallel program, and
includes a link to download code for loading and saving images in the simple PMM
format, as well as a description of the PPM libraries API. The lab also describes
pseudocode gray-scaling and flipping before finally explaining how OpenMP can make
writing parallel programs easier. In fact, when using OpenMP, writing code to paral-
lelize simple loops, such as the ones in this lab, becomes trivial.

3.1.3 Data Structures and Algorithms (CS2)
The objective in the CS2 parallel introduction is to reinforce the material the students
had covered in CS1 while expanding their ability to learn and think in parallel, as well
as how to design programs to effectively take advantage of the speed increases PDC
provides. As with CS1, multiple modules exist to reinforce the instruction provided in
the course lecture sections. The first allows the students to again observe speed-up of
parallel programming by implementing a parallelized bubble sort. The second works
with image modification, but this time utilizing pipelining and the producer-consumer
model of parallelization.

Simple Bubble Sort with Merge for CS2: Even though the student should have
covered sorting before attempting this lab, the module gives a brief description of
Bubble Sort with examples for review. The lab exercise then describes a simple method
for parallelizing the sort using domain decomposition. The computation occurs in two
phases, the first of which divides the work equally among the available processors.
A second phase occurs after all of the processors are finished with the initial sort,
because sorting the pieces of the array does not result in a completely sorted array. In
this step, the master must merge sorted pieces to produce a completely sorted result.
However, the second phase must be done in serial using a single processor.

Parallel Image Processing for CS2: The CS2 image processing lab is similar to the
CS1 image processing lab but follows the producer-consumer paradigm. This module
does not apply gray-scaling in parallel followed by flipping in parallel, but instead the
lab describes the image processing concept of pipelining filters as shown in. By uti-
lizing a pipeline and the producer-consumer model, the students are able to gray-scale
the image and flip the pixels in the same loop. In other words, once the gray-scale filter
has been applied to a single row, that row can be enqueued to the flip filter while the
gray-scale filter moves to the next row (Fig. 2).
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4 Evaluation

We assessed how our integration efforts affected our students’ ability to think effec-
tively using parallel concepts and the knowledge gained in PDC topics. As part of this
assessment, we have conducted subjective and objective evaluations of the knowledge
transfer. The objective evaluations were accomplished through quizzes, lab assign-
ments, and homework, which is reflected in the course grade. The subjective evaluation
was achieved through pre and post surveys designed to gather the students’ self-
evaluation of their understanding of PDC concepts. We assessed the self-evaluations on
a five point Likert scale to subjectively gauge their understanding of the concepts
taught during the coursework.

Results for this study were gathered from students in multiple sections of CS0, CS1
and CS2 courses over three semesters; fall 2015, spring 2016 and spring 2017. Due to
time constraints with the existing curriculum and faculty capabilities this was a very
sporadically applied implementation, which is something that we hope to address in the
future. The class sizes for the courses under study have varied during the implemen-
tation of this study, see Table 1, but while the lecture size has fluctuated greatly, the
associated lab sections have stayed around a 40 student enrollment on average.

Grades for the PDC module assignments followed the general template for labo-
ratory work in the CS1/CS2 computer classes at TTU. If the assignment is complete
and on time, the user is given full credit, work with errors are reduced in score either by
25% or 50% depending on the severity of the errors present. Regardless of errors, as
long as work is submitted the student scores a 25%. Based on this scale, the classes we
observed have performed below average on the PDC lab. The 2016 CS1 averaged a
67.9% on the PDC lab and those same students finished the semester with an average

Fig. 2. Implementing a pipeline with a queue

Table 1. Enrollment in courses

Course/semester Section Lecture size Laboratory size

CS0 FA15 001 44 N/A
002 43 N/A

CS1 SP16 002 60 51
CS2 SP16 001 37 39

002 54 49
CS1 SP17 001 103 36

002 103 34
003 103 36
004 91 25
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lab grade of 78.4%. Meanwhile, the 2017 students averaged a 72.6% on the PDC lab
and finished the semester with an 80.9% average in the course. This is to be expected
considering the overall lack of experience and limited time the professors were able to
spend covering the PDC material prior to the work being accomplished.

Figures 3 through 5 show the results of the students’ self-evaluation of their
understanding of PDC concepts. These evaluations were done using a 5-point Likert
scale (1 – none to 5 – a great deal). From these evaluations we can see that race
conditions appear to be one of the hardest PDC topics to understand for CS0 and CS1.
We can also see that the number of responses of ‘None at All’ and ‘Little’ decrease
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from CS0 to CS1, we can also see the responses for ‘A Lot’ and ‘A Great Deal’
increase between CS1 and CS2 (Fig. 4). While our implementation was sporadic, these
changes are to be expected as the students’ aptitude and exposure to programming has
increased (Fig. 5).

5 Conclusion

Over the past two years, we have attempted to introduce PDC concepts into multiple
sections of the CS0, CS1 and CS2 coursework at TTU. These implementations, limited
though they may be, have been somewhat successful and point to several promising
outcomes moving forward. The biggest challenge we faced was the time constraints
that were placed upon us due to the nature of these courses and the amount of material
already present in their curriculum. This challenge made implementation of the nec-
essary PDC material very difficult. Despite this, the subjective analysis of the results
from the implementation show that the students can learn this material at this point in
their academic careers and it is feasible to introduce these concepts in early classes.

A second lesson we learned is that students tended to learn more from doing the
PDC labs and homework rather than just listening to the lectures. Part of this is the trial
and error learning that occurred as the users attempted to solve the problems presented,
but also that we waited too long into the semester to begin talking about the concepts.
In CS1, the PDC lab was the 10th out of 13 labs, and we feel that if we could introduce
the concepts sooner in the semester before the students had started tuning out the
lectures, we would be more successful in imparting the necessary skills.

A third lesson is we need to formalize the introduction. The work we accomplished
was only possible in a rather scattershot manner and instead we will work with the
entire faculty teaching the CS0, CS1 and CS2 courses to develop lesson plans that will
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fit into their existing coursework and allow us to test the early and often paradigm over
the course of several semesters to ensure the knowledge retention. For this to work will
require coordination between all members of faculty responsible for teaching these
courses and buy in to support the introduction of these topics.

Though we have not tested the theory yet, we believe including unplugged activ-
ities that demonstrate parallel concepts away from the computer will be beneficial and
should be included in future implementations. We would also like to include concepts
of distributed computing in future research, possibly adding them to web based
activities in CS0 or coding assignments in CS2. Regardless, we still believe the topics
introduced should be presented in small, bite size doses because of variations in student
preparedness at this early point in their careers.
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Abstract. Today, we are reaching the limits of Moore’s law: the progress
of parallel components does not grow exponentially as it did continuously
during the last decades. This is somehow a paradox since the computing
platforms are always more powerful. It simply tells us that the efficiency
of parallel programs is becoming less obvious.

If we want to continue to solve hard computational problems, the
only way is to change the way problems are solved. In this work, we
propose to investigate how algorithms portfolio may be a direction to
solve hard and large problems. It is also the occasion for us to revisit
the well-known Flynn’s classification and clarifying the MISD (Multiple
Instructions Single Data) class which was never really well-understood.

Keywords: Flynn’s taxonomy · Algorithm portfolio
Cooperative parallelism

1 Motivation

As we are currently witnessing the end of Moore’s law, interrogations are raised
on our capacity in solving challenging computational problems in a reasonable
amount of time [16]. This could appear as a vain debate since a wide range of
problems are efficiently addressed by today’s computer technologies. However,
such an argument is questionable since it neglects the fact that the usefulness
of Computer Science in various scientific domains is constantly growing; as a
consequence, the set of new and challenging computational problems becomes
broader every day (for instance Molecular Dynamics codes include now sophisti-
cated visualization modules, multi-scale physical models through coupling clas-
sical n-body with chemistry or quantum physics, interactive processing, etc.).
In addition, computer history gives us many examples of various technologies,
that, because they led to a major increase in computing power, supported new
revolutions. In other words: developing more powerful platforms creates always
more needs.

For continuing to speedup the resolution of challenging computational appli-
cations, two classes of approaches are generally proposed. The former class deals

c© Springer International Publishing AG, part of Springer Nature 2018
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with alternative machines and/or computing models in which fundamental con-
cepts of current machines are replaced by other mechanisms (like when Von
Neumann architectures moved to RISC, superscalar or VLIW [13]). Examples
of such alternatives include quantum computers, dataflow or neural networks-
based machines. In the second class, the idea is to enrich current computing
models with new features in order to continuing to scale. Here, a good illustra-
tion is given by multicore architectures: Since the technology is not yet able to
build more powerful processors, several cores are gathered into the same board
to obtain more power.

In this paper, we propose to concentrate on the second class of the previous
proposals. In particular, we are convinced that there is a neglected model of
parallelism, suggested in the Flynn’s classification, that can break the limits
observed in the resolution of several hard computational problems.

Parallel processing is usually presented late in the french academic curricula
(it is only rarely addressed at an undergraduate level). The obvious consequence
is that the students are educated in thinking sequential. Teaching some basic
principles in an historical perspective is a good way to prepare the student minds
to the unknown concepts of parallelism. The neglected model of parallelism,
discussed in this paper, is easy to deploy on a cluster or multicore system. It
is also a good illustration of concurrent programming and synchronization of
parallel processes.

1.1 A New Look at the Old Time

Historically, Flynn’s taxonomy [7] served as a clear construct to think parallelism.
He introduced a classification in the way the french savants of the Lumière in
the XVIII-th century did in the Encyclopedia [5] with their effort to classify
and organize the scientific knowledge. This taxonomy proposed two concepts
for building parallel organizations1: the stream of instructions and the stream
of data. Depending on the multiplicity of these streams, Flynn proposed to
define all possible combinations of instructions/data, leading to four classes of
organizations: starting from the classical Von Neumann’s processor SISD (Sin-
gle Instruction Single Data), SIMD (Single Instruction Multiple Data), MISD
(Multiple Instructions Single Data) and MIMD (Multiple Instructions Multi-
ple Data). In his original work [7], Flynn also discussed the effectiveness of the
various organizations. That is, he located existing computer technologies in his
taxonomy and defined the fundamental problems raised by each organization.

Flynn’s taxonomy conceptualized the parallelism at the level of machine
instructions. This conceptualization inspired other models, where the control
of parallelism is put at a higher level or layer2. Thus, in considering the applica-
1 Flynn introduced his taxonomy with the notion of ‘organization’. But, in his latter

work [8], he also used the term of ‘parallel machine architectures’. Our position
is that an organization is a generic concept that could or not be realized with a
computer architecture.

2 In this paper, we assume common layered computer architectures: hardware, oper-
ating system and applications.
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tion level, the SPMD (Single Program Multiple Data) [4] and MPMD (Multiple
Program Multiple Data) models were introduced.

Regarding MISD organizations, Flynn concluded to their little interest [8].
This opinion is still shared today by most parallel computing experts and stu-
dents; beyond the model of systolic arrays (which may be debatable [13]) or
replication systems, the community considers that there are only few examples
where MISD architecture could be of interest.

This work goes in the direction of putting emphasis on MISD organizations.
With the end of Moore’s law, we are convinced that the increase of parallelism
in large scale parallel platforms is becoming the most serious issue for building
powerful machines. To fully benefit from the whole parallelism and in particular
to reach significant speedups, MISD models could be the key. The model we
propose to consider is the discrete resource sharing model (DRSM) [1]. This
abstract model and its practical counterpart (algorithm portfolio) is the missing
brick in Flynn’s classification. It is detailed in the next section.

1.2 Informal Presentation of the Discrete Resource Sharing Model

We consider in this work the discrete resource sharing model (DRSM) where
the control of parallelism is done at the application level. We consider a set of
parallel algorithms (denoted by A) solving the same problem, these algorithms
provide the exact solution (but it is also possible to consider that they provide
an approximation of the optimal for optimization problems). Let us assume
a parallel platform composed of homogeneous computing units, which consist
of processors, cores or virtual machines. Each algorithm can run on a part or
the whole set of the computing units, with its own execution time (which may
differ from an algorithm to another). DRSM defines a concurrent run of several
algorithms in A where each computing unit is assigned to at most one algorithm.
In the execution, any instance of the problem is processed concurrently by some
algorithms in A, depending on the computing units that execute each algorithm.
The concurrent runs are stopped as soon as one algorithm finds a solution.
The link between DRSM and MISD (or MPMD) organizations is natural if we
consider that the algorithms with at most one computing unit are streams of
instructions that operate on the data of the problem instance to solve.

1.3 Contributions and Content

With DRSM the resolution of a computational problem (denoted by Π) is for-
mulated as a cooperative execution of multiple algorithms that concurrently
solve the same instances of Π. To demonstrate the interest in thinking paral-
lelism under this vision, this paper has been organized in three parts: Firstly,
we propose a formal model for building cooperative executions of algorithms in
DRSM (Sect. 3). Our model assumes a statistical (context-aware) modeling of
the instances of Π. The main challenge here is to decide on the best allocation of
computing units to parallel algorithms. In the second part (Sect. 4), we analyze
the runtime gains using DRSM when applied to the resolution of the classical
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SAT decision problem. The analysis is based on a performance evaluation that
uses data from the SAT competition3. Finally, Sect. 5 discusses some perspec-
tives opened by DRSM in the development of parallel processing systems and
machines.

It is worth noting that DRSM was already considered in our prior work [1,2],
we are going one step further here. In this previous work, we introduced the
discrete Resource Sharing Scheduling Problem (DRSSP) for deciding on the
resource allocation in DRSM. This paper introduces new variants of the initial
formulation, more suitable to special resource allocation situations that depend
on both machine architectures and algorithms (namely, portfolio of teams, equal
sharing portfolio and QoS portfolio that are detailed in Sect. 3). Moreover, in
comparison to our past work, we provide a better proof-of-concept of the run-
time gain induced by DRSM on the SAT problem. Indeed, whereas our past
evaluations [1,2], assumed a known theoretical model for the speedup of SAT
solvers, the experiments proposed here do not rely on such assumption.

2 Related Works

As already mentioned, Flynn’s work inspired further parallel computing tax-
onomies, which can be ranged into the two following categories.

– The first one corresponds to studies that extent Flynn’s classification. For
instance, putting the parallelism control at the application level instead of at
the hardware. This is the case of the well-known SPMD and MPMD classes
where programs generalize instructions. This is also the case while consid-
ering the memory pattern accesses in MIMD machines with shared-memory,
distributed-memories, uniform and non-uniform memory accesses (UMA and
NUMA) [12].

– The second category of works proposed alternative taxonomies, that use other
foundations to distinguish between parallel machines. In this spirit, Feng [6]
introduced a taxonomy where machines are distinguished depending on the
number of bits processed in parallel in a word. Despite its interest, this propo-
sition never had the impact of Flynn’s taxonomy. One of its recurring crit-
icism is that it does not make a clear distinction between pipelining and
parallelism [10]. Another alternative taxonomy was proposed by Händler [10]
where the parallel machines are categorized depending on their number of
control units, the number of arithmetic and logical units and the number of
elementary logic circuits. With this model, Handler classified several actual
computer machines. However, as recognized by the author him-self, one of
its limitation is that it is specifically related to a given Von Neumann archi-
tecture. This differs from Flynn’s taxonomy that is formulated over a more
abstract model that could or not be realized by a Von Neumann model.

3 http://www.satcompetition.org/.

http://www.satcompetition.org/
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The work proposed in this paper is related to algorithm portfolio. Indeed,
DRSM was inspired by the concept of algorithm portfolio introduced by Huber-
man et al. [11] for the resolution of hard computational problems. The original
motivation for algorithm portfolio can be summarized as follows: hard computa-
tional problems are often solved with heuristics based on randomization. Usually,
for the same problem, there exist several randomized heuristics that can be used.
However, the quality of the result will certainly differ and, despite randomiza-
tion, their runtime could remain expensive. The question then is to know how
to use these heuristics to solve the problem. For this purpose, Huberman et al.
proposed to take example of practices developed in Finance to minimize the risks
in investments. Indeed, given an initial capital that could be invested on sev-
eral assets, financial agents generally prefer to distribute the capital between the
assets, instead on investing only on a unique asset. In considering the various
assets as randomized heuristics, Huberman proposed to solve hard computa-
tional problems in launching several randomized heuristics that each solves the
problem. As soon as a heuristic finds a solution, the execution is interrupted.

Huberman promoted an economic approach whose idea is to invest on several
algorithms to solve a computational problem. A critical question is to determine
how and what to invest on each heuristic in order to ensure an economy of
time. In their introductory paper, Huberman et al. discussed about investments
done on fractions of processor clock cycles. For instance, given two heuristics
h1 and h2 and a CPU, one can run h2 every two clock cycles (attributed to the
portfolio of algorithms) and h1 the remaining cycles. Such a proposition however
supposes that the execution can be controlled at the clock cycles level, which
might be challenging with parallel randomized heuristics in a multiprocessor
context. Some other authors proposed to define the execution of the algorithm
portfolio based on time slots (time sharing) [14] or on the number of CPUs
or cores (resource sharing) [2]. The interest in these latter models is that we
can control the execution at the application level. For instance, in time sharing,
an internal counter can be used for aggregating the cumulative running times
allocated to each individual heuristic. In this paper, we will mainly focus on the
resource sharing model that we introduced in our prior work [2]. Nonetheless, let
us observe that our contribution can be extended to other algorithm portfolio
models.

3 The Discrete Resource Sharing Model

We formally define a DRSM by a triple Γ = (A, μ, S) where A is an ordered set
of parallel algorithms, μ ∈ N

+ is the number of parallel computing units to use
and S = [s1, . . . , sk] (k = |A|), where si ∈ {0, . . . μ}, defines a resource allocation
of algorithms in A to the computing units. In this definition, the ith algorithm
Ai of A is associated with si, the number of computing units allocated to the
algorithm. We must also have

∑k
i=1 si ≤ μ at any time slot.

Γ is associated with a halting condition expressed by the economic gain
targeted in the execution. In this paper, we will focus on the economy of time.



232 Y. Ngoko and D. Trystram

Thus, (A, μ, S) implies that on each problem instance Ij , each algorithm Ai runs
on Ij using si computing units until one algorithm finds a solution.

This definition is restricted to the homogeneous setting where the computing
units typically correspond to identical CPUs, cores, etc. The halting condition
was targeted to the economy of time, however, other objectives are possible. For
instance, distributed computing systems are nowadays associated with a pricing
model in which users pay depending on the CPU time, memory size or any
other feature that they consumed. In such a context, the halting condition can
be defined as follows: stop when the execution price exceeds a given threshold4.
Such a criteria is in particular meaningful if the execution of the algorithms in
A, generates local solutions (e.g. local search or anytime algorithms). As already
mentioned, an important question in DRSM is to determine the si. We propose
an adequate basic formulation model for this purpose in the next section and we
give some examples of its variants.

3.1 The Discrete Resource Sharing Problem (DRSSP)

Base Formulation. To decide on the resource sharing, we propose to consider
a context in which a computational problem Π is represented by a finite set of
n instances I. Each instance Ij has an individual representativity, modeled as
weight wj ∈ [0, 1]. We assume that the running times C(Ai, Ij , si), j = 1 . . . n
spent by Ai to process Ij with si computing units is known a priori. The objective
within DRSSP is to choose the vector S that will lead to the minimization of∑n

j=1 wj .C(S, Ij) where

C(S, Ij) = min
Ai∈A

C(Ai, Ij , si)

One can consider the representativity of an instance I as an estimation of the
probability that the instance we want to solve (at any given date) is I or has a
runtime close to the one of I. In this case, the optimization function in the above
definition can also be associated with the average case complexity. Indeed, as
defined, this function proposes to minimize the average runtime in the processing
of I. Another objective function is to consider the worst case complexity or
energy minimization. In the former case, the objective will then be to minimize
max
Ij

C(S, Ij).

We introduced this base formulation (without weights) in our prior work [1].
For a hard combinatorial problem like the classical satisfiability problem SAT [9],
I could be chosen as one or a union of benchmarks of Π. We also assume that
each instance Ij is associated with a weight wj ∈ [0, 1]. We introduced the
weights for taking into account the individual representativity of some instances.
For instance, the NP-completeness proofs of problems is usually based on worst-
case analysis on some specific classes of instances. As a result, the benchmarks
for NP-complete problems often distinguish between instances that are really

4 Such values are often formulated under the umbrella term of capping conditions.
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hard or easy to solve5. Thus, if a user aims at solving more hard instances than
easy ones, he/she can adjust the weights accordingly. Weights can also be used
to set preference on algorithms. Indeed, one algorithm may be preferred to the
others since it provides faster solutions. In this case, it is worth to introduce
a weight to put emphasis on some algorithms. We recommend by default to
consider the uniform distribution (wj = 1

n ) (for instance in Finance, this latter
setting corresponds to the situation of an equal weighted portfolio).

DRSSP proposes an explicit cost function for the portfolio execution time
expressed by the individual runtime of algorithms. It is important to notice
that this formulation does not consider the runtime overhead induced by the
concurrent run of the algorithms. Let us now derive several variants showing
how to adapt the basic formulation to concrete examples.

Portfolio of Teams. The first example is to build portfolio of algorithm port-
folios. Such a situation can be motivated as follows: Let us assume that the
computing platform consists in 16 cores, belonging to 2 identical CPUs (8 cores
per CPU). Let us assume that A1 is run on 8 cores. According to the formula-
tion of Sect. 3.1, we should expect the same running time from A1 whether it is
deployed only on one CPU or if we use cores of both CPUs. Unfortunately, this
is not realistic if we consider communication costs6. For a more realistic port-
folio formulation, it is possible to avoid the combination of algorithms deployed
on distinct CPUs. A portfolio of teams could be used for this purpose where
the algorithms are grouped in teams, associated with a DRSM defined over a
subset of resources. In the case of two teams whose resource sharing are defined
by Q = [q1, . . . , qk] and R = [r1, . . . rk] s.t

∑k
i=1 qi ≤ 8 and

∑k
i=1 ri ≤ 8, the

runtime of the portfolio on Ij is min{C(Q, Ij), C(R, Ij)}.

Equal Sharing Portfolio. The second example is when DRSSP serves to build
DRSMs that consist of the execution of several sequential algorithms (called the
equal sharing portfolio). This variant allows to derive simply parallel algorithms
from sequential ones. It has been used in several winner solvers of the SAT com-
petition. We formally define it as follows: A resource allocation corresponds to a
vector S = [s1, . . . , sk] where si ∈ {0, 1} and

∑k
i=1 si ≤ μ. The DRSSP question

is then to find an allocation that leads to the minimization of
∑n

j=1 wj .C(S, Ij).
It is important to notice that in the case where μ > k, the question is

straightforward and the optimal solution is vector S = [1, 1, . . . , 1]. If instead,
k < μ, then we have at least

(
µ
k

)
potential portfolio executions.

As already said, the equal sharing portfolio captures the situation where a
portfolio is built in combining sequential algorithms. Consider a cluster of iden-
tical CPUs on which can be run the sequential algorithms Ai. The equal sharing
portfolio remains interesting even in the case of parallel algorithms. Indeed, to
build the optimal solution in the base DRSSP formulation, we need a cost esti-
mation C(Ai, Ij , si) for each algorithm, instance and number of processors. In
5 See satcompetition.org for SAT.
6 Most multicore systems are based on a NUMA architecture.

http://satcompetition.org
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order to avoid the big overhead spent to collect these values, one could instead
only consider for each algorithm Ai a single number of processors s∗

i on which
the instances are evaluated. Thus, we would have to consider a formulation close
to the equal sharing portfolio: each algorithm Ai runs on s∗

i processors and
∑k

i=1 s∗
i ≤ μ.

Portfolio with Quality of Service. The last DRSSP variant we present is
the case where the algorithms Ai are heuristics solving an optimization problem
(like Traveling Salesman Problem). In this case, each instance Ij and algorithm
Ai could be associated with an instance performance guarantee ρi,j , defined
as the fraction between the tour length found by Ai and the one of a lower
bound on the problem. The shorter ρi,j , the better the solution found by Ai.
Now, in considering the above DRSSP formulations, on the instance Iu, the
algorithm Al that causes the interruption of the portfolio could be the one for
which ρi,u is maximal, 1 ≤ i ≤ k. This means that the results returned by a
DRSM generated from DRSSP could be the ones whose quality are the worst,
regarding the instance performance guarantee. Thus, an important question is
how to extend DRSSP for the optimization of the quality of results. A simple
solution is to change the halting condition. For instance, we can consider that
the execution of the portfolio is interrupted when k′ algorithms (1 < k′ ≤ k)
found a solution. The best of the k′ results is the solution of the portfolio.

From our prior work, it is easy to establish that the all the described DRSSP
variants remain NP-hard. Thus, an interesting question is the one of building
efficient heuristics for their resolution. However, this will not be discussed in this
paper. Instead, we will propose in the next section a performance evaluation
whose goal is to demonstrate the interest in building DRSM (based on DRSSP)
on the SAT problem.

4 Application to SAT

We propose to illustrate the power of the portfolio approach on two series of
experiments. Each series considers a particular scenario for creating a parallel
solver for the resolution of the SAT problem. The first one is the base parallel
portfolio, the second one is the equal sharing portfolio.

In the first experiments, we consider the construction of a portfolio of solvers
built in combining several parallel SAT solvers in a multicore context. The port-
folio of solvers was built with the running time distribution of 6 existing parallel
SAT solvers. In the objective function, we assumed uniform weights. The resource
sharing problem to solve in this series is a base DRSSP in which the running
times are only defined for solvers that are run on 1, 8 and 32 cores. These running
times come from a public database of SAT solvers7. We distinguish two cases in
these experiments. In the first case, we simulate a portfolio with the 6 parallel
solvers and 300 instances. The results obtained here clearly show that there is

7 http://www.cril.univ-artois.fr/∼hoessen/penelope.html.

http://www.cril.univ-artois.fr/~hoessen/penelope.html


Revisiting Flynn’s Classification: The Portfolio Approach 235

a dominant solver. We then did another simulation where the dominant solver
was excluded. In both cases, we compared the running time of the portfolio of
solvers versus the time of the best parallel solver on 32 cores.

The experimental results are depicted in Fig. 1. These experiments raised
several conclusions. The first lesson learned is that we can effectively benefit from
parallelism in combining several sequential SAT solvers according to a resource
sharing obtained in solving a DRSSP instance. The second lesson is that we are
able to build a portfolio of solvers that outperforms existing parallel algorithms.
Indeed, from Fig. 1, one can notice that on 32 cores, the optimal portfolio was
better than the best parallel algorithm available for this number of cores. The
third lesson is that the greater the number of resources, the better the portfolio.
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Fig. 1. Runtime of the base parallel portfolio

Table 1. Experimental plan for the second series

Competitions #solvers #SAT
instances

Cutoff time (s)

Random SAT+ UNSAT session 14 150 5000 s

Hard certified UNSAT session 9 150 5000 s

Application certified UNSAT session 11 150 5000 s

In the second series of experiments, we consider a portfolio of solvers built in
combining sequential solvers, according to DRSSP. The resource sharing prob-
lem we have to solve in this setting corresponds to an Equal Sharing portfolio,
with uniform weights, presented in the previous section. We measured the run-
time gain induced by the portfolio of solvers (over the best sequential one) and
the number of SAT instances that were solved. Indeed, as the resolution of some
SAT instances may be highly time consuming, we introduced in practice a max-
imal cutoff time. Thus, if the solver answers before the cutoff time, then we
know whether the SAT instance is satisfiable or not. Otherwise, we conclude
that the solver was not able to provide an answer. In these experiments, the
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Fig. 2. Experimental evaluation

Equal Sharing portfolio problem with the running times data issued from 3 ses-
sions of the 2013 SAT competition8. The chosen sessions names are: (1) Core
solvers, Sequential, Random SAT+UNSAT (Random, SAT+UNSAT session),
(2) Core solvers, Sequential, Hard-combinatorial certified UNSAT (Hard Certi-
fied UNSAT session), (3) Core solvers, Sequential, Application certified UNSAT
(Application Certified UNSAT session). The data of our experimental plan are
summarized in Table 1.

Figure 2 depicts the running time of the built portfolio and the number of
instances we were able to solve. As one can notice, we can clearly benefit from
parallelism in combining several sequential algorithms. In addition, we were also
able to increase the number of SAT instances in the built portfolio. The speedup
gain we observed in these experiments was not linear and did not change signifi-
cantly between 4 and 8 cores. These results clearly show a leadership phenomenon
that can be observed in team sports: a subgroup gives the whole team a boost.
Here, there is a subset of complementary solvers that dominates the others. To
improve the speedup, one should define another leadership by considering a more
diversified basis of sequential SAT solvers.

Both experiments assess the approach proposed in this paper: algorithms
portfolio can be used to design efficient SAT solvers better than usual approaches.
We hope that the readers are convinced by the proof of concept. However, as the

8 http://satcompetition.org/edacc/SATCompetition2013/.
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previous results are limited to focused examples and are based on simulations,
an effective implementation on a more systematic and larger campaign would be
important to consolidate these results.

5 Discussion

With DRSSP, the parallel execution is decided on the basis of a statistical model
that is contextualized to the execution environment in which the algorithms are
run. Thus, while classical parallel processing models only focus on the way the
concurrency is formulated (threads, processes, fork-join, SPMD, etc.), DRSSP
goes further in introducing an optimization model that defines the optimal paral-
lel execution. There are several advantages of such a model, in particular for the
users who do not have to choose the adequate algorithm for solving (optimally
or not) their instances. Another advantage is on the flexibility in the objectives
(for instance, we can optimize the parallel execution on energy consumption, by
redefining DRSSP with this new target).

The experimental results obtained on the two case-studies of SAT confirm
the interest in building algorithm portfolio. They not only provide a concrete
application for the MISD class, but they also open new research directions for
the design of parallel algorithms. One of the most important direction consists
in building a library for automating the design of algorithms portfolio, accord-
ing to the theoretical models discussed in this paper. In our viewpoint, such a
library could be based on a generative programming model similar to the one
we have in the implementation of remote procedure calls [15]. At the beginning,
a user describes the input of the portfolio of algorithms to be constructed. This
description is done according to a language model proposed by the library. Then,
an optimization engine (included into the library) generates the optimal DRSM
and returns it to the user. Finally, the user can launch the generated program.
The importance of this research direction is that it can lead to an implementa-
tion that will have an impact, comparable to the one that PVM/MPI have had
in the promotion of the SPMD model.

To end this discussion, let us come back to the Flynn’s classification. A
contribution of this paper was to show that in considering the control of the
parallelism at the application layer, the (extended) MISD class is efficient for the
resolution of hard combinatorial problems and could even outperform parallel
programs built upon other Flynn’s classes. This efficiency was emphasized in
considering the DRSM model. An important question is then to translate this
model (DRSM) at the operating system and hardware levels. We will not discuss
what can be done at the hardware level, but at the level of operating system, we
do believe that it makes sense to introduce a new type of process group [3] that
supports a time/resource, aware of the concept of portfolio. Roughly speaking,
in an operating system, a process group refers to a collection of one or several
processes. In a process group that is DRSM aware, one could balance the time
slots allocated to each process, according to a resource sharing specified at the
user level. The automatic interruption of all processes of the group is initiated
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as soon as one process finds a solution. The execution such a process group must
also try to isolate as much as possible the different processes. This is important
to guarantee that the resource allocation is respected. Finally, the group can also
be improved in order to handle various halting conditions.

6 Conclusion

The end of the Moore’s law is a great opportunity for the renewal of “parallel
thinking” and the design of parallel systems. The thesis of this paper is that his-
torically, there was a neglected model of parallelism (MISD) that deserves to be
invested; in particular, we propose an extended MISD model where parallelism is
formulated as a cooperation of concurrent algorithms solving the same problem.
The proposed concurrency model is associated with an optimization model that
defines optimal parallel executions. Our paper showed how we can build efficient
parallel algorithms according to this model at the application layer. The portfo-
lio approach is easily accessible and it allows to introduce fundamental concepts
of parallelism like concurrency and synchronization. As showed in this paper,
the approach puts a new light on the Flynn’ classification and the formulation
of optimal parallel algorithms. For these reasons, we do believe that the notion
deserves to be taught in undergraduate classes on concurrent programming, syn-
chronization, and models for parallelism.
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Abstract. In this paper, we present an analysis of the outcomes of teach-
ing Parallel and Distributed Computing within the Faculty of Mathemat-
ics and Computer Science from Babeş-Bolyai University of Cluj-Napoca.
The analysis considers the level of interest of students for different topics
as being determinant in achieving the learning outcomes. Our experiences
have been greatly influenced by the specific context defined by the fact
that the majority of the students are already enrolled into a software com-
pany either as interns in an internship program or as employees. The level
of interest of students for a specific topic is also determined by the devel-
opment of the IT industry in the region. The learning activity is in gen-
eral influenced by this specific context, and a new, high demanding topic
as Parallel and Distributed Computing is even more influenced, when is
to be taught to the undergraduate level. This analysis further leads to a
more general analysis on the appropriateness of introducing PDC topics,
or other relatively advanced topics, to all undergraduate students in CS,
or to consider newly defined educational degrees.
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Courses · Undergraduate · IT industry · Workforce

1 Introduction

Recent years have brought an explosive growth in multiprocessor computing,
including multi-core processors and distributed data centers. The mass mar-
keting of multi-cores and general-purpose graphics processing units induces the
possibility for common users to rely on its effectiveness. This enforces the soft-
ware developers to efficiently use it, and also to contribute to the technology
development.

As a consequence, there is a clear need for undergraduate computer science
education to be aware of the role that parallel and distributed computing tech-
nologies play in the computing landscape.

The ACM/IEEE Curricula 2013 Report [1] and the NSF/IEEE-TCPP Cur-
riculum Initiative on Parallel and Distributed Computing [7], argue that the
undergraduate computer science programs should include topics in parallel and
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distributed computing (PDC). This approach implies important changes and
their impact should be carefully analyzed.

Babeş-Bolyai University is a top university in Romania, being also one of
the oldest universities in the country. At the same time, it is a dynamic and
constructive institution well integrated into society and oriented towards the
future. The Faculty of Mathematics and Computer Science follows the Bologna
system of study. In the last decade the number of students attending Computer
Science has continuously increased, exceeding in 2016–2017 academic year 2600
students enrolled in undergraduate, graduate and doctoral programmes.

Parallel and distributed computing topics have been studied at our faculty
especially at master level programs, but still there were some modules related to
concurrency, multi-threading and client-server application, RPC, RMI included
into the syllabi of some undergraduate courses. Since spreading PDC concepts
across several courses encounters difficulties, which has been also emphasised in
[4,5], in 2015 a dedicated compulsory course Parallel and Distributed Program-
ming has been introduced for students in the third year of study. Before this, it
was also an elective course Paradigms and Techniques of Parallel Programming
that aimed to introduce the main concepts and paradigms of parallel program-
ming; the syllabus changes for this course addresses more advanced topics.

In 2014 a master program with the title High Performance Computing and
Big Data Analytics has been included into academic program of our faculty.
This offers to students the possibility of acquisition of theoretical, applicative
and practical knowledge in high performance computing, big data analytics, and
on using HPC in data analysis.

In terms of PDC infrastructure, the university owns a hybrid (High Perfor-
mance Computing + Cloud Computing) cluster, acquired in 2015, capable of
reaching 40 Tflops in Rmax (sustained) and 62 Tflops in Rpeak (theoretical).
The HPC component has 68 nodes with a total of 1360 physical computing cores
overall. Also, 6 nodes are hosting an additional Intel Phi coprocessor, while 12
others are equipped with 2 Nvidia Tesla K40 GPU each.

This paper intends to present the evolution of courses that include modules
from the topic of PDC. Also a broad analysis of the outcomes of these teach-
ing subjects in correlation to the level of interest of the students for them is
presented.

The next section presents the existing courses, and modules, and Sect. 3
describes the particular context of our region that has an important influence
on the level of interest of the students for different subjects. Section 4 shows the
analysis results and their correlation, and the final conclusions are presented in
Sect. 5.

2 The Subject of Analysis

As in other reports on various curricula, we will use Bloom’s classification [2]
(B class) considering also a correlation to ACM level of mastery. So, we will use
the following classes:
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– K = Know the term (⇔ Familiarity)
– C = Comprehend so as to paraphrase/illustrate (⇔ Usage)
– A = Apply it in some way (requires operational command) (⇔ Assessment)
– N = Not in Core, but can be in an elective course

The courses from the undergraduate curriculum that address Parallel and
Distributed Computing topics are presented in Table 1. The number of students
enrolled is about 180 for a compulsory course and varies between 30 and 70 for
an elective one.

Table 1. Undergraduate courses addressing PDC topics

Course name Semester
of study

ECTS Hours per week
(course, seminar, lab)

Operating Systems (OS) 2 5 2,1,2

Advanced Programming Methods
(APM)

3 6 2,2,2

Computer Networks (CN) 3 6 2,0,2

Systems for Design and
Implementation (SDI)

4 6 2,1,1

Parallel and Distributed
Programming (PDP)

5 6 2,1,2

Paradigms and Techniques of
Parallel Programming (elective)
(PTPP)

6 7 2,0,1

At the master level there are other courses related to PDC from which we
may mention the following: ‘Formal Models of Concurrency’, ‘Operating Systems
for Parallel and Distributed Architectures’, ‘Models in Parallel Programming’,
‘Functional Parallel Programming for Big Data Analytics’, ‘Workflow Systems’,
‘Grid, Cluster and Cloud Computing’, ‘Algorithms, Models, and Concepts in
Distributed Systems’, ‘GPU and Distributed Architecture Computing’. Most
of these courses are part of the High Performance Computing and Big Data
Analytics or Distributed Systems in Internet graduate programmes’ curriculum.

The next two tables emphasis (to a great extent but not completely) the
PDC topics discussed in these courses. Table 2 presents some general topics with
the focus on concepts, and Table 3 shows the topics for which concrete imple-
mentations are analysed.

A certain topic could be introduced in a certain course where the correspond-
ing learning outcome belongs to (K) or (C) in Bloom’s classification, and then
it is discussed to a following course where the learning outcomes are moved to a
more advanced level by Bloom’s classification. So, for example, the semaphore
concept is first introduced at Operating Systems course considering an outcome
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Table 2. General conceptual topics. The table emphasizes the main concepts associated
to the corresponding courses were they are discussed.

of class (K), and then is discussed again at Parallel and Distributed Program-
ming course where a more deeply understanding is provided and also it is used
in the context of the current implementations in Java or C#.

Examples of parallel algorithms are given especially at the Paradigms and
Techniques of Parallel Programming course. In the curriculum there is a course
of Data Structures and Algorithms – DSA, but at the moment the possible par-
allelization of the algorithms is not treated there. The parallelization techniques
are introduced at PDP course, and then they are detailed at PTPP course.
Still, time-complexity and space-complexity issues for sequential algorithms are
analysed at DSA, and so when the parallel programs performance metrics are
introduced we may start from some already introduced concepts.
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Table 3. Specific topics ⇒ implementation oriented.

3 The Context of the Analysis

Cluj-Napoca is now the most important educational and economic center in
Transylvania and the second largest in Romania after Bucharest and it has a
long standing tradition in IT development - the beginnings of the computer
sciences in Cluj are situated around the years 1960. According to a recent study,
done by iTech Transilvania Cluster, Cluj has the highest density of IT employees
in Romania, 1 in 25 employees working in this industry [10]. A decade ago,
when most of the IT companies were founded, the main activity of Romanian
software industry was outsourcing. On the long run this had scalability issues
since the number of potential new employees, although raising, couldn’t satisfy
the increasing market demand. Another important factor was that man-day rates
in neighbor countries were very competitive. What tip the balance in favor of
Romanian IT specialists is that half of them are software developers and that
almost 90% of them speak English. The economic factor also had an important
influence in this together with the focus on education proven by students’ results
in Informatics and Math Olympiads or software competitions over the years [6].

Outsourcing is still the main activity but the current trends are moving
towards innovation (startups or developing of own products) and providing high
level roles (such as solution architects, business analysts or project managers)
and business knowledge to clients in order to achieve added value for the con-
stantly increased rates.
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There are some IT companies in the region that are starting to work with
big data analytics, but to the best of our knowledge, there is no one involved in
software development that implies scientific computation.

The cooperation between students and companies starts usually with an
internship program (required by the academic curriculum), which is followed by
real employment before graduation. So, when we discuss the impact of some
changes in the academic curriculum, we have to consider the fact that the feedback
that we obtain from students, includes also, indirectly, a feedback from industry.

There is a known gap between academic world and the industry. The industry
is productivity oriented with some expense in the software quality. Consolidated
frameworks, libraries and APIs are frequently used in the development, alongside
development tools that are required in a productive environment.

This is why there are companies that can afford to hire students even from
their first years of study, and encourage them for early employment with the
promise that they will learn “all they have to know” at the workplace. Of course
their perspective is on the present day, without considering the future. This
comes with the drawback that students focus less on obtaining general knowledge
in computer science and they start learning/using only specific fields of computer
science (databases, user interface development, etc.). Often enough students that
are not yet employed are reluctant to learn things that wouldn’t help them during
an internship or a job interview.

The development is very often based on “applying patterns...” but the mean-
ing of the term – pattern, in this context, is not the same with the one used in
[3], where it is used to emphasise the situation when a design pattern (a well
defined solution) is used in a new context in a creative way. Here, we have to
understand that the software is built using specific framework and technologies
by composing components based on some specific recipes. So, many times the
developers build the software by using some tools and without a deep under-
standing of what they are really doing. The leading questions are: “how to do”,
“what to apply” and not “why”, or “what is hidden behind”.

It is important to say that the described situation has a large spreading, but
it is not generalized. Not all companies adopt this kind of development, but there
is a large majority that has an important influence.

The university purpose is to prepare the young minds for whatever is out
there in the industry without limiting the knowledge to a specific area. The
graduates need to acquire enough information from all the fields in such a way
that they can face the industry switches without too much effort, having the
basics in place.

4 The Analysis

In order to move from “traditional” development to distributed development, the
students need to possess the most basic knowledge of development. It is always
easier to ‘build’ on top of something that has solid ground. The challenges that
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come from the current industry context (students start focusing on employment
rather than finalising their studies) trigger different approaches regarding teach-
ing techniques:

– Before moving to a topic that requires specific background, we need to validate
that students have this background; this comes with the drawback that some
of the students that already have the background cannot move faster to the
specific distributed programming topics, and they become distrustful.

– Some of the important courses have been condensed or made elective in order
to accommodate the students needs to have the bare minimum knowledge for
employment.

In our study we went from the premise that the success of introducing new
topics in the curriculum, and consequently achieving the desired learning out-
comes, depends in a great measure on the level of interest of the students in that
topic. In the context described in the previous section, we are aware that the
level of interest of the students for one topic and another depend very much if
they are working for a company or not, and when they have started to do this.

So, the first steps of our investigation was to find out the level of interest of
students for the topics specified in Tables 1 and 2. For each topic they have been
asked to choose a value between 1 and 5 (1 represents the lowest level of interest
and 5 represents the highest level of interest). The students of the second and
third year of study have been asked to participate in our analysis. The results
are reflected in Tables 4 and 5.

The differences between the two categories are given by the fact that the stu-
dents of the second year haven’t studied yet some of the questionnaire included
topics, but also by the distribution of their employment per year of study:

– 10% students of the first year of study,
– 25% students of the second year of study,
– 60% students of the third year of study,
– 75% students at the end of the third year.

(The students have a mandatory internship of 3 weeks between the 2nd and the
3rd year, and this is the moment when almost all get hired.)

Parallel programming is not easy if we have to control threads/processes
executions, synchronization, communication, etc. As the level of abstraction
is increasing, the things could become simpler, but an associated performance
degradation could appear, too [8]. So, we may work with frameworks and libraries
that make the parallel programming easier and probably more attractive for stu-
dents. On the other hand, this way the main concurrency issues will not be well
understood. Also, in contexts where the performance is a critical issue, the ability
to work only with high level frameworks would not be enough.

There is a large interest from students to learn APIs and tools that implicitly
use parallelization without the explicit control from the programmers (Java par-
allel streams, Scala parallel collection, OpenMP). This approach has the advan-
tage of offering a simple and rapid development and also offers a high degree
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Table 4. Level of interest for general conceptual topics.

of confidence in the correctness of the resulted code. It is known that parallel
programming is sensitive to hidden errors that are very difficult to detect and
hence to debug. On the other hand the programmers are limited to the defined
constructions, and also cannot control very well the level of performance.

The analysis includes also the results obtained by the students for the tests
and assignments of the curriculum required course Parallel and Distributed
Programming. The evaluation for this course has been based on the followings
tests and assignments:

1. Practical works/assignments (relative short problems that should have been
implemented using discussed strategies and technologies);

2. Multithreading practical test (a problem of medium complexity that had to
be solved using threads – explicit thread creation);

3. MPI practical test (a simple problem that had to be solved using MPI);
4. Theoretical test (written exam).
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Table 5. Level of interest for the specific topics.

The corresponding results for these evaluations are presented in Fig. 1.
Practical works included:

– some multithreading examples in C/C++, Java, and C#,
– examples that use OpenMP,
– a very simple CUDA example,
– a client-server application that also includes asynchronous tasks, and
– a simple MPI example.

The students had to solved them independently, at home, and then present
them to the instructors.

The practical tests assume solving a given problem in a given period of time,
on the students’ laptops – if they chosen this way; computers from the faculty
laboratories could also be used.

From these results, we may consider that MPI programming have been proved
difficult for students. A deeper analysis emphasizes that, in fact, the interest of
the students in learning MPI was low.

The students are much more confronted to using multithreading program-
ming, for different types of applications, and this leads to a much better knowl-
edge acquisition. This includes working with threads directly or using APIs such
as: OpenMP or Java Streams.

The theoretical evaluation shows the fact that even students initially declare
that they have certain interest in studying concepts, still either because they
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Fig. 1. Evaluation results.

don’t have enough time (being involved in others activities as working for com-
panies) or because they looses their ability for theoretical approaches, the results
are not very good.

Since the students are soon to be enrolled in productive activities, they are
much oriented on practical skills. Hence, the results obtained for practical works
in correspondence with the results of the theoretical test confirm this situation.

For the elective course Paradigms and techniques of parallel programming
(PTPP) the students have been allowed to choose a paradigm and a technology
for solving a problem in a parallel way. This problem could have been chosen
from a list of proposed problems, but the students also had the possibility to
propose new ones. From the 35 students that attended this course in the current
academic year (2016–2017), only one has chosen MPI as a programming model.
All the others chosen to go on the multithreading paradigm and to use different
implementation languages (Java – 23, C# – 5, C++ – 4, Scala –2). The project
also required to do a written documentation that includes design pattern oriented
analysis of the design decisions, theoretical performance evaluation and results
of a set of the empirical testing.

At this elective course, some techniques of algorithm parallelization are dis-
cussed, and some concrete examples for well know problems are analyzed (sort-
ing, searching, matrix multiplication algorithms, ...). Even if the level of interest
for these was not formally evaluated, we may say that the students consider
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them interesting. These techniques have been used in a certain measure by the
students in the development of their projects.

Even for this elective course, which is chosen by the students that have an
increased interest in parallel programming, the students’ choices are influenced
by the mainstream technologies and their abilities in working in a specific pro-
gramming language. These abilities are on their turn influenced by their personal
experience, which is, in a vast majority of cases, driven by their employers and
industry demands, not by the academic environment.

We have also received some informal feedback from direct discussions with
the students that emphasizes the fact that an orientation on distributed aspects
of programming is considered by them much useful than an orientation on par-
allelization techniques and tools.

5 Conclusions

The main conclusion of our experience with teaching PDC topics is that even if
they are very necessary and important to be studied, due to the last development
of systems architectures and of the associated programming, it is also very impor-
tant to take into consideration the latest approaches and paradigms applied in
the IT industry. The need for high productivity induces some changes in the
way the programming activity and software systems construction are developed.
All these lead to a new category of software developers which are not supposed
to understand all the components that they usually assemble. An adapted and
simplified curriculum could be in this case specified. In such a curriculum some
PDC topics should be included, but in a pragmatic, usage-oriented way – how
to use parallel programming frameworks/libraries, etc.

Also, there are some topics – as MPI – that have a great importance for the
well understanding of some basic concepts of Parallel and Distributed Program-
ming, but they are not yet very much used in the industry. This leads to a low
level of interest for this topic from the undergraduate students.

Also, the acquisition of the theoretical concepts and general principles is not
very good, since our students are now, very much oriented on achieving practical
abilities.

Master students that choose a specialization that includes High Performance
Computing, have of course, a much higher degree of interest and opening to fields
as Scientific Computation, Models of Computation, or Correctness and Formal
Methods.

The premise of our study was that the success of introducing new topics
in the undergraduate curriculum, and most importantly achieving the desired
learning outcomes, depend in a great measure on the level of interest of the
students in that topic. This premise proved to be correct.

On the other hand, the level of interest on different topics of Parallel and
Distributed Computing depends very much on the students’ levels. The dis-
tinction between undergraduate and master students is very clear, but between
undergraduates we may emphasise at least two classes of interest.
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A solution could be based on moving more topics on the elective courses.
Another, more complex solution, would involved also other Computer Science
fields and introducing a new defined educational degree. A proposal that comes
from the Cluj Innovation City Project - a project of the Cluj IT Cluster [11] - is
to develop Vocational Studies. The proposal claims that this way an important
part of the IT industry employees could come directly from an IT related voca-
tional curriculum, and this would reduce part of the pressure on the employment
market, but most importantly would engage young people into the industry in
their early twenties. (The drawbacks of this proposal have not been studied, yet.)

There is an important trend in the software development in using Parallel
and Distributed Computing and, at the same time, in using more efficiently the
present hardware resources. There is also a wide acceptance that “Parallelism is
the future of programming”. Still, we may paraphrase the title of the paper of
Domenico Talia: “Parallel computation still not ready for the mainstream” [9]
and say: “Mainstream still not ready for [all kind of] Parallel Computation”.
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Abstract. The thesis of this essay is that the Cellular ANTomaton
(CAnt) computational model—obtained by deploying a team of mobile
finite-state machines (the model’s “Ants”) upon a cellular automaton
(CA)—can be a highly effective platform for introducing early under-
graduate students to a broad range of concepts relating to parallel and
distributed computing (PDC). CAnts permit many sophisticated PDC
concepts to be taught within a unified, perspicuous model and then exper-
imented with using the many easily accessed systems for simulating CAs
and CAnts. Space restrictions limit us to supporting the thesis via only
three important PDC concepts: synchronization, (algorithmic) scalability,
and leader election (symmetry breaking). Having a single versatile peda-
gogical platform facilitates the goal of endowing all undergraduate stu-
dents with a level of computational literacy adequate for success in an
era characterized increasingly by ubiquitous parallel and/or distributed
computing devices.

Keywords: Cellular automata and ANTomata
Teaching PDC to early undergrads

1 Introduction

1.1 Our Overall Goal

A. Computational literacy for all. The current era is characterized by ubiqui-
tous computational devices. As such devices proliferate, they also become more
sophisticated, containing multiple processors and/or cores. Indeed, we employ
parallel and distributed computing (PDC) when we drive cars, use household
appliances, go shopping, . . . . It is now widely recognized (cf. [15]) that all under-
graduate students—all the more so those who aspire to a career in a computation-
related field—must achieve a level of computational literacy adequate to succeed
in our computing-rich society—and such literacy must encompass PDC and its
enabling technologies. The thesis of this essay is that the Cellular ANTomaton
(CAnt) computation model [18]—obtained by deploying a team of mobile finite-
state machines (the model’s “Ants”) atop a cellular automaton (CA)—has traits
that recommend it as a conceptual platform for introducing early undergraduate
c© Springer International Publishing AG, part of Springer Nature 2018
D. B. Heras and L. Bougé (Eds.): Euro-Par 2017 Workshops, LNCS 10659, pp. 252–265, 2018.
https://doi.org/10.1007/978-3-319-75178-8_21
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students to a broad range of sophisticated notions relating to PDC. We support
this thesis by discussing three sophisticated PDC concepts that CAnts render
accessible to early students. With more space, we could easily expand this list.

Benefit #1 of CAnt-based Pedagogy. CAnts provide a single perspicuous
platform for many core PDC concepts. Thereby, students need not master a range
of platforms as they strive to master a variety of core concepts.

B. What is computational literacy? We define “computational literacy” via three
main features. For a core concept as defined in, e.g., [15], we expect a student to
provide a:

1. precise definition—to a degree of rigor commensurate with the student’s level;
2. rudimentary implementation—on a “reasonably simplified” computing plat-

form;
3. rudimentary analysis of an implementation on a “reasonably simplified” plat-

form.

“Reasonable simplifications” include, e.g., assuming that a key constant is a
power of 2 or a perfect square or assuming that CAnts’ constituent agents1

act (perfectly) synchronously, rather than only approximately synchronously
(cf. [5,22]).

1.2 Illustrating CAnt-Pedagogy via Some “Core” Concepts

A. The illustrative core concepts. We defend our pedagogical thesis by discussing
“reasonably simplified” versions of three core PDC concepts. We chose these con-
cepts because they invoke different strengths and features of the CAnt model.

1. Synchronization. The Firing Squad Synchronization Protocol (FSSP)—see
[8,13]—allows the agents of arbitrarily large CAnts to initiate a process at
the same step. A “reasonably simplified” FSSP should be accessible to early
students.
Enrichment opportunity #1. A more advanced discussion could also
address synchronicity—how to control clock skew [5,22] so that agents in neigh-
boring cells “hear” temporally proximate clock signals almost simultaneously.

2. Scalability. For many problems, one can craft a single algorithm that works
on CAnts having arbitrarily many agents.

3. Symmetry breaking (leader election). Initiating concurrent procedures is more
challenging for distributed agents than for parallel ones. CAnts admit a sim-
ple, efficient “leader-election” protocol for their (distributed) Ants.

With more space we could easily expand this list. As but two examples, the
mesh structure underlying CAs and CAnts provides access to the following
important topics. (a) The observation that many genres of computation can

1 “Agents” comprise the parallel FSMs within a CA C and the distributed Ants atop
C.
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be orchestrated as waves of data that pass though an array of identical com-
puting agents spawned the elegant notion of systolic array: a highly structured
form of data flow [11]. This topic has since advanced along several fronts [1,16].
(b) The advent of massively parallel computers via fragile VLSI-based tech-
nology heightened awareness of the importance of fault tolerance. Elegant and
effective schemes have been developed for tolerating both faults and failures in
mesh-based systems; cf. [7,10]. The details within the five just-cited sources are
too sophisticated for beginning students, but the underlying ideas are readily
accessible.

B. Our goal. We strive to help instructors appeal to a range of students, from
the nonspecialist to the aspiring professional, as they teach our illustrative PDC-
related concepts.

• Striving to serve the entire target range of students, we discuss synchroniza-
tion in Sect. 3 via a verbally described synchronization algorithm, together
with a small simulation of the algorithm and a simplified timing analysis.

• We discuss scalability in Sect. 4 via two examples. One is treated via an
elementary verbally described algorithm. The other accompanies a verbally
described algorithm with a program in pseudo-code and a proof of validity.

• We discuss symmetry breaking/leader election in Sect. 5 via a verbally described
algorithm accompanied by a proof of validity and timing analysis.

1.3 Platforms for Implementing PDC Concepts

Implementing concepts helps students assimilate often-subtle details. The fol-
lowing tools provide quite distinct “programming” styles for simulating CAnts.

– NETLOGO [14] employs a rather general agent-based approach.
– CARPET [21] specifies Agents via case-statement programs.
– MATLAB R© processes array-structured data using declarative programming.

Additionally, certain systolic computations can be specified perspicuously;
cf. [1,16].

Benefit #2 of CAnt-based Pedagogy. Several well-developed tools enable
students to craft implementations of core concepts and experiment with them.

1.4 A (Very) Brief History of CAs and CAnts

CAs have been studied since at least the 1960s [13] and continue to be of inter-
est to this day [6,8]. They provide an attractive alternative to other formal
models of computers [23], combining mathematical simplicity with levels of effi-
ciency that make them feasible candidates for many real computational tasks.
Indeed, CAs are remarkably efficient for a broad range of tasks that require
the tight coordination of many simple agents [2,3,8,13]. In [2], CAs imple-
ment an ant-inspired clustering algorithm; in [3], they support an ant-inspired
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algorithm for a genre of flow problem. In [12], a CA-like model greedily pre-
plans a route for a single robot to a single goal, by having the goal broadcast its
position. Several recent CA-based robotics-motivated studies appear in [20].
CAnts are introduced in [18], and algorithms are developed for some robotics-
inspired problems. In contrast to CAnts, the models in the preceding sources
support algorithms that are: • fully synchronous (there is a single clock that is
“heard” by all agents); • centrally controlled (there is a central planner); • not
scalable (the central planner knows and exploits the size of the system). Some
models are centrally programmable, using systems such as CARPET [21]; their
global name spaces preclude scalability. CAs have also been used for rather
general suites of parallel-computing applications in [21] and related sources.
Algorithms for (bio-inspired) pattern matching appear in [9] for one-dimensional
CAs and in [19] for (two-dimensional) CAnts.

2 A Technical Introduction to CAs and CAnts

2.1 Overview of the Models

A cellular automaton (CA) is obtained by placing a copy of a single finite-state
machine (FSM) at each cell of a square mesh. A Cellular ANTomaton (CAnt) is
obtained by deploying a team of mobile FSMs (Ants) atop a CA, at most one Ant
per cell. Each FSM communicates at each step with the FSMs within cells that
are adjacent along the eight compass directions (E,SE, S, SW,W,NW,N,NE);
it also communicates with an Ant that resides in its cell. Ants communicate
with their host FSM and with any Ants that reside in adjacent cells. FSMs
detect when the mesh-cell they reside in is on an edge or at a corner; thereby, a
CAnt can ensure that Ants never “fall off” the mesh. The preceding informal
definition will suffice for many styles of early introductory course. For other
styles, one could add detail and formalism, as found in, e.g., [17,18].

Enrichment Opportunity #2. One can distinguish Ants as physical devices
(say, robots) or as virtual algorithmic devices (which can simplify subprocess-
ing). In the former case, one could discuss inter-cellular message-transmission
speeds: the electronic propagation of signals vs. the electro-mechanical movement
of Ants.

2.2 Pedagogically Useful Details

A. (Orthant) Meshes. We enable teaching opportunities by building the world
of CAs and CAnts atop the (infinite) 2-dimensional orthant mesh2, whose cells
are labeled by all nonnegative integer-pairs, {〈i, j〉 | i, j ≥ 0}. Each mesh-cell
〈i, j〉 has ≤8 types of neighbors (or, adjacencies), corresponding to the 8 compass
directions; see Fig. 1(left).

2 Our 2-dimensional (orthant) mesh is easily restricted to one dimension or extended
to three.
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Fig. 1. A “prefix” of: (left) a mesh Mn; (center) a cellular automaton [CA] whose cells
contain copies of an FSM F; (right) a Cellular ANTomaton [CAnt] with three Ants.

B. Finite-State Machines. As their name suggests, finite-state machines (FSMs)
were historically viewed as abstract machines (such as, say, elevators) whose
behavior could be described and analyzed by characterizing “states” in which
all “interesting” actions occurred. Myriad texts (e.g., [17]) adopt this view of
FSMs. When teaching introductory computer science courses, though, students
may be more receptive to viewing (and experimenting with) FSMs specified as
programs of case statements, of the form indicated in Fig. 2.3 One can simulate
the operation of the FSM specified by such a program by iteratively cycling
through the specified conditions until one finds one that applies.

LABEL1: if INPUT1 then OUTPUT1,1 and goto LABEL1,1
...
if INPUTm then OUTPUT1,m and goto LABEL1,m

LABEL2: if INPUT1 then OUTPUT2,1 and goto LABEL2,1
...
if INPUTm then OUTPUT2,m and goto LABEL2,m

...
...

LABELs: if INPUT1 then OUTPUTs,1 and goto LABELs,1
...
if INPUTm then OUTPUTs,m and goto LABELs,m

Fig. 2. A finite-state machine (FSM) F specified via a program of case statements.

C. CAs and CAnts. One turns a mesh M into a CA C as follows.

– • Populate M’s cells with copies of a single FSM F, one per cell (Fig. 1
(center)); we refer to the FSM at cell 〈i, j〉 as F〈i,j〉.

• Endow FSMs with bidirectional communication channels to FSMs in
neighboring cells and to resident Ants (when they exist).

3 The CARPET programming environment [21] employs a similar programming style.
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– • Deploy c ≥ 0 Ants on M, at most one Ant per cell.
• Endow each Ant A with bidirectional communication channels to Ants in

neighboring cells and to the FSM in the cell that A is standing on.
– Endow FSMs and Ants with sensors: FSMs sense a resident Ant; FSMs and

Ants sense mesh-edges, obstacles, and goal-objects (when relevant).

At each step: each copy of F polls the states of FSMs in neighboring cells and
of any Ant that resides on F’s cell; each Ant A polls the state of the FSM in its
current cell plus the states of Ants on neighboring cells. Based on these polls,
FSMs and Ants performs actions such as sending signals (an FSM may, e.g.,
tell its resident Ant to move). FSMs and Ants then change state—and the cycle
repeats.

3 Synchronization

Synchronization in parallel/distributed systems seems at first blush to be an
advanced topic that requires substantial background. In fact, for CAs and
CAnts, the topic can be taught with varying levels of rigor to students hav-
ing varying levels of preparation.

3.1 FSSP: The Firing Squad Synchronization Problem

We describe an algorithm for synchronizing Agents within CAnts, in a way
that can “unfold” through a series of courses in the CS/CE curriculum, from
a CS0-type course (e.g., “Computer Literacy”) through a course in algorithm
design/analysis.

– The motivation for and definition of the colorfully named Firing Squad Syn-
chronization Problem (FSSP, for short) should be accessible to students even
in a CS0-level course. This can whet students’ appetites for more advanced
courses by exposing them to a problem that is both interesting and non-
“programmy.”

– The solution to the FSSP sketched here should be accessible to students in
any course that introduces recursion (as an algorithmic control structure).
Students can observe a sophisticated recursion within a “reasonably simpli-
fied” framework, solving a problem that some students will initially doubt
can even be solved.

– Our “simplified” analysis of the FSSP should be accessible to students
whose algorithmic preparation includes the Master Theorem for Linear
Recurrences [4].

The FSSP can be specified informally as follows. Start with n identical
autonomous Agents standing (physically or logically) contiguously along row 0 of
a mesh. Each Agent can communicate only with its immediate neighbors. (The
two end Agents have one neighbor each; all others have two neighbors, one on
each side.) The initially dormant Agents must enter an active state at the exact
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same step when told to do so by the leftmost (“leader”) Agent. The Agents’ only
tool for accomplishing the task is their limited ability to intercommunicate.

Solutions to the one-dimensional FSSP (the version just described) have been
known since at least 1962 [13]. Easily, any solution requires at least 2n−2 steps,
just so a message can reach the farthest Agent and this Agent can respond to
the leader. There exist solutions that use only this number of steps—in fact,
using only 1-bit inter-Agent messages [8]. Surprisingly, any solution to the one-
dimensional FSSP can be converted to a solution for any k-dimensional FSSP
that operates in exactly the same number of steps. (Note: This is actually a
readily accessible exercise for even early students.)

3.2 A Simplified Solution to the FSSP

We sketch a recursive algorithm for the FSSP that operates in roughly 3n steps
instead of the optimal 2n−2 steps. We then provide a “simplified” analysis that
avoids floors and ceilings. This algorithm and analysis should be accessible to
students at many levels. Beginning students should “get the basic idea”; students
who have the basics of recursion and linear recurrences should understand the
“simplified” details; really clever students should be able to build on this setting
to obtain an improved solution.

A. A simple recursive solution. The solution has each Agent send messages of two
types to its neighbors. These messages do not individually instigate actions; it is
the co-arrival of messages of distinct types that triggers actions, as will become
clear. Our verbal sketch ignores certain details that complicate the “end game”
of the FSSP; these details do appear (beginning at step 15) in our illustration
of the process in Fig. 3.

1. The initial stage. The leader Agent, ( in the figure) initiates the process
by sending two messages, m1 (• in the figure) and m2 (◦ in the figure), to its
eastward neighbor. Message m1 is sent immediately; message m2 is sent at
step 3.

– Message m1 travels at the rate of one Agent per step. It is relayed from each
receiving Agent to its eastward neighbor until it reaches the end of the line
of Agents, at which point it begins to travel westward at the same rate. (On
this return trip, each receiving Agent relays m1 to its westward neighbor.)

– Message m2 travels at the rate of one Agent every third step. It also is relayed
from each receiving Agent to its eastward neighbor.

At some point, messages m1 and m2 meet, i.e., arrive simultaneously, at some
Agent Ai. At this point, Ai becomes a subleader ( in the figure).

2. The inductive stage. Every newly anointed subleader recursively initiates
the described process simultaneously and independently into the half-line of
Agents to its left and into the half-line of Agents to its right. During these
recursive invocations: (a) references to “left” and “right” are adjusted in the
obvious way; (b) a (sub)leader encountered by a message in transit plays the
same role as an end of the line.
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Simplified
7-Agent FSSP

= LEADER

= SUBLEADER

̂ = SUBSUBLEADER

• = m1; ◦ = m2

Step A0 A1 A2 A3 A4 A5 A6

0. •, ◦

1. ◦ •
2. ◦ •
3. ◦ •
4. ◦ •
5. ◦ •
6. ◦ •
7. ◦ •
8. ◦ •
9. •, ◦

10. • ◦ •
11. • ◦ •
12. • ◦ ◦ •
13. • ◦ ◦ •
14. •, ◦ •, ◦
15. ̂•, ◦ ̂•, ◦
16. • ̂◦ ̂◦ •
17. • ̂◦ ̂◦ •
18. •, ◦ ̂ ̂ •, ◦
19.

Fig. 3. The FSP synchronization protocol illustrated for seven Agents

3. Terminating the process. The process terminates when an Agent learns that
both of its neighbors are subleaders—which will occur at the same step for
all Agents. Figure 3 illustrates the sketched procedure for seven Agents. Note
in Fig. 3 that the detailed algorithm suffers additional complication during
the “end game” of a synchronization, to accommodate the (unknown) num-
ber n. To wit, from step 15 in the figure onward, we employ sub-subleaders
(̂ in the figure) to prevent a subleader from activating too soon. Note
also that the rightmost Agent (A6 in the figure) acts differently from other
Agents. This does not mean that A6 differs structurally, only that the absence
of a righthand neighbor modifies its behavior—specifically, with respect to
termination.

B. Analyzing the recursion. We verify that the process terminates for all Agents
at the same step by showing that messages m1 and m2 meet during the initial
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stage at the midpoint of the line of Agents. (The analysis then recurses down to
quarter-points, eighth-points, etc.) To see this: Say that m1 and m2 meet when t
steps have passed since the initiation of the process. Ignoring floors and ceilings,
during this time:

(a) message m2 travels t/3 steps eastward;
(b) message m1 travels n steps eastward then x = t − n steps westward.

Clearly, m2 has traveled from the leader to At/3, while m1 has traveled from
the leader to An−x, where n − x = 2n − t. But m1 and m2 meet at this time,
so t/3 = 2n − t or, equivalently, t = 3

2n. This analysis verifies the algorithm’s
validity and also allows us to estimate the number of steps, T (n) needed to
synchronize n Agents:

T (n) =
3
2
n + T

(

1
2
n

)

=
3
2

(

1 +
1
2

+
1
4

+ · · ·
)

n = 3n − 3
2
.

Our recursive procedure thus allows the n Agents to synchronize within 3n steps.

4 (Algorithmic) Scalability in CAnts

Our algorithm for the FSSP never refers to the number of Agents being synchro-
nized; instead it uses the positions of the “leader” and the rightmost Agent as the
delimiters of the messages that enable the synchronization. It is this feature—
the fact that a single algorithm works for CAnts of arbitrary sizes—that we
identify as (algorithmic) scalability. Of course, there are other valuable notions
of scalability in PDC, but ours has advantages: (a) It requires no background
beyond basic definitions. (b) It can be accessible to beginning students. (c) It
can engage the students by requiring some thought to achieve. We present two
computational problems that illustrate these advantages.

4.1 Example #1: Scalably Creating Square Meshes from
Orthant Meshes

“Natural” computational problems for a CAnt C usually operate within a
(finite) square mesh, rather than the semi-infinite orthant mesh. For many such
problems—specifically those that supply an input to C in the form of a length-n
pattern σ0 · · · σn−1 left-justified along mesh-row 0—the following simple—and
scalable—process converts the orthant mesh to a square mesh that is “natural”
for the problem. See Fig. 4.

1. Simultaneously (via an FSP-synch, i.e., a synchronization using the FSSP):

(a) A〈0,0〉 sends a southeasterly signal, which is propagated toward the south-
east, i.e., toward cell 〈n − 1, n − 1〉;

(b) A〈0,n−1〉—which knows its identity because its easterly neighbor contains
no σ-symbol—sends a signal that is propagated southward (toward 〈n −
1, n − 1〉).
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0 σ1 σ2 σ3 σ4 σ5 σ6 σ7 σ0 σ1 σ2 σ3 σ4 σ5 σ6 σ7σ

Fig. 4. Using an input pattern to delimit a square mesh from an orthant mesh: (left)
measuring the square; (right) establishing the square mesh’s eastern and southern
boundaries.

Because CAnts operate synchronously (one of our “reasonable simplifi-
cations”), the signals from A〈0,0〉 and A〈0,n−1〉 arrive simultaneously at
〈n − 1, n − 1〉.

2. When A〈n−1,n−1〉 receives the signals from A〈0,0〉 and A〈0,n−1〉, it simultane-
ously:

(a) sends a message you are a bottom cell westward;
(b) sends a message you are a right-edge cell northward;
(c) initiates an FSP-synch among all cells to its northwest.

After this O(n)-step process:

– the cells {〈i, j〉 | 0 ≤ i, j ≤ n − 1}, the copies of A within these cells, and
the Ants residing on these cells can function as an n × n CAnt Cn;

– the cells {〈i, j〉 | [0 ≤ i ≤ n − 1], [j = n − 1]} function as the “right edge”
of Cn;

– the cells {〈i, j〉 | [i = n − 1], [0 ≤ j ≤ n − 1]} function as the “bottom row”
of Cn.

4.2 A Scalable Pattern-Reversing CAnt

The Pattern-Reversal Problem on an n × n mesh begins with an n-symbol input
pattern Π = σ0 · · · σn−1 along row 0. The challenge is to design a CAnt C that
copies Π along row n − 1 in reversed order. Our CAnt C employs n identical
virtual Ants, A0, . . . ,An−1, with each Ak deployed initially on cell 〈0, k〉. Figure 5
sketches a program that is shared by all Ants A. The sketch is easily expanded to
a formal program as in Fig. 2—that nowhere mentions the length n of pattern Π.

Figure 6 depicts the n-step (not counting the initiating FSP-synch) “multi-
trajectory” for C mandated by the program of Fig. 5. To validate C’s solution,
focus on an Ant Ar that begins at a cell 〈0, r〉. When Ar takes a southwesterly
(resp., southeasterly) step, this adds 〈+1,−1〉 (resp., 〈+1,+1〉) to Ar’s current
cell’s coordinates. It follows that, under the dogleg patterns of Fig. 6, Ar’s tra-
jectory consists of:
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Fig. 5. A sketch of a program for one of C’s (identical) pattern-reversing AntsA, as it: (1)
picks up the symbol in its initial cell c; (2) conveys the symbol, via a SW-then-SE path,
to c’s “mirror” bottom-edge cell c; (3) deposits the conveyed symbol in cell c; (4) halts.

0 σ1 σ2 σ3 σ4 σ5 σ6 σ7

σ0σ1σ2σ3σ4σ5σ6σ7

σ

Fig. 6. CAnt C’s trajectory as it copies the pattern along row 0 in reversed order along
row n− 1.

1. an r-step southwesterly walk from cell 〈0, r〉 to cell 〈r, 0〉;
2. an (n− r − 1)-step southeasterly walk from cell 〈r, 0〉 to cell 〈n− 1, n− r − 1〉.
The fact that cell 〈n − 1, n − r − 1〉 is the “mirror image” along row n − 1 of cell
〈0, r〉 completes the validation.

5 Leader Election/Symmetry Breaking

A central challenge in distributed computing is coordinating the actions of iden-
tical autonomous agents. An important approach to meeting this challenge is
to “elect” one of the agents as a “leader,” thereby “breaking” the “symmetry”
caused by agents’ being indistinguishable. Many leader-election protocols have
been invented, all requiring algorithmic sophistication. When the distributed
agents are Ants within a CAnt C, the underlying CA affords us a rather sim-
ple, efficient leader-election protocol. In particular, C selects as the “leader” the
unique Ant (if any exist!) that is “closest” to the origin Agent, A〈0,0〉, in the fol-
lowing sense. For each Ant A, we count the number of cells A needs to traverse
in order to reach A〈0,0〉 via a path of northward moves (toward row 0) followed
by a path of westward moves (toward column 0), under a regimen that gives a
westward moving Ant priority over northward moving one. (The latter clause
resolves ties when two Ants compete to enter the same row-0 cell.)
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5.1 The Leader-Election Process

(a) A〈0,0〉 initiates the process by simultaneously sending two messages:

1. an FSP-synch to start the process for any Ants that exist within Mn;
2. an eastward-bound message, no Ant yet.

– This message is relayed along row 0 up to Mn’s eastern edge, whence it
is bounced back toward A〈0,0〉.

– If the message reaches an Agent A that knows of an Ant—from receiving
Ant-related messages—then A “swallows” this message by not relaying it.

Note that if A〈0,0〉 receives the bounced-back message, and it has not received
an Ant-related message, then it knows that no Ant resides on Mn.

(b) When “activated” (via the FSP-synch), each cell that contains an Ant sends
the message i have an Ant northward, toward row 0.
(c) While a row-0 Agent A〈0,k〉 is active:

– The first time it receives the message i have an ant from its southern
neighbor, A〈1,k〉, it sends the message Ant in my column westward, toward
cell 〈0, 0〉.

– If it receives the message Ant in my column from its eastern neighbor,
A〈0,k+1〉, then it relays that message westward, toward cell 〈0, 0〉.

In both cases, A〈0,k〉 then becomes inactive.
(d) While a row-0 Agent A〈0,k〉 is inactive, it ignores all messages from its eastern
and southern neighbors.
(e) A〈0,0〉 learns about the presence or absence of Ants in one of three ways.

– If A〈0,0〉 receives the message no Ant yet from its eastern neighbor, A〈0,1〉,
then it knows that no Ant resides on Mn.
In response, A〈0,0〉 broadcasts no Ants found eastward and southward.

– • If the first message that A〈0,0〉 receives is i have an Ant from its southern
neighbor, A〈1,0〉, then a leader-Ant has been discovered.

• The first time A〈0,0〉 receives Ant in my column from its eastern neighbor,
A〈0,1〉, it knows that a leader-Ant has been discovered.

When either occurs, A〈0,0〉 broadcasts leader Ant found eastward and south-
ward. It also transmits you are the leader in the direction from which it
received the Ant-related message. This “congratulatory message” is relayed back
to the originating Ant by intermediate Agents.

In parallel with its broadcast, A〈0,0〉 initiates an FSP-synch to terminate the
procedure.
(f) When row-0 Agent A〈0,k〉 receives leader Ant found from its western
neighbor, A〈0,k−1〉, it relays the message eastward to A〈0,k+1〉 and southward to
A〈1,k〉.
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5.2 Analyzing the Leader-Election Process

A. Validation. The correctness of the process follows from the observations that:
(a) If there is an Ant upon Mn, then A〈0,0〉 receives precisely one message
i have an ant—and that comes from an Ant that is closest to A〈0,0〉. Competing
messages are swallowed by intervening Agents. The message no Ant yet tells
A〈0,0〉 there is no resident Ant. Thus, the leader-election process always halts,
with a closest leader Ant if one exists.

B. Timing. The leader-election process completes within 4n steps on an n × n
CAnt:

• ∃ Ant on Mn. Then A〈0,0〉 receives the message i have an ant within 2n
steps.

• � ∃ Ant on Mn. Then A〈0,0〉 receives the message no Ant yet within 2n
steps.

Within an additional 2n steps, A〈0,0〉 initiates an FSP-synch that both termi-
nates the process and announces either the election of a leader or the absence of
an Ant. In parallel, A〈0,0〉 sends a “congratulatory message” to the new leader.

6 Conclusion

Many PDC-related concepts that are quite sophisticated in general settings
have rather simple versions within the Cellular ANTomaton (CAnt) model.
An instructor can use CAnts to gently introduce such problems to students
who have only basic knowledge about topics such as linear recurrences, asymp-
totics, and Agents. When a student encounters the sophisticated versions of the
problems later, s/he has intuitions from the CAnt-based simplifications. Addi-
tionally, these intuitions can be strengthened using the many convenient tools
such as NETLOGO [14], CARPET [21] and MATLAB R©. It would be exciting
to try this approach with a range of classes, beginning even with CS0.
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Abstract. In the field of concurrency and parallelism, it is known that
the use of lock-based synchronization mechanisms limits the program-
ming efficiency of concurrent applications and reveals problems in thread
synchronization. Software Transactional Memory (STM) is a consoli-
dated concurrency control mechanism that may be considered as an
alternative to lock-based constructs for programming critical software,
although STM is still not fully accepted as a programming model for the
industry. It is our opinion that STM programming must be more empha-
sized in undergraduate courses on concurrency and parallelism. In this
paper we propose an academic experience regarding the introduction of
STM programming in concurrency courses by using the Clojure language
as the common vehicle for teaching Concurrent Programming. Java, the
most popular and extended programming language for teaching concur-
rency, becomes a second language in our course, and thus our students
can take advantage of Clojure API which is defined in Java in order to
simplify the development of programming, lectures and assignments.

Keywords: Clojure · Concurrency · Java · Locks · Mutual exclusion
Threads · Transactions · Software Transactional Memory · Performance

1 Introduction

At moment, programming with locks at different abstraction levels is the dom-
inant programming paradigm to teach how to program thread synchroniza-
tion in concurrency courses. There is an ample range of concurrent constructs
for programming concurrent applications; from the simple, standard locks or
semaphores to the most sophisticated syntactical constructs such as monitors,
they all offer good performance and a relative ease of use when it comes to pro-
gram concurrent applications. However, all these syntactical mechanisms suffer
from the lack of verifiability and reliability. Therefore, sometimes is difficult to
obtain solutions applicable to concurrent programs that guarantee safety and

c© Springer International Publishing AG, part of Springer Nature 2018
D. B. Heras and L. Bougé (Eds.): Euro-Par 2017 Workshops, LNCS 10659, pp. 266–277, 2018.
https://doi.org/10.1007/978-3-319-75178-8_22
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liveness properties even when using formal techniques. The probability of a pro-
gram code produced with non-verified synchronization mechanisms to crash or
yield a deadlock situation is not negligible. However, if we analyze popular con-
current/parallel programming languages such as Java or C ++, we find that
any specific API for managing concurrent tasks usually offer a wide variety of
lock-based synchronization tools, being only a few of them based on STM. In
particular, the last revision of Java [9] does not include native STM, whereas
the C++14 [11] revision does as an “experimental feature”. If we analyze the
situation in concurrency courses, the situation is very similar. Information about
STM programming model is mentioned superficially in concurrency courses. It
is pointed out that, although STM programming is a mature model commonly
used in research, it is still not used for commercial exploitation of parallel/-
concurrent software development [3,16]. Moreover, recent curriculum guides [5],
[17] that outline courses on concurrency do not pay special attention to that
topic or include STM contents in course programs. This paper shows the results
obtained from a study of teaching improvement in Concurrent and Real Time
Programming course, which was carried out at the University of Cadiz (Spain)
during one semester. The main objectives of the study have been:

(a) To introduce the STM model to students, as a viable alternative to the
blocking thread model (thread synchronization based on locks) along with
the model advantages and disadvantages.

(b) To provide the students with the necessary skills to allow the development
of concurrent programs that include transactions for shared data access by
Clojure’s concurrent threads.

(c) To use Clojure as a programming language on top of Java for transactional
programming in a multi-core environment, and thus to allow the students to
develop programming solutions by programming Clojure’s transactions.

(d) To show the students that both paradigms are not mutually exclusive but
complementary.

The paper is organized as follows: Sect. 2 briefly describes the academic con-
text of the study. Section 3 introduces the STM programming “paradigm” and
how is presented to the students. Section 4 shows the way STM that uses Clojure
is taught and Sect. 5 does the same with Java on Clojure. Section 6 gives further
details on how the experiment was developed by the students and evaluated to
check the performance of STM-based w.r.t. the solutions based on the classic
blocking thread model. Section 7 outlines the conclusions reached and the future
work to be developed.

2 Academic Context

The reported study was developed in the third semester of the CSE curriculum
at the University of Cádiz (UCA), Spain, in an undergraduate course. A total
amount of n = 199 students were enrolled in the course “Concurrent and Real
Time Programming”, which was divided into two groups for theoretical lectures
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and eight groups for practical work in the labs in this study. The semester lasted
fifteen weeks (60 h per student with 4 h of teaching per week: 2 h of lectures and
2 of practical work. The course structure and contents, according to the current
recommendation guides [5,17], were the next ones:

1. Fundamental concepts of concurrent programming: race conditions, mutual
exclusion, synchronization, and properties of concurrent systems (15%).

2. Mutual exclusion: algorithms for shared memory multiprocessors, semaphores
and software transactional memory1. (20%).

3. Monitors: Hoare’s monitor model, signaling semantics, verification of concur-
rency properties (security and liveness) (20%).

4. Message passing and distributed programs: RPC and RMI models, MPI,
rendez-vous (15%).

5. Real-time systems: periodic tasks scheduling based on static priority assign-
ment, scheduling tests, priority inversion anomaly and sporadic task schedul-
ing (30%).

The distribution of course topics within the 60 h of teaching (lectures + lab)
was the following one: fundamentals (4.5+6), mutual exclusion (6+8), monitors
(6+8), message passing (4.5+6) and real-time systems (9+2). 30 h of lab work
were spent to teach theoretical contents with the help of Java code-snippets,
which were taught according to a weekly schedule proposed by teachers. A total
of 3 h were spent to carry out the experiment regarding learning mutual exclusion
conditions and solutions, which were distributed following the next format: one
hour for a theoretical seminar on STM fundamental concepts and two hours
for practical work at the laboratory, where the students can experiment with
the STM Clojure and Java code-templates provided by teachers. The course
development has been supported by a Moodle virtual platform, which provided
students: previous readings to each lecture, the slides shown in classroom, and
all the code samples used in the exercises proposed to the students during the
semester.

3 Software Transactional Memory

It is well known that common synchronization techniques in concurrent pro-
gramming suffer from several drawbacks, i.e., if these techniques are not used
properly, or we forget to do a good lock release check control, the changes per-
formed by one thread in the program may not be visible to the other threads.
In spite of all that have been written about how to avoid these problems [12],
[7], and the numerous formal techniques that have been proposed recently, con-
currency control remains a complex issue in general. Not all people are able to
produce valid code (free from race conditions, threads starvation and livelock).

1 The transactional memory was introduced by us in this section during the academic
year 2016–2017 to carry out the study.
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The STM paradigm can change now the previous situation, i.e., it becomes
feasible to program safe and fair concurrent code by everybody, by introducing
the concept of transaction, which can be defined as a region of code that is
executed atomically, consistently and in isolation with respect to other program
regions. When two threads try to access the same data, the transaction manager
is activated to resolve the conflict, without resorting to explicitly use blocks in
the code. When a transaction is in progress, the transaction is completed and the
changes are written into memory if there is no conflict with other threads/trans-
actions. However, as soon as the transaction handler finds that one transaction
has progressed beyond a certain point that makes the current transaction unsafe
by compromising the data consistency, it undoes the changes and tries again.

When STM is used, the concurrent readings are done without any prob-
lems, and without the presence of contention. With the STM model, conflicts
only occur when a thread is writing to shared data; in that case, the trans-
action manager records the program state, so that all previous work done by
the thread can be rolled-back and then the thread retries until the transaction
can be successfully completed; this occurs when the threads that are modifying
data finish to do so and validate those changes in memory (commit). The STM
model is very suitable when considering critical sections with many readings and
occasional writings, where we can expect little containment [13]. By contrast,
the blocking model degrades the performance in this case, since it implements
a pessimistic control of the concurrency, eliminating the parallelism within the
critical sections. At this point, we consider the need to choose an implementation
of STM to work with our students. Compatibility with the Java language was
fundamental, as the students had developed all their practical assignments in
Java in other courses of the curriculum. There are multiple STM implementa-
tions for Java [1,7,10,14,15,20]. We did not choose any of them, because they
are too complex for the objectives we set for the teaching of STM. Instead, we
chose to use Clojure functional language, which is interpreted by the JVM, and
yields compatibility between both languages/APIs, which was very useful for us.

4 Teaching STM with Clojure

In Clojure, the STM separates the identity of an object from its state [18].
Clojure is a functional language where the states never change, as they are
immutable by definition. The changes are produced in identity of the object,
which is actually the visible information for the threads. Values are only
immutable within the scope of a Clojure transaction. By design, the identities
are the mutable part, and therefore it is not possible to inconsistently change the
states. Any attempt to change the identity of an object outside of a transaction
is considered illegal in Clojure, and thus an exception is thrown if that situation
arises.

Since there are no locks, concurrency is improved in comparison to the thread
blocking model [2,6]. Correct understanding of this separation between identity
and state is crucial for the students to internalize the operation of the STM in
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Clojure. It is also explained to the students that the STM model works as long
as its implementation can guarantee that threads always get a consistent view
of the world during the program execution. This is true with Clojure, so we do
not have to worry about checking it, which is an advantage for newcomers to
the STM world. The transaction manager, which supports STM, is responsible
for doing it for us. Teaching the Clojure transactional control to our students
was not an issue, since we used a set of Clojure code patterns, as the one shown
below. In that code our students can visualize how to perform the identity change
that we want to achieve by wrapping it in a transaction ((dosync...)). Clojure
implementation of STM guarantees that any transaction execution is atomic,
isolated and consistent. We also specially insisted on the similarities and dif-
ferences that the pattern presents with respect to the classic blocking thread
synchronization pattern with locks.

1 ; ; how to use t r an s a c t i on s in Clo jure
2 ; ; now , the shared data . . .
3 ( de f n ( r e f 0) )
4 ( p r i n t l n ”n i s : ” @value )
5 ; ; doing the t r an sa c t i on . . .
6 ( dosync
7 ( r e f−s e t n 1) )
8 ( p r i n t l n ”n i s : ” @value )

A thread’s transaction is only completed if there is no conflict with another
running threads/transactions at the moment, and the changes are written to
memory (commit). If some conflict is detected by the transaction handler, as
result of multiple threads concurrently accessing2 to the shared data, the trans-
action handler pauses the contending threads, undoes the transaction (roll-back)
and starts them again. Therefore, blocking situations among threads cannot arise
with Clojure transactions, though there is obviously a price to pay for that, i.e.,
transactions require an extra processing time [4] compared with thread synchro-
nization based on locks. As one part of the correct understanding and basic use of
Clojure transactions, there were foreseen practical work assignments at the lab-
oratory that included the following actions: the elaboration of a multi-threaded
application for the concurrent access to the variable n as in the previous code,
and the elaboration and analysis of a number of critical sections following the
previous model.

5 Teaching STM with Java over Clojure

Once the theoretical and practical concepts to develop secure transactions with
Clojure have been presented to students, we have extended our experience to
the field of Java language, which was used during all the practical lessons con-
ducted at the laboratory during the semester. To develop the analysis of the
STM behavior in the Java language, we began to familiarize the students with
the transactional pattern that had to be used, which is shown below,
2 Students were asked, within the corresponding assignment, to do just that.
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1 myThread h = (myThread) Thread . currentThread ( ) ;
2 whi le ( t rue ) {
3 t . beg inTransact ion ( ) ;
4 . . . // do c r i t i c a l s e c t i o n
5 i f ( t . commitTransaction ( ) ) {
6 break ;
7 }
8 }

The code illustrates how the general transaction pattern in Java surrounds
and protects the access to the shared data in a transaction, within which the
threads remains until the transaction ends up and the writing of data in mem-
ory is successfully validated. The pattern shows to the students the transaction
execution continuity, by following a continuous iterative form while the trans-
action needs to perform, and without the presence of locks. When this pattern
was correctly understood by our students, we went on to develop two Java STM
experiments in Clojure with the students, (1) concurrent multi-thread access to
a shared variable using a standard race condition, and (2) concurrent access to
a bank account abstraction3. Below we show the control of a race condition with
transactions. The control of the bank account is very similar, and is not shown
for reasons of space. The code provided to our students for solving a standard
race condition was as it follows,

1 import c l o j u r e . lang . Ref ;

2 import c l o j u r e . lang . LockingTransact ion ;

3 import java . u t i l . concurrent . Ca l l ab l e ;

4

5 pub l i c c l a s s Counter {
6 f i n a l p r i va t e Ref count ;

7

8 pub l i c Counter ( f i n a l i n t v a l I n i c ) throws Exception {
9 count = new Ref ( v a l I n i c ) ;

10 }
11

12 pub l i c i n t getCount ( ) { r e turn ( In t eg e r ) count . d e r e f ( ) ; }
13

14 pub l i c void inc ( ) throws Exception {
15 LockingTransact ion . runInTransact ion (new Cal lab le<Integer >() {
16 pub l i c In t eg e r c a l l ( ) {
17 i n t countNow = ( In t eg e r ) count . d e r e f ( ) ;

18 count . s e t ( countNow+1) ;

19 r e turn ( In t eg e r ) count . d e r e f ( ) ;

20

21 }
22 }) ;
23 }
24

3 All code shown in the rest of the document is available at the following URL: https://
antoniotomeu.wixsite.com/atomeu/stmjavaonclojure.

https://antoniotomeu.wixsite.com/atomeu/stmjavaonclojure
https://antoniotomeu.wixsite.com/atomeu/stmjavaonclojure
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25 pub l i c void dec ( ) throws Exception {
26 LockingTransact ion . runInTransact ion (new Cal lab le<Integer >() {
27 pub l i c In t eg e r c a l l ( ) {
28

29 i n t countNow = ( In t eg e r ) count . d e r e f ( ) ;

30 count . s e t ( countNow−1) ;

31 r e turn ( In t eg e r ) count . d e r e f ( ) ;

32

33 }
34 }) ;
35 }
36

37 }

The support for STM programming that Clojure offers to its users is imported
in lines 1 and 2 into the Java code. Line 6 declares the shared resource with the
implicit separation of the identity and the state that Clojure offers. The Counter
class shows an API with three methods. The first one is an observer that allows
the client to obtain the value of count. The other two methods are modifiers
that increase or decrease the value of count. Please, notice that count is a
counter with the initial value 0 set by the class constructor. The inc () method
increments the value of count, which is value referenced, and thus it is firstly
necessary to dereference it, i.e., we have to follow the reference to obtain its value
(line 17). Line 18 increments the counter value by means of an auxiliary variable,
and sets the reference to that new value by using count.set(CountNow + 1).
Since the program uses Clojure to support transactions the code that is executed
inside the transaction must implement the interface Callable, which models
the asynchronous execution in Java. This is not a problem, since the students
acquired familiarity with this interface from previous practical assignments. The
entire code of the method is programmed within only one transaction defined
in line number 15 and supported by Clojure. The referred transaction includes
the entire code of the method with the appropriate syntax delimiter, which is
written as:

1 LockingTransact ion . runInTransact ion {
2 // c r i t i c a l s e c t i o n
3 }

It was crucial for our students to understand that this delimiter encompasses
the persistent looping behavior shown above and that the transaction is continu-
ously running until it is capable of validating data writing into memory. If several
threads make a call to the inc () or dec () methods, the Clojure transaction
handler makes sure that the modification process is performed properly so that
the final value of count is consistent. Within the practical assignment that the
students had to develop, an exercise was included to develop a Java program
that activates multiple threads against an object of the class Counter. Half of
the threads must invoke the inc() method in a for loop and the remainder must
invoke the dec() method. To finish this experiment, students must check that



Teaching STM in Concurrency Courses with Clojure and Java 273

the resulting final value was 0. An example of that program, which we developed,
is contained in userCounter.java and can be downloaded and tested from the
given url.

6 Performance Analysis

We also wanted to offer to our students a benchmark for the comparison of the
performance between the transactional and the standard thread blocking model.
To do this, we developed an experiment, during practical work on transactional
memory in the lab, consisting on defining a fine-grain standard critical section
code region (n++), and to write code for threads that concurrently accessed to it.
We have used different control techniques with locks [8] to achieve secure access
to the critical section region. More specifically, the access to the region was
controlled using synchronized methods; versions using the standard API for
concurrency, i.e., the AtomicInteger, ReentrantLock and Semaphore classes,
included in the high-level API for concurrency control, were also developed; all
of those primitives were already known by the students. Finally, we have written
a version that wraps the critical region within a transaction written in Java by
means of the Clojure API. In addition, we have written an alternative version in
Clojure without the Java API, which supports access to the critical data section
through its native STM.

Using this code, and the Java previously described models, we proposed two
additional experiments to our students for conducting performance measure-
ment:

(a) Basic load experiment: in this experiment the students had to measure the
time required to execute a protected critical region that was defined either by
using the standard synchronization control techniques of the Java language,
or by using STM in Java by means the Clojure language.

(b) High load experiment: in this experiment the students must perform a tem-
poral analysis by using multiple threads which contend to access to a shared
resource during a high number of iterations (2 × 106).

Below we describe with more detail the experiments that our students devel-
oped under our direction.

6.1 Basic Load Experiment

An elementary critical section with a single write operation was used, and the
time required to execute that operation under all typologies of the blocking model
and under the STM in Java through Clojure were measured4. The students were
4 Time were measured using the nanoTime() method of Java System class. This implies

that it is a time that only and exclusively makes sense in the realm of the virtual
machine, and has no relation whatsoever was the time provided by the system clock.
However, Clojure, like Java itself, executes bytecodes on the JVM, which gives con-
sistency to the results.
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required to complete a tabular questionnaire with these times as part of their
practical assignment in order to make them aware of the actual time cost of each
control technique.

The table, once completed, should show to students how executing a single
transaction to provide a safe access to a shared resource nearly doubles the
execution time needed by a slower lock-based access in regular Java code. This
can happen even in a scenario without multiple threads in execution. Of course,
students checked through this exercise that the use of transactions of Clojure
was a good election in a situation that requires few accesses to shared resources.
However, when the number of accesses to shared resources is high, it is necessary
to evaluate the performance of using STM with Clojure in Java.

Fig. 1. Java synchronization vs. Java-STM

6.2 High Load Experiment

In this scenario, students were required to run each test program with an increas-
ing number of threads, from 2 to 32. Half of the threads had to increase the
counter, and the rest had to decrease it. In all cases the threads had to be
launched using a fixed-size executor. A condition had to be entered in all pro-
grams for waiting the executor to run all threads, followed by a control printout
of the value of the shared variable, which should always be 0 in our case. Each
thread made a total of 2 × 106 iterations. The students were then required to
develop the measurements for the scenario described, and to draw the curves
Time = F (threads). To do this, we made available the required GnuPlot scripts
to the students through the virtual platform of the course. We also provided
our own curves as a working guide, indicating the parameters that supported
our own experiment: Intel (R) Core i5-4440 CPU @ 3.10 GHz processor, with 4
physical cores without hyper-threading, using Fedora 22 as the Linux platform.
The version used for the JDK was 1.8.0 54, and version 1.8.0 was used for Clo-
jure. The results of our test, were given as a guide to the students, are shown in
Figs. 1 and 2.

The Fig. 1 (left) illustrates the behavior of standard synchronization tech-
niques in Java, and has no further interest. The Fig. 1 (right) shows the compar-
ative performance of standard Java synchronization techniques compared with
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Fig. 2. Java-STM vs. Clojure-STM

STM with Clojure in Java. We can appreciate that the performance of this par-
ticular implementation of the STM is bad for tasks that try to frequently access
the shared resource, since the necessary roll-backs are very expensive overhead
[10]. Finally, the Fig. 2 compares the usage of STM in both languages (Clojure
and plain Java). Even in this case, in which we compare a native Clojure imple-
mentation of STM with the Java implementation of the STM, we see how Java
always behaves better in the range of tasks analyzed, which cannot be considered
as a surprise, because Clojure is a pure interpreted functional language.

It is necessary to clarify, however, that the behavior we have shown here
corresponds to the analysis of really extreme scenarios, where the typology of
the developed threads is very specific, and always use the critical section to
perform data writing. It is important to persuade the students to analyze and
decide on these aspects by their own [19].

7 Experience Results and Conclusions

To measure the results of the experiment, we asked our students to respond a
survey (n = 124), where the answers range from 1 (completely disagree) to 5
(fully agree). The value 0 was used when the student did not respond to an item.
The items selected were:

(a) I have understood the concept of transaction as an alternative to the use of
blocking techniques based on locks.

(b) I have learned how to use transactions with Clojure to protect concurrent
access to shared data.

(c) I have learned how to use transactions with Java to protect concurrent access
to shared data.

(d) I have understood the advantages and disadvantages of using STM.

The results of the survey are shown in Fig. 3, which shows that the results
of the experiment were satisfactory, and that students finally reach an adequate
level of understanding of the concept of transactional memory presented, both
theoretical and practical.
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Fig. 3. Valuation survey

From the experiment results evaluation, we decided to keep on teaching the
STM as part of the concurrent programming education programme in future
editions of the course, and perhaps to slightly extend the time planned for this
topic within the course schedule. We also believe that it could be of great interest
for other courses on concurrency the development of a similar experience with
other programming languages such as Akka, Scala or perhaps C++ if it finally
includes transactional memory in the corresponding API.
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Workshop Description

Future service execution in different domains (e.g. smart cities, e-health, smart trans-
portation, etc.), will rely on a large and highly heterogeneous set of distributed devices,
located from the edge to the cloud, empowering the development of innovative ser-
vices. In such envisioned scenario, the main objective for the workshop was to set the
ground for researchers, scientists and members of the industrial community to interact
each other, fueling new discussions in the emerging area coming out when shifting
distributed services execution towards the edge. Analyzing the way existing pro-
gramming models and distributed processing strategies may support such a scenario
and to what extent these solutions should be extended or just replaced, is also fun-
damental to support the expected evolution in edge computing.

The workshop aimed at bringing together the community of researchers interested
in new applications, architectures, programming models, applications and systems
based on these computing environments. The workshop was organized with the support
of the mF2C, a H2020 funded project.

This was the first edition of the workshop, that took place in Santiago de Com-
postela, Spain, in conjuction with the Euro-Par annual series of international confer-
ences. The workshop format included a keynote speaker, technical presentations and a
panel. The workshop was attended by around 20 people.

The workshop received eight submissions, and each of them was reviewed at least
three times. The program committee took into account the relevance of the papers to
the workshop, the technical merit, the potential impact, and the originality and novelty.
From these submissions, and taking into account the reviews, six papers were selected
for presentation in the workshop (75% acceptance ratio). The papers focused on dif-
ferent aspects of the fog to cloud computing platforms: application requirements and
specifications, architecture, programming models, and deployment with containers.

The workshop included also a keynote presentation and a panel that discussed
technology and business challenges posed by the fog to cloud paradigm.

We would like to thank the Euro-Par organizers for their support in the organi-
zation, specially to the Euro-Par workshop chairs, Dora Blanco and Luc Bougé. We
would like also to thank John Kennedy (Intel) for his keynote presentation and
Christian Perez (INRIA) for his participation in the panel, as well as to all the pro-
gramm committee members.
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Abstract. The advent of fog computing devices as computing paradigm
enriching traditional cloud computing applications, paves the way to deploy
innovative services, typically not completely appropriate and well supported by
cloud computing technology. For example, fog computing is highly suitable for
services requiring high constraints on delay, such as dependable services in the
e-health arena or tracking strategies in manufacturing processes. Recently, some
initiatives have focussed on putting together fog and cloud computing to make
the best out of utilizing both, such as the reference architecture by the OpenFog
consortium or the Fog-to-Cloud (F2C) concept. However, such a scenario
requires a novel management strategy taking over the foreseen specific
demands. In this paper, we argue the benefits of a F2C architecture on a par-
ticular application to be deployed on a smart city or smart environment scenario.

Keywords: Cloud computing � Fog computing � F2C computing
Coordinated management

1 Introduction

Several efforts have been done recently analyzing the complex scenario brought by
putting together cloud and fog resources, such as Fog-to-Cloud (F2C) [1] or the recent
OpenFog reference architecture [2], growing from a logical evolution in the cloud arena
as shown in Fig. 1.
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The main rationale for this scenario boils down to using resources best suiting
expected services demands, be it at the cloud or at the fog, to support services execution
and related quality (QoS). Indeed, the advent of fog computing [3] has paved the way to
introduce novel concepts that are undoubtedly impacting on services performance in
typical smart environment. Particularly relevant are the effects on reducing latency,
improving security and limiting the traffic to be sent throughout the core network to reach
out the cloud.When fog and cloud are put together, a new scenario is envisioned, setting a
stack of resources (Fig. 2), where the resourcesmust bemanaged in a coordinated fashion
to facilitate an optimal match between technology capacities and services needs/
demands.

Moreover, such a coordinated management layer may also set the roots for new
services execution strategies based on sub-services decomposition, aggregation and
parallelization techniques. The effects of such an innovative strategy will have a large
impact on the development of new business models, novel market opportunities and
unquestionably new avenues for research; for example, devices naming, services allo-
cation or resources categorization, etc. It is worth noticing that the fog scenario is strongly
aligned to consider edge devices,what usually strongly links tomobility aspects.Mobility
indeed brings undesired constraints on resources management, such as volatility and
availability, what when added to the devices heterogeneity sets a very complex scenario.

In this context, the mF2C project [4], which is an EU Research and Innovation
action funded by the Horizon 2020 program, aims to design, implement and validate
novel management architecture and methodology for achieving the F2C paradigm.
Within this initiative, the demonstration part is supported by the deployment of the
mF2C project’s outcomes into three different use cases; each use case will bring a
different set of characteristics where the mF2C paradigm is expected to show its main
capabilities and benefits. This paper is intended to overview the main characteristics for
one of the proposed mF2C use cases as well as to envision the benefits brought by
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considering a successful deployment of the mF2C management solution within the
selected experimentations. In a nutshell, the proposed use case focuses on a scenario of
emergency management enriched with mF2C innovation to provide added value for the
smart city ecosystem: customers, companies, governments, citizens, etc.

The paper is structured as follows. Section 2, briefly introduces the mF2C archi-
tecture. Section 3 draws the proposed scenario and Sect. 4 identifies main expected
benefits. Finally, Sect. 5 concludes the paper.

2 Preliminary mF2C Architecture

In general, the main deployment for the mF2C vision and architecture will turn into
management agents, which will be deployed on a device to be mF2C-capable. The
strategy to define how devices joint mF2C, are discovered and identified, clustered and
categorized, etc. is still under research. However, a preliminary version of the main
building blocks of the mF2C architecture is shown in Fig. 3. The tentative architecture
considers three main blocks which work together to allocate the different expected
control and management functionalities. Notably, the main blocks are called:

• Controller: Includes the set of control and management functions, distributed in
various architectural entities.

• Gearbox: Includes the set of policies, strategies, configurations, etc., enriching
mF2C, and paving the way to adopting novel strategies, such as service orches-
tration, runtime systems, etc.

• Interfaces: Different interfaces are envisioned to guarantee internal and external
openness.

More in detail, the proposed set of control and management blocks include:

2.1 Controller Block

This block splits into three main components, resources, services and user, putting all
together the set of expected functionalities to deploy the whole Controller Block. They
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include aspects yet under active research, such as semantic adaptation, resource
management (monitoring discovering, virtualization, etc.), security and privacy, etc. It
is worth noticing that the dynamicity inherent to F2C resources, the heterogeneity
foresaw for the devices and systems comprising mF2C as well as the business rela-
tionship to be established among resources providers makes these aspects very chal-
lenging. Moreover, the matching between resources available and services demands is
also posing several challenges; for example, in resources/services taxonomy, catego-
rization, mapping and final allocation, considering active policies on resources provi-
sioning while always providing the expected quality (QoS) as defined in the Service
Level Agreement (SLA) set with the final user to run the expected service. The pro-
posed taxonomy should be dynamic enough to accommodate future developments.
When required, the service can be decomposed (atomized) into sub-services, turning
into a set of atomic services (sub-services), commonly requiring fewer resources and
facilitating new approaches, such as parallel execution. The set of sub-services may be
preconfigured and stored in a repository. Challenging issues in this area include: (i) to
find the appropriate place to locate the service decomposition, (ii) to minimize the
computing load while keeping fast reaction time, (iii) to define what extent these
functions must be associated to the aggregation points, (iv) to define the graph rules
including not only the sub-services but also their dependencies and strategies for
sub-services search, etc.

Finally, considering security, mF2C must benefit from the user-specific context
information to tailor service execution to the specific user demands. To that end, a
comprehensive set of functionalities must be defined, including but not limited to

Fig. 3. Architectural blocks for the mF2C management framework (from mF2C project)
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authentication, privacy, location, profiling, agreement policies, etc. (i.e., User and
Context Functions). All these functionalities must meet the business policies in place to
guarantee real mF2C deployment.

2.2 Gearbox Block

The set of preliminary components defined to build the Gearbox block focus on two
main components: monitoring and service orchestration. The first is required to inform
decision making systems such as service orchestration; it should be dynamically
configurable, and support derived or aggregated metrics at the edge for maximum
scalability of the overall solution. The second is responsible for allocating services to
the best suitable resources; the optimal allocation will depend on many factors, such as
historical analysis, real-time resources configuration, QoS, etc.

2.3 Interfaces

Different interfaces are envisioned to ease the mF2C interconnectivity and interoper-
ation. The whole system must support a northbound and southbound interface to
vertically facilitate connection within the F2C architecture. The Eastbound interface
enables multi-cloud/fog communication within the same layer and the westbound
interface is envisioned for control functionalities.

3 The Smart City Scenario

Worldsensing will take advantage of mF2C project by implementing secure and
powerful specific IoT services based on a prolific relation between end-devices and a
central platform. This SME is interested in both the scalable and flexible approach
brought by the mF2C resources management and its suitability to deploy services out
of a data-center, and therefore move the computation close to the origin of data. The
synergies and the knowledge obtained in the proposed use case will enable more
ambitious developments to thus allow the access to wider markets that are not currently
explored by Worldsensing due to the limited availability of cost-effective technology in
this context. In this section, we will present Worldsensing group and its use case within
mF2C.

3.1 Worldsensing Group

Within the mF2C project, one of the use cases is brought by Worldsensing
group. Worldsensing was founded in 2008 and currently employs more than 60 people
in Barcelona and London premises. It enjoys exponentially growing sales worldwide: it
concluded its Serie-A investment in early 2013; in 2016, it received a Serie-B inversion
from international parties; and, in 2017, it is currently focusing on a novel round of
Serie-C investment. The great grow of Worldsensing group is depending on its main
expertise: the company provides high-quality sensing and machine-to-machine tech-
nologies and services to specific industry verticals. It has two product portfolios: one

Benefits of a Coordinated Fog-to-Cloud Resources Management Strategy 287



being Smart Traffic solutions for Smart Cities, and the other being Heavy-Industry
Monitoring solutions. As for smart traffic, it counts on its own smart parking product
and a journey-time monitoring solution through its acquisition of smart traffic giant
Bitcarrier. As for heavy-industry monitoring, it instruments critical infrastructures such
as buildings, bridges, tunnels, ports, wells, etc. and offers seismic monitoring capa-
bilities for engineering, oil/gas/water acquisition and CO2-sequestration purposes.

Worldsensing is currently market leader in most of above M2M/IoT industry
monitoring markets. It has won numerous prizes and awards, has enjoyed vast press
coverage by the WSJ and the BBC, has shaped many IoT/M2M standards, and has
driven the R&D developments in Europe through the participation of numerous FP7
and H2020 projects.

3.2 Emergency Situation Management in a Smart City (ESM)

Continuing into this century, society has supported a movement of people from rural
areas to cities. Nowadays, more people live in urban environments than in rural ones. It
is estimated that this process will not stop and within 20 years the urban population will
be around 5 billion. The big challenges for the whole society will be related to resource
management in these overcrowded environments. Worldsensing works in the devel-
opment of a model for smart cities and its products intend to solve current and future
problems related to the use of innovative technology to challenge emergency
management.

The proposed “Emergency Situation Management” use case within mF2C project
aims to validate a novel and innovative hybrid architecture that serves (i) to analyse
flows of people and infrastructure state in order to provide useful information to private

Fig. 4. WOS IoT industrial device
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customers and authorities, (ii) to detect a possible emergency in real-time, and (iii) to
decrease the necessary resources in terms of energy, latency, etc. to respond to specific
situations in accordance with the applications requirements.

The proposed use case is based on the implementation of distributed elements of
capturing signals and data (Worldsensing IoT device, see Fig. 4) as well as a cen-
tralized asset management system to integrate heterogeneous industrial-related infor-
mation in a flexible and efficient cloud platform (Worldsensing asset management
platform, see Fig. 5). The mF2C paradigm should suggest policies to manage the
aforementioned hybrid architecture where services and decisions have to be taken in
real-time for improving the performance of today industrial systems.

Normally, the information captured by today IT (Information Technology) and OT
(Operational Technology) devices is stored and processed in a cloud computing system
to present such information to the end user. Occasionally, in case of emergency situ-
ations, the information captured by the devices is processed through FOG devices to
optimise the Quality of Service (QoS) factors. In mF2C project, a complete approach
where asset management and control data are considered in the same solution suite.

The proposed use case is subdivided into 3 phases: (i) To assess the performance of
a central industrial management system in terms of key parameters in normal opera-
tions: latency, reliability, data elaboration, etc. (Cloud Computing assessment); (ii) To
assess the performance of monitoring devices considering specific requirements when
emergency situation are detected, i.e. an accident (Fog computing assessment); and
(iii) To assess the mF2C solution, where a hybrid framework guarantees high Fog and
Cloud computing performance, both during ordinary operation and emergency man-
agement situation. The results have to be at least similar to point 1 and 2 where the
centralized and distributed problems are solved in isolated fashion (mF2C model
assessment).

Finally, Fig. 6 shows the technological perspective deployed in the use case. This
last figure shows the different components provided by Worldsensing and mF2C
consortium as well as its location in the proposed Smart City scenario.

Fig. 5. WOS asset management platform
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4 Potential Impact Brought by mF2C

The Smart City use case aims to integrate industrial solutions to provide advanced and
more efficient services to both end-users and decision makers. The introduction of
mF2C paradigm within the Smart City ecosystem will provide more scalable and
secure commercial solutions. Indeed, the mF2C implementation will enable progressive
scaling of the infrastructure complexity and can absorb the increasing needs of com-
putational demand (such as due to big data). This is very relevant, considering market
opportunities and business forecast in Smart Cities and IoT. The developed manage-
ment system will facilitate scaling and lowering infrastructure cost, especially for the
envisioned smaller-scale deployments that today are too expensive due to the need for
over-dimensioned dedicated infrastructure. The mF2C solution will also enable the
introduction of new computing paradigms, including edge-technology computing
approach, where computation is moved close to the “edges” of the Internet to reduce
risks of failure and delay, and improve reliability in the sense that data is not lost while
the edge device is temporarily disconnected. This approach will enable cities to install
fog computing infrastructure locally and enable new real-time services. More con-
cretely the mF2C benefits in the context of managing Emergency Situations in smart
cities may be summarized as:

• Increasing service reliability by 30% and Quality of service (QoS) by 10%
• Decreasing delays by 30%
• Decreasing operational costs (OPEX) by 10%.

Worldsensing will take advantage of the mF2C framework to build secure and
powerful specific IoT services based on a prolific relation between end-devices and
central platform. The synergies and the funding obtained in the project will enable
more ambitious developments which will permit to access to wider markets that are not
touched currently due to the limited availability of suitable platforms. The issues
addressed in this project will be of great importance to improve energy-efficiency,

Fig. 6. Technologies deployment in the smart city scenario
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robustness, ease-of-use and security required for meeting the needs of the World-
sensing’s roadmap towards deploying applications in urban and industrial scenarios. In
particular, mF2C achievements will allow us to design new IoT services, therefore,
creating new and strengthening considerably existing business lines.

5 Conclusions

In this paper, we describe the main impact brought by deploying a coordinated man-
agement strategy for a scenario combining fog and cloud resources, on a specific
service addressing the management of emergency situations in a smart city. The pre-
sented benefits do not only focus on the specific service itself, but also put the focus on
the impact it may have on a well-established company deploying such a service. Thus,
the main objective of the paper does not deal with conceptually deploying architecture
to support such a management, what is briefly introduced in the paper, but on high-
lighting the benefits brought by such a deployment. Certainly, the proposed scenario is
just one vertical showing the foreseen benefits, and many others are also envisioned,
such as on the e-health area or in smart transportation.
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Abstract. Amazing things have been achieved in a wide range of appli-
cation domains by exploiting a multitude of small connected devices,
defined as the Internet of Things. Managing of these devices and their
resources is a task for the underlying Fog technology that enables build-
ing of smart and efficient applications. Currently, the Fog is not imple-
mented to the extent that we can submit application requirements to
a Fog provider, select returned resources and deploy an application on
them. A widely adopted workaround is to deploy Cloud applications that
exploit the functionality of IoT and Fog devices. Although Clouds provide
virtually unlimited computation power, they could present a bottleneck
and unnecessary communication overhead when a huge number of devices
needs to be controlled, read or written to. Therefore, it is reasonable to
formulate use cases that will exploit the Edge and Fog functionality and
define a set of basic requirements for Fog providers.

Keywords: Cloud computing · Fog · Edge · Internet of Things
Fog to cloud

1 Introduction

Small and powerful computing devices have reached a production price low
enough to become affordable, thus also to be attached and used on things
(sensors, actuators) in different domains. Formation of the so-called Internet
of Things (IoT) [1] produces a huge amount of new computing power, new capa-
bilities and different innovative ways of employing computers and things. The
management of new IoT capabilities has become a hot topic in the field of Com-
puter Science, which is also evident from numerous current initiatives [2].

On the other side, we have a mature technology of Cloud computing that
brought infrastructure provisioning, leasing and management to a new level. It
has become a synonym for infrastructure provision to users and stakeholders
that need to run their services. IoT-enabled devices that share data over the
Internet probably, at some point, access resources that are stored or processed
on a Cloud-powered infrastructure.
c© Springer International Publishing AG, part of Springer Nature 2018
D. B. Heras and L. Bougé (Eds.): Euro-Par 2017 Workshops, LNCS 10659, pp. 292–303, 2018.
https://doi.org/10.1007/978-3-319-75178-8_24
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IoT-based applications require reliable technology for data processing. Cloud
computing is currently the preferred approach due its maturity and scaling capa-
bilities, as they allow services to grow and shrink in-line with demands. Cloud
owners and users have the ability to choose from a large portfolio of high-quality
tools for managing IaaS from centralized data centres [3,4]. Unfortunately, these
tools are currently not capable of managing IoT or Edge infrastructure. There-
fore, both domains are not reaching optimal resource utilization levels. With the
new Fog paradigm [5,6], new concepts of service infrastructure will arise com-
bining the lease of Fog and Cloud resources. Efficient resource management of
Fog and Cloud resources is the main topic of the mF2C project [7].

In this paper, we first introduce the enabling technologies and explain the
Fog and Cloud application concept, as embodied in the mF2C project, and lay
the groundwork for its usage in conjunction with above-mentioned candidate
IoT domains. Then we present challenges and fields of interest through use cases
in candidate IoT domains that could benefit the most from the mF2C approach.
Through analysis of these use cases, we have found out that the underlying
requirement for our new platform is that it should be more distributed and less
dependent on the Cloud. We further describe the concrete benefits of applying
the Fog and Cloud application context to the presented use-cases. Most notably,
we describe the Smart Boat use case that is based on Sentinel IoT devices. In
this use case, the focus is on minimizing the communication between IoT devices
and Cloud, as well as on encouraging autonomous collaboration of multiple Sen-
tinel devices, demonstrating benefits and compliance with the Fog to Cloud
architecture.

2 Fog and Cloud

The Cloud application concept is well known and widely accepted in the indus-
trial and academic fields, while the Fog concepts, which enable Cloud functional-
ity available on the Edge [5], only recently began to properly evolve as first appli-
cable architectures have become available, e.g. Open Fog Consortium recently
made its architecture publicly available [8]. Because the Fog approach is still in
early stages of development, current applications for IoT devices mainly follow
the client-web server approach with limited scalability as it allows Cloud-based
orchestration only. This concept prevents powerful Edge devices, like gateways
and end-devices, to efficiently share resources in a complex application data pro-
cessing work-flow. As one might deduce from the application domains introduced
in the following sections, a better way of understanding and utilizing the under-
lying technology is required to enable efficient deployment and management of
next-generation Fog and Cloud applications. The mF2C project [7,9] initiative
will provide a multi-layer platform with strong focus on the use of devices on
the Edge. The list of improvements that mF2C brings into the Cloud and IoT
area is large, therefore we shall, for the purpose of this article, limit ourselves to
the following few:
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Efficient processing. Processing raw data near the source, while storing into
the Clouds only filtered and cleaned data, contributes to offloading Cloud
resources, saving the bandwidth and removing single points of failure.

Security and privacy. Processing data near the source allows removing sen-
sible data before its transfer into the Cloud. This improves security while
minimizing the attack surface. Moreover, the mF2C consortium will focus on
developing tools and libraries for secure IoT communication, such as anony-
mous authentication [16].

Advanced orchestration. Improving resource usage on Edge devices opens a
new dimension of scaling and contributes to application orchestration. The
mF2C goal is to provide the foundation of intelligent data processing, which
could be moved from Fog to Cloud or vice-versa, depending on current avail-
ability of resources.

Autonomous behaviour. Giving more knowledge and processing power to
Edge devices will make the system more resilient, self-healing and capable of
solving issues faster and autonomously at the Edge.

Fig. 1. The conceptual schema of mF2C platform and domain devices.

From the architectural perspective, mF2C would like to employ the power of
Fog resources and provide seamless integration with Cloud infrastructure man-
agement. The basic concept and mF2C layers are presented in Fig. 1. These
layers are:
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Cloud layer. The multi-Cloud resources from multiple private or public Cloud
providers.

Fog layer. The Fog layer includes everything between Cloud and IoT devices.
The list includes gateways and smart agents that are capable of: provid-
ing processing or storage resources to applications, managing the application
work-flow execution or handling application requests.

IoT layer. Beside resources from Cloud and everything down to the Edge, the
Fog as a whole, is not complete and useful without sensors and domain-
specific devices that are connected to the Edge. These resources are mainly
sensors, actuators and devices that interact with the application resources or
notification endpoints, such as smartphones, smart watches, etc.

Each individual layer can have more complex hierarchy of devices (sub-layers)
that provide all required resources to the application. The functionality con-
tributed by the Cloud, Fog and IoT resources will be shared to the application
through the mF2C framework, which will develop mechanisms to discover and
manage the resources.

The main goal of mF2C is to provide a framework that will allow develop-
ment and seamless deployment of Fog applications on the presented architecture.
Furthermore, the mF2C platform will follow the same multi-tenancy principles
and provide the ability to share, use and buy Fog resources in the same way
as it can be done in the Cloud. In this way, mF2C brings the Fog closer to
the users, makes it more accessible to the stakeholders and provides a strong
resource backbone for the future IoT applications. Users and stakeholders will
benefit from employing the mF2C concepts on IoT domains, resulting in more
efficient and safer applications.

3 Challenges and Fields of Interest for Fog to Cloud

IoT devices are on the rise and scientists, as well as business developers, are
daily finding new ways of their usage. Their attempts to create the most opti-
mal software and hardware solutions encounter many obstacles and challenges,
which will be tackled one by one and solved in the future when Fog will be
mature and fully-operable tool. Our research brings on a plate few projects and
use-cases that generate challenges and drive the Fog-to-Cloud research. The first
step in building a Fog-to-Cloud framework is the provision of interoperability
among components and protocols. The second step is the inspection of best pos-
sible use-cases to demonstrate the benefits of the new functionalities that will
be reached through Fog-to-Cloud. In this section, we first focus on the inter-
operability approach defined by INTER-IoT project and afterwards we present
the hottest application domains, populated with IoT devices that most eagerly
strive for new improvements in the IoT/Cloud management fields - Transport,
Health and Marine.
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3.1 Cross-Layer IoT Platforms Interoperability

A growing number of heterogeneous IoT architectures, standards and solutions
across all application domains in the past few years have been driven by advances
in the underlying technology. This has resulted in isolated solutions at all lev-
els that are, although efficient for a specific application, isolated from the rest
of the IoT ecosystem. Bridging this gap is difficult because there is no emerg-
ing standard that would be embraced by the majority of solution providers. To
allow cross-platform and cross-domain interoperability, the INTER-IoT project
[12] is aiming at the design, implementation and experimentation of an open
cross-layer framework and associated methodologies to provide voluntary inter-
operability among heterogeneous Internet of Things (IoT) platforms. It will allow
the development of smart and efficient applications, atop of different heteroge-
neous IoT platforms, spanning single and/or multiple application domains. The
two application domains and use cases addressed in the project, in which the IoT
interoperability framework will be applied, are m-health and port transportation
and logistics.

Interoperability is implemented at all architectural levels:

– Device level interoperability supports seamless inclusion of novel IoT devices
and their inter-operation with already existing, even heterogeneous ones,

– Networking level interoperability supports smart objects mobility and infor-
mation routing. This will allow design and implementation of fully connected
ecosystems,

– Middleware level allows seamless service discovery and management system
for smart objects and their basic services,

– Application service level enables reuse and exchange (import/export) of het-
erogeneous services between different IoT platforms,

– Data and semantics level allows common interpretation of data and infor-
mation based on a globally shared ontology in order to achieve semantic
interoperability between heterogeneous data sources.

In the context of Cloud and Fog computing, components developed at device
and middleware levels could be leveraged by novel Cloud to Fog approaches.
In the context of IoT middleware interoperability, bridging among different
platforms (e.g. FIWARE [13], OM2M [14], universAAL [15]) may be achieved
through Cloud deployment of the INTER-IoT Inter-middleware component. On
the other hand, a more federated architecture may be appropriate for settings
where bridging is needed towards the Edge in order to take into account per-
formance, computing complexity and privacy requirements. Although modular
in design, this interoperability layer would need a robust system to manage
Cloud/Fog deployments.

Interoperability at device level is achieved through the Device-to-Gateway
communication pattern. This pattern is commonly used when less widely avail-
able radio technologies are needed, especially in the case of interoperability
between legacy non-IP-based devices.
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IoT gateways have evolved beyond the sole role of ensuring networking oper-
ations. Nowadays they are providing more advanced functionalities that have
to be shifted to the Edge of the network so that they are closer to the devices.
Those advanced functionalities (more storage, simple rule engines, advanced API
access, etc.) that need more computing power than constrained devices can pro-
vide, can be implemented through Fog Computing.

Shifting Cloud Computing to the Edge of the network in the case of IoT
gateways implies virtualization of those gateway functionalities that need more
computing power. INTER-IoT solves this by creating a dual physical/virtual
gateway, where the physical gateway only performs network-level operations. Its
virtual counterpart is located in the Fog, where all other functions are performed.
A fast, secure and robust network link is created between the physical and virtual
part, so that there is no data loss and the physical-virtual gateway is perceived
as a single advanced IoT gateway.

The mapping of INTER-IoT Inter-Layer interoperability components to the
mF2C conceptual architecture would facilitate their deployment and manage-
ment. The Cloud layer, would still remain the most capable storage and process-
ing backbone, hosting the Inter-Layer application and Inter-Layer middleware
components. In specific cases, the middleware component would be deployed at
the Edge level. At Fog layer, the virtualized gateway would provide necessary
computing power to its physical counterpart at IoT layer.

3.2 Intelligent Transport Systems

Intelligent transportation systems (ITS) form a complex and dynamic environ-
ment that combines a huge amount of devices, each of which has its own logistic
purpose. Most important of all ITS devices are road vehicles, which have a great
information sharing potential. These are employing next generation (5G) com-
munication systems to collaborate, reach consensus in road usage and contribute
to safer and faster transport of goods and people. Even though vehicle to vehi-
cle (V2V) and vehicle to infrastructure (V2I) communications are already well
defined and known, their exploitation is still in its infancy. Nowadays all collab-
orative decisions and majority of communication is driven through the Cloud.

One such project that works within the scope of ITS is TIMON [11], an
EU project initiative, which aims at delivering a framework of services to all
users of the transport ecosystem – drivers, vulnerable road users and businesses.
TIMON services will be structured in five key areas, namely Driver assistance
services, Services for vulnerable road users, Multi-modal dynamic commuter
service, Enhanced real-time traffic API and TIMON collaborative ecosystem. A
detailed presentation of TIMON architecture is presented in Fig. 2.

TIMON services will gather data from Open Data sources, mobile devices,
roadside units (RSU), vehicle on-board units (OBU) and process the data in the
Cloud to provide routing services and hazard warnings to the users. A small frac-
tion of communication will go directly between the devices through V2V or V2I
communication, but when devices are not in the range of a direct wireless connec-
tion, the communication will go through geo-messaging servers. Geo-messaging
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Fig. 2. TIMON Cloud architecture

servers are deployed in the Cloud and take care of location-based warning mes-
sages. One of the major reasons to use Cloud services is that the technology
is mature enough to provide a required level of privacy, as well as trust, and
is easily accessible to the stakeholders (municipalities) that do not need to buy
and maintain the server infrastructure.

The TIMON Cloud together with OBU and RSU is a valuable manifestation
of a large dynamic Fog to Cloud system. Therefore we have a large expectations
from the TIMON results and their requirements which will help us in under-
standing the dynamic Fog applications. The TIMON example can be perfectly
mapped onto the mF2C conceptual architecture. The TIMON Cloud, which is
in Cloud layer, remains to be the most capable storage and processing back-
bone, but it produces high latency as it is not close to the Edge. The majority
of on-board units (OBU) and roadside units (RSU) primarily become IoT layer
devices for sensing and notification endpoints. The Fog layer devices, which are
gateways or smart agents, become powerful hubs between the Cloud and other
Fog devices. Note that this powerful device could be also the RSU which provides
the resources to OBU which share the resources with other OBU.

3.3 Ambient Assisted Living (AAL) and Homecare

Ambient Assisted Living (AAL) is a term that describes the way we make lives
of elderly people, who want to live independently for as long as possible, easier
and more manageable through the use of technology. It embraces the ambient
intelligence paradigm, which seeks empowerment of elderlies’ capabilities by the
means of digital environments, built upon the IoT model. These environments are
sensitive, adaptive and responsive to human needs. In other words, it enhances
person’s independence, lowers the cost of health-care and lessens the burden
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upon the caretakers by employing both wearable and ambient devices (such as
ambient temperature sensors, sensors for gas leaks, GPS locators) and integrates
them into a RPM (Remote Patient Monitoring) system. The RPM system mon-
itors and records everyday life activities, it enables quick detection and response
to problematic situations, as well as remote communication. It enables caregivers
to remotely access data on elder’s level of activity and medical condition and
thus also to assess whether treatment needs to be changed, whether the elder
complies with the care plan, as well as to contact them when in need. However,
the RPM system can also act on the data independently, calling emergency in
case of fall or injury, or when a presence of a poisonous gas is detected within the
elder’s home environment. A possible upgrade to this operation of AAL could
be the introduction of artificial learning, which would enable the system to rec-
ognize correlations of the present situation with the past negative situations and
to warn the elder about that.

The operation of mobile and wearable sensors in the context of AAL is divided
into a three-tier Body Area Network (BAN). BAN includes Intra-BAN (which
consists of devices in close proximity to elder’s body), Inter-BAN (which consists
of devices that communicate directly with the devices within Intra-BAN) and
Beyond-BAN (all other devices, including the internet). In general, smart objects
that form the AAL can either be active (local decision making is possible with
them) or passive (they just store data).

The aim of the Ambient Assisted Living Health Platform (AALHP) project
is to integrate already existing and compatible smart house installations into a
home-care product, which will build upon the already existing health-care plat-
forms. The Fig. 3 presents AALHP that will use data both from the environment
(from ambient devices) and from the devices, worn by the user (wearables), most
notable of which will be the wrist watch or wrist ring, worn by the elder, and his
or her smartphone. It will integrate and analyse this data, and then act upon
the results, either through smart home devices or through notifying the elder or
some other authorized entity. Analysed data will be available to all parties, who
have an appropriate level of access to elder’s Personal Health Record (for exam-
ple, the elder’s physician and relatives). AALHP will also predict likely outcomes
of the present condition, based on past cases, and act accordingly (for example,
by advising the elder to act differently in a particular situation, or overriding
smart home appliance’s operation).

The AALHP approach is an example of an application domain that could
greatly benefit from novel Fog-to-Cloud (F2C) approaches, as it defines specific
technical, legal and ethical requirements. On the technical side, its complex event
processing (CEP) and analytics could be pushed to the Edge. Edge processing
should also allow for opportunistic clustering of devices (e.g. a physician exam-
ining the patient at home, a person entering her car and devices connecting to
the car’s system, temporary usage of medical devices for a specific therapy, etc.).
The mapping of AALHP on the mF2C architecture is straightforward, with the
High Performance Analytics (HPA) residing in the Cloud layer and the IoT Con-
centrator module at Fog layer, where basic CEP is performed in order to detect
key event to be transmitted to the Cloud.
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Fig. 3. The schematic architecture of the AALHP.

Moreover, on the non-technical side, performing part of the processing at the
Edge would implicitly solve privacy concerns (privacy by design, privacy preserv-
ing analytics). Specific solutions may be proposed for consent management in
specific conditions, where consent could be waived in emergency situations and
additional information forwarded from Edge to Cloud services or ad-hoc device
clustering allowed.

3.4 Marine Ecosystem

In the marine domain, there is a lot of interest for the use of IoT devices on boats,
especially for monitoring and control of the vessel. The main reason is to have a
total overview over the location of your fleet, as well as to detect malfunctions
or dangerous situations. The basic portfolio of marine IoT solutions functions
includes GPS tracking, beige water monitoring, battery monitoring and battery
drain alarm, door hatch alarm and anchor alarm.

Sentinel Boat monitor device [10] covers all above-mentioned functions. It
also has additional sensors (such as an accelerometer) and the ability to con-
nect additional Bluetooth Low Energy (BLE) sensors. These further expand the
functionality to, for example, capturing weather data and motion detection. In
order to satisfy the interest of larger stakeholders, such as insurance companies,
the next generation of Boat monitoring devices will implement video and voice
capturing capabilities. The capacity of collected data on the boat presents a huge
issue for Marine IoT systems that generally have intermittent communication or
expensive bandwidth connection to the Internet and consequently to the Cloud.
Vessels are frequently out of WiFi or 3G/4G coverage, which means that data
processing should be done locally. In this aspect, the target platform for future
IoT applications should be more distributed and less Cloud dependent.

A new Smart Boat solution has been designed that introduces the middle
layer between Cloud and IoT devices and provides a possibility to offload the
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Fig. 4. The architecture of the Smart Boat use-case based on Sentinel Devices.

processing locally or nearby devices. Figure 4 presents the Smart Boat process-
ing and networking piece in the Fog/Edge layer that covers efficient processing
and communication, while Cloud layer and IoT layer remains the same that they
were before. The new architecture design is ready for new marine IoT applica-
tions and ensures the compatibility with the new modern Marine IoT standards
and protocols, e.g. open source universal marine data exchange format called
Signal K1.

The proposed architectural expansion tends to be an improvement that will
be employed in many areas where the management of IoT devices through the
Cloud will be too difficult or network consuming. Note that the Fig. 4 explains
only the most basic workflow of the application, which connects the sensors to
the Cloud. The Smart Boat devices, i.e. Smart Boat Proxy, are equipped with
multiple connectivity options, as WiFi, BLE, 3G/4G and LoRa. As such, the Fog
devices on the boat are able to form ad-hoc networks with other boats or marinas
if possible and share its processing and networking resources when required by
applications and services.

The mapping of Smart Boat use case onto the proposed mF2C architecture is
quite straightforward, as can be seen in Fig. 4. The Sentinel Boat Monitor sensor
hub presents an IoT layer and the Cloud application will reside in the Cloud
layer. The Fog layer is reserved for a Smart Boat processing and networking
devices capable of locally processing or storing the requests from IoT or Cloud
layer. Note that not every boat would have a powerful smart agent or Edge
device, therefore it is necessary to provide a possibility to share those resources
to Sentinel devices in the vicinity when the boats are close together anchored
in a bay or waiting in the harbour. To make this vision a reality, the smart
boat team expects from mF2C to provide a platform that will actively monitor

1 http://signalk.org/.

http://signalk.org/.
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the availability of the resources and move the data and processing to the most
efficient resources at the moment. Moreover, the proposed Smart Boat use-case
will become the test bed to four security related scenarios will be demonstrated:

Continuous Boat Monitoring will include secure collection of data from the
boats to the Cloud and vice versa.

Anomaly detection will focus on secure sharing of sensor data to the nearby
boats and detecting if one boat sensors measures are off.

On-line Docking and Anchoring reservation is an implementation of
complex mechanisms for the docking and anchorage permissions, based on
anonymous proof of the payment.

Data plan sharing secure manifestation of data plan sharing among the group
of boats, based on fair exchange of goods.

The proposed scenarios cover the most important topics of the secure IoT, Fog
and Cloud communication and thus present a perfect environment for testing
the mF2C platform. In the Smart Boat use case the focus will be on minimiz-
ing the communication between IoT devices and Cloud, and encouragement for
collaboration between multiple autonomous smart boat devices in order to get
them to share their resources for communication (as data plans) or processing
power (improving the weather predictions from the data gathered by single or
multiple smart boat devices).

4 Conclusion and Contribution

This paper presents the needs for the next generation of resource provision con-
cepts that take into account sharing and managing the resources on the Edge of
the networks. First, the paper describes the concept of Fog-to-Cloud approach
which is the topic of the ongoing mF2C project and presents the proposed three
layer architecture. Within the concept presentation, the main improvements of
current technology state were selected and explained. Further, the main concerns
from the use-cases covering three domains of IoT applications are explained.
With the concrete examples, the basic requirements for the future IoT applica-
tions were described. Alongside the mapping of the applications from the use
cases to the proposed mF2C architecture is described and the most important
contributions to each IoT domain was elaborated.

The contribution of the work is in the selection of the representative use-cases
from which the core lessons will be learned, which will drive the work on the
mF2C project. For example, the ITS use-case presented through the TIMON
project is currently based on the resources that have wide availability to the
stakeholders. With a good promotion of Fog to Cloud and supporting multi-
tenancy, new business opportunities will arise for the public resource providers.
This will be an important milestone for applications that require Fog to Cloud
capabilities and needed to be deployed on a large and scalable infrastructure.
The main improvement of TIMON using the Fog to Cloud would be in lower-
ing latencies, while the number and location of running geo-messaging servers
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required for local and near-real time notifications could be determined on cur-
rent demand. The placement and density of geo-messaging servers would reflect
the density and activeness of IoT devices in the fog. Similar improvements are
applicable also in Ambient Assisted Living and Cross-layer IoT platforms inter-
operability use-cases.

The future work includes a detailed inspection of the presented use-cases, sce-
narios, its implementation and provide an mF2C platform that supports these
use cases. The experiences from the use cases will help to design an appropri-
ate building blocks of mF2C platform and demonstrate its potential with the
representative applications deployed on Smart Boat use-case.
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Abstract. The tremendous increase in the number of mobile devices
and the proliferation of all kinds of new types of sensors is creating new
value opportunities by analyzing, developing insights from, and actuating
upon large volumes of data streams generated at the edge of the network.
While general purpose processing required to unleash this value is abun-
dant in Cloud datacenters, bringing raw IoT data streams to the Cloud
poses critical challenges, including: (i) regulatory constraints related to
data sensitivity, (ii) significant bandwidth costs and (iii) latency barriers
inhibiting near-real-time applications. Edge Computing aspires to extend
the traditional cloud model to the “edge of the network”, to deliver low-
latency, bandwidth-efficiencies and controlled privacy. For all the com-
monalities between the two models, transitioning the provisioning and
orchestration of a distributed analytics platform from Cloud to Edge is
not trivial. The two models present totally different cost structures such
as price of bandwidth, data communication latency, power density and
availability. In this paper, we address the challenge associated with tran-
sitioning scalable provisioning from Cloud to distributed Edge platforms.
We identify current scalability challenges in Linux container provisioning
at the Edge; we propose a novel peer-to-peer model taking on them; we
present a prototype of this model designed for and tested on real Edge
testbeds, and we report a scalability evaluation on a scale-out virtual-
ized platform. Our results demonstrate significant savings in terms of
provisioning latency and bandwidth utilization.

1 Introduction

The number of devices connected to the Internet has registered a steady incre-
ment, and the 6 billion things connected today define an ecosystem of objects
called “Internet of Things” (IoT). An increasing number of industries is betting
on IoT as a way to boost efficiency and explore new business models through
better real-time insights on their processes. While various new paradigms are
emerging to support and make this vision a reality, Edge Computing, which
enables the placement of services directly at the edge of the network, is a very
promising one. Edge Computing augments the traditional cloud model, by allow-
ing to create new latency/privacy sensitive services and, at the same time, lowers
c© Springer International Publishing AG, part of Springer Nature 2018
D. B. Heras and L. Bougé (Eds.): Euro-Par 2017 Workshops, LNCS 10659, pp. 304–315, 2018.
https://doi.org/10.1007/978-3-319-75178-8_25
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operational costs by reducing communication between devices and remote back-
ends. Following well consolidated industrial practices adopted in Cloud comput-
ing, virtualization approaches based, for example, on hypervisor-governed virtual
machines [11] and Linux containers [12], have been proposed as the execution
environment of choice for Edge computing answering the common requirements
of resource isolation and dependency management.

Still, the new paradigm does not come without new challenges, including
scalable distribution and update of applications across large Edge/IoT deploy-
ments. In this paper, we attempt to address this challenge in an Edge computing
environment employing Linux containers as application distribution and execu-
tion unit. In Sect. 2, we introduce a baseline (best-practice to date) method to
deploy Linux containers on the Edge and discuss its scalability challenges. To
overcome them, we present in this paper a distributed streamed deployment app-
roach. Our method leverages the inherent layered structure of container images
and filesystems to develop a peer-to-peer provisioning protocol that improves
latency at scale, while conserving on Edge-Cloud bandwidth costs.

We have implemented our approach on target edge devices (NVidia Tegra,
ARMv7 Raspberry Pi) as a proof of viability. To showcase the promise of the
approach at scale, we have used the device-based results to calibrate Virtual
Machines (VMs) executing Edge device operating system and applications. We
obtained results on up to 21 Edge nodes running on this virtual environment,
showing an up to 3 times improvement in container provisioning time within
each locality and up to 10 times reduction of Edge-Cloud bandwidth utilization,
when compared to provisioning a locality from a single centralized container
image registry.

2 Motivation: Naive Edge Container Provisioning

The Edge computing model we assume in this paper is the following. As shown
in Fig. 1, Edge devices are grouped in “localities”. Nodes within a locality are
horizontally interconnected at lower latency and cost of bandwidth, when com-
pared to the network link used for Edge-Cloud communication. We assume Edge
nodes to be executing on embedded/microserver devices, running a general pur-
pose operating system. Without loss of approach applicability to other operat-
ing systems and virtualization approaches - as long as a layered structuring of
deployment images can be inferred - we focus our presented work to devices
using Linux and Docker containers as the runtime for Edge applications.

Docker [1] defines a container as a runtime instance of a Docker image. An
image is an ordered collection of changes compared to the initial filesystem repre-
senting the base of the image. We can think of an image as a set of layers stacked
on top of each other to form the container filesystem. To facilitate image sharing
and streamlining of container provisioning, Docker provides a dedicated image
repository and server called Registry. The Registry is a stateless, highly scalable
server side application that stores Docker images and responds to requests for
deployment from remote nodes. This component of the architecture is usually
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running within a (Cloud) datacenter, receives pull requests and responds with
the requested image. As part of this deployment procedure, the layers compris-
ing an image are combined into a single archive binary file and then transmitted
to the host where the container image is instantiated.

Fig. 1. Edge computing model with nodes in each locality pulling container images
from a centralized Docker Registry

Applying the above baseline best practice approach (“näıve”) for container
provisioning at the Edge leads to multiple pull requests coming from different
nodes of the same locality. This is inefficient in terms of cost of bandwidth, as it
entails avoidable exchange of redundant data for the same location. Moreover,
this approach can lead to increased load at the Registry and thus decreased
service quality, to the extent that the Registry itself could rapidly become a
bottleneck. The latter effect can specifically occur when a large number of edge
nodes concurrently issue download requests for an image, for example, when
updated image versions become available. One solution that can limit the load
on the registry is clustering or geo-distribution, which though again clearly raises
the cost of the service.

The graph presented in Fig. 2 provides a visual representation of the prob-
lem, showing the time to deploy a container image of 500 MB on a varying
number of concurrently provisioned edge nodes. The concurrent scenario rep-
resents the worst-case in terms of provisioning overhead, for reasons outlined
above. The data represented in the graph is derived assumming 200 Mb/s band-
width between the Cloud Registry and the Edge locality and Edge nodes with
100 Mb/s network interfaces. Figure 2 shows that the time taken to deploy a new
container image in a locality increases linearly: while a single node requires only
40 s to pull the image, provisioning 10 nodes saturates the available Edge-Cloud
bandwidth. In case of 1000 nodes, provisioning takes more than 5 h.

Mirroring the remote Registry within each locality would help improving
the scalability of the solution and reduce provisioning latency; however, such an
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Fig. 2. Estimated time to fully provision a locality with a container image of 500MB
as the number of Edge nodes in the locality increases.

approach would suffer from following shortcomings: (a) cost of bandwidth would
still be very high, due to continuous syncing between edge and cloud registries,
especially if there is a large set of discrete images deployed in a locality and (b)
the typically limited processing capability and storage capacity of Edge devices
would be an important limiting factor for them to act as local Registries, given
the average size of container images and the potential size in terms of devices
of a locality. Beyond the technical challenges, there are also business barriers in
following such an approach, since, in some deployments, the Edge premise may
not be under the control of the Registry/Cloud providers.

3 Streamed Container Deployment

To overcome the complexity of distributing the image within a locality without
creating bottlenecks, we propose a paradigm shift toward a novel peer-to-peer
provisioning approach where nodes in a locality co-operate to accelerate provi-
sioning. We call this approach “Streamed Deployment” (SD). Figure 3 shows the
block diagram of the components involved in our streamed deployment approach.
To provision an image within a locality, one of the Edge nodes is elected as entry
point to the Edge-Cloud network. This node (termed “Gateway”) interacts with
the remote Cloud infrastructure, pulls the image on behalf of the entire locality
and provides information regarding the status of the nodes within it. Within the
Gateway, the Gateway Manager (GM) dynamically manages the formation of a
peer-to-peer distribution graph within the locality. This includes the dynamic
repair of the distribution topology in the case of node timeouts (due to, e.g., fail-
ures or in case of mobile nodes exiting a locality). The coordination between the
various nodes within the locality occurs via a Message Broker (MB, in our case
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realized through a stock MQTT broker), a PUB/SUB broker capable of decou-
pling sender and receiver through asynchronous messaging. Last, each edge node
carries an implementation of a Stream Manager (SM), an agent that implements
the real-time container image streaming protocol on top of the formed peer-to-
peer distribution graph. Also, the SM interacts with the Docker daemon on each
node to import received image layers to the local image store that each Docker
Edge instance maintains.

Fig. 3. Architecture of our Streamed Deployment implementation.

Figure 4 provides a more comprehensive representation of the interactions
performed during the deployment. There are three actors involved in the depicted
workflow: the formerly described Gateway Manager of the locality, the Stream
Managers of each Edge node being provisioned (only one instance of the SM is
shown for brevity), and the client initiating the deployment. Typically, the client
would be situated in a remote location relative to Edge localities, e.g., within
an Edge orchestration entity running in the Cloud as part of an integrated IoT
platform solution. In this case, the client contacts the edge Gateway to request
the deployment of a new container image including ancillary information of the
image that needs to be deployed (image identifier and composing layers). The
SM on the Gateway responds with an ID that uniquely identifies the deployment
procedure and the list of layers to be pulled. If a subset of the requested layers is
already present within the locality, the SM requests to pull only the differences
between the received list of deployment layers and the ones that are already
stored in the locality. After this handshaking phase succeeds, the GM estab-
lishes the peer-to-peer distribution topology within the locality describing the
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communication chains among Edge nodes. Depending on different optimization
objectives, different algorithms can be used to build this tree. As this aspect is
not central to our method, and for reasons of space, we do not discuss it further
in this paper, but we refer the interested reader to the many existing solutions
described in the literature [7,8,10]. Finally, the differential container image is
streamed through the distribution topology to the edge nodes within the locality,
thus getting all nodes eventually provisioned.

Fig. 4. Workflow of a Streamed Deployment within an edge locality

We now elaborate on the streamed forwarding procedure that implements
our approach. The procedure is implemented within the Stream Manager, imple-
mented as an application server running on each Edge node and serving deploy-
ment requests coming from peers. The algorithm executed by the SM is summa-
rized in the pseudocode listing of Algorithm1. The algorithm is executed by the
Gateway in response to client deployment requests and, symmetrically, by Edge
nodes in response to subsequent requests by peer nodes.

Upon its submission, the deployment request is first handled by the Gateway.
After constructing a distribution topology (line 2), it extracts information about
the layered image to deploy from the request (line 3). This information is used
to compute the difference between the set of layers in the image to deploy and
the layers already available within the locality (lines 4–6); the result is sent back
to the client which will start streaming only missing layers.

The rest of the algorithm is executed simultaneously and identically by the
Gateway and all the other Edge peers in the locality. Following the distribution
topology computed (Gateway) or received (Edge device), each peer receives from
its “parent” in the topology the missing layers and concurrently streams them to
its “children” peers (lines 11–15). Our implementation is based on an in-memory
Pipe data structure to which image data can be streamed in and out concurrently.
The Pipe abstraction takes care of establishing and keeping connectivity with
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one peer’s children (we used TCP connections for that) and of asynchronously
saving the received image on secondary storage. Once the full content of the
image is received, the SM instruct the local Docker daemon to import the image
from disk (line 15).

Algorithm 1. Forwarding Mechanism
input: parent, deploymentRequest

1 if isNodeGateway() then
2 distrTopology ←computeTopology ();
3 layers ←getLayers (deploymentRequest);
4 installedLayers ←getInstalledLayers ();
5 commonLayers ←intersection (layers, installedLayers);
6 layersToDeploy ←difference (layers, commonLayers);
7 send (parent, layersToDeploy);
8 else
9 distrTopology ←getTopology (deploymentRequest);

10 end
11 children ←getReceivers (distrTopology);
12 pipe ← createPipe ();
13 startReader (parent, pipe);
14 startWriter (children, pipe);
15 importImage ();

4 Evaluation Results

To prove the feasibility of our approach, we developed a prototype implementa-
tion of the Streamed Deployment architecture and implementing logic, as shown
in Fig. 3 and outlined in the previous section. We deployed the prototype on
representative Edge/microserver boards, specifically on an NVidia Tegra TK1
development board (acting as locality Gateway) and a Raspberry-Pi 2 board
(acting as Edge node), and successfully tested the prototype, demonstrating
correct and efficient chained deployment from a centralized Docker registry.

To evaluate the proposed solution at higher, more realistic, scale, we created
a virtual Edge locality leveraging a set of virtual machines (VMs) running on
a fully dedicated Openstack [4] private Cloud hosted at IBM Research. Our
deployment consists of one VM acting as Gateway and a variable number of
VMs acting as Edge nodes. The resulting testbed features a cluster of 11 bare-
metal servers and up to 22 VMs running on these servers. We provisioned each
VM with 2 virtual CPUs, and 2 GiBytes of DRAM. We also limited the network
interface throughput of each VM to 100 Mbit/s, so as to emulate the nominal
bandwidth available on typical edge nodes. In order to make it easier to reason
about the collected the results, our Streamed Deployment experiments assume
a linear distribution tree, where each node has one parent and one child only.

To demonstrate the improvement in terms of deployment latency within a
locality, we executed a set of experiments where all nodes within the locality are
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concurrently deploying a specified container image. For that, we chose to deploy
a popular media server image, namely the Plex Media Server [5] - the back-end
media server component of Plex. This image was chosen because representative
(especially in size) of a large class of multimedia applications that might be
running on an Edge locality. In each experiment execution, we vary the number
of nodes in the locality from 1 up to 21 nodes. With this configuration, we
made two groups of experiments, using either the Streamed Deployment (SD)
approach or the baseline approach outlined in Sect. 2.
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Fig. 5. Time taken to deploy a Plex Docker container within a locality with an increas-
ing number of edge nodes

Figure 5 reports the results of the time taken to deploy a Docker container
within a locality using the two approaches, versus an increasing number of Edge
nodes. We observe that in a locality with less than five nodes, the baseline
approach (centralized Docker Registry) provides faster deployments compared
to the proposed solution, because of the co-ordination overhead in the Streamed
Deployment. However, as the locality size increases, our approach yields faster
deployments compared to the baseline. At the largest scale tested (21 nodes),
our approach is 3 times faster compared to the baseline. While continuing the
evaluation to larger locality sizes is part of our on-going work, we don’t have
a reason to expect that the shown trends will change: while the naive registry
baseline has a steep linear scaling pattern, our approach exhibits a much more
gradual linear increase pattern, fit for much larger scale localities.

In addition to provisioning latency, another important factor in Edge Com-
puting deployments is bandwidth utilization. Figure 6 reports the network
throughput time-series on the downstream direction of the Edge-Cloud link. The
Edge Gateway pulls the image from the registry only once for the entire locality.
Therefore, the amount of data that needs to be sent to the locality does not
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Fig. 6. Bandwidth utilization during container deployment on the Edge-Cloud link.
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Fig. 7. Bandwidth utilization on one edge node within the locality during container
deployment.

increase with the number of nodes, resulting in reduced bandwidth utilization in
both size and time. The same cannot be said for the baseline approach: as the
Docker Registry is the only image provider for the 21 nodes, there is a lengthy
and steady utilization of the Edge-Cloud link, until the separate deployment on
each locality node completes.

Although Edge-Cloud bandwidth is, in general, the most expensive network
resource, making efficient use of local bandwidth might also be critical, especially
in scenarios where local connectivity is also being used for application traffic
(e.g., real time data-communication among Edge nodes). We evaluated how the
Streamed Deployment uses this resource and we show the results in Fig. 7, which
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depicts the network utilization of an Edge node while receiving an image as a
time-series. The graph clearly highlights how, in the baseline approach, the local
link is underutilized during image deployment, due to the bottleneck effect of the
Edge-Cloud link being shared among all the local nodes (21 in our experiment).
On the contrary, Streamed Deployment makes full use of the 100 MBit/s local
link, leading to faster deployment and, in general, to better network utilization.

5 Related Work

While commercial and enterprise deployment of Internet of Things is a reality,
to date the vast majority of roll-outs has either employed very thin general
purpose computing on the edge (e.g. filtering/aggregation/sampling of sensor
time-series) or highly specialized - both software- and hardware-wise - processing
that is monolithically designed and usually tied to a specific solution (e.g. signal
processing for speech recognition [9]). There are several standardization efforts
aspiring to develop consensus on an edge/fog computing reference architecture
[3] and its constituent layers [2]; also, ample research efforts have experimented
with various challenges, among others node roles and node architecture [6,14,15],
end-user value exploration [13] and customized storage/data models [16].

As the field of general purpose distributed, potentially multi-tenant, com-
puting and analytics at the edge of the Internet of Things is only nascent, the
vast amount of prior art has focused on architectural exploration, with no spe-
cial focus on addressing provisioning and infrastructure/platfrom management
challenges, more so from the perspective of massive scalability. Pahl and Lee
[12] have discussed the fitness of Linux containers as the execution unit in edge
deployments versus hypervisor-based virtualization; major advantages of con-
tainers are typically their lightweight footprint, performance and native support
for microservices. Early results presented by the Superfluid Cloud [11] indicated
that customization of virtual machines resp. hypervisors (Xen) can yield pro-
visioning latency results at large scale that are comparable to those of LXC
containers. It must be noted though that these results have been obtained on
a mid-range datacenter-grade server (64-core x86-64 with 128 GB DRAM) and
it remains to be seen how the two technologies compare against each other
in terms of provisioning/footprint, when tested on low-power microservers and
embedded devices. The latter are typically much more highly candidate to host
edge/fog computing nodes in large-scale, distributed deployments. For the same
reason, it is impractical to put the findings of [11] in perspective to our find-
ings, as this paper has focused its value on addressing Xen virtualization opti-
mizations for edge computing purposes. Instead, we focus on provisioning tech-
niques of stock Linux containers, whereby we evaluate our approach in a full-
fledged distributed setting, incorporating edge-cloud bandwidth and latency,
compute/memory/storage capabilities that are representative of an edge gate-
way/node (microserver) and a remote centralized image repository.
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6 Conclusions

Container-based virtualization techniques are being commonly accepted as a
solution to support packaging, deployment and execution of applications on
Edge/Fog computing deployments. In this paper, we have discussed the chal-
lenges in provisioning containerized applications to large numbers of Edge nodes,
especially in terms of scalability of deployment latency and bandwidth utiliza-
tion. We have shown that baseline/standard methods for container provisioning
directly derived from Cloud best-practices are not suitable to be used unmodified
in Edge scenarios, where bandwidth can be limited and more expensive (e.g., if
based on cellular connectivity).

We have therefore presented the design and prototype implementation of
a novel approach that addresses these problems, called Streamed Deployment.
Based on a simple peer-to-peer data distribution model, our approach distributes
the cost of container image provisioning across all the interested nodes within an
Edge locality. Our evaluation on a scale-out testbed shows that Streamed Deploy-
ment provides up to a threefold deployment speed-up and a tenfold reduction
on the utilization of the expensive Edge-to-Cloud network link.

While our solution improves provisioning speed and cost, it also creates
new complexities and challenges if considering aspects like security and high-
availability. Future work will investigate solutions to guarantee secure authen-
tication and data exchange between all the involved actors, and protocols to
guarantee deployment success despite dynamic topology reconfigurations and
failures. Furthermore, we are extending our evaluation results to more realistic
environments where edge devices are distributed across multiple locations. We
also plan to evaluate the impact of different levels of Registry replication on
system performance and reliability. These additional experimental results will
provide a better understanding of the overall performance of the two approaches,
especially for scenarios featuring a large number of devices.
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Abstract. The growth of the Internet connected devices population has fuelled
the emergence of new distributed computer paradigms; one of these paradigms
is the so-called Fog-to-Cloud (F2C) computing, where resources (compute,
storage, data) are distributed in a hierarchical fashion between the edge and the
core of the network. This new paradigm has brought new research challenges,
such as the need for a novel framework intended to controlling and, more in
general, facilitating the interaction among the heterogeneous devices conform-
ing the environment at the edge of the network and the available resources at
cloud. A key feature that this framework should meet is the capability of
uniquely and unequivocally identify the connected devices. In this paper a
hash-based naming strategy suitable to be used in the F2C environment is
presented. The proposed naming method is based on three main components:
certification, hashing and identification. This research is an ongoing work, thus,
the steps to follow since a device connects to the F2C network until it receives a
name are described and the major challenges that must be solved are analyzed.

Keywords: Naming � Identification � Fog-to-Cloud � Internet of Things

1 Introduction

In simple words, the Internet of Things (IoT) is a communication paradigm where all
kind of everyday objects are capable to connect to the Internet network with different
purposes. This paradigm allows the creation of a range of new services and applications
in diverse areas like smart homes, buildings and cities, eHealth, vehicular networks,
wearables, monitoring and surveillance, etcetera. It is estimated that by 2020 the
worldwide population of Internet connected objects will reach 50 billions [1].

Taking advantage of the large number of devices with network connectivity and in
consideration of the expected growth, new computer paradigms have emerged, one of
them is the Fog-to-Cloud (F2C) computing.

F2C is a collaborative and distributed compute model where resources (like storage,
compute or data) are located in a hierarchical fashion not only at the core of the
network but also at the edge [2]. In many cases, the resources conforming the F2C at
the edge of the network are supplied by the end users, thus, users can not only access to
the service provider or third parties resources but also share their own resources.
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Being a hierarchical model, the resources are deployed in a bottom-up fashion,
usually with the most constrained devices in the lower layer (very basic sensors and
actuators) and in the top of the hierarchy a virtually unlimited resource data center: the
cloud.

Many research efforts are focused in the design of a suitable F2C architecture [3]
for managing the distributed storage, compute, data, control and networking functions.

A key functionality that any F2C architecture must meet is the capability to identify
uniquely and unequivocally every device connected to the F2C network, thus, the
adoption of a naming strategy is required.

The list of available naming schemes is not short [4, 5] and ranges from the use of
existing services like the Domain Name Service (DNS) to the redesign of the computer
networks as are known nowadays to a not host-based-centric network. The problem
with those naming schemes is that most of them doesn’t meet the inherent F2C
requirements (such as interoperability, mobility, uniqueness and scalability) or the
effort to implement them is far beyond the scheme itself.

Regardless the application specific requirements, according with [6] a good naming
service should meet the three characteristics described in the “Zooko’s Triangle”:
decentralization, human-meaningful names and secure mapping of names. These three
design goals are represented as a side of the triangle and each side represents a design
tradeoff, so according with the original author, it isn’t possible to have the three
characteristics at the same time.

In this paper a new distributed hash-based naming strategy that meets the afore-
mentioned F2C requirements is presented. The proposed strategy is based in three
support modules which are: certification, hashing and identification.

The remainder of this paper is organized as follow: In Sect. 2 the hashing technique
is discussed and similar works are reviewed. In Sect. 3 the proposed hash-based
naming strategy and its support modules are explained in detail. In Sect. 4 the key
advantages of the proposal are studied. Finally, in Sect. 5 the research conclusions are
exposed.

2 State of the Art

In this section the hash functions and its properties are briefly described, also an
example of a hash string value is shown and three distinct works where authors have
used a hash-based method for naming entities (virtual or physical) are analyzed.

2.1 Background

The hashing is a cryptographic technique widely used to map a data block of variable
size to a fixed-length output. It means that it does not matter whether the input is 1 byte
or 1 terabyte, the output will be a string with a predefined size length. In [7] the hash
technique is described in function of its main properties, which are:

• Variable input size. In the hash function h(x) where x is the input, the size of x does
not matter at all.
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• Fixed length output. As said before, the output size isn’t in function of the input
size.

• Compute facility. It is relatively easy to compute h(x) for any given x.
• One-way. For any given y, it is computationally infeasible to find x such that h

(x) = y, what means that it cannot be “unhashed”.
• Collision resistance. It is computationally infeasible to find y != x such that h

(x) = h(y). It means that two different inputs always produce two different outputs
and vice versa, two different outputs always belong to two different inputs.

There are many algorithms designed to implement the hash function, the most
popular are briefly reviewed in [8]. In the United States as well as much of the world,
the MD5 and SHA algorithms are the most widely used [7], nevertheless any other
algorithm that fulfill the listed properties is suitable for generating hash values.

In order to illustrate better the properties of the hash function three examples are
presented below (Table 1). In the examples, the SHA-1 algorithm is used to hash three
different strings.

The input in every example is different. While in the first two examples the inputs
difference is very subtle (only changes the first letter, from capital “H” to “h”), in the
third example the input is not a word but a phrase. In the three cases the hash value
output always is a totally different 160-bits string.

The hashing is a destructive process, what means that there is not a way to return to
the original input starting from the hash output value.

2.2 Related Work

Some researchers have found in the properties of the hash function an opportunity for
the creation of new naming schemes. In [9] the authors review extensively the use of
the hash function for naming objects. They claim that in order to avoid collisions the
SHA-256 algorithm must be implemented. However, in constrained environments or in
scenarios where a higher collision probability can be tolerated, the system administrator
can opt for using a truncated version of the hash function output. In no case they
recommend the use of names with less than 100-bits; they assert that in those scenarios
the collision resistance property cannot be guaranteed.

Table 1. Hash transformation examples using the SHA-1 algorithm.

First example

Input Hello
Hash value f7ff9e8b7bb2e09b70935a5d785e0cc5d9d0abf0

Second example

Input hello
Hash value aaf4c61ddcc5e8a2dabede0f3b482cd9aea9434d

Third example

Input Hello World! This is a test
Hash value cf3491c6524b19f1965b112c37e5360e6920a136
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In the previously cited publication the authors use the SHA-256 algorithm to
include a hash string as a segment in Universal Resource Locators (URL). With the
purpose of standardize the uses of hash outputs in URLs, they specify a new URI
scheme and a way to map these to URL’s, however, their proposed method lacks of a
clear hash input proposal. Although they mention that public keys are a good hash
function input candidate, they let the users to choose the input value, so in scenarios
where the user not only select an inappropriate input but also decide to use the trun-
cated hash function output, the collision probability could be very high.

In [10] a hybrid naming scheme for vehicular content centric networks is presented.
In the proposal the authors divide the content name (CN) into three parts: the scheme,
the prefix and the hash. The first part is the naming scheme identifier that is used to
represent CN. This field can take two different values in function of the used protocol.

The prefix is the hierarchical part of the name scheme and is used to identify the
content originating node that is a vehicle and the content itself in a human-readable
format. The distinct parts of the prefix are separated by a slash (“/”) and the firsts four
fields are reserved for the publisher vehicle’s information. The rest of the hierarchical
section signifies the information about the digital content (e.g. text, video, image, or
any other digital content).

Finally, the hash section of the CN corresponds to the full or truncated hash value
generated using the digital content, the content attributes or the public key of the
information related to it.

According with the authors, the last field is used to uniquely identify the content
item. Nevertheless, in a scenario in which two or more vehicles are sharing distinct
contents but with the same attributes, if the hash function input are those attributes, the
probability of having duplicated records making reference to different contents will be
high. The solution to this problem could be to increase the number of attributes in the
prefix section, but this decision will impact the lookup throughput, what in content
centric networks is critical.

Another similar work is the presented in [11]. In their work the authors does not
propose a naming strategy but a name resolution scheme consisting of two parts: name
mapping and name resolution.

Basically, what they do is to use a hash function to translate the heterogeneous
device name to a fixed-length string, hiding like this the original name from the outside
Internet for security and privacy reasons.

In the name mapping the object name is received and translated to a 160-bits string
using the SHA-1 hash function algorithm. A notable drawback that this strategy pre-
sents is that to be recognized by the system the user has to hash the object name and
register the resulted string to the resolution system in advance. This could be a tedious
task for users owning multiple devices.

Another weak point of this strategy is that two devices with the same name will
have exactly the same hash output value and as result, duplicate register may exist in
the resolution adopted scheme (DNS or DHT).
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3 Proposed Naming Strategy

In this section the naming strategy is presented. The proposed scheme consists of three
main components: a certification, a hash function and the identification module. The
technique described in the next lines aims to be a part of the resource management
functions (Fig. 1) in a F2C environment.

3.1 Certification

The certification is the very first step that users must complete to have their device(s)
connected to the F2C network. In this phase the users register his personal information
in the system to get a secret key.

This registration process must to be done once per entity (person, institution or
company) regardless the number of devices the entity wants to use in the F2C
ecosystem. For example, if a government department needs to deploy thousands of
devices through a specific area in the city, the institution only have to register once to
get the secret key. This process is shown in the Fig. 2.

The implementation of this first phase will bring new challenges that must to be
solved. The major challenges are related with the system security. There is a lot of
attacks that the system must not only to resist but also to detect.

In the certification phase as well as in the other two components of the identifi-
cation strategy to provide a secure communication channel that discard the risk of
interception is a crucial requirement.

Apart from security, other considerations must to be taken into account in the
certification, for example, due the key assignation will be a distributed process, a
mechanism to disallow secret key overlapping will be necessary. Also, the system must
to be able to suspend, revoke and update the user secret key.

Fig. 1. Resource identification strategy for the F2C architecture.
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3.2 Hash Function

Being the module that stores the naming scheme, the hash function is the core of the
identification strategy. This function is the responsible of transforming the device
identification input into a hash string.

The device identification input is composed by two concatenated string. The first
string is the user secret key obtained during the registration phase while the other is an
“optional” user string (Fig. 3).

Due the purpose of the second part of the string is to differentiate among the user
devices, it will be optional only in those cases where the user owns or wants to use only
one of his devices in the F2C network, otherwise it will be a mandatory field.

In [12] the author explains that it is nearly impossible to have one global naming
convention mainly because industries have been using their own proprietary naming
conventions for long time and migrating to a different naming convention will impact
their infrastructure considerably. Nevertheless, this method does not force the users to
abandon their own internal naming convention. In the second part of the string the user
can use whatever value they want regardless the length.

Continuing with the previous government department example, let’s assume that
for internal reasons the institution uses a hierarchical naming convention that includes
the city, a code area where the device is located and at the end a consecutive number.
The internal records will look something like this: LA347-01, LA347-02, LA347-XX.
The adoption of this or any other naming scheme won’t affect the string conversion
process.

Fig. 2. Certification phase in the Resource identification strategy

Fig. 3. Hash function process.
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Once the user identification string has been transformed into the final hash value it
is stored in key nodes across the F2C network using Distributed Hash Tables (DHT).
A full backup of the records always is kept in a cloud data server.

As well as in the previous step, the hash function module also have some chal-
lenges that must to be addressed. One of the biggest challenges is the need of an
incentive that encourage users to keep using exactly the same string in both sides of the
hash input. This is particularly important for the implementation of long term identi-
fication mechanisms and other historical functions because as was shown in Table 1,
the minimum change in the input string will change dramatically the device identifier/
name.

3.3 Identification

The last step in the proposed strategy is to look up for the hash value of the device in
the DHT, it is the identification.

In this point there could be three distinct scenarios:

• The device is new in the system. When a device connects for the very first time to
the F2C network the look up in the DHT won’t find any coincidence. In that case,
the system should register the device and perform other assistant tasks (e.g. device
characterization) in order to recognize it in future interactions. The device will be
registered in the DHT closer to the device physical location and after x seconds, this
and other new records will be propagated to the upper F2C nodes in a hierarchical
fashion, until the record(s) reach the cloud where will be stored for a long term.

• The device is connected to the F2C network in a known location. The DHT will
store for a predefined period of time a cache with all the devices that have been
connected in the last x days, so when a device reconnects to the same F2C node, it
will recognize the device without going to an upper level to look up for the device

Fig. 4. Three layered Fog-to-Cloud network topology.
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information. In this process the network hierarchy will be leveraged. When a device
is connected to a different but still close node from the habitual one, it won’t have to
go to cloud to have the device information; going to one layer higher will be enough
(Fig. 4).

• The device is connected in a distinct location than the habitual. Let’s assume a three
layered F2C network; if the device is connected in a distant location and there is not
information available in the same layer or even in the next upper layer, there is still
the cloud database, what in terms of costs will be cheaper that characterize again the
device.

In the Fig. 4 the “mobile device” uses to connect to the F2C network through the
nodes “A” and “B”, so every time it connects using one of those nodes the system
automatically detects and retrieves all the device information. In the case that the node
connects for the first time or after a long time to the F2C using the node “C” where
there is not information available about this device, the system will search in the next
upper layer for information about it. In the node “J” a copy of all the device information
is kept and updated for the nodes “A” and “B”.

Now, let’s consider that the “mobile device” moved to the area of the aggregator
node “H” and connects to the system using that node. Being the first time in this zone
there is not information available about the device, neither at the node “H” nor at the
next layer (node “K”), however, the node “J”, aggregator of the nodes “A”, “B”, “C”
and “D” registered the device in the cloud database so there is information about it that
the node “K” can access anytime and thus, the node “H”.

In this third step the main two problems that may arise are a poor throughput in the
lookup process and a high network overhead caused by the mobile devices. Never-
theless, if suitable policies are applied these two problems can be overcome.

4 Proposal Advantages

The key advantages of the proposed naming strategy are the capability of assign
worldwide unique names to the devices connected to the F2C network. In the case of
two or more F2C providers sharing the certification and hashing modules, the device
not only will use the same secret key to be identified but also it will keep the name
regardless the system provider.

The use of the Distributed Hash Tables will facilitate the implementation of new
functionalities in the system, such as a trust system, where the devices can get a
classification in function of its availability, uptime, and other parameters. Other
function that the historical information stored in the DHTs will allow to implement in
the platform is a predictive resource utilization/available system without expose the
device specs or location.

Finally, if the hash function is implemented correctly, the possibility of a duplicated
name will be minimal, what means that the proposed strategy is secure.
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5 Conclusions

In this research work an integral hash-based naming strategy suitable for the
Fog-to-Cloud environment was proposed. The strategy is conformed for three main
modules: certification, hashing and identification. The proposal meets the F2C
requirements, such as mobility, scalability, security, privacy and uniqueness.

Even when the proposed naming strategy presents important advantages in com-
parison with other naming strategies and schemes there are still open challenges that
must to be addressed. Those challenges include the need of provide a secure channel
for the communications among edge devices and F2C nodes, a mechanism that dis-
allow the secure key overlapping, the DHT lookup throughput, etcetera.

In order to solve the mentioned issues more research effort in every component of
the proposed method is needed, so the future work will be focused in overcome the
existing challenges.
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Universitat Politècnica de Catalunya (UPC), Barcelona, Spain
3 Artificial Intelligence Research Institute,

Spanish National Research Council (CSIC), Barcelona, Spain

Abstract. This paper presents a framework to develop and execute
applications in distributed and highly dynamic computing systems com-
posed of cloud resources and fog devices such as mobile phones, cloudlets,
and micro-clouds. The work builds on the COMPSs programming frame-
work, which includes a programming model and a runtime already vali-
dated in HPC and cloud environments for the transparent execution of
parallel applications. As part of the proposed contribution, COMPSs has
been enhanced to support the execution of applications on mobile plat-
forms that offer GPUs and CPUs. The scheduling component of COMPSs
is under design to be able to offload the computation to other fog devices
in the same level of the hierarchy and to cloud resources when more com-
putational power is required. The framework has been tested executing
a sample application on a mobile phone offloading task to a laptop and
a private cloud.

Keywords: Distributed computing · Mobile computing
Fog computing · Programming model · Computation offloading
Fault tolerance · Security

1 Introduction

The traditional cloud computing model, based on a centralized control of com-
puting and data resources, does not provide the proper support to the require-
ments of big data applications that produce and consume volumes of data
through IoT devices, fast mobile networks, AI applications, etc. Fog comput-
ing has emerged as a complementary solution to overcome the issues related to
real time processing, security, latency and transparent management of a decen-
tralized, heterogeneous and dynamic set of resources.

This paper proposes a Fog-to-Cloud (F2C) ready programming framework to
develop applications that involve the use of traditional cloud systems, smart end-
user devices, and IoT sensors. The framework transparently offloads parts of the
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computation to fog and cloud resources and optimizes the execution considering
time, energy consumption and monetary cost. The proposed solution builds on
COMPSs [8], a programming model for distributed computing and its associated
run-time. On the one hand, COMPSs distributes the computational load of the
application transparently to the user and exploits its inherent parallelism and the
heterogeneity of the underlying infrastructure. On the other hand, it also handles
the distribution of data to provide a seamless offloading and schedules the data
processing in larger nodes considering its locality to optimize the execution.
COMPSs applications are completely agnostic to the underlying infrastructure
and their code runs, with no changes, in all the backends supported by the
runtime: HPC systems and private and public cloud. Recently, COMPSs has
been integrated with container solutions based on Docker [9] and Mesos [1]. To
support the execution of COMPSs applications from mobile devices, the runtime
has been refactored to include the support to Android devices and to improve
the data management via a Peer-to-Peer (P2P) mechanism. These new features
are basic pillars to develop the proposed framework.

A key feature of COMPSs is the ability to distribute the tasks that compose
the application on the available nodes of the computing platform. In the case of
traditional cloud environments, the decision where to execute a task considers
historical data of previous executions and the locality of the data to process.
Moreover, the cloud gives the illusion of having access to infinite computing
resources; COMPSs can instantiate additional VMs on cloud providers from a
settable list. In contexts more dynamic than traditional cloud computing, such as
the ones considered in this work, resources might spontaneously disappear from
the pool. Handling this volatility is an additional requirement either for data
management and proper work balancing between fog nodes. Another relevant
issue addressed in the proposed framework is the security since usually edge
devices are located in non-controlled environments.

The paper is structured as follows: Sect. 2 includes an overview of the related
work in the field of F2C computing framework; Sect. 3 describes the architecture
of the proposed solution while Sect. 4 provides the details of how the COMPSs
framework has been extended to support F2C environments. Section 5 presents
the results of the tests and Sect. 6 concludes the paper and provides ideas for
future work.

2 Related Work

Application partitioning, task scheduling, and offloading mechanisms are all
problems widely explored in the field of distributed computing. The main dif-
ferences between previous work on cloud computing and mobile computing are
due to issues related to the high mobility of the device, the limited availability
of energy of the devices and the impact of the network (latency, monetary cost,
bandwidth) on the performance of the entire framework. This analysis of the
related work in the field of fog to cloud computing, takes into account capabil-
ities such as how to fragment the applications in order to offload the parts of
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the computation to the resources, the scheduling model and the management of
parallelism.

CloneCloud [4] offers the developer a thread level granularity mechanism.
The strong point of CloneCloud is its partitioning mechanism that combines a
static analysis of the code with a dynamic profiling of the application to pick the
optimal migration and re-integration points. When a thread reaches a migra-
tion point, it suspends, and its state (including virtual state, program counter,
registers, and stack) is shipped to a synchronized clone. When the migrated
thread reaches a re-integration point, it is similarly suspended and shipped back
to the mobile device. The drawback of this system is that it still requires the
developer to manage threads and application parallelism. Cuckoo [6] hides the
partitioning problem by exploiting the service component of Android operating
systems. During the build process, the stubs generated to access service compo-
nents are replaced by invocations to the Cuckoo framework that decides, at run-
time, whether to run the service on the local device or a remote implementation.
Since the framework only replaces calls, all the parallelism must be managed by
the programmer on the service invocations. ThinkAir [7] provides a mechanism
to automatically parallelize the execution of an offloaded method considering
intervals of input variables. The main drawback of ThinkAir is that the offload-
ing mechanism works synchronously: the executing thread is suspended until the
method invocation is performed and its result collected. Thus, any subsequent
method invocation is not executed until previous ones are executed even when
they could run concurrently. Mobile Fog [5] is a high level programming model
for the future Internet applications that are geospatially distributed, large-scale,
and latency-sensitive. The goal is to allow applications to dynamically scale
based on their workload using ondemand resources in the fog and in the cloud.
In Mobile Fog, an application consists of distributed Mobile Fog processes that
are mapped onto distributed computing instances in the fog and cloud, as well
as various edge devices. Mobile Fog API is not hiding the distribution of the
infrastructure to the application, requiring a large programming effort to the
application developer.

3 Architecture Overview

Figure 1 depicts the layered-based architecture of a Fog-to-Cloud platform where
the proposed framework can be instantiated; the architecture is designed follow-
ing the OpenFog Reference Architecture [3]. The lowest layer represents the low
processing capability devices, such as sensors or embedded devices that pro-
duce data, while the middle layer contains fog devices that have more processing
power (as a smartphone or a tablet) and are able to deploy and orchestrate the
execution of a distributed application using other fog devices as workers (fog-
to-fog). Clouds are at the top layer, hosting services for the control of the entire
stack or used for the execution of computing intensive applications started both
from the same layer and from a fog device. It is worth noting, indeed, that the
framework can be used to instantiate applications on smart devices on the fog
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Fig. 1. F2C architecture

layer and to offload part of the computation to the cloud (fog-to-cloud) or use
the fog devices as workers for a cloud application.

The main contribution of this work is represented as a programming compo-
nent in the Fog Node together with the capabilities it offers and the interfaces
needed to interact with other elements of the platform. The application support
has to be implemented through a high level programming model that enables
the development of applications to be executed in distributed, heterogeneous,
volatile, data and processing infrastructures. However, these complex infrastruc-
tures will remain hidden to the application in such a way that the application can
focus on the logic. The aim of this programming model is to keep the code almost
untouched avoiding the need for APIs to implement the required functionalities.
The application interacts with a runtime that takes care of the coordination of
the distributed execution of the applications in a parallel way when possible. The
interaction with different computing backends is delegated to a specific compo-
nent for resource management. Data management is required to let the runtime
access to the data produced on the working nodes as well as to synchronize the
information on data location in order to proper schedule the tasks on the nodes.
The Node Discovery component enables resource discovery and registration. For
example, an IoT device coming online “close” to the coordination node can notify
its availability to the controller and then this information has to come to the
node. Security is a transversal issue common to all the components that have to
fulfill a common base set of security and privacy requirements in an environment
by nature unsecure and dynamic. Interfaces are needed to ensure communica-
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tion between nodes and realizes the data channels. Eastbound interface connects
the runtime with other nodes in the same level and allows the sharing of data;
Northbound allows to implement the connection with cloud nodes while South-
bound interface realizes the connection between a fog node and a sensor or from
a cloud application down to the Fog layer.

4 Programming Framework Overview

COMP Superscalar (COMPSs) is a programming model that aims to ease the
development of parallel applications to run atop distributed infrastructures. For
that purpose, it offers a sequential, infrastructure-agnostic way of program-
ming that abstracts coders from the parallelization and distribution concerns.
COMPSs considers applications as composites of invocations to pieces of soft-
ware encapsulated as methods called Core Elements (CE). To manage the par-
allelism inherent in the application, the framework instruments the application
and replaces CE invocations by calls to a runtime system to execute them atop
the infrastructure. Also, accesses to data generated on remote nodes need to
synchronize their value before being used. The following subsections introduce
the programming model and the architecture of the runtime system, highlighting
those aspects relevant to support executions on Fog-to-Cloud environments.

4.1 Programming Model

For developing applications, programmers write their code in a sequential fash-
ion with no references to any COMPSs-specific API or the underlying infras-
tructure. At execution time, calls to CE methods are transparently replaced
by asynchronous tasks whose execution is to be orchestrated by the runtime
system. To select which methods become a CE developers define an interface,
called Core Element Interface (CEI), where they declare those methods along
with some meta-data in the form of annotations. To pick a method as a CE,
the programmer annotates the method declaration on the CEI with @Method
indicating the class containing the method implementation. The code snippet
in Fig. 2 contains a simple COMPSs application example. Figure 2(a) shows the
sequential code of the application which runs N simulations and selects the best
one. As shown in the CEI presented in Fig. 2(b), only two methods are chosen as
CE: simulate and getBest. For the runtime system to determine the dependen-
cies between CE invocations, developers specify how each CE operates on the
accessed data (its parameters) by adding (@Parameter) annotations indicating
the parameter type and directionality (in, out, in-out).

4.2 Runtime Library

The main purpose of the runtime toolkit is to orchestrate the execution of
CE invocations (tasks) fully exploiting the available computing resources (local
devices or remote nodes) guaranteeing the sequential consistency. Applications
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public Sim checkSimulation(int N) {
Sim best = null;
for (int i=0; i < N; i++) {

Sim s = new Sim(...);
s.simulate();
best = Sim.getBest(best, s);

}
return best;

}

(a) Application main code

public interface SampleCEI {
@Method(declaringClass=”Sim”)
void simulate();

@Method(declaringClass = ”Sim”)
Sim getBest(

@Parameter(direction = IN)
Sim s1,
@Parameter(direction = IN)
Sim s2

);
}

(b) Core Element Interface

Fig. 2. Sample application code written in Java

share computing resources and, potentially, data values; therefore, the runtime
library is twofold. The front-end of the runtime, instantiated in every applica-
tion, manages the private aspects of the applications: monitors accesses to private
pieces of data, such as objects, and detects the CE invocations. The back-end
manages all the aspects that the application can share from computing resources
(CPU, GPU, nearby nodes or VM instances on the cloud) to data (currently only
files, but we envisage to manage accesses to databases and Content Providers).
Since all front-ends contact the same instance of the back-end, it is deployed
as an Android service running in an independent process. Figure 3 contains a
detailed diagram of the runtime architecture.

Fig. 3. Runtime system architecture

To monitor the data accessed from each task and the data dependences
among task, the runtime processes the parameters of each task upon its detection
on the Analyzer component. The Private and Public Data Registers, respectively
located on the front-end and back-end of the runtime, record the accessed data
values and assign a unique identifier for each version of the value. Once all the
accessed values are registered, the Analyzer submits the task to the Executor,
the component of the runtime that manages the resources.
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To decide which resources host the execution of a task, the runtime is based
on the concept of Computing Platform: a logical grouping of computing resources
capable of running tasks. The decision is made on the Decision Engine (DE),
which is agnostic to the actual computing devices supporting the platform and
the details to interact with them. The DE requests to each of the available plat-
forms –configured by the user beforehand– a forecast of the expected end time,
energy consumption and economic cost of the execution. According to a config-
urable heuristic, the DE picks the best platform to run the task and requests its
execution; the selected platform is responsible for monitoring the data depen-
dencies of the task and scheduling the execution of the task on its resources.
Currently, there exist three different implementations of Computing Platform
according to the nature of the computing devices composing it. CPU Platform
manages the execution of tasks implemented as regular Android methods on the
multiple cores of the mobile device CPU. GPU Platform executes tasks imple-
mented as OpenCL code on the embedded GPU. Finally, the third implementa-
tion, Remote Platform, offloads the execution of methods to remote resources.
For the runtime to properly exploit Fog-Cloud environments, users can instanti-
ate four platforms: a CPU Platform, a GPU Platform and two Remote Platforms:
the Fog Platform encapsulating the low-latency remote resources (West-bound)
and the Cloud Platform representing those VM instances deployed on Cloud
Providers (North-bound).

For sharing data across platforms, the runtime hosts a data repository: the
Data Manager (DM). Through a publish-subscribe mechanism, the DM asyn-
chronously provides information and values of the accessed datums using the
unique IDs assigned by the Analyzer. Computing Platforms lean on the DM for
monitoring the data dependencies. When the Executor designates a platform to
run a task, the platform subscribes for the existence of all the input datums;
upon the publication of the creation of any of them, the DM forwards the noti-
fication to the platform. Once the platform realizes that all of them exist, it
plans the execution of the task on its resources and queries the DM for the
value of each datum. At the end of the task execution, the platform publishes
the existence of the output datums and stores their value on the DM.

To uncharge the mobile device from the computational load of orchestrat-
ing the remote resources, Remote Platforms organize them as a peer-to-peer
network. Each node of the network runs a worker process persistently listening
to the network for task submissions; these processes are able to autonomously
handle the execution of the task on the local computing devices. To ease the
management of data dependencies, worker nodes subscribe for and publish infor-
mation and values of the datums accessed by the tasks on the DM, whose content
–either information or values– is consistently distributed across the whole infras-
tructure. The local instance of the DM is responsible for fetching the value from
any hosting remote node.

The following subsections delve into detail in other features of the runtime
specially significant for F2C environments: security on network communications
and network-disruption tolerance.
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Securing Communications. Data used on Fog applications is likely to be
privacy-sensitive (pictures, videos, geolocation, etc.) and networks interconnect-
ing the mobile device with other resources –either on the same layer or the Cloud
– tend towards untrustworthiness.

To protect applications from eavesdroppers, the runtime has a security mech-
anism that provides communications with confidentiality, integrity and authen-
tication. For its implementation the runtime leverages on the Generic Security
Services API (GSSAPI) [2], an IETF standard API to access security services,
so developers create secure applications while avoiding security-vendor lock-in.

Besides defining a common interface, GSSAPI also settles an operating model
where both ends negotiate a secure context – authenticate themselves and agree
on the mechanisms for data ciphering and integrity – before transferring any
information. Upon the establishment of the context, GSSAPI processes (wraps)
the messages and opaques their content returning token thats can be securely
shipped to the other end. Although GSSAPI defines the format of the exchanged
tokens and its content – actually, the security framework does –, it does not estab-
lish nor provide any transmission mechanism. Therefore, applications invoke
GSSAPI to wrap a value and obtain a token to ship to the other end. Upon
the reception of a token, the receiver invokes GSSAPI to unwrap the token and
obtain the original content of the message. In our case, COMPSs uses the Java
NIO library to transfer tokens over TCP sockets.

Although GSSAPI provides the infrastructure with an interoperable app-
roach to secure communications, currently there is no generic mechanism to get
the required credentials from the Authentication Server automatically. Applica-
tion users need to manually set up the Authentication Infrastructure and authen-
ticate all the nodes to obtain their credential beforehand. However, we consider
this to be the foundational stone to build a platform with Authentication, Autho-
rization and Accounting based on Federated Identity and Single Sign-On. Our
ultimate goal is to build a global service where local institutions offer nearby
computing resources (Fog nodes) where to offload computation securely from
mobile devices belonging to users from other organizations within their fed-
eration. Using the same credential, users could always turn to VM instances
deployed on the Cloud to obtain additional computing power.

Network Disruption Tolerance. A consequence of the high mobility of Fog
devices is instability on the network conditions. Fog devices are likely to face Wi-
Fi network handovers, changing the used network interface between Wi-Fi and
mobile data, switching to different mobile network protocols (GPRS, EDGE,
UMTS, HSPA, LTE, etc.) and eventually the device can disconnect from the
network. Controlling all the possibilities is main challenge to tackle not only for
Fog Computing but also for IoT and MANET frameworks.

As a first approach to solve the problem, we focused on the device running the
application (master) and considered a network disruption that isolates it while
the rest of the infrastructure stays up and online. Eventually, the device might
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reconnect to the same network recovering access to the same pool of workers,
but using a different IP address.

To tolerate short, sporadic network disruptions, the master sends a message
to every worker node upon the reconnection indicating its new address. Upon its
reception, worker nodes update every reference to the master node with the new
IP and re-start any interrupted transaction – transfer of a value or submission
of internal COMPSs command.

On long-lasting disruptions, worker nodes should keep progressing on the
computation despite the isolation. In the case of reconnection, workers autonomy
reduces the impact of the network failure on the performance of the application.
Upon the broadcast reconnection notification, DM instances synchronize their
content, thereby all the components of the infrastructure become aware of the
progress done by the other part.

On the other end, the master device should produce the expected result even
if the network connection is never re-established. Therefore, the master may
need to run all the pending tasks, even those already offloaded. Probably, some
input values for a pending task are the output of an offloaded one and they are
not likely to be on the master; hence, the value must be computed locally by
running the producing task. This mechanism results in a backtracking process
that only stops when all the input data required by a task exists in the device.
So the runtime can go back in the execution, it keeps track of all the detected
tasks and builds a data-dependency graph. Tasks can not be removed from the
graph until the master never needs to re-execute them again – i.e., all its output
values have a replica on the master or neither the main application nor any task
use them.

Upon the detection of a network breakdown, the Executor prioritizes the exe-
cution of the not offloaded tasks whose input values are already on the mobile.
When there are not enough tasks to use all the computing devices within the
mobile, the Executor picks one of the not offloaded tasks and triggers the back-
tracking process to generate the missing input values for the task. Finally, once
all the not offloaded tasks have started their execution, it runs pending offloaded
tasks (if necessary, re-computing the input data values).

To prevent this backtracking process from re-running tasks already executed
on the workers, the runtime transfers the output values back to the mobile
to establish checkpoints. To avoid transferring every remotely generated value,
the runtime picks some strategic values splitting the graph – currently, fixed-size
partitions according to the chronological order of task generation – and analyzing
each partition for all the output values of the block that succeeding partitions
might use. The master fetches these values upon their creation; once the master
has all the output values from a block, it removes the whole block from the
graph.

5 Experiments

As a proof of concept that validates the feasibility of the described architecture
and the proper behavior of the runtime system, we have ported the HeatSweeper
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application and executed it on a smartphone that offloads parts of the compu-
tation to nearby and remote devices. The following subsections introduce the
application, describe the testbed used to conduct the tests, and present the
obtained results in terms of execution time and energy consumption.

5.1 Application: HeatSweeper

HeatSweeper is an application to find the optimal placement of 1-to-N heat
sources on the surface of a solid body to reduce the time to heat up its whole
surface to a certain temperature. Its algorithm consists on an intensive search
looking for the best combination of 1-to-N locations for the heat sources, and
relies on two different solvers to simulate the heat diffusion based on the Jacobi
(used on the tests) and Gauss-Seidel equations.

On the COMPSs version, the application defines two CEs. Simulate encapsu-
lates within a task the simulation of the heat transfer over a surface for a specific
combination of locations and generates a report summarizing the simulation. In
a second phase, the application compares all the simulation reports to select the
best combination. To compare two reports the application defines the second
CE: getBest. On the conducted tests, the application considers 25 different spots
of the surface where to locate the heat sources; simulations stop after 10,000
steps if the surface has not reached the desired temperature before. With this
configuration, the application generates 325 simulate tasks and 323 getBest.

5.2 Testbed

HeatSweeper runs on a OnePlus One (OPO) smartphone, equipped with a Krait
400 quad-core processor at 2.5 GHz and 3 GB of RAM memory. As mentioned
above, the defined tests consider two different infrastructures where to offload
task. For the fog case, the smartphone offloads the computation to a laptop
equipped with an Intel i7-2760QM quad-core processor at 2.40 GhZ and 8 GB
of RAM memory. The mobile device connects to the laptop via an 802.11g wire-
less network. On the Cloud scenario, the phone uses as surrogates up to eight
quad-core VM instances deployed on an OpenNebula cloud. The physical nodes
supporting the Cloud have six-core Intel Xeon X5650 at 2.67 GHz processors
and 24 GB of memory each. Cloud nodes are interconnected through a Giga-
bit Ethernet network, while the connection between the mobile device and the
surrogates goes through the Internet and has an 85.5 ms RTT.

5.3 Results

Measurements of the elapsed time to execute a simulate task highlight the per-
formance differences among the devices composing the infrastructure. Running
a task on the smartphone takes around 288 s. When the screen of the device
is Off, Android reduces the frequency of the processor to a 10% of its regular
value. This increases the execution time to 6,794 s; however, it also reduces the
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power consumption of the processor from 1.4 W to 0.16 W. Executing the same
simulation on the laptop and on a Cloud instance takes 16 and 29 s, respectively.
The execution time of running a getBest task is negligible. Overall, running the
application on the phone – with its screen on – takes 99,641 s (more than 27 h),
and it forces the smartphone to stay plugged in and drawning power.

Fig. 4. Elapsed time and energy consumption of executing HeatSweeper according to
the surrogate platform

Charts in Fig. 4 illustrate the elapsed time and the energy consumption mea-
sured when executing HeatSweeper in the different platforms. Offloading parts
of the computation to resources with higher computing capabilities allows a sig-
nificant reduction of either the execution time and the energy consumed by the
smartphone. The laptop is the most powerful resource, and offloading tasks to it
reduces the execution time to 1368 s. Although the execution using a single VM
instance achieves a worse execution time than the laptop, the cloud provides the
runtime with higher amount of resources. The more VMs the application uses,
the lower the execution time is; using all eight instances, the application only
takes 321 s to finish. Obviously, offloading tasks saves to the master the energy
spend on the processor to compute them; however, keeping the mobile on and
transferring data through the network maintains part of this consumption. For
the 8-VM case, the smartphone consumes up to 146 J. The screen of the devices
is responsible for a significant part of this energy; with the screen Off, the appli-
cation reaches a consumption of less than 55 J. The impact of switching the
screen Off on the execution time is not significant. The frequency reduction only
affects to the communications and task management performed by the runtime;
it does not affect the actual computation of the tasks since remote resources
keep their performance.

6 Conclusions and Future Work

This paper presents the preliminary design of an architecture for a programming
framework that enables distributed computing on Fog-to-Cloud environments.
The baseline of this architecture is COMPSs, a programming tool that has been
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successfully applied to port applications and parallelize their execution on clus-
ters, grids and clouds. The COMPSs runtime, as explained in this work, has
been extended to be executed on Android devices equipped with CPUs and
GPUs and to offload tasks to clouds backends or other fog devices available in
the same network. An important improvement and contribution is the design of
a new distributed data management mechanism that allows to efficiently share
information about data across the different platforms. A checkpointing strategy
has been also implemented to make the runtime resilient to network fluctuations
and disruptions, allowing to resume the computation after a working node fail-
ure. Finally, security mechanisms have been added to secure the communications
between the main runtime process and the worker nodes. The results of the tests
demonstrate that the refactoring and extensions to the runtime, do not affect
the performance of the execution when offloading the tasks to remote nodes.

Future work includes several optimizations as the implementation of a dis-
tributed scheduling policy, the improvements on the security mechanisms in
order to add authentication at application level, extensions to the resource man-
agement to allow elasticity on the Cloud and to use dynamically appearing
resources as workers.
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Abstract. The EC H2020 mF2C Project aims at developing a software
framework that enables the orchestration of resources and communication at Fog
level, as an extension of Cloud Computing and interacting with the IoT. In order
to show the project functionalities and added-values three real world Use Cases
have been chosen. This paper introduces the mF2C Use case 3: Smart Fog Hub
Service (SFHS), in the context of an airport, with the objective of proving that
great potential value and different business opportunities can be created in
physical environments with a great concentration of smart objects, to showcase
the wide range of scenarios on which mF2C can impact, validate the project in
industrial events and determine a massive interest of relevant stakeholders.
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1 Introduction

More than 8 billion connected devices will be in use worldwide in 2017, up 31% from
2016 [1]. The forecasts of the world’s largest research institutes agree to over 20 billion
of IoT by 2020 with a growth of 140% in just three years. In 2017 more than 4 billion
passengers will concentrate in the airports with an average of two connected devices for
each passenger [2]. Current technology infrastructures and architectures have not been
designed to process in real time the great amount of information data that is being made
available from such a number of devices with a so high concentration. As one of the
first technical response to such technological challenges Fog Computing is emerging as
an architectural model that places itself between the Cloud and the IoT, expanding
Cloud Computing and Services to the IoT objects.

This paper is structured as follows. Section 2, introduces the Fog Computing
concept and how a Fog layer can address some of the challenges of connecting the IoT
to the cloud. Section 3 draws the proposed use case in the airport and Sect. 4 identifies
main expected benefits. Finally, Sect. 5 concludes the paper.

© Springer International Publishing AG, part of Springer Nature 2018
D. B. Heras and L. Bougé (Eds.): Euro-Par 2017 Workshops, LNCS 10659, pp. 338–347, 2018.
https://doi.org/10.1007/978-3-319-75178-8_28

http://orcid.org/0000-0002-4012-7490
http://orcid.org/0000-0003-1266-2899


2 The Fog Computing Scenario

The Internet of Things (IoT) is the set of objects within electronic devices, sensors and
actuators that are widely diffused and capable of communicating with the Internet and
other devices through communication protocols that do not request human intervention.
By way of example, we can mention:

• Web-cameras (for surveillance, traffic detection, pollution, etc.);
• Appliances (refrigerators, washing machines, kettles, etc.), door openers or shutter

controllers;
• Lifts and other smart building equipment;
• Various avionics devices such as flight recorders;
• Card readers or RFID (for logistic applications);
• Biomedical appliances and sensors;
• Meters, thermostats, digital regulators for electricity, gas, water, heat;
• Wearable devices such as bracelets and watches.
• Environmental and territorial sensors (light and humidity sensors, air quality and

parking sensors, etc.)

The amount of such objects grows at dizzying rates, and the volumes, variety and
speed of the data they produce also grow considerably. According to McKinsey [5], by
2020 some predictions suggest over 20 billion edge devices are to be connected col-
lecting more than 1 trillion GB of data. The information that is made available therefore
constitutes a Big Data generator of great potential value.

To take advantage of the quantity and variety of such data and generate value and
services from them, the most immediate approach was to connect the IoT directly with
the Cloud. Cloud service providers (Amazon AWS, Google Compute Engine,
Microsoft Azure) today enable customers to quickly deploy a myriad of private and
corporate services to be a competitive alternative to buying and maintaining their own
infrastructure.

Although this may in some cases be feasible, a more careful analysis has imme-
diately underlined that the direct “Cloudification” of IoT is generally problematic since
the approach of transferring all data from the device to the datacenter generates con-
siderable latency and a large computational load and storage at non-negligible eco-
nomic costs. There are also regulatory constraints that limit the use of personal data in
the cloud and infrastructure complications such as the use of dedicated communication
gateways between the IoT and the cloud.

In summary, the “Cloudification” of IoT makes an unwise use of the precious and
expensive resources of the Cloud computing system, namely the transmission capacity,
data storage and processing capabilities. There are also a large number of services that
require a nearly instant response to the reception of IoT data and this is not compatible
with the ability to transfer and process the huge amount of data of IoT devices in the
cloud.

A first technical response to these issues has been given by Cisco introducing the
Fog Computing concept as an architectural model that, between the Cloud and the IoT,
extends Cloud Computing and Services to IoT objects to the ends of the network [3]. In

Making Use of a Smart Fog Hub to Develop New Services in Airports 339



the same way as Cloud, Fog provides data, computing, storage, and end-user appli-
cation services, but supports a dense geographic distribution, aimed at approaching IoT
devices and providing support for object mobility. In this way the Fog reduces latency
in services, which in the case of critical services can be decisive, by improving their
Quality and Overall Experience of End Users.

The great interest in this new Fog architecture has given place to the establishment
of the Open Fog Consortium [4] consisting of research and industry giants such as
ARM, Cisco, Dell, Intel, Microsoft, Princeton University, which recently released the
first Reference Architecture. Fog Computing is defined as a horizontal-level system
architecture that deploys more computing, storage, control, and networking functions
closer to end-users in the continuum from cloud computing to IoT objects.

The architecture expects that deployments can reside on multiple layers, while
retaining all the benefits of cloud computing, such as containerization, virtualization,
orchestration, and resource-efficient management. Processes are moved by the cloud to
the edges of the network, near the IoT sensors and actuators, on elements called Fog
Nodes, consisting of autonomous processing, storage and IP communications. These
computing elements can be deployed anywhere, such along a railway, lighting poles or
a car, or can be capable of acting in mobility.

Fig. 1. OpenFog Reference Architecture for Fog Computing (from [4])
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The peculiarities of OpenFog’s architectures are to enable cloud-to-cloud and
cloud-to-fog interfaces and communication flows and thus offer, with respect to other
approaches, particular advantages represented by the SCALE acronym:

• Security: data generated by IoT devices must be protected both in transfers and in
storage to ensure secure and trusted transactions; The integrity and availability of
infrastructure and data should not be questioned;

• Cognition: awareness of end-user and surrounding environment goals; It also has
the ability to adapt connections and computing resources even in the unavailability
of some of them, so that architecture is autonomous and adaptive, starting with
objects at the extremes of the network;

• Agility: rapid innovation and scalability within a common infrastructure where
choosing the most suitable node depends on various factors such as the speed of
decision making required; So, for example, for instant responses, the node may be
at the generating device, while for other cases it may be transferred to a fog layer or
cloud;

• Latency: real-time processing and cyber-physical control systems, data analysis is
done close to the device that generated it for immediate response;

• Efficiency: dynamic, commonly used local resources not utilized by participating
end-user devices, for orchestrated and optimized computational resources.

Applications will need to be redesigned, starting with the gathering of elementary
information from sensors, for a new distribution of functions, previously thought only
for the cloud, and now placed between Cloud and Fog levels in the environment. The
most critical response time data will be processed in the first fog layer, while less
critical data may be transferred to higher aggregation layers for analysis and treatment.
The less critical data will then be brought to the cloud for historical analysis, big data
analytics, and long-term storage.

The Fog Computing model is not a compulsory choice in all situations. Various
scenarios can be better managed with just Cloud Computing, but many other scenarios
will be better implemented with fog extensions. Cloud backend remains a key part of
architecture even with the introduction of Fog Computing layers. Deploying tasks
between Fog and Cloud depends on specific applications; it can be originally planned,
but also dynamically adapted to the status of key resources such as processing load,
communication link saturation, storage capacity, security threats detected, unavail-
ability of resources, batteries consumption, cost targets, etc.

Recent business research, remarkably by McKinsey [5] examined the economic
impact that IoT based applications can bring by analyzing the potential benefits,
including productivity improvements, time savings, improved asset utilization, as well
as the value coming from reduced diseases, accidents, and deaths. The outcome
focused on the importance on the analysis of applications in the context of settings, the
physical environments where these systems are deployed. The most relevant findings
include how much IoT value is being created in business-to-business vs. consumer
markets, and which players in the value chain will capture the most value from IoT
applications. To name the most relevant we mention:
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• Interoperability among IoT systems plays a major role, most of the expected value
to be unlocked requires multiple IoT systems to work together, then to integrate and
analyze data from various IoT systems;

• Most of IoT data generated is merely collected but not stored nor used, so the potential
value contained in these data is not exploited. So there is a key source of big data that
can be leveraged to capture value, and open data, to be used in several scenarios;

• B2B applications of IoT have greater economic potential than consumer applica-
tions. While consumer uses of IoT have obtained a lot of attention and show a
tremendous potential for creating value, there is even greater potential value from
IoT use in business-to-business applications. A great deal of additional value can be
created when consumer IoT systems, such as connected consumer health-care
products are linked to B2B systems, such as services provided by health-care
providers and payers. This happens more frequently in environments with high
concentration of IoT devices.

Consequently typical scenarios to be considered with particular attention are:

• smart IoT objects in mobility (cars, ships, drones, airplanes, smartphones)
• the directions on which smart objects move (roads, railways, nautical routes,

airways)
• aggregation points for smart objects (ports, airports, railway/metro/bus stations,

malls, parking areas, factories, hospitals, schools/universities, building/houses)

The adoption of the Fog offers the following benefits:

• a globally distributed network improves fault tolerance and resilience, minimizing
downtime,

• better interconnection and balancing of processing loads,
• better system scalability also guaranteed by virtualized and containerized systems,
• better use of the network bandwidth, reducing transfers and avoiding congestion

and bottlenecks,
• a reduction in latency will also result in better service quality,
• optimizing operating costs by streamlining the use of processing, storage, and

network resources,
• more efficient security by encoding data to the source and reducing transfers, thus

reducing risk exposure,
• better flexibility and agility of business models.

3 The Smart Fog-Hub Service (SFHS)

The EC Horizon 2020 program has recently funded a new research initiative (mF2C)
bringing together relevant industry and academic players in the cloud arena, aimed at
designing an open, secure, decentralized, multi-stakeholder management framework for
F2C computing, including novel programming models, privacy and security, data
storage techniques, service creation, brokerage solutions, SLA policies, and resource
orchestration methods [6].
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There is an increasing demand in evaluating and identifying new market sectors
and opportunities, and interest at the IoT evolution as a potential arena where current
Cloud offering could be enriched and differentiated. In this perspective a relevant focus
in setting up hubs in public environments (e.g. airports, train stations, hospitals, malls
and related parking areas) is suggested, capable of tracking the presence of people and
other objects in the field, and developing value added services on top for proximity
marketing, prediction of path/behavior of consumers, and taking real time decisions.

The foreseen hubs could be adapted to be used as a planning tool for determining
the number and distribution of people that use, or can potentially use various services
like public transport, etc. This kind of hub can be easily considered as a fog device that
should embed cloud connectivity to either process large amount of data or request
extra-data – perhaps data coming from other fogs nearby.

As an additional opportunity to be evaluated, different fogs located in near sites
(e.g. airport, train/main bus/harbor station) could interact sharing data and customer
behavior gathered to improve the effectiveness of marketing proposals, given that the
identity of objects/customers is protected.

This scenario has been named as the Smart Fog-Hub Service (SFHS). The use case
is experimental and extends the concept of a “cloud hub” to a new concept of “fog
hub”, driven by real market needs. In this scenario Tiscali believes that value is
generated at the business services level, particularly in spaces with recurring concen-
trations of people and objects that can communicate and interact. Tiscali is interested in
setting up Fog Hubs in such scenarios to interact with all the objects within the scope of
coverage.

Tiscali believes that the IoT will be driven by business market instead of consumer
market, and that SFHS would be the best way to aggregate business users, design new
business scenarios and create value. There is no doubt that the capacities provided by

Fig. 2. Airport scenario
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mF2C will enable the distribution of the processing of data, reducing traffic load
between cloud & hub and latency in interactive services.

The envisioned Smart Fog-Hub Service should be set up in public crowded envi-
ronments, so a preliminary version will be tested within the Tiscali Campus in Cagliari,
and a final version will be deployed at the Cagliari Elmas airport. With this approach
the whole infrastructure will be tested and validated in a real scenario with possibility
for Tiscali to exploit the marketing potential of the developed services.

In the specific context of airports there are a growing number of objects that are
related to passengers and partners, or people that work in this environment. The field
include check-in area, security control area, and departure gates. Check-in and
departure gates host several shops and other frequented places. The foreseen services,
provided through a web portal, are oriented to track and engage all people in the field
offering information, suggestions on the best way to use available services, e.g. suggest
the moment for shorter waiting times in Security Control to departing people, to move
close to the gate or notify the final call, or recommend relevant proposals and offerings
in shops close to the user (proximity marketing). All these suggestions can be refined
according to behavior and choices done by passengers.

The technological scenario will include the following elements:

• Edge sensors, which can include smartphones, laptops, tablets, any other IoT
device with Wifi connection; most of them will be data generators, some could have
some computing power and potentially could offer/share data and eventually also
computing resources

• Edge Fog, which is basically composed by the Fog-Hub, that will perform the role
of data collector, power provider for the fog layer processing and will consist of the
following features:
– a computing element that has relevant computing power to run the defined

applications, analytics and management functions/tools,
– Wifi AP to collect data from the perceived objects within the covered field,
– enough local storage to retain local and temporary processed data,
– fast link interface with the cloud,
– (optional) Bluetooth LE beacons could be added, where the edge fog component

would run the management functions
• Link connection between Edge Fog and Cloud,
• Cloud, connected to the Edge Fog, which will be based on an OpenStack instance

that will provide scalable computing power for massive data processing.

The resulting infrastructure will be based on standard components and protocols
and will be sized according to the data volumes, and open to use different devices that
will be made available by the Project partners.

The data collected by the edge devices include some device specific and personal
data, detailed tracking position and preferences according to the portal navigation, and
different paths followed. This data has to be protected in the communication between
fog and the edge.

The additional workload on the networking elements will be managed with
SDN/NFV to provide bandwidth optimization and low latency, while from a security
and privacy perspective Fog and Cloud should be able to use different policies, with
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anonymization of data when requested. The edge fog element will be configured with
some resiliency capabilities, at least for stored data and fast reboot/recovery.

In this scenario the described Fog-Hub cannot be a “cloud hub” because the amount
of data to be processed and managed would exceed the network capabilities, so part of
the computation should be spent at Fog level, thus this hub could be better named the
Fog enabling Hub for ISPs, namely Smart Fog-Hub Service.

4 Benefits

With this kind of fog hubs, proximity marketing and social aggregation would be
enabled, with the possibility to collect a lot of information on objects moving within the
covered environment, offering connections, customized advertising and interactive
applications giving the connected users the chance to share or offer some resources.
This could require new billing/revenue sharing models and tools that also take into
account the correct use of users’ personal information.

These are some of the Expected Benefits:

Proximity marketing and enhanced user engagement, the strict interaction of a huge
amount of users enables a much more effective, customized offering and advertising,
differentiating between B2B and B2C customers, based on user preferences and
behavior, with the chance to determine the effectiveness of the proposition in terms of
purchasing products/services. A continuous refinement in the proposition can be
applied in terms of geo-fencing with a predefined set of boundaries, the recipient of the
message can receive real value as well as a mere communication. It can be possible to

Fig. 3. Airport mF2C topological scenario of Use Case 3
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organize customized promotional initiatives, ex ante or ex post with respect to the
presence in the area. Prepare campaigns targeted at categorized users, e.g. workers in
the airport, because they have been identified as such by people who are always passing
between eight and nine o’clock. Of course, respecting privacy laws.

According to recent report from the Politecnico di Milano [7], 80% of users (chosen
by those who usually browse the Internet) declare that online is the first source to look
for information on a product or service to buy, 77% compare prices on the Internet, and
a user in three chooses what to buy by looking for mobile information, typically from
their smartphone. The use of the smartphone is therefore an appealing opportunity to
engage customers.

Data collection and analysis, collecting lot of data from objects on the move can
enable running advanced machine learning algorithms to extract user profiles and
demands, but also trace trends or identify new required services. Most IoT data are not
currently used nor stored [5]; the current use is mostly limited to address anomaly
detection and real-time control, so a great deal of additional value remains to be
captured, by using more data, as well as deploying more sophisticated applications
such as analyzing workflows to optimize operating efficiency. Some Descriptive
Analytics, what’s happened, to Predictive Analytics, what will happen, to Prescriptive
Analytics, what can be done, can drive the Analytics on the data and generate value.

Related to the Multi SHFS (airport, train station, bus station, etc.), it will be
possible to answer several questions like: what are the most popular areas? Where does
the user stop the most? What are the average times of stay in the area?

Social integration, offering connections and interactive applications provides a way for
connected users to share or offer some resources, under user defined access rules.

New revenue models, sharing users’ resources may drive new billing models and SLA
policies not only between users and traditional providers but also among users them-
selves. Business-to-Business (B2B) applications can create more value than pure
consumer applications and new business models for user and companies are emerging.
The Internet of Things will enable—and in some cases force—new business models.
The new “as-a-service” approach can give the supplier of services a more intimate tie
with customers that competitors would find difficult to disrupt. The IoT will speed up
this evolution path because IoT produces huge quantities of a type of asset that can be
sold or exchanged: the data. The ability to identify facts and hidden relations in the data
available to organizations not only allows the optimization of processes and increasing
competitiveness, but also can open new opportunities for value creation. Data mone-
tization is the process of generating new revenues through the sale or exchange of data
in the possession of the organization and through the exploitation of these for the
generation of new products and services.

Improved data Privacy and security, management of user personal data is done at edge
level, separated from the cloud, encryption of storage and anonymization techniques
are applied before moving data to the cloud, thus reducing the risk of disclosure on
data, and preserving the confidentiality of data owners.

Optimized use of Resources and Service in the Airport field, the engagement and
continuous tracking of people moving in the airport allows the proposition of
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suggestions oriented to an optimal use of available resources, services and an improved
and pleasant quality of experience for passengers and partners. At the same time all
dealers and service providers in the airport site will be facilitated in their marketing
proposals and offering, by using the (anonymized) data collected by all people in the
field.

5 Conclusions

This paper begins highlighting the Fog Computing concept as an architectural model
that gives a better answer to the “Cloudification” approach. Fog computing, making the
glue between the Cloud and the IoT, extends Cloud Computing and Services to IoT
objects to the ends of the network.

Then an evaluation of current business trends on IoT was developed noting the
importance of the physical environments where such systems are deployed, and spotted
that a relevant IoT value is expected to be created in business-to-business vs. consumer
markets, and which players in the value chain will capture the most value from IoT
applications. This happens mostly in environments with high concentrations of IoT
devices.

The experimental Use Case on Smart Fog Hub Service (SFHS) has been described,
detailing the main objectives of exploring and analyzing proximity marketing and new
revenue models through data collection and advanced analytics, and foreseeing new
business models. Notably the data processing has to be distributed between cloud and
fog layers because the amount of data to be managed can exceed network, storage and
computing capabilities at the fog layer.

Finally the paper introduces the main expected benefits. Proximity marketing and
social aggregation would be enabled, giving way the collection of relevant of infor-
mation on objects moving within the covered environment, offering connections,
customized advertising and interactive applications giving the chance to connected
users to share or offer some resources, under controlled policies on users’ personal
information.
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Workshop on Algorithms, Models and Tools
for Parallel Computing on Heterogeneous

Platforms (HeteroPar)

Workshop Description

HeteroPar is a forum for researchers working on algorithms, programming languages,
tools, and theoretical models aimed at efficiently solving problems on heterogeneous
platforms. Heterogeneity is emerging as one of the most profound and challenging
characteristics of today’s parallel environments. From the macro level, where networks
of distributed computers, composed by diverse node architectures, are interconnected
with potentially heterogeneous networks, to the micro level, where deeper memory
hierarchies and various accelerator architectures are increasingly common, the impact
of heterogeneity on all computing tasks is increasing rapidly. Traditional parallel
algorithms, programming environments and tools, designed for legacy homogeneous
multiprocessors, will at best achieve a small fraction of the efficiency and the potential
performance that we should expect from parallel computing in tomorrow’s highly
diversified and mixed environments. New ideas, innovative algorithms, and specialized
programming environments and tools are needed to efficiently use these new and
multifarious parallel architectures.

The fifteenth International Workshop on Algorithms, Models and Tools for Parallel
Computing on Heterogeneous Platforms (HeteroPar’2017) was held in Santiago de
Compostela, Spain. For the ninth time, this workshop was organized in conjunction
with the Euro-Par annual international conference. The format of the workshop
includes a keynote, followed by technical presentations. The workshop was
well-attended with around 35 attendees.

In this edition, we have received 26 papers, from 13 countries. After a thorough
peer-reviewing process, 10 papers were selected for presentation at the workshop. The
review process focused on the quality of the papers, their innovative ideas and their
applicability to heterogeneous architectures. Papers were accepted after a discussion
and agreement among reviewers. As a consequence, the quality and the relevance of
the selected papers was high, reflected also in a low acceptance rate of 38%. The
accepted papers represent an interesting mix of topics, addressing modern SIMD
architectures, CPU-GPU systems, compiler techniques towards GPU performance,
software-Distributed Shared Memory, benchmarking, large scale graph processing,
workflow and chain of tasks scheduling, and resource aware execution of multipro-
cessor tasks, exhibiting the diversity and growth of the heterogeneous computing field.

At last, I would like to thank to all authors, to the HeteroPar Steering Committee
and the HeteroPar 2017 Program Committee, who made the workshop possible.
I would like to thank Y. Srikant, Daniel Pérez and Maciej Malawski for chairing the
sessions. I would also like to thank Euro-Par for hosting our community, and the
Euro-Par workshop chairs Dora B. Heras and Luc Bougé for their help and support.
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Approximation Algorithm for Scheduling
a Chain of Tasks on Heterogeneous Systems
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Abstract. This paper presents an efficient approximation algorithm to
solve the task scheduling problem on heterogeneous platform for the par-
ticular case of the linear chain of tasks. The objective is to minimize both
the total execution time (makespan) and the total energy consumed by
the system. For this purpose, we introduce a constraint on the energy
consumption during execution. Our goal is to provides an algorithm with
a performance guarantee. Two algorithms have been proposed; the first
provides an optimal solution for preemptive scheduling. This solution
is then used in the second algorithm to provide an approximate solu-
tion for non-preemptive scheduling. Numerical evaluations demonstrate
that the proposed algorithm achieves a close-to-optimal performance
compared to exact solution obtained by CPLEX for small instances.
For large instances, CPLEX is struggling to provide a feasible solution,
whereas our approach takes less than a second to produce a solution for
an instance of 10000 tasks.

Keywords: Linear chain of tasks · Makespan · Energy
Approximation algorithm

1 Introduction

Today, our daily life requires massive calculations on different computing systems
(desktop, data centers) to perform various needs such as physical simulations
or google searches. In order to improve the performance of these systems while
keeping their energy consumption reasonable, heterogeneous system has merged.
This heterogeneous architecture combines both processing elements (such as
CPUs, GPUs), and reconfigurable logic (FPGAs).

However, taking advantage of such heterogeneous systems requires efficient
use of resources to make profit from the performance of each part for applica-
tion execution. Thus efficient scheduling of task’s applications is difficult problem
often faced by designers and engineers using these complex systems. In fact, with
the complexity of applications and architectures, it becomes increasingly difficult

c© Springer International Publishing AG, part of Springer Nature 2018
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to distribute the tasks application effectively. More than a simple load balanc-
ing problem, heterogeneity leads to consider efficient scheduling techniques to
take account of the different resources specificities. The objective of this work
is to determine an efficient scheduling of a parallel application on a hetero-
geneous resources system in order to minimize both the total execution time
(makespan) and the energy consumption. For this purpose, we introduce a con-
straint on the total energy consumed by the system. We consider in this work, a
chain of tasks and communication delay. We conducted this research using the
fully heterogeneous micro-server system Christmann RECS c©|BOX [3]. The rest
of the paper is organized as follows. Section 2 discusses some previous efforts
in scheduling parallel application on heterogeneous systems, with a focus on
makespan and energy minimization. Section 3 presents a detailed description of
the mathematical model proposed. In Sect. 4, we present an optimal algorithm
for a chain of preemptive task. In Sect. 5 we describe the proposed algorithm for
non-preemptive scheduling and approximation ratio we obtain. Section 6 shows
some preliminary numerical results. The paper ends with a conclusion in Sect. 7.

2 Related Work

Due to its key importance on performance, the task scheduling problem on het-
erogeneous platform has been extensively studied and numerous methods have
been reported in the literature. They proposed various models and techniques
such as dynamical voltage scaling (DVS), list algorithms and genetic heuristics
to optimize essentially two main objectives: makespan and energy consumption.
Xie et al. [12], demonstrate that minimizing schedule length of a DAG-based
parallel application with energy consumption constraint on heterogeneous dis-
tributed systems is a nondeterministic polynomial-hard optimization problem.
They decompose the problem in two sub-problems beginning by treating the
problem of the energy constraint. At each task assignment phase, the energy
consumption constraint of the application can always be satisfied by supposing
that the unassigned tasks are assigned to the processor with the minimum energy
consumption. Then, they proceed to the minimization of makespan, assigning
tasks to processors using the earliest finish time (EFT).

Authors in [13], considered the objective of maximizing the probability of
completing tasks before a deadline D and to satisfy an energy constraint with
execution times and stochastic communications delays. Zhang et al. [15] have
treated the problem of robustness under energy constraint. The aim is to maxi-
mize system reliability by repairing runtime errors caused by various reasons such
as hardware flaws and program bugs while maintaining the energy constraint.
Authors in [16] began by giving an IP (Integer Programming) formulation of the
problem, then a three-phase algorithm is proposed using the Dynamic Power
Management (DPM) and DVS techniques. Several heuristics (iterative, Greedy,
random, . . . ) are proposed in [8] for the problem of scheduling on heterogeneous
processors that can change their frequencies among a set of possible values. The
objective is to minimize the temperature more than performance and energy of
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the system. A three-phase list algorithm is proposed by Fard et al. [2]. They
began by analyzing and classifying the different objectives and their impacts on
the optimization process. The objective is to find a solution that minimizes up to
four objectives (energy, makespan, reliability, economic cost).

Many works have also been done using genetic algorithms. Authors in [5],
proposed the ECS heuristic (Energy Concious Heuristic) which is used in [7] to
form a hybrid approach with the multi-objective genetic algorithm. This app-
roach provides a set of Pareto solutions. More recently in [14], authors proposed
a new genetic algorithm to study both objectives at once. Authors in [9–11] also
use game theory strategies to prove the existence of Nash equilibrium and find
a Pareto point.

However, all the aforementioned works did not consider approximation tech-
niques. To the best of our knowledge, we propose the first algorithm with a
guarantee of performance. Our model is inspired by [1], where authors seek
to minimize the energy consumed during execution by imposing a Deadline D
on completion time. In addition, we consider in this work communication cost
between tasks and processing elements. Preliminary results on modeling appli-
cations and heterogeneous platforms have been presented in [6], we focus in this
work on tasks chain to determine a performance guarantee algorithm.

3 Model

This study considers a fully connected heterogeneous multiprocessor platform in
which M is a set of m heterogeneous processing elements (GPU, CPU, FPGA. . . )
noted PE. Each element PEk ∈ M is characterized by its execution frequency
fj � 1, j = 1..m. The processing elements are sorted by increasing order of their
frequencies (f1 � f2 � . . . � fm). An application A of n tasks is modeled using
a DAG graph G(V,E,w). V represents set of nodes in G, and each node vi ∈ V
represents a task ti which is characterized by its weight wi, i = 1..n. We note by
W the total sum of the weights W =

∑n
i=1 wi. E is set of communication edges.

Each edge ei,j ∈ E represents a precedence constraint between two tasks ti and
tj and refers to the volume of communication from ti to tj denoted by Cti,j
if they are not assigned to the same processing element. Communication cost
between each pair of processing elements (PEk, PEl) is denoted by Cmk,l with
Cmk,l � Maxi executi,k,∀i ∈ {1, 2, . . . , n} and ∀k, l ∈ {1, 2, . . . ,m} as in [6].

A task ti can be executed only after the execution of all its predecessors. We
do not allow duplication of tasks or preemption. A task can be executed by all
processing units. Execution of task ti on PEk generates execution time equal to
executi,k = wi

fk
and power pi,k = wi ∗ f2

k . We denote by E the allowed quantity
of energy consumed during the execution. E represents in our case an energy
bound that should not be exceeded during the execution.

We focus this work to a chain of tasks. Our problem can be modeled by
mixed integer quadratic constrained program (P ). The first constraint simply
expresses that each task must be executed only once and on a single processing
element. Constraint (2) keeps energy consumption during execution less than
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E. The third constraint describes that the task ti+1 must be carried out after
the starting time of the task ti (i = 1..n − 1) plus the execution time of ti. The
communication cost (Cti,i+1 + Cmj1,j2) is added if both tasks are executed on
two different processing elements (PEj1 and PEj2) s.t xi,j1 = 1 and xi+1,j2 = 1.

xi,j =
{

1 if task ti is placed on the processing elementPEj , i = 1..n, j = 1..m
0 otherwise

starti = the starting time of the task ti, i = 1..n.

(P )

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∑m
j=1 xi,j = 1,∀i = 1..n (1)∑n
i=1

∑m
j=1 xi,j ∗ pi,j ≤ E (2)

starti+xi,j1 ∗ executi,j1 +xi,j1 ∗ xi+1,j2(Cti,i+1 + Cmj1,j2) � starti+1 (3)
∀j1 = 1..m, ∀j2 = 1..m ∀i = 1..n − 1 j1 �= j2

Z(min) = startn +
∑m

j=1 xn,j ∗ executn,j

4 Optimal Scheduling Algorithm for a Chain of
Preemptive Tasks

In this section we propose an algorithm to find the optimal solution of the
preemptive scheduling without communication cost for a chain of n tasks on a
set of m processing elements.

Lemma 1. The set of schedules that saturate energy constraint is dominant.

Proof. Let Ĉmax be the makespan of a solution such that Ĉmax = P1
f1

+ P2
f2

+ . . .+
Pm

fm
, Pi � 0 is the quantity of work put on the processing element PEi, i = 1..m.

∑m
i=1 Pi = W . We assume that

∑m
j=1 Pj ∗ f2

j < E. We construct another solution
such that: l = max{j ∈ {1..m},

∑j
i=1 Pif

2
m +

∑m
i=j+1 Pif

2
i < E} and P

′
1 = 0,

P
′
2 = 0, . . ., P

′
l = 0, P

′
l+1 =

E−∑l+1
j=1 Pjf2

m−∑m
j=l+2 Pjf2

j

f2
l+1−f2

m
, P

′
l+2 = Pl+2, . . ., P

′
m =

Pm +
∑l

j=1 Pj +(Pl+1 −P
′
l+1). We obtain a new solution Ĉ

′
max =

∑m
j=1

P
′
j

fj
with

∑m
j=1 P

′
jf

2
j = E. Ĉ

′
max =

∑m
j=1

P
′
j

fj
= P

′
l+1

fl+1
+

∑m
j=l+2

Pj

fj
+

∑l
j=1 Pj+(Pl+1−P

′
l+1)

fm
.

Since fm > fj , j = 1..l + 1, induces P
′
l+1

fl+1
+ (Pl+1−P

′
l+1)

fm
� Pl+1

fl+1
and

∑l
j=1 Pj

fm
�

∑l
j=1

Pj

fj
. Then, we obtain

∑m
j=1

P
′
j

fj
�

∑m
j=1

Pj

fj
. Finally, Ĉ

′
max � Ĉmax. �	

Theorem 1. The following Algorithm1 gives the optimal solution for preemp-
tive scheduling without communication cost with a complexity of θ(m).

We start by finding the fastest processing element PEj , on which we can
perform all the tasks. Then we look for the weight of tasks that can be put on
the next processing element (PEj+1) in order to saturate the energy constraint.
We denote by Wj the quantity of work put on the processing element PEj , Wj+1



Approximation Algorithm for Scheduling a Chain of Tasks 357

on PEj+1. The best solution is obtained when the energy constraint is saturated
s.t Wjf

2
j + Wj+1f

2
j+1 = E with Wj + Wj+1 = W . The solution of the system of

two equations with two unknowns is Wj = E−W ∗ f2
j+1

f2
j −f2

j+1
and Wj+1 = W −Wj . This

keeps the realizability of the solution: E − W ∗ f2
j+1 � 0 because W ∗ f2

j+1 � E

and f2
j − f2

j+1 < 0 because fj < fj+1. Then W � Wj > 0 induces Wj+1 � 0.

Algorithm 1. Preemptive scheduling (PS).
Data: Set of processing elements M = {PEj , j = 1..m} with f1 � f2 � . . . � fm,

weights of the tasks w1, w2, . . . , wn, E.
Result: Optimal preemptive scheduling.
begin

W =
∑n

i=1 wi; j = max{l ∈ {1..m},W ∗ f2
l � E}

if W ∗ f2
j < E then

Wj =
E−W ∗ f2

j+1
f2

j −f2
j+1

Wj+1 = W − Wj

else

Wj = W , Wj+1 = 0

k = max{p ∈ {1..n},∑p
i=1 wi < Wj}; w′

k+1 = Wj − ∑k
i=1 wi

Put t1...tk and a part w
′
k+1 of tk+1 on PEj

Put tk+2...tn and the rest (wk+1 − w
′
k+1) of tk+1 on PEj+1

We show in the following that Algorithm1 gives an optimal solution. Let
Ĉmax be the makespan of the solution obtained by the Algorithm1: Ĉmax =
Wj

fj
+ Wj+1

fj+1
due to the precedence constraint. Let Ĉ

′
max = P1

f1
+ P2

f2
+ . . . + Pk

fk

be another solution on a set of k > 2 processing elements,
∑k

i=1 Pi = W . We
distinguish three possible cases. The first case corresponds to all frequencies are
lower than fj s.t f1 � f2 � . . . � fk � fj . Hence, 1

fi
� 1

fj
induces Pi

fi
� Pi

fj
,

∀ i = 1..k. Follows
∑k

i=1
Pi

fi
�

∑k
i=1 Pi

fj
= W

fj
. Finally, since fj < fj+1 induces

∑k
i=1

Pi

fi
� W

fj
� Wj

fj
+ Wj+1

fj+1
. Then, Ĉ

′
max � Ĉmax.

The second case corresponds to all frequencies are greater than fj+1 such that
fj+1 � f1 � f2 � . . . � fk. Hence,

∑k
i=1 Pi ∗ f2

i �
∑k

i=1 Pi ∗ f2
j+1 = W ∗ f2

j+1 >
E. The last case corresponds to f1 � . . . � fj < fj+1 � . . . � fk. To study this
case, we start with the following Lemma 2.

Lemma 2. Let A,B,C be three positive integers such as 1 ≤ A < B < C and
W1, W2 be two non negative integers such as W1 +W2 = W . If W1 ∗ A2 +W2 ∗
C2 = W ∗ B2 then W1

A + W2
C > W

B .

Proof. By replacing W2 by (W − W1) in W1 ∗ A2 + W2 ∗ C2 = W ∗ B2, we
obtain W1 = W (C2−B2

C2−A2 ). Then, by replacing W1 by (W − W2) we obtain W2 =

W (B2−A2

C2−A2 ). Follows, W1
A + W2

C = W (C2−B2)
A(C2−A2) + W (B2−A2)

C(C2−A2) .
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Let Δ = W1
A + W2

C − W
B , we prove in the following that Δ > 0.

Δ = W (C2−B2)
A(C2−A2) + W (B2−A2)

C(C2−A2) − W
B = W

C2−A2 (C2−B2

A + B2−A2

C − (C2−A2)
B ).

We set X = B
A and Y = C

A . Observe that X > 1 and Y > X. Follows:

Δ = W
Y 2A2−A2 (Y 2A2−X2A2

A + X2A2−A2

Y A − (Y 2A2−A2)
XA ).

Δ = W
Y 2A−A (XY 3−X3Y +X3−X−Y 3+Y

XY ) = W
Y 2A−A (−(X−1)(Y −1)(X−Y )(X+Y +1)

XY ).
Since X > Y > 1 we have (Y − 1) > 0, (X − 1) > 0 and (X − Y ) < 0.
Therefore −(X−1)(Y −1)(X−Y )(X+Y +1)

XY > 0. Furthermore, W
Y 2A−A > 0 because

Y > 1. Finally, Δ > 0 induces W1
A + W2

C > W
B . �	

Proposition 1. If
∑k

i=1 Pi ∗ f2
i = Wj ∗ f2

j + Wj+1 ∗ f2
j+1 and

∑k
i=1 Pi = Wj +

Wj+1, then
∑k

i=1
Pi

fi
>

Wj

fj
+ Wj+1

fj+1
.

Proof. Let ϕ be a sequence of real such as ϕ1 = f1 and ϕi =√
∑i−1

α=1 Pα ∗ ϕ2
i−1+Pi ∗ f2

i∑i
α=1 Pα

,

for i = 2..j. This sequence guarantees that ϕi−1 < ϕi < fi, ∀ i = 2..j. Indeed,
since ϕ1 = f1, ϕ2

2 = P1 ∗ ϕ2
1+P2 ∗ f2

2
P1+P2

>
P1 ∗ f2

1+P2 ∗ f2
1

P1+P2
= f2

1 .

Furthermore, P1 ∗ f2
1+P2 ∗ f2

2
P1+P2

<
P1 ∗ f2

2+P2 ∗ f2
2

P1+P2
< f2

2 induces ϕ1 < ϕ2 < f2.
We assume that this is true for i = j − 1 i.e. ϕj−2 < ϕj−1 < fj−1.

ϕ2
j =

∑j−1
α=1 Pα ∗ ϕ2

j−1+Pj ∗ f2
j

∑j
α=1 Pα

<
∑j−1

α=1 Pα ∗ f2
j−1+Pj ∗ f2

j
∑j

α=1 Pα
<

∑j−1
α=1 Pα ∗ f2

j +Pj ∗ f2
j

∑j
α=1 Pα

= f2
j .

ϕ2
j =

∑j−1
α=1 Pα ∗ ϕ2

j−1+Pj ∗ f2
j

∑j
α=1 Pα

>
∑j−1

α=1 Pα ∗ ϕ2
j−1+Pj ∗ ϕ2

j
∑j

α=1 Pα
induces ϕ2

j > ϕ2
j−1.

Finally, ϕj−1 < ϕj < fj . By recurrence, we deduce that ϕi−1 < ϕi < fi.
From Lemma 2 we have:
P1
f1

+ P2
f2

> P1+P2
ϕ2

,P1+P2
ϕ2

+ P3
f3

>
∑3

i=1 Pi

ϕ3
and then, ∀ l ∈ {1..j}

∑l−1
i=1 Pi

ϕl−1
+ Pl

fl
>

∑l
i=1 Pi

ϕl
. Follows,

∑j
i=1

Pi

fi
>

∑j
i=1 Pi

ϕj
.

Let another sequence of real φ such as φk = fk and φi =
√

∑k
α=i+1 Pα ∗ φ2

i+1+Pi ∗ f2
i∑k

α=i Pα

for i ∈ {j+1..k−1}. In the same way, we get fi < φi < φi+1, ∀ i ∈ {j+1..k−1}.

And from Lemma 2, we obtain
∑k

i=j+1
Pi

fi
> +

∑k
i=j+1 Pi

φj+1
.

It result that
∑k

i=1
Pi

fi
>

∑j
i=1 Pi

ϕj
+

∑k
i=j+1 Pi

φj+1
.

In order to apply once again Lemma 2, we have to decompose
∑j

i=1 Pi and
∑k

i=j+1 Pi into 4 values WL1,WL2,WR1,WR2 such that:
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

WL1 + WL2 =
∑j

i=1 Pi

WR1 + WR2 =
∑k

i=j+1 Pi

WL1 + WR1 = Wj

WL2 + WR2 = Wj+1

WL1 ∗ ϕ2
j + WR1 ∗ φ2

j+1 = Wj ∗ f2
j

WL2 ∗ ϕ2
j + WR2 ∗ φ2

j+1 = Wj+1 ∗ f2
j+1

=⇒

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

WL1 = Wj ∗ (φ2
j+1−f2

j )

(φ2
j+1−ϕ2

j )

WL2 = Wj+1 ∗ (φ2
j+1−f2

j+1)

(φ2
j+1−ϕ2

j )

WR1 = Wj ∗ (f2
j −ϕ2

j )

(φ2
j+1−ϕ2

j )

WR2 = Wj+1 ∗ (f2
j+1−ϕ2

j )

(φ2
j+1−ϕ2

j )

This part of proof is illustrated by Fig. 1. Observe that the result values are all
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positive. From Lemma 2, we obtain WL1
ϕj

+ WR1
φj+1

>
Wj

fj
and WL2

ϕj
+ WR2

φj+1
>

Wj+1
fj+1

.

Hence WL

ϕj
+ WR

φj+1
= WL1

ϕj
+ WR1

φj+1
+ WL2

ϕj
+ WR2

φj+1
> W1

fj
+ W2

fj+1
.

Follows,
∑k

i=1
Pi

fi
>

Wj

fj
+ Wj+1

fj+1
. �	

Now, from Proposition 1, Ĉ
′
max =

∑k
i=1

Pi

fi
> Ĉmax = Wj

fj
+ Wj+1

fj+1
.

Remark 1. The proof remains valid if
∑k

i=1 Pi ∗ f2
i � Wj ∗ f2

j + Wj+1 ∗ f2
j+1.

Indeed, from Lemma 1, we can construct another solution with P
′
1, P

′
2, . . . , P

′
k

such as
∑k

i=1 P
′
i =

∑k
i=1 Pi and

∑k
i=1 P

′
i ∗ f2

i = Wj ∗ f2
j + Wj+1 ∗ f2

j+1. Hence,

we obtain Wj

fj
+ Wj+1

fj+1
<

∑k
i=1

P
′
i

fi
<

∑k
i=1

Pi

fi
.

Fig. 1. Resume of the first part of the proof.

5 An Approximation Scheduling Algorithm for Chain
of Non-preemptive Tasks with Communication Costs

We assume here a communication cost Cmj,j+1 between PEj and PEj+1 and
communication cost Cti,i+1 between each pair of tasks ti and ti+1 with 2 ∗
mini Cti,i+1 � maxj Ctj,j+1, ∀ i, j ∈ {1..n − 1}. We do not allow preemption
of tasks and we transform the previous solution of preemptive scheduling, using
the processing elements PEj and PEj+1 only.

Proposition 2. If only two processing elements PEj and PEj+1 are available,
the schedules with only one communication between them are dominant.
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Proof. Let {tk+2 . . . tn} be the set of uncut tasks of the preemptive solution on
PEj+1 and S1 the sum of their weights. Let Cmax1 the makespan of a feasible
solution obtained by processing tasks {t1 . . . tk+1} on PEj and {tk+2 . . . tn} on
PEj+1. By contradiction, let suppose that there exists a feasible solution with
at least two displacements such as S1 � S2, where S2 is the sum of the tasks
weights on PEj+1 with this solution, let Cmax2 be its makespan. We prove
that Cmax2 � Cmax1. Since the second solution is feasible, S2 � Wj+1. By the
previous algorithm, Wj+1 � S1+wk+1 � S1+max wi with i ∈ {1 . . . n}, and thus
S2 � S1 + Max wi, i = 1..n. Cmax1 = W−S1

fj
+ S1

fj+1
+ Cmj,j+1 + Ctk+1,k+2 and

Cmax2 � W−S2
fj

+ S2
fj+1

+2∗Cmj,j+1 +2 ∗ min Cti,i+1, i ∈ {1 . . . n−1}. Follows,

Cmax2−Cmax1 = S2−S1
fj+1

− S2−S1
fj

+Cmj,j+1+2 ∗ min Cti,i+1−Ctk+1,k+2. Since
S2−S1
fj+1

� 0 and 2 ∗ min Cti,i+1 − Ctk+1,k+2 � 0, ∀ i = 1..n − 1, induce Cmax2 −
Cmax1 � Cmj,j+1 − S2−S1

fj
. Finally, Cmj,j+1 − S2−S1

fj
� Cmj,j+1 − Max wi

fj
,

i = 1..n. According to the hypothesis, Cmj,j+1 − Max wi

fj
� 0, ∀ i = 1..n.

Therefore Cmax2 − Cmax1 � 0 =⇒ Cmax2 � Cmax1. �	
Theorem 2. The following Algorithm2 provides a solution for non-preemptive
scheduling starting from the preemptive scheduling solution obtained by Algo-
rithm1 with a complexity of θ(n + m).

The two variables α and β are used to determine the assignment of tasks.
In the case Wj+1 = 0, we put all the tasks on PEj . Otherwise, let Cost1(v) be
the cost of executing the first tasks (t1 to tv) on PEj with

∑v
i=1 wi � Wj , then

the rest on PEj+1. Cost1(v) = {Ctv,v+1 +
∑v

i=1 wi

fj
+

∑n
i=v+1 wi

fj+1
+ Cmj,j+1}. Let

Cost2(v) be the cost of executing the first tasks (t1 to tv) on PEj+1, then the

rest on PEj with
∑n

i=v+1 wi � Wj . Cost2(v) = {Ctv,v+1+
∑v

i=1 wi

fj+1
+

∑n
i=v+1 wi

fj
+

Cmj,j+1}.
We start by finding the tasks v1 and v2 that give the best respective schedul-

ing makespan (Cost1) and (Cost2), and keeping the best one. Finally, we check
if the cost generated by using both processing elements PEj and PEj+1 is less
than the scheduling makespan obtained by performing all tasks on PEj .

Example 1. Consider the task graph given by Figure 2. It contains ten task nodes
(n = 10) labeled from t1 to t10 with two additional nodes S and E (beginning
and end of the application). The edges are labeled with the communication cost
between tasks. The nodes are labeled with the weight of each task.
Consider a heterogeneous platform with 3 processing elements, their frequencies
are given in Table 1. The communication cost between processing elements are
given in Table 2. The maximum energy consumption is E = 1350.

The application of preemptive scheduling Algorithm2 gives PEj = PE2 and
PEj+1 = PE3 with W2 = 0, 5625 and W3 = 37, 4375. Since W3 > 0, we obtain

Cost1 = Ct1,2 + w1
f2

+
∑10

i=2 wi

f3
+ Cm2,3 = 17, v1 = 1. Cost2 = Ct7,8 +

∑7
i=1 wi

f2
+

∑10
i=8 wi

f3
+ Cm2,3 = 19, v2 = 7. Cost1 < Cost2, induces Cost = Cost1 = 17,

β = 1 and α = 1. Finally, W
f2

= 38
2 = 19 > Cost. We put the task t1 on the
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Algorithm 2. Non-Preemptive Scheduling (NPS).
Data: Weights of the tasks w1, w2, . . . , wn. Communication costs between tasks

Cti,i+1, i ∈ {1..n − 1}.

Result: Approximate solution ̂Cmax for non preemptive scheduling.
begin

Find PEj , PEj+1 and Wj , Wj+1 with preemptive scheduling algorithm
if Wj = W then

β = n, α = 1

else
Cost1 = min{Cost1(v), v ∈ {1..n − 1},

∑v
i=1 wi � Wj}; let

v1 ∈ {1..n − 1} such that Costv1 = Cost1
Cost2 = min{Cost2(v), v ∈ {1..n − 1},

∑n
i=v2+1 wi � Wj}; let

v2 ∈ {1..n − 1} such that Costv2 = Cost2
if Cost1 < Cost2 then

Cost = Cost1, β = v1, α = 1

else
Cost = Cost2, β = n, α = v2 + 1

if Cost > W
fj

then

Cost = W
fj

, β = n, α = 1

Put tasks between tα and tβ on the processing element PEj

Order the rest on the processing element PEj+1, ̂Cmax= Cost

5 5 3 3 3 3 5 3 3 5

S t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 E
0 2 2 2 2 3 3 2 4 4 0

Fig. 2. Task chain graph.

Table 1. Frequencies of processing
elements.

PEj PE1 PE2 PE3

fj 1 2 6

Table 2. Communication cost
between processing elements.

PEj PE1 PE2 PE3

PE1 0 7 6

PE2 7 0 7

PE3 6 7 0

processing element PE2 and tasks t2 to t10 on PE3. Ĉmax = Cost = 17. For
this instance, our approach gives the optimal solution.

Proposition 3. Let C�
max be the optimal solution for non-preemptive scheduling

and Ĉmax the solution obtained by Algorithm 2, then Ĉmax

C�
max

� W

Wj+
fjWj+1

fj+1

.

Proof. The optimal solution C
′
max of the preemptive scheduling is given by

C
′
max = Wj

fj
+ Wj+1

fj+1
. In the worst case for our algorithm, all tasks are
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executed on the processing element fj , thus we get Ĉmax � W
fj

. Follows

Ĉmax

C′
max

�
W
fj

Wj
fj

+
Wj+1
fj+1

� W

Wj+
fjWj+1

fj+1

. By optimality of Algorithm1, C
′
max � C�

max

induces Ĉmax

C�
max

� Ĉmax

C′
max

, then Ĉmax

C�
max

� W

Wj+
fjWj+1

fj+1

. �	

Remark 2. This ratio is reached, let consider an instance which generates
Wj+1 = 0 and Wj = W for the preemptive solution, then, 1 � Ĉmax

C�
max

�
W

Wj+
fjWj+1

fj+1

= W
W = 1. So, we obtain the optimal solution, Ĉmax = C�

max.

Remark 3. Since fj

fj+1
< 1, W

Wj+
fjWj+1

fj+1

< W
fj

fj+1
(Wj+Wj+1)

= fj+1
fj

, and finally,

Ĉmax

C�
max

<
fj+1
fj

.

6 Experimental Results

In order to measure the efficiency of our algorithm, we performed several tests
on randomly generated instances with different dimensions. For this purpose,
we developed a random instances generator in C++ adjustable with several
parameters.

General settings are number of tasks n and processing elements m. We
denote by test n m instance defined by these two parameters. The weights
of the tasks are generated randomly over an interval [wmin, wmax]. The fre-
quencies of the processing elements are randomly generated over an interval
[fmin, fmax] while ensuring the heterogeneity of the system by generating dif-
ferent values. The communication costs between tasks are generated randomly
over an interval [Ctmin, Ctmax] and between processing elements over an inter-
val [Cmmin, Cmmax] in accordance with the hypothesis described in Sect. 3. The
bound E is randomly generated with respect to W ∗ f2

1 < E < W ∗ f2
m.

Our proposed Algorithm2 were implemented in C++. The exact solution is
obtained by solving the model (P ) with CPLEX 12.5.0 [4] and the OPL script
language. The following Table 3 shows the results of tests on different instance
sizes. We have generated 30 instances for the first four rows (from instance
test 8 3 to test 20 4) and then one instance for the others due to the large
running time on CPLEX.

The PS (Preemptive Scheduling) columns present the makespan average
solution obtained by the Algorithm1. The NPS (Non-Preemptive Scheduling)
columns present the makespan average solution obtained by the Algorithm2 and
its average execution time. The CPLEX columns present the average makespan
solution of the resolution of the model (P ) with CPLEX and the average
computation cost required as well as the optimality of the solutions. Finally,
the columns GAP1 and GAP2 present the average ratio between the solution
obtained by Bound1 = CPLEX solution and Bound2 = Preemtive solution with
NPS solutions which is calculated as follow:
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GAPi = Heuristic Solution−Boundi

Boundi
∗ 100, i ∈ {1, 2}.

Since the execution time of a quadratic model is generally too large, we have
therefore limited the running time for CPLEX to 60 min. In Table 3, we can
notice that for most of the instances with less than 30 tasks, our algorithm gives
an optimal solution with smaller running time than CPLEX. Moreover, for larger
instances, CPLEX takes much longer to find a solution, whereas NPS gives a
solution in less than one second for an instance with 10000 tasks.

Table 3. Evaluation of the NPS heuristic compared to CPLEX.

Instances PS NPS CPLEX Gap1 Gap2

Sol Time Sol Time Opt

test 8 3 15.03 19.89 0.0004 s 19.89 0.76 s X 0% 31.14%

test 12 3 24.82 32.55 0.0005 s 32.55 2.17 s X 0% 15.80%

test 15 4 29.87 34.59 0.0005 s 34.58 6.46 s X 0.02% 21.91%

test 20 4 27.51 33.54 0.0007 s 33.54 8 min 3 s X 0% 2.25%

test 30 6 24.84 25.40 0.001 s 25.40 35min X 0% 7.02%

test 50 6 40.27 43.10 0.01 s 102.24 60min / −57.84% 8.03%

test 100 9 53.78 55.39 0.02 s 843.48 60min / −93.43% 2.99%

test 200 9 123.21 128.92 0.03 s 1929.20 60min / −93.31% 4.63%

test 500 11 207.44 217.52 0.05 s 3587.39 60min / −93.93% 4.85%

test 10000 11 4814.62 4828.06 0.5 s / 60min / / 0.27%

7 Conclusion and Future Work

This paper presents an efficient approximation algorithm to solve the task
scheduling problem on heterogeneous platform for the particular case of lin-
ear chain of tasks. Our objective is to minimize both the total execution time
(makespan) and the energy consumption by imposing a constraint on the total
energy consumed by the system. This work has shown that finding an efficient
scheduling is not easy. Tests on large instances close to reality shows the limits
of solving the problem with a solver such as CPLEX.

The main contribution of this work is to give an algorithm which provides a
solution with small running time, and also guarantee the quality of the solution
obtained compared to the optimal solution. The ratio obtained depends on the
frequencies of two successive processing elements PEj and PEj+1 used in pre-
emptive scheduling. The performance ratio of our algorithm is bounded by fj+1

fj
.

As part of the future, we will focus on the extension to more general classes of
graphs to handle real application.
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Abstract. Nowadays, the design of computing architectures not only
targets computing performances but also the energy power savings.
Low-power computing units, such as ARM and FPGA-based nodes, are
now being integrated together with high-end processors and GPGPU
accelerators into computing clusters. One example is the micro-server
architecture that consists of a backbone onto which it is possible to plug
computing nodes. These nodes can host high-end and low-end CPUs,
GPUs, FPGAs and multi-purpose accelerators such as manycores, build-
ing up a real heterogeneous platform. In this context, there is no hard-
ware to federate memories, and the programmability of such architectures
suddenly relies on the developer experience to manage data location and
task communications. The purpose of this paper is to evaluate the possi-
bility of bringing back the convenient shared-memory programming model
by deploying a software-distributed shared memory among heterogeneous
computing nodes. We describe how we have built such a system over a
message-passing runtime. Experimentations have been conducted using a
parallel image processing application over an homogeneous cluster and an
heterogeneous micro-server.

Keywords: S-DSM · Data coherence · Heterogeneous computing

1 Introduction

Heterogeneity is slowly entering high-performance computing. After a decade
figuring out how to cope with mixed CPU and GPU nodes for performance at
both the hardware and software levels, new requirements now concern the lim-
itation of the power consumption. Low-power CPUs (ARM) and accelerators
(manycore, FPGAs) are joining the computing resource list. These resources
can run regular tasks in a massively parallel way, while keeping the electricity
bill reasonable. Micro-servers have been developed in this direction. They offer
a communication and power supply backbone onto which it is possible to plug
heterogeneous computing and data storage nodes. These nodes can host regular
CPU such as Intel i7, clusters of ARM Cortex (more popular in smartphones than
in HPC) and Xilinx/Altera FPGAs to deploy specific IPs. But the micro-server
architecture comes with a price: it escalates the problem of managing the het-
erogeneity of resources. Current approaches include hybrid programming such
c© Springer International Publishing AG, part of Springer Nature 2018
D. B. Heras and L. Bougé (Eds.): Euro-Par 2017 Workshops, LNCS 10659, pp. 366–377, 2018.
https://doi.org/10.1007/978-3-319-75178-8_30
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as MPI/OpenMP (message passing between nodes and parallel programming
within nodes) and task-based models such as OpenCL, StarPu and OmpSs that
encapsulate the user code into a specific framework (kernels, tasks, dataflow).
These systems have been ported to different processor architectures, even on
FPGAs for OpenCL, addressing the heterogeneity of the platforms. Unified dis-
tributed memory systems can be built on top of heterogeneous platforms using,
for example, cluster implementations of OpenMP and PGAS implementations
(provided it does not rely on hardware mechanisms such as RDMA). In this
work, we explore the possibility of deploying a full software-distributed shared
memory system to allow MPMD programming on micro-servers (a distributed
architecture with heterogeneous nodes). This is quite new for such systems, for
two reasons: First, there is a lack of specification and formalization against hard-
ware shared memory, and also because of a potential scaling problem. Second,
software shared memory, while being famous with computing grid and peer-to-
peer systems, is seen as a performance killer at the processor scale. We think
that micro-servers are standing somewhere in-between: from the multi-processors
they inherit the fast-communication links and from the computing grids, they
inherit the heterogeneity, the dynamicity of resources and a bit of scaling issues.
In this work, we propose an hybrid approach where data coherency is managed
by software between nodes and by regular hardware within the nodes. We have
designed and implemented a full software-distributed shared memory (S-DSM)
on top of a message passing runtime. This S-DSM has been deployed over the
RECS3 heterogeneous micro-server, running a parallel image processing appli-
cation. Results show the intricacies between the design of the user application,
the data coherence protocol and the S-DSM topology and mapping. The paper
is organized as follows: Sect. 2 describes some micro-server architectures and
the way they are used. Section 3 presents the S-DSM. Section 4 describes the
experiments on both homogeneous and heterogeneous architectures. Section 5
gives some references on previous works. Finally, Sect. 6 concludes this paper
and brings new perspectives.

2 Micro-servers and Heterogeneous Computing

Micro-servers such as HP Moonshot [1] and Christmann RECS [7,10] are mod-
ular architectures that can be adapted to a particular application domain. As
illustrated by Fig. 1, a chassis provides power supply, cooling systems, as well
as a backplane that hosts several integrated networks (management, comput-
ing...) and a set of slots to plug computing boards (also called servers). These
computing boards share the same interface and form factor (for example COM
Express). However, the inner design is quite free, which is source of heterogene-
ity with important unbalance in computing performance and communication
speed. Such architecture is known to reduce power consumption, save space and
avoid cable spaghetti. Data management depends on the configuration of the
micro-server: we assume that there is at least one CPU per node that is able to
run a full operating system and locally store data, either on physical memory
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Fig. 1. Micro-server hosting nodes with CPU, low-power CPU, GPU and FPGA.

or on disk (SSD, SD card). On this type of distributed architecture, data are
usually managed using message passing or remote accesses that do not take into
account the heterogeneity of the storage medium. Furthermore, the user is in
charge of the localization and the transfer of data. We think that there is room
for some improvements in data management over such platforms. S-DSM can
be used to transparently federate memories of the computing boards and offer
an abstraction of the storage at the global scale. However, as far as we know,
S-DSM are mainly designed for homogeneous platforms (except for the commu-
nications when deploying over NUMA architectures), and they have not been
deployed over micro-servers. In this work we deploy an in-house S-DSM over a
micro-server. We analyze what are the limitations of the approach and propose
some improvements for future S-DSM deployments.

3 Software-Distributed Shared Memory

The Software-Distributed Shared Memory (S-DSM) interfaces user applications
relying on the shared memory programming model to a given hardware archi-
tecture in which physical memories can be distributed. With this system, the
application is written as a set of threads/tasks from which it is possible to allo-
cate and access shared data (close to the Posix and shmem models). To perform
such accesses we have defined an API inspired by the entry consistency model [5].
Portion of codes that access a shared data are protected between acquire and
release instructions applied to the data. There are two acquire instructions to
discriminate a shared access against an exclusive access (multiple readers, single
writer). The API also provides rendez-vous and other synchronization primi-
tives. The logical organization of the S-DSM follows a client-server model. A
client runs the user code, as well as some S-DSM code (mainly hidden behind
the malloc, acquire and release instructions). The server only runs S-DSM code
and is used to manage metadata and store data. Each client is attached to
at least one server. The resulting topology can be compared to the super-peer
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topology found in large distributed systems. Chunks are the atomic piece of data
managed by the S-DSM. The size of the chunk can be set by the application.
Whenever a data is allocated in the shared memory, if the size is larger than
the chunk size, then it will allocate more than one chunk. The memory space
allocated on the client is always a contiguous space on which it is possible to
use pointer arithmetic. However, on the server side, the chunks are managed
independently and can be spread among the servers in any order. Chunks can
be compared to pages in operating systems and so-called chunks in peer-to-peer
systems. Each chunk is under the control of a data coherence protocol. The
S-DSM allows several coherence protocols to run concurrently, but not for the
same chunks. The coherence protocol is in charge of the localization and the
transfer of the chunk. Each protocol implements the actions to execute when-
ever acquire and release instructions are called on the client side, and it also
implements a distributed automata for the servers. The home-based MESI pro-
tocol [8] is an example of a widely-used cache coherence protocol for multi-core
processors. Home-based means that the management of each chunk, including
metadata, is the responsibility of one server called home-node. The home-node
does not necessarily store the data. Home-nodes are usually assigned to chunks
using a round-robin arrangement. MESI is one of the protocols that has been
implemented in the S-DSM. In this paper we only refer to this protocol. We
have implemented an ANSI C version of such a S-DSM using the OpenMPI
message passing runtime. There is a weak dependence on OpenMPI as it only
uses send and receive primitives (no collective functions for example), and it is
quite straightforward to switch to another MP middleware. However, the MPI
runtime is convenient because it handles the deployment and the bootstrap of
tasks and can be installed in many Linux distributions, which is a serious argu-
ment when deploying on an heterogeneous platform. The implementation of the
S-DSM is roughly 12k lines of code, including data coherence protocols.

4 Experiments with an Image Processing Application

The S-DSM has been deployed over two testbeds: an homogeneous cluster of
desktop computers and a heterogeneous micro-server. Descriptions of testbeds
are given in Fig. 2. The purpose of these experiments is to highlight the behavior
of the S-DSM runtime and the home-based MESI coherence protocol. This is why
some choices regarding the S-DSM setup such as the granularity of the data and
the topology are more set to stress the system rather than to get performance.
All experiments use the exact same S-DSM and application codes, and the same
input data. Only the description of the topology and the placement of tasks
(MPI rankfile) differ.

4.1 Parallel Eager-Scheduled Convolution Application

The convolution application is an image processing application that calculates
for each pixel of the input image a new value based on the surrounding pixels
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Fig. 2. Testbeds used for the experimentations: an homogeneous cluster of desktop
computers and an heterogeneous Christmann RECS 3 Antares Box Microserver. Laten-
cies are given by Ping and throughputs by Iperf. If not specified, we assume roughly
the same performances as similar links.

(stencil) multiplied by some coefficients (kernel). For example, some stencil and
kernel combinations can be used for edge detection. A parallel version of the code
is straightforward and, because each pixel can be processed independently (the
result does not depend on other results), there is no constraint on granularity:
pixels, lines or macro blocks can be processed concurrently. We have implemented
this algorithm using an eager scheduling strategy on top of the S-DSM. The
eager strategy works as follows: a set of jobs is shared between tasks. Each task
concurrently iterates on the next available job. Tasks that are running faster
will process more jobs. This is an interesting property for running a parallel
application onto heterogeneous resources: if the jobs are equally splitted between
tasks then the tasks that are running on the most powerful resources will have
to wait for the weakest one. Instead, eager scheduling allows load balancing
and makes resources busy at -almost- all time. We have set the granularity
of the parallel computation to the image line size and we use the same size
for the S-DSM chunk size. Therefore, the input and output images (as well as
the intermediate representation - this is a 2-step algorithm with a convolution
followed by a normalization) are represented by a set of chunks, one chunk
per line. A job consists of processing one line. The concurrency comes from the
convolution kernel size that requires to read three contiguous lines to process the
central line and a possible overlapping with other tasks. Shared data also include
the available jobs vector and the current max pixel value found while applying
the convolution, and used for normalization. All shared data are accessed under
the control of the home-based MESI protocol. Experimentations are based on
the same code, using a 3.7 MB 2560×1440 grayscale image as input. This image
size is large enough to get tangible results on the behavior of the application,
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and the granularity is small enough to stress the S-DSM and see what are the
bottlenecks (in fact the granularity is far too small to get any speedup and
most of the time is spent into S-DSM mechanisms and communications). In
the experiments, the amount of messages received by the main memory server,
including the S-DSM bootstrap and the consistency protocol goes from 30000
to 112000 messages in a single run, which explains the poor performances. The
application is composed of 3 main roles: at least one memory server, one and
only one i/o task that copies the image from disk into the memory, waits for
the end of calculation, and copies back the result from memory to disk, and at
least one processing task. This makes possible to deploy different topologies of
the same application. The minimal topology being one memory, one i/o and one
processing task. This latter topology is used to bench the different CPUs of the
testbeds with the following results: 1.4 s for i7-5600U, 2 s for i7-4700EQ, 3.2 s
for Core2-X6800, 7.6 s for Cortex-A15 and 35.7 s for Cortex-A9. All processing
times are real values given by the Unix time command and therefore include
the OpenMPI runtime bootstrap, the S-DSM bootstrap and the disk accesses
to the input and output files. The important gap between the Intel i7-5600U
and the ARM Cortex-A9 is also explained by the disk technology: a SSD for the
i7 and a SD card for the Cortex-A9. In that context, deploying a S-DSM over
heterogeneous nodes can be used to pin i/o tasks onto nodes with high-speed
disks and keep all data in memory otherwise.

4.2 Homogeneous Cluster Architecture

Before deploying the S-DSM onto the RECS3 micro-server, we use a homoge-
neous computing cluster with different application topologies. The goal is to
observe the performance variations and determine if it comes from the S-DSM
implementation or from the heterogeneity of the resources. Figure 3 shows the
processing times for two topologies running on 6 nodes. Topology A is made
of two memory clusters, three processing tasks in each memory cluster and one
i/o in one memory cluster. Topology B is a single memory cluster hosting six
processing tasks and the i/o task. A runs almost 4 times slower than B: adding
a memory server brings complexity in the data management: more control and

Fig. 3. Processing time on the cluster using different S-DSM topologies. The light-
green cylinders represent memory servers and the arrows represent the clients. Orange
clients are input/output tasks while blue clients are processing tasks. The horizontal
blue lines define the memory clusters (to what server is connected each client). (Color
figure online)
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Fig. 4. Left: topology A. Memory servers are collocated with tasks 3 and 6. The i/o
task is collocated with task 3. Right: topology B. The memory server and the i/o task
are collocated with task 2.

data messages, as well as one additional MPI process that does not contribute
to the job. The benefit of adding a new cache does not hide this overhead. Left
Fig. 4 gives the minimum, maximum and standard deviation of the line process-
ing time, as well as the number of processed lines for each computing task of
topology A. Task 6 is performing badly, because of the activity of the collocated
memory server. Despite a collocated memory server, task 3 has no performance
drop because it directly benefits from the local cache that has been filled by
the collocated i/o task. Right Fig. 4 presents the same metrics for topology B in
which it appears that performances are now inline with the homogeneous cluster
architecture. One conclusion at this step of experimentation is that the applica-
tion topology must be tightly chosen according to the application behavior and
the underlying hardware. In this particular scenario, adding a zealous cache is
not an option.

4.3 Heterogeneous Micro-server Architecture

In this set of experiments we deploy the application onto the RECS3 micro-
server as presented in Fig. 2, except that we use only one i7 node out of the
two. We deploy four different topologies, as presented in Fig. 5. In topology C,
Cortex-A9 (the weakest node regarding computing power) is discarded. We take
the results as reference to study the influence of this particular node in the
other topologies. Top-left of Fig. 6 shows the performance of each computing
task. Despite the heterogeneity of the hardware, all tasks achieve quite similar
performances. The MESI data coherence protocol implementation is designed
for homogeneous architectures, in which distributed roles share the same duty.
Metadata management is spread across the i7 and Cortex nodes and one access
to shared data on the i7 can trigger some requests to a Cortex node in charge
of the data, and vice-versa. In this experiment the processing time of a line is
mainly spent in getting access to the data. And this time has to be paid by
all tasks, whatever the resource they are running on. Topology D collocates a
memory server and a processing task on the Cortex-A9. While it adds a new
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Fig. 5. Processing time on the RECS3 micro-server using different S-DSM topologies.

Fig. 6. Top-left: topology C. Task 4 is running on the i7 processor, tasks 5 to 10 on
Cortex-A15 processors. Top-right: topology D. Task 5 is running on the i7 processor,
tasks 6 to 11 on Cortex-A15 processors and task 12 on Cortex-A9. Bottom-left: topology
E. Task 4 is running on the i7 processor, tasks 5 to 10 on Cortex-A15 processors and
task 11 on Cortex-A9. Bottom-right: topology F. Task 2 is running on the i7 processor,
tasks 6 to 10 on Cortex-A15 processors and task 11 on Cortex-A9.

worker to the application, it also adds a new server that will be responsible of
managing some metadata. This is probably too much to handle for such CPU,
as shown by top-right Fig. 6: the overall computing time is almost twice the time
than without Cortex-A9 and task 12 runs slower than the other.
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Fig. 7. Topology E. Communication heatmap. Each cell represents the cumulative
size of messages that have been sent from tasks indexed vertically, to tasks indexed
horizontally. Tasks 0 to 2 are memory servers. Task 3 is the i/o client. Tasks 4 to 11
are processing tasks. Values are normalized to grayscale, darker is bigger.

With topology E, the memory server is removed from Cortex-A9 and the
remaining processing task (still running on Cortex-A9) is attached to the memory
server located on the i7 node. This is the best scenario for Cortex-A9 because
(1) it interacts directly with the memory server running on the most powerful
resource and (2) the network connectivity is far better than with the Cortex-A15
nodes (0.17 ms, 724 Mbits/s versus 0.5 ms, 236 Mbits/s). The overall computing
time is quite comparable with the C scenario: running a memory server on the
Cortex-A9 was a terrible choice. Bottom-left Fig. 6 reveals that task 11 located on
Cortex-A9 performs as good as tasks located on Cortex-A15 and has even be able
to take more jobs than the other. The communication heatmap for topology E
is given in Fig. 7. Communications between servers are quite light and mainly
consist of a large number of very small control messages. This would be quite
different in the case of a cache cooperative protocol. Communications from clients
to servers strictly follow the topology description: a client only sends messages
to the memory server it is attached to. The important traffic corresponds to
messages for updating chunks on the server after completing jobs. Servers to
clients communications consist of a mix of control and data messages. It shows
that the memory server 0 located on the i7 node has sent more data to the clients
than the two other servers located on the Cortex-A15 nodes. Finally, clients to
clients communications are not allowed in this protocol (this optimization is not
implemented at this time). Topology F is made of one memory server located
on the i7 node and ten processing tasks (one per CPU). As for topology B
this strategy gives better performance, but the improvement over topology C
is not that important than with the homogeneous testbed. Bottom-right Fig. 6
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shows that all processing tasks are now performing at the same speed, hiding
the resource computing power they are running on.

4.4 Discussions

The S-DSM runtime has a major influence on the performance map of the appli-
cation: we have shown that running over an heterogeneous architecture can lead
to a global overhead in which computing tasks deployed on the most powerful
processors cannot perform better than tasks deployed on weaker processors. This
is mainly due to the home-based MESI coherence protocol implementation that
equally balances the metadata management on memory servers. In this context,
there is a performance fall when clients access shared data that are managed
by a server running on a weak resource. And this is the case with the convolu-
tion application in which the management of lines is spread among the memory
servers and the number of shared accesses is the same for all lines. Therefore,
data coherence protocols should be designed with the possibility to adapt the
metadata management load depending on the resource performances (comput-
ing power and network). In this direction, we can propose the dissociation of
the data management (metadata) and the cache system. For example, in this
paper experiments, the whole metadata management could be handled by the
most powerful node while several data-only caches could be spread among other
nodes. Another aspect is the importance of the placement (and possibly the
routing) of the data coherence protocol roles onto the resources. A key aspect is
the collocation of roles (and user tasks) that need to extensively communicate.
In most of the message passing runtime implementations, such communications
are locally optimized. Placement should be planned using offline static analysis
and/or using dynamic mechanisms. In this paper we have proposed arbitrary
topologies. We think that a more automated approach should be used, possibly
with the help of operational research algorithms. Finally, one of the main pur-
pose of the micro-server architecture is to offer computing power with interesting
performance per watt compared to regular computing clusters. Some topolo-
gies might not be adapted to reach the best execution time, but could provide
interesting properties regarding energy consumption. And in some scenarios the
energy consumption might be a more valuable metric.

5 Related Works

Software-Distributed Shared Memory has become popular in the late eighties [11]
with the introduction of systems for computing clusters [2,3,5,6], followed by
systems for computing grids [4,12] and many-core processors [14]. These S-DSM
are designed for a particular architecture and reasonably expect the same perfor-
mance from the physical resources. Deploying S-DSM over heterogeneous sys-
tems has been studied in 1992 with Mermaid [15] and Jade [13] running on
SPARC, DEC and DASH-based machines. With Mermaid, the authors focus
on the problem of data conversion between processors. While both systems are
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undoubtedly a demonstration of a S-DSM running over an heterogeneous archi-
tecture, the conclusions only highlight the functional side of the approach. Later
on, with the Asymmetric-DSM [9], the authors propose a data coherence proto-
col that is specific to asymmetric links between host CPU and accelerators. The
work presented in this paper not only demonstrates the possibility of deploying
a S-DSM over a state-of-the-art micro-server architecture. It also focuses on the
intricacies between the S-DSM runtime, the data coherence protocol and the
application behavior.

6 Conclusion

Low-power architectures are now entering high-performance computing systems.
Micro-servers are one example of such integration, with a potentially high level
of heterogeneity between computing nodes. Message passing and dataflow are
natural programming paradigms that come into mind in order to exploit the
architecture. We think that shared memory can also helps by providing a conve-
nient abstraction layer between the application and the data storage systems. In
this paper we have shown that a software-distributed shared memory can also
be deployed on micro-servers. It also shows that the price to pay is a tight study
of the S-DSM core functions, choosing or adapting the right data coherence
protocol and profiling the application regarding shared data accesses.

Acknowledgments. This work received support from the H2020-ICT-2015 European
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Abstract. The Kalman filter is a critical component of the reconstruc-
tion process of subatomic particle collision in high-energy physics detec-
tors. At the LHCb detector in the Large Hadron Collider this recon-
struction must be performed at an average rate of 30 million times per
second. As a consequence of the ever-increasing collision rate and upcom-
ing detector upgrades, the data rate that needs to be processed in real
time is expected to increase by a factor of 40 in the next five years. In
order to keep pace, processing and filtering software must take advantage
of latest developments in hardware technology.

In this paper we present a cross-architecture SIMD parallel algorithm
and implementation of a low-rank Kalman filter. We integrate our imple-
mentation in production code and validate the numerical results in the
context of physics reconstruction. We also compare its throughput across
modern multi- and many-core architectures.

Using our Kalman filter implementation we are able to achieve a sus-
tained throughput of 75 million particle hit reconstructions per second
on an Intel Xeon Phi Knights Landing platform, a factor 6.81 over the
current production implementation running on a two-socket Haswell sys-
tem. Additionally we show that under the constraints of our Kalman filter
formulation we efficiently use the available hardware resources.

Our implementation will allow us to better sustain the required
throughput of the detector in the coming years and scale to future hard-
ware architectures. Additionally our work enables the evaluation of other
computing platforms for future hardware upgrades.

Keywords: Kalman filter · Data-intensive parallel algorithms
Numerical methods

1 Introduction

The LHCb detector at CERN will be upgraded in 2020 [1] to acquire data at an
estimated rate of 30 MHz, requiring to process a data throughput of 40 Tbit/s.
At the same time the first stage of filtering in the Data Acquisition process, also
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known as hardware level trigger, will be discontinued in favor of a full software
trigger [2]. Consequently the throughput that the software level trigger will need
to sustain in order to maintain a steady triggering rate will dramatically increase,
due to both the increase in rate of events processed in software, and the influx
of larger events.

To be able to cope with the increased data rate, several hardware architec-
tures are currently under consideration. While the current LHCb software trigger
farm is composed solely of Intel Xeon processors, in the last few years many High
Performance Computing sites are adopting other alternative hardware architec-
tures, such as ARM 64, IBM Power X, FPGAs, or manycore architectures such as
GPGPUs or Intel Xeon Phi. This has raised the question within the High Energy
Physics community whether these architectures are also suitable for performing
the software trigger in a sustainable way. To answer this question, performance,
economical, power consumption and software maintainability aspects need to be
taken into account.

In this work we will consider the Kalman filter component used in the LHCb
software framework. The Kalman filter is a linear quadratic estimator, first intro-
duced by Kálmán in 1960 [3], that has been extensively used to estimate trajec-
tories in various systems [4,5]. In its discrete implementation [6], it consists in
a predict stage where the state of the system is projected according to a given
model, and an update stage where the state is adjusted taking into account a
measurement. In particular we consider here a filter that is low-rank.

In LHCb the Kalman filter is applied to estimate particle trajectories (tracks)
as they travel through the particle detector [7]. Tens of millions of collisions per
second occur in the detector, each requiring tens of thousands of filter com-
putations. The Kalman filter is therefore the single largest time contributor in
the LHCb software chain, taking about 60% of the first stage software trigger
reconstruction time.

According to Amdahl’s law [8], the achievable performance gain of an algo-
rithm is bounded by its parallelizable portion. Due to the nature of the LHCb
experiment, many particles travel through the detector simultaneously and inde-
pendently. Hence, the Kalman filter is considered a petascale embarrassingly
parallel problem in this context. Here we present a hardware architecture inde-
pendent Kalman filter algorithm and implementation, Cross Kalman1 extending
beyond previously presented results [9].

In contrast to the work by Cerati et al. [10], we do not use our Kalman
filter for track finding, but instead, we filter fully built tracks. That allows us to
take into account the number of tracks and nodes when envisioning a scheduling
strategy. Resulting in an effective use of the SIMD capabilities of the processors
under study.

We explore performance gains over the current LHCb particle reconstruction
software [11], and compare the speedup obtained over a variety of architectures.
Additionally, we validate our implementation and integrate it back in the LHCb
reconstruction framework, observing a performance gain on existing hardware.

1 https://gitlab.cern.ch/dcampora/cross kalman.

https://gitlab.cern.ch/dcampora/cross_kalman
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2 Cross Kalman

In LHCb track reconstruction a particle trajectory consists of signal nodes orig-
inating from detector signals. Additionally, virtual reference nodes are placed
in large trajectory sections that have no detector signals. As opposed to signal
nodes, reference nodes trigger a prediction with no update in the Kalman fil-
ter. Reference nodes improve trajectory prediction, at the cost of introducing
additional complexity in the algorithm.

For a given particle trajectory, the Kalman filter is applied twice: First, a fit
in the forward direction, positive in the Z axis, is followed by a fit in the backward
direction, processing the nodes in reverse order. Afterwards, a smoothed state
is calculated averaging both states. This introduces a dependency between the
stages with little room for parallelization. However, a particle collision generates
many independent particles that can be reconstructed at the same time, allowing
us to envision a horizontally parallel scheme.

Fig. 1. Schematic of two particles (blue) traversing LHCb subdetectors. A particle
collision is indicated by the two red arrows meeting in the center of the Vertex Locator
subdetector. Particles produced from the collision traverse tracking subdetectors; here
the Vertex Locator, TT and T1, T2 and T3 stations are depicted. A magnet bends
the trajectory of produced particles according to their momentum and charge. (Color
figure online)

For either direction, the first encountered signal node does not have any pre-
ceding signal data. Reference parameters according to their position are gener-
ated and fed onto those nodes, and the prediction is applied to these parameters.
Figure 1 shows two particles traversing the LHCb detector with various nodes.
When performing the forward fit, the top particle carries out three predictions
from reference parameters before doing the first update. From that point on,
all states are predicted from previous states, however only signal nodes trigger
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an update. The particle at the bottom performs a single prediction from refer-
ence parameters, given the first node is a signal node. Finally, when doing the
backward fit, a similar procedure follows: The bottom particle requires three
predictions before the first update while the top particle requires one.

Furthermore, given a node, the resulting state is calculated as the average
between its forward updated state and its backward predicted state. However,
if the node has no preceding signal node in one of the directions, the smoother
copies the updated state of the other direction.

Given this problem formulation, we describe the design of our algorithm
in the following parts: the control flow, the data structures and an efficient
implementation for performing the math computations.

2.1 Control Flow

Since the control path of processing a particle trajectory diverges depending on
the nature of its nodes, we have divided each particle trajectory in three stages:
pre, main and post. pre is the forward trajectory from the first node until a
signal node is encountered, inclusive. Similarly, post is the backward trajectory
from the last node until a signal node is encountered, inclusive. Finally, main
includes the remaining nodes. The forward fit processing logic differs between
pre and main, while for the backward fit processing logic differs between post
and main.

In order to fully exploit the capabilities of SIMD architectures, we employ a
static scheduler that assigns node calculations to SIMD lanes. Since the execution
of nodes from different particles is independent, we execute them in a horizontally
parallel scheme. In order to minimize branches and guarantee instruction locality,
we generate three such schedulers, one for each stage.

The amount of nodes processable at a time depends directly on the SIMD
width of the processor. Hence our scheduler accepts a configurable vector width.
It is also able to detect at compile time the supported vector width of the
platform. There are no restrictions on the width of the lane, allowing this design
to also target manycore architectures, where wider vector units are available.

More formally, given m particle trajectories with ni nodes each and k proces-
sors, we want to assign nodes to processors minimizing the number of compute
iterations. This problem is a variant of the number partitioning problem Npp
[12], which is known to be NP-complete. Our scheduling algorithm orders the
trajectories in descending order of nodes, and assigns nodes to processors fol-
lowing a Decreasing-Time Algorithm (DTA).

The same scheduler can be used for the forward fit, the backward fit, and the
smoother. The forward and backward dependencies between node calculations
are naturally resolved by traversing the scheduler in the respective direction. All
tracks are processed on each stage prior to processing the next one. The smoother
pre and post stages are processed after completion of the backward fit.
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In our implementation we place particular emphasis on avoiding as much as
possible memory copy operations and exploiting memory locality. We reuse data
structures throughout the scheduler iterations replacing only necessary data por-
tions when required to do so. Additionally, the data structures must be aligned
and refer relatively to the same nodes in order for the smoother to be able to
produce an average state from the previously calculated forward and backward
states. Using our scheduler this requirement is trivially met.

2.2 Data Structures

The algorithm’s main data structure is composed of three parts. A hardware-
specific data backend stores data contiguously and aligned to the required SIMD
width, and provides chunks of requested data agnostic to their contents. In order
to avoid a performance impact of memory allocations of big chunks of contiguous
space, data backends are created on demand and can store a configurable number
of elements. Iterators point to the data backends and are configured with a
structure size. We provide forward and reverse iterators in order to traverse the
data as required.

We use Arrays of Structures of Arrays (AOSOA) as data views over the
data backends. This kind of data structures benefit from locality when accessing
any of their elements, and have been shown to work well with SIMD processors
[13]. Further locality is preserved by storing these structures next to each other
contiguously.

2.3 Efficient Vector Implementation

We have implemented the core routines of the fit and smoother algorithms using
manual vectorization with the help of vector intrinsics libraries. An iterative fine-
grained optimization has been carried out, testing several formulations, unrolling
loops, inlining functions, changing compiler options and reordering code. Also, we
have implemented the arithmetic backend with several libraries in our synthetic
benchmark Cross Kalman Mathtest2, namely the vectorization libraries VCL
[14], UMESIMD [15], and the language extensions OpenCL and CUDA. Our
implementations can efficiently target any sort of SIMD paradigm. Furthermore,
a scalar implementation is provided as fall back. It allows to process single tracks,
and it can run on architectures not supporting vectorization.

3 Results

We ran the experiments in this section under the conditions shown in Table 1.
Figure 2 shows the cross-architecture speedup. The leftmost bar shows the

performance of the scalar implementation of the fit, obtained from the tim-
ings reported by the framework. Our Cross Kalman implementation outper-
forms the scalar implementation on the same hardware platform by a factor
2 https://gitlab.cern.ch/dcampora/cross kalman mathtest.

https://gitlab.cern.ch/dcampora/cross_kalman_mathtest
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Table 1. Run conditions.

The program was compiled with gcc 6.2.0, with options -O2 -march=native

Turbo Boost was on, where applicable

KNL was using quadrant and flat memory mode, and pinned against the
MCDRAM

One process was spawned per Non-Uniform Memory Access (NUMA) domain,
with as many TBB threads as logical cores in domain and pinned to its memory

Ran 500 000 events, each event is a Threading Building Blocks (TBB) task

Used Monte Carlo events from the LHCb Upgrade

Results are validated against expected result from original algorithm

Results were obtained using double precision

The figure of merit is the average throughput #fits/time

of 3.03x. ThunderX shows the poorest performance of the architectures under
study. Even though a speedup of 1.75x over the scalar implementation on E5-
2630 v3 is observed, this is only due to optimizations in the software. When
both architectures run Cross Kalman, the E5-2630 v3 outperforms ThunderX
by 1.73x. This is likely due to a comparatively lower peak DRAM bandwidth
and peak floating point performance on ThunderX. The peak value is observed
on a quad-socket high-end Intel Haswell system. This is, however, also the most
expensive of the tested systems. It is interesting to note that Intel Xeon Phi out-
performs our dual-socket Broadwell system, rendering it the most competitive
from a price/throughput standpoint.

Fig. 2. Performance of Cross Kalman against the scalar implementation of the fit across
several architectures.



384 D. H. Cámpora Pérez et al.

A throughput scalability plot for all architectures is shown in Fig. 3a. The
processor that shows less performance degradation up to using all of its cores
is ThunderX. On the IBM Power8 architecture we are able to scale linearly
while no Simultaneous MultiThreads (SMTs) are being used. Using 2 SMTs per
processor, a performance improvement of 32% is observed. Moving from 2 to
4, a further 15% is gained, while moving from 4 to 8 no performance benefit is
observed. On the Intel architectures we observe an almost linear scaling until we
reach the limit of physical cores. The Intel Xeon Phi processor shows a 27% gain
from using 2 HyperThreads, and a further 9% from using 4. We do not obtain
any gain from HyperThreads on other Intel processors, which we attribute to
the higher bandwidth of MCDRAM on Intel Xeon Phi.

Fig. 3. (a) Throughput of Cross Kalman across various architectures. For each archi-
tecture, an increasing number of processors is enabled. Additional SMTs are only used
on high core counts. (b) Parallel efficiency against active processors. The PowerNV
processors shows no performance degradation using all its physical cores. In contrast,
Xeon Phi shows a parallel efficiency of 85% (64 processors), ThunderX 68% (96 pro-
cessors), E5-2630 v3 43% (16 processors), E7-8890 v3 40% (72 processors) and E5-2683
v4 45% (32 processors).

Figure 3b shows a parallel efficiency graph. All Xeon processors diverge from
perfect scaling before the other processors under study. Xeon Phi and ThunderX
show performance gains using all of their available processors, with a speedup of
74.98x and 64.88x respectively. For PowerNV, its optimal configuration is reached
when configured with 96 processors (24.44x), where the performance flattens out.
As expected on all tested hardware platforms, parallel efficiency is significantly
degraded when using SMT. PowerNV shows a parallel efficiency of 1.0 until it
starts using additional SMTs. We observe a similarly abrupt decrease in parallel
efficiency in Xeon Phi when using additional HTs. The Xeon processors efficiency
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drop even without HTs. With all their physical cores active, we see 40–45% effi-
ciency, which could be due to the memory requirements of the application.

Figure 4 shows the throughput of the fit and smoother as the vector width
is increased. In order to obtain the results of these figures, we used our syn-
thetic benchmark, that allows us to execute the bulk of the computation of the
application in a portable and generic way. The tests were compiled against the
UMESIMD library. The scalar performance of the application is very poor in this
setting, because scalar data is emulated in the UMESIMD library by a vector
of width one. The smoother application scales slightly better than the fit, which
we believe is due to its higher arithmetic intensity. We observe the same scaling
for single and double precision, as is depicted by the two gray scaling lines being
very close to each other. Single precision produces a deviation from the expected
results in 1% of the experiments.

Fig. 4. Throughput of program as vector width increases, for single and double preci-
sion, under Intel Xeon Phi 7210. Left: fit throughput. Right: smoother throughput. We
observe a scaled throughput for 128-bit vectors between single precision (width 4) and
double precision (width 2). The smoother scales better than the fit for wider vector
units, due to its higher arithmetic intensity.

Figure 5 shows aRoofline plot [16] for the fit and smoother processes.We ran for
the Roofline benchmarks both the fit and smoother with 10 000 000 experiments. A
high number of experiments is required in order to avoid data being cached from its
generation to its execution,whichwould affect the arithmetic intensity of the appli-
cation. This effect does not carry over to the full Cross Kalman code. The arith-
metic intensity of the fit process is at about 0.5 FLOP/Byte, while the smoother
is arithmetically more intensive at around 0.8 FLOP/Byte. Both fit and smoother
performances are in the arithmetic-intensity regime limited by memory bandwidth
and not peak floating point performance. However, our measurements show that
we currently do not attain peak performance.
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Fig. 5. Roofline model of Broadwell E5-2683v4 and Xeon Phi 7210 platforms. The
performance of Cross Kalman Mathtest for the fit and smoother is shown for both
platforms.

4 Validation

We have developed a module that implements the Cross Kalman filter inside the
LHCb execution chain, named TrackVectorFitter (TVF). This module is already
available to LHCb users and serves as the foundation for the numerical results
described in this section. We have validated the physics performance of TVF
against the original implementation under the current LHCb run conditions,
and also under the foreseen conditions of the upgrade.

The LHCb experiment uses Monte Carlo simulation to generate validation
data sets. Particle collisions and their interaction with the detector are simu-
lated. This simulation generates a data set that can be processed by the LHCb
reconstruction software. Finally the reconstructed particles are compared to the
Monte Carlo generated ground truth.

Track reconstruction validation is done using three metrics [17]. The recon-
struction efficiency compares the reconstructed tracks to the expected tracks
reported by the Monte Carlo truth. The clone rate reports how many track
equivalent track pairs were found. The ghost rate reports how many tracks were
reconstructed with nodes belonging to different particles or noise. Finally, tracks
are categorized by their physical properties and category statistics are compared
to statistics from the ground truth.

Comparing the Cross Kalman implementation TVF to the original track filter
TMF we observe an identical reconstruction efficiency, clone rate and ghost rate
under all tested scenarios. While the reconstruction of the track itself does not
depend on the fit, the final track χ2 is used in the different categories as a track
quality cutoff. Hence, the identical reconstruction efficiency between the two
algorithms validates TVF for its physical properties.
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We have checked the performance of TVF against TMF under various sce-
narios. Table 2 shows comparative execution times for LHCb nightly tests. These
tests are representative of the conditions under which the LHCb reconstruction
runs in the production environment.

Table 2. LHCb test times in seconds, run in various conditions. All tests are run on a
single core of an Intel Xeon E5-2650 v3. All timings refer to the algorithm TrackBest-
TrackCreator, configured with different filter settings. TMF is the original filter imple-
mentation. Internally, it executes a vertically vectorized code optimized for AVX on
this setup. TVF refers to our implementation, compiled with either the SSE2 exten-
sion (default setting for x86 64) or AVX2+FMA. The overall reconstruction speedup
refers to the entire reconstruction time of the test, compared between TMF and TVF
AVX2+FMA.

Test name TMF (AVX) TVF SSE2 TVF AVX2+FMA Overall reconstruction speedup

Magup2016 13.518 12.817 11.504 1.09x

Baseline-upgrade 93.713 93.839 91.014 1.03x

Sim08 8.307 8.134 7.986 1.02x

We observe a varying performance depending on the test under execution.
Magup2016 shows gains of up to 9% in the overall reconstruction time, whereas
baseline-upgrade and sim08 gains in TVF do not seem to impact much the
overall performance. In the case of baseline-upgrade, we believe this is due to
the configuration of such test. It uses a full geometry setting in its current form,
which dominates the time distribution of the fit. We expect its performance to
improve in the future.

5 Conclusions and Outlook

In this work we have presented Cross Kalman, an algorithm that is able to effi-
ciently perform low-rank Kalman filters. Cross Kalman is particularly optimized
for the LHCb particle tracking use case, but the presented algorithms and data
structures can be applied to other situations where a large number of low-rank
Kalman filters are used. Using this algorithm we were able to obtain up to 3x
speedup over the previous scalar solution on the same hardware platform. Our
implementation is flexible enough to accommodate for any kind of SIMD archi-
tecture and we have tested it a wide array of architectures. The choice of the
Decreasing-Time Algorithm as a scheduling algorithm should be revisited, and
we intend to explore other heuristics in the future. Our data structures allow us to
efficiently perform the Kalman filter and smoother of many independent particles
in parallel. Given the specific nature of our problem instances, it may be possible
to reuse data structures across different particle trajectories, and further decrease
the memory footprint of our application. In addition, we have showed that sin-
gle precision performance scales similarly to its double precision counterpart.
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An in-depth analysis of the precision requirements and numerical stability of the
algorithm, taking into account also the possibility of alternative mathematical
formulations, should be carried out. We expect that moving to single-precision
and thus doubling the arithmetic intensity of our algorithms will significantly
improve performance. Our software is validated and has been integrated in the
LHCb codebase under the name TrackVectorFitter, making the overall recon-
struction up to 9% faster for certain datasets.

We have verified that our implementation is able to scale to full hardware
nodes and is able to adapt to the architectures under study. As expected enabling
SMT does not yield further performance improvements with the notable excep-
tion of Intel Xeon Phi, which could be due to its higher memory throughput.
However, other algorithms used in the LHCb software framework need to be
adapted to make the most out of manycore architecture before a more definite
answer can be given to the suitability of manycore hardware platforms such as
Intel Xeon Phi for LHCb’s software framework.

Given the arithmetical intensity of our formulation, our application utilizes
efficiently the processors under study. We intend to port our software to GPU
accelerators and further analyze our software scalability. We will continue to
track the performance of modern hardware architectures and adapt our software
to it, and observe the evolution of the different platforms.
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to N. Neufeld and A. Riscos Núñez for their guidance and support.

References

1. The LHCb Collaboration: framework TDR for the LHCb upgrade: technical
design report. Technical report CERN-LHCC-2012-007. LHCb-TDR-12, April
2012. https://cds.cern.ch/record/1443882

2. The LHCb Collaboration: LHCb trigger and online upgrade technical design report.
Technical report CERN-LHCC-2014-016. LHCB-TDR-016, May 2014. https://cds.
cern.ch/record/1701361

3. Kalman, R.E.: A new approach to linear filtering and prediction problems. J. Basic
Eng. 82(1), 35–45 (1960). https://doi.org/10.1115/1.3662552

4. Mcgee, L.A., Schmidt, S.F.: Discovery of the Kalman filter as a practical tool for
aerospace and industry. Technical report, November 1985. https://ntrs.nasa.gov/
search.jsp?R=19860003843

5. Houtekamer, P.L., Mitchell, H.L.: Data assimilation using an ensemble Kalman fil-
ter technique. Mon. Weather Rev. 126(3), 796–811 (1998). http://journals.ametsoc
.org/doi/abs/10.1175/1520-0493%281998%29126%3C0796%3ADAUAEK%3E2.0.
CO%3B2

https://cds.cern.ch/record/1443882
https://cds.cern.ch/record/1701361
https://cds.cern.ch/record/1701361
https://doi.org/10.1115/1.3662552
https://ntrs.nasa.gov/search.jsp?R=19860003843
https://ntrs.nasa.gov/search.jsp?R=19860003843
http://journals.ametsoc.org/doi/abs/10.1175/1520-0493%281998%29126%3C0796%3ADAUAEK%3E2.0.CO%3B2
http://journals.ametsoc.org/doi/abs/10.1175/1520-0493%281998%29126%3C0796%3ADAUAEK%3E2.0.CO%3B2
http://journals.ametsoc.org/doi/abs/10.1175/1520-0493%281998%29126%3C0796%3ADAUAEK%3E2.0.CO%3B2


A High-Throughput Kalman Filter for Modern SIMD Architectures 389

6. Welch, G., Bishop, G.: An introduction to the Kalman filter. Technical report,
Chapel Hill, NC, USA (1995)

7. Hulsbergen, W.: The global covariance matrix of tracks fitted with a Kalman
filter and an application in detector alignment. Nucl. Instrum. Methods Phys.
Res. Sec. A: Accel. Spectrom. Detect. Assoc. Equip. 600(2), 471–477 (2009).
http://www.sciencedirect.com/science/article/pii/S0168900208017567

8. Amdahl, G.M.: Validity of the single processor approach to achieving large scale
computing capabilities. In: Proceedings of the 18–20 April 1967, Spring Joint Com-
puter Conference, pp. 483–485. AFIPS 1967 (Spring). ACM, New York (1967).
http://doi.acm.org/10.1145/1465482.1465560
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Abstract. In high performance computing (HPC), the tasks of com-
plex applications have to be assigned to the compute nodes of hetero-
geneous HPC platforms in such a way that the total execution time is
minimized. Common approaches, such as task scheduling methods, usu-
ally base their decisions on task runtimes that are predicted by cost
models. A high accuracy and reliability of these models is crucial for
achieving low execution times for all tasks. The individual runtimes of
concurrently executed tasks are often affected by contention for hard-
ware resources, such as communication networks, the main memory, or
hard disks. However, existing cost models usually ignore the effects of
resource contention, thus leading to large deviations between predicted
and measured runtimes. In this article, we present a resource contention
aware cost model for the execution of multiprocessor tasks on heteroge-
neous platforms. The integration of the proposed model into two task
scheduling methods is described. The cost model is validated in isolation
as well as within the utilized scheduling methods. Performance results
with different benchmark tasks and with tasks of a complex simulation
application are shown to demonstrate the performance improvements
achieved by taking the effects of resource contention into account.

Keywords: Resource contention · Multiprocessor tasks
Heterogeneous platforms · Scheduling methods
Distributed simulations

1 Introduction

Reducing the overall execution time of compute-intensive applications is a major
concern in high performance computing (HPC). The efficient utilization of the
available HPC resources represents a key aspect for achieving such reductions of
execution times. Complex applications in the area of scientific and engineering
simulations usually consist of separated tasks that can be distributed among the
compute nodes of a HPC platform. Thus, the goal is to find a distribution that
minimizes the execution time of the whole application. This problem is usually
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solved by applying task scheduling methods. Sequential tasks are assigned to
exactly one processor of a compute node. Multiprocessor tasks can be executed
in parallel itself to reduce their individual execution times by using more than
one processor. Thus, for distributing multiprocessor tasks on HPC platforms, not
only the particular compute node but also the number of processors to be used on
this node has to be determined for each task. The resulting distribution problem
becomes increasingly complex, thus requiring dedicated scheduling methods.

Task scheduling methods usually base their decisions for distributing the
tasks on predictions of the execution times of the tasks. These predictions can
be determined with cost models that model the specific execution times of the
tasks on the hardware platform to be utilized. For multiprocessor tasks, the cost
model also has to include the number of processors employed. Thus, cost models
from parallel computing, such as PRAM [9], BSP [11], or LogP [4], might be
used. However, since these models abstract from many details of the compute
systems, there can be large differences between modeled and measured execution
times. These differences lead to improper decisions for scheduling the single tasks
and, thus, might deteriorate the overall execution time of all tasks. Keeping these
difference as small as possible is therefore an important goal for achieving an
efficient execution of multiprocessor tasks on HPC platforms.

Heterogeneous platforms consist of a variety of compute nodes with different
computational properties. Existing cost models for heterogeneous platforms take
these properties into account, for example, by including different computational
speeds of compute nodes. However, the influence of tasks on each other when
being executed concurrently on the same node is currently not included in these
models. For example, tasks that are executed concurrently on different processors
of a compute node can utilize the same hardware resources (e. g., communication
network, main memory, or hard disk). The access to these hardware resources
has to be shared and might increase execution times due to resource contention.

In this article, we present a resource contention aware cost model for the exe-
cution of multiprocessor tasks on heterogeneous platforms. The proposed model
considers the effects of resource contention, especially due to hard disk and main
memory accesses. The integration of the cost model into two scheduling methods
for multiprocessor tasks is described. Experiments with different types of tasks
on a heterogeneous compute cluster are performed. This includes benchmark
tasks with intensive hard disk and main memory accesses. Simulation tasks of a
complex application for optimizing lightweight structures are used to represent
tasks with accesses to various hardware resources.

The rest of the article is organized as follows: Sect. 2 discusses related work.
Section 3 defines a scheduling problem for multiprocessor tasks and describes the
modeling of the task execution times. Section 4 presents a resource contention
aware cost model for multiprocessor tasks on heterogeneous platforms. Section 5
describes the integration of the cost model into different task scheduling methods.
Section 6 presents experimental results and Sect. 7 concludes the article.
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2 Related Work

Resource contention is mainly considered in the area of thread scheduling for
operating systems [14]. Contention for accessing the main memory is integrated
into the scheduling, for example, based on memory request rates [12] or cache
miss rates [8]. The measured rates are used to prioritize or group applications
to achieve a balanced utilization of memory resources. The measurement app-
roach might also be used to estimate the effects of resource contention for tasks.
However, the scheduling approach is not suitable if all tasks exhibit the same
memory behavior, such as simulation tasks that execute the same application
program.

For task scheduling, contention for communication resources is usually con-
sidered. For example, in [10], a model for communication contention is proposed
that improves the accuracy of predicted execution times. The integration into
scheduling methods is based on task duplication to avoid interprocessor commu-
nication and, thus, cannot directly be applied to contention of other hardware
resources. Only few works consider contention for other resources. In [2], a con-
tention aware scheduling algorithm for heterogeneous platforms is proposed, but
in the context of achieving fault-tolerance by replicating tasks. In [13], the sys-
tem resources required by tasks are modeled in order to constrain the number
of tasks running concurrently. A reduction of the execution time was achieved
for tasks that perform memory or file accesses. However, the approach requires
that the system resources required by a task are specified manually with user
annotations within the program code.

3 Multiprocessor Tasks and Heterogeneous Platforms

The efficient execution of multiprocessor tasks on heterogeneous platforms can
be described as a scheduling problem. In the following, the scheduling of multi-
processor tasks and the modeling of the task runtimes is described.

3.1 Scheduling of Multiprocessor Tasks

The considered problem comprises nT multiprocessor tasks T1,. . . ,TnT
. The term

multiprocessor task describes a task that can be executed on an arbitrary num-
ber of processor cores. It is assumed that all tasks are independent from each
other and that the number of utilized cores is fixed during the task execution.
The execution of each multiprocessor task is non-preemptive, i. e. it can not be
interrupted. For each task Ti, i = 1, . . . , nT , ti,j(p) denotes its parallel execution
time on p cores of a compute node Nj , j ∈ {1, . . . , nN}. The modeling of the
parallel execution time ti,j(p) is described in the following subsection.

The considered heterogeneous HPC platform consists of nN compute nodes
N1, . . . , NnN

, each having a different computational speed. For each node Nj ,
j ∈ {1, . . . , nN}, its number of processor cores pj and a performance factor fj
are given. The performance factor fj describes the computational speed of the
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compute node Nj and is defined as the ratio between the sequential execution
time of a task on a reference node Nr and the compute node Nj . Since the
reference node is also used for the runtime modeling of the multiprocessor tasks,
the compute node with the highest number of cores is used as reference node.
It is assumed that each multiprocessor task can only be executed on a single
node (e. g., OpenMP-based codes) and that each core can execute only one task
at a time. Thus, each multiprocessor task might be executed on 1 to pj cores
of a node Nj , j ∈ {1, . . . , nN}. Depending on the number of utilized cores of a
compute node, several tasks can be executed on a node at the same time.

The result of the scheduling is a schedule, which defines an assignment of the
tasks Ti, i = 1, . . . , nT , to the compute nodes Nj , j = 1, . . . , nN . A schedule S
includes for each task Ti, i ∈ {1, . . . , nT }, the information about the compute
node and the number of cores to be utilized as well as the estimated start time si
and finish time ei. The total execution time Tmax(S) of a schedule S is defined as
the difference between the earliest start time and latest finish time of all tasks.
By assuming that the task execution starts at time 0, the total execution time
corresponds to the latest finish time of all tasks, i. e. Tmax(S) = max

i=1,...,nT

ei. The

goal is to determine a schedule S such that Tmax(S) is as small as possible.

3.2 Runtime Modeling of Multiprocessor Tasks

Scheduling methods usually base their decisions on predictions of the execution
times of the single task. A high accuracy and reliability of these predictions
is required for achieving schedules with a lower total execution time. These
predictions can, for example, be calculated regarding to a specific cost model
or determined by benchmark measurements. Existing cost models for parallel
programming, such as PRAM [9], BSP [11], or LogP [4], are not suitable for the
considered scheduling of multiprocessor tasks. The PRAM model, for example,
assumes a single shared memory with uniform access by each processor and, thus,
heterogeneous platforms with distributed memory are not covered. Furthermore,
all of the models calculate the cost of a parallel program based on its program
structure and, thus, can not be used if this structure is unknown. In [1], a cost
model is presented that uses the amount of work of each task in combination
with the relative speed of each compute node. Since this model is designed for
the execution of sequential tasks on multiprocessor architectures supported by
accelerators, it is not suitable for the scheduling problem described above.

Since the program structures of the considered multiprocessor tasks are
unknown, we use the following general runtime formula to model the execution
time ti,j of each task Ti, i ∈ {1, . . . , nT }, on a compute node Nj , j ∈ {1, . . . , nN}
depending on the employed number of processor cores p:

ti,j(p) = fj · (ai/p + bi + ci · log p) (1)

The parameter fj denotes the performance factor of node Nj to account for
the different computational speeds. The remaining part of Eq. (1) models the
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execution time of task Ti on the reference node. This part consists of a paral-
lel computation time ai that decreases linearly with the number of cores p, a
constant sequential computation time bi, and a parallelization overhead ci that
increases logarithmically with the number of cores p (e. g., for synchronization or
communication). These components were chosen such that the runtime behavior
of common parallel algorithms is covered. The parameters ai, bi, and ci of a
task Ti are determined through a least squares fit of the execution times mea-
sured on the reference node with different numbers of cores. In practice, these
measurements have to be performed only for tasks with differing execution times.

4 A Resource Contention Aware Cost Model

Shared access to hardware resources can lead to increased execution times of
tasks executed concurrently. In the following, a new resource contention aware
cost model for predicting the execution time of such tasks is developed.

4.1 Measuring the Effects of Resource Contention

Since resource contention results from shared access to hardware resources, the
specific effects on the execution time may depend on the type and number of
tasks executed as well as on the hardware utilized. To investigate these effects, we
consider three types of tasks. The specific data sizes of the tasks where chosen,
such that effects due to data caching are avoided.

I/O bound: The hdWrite tasks are used to investigate resource contention
due to concurrent hard disk accesses. Each task consists of writing data of
size 300 MB to a file on the local hard disk. The parallel implementation as
a multiprocessor task is based on MPI where each MPI process writes an
equally sized part of the entire file using the function MPI File write.

Memory bound: The memWrite tasks are used to investigate resource con-
tention for the memory bandwidth due to concurrent main memory accesses.
Each task consists of writing random integers of size 12 GB to the main mem-
ory. The parallel implementation as a multiprocessor task is based on MPI,
where each MPI process writes an equally sized share of the entire data.

Compute bound: Numerical simulations based on a Finite Element Method
(FEM) code [3] are used as compute-intensive tasks. During the numerical
optimization of lightweight structures, a large number of structure simulations
for varied sets of manufacturing parameters have to be performed [5]. Each
simulation applies a preconditioned conjugate gradient method on very large
but sparse matrices. The FEM code is parallelized with OpenMP, thus leading
to multiprocessor tasks that can be executed in parallel on a single compute
node.

Figure 1 shows the sequential execution times for the different types of tasks
depending on the number concurrently executed tasks on the same compute
node. Each measurement is performed 5 times using the compute node ws1 with
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Fig. 1. Measured sequential runtime of different types of tasks on compute node ws1.

a total number of 12 cores (see Sect. 6.1). The results show that for each type of
tasks, the execution times increase almost linearly with an increasing number of
concurrently executed tasks. However, the slopes of the curves are different for
each type of task. Further measurements have shown that the slope also differs
for the same type of task between different compute nodes. These observations
imply that the effects of resource contention depend on the type of the tasks,
the number of concurrently executed tasks, and the compute node.

4.2 Runtime Modeling with Resource Contention

The effects of resource contention on the execution time of tasks is modeled sep-
arately for each type of task. For a fixed type of task, we introduce a contention
factor cj for each compute node Nj , j ∈ {1, . . . , nN}. This factor represents the
linear slope of the sequential execution times that occurs for executing the tasks
concurrently on the compute node Nj . The contention factors are determined
by benchmark measurements as described in the previous subsection. Thus, the
contention factor captures the entire effects of resource contention due to various
hardware resources that may be utilized by a specific type of tasks.

To predict the impact of resource contention on the runtime of a task, the
number of concurrently executed tasks on the same compute node has to be
known. A task Tk, k ∈ {1, . . . , nT } is executed concurrently to a task Ti, i ∈
{1, . . . , nT }, i �= k, if the start time sk of task Tk is smaller than the finish time
ei of task Ti and the finish time ek of task Tk is larger than the start time si of
task Ti. The period of time during which the two tasks Tk and Ti are executed
concurrently lasts from their latest start time to their earliest finish time, i. e.
min(ek, ei) − max(sk, si). During this time, the two tasks content for resources.

Let Ki,j denote the set of tasks that are executed concurrently to a task Ti,
i ∈ {1, . . . , nT }, on the compute node Nj , j ∈ {1, . . . , nN}. To include the effects
of resource contention into the prediction of the execution time of the task Ti,
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its predicted runtime ti,j(p) (see Sect. 3.2) is increased by the additional time
during which the task Ti is executed concurrently with the tasks Tk ∈ Ki,j . The
specific time increase is calculated with the contention factor cj for the type of
tasks on compute node Nj . Thus, the contention aware execution time t̂i,j(p) of
task Ti executed on compute node Nj with p cores is modeled as follows:

t̂i,j(p) = ti,j(p) + cj ·
∑

Tk∈Ki,j

(min(ek, ei) − max(sk, si)) (2)

4.3 Validation of the Runtime Modeling

In order to validate the accuracy of the proposed runtime modeling, several
benchmark measurements have been performed for each of the three considered
types of tasks, i. e. hdWrite, memWrite, and FEM. For each measurement a
specific number of tasks (i. e., 10, 50, or 100) is executed on the compute node
ws1. The number of cores p utilized by each multiprocessor task is chosen between
1 and 6 and each task is started as soon as the chosen number of cores was
available. The total execution time of all tasks is measured and the difference to
the prediction without resource contention according to Eq. (1) and with resource
contention according to Eq. (2) is determined.

Table 1. Difference between measured and predicted execution times without and with
resource contention depending on the type and number of tasks on compute node ws1.

Type of tasks hdWrite memWrite FEM

Number of tasks 10 50 100 10 50 100 10 50 100

Difference Without contention 44.25 25.1 32.01 4.32 2.51 3.02 2.5 2.95 4.35

[%] With contention 4.92 5.8 2.6 3.2 1.67 2.2 0.07 0.86 2.13

Table 1 shows the differences between measured and predicted execution
times depending on the type and the number of tasks. For all types and num-
bers of tasks, the contention aware cost model leads to smaller differences in
comparison to the cost model that neglects the effects resource contention. More
exactly, the difference between measured and predicted execution times is always
smaller than 6% with the contention aware cost model. The biggest improve-
ment is achieved for the hdWrite tasks, where the difference without resource
contention is up to about 45%. This corresponds to the previous results shown in
Fig. 1, where a significant increase of the runtime was observed. However, even
for the memWrite and FEM tasks, the contention aware cost model leads to
better predictions of the execution times.

5 Resource Contention Aware Scheduling Methods

The contention aware cost model presented in the previous section has been inte-
grated into two task scheduling methods. In the following, the two task schedul-
ing methods and the necessary adaptions for the integration are described.



Resource Contention Aware Execution of Multiprocessor Tasks 397

5.1 Task Parallel Execution

The task parallel scheduling scheme (TaskP) presented in [7] is a list scheduling
algorithm that assigns each task to exactly one core (i. e., executed sequentially).
All tasks are sorted in descending order based on their sequential runtimes. The
algorithm iterates over the ordered tasks and selects one core to be utilized. The
current task is then assigned to the core that provides the earliest finish.

5.2 Water-Level-Search Method

In [6], a heuristic method for scheduling parallel tasks onto heterogeneous
compute resources called Water-Level-Search (WLS) is proposed. Figure 2
shows the pseudocode of this method. The method uses a limit m̂ for the pre-
dicted total execution time that must not be exceeded by the finish time of any
task. An initial guess for this limit is based on the sequential runtimes of the
tasks and the total compute capacity of all nodes (line 1). Afterwards, the WLS
method performs a search for a better smaller limit that still allows to finish all
tasks.

Fig. 2. Pseudocode of the Water-Level-Search method.
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The search for a better limit consists of two phases (lines 2–12 and lines 13–
23). In each phase, the current limit m̂ is used to determine an assignment of
tasks to nodes and cores (lines 5–11 and lines 16–20). The assignment is deter-
mined by iterating over the tasks in descending order based on their sequen-
tial runtimes and for each tasks Ti, i ∈ {1, . . . , nT }, all compute nodes Nj ,
j = 1, . . . , nN , and their numbers of cores pj are tested. This test consists of
selecting a possible start time si and calculating the corresponding finish time
ei with the runtime formula ti,j(p) (lines 7–8 and lines 18–19). If the finish time
ei is valid for the current limit m̂, then the task is assigned to the selected node
and cores and then the next task is tested. Otherwise, the limit m̂ is adapted
and the assignment of tasks is restarted for all tasks. In the first phase, the limit
is only increased and a set of potential limits L is created. In the second phase, a
binary search among the potential limits in L is performed by repeatedly using
the median of L as the current limit m̂ (line 14) and adapting L accordingly
(lines 21–22). The last value of L is the smallest limit m̂ that was found and the
corresponding assignment of tasks to nodes and cores is the determined schedule.

Determining an assignment in each phase depends linearly on the number of
tasks nT , the number of nodes nN , and the highest number of cores of a node pr.
Restarting the assignment in the first phase is limited to at most log nT times
with a the restart function (line 11). The size of L depends linear on the number
of tasks nT , such that the binary search in the second phase requires O(log nT )
steps. Thus, the overall complexity of the method is O(log nT · nT · nN · pr).

5.3 Integration of the Contention Aware Cost Model

Both methods use the runtime formula of ti,j(p) in Eq. (1) to predict the exe-
cution time of a task Ti, i ∈ {1, . . . , nT }, executed on compute node Nj ,
j ∈ {1, . . . , nN} with p cores. To integrate the contention aware cost model
described in Sect. 4, each occurrence of this usage is replaced by the new formula
of t̂i,j(p) in Eq. (2). Additionally, both methods use a list scheduling approach
where tasks are assigned gradually to the compute resources. Thus, the number
of tasks that are executed concurrently to a specific task that was already sched-
uled can increase during the scheduling. Since the contention aware cost model
depends on this number, the start and finish time of an already scheduled task is
recalculated whenever another task is assigned to the same compute node with
an overlapping period of time.

For the WLS method, changing the finish times of tasks afterwards may
lead to problems. For example, if the finish time of a task increases due to
resource contention, then it might exceed the limit m̂ that was used when the
assignment of this task was determined. However, such a behavior conflicts with
the assumption that a valid limit m̂ allows to finish the execution of all tasks.
To avoid such situations, the prediction of the finish time of a specific task uses
always the maximum number of tasks that might be executed concurrently based
on the number of currently available cores of the compute node.
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6 Experimental Results

The proposed resource contention aware cost model has been integrated into the
scheduling methods described in Sect. 5. The following experimental results com-
pare the methods without and with the resource contention aware cost model.

6.1 Experimental Setup

The compute nodes of the heterogeneous compute cluster used for the measure-
ments are listed in Table 2. The scheduling methods described in Sect. 5 have
been implemented in Python. A Python script running on a separate node per-
forms the execution of the tasks on the compute nodes via SSH connections.
Each measurement is performed 5 times and the average values are shown.

Table 2. List of nodes of the utilized heterogeneous compute cluster.

Nodes Processors #Nodes×#processors×#cores Total RAM GHz

sb1 Intel Xeon E5-2650 1 × 2 × 8 60 GB 2.00

ws1,. . . ,ws5 Intel Xeon X5650 5 × 2 × 6 32 GB 2.66

cs1,cs2 Intel Xeon E5345 2 × 2 × 4 16 GB 2.33

6.2 Performance Results with Benchmark and Simulation Tasks

The task parallel scheduling (TaskP) and the Water-Level-Search method
(WLS) without resource contention and with resource contention (i. e., TaskP-
RC and WLS-RC) have been used to schedule the execution of different types
of tasks. Figure 3 (top) shows the measured total runtimes for executing the
hdWrite tasks (left) and the memWrite tasks (right) according to the determined
schedules depending on the number of tasks. Up to 24 tasks of the corresponding
type are executed on the compute nodes ws1 and ws2 with a total number of
24 cores. Using the contention aware scheduling methods leads to a significant
reduction of the total runtimes with the hdWrite tasks. The biggest differences
up to about 60% of the total runtime are achieved for the task parallel scheduling
method (i. e., TaskP and TaskP-RC). With the contention aware cost model,
both scheduling methods (i. e., TaskP-RC and WLS-RC) lead to about the
same results. This behavior can mainly be attributed to the hardware resources
utilized by the hdWrite tasks. The hard disk accesses are usually limited by the
corresponding hard disk devices, thus leading to high contention for concurrent
accesses and low benefits from parallelization. In comparison, the benefits of the
contention aware cost model for the memWrite tasks are smaller. This behavior
corresponds to the results shown in Fig. 1, where the effect of resource contention
was also smaller for the memWrite tasks. However, there are still improvements
of the total runtime for both contention aware scheduling methods.
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Figure 3 (bottom left) shows measured total runtimes for executing the FEM
simulation tasks according to the determined schedules depending on the number
of tasks using all compute nodes of Table 2. The results confirm the improvements
achieved with the contention aware cost model. Especially, if the number of tasks
approaches the number of utilized cores (i. e., 92), both scheduling methods (i. e.,
TaskP-RC and WLS-RC) lead to a significant reduction of the total runtimes.
In general, the results with the resource contention aware cost model show a
more steady and less abrupt increase when the number of tasks is increased.
Figure 3 (bottom right) shows the parallel speedups for executing 100 FEM
simulation tasks according to the determined schedules depending on the number
of utilized cores. Up to about 52 cores, there are only small differences between
all scheduling methods. However, when all compute nodes are used, the resource
contention aware cost model prevents a decrease of the speedup.
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Fig. 3. Top: Measured total runtimes of hdWrite tasks (left) and memWrite tasks
(right) depending on the number of tasks using all compute nodes ws1 and ws2. Bottom:
Measured total runtimes of FEM simulation tasks depending on the number of tasks
using all compute nodes of Table 2 (left) and parallel speedups for the execution of 100
FEM simulation tasks depending on the number of cores (right).
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7 Conclusions

In this article, we investigated the effects of resource contention for the execution
of multiprocessor tasks on heterogeneous platforms. The development of a con-
tention aware cost model based on a task- and hardware-depending contention
factor was described. The proposed cost model was used for the prediction of
executions times of multiprocessor tasks and the integration into two existing
scheduling methods was described. Measurements with benchmark tasks with
hard disk and main memory accesses demonstrated that for both scheduling
methods, a reduction of the total task runtimes could be achieved. Further
results with FEM simulation tasks confirmed the performance improvements,
especially due to a better utilization of hardware with high contention effects.
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lence EXC 1075 “MERGE Technologies for Multifunctional Lightweight Structures”
and supported by the German Research Foundation (DFG).
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Abstract. Random boolean networks (RBNs) as models of gene regu-
latory networks are widely studied by the means of computer simulation
to explore interconnections between their topology, regimes of function-
ing and patterns of information processing. Direct simulation of random
boolean networks is known to be computationally hard because of the
exponential growth of attractor lengths with an increase of a network
size. In this paper, we propose hybrid CPU-GPU algorithm for parallel
simulation of hierarchical adaptive RBNs. The rules of evolution of this
type of RBN makes it possible to parallelize calculations both for differ-
ent subnetworks and for different nodes while updating their states. In
the experimental part of the study, we explore the efficiency of OpenMP
and CPU-GPU algorithms for different sizes of networks and configura-
tions of hierarchy. The results show that a hybrid algorithm performs
better for a smaller number of subnetworks while OpenMP version may
be preferable for a limited number of nodes in each subnetwork.

1 Introduction

1.1 Motivation and Background

Nowadays data science provides tools that allow to observe stylized facts related
to complex dynamics of various systems. However, in order to find out which
of these features are important (in terms of a certain measure or behavior),
one needs to create models. Models incorporate chosen system properties and
as a result they are able to mimic and give better understanding of observed
phenomena.

An example are Random Boolean networks (RBNs) used as models of gene
regulatory networks [1–6]. An RBN is described by a triple (N,Kin, p) where N
is a number of nodes, Kin is as number of directed connections going to each
node and the parameter p will be described later. Each node i is in a time-
dependent Boolean state σi(t) ∈ {0, 1} and its state dynamics is governed by
its Boolean function fi. A Boolean function depends on states of all Kin nodes
having a connection to the node i:
c© Springer International Publishing AG, part of Springer Nature 2018
D. B. Heras and L. Bougé (Eds.): Euro-Par 2017 Workshops, LNCS 10659, pp. 403–414, 2018.
https://doi.org/10.1007/978-3-319-75178-8_33
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σi(t + 1) = fi

(
σi1(t), ..., σiKin

(t)
)

(1)

The Boolean function fi of a given node is chosen randomly from a set of 2Kin

possible functions. As a result a space of possible networks is huge and such
a simple approach may be used to model dynamics of complex structures [4].
Although Boolean functions are randomly chosen they do not have to be equally
probable. Their distribution can be controlled for example [4,7] by the rule that
the result of a Boolean function is 1 is equal to the parameter p

∀i, P (fi = 1) = p (2)

If p = 0.5, then all functions are equally distributed. In the RBN dynamics
it is assumed the nodes’ states are updated simultaneously. The network state
Σ(t) = {σ1, ..., σN} ∈ {0, 1}N is deterministic, thus after a number of transient
steps (T0) an attractor of length T will be reached: Σ(T + t) = Σ(t), where
t ≥ T0. Depending on values of parameters (Kin, p) the RBN is said to be in
the ordered, critical or chaotic regime. The relation between these parameters
leading towards critical networks in the thermodynamic limit (N → ∞) is [6]

KC(p) =
(
2p(1 − p)

)−1

(3)

Networks with Kin < KC(Kin > KC) are in the ordered (chaotic) regime.
The classical RBN concept has been modified to describe a more realistic

dynamics of evolutionary systems. Evolutionary behavior can be introduced
using adaptive RBNs (ARBNs) [8]. ARBNs tend to deactivate active nodes and
activate inactive. This “steering” is done by adding and deleting links thus the
dynamics is coevolutionary. Quick changes of nodes’ states influence the network
structure and network structure influences nodes’ states. It has been shown [8]
that ARBNs tend to achieve critical value of mean inconnectivity when the net-
work size grows to infinity.

The structure of many real systems is hierarchical. Ideally the hierarchy
would emerge by itself in a system. If this is not happening, one can build a
hierarchical structure using one of the two approaches [9]:

1. A top-down approach. First, a whole network is created and then it is divided
into subnetworks.

2. A bottom-up approach. First, the smallest unit (e.g. a node or a group of
nodes) is created, and then similar units and links between them are added,
which leads towards creating a unit of higher level. This step can be repeated
which allows to create many levels of hierarchy. This approach will be used
here.

Previously we have used a top-down approach [10] and created networks
with two levels of hierarchy. Here, we introduce a new network type, which uses
a bottom-up approach and creates a hierarchical system with unlimited number
of hierarchy levels. In each step a new hierarchy level is created. Let Hi denote
the ARBN structure of level i. In the step (i + 1) the chosen number of similar
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structures are created. All subnetworks Hi form a new network Hi+1. Then the
parameter p of each node is changed. In ARBNs the value of p = 0.5 has been
used. If the probability p is modified, the Boolean functions become less random.
However the number of active and inactive nodes are kept in the steady state,
close to critical value. The change of p leads to the increase of mean connectivity
(3). In this way we encourage nodes to create new links in a new level of hierarchy.
Afterwards, the network evolves until the steady state according to the activity-
dependent rewiring rule [8] is reached. The system evolution has one restriction:
only the links between nodes from different structures Hi are allowed to be
created or removed.

1.2 Related Work

The literature is replete with different modifications of the basic RBN model.
Numerous studies (e.g. [8,10–13]) have been conducted to investigate ARBNs
with a topology and/or Boolean functions which are subject to change according
to the predefined rules. These rules are designed depending on the objectives of
the network evolution. Bornholdt and Sneppen [11] use random modifications
of connectivity matrix to model single species evolution. Activity-dependent
rewiring rule (e.g. [8,12]) and model based on local information transfer [13]
are used to move a system towards a critical state. An example of an ARBN
representing collective behavior of economic agents can be found in [14]. Another
strand of the literature considers particular network topologies especially those
with non-trivial community structure. Authors of [15,16] investigate the effects
of a modular topology on the properties of RBNs. Hierarchical ARBN as a sys-
tem of several adaptive RBNs connected with permanent interlinks is proposed
in [10]. Degree assortativity of RBNs is analyzed in connection with the stability
[17] and the robustness of the signal-integration logic [18].

The majority of studies of RBNs (including those mentioned above) are
focused on discovering the properties of networks rather than computational
aspects of simulation. However, the efficiency of computational process is of cru-
cial importance in this case due to the exponential growth of attractor lengths
with an increase of network size, which hampers simulation of evolving RBNs
larger than several hundreds of nodes. Regarding ARBNs, two main directions
of speeding up the calculations can be distinguished: improving algorithms of
attractor search and improving algorithms of network evolution. In addition,
efficiency of different data types and data structures can be considered while
implementing software for RBN simulation [19].

The problem of attractors search is usually tackled in two representations: to
find a single attractor for a given initial state or to find all attractors of a given
network. Along with sequential algorithms (e.g. [8,20] for single attractor search,
[21–23] for multiple attractors search), parallel algorithms for both statements
of the problem are presented in the literature. To perform multiple attractors
search on a manycore architecture, authors of [24] propose to partition a Boolean
network into several blocks consisting of the strongly connected components,
which further can be processed in parallel. For single attractor search (which is
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used in ARBNs), GPGPU algorithm was proposed in [25] to update the states
of vertices of RBN concurrently.

Design of efficient algorithms to simulate ARBNs is a challenging problem
due to the data dependencies between consecutive epochs. For a non-modular
ARBN, partially this problem can be solved by combining different ways to
speed up calculations, namely, limiting the number of states updates, rewiring
larger number of nodes per epoch and updating states of nodes in parallel. As
it is shown in [25], this approach can increase the performance of simulation by
several times. Unlike [25], the algorithms presented in this paper focus on Hier-
archical ARBNs (HARBNs). HARBNs are formed by the bottom-up approach
with simultaneously evolving independent submodules. To the best of our knowl-
edge, up to now there have been no attempts to benefit from such a hierarchical
organization of RBNs. In this paper, we propose several algorithms for parallel
HARBN simulation, and compare their efficiency for different sizes of networks
and configurations of hierarchy.

2 The Algorithms

2.1 Sequential Algorithm

The bottom-up approach of building a hierarchical structure comprises a con-
secutive merging of the subnetworks, starting from small disconnected units up
through higher hierarchy levels to the resulting connected hierarchical RBN.
According to the model, before the merger on each level can occur, the subnet-
works have to reach the steady state in their independent evolution. During the
evolution nodes lose and gain connections depending on their activity on the
subnetworks’ attractors.

Determining this activity is, essentially, the most computationally expensive
part of the simulation. To find an attractor, one has to perform a number of
state updates according to (1) to detect the repetition of the states: σj(λ) =
σj(λ + μ) ∀j ∈ [1, NHi

], where NHi
is the number of nodes per subnetwork

on a hierarchy level i. This repetition means that the network has reached its
attractor, and λ and μ denote the lengths of a transient period and attractor
respectively. At this point some nodes are rewired according to the ADRR,
and the next epoch of evolution begins. The number of epochs required for the
network to converge to the steady state grows with the size of the networks,
along with the lengths of attractors and transients. Therefore, it is important
for the efficient implementation to reduce the time that the attractor search
takes.

The naive approach to find a network’s attractor is to compare the current
state of the network with all the previous ones. It implies O((λ + μ)2) time
and O(λ + μ) memory bounds. The complexity of the naive approach can be
lowered by using hash-tables to store the previous states and perform a lookup
operation to determine whether the current state has already been visited. In
order to decrease both the complexity and memory requirements, one can use
sequential heuristics of attractor search which are briefly described below.
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Liu-Bassler’s algorithm of attractor search was proposed in the paper introduc-
ing ARBNs [8]. The key idea of this approach is to set a number of checkpoints
T = (T1, T2, T3, . . . , Tk), and compare the states at each iteration to the states
of the nodes at the latest checkpoint. Since the states of the attractor repeat
infinitely, we can find attractors of maximum length μmax = Tk − Tk−1 as long
as the length of the transient period does not exceed λmax =

∑k−2
i=1 Ti. This way,

although we may perform more state updates than in the naive algorithm, we
make one comparison of states per iteration instead of O(λ + μ). The drawback
of this approach is high dependency of its performance and μmax on the chosen
values of the checkpoints: if the distance between the consecutive checkpoints is
too large, it takes more time to be find short attractors than necessary. On the
other hand, lowering the distance influences μmax, which is especially undesirable
when studying large networks.

Knuth’s algorithm of attractor search [26], also known as “the tortoise and the
hare algorithm”. The algorithm uses two different instances of a Boolean net-
work: for the first instance a single state update is performed per iteration, and
two state updates are performed for the second instance. Using the observation
that Σ(τ) = Σ(2 · τ) if and only if τ is a multiple of attractor length μ, an
attractor will be found when states of the first and the second instances will be
equal.

Summarizing, the sequential algorithm of HARBN simulation finds steady
states of modules one after another, and during the evolution of each module
states of nodes are also updated step by step. Sections 2.2 and 2.3 describe two
parallel implementations of this algorithm: the one which processes distinct mod-
ules in different CPU threads, and the other which extends previous approach
with simultaneous updates of nodes on GPU. We provide implementations for
the Liu-Bassler’s algorithm of attractor search, but both of them may also use
Knuth’s algorithm or any other heuristic for this purpose.

The notations used in the algorithms are explained in Table 1. If an index of
a node is not given, a set of parameters for all the nodes in a module is meant
(e.g. StateSum[m] is a set of variables keeping sums of states of distinct nodes
of module m on the attractor).

2.2 OpenMP

As different modules of bottom-up HARBN evolve independently from each
other until their steady state is reached, one can exploit the absence of data
dependencies between subnetworks, and calculate them in parallel (Algorithm1).
Note that calculations of distinct epochs in different modules are independent,
and there is no need to synchronize modules after the completion of each epoch.

While searching for an attractor, k checkpoints are examined at maximum
(c denotes the index of the current checkpoint, and CS denotes the state of
a module at c-th checkpoint). If the current state of the network is equal to
the checkpoint state, the attractor is found. If the attractor is not found for
the current interval, we set a new checkpoint. If the attractor was not found
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Table 1. Description of parameters

Parameter Description

NM The number of modules (subnetworks)

KM The number of nodes in each module

m An index of a module, m ∈ 0 . . . NM − 1

i, j Indices of nodes, i, j ∈ 0 . . .KM − 1

AL[m][i] The adjacency list of i-th node of module m

BF [m][i] The update function of i-th node of module m

States[m][i] The initial state of i-th node of module m

StateChanges[m][i] The number of state changes of i-th node of module
m on the attractor

StateSum[m][i] The sum of states of i-th node of module m on the
attractor

after k checkpoints, we assume that the period of attractor is equal to Tk −
Tk−1. The update of a node state is performed in a loop using the function
UpdateState which takes as inputs the current state of a module, an index
of a node, adjacency list and boolean functions of a module. StateSum and
StateChanges are calculated to be used in activity-dependent rewiring rule.

2.3 Hybrid Approach

This section presents CPU-GPU algorithm for simulation of HARBN which
incorporates both parallel calculation of different subnetworks and parallel
update of nodes’ states inside each subnetwork (Algorithm2).

As in the OpenMP algorithm, evolution of distinct modules is performed
independently. The difference with Algorithm1 is in the implementation of the
procedure of attractor search. While the main stages of Liu-Bassler’s algorithm
(e.g. examination of checkpoints) remain the same, states of nodes are updated
simultaneously on GPU.

Liu-Bassler’s algorithm of attractor search implies a synchronization after
each state update of a subnetwork. GPU architecture offers two main ways to
synchronize the threads of execution: block-level and kernel-level synchroniza-
tion. The latter imposes a high performance penalty for kernel launches, which
cancels out the speedup of the parallel implementation for small networks, where
computational load per state update is low [25]. Block-level synchronization can
be utilized in cases when the size of the simulated network does not exceed the
maximum number of threads per block on the target platform.

As the epoch of evolution begins, the states of the nodes for each subnetwork
are copied into the GPU device memory; the updated adjacency lists AL and
boolean functions BF of the subnetworks are bound to a read-only texture
memory to facilitate caching. Then, one block of KM CUDA threads is launched
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Data: AL[m][i], BF [m][i], States[m][i] for m ∈ 0 . . . NM − 1, i, j ∈ 0 . . .KM − 1,
T = T1, T2, ..., Tk, a number of epochs E

parallel for m=0 to NM − 1:
for e = 1 to E:

T0 = 0, c = 0, CS = States[m], found = false;
while c < k and !found:

fill StateChanges[m], StateSum[m] with zeros;
for t = Tc + 1 to Tc+1:

for i = 0 to KM − 1:
prevS = S[i];
S[i] = UpdateState(S,i,AL[m],BF [m]);
StateSum[m][i] += S[i];
if S[i] �= prevS:

StateChanges[m][i] += 1;

if S = CS:
µ = t − Tc;
found = true; break;

c = c + 1, CS = S;

if !found:
µ = Tk − Tk−1

Apply ADDR using µ, StateSum[m], StateChanges[m] (AL[m] is
updated);
Assign new BF [m], States[m];

Algorithm 1. OpenMP algorithm for HARBN simulation (Liu-Bassler’s
method of attractor search), for a fixed hierarchy level

per each subnetwork to find the attractor. The state updates are performed
in shared memory and the states are compared with the checkpoint state using
either a block reduction or syncthreads all() function depending on whether
the latter is supported by the target platform (it is denoted as “if all” keyword
in the algorithm description).

Some of the optimizations we applied are not shown in the Algorithm2 for
the sake of clarity. In particular, we store the previous and the current state of
a node as one 32-bit integer in shared memory. In the UpdateState function we
read the previous state from the first word and write the new state to the second
word of this integer at even iterations, and vice-versa at the odd ones. By doing
this we can avoid the barrier before the actual state update and prevent the
bank conflicts caused by misaligned access.

3 Experimental Study

3.1 Experimental Setup

The execution time of the algorithms described above highly depends on the
lengths of attractors they aim to explore: the longer the attractor is, the more
state updates are required to traverse through it and gather the statistics on
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Data: AL[m][i], BF [m][i], States[m][i] for m ∈ 0 . . . NM − 1, i, j ∈ 0 . . .KM − 1,
T = T1, T2, ..., Tk, a number of epochs E

parallel for m=0 to NM − 1:
for e = 1 to E:

copy States[m] to device memory;
fill textures ALm = AL[m], BFm = BF [m];
GPU parallel for i = 0 to KM − 1:

Thread local: T0 = 0, c = 0, prevSm,i, Sm,i, CSm,i,
StateChangesm,i = 0, StateSumm,i = 0, µ, found;
Shared: SharedStatem[i];
Textures: ALm, BFm;
found = false;
while c < k:

StateChangesm,i = 0, StateSumm,i = 0;
for t = Tc + 1 to Tc+1:

prevSm,i = Sm,i;
SharedStatem[i] = Sm,i;
barrier;
Sm,i = UpdateState(SharedStatem, i, ALm, BFm);
StateSumm,i += Sm,i;
if S �= prevSi:

StateChangesm,i += 1;
barrier;
if all Sm,i = CSm,i:

µ = t − Tc;
found = true; break;

c = c + 1, CS = S;

if !found:
µ = Tk − Tk−1;

StateChanges[m][i] = StateChangesm,i;
StateSum[m][i] = StateSumm,i;

Apply ADDR using µ, StateSum[m], StateChanges[m] (AL[m] is
updated);
Assign new BF [m], States[m];

Algorithm 2. Hybrid CPU-GPU algorithm for HARBN simulation (Liu-
Bassler’s method of attractor search), for a fixed hierarchy level

nodes’ activity. In addition to that, after each epoch the network structure gets
altered, and after a predefined number of epochs some networks are merged
together according to the HARBN model. The diversity of the resulting network
structures makes it impossible to predict the lengths of attractors, and, conse-
quently, to effectively compare the execution times of the algorithms based on
different realizations of the HARBN evolution process.

In order to obtain the quantitative performance characteristics, we measured
the speedup per one state update. This measure, unlike total simulation time,
does not depend on the attractor lengths, but takes into account the size and
the structure of the simulated networks.
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The experiments were conducted on the machines with Intel Core i7-3930K
CPU (supports up to 12 parallel threads) and NVidia GeForce GT 640 GPU.
In order to factor in the influence of the network structure, we run 100 epochs
of evolution for different hierarchies. Then the execution time of each epoch
was divided by the attractor length to estimate the time required for the state
update. Only one hierarchy level was considered in each experiment.

3.2 Performance Results

In order to measure the speedup obtained by parallelizing the sequential algo-
rithm with OpenMP and hybrid algorithm, we performed the simulations for net-
works with NM ∈ {2, 4, 8, 16, 32, 64} independent submodules and total number
of nodes N ∈ {128, 512, 1024}.

(a) Hierarchical system with 512 nodes (b) Hierarchical system with 128 nodes

Fig. 1. The speedup of the OpenMP-based parallel algorithm

Figure 1 shows the speedup for different number of threads. For the number
of modules less than a number of threads used (it can be clearly seen for NM = 2
and NM = 4) addition of supplementary threads has no positive effect on the
performance. For the other cases (NM = 8; 16; 32; 64), the best speedup (near 5)
is achieved for 8 threads.

According to above results, using more than 8 threads to simulate hierarchical
systems smaller than at least 512 nodes leads to a suboptimal performance. This
is due to the little amount of computations that each thread performs, compared
to the overhead for synchronization. It can be clearly seen in Fig. 1b, where the
performance degradation is larger for hierarchical systems divided into more
modules. Apart from that, the speedup is generally higher for networks with
more independent submodules due to the large degree of parallelism.

Figure 2 demonstrates the results of comparison of hybrid and OpenMP algo-
rithms for the networks with 512 (Fig. 2a) and 1024 (Fig. 2b) nodes with varying
number of modules. In this figures we show the speedup for hybrid algorithm
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(a) Hierarchical system with 512 nodes (b) Hierarchical system with 1024 nodes

Fig. 2. Performance comparison of hybrid and OpenMP algorithms

and for different number of threads for OpenMP algorithm (namely 2, 4, 8 and
10). These algorithms demonstrate opposite patterns of parallel performance
with the growth of a number of subnetworks. The speedup for hybrid algorithm
is the highest for 2 subnetworks (it outperforms OpenMP from 6 to 14 times
in this case), and then monotonically decrease till it becomes lower than for
OpenMP version. This is explained by the fact that the larger the number of
nodes in each module the better effect is from updating their states in parallel:
the proposed hybrid algorithm increased the average number of state updates
per second from 37.07 (in the sequential version) to 1049.80 for a network con-
sisting of 1024 nodes and 2 subnetworks. However, for a small number of nodes
in each subnetwork (e.g. for KM = 4 and NM = 64 in Fig. 2a), the speedup from
GPGPU calculations is insufficient. Finally, Fig. 2 shows that the speedup for
OpenMP version saturates above a certain number of subnetworks (this number
is related to the number of threads available).

4 Conclusion

Parallel simulation of adaptive random boolean networks is usually hampered by
the linkages between consecutive epochs of their evolution (as the initial topology
of RBN for a given epoch depends on a previous epoch). For the general case
of synchronous evolving RBNs, one can exploit the fact that states of nodes are
updated simultaneously during attractor search, thus providing the opportunity
to use GPGPU capabilities.

In this study, we consider a particular type of ARBN with hierarchical mod-
ular structure which is created using a bottom-up approach. The number of
hierarchy levels is built up step by step, and inside each fixed level the number
of independent subnetworks (modules) are considered. Due to the absence of
data dependencies between modules, it becomes possible to combine a parallel
updating of nodes states with a parallel evolution of distinct modules.
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The experimental part of the study demonstrates the comparison of OpenMP
and hybrid CPU-GPU algorithms for varying sizes and hierarchies of networks.
The results show that: (i) the more number of nodes in a module the better is
the performance of the hybrid algorithm (up to 28x speedup for 1024 nodes), (ii)
OpenMP algorithm may perform better when modules contain small number of
nodes (because there is almost no effect of utilizing GPU in this case).
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Abstract. Cloud Functions, often called Function-as-a-Service (FaaS),
pioneered by AWS Lambda, are an increasingly popular method of run-
ning distributed applications. As in other cloud offerings, cloud func-
tions are heterogeneous, due to different underlying hardware, runtime
systems, as well as resource management and billing models. In this
paper, we focus on performance evaluation of cloud functions, taking
into account heterogeneity aspects. We developed a cloud function bench-
marking framework, consisting of one suite based on Serverless Frame-
work, and one based on HyperFlow. We deployed the CPU-intensive
benchmarks: Mersenne Twister and Linpack, and evaluated all the major
cloud function providers: AWS Lambda, Azure Functions, Google Cloud
Functions and IBM OpenWhisk. We make our results available online
and continuously updated. We report on the initial results of the perfor-
mance evaluation and we discuss the discovered insights on the resource
allocation policies.

Keywords: Cloud computing · FaaS · Cloud functions
Performance evaluation

1 Introduction

Cloud Functions, pioneered by AWS Lambda, are becoming an increasingly pop-
ular method of running distributed applications. They form a new paradigm,
often called Function-as-a-Service (FaaS) or serverless computing. Cloud func-
tions allow the developers to deploy their code in the form of a function to the
cloud provider, and the infrastructure is responsible for the execution, resource
provisioning and automatic scaling of the runtime environment. Resource usage
is usually metered with millisecond accuracy and the billing is per every 100 ms
of CPU time used. Cloud functions are typically executed in a Node.js environ-
ment, but they also allow running custom binary code, which gives an opportu-
nity for using them not only for Web or event-driven applications, but also for
some compute-intensive tasks, as presented in our earlier work [5].

As in other cloud offerings, cloud functions are heterogeneous in nature, due
to various underlying hardware, different underlying runtime systems, as well as
resource management and billing models. For example, most providers use Linux
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as a hosting OS, but Azure functions run on Windows. This heterogeneity is in
principle hidden from the developer by using the common Node.js environment,
which is platform-independent, but again various providers have different ver-
sions of Node (as of May 2017: for AWS Lambda – Node 6.10, for Google Cloud
Functions – Node 6.9.1, for IBM Bluemix – Node 6.9.1, for Azure – 6.5.0.). More-
over, even though there is a common “function” abstraction for all the providers,
there is no single standard API.

In this paper, we focus on performance evaluation of cloud functions and
we show how we faced various heterogeneity challenges. We have developed a
framework for performance evaluation of cloud functions and applied it to all
the major cloud function providers: AWS Lambda, Azure Functions, Google
Cloud Functions (GCF) and IBM OpenWhisk. Moreover, we used our existing
scientific workflow engine HyperFlow [1] which has been recently extended to
support cloud functions [5] to run parallel workflow benchmarks. We report on
the initial results of the performance evaluation and we discuss the discovered
insights on the resource allocation policies.

The paper is organized as follows. Section 2 discusses the related work on
cloud benchmarking. In Sect. 3, we outline our framework, while in Sect. 4, we
give the details of the experiment setup. Section 5 presents and discusses the
results, while Sect. 6 gives a summary and outlines the future work.

2 Related Work

Cloud performance evaluation, including heterogeneous infrastructures has been
subject of previous research. An excellent example is in [2], where multiple clouds
are compared from the perspective of many-task computing applications. Sev-
eral hypotheses regarding performance of public clouds are discussed in a com-
prehensive study presented in [3]. More recent studies focus e.g. on burstable
[4] instances, which are cheaper than regular instances but have varying per-
formance and reliability characteristics. Performance of alternative cloud solu-
tions such as Platform-as-a-Service (PaaS) has also been analyzed. E.g. [6,8]
focused on Google App Engine from the perspective of CPU-intensive scientific
applications.

A detailed performance and cost comparison of traditional clouds with
microservices and the AWS Lambda serverless architecture is presented in [10],
using an enterprise application. Similarly, in [11] the authors discuss the advan-
tages of using cloud services and AWS Lambda for systems that require higher
resilience. An interesting discussion of serverless paradigm is given in [7], where
the case studies are blogging and media management application. An example
of price and performance of cloud functions is provided also in [9], describing
Snafu, a new implementation of FaaS model, which can be deployed in a Docker
cluster on AWS. Its performance and cost is compared with AWS Lambda using
a recursive Fibonacci cloud function benchmark.

Up to our knowledge, heterogeneous cloud functions have not been compre-
hensively studied yet, which motivates this research.
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Fig. 1. Architecure of the cloud functions benchmarking framework based on Serverless
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3 Benchmarking Framework for Cloud Functions

For benchmarking cloud function providers, we used two frameworks. The first
one is our new suite, designed specifically for this research, based on Serverless
Framework. The second one uses our HyperFlow workflow engine [1,5].

3.1 Suite Based on Serverless Framework

The objective of this benchmarking suite is to execute and gather performance
results of heterogeneous cloud function benchmarks over a long period of time.
The suite has to run as a permanent service and execute selected benchmarks
periodically. The results are then stored and available for examination. Our goal
was to automate functions deployment as much as possible to improve results
reproducibility. The architecture of the suite is shown in Fig. 1.

In order to deploy our benchmark suite we have used the Serverless Frame-
work1. It provides a uniform way of setting up cloud functions deployment and
supports, at the time of writing, AWS Lambda, IBM OpenWhisk and Azure
Functions natively and Google Cloud Functions through an official plugin. In
order to streamline our data taking process, we automated code deployment
even further by setting up project on Travis continuous integration (CI), so that
the code is automatically deployed on each cloud whenever we push new code to
the Git repository. This also simplified security credentials management, since
we do not need to distribute deployment credentials for each provider.

To address the heterogeneity of runtime environments underlying cloud func-
tions, we have created dedicated wrappers for native binary that was executed
by the function. We have used Docker to build binaries compatible with target
environments. For Linux based environments, we use amazonlinux image to build
a static binary that is compatible with AWS Lambda, Google Cloud Functions
and IBM OpenWhisk. Azure Functions run in a Windows-based environment,
thus it requires a separate binary. We used Dockcross2 project that provides a
suite of Docker images with cross-compilers, which includes a Windows target.

1 https://serverless.com.
2 https://github.com/dockcross/dockcross.

https://serverless.com
https://github.com/dockcross/dockcross
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The Serverless Framework is able to deploy functions with all the necessary
companion services (e.g. HTTP endpoint). However, we still had to adapt our
code slightly for each provider, since the required API is different. For instance,
AWS Lambda requires a callback when a function result is ready, while IBM
OpenWhisk requires to return a Promise for asynchronous functions. The cloud
platforms also differ in how $PATH and current working directory are handled.

The benchmarks results are sent to the InfluxDB time series database. We
have also setup Grafana for convenient access to benchmark results. We imple-
mented our suite in Elixir and Node.js. The source code is available on GitHub3.

3.2 Suite Based on HyperFlow

For running parallel benchmarking experiments we adapted HyperFlow [1] work-
flow engine. HyperFlow was earlier integrated with GCF [5], and for this work
it was extended to support AWS Lambda. HyperFlow is a lightweight workflow
engine based on Node.js and it can orchestrate complex large-scale scientific
workflows, including directed acyclic graphs (DAG).

For the purpose of running the benchmarks, we used a set of pre-generated
DAGs of the fork-join pattern: the first task is a fork task which does not perform
any job, it is followed by N identical parallel children of benchmark tasks running
the actual computation, which in turn are followed by a single join task which
plays the role of a final synchronization barrier. Such graphs are typical for
scientific workflows, which often include such parallel stages (bag of tasks), and
moreover are convenient for execution of multiple benchmark runs in parallel.

In the case of HyperFlow, the cloud function running on the provider side is
a JavaScript wrapper (HyperFlow executor), which runs the actual benchmark,
measures the time and sends the results to the cloud storage, such as S3 or Cloud
Storage, depending on the cloud provider.

4 Experiment Setup

We configured our frameworks with two types of CPU-intensive benchmarks,
one focused on integer and the other on floating-point performance.

4.1 Configuration of the Serverless Benchmarking Suite

In this experiment we used a random number generator, as an example of an
integer-based CPU-intensive benchmark. Such generators are key in many sci-
entific appliations, such as Monte Carlo methods, which are good potential can-
didates for running as cloud functions.

Specifically, the cloud function is a JavaScript wrapper around the binary
benchmark, which is a program written in C. We used a popular Mersenne
Twister (MT19937) random number generator algorithm. The benchmark runs

3 https://github.com/kfigiela/cloud-functions.

https://github.com/kfigiela/cloud-functions
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approximately 16.7 milion iterations of the algorithm using a fixed seed number
during each run and provides reproducible load.

We measure the execution time tb of the binary benchmark from within the
JavaScript wrapper that is running on serverless infrastructure, and the total
request processing time tr on the client side. We decided to deploy our client
outside the clouds that were subject to examination. The client was deployed
on a bare-metal ARM machine hosted in Scaleway cloud in Paris datacenter.
The benchmark was executed for each provider every 5 min. We took multiple
measurements for different memory sizes available: for AWS Lambda – 128,
256, 512, 1024, 1536 MB, for Google Cloud Functions – 128, 256, 512, 1024,
2048 MB, for IBM OpenWhisk – 128, 256, 512 MB. Azure Functions do not
provide a choice on function size and the memory is allocated dynamically. The
measurements: binary execution time tb and request processing time tr were sent
to InfluxDB by the client. Since the API Gateway used in conjunction with AWS
Lambda restricts request processing time to 30 s, we were not able to measure tr
for 128 MB Lambdas. Although the requests timeout on the API Gateway, the
function completes execution. In this case, the function reports tb time directly
to InfluxDB.

On AWS Lambda functions were deployed in eu-west-1 region, on GCF func-
tions were deployed in us-central1 region, on IBM OpenWhisk functions were
deployed in US South region and on Azure function was deployed in US West
region. Such setup results from the fact that not all of the providers offer cloud
functions in all their regions yet.

We started collecting data on April 18, 2017, and the data used in this paper
include the values collected till May 11, 2017.

4.2 Configuration of HyperFlow Suite

As a benchmark we used the HPL Linpack4, which is probably the most popular
CPU-intensive benchmark focusing on the floating point performance. It solves
a dense linear system of equations in double precision and returns the results in
GFlops. To deploy the Linpack on multiple cloud functions, we used the binary
distribution from Intel MKL5, version mklb p 2017.3, which has binaries for
Linux and Windows.

As benchmark workflows we generated a set of fork-join DAGs, with paral-
lelism N = [10, 20, ..., 100], thus it allowed us to run up to 100 Linpack tasks
in parallel. Please note that in this setup all the Linpack benchmarks run inde-
pendently, since cloud functions cannot communicate with each other, so this
configuration differs from the typical Linpack runs in HPC centers which use
MPI. Our goal is to measure the performance of individual cloud functions and
the potential overheads interference between parallel executions.

The Linpack was configured to run using the problem size (number of equa-
tions) of s ∈ {1000, 1500, 2000, 3000, 4000, 5000, 6000, 8000, 10000, 12000, 15000}.

4 http://www.netlib.org/benchmark/hpl/.
5 https://software.intel.com/en-us/articles/intel-mkl-benchmarks-suite.

http://www.netlib.org/benchmark/hpl/
https://software.intel.com/en-us/articles/intel-mkl-benchmarks-suite
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Not all of these sizes are possible to run on functions with smaller memory, e.g.
4000 × 4000× 8 Bytes = 128 MB, so the benchmark stops when it cannot allocate
enough memory, reporting the best performance pf achieved (in GFlops).

We run the Linpack workflows for each N on all the possible memory sizes
available on GCF (128, 256, 512, 1024, 2048 MB) and on AWS Lambda on sizes
from 128 to 1536 with increments of 64 MB.

On AWS Lambda functions were deployed in eu-west-1 region, on GCF func-
tions were deployed in us-central1 region.

5 Performance Evaluation Results

Our benchmarks from the serverless suite run permanently and the original unfil-
tered data as well as current values are available publicly on our website6. They
include also selected summary statistics and basic histograms. The data can be
exported in CSV format, and we included the data in the GitHub repository.

Selected results are presented in the following Subsects. 5.1 and 5.2, while
the results of the Linpack runs using HyperFlow are given in Sect. 5.3.

5.1 Integer Performance Evaluation

The results of the integer benchmarks using Mersenne Twister random generator
are presented in Fig. 2. They are shown as histograms, grouped by providers and
function size. They give us interesting observations about the resource allocation
policies of cloud providers.

Firstly, the performance of AWS Lambda is fairly consistent, and agrees with
the documentation which states that the CPU allocation is proportional to the
function size (memory). On the other hand, Google cloud functions execution
time have multimodal distributions with higher dispersion. For example, for the
256 MB function, the execution time is most often around 27 s, but there is
another peak around 20 s, coinciding with the faster 512 MB function. Similarly,
the distribution for the slowest 128 MB function has multiple peaks, overlapping
with faster functions and reaching even the performance of the fastest 2048 MB
function. This suggests that GCF does not enforce strictly the performance lim-
its, and opportunistically invokes smaller functions using the faster resources.

Regarding IBM Bluemix, the performance does not depend on the function
size, and the distribution is quite narrow, as in the case of AWS. On the other
hand, the performance of Azure has much wider distribution, and the average
execution times are relatively slower. This can be attributed to different hard-
ware, but also to the underlying operating system (Windows) and virtualization.

5.2 Overheads Evaluation

By measuring the binary execution time tb inside the functions as well as
the request processing time tr (as seen from the client), we can also obtain
6 http://cloud-functions.icsr.agh.edu.pl.

http://cloud-functions.icsr.agh.edu.pl
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Fig. 2. Histograms of integer-based MT random number generator benchmark execu-
tion time vs. cloud function size. In the case of Azure memory is allocated dynamically.
(Color figure online)

a rough estimate on total overhead to = tr − tb. The overhead includes: net-
work latency, platform routing and scheduling overheads. Endpoints exposed by
cloud providers are secured with HTTPS protocol. We warmed up the connection
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Fig. 3. Distribution of to overheads for cloud function providers.

before performing each measurement, so that we were able to exclude the TLS
handshake from tr. Unfortunately, we could not measure the network latency to
the clouds as AWS and Google provide access to functions via CDN infrastruc-
ture. The average round trip latency (ping) to OpenWhisk was 117 ms and 155
ms to Azure (Fig. 3).

Histograms of to are presented in Fig. 2. One may observe that overhead is
stable with a few outliers. However, for Bluemix one may see that there are two
peaks in the distribution.

Furthermore, we measured tr for requests targeting an invalid endpoint. This
gives a hint on network latency under the assumption that invalid requests are
terminated in an efficient way. The average results were consistent with typical
network latency: for AWS Lambda – 43 ms, for Google Cloud Functions – 150
ms, for IBM Bluemix – 130 ms. However, for Azure the latency measured that
way was 439 ms which is significantly larger than the network ping time.
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5.3 Floating-Point Performance Evaluation

Results of the Linpack runs are shown in Fig. 4, as a scatter-plots where density
of circles represents the number of data points. AWS data consists of over 12,000
points, and GCF of over 2,600 points. We show also histograms of subsets of these
data.

In the case of AWS, we observe that the maximum performance grows linearly
with the function size. There is, however, a significant portion of tasks that
achieved lower performance. With the growing memory, we can see that the
execution times form two clusters, one growing linearly over 30 GFlops, and one
saturating around 20 GFlops.

In the case of GCF, we observe that the performance of tasks is clustered dif-
ferently. The performance of one group of tasks grows linearly with memory. On
the other hand, there is a large group of tasks, which achieve the top performance
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of 15 GFlops regardless of the function size. Interestingly, we observed that the
smallest functions of 128 MB always achieved the best performance of about 14
GFlops.

To illustrate the multimodal nature of performance distribution curves of
GCF, we show the results as histograms in Fig. 4 for selected memory siezes.
As in the case of integer-based performance tests, the AWS Lambda show much
more consistent results, while for GCF the performance points are clustered.

5.4 Discussion of Results

The most interesting observation is regarding the scheduling policies of cloud
providers, as observed in both MT and Linpack experiments. Both GCF and
AWS claim that the CPU share for cloud functions is proportional to the memory
allocated. In the case of AWS we observe a fairly linear performance growth
with the memory size, both for the lower bound and the upper bound of the plot
in Fig. 4. In the case of GCF, we observe that the lower bound grows linearly,
while the upper bound is almost constant. This means that Google infrastructure
often allocates more resources than the required minimum. This means that their
policy allows smaller functions (in terms of RAM) to run on faster resources.
This behavior is likely caused by optimization of resource usage via reuse of
already spawned faster instances, which is more economical that spinning up
new smaller instances. Interestingly, for Azure and IBM we have not observed
any correlation between the function size and performance.

Another observation is the relative performance of cloud function providers.
AWS achieves higher scores in Linpack (over 30 GFlops) whereas GCF tops at
17 GFlops. Interestingly, from the Linpack execution logs we observed that the
CPU frequency at AWS is 3.2 GHz, which suggests Xeon E5-2670 (Ivy Bridge)
family of processors, while at GCF it is 2.1 GHz which means Intel Xeon E5 v4
(Broadwell). Such difference in hardware definitely influences the performance.
These Linpack results are confirmed by the MT benchmark. Since we have not
run Linpack on Azure and IBM yet, we cannot report on their floating point
performance, but the MT results also suggest the differences in hardware.

Although we did not perform such detailed statistical tests as in [3], our
observations confirm that there is not significant dependency of the time of day
or day of week on the cloud providers performance. The existing fluctuations
tend to have random characteristics, but it will be subject to further studies
once we collect more data.

6 Summary and Future Work

In this paper, we presented our approach to performance evaluation of cloud
functions. We described our performance evaluation framework, consisting of
two suites, one using the Serverless Framework, and the one based on Hyper-
Flow. We gave the technical details on how we address the heterogeneity of the
environment, and we described our automated data taking pipeline. We made
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our experimental primary data available publicly to the community and we set
up the data taking as a continuous process.

The presented results of evaluation using Mersenne Twister and Linpack
benchmarks show the heterogeneity of cloud function providers, and the relation
between the cloud function size and performance. We also revealed the interest-
ing observations on how Amazon and Google differently interpret the resource
allocation policies. These observations can be summarized that AWS Lambda
functions execution performance is proportional to the memory allocated, but
sometimes sightly slower, while for Google Cloud Functions the performance is
proportional to the memory allocated, but often much faster.

Since this paper presents the early results of this endeavor, there is much
room for future work. It includes the integration of HyperFlow with our server-
less benchmarking suite, measurement of influence of parallelism, delays and
warm-up times on the performance, possible analysis of trends as we continue to
gather more data, as well as cost-efficiency analysis and implications for resource
management.
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Abstract. Research in compiler pass phase ordering (i.e., selection of
compiler analysis/transformation passes and their order of execution)
has been mostly performed in the context of CPUs and, in a small num-
ber of cases, FPGAs. In this paper we present experiments regarding
compiler pass phase ordering specialization of OpenCL kernels targeting
NVIDIA GPUs using Clang/LLVM 3.9 and the libclc OpenCL library.
More specifically, we analyze the impact of using specialized compiler
phase orders on the performance of 15 PolyBench/GPU OpenCL bench-
marks. In addition, we analyze the final NVIDIA PTX assembly code
generated by the different compilation flows in order to identify the main
reasons for the cases with significant performance improvements. Using
specialized compiler phase orders, we were able to achieve performance
improvements over the CUDA version and OpenCL compiled with the
NVIDIA driver. Compared to CUDA, we were able to achieve geometric
mean improvements of 1.54× (up to 5.48×). Compared to the OpenCL
driver version, we were able to achieve geometric mean improvements of
1.65× (up to 5.70×).

Keywords: GPU · Phase ordering · Optimization

1 Introduction

High Performance Computing (HPC) can offer Petaflops of performance by rely-
ing on increasingly more heterogeneous systems, such as the combination of
Central Processing Units (CPUs) with accelerators in the form of Graphics Pro-
cessing Units (GPUs) programmed with languages such as OpenCL [1] or CUDA
[2]. Heterogeneous systems are widespread as a way to achieve energy efficiency
and/or performance levels that are not achievable by a single device/architecture
(e.g., matrix multiplication is much faster on GPUs than on CPUs for the same
power/energy budget [3]). These accelerators offer a large number of special-
ized cores that the CPUs can use to offload computation that exhibits data-
parallelism and often other types of parallelism as well (e.g., task-level paral-
lelism). This adds an extra layer of complexity if one wants to target these sys-
tems efficiently, which in the case of HPC systems such as supercomputers is of
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utmost importance. An inefficient use of the hardware is amplified by the magni-
tude of such systems (hundreds/thousands of CPU cores and accelerators), with
increasing utilization/power bill and/or cooling challenges as a consequence. In
order to efficiently utilize the hardware resources, programmers need advanced
compilers and they also need high levels of expertise. The programmer(s) and the
compiler(s) have to be able to target different computing devices (CPU, GPU,
and/or FPGA) and/or architectures (e.g., system with ARM or x86 CPUs) in a
manner that achieves suitable results for certain metrics, such as execution time
and energy efficiency.

Compiler users tend to rely on the standard compiler optimization levels,
typically represented by flags such as GCC’s -O2 or -O3. These flags represent
fixed sequences of analysis and transformation compiler passes, also referred to
as compiler phase orders. Programs compiled with these flags tend to outperform
the unoptimized equivalent. However, there are often other assembly/binary rep-
resentations of the source application in the solution space with higher perfor-
mance than the ones achieved through the use of the standard optimization lev-
els [4–8]. However, we can often achieve further performance, energy or power
improvements by using specialized optimizing compiler sequences. Domains such
as embedded systems or HPC tend to prioritize metrics such as energy effi-
ciency that typically receive less attention from the compiler developers, so these
domains benefit further from these specialized sequences [9].

Ideally, the standard compiler optimization levels would already correspond
to the use of the best compiler phase selection/order for a given metric. How-
ever, there appears to be no single best phase order that applies to all programs.
This is caused by the complex interactions between compiler passes. Some com-
piler passes negatively or positively interact with other compiler pases, resulting
in the creation/destruction of optimization opportunities when executing the
latter [11]. As such, a customized approach that produces different phase selec-
tions/orders for different functions/programs can lead to better performance.

Heterogeneous systems typically include a number of sub-devices with sub-
stantial differences. For this reason, different optimization strategies are needed
for each computing component. With phase ordering, we can achieve closer-
to-optimal optimization for these sub-devices, by specifying custom compiler
sequences for each of them. This approach is orthogonal to other optimization
strategies. For instance, it does not interfere with user and hardware optimiza-
tions. The use of compiler phase order specialization can reduce engineering
costs. In a number of cases the same source code can be used when targeting
architecturally different computing devices and/or different metrics through the
use of different compiler phase orders. This reduces or mitigates the need to
develop and maintain multiple versions of the same function/application.

The contributions of this paper are the following:

1. Compare performance between OpenCL and CUDA kernels implementing
the same freely available and representative benchmarks (PolyBench/GPU)
using recent NVIDIA drivers and CUDA toolchain, on an NVIDIA GPU with
an up-to-date architecture (NVIDIA Pascal).
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2. Assess the performance improvement that can be achieved using compiler
pass phase ordering specialization with LLVM 3.9, in comparison with both
use of that same LLVM compiler version without the use of phase ordering
specialization and in comparison with the default OpenCL and CUDA kernel
compilation strategies to NVIDIA GPUs.

3. Explain why the versions produced by phase selection/ordering specializa-
tion outperform the remaining ones, by analyzing the generated NVIDIA
PTX assembly. We compare the specialized versions with CUDA’s NVCC
and OpenCL LLVM outputs.

Additionally, to the best of our knowledge this is the first work to present
results of compiler pass phase ordering specialization targeting GPUs and con-
sidering OpenCL kernels.

The rest of this paper is organized as follows. Section 2 describes the method-
ology for the experiments presented in this paper. Section 3 presents the exper-
imental results. Final remarks about the presented work and ongoing work are
presented in Sect. 4.

2 Experimental Setup

We extended our compiler phase ordering Design Space Exploration (DSE) sys-
tem [8] to support exploring compiler sequences targeting NVIDIA GPUs using
Clang/LLVM and the libclc OpenCL library.

We used a workstation with an Intel Xeon E5-1650 v4 CPU, running at 3.6
GHz (4.0 GHz Turbo) and 64 GB of Quad-channel ECC DDR4 at 2133 MHz.
For the experiments we relied on Ubuntu 16.04 64-bit with the NVIDIA CUDA
8.0 toolchain (released in Sept. 28, 2016) and the NVIDIA 378.13 Linux Display
Driver (released in Feb. 14, 2017).

The GPU used for the experiments is a variant of the NVIDIA GP104 GPU
in the form of an EVGA NVIDIA GeForce GTX 1070 graphics card (08G-P4-
6276-KR) with a 1607 MHz/1797 MHz base/boost graphics clock and 8 GB of
256 bit GDDR5 memory with a transfer rate of 8008 MHz (256.3 GB/s memory
bandwidth). The graphics card is connected to a PCI-Express 3.0 16x interface.

The GPU is set to persistence mode with the command nvidia-smi -i
<target gpu> -pm ENABLE. This forces the kernel mode driver to keep the GPU
initialized at all instances, avoiding the overhead caused by triggering GPU ini-
tialization at application start. The preferred performance mode is set to Prefer
Maximum Performance under the PowerMizer settings tab in the NVIDIA X
Server Settings, in order to reduce the occurrence of extreme GPU and memory
frequency variation during execution of the GPU kernels.

In order to reduce DSE overhead, and given the fact that we found experi-
mentally that multiple executions of the same compiled kernel on the GTX1070
GPU had a small standard deviation in relation to registered wall time, each
generated code is only tested a single time during DSE. Only in a final phase on
the DSE process are the top solutions executed 30 times and averaged in order to
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select a single compiler phase order. All execution time metrics reported (base-
line CUDA/OpenCL and OpenCL optimized with phase ordering) in this paper
correspond to the average over 30 executions.

2.1 Kernels and Objective Metric

In this paper we use the Polybench/GPU benchmark suite [10] kernels to assess
the potential for improvement with phase ordering when targeting NVIDIA
GPUs. We selected this particular benchmark as it is freely available and thus
contributes to making the results presented in this paper reproducible.

We modified the benchmarks to ensure that the CUDA and OpenCL versions
use the same floating-point precision. For instance, the OpenCL implementation
of the original MVT kernel uses double floating point precision, while the CUDA
implementation uses single precision. We performed the minimum of changes to
ensure a fair comparison.

Polybench/GPU is a collection of codes implemented for GPUs using CUDA,
OpenCL, and HMPP. This benchmark suite includes kernels from 15 bench-
marks from different domains which represent computations that would be per-
formed on GPUs in the context of HPC, including convolution kernels (2DCONV,
3DCONV), linear algebra (2MM, 3MM, ATAX, BICG, GEMM, GESUMMV, GRAMSCH, MVT,
SYR2K, SYRK), datamining (CORR, COVAR), and stencil computations (FDTD-2D).

For our experiments we use both the CUDA and the OpenCL implemen-
tations available for each PolyBench/GPU benchmark. We rely on the default
dataset shape so that reproducibility of our results (e.g., performance improve-
ment using the specialized phase orders presented in this paper) is more straight-
forward.

2.2 Compilation and Execution Flow with Specialized Phase
Ordering

We use Clang compiler’s OpenCL frontend with the libclc library to generate
an LLVM IR representation of a given input OpenCL kernel. The libclc library
is an open source library with support for AMDGCN and NVPTX targets that
implements functions as specified in OpenCL 1.1.

Then, we use the LLVM Optimizer tool (opt) to optimize the IR using a
specific optimization strategy represented by a compiler phase order, and we
link this optimized IR with the libclc OpenCL functions for our target using
llvm-link. Finally, using Clang, we generate the NVIDIA PTX representation
of the kernel from the LLVM bytecode resulting from the previous step, using the
nvptx64-nvidia-nvcl target. PTX is NVIDIA’s intermediate representation for
GPU computations, and is used by NVIDIA’s OpenCL and CUDA implemen-
tations. Although PTX is itself an IR and not a direct match to the code that
is executed on the GPU, it is the closest we can get without direct access to the
internals of NVIDIA’s drivers.

Normally, programs that use OpenCL load the kernels and pass it to the
clCreateProgramWithSource, which compiles them (online compilation). For
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specialized phase ordering, we instead compile the source code to PTX using
Clang/LLVM and pass the PTX to the clCreateProgramWithBinary (offline
compilation).

A compiler phase order represents not only the compiler passes to execute
in the compiler pipeline, which can be in order of the hundreds, but also their
order of execution. The fact that compiler passes are interdependent and inter-
fere with each other’s execution in ways that are difficult to predict can make
it extremely hard to manually generate suitable compiler sequences. For the
experiments presented in this paper, the OpenCL kernels from each of the Poly-
Bench/GPU benchmarks were compiled/tested with a set of 10, 000 randomly
generated compiler phase orders (the same set was used with all OpenCL codes)
composed of 256 LLVM pass instances (can include repeated calls to the same
pass). Passes were selected from a list with all LLVM 3.9 passes except the ones
that resulted in compilation and/or execution problems when used individually
to compile the PolyBench/GPU OpenCL kernels.

2.3 Validation of the Code Generated After Phase Ordering

Each PolyBench/GPU benchmark has verification embedded in its code that
consists in executing the OpenCL GPU kernel(s) followed by a functionally
equivalent sequential C version on the CPU, and comparing the two. This alone
poses a challenge, as CPU executing using the same parameters as the ones
used for GPU execution takes a long time for a considerable number of the
PolyBench/GPU benchmarks. This would have an unreasonable impact on the
phase ordering exploration time.

To reduce the time for each DSE iteration, we separate the validation from
the measurement phases. We validate the programs by executing on the CPU
and GPU (as in the original PolyBench/GPU) with inputs that can be processed
quickly. However, we also execute the same GPU code using the original inputs
(without CPU validation) in order to measure the execution time.

We further reduce exploration time by checking whether an identical PTX
file was previously generated. If so, we reuse the results (i.e., correctness and
performance) from that previous execution.

At the end of phase ordering exploration, all compiler pass sequences that
were iteratively tested during DSE are ordered by their resulting objective met-
rics. For the experiments presented in this paper, sequence/metric pairs are
ordered from the one resulting in the fastest execution time to the one resulting
in least performance. Then, as a final validation process, the optimized version
that resulted in highest performance is executed with the original inputs on both
the non-optimized CPU version and the optimized GPU version, and also with
30 randomly generated inputs that result in the same number of operations. We
choose the fastest optimized version that passes validation.

This is performed to eliminate possible situations where a compiled PTX
kernel gives correct results using a small input set but gives wrong results with
the original input set.
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The PolyBench/GPU kernels are mostly composed of floating-point opera-
tions and the result of floating-point operations can be affected by reordering
operations and rounding. Because of this we allow for up to 1% difference between
the outputs of CPU and GPU executions when testing if a given compiler phase
order results in code that generates valid output.

3 Results

For each of the benchmarks, we measured the execution times for the CUDA
version, the original OpenCL (from source), an offline compiled OpenCL without
optimization, an offline compiled OpenCL with standard LLVM optimization
levels (i.e., the best of -O1, -O2, -O3 and -Os for each benchmark, which we
will refer to as -OX) and an offline compiled OpenCL with our custom compiler
optimization phase orders resulting from DSE.

3.1 Performance Evaluation

We compared the results for the various versions of the benchmarks (offline
OpenCL versions, OpenCL from source and CUDA) to determine how they per-
form. Using custom phase orders found by iterative compilation produced code
that consistently outperforms the other OpenCL variants, and nearly always
outperforms the CUDA version.

Figure 1 depicts the performance improvements with phase ordering over the
OpenCL compiled online and CUDA baselines and the other OpenCL base-
lines (compiled with Clang/LLVM). With phase ordering specialization we were
able to achieve a geometric mean performance improvement of 1.54× over the
CUDA version and a performance improvement of 1.65× over the execution of
the OpenCL kernels compiled from source. Additionally, code compiled with
specialized phase ordering can be up to 5.48× and up to 5.70× faster than the
respective CUDA implementation and the OpenCL compiled from source.

For the tested benchmarks, there were mostly no significant performance
difference between the offline compilation model using Clang/LLVM without
custom phase ordering and the OpenCL versions from source. There were excep-
tions, such as GESUMMV and SYR2K, that were 1.18× and 1.15× slower when using
Clang/LLVM (with no optimization) to compile the kernels offline.

Using the LLVM standard optimization level flags did not result in noticeable
improvements in terms of the performance of the generated code for most bench-
marks. We believe this is because the PTX code is further aggressively optimized
by the NVIDIA driver before generating the final assembly code for the target
NVIDIA GPU [12], so effectively we are using LLVM only as a pre-optimizer.

For 2DCONV, FDTD-2D and SYR2K all of the standard optimization level flags
(including -O0) resulted in the same code being generated. For benchmarks 2MM,
3DCONV, 3MM, ATAX, BICG, GEMM, GESUMMV, GRAMSCHM, MVT and SYRK, the optimiza-
tion level flags lead to code that is different from the code without optimizations.
CORR and COVAR are the only benchmarks for which different optimization level
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Fig. 1. Performance improvements from phase ordering with LLVM over CUDA imple-
mentations and OpenCL using the default online compilation pipeline for the NVIDIA
GTX1070 GPU and over OpenCL to PTX compilation using Clang/LLVM without
(OpenCL w/LLVM) and with standard optimization levels (OpenCL w/LLVM -OX).

flags produce different code. However, even in these benchmarks, the perfor-
mance impact was minimal (within 1%).

For the GESUMMV and GRAMSCHM, there were significant performance improve-
ments associated with the use of standard optimization levels. In the case of
GESUMMV, the use the standard optimization levels resulted in 1.07× performance
improvement over the non-optimized version. For GRAMSCHM, the non-optimized
version was 1.04× faster than the versions produced by the optimization level
flags.

The difference between the OpenCL baselines is that one represents the de
facto OpenCL compilation flow (with compile from source) and the others repre-
sent the compilation using LLVM (with compile from binary) using the standard
optimization level that results in the generation of code with highest performance
on a kernel-by-kernel basis, and compilation using LLVM but with no optimiza-
tion. Finally, on these benchmarks, performance with CUDA tends to be better
than with OpenCL, if no specialized phase ordering is considered. The geomet-
ric mean (considering all 15 PolyBench/GPU benchmarks) of the performance
improvement with CUDA (over OpenCL from source) is 1.07×. The 2DCONV,
3MM, ATAX, BICG and SYRK benchmarks are at least 1.1× faster in CUDA than
with OpenCL. All other benchmarks with exception for 3DCONV and GESUMMV
are still faster in CUDA than in OpenCL, although by a smaller margin.

Table 1 depicts LLVM 3.9 compiler phase orders found to have better per-
formance than the OpenCL baseline that relies on Clang/LLVM and the libclc
OpenCL library.
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Table 1. Compiler phase orders that resulted in compiled kernels with highest perfor-
mance. Compiler passes that resulted in no performance improvement were eliminated
from the compiler phase orders. No compiler phase orders resulted in improving the
performance of 2DCONV, 3DCONV or FDTD-2D.

Benchmark Compiler phase order

2MM -cfl-anders-aa -dse -loop-reduce -licm -instcombine

3MM -loop-reduce -gvn-hoist -reg2mem -cfl-anders-aa -sroa -licm

ATAX -bb-vectorize -loop-reduce -licm -cfl-anders-aa

BICG -gvn -loop-reduce -cfl-anders-aa -licm

CORR -cfl-anders-aa -loop-reduce -gvn -loop-extract-single

-loop-unswitch -loop-unswitch -ipsccp -reg2mem -licm

-nvptx-lower-alloca

COVAR -cfl-anders-aa -loop-unswitch -sink -loop-unswitch

-loop-reduce -jump-threading -reg2mem -licm

-nvptx-lower-alloca

GEMM -cfl-anders-aa -print-memdeps -loop-reduce -licm

GESUMMV -instcombine -reg2mem -instcombine -mem2reg -cfl-anders-aa

-loop-reduce -nvptx-lower-alloca -gvn-hoist -licm

GRAMSCHM -sink -reg2mem -licm -cfl-anders-aa -sroa

MVT -gvn -loop-reduce -cfl-anders-aa -licm

SYR2K -loop-reduce -loop-unroll -instcombine -loop-reduce -licm

-cfl-anders-aa

SYRK -licm -cfl-anders-aa -reg2mem -licm -sroa

3.2 Analysis of the Results

We explain for each PolyBench/GPU benchmark what are the reasons behind
the performance improvement achieved with phase ordering, comparing with
the performance achieved with the OpenCL and CUDA baselines compiled with
the NVIDIA driver. More specifically, we compare the PTX output resulting
from OpenCL offline compilation with specialized phase ordering with PTX
generated from OpenCL offline compilation without phase ordering and with
PTX generated from the CUDA versions.

For 2DCONV, CUDA is 1.26× faster than the OpenCL version optimized with
phase ordering. The compiler pass phase ordering DSE process was not able to
find an LLVM sequence capable to optimize this benchmark. The main improve-
ment of CUDA over OpenCL seems to be the generation of more efficient code
for loads from global memory. Figure 2 shows the difference between the two
approaches. Whereas load operations typically result in a single CUDA oper-
ation, the equivalent for OpenCL typically results in 5 PTX instructions. We
believe this difference is the primary reason for CUDA’s advantage over OpenCL.

For 2MM, the OpenCL version optimized with phase ordering is 1.63× and
1.56× faster than the OpenCL and CUDA baselines, respectively. The main
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Fig. 2. PTX code for equivalent load operations, for CUDA and OpenCL with offline
compilation (2DCONV benchmark)

reason for this speedup is the removal of store operations within the kernel loop.
Both the OpenCL and the CUDA baseline versions of this kernel repeatedly
overwrite the same element and this has a negative impact on performance.
The phase ordered version instead uses an accumulator register and performs
the store only after all the loop computations are complete, which substantially
reduces the number of costly memory accesses. It is unclear why the baseline
OpenCL and CUDA versions do not perform this optimization. One possibility
is that they are unable to determine that there are no aliasing issues. In the
context of this benchmark, this assumption is correct in OpenCL 2.0, as any
aliasing would result in a data race, which is undefined behavior [1]. We do not
know if the optimization was applied because LLVM correctly discovered this
fact, or if there is a bug that happened to result in correct code by accident. Even
if the optimization turns out to be the result of a bug, we believe this speedup
represents an opportunity for approaches based on Loop Versioning transforma-
tions. Although this benchmark uses two kernels, both are equivalent (the only
difference being kernel and variable names), and thus the same analysis applies
to both. There are two differences between the baseline CUDA and OpenCL
compiled versions that can explain the different execution times. The first being
the aforementioned issue with load instructions (see Fig. 2), the second being
a different loop unroll factor as the phase ordered version based on OpenCL
uses efficient load instructions, but also uses a loop unroll factor of 2 (while the
CUDA version uses an unrolling factor of 8).

For 3DCONV, we were unable to achieve a speedup on this benchmark using
any of the tested compiler phase orders, when compared with LLVM w/ or w/o
the optimization level flags. We believe this happens because most of the time
spent on the benchmark is due to global memory loads that are not removed
or improved by any LLVM pass. Any optimization will only modify the rest
of the code, which takes a negligible amount of time compared to the memory
operations. There is a speedup from the use of the LLVM PTX backend compared
with the OpenCL from source compilation path (1.05×) and the compilation
from CUDA (1.06×).
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On the 3MM benchmark, we were able to achieve speedups of 1.55× and 1.82×
over the baseline CUDA and OpenCL version compiled from source, respectively.
The main reason for the performance improvement is the removal of the memory
store operation from the computation loop.

The OpenCL version of ATAX optimized with phase ordering achieves a
speedup of 1.47× and 1.25× over the baseline OpenCL and CUDA versions,
respectively. Once again, the phase ordered version is able to move memory
stores out of the innermost loops of the kernels, which explains the speedups.
The difference between the CUDA and the baseline OpenCL versions can be
explained by a different loop unroll factor (2 for OpenCL, 8 for CUDA). The
CUDA version uses the previously described simpler code pattern for memory
loads compared to these baseline OpenCL versions, but the phase ordering ver-
sion also uses an efficient memory load pattern.

On the BICG benchmark, we were able to achieve a speedup of 1.48× over
OpenCL, and 1.28× over CUDA. The main differences between the versions
are the memory stores in the kernel loop, the unroll factor and the inefficient
memory access patterns in the baseline offline OpenCL versions.

The CORR benchmark is one of the benchmarks that benefits the most from
phase ordering (5.36× and 5.14× over baseline OpenCL from source and CUDA
versions, respectively). Phase ordering is capable of moving global memory stores
out of loops, which neither the CUDA version nor the baseline OpenCL versions
do. In general, for this benchmark, the CUDA version tends to produce more
compact load instructions and use higher loop unroll factors than the OpenCL
versions.

COVAR and CORR use the same mean kernel and reduce kernel functions. How-
ever, this represents only a fragment of the total execution code, so the compiler
sequences for the two benchmarks are different. Regardless, the same conclu-
sions from CORR apply to COVAR: phase ordering removes global stores from the
loop. COVAR improved by 5.7× and 5.48× with phase ordering specialization,
compared with the OpenCL compiled from source and the CUDA version.

The functions of the FDTD-2D benchmark are very straightforward, with little
potential for optimization. As such, phase ordering had no impact.

The performance differences for the GEMM benchmark (1.73× and 1.67× over
the OpenCL from source and the CUDA baselines) can be explained by the
removal of the memory store operation from the kernel loop and the different
pattern of memory load instructions.

There was only a small performance improvement for the GESUMMV benchmark
(1.07× over CUDA and 1.02× over the baseline OpenCL from source). The
phase ordering sequence is able to extract the memory stores out of the main
computation loop, but uses a smaller loop unroll factor (2) than the baseline
OpenCL and CUDA versions (4 and 16, respectively).

We were able to obtain speedups of 1.49× and 1.52× over the baseline CUDA
and OpenCL versions on the GRAMSCHM, respectively. Phase ordering is able to
move the memory storage operations out of the loop. Aside from that, it uses
the same load from memory instruction pattern and unroll factor as the baseline
OpenCL versions.
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The MVT benchmark benefits from phase ordering by a factor of 1.32× and
1.44× over the baseline CUDA and OpenCL versions. The main reason for this
improvement is the extraction of the store operation from the computation loop.

The SYR2K benchmarks benefits from phase ordering by a factor of 1.99× and
2.05× over the baseline CUDA and OpenCL versions, respectively. In general,
the same memory load pattern, loop unroll factor and loop invariant memory
storage code motion conclusions apply to this benchmark. Phase ordering also
seems to outline the segment of the code containing the kernel loop, but this
does not seem to be the reason for the performance difference.

For the SYRK benchmark, phase ordering improves performance by 1.14×
over the OpenCL baseline compile from source. We could not achieve signifi-
cant speedups over the CUDA version. Once again, the main reason for this
improvement is the extraction of the store from the loop.

4 Conclusion

This paper showed that compiler pass phase ordering specialization allows
achieving considerable performance improvements when compiling OpenCL ker-
nels to NVIDIA GPUs. Using Clang/LLVM 3.9 and libclc we were able to
improve the performance of code compiled from PolyBench/GPU OpenCL ker-
nels to up to 5.70× and 1.65× on average over the default NVIDIA OpenCL
compilation flow. The performance of OpenCL compiled with specialized com-
piler pass phase orders also tends to surpass the performance of CUDA imple-
mentations of the same kernels compiled with NVCC (from NVIDIA CUDA 8.0
toolchain). The use of phase ordering on top of the OpenCL versions of the ker-
nels resulted in a maximum speedup of 5.48× and a geometric mean speedup
of 1.54× when compared with the performance of the equivalent CUDA kernels
compiled with NVCC.

We gave insights explaining why the OpenCL kernels compiled with LLVM
specialized compiler pass phase orders tend to have considerably higher perfor-
mance than both the kernels compiled with the traditional OpenCL compilation
from source and the CUDA equivalent kernels. One of the optimizations with
most impact in performance of the compiled OpenCL kernels over the perfor-
mance resulting from OpenCL online compilation from source and the CUDA
versions consists of moving memory writes out of inner loops of GPU kernels by
using of an accumulator register. This avoids the overhead caused by repeated
expensive global memory writes. The optimization can be performed even in
cases where its correctness can not be proven at compilation time. This can be
achieved with Loop Versioning, which consists of adding runtime checks that will
result in the selection of what loop version (i.e., optimized or non-optimized) to
execute at runtime.

We are currently evaluating the potential of compiler phase ordering for GPU
energy consumption reduction, and how it correlates with performance as we
previously did in the context of C code targeting x86 and ARM based systems
[9]. Given the fact that GPUs are used in domains with energy (and power)
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concerns (e.g., HPC, embedded), there may be scenarios where it is acceptable
to sacrifice performance for less total energy use.

We extended our DSE system to be able to target AMD GPUs, and we are
currently exploring software optimization leveraged by compiler phase ordering
specialization on these devices.
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Abstract. Asymmetric multicore architectures that integrate different
types of cores are emerging as a potential solution for good performance
and power efficiency. Although scheduling can be improved by utiliz-
ing an appropriate set of cores for the execution of the different jobs,
determining frequency configurations is also crucial to achieve both good
performance and energy efficiency. This challenge may be more profound
with scientific workflow applications that consist of jobs with data depen-
dency constraints. The paper focuses on deploying and evaluating the
Montage scientific workflow on an asymmetric multicore platform with
the aim to explore CPU frequency configurations with different trade-
offs between execution time and energy efficiency. The proposed app-
roach provides good estimates of workflow execution time and energy
consumption for different frequency configurations with an average error
of less than 8.63% for time and less than 9.69% for energy compared to
actual values.

1 Introduction

Complex computational problems in many scientific fields, such as astronomy
and physics, may consist of multiple computational steps (jobs) with data depen-
dencies between them. For example, the output data of a program can be used
as input from other programs. Scientific workflows [4] are commonly used to
describe the computational jobs (tasks) and dependencies between them, sep-
arating the application development and execution. In this way, scientists can
orchestrate the application components and provide a high level representation
of the application independently of the particulars of the execution environ-
ment [5]. High performance computing (HPC) systems, including clusters, grids
and clouds, have been widely used for the execution of workflow applications
in order to improve application performance, by allocating a large number of
resources to execute independent tasks (i.e., tasks without data dependencies
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between them) in parallel. However, optimizing the execution schedule of scien-
tific workflows can be challenging, as the execution of a task can only start after
the execution of its predecessors and data transfer have finished. This may result
in idle slots between the execution of workflow tasks and wastage of resources.

When resources are heterogeneous, scheduling a workflow becomes particu-
larly challenging, as many different combinations of the heterogeneous resources
may be chosen. For example, the ARM big.LITTLE architecture is composed of
fast and slow cores, which can additionally operate at different CPU frequencies.
Although power consumption decreases for resources running at a lower compu-
tational speed (i.e. operating CPU frequency), overall energy consumption may
increase. This is because computational speed may affect task execution time dif-
ferently, depending on a task’s characteristics. For example, the execution time
of I/O bound tasks is not greatly affected from the reduction in CPU frequency,
while the execution of CPU bound tasks may be greatly affected. As a result,
gaps in the schedule due to idle time between the execution of the workflow’s
tasks may increase when resources operate at a lower computational speed. This
may lead to significant idle energy, the energy spent while resources remain idle.
Minimizing idle time, while balancing execution time and energy consumption,
requires adjusted configurations combining fast and slow cores running at appro-
priate frequencies.

This paper carries out a set of real experiments to investigate the performance
of a widely used scientific workflow application, Montage [9], using different CPU
frequencies and different types of cores of an asymmetric multicore processor
architecture. Energy consumption and task runtime models for the platform
and for each type of core are proposed and validated using real measurements.
Using these models, estimations of overall workflow execution time and energy
consumption are obtained and compared with real measurements. To the best of
our knowledge, this is the first paper evaluating the performance of a scientific
workflow application on an ARM big.LITTLE platform.

In the rest of the paper, Sect. 2 gives background information on the archi-
tecture, the application model and the problem. Section 3 describes the models
used to estimate execution time and energy required for the workflow execution
under different frequency configurations. Section 4 evaluates the models on a real
system. Section 5 concludes the paper.

2 Background

Architecture: The ARM big.LITTLE architecture is a system-on-chip technol-
ogy for heterogeneous processing that uses two types of processors with different
power and performance characteristics; ARM Cortex-A15 processors (Big out-of-
order processors) for high performance processing and ARM Cortex-A7 proces-
sors (Little in-order processors) for power efficient processing. In the architecture
used in this paper, each processor type contains four cores. The processors are
coherently connected so that they can transfer information to each other. Also,
the system provides frequency scaling capabilities, which allow to set CPU fre-
quency individually for each core.
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Fig. 1. Structure of a Montage workflow with 22 tasks.

Application Model: The paper assumes that a scientific workflow is modelled as
a Directed Acyclic Graph (DAG) with the nodes being the tasks and the edges
the data dependencies between them. The Pegasus Project [5] provides tools to
generate abstract workflows: these are described in a form that includes infor-
mation about the arguments required to run each task, their input and output
files and data dependencies between them. These high-level abstract workflow
descriptions are provided in DAX (directed acyclic graph in XML) files, which
make use of a specific XML syntax for expressing the tasks, their arguments, files
and dependencies between them. This information can be used to deploy and
execute workflow applications on HPC systems in a way that data dependency
constraints are respected. The scientific workflow application used in the paper
is Montage, which is a real astronomy application that generates image mosaics
of the sky [9]. A Montage workflow consists of collections of tasks (job classes)
with different characteristics, such as task execution time and CPU utilization.
Montage can be characterized as an I/O intensive application where most of the
tasks have low CPU utilization and short runtime (in the order of seconds) as
they mainly spend their execution time on I/O operations to read and write
files. The tasks can be grouped into nine levels, each level corresponding to a
different class of tasks. Figure 1 shows an example of a small Montage workflow
with 22 tasks. In larger versions of Montage, the number of tasks of the first,
second and fifth levels (counting from top to bottom) would increase further.

Problem Description: The problem of task scheduling onto heterogeneous HPC
systems has been extensively studied [2,10–12,14,15], with several works focus-
ing on multicore processors [1,3,8,10,16]. Some of the algorithms focus on opti-
mizing application performance and execution time [10,12], while other works
also consider energy and power optimization [1,8]. As heterogeneous multi-
core processing platforms integrating different types of processing cores are now
used as a promising solution towards achieving different performance and power
goals, there has been research on policies which aim to determine which types
of cores are more appropriate for the scheduling of the applications or their
parts [3,10,13]. For example, power-efficient cores may be used for the execution
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of memory-bound or non-critical jobs while fast cores may be more suitable for
CPU-bound or critical jobs [3,13].

This scheduling problem becomes more complex, as one has to select an
appropriate CPU frequency for each core. Clearly, there is a trade-off between
energy and performance for different configurations. For example, using fast
cores may result in small execution time but increased energy consumption. By
lowering the CPU frequency of the cores, lower energy but longer execution time
may be achieved. Solutions with even lower energy but significantly increased
execution time may also be achieved using slow but power-efficient cores. If we
consider all different configurations it is expected that some of them will result in
sub-optimal solutions; these are solutions which are dominated by other solutions
lying on a Pareto-front of the energy-performance trade-off space. Hence, the aim
of the paper is to suggest approaches to explore the space of the CPU frequency
combinations for the heterogeneous types of cores in order to find solutions with
good performance and energy efficiency close to the pareto front. In contrast
to heuristics-based related work [6], this paper proposes energy and execution
time models to obtain estimations for a wide range of configurations, which
are based on metrics monitored through real measurements from a small set of
configurations. For example, runtime and power characteristics may be available
from historical data and can be sufficient to provide estimations for frequencies
between the extreme cases.

3 Modelling Execution Time and Energy Consumption

The idea in the paper is that given a predefined assignment policy for the map-
ping of the tasks to the cores, the execution of the workflow under different con-
figurations can be modelled using task execution time and energy consumption
estimations. The assignment policy and data dependency constraints between
tasks specify the execution order of the tasks on the cores. Hence, task runtime
estimations for each configuration can be used to specify the time slot required
for the execution of each task. Also, power models can be used to estimate under
different configurations the energy consumed when cores are idle or busy execut-
ing tasks. Based on such estimations, overall execution time and energy required
to run the workflow is estimated.

3.1 Estimation of Execution Time

While frequency scaling may impact job performance, the increase in execution
time is not proportional to the decrease in frequency as non-CPU activity, such as
memory access, is not sensitive to frequency changes. Hence, different jobs may
exhibit different performance slowdown depending on their CPU-boundedness.
Assuming that we know the execution time of each task when the core it is
assigned to operates at the maximum CPU frequency, task runtime estimations
for different frequencies can be computed by:

taskRuntimet,f = (βt · (
fmax

f
− 1) + 1) · taskRuntimet,fmax

, (1)
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where βt, the CPU boundedness of task t, shows the performance sensitivity to
frequency reduction [7]. The parameter βt can be computed for each task based
on measurements at the maximum and minimum operating frequency. In that
way, task runtime estimations can be provided for different CPU frequencies (and
for each type of core) by measuring task performance at the two extreme cases
of operating the core, its maximum and minimum frequency. Then, the start
time and finish time of each task in the schedule for a given assignment can be
estimated recursively (Eqs. 2 and 3) based on the task runtime estimations. The
start time of a task t is estimated as:

startT imet,ft =

{
max∀p∈predt

(finishT imep,fp + comCostp→t), if predt �= ∅
0, otherwise

(2)

where predt includes the predecessors of the task at both the DAG and the
core assigned. When the task has no predecessors at the DAG or the core, the
start time of the task is zero. The communication cost from task p to task t,
comCostp→t, is assumed to be zero, as tasks granularities are significantly larger
than data transfer costs and there is a good interconnect. The finish time of a
task t is estimated as:

finishT imet,ft = startT imet,ft + taskRuntimet,ft . (3)

Overall workflow execution time for a given schedule is the finish time of the
execution of the latest task:

makespan = max
∀t∈w

(finishT imet,ft). (4)

3.2 Estimation of Energy Consumption

The energy consumed during the execution of the workflow may vary between
different execution schedules depending on the operating frequency of each core.
The energy model used in this paper estimates the energy required under differ-
ent frequency configurations taking into account the dynamic energy required
for the execution of the tasks and the static energy of the system. Energy is the
product of power and time. As frequency scaling does not affect non-CPU activ-
ity, power consumption at CPU (A7/A15 cluster) is modelled for the different
frequency configurations, while power in the other system components, such as
memory and GPU, is considered to be fixed, as it does not vary significantly
between different frequency configurations. Note that CPU power consumption
can be measured at the level of cluster and not individually per core. Power
consumption at the A7/A15 cluster when running the task at a single core is
modelled using a linear power model:

Pft,t = Pbase,t + Pdif,t · (
ft

fmin
− 1), (5)
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where Pbase,t and Pdif,t are parameters linearly fitted for each task t based on
power measurements for the extreme cases of operating the cluster at minimum
and maximum frequency supported. All the cores of the cluster operate at the
same frequency level ft. Power consumption while the cluster is not utilized (idle
power) is also modelled for the different frequency configurations using a similar
model:

Pidleft
= Pbaseidle + Pdifidle · (

ft
fmin

− 1), (6)

where Pbaseidle and Pdifidle are parameters fitted based on the power measure-
ments at the minimum and maximum frequency supported for each core type
(cluster).

Based on the power models above, the dynamic power required to run each
task t on a core can be estimated by:

Pdynt,ft
= Pft,t − Pidleft

. (7)

Then, overall energy can be computed as:

E =
∑
t∈w

(taskRuntimet,f · Pdynt,f
) + Pfixed · makespan, (8)

where Pfixed includes the idle power of the system (A7 and A15 cluster, memory
and GPU) when the minimum frequency is set to the cores and the memory
power required for the execution of the workflow.

The models described above are validated next and used to estimate overall
workflow execution time and energy consumption.

4 Results

4.1 Methodology and Experimental Setup

Experiments are conducted on an ODROID-XU3 board that contains an eight-
core Samsung Exynos 5422 processor of ARM big.LITTLE architecture with
2 Gbyte LPDDR3 RAM. The processor chip consists of a Cortex-A15 1.6 GHz
quad core CPU and a Cortex-A7 1.4 GHz quad core CPU with a shared 2 MB
and 512 KB L2 cache, respectively. Both CPUs, the Cortex-A15 cluster of four
fast (or Big) cores and the Cortex-A7 cluster of four slow (or Little) cores, can
be used in order to run simultaneously independent tasks of an application. Each
core can be set to operate on a different number of CPU frequencies using the
cpufreq driver. In the experiments, we varied the CPU frequency in the range of
0.8–1.6 GHz with a frequency step of 0.2 GHz for the fast cores and 0.8–1.3 GHz
with a frequency step of 0.1 GHz for the slow cores, resulting in a total of five
and six operating CPU frequency configurations, respectively.

For performance counter events we used perf, a performance monitoring
tool for Linux, to collect various information about workflow execution, such as
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time duration and CPU utilization, and profile the application. Also, in order to
estimate the energy consumed by the application at each configuration, power
measurements are monitored using an energy daemon that reads power mea-
surements at A7 cluster, A15 cluster, memory and GPU separately provided by
INA-231 power sensors on the Hardkernel ODROID system every 0.27 sec. To
do so, the sensors are enabled in advance. Regardless of the number of cores
utilized, CPU power consumption is measured at the cluster level and per-core
power monitoring is not supported. Overall energy consumption incurred dur-
ing workflow execution (we refer to this as actual energy) is computed as the
product of the average power consumption and workflow execution time, each
one measured as above.

Two versions of the Montage workflow are used. The first version consists of
22 tasks and corresponds to the DAG shown in Fig. 1; this will be denoted by
M22. A second version of Montage with 65 tasks has more tasks at levels 1, 2,
and 5 (counting from top to bottom), namely 15, 29, 15; we denote this version
by M65. In order to run a workflow on the platform, a script was written to
manage the execution of the tasks using a statically predefined mapping policy.
The tasks of each level are assigned statically to the CPU cores in a round-robin
fashion, so that independent tasks can be executed in parallel; the mapping
also specifies at what frequency each core runs. When a core is empty (no task
has been assigned to it), the CPU frequency of the core is set to its minimum
operating CPU frequency (0.8 GHz). Otherwise, the CPU frequency is set based
on the predefined assignment policy. In each experiment, unless otherwise stated,
four cores (two Big and two Little cores) from a total of eight available ones
(four Big and four Little cores) are used to run the workflow. The script checks
every t seconds if the execution of any running tasks finishes in order to start
the execution of ready tasks (the successors of the tasks on the cores assuming
that dependency constraints are met), adjusting the CPU frequency of the cores
accordingly. The value of t is set close to the minimum task execution time so
that performance overhead (in terms of both execution time and energy) but also
the delay on triggering ready tasks is minimized. To do so, t is set equal to 0.2
and 0.5 secs for the small (22 tasks) and large (65 tasks) workflow, respectively.
Also, the script runs at an idle core (a core that is not used for the execution of
the workflow tasks) at minimum frequency so that the overhead is minimized.

Finally, we note that, unless otherwise stated, each experiment is repeated
ten times and the average value of each metric is used to express the final results.

4.2 Validation of Task Runtime and Power Models

In this section, the power and task runtime models from Sect. 3 are validated.
Task runtime estimations for homogeneous cores (cores of a single type operat-
ing at the same frequency) are computed using Eq. 1. To do so, each Montage
workflow is executed using four homogeneous cores, alternatively four Big or
four Little cores, for each available CPU frequency (five for Big and six for Lit-
tle, as mentioned in Sect. 4.1) in order to collect information about the CPU
utilization and runtime of the tasks. Parameter βt is modelled as the average
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Fig. 2. Accuracy of task runtime estimation for each of the 22 tasks of M22.

Fig. 3. Accuracy of task runtime estimation for each of the 65 tasks of M65.

CPU utilization for each task at maximum frequency. Also, from the ten different
runs for each experiment, the average runtime of each task is computed using
the five smallest values so that any outliers (runs with poor performance) are not
taken into account. Task runtime estimations are compared with the actual task
runtimes at the different frequencies used. Figures 2 and 3 show the percentage
of estimations with an error, ε, of less than 10, 15 and 20% for Big and Little
cores for the small (M22) and large (M65) workflow, respectively. Large % errors
are mostly related to small duration tasks, with a small impact on the overall
workflow.

Experiments are also conducted to measure the power consumption of the
A7/A15 cluster for different frequency configurations when running each work-
flow sequentially on a single core, as power consumption cannot be measured
independently for each core. The parameters Pbase and Pdif of the power model
in Eq. 5 are fitted based on the power measurements at minimum and maximum
frequency. Figures 4 and 5 show the percentage of power estimations with an
error of less than 10, 15 and 20% at Big/Little cores (A7/A15 cluster) for the
small and large workflow, respectively.

Finally, experiments are performed to profile idle power consumption and fit
the parameters of the model in Eq. 6. For each experiment the CPU frequency of
the Big/Little cores is set to the desired level and the sleep function is used for
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Fig. 4. Accuracy of power estimation for the M22 workflow.

Fig. 5. Accuracy of power estimation for the M65 workflow.

10 sec to compute the average idle power consumption at the selected frequency.
To do so, the energy daemon is triggered before and after the sleep(10) function
to monitor the power measurements at the A7/A15 clusters (Big/Little cores).
The parameters of the model, Pbaseidle and Pdifidle , are fitted based on the power
measurements at the minimum and maximum frequency for each core type. The
results are compared with the actual measurements and the estimation error in
idle power is less than 10% for all the frequency configurations used.

4.3 Workflow Energy and Execution Time Estimation

In this set of experiments we use as input parameters task runtime and power
estimations when executing the workflow on homogeneous resources, Big or Lit-
tle cores, in order to estimate overall workflow execution time and energy con-
sumption when executing the workflow onto heterogeneous resources (combining
two Big and two Little cores with different frequencies), based on the models
in Sect. 4.2. These estimations are then compared with actual measurements.
Delays that often happen in real environments, such as system overhead and job
submission delays, are also incorporated. As mentioned in Sect. 4.1, the main
script checks every t sec if the execution of any running tasks finishes in order
to start the execution of ready tasks. This may cause delays in the assignment
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Table 1. Overall execution time and energy estimations for the M22 workflow.

Configuration Actual
execution
time (s)

Estimated
execution
time (s)

% error in
execution
time

Actual
energy (J)

Estimated
energy

% error in
energy

L1.3B1.6 28.8 27.48 4.57 37.95 35.47 6.54

L1.3B1.4 29.5 28.56 3.19 35.11 33.01 6.00

L1.3B1.2 31.1 30.18 2.95 34.37 31.89 7.21

L1.3B1.0 33.6 33.97 1.11 32.33 30.88 4.48

L1.3B0.8 39.5 39.66 0.40 33.8 29.99 11.27

L1.2B1.6 29.2 26.63 8.81 38.44 34.27 10.84

L1.2B1.4 30 28.35 5.50 35.16 33.28 5.35

L1.2B1.2 31.9 30.50 4.38 33.98 31.46 7.40

L1.2B1.0 34.2 33.96 0.70 32.54 30.78 5.41

L1.2B0.8 39.7 38.46 3.13 32.16 29.11 9.49

L1.1B1.6 30.1 26.36 12.43 37.93 33.64 11.32

L1.1B1.4 31 28.76 7.23 35.22 32.79 6.89

L1.1B1.2 32.3 30.69 4.99 33.5 31.24 6.77

L1.1B1.0 34.7 34.95 0.72 31.48 30.77 2.25

L1.1B0.8 40.3 39.74 1.38 31.88 29.45 7.62

L1.0B1.6 31.1 27.38 11.96 37.86 33.96 10.29

L1.0B1.4 31.8 28.40 10.68 34.69 31.92 7.98

L1.0B1.2 32.9 31.23 5.07 33.53 31.29 6.69

L1.0B1.0 34.8 34.26 1.56 31.32 29.86 4.67

L1.0B0.8 39.9 39.74 0.40 31.09 29.01 6.68

L0.9B1.6 32.7 27.73 15.19 39.36 33.42 15.09

L0.9B1.4 33.3 28.54 14.29 35.35 31.49 10.92

L0.9B1.2 34.3 31.85 7.14 33.64 31.23 7.19

L0.9B1.0 36 35.79 0.60 31.63 30.54 3.44

L0.9B0.8 39.8 39.87 0.18 30.59 28.67 6.28

L0.8B1.6 34.1 30.07 11.81 38.73 34.46 11.04

L0.8B1.4 34.9 30.48 12.66 35.47 32.26 9.05

L0.8B1.2 36.1 31.98 11.42 33.83 30.81 8.91

L0.8B1.0 36.8 35.64 3.16 31.29 29.50 5.73

L0.8B0.8 40.7 40.93 0.57 30.43 28.75 5.51

of ready tasks. In order to account for such submission delays and the overhead
imposed by the script, a random delay between [0,t] is considered at the runtime
estimated for each task. Also, an additional delay of about 1 sec is observed
for the large workflow between the execution of subsequent tasks which appears
to be due to the time required for the script to check the data dependency
constraints between the tasks at the end of each time interval. Thus, a delay of
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Table 2. Overall execution time and energy estimations for the M65 workflow.

Configuration Actual
execution
time (s)

Estimated
execution
time (s)

% error in
execution
time

Actual
energy (J)

Estimated
energy

% error in
energy

L1.3B1.6 116 100.13 13.68 128.55 112.11 12.79

L1.3B1.4 118.9 100.61 15.38 121.22 100.13 17.40

L1.3B1.2 122.5 104.71 14.52 114.08 95.62 16.19

L1.3B1.0 127.9 108.00 15.56 108.38 91.36 15.71

L1.3B0.8 135.2 113.07 16.37 103.36 89.04 13.86

L1.2B1.6 121.3 101.96 15.95 130.02 110.56 14.96

L1.2B1.4 124 103.14 16.83 118.62 99.50 16.12

L1.2B1.2 128.9 106.34 17.50 116.95 94.87 18.88

L1.2B1.0 132.2 110.93 16.09 107.65 91.14 15.34

L1.2B0.8 137.7 116.00 15.76 103.81 88.75 14.51

L1.1B1.6 108.1 103.77 4.01 110.12 108.56 1.42

L1.1B1.4 110.3 106.34 3.59 102.84 99.12 3.62

L1.1B1.2 113.4 107.45 5.25 96.91 93.47 3.55

L1.1B1.0 118.6 112.14 5.45 98.3 89.50 8.95

L1.1B0.8 123.9 118.31 4.51 93.94 88.22 6.09

L1.0B1.6 111.8 105.36 5.76 115.37 108.49 5.96

L1.0B1.4 115.2 107.34 6.82 107.53 98.31 8.58

L1.0B1.2 117.5 109.74 6.60 104.46 93.33 10.65

L1.0B1.0 121.8 114.33 6.13 98.94 88.90 10.15

L1.0B0.8 129.1 118.80 7.98 94.1 86.98 7.57

L0.9B1.6 116.3 111.81 3.86 116.45 109.73 5.77

L0.9B1.4 119.9 114.48 4.52 109.47 100.44 8.25

L0.9B1.2 123 118.19 3.91 103.04 95.93 6.90

L0.9B1.0 125.6 121.78 3.04 100.14 91.25 8.88

L0.9B0.8 133.6 125.85 5.80 95.14 88.90 6.56

L0.8B1.6 122.1 115.25 5.61 120.05 110.71 7.78

L0.8B1.4 118.26 117.93 0.28 98.35 100.43 2.12

L0.8B1.2 128.4 120.53 6.13 105.06 95.37 9.22

L0.8B1.0 132.6 124.63 6.01 99.18 91.53 7.72

L0.8B0.8 138.7 130.50 5.91 94.55 89.66 5.17

19 sec is added to the estimated workflow execution time for the large workflow.
Finally, an extra amount of 0.036 W and 0.05 W for memory power, Pmemdyn

in Eq. 8, is considered for each configuration, for the small and large workflow
respectively, as average memory power did not vary significantly between the
different configuration runs.
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Tables 1 and 2 compare actual measurements with estimated values for each
of the two workflows, M22 and M65, for configurations of two Little (L) and two
Big (B) cores at different frequencies (indicated by the number following L or
B in the first column of the tables). In 38 of the 60 cases, the error for both
execution time and energy consumption is less than 10%, with larger errors
mostly related to extreme frequency choices. Across all 60 cases the average
error is less than 8.63% for time and less than 9.69% for energy. This validates
the main hypothesis: power and performance measurements at the minimum and
maximum available CPU frequencies of the cores are sufficient to model energy
and execution time with a reasonable precision for a wide range of configurations.
Our models can be used for the appropriate selection of cores for heterogeneous
platforms and the evaluation of different scheduling policies.

5 Conclusion

This work considered the problem of modelling and evaluating execution time
and power/energy consumption of asymmetric multicore systems, using as a case
study the execution of the Montage scientific workflow on an asymmetric multi-
core processor of ARM big.LITTLE architecture. The approach described pro-
vides energy and execution time estimations for a wide range of CPU frequency
configurations based on metrics monitored at a smaller set. Our approach allows
users to select core and frequency configurations that achieve different trade-offs
between execution time and energy consumption. Future work could investigate
more elaborate modelling of system overheads to improve the accuracy of the
estimations and can use such models to assess different scheduling policies.
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Abstract. Nowadays, numerous supercomputers comprise GPUs due
to promising high performance and memory bandwidth at low power
consumption. With GPUs attached to a host system, applications could
improve their runtime by utilizing both devices. However, this comes
at a cost of increased development effort and system power consump-
tion. In this paper, we compare the total cost of ownership (TCO) and
productivity of different operational concepts of GPU systems in HPC
centers covering various (heterogeneous) program execution models and
CPU-GPU setups. Our investigations include runtime, power consump-
tion, development effort and hardware purchase costs and are exemplified
with two application case studies.

Keywords: TCO · Productivity · Multi-GPU · Operation
Procurement

1 Introduction

Over the last decade, the popularity of GPU-based supercomputers has increased
due to their promising performance per watt ratio. Thus, nowadays, HPC centers
often include GPU-based systems into their considerations for new hardware
acquisitions. However, in tendering and procurement processes, HPC centers face
the challenge to make an informed decision across available operational concepts
of compute nodes with attached GPUs (here called GPU nodes). Operational
concepts can vary in system configuration, i. e., number of CPU sockets and
GPUs within a compute node, and the kind of GPU resource allocation.

The different operational concepts for GPU nodes are also apparent in the
Top500 [21]: Titan (#3 system) deploys per GPU node one NVIDIA Kepler
GPU attached to an AMD Opteron CPU that consists of two NUMA nodes [16].
Tsubame 2.5 (#40 system) employs three NVIDIA Kepler GPUs per (up to) two-
socket Intel Westmere CPU in their GPU nodes. At RWTH Aachen University,
the IT Center provides GPU nodes with either two NVIDIA Kepler or two Pascal
GPUs attached to two-socket Intel CPUs. On all these HPC clusters, batch jobs
are (currently) scheduled exclusively per GPU node [15,20]. However, from our
experiences, users often run applications that are only capable of using a single
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GPU per node or do not efficiently run on more than one GPU per node. Other
users only exploit the node’s GPUs and leave the CPUs idling. One main reason
for that is that they cannot or do not want to invest additional effort to leverage
all GPUs and CPU cores within one node. Thus, from an HPC center perspective,
operational concepts that consider single-GPU and multi-GPU nodes must be
compared with respect to their total costs and obtained productivity. In the
multi-GPU node configuration, the capabilities of GPU management in the job
scheduler or virtualization possibilities can further play an important role.

In this paper, we compare different operational setups of GPU nodes with
various program execution models in the context of our university HPC center.
For instance, a GPU node comprising one GPU and one CPU socket executes
either GPU-only or GPU-CPU hybrid programs; a GPU node with two GPUs
and two CPU sockets may additionally run two independent program instances.
We run a full productivity study including the system’s total cost of ownership
(TCO) with hardware costs, energy costs, and development costs for the paral-
lelization of the applications and for further tuning to enable runs on multiple
GPUs within a node. In detail, we investigate the productivity of a Conjugate
Gradient (CG) solver and of a bio-medical real-world application on Intel Sandy
Bridge and Broadwell servers combined with NVIDIA Kepler or Pascal GPUs.

The rest of the paper is structured as follow: Sect. 2 covers related work. In
Sect. 3, we give an overview on the TCO model, derived productivity measure
and corresponding assumptions and quantifications. In Sect. 4, we introduce the
configurations representing our operational concepts of the GPU nodes. The par-
allelization of the CG solver and bio-medical application is described in Sect. 5.
We present our results answering typical questions for GPU node operation in
Sect. 6. Finally, we conclude with a recommendation for procurement in Sect. 7.

2 Related Work

While performance and power consumption of GPUs have been widely investi-
gated in research, operational concepts of GPUs with respect to total costs and
productivity have not been studied so far (to the best of our knowledge). Several
works cover GPU resource management on the level of the operating system or
job scheduler. For example, in [12], a CUDA wrapper library has been manually
implemented to override CUDA device management calls enabling more than
one user per GPU node with the given resource management constraints of the
batch scheduler. Another solution for resource management is based on virtual-
ization of GPUs that has been examined in numerous works. GViM [9] is based
on Xen virtual machines. For decoupling GPUs and CPUs in resource alloca-
tion, the SLURM batch scheduler was extended with a new GPU device type in
[11]. Basis for this remote GPU virtualization is rCUDA [17] that is also used
in a runtime evaluation of different scenarios sharing single GPUs or accessing
them remotely in another compute node [19]. While we focus on simple resource
management strategies, more complex ones could be added later to our model.

TCO and productivity have been mainly studied in the context of the
DARPA HPCS program [5] where most works have been published in a special



454 F. P. Schneider et al.

issue journal [6] and cover (mathematical) models of productivity. These works
only scarcely present quantifications of TCO parameters and do not apply their
models to operational concepts of GPU nodes. In our previous works [24,25],
we showed applicability of our TCO and productivity models to real-world
HPC setups and compared costs per program run of real-world applications for
(a single) GPU setup, CPU setup and Xeon Phi setup including development
efforts [24].

The CG method [10] has been widely studied. A first multi-GPU imple-
mentation is given in [3], which still involved a workaround for double-precision
calculations. Later multi-GPU implementations focus, e. g., on preconditioning
[1], on automatic selection of the fastest of several kernels for the matrix-vector
multiplication [4], or on improving the performance by reordering the matrix
blocks [22]. A performance study of several kernels including CG with hybrid
MPI-CUDA and MPI-OpenMP/CUDA computations is given in [14]. In [13], a
heterogeneous implementation of a finite element method involving a CG algo-
rithm on CPUs and GPU is analyzed aiming at a workload distribution that
gives optimal performance and energy efficiency. However, the authors only use
a single GPU and measure power using internal hardware counters instead of
an external power meter. The CG algorithm newly developed in this work sup-
ports heterogeneous computations involving several CPU sockets and up to two
GPUs. This implementation is highly tuned for our test systems and the struc-
ture of the used matrix, especially with respect to data transfers. Additionally,
a reimplementation allowed us to track the development effort over time.

An algorithm for the bio-medical application and a shared-memory paral-
lelization using OpenMP was developed in [2]. It was further tuned and ported
with OpenCL and OpenACC to NVIDIA Fermi GPUs [26] and with OpenMP to
the Intel Xeon Phi [18] in our previous works. In [24], the application’s OpenMP
and OpenACC implementations were compared with respect to TCO. However,
the analyzed OpenACC implementation only utilized a single GPU and, thus,
did not cover different operational GPU concepts. For our purposes, we devel-
oped a CUDA implementation while tracking development efforts. We tuned
the code for the (newer) hardware supporting multi-GPU and heterogeneous
computations using both the CPU as well as GPU architectures.

3 TCO and Productivity

For the comparison of different operational concepts of GPU nodes, we follow
an integral approach from an HPC center perspective that is based on total
ownership costs and productivity. These models are straightforward and fulfill
all real-world procurement needs.

3.1 Model

Total costs of ownership represent the costs to acquire, operate and maintain
HPC systems. Here, we follow the TCO model that we have created in [24,25].
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Basically, we distinguish between one-time costs Cot and costs per anno Cpa

that depend on the number of compute nodes n and the system lifetime τ (e.g.,
5 years) as shown in (1). One-time costs comprise costs for hardware acquisition,
building, infrastructure, operating system (OS) and environment installation,
and development effort needed to parallelize an application for the targeted HPC
system and configuration. Annual costs cover maintenance costs for hardware,
OS, environment and the application, as well as, energy costs and compiler/
software costs. To pay for these costs, HPC centers and institutes usually rely
on federal, state and university funding that provide a fixed investment I so that
an upper bound for total costs is given (see (2)). Using (2) and doing the math,
we can compute the number of nodes n that can be purchased for a given fixed
investment I and given system lifetime τ .

TCO(n, τ) = Cot(n) + Cpa(n) · τ (1)
TCO(n, τ) ≤ I (2)

To make an informed decision in a procurement, we do not only have to
consider TCO but further need to account for the benefit that is gained by
employing the HPC system. This can be done using a productivity metric that
is economically the ratio of unit of outputs to unit of inputs. We use the pro-
ductivity metric that we defined in [25], i. e., we take as value of an HPC system
the number of application runs r(n, τ) that can be executed over the system’s
lifetime. Overall, productivity Ψ can then be expressed as:

Ψ(n, τ) =
value
cost

=
r(n, τ)

TCO(n, τ)
with r(n, τ) =

α · τ

t(n)
(3)

where t(n) represents the application’s runtime and α the system availability
that accounts for downtimes or maintenance periods. While, formally, the runs
of all applications executed on the HPC system should be summed up, we take a
simplified approach here: We assume that only a single application is running for
the whole system lifetime. Furthermore, we ignore any benefits gained through
distributed large-scale runs, since we focus on the differences of operational con-
cepts of GPU nodes. In this context, we investigate applications that run on a
single node, but can be executed simultaneously similar to a parameter study.

3.2 Quantifications

For the application of the introduced TCO and productivity model to a real-
world HPC setup, we make the following assumptions and quantifications based
on our experiences from cluster procurement and operation at the IT Center of
RWTH Aachen University which are also described in detail in [24].

Regarding the one-time costs, we take hardware list prices from our HPC ven-
dors in 2013 and 2017. Building costs get amortized over 25 years and are, thus,
referenced as annual costs here. Development costs are based on the effort spent
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for parallelizing and tuning the applications under investigation of a single expe-
rienced GPU developer so that effects on effort of varying programming skills
are reduced. The corresponding salary of a full-time equivalent is derived from
the funding guidelines of the German Science Foundation [8] and the European
Commission’s CORDIS [7]. Since our system administrations are experienced in
running GPU clusters and have established an environment that can be easily
rolled out to all nodes, we do not account for any additional environment costs.
However, an implementation of flexible resource management into our LSF job
scheduler is assumed to cost one administrator two person-days.

For the annual costs, we assume administrative costs of 83 ¤ per compute
node. We express the annual building costs with respect to the maximum power
consumption of the given node configuration since the electrical supply is the
limiting factor for housing machinery in the building. For the energy costs, we
take 0.15 ¤/kWh with an estimated PUE of 1.5 in 2013. Furthermore, we divide
both applications into a serial and parallel part. The former is not measured
explicitly but assumed to have a fixed runtime with a power consumption corre-
sponding to one fully-loaded core and the rest of the system idling. The parallel
part corresponds to the actual work of the algorithm which is parallelized accross
the devices. The runtime and power consumption are measured explicitly. As our
systems have each two separate power supplies, the power consumption of both
was measured on separate channels and summed up to obtain the final values.
If the hardware setup contains less than two GPUs or CPU sockets, their idle
power consumption is subtracted from the measured values.

Finally, we assume a fixed investment of 250 000 ¤ from which we compute
the number of nodes n. We set the system lifetime τ to 5 years and the system
usage rate to 80 %.

4 GPU-CPU Configurations

For the comparison of TCO and productivity across different operational con-
cepts of GPU nodes, we take two systems from the RWTH’s compute cluster as
basis from which we derive various GPU-CPU configurations, i. e., the combi-
nations of different amounts of CPU sockets and GPU devices together with a
suitable program execution model:

Kepler: 2 Intel Xeon E5-2680 CPUs @ 2.7 GHz (Sandy Bridge) with 2×8 cores,
2 NVIDIA K20Xm Kepler GPUs

Pascal: 2 Intel Xeon E5-2650 v4 CPUs @ 2.2 GHz (Broadwell) with 2×12 cores,
2 NVIDIA P100 Pascal GPUs.

As notation for the different GPU-CPU configurations, we use tuples of the
form (ng, nc) ∈ {0, 1, 2}2 with ng denoting the number of involved GPUs and nc

the number of involved CPU sockets. This kind of tuple indicates that an exe-
cuted program completely uses the given resources. The tuple ( 1,1

1,1 ) specifies the
configuration with two parallel executions of the same application on 1 GPU and
1 CPU each. This configuration represents a job scheduler running two jobs in
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Table 1. List of considered configurations

Config. Description Config. Description

(0,2) 2 CPU sockets (2,0/1) 2 GPUs, 1 idling CPU socket

(0/2,2) 2 CPU sockets, 2 idling GPUs (2,0/2) 2 GPUs, 2 idling CPU sockets

(1,0/1) 1 GPU, 1 idling CPU socket (2,2) 2 GPUs + 2 CPU sockets

(1,1) 1 GPU + 1 CPU socket ( 1,1
1,1

) 2 · (1 GPU + 1 CPU socket)

(1,2) 1 GPU + 2 CPU sockets

parallel on a single node, each given one CPU socket and one GPU. The notation
n′/n indicates that n GPUs or CPU sockets are available but only n′ are used for
program execution, i. e., n−n′ are idling. The purpose of these configurations is
solely for comparison if GPUs are not used at all. All investigated configurations
are summarized in Table 1. In the following, the term device is used as wildcard
for either one GPU or all CPU sockets involved in program execution.

5 Applications

The CG and bio-medical application parallelized with OpenMP and CUDA are
used to evaluate the different configurations. While we highly tuned these appli-
cations for the Kepler system, we have not yet focused on the Pascal architecture
which is left for future work. However, we optimized the ratios for splitting the
computations across the different devices. As common ground of both applica-
tions, we use a parallel first touch on the host to ensure data locality in the main
memory of our cc-NUMA systems and pinned memory to increase the through-
put of memory transfers between host and GPU memory. We apply asynchronous
memory transfers and computations (where applicable) by using streams and
events. Additionally, we hide latency of enqueuing kernels and memory copies
on the GPUs by using separate host threads for the enqueuing operations.

5.1 Conjugate Gradient (CG)

First, we implement a double-precision CG algorithm for solving a linear equa-
tion system A ·x = b [10]. We use the sparse symmetric positive definite Serena1

matrix with n ≈ 1.4 × 106 rows, nnz ≈ 64.1 × 106 non-zeros, and a maximum
of 249 non-zeros per row. To achieve the best data locality and performance on
both device types, the matrix is stored in the compressed row storage format on
the host with a memory footprint of roughly 775 MB, and in the ELLPACK-R
format [23] on the GPUs (yielding 4.19 GB). The vectors have a size of ∼90MB.

On the host side, we use a task-driven approach for the matrix-vector mul-
tiplication with each task computing chunks of equal size. On the GPUs, we
store the multiplication vector in texture memory to reduce the latency of the
1 http://www.cise.ufl.edu/research/sparse/matrices/Janna/Serena.html.

http://www.cise.ufl.edu/research/sparse/matrices/Janna/Serena.html
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unstructured accesses to this vector. Additionally, we use a Jacobi preconditioner
to reduce the number of iterations in the algorithm until convergence. All opera-
tions of the algorithm are split row-wise across the available devices into disjoint
chunks. Each chunk c contains the row indices Rc such that

⋃
Rc = {1, . . . , n}.

We exploit the matrix structure having most non-zeros close to the diagonal
by minimizing vector data transfers for the matrix vector multiplication: At
the beginning of the algorithm, the minimum and maximum column indices
tmin
c , tmax

c of non-zeros for each chunk c of the matrix are computed. Formally,

tλc = λ({j ∈ {1, . . . , n} | Ai,j �= 0, i ∈ Rc}) for λ ∈ {min,max}
Tc = {tmin

c , tmin
c + 1, . . . , tmax

c − 1, tmax
c } \ Rc

where Tc defines the set of indices of the vector that needs to be transferred to
the device responsible for chunk c.

As our Kepler system does not support direct memory transfers between
GPUs, we increase memory throughput by minimizing the transferred vector
data between GPU and CPU so that additional main memory overheads are
avoided. Thus, for hybrid multi-GPU computations, the first chunk refers to the
first GPU, the middle one to the CPU, and the last chunk to the second GPU.
Our Pascal system supports NVlink between GPUs and, thus, allows fast inter-
GPU memory transfers. Therefore, in future, we will reorder the distribution for
that architecture to take advantage of NVlink.

The analytical determination of the chunk sizes is challenging, as they are
highly affected by the structure of the matrix and we hide some of the latency for
copying the vector by doing it asynchronously to other computations. Thus, to
obtain optimal work chunk distribution across devices, we benchmarked different
values by running the algorithm with a small number of iterations.

The serial part of this algorithm includes reading the matrix file, conversion of
matrix formats, allocation and initialization of vectors, and correctness checking
of results. The time for these operations is assumed to have a fixed value of 20 s.

5.2 Neuromagnetic Inverse Problem (NINA)

The second application solves a real-world problem from the field of bio-medicine,
namely the neuromagnetic inverse problem (NINA). The algorithm was origi-
nally implemented in MATLAB with the three most time-consuming parts com-
puted in C, i. e., an objective function, and its first- and second-order derivatives.
For simplicity, we assume a constant runtime of 46 s for the (serial) MATLAB
part and imitate the original algorithmic optimization process implemented in
MATLAB by executing all kernels one after the other for 1000 times. These
three parts involve matrix vector operations and reductions with a mostly dense
matrix of dimension 128×512 000. This special matrix form hinders the effective
usage of BLAS libraries, so that we had to manually optimize the algorithm.

Our best-effort performance was obtained with one block per row for the
dense matrix vector multiplication. Additionally, we avoid delays by immediately
starting the reduction kernels (per row) out of the multiplication kernels with
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dynamic parallelism. To coordinate the GPU computations without interfering
with the other CPU computations, we use a dedicated CPU thread.

All operations are split row-wise across the different devices. As the matrix
is stored in a dense fashion, the computation of every row takes the same time
per device type, resulting in an equal number of rows for each GPU. As for CG,
we used benchmarking to determine the number of rows computed by the CPU.

6 Productivity Results

We interpret our results with respect to typical questions for the operation of
GPU nodes. Results of our runtime and power measurements are shown in Fig. 1
and for the productivity and programming effort in Fig. 2. While runtimes gen-
erally improved when going from Kepler to the Pascal system (without further
tuning), heterogeneous computations involving more than one device do not per-
form well on Pascal. We assume that neglecting available memory bandwidth
given by NVlink is one reason for that. Remember that presented results refer
to 250 000 ¤ of investment. Here, a potential budget increase does not cause any
changes (saturation). If we decrease the budget, the results only change slightly.

Fig. 1. Parallel runtime and power consumption: CG (left), NINA (right)

Fig. 2. Programming effort and productivity: CG (left), NINA (right)
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Fig. 3. Detailed comparison of configurations

6.1 Cost of Idling Hardware

An interesting question for HPC centers procuring or operating GPU nodes is
the cost or penalty if not all available devices are fully used by developers. For
this investigation, we take as reference the hardware setup containing 2 GPUs
and 2 CPU sockets – which is the default one at RWTH’s compute cluster – and
the execution concept using all of them, i. e., the configuration (2,2).

First, we compare the default configuration to (0/2,2) (cf. Fig. 3a). The idling
GPUs decrease the performance significantly (up to 500 % with NINA on the
Pascal system) but only reduce the power consumption by 10 % to 30 %. Hence,
overall productivity is decreased with 2 idling GPUs by ∼15% with CG and
∼40% with NINA. With the same execution model exploiting only CPUs, but
without any available GPUs in that node (configuration (0,2)), the productivity
obviously increases again compared to (0/2,2) by about 3

4 on Kepler and even
∼230% on Pascal (which is mainly due to omitting the GPU purchase costs).

On the other hand, if both GPUs are used and the CPU sockets are idling
(configuration (2,0/2)) (cf. Fig. 3b), the productivity is hardly affected (changes
are below 3 %). This is because the runtime increases by at most one fourth,
which is compensated by a lower power consumption by about the same factor.

6.2 Multiple (Heterogeneous) Devices

Next, we examine whether extra effort invested into enabling heterogeneous com-
puting with more than one device pays off by additional productivity.

The sheer benefit of exploiting 2 GPUs per node can be investigated by
comparison to the corresponding single-GPU setup – both with idling CPUs, i. e.,



Operational Concepts of GPU Systems in HPC Centers 461

(1,0/1) vs. (2,0/1) (cf. Fig. 3c). Surprisingly, we observe a productivity decrease
with 2 GPUs by ∼20% on the Kepler system, and even 40 % on Pascal. Detailed
examination shows that the (low) improvement in runtime (∼35% on Kepler
and ∼10% on Pascal) cannot compensate for the increase in power consumption
(around one fourth), programming effort, and purchase costs. While we assume
to get better runtime on Pascal when leveraging NVlink, we will not be able to
increase the runtime sufficiently to improve productivity due to the high serial
runtime: e. g., if the assumption holds that 2 GPUs could halve the parallel
runtime, the productivity decrease is still ∼15% on Kepler and ∼35% on Pascal.

As seen in the previous subsection, the productivity does not change much
when adding 2 fully-utilized CPU sockets to 2 GPUs. A similar effect is evi-
dent when adding one fully-utilized CPU socket to one GPU, i. e., (1,0/1) vs.
(1,1) (cf. Fig. 3d): The productivity slightly increases on Kepler (by ∼5%) and
remains about the same on Pascal. To evaluate the worth of buying a two-socket
(single-GPU) node vs. a one-socket (single-GPU) node, we compare the previous
configuration (1,1) to (1,2) where both sockets are utilized (cf. Fig. 3e). Here, we
see a productivity decrease by 13 % to 23 %, which is mainly due to the small
runtime improvement (1 % to 4 %) compared to the higher power consumption
(around 30 % on Kepler and 20 % on Pascal) and higher purchase cost.

6.3 Sharing GPU Nodes

The previous results lead us to the question whether we can increase produc-
tivity by sharing a single node containing 2 GPUs and 2 CPU sockets across
multiple (simultaneous) program executions using disjoint devices (potentially)
by multiple users. One solution for sharing nodes could be implemented based
on the job scheduler’s resource management capabilities for GPUs. We imitate
this solution by running 2 programs in parallel on one node, each using one CPU
socket and one GPU, i. e., configuration (1,1

1,1 ), and additionally assume further
one-time costs for the administrative adoption of the batch scheduler.

On Kepler, this configuration delivers the highest productivity, as the runtime
is about the same as for configuration (1,1), – which is the configuration with
the second highest productivity – but with two simultaneous program executions
(cf. Fig. 3f). In return, the power consumption increases by only ∼70%, so the
productivity increases by ∼20%. On Pascal, the configuration (0,2) achieves the
highest productivity, i. e., buying and utilizing GPUs at all seem not beneficial
under the reservation that the codes have not been tuned for Pascal GPUs
yet. However, the productivity of the sharing approach (1,1

1,1 ) is only 10 % lower
with NINA, whereas about 1/3 with CG (cf. Fig. 3g). The reason is the small
runtime improvement (∼80% with NINA, ∼60% with CG) compared to the
much higher power consumption (85 % or 55 %, respectively) and purchase costs.
With further tuning for Pascal, we can probably reach a higher productivity with
the shared approach. Note that effort needed for the adoption of the job scheduler
is assumed to be low. More complex virtualization approaches will yield much
higher one-time costs. Nevertheless, on Kepler, the sharing approach would still
pay off if the administrative effort theoretically increased up to 130 person-days.
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7 Conclusion

Concluding our productivity results, we give recommendations for hardware pro-
curement choices and GPU system operations for HPC clusters. For this, we
assume that at least one GPU per node should be available and that all clus-
ter nodes have the same hardware setup. We base our suggestions on the case
studies investigated, i. e., a CG solver and the real-world NINA application.

Since productivity decreases when using heterogeneous hardware setups, we
recommend to buy only minimal nodes, containing only one GPU and one CPU
socket. Furthermore, productivity is hardly affected by utilizing the CPU instead
of letting it idle. Hence, it could be up to the programmer, to decide if he utilizes
the CPU or not. Another approach can be taken by purchasing nodes with two
GPUs and two CPU sockets and allow two programs from different users to
exploit distinct devices on the node (e.g., by job scheduler resource management).
In this way, even higher productivity results can be achieved as long as the
additional administrative one-time effort to implement this is not prevailing.

In future, we will evaluate the productivity after tuning the applications for
the Pascal architecture. Early results show a performance improvement of ∼19%
for CG utilizing NVlink in configuration (2, 0). Additionally, we will analyze more
applications, e. g., with lower serial fractions to achieve higher total speedups.
Furthermore, we plan to lift the analysis to applications running across multiple
nodes, i. e., with MPI+OpenMP+CUDA.
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Abstract. Large graphs are widely used in real world graph analytics.
Memory available in a single machine is usually inadequate to process these
graphs. A good solution is to use a distributed environment. Typical pro-
gramming styles used in existing distributed environment frameworks are
different from imperative programming and difficult for programmers to
adapt. Moreover, some graph algorithms having a high degree of paral-
lelism ideally run on an accelerator cluster. Error prone and lower level
programming methods (memory and thread management) available for
such systems repel programmers from using such architectures. Existing
frameworks do not deal with the accelerator clusters.

We propose a framework which addresses the previously stated deficien-
cies. Our framework automatically generates implementations of graph
algorithms for distributed environments from the intuitive shared mem-
ory based code written in a high-level Domain Specific Language (DSL),
Falcon. The framework analyses the intermediate representation, applies
a set of optimizations and then generates Giraph code for a CPU clus-
ter and MPI+OpenCL code for a GPU cluster. Experimental evaluations
show efficiency and scalability of our framework.

Keywords: Distributed architecture · Accelerator · Cross-platform
Graph processing · DSL · Falcon

1 Introduction

Large scale graphs are generated and analyzed in various domains such as social
networks, road networks, systems biology, and web graphs. Graph processing on
a single machine becomes inefficient when the graph size exceeds the machine
memory (due to high disk access latency). Graph processing is also inefficient
because of irregular behaviour of graph algorithms. On the other hand, paral-
lelism exhibited by graph algorithms improves performance [15]. To exploit the
parallelism, modern distributed architectures such as multi-core CPU clusters
and GPU clusters, are used.

In recent times, many frameworks for graph analytics in distributed environ-
ment such as Giraph [1], GraphLab [13], and PowerGraph [7], which target only
c© Springer International Publishing AG, part of Springer Nature 2018
D. B. Heras and L. Bougé (Eds.): Euro-Par 2017 Workshops, LNCS 10659, pp. 465–477, 2018.
https://doi.org/10.1007/978-3-319-75178-8_38

http://orcid.org/0000-0003-3662-5363


466 N. Upadhyay et al.

multi-core CPU cluster, have been proposed. All these frameworks have their
own specific unconventional programming style which is difficult for a program-
mer to comprehend and adopt.

To exploit the high degree of parallelism in graph algorithms, high perfor-
mance compute resources such as GPUs are the most suitable targets. Moreover,
large scale graph processing requires a distributed environment such as GPU
clusters. Lower level APIs such as CUDA and OpenCL with Message Passing
Interface (MPI) for communication among nodes facilitate programming in such
environments. It is inconvenient for an amateur programmer to develop algo-
rithms in such a language. A few challenges are summed up below.

– Thread management: Deciding the total number of threads and thread block
size, and synchronizing threads.

– Memory management: Allocating and deallocating memory for a graph object
and all its vertex and edge properties on GPU, copying a graph object to GPU
from CPU and copying back the results.

– Debugging: Manual thread management and memory management make a
program error prone and difficult to debug.

– Message passing: Deciding which data to communicate and to which nodes,
preparing the data, and sending and receiving the data in appropriate buffers.

– Global variables: Absence of shared memory forces each node to keep a sep-
arate copy of each global variable and synchronize it whenever any node
modifies its copy.

This paper presents a scalable framework which addresses the above discussed
challenges of large scale graph processing in a distributed environment, i.e., CPU
cluster and GPU cluster. The framework uses the front-end of Falcon DSL [18].
The framework traverses the Abstract Syntax Tree (AST) generated by Falcon
[18], applies a set of optimizations and then generates Giraph [1] code for a CPU
cluster and MPI+OpenCL code for a GPU cluster. Since our framework uses the
constructs of Falcon [18], the programmer enjoys conventional, imperative, and
shared memory programming style.

Our key contributions are as follows.

– We provide a multi-target code generator for any vertex-centric algorithm
written in Falcon [18] that caters to CPU and GPU clusters.

– The framework analyses the DSL code and decides the graph object properties
to be communicated, sends the messages, and synchronizes received message
data with local data. Thus, it hides the complexity of message passing from
the programmer.

– The framework applies a set of optimizations in order to minimize memory
occupancy and communication latency.

– Experimental evaluations on CPU and GPU clusters shows scalability and
efficiency of our framework.
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2 Related Work

Green-Marl [9] and its extensions [10,16] target multi-core CPU, NVIDIA GPU
and CPU cluster (Pregel [14]). Galois [12] provides C++ APIs to implement
graph algorithms on a multi-core CPU. LonestarGPU [4] is a CUDA frame-
work for graph algorithms and targets NVIDIA GPU. All of these DSLs and
frameworks are either limited to a single node or do not target GPU cluster.

TOTEM [6] is a graph processing engine which targets hybrid architectures
on a single node. It partitions the graph on multiple GPUs and CPU of a single
node. Medusa [19] is a framework which generates graph algorithms implemen-
tations for multiple GPUs of a single node. Both, Totem and Medusa limit the
graph size to the memory of the single node. Parallel Boost Graph Library [8]
provides implementations of graph algorithms in a distributed environment. But
it does not target GPU clusters.

There are many frameworks for graph processing in distributed environments,
such as Pregel [14], Giraph [1], GraphLab [13], PowerGraph [7], GoFFish [17]
etc. Pregel [14] and Giraph [1] adopt the Bulk Synchronous Parallel (BSP) model
[5] and are scalable. Unlike Pregel [14], GraphLab [13] provides asynchronous
and adaptive computation. It is suitable for graph algorithms where different
parts of graph converge with dissimilar rates. PowerGraph [7] is an extended
version of GraphLab [13]. It is desirable for natural graphs whose degree distri-
bution follows a power law. GoFFish [17] is a sub-graph centric programming
abstraction for distributed clusters. All these frameworks adopt unconventional
programming models and target only CPU clusters. We generated code in Giraph
because it offers high scalability. However, several other frameworks can also be
targeted.

3 Background

3.1 Giraph

Giraph [1] is a scalable, efficient and fault-tolerant open-source implementation
of Google’s Pregel [14]. The collection of JAVA APIs available in Giraph [1] is
useful to a programmer to implement graph algorithms on a Hadoop cluster.
Giraph [1] has the following features.

– Bulk Synchronous Parallel model (BSP) [5] model: Giraph framework is built
on the BSP model.

– Vertex-centric: Giraph algorithms are implemented in the form of compu-
tation over vertices. Algorithmic logic is written in a single local compute
function (BasicCompute.compute()) which runs on every vertex in parallel.
This function gets executed iteratively, and the program terminates when no
communication happens and all vertices become inactive.

However, it poses the following challenges from a programming perspective.
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– Programming in Giraph requires exclusive handling of global variables and
graph object properties. A user must register them through an Aggregator in
the global compute function (MasterCompute.compute()). Afterwards, these
global variables and properties can be accessed and modified from both local
and global functions.

– Since Giraph allows only a single BasicCompute.compute(), managing multi-
functions is a difficult task. A global variable has to be maintained in the
MasterCompute.compute() function. Depending on the value of this variable
apt function is chosen in the local compute function.

– Programmer must explicitly implement message type through Message class
and vertex properties through Vertex class.

1 class RBMC extends BasicCompute{
2 void compute(Vertex v,Message m){
3 int fun call = getAggregatedValue
4 (RBMM.current fun);
5 switch(fun call){
6 case 0: shake1(); break;
7 case 1: shake2(); break;
8 case 2: shake3(); break;
9 }

10 }
11 void shake1(Vertex v,Message m){...}
12 void shake2(Vertex v,Message m){...}

13 void shake3(Vertex v,Message m){...
14 aggregate(RBMM.count,1);
15 ...}
16 }
17 class RBMM extends MasterCompute{
18 String count = "count";
19 String current fun = "current_fun";
20 public void initialize(){
21 register(count);
22 register(current fun);
23 }
24 }

Fig. 1. Giraph random bipartite matching code

Figure 1 shows the partial implementation of random bipartite matching in
Giraph. This algorithm is a three-step handshake algorithm. In the first step,
the left vertex sends a message to the right vertex. In second step, the right
vertex accepts the message from any one of the left vertices randomly, and
sends an acknowledgement. One of the edges is matched in the third step.
Global variable count, which can be modified by any vertex, is registered in
the RBMMasterCompute class. Also, multi-functions call is handled through phase
aggregator. Its value gets modified in MasterCompute.compute() method which
is not shown here. We have also omitted the implementations of Vertex and
Message class, and other methods for brevity.

3.2 Falcon

Falcon [18], a graph DSL, extends C programming language and helps program-
mers to implement graph analysis algorithms intuitively. The front-end of the
Falcon [18] compiler generates an AST. The back-end traverses the AST and
generates OpenMP annotated C code for multi-core CPU and CUDA code for
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NVIDIA GPU. Besides C data types, Falcon [18] has additional data types perti-
nent to graph algorithms such as graph, vertex, edge, set and collection. The user
required to define parallelism explicitly through the parallel construct foreach.

4 Back-End of Our Framework

Our framework adopts the BSP model [5] where the computation of a graph
algorithm occurs in a series of supersteps. Each superstep consists of the three
following steps.

– Computation: Each node runs a computation function parallelly and inde-
pendently.

– Communication: At the end of the computation, nodes communicate with
each other.

– Synchronization: Each node synchronizes its local data with the received data.

Our framework uses the front-end of the Falcon compiler [18]. Front-end of
Falcon parses the DSL code and generates an AST which is input to the back-end
of our framework. Back-end compilation occurs in two phases. In the first phase,
the AST is traversed to get some essential information such as the vertex or edge
property to be communicated and the program location for the communication.
In the second phase, optimizations are applied and efficient code is generated in
Giraph for CPU cluster and MPI+OpenCL for heterogeneous cluster. The DSL
programmer can enable or disable optimizations through command line switches.

Graph Storage and Partitioning for a Heterogeneous Cluster. Gener-
ated code stores the graph in Compressed Sparse Row (CSR) format. CSR for-
mat offers less storage overhead and favors memory coalescing compared to edge
list and adjacency list representations. It keeps two arrays: edges and indices.
edges array stores the destination vertices and weights of outgoing edges of each
vertex. All the outgoing edges of each vertex are stored contiguously. indices
array stores the index of the first outgoing edge (stored in edges array) of each
vertex.

By default, our framework partitions the graph vertex-wise using the METIS
tool [11]. A programmer can also use his/her own partitioning strategies. Each
vertex belongs to a specific cluster node depending on its partition-id. Figure 2
shows graph partitioning on three nodes and graph storage at Node2 in CSR
format. The input graph, which is shared among all nodes of a cluster, is read
in parallel.

Multiple copies of a vertex property are stored in order to keep the vertex’s
property consistent across partitions. One master copy is stored at the node
where the vertex belongs. Other copies (duplicate copies) reside at the nodes
where the vertex is destination vertex of any inter-partition edge. As Fig. 2 sug-
gests, the master copies of vertices v2 and v4 reside on Node2. Node2 also stores
copies of vertices v3 and v5 whose master copies are stored at Node0 and Node1
respectively.
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Fig. 2. Graph and its storage on Node2

4.1 Compilation for a GPU Cluster (MPI+OpenCL Code)

A heterogeneous cluster is composed of multiple nodes where each node can be
any device such as CPU or accelerator, such as GPU, DSP, or FPGA. Usually,
graph algorithms run on general purpose computing devices, i.e., CPU and GPU.

Typically, OpenMP is used to target the multi-core CPU nodes. CUDA is
used to target the NVIDIA GPU nodes. But OpenCL is used to target both
multi-core CPU and GPU devices of any vendor since it is an open, royalty-free,
platform-agnostic and vendor-agnostic standard for programming on heteroge-
neous computation resources. Hence, we decided to generate code in OpenCL
coupled with MPI which is a programming standard for a distributed architec-
ture. Translations of some of the constructs are discussed below.

Parallel Regions: A Falcon programmer explicitly defines parallelism through
the parallel construct foreach. Code enclosed in a foreach loop is translated to
a kernel. The kernel will run in parallel on all local vertices. Since the execution
of kernel comes under the computation step of the BSP model, it runs in parallel
on all the nodes. Figure 3 shows the translation of foreach loop. t is a points
iterator which iterates on all the vertices of the graph. Each vertex corresponds

1 //Falcon code
2 foreach(t In gr.points)
3 t.cc = Y;

1 //Giraph code
2 BasicCompute::compute(vertex){
3 if(getSuperStep==0)
4 vertex.getValue().cc = Y;
5 }

1 //OpenCL code
2 //kernel definition
3 kernel void fun1(....){
4 int t id = get global id(0);
5 cc[t id+vertex offset] = Y;
6 }
7 //kernel call
8 size = gr.no of part vertices;
9 clEnqueueNDRangeKernel(..,&size,..);

Fig. 3. Falcon code and its equivalent generated Giraph and OpenCL code
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to a thread, and all threads execute the loop body in parallel. The code enclosed
in the foreach loop is translated to a kernel fun1. The kernel is called with the
size of total number of vertices (lines 8–9).

Global Property and Variable: In a shared memory architecture, the scope
of global variables and properties associated with a graph runs throughout the
program. But in a distributed architecture, there is no memory which is accessi-
ble from all the nodes of the cluster. Hence, memory is allocated on all the nodes
for all the global variables and properties. Whenever such a variable gets updated
on any node, its value is broadcast to all the other nodes. If the operation applied
on a global variable is MIN, MAX, ADD or MUL, then it can be applied in any order
since these operations are associative and commutative. But, when Assignment
operator is applied on a global variable, it gets written non-deterministically in
any order.

Communication and Synchronization: In order to carry out communication
in a distributed environment, a programmer needs to figure out data, program
location, and source and destination nodes for the communication. Our frame-
work automatically generates code to handle these issues from Falcon code. In
the first phase of compilation, the AST is traversed to find out the required
information for communication.

If any property is modified in a kernel, then that property needs to be com-
municated to the neighbours, and communication happens after the call to the
kernel that modifies the property. Communication occurs between two nodes
only if there is any inter-partition edge between them.

After the communication, received data is synchronized with local data based
on the kind of operation applied on the property in the kernel code. This syn-
chronization code is also generated by our framework.

4.2 Compilation for a CPU Cluster (Giraph Code)

Parallel Region: The code enclosed in a foreach loop is translated to the
BasicCompute.compute() function of Giraph (as shown in Fig. 3). This function
executes conceptually in parallel on all the vertices of graph.

Global Variables and Properties: Giraph offers Aggregators to handle
global variables. Its value can be modified from either BasicCompute.compute()
or MasterCompute.compute() function. MasterCompute.compute() function
gets executed in the beginning of every superstep. Graph properties or global
variables in Falcon are mapped to the Aggregators of Giraph. The first phase of
compilation determines the type of Aggregator based on the type of the oper-
ation applied on global variable or graph object property. Table 1 depicts the
operations and their equivalent Aggregators.
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Table 1. Operations and their corresponding Aggregators

Expression Type of Aggregator

MAX(gr.prop,k,change) MaxAggregator

MIN(gr.prop,k,change) MinAggregator

ADD(gr.prop,k) SumAggregator

MUL(gr.prop,k) ProductAggregator

gr.prop = k OverwriteAggregator

Multi-functions: When multiple functions are called through parallel con-
structs in Falcon, they all are mapped to the same BasicCompute.compute()
function. Our framework assigns numbers to all functions according to their
calling order. Our framework also uses a current fun variable (of type enum)
to keep track of which function is being executed. Since current fun is a
global variable, it is modified through the SumAggregator. The MasterCompute
.compute() function modifies the current fun variable appropriately in the
beginning of every superstep. Subsequently, BasicCompute.compute() function
selects the function based on the value of current fun variable.

Communication and Synchronization: Communication and synchroniza-
tion are managed as stated in the GPU cluster compilation (Sect. 4.1).

5 Optimizations

5.1 Execute Only Active Vertices

Programmers often tend to write simple and unoptimized parallel code for traver-
sal based graph algorithms that underperform and waste resources. However,
better manual or optimized Falcon code can also be written.

In traversal-based graph algorithms, all the vertices do not remain active in
each iteration. In the generated code, active vertices can be tracked and kernel
can be executed only on those vertices. In order to achieve this, the compiler
associates a boolean property is Active with each vertex that stores the status
of the vertex. Initially, all the vertices have their is Active flags set to false
except for the starting point. Whenever a vertex’s property gets updated, the
status of that vertex is modified to active. When the execution of an active
vertex is finished, its status is changed to inactive (false). The execution time
of each iteration gets reduced because the number of active vertices is less than
the total number of vertices. As a result, total execution time of the algorithm
gets reduced significantly.

5.2 Discarding the Weight if Not Required

When a weighted graph is given as input to an algorithm that does not use
the weight of an edge, storing the weight of edges does not serve any purpose.



Large Scale Graph Processing in a Distributed Environment 473

Falcon uses the function getWeight() to access the weight of an edge. While
traversing the AST, our compiler notes whether this function is called anywhere
or not. Subsequently, this information is propagated to the code generator. The
code generator generates code with the graph storage format accordingly and
also alters the READ function appropriately. |V | + 2 ∗ |E| units of memory are
required to store the graph G(V,E) in weighted CSR format while unweighted
CSR format requires only |V | +|E| units of memory. Our compiler optimization
saves |E| units of memory when the algorithm does not use weight of an edge.
Thus larger graph can be accommodated on the given limited amount of mem-
ory. Furthermore, unweighted CSR format stores neighbors contiguously, unlike
weighted CSR, where neighbors are stored alternatively. Thereby, it provides
better cache locality and improves execution time.

5.3 Communicate Selective Data

Vertex’s property has multiple copies as discussed in Sect. 4. One master copy
is stored at the node where the vertex belongs. Other copies reside at the nodes
where the vertex is the destination vertex of any inter-partition edge (referred
here as duplicate copy). Whenever any duplicate copy is updated, that must be
communicated to the master copy in order to preserve consistency. Some algo-
rithms such as Pagerank update the duplicate copy in every iteration. However,
other algorithms such as Single Source Shortest Path (SSSP) or Breadth First
Search (BFS) do not update each duplicate copy in each iteration. Communicat-
ing all duplicate copies in each iteration is costly. Our optimization algorithm
determines the updated duplicate copies and sends out only these. The compiler
creates an extra copy of the property which stores previous value and compares
it with the current value of the property to find out whether it is updated or not.

If an algorithm requires update of almost every duplicate copy in each itera-
tion, then this optimization will not add any value and ends up performing slower
than the unoptimized one (as illustrated in Table 4). Hence, this optimization
has been made optional (through a command line switch).

6 Experimental Evaluations

Our framework generates Giraph code from Falcon code for a CPU cluster.
It generates MPI+OpenCL for a heterogeneous cluster (OpenCL version 1.1).
Table 2 shows the number of lines of code handwritten for Falcon, Giraph and
MPI+OpenCL. Experiments on a GPU cluster have been carried out for five
algorithms: BFS, SSSP, WCC, PR and RBM (Table 2). We used supercomputer
Cray XC40 for experiments of the GPU cluster, where each node is having a
NVIDIA Tesla K40 clocked at 706 MHz, with 2880 cores and 12 GB global mem-
ory. GPU cluster code is compiled with NVCC version 7.5. Experiments on CPU
cluster are done for five algorithms: BFS, SSSP, PR, RBM and K-Core (Table 2).
Our framework can generate code for any vertex-centric algorithm. An algorithm
involving message-pulling can be indirectly supported in Giraph by storing all
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the in-neighbours of vertices. Graph mutation for GPU clusters is not supported
in our framework. CPU cluster used for experiments consists of AMD CPUs,
running Hadoop version 2.6.0. Each AMD CPU is an Opteron 6376 clocked at
1.40 GHz, with 8 cores and 32 GB RAM. K-Core algorithm mutates the graph
structure and our framework for hybrid cluster does not support mutation of the
graph. WCC algorithm is not implemented for CPU cluster because it involves
message pulling, and Giraph does not directly support it.

Table 2. Graph algorithms and their lines of code [2]

Graph algorithm Falcon Giraph MPI+OpenCL

Breadth First Search (BFS) 21 81 499

Single Source Shortest Path (SSSP) 21 81 310

Weakly Connected Components (WCC) 49 - 300

Pagerank (PR) 25 60 263

Random Bipartite Matching (RBM) 45 147 360

K-Core 32 82 -

Table 3. Graph inputs used in experiments

Graph Type No of nodes (in millions) No of edges (in millions)

RD-1 Random 64 256

RD-2 Random 128 512

RM-1 Scale free (R-MAT) 60 300

RM-2 Scale free (R-MAT) 80 400

BP-1 Bipartite 64 256

BP-2 Bipartite 128 512

BP-3 Bipartite 256 1024

Table 3 shows the input graphs used for experiments. Random and R-MAT
graphs have been generated using the GTgraph tool [3]. We synthesized bipartite
graphs using the random function.

Figure 4 shows experimental evaluations on a GPU cluster with two, four
and eight nodes. Time measured here for all the benchmarks includes only the
computation and communication times after distributing the graph to the nodes.
Speedup is shown with respect to two nodes. Figure 5 shows experimental eval-
uations on a CPU cluster with four, six, eight and ten nodes. Speedup is shown
with respect to four nodes. Figures 4 and 5 show scalability of our framework.
The scalability is not linear because with the increase in number of nodes of
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Fig. 4. Speedup over 2 nodes (MPI+OpenCL)

Fig. 5. Speedup over 4 nodes (Giraph)

cluster, the computation time decreases but the communication time increases.
Also, we have compared compiler generated code with manual implementations
of the above mentioned algorithms for both CPU and heterogeneous cluster and
found that they perform similarly.

Table 4 shows the execution time for two implementations of the SSSP and
the PR algorithms, one with communicate-selective-data optimization and the
other without it.
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Table 4. Execution time (in seconds) for generated optimized and unoptimized SSSP
and PR algorithms on 2, 4 and 8 nodes of a GPU cluster

Graph Optimized
SSSP

Unoptimized
SSSP

Optimized
PR

Unoptimized
PR

2 4 8 2 4 8 2 4 8 2 4 8

RD-1 14 11 8 90 57 41 144 105 78 142 95 62

RD-2 29 23 16 164 110 83 296 219 157 292 203 130

RM-1 11 11 9 49 44 35 110 182 109 103 108 78

RM-2 22 17 12 87 64 49 208 176 139 194 158 102

7 Conclusion

We proposed a framework for large scale graph processing on a distributed envi-
ronment. It reuses the front-end of Falcon and generates Giraph implementations
for a CPU cluster and MPI+OpenCL code for a heterogeneous cluster. Empirical
results show scalability and efficiency of our framework.
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Workshop Description

The Fifth Workshop on Large Scale Distributed Virtual Environments (LSDVE 2017)
has been held in Santiago De Compostela, Spain. For the fifth time, this workshop has
been organized in conjunction with the Euro-Par annual series of international con-
ferences. The main aim of the fifth edition of the workshop has been to provide a venue
for researchers to present and discuss important aspects of large scale networked
collaborative applications and of the platforms supporting them.

This year, the main theme of the workshop has been that of distributed networked
application, with particular focus on the several novel applications recently emerged in
this area: social networks, distributed payment systems, connected devices collabora-
tion systems, and many other ones. These applications may greatly benefit from the
support of different kinds of platforms, both cloud and peer to peer. An interesting
technology recently adopted to handle cryptocurrencies (such as bitcoin) is the
block-chain technology, that has now taken the more general role to handle several
distributed applications. Furthermore, the analysis and validation of the huge amount of
content generated by these applications asks for big data analysis and processing
techniques. This workshop aims to provide a venue for researchers to present and
discuss important aspects of large scale networked collaborative applications and of the
platforms supporting them. The definition of these applications requires to afford
several challenges, like the design of user interfaces, coordination protocols, and proper
middle-ware and architectures. The workshop’s aim is to investigate open challenges
for such applications, related to both the applications design and to the definition of
proper supports. Some important challenges are, for instance, adaptation of the classical
block-chain technology to support collaborative applications, protocols design, dis-
tributed consensus algorithms, privacy and security issues.

LSDVE 2017 has been opened by the invited talk “Using Social Media Analysis to
Discover Mobility Patterns in Public Events”, given by Paolo Trunfio, University of
Calabria, Cosenza, Italy. The first session of the workshop has presented papers
regarding new technologies, like blockchains, while the second session social media
applications and system issues.

We wish to thank all who helped to make this fifth edition of the workshop a
success: Paolo Trunfio who accepted our invitation to give a talk, authors submitting
papers, colleagues who refereed the submitted papers and attended the sessions, finally
the Euro-Par 2017 organizers whose invaluable support greatly helped in the organi-
sation of this fifth edition of the workshop.
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Abstract. Software systems for social media analysis provide algo-
rithms and tools for extracting useful knowledge from user-generated
social media data. ParSoDA (Parallel Social Data Analytics) is a Java
library for developing parallel data analysis applications based on the
extraction of useful knowledge from social media data. This library
aims at reducing the programming skills necessary to implement scalable
social data analysis applications. This work describes how the ParSoDA
library has been extended to execute applications on Apache Spark.
Using a cluster of 12 workers, the Spark version of the library reduces
the execution time of two case study applications exploiting social media
data up to 42%, compared to the Hadoop version of the library.

Keywords: Social data analysis · Scalability · Spark
Cloud computing · Parallel library · Big Data

1 Introduction

Every day, huge volumes of data are generated by users of social networks like
Facebook, Twitter, Instagram and Flickr. Social media analysis aims at extract-
ing useful knowledge from this big amount of data [3]. Social media analysis tools
and algorithms have been used for the analysis of collective sentiments [15], for
understanding the behavior of groups of people [5,6] or the dynamics of pub-
lic opinion [2]. The use of parallel and distributed data analysis techniques and
frameworks (e.g. MapReduce [10]) is essential to cope with the size and com-
plexity of social media data. However, it is hard for many users to use such
frameworks, mainly due to the programming skills necessary to implement the
desired data analysis methods on top of them [18].

ParSoDA (Parallel Social Data Analytics) is a Java library for building paral-
lel social media analysis applications, designed for simplifying the programming
task necessary to implement these class of applications on parallel computing
systems. To reach this goal, ParSoDA includes functions that are widely used
for processing and analyzing data gathered from social media for finding dif-
ferent types of information (e.g., user mobility, user sentiments, topics trends).
ParSoDA defines a general framework for a social data analysis application that
includes a number of steps (data acquisition, filtering, mapping, partitioning,
c© Springer International Publishing AG, part of Springer Nature 2018
D. B. Heras and L. Bougé (Eds.): Euro-Par 2017 Workshops, LNCS 10659, pp. 483–495, 2018.
https://doi.org/10.1007/978-3-319-75178-8_39
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reduction, analysis, and visualization), and provides a predefined (but extensi-
ble) set of functions for each step. Thus, an application developed with ParSoDA
is expressed by a concise code that specifies the functions invoked at each step.
The library includes algorithms that are widely used on social media data for
extracting different types of information. In a previous work [4], we presented
the main features of ParSoDA and described how it can be used to execute par-
allel social data analysis on a Cloud system exploiting Apache Hadoop [19]. In
this work we describe how the ParSoDA library has been extended to execute
applications on Apache Spark [22]. Spark is one of the most popular framework
for Big Data processing. Differently from Hadoop, in which intermediate data
are always stored in distributed file systems, Spark stores data in main mem-
ory and processes it repeatedly so as to obtain better performance for some
classes of applications (e.g., iterative machine learning algorithms and queries
on data [20]).

We experimentally evaluated the scalability of the Spark version of ParSoDA
proposed in this paper, compared to the previous Hadoop version of the library
that has been presented in [4]. The experimental evaluation is based on two case
study applications on social media data published in Flickr and Twitter. The
first application aims at discovering sequential patterns from user movements, so
as to find the common routes followed by users. The second application discovers
the frequent sets of places visited by users. The ParSoDA library performance
has been evaluated carrying out the data analysis applications both on a Hadoop
and a Spark cluster deployed on the Microsoft Azure cloud platform. On a cluster
using 12 workers, the Spark version of ParSoDA reduced the execution time up to
42% compared to the Hadoop version of the library.

The remainder of the paper is organized as follows. Section 2 discusses related
work. Section 3 describes the ParSoDA library and the proposed integration with
Spark. Section 4 presents the experimental evaluation of two case studies. Finally,
Sect. 5 concludes the paper.

2 Related Work

Many professionals and researches are working on the design and implementation
of tools and algorithms for extracting useful information from data gathered from
social networks. In most cases the amount of data to be analyzed is so big that
high performance computers, such as many and multi-core systems, Clouds, and
multi-clusters, paired with parallel and distributed algorithms, are used by data
analysts to reduce response time to a reasonable value [3].

Several research activities consider not only data analysis, but also providing
solutions for building social data applications, with the aim of helping scien-
tists to develop the different steps that compose social data mining applications
without the need to implement common operations from scratch.

SOCLE [1] is a framework for expressing and optimizing data preparation in
social applications. It is composed by a general-purpose three-layers architecture,
an algebra, and a language to define operations for data preparation in social
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applications. As an example, SOCLE provides operators to remove all unneces-
sary information from data (data pruning), to add information by using external
sources (data enrichment), to transform data values (data normalization). The
authors examined the use of SOCLE for manipulating social data in two families
of social applications, recommendation and analytics, but no studies have been
performed to assess its scalability, and no details about framework requirements
have been provided.

Cuesta et al. [9] proposed a framework for easing Twitter data extraction
and analysis. In the proposed architecture the tweets, mined by the applica-
tion through the Twitter APIs, are cleaned and then stored in a MongoDB
database [7]. In addition to basic database operations (i.e. selection, projection,
insertion, updating and deletion), the framework can be extended creating more
complex aggregation MapReduce tasks in Python. By default, the framework
provides researchers modules for executing sentiment analysis and generating
reports.

SODATO (SOcial Data Analytics Tool) [12] is an on-line tool for helping
researches on social data. It utilizes the APIs provided by social networks (i.e.,
currently, it supports only Facebook and Twitter) for collecting data; then, it
provides a combination of web as well as console applications that run in batches
for preprocessing and aggregating data for analysis. At the end of the ana-
lytics process, the results can be displayed using the integrated visualization
module. SODATO provides methods for several kinds of analysis, such as senti-
ments analysis, keyword analysis, content performance analysis, social influencer
analysis, etc.

You et al. [21] presented a framework, running on Clouds, for developing
social data analysis applications for smarter cities, especially designed to support
smart mobility. In particular, the framework is composed by five components
(i.e., data collector, data preprocessor, data analyzer, data presenter, and data
storage) that cover the whole data analysis lifecycle. The framework supports
data collection from social networks (e.g., Twitter, Foursquare), by exploiting
their public APIs, and from other Internet sources (e.g. website, blog, files). A
component devoted to data preprocessing provides functions for data cleansing,
filtering and normalization. Afterwards, the data analyzer component provides
needed analysis methods (e.g. K-means, DBScan, and Self-organizing Map) to
make some data analysis.

The main differences between ParSoDA and the systems described above
(but the one by You et al. [21]), is that our system was specifically designed to
build Cloud-based data analytics applications. To this end, it provides scalability
mechanisms based on two of the most popular parallel processing frameworks
(Hadoop and Spark), which are fundamental to provide satisfactory services as
the amount of data to be managed grows.

3 The ParSoDA Library

ParSoDA (Parallel Social Data Analytics) is a Java library that includes algo-
rithms that are widely used to process and analyze data gathered from social
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networks for extracting different kinds of information (e.g., user mobility, user
sentiments, topic trends).

ParSoDA defines a general structure for a social data analysis application
that is formed by the following steps:

– Data acquisition: during this step, it is possible to run multiple crawlers in
parallel; the collected social media items are stored on a distributed file system
(HDFS [17]).

– Data filtering: this step filters the social media items according to a set of
filtering functions.

– Data mapping: this step transforms the information contained in each social
media item by applying a set of map functions.

– Data partitioning: during this step, data is partitioned into shards by a pri-
mary key and then sorted by a secondary key.

– Data reduction: this step aggregates all the data contained in a shard accord-
ing to the provided reduce function.

– Data analysis: this step analyzes data using a given data analysis function to
extract the knowledge of interest.

– Data visualization: at this final step, a visualization function is applied on
the data analysis results to present them in the desired format.

For each of these steps ParSoDA provides a predefined set of functions. Users
are free to extend this set with their own functions. For example, for the data
acquisition step, ParSoDA provides crawling functions for gathering data from
some of the most popular social networks (Twitter and Flickr), while for the data
filtering step, ParSoDA provides functions for filtering geotagged items based on
their position, time of publication, and contained keywords.

Figure 1 presents the reference architectures describing how user applications
based on the ParSoDA library are executed on the Hadoop and Spark frame-
works, which allows implementing parallel and distributed applications with high
level of scalability for several data mining tasks [8,22]. As shown in the figure,
user applications can make use of ParSoDA and other libraries. Applications can
be executed on a Hadoop or a Spark cluster, using YARN as resource manager
and HDFS as distributed file system.

Fig. 1. Reference architecture
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(a) Hadoop execution flow. (b) Spark execution flow.

Fig. 2. Hadoop and Spark execution flows.

Figure 2 provides details on how applications are executed on a Hadoop or a
Spark cluster. The cluster is formed by one or more master nodes, and multiple
slave nodes. Once a user application is submitted to the cluster, its steps are
executed according to their order (i.e., data acquisition, data filtering, etc.).

On a Hadoop cluster (see Fig. 2(a)), some steps are inherently MapReduce-
based, namely: data filtering, data mapping, data partitioning and data reduc-
tion. This means that all the functions used to perform these steps are exe-
cuted within a MapReduce job that runs on a set of slave nodes. Specifically:
the data filtering and data mapping steps are wrapped within Hadoop Map
tasks; the data partitioning step corresponds to Hadoop Split and Sort tasks;
the data reduction step is executed as a Hadoop Reduce task. The remaining
steps (data acquisition, data analysis, and data visualization) are not necessar-
ily MapReduce-based. This means that the functions associated to these steps
could be executed in parallel on multiple slave nodes, or alternatively they could
be executed locally by the master node(s). The latter case does not imply that
execution is sequential, because a master node could make use of some other
parallel runtime (e.g., MPI).

On a Spark cluster (see Fig. 2(b)), the main steps are executed within two
Spark stages that run on a set of worker nodes. A stage is a set of independent
tasks executing functions that do not need to perform data shuffling (e.g., trans-
formation and action functions). Specifically: data filtering and mapping are
executed within the first stage (Stage 0 ), while data partitioning and reduction
are executed within the second stage (Stage 1 ). Concerning the remaining steps
(data acquisition, data analysis, and data visualization), the same considerations
made for Hadoop apply to Spark.
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4 Case Studies

We ran experiments to evaluate the scalability of the Spark version of ParSoDA
proposed in this paper, in comparison with the previous Hadoop version of the
library that has been presented in [4]. The experimental evaluation is based on
two case studies based on the analysis of social media data published in Flickr
and Twitter. The first application aims at discovering sequential patterns from
user movements, so as to find the common routes followed by users. The second
one aims at discovering the frequent sets of places visited by users. The analysis
was carried out by analyzing 325 GB of social media data published in Flickr
and Twitter from November 2014 to July 2016 that refer to the center of Rome.

4.1 Application Code

Listing 1.1 shows the code of the application for executing the sequential pattern
mining. First, an instance of the SocialDataApp class must be created (line 1 ).
Then a file containing the boundaries of the regions of interest (RomeRoIs.kml)
is distributed to the processing nodes (lines 2–3). Afterwards, the different steps
of the application are configured as described here:

1. Data collection. The names of two crawling classes (FlickrCrawler and Twit-
terCrawler) are defined in the cFunctions array (line 4 ). The parameters
used to configure the instances of the two crawling classes are defined in the
cParames array (line 5 ). The two arrays are then passed to the setCrawlers
method (line 6 ).

2. Data filtering. Two filtering classes are specified: IsGeotagged and IsInPlace
(line 7 ). The former filters data by keeping only geotagged items. The latter
filters out data that are not in the center of Rome, which is defined by its
geographical coordinates. The parameters of the two filtering functions are
specified in the fParams array (line 8 ). The names of the filtering classes and
associated parameters are then passed to the setFilters method (line 9 ).

3. Data mapping. The map class FindPoI (line 10 ), which does not require
parameters to be instantiated (line 11 ), is specified. The mapping function
defined in FindPoI assigns to each social media item the name of the place
it refers to. To do this, it refers to the boundaries specified in the file defined
at line 2. The name of the map class is then passed to the setMapFunctions
method (line 12 ).

4. Data partitioning. The id of the user who posted a social media item is used
as the groupKey (line 13 ), while the date and time when the social media
item was posted is used as the sortKey (line 14 ). The two keys are then
passed to the setPartitioningKeys method (line 15 ).

5. Data reduction. A reduce class, named ReduceByTrajectories (line 16 ), is
specified to aggregate all the social media items posted by a single user, into
a list of individual trajectories across places. The parameters of the reduce
class are specified in the rParams string (line 17 ). In particular, it receives
only a parameter t, which is the maximum time gap in hours that can be
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taken for consecutive places in the same trajectory. The name of the reduce
class and its parameters are then passed to the setReduceFunction method
(line 18 ).

6. Data analysis. A data analysis class, named PrefixSpan, is specified (line
19 ). The class implements PrefixSpan [16], a scalable frequent sequence min-
ing algorithm, built for Spark and included in the Spark Machine Learning
library (MLlib), which takes as input a collection of sequences and mines
frequent sequences. The parameters of data analysis class are specified in the
aParams string (line 20 ). The name of the data analysis class and its param-
eters are then passed to the setAnalysisFunction method (line 21 ). In the
Hadoop version of the application presented in [4], as data analysis class we
used MGFSM [14], a scalable frequent sequence mining algorithm built for
MapReduce.

7. Data visualization. The SortResults class is specified to perform the data visu-
alization function (line 22 ). A configuration string vParams, containing the
parameters of the data visualization class, is specified at line 23. The class
receives two parameters: the key used to sort results (the sequence support)
and the sort direction (descending order). The name of the data visualiza-
tion class and its parameters are then passed to the setVisualizationFunction
method (line 24 ).

Finally, the execution of the application is obtained by invoking the execute
method (line 25 ).

1 SocialDataApp app = new SocialDataApp("SPM - City of Rome");

2 String[] cFiles = {"RomeRoIs.kml"};

3 app.setDistributedCacheFiles(cacheFiles);

4 String[] cFunctions = {"FlickrCrawler","TwitterCrawler"};

5 String[] cParams = {"-lat 12.492 -lng 41.890 -radius 10 -startDate

2016-07-31 -endDate 2014-11-01","-lat 12.492 -lng 41.890 -radius

10 -startDate 2016-07-31 -endDate 2014-11-01"};

6 app.setCrawlers(cFunctions,cParams);

7 String[] fFunctions = {"IsGeotagged","IsInPlace"};

8 String[] fParams = {"true","-lat 12.492 -lng 41.890 -radius 10"};

9 app.setFilters(fFunctions, fParams);

10 String[] mFunctions = {"FindPoI"};

11 String[] mParams = null;

12 app.setMapFunctions(mFunctions, mParams);

13 String groupKey = "USER.USERID";

14 String sortKey = "DATETIME";

15 app.setPartitioningKeys(groupKey,sortKey);

16 String rFunction = "ReduceByTrajectories";

17 String rParams = "-t 5";

18 app.setReduceFunction(rFunction,rParams);

19 String aFunction = "PrefixSpan";

20 String aParams = "-maxPatternLength 5 -minSupport 0.01";

21 app.setAnalysisFunction(aFunction,aParams);
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22 String vFunction = "SortBy";

23 String vParams = "-k support -d DESC";

24 app.setVisualizationFunction(vFunction,vParams);

25 app.execute();

Listing 1.1. An example of sequential pattern mining (SPM) application on Flickr
and Twitter data from the City of Rome, written using the ParSoDA library.

The code for executing the frequent itemset analysis differs from that
described above only for the used data analysis algorithm (lines 19–21). In par-
ticular, for extracting frequent sets of places from social media data, a parallel
implementation of FP-Growth [11] called PFP [13], has been used both in the
Spark- and in the Hadoop-version of the application.

4.2 Applications Results

A set of 24 popular places in the center of Rome have been considered to run
the sequential pattern mining task and the frequent itemset discovery task, both
implemented as ParSoDA applications. In the following, we discuss some of the
most interesting results that have been obtained. Table 1 shows the top 5 places
visited in Rome, with the corresponding support in the data. The Colosseum is
the most visited place, followed by the St. Peter’s Basilica.

Table 1. Top 5 places vis-
ited in Rome

Place Support

Colosseum 21.7%

St Peter’s Basilica 13.9%

Trastevere 8.7%

Pantheon 6.5%

Trevi Fountain 5.3%

Table 2. Top 5 frequent sets of places visited in
Rome

Set of places Support

Pantheon, St. Peter’s Basilica, Colosseum 5.3%

Trevi Fountain, St. Peter’s Basilica,

Colosseum

4.5%

Roman Forum, St. Peter’s Basilica,

Colosseum

4.4%

Vatican Museums, St. Peter’s Basilica,

Colosseum

4.4%

Trevi Fountain, Pantheon, Colosseum 4.0%

Table 2 shows the most frequent itemsets of length 3 that have been discov-
ered by the PFP algorithm. Set {Pantheon, St. Peter’s Basilica, Colosseum} is
the most frequent set of places visited by social users in Rome, with a support
of 5.3%. Combining the information contained in Tables 1 and 2, an interesting
result is that Trastevere, a popular district of Rome, is the third most visited
place, but it is not present in any frequent itemset. This could happen because
Trastevere is visited by people during the evening, for having a dinner in one of
its many restaurants or pubs, but it is not part of common tourist routes during
the daylight.
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The sequential pattern analysis has been carried out for discovering the most
frequent routes in Rome. In this experiment, it has been set a maximum time
duration (gap) to move from a place to another of 5 h. This means that if the
time distance between two contiguous places in sequence is greater than 5 h, they
will belong to different sequences.

Figure 3(a) shows the top five visited places in Rome that have been found
by the PFP algorithm. Figures 3(b), (c) and (d) show respectively the top five
interesting patterns of length 3, 4, and 5, which have been found by the PrefixS-
pan algorithm. More detailed information about the most frequent patterns and
the corresponding supports are reported in Table 3. Considering the sequential
patterns of length 2, the sequence {Colosseum → St. Peter’s Basilica} is the
most frequent route among places in Rome, followed by 9.07% of users. The
sequence {Colosseum → Roman Forum → St. Peter’s Basilica} is the most fre-
quent route of length 3, which is followed by 4.4% of users. Finally, the sequence
{Colosseum → Trevi Fountain → Pantheon → St. Peter’s Basilica} is the most
frequent route of length 4 with a quite low support of 0.64%.

(a) Top 5 places of interest in Rome. (b) Top 5 sequential patterns of length 2.

(c) Top 5 sequential patterns of length 3. (d) Top 5 sequential patterns of length 4.

Fig. 3. Sequential pattern mining application.

4.3 Scalability Evaluation

As mentioned before, we experimentally evaluated the scalability of the Spark
version of ParSoDA proposed in this paper, compared to the previous Hadoop
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Table 3. Top 5 sequential patterns of length 2, 3 and 4 across places in Rome

Sequential pattern Support

Colosseum → St. Peter’s Basilica 9.07%

St. Peter’s Basilica → Colosseum 7.72%

Colosseum → Roman Forum 5.28%

Colosseum → Pantheon 4.44%

Colosseum → Trevi Fountain 4.19%

Colosseum → Roman Forum → St. Peter’s Basilica 4.4%

Vatican Museums → St. Peter’s Basilica → Colosseum 3.9%

Colosseum → Trevi Fountain → St. Peter’s Basilica 3.7%

Colosseum → Roman Forum → Pantheon 3.6%

Colosseum → Pantheon → St. Peter’s Basilica 3.6%

Colosseum → Trevi Fountain → Pantheon → St. Peter’s Basilica 0.64%

Colosseum → Roman Forum → Trevi Fountain → San St. Peter’s Basilica 0.61%

Colosseum → Roman Forum → Piazza Venezia → Piazza di Spagna 0.58%

Colosseum → Roman Forum → Piazza Venezia → St. Peter’s Basilica 0.58%

Colosseum → Roman Forum → Pantheon → St. Peter’s Basilica 0.58%

version of the library. The scalability was evaluated running the data analy-
sis applications on the Microsoft Azure cloud. Specifically, we used one cluster
equipped with 2 head nodes (each one having four 2.2 GHz CPU cores and 14
GB of memory), and 12 worker nodes (each one equipped with four 2.2 GHz
CPU cores and 14 GB of memory). Here we present the results obtained with
the sequential pattern mining application. The performance obtained with the
frequent itemset applications are almost identical.

As shown in Fig. 4(a), the turnaround time of the Hadoop-based application
decreases from about 54 min using two workers, to 10 min using 12 workers. The
turnaround time of the Spark-based application decreases from about 32 min
using two workers, to 9 min using 12 workers. Thus, using the same computing
resources, the Spark version of ParSoDA results to be 8% (12 workers) to 42%
(2 workers) faster than the Hadoop version. In terms of speedup (see Fig. 4(b)),
Hadoop obtains a speedup ranging from 1.98 using 4 workers, to 5.37 using 12
workers. On the other hand, the Spark version achieves a lower relative speedup
than Hadoop, as it passes from 1.74 using 2 workers, to 3.53 using 12 workers.
This is due to the fact that the Spark version spends most of the time to load
data in memory and to distribute it across the worker nodes. Thus, for such
application, increasing the number of nodes beyond a certain number seems
not have significant benefits. However, the advantage of Spark over Hadoop is
significant in terms of absolute times reduction, as shown by the results presented
in Fig. 4(a).
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Fig. 4. Turnaround time and relative speedup of the sequential pattern mining appli-
cation using Hadoop and Spark.

5 Conclusions

Social media analysis is an important research area aimed at extracting useful
information from the big amount of data gathered from social networks. To
cope with the size and complexity of social media data, the use of parallel and
distributed data analysis techniques is fundamental. ParSoDA is a Java library
that can be used for building parallel social data analysis applications. ParSoDA
defines a general structure for a social data analysis application that includes
a number of steps (data acquisition, filtering, mapping, partitioning, reduction,
analysis, and visualization), and provides a predefined (but extensible) set of
functions for each step. In a previous work [4], we described how ParSoDA can
be used to run parallel social data analysis on the cloud using Hadoop.

In the present work we presented an extension of ParSoDA to execute appli-
cations on Spark. We experimentally evaluated the scalability of the Spark ver-
sion of ParSoDA compared to the previous Hadoop version of the library. The
experimental evaluation is based on two case study applications on social media
data published in Flickr and Twitter. The ParSoDA library performance has
been evaluated carrying out the data analysis applications both on a Hadoop
and a Spark cluster deployed on the Microsoft Azure cloud platform. The results
obtained on a cluster with 12 workers, showed that the Spark version of Par-
SoDA was able to reduce the execution time up to 42% compared to the Hadoop
version of the library.
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Abstract. A careful analysis and a deep understanding of real mobility
traces is of paramount importance when it comes to design mobility mod-
els that aim to accurately reproduce avatar movements in virtual envi-
ronment. In this paper we focus on the analysis of a specific kind of vir-
tual environment, namely the Multiplayer Online Battle Arena (MOBA),
which is a extremely popular online game genre. We performed a spa-
tial analysis of about one hundred games of a popular MOBA, roughly
corresponding to 4000 min of movements. The analysis revealed inter-
esting patterns in terms of AoI observation, and the utilization of the
map by the avatars. These results are effective building blocks toward
the creation of realistic mobility models targeting MOBA environments.

1 Introduction

On-line gaming is one of the biggest entertainment industries and has seen a
rise in popularity in the last decade, thanks to the widespread of fast home
connections to the Internet all over the world. Such rise has naturally attracted
research communities, as on-line games arguably represents the most widespread
instance of what can be considered a virtual environment. Among the various
genres, Multiplayer Online Battle Arena (MOBA) is one of the most popular in
the current landscape of online gaming, targeting both casual and professional
e-sport players. Games like Defense of the Ancients (DOTA) 2 [2] and Heroes
of Newerth (HoN) [4] created huge communities of players that challenge them-
selves in countless player-vs-player matches. The business figures around MOBA
are impressive and approaching those of classical sports: the most important
MOBA related e-sport event, the DOTA 2’s International, in 2016 had a prize
pool of around $18M being the most prized e-sport event ever [3].

In this paper we present the methodology and the analysis of several spatial
features in the movements of avatar, the virtual representation of the player
in the game, in MOBA games. The analysis is based on around 98 replays of
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matches from HoN, which roughly correspond to 4 000 min of movements in the
MOBA virtual environment. In particular, we analysed the following features:
(i) how avatars are distributed in the map? (ii) how are populated the Area of
Interest (AoIs) of the various avatars? (iii) how many avatars remains alone for
a sufficient period of time?

The main intent of such analysis is to provide building blocks for the design
of mobility models that capture the essence of movements in MOBA. In fact,
one of the most active field of research in virtual environments has regarded
the transition of virtual environments from client-server to distributed applica-
tions. Such approaches, broadly referred to as Distributed Virtual Environments
(DVEs) [20]. The goal of this approach is to improve the scalability and the cost-
effectiveness, by orchestrating the support of the virtual environments exploiting
computational and network resources of the users of the DVE. In this context,
an accurate representation of the movements of avatars is essential to properly
design, validate and compare different DVE architectures. Specifically the anal-
ysis of AOIs and the position of the avatars provides indication on how many
avatars share interests on the same parts of the virtual environment. This is
of particular importance especially for those solutions in which the position of
the avatars affects the performance of the DVE. For example, in Voronoi-based
approaches, the management of the DVE is assigned to the machines where users
are playing according to a tessellation of the virtual environment, which depends
on the position of the avatars [12,21]. Upon avatars movements the assignment
change accordingly, triggering a reconstruction in the distribution of the DVE.

To foster comparisons and further studies on common grounds, we made the
traces publicly available [7].

2 Related Work

The analysis and mining of mobility traces with the aim of deriving common
patterns and models is an important and large area of research, which considers
both human and virtual mobility. In the context of DVEs, many works has
focused on the analysis of one of the most popular and widespread online activity,
which is online gaming. A common goal often found in such analysis is the
modeling of avatars mobility. This can have two main directions (i) defining
tools and mechanisms to easily replicate such mobility, (ii) testing and validation
of various DVE frameworks and middlewares. The games subject of analysis of
mobility traces have been many and of different kinds.

For example, in [15] Liang et al. propose a statistical analysis of Second Life
[6] traces as well as a discussion on the implication about the design of a DVE
framework. The analysis is performed characterizing both the mobility (avatar
speed, pause time etc.) and contact patterns (AOI sizes, etc.), which represent
good features when designing a mobility model. BlueBanana [14] is a mobility
model for Second Life, in which players gather around a set of hotspots, which
usually correspond to towns, or, in general, to points of interest of the virtual
world. In [16,17] authors provide an analysis of avatar mobility for World of
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Warcraft [1]. The analysis is focused on a particular area of the DVE where
avatars battle for the control of several objectives. The paper presents a modeling
of the avatars’ behaviors in terms of hotspots, grouping and waypoints. Further,
in [23] authors propose an enhancement of the random way point mobility model
to better fit the behavior of players in the first person shooting game Quake 2 [5].
Among the features, they added various conditions for an avatar to be stationary,
an hotspot popularity and non-straight movement paths.

In the context of MOBA, several works on trace analysis and mining has
been recently carried out, due to the massive popularity gained by this online
game genre. Few works focus on the modelling of movements in the context of
designing AI agents playing DOTA 2 simulating human choices and behaviour,
such as in [19]. This work targets a specific MOBA (i.e. DOTA 2) and therefore
considers many features that are specific to it. Many works focus on under-
standing which movement (and sometimes actions) patterns characterizes high
skilled players in the context of a MOBA game. Cavadenti et al. [10] built a
reference model considering the actions and movements of expert players, and
then analyses MOBA traces looking for features that differentiate them from
non expert players. Drachen et al. [11] analysed MOBA traces to extract the
spatial features of teams as whole, such as the distance between members of the
same team and members of different teams, in order to highlight the difference
between expert and non-expert players. In a similar way, Rioult et al. [22] anal-
ysed several topological and spatial movement features of MOBA traces, trying
to find a correlation between the features and the winning or losing. Those works
analyzes the traces in order to recognize if the movement patterns have some
features that can explain winning or losing in a MOBA games. Even if we share
some mechanisms and underlying core principle with some of these works, our
direction is different: indeed our analysis is toward those features that character-
ize the movement essence of MOBA’s avatar, with the goal of creating a mobility
model that embed such essence.

3 Multiplayer Online Battle Arenas

Multiplayer Online Battle Arena (MOBA) is a genre of online games in which
players control a single character in one of two factions. The objective is to
destroy the opposing faction structures, usually following predetermined paths.

A MOBA map is generally a squared area, in which avatars move mostly
along predetermined paths that go thorough faction structures, which, in turn,
represent landmarks. Figure 1 shows the map of two popular MOBA games
Heroes of Newerth and League of Legends. Generally, in a MOBA game, avatars
start weak and acquire power and abilities over time, by completing various
objectives. This kind of advancements affects the strategy of the players with as
a consequence on the relationships among players and their movements. There
exists several variables that affect avatar mobilities: (i) the phase of the game,
(ii) the typology of the avatar, (iii) the level of skills acquired by the avatar.

The behaviour of the avatar changes during each phase, according to the
relationship they have with the other avatars and landmarks.
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(a) Heroes Of Newerth. (b) League Of Legends.

Fig. 1. Examples of MOBA games map, landmarks are represented as squares

For what concern the typology of the avatar, these games are played in a
modality called 5-vs-5 matches. In this scenario ten players form two teams of
five players each. Each player selects an avatar represented by a hero to combat
before the real match starts. Each hero has different characteristics. Due to this,
each hero is expected to have different play styles and tactics in matches. For
example, there are hero called tanker who have short-ranged attack ability and
excel at surviving combats. Another type of heroes are called supports who are
weak when alone but can help allies and slow down opponents movements.

Finally, each game is independent from another and avatar starts each game
from scratch. The skills of each hero must be improved during the game and the
level of them affect the play style and how the avatar moves. For instance, an
hero able to increase rapidly its power is probably interested in moving towards
the enemy to destroy them. On the other hand, an avatar slow into increase his
skills is likely to run away during a fight.

4 The Dataset

In this paper we propose an aggregate analysis of 98 traces from a popular
MOBA. The dataset containing all traces, including the data about the AoI
statistics and the movement of the player is publicly available [7]. The archive is
organized a set of directories, with each directory corresponding to a single trace.
Each directory contains three files, whose format and description is presented in
Table 1.

The movements happen over a squared map of 15500 × 15550 points. The
AoI of avatars is set at 800 points, as it is the most common range for interaction
with objects and other players. The position of the avatars is sampled 20 times
per second (once every 0.05) seconds.
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Table 1. Trace format description

File name Content description

Avatars Position of avatars at every time frame in csv format

time: the time frame considered

id: the id of the avatar

x: the x-axis coordinate at the frame

y: the y-axis coordinate at the frame

aoiStatAVG Aggregated statistics for avatars AOI in csv format

time: the time frame considered

pop mean, pop std: aoi population average and st. deviation

cr mean, cr std: avatar contact rate average and st. deviation

cd mean, cd std: avatar contact duration average and st. deviation

lone: number of lone avatars

Tessellation Avatars presence over the map as a grid of 100 × 100 tiles. Matrix of
numeric values

4.1 AoI Measures

In the dataset we provide an analysis of movement traces in terms of the rela-
tionships of avatars among each other by exploiting the concepts of AOIs and
avatar contact. To extract these measures we exploited trace [8], a tool for the
visualization and analysis of mobility traces for virtual environments.

Several of the measures considered can be found in researches related to ad-
hoc networks, especially in terms of contacts among entities [13]. In such context,
contacts are important as they represent the moment when two entities can
communicate and exchange data. Rather differently, from a DVE perspective,
contacts among avatars are important, because two contacting avatars share the
same spatial interest, and their knowledge can be useful to each other. Therefore,
the rate and the duration of contacts can impact both on the design and the
behaviour of a DVE architecture. For example, in scenarios in which avatars
work as points of centralization for their AOI [9], the analysis of contacts and
AOIs are crucial measures. We gather four metrics about AOI and AOI contacts:
population size, loneliness, contacts rate and contacts duration.

We define Pa as the set of avatars in a’s AOI (excluding a) during an interval
period T . AP is defined as the average AOI population for all the avatar in the
virtual environment.

AP =
1
N

N∑

n=1

|Pn| (1)

When |Pa| = 0 an avatar is said to be alone, with L being the set of alone
avatars. We register an AOI contact when an avatar enters in the AOI of another
avatar. We represents with Ca the amount of AOI contacts experienced by an
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avatar a during an interval period T . The average contact rate CRA is the
average number of new AOI contacts experienced by all avatars in the DVE
during T , and it is defined as following:

CRA =
1
N

N∑

n=1

Cn

T
(2)

Similarly, the average AOI contact duration CDA is the average of all the
terminated contacts of all avatars during T . A terminated contact is registered
by trace when an avatar exits from the AOI of another one. It is defined as
following:

CDA =
1
N

N∑

n=1

∑
z∈Zn

z × Δt

|Zn| (3)

where Zn is the set of all terminated contacts of avatar n.
We record the values for the above metrics during the generation of the

traces. Such statistics, are stored in the same archive with the mobility trace
itself for later use and comparison.

5 Trace Analysis

In this section we describe how we perfomed the analysis of the traces for the
MOBA game “Heroes of Newerth”. We start describing the methodology to
extract the mobility traces from real game replay and converting them in ana-
lyzable traces in Sect. 5.1. In the remain of the section we describe the analysis
we performed on such traces: (i) several details about the traces in Sect. 5.2,
(ii) an analysis about the AoI of the avatars in Sect. 5.3, and (iii) an analysis on
the hotspots identified using the traces in Sect. 5.4.

5.1 Methodology

In this paper we presents the analysis of 98 traces from the MOBA “Heroes of
Newerth” (HoN). The traces have been scraped from replays downloaded from
the official servers of the game on April 2012, when the popularity of HoN was at
its maximum. We used a Python script to transform the replays into movement
traces.

Next, in order to analyse the trace we make use of trace1. trace is a Java
software library for the generation of avatar movement traces aimed to an easy
integration and portability among different systems and approaches.

We extended trace with an additional mobility model called HoN-Mimic
able to mimic the movements loaded by the replays of HoN. We choose this
approach for the following advantages:

1 https://github.com/hpclab/trace.

https://github.com/hpclab/trace
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– we can compare HoN-Mimic with all the mobility models built-in in trace;
– we can automatically extract several metrics provided by trace;
– using trace permits us to convert the replays of HoN in a format similar to

other mobility models for an easier integration in third-party softwares.

In the following we describe the type of data and the information we extracted
from the traces.

5.2 Trace Length

In the dataset analysed, the length of the traces varied from 22701 to 91285
frames, correspondent respectively to matches with a duration of 19 to 76 min.
The average observed duration is of 48124 frames, which corresponds around to
40 min. The total duration of observed traces is around 4000 min. By analysing
the probability distribution histogram of the duration, the best fit is a Nakagami
distribution [18] with a shape parameter of 0.62 Fig. 2 shows the histograms and
the fitting distribution.

Fig. 2. Distribution of length of the traces

5.3 AoI Analysis

We have performed an analysis of the proximity of avatars in terms of their
average AoI population AP , as it is described in Sect. 4.1. The objective of this
analysis is to identify how the AoI population changes in the different phases of
the game.
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To conduct the analysis we have measured the average AP of each trace
in every frame. More formally, the value for the global APT at the frame n is
defined as:

APT (n) =
1
N

K∑

i=0

APi(n) (4)

where APi(n) is the average AoI population for the trace i at frame n, and K
is the total number of traces.

In order to compute a meaningful result of the AP metric it is required that
all the traces have the same length. This is due to the fact that if the traces do
not have the same length we are not able to compare different traces because
the phases of each trace could be not aligned. Therefore, we normalize the traces
performing a linear interpolation, such that:

yi =
yi−1 + yi+1

xi+1 − xi−1
(5)

The results of the analysis are presented in Fig. 3. From the images, we can
distinguish the phases that characterize a typical MOBA game, as mentioned in
Sect. 3, and how the avatars of different faction relate to each other. Apart from
the initial phase, in which all the avatars are clustered together at the start of
the game, we can observe the following phases:

– beginning (from the 3000th up to the 30000th frame): in this phase each
player tries to acquire skills and power as fast as possible, usually traveling
alone or together with few components of its faction. Generally in this phase
the contact with players of the opposite faction is avoided and battle among
avatars are fast. This phase is then characterized by low AoI population
(average below 1) and around half of avatar travelling alone.

– skirmish (from the 30000th frame up to the 85000th frame): this is the longest
phase of the game, in which avatars coordinates in small groups to defeat
opponent’s structures at the hotspots or battle against other group of avatars.
In this phase we can observe a steady increase of the average population with
a consequent decrease of lone avatars.

– final battle (from the 85000th frame to the end): in the last phase, the majority
of the avatars of both the teams aggregate in large groups to achieve the final
objective. This phases sees a drastic diminishing of lone avatars and a rapid
growth of the AoI population.

5.4 Hotspot Analysis

We performed an analysis of the movement of avatars in order to verify if the
landmarks in the game, as described in Sect. 3, actually represent actual hotspots
in terms of mobility. Our analysis focus on understanding the position, impor-
tance and size of hotspots. To this end, we divided the map into a grid of
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Fig. 3. Average AoI population and avatar loneliness over time

100 × 100 tiles, all of the same dimensions. For each trace, we counted the pres-
ence of avatars for each tile, and then averaged the count for each tile considering
all traces.

Figure 4 presents an heat map depicting for each tile the amount of avatars
traveling in that specific portion of the map during the game. It is possible to
identify mainly 6 hotspots relative to the following position in game: (i) the two
team bases, respectively at the top right and bottom left corner, (ii) the three
points where the avatars of opposing teams meet since the beginning (the center
of the map, the top left corner and the bottom right corner), (iii) and one more
hotspot where “Kongor” is positioned. Kongor is an avatar controlled by the
artificial intelligence of the game, it is the toughest unit in the map and killing
him gives the team a significant advantage. This is the motivation because this
area is usually patrolled by the teams.

It is interesting to note also that the majority of the trajectories of the avatars
mainly follow predetermined paths between the hotspots. This observation is
important in terms of the design of a mobility model, as it allows to use direct
paths from one hotspot to another. It worth to notice that this is the same
assumption also made from other mobility models for other games, such as Blue
Banana [14] for Second Life.
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Fig. 4. Hotspot analysis. The heat map represents the average avatar population pres-
ence in each tile

6 Conclusion

This paper presented a spatial analysis of movement traces taken from matches
of HoN, a MOBA online game. We make use of several metrics in order to
detect the characteristics of these games. In particular we identified different
phases during a match and how the avatars behave in the different situations.
Our analysis span a large number of real traces of the HoN game. We collected
such traces and we make them freely available. Our extensive analysis can be a
starting point to define novel mobility models able to mimic the behavior of the
avatars in the MOBA games. In addition, even if the main motivation of this
work is oriented toward the definition of a mobility model, the presented analysis
can serve other purposes, such as the creation of AI agents that actually play
MOBA games [19], and the inference of the level of ability of MOBA players by
the analysis of their movements [10].
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Abstract. Over the past few years a persistent growth of the number
of daily Bitcoin transactions has been observed. This trend however, is
known to be influenced by a number of phenomena that generate long
transaction chains that are not related to real purchases (e.g. wallets
shuffling and coin mixing). For a transaction chain we call transaction
chain frequency the number of transactions of the chain divided by the
time interval of the chain. In this paper, we first analyze to which extent
Bitcoin transactions are involved in high frequency transaction chains,
in the short and in the long term. Based on this analysis, we then argue
that a large fraction of transactions do not refer to explicit human activ-
ity, namely to transactions between users that trade goods or services.
Finally, we show that most of the transactions are involved into chains
whose frequency is roughly stable over time and that we call Bitcoin
Heartbeat.

Keywords: Bitcoin · Cryptocurrency · Transaction graph

1 Introduction

Bitcoin is the most popular decentralized digital currency and it is the largest
of its kind in terms of total market value. As of May 2017, the total number
of bitcoins in circulation correspond to over 28B US dollars. As opposed to
traditional currencies, Bitcoin does not rely on a trusted entity like a bank or
governmental authority. Instead, it is based on an open social model of trust and
on incentivized collaboration. After an initial period when it was only known
to a small group of enthusiasts and libertarians, Bitcoin has recently gained
considerable popularity. According to the “State of Bitcoin” [2], nowadays more
than 100,000 merchants accept payments in Bitcoin. Developers started to add
it in their applications as a standard form of payment and financial institutions
have recently launched initiatives to explore its potential.

The average number of daily Bitcoin transactions, as of May 2017, is some-
where around 280,000. This number is known to be heavily influenced by a
number of phenomena. Wallets shuffling and coin mixing are just two examples
of activities that generate transactions that are not directly related to real pur-
chases of goods or services. Another example comes from the activity of some
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exchanges (i.e., organizations that allow users to trade Bitcoin for fiat currency
and vice versa) that use long transaction chains to issue payments to customers
that decide to withdraw Bitcoins. This kind of organizations aggregate several
deposits into a single large transaction and repeatedly issue payments spending
the large change of the previous transaction at each step. Although these long
transaction chains are triggered by human activity (i.e., by users that decide to
trade Bitcoins), they are still generated by a automatic mechanisms that inflate
the raw number of daily Bitcoin transactions associated to the explicit exchange
of goods or services between users.

On top of this it is also believed that organizations with interests in Bit-
coin generate transactions with the mere objective of attracting investors and
inflating the exchange rate. Being generated by computer programs, these “arti-
ficial” transactions often introduce in the blockchain regular patterns. Visual
systems [5,9] and previous analytical papers [10,14] have pinpointed various
suspicious structures ranging from binary tree-like distributions, fork-merge pat-
terns, long and “peeling” chains [10].

In this paper we focus on long transaction chains and consider the frequency
at which these chains evolve over time. In brief, we label each transaction with
its LLC, namely with the length of the longest chain the transaction lays on,
and we analyze the statistical distribution of the LLCs using both short and
long intervals of time. We therefore introduce the concept of Bitcoin Heartbeat,
namely an average measure of the pace at which long chains in Bitcoin have
grown over the history.

The paper is structured as follows. Section 2 gives a short description of
the Bitcoin transaction graph. Section 3, after providing the reader with some
context on long transaction chains, shows the results of our experiments on the
distribution of long chains. Section 4 focuses on a specific set of transactions and
analyzes how the chains they lay on change through time. Section 5 introduces
the concept of Bitcoin Heartbeat. Section 6 concludes the paper.

2 The Bitcoin Transaction Graph

In this section we give a simplified description of Bitcoin transactions and we
define the Bitcoin transaction graph. For a broader introduction to Bitcoin see
e.g. the original paper [11] and recent surveys [4,16].

A transaction (in what follows tx) t has a set of inputs i1t , . . . , i
h
t and a

set of outputs o1t , . . . , o
k
t , each associated with a cryptographic identifier, called

address, and a bitcoin amount. A tx transfer bitcoins from its inputs to its
outputs. Outputs of txs are denoted txos. At a certain time T , each txo of a tx
t can be unspent (utxo) or spent (stxo). The only way to spend a utxo ot of t
is to use it as the input it′ of a tx t′ (with t �= t′). In this way, bitcoins flowing
from one tx to the other create the so called “chain of ownership”.

As the authors of [13] we define a directed graph, called Transaction graph
(tx-graph), as follows. Nodes are txs. Nodes t and t′ are connected by a directed
edge (t, t′) if one output ot of t is used as an input it′ of t′. More precisely,
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the tx-graph is acyclic, because transactions are never issued twice and it is a
multigraph, since several outputs of t can correspond to several inputs of t′.
For the sake of simplicity, we will refer to the tx-graph without the attributes
“directed”, “acyclic” and “multi”. An example of a tx-graph can be found in
Fig. 1. The above defined graph differs from the user-graphs defined for example
in [6,7,12] where nodes represent users and edges represent transactions involv-
ing pairs of users. The user-graph is obtained by contracting the tx-graph thanks
to a heuristic described in [13]. The rule establishes that all the addresses asso-
ciated to all the inputs of a multi-input tx belong to the same user and can be
therefore clustered together. An example of a user-graph can be found in Fig. 2.
For the rest of this paper we will always refer to the raw tx-graph.

Fig. 1. An example of tx-graph with 3
txs (1, 2 and 3). Tx 1 has 3 inputs (i1,
i2 and i3) associated to the addresses
A, B and C and 3 outputs (o1, o2 and
o3) associated to D, E and F. These
outputs are spent in txs 2 and 3. Some
inputs of txs 2 and 3 come from outputs
of txs that are not part of the drawing
(dashed arrows).

Fig. 2. The corresponding user-graph
obtained by heuristic described in [13].
Addresses associated to all the inputs
of the 3 txs are grouped into single
nodes. For the purpose of this paper we
do not consider these types of graphs.

The Blockchain is divided into “pages” called blocks. Each block contains,
roughly, the txs issued in a time interval of ten minutes. The block sequence
number is its height. For a tx t we denote b(t) the block of t. As of May 2017,
the Blockchain consists of about 460,000 blocks and contains about 220 M txs,
that is the number of nodes of the tx-graph.

Given a set S of txs, the subgraph of the tx-graph induced by S is the graph
whose nodes coincide with S and whose edges are the edges of the tx-graph
between vertices of S. For a given pair of blocks (b′, b′′) such that b′ < b′′ we
define G(b′, b′′), as the tx-graph induced by the txs ti s.t. b′ ≤ b(ti) ≤ b′′.
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3 Long Transaction Chains

Understanding whether a chain of txs has been generated automatically or it
reflects a chain of human purchases is a challenging task. In fact, the “chain of
ownership” naturally introduces long chains in the tx-graph. What is often not
natural is the velocity at which these chains are generated. With this in mind,
Blockchain.info [1] has developed a heuristic to rule out high velocity chains that
are probably not in a one-to-one correspondence with chains of real purchases of
goods and services1. The heuristic works as follows. Each 24 h a counter resets
and keeps track of the lengths of the new chains looking at how many times tx
outputs are spent on the same day. Data are summarized in Fig. 3. This simple
heuristic provides a first estimate of the extent of the phenomena we are looking
at: only about 40% of the total number of daily txs do not belong to chains
longer than 10.

Fig. 3. Number of confirmed txs per day. Red series includes all the txs; green (grey,
yellow, blue) series excludes txs belonging to chains longer than 10000 (1000, 100, 10).
(Color figure online)

3.1 What Happens in a Day

To understand the nature of long tx chains in Bitcoin, we designed Algorithm1.
Such algorithm receives as input the tx-graph G(b′, b′′), for a pair of blocks
(b′, b′′), and labels each node v of G(b′, b′′) with a quantity LLC that represents
the length of the longest chain of G(b′, b′′), vertex v belongs to. In the algorithm
with the word “source” (“sink”) we refer to nodes with in-degree (out-degree)
equal to zero. LLC labeling is computed by leveraging a topological ordering
algorithm described in [15].

We performed a first experiment computing graph G1 = G(417113, 417256)
which correspond approximately to 24 h of activity. We then ran Algorithm1 to

1 From Blockchain.info: “There are many legitimate reasons to create long transaction
chains; however, they may also be caused by coin mixing or possible attempts to
manipulate transaction volume.”
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Algorithm 1. Label nodes with their LLC
1: procedure LabelNodes(txGraph)
2: Label each source node of txGraph with attribute backward initialized to 0
3: Label each sink node of txGraph with attribute forward initialized to 0
4: sortedNodes ← topologicalSort(txGraph) � based on a description from [15]
5: for n in sortedNodes do
6: if predecessors(n).length �= 0 then
7: bPredecessors ← List of backward attributes of all predecessors of n
8: txGraph.getNode(n).backward ← max(bPredecessors) + 1

9: for n in reverse(sortedNodes) do
10: if successors(n).length �= 0 then
11: fSuccessors ← List of forward attributes of all successors of n
12: txGraph.getNode(n).forward ← max(fSuccessors) + 1

13: for n in txGraph.nodes() do
14: n.LLC ← sum(n.forward + n.backward)

label each node with its LLC. G1 has 219,084 nodes and 264,084 edges. About
10% of the nodes (20,975) have LLC = 0 and about 7% of the nodes (15,775)
have LLC = 1. Figure 4 shows the probability density function of LLC using
logarithmic scales on both axes. We left out of the chart nodes with LLC = 0
or 1 in order to be able to draw on logarithmic axes. We also computed a power
trendline for values of LLC lower than 100 (see the dashed red line on the chart
and the equation in the top-right corner). We found out that the left part of
the distribution seems to be following a power-law (we recall that straight lines
on doubly logarithmic axes are equivalent to exponentially decreasing curves on
linear axes). We ran the same experiment on 30 different, randomly selected days
obtaining very similar charts and interpolations. Additionally, Fig. 5 shows the
cumulative distribution function of LLC. We can observe that about 60% of the
daily txs have LLC ≤ 200 and that about 90% of them have LLC ≤ 700.

Fig. 4. Probability density function of
LLC on 144 blocks using log scales.
(Color figure online)

Fig. 5. Cumulative distribution function
of LLC on 144 blocks.
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3.2 Extending the Analysis to a Wider Range of Blocks

To better understand the LLC distribution, we computed graph G2 =
G(413000, 419143) referred to 6144 consecutive blocks (this number corresponds
to the maximum blocks we managed to load in the memory of a single machine)
and we ran Algorithm 1. Graph G2 has 9,344,879 nodes and 18,375,705 edges.
Txs for which LLC = 0 are 0.49% of the total whereas txs for which LLC = 1
are 0.27% of the total. Figure 6 shows the probability density function of LLC.
Values on the y-axis have been normalized by multiplying them by 144/6144
where 144 is the average number of blocks per day and 6144 is the number of
considered blocks. We have therefore obtained the average number of transac-
tions per day (y-axis) with a certain value of LLC (x-axis). We can observe that
also in this case, values of LLC lower than about 100 seem to be following a
power-law and that even though values are much higher, the interpolated trend-
line for values lower than 100 has essentially the same shape and slope as before.
The CDF instead (reported in Fig. 7), has a very different shape. This can be
explained as follows: even if the number of nodes, that is the average number
of txs per day, is roughly the same as the previous experiment, the set of edges
increased quite a lot, since its number grows non linearly with the number of
involved blocks. We have that 10% of the samples have LLC≤ 20,000, whereas
50% have LLC≤ 50,000.

Fig. 6. Probability density function of
frequency of LLC on 6144 blocks.

Fig. 7. Cumulative distribution function
of LLC on 6144 blocks.

3.3 Trying to Separate Human and Non-human Activity

As reported in [8], power-law distributions have been termed “the signature
of human activity”. As it is clear from Figs. 4 and 6, the probability density
functions of LLC for our experiments do not exhibit the classical power-law
shape in their entirety. In particular our distributions lack very long steady
tails. In fact, for values higher than about 100, LLC does not seem to follow
any regular trendline. Looking at Figs. 4 and 6 we suspect that the power-law
portions of the distributions represent human activity whereas the rest represent
algorithmically generated txs. Zooming into the figures, we observed that for
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values higher than about 100, a series of consecutive peaks appear. Such peaks
might be interpreted as a sequence of automatic phenomena, each of which
introduces at its own frequency new “artificial” transactions in the blockchain.
Examples of these peaks can be observed in Fig. 8 where we zoomed into Fig. 6
and we considered the number of daily txs for which 1000 ≤ LLC ≤ 10000.

Fig. 8. Zoom of Fig. 6 showing number of daily txs with 1000 ≤ LLC ≤ 10000. X-axis
uses a linear scale and y-axis uses a logarithmic scale.

4 A Deeper Analysis of a Specific Set of Transactions

In this section we describe the outcome of an experiment aimed at under-
standing how LLC values change over time for a specific set of txs. We
decided to deepen the analysis on a recent block and arbitrarily selected
block B = 416000. The number of txs in B is 1205. We computed graphs
Gk = G(B − k + 1, B + k) with k = 3, 6, 12, . . . , 1536, 3072. Such graphs refer
to sequences of blocks “centered” around B, including a number of blocks
that grows exponentially. We therefore obtained graphs G(415998, 416003),
G(415995, 416006), . . . , G(414465, 417536), G(412929, 419072) where the first
graph refers to 6 blocks (corresponding to about one hour of activity) and the
last graph refers to 6144 blocks (corresponding to about 42 days of activity).
For each Gk we computed with Algorithm 1, the LLC value for each tx in B.
Then we normalized such values, i.e., we computed (LLC × 144)/b, where b is
the number of blocks of Gk obtaining the txs per day (TPD) belonging to the
longest chain traversing each tx. Figure 9 shows the evolution of TPD for every
tx in B. In order to be able to represent null values on logarithmic axes we
changed them to be 0.01.

Interestingly, TPD for almost all txs, in the long run, converges to a value
included in [300, 1300] as indicated by the red bar in the top-right corner of
the figure. This suggests that, after some time, most txs in B will be connected
to chains that evolve at the pace of h TPDs, with h ∈ [300, 1300]. Note that,
for each graph Gk (see Fig. 9) there is a certain number of txs that “get in the
game”, i.e., txs whose TPD for the graph Gk is 0 and for the subsequent graph
is �= 0. We say that such txs “wake up”. We drew in red those txs “waking up”
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Fig. 9. Evolution of the transactions per day for a specific set of txs. Each point in
the plot refers to a specific transaction t of B. Its x-value is the number of blocks of a
graph Gk. Its y-value is the TPD for t in Gk. Each tx is represented by a set of points,
each showing its TPD in a graph Gk. Such points are linked by a curve. The red curves
refer to txs that “wake up” in G6 (in one hour). (Color figure online)

in graph G6. We decided to pay specific attention to those txs because, in a
sense, they start belonging to some chains exactly at the same time. Txs with
this characteristic will be the object of our last experiment.

5 The Bitcoin Heartbeat

In this section we describe our last experiment aimed at investigating how the
interval h, introduced in Sect. 4 changed in the Bitcoin history. We considered as
a starting date Jan. 2011 because looking at the numbers [3] in this month the
number of daily Bitcoin transaction started to be steadily above 1000. Following
the same procedure of Sect. 4, we built 22 families of graphs such that each of
them refers to 6144 consecutive blocks. The 22 families of graphs correspond to
intervals of blocks centered in a random block of the first day of the months Feb.,
May, Aug. and Nov. of years 2011–2015 and partially 2016 (only Feb. and May).
The considered intervals span in total about 141,000 blocks. We then built, for
each family, a charts similar to the one of Fig. 9. In particular for each family
we only considered txs “waking up” when graph G6 of the family is taken into
account. Finally, we computed one h-interval for each family of graphs as in the
previous section, restricting the attention to those txs.

Since the h-interval is the set of frequency values where txs tend to converge
over time, we call its average value the Bitcoin Heartbeat. Figure 10 shows the
evolution of the Bitcoin heartbeat. Note that, in the figure, frequencies are nor-
malized to txs per hour rather than to TPDs as in Fig. 9. Each point represents
the frequency at which on average, LLC values of “waking up” txs grow in an
hour. In May 2016 we were standing around 52. This means that at the given
pace, on average, tx chains get longer by about 1248 (i.e., 52 × 24) TPDs.
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Fig. 10. Evolution of the Bitcoin heartbeat. x-axis is labeled with time. y-axis with the
frequency at which on average, LLC values of “waking-up” txs grow in one hour. The
standard deviation, for each average value is represented using vertical dashed lines.

6 Conclusions

In this paper we have analyzed long chains in the Bitcoin transaction graph
performing several experiments each spanning a considerable amount of time
and involving a large number of blocks.

The experiments put in evidence what follows. (i) The distribution of the
lengths of the longest chains passing through transactions exhibit a shape that
is hard to believe to be produced by explicit human activities. In fact, it consists
of a low frequency portion that resembles a power-law distribution and an high
frequency portion that contains several peaks. (ii) If we consider a sufficiently
large amount of time the transactions surprisingly tend to be traversed by long
chains with frequencies distributed in a somehow small interval. We call the
average of such interval Bitcoin Heartbeat. (iii) The Bitcoin Heartbeat has a
rather stable value that has slowly grown in the recent Bitcoin history.

Although our observations highlight some interesting properties of the tx-
graph we believe that further reasoning is needed about the found results. We
believe that a better understanding of the dynamics taking place in Bitcoin has
two positive side effects. On one hand it stimulates new research in the field and
on the other hand it leads to a more conscious digital economy.
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Abstract. Community structure is one of the most studied features of
Online Social Networks (OSNs). Community detection guarantees sev-
eral advantages for both centralized and decentralized social networks.
Decentralized Online Social Networks (DOSNs) have been proposed to
provide more control over private data. One of the main challenge in
DOSNs concerns the availability of social data and communities can be
exploited to guarantee a more efficient solution about the data availabil-
ity problem. The detection of communities and the management of their
evolution represents a hard process, especially in highly dynamic social
networks, such as DOSNs, where the online/offline status of user changes
very frequently. In this paper, we focus our attention on a preliminary
analysis of dynamic community detection in DOSNs by studying a real
Facebook dataset to evaluate how frequent the communities change over
time and which events are more frequent. The results prove that the
social graph has a high instability and distributed solutions to manage
the dynamism are needed.

Keywords: Decentralized Online Social Networks · P2P
Dynamic community · Data availability

1 Introduction

Static features, such as clustering coefficient or centrality of Online Social Net-
works (OSNs) have been largely studied. In particular, the community structure
is one of the most studied feature of OSNs and it has attracted wide attention.
The general notion of community refers to the fact that nodes tend to form
clusters which are more densely interconnected through social relationships, rel-
atively to the rest of the network. Communities reflect the behaviour of users and
a high percentage of shared contents are generated by communities (or groups) of
social users. During the last ten years, the increase of the amount of social data
produced by social users, has put users inside several privacy issues. Centralized
solutions for OSNs have been considered the main weak point in the problem
of guarantee a certain level of privacy. To overcome this issue, decentralized
solutions, known as Decentralized Online Social Networks (DOSNs), have been
proposed. The decentralization includes several benefits, in particular in terms
c© Springer International Publishing AG, part of Springer Nature 2018
D. B. Heras and L. Bougé (Eds.): Euro-Par 2017 Workshops, LNCS 10659, pp. 517–528, 2018.
https://doi.org/10.1007/978-3-319-75178-8_42
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of privacy preserving, but it introduces new challenges that have to be faced. In
particular, the problem of data availability is one of the most important ones.
Current proposals manage the problem of data availability through a user-centric
point of view, and no approaches take into account groups (or communities) of
users.

Several studies are proposed to manage the community detection in dynamic
environments, such as Mobile Social Networks or Opportunistic Networks. How-
ever these studies manage scenarios in which mobile devices make contact with
each other and they consider a community as a group of connected nodes.

By considering the importance of a community-centric point of view and the
high level of dynamism in DOSNs, this work proposed a preliminary study of
dynamic communities by using a real Facebook dataset. In detail, we define a set
of community change events that are important to manage the data availability
problem and we study the dynamic communities in ego networks to evaluate how
frequent the communities change over time and which events are more frequent.
All our studies show the need of a distributed approach to manage the problem
of the high instability of the social graph over time when we consider the online
presence of users.

The important contribution of this work is that, even we consider a specific
scenario, our contribution could be applied to other distributed systems, by
taking into account the specific constraints.

This paper is organized as follow. In Sect. 2 we describe the related work. In
Sect. 3 we introduce the dynamic community analysis in DOSNs. A preliminary
analysis is showed in Sect. 4. Finally, conclusions and future work are presented
in Sect. 5.

2 Related Work

In this section we describe the two fields involved in our work. First of all,
we introduce current DOSN proposals by describing their characteristics. After-
wards, we describe the state of art in the dynamic community detection field.

2.1 DOSN’s Approaches

DOSNs [7] have been proposed in order to overcome the privacy issues of the
centralized OSNs. The decentralization of most of the current proposals is imple-
mented by a P2P network. Diaspora1, with about 669,000 users, is one of the
most successful DOSN proposal currently active and deployed in a decentral-
ized way. PeerSoN [2] is one of the most well-known DOSN after Diaspora. It is
implemented as a two-tier system in which the first tier is used for the lookup
service, instead the second tier is used for the communication between peers
and the exchange of users’ profile. SafeBook [6] uses a social overlay named
Matryoshkas, which is composed by concentric rings of peers built around each

1 https://joindiaspora.com/.

https://joindiaspora.com/
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peer. The social overlay guarantees a trusted data storage and an obscure com-
munication through indirection. LifeSocial [10] proposes a solution to the privacy
issue by using public-private key pairs to encrypt profile data which are store
in a DHT. DiDuSoNet [12] is built on a Dunbar-based social overlay and it is
focused on the data availability issue by introducing the concept of Point of Stor-
age (PoS). The number of replicas each profile has is minimized by considering
only two replicas. A similar approach is Cachet [17] which replicates profiles
on the DHT. Cachet does not minimize the number of replicas and it does not
manage the problem of consistency raised to keep all replicas up-to-date.

2.2 Dynamic Community Detection

Dynamic Community Discovery is a relatively novel task in complex network
analysis [1,3], its goal being identify and track trough time clusters of highly con-
nected nodes in a dynamic network. In a preliminary survey [14] two high level
categories of online Dynamic Community Discovery algorithms are identified
depending on how the community evolution is handled: (i) Temporal Smooth-
ness approaches run the community discovery process from scratch on each
graph evolution step (e.g. network snapshot); (ii) Dynamic Updates approaches
incrementally update the communities as time goes by looking both at their pre-
vious states and at novel network perturbations. In static community discovery
a formal and shared definition of community is still missing: such ill-posedness
applies even to the dynamic extension of the problem, thus leading to several
detection and quality criteria. Since there are countless ways to define what a
dynamic community should look like most of the literature on the subject focus
not on reaching consensus on community topology but on the description of
approaches able to track elementary communities evolution patterns. Following
such rationale, several works converged on the definition and adoption of a sta-
ble set of events that can be used to describe dynamic community life-cycles
[4,18,19]: Birth, Death, Growth, Contraction, Merge, Split.

3 Towards the Dynamic Community Analysis in DOSNs

Several approaches propose to manage the problem of community detection in
social networks take into account the evolution of the social graph in term of
friendship relationship (or co-authorships [21,22]), or in term of interactions
between users (or call graphs [11]).

Focusing on a single user, its friendship relationships do not change so fre-
quently. Instead, interactions of each nature (calls, emails, posts, tweets, etc.)
suffer of a different level of dynamism. However, the study of the interactions
graph represents a different evaluation of the social graph, because the interac-
tion graph is an abstraction of the social graph that should be represented as a
weighted and usually directed graph [13]. In a distributed system which wants
to provide social services, such as a DOSN, an interest evaluation concerns the
study of dynamic community by considering the temporal behaviour of users.
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As showed in our previous work [20], the static view of an ego network and as
a consequence its communities are completely different when we consider the
time-varying ego network.

In the follow, we describe more in detail our DOSN’s architecture by explain-
ing how our architecture is organized. Moreover, we explain the problem of data
availability, which is the main goal treated by our DOSN [12]. Finally, we give
our definition of the events occurred during the normal activity of a DOSN which
involve the dynamic communities.

3.1 DOSN: Our Scenario

A current trend of DOSNs is the usage of a social overlay which represents
in some way the friendship relationships between users. The network topology
resulting is generally known as a Friend to Friend network (F2F) in which users
only make direct connections with people they know. Usually in OSNs, the social
graph of each user is referred by using a well-known social network model known
as Ego Network. The Ego Network [15] of a user represents a structure built
around the ego which contains his direct friends, known as alters and may also
include information about the direct connections between the alters. Formally,
each vertex u ∈ V can be seen as an ego and EN(u) = (Vu, Eu) is the ego network
of u where Vu = {u} ∪ {v ∈ V |(u, v) ∈ E}, Eu = {(a, b) ∈ E|{a, b} ⊆ Vu} and E
is the set of edges present in the original graph. N(u) = Vu − {u} is the set of
adjacent nodes of u.

A F2F network can be formally represented by using an Ego Network to
model the social graph and we assume a one-to-one mapping between the users
of the OSN and the nodes of the DOSN [12].

3.2 Data Availability Problem

Data availability is a real hard problem for every distributed environment. Repli-
cation is the most used technique to manage this challenge.

In our scenario, the problem has a big constraint inserted to maintain a high
level of privacy inside the system. The constraint concerns how data should be
stored: replica nodes are chosen by exploiting friendship relations.

To manage the problem of data availability, proper techniques must be intro-
duced in order to ensure that data of the ego users will be available on a subset
of their alters.

In our previous works [9,12], we have exploited a friendship-based replication
schema. A friendship-based replication schema chooses replica nodes by taking
into account the friendship relationships between users. Indeed, consider an ego
node e, only its friend nodes can be chosen to be its replica nodes.

This replication schema is applied also in other DOSN proposals, such as
My3 [16]. However, the data availability could be guided from both friendship
relationships and a content-based point of view. For sake of clarity, a content
based point of view concerns the problem to find group of users which are interest
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to a same content to minimize the number of replicas. Groups of users can be
defined with a community and this approach can be named as a community-based
replication technique. The presence of densely connected groups of nodes can be
exploited to increase the level of data availability and to minimize the replicas. A
possible approach could be exploit the community structure to store at least one
replica of the whole profile or of interest content for the users belonging to the
community. As discussed in Sect. 3, ego networks in DOSNs suffer of a high level
of dynamism and for this reason, we are interested in studying how communities
evolve during the online activity of the system due to the online/offline of users
to understand which community change events could happen and the frequency
of them.

3.3 Dynamic Community Analysis in DOSNs

A real interest in studying the dynamic community in distributed environment is
to understand how the network changes and in particular, after defining what we
intend as community, how the community evolves during the time. In this paper a
community is identified with nodes that are densely linked to each other, directly
or through other nodes. We represent an ego network e as a set of n snapshots
(EGe

1, EGe
2, ..., EGe

n). Each snapshot of an ego network e at time i, identified
as EGe

i , contains a set of communities C = (C1
i , C

2
i , ..., C

m
i ) We are interest to

evaluate the evolution of communities in term of the community change events
explained in detail in [22]. For sake of readiness, communities events are merge,
split, death, and birth. To evaluate the similarity between communities, we use a
revised version of the similarity metric proposed in [22]. Consider an ego network
e and two snapshot EGe

i and EGe
j , the revised similarity metric is introduced

by the Eq. (1),

sim(Cp
i−1, C

q
i ) =

|V p
i−1 ∩ V q

i |
max(|V p

i−1|, |V q
i |) (1)

where Cq
i is the community q included in EGe

i and Cp
i−1 is the community p

included in EGe
i−1. Instead, V p

i−1 is the set of nodes contained in Cp
i−1 and V q

i

is the set of nodes contained in Cq
i .

Thanks to this similarity metric, each community in a time instant i is com-
pared with each community of the time instant i − 1.

Moreover, we need to redefine all the possible community change events
(merge, split, death, birth) to be applied in a DOSN. We propose our defini-
tion of the four events:

– Birth: we say that a community Cp
i is born at time i if, given the set of

communities C∗
i−1 = {C1

i−1, C
2
i−1, · · · , Ck

i−1} at time i − 1, ∀Cj
i−1 ∈ C∗

i−1, we
have that sim(Cp

i , C
j
i−1) = 0. This means that all the communities discovered

at the previous time instant (i − 1) do not share any node with Cp
i .

– Death: we say that a community Cp
i−1 is dead at time i if, given the set

of communities C∗
i = {C1

i , C
2
i , . . . , C

k
i } at time i, ∀Cj

i ∈ C∗
i , we have that
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sim(Cp
i−1, C

j
i ) = 0. This means that all the communities discovered at time

i do not share any node with Cp
i−1.

– Merge: we say that a set of communities C∗
i−1 =

{
C1

i−1, C
2
i−1, . . . , C

k
i−1

}

merge into a community Cp
i if, for each community Cj

i−1 ∈ C∗
i−1, we have

that sim(Cj
i−1, C

p
i ) � k, where k is the similarity threshold defined in [22].

This means that k% of mutual friends between Cp
i and each community in

C∗
i−1 are included in Cp

i .
– Split: we say that a community Cp

i−1 splits into a set of communities
C∗

i =
{
C1

i , C
2
i , . . . , C

n
i

}
if, for each community Cj

i ∈ C∗
i , we have that

sim(Cj
i , C

p
i−1) � k where k is the similarity threshold as described in [22].

This means that a community Cp
i is divided in a set of community identified

by C∗
i−1.

3.4 How Community Change Events Affect the Data Availability

In this study we refer to the events proposed in [22] and we do not consider the
event survive, usually referred as growth and shrink, because it is less relevant in
term of data availability, due to the fact that this event gives little information
about the evolution of the communities in the network.

Considering the problem of data availability in DOSNs and our proposed
community-based replication technique explained in Sect. 3.2, the events birth,
death, split and merge can affect the level of availability and the number of
replicas. Birth events are critical and they are one of the main issue that has to
be faced. Indeed, a newly formed community may have little to no information
about the most fresh contents created by the ego and nodes inside such commu-
nities must find a way to retrieve it. Death events are reported mainly to give us
more information about node churn in such dynamic context, but are no concern
in a replication technique because offline nodes do not need any content. Merge
and split events are important because, in the former case, nodes that belong to
different communities converge in the same community, so they should merge the
available information and probably a few replicas of data can be dropped. In the
latter case, splitted communities suggest that communities may become more
distant over time, so the content may need to be redistributed and replicated
over the newly formed communities.

4 A Case Study: Facebook

To evaluate the dynamics in OSNs, we study Facebook through our dataset
retrieved by a Facebook application, called SocialCircles!2.

As described in [8], SocialCircles! was able to retrieve the following sets of
information from registered users:

Friendship. We obtained friends of registered users and the friendship relations
existing between them.

2 https://www.facebook.com/SocialCircles-244719909045196/.

https://www.facebook.com/SocialCircles-244719909045196/
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Online presence. We monitored the chat status of users in Facebook. The
presence status is identified with 0 if user is offline, 1 if user is in active state
and 2 if user is idle.

We were able to obtain two different datasets, the first one introduced in [8]
and a second one composed by 240 users monitored for 32 consecutive days. In
detail, we sampled all the registered users and their friends every 5 min, for 32
days (from 9 March to 10 April 2015). Using this methodology we were able to
access the temporal status of about 240 registered users and of their friends (for
a total of 78.129 users).

A discrete time model is used to represent the online/offline status of the
users during the simulation. In particular, each day of the monitored period
consists of a finite number of time slots (i.e., 288 time slots each of 5 min), for a
total number of 9251 time slots in the whole monitored period.

Figure 1 shows the number of online users for each time slot. The figure shows
that there is a clear periodic pattern, probably reflecting the day/night cycle.
By analyzing the amount of users online for each time slot, we can see that we
have at most around 18000 online users, roughly 23% of the total amount, and
at least 3000, 3.8% of the total amount of users.

Fig. 1. Online users count during the observed period

4.1 Dynamic Community Evaluation

For the community discovery algorithm, we choose DEMON [5] among the many
that are present in literature. The main reason is that we define a community as
a group of clustered nodes that is the community structure found by the label
propagation implemented in DEMON. Moreover, DEMON is computationally
not expensive. Indeed, it is theoretically linear in time. For the community sim-
ilarity computation, we are interested only in computing the similarity value for
each community at time i, with all the communities at time i − 1. This saves
a lot of computation of similarity between communities that do not belong to
adjacent time slots. We computed the community events as described in Sect. 3
considering two different sets of communities:
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– All: in this case we considered all the communities of all ego networks during
the observed period of time of 32 days;

– Selected: consider only the communities in the time slots where the related
ego was offline (inter-arrival session slots).

With this differentiation we aim to capture a generic, global view of the
dynamism of the network in the first case, and a more specific, critical view in
the second case. It is very important to understand how the network evolves in
time, also when it is not strictly needed for the data availability problem because
we need to handle churn.

As a preliminary analysis, we computed some statistical measures on the
number and size of the dynamic communities to compare them with the static
communities. Table 1 reports the measures for all communities, while Table 2
reports the same measures for the static communities. By analyzing the dynamic
results, we can say that the network is, as expected, very shattered and not even
close to the static view. When considering the number of communities, the high
value of standard deviation with respect to the average, suggests that in some
particular time slots some ego networks have no community at all. In the static
case we have a lower maximum value and an higher average with respect to
the dynamic case, which suggests that it is very unlikely to have a dynamic ego
network that is similar to the static one. Also the size statistics confirms this
fact: static communities tend to be larger than the dynamic ones. We can explain
the difference in the two results by recalling the fact that we have at most less
than a forth of the users online, as reported in Fig. 1.

Table 1. Statistical measures on number and size of all dynamic communities

Min Max Mean Std. deviation

Number 0 104 2.2814344395195665 3.75809047211548

Size 4 452 17.643563738762122 22.10944505125662

Table 2. Statistical measures on number and size of static communities

Min Max Mean Std. deviation

Number 1 26 9.49583333333333 4.401405173746986

Size 4 1894 99.38788942518802 141.28948531026552

To better understand how the events are arranged during the observed time
(Tables 3 and 4), we decided to make some plots. Figure 2 shows the arrange-
ments of the events when considering all communities of all time slots while
Fig. 3 shows the events for the selected communities. Both the figures show that
there is a temporal pattern in the results, suggesting that the behaviour follows
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Table 3. Statistical measures on community events of all dynamic communities

Event Min Max Mean Std. deviation

Split 0 173 61.90498324505457 38.221971154669156

Merge 0 170 61.961301480920845 38.21300775550354

Death 0 117 39.51551183655814 15.25082726706613

Birth 0 98.0 39.51940330775052 16.40523076472613

Table 4. Statistical measures on community events of selected dynamic communities

Event Min Max Average Std. deviation

Split 0 122 44.72067884553051 26.444005572482837

Merge 0 124 44.78207761323137 26.432679749759142

Death 0 80 26.160415090260557 12.350502534938407

Birth 0 58 26.152307858609966 12.836074158727344

Fig. 2. Community events for each time slot of all dynamic communities

Fig. 3. Community events for each time slot of selected dynamic communities
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a daily cycle, confirming the results in Fig. 1. Moreover, on the peaks, the num-
ber of merge/split events are roughly double the number of death/birth events,
while in the nadirs the number of merge/split events are slightly less than the
number of death/birth events. By taking a closer look at the arrangements of
the events, we may also observe that peaks and nadirs of merge and split events
are slightly moved on the right with respect to the ones of birth and death
events, which means that, before observing a variation on the number of split
and merge events, we should see a variation in the number of birth and death
events. It is also worth noticing that, as expected, at each drop of the events
corresponds a peak in deaths, which probably means that we are approaching
the night time slots. Dually, at each increase of events, we usually see a peak of
birth events, which should correspond to the time slots where people wake up.
Another important result is that the two graphs look similar which is sign that
the network behaves in the same way both when the ego is online or offline. This
is of interest in the sense that all the analysis can be done regardless that an ego
is online or not.

Finally, since the events follow a daily cycle, we are interested to see how this
events are related to the presence of users on the network. From a comparison
between Figs. 2 and 3 with Fig. 1 we can see that the more users are online,
the more events are observed in the network. This means that, in a community-
based replication technique, choosing the replicas when there are less users on
the network is somewhat easier because the network is more stable in terms of
communities, while, on the other hand, when there are a lot of users online, we
need to handle more community events, especially split and merge events.

5 Conclusion and Future Works

In this paper we propose a preliminary analysis of dynamic community due to the
online/offline status of users in DOSNs. In detail, we focus our attention of the
data availability problem that is one of the most important problems in DOSNs
and we propose a set of community change events which are important in our
scenario. We analyze both how and the frequency of these events by exploiting
a real Facebook dataset gathered by our Facebook application (SocialCircles).
Results show that DOSNs are affected by a high dynamism and a community-
based replication schema needs to be supported by a distributed algorithm able
to manage the dynamism of communities. By analyzing the dynamic results,
we show that the network is very shattered and not even close to the static
view. Moreover, the community change events introduced in this paper have
a temporal pattern that is similar to the temporal user behaviour and, in a
community-based replication technique, when there are less users the network
is more stable in terms of communities, while, when there are a lot of users
online, we need to handle more community events. We plan a deep analysis of
the instability of the social graph due to the online/offline status of users. In
particular, we plan to develop a distributed algorithm to detect the dynamic
community, which can be used to address the problem of data availability.
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dynamic social networks. Procedia-Soc. Behav. Sci. 22, 49–58 (2011)



Multi-objective Service Oriented Network
Provisioning in Ultra-Scale Systems

Dragi Kimovski(B), Sashko Ristov, Roland Mathá, and Radu Prodan
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Abstract. The paradigm of ultra-scale computing has been recently
pushed forward by the current trends in distributed computing. This
novel architecture concept is focused towards a federation of multiple
geographically distributed heterogeneous systems under a single system
image, thus allowing efficient deployment and management of very com-
plex architectures applications. To enable sustainable ultra-scale comput-
ing, there are multiple major challenges, which have to be tackled, such
as, improved data distribution, increased systems scalability, enhanced
fault tolerance, elastic resource management, low latency communica-
tion and etc. Regrettably, the current research initiatives in the area of
ultra-scale computing are in a very early stage of research and are pre-
dominantly concentrated on the management of the computational and
storage resources, thus leaving the networking aspects unexplored. In this
paper we introduce a promising new paradigm for cluster-based Multi-
objective service-oriented network provisioning for ultra-scale computing
environments by unifying the management of the local communication
resources and the external inter-domain network services under a single
point of view. We explore the potentials for representing the local net-
work resources within a single distributed or parallel system and combine
them together with the external communication services.

Keywords: Inter-domain network provisioning
Multi-objective optimization · Machine learning

1 Introduction

In order to successfully handle the growth of data volume and maintain compu-
tational performance on large scales, it is essential for the emerging hardware
and software systems to be re-evaluated to handle the foreseen challenges intro-
duced by the large scale distributed environments. The emerging field of ultra-
scale computing aims at tackling these rather ambitious challenges by paving
the road for the development of highly distributed architectures, spawning over
multiple administrative domains [1]. The paradigm of ultra-scale computing has
been recently pushed forward by the current trends in distributed computing,
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and to some extend in high-performance computing (HPC), focused towards a
federation of multiple geographically distributed heterogeneous systems under a
single system image, thus allowing efficient deployment and management of very
complex architectures [2].

Unfortunately, supporting the evolution of the ultra-scale systems requires
immense research activities focused towards development of domain-specific
tools and architectures for enabling robust computing solutions through multi-
domain cooperative approaches. To enable sustainable ultra-scale computing,
there are multiple major challenges, which have to be tackled, such as, improved
data distribution and data locality, increased systems scalability, enhanced fault
tolerance and availability, elastic resource management, low latency inter-domain
communication and etc.

Regrettably, all promising research initiatives in the area of distributed ultra-
scale computing are in a very early stage of research and are predominantly con-
centrated on the inter-domain management of the computational and storage
resources, thus leaving the networking aspects unexplored. As a result, multiple
challenges in terms of description, allocation, operation and management of net-
work services and resources, especially in heterogeneous distributed and parallel
environments, have been neglected and remained unexplored till today.

In this paper we introduce a promising new paradigm for Multi-objective
service-oriented network provisioning for ultra-scale computing environments by
unifying the management of the local communication resources and the exter-
nal inter-domain network services under a single point of view. We explore the
potentials for representing the local network resources within a single distributed
or parallel system and combine them together with the external communication
services. The composition of the local resources and external services will result
in the creation of an inter-domain communication environment called communi-
cation super-service. The introduction of such a paradigm will enable transparent
deployment of highly adaptive service-based virtual networks, spawning across
various domains and system architectures.

In order to enable efficient and low latency provisioning of network super-
services we utilize algorithms and techniques from the field of multi-criteria
optimization and clustering. More concretely, we have exploited current cluster-
ing techniques to initially divide the available network services and resources
based on the user’s preferences. Afterwards, multi-objective optimization and
non-domination sorting algorithms, together with novel decision making strat-
egy, are used to provide a set of “optimal” trade-off combination of network
services and network resources. In what follows a detailed description and com-
prehensive evaluation of the proposed communication super-service provisioning
is provided.

2 Related Work

Recently, promising new research initiatives have been started in the European
research community, focused towards solving the issues that prevent efficient
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management of the network resources in an inter-domain environment. One
of these initiatives is the SSICLOPS project, which aims at developing novel
techniques for management of software-defined networks within federated Cloud
infrastructures [3]. Furthermore, the BEACON research project [4] targets a vir-
tualization layer on top of heterogeneous underlying physical networks, comput-
ing and storage infrastructures, providing automated federation of applications
across different Clouds and data centers. Significant research progress has also
been reported in the literature. The authors in [6] introduced a novel approach
for designing Cloud systems, developed around the notion of robust virtual net-
work infrastructure capable of specifying complex interconnection topologies. A
promising architectural solution for Cloud service provisioning was proposed in
[7] relying on service-based IP network virtualization. Within this research ini-
tiative, various management schemes have been designed and implemented, such
as novel resource description and abstraction mechanisms, complex virtual net-
work request methods, and a resource broker mechanism called “Marketplace”.
The work in [8] proposes an OpenFlow service based network virtualization
framework for supporting Cloud infrastructures and presents promising new net-
work abstraction methods for virtualization of the physical infrastructure. Fur-
thermore, the innovative virtual network provisioning approach in [9] comprises
an elasticity-aware abstraction model and virtual network service provisioning
method that allows for elastic network scaling in relation to the communication
load in the data center or Cloud infrastructure. Lastly, the authors in [10] pro-
posed an adaptive virtual resource provisioning method capable of adapting in
response to the demand for virtual network service requests, extended to support
fault-tolerance embedding and provisioning algorithm.

In spite of these important advances, the management and utilization of the
network resources are still in an early stage of research. Currently, even within a
single Cloud environment or multi-cluster infrastructure, the guarantees on the
Quality-of-Service (QoS) on the communication infrastructure are limited. For
example, in the current Cloud architectures, only minimal bandwidth is assured
per Virtual Machine (VM), without considering the communication latency [11].
Moreover, the current research advances have been only focused towards over-
coming the barriers that limit the efficient utilization of the interconnection
resources in Cloud environment, which neglect the requirements of the high-
performance community for low latency communication between heterogeneous
distributed and parallel systems.

3 Background

3.1 Multi-objective Optimization

In this work we utilize multiple concepts from the area of multi-objective opti-
mization to enable efficient network services provisioning in ultra-scale systems.
In general, optimization is a process of identifying one or multiple solutions,
which correspond to the extreme values of two or more objective functions within
given constraints set. In the cases in which the optimization task utilizes only
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a single objective function it results in a single optimal solution. Moreover, the
optimization can also consider multiple conflicting objectives simultaneously. In
those circumstances, the process will usually result in a set of optimal trade-
off solutions, so-called Pareto solutions. The task of finding the optimal set of
Pareto solutions is known in the literature as a multi-objective optimization [12].

The multi-objective optimization problem usually involves two or more objec-
tive functions which have to be either minimized or maximized. The problem of
optimization can be formulated as: min/max(f1(Y ), f2(Y ), . . . , fn(Y )), where
n ≥ 2 is the number of objectives functions f that we want to minimize or max-
imize, while Y = (y1, y2, . . . , yk) is a region enclosing the set of feasible decision
vectors.

Even though the above formulation of the multi-objective optimization is
without any constraints, this is hardly the case when real-life optimization prob-
lems are being considered. The real-life problems are typically constrained by
some bounds, which divide the search space into two regions, namely feasible
and infeasible region.

3.2 Clustering

In the Big Data era the vital tool for dealing with large data-sets is the concept
of classification or grouping of data objects into a set of categories or clusters.
The classification of the objects is conducted based on the similarity or dis-
similarity of multiple features that describe them. Those differences are usually
generalized as proximity in accordance to certain standards or rules. Essentially,
the classification methods can be divided into two categories, namely supervised
and unsupervised [5]. In supervised classification, the features’ mapping from a
set of input data vectors is classified to a finite set of discrete labeled classes and
it is modeled in terms of some mathematical function. On the other hand, in
unsupervised classification, called clustering, no labeled data-sets are available.
The aim of the clustering is to separate a finite unlabeled data-sets into a finite
and discrete set of clusters. For the purposes of our work, we utilize distance
and similarity based clustering algorithms, such as k-means, which allow for
low-latency coarse-grained clustering [16].

4 System Architecture

To tackle the issues that limit the possibilities for transparent inter-domain com-
munication we present a use-case scenario for the proposed multi-objective pro-
visioning environment. Furthermore, based on the use-case scenario the top-level
view architecture of the proposed system is provided.

The use-case of the proposed environment can be identified in the field of dis-
tributed ultra-scale computing. More concretely, the future large-scale systems
have been foreseen as a heterogeneous fusion of the tightly coupled HPC systems
and loosely coupled Cloud infrastructures, interconnected by external network
infrastructures provided on the network-as-a-service basis. The heterogeneity of
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such platforms can pose many challenges for efficient and low latency communi-
cation between processes located in different domains and systems. For example,
let us assume that we have distributed application located at two distant geo-
graphical locations, where both computing systems are of different architecture.
The current state-of-the-art technology will only allow for a high-level protocol,
such as TCP, to be used over the shared Internet network in order to provide a
communication channel between the application components. This may induce
high latency and low communication bandwidth. Contrary, the proposed archi-
tecture aims at utilizing the high bandwidth communication systems, based on
the network-as-a-service paradigm, and combine them with the local network
resources to achieve better communication performance.

In relation to the use-cases, we envision the proposed system, depicted in
Fig. 1, as a full environment capable of providing a universal backbone for super-
service network provisioning. Essentially, the environment allows for the net-
work service providers, together with local system administrators, to register
the offered services, including the functional parameters, to a specific database.
After the proper description of the available services, they are clustered in multi-
ple classes based on the functional parameters, such as latency and bandwidth.
The given set of services is then provided to the multi-objective service com-
position module, which explores for an optimized combination of services and
resources that meet the performance requirements. Subsequently, this mapping,
or more concretely combination of services is provisioned to the application that
required it.

Fig. 1. Top level view of the multi-objective super-service provisioning architecture
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Furthermore, based on the previous usage data, a separate re-provisioning
module continuously gazes for degraded communication performance. Based on
the provided data, this module utilizes the same multi-objective core algorithm
to re-provision the given super-service if some faults are imminent or there are
many QoS violations.

4.1 Multi-objective Super-Service Provisioning

The system design of the proposed super-service provisioning environment is
modular in nature, encapsulating variety of different components which inter-
act by exchanging structured information on the available network services and
resources. Each component in the system provides specific functions, which are
essential for the normal functioning of the provided network resources. The core
of the proposed environment is based upon multi-objective optimization mod-
ule, capable of composing various network resources and service into a compound
network super-service.

Fig. 2. Multi-objective super-service provisioning model

The process of network service and resource composition, depicted on Fig. 2,
is divided into two distinctive stages: resource provisioning (see Sect. 4.2) and
service provisioning (see Sect. 4.3). The two stages are conducted in paral-
lel and separate Pareto fronts are constructed for the network services and
source/destination network resources. The automated decision making considers
the independent Pareto fronts, together with the user’s a-priory preferences, to
complete the process of super-service provisioning.

4.2 Network Resource Provisioning

During this process the registered network resources are fetched from the
database and a set of starting “candidate” routes is constructed, both for the
source and destination data-centers or clusters. This information is then used
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as an input for two separate multi-objective optimization processes based on
the NSGA-II algorithm [15]. The NSGA-II is an evolutionary optimization algo-
rithm, therefore it requires proper representation of the routes that will be opti-
mized as individuals in the algorithm’s population. For our purposes we repre-
sent the routes as a directed vectors containing all channels, switches and router
through which the data will be send within the source or destination system.

Each of these processes is focused on finding a set of optimal “trade-off”
routes in relation to the communication bandwidth and latency within the local
source and destination systems respectively. The optimization processes result
in two separate Pareto fronts, which are later used during the decision mak-
ing (see Sect. 4.4). Every solution in the Pareto represents a possible internal
route through which a virtual channel can be established within the source and
destination large scale computational centers.

4.3 Network Service Clustering and Provisioning

In parallel to the previous described stage, the registered network services are
clustered each time a new service has been added to the database by utilizing
k-means clustering technique [16]. This technique has been selected primary
because it requires low computational resources for small number of clusters.
In our case, we create three different clusters of services in relation with the
following objectives: communication latency and network bandwidth. This allows
us to initially prioritize the services in relation to the given objectives, thus
reducing the execution time of the computational costly non-domination sorting
algorithms.

In relation to the clustering objectives, we divide the registered network
service in the following categories:

– High-bandwidth/low-latency: this cluster encompasses the services which
provide the best communication latency and bandwidth rates. Usually these
network services induce higher financial costs.

– Medium-to-low-bandwidth/low-latency: this cluster provides low
latency, similar to the previous one, however with reduced bandwidth. The
network services belonging to this cluster are usually more cost effective,
compared to the first cluster.

– Low-bandwidth/low-latency: the last cluster encompasses the network
services that are not capable of providing sufficiently high bandwidth or low
latency. The services belonging to this cluster are discarded and not used
during the following process of non-domination sorting.

Afterwards, the feasible clusters are sorted based on non-domination
multiple-criteria sorting algorithm, resulting in a separate Pareto fronts for each
of the clusters. In the case of the non-domination sorting we consider three objec-
tives: communication latency, network bandwidth and financial costs. To be more
concrete, the utilization of the clustering techniques allows for the services to be
classified in a coarse-grained manner, while the non-domination sorting enables
fine-grained selection of the most optimal network services.
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The process of service clustering and sorting is only conducted when new
service has been added or the functional parameters of some service have been
changed. The constructed Pareto front during this process is later utilized for
the automated decision making (see Sect. 4.4).

4.4 Automated Decision Making

The basic prerequisite of the multi-objective super-service provisioning is the
implementation of Automated Decision Making (ADM). Due to the basic
requirements for low provisioning latency it is essential to enable efficient deci-
sion making techniques. To this end, we have implemented a simple and com-
putationally efficient a-priori ADM procedure, which takes into consideration
the user’s preferences. During the process of automated decision making, the
Pareto fronts from the source and destination routes and networks services are
considered independently. Consequently, from the three Pareto fronts separate
solutions are selected and are then joined together to provide the final solu-
tion on how to provision the super-service. The proposed ADM process assumes
that all solutions in the Pareto front belong to the same cluster. Based on this
assumption, we find the centroid of the Pareto front. Afterwards, we map the
centroid to the objectives’ axis. This allow us to divide the objective space and
the Pareto solutions into distinctive regions. More concretely if a solution is
located within the parallels of the centroid it is considered that it belongs in the
“balanced” region. The solutions which are within the centroid’s parallel in one
objective dimension, but not in the other are consider to belong to the “objec-
tive’s priority” region. For illustration, Fig. 3 shows the division of the solutions
in two-dimensional space in relation to the centroid of the Pareto front.

In order to perform the final decision, the ADM relies on the user’s pref-
erences, i.e. which objective function should be given priority. In the case of
our implementations, this could be communication latency, network bandwidth
or service cost. If the user gives a strong priority towards a single objective,

Fig. 3. Automated decision making
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then only the solutions in the given “objective’s priority” region are considered.
Afterwards, within this region we measure the distance of every solution to the
centroid. Based on the distance, in the preferred objective dimension, we sort and
weight the solutions and select the one closest to the objective weight preferred
by the user.

5 Experimental Evaluation

The experimental evaluation of the proposed concept of super-service provision-
ing was conducted based on a monitoring data-sets provided by RIPE NCC
[17] and CEDEXIS [18]. The data-sets include comprehensive information on
the response time, communication bandwidth and communication latency of
multiple Cloud service providers from around the world. With respect to the
implementation of the super-service provisioning algorithm, we have utilized the
jMetal framework [13] for the purposes of multi-objective optimization and the
Waikato environment for knowledge analysis [14] for the clustering.

Fig. 4. Scalability of the clustered non-domination service sorting

As previously described, the process of super-service selection is conducted in
two independent stages, therefore requiring distinctive set of evaluation exper-
iments. The service non-domination sorting and Pareto construction has been
evaluated on the basis of the degree of scalability for various cluster-sizes, while
the behavior of the source and destination route multi-objective provisioning
algorithm has been examined from multiple aspects, including solutions quality,
scalability and computational performance.

To begin with, we evaluated the scalability and computational performance of
the non-domination service sorting and selection algorithm by considering three
distinctive data-sets with varying sizes from 2500 to 4500 network services. The
data-sets were clustered in three categories: high-bandwidth/low-latency with
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relative size of 12%, medium-to-low-bandwidth/low-latency with relative size of
85% and low-bandwidth/high-latency with relative size of 3%. The clustering
time for all data-sets was below 2 ms and was included in the total service sort-
ing time. Figure 4 shows the correlation between the average sorting time for
the full sets of non-clustered and clustered network services. It is evident that
the clustering reduces the execution time of the multi-objective non-domination
sorting, compared to the non-clustered datasets, from 20% to more than 1100%
in the cases when small clusters have been created.

The process of source and destination network resource provisioning has
higher computational complexity, compared to the service non-domination sort-
ing, therefore requiring more comprehensive experimental evaluation. Figure 5
shows the correlation between the execution time of the multi-objective optimiza-
tion algorithm and the length of the network route, for two different population
sizes and evaluation limits. It can be easily observed that the optimization algo-
rithm scales very good for different route lengths, with latencies ranging from 70
to 100 ms for routes with 30 hops. Furthermore, Fig. 6 provides detailed informa-
tion on the quality of the provided routes for different optimization parameters.
The Hypervolume indicator was used to represent the quality of the Pareto set of
solutions provided by the multi-objective algorithm. The presented results show
that the quality of the Pareto routes decreases by up to 10% with the increase
of the number of hops, which can be considered as satisfactory.

Fig. 5. Scalability of the resource provi-
sioning multi-objective algorithm

Fig. 6. Solutions quality of the resource
provisioning multi-objective algorithm

In order to prevent the decrease of the quality of the Pareto front, in the
cases when the number of hops in the route is higher, the number of individuals
or evaluations for the multi-objective algorithm can be increased. Unfortunately,
this can increase the execution time exponentially, which is not adequate for low-
latency processes. Figure 7 shows the relation between the number of individu-
als/evaluations and the execution time for a fixed route of 30 hops. Furthermore,
Fig. 8 provides comparison between the number of individuals/evaluations and
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Fig. 7. Correlation between the execu-
tion time and the number of individu-
als/evaluations for fixed route size

Fig. 8. Correlation between the solu-
tions quality and the number of individ-
uals/evaluations for fixed route size

the quality of solutions. The quality of the solutions in this case was evaluated
based on two indicators: hypervolume and spread. Overall, it can be determined,
that in the cases when higher quality routes are required, higher number of indi-
viduals can be used with a penalty on the execution time.

6 Conclusion

This paper introduces a promising new paradigm of super-service provisioning
for ultra-scale computing environments by unifying the management of the local
communication resources and the external inter-domain network services under
a single point of view. The research work has resulted in a development of an
efficient technique for network services clustering and non-domination sorting,
multi-objective network resource provisioning and a-priory automated decision
making.

The presented paradigm has been evaluated based on a real-life monitoring
data-sets. As our research deals with the utilization of clustering algorithms for
reducing the complexity of multi-objective optimization problems, we present an
experimental results that demonstrate the ability of our approach to provide an
adequate super-service provisioning in inter-domain systems. The initial results
confirm the scalability of the implemented algorithms and highlight the benefits
arising from utilizing clustering for multi-objective non-domination sorting and
optimization.
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Abstract. With ever-increasing execution scale of parallel scientific sim-
ulations, potential unnoticed corruptions to scientific data during simu-
lation make users more suspicious about the correctness of floating-point
calculations than ever before. In this paper, we analyze the issue of the
trust in results of numerical simulations and scientific data analytics.
We first classify the corruptions into two categories, nonsystematic cor-
ruption and systematic corruption, and also discuss their origins. Then,
we provide a formal definition of the trust in simulation and analytical
results across multiple areas. We also discuss what kind of result accu-
racy would be expected from user’s perspective and how to build trust by
existing techniques. We finally identify the current gap and discuss two
potential research directions based on existing techniques. We believe
that this paper will be interesting to the researchers who are working on
the detection of potential unnoticed corruptions of scientific simulation
and data analytics, in that not only does it provide a clear definition and
classification of corruption as well as an in-depth survey on corruption
sources, but we also discuss potential research directions/topics based on
existing detection techniques.

Keywords: Trust · Numerical simulation · Data analytics

1 Introduction

Today and future scientific simulations or data analytics are facing a huge risk
with potential unnoticed corruptions because of ever-increasing execution scale
and more and more complicated system architecture. Multiple examples of hard-
ware bugs in floating-point units and software bugs in application stack make
users more suspicious about the correctness of floating-point calculations. In
2004 the AMD Opteron had an instruction bug that could result in succeeding
instructions being skipped or an incorrect address size or data size being used
[4]. Other bugs were reported in the Opteron processor in 2012 and 2014 [3].

c© Springer International Publishing AG, part of Springer Nature 2018
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In this paper, we investigate several key aspects of the trust that a user
can give to the results of numerical simulations and scientific data analytics.
The notion of trust is related to the integrity of numerical simulations and data
analytics applications and not on whether the application actually completes.

To simplify the presentation without loss of generality, we consider that trust
in results can be lost (or the results’ integrity impaired) because of any form
of corruption happening during the execution of the numerical simulation or
the data analytics application. In general, the sources of such corruption are
threefold: errors, bugs, and attacks. Current applications are already using tech-
niques to deal with different types of corruption, but these techniques are not
all-encompassing. The current level of trust that a user has in the results is at
least partially founded on ignorance of this issue or the hope that no undetected
corruptions will occur during the execution.

So far, there have been a lot of research studying the trust/reliability issue,
such as detection of silent data corruptions (SDC) in numerical simulations (to
be detailed in Sect. 6). However, there are no specific surveys to categorize, for-
malize the research from the perspective of technical background and summarize
the corresponding solutions comprehensively. The work in this paper aims to fill
this gap.

In this paper, we look at (1) exploring the sources of trust loss; (2) review-
ing the definitions of trust in several areas; (3) providing numerous cases of
result alteration, some of them leading to catastrophic failures; (4) examining
the current notion of trust in numerical simulation and scientific data analyt-
ics; (5) providing a gap analysis; and (6) suggesting two important research
directions and their respective research topics. We also, specifically, suggest rec-
ommendations for developing a more scientifically grounded notion of trust in
aforementioned applications. We first formulate the problem and show that it
goes beyond previous questions regarding the quality of results such as Verifi-
cation and Validation (V&V), uncertainty quantification, and data assimilation.
We then explore the complexity of this difficult problem, and we sketch comple-
mentary general approaches to address it.

The product of simulation or of data analytic executions is the final element of
a potentially long chain of transformations, where each stage has the potential
to introduce harmful corruptions. These corruptions may produce simulation
results that deviate from the user-expected accuracy without notifying the user of
this deviation. There are many potential sources of corruption before and during
the execution; consequently, in this paper we do not focus on the protection of
the end result after the execution (latter is covered in the paper [10], through
the notion of provenance and trustable communications and storage).

2 Corruption Classification and Origins

In this section, we focus on corruptions that stay unnoticed. The corruptions for
which significant research efforts are needed in the context of trust are those that
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corrupt the results in a harmful way but are not detected by hardware, software,
or the users. We consider two main classes of corruptions: nonsystematic and
systematic.

Nonsystematic corruptions are those affecting an execution in a unique way;
that is, the probability of repetition of the exact same corruption in another
execution is very low. A harmful corruption is manifested as an alteration of one
of more data elements. Origins of such corruptions may be radiations (cosmic
ray, alpha particles from package decay), bugs in some paths of nondetermin-
istic executions, attacks targeting executions individually, and other potential
sources.

Systematic corruptions (including conception/model errors and epistemic
uncertainties) affect multiple executions of the same code, with the same input
parameters, in the same way. The harmful corruption also is manifested as an
alteration of one of more data elements. Executions do not need to be iden-
tical to produce the same corruptions because of possible uncertainty of the
input/execution data or so. Origins of these corruptions are twofold: (1) bugs
or defects (hardware or software) that are exercised the same way by executions
(different executions will execute a same code region or the same instruction
that will cause the same corruption) and (2) attacks that will consistently affect
executions the same way.

A question that usually arises is that is the trust in numerical results
a real problem? We argue that trust is a serious and insufficiently recognized
problem. For a list of software bugs that impacted users in domains such as space
exploration and telecommunications, see [1].

Two serious issues could be raised because of such unnoticed corruptions.

1. A large number of executions may have been corrupted before the discovery;
bad decisions may have been taken [2]; and it might be difficult after-the-fact
to check whether executions have actually been corrupted or not, without
heavy checking (e.g., re-executing the simulations entirely)

2. Even if silent corruptions do not lead to accidents, they may lead to significant
productivity losses.

3 Definition of Trust in Multiple Areas (Computer
Science, Sociology, Economy)

All types of corruptions mentioned in this paper are considered as part of the
general dependability problem as formulated in the paper [12]: “the ability
to deliver service that can justifiably be trusted”. Table 1 shows the relation
between dependability, survivability, and trustworthiness, as mentioned in the
paper [12]: the three concepts essentially cover equivalent goals and threats.

A survey of definitions related to dependability and trustworthiness is pre-
sented in the paper [13]. In that survey, trust depends on many elements: safety,
correctness, reliability, availability, confidentiality/privacy, performance, certifi-
cation, and security.

Multiple definitions of trust [6] are relative to other contexts: social sciences,
psychology, philosophy, and economics. The definitions that may help address
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Table 1. Relation between dependability, survivability, and trustworthiness

Concept Dependability Survivability Trustworthiness

Goal (1) ability to deliver
service that can
justifiably be trusted;
(2) ability of a system
to avoid failures that
are more frequent or
more severe than is
acceptable to the
user(s)

capability of a system
to fulfill its mission in a
timely manner

assurance that a
system will perform
as expected

Threats present (1) development faults
(e.g., software flaws,
hardware errata,
malicious logic); (2)
physical faults (e.g.,
production defects,
physical deterioration);
(3) interaction faults
(e.g., physical
interference, input
mistakes, attacks,
including viruses,
worms, and intrusions)

(1) attacks (e.g.,
intrusions, probes,
denials of service); (2)
failures (internally
generated events due
to, e.g., software design
errors, hardware
degradation, human
errors, corrupted data);
(3) accidents
(externally generated
events such as natural
disasters)

(1) hostile attacks
(from hackers and
insiders); (2)
environmental
disruptions
(accidental
disruptions, either
manmade or
natural); (3) human
and operator errors
(e.g., software flaws,
mistakes by human
operators)

Reference this paper “Survivable network
systems” (Ellison el al.
1999)

“Trust in
cyberspace”
(Schneider 1999)

the trust problem in our context are the following: “One party (trustor) is willing
to rely on the actions of another party (trustee)” and “The trustor is uncertain
about the outcome of the other’s actions; they can only develop and evaluate
expectations”.

Although there exist several metrics for trust [7] and approaches to building
trust, there is no consensus on or norm for which metrics should be used in
which case. In numerical simulation and scientific data analytics, there is a lack
of trust metrics that could be used to quantitatively compute and express the
trustworthiness of the execution results.

4 Building Trust in Application Results

The trust in the results of numerical simulation and data analytics execution
is related to two main notions: correctness of computation and integrity of the
execution stack. However, neither of them could be proven formally for nontrivial
execution scenarios. To address this issue, users have to develop a process to build
trust in their execution results.
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The simple pattern of building trust generally involves the following process.
The users first start with the smallest-scale, simplest problem that can be rea-
sonably modeled, and compare the output with expectations. The simulation
is then repeatedly scaled up in complexity and size (both simulation size and
system size), while repeating the comparisons of output with expectations. Any
odd or unexpected behavior is scrutinized and assumed to be an error until
demonstrated otherwise.

4.1 Expected Result Accuracy

Expected result accuracy is application dependent. Some applications are sensi-
tive to the details of calculation; for example, they can even act as tests of the
randomness of the pseudo-random number generator used. Other applications
model systems following a trajectory to an attractor state and small perturba-
tions to that trajectory have no impact on the final outcome. During the exe-
cution, accuracy is affected by round-off errors; such errors accumulate, and the
expected accuracy at the end of the execution is much lower than the machine
precision. Typical expected accuracies at the end of the execution are 10−6 for
the HACC cosmology code executions and 10−8 for Nek5000 computational fluid
dynamics executions.

At its most fundamental, expected result accuracy can be defined as follows:
If the corruption of the data does not result in any measurable changes to any
physically meaningful statistics of the simulation between a run that contained
the corruption and a run that does not, then the user’s expectation of accu-
racy has been satisfied. This definition suggests that research should focus on
detecting corruptions that make the end results diverge from the expected user
accuracy, as did by the adaptive impact-driven SDC detector [18].

4.2 How Existing Techniques Help Building Trust

Verification and validation form the basis for building trust in codes and the
models underlying them. We follow the convention of [16], whereby validation
determines the faithfulness of the mathematical/computational models to the
real world and verification determines the faithfulness of the code to the math-
ematical/numerical models. While solution verification techniques quantify the
accuracy at which algorithms solve the model, code verification techniques certify
that a code is a truthful implementation of the algorithms themselves. Follow-
ing best practices (e.g., unit and regression testing) and standards for software
design is a common, although incomplete, attempt toward verification.

Another common software development technique for building trust is to
incorporate physical, mathematical, and numerical knowledge alongside a com-
putation in order to flag potential errors. Examples in the course of a computa-
tion can include ensuring that mass or other quantities are conserved, that two
linear basis vectors remain orthogonal, and that an accumulated remainder term
lies below a round-off bound.
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Uncertainty quantification is an umbrella term for several activities involved
in improving the trust in the simulations and data in the hope of accounting
for all sources of uncertainty involved in the simulation of real-world/physical
quantities. Several techniques are used to improve the trust in the numerical
model, data, and simulation productivity under random effects. For example,
gridded or complete data sets are constructed from sparse data by solving inverse
problems. Simulations are corrected (or guided) by using data through a process
referred to as data assimilation. Complex mathematical models and models that
are used to represent real processes that are not well understood typically use
parameterizations. Parameterizations are surrogate models that depend on a set
of parameters that do not necessarily have a physical meaning. These parameters
are usually calibrated by solving a parameter estimation problem. Although UQ
techniques are often segregated along domain science and scientific community
lines, they support a common mathematical formulation and are often used in
tandem or in a manner that is not always transparent.

5 Gap Analysis

Many techniques are already applied from the hardware to the application in
order to detect corruptions. These techniques do not cover all potential sources
of corruptions, however, and large gaps put execution results at risk.

Harmful nonsystematic corruptions (undetected corruptions that corrupt
execution results in a non-noticeable way) can be detected by classic approaches
such as replication or algorithm-based fault tolerance (ABFT). Replication is too
expensive in our domain to be applied on all executions, however, and ABFT
covers only the data protected by the ABFT scheme: other application data are
not protected. Ensemble computations also offer a way to deal with nonsystem-
atic corruptions, since statistical analysis of the ensemble results may detect or
absorb the corruptions.

Harmful systematic corruptions are not detected by replication because repli-
cation detects errors by comparing identical (or comparable) executions. Since
the systematic corruptions will affect replicated executions the same way, the
comparison of executions will not detect any corruption. Ensemble computa-
tions will suffer the same limitation and will not be able to detect or absorb
such corruptions.

One approach to detect systematic corruptions, called n-version program-
ming [11], was proposed three decades ago. In this approach, which has some
similarity with the notion of alternates in recovery blocks [21], the results of the
executions of multiple different versions responding to the same specification
are compared in order to detect potential corruptions. The higher the diver-
sity of the versions (from hardware to application), the higher is the chance of
detecting corruptions. This approach does not seem applicable in our domain,
however, because of the cost of developing multiple versions of all levels of the
stacks, from the hardware to the application. Moreover, it has been demonstrated
experimentally that different versions may suffer the same bugs (and lead to the
same corruptions) [19].
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Formal validation and verification often presuppose the availability of a cor-
rect reference solution that can be used to assess model accuracy and code cor-
rectness. Although codes can be designed to capture these subsystems as special
cases, the potential for increased trust is rarely deemed to outweigh the result-
ing efficiency loss; and this gap widens at scale. As highlighted in the paper
[16], problem classes for which formal V&V methods exist (e.g., quantifying the
numerical error in the solution of linear elliptic PDEs) seldom overlap with the
complex simulations performed for DOE.

Uncertainty quantification considers that the hardware and the software stack
produce correct results. Uncertainty quantification is almost entirely focused on
addressing randomness introduced through the mathematical model. In general,
all algorithms assume that the hardware/software stack produces asymptotically
correct, if not exact, results. In the presence of numerical errors or spurious
software, outcomes can lead to biases in UQ that render the analysis useless or
can have a significant detrimental effect on trust.

6 Analysis of Research Directions and Solution

Since the trust problem spans all layers of the stack, from the hardware to the
application, and is related to many aspects of numerical simulation and data
analytics (modeling, initial conditions, numerical accuracy, parametric settings,
etc.), we believe that holistic approaches, considering all potential sources of
corruptions, have a better chance of succeeding. Figure 1 presents complementary
research directions.

Fig. 1. Complementary research directions to address the trust problem

The first direction performs on-line verification by using an external algo-
rithmic observer that does not trust the execution stack. During the execution,
the transformations applied by the hardware and software stack to the data
are verified against trusted models run by the observer. This direction is close
to n-version programming but uses verification algorithms much simpler than
the execution stack (the external algorithmic observer method assumes that the
observer is simpler to code than the full execution stack, hence can be more easily
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Table 2. Advantages and drawbacks of two research directions

External observer Trust relations

Detection
approach

Simulation and observer are
checking each other

Checking object results

Detection
assumptions

External observer is correct
(should be verified, validated)

All verifications and reputation
calc. are correct

Detection
latency

Short (depends on sampling
rate, typically 1 appl. iteration)

Long (actual detection could be
long: months)

Timeliness of
notification
after detection

Short (one iteration to next) Short (immediate upper layer)

Time to build
trust

Low (trust depends on
verisimilitude of results not on
components)

High (h/w and s/w components
need to acquire trust level)

Targeted level
of trust

User-expected accuracy Machine precision (modulo
round-off errors)

Dev. time and
cost

Low (requires only to develop
the observer)

High (affects all layers of the stack)

Tolerance High (corruptions of the appl.
data lower than user-expected
accuracy are tolerated)

Low (any corruption at object level
is suspicious since the consequence
on appl. data is unknown)

verified). The second direction establishes trust relations between levels of the
execution stack. Establishing these trust relations may involve thorough verifi-
cation of each level, reputation mechanisms, and layer-level on-line verification.
Table 2 shows the advantages and drawbacks of the two directions.

6.1 External Algorithmic Observer

The external observer approach is similar to the simplex architecture technique
for critical systems [22]. It is also similar in principle to a direction developed
for cyber security at the UIUC/Information Trust Institute where the pre-
dictable/expected behavior of a system is defined and used for detecting anoma-
lies [9]. The main idea is that the external observer checks that the observed
execution respects constraints set by the developer of the application/user.

In our context, the external algorithmic observer executes a model of the
data transformation performed by the application. There are several related
techniques proposed recently. Di et al. [17] proposed a silent data corruption
detection method with error-feedback control and even-sampling for HPC appli-
cations. It is designed particularly for iterative scientific simulations with multi-
ple time steps/snapshots generated. The detection performs the data prediction
mainly along the time series dimension for each data point in each snapshot.
Based on that work, they further proposed an improved solution [18] by tak-
ing into account only significant corruptions regarding their impact on the final
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execution results. They also proposed an adaptive solution allowing each pro-
cess/rank to select the best-fit prediction method based on its dynamic local
dataset, significantly improving the detection ability and lowering the memory
cost meanwhile. In absolute terms, Experiments with about 20 benchmarks indi-
cate that it can detect 80–99.99% of influential SDCs with the false positive rate
reduced to 0–1% in most cases. In addition, Berrocal et al. [15] explored par-
tial replication to improve lightweight silent data corruption detection for HPC
Applications.

Alternatively, the detection model could be derived from observed properties
of the data transformation [17], learned using some machine leaning algorithms,
or could implement a simpler version of the model used in the application [14,
24]. The critical point is that the application and the external model should
be diverse enough that they would not be affected by systematic corruptions
in the same way. In principle this approach allows a very large spectrum of
model complexities (compute and memory complexities) that could go up to the
complexity of the application plus the stack running the application. Since we
cannot afford such complexity in our domain, however, the research should focus
on models of a much lower complexity.

Low-complexity models implement trade-offs between complexity, accuracy,
and other properties. For example, the model proposed by Benson et al. [14]
relaxes numerical stability assuming that (1) the model can be restarted at
each step from the verified results of application at the previous step and (2)
corruptions happening in one step are detected in the same step. In Di et al.’s
work [17], the model computes only local predictions for the next simulation step,
from the application results at the current step (one step prediction), leveraging
the spatiotemporal continuity present in many applications simulating physics
phenomena. This model does not compute solutions of the equations governing
the simulation; rather, it verifies that the simulation respects a particular physics
property between steps.

Because the model is purposely simpler than the simulation, the data pro-
duced by the model diverges slightly from the one of the application. Therefore,
the detection cannot be based on perfect comparison. A tolerance margin should
be considered that controls the detection accuracy that conditions the number
of false positives (detection of a corruptions that did not happen) and false
negatives (nondetection of corruptions that actually happened). Other metrics
include overhead in execution time and overhead in memory occupation (the
model needs memory space for its execution). The tolerance margin should avoid
false detection due to the natural divergence between the model and the applica-
tion. It also should be lower than the user-expected accuracy in order to ensure
that corruptions exceeding the user-expected accuracy will be detected.

An important advantage of this approach is that by being much simpler than
the simulation stack, the software implementing the model is also easier to ver-
ify and to protect. For example, the multiversion programming approach is not
applicable to the simulation stack but it is applicable to the software implement-
ing the model. Several implementations of the same model or several different
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models could be executed and compared. Because the software implementing
the model has a low compute complexity, in principle, it could be executed on a
more secure environment, such as a secure processor. This allows increasing the
trust in the model itself.

6.2 Trust Relations

The direction based on trust relations is more mature in the sense that a large
body of research has been devoted to this topic in computer science. The DOE
report on Cybersecurity for Scientific Computing Integrity [10] provides con-
siderable coverage of the issues and approaches related to this direction. This
section complements the report by providing additional analysis and references.

To simplify the presentation, we call an “object” any piece (or layer) of soft-
ware of hardware that needs to be trusted. The trust relation direction supposes
at least (1) a way to certify that each used object is actually the object it is
supposed to be, (2) a method to evaluate a level of trust for each object involved
in the execution, (3) a metric of the level of trust, and (4) a way to protect the
trust level acquired by an object.

Considering points (1) and (4), the Trust Computing Group [5] has produced
the Trusted Platform Module (TPM) specification [8], which is an ISO/IEC
international standard. This specification details embedded crypto capability
that supports user, application, and machine authentication. More than 500
million PCs have shipped with TPM. One application of TPM is the verifica-
tion of the integrity of the platform to ensure no unauthorized changes have
occurred in the BIOS, disk master boot record, boot sector, operating system,
and application software. We believe that points (1) and (4) can leverage this
well-established technology to reduce the risk of attack-induced corruptions.
However, TPM does not protect against sophisticated attacks, and some TPM
circuits showed vulnerability [23,26].

Regarding point (2), the evaluation of the trust level of an object could
rely on extensive verification and validation of that object by a combination
of formal verification when applicable and empirical methods (checking against
known results, checking results against actual measurements). In principle the
external observer approach can be applied for each object. However, modeling
the data transformation of some functions in order to perform effective and
efficient detection may require a model complexity close to that of the function.

Regarding point (3), the trust metrics could have multiple dimensions (such
as time since first trusted, time since last verification, number of independent
verifications, or number of validations). The trust metrics would help compute a
trust level for the whole execution (a function of the trust of each object involved
in the execution). Thus, a user could explore different combinations of objects
for a given overall trust level. Conversely, the user could explore different com-
binations of objects and their impact on the overall trust score. Researchers in
security and networking domains [20,25] have already investigated this problem:
they represent objects in a graph where edges are trust relations and the trust
evaluation is modeled as a path problem on a directed graph.
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All these precautions will not avoid corruptions from a highly trusted object,
however, because verification and validation cannot test exhaustively the behav-
ior of all objects. This fact motivates research in the context of trust relations
beyond reputation or research, in order to develop new reputation techniques.

7 Conclusion

In this paper, we analyze the research issue of the trust in numerical simula-
tion results and scientific data analytics and identify possible research directions
based on existing state-of-the-art solutions. A classic assumption that users make
when running numerical simulations and data analytics is that floating-point
computations are correct. Unfortunately, multiple examples of hardware bugs
in floating-point units and software bugs in application stack make users more
suspicious about the correctness of floating-point calculations. A significant issue
for hardware bugs is that the time until the detection and the time between the
detection of the issue and the repair could be very long. At the application level,
fixing bugs that lead to corruptions in a version of a software does not mean that
the number of corruptions would be lower accordingly. Parameterization defects
leading to wrong results could be considered as a form of user-level corruptions.
There are two possible research directions/solutions about the detection of cor-
ruptions: (1) performing on-line verification by using an external algorithmic
observer that does not trust the execution stack; (2) establishing trust relations
between levels of the execution stack.
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Abstract. With the growing scale and complexity of high-performance
computing (HPC) systems, resilience solutions that ensure continuity of
service despite frequent errors and component failures must be methodi-
cally designed to balance the reliability requirements with the overheads
to performance and power. Design patterns enable a structured app-
roach to the development of resilience solutions, providing hardware and
software designers with the building block elements for the rapid develop-
ment of novel solutions and for adapting existing technologies for emerg-
ing, extreme-scale HPC environments. In this paper, we develop analyt-
ical models that enable designers to evaluate the reliability and perfor-
mance characteristics of the design patterns. These models are particu-
larly useful in building a unified framework that analyzes and compares
various resilience solutions built using a combination of patterns.

Keywords: High-performance computing · Resilience · Patterns
Performance · Reliability · Modeling

1 Introduction

Many of the choices that drive hardware and software component designs in
emerging extreme-scale high-performance computing (HPC) systems are made
to deliver maximum application performance, but are also subject to the con-
straints of cost, power and reliability. While HPC system architectures have
evolved significantly over the past decade, these constraints are expected to force
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further dramatic changes to the system stack to achieve exascale performance.
Recent system architectures have emphasized increasing on-chip and node-level
parallelism in addition to complex memory architectures consisting of deeper
hierarchies and diverse technologies [12]. The software infrastructure, including
the system software, middleware and tools, has continued to evolve to keep up
with these changes to the system architectures to drive application performance
on these extreme-scale computers.

The reliability and availability of the recent generation of HPC systems have
been degrading in comparison to their predecessors [6]. This trend is projected to
cause future extreme-scale systems to experience unprecedented rates of faults,
which will make it difficult to accomplish productive work. The increasingly
complex, multicomponent hardware and software environment only makes the
challenge of detection of faults in a timely manner, containment of error prop-
agation and mitigation of the impact of error and failure events more difficult.
Resilience solutions must protect the correctness of HPC applications in the pres-
ence of faults, errors and failures arising from a multitude of sources, including
the system environment, the interactions between platform hardware and system
software components and applications, and variability in behavior of hardware
components, while seeking to limit the performance and power overhead they
impose on the system.

To navigate the complexities of this emerging landscape of HPC design, we
proposed a structured approach to designing HPC resilience solutions based
on the concept of design patterns [9]. In general, a design pattern is a general
reusable solution to a commonly occurring problem within a given context in any
design discipline. A pattern provides a description or template for how to solve
a problem that may be adapted to specific context. Resilience patterns describe
solutions to confront faults and their consequences. The patterns describe tech-
niques for detection, containment and mitigation of faults, errors and failure
events. They can be instantiated at any layer of the system stack. The resilience
design patterns serve as building block elements for designing complete solu-
tions, and are useful for the exploration of design alternatives for a target HPC
system environment and application workload. Section 2 describes the concept
of patterns and summarizes the different types of resilience patterns that are
organized in a catalog.

The development of resilience solutions through composition of various design
patterns lends structure to the design and implementation process by compelling
designers to consider the key issues of protection coverage, fault model, handling
capability, etc. However, objectively selecting pattern solutions that have been
examined and utilized successfully in a specific context with the intention of
adapting them to a new architecture or software environment of a future sys-
tem requires criteria based on a quantitative foundation. Mathematical models
of hardware or software components, or even entire HPC systems, which are
solved either analytically or through discrete event simulation, are useful to
HPC designers for predicting resilient behavior of the system in the presence of
various fault, error and failure events, without having to build the component
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or system. This paper develops models for analytical evaluation of reliability
and performance measures of the various resilience design patterns in our pat-
tern catalog. These models are presented in Sect. 3. The models are designed to
capture the interaction between the resilient behavior and the performance over-
head incurred by instantiating a specific pattern. Section 4 discusses approaches
to calculate reliability and performance of a solution built by combining several
patterns.

2 Background: Resilience Design Patterns

2.1 Concept

Design patterns identify the key aspects of a solution to common problem, and
presents the solution in the form of an abstract description, which provides
designers with guidelines on how to address the problem. Patterns capture the
best-known techniques to solve a problem. We developed resilience design pat-
terns [9] to support a systematic approach to designing and implementing new
resilience solutions and adapting existing solutions to future extreme-scale archi-
tectures and software environments.

The patterns describe the design decisions and trade-offs that must be con-
sidered when applying a pattern solution to a specific context. The descriptions
encourage designers to reason about the impact of applying a solution on a
system’s performance scalability and power consumption overhead as well as
consider implementation issues. Based on the patterns, we developed a frame-
work that enables designers to comprehensively evaluate the scope of protection
domain and the handling efficiency of resilience solutions.

The basic template of a resilience design pattern is defined in an event-driven
paradigm, in which each resilience design pattern consists of a behavior and a
set of activation and response interfaces. The patterns present solutions to spe-
cific problems in detecting, recovering from, or masking a fault, error or failure
event. The pattern descriptions are abstract and they may be implemented by
HPC applications’ algorithms, numerical libraries, system software, or even in
the hardware architectures. We have organized the resilience design pattern as a
catalog that contains detailed descriptions of the patterns. The catalog is avail-
able as a specification document [8], in which each resilience pattern is presented
using a structured format to enable designers to quickly discover whether the
pattern solution is suitable to the problem being solved.

2.2 Classification

We developed a pattern classification scheme that organizes the resilience pat-
terns in a layered hierarchy, in which each level addresses a specific aspect of
the problem. The classification enables designers to separately reason about the
patterns that define the scope of the protection domain and those that define
the semantics of the detection, containment and mitigation. The hierarchical
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organization of the patterns permits system architects to work on the overall
organization of the solutions by analyzing the integration of various resilience
patterns across the system stack while designers of individual hardware and
software components can focus on implementation of the patterns.

Resilience in the context of HPC systems and its applications has two key
dimensions: (1) forward progress of the system; (2) data consistency in the sys-
tem. Based on these factors, we organize the resilience design patterns into two
major categories, state patterns and behavioral patterns. The behavioral pat-
terns identify detection, containment, or mitigation actions that enable a system
to cope with the presence of a fault, error, or failure event. These patterns are
organized hierarchically and they include strategy, architectural and struc-
tural patterns.

The strategy patterns define high-level polices of a resilience solution. Their
descriptions are deliberately abstract to enable hardware and software architects
to reason about the overall organization of the techniques used and their impli-
cations on the full system design. These patterns describe the overall structure of
the solution and the key attributes of the solution and their capabilities indepen-
dent of the layer of system stack and hardware/software architectural features.
The architectural patterns convey specific methods necessary for the construc-
tion of a resilience solution. They explicitly convey the type of fault, error or
failure event that they handle and provide detail about the key components and
connectors that make up the solution. The structural patterns provide concrete
descriptions of the solution rather than high-level strategies. They comprise of
instructions that may be implemented in hardware/software components. While
the strategy and architectural patterns serve to provide designers with a clear
overall framework of a solution and the type of events that it can handle, the
structural patterns express the details so they can contribute to the development
of complete working solutions.

2.3 Designing Resilience Solutions Using Patterns

Each pattern in the resilience design pattern catalog presents a solution to a
specific problem in detecting, containing or mitigating a fault, error or failure
event. In order to construct complete resilience solutions designers must identify
patterns that provide each of these capabilities and apply them to a well-defined
protection domain. Therefore, a complete solution consists of at least one state
pattern (defining scope of the protection domain), and one or more behavioral
patterns (supporting a combination of detection, containment and mitigation
solutions).

For hardware and software designers to make practical use these patterns in
the development of resilient versions of their designs, we have developed a design
framework that a set of guidelines are necessary to combine the patterns and
refine their implementations. The framework is based on design spaces that are
arranged in a hierarchy. By working through the design spaces, designers can
convert initial outline of the resilience solution into a concrete implementation
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by considering the layer of abstraction for the pattern implementation, scala-
bility of the solution, portability to other architectures, dependencies on any
hardware/software features, flexibility to adapt the solution to accelerated fault
rates, capability to handle other types of fault and error events, the performance
and performance overheads.

3 Reliability and Performance Models for
Resilience Design Patterns

The models are intended to be useful for predicting the reliability and per-
formance characteristics of solutions built using design patterns in a notional
extreme-scale system that may use different plausible architectures and config-
urations that consist of different node counts, and may use different software
environments. Therefore, we present the analytic models for the various archi-
tecture patterns in our catalog because these patterns explicitly specify the type
of event that they handle and convey details about the handling capabilities and
the components that make up the solution in a manner independent of the layer
of system stack and hardware/software architectural features. For the checkpoint
and rollback pattern, we present models for the derivative structural patterns
due to their widespread use in HPC environments. The models for the patterns
provide a quantitative analysis of the costs and benefits of instantiating specific
resilience design patterns. The models may be applied to an individual hardware
or software component, which is a sub-system, or to a full system that consists
of a collection of nodes capable of running a parallel application.

Although the future extreme-scale systems may not look at all like the sys-
tems of today, we assume that the notional system consists of multiple processing
nodes, and that the parallel application partitions the work among tasks that
run on these nodes that cooperate via message passing to synchronize. There-
fore, we use the following notation in the descriptions of the models: N : num-
ber of tasks/processes in the parallel application; M : total number of messages
exchanged between the tasks/processes of the application; P : the number of pro-
cessors in the system; Tsystem: the operation time of the system, or the execution
time of an application.

In general, we assume that the event (whether fault, error or failure) arrivals
follow a Poisson process, the probability of an event is F(t). The reliability of
the system is:

R(t) = 1 − F (t) (1)

which indicates the probability that the system operates correctly for time t.
If the scope of the system captured by the state pattern has an exponential

event distribution, the reliability of the system takes the form:

R(t) = 1 − e−t/η (2)

where η is the mean time to interrupt of the system, which may be calculated
as the inverse of the failure rate of the system.
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3.1 Fault Diagnosis Pattern Model

The fault diagnosis pattern identifies the presence of the fault and tries to deter-
mine its root cause. Until a fault has not activated into an error it does not
affect the correct operation of the system, and therefore the pattern makes an
assessment about the presence of a defect based on observed behavior of one or
more system parameters. To incorporate this pattern in an HPC environment
requires inclusion of a monitoring component. The pattern uses either effect-
cause or cause-effect analysis on the observed parameters of a monitored system
to infer the presence of a fault. The performance overhead of this pattern may
be expressed as:

Tsystem = T0 +
n∑

k=1

tinference/β (3)

where n is the number of observed parameters of the monitored system and β is
the frequency of polling the monitored system. Since the pattern only identifies
faults, but does not remedy them, there is no tangible improvement in reliability
of the system when this pattern is instantiated.

3.2 Reconfiguration Pattern Model

The reconfiguration pattern entails modification of the interconnection between
components in a system, such that isolates the component affected by a fault,
error or failure event, preventing it from affecting the correct operation of the
overall system. The pattern may cause the system to assume one of several valid
configurations that are functionally equivalent to the original system configura-
tion, but results in system operation at a degraded performance level.

To simplify the derivation of the reliability and performance models, we
assume that the system consists of n identical components. The performance
of the system for the loss of a single component may be expressed as:

Tsystem = TFF + (1 − TFF ).
n − 1

n
+ TR (4)

where TFF represents the operational time before the occurrence of the event,
and TR is the system downtime on account of the delay for reconfiguring the
n− 1 components.

The reliability of the system may be expressed as:

R(n, t) = 1 −
n∏

i=1

(1 − Ri(t)) (5)

This equation assumes that the fault events are independent and are expo-
nentially distributed.
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3.3 Rollback Recovery Pattern Model

The checkpoint-recovery architectural pattern is based on the creation of snap-
shots of the system state and maintenance of these checkpoints on a persistent
storage system during the error- or failure-free operation of the system. Upon
detection of an error or a failure, the checkpoints/logged events are used to
recreate last known error- or failure-free state of the system, after which the sys-
tem operation is restarted. The rollback recovery pattern is a derivative of the
checkpoint-recovery provides rollback recovery, i.e., based on a temporal view of
the system’s progress, the system state recreated during the recovery process is
a previous correct version of the state of the system.

The pattern requires interruption of the system during error or failure-free
operation to record the checkpoint, which incurs an overhead. Therefore, the
operational lifetime of the system can be partitioned into distinct phases, which
include the regular execution phase (o), the interval for creating checkpoints (δ),
and the interval for recovery upon occurrence of an event (γ) to account for the
operational state lost on account of the event.

The performance of the system in absence of any error or failure events may
be expressed as:

Tsystem = o + δ/r (6)

where r is the rate of checkpointing.
The performance of the system in the presence of failure events, assuming an

exponential event rate of e−t/η (η is the mean time to interrupt of the system)
may be modeled as:

Tsystem = (TFF + γ)/η (7)

where TFF = o + δ/r.
The reliability of a system using the rollback recovery pattern may be mod-

eled as:
R(t) = 1 − e−(TFF+γ)/η (8)

for systems in which an event occurs before the interval TFF + γ, and η is the
mean time to interrupt.

3.4 Roll-Forward Recovery Pattern Model

The roll-forward pattern is a structural pattern, which is also a derivative of the
checkpoint recovery pattern. It uses either checkpointing or log-based protocols
to record system progress during error- or failure-free operation. The recovery
entails the use of checkpointed state and/or logging information to recreate a
stable version of the system identical to the one right before the error or failure
occurred. The roll-forward pattern may also use online recovery protocols that
use inference methods to recreate state.

The roll-forward pattern also requires the system to record system and/or
message state during fault-free operation. The system performance may be cal-
culated using:

Tsystem = o + δ/r (9)

where r is the rate of checkpointing or message logging.
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The performance of the system in the presence of failure events may be
captured using:

Tsystem = (TFF + γ)/η (10)

where TFF = o + δ/r.
When the roll-forward pattern instantiation uses message logging, the term

δ in these equations is calculated as the logging interval: δ = M.tlogging.
The reliability of the system that uses the rollforward pattern capability may

be modeled as:

R(t) = 1 − e−(TFF+M.tlogging)/η[for message logging implementations]

= 1 − e−(TFF+γ)/η[for checkpointing implementations]
(11)

assuming an exponential event arrival and η is the mean time to interrupt of the
system.

3.5 Redundancy Pattern Model

The redundancy pattern is based on a strategy of compensation since it entails
creation of a group of N replicas of a system. The replicated versions of the system
are used in various configurations to compensate for errors or failures in one of
the system replicas, including fail-over, active comparison for error detection,
or majority voting for detection and correction by excluding the replica whose
outputs fall outside the majority. The use of the redundancy pattern incurs
overhead to the system operation independent of whether an error or failure
event occurs.

For parallel application, the overhead depends on the scope of replication,
which may include aspects such as the amount of computation performed by
the tasks, the communication between them, etc. The overhead also depends
on factors such as the degree of redundancy, placement of the replicas on the
system resources. Therefore, to develop a precise mathematical model that rep-
resents each of these factors is complex. To simplify the analysis, we partition
the operation time of the system into the ratio of the time spent on the redun-
dant operation A and the time. This partitioning can be logically defined by
the scope of the state patterns; (1 − A) is the fraction outside the scope of the
state pattern, for which no redundancy is applied. Since the term t is taken as
the base execution time of the application, the time A.t is the time of system
operation for which redundancy is applied, while (1−A).t is the remaining time.
The term d refers to the degree of redundancy, i.e., the number of copies of the
pattern behavior that are replicated.

Tsystem = TS .((1 − A) + β.A)) + TMV (12)

where β is 1 when the state pattern is replicated in a space redundant manner
and is equal to d when applied in a time redundant manner. The term TS is
serial operation time of the system and the term TMV represents the time spent
by the majority voting logic to detect output mismatches.
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Assuming the mean time to interrupt of the system that uses the redundancy
pattern is λ, then the reliability of the system may expressed as:

R(t) = 1 −
d∏

i=1

t/λ = 1 − (t/λ)d (13)

3.6 Design Diversity Pattern Model

When a design bug exists in a system design or configuration, an error or failure
during system operation is often unavoidable. Therefore, the detection and mit-
igation of the impact of such errors or failures is critical. The n-version design
pattern applies distinct implementations of the same design specification created
by different individuals or teams. The N versions of the system are operated
simultaneously with a majority voting logic is used to compare the results pro-
duced by each design version. Due the low likelihood that different individuals
or teams make identical errors in their respective implementations, the pattern
enables compensating for errors or failures caused by a bug in any one imple-
mentation version.

Assuming that there are n versions of the system scope encapsulated by
the state pattern, 1≥ i ≤ n, then the probability that only version i executes its
function correctly while the remaining versions produce an incorrect outcome:

P (A) =
n+1∑

k=1

P (Ak) (14)

where the P(Ak) is the probability that only the version Ak out of the n versions
produces the correct outcome, while the remaining versions produce an incorrect
outcome.

The probability density function (PDF) describing the probability of failure
occurring during the system operation may be expressed as:

P (t) = ((1 − P (V ))
n+1∑

k=1

P (Ak) + P (V )) (15)

where the P(V) represents the probability that the majority voting procedure
cannot select the correct result from at least two correct versions. Therefore, the
reliability of the system using the n-version design at time t may be calculated
in terms of this probability:

R(t) = 1 − ((1 − P (V ))
n+1∑

k=1

P (Ak) + P (V )).F (t) (16)

where F(t) = e−t/η is the failure rate assuming exponential event arrival rate.
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4 Model-Based Evaluation of Resilience

The design of complete resilience solutions often requires the composition of
multiple resilience design patterns. In a complex HPC environment with numer-
ous hardware and software pattern instantiations in the various components,
the resilience to different fault events is managed by this well-defined system
of patterns. To developed a combined evaluation of the reliability and perfor-
mance characteristics of a real system that consists of several pattern solutions
implemented across the system stack requires composition of the pattern models.

For the simplified case of a system configuration that consists of N indepen-
dent components or tasks such that, if any one of the system components or
tasks fails, the entire system fails, the overall reliability of the system may be
modeled as:

Rsystem = R1 × R2 × R3 × . . . RN (17)

where the reliability Ri of a component is a function of the resilience pattern that
it instantiates. For such a configuration, the performance overhead of applying
patterns to the N components in the system is additive.

For more intricate analytic evaluation of the performance and reliability,
more complex models must be developed. There are several paradigms that
are useful for this purpose, including fault trees, block diagrams, reliability &
task graphs, Markov & semi-Markov chains, stochastic Petrinets, etc. Analytical
models that use Markov models are useful to model the intricate dependencies
between the pattern solutions in a complex multicomponent HPC environment.
Markov chains are state-space-based methods that consist of states represent-
ing various conditions associated with the system, and the transition between
states, which represent the changes in system state or configuration due to the
occurrence of a simple or compound event such as the malfunction or failure
of one or more components in the system. The assessment of system resilience
using Markov models for a multicomponent HPC environment that experiences
different modes of faults, as well as a model for the combined evaluation of
performance and reliability is the subject of ongoing research.

5 Related Work

Much research has been done on modeling techniques and tools that are useful
for reliability and performance analysis of various computing systems and appli-
cations. These approaches may broadly be categorized into [11]: (i) structural
modeling, which highlights the relationships between the system components
using representations such as block diagrams, reliability graphs and fault trees.
These models assume stochastic independence between system components; (ii)
state-space models, which model the dependencies among system components
and use representations such as Markov chains. These models are significantly
more complex due to the need for as many as 2n states in the Markov represen-
tation for n system components; and, (iii) hierarchical models, which balance the
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speed of analysis with the accuracy of the model by combining abstract struc-
tural models with the detailed Markov models [7]. There have also been several
advances in performability analysis, which aim to model the interaction between
failure recovery behavior and performance in a composite manner [1,13].

Due to the dominance of checkpoint and rollback approaches in high-
performance computing systems, several approaches have been proposed for
calculating the reliability and performance measures of systems that use this
solution. Analytic models have been developed for determining the optimum
intervals for checkpoints [14]. For applying such analysis to large-scale cluster-
based HPC systems, the model has been adapted to meet the goal of minimizing
the overall application run time [2]. For understanding the viability of rollback
recovery on extreme-scale systems, models for prediction of its performance have
been proposed. This model was developed to evaluate the rollback recovery solu-
tion for petascale HPC systems [5]. An optimal checkpoint and rollback model
has been devised that incorporates a reliability function obtained from the anal-
ysis of historical failure data from the system event log files [10]. There have
also been efforts to develop models that analyze the combination of checkpoint
restart with redundancy techniques for MPI applications [4], and for multilevel
checkpointing solutions [3].

6 Conclusion

For future extreme-scale HPC systems, designers will be required to work within
tight constraints of cost, power and reliability to achieve greater performance.
The use of design patterns enables the exploration of alternative solutions for a
specific context and provides a framework to combine individual patterns into
complete solutions. The performance and reliability models for resilience design
patterns presented in this paper allow us to develop measures to analyze the
solutions built using the patterns. While these models for the architecture pat-
terns are not detailed enough and refining them will lead to considerable added
complexity, they predict the implications of selecting specific combination of
patterns for the reliability and performance of a system in a given context. The
models developed in this paper are designed to be useful for simulation frame-
works to examine the effectiveness of a resilience solution for specific fault models
and fault rates, as well as to measure the performance and reliability character-
istics of the pattern-based solution for different system architectures, software
environments and application workloads.
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ing Research, program manager Lucy Nowell, under contract number DE-AC05-
00OR22725.
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Abstract. In this paper, we examine the inherent resilience of multigrid
(MG) and conjugate gradient (CG) methods in the search for algorithm-
based approaches to deal with node failures in large parallel HPC sys-
tems. In previous work, silent data corruption has been modeled as the
perturbation of values in the work arrays of a MG solver. It was concluded
that MG recovers fast from errors of this type. We explore how fast MG
and CG methods recover from the loss of a contiguous section of their
working memory, modeling a node failure. Since MG and CG methods
differ in their convergence rates, we propose a methodology to compare
their resilience: Time is represented as a fraction of the iterations required
to reach a certain target precision, and failures are introduced when the
residual norm reaches a certain threshold. We use the two solvers on a lin-
ear system that represents a model elliptic partial differential equation,
and we experimentally evaluate the overhead caused by the introduced
faults. Additionally, we observe the behavior of the conjugate gradient
solver under node failures for additional test problems. Approximating
the lost values of the solution using interpolation reduces the overhead
for MG, but the effect on the CG solver is minimal. We conclude that
the methods also have the inherent ability to recover from node failures.
However, we illustrate that the relative overhead caused by node failures
is significant.

Keywords: Node failure · Conjugate gradient · Multigrid · Resilience

1 Introduction

With HPC systems growing in scale, the probability of a failure occurring in
a computer component during an application’s lifetime is expected to increase.
Therefore, an algorithm’s ability to deal with lost or corrupted data gains impor-
tance, particularly in the case of future exascale systems [14, Sect. 1.1].

In this work, we examine the inherent resilience of the multiplicative geomet-
ric multigrid method [15] and the conjugate gradient method [12] applied to the
solution of linear systems defined by a sparse, positive-definite matrix. The CG
method is widely used in the solution of such systems, while geometric MG is
an optimal solver for matrices arising from certain physical problems.
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We do not consider checkpointing solutions to the node-failure problem in this
paper. We focus on better understanding the inherent resilience of the algorithms
instead. External checkpointing is expensive and incurs on overhead even if no
fault occurs.

We are interested in the effects of the starting vector of the solver, the size
of the lost region and its location in the domain, and of the way the iterand
is reconstructed after a node failure. Where applicable, we also investigate the
effect of different preconditioners. We use our own implementations of geometric
MG and CG. We also use PETSc [5,6] for experiments with the preconditioned
CG method.

1.1 Previous Work

In [11], Mishra and Banerjee explore the application of Algorithm-Based Fault
Tolerance [10] (ABFT) to the detection of faults introduced in the interpolation
and restriction operations of MG. Their model problem is the two-dimensional
Poisson equation. They introduce separate checksums for the relaxation, restric-
tion and interpolation steps, created by adding up the elements of the solution
and residual arrays, which can be used to check for faults incurred during any
of the steps.

In [8], Casas et al. explore the impact of silent data corruption in an algebraic
MG solver. The errors are introduced in the machine instructions, weighting the
probability of an error according to the number of cycles it uses. By replicating
pointers to the storage arrays, they show that MG has some inherent fault tol-
erance, reducing the count of segmentation faults with overheads smaller than
the undisturbed runtime of the application.

Agullo et al. present interpolation strategies to accelerate the recovery of
Krylov solvers in [1,2]. In their work, they consider node failures as well. They
reconstruct the solution approximation of a lost node with a process which they
call linear interpolation that depends on the structure of the matrix. In this
paper, we perform linear interpolation to reconstruct the lost elements in the
iterand without using information from the iteration matrix. Such a strategy is
expected to have significantly lower communication and computation costs.

In [3], Ainsworth and Glusa present a two-grid model that takes silent data
corruption into account. They conclude that the two-grid method is not resilient
and propose a way to solve the problem by protecting the interpolation opera-
tion. In [4], Altenbernd and Göddeke propose a way to detect and correct soft
failures for the full approximation scheme variant of MG by exploiting invariants
in the maps between levels.

In this paper, we extend earlier work by investigating the influence of
(i) the position of the node failure, (ii) the initial guess and (iii) different recovery
strategies.
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2 Model Setup

Our results are based on simulating parallel execution of the algorithms based
on the model setup summarized in the following.

Sets of contiguous grid points are assigned to different nodes of a parallel
machine. In order to apply the matrix-vector products used by the iterative
solvers, some communication is necessary between the nodes, and the required
information to be sent and received depends on the sparsity pattern of the
matrix.

To ease the application of geometric MG, we use a grid of equally spaced
points. The number of grid points is 2k + 1, for a given k ∈ N, such that the
number of segments of the domain is 2k and can be successively divided by two
to form coarser grids. Now, we consider the grids of two consecutive levels. We
call the one in the higher level the fine grid, and the one in the coarser level the
coarse grid. With this setup, the distance between grid points in the fine grid is
h = 1

2k
, The coarse grid is composed of 2k−1 segments and 2k−1 + 1 grid points.

We let each node work on an index set of 2l grid points for a given l ∈ N, l < k
for the fine grid, except for the node in charge of the leftmost index set, which
works with 2l + 1 grid points. This grid-point distribution is used also for all
arrays in the CG method when solving the discretized Poisson equation.

Parallel MG methods also require a strategy to distribute grid points of
coarser grids to the workers. The number of grid points decreases rapidly when
moving to coarser grids. If each worker is responsible for the same subdomain
in all grid levels, the communication to computation ratio becomes very high.
Better approaches to deal with this problem are proposed in [15, Sect. 6.3.2]. The
agglomeration strategy [15, Fig. 6.8] merges subdomains such that the workers
are responsible for a comparable number of nodes, representing a larger subdo-
main.

We also apply the CG method to matrices from the SuitSparse Matrix Col-
lection [9]. More details are provided in Sect. 4.1. Here, the size of the index set
of a node is set to 2−m× size of the domain for some m ∈ N, and the data of the
node is aligned such that the leftmost element of the array lies in the position
i × 2−m × size of the domain, i ∈ {0, 1, ..., 2m − 1}.

Our experiments are not run in a parallel machine. A node failure is repre-
sented by disturbing entries of the iterand as described in the following section.

Modeling the Failure of a Node
Our experiments introduce perturbations in a contiguous section of the fine-
grid solution array of the solver. This perturbation models a node failure and
the consequent loss of the information it holds. We assume that the system is
notified about the lost node and a spare node takes over the work for its index
set. In each experiment, we observe the residual after the data of a node is lost.
Node failures are introduced only once in each experiment, at different cycles of
the MG algorithm or at iterations that reach a given threshold in the relative
residual norm for CG.
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We also assume that the right-hand-side vector is backed up only once, when
the solver starts, and it can be restored cheaply. We further assume that the
sparse system matrix can also be stored and restored in the case of a failure. In
the case of the discretized Poisson equation, it is represented as a linear operator,
completely described with very few parameters and can be replicated in every
node, according to a matrix stencil.

3 Algorithms Investigated

On the one hand, we consider multiplicative geometric multigrid. This variant
of multigrid is not optimal for work in parallel (particularly if different work-
ers take care of different grid levels [15, Sect. 6].) However, we use it as a first
approximation to the subject. We use a damped Jacobi smoother with a damp-
ing parameter ω = 2

3 , and V-cycles (see [15, p. 46]) as the recursion strategy.
The solution is smoothed twice both before restriction and further twice after
interpolation. The coarsest grid consists of three grid points and is solved exactly.

On the other hand, we consider the CG method without preconditioning for
the discretized Poisson problem, and with Jacobi and Gauss-Seidel precondi-
tioners for some test problems from the SuitSparse Matrix Collection [9]. When
applied to the Poisson problem, two common preconditioners, Jacobi and incom-
plete LU factorization, do not produce interesting results. The former does not
improve the convergence, since the system matrix is not diagonally dominant,
while the latter conditions the problem perfectly, because the LU decomposi-
tion of the problem matrix has the same sparsity pattern as the original matrix.
Solving the system without preconditioning still provides information the per-
formance of the algorithm, albeit for a less favorable eigenvalue distribution.

3.1 Recovery Strategies

With a perturbation to its current approximation, MG will still converge to the
solution provided that the spectral radius of the system matrix is less than one,
the right hand side is restored and additional MG cycles are conducted. The
solver can converge from lost information in nodes if the initial guess in the
region is set to valid real numbers (see [7, p. 17]). This is equivalent to starting
the method from a different initial approximation.

The CG method also requires that its search directions are A-orthogonal to
each other, as it was shown in [13]. This can be achieved by restarting the residual
and search direction vectors after a node failure. This solution is, however, not
optimal: The CG method is not stateless and, in order to reproduce its trajectory
to the solution, we require the iterand and search direction corresponding to a
time before the perturbation, the latter of which acts as the state of the solver.
In the event of a node failure, a part of the search direction is lost as well.
For better results, the search direction should be reconstructed along with the
iterand. A solver that overcomes this limitation and is more resilient to node
failures is currently being investigated.
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In this paper, we consider two strategies to reconstruct the iterand after a
node failure: (a) The grid points corresponding to the lost node are set to zero
and (b) The grid points corresponding to the lost node are linearly interpolated
from the values neighboring the domain which are available on the neighbors of
the failed node.

Notice that these two recovery strategies require very little additional com-
munication between nodes: Filling the arrays in the replacement node with zeros
requires no additional communication, and to perform a linear interpolation we
require only the corresponding values in the boundaries of the neighbors.

We are not concerned with recovery strategies for the coarser levels of MG. In
the event of a node failure, we restart from a new approximation of the solution
in the fine grid and the information of the coarser grids is recomputed in the
solution process.

The linear interpolation approach does not translate directly to higher dimen-
sions. In that case, a different approach, such as solving the Poisson equation
for the smaller system with Dirichlet boundary conditions, could be applied to
reconstruct the iterand.

4 Experimental Setup

4.1 Test Problems

Discretized Poisson Equation. Our first model problem is the one-
dimensional Poisson equation with Dirichlet boundary conditions:

x : [0, 1] → R, Δx = f, x(0) = x(1) = 0. (1)

The equation is discretized using a uniform grid and finite differences, producing
the three-point stencil 1

h2

[
1 −2 1

]
, where h is the distance between two neigh-

boring grid points.
We fix the problem size to 216+1 grid points and the right-hand side is taken

to be a vector of ones. We examine cases where the elements of the starting vector
are set to zero or drawn from a uniform probability distribution in the interval
[−0.5, 0.5].

The problem is then divided into workers that will take a set of grid points of
size 26, 210 and 214. Node failures are introduced at the edge of the domain or at
its center. We terminate the iteration once the relative residual norm ‖r‖/‖b‖ is
below 10−5, where b is the right-hand side vector resulting from the discretization
of f . In each experiment, a single node is lost at a given time step.

We simulate node failures at fixed V-cycles in MG and store the values of
the relative residual norm before perturbing the solution. In CG, we introduce
failures when the residual reaches the values stored in the MG run. The location
of the failed nodes and the number of lost grid points are the same for each case.
This way, we can compare the two methods.
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More General Sparse Matrices. For CG, we also experiment with positive-
definite, full-rank matrices obtained from the SuitSparse Matrix Collection [9].
Properties of the matrices that we use for these experiments are summarized in
Table 1.

With the more complex sparsity patterns of these matrices, the effects of
preconditioners, such as Gauss-Seidel and Jacobi, is more interesting.

All entries of the right-hand side vector are set to one. We consider that the
solver has converged when the relative residual norm ‖r‖/‖b‖ goes below 10−15.
Again, starting vectors are set to zero or drawn from a uniform probability
distribution in the interval [−0.5, 0.5].

Table 1. Positive definite matrices from [9] used in the CG experiments.

Name bcsstk28 mhd4800b

Application Solid mechanics Magnetohydrodynamics

Rows× columns 4410 × 4410 4800 × 4800

Non-zeros 219024 27520

4.2 Overhead Metric

We do not model the communication between the nodes or the runtime of the
application. Instead, our metric is based on the number of iterations (or MG
V-cycles) necessary to reach a given relative residual norm. Aspects such as
bandwidth and latency can have an impact on the runtime of the application,
but the number of cycles necessary to reach the desired precision is propor-
tional to the runtime and, given the same parameters and initial conditions, it
is deterministic.

We measure the impact of a node failure with the relative overhead in the
number of iterations or V-cycles necessary to reach convergence. We define the
following metric: relative overhead due to a node failure = if+ir−i0

i0
, accord-

ing to the definitions shown in Fig. 1.
Thus, the relative overhead reflects how many additional iterations are

required to reach the target relative residual norm in comparison to a solver
that did not suffer a node failure. A relative overhead of less than one means
that the solver converges after a node failure to the correct solution in less iter-
ations than what restarting the method would require.
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i0

if ir

Fig. 1. Measurements used to define overhead metrics for CG and MG. The variable
i0 represents the number of iterations/V-cycles that an unperturbed solver requires to
converge, if is the number of iterations/V-cycles before a node failure occurs, and ir
is the number of iterations/V-cycles to reach convergence after a node failure.

5 Experimental Results

Poisson Problem. Node failures cause a spike in the relative residual norm
right after they occur. As depicted in Fig. 2, such a failure is not significant if it
occurs soon enough during the solution process, when the error is not dominated
by the loss of the information of the failing node but by the initial approximation.

A summary of the results is shown in Fig. 3. We see that the relative overhead
of MG decreases linearly with the logarithm of the relative residual norm when
the node failure was introduced.

The slope of the curves for MG is almost constant in all the cases. This is
related to the reduction in the residual norm at a constant convergence rate
depicted in Fig. 2. This rate of convergence is constant and depends on the
eigenvalues of the matrix and the operators used in the method. Introducing an
error in the MG solver sets the relative residual close to a “ceiling” value that
depends on the size of the lost region, and from there, the relative residual norm
continues its reduction at the same rate as before.

The relative residual norm at the start of the experiments is smaller in scenar-
ios with a zero initial approximation, so the corresponding plots do not display
failures introduced at larger residuals. The matrix of the problem increases the
norm of vectors with high-frequency components. Therefore, we can expect this
difference, because a starting vector composed of random values as we build it
contains power in the high frequencies.

The overhead of MG is very high in experiments with a zero initial guess
and where lost data is filled with zeros. This can be explained, again, with the
spectrum of the matrix: Entering a region of zeros in the iterand will add high-
frequency components that increase the residual norm by a large amount, above
the residual for the initial guess of zeros. The time required to converge at a
constant convergence rate is then longer than for the unperturbed problem.

For MG, the influence of the location of the failure is important only if the
subdomain is reconstructed by filling with zeros. If linear interpolation is used,
there is little variation in the curves between the left and the right columns of
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Fig. 2. A single case of the comparison between MG (above) and CG (below) for a
problem size of N = 216 + 1. The entries of the initial approximation to the solution
are random, following a uniform distribution in [−0.5, 0.5]. A region of size 214 is lost
at the edge of the domain when the responsible node fails. The recovery strategy is
to initialize the values in the affected region with zeros and resume the solver. The
introduction of faults appear as spikes in the corresponding curve.

the plot. We have analytical results that show that, if the information of the
lost nodes is reconstructed using linear interpolation and if the right-hand side
is constant, the location of the lost subdomain does not affect the overhead for
the Poisson problem. We cannot show details due to lack of space.

In general, the larger the region where the data is lost, the greater the over-
head. There is an exception for MG if we set the values to zero for an index set
in the middle of the domain. Then, the overhead for a large error in the center
is slightly smaller.

The CG curves in Fig. 3 show very little variation for different sizes of the
lost subdomain. In the experiments where the initial approximation is zero the
behavior is similar for variations in all other parameters: The overhead is close
to two (meaning that it takes about three times the number of iterations of the
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Fig. 3. Overhead of introducing node failures in the Poisson problem. Both CG and
MG are represented. Fill with zeros and Local linear refer to the reconstruction of the
lost values by setting them to zero and performing linear interpolation, respectively.
Some of the curves overlap.

unperturbed solver to converge), and the solver remains in a narrow interval of
relative residual norms before converging suddenly.

Other Test Problems. To test the influence of the preconditioner on the
CG method, we run experiments using the Krylov solver facilities of PETSc.
Summaries of the results are presented in Fig. 4, showing only results for the
cases with a random initial guess.
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Fig. 4. Overhead of the methods for the matrices bcsstk28 and mhd4800b in com-
parison to their reference run, in which no node failures are introduced. All depicted
experiments are started with a random initial guess, with values drawn from a uni-
form distribution in [−0.5, 0.5]. Fill with zeros and Linear interpolation refer to the
reconstruction of the lost values by filling the values for the index set with zeros and
performing linear interpolation, respectively.

Our first observation is that, for the two matrices, the overhead remains
under one in all experiments. We see for matrix mhd4800b that, as the node
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failure moves to the center of the domain, performing linear interpolation actu-
ally increases the overhead of the solver. Also, when the node failure happens
close to the center, the smallest overhead results from using no preconditioner.

Results for experiments with a zero vector as initial approximation are not
shown due to lack of space, but they yield the same conclusions.

6 Conclusions

We have investigated some recovery strategies to be employed if a node in a
parallel computer fails, represented by the loss of a contiguous set of indices
in the approximation to the solution. We explored scenarios using conjugate
gradient and geometric multigrid methods.

The results for the Poisson problem give an idea of the behavior of the solvers
after recovering from node failures. For scenarios where a zero vector is the initial
approximation to the solution, the closeness of the iterand to the solution has
a great impact on the overhead caused by a node failure for the MG method,
but it barely has an impact for CG. On the other hand, CG seems to be more
sensitive to variations in the size of the index set of the lost node.

The relative overhead tends to be smaller if the initial guess is randomized.
In this situation, the relative overhead caused by a node failure for the CG solver
is not affected considerably by the size of the lost region, but increases if the
failure occurs in later stages of the process and is, in general, greater than the
relative overhead of MG.

Our experiments with more general test problems resulted in smaller relative
overheads (below one). They also show that using no preconditioning produces
a smaller relative overhead if the node failure happens closer to the center of the
domain for one of our test matrices.

For some experiments on the Poisson problem, the relative overhead of MG is
greater than the one of CG. We aim to explore more efficient recovery strategies
for node failures for both methods.

Acknowledgement. This work has been supported by the Vienna Science and Tech-
nology Fund (WWTF) through project ICT15-113.
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Abstract. Maintaining the performance of high-performance comput-
ing (HPC) applications with the expected increase in failures is a major
challenge for next-generation extreme-scale systems. With increasing
scale, resilience activities (e.g. checkpointing) are expected to become
more diverse, less tightly synchronized, and more computationally inten-
sive. Few existing studies, however, have examined how decisions about
scheduling resilience activities impact application performance. In this
work, we examine the relationship between the duration and frequency
of resilience activities and application performance. Our study reveals
several key findings: (i) the aggregate amount of time consumed by
resilience activities is not an effective metric for predicting application
performance; (ii) the duration of the interruptions due to resilience activ-
ities has the greatest influence on application performance; shorter, but
more frequent, interruptions are correlated with better application per-
formance; and (iii) the differential impact of resilience activities across
applications is related to the applications’ inter-collective frequencies; the
performance of applications that perform infrequent collective operations
scales better in the presence of resilience activities than the performance
of applications that perform more frequent collective operations. This
initial study demonstrates the importance of considering how resilience
activities are scheduled. We provide critical analysis and direct guid-
ance on how the resilience challenges of future systems can be met while
minimizing the impact on application performance.

Keywords: Resilience · Scheduling · Performance · Collectives

1 Introduction

Fault tolerance is a key challenge to building exascale systems. Next-generation
systems are projected to have dramatically higher node counts than today’s
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Fig. 1. Example of how delays introduced by unsynchronized resilience mechanisms
may propagate along application communication dependencies. The processes p1, p2,
and p3 exchange two messages m1 and m2 in each of the three scenarios. The black
regions marked with a white δ denote the execution of coordinated (subfigure (b))
and uncoordinated (subfigure (c)) resilience activities. The grey regions denote periods
in which the execution of a process is stalled due to an unsatisfied communication
dependency.

largest systems. The complexity and component count of individual nodes are
also projected to grow. These two trends mean that future systems will experi-
ence more frequent failures than current systems. Moreover, power optimizations
(e.g., decreases in supply voltages) may further increase failure rates. Advances
in component technology and system design mean that these systems may fail
in new and different ways. In addition to fail-stop faults (e.g., node failure),
Byzantine faults [18] due to silent data corruption may also be prevalent [3].

Currently, coordinated checkpoint/restart (cCR) [5] is the most commonly-
used method for addressing failures on large-scale HPC systems. However,
because the overhead of cCR grows as systems increase in size there is concern
that cCR will no longer be a viable option for exascale systems [6]. First, the
overhead of coordinating among application processes to determine when to take
a checkpoint is expected to be prohibitive. Second, cCR (and checkpoint/restart
in general) is only capable of handling fail-stop faults; by itself, it is not able
recover from silent errors that may cause the application to produce incorrect
results. Finally, as failures become more frequent, resilient operation may require
a non-trivial amount of on-node computation to ensure that the application can
continue to make meaningful progress. The combination of these factors means
that resilience methods on future systems will be more diverse, less tightly syn-
chronized, and more computationally intensive.

Significant effort has been devoted to developing alternatives to cCR that
are able to effectively address failures on next-generation systems [6,8,19]. How-
ever, few of these existing studies have examined how decisions about schedul-
ing resilience activities may impact application performance. The mechanism
by which independently-scheduled resilience activities affect application perfor-
mance is analogous to the impact of operating system noise on HPC applications,
see e.g., [7]. Drawing on this analogy, Fig. 1 illustrates how applications may
be affected by the degree to which resilience activities are synchronized across
processes. Figure 1a represents the execution of a simple application running
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without resilience on three processes: p0, p1, and p2. Time progresses from left
to right. These processes exchange two messages, m1 and m2, at times t1 and
t2, respectively. For the purposes of this discussion, we assume that these mes-
sages represent tight dependencies: the receiving process will immediately stall
if the expected message is delayed. Figure 1b shows how the application’s execu-
tion is affected when the delays introduced by resilience are perfectly synchro-
nized. Because each process is delayed by the same amount at the same time,
the inter-process timings are preserved. In contrast, Fig. 1c demonstrates the
potential impact of allowing resilience mechanisms to execute in the absence of
inter-process synchronization. For example, if the execution of the application on
p0 is delayed by the execution of a fault tolerance mechanism, then it may delay
the transmission of message m1. As a consequence, process p1 stalls waiting for
the arrival of this message. Moreover, this delay may ultimately propagate to
process p2 because of its dependency on communication from process p1.

In this paper, we investigate how decisions about scheduling resilience activ-
ities affect application performance. Specifically, our initial study yields several
key findings:

– The aggregate amount of time spent on resilience activities is not an effective
metric for predicting application performance at scale (Sect. 3.1).

– The duration of interruptions due to resilience activities has the greatest influ-
ence on application performance; shorter, but more frequent, interruptions are
correlated with better application performance (Sect. 3.1).

– The differential impact of resilience activities across applications is related to
the applications’ inter-collective frequencies; the performance of applications
that perform infrequent collective operations scales better in the presence of
resilience activities than the performance of applications that perform more
frequent collective operations (Sect. 3.2).

This study of the importance of considering how resilience activities are
scheduled has wide-ranging implications for fault-tolerant computing in gen-
eral. It also provides critical analysis and direct guidance on how the resilience
challenges of future systems can be met while ensuring that overheads remain
tolerable.

2 Experimental Approach

2.1 Modeling Local Checkpoint/Restart

In general, the communication structure of Message Passing Interface (MPI) pro-
grams cannot be determined offline because message matches cannot be estab-
lished statically [2]. This makes modeling application performance analytically
challenging even if all parameters of the application (e.g., the complete commu-
nication structure and all relative inter-process timings) are known. We therefore
use a validated discrete-event simulation framework to evaluate the impact of
local checkpointing activities on the performance of real applications.
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Our simulation-based approach models checkpointing activities as CPU
detours: periods of time during which the CPU is taken from the application
and used to compute and commit checkpoint data. This approach allows a level
of fidelity and control not always possible in implementation-based approaches.
It also allows us to examine simulated systems much larger than those generally
available.

Our simulation framework is based on LogGOPSim [13] and the tool chain
developed by Levy et al. [20]. LogGOPSim uses the LogGOPS model, an exten-
sion of the well-known LogP model [4], to account for the temporal cost of com-
munication events. An application’s communication events are generated from
traces of the application’s execution. These traces contain the sequence of MPI
operations invoked by each application process. LogGOPSim uses these traces
to reproduce all communication dependencies, including indirect dependencies
between processes which do not communicate directly.

LogGOPSim can also extrapolate traces from small application runs; a trace
collected by running the application with p processes can be extrapolated to sim-
ulate performance of the application running with k ·p processes. The extrapola-
tion produces exact communication patterns for MPI collective operations and
approximates point-to-point communications [13]. The validation of LogGOPSim
and its trace extrapolation features have been documented previously [13]. Simi-
larly, its ability to accurately predict local checkpointing overheads has also been
documented [8,20].

2.2 Simulating Different Resilience Schedules

To simulate the impact of depriving the application of CPU cycles in order
to perform local resilience operations (like checkpoints), LogGOPSim accepts a
resilience activity trace: an ordered list of events, expressed as the start time
and duration of each event. We use three different aggregate resilience activ-
ity percentages (1%, 5%, and 10%), each representing an aggregate amount of
computation time taken away from the application over the course of the entire
run. These aggregate amounts are then scheduled along a spectrum from high
frequency, low duration detours to low frequency, high duration detours. The
sum total of noise in each schedule equals the given aggregate percentage.

We make two simplifying assumptions in our investigation. First, we assume
no failures. While including failures would not change our overall message and
results, we disregard them in order to better understand the measured overheads.
Second, we assume no additional interference events occur in the run of the
application (e.g. slowdowns due to true operating system noise).

In the remainder of the paper, we present results from simulation experiments
based on the behavior of a set of four workloads. These workloads were chosen to
be representative of scientific applications that are currently in use and compu-
tational kernels thought to be important for future extreme-scale computational
science. They include:

– LAMMPS: A scientific application developed by Sandia National Laboratories
to perform molecular dynamics simulations. For our experiments, we used the
Lennard-Jones(LJ) and 2D crack potentials [24].
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– HPCCG: A conjugate gradient solver from the Mantevo suite of mini-appli-
cations [12].

– LULESH: An application that represents the behavior of a typical hydro-
code [17].

LAMMPS is an important U.S. Department of Energy (DOE) application
which runs for long periods of time on production machines and exhibits a range
of different communication structures. HPCCG represents an important com-
putational pattern in key HPC applications. LULESH is a proxy for important
exascale applications developed by the DOE’s Exascale Co-Design Center for
Materials in Extreme Environments (ExMatEx).

3 Results and Discussion

Our experiments explored the effect of different strategies for scheduling
resilience activities on the runtime of our chosen workloads. To make our results
applicable across a wide range of resilience strategies and application require-
ments, we used three general classes of resilience-related activity. These classes
are characterized by the percentage of total application runtime taken up by
resilience activity; we studied cases where 1%, 5%, and 10% of application time
was used.

For each case, we explored different representations of the actual resilience
activity. While the total time taken for resilience might sum up to, say, 5%
of application runtime, the frequency and duration of those activities can vary
depending on overall resilience strategy, hardware capabilities, contention for
storage, and other factors. We have explored the tradeoffs between frequency
and duration in uncoordinated checkpointing systems in previous work [8,25]. We
focused in these experiments, however, on modeling this tradeoff more abstractly.

We generated a detour list for a set of discrete frequency/duration combina-
tions in each of the 1%, 5%, and 10% cases. A detour list consists of a set of pairs
(timestamp, duration) indicating when each detour begins and how long it lasts,
representing the particular frequency/duration tradeoff for a particular scenario.
We then conducted simulations using execution traces of our chosen workloads
and each detour list, simulating the execution of the workload in the presence
of the indicated resilience activity pattern and (implicitly) amount. For each
case, we simulated the effects of the following combinations of detour frequency
and duration: 100 KHz/110 ns, 10 KHz/1.1µs, 1 KHz/11µs, 100 Hz/110µs, and
10 Hz/1.1 ms. While not all of these combinations of detours and resilience activ-
ity amounts may represent conditions that occur in practice, our goal in this work
is to explore the nature of the tradeoffs in this space rather than examine the
effects of particular ones on applications or systems in detail.

We present results for all of our chosen workloads with 32Ki simulated pro-
cesses, and due to technical constraints, for 3 workloads with 64Ki simulated
processes1.
1 We use the binary prefixes defined by the International Electrotechnical Commission

(IEC). For example, 1Ki processes denotes 210 = 1024 processes.
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Fig. 2. 1% resilience activity with varying frequency/duration compositions.

Fig. 3. 5% resilience activity with varying frequency/duration compositions. The bars
for LAMMPS-crack at 10 Hz/5.5 ms in each plot have been truncated; the magnitude
is displayed as an annotation in the plot.

3.1 Discussion

The results of our experiments are presented in Figs. 2, 3 and 4. These figures
plot the total application time-to-solution slowdown for each scenario. The most
general result of note from these figures is that each application behaves differ-
ently under each resilience activity schedule, with LAMMPS-crack showing the
greatest impacts and LAMMPS-lj showing the least. Also of significance is that
the composition of a resilience activity (the frequency and duration) has a greater
effect on application runtime than does the aggregate amount of that resilience
activity. This is easily visible in all of the cases (Figs. 2, 3 and 4), where increas-
ing the duration of detours eventually results in significant slowdowns for all
our tested workloads, even as the total time taken in detours remains the same.
Similar results were observed at the two different simulated process counts we
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Fig. 4. 10% resilience activity with varying frequency/duration compositions. The bars
for LAMMPS-crack at 10Hz/11 ms in each plot have been truncated; the magnitude
is displayed as an annotation in the plot.

studied, implying that the effect of increasing duration appears to be generally
insensitive to application size.

Our results also raise the possibility that there may not be a strictly linear
relationship between application slowdown and the proportion of runtime spent
servicing each detour event. In other words, a factor of 5 increase in duration
between two cases, does not imply a factor 5 overall slowdown in application
performance. In fact, in most cases it is strictly less. Lastly, it is important to
note that for each of the aggregate noise cases (1%, 5% and 10%), there exists a
fine-grained schedule that significantly reduces overall impact and therefore can
possibly be exploited by future applications.

3.2 Application Inter-collective Times

In this section, we examine the reasons behind the differential performance
impact across applications described in the previous section. Specifically, we
examine the relationship between application performance and the application’s
inter-collective period.

Figure 5 shows the discrete cumulative distribution functions (CDF) of the
inter-collective periods for the MPI collective operations performed by each of
our workloads. In this figure, a point at (x, y) indicates that, for a given applica-
tion, at least (x ∗ 100)% of the inter-collective times are smaller than y seconds.
For example, Fig. 5d shows that for LULESH 100% of the inter-collective times
for MPI Allreduce() are less than 150 ms.

Our first observation is that MPI Allreduce() is the most common collec-
tive operation for all four workloads. In fact, for LULESH and HPCCG, MPI -
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Fig. 5. Discrete cumulative distribution function (CDF) of the MPI collective inter-
arrival time for each application. note: the CDF for MPI Barrier() is represented
by a single point for both LAMMPS-crack and LAMMPS-lj because only two such
operations occur during their execution.

Allreduce() is the only collective operation.2 The next observation is that the
frequency of MPI Allreduce() varies significantly between applications:

– in HPCCG, the inter-collective times for MPI Allreduce() are bimodal:
approximately half are between 40 and 50 ms, and approximately half are
between 300 and 500 ms;

– in LAMMPS-crack, 80% of the MPI Allreduce() inter-collective times are
between 9 and 10 ms, but there are also a small number inter-collective peri-
ods that exceed 150 ms;

– in LAMMPS-lj, half of the MPI Allreduce() inter-collective times are between
10 and 100 ms, but more than 10% are in excess of 5 s; and

– in LULESH, all of the MPI Allreduce() inter-collective times are approxi-
mately 100 ms.

2 Although MPI Allreduce() is the only collective operation that we observed in our
experiments, the occurrence of MPI collective operations may depend on the inputs
provided to the application.
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We also observe from these CDFs that for the total aggregate noise cases,
applications which perform more frequent collective operations are slowed down
more by resilience activities that are longer in duration but occur less frequently.
The exact interplay between inter-collective periods and resilience activity dura-
tions is beyond the scope of this paper, but is fertile ground for future investi-
gation.

4 Related Work

In this paper, we study how the schedule of a general resilience mechanism
can influence HPC application performance. To the best of our knowledge, no
published works explicitly examine the influence of schedules. In this section we
attempt to provide an overview of more loosely-related work.

Our study has origins in published research that characterizes application
behavior in the presence of OS noise [7]. Collectively, this research shows that
the pattern of OS noise events determines the impact on application performance
and the benefits of coordination. Moreover, it shows that the duration of an OS
noise event can significantly slowdown application performance.

Closely related, Ferreira et al. [8] studied the effects of communication on
uncoordinated checkpointing at scale. This previous work makes a number of
contributions that relate directly to the present paper. First, the authors show,
contrary to previous work in the area, that a completely uncoordinated local
checkpointing protocol can lead to significant application slowdown at scale.
These local checkpoints can lead to process delays that can propagate through
messaging relations (typically MPI collectives) to other processes causing a cas-
cading series of delays. To ameliorate these slowdowns, the authors demonstrate
how a hierarchical (or clustered) checkpointing approach [11] typically used to
reduce message log volumes also can be effective at reducing impacts from local
checkpoints. While our work has antecedents in this previous work, we investi-
gate the role of fine-grained scheduling in reducing overheads for local resilience
approaches.

Checkpoint/restart protocols in HPC systems have been extensively stud-
ied. There are many descriptions of the foundations of both coordinated and
uncoordinated CR protocols available in the literature [16,21]. Beyond uCR and
cCR, many other checkpoint/restart protocols have been proposed. Alvisi et al.
examined the performance impact of coarse-grained communication patterns
on the performance of three communication-induced checkpoint/restart (ciCR)
algorithms [1]. ciCR uses the application’s communication patterns to avoid
checkpoints that cannot be used to recover a consistent global state. Hierar-
chical checkpointing attempts to group application processes into clusters that
communicate frequently with each other [11,22]. cCR is used within a cluster
and uCR plus message logging is used between clusters. Because the number of
processes in a cluster is smaller than the total application, contention for filesys-
tem resources is reduced. Also, because most of the communication is within a
cluster, the volume of message log data is also reduced.
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Significant research has been conducted on how to reduce checkpoint com-
mit time. The approaches that have arisen out of this research include: com-
pression [14], exploiting faster storage media [23], excluding unchanged memory
contents from checkpoints [9,10], and de-duplication [15].

In this paper, we extend the results of these studies of checkpointing and
general resilience mechanisms to examine how best to schedule these activities to
reduce application performance. Specifically, we show that, as a whole, lowering
the duration of each resilience event is more important to performance than
decreasing the frequency.

5 Conclusion

Near-future HPC application developers will need to understand the performance
implications of their design choices. This is especially true for applications imple-
menting fault-tolerance strategies, as predicted scalability ceilings force explo-
ration of alternate approaches. The work we describe in this paper contributes in
several ways. We have presented a simulation-based approach for examining the
tradeoffs between resilience activity duration and frequency, without regard to
a particular resilience strategy. Our results reinforce earlier performance charac-
terizations of uncoordinated checkpointing which suggested that detour duration
has greater impact than detour frequency. This paper confirms this result for a
range of frequency/duration compositions of a particular detour profile.

We intend to pursue several directions of future work based on this research.
One is characterization of the relationship between the overall amount of
resilience activity and the duration of detours for particular applications. Can
an application’s communication pattern suggest, a priori, how resilience activ-
ities should be scheduled to minimize the impact on application performance?
We also plan to extend our study to additional workloads and a wider range of
application sizes.
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Abstract. Many scientific problems rely on the efficient execution of
stencil computations, which are usually memory-bound. In this paper,
stencils on two-dimensional data are executed on NUMA architectures.
Each node of a NUMA system processes a distinct partition of the input
data independent from other nodes. However, processors may need access
to the memory of other nodes at the edges of the partitions. This paper
demonstrates two techniques based on machine learning for identifying
partitioning strategies that reduce the occurrence of remote memory
access. One approach is generally applicable and is based on an unin-
formed search. The second approach caps the search space by employ-
ing geometric decomposition. The partitioning strategies obtained with
these techniques are analyzed theoretically. Finally, an evaluation on a
real NUMA machine is conducted, which demonstrates that the expected
reduction of the remote memory accesses can be achieved.

Keywords: NUMA · Stencil computation · Data partitioning

1 Introduction

Stencils on two-dimensional data are a major field of research. [2,6,16,19] Sev-
eral scientific problems are solved with the help of stencils, ranging from image
processing to fluid simulations. For instance, stencils are used to solve partial dif-
ferential equations (PDEs) numerically [15] and linear equations with the Jacobi
method [8]. Stencil computations iteratively update each cell of an input data
matrix, using only a neighborhood of cells at a time to obtain the values. In
real-world applications, this often leads to high computational intensities, which
is why stencils are usually executed in a parallel fashion. Causing a high load on
the memory channel, stencil computations are usually memory-bound.

Comprised of multiple processors and dedicated memory units, modern non-
uniform memory access (NUMA) architectures facilitate massively data-parallel
computations. With this set-up, processors can access their local memory fast
and independently from other processors. Remote physical memory can still
c© Springer International Publishing AG, part of Springer Nature 2018
D. B. Heras and L. Bougé (Eds.): Euro-Par 2017 Workshops, LNCS 10659, pp. 597–609, 2018.
https://doi.org/10.1007/978-3-319-75178-8_48
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be accessed via inter-chip interconnects. However, remote memory access bears
higher latencies and reduced bandwidth.

When executed on NUMA architectures, stencil computations require that
the input data grid is partitioned such that each processor can perform a distinct
portion of the computation in parallel to one another. When a processor updates
cells at the border of its data partition, neighboring cells might not be located
in the node’s local memory. Hence, expensive access to remote data partitions is
inevitable. The number of remote memory accesses is greatly influenced by the
specific shape of the partitions, which raises the question which partitionings are
most suitable for stencil computations on NUMA systems.

This work aims at finding partitionings that reduce the occurrence of remote
memory access on modern NUMA systems. For this purpose, a technique based
on evolutionary algorithms is devised to search for optimized partitionings.
Building on this approach, a second technique is developed that solves the parti-
tioning problem geometrically. Based on findings from experiments with the two
techniques, the partitionings are elucidated further from a theoretical perspec-
tive. Finally, a practical evaluation on a real NUMA hardware shows that the
number of remote memory accesses can indeed be decreased with the presented
approaches.

The remainder of the paper is organized as follows: Sect. 2 presents related
work. Section 3 describes two approaches how machine learning can be applied
to acquire suitable data partitionings. Section 4 provides a theoretical analysis
of the communication cost and compares the state of the art partitioning to the
proposed partitioning for 5-point stencils. Section 5 assesses the performance on
a four-node NUMA system. Finally, Sect. 6 summarizes this paper and highlights
key results.

2 Related Work

Here, we provide a brief overview of preceding work dealing with performance
optimization techniques for stencil computations and NUMA systems. At an
abstract level, vectorization [6] and blocking [19] are the two general approaches
for optimizing stencil computations. Nguyen et al. combined both spatial and
temporal blocking to optimize stencil computations [11]. Dursun et al. concluded
that the advantage of blocking is highly dependent on finding the right block
size [4]. Strzodka et al. introduced an approach called CORALS, which combines
temporal blocking with vectorization [18]. Shaheen and Strzodka analyzed the
effect of CORALS on NUMA systems [16]. However, the approach turns out not
to be scalable on NUMA architectures.

Datta conducted research on stencil code optimizations and provided basic
recommendations for NUMA systems [2]. Plauth et al. evaluated methods for
introducing NUMA-awareness to the SIFT algorithm, which also employs stencil
computations [13]. In a subsequent project, these findings resulted in a frame-
work that assists C++ developers in maintaining NUMA-awareness, however
the focus has shifted away from stencil computations [5].
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Partition Shapes. An alternative way to approach performance optimization
is to focus on the communication cost by optimizing the shape of the input data
partitions.

In 1986, Reed et al. [14] studied the characteristics of rectangular, triangu-
lar, and hexagonal spatial partitionings. The authors defined computation as
a function of a partition’s area and communication as a function of the par-
tition’s perimeter. They found that for 5-point stencils, hexagonal partitions
yield the highest ratio of computation to communication. The authors evaluate
the partitionings and show that good performance can only be achieved when
considering the combination of stencil, partitioning, and system architecture. In
1991, Abraham and Hudak [1] extended this research by introducing algorithms
to automatically partition the input data based on rectangular and hexagonal
shapes.

In 2010, Orozco et al. [12] studied a number of different tilings for stencil
computations. They provided a proof that a diamond shaped partition has the
optimal ratio of computation to communication and describe how input data can
be partitioned accordingly for a system with 64 processors. Their performance
evaluation demonstrated the efficiency and performance of the diamond tiling in
comparison to the other partitioning approaches.

In 2014, DeFlumere [3] showed that – by the example of matrix multipli-
cation algorithms – the optimal partitioning for large processor numbers is not
optimal for smaller processor numbers or systems with heterogenous processors
and systems with differing communication topologies.

Inspired by these findings, we studied the optimal partitionings for systems
with a small number of computational nodes – such as processors or NUMA
nodes. We show that while the optimal partitioning approach for large processor
counts is known to be diamonds, a small number of processors or NUMA nodes
require a different tiling.

3 Evolutionary Approaches

We discuss two approaches for applying machine learning to find suitable data
partitioning strategies for stencil computations on NUMA systems. The first
approach can be considered an uninformed search, which is applicable to a wide
range of algorithms. The second approach takes the special characteristics of
the 5-point stencil into account to produce a more efficient albeit less general
solution by implementing a geometric decomposition.

Given input matrices of arbitrary type and a latency matrix indicating a
NUMA topology, the evolutionary algorithms try to produce an optimal index
range mapping matrix indices to NUMA nodes. Both approaches aim at min-
imizing the total occurrence of remote memory access in scenarios where the
stencil computation is distributed across multiple NUMA nodes.
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3.1 Uninformed Search

The uninformed search is suitable for various algorithms as it is provided with
a function describing the access pattern. It is implemented as an evolutionary
algorithm that works by iteratively selecting the best individual and then creat-
ing multiple mutations of it yielding the individuals of the next generation. An
individual represents a system instance, which holds a collection of nodes and a
partitioning. The individuals are rated by a cost function that iterates over each
cell and, depending on the partitioning, lets the according node apply the access
pattern (for instance, a stencil function), and counts remote accesses. The accu-
mulated cost of remote accesses during an individual’s simulation step represents
its fitness value. The cost for performing the access on the corresponding remote
node is based on the latency matrix of the NUMA topology. In the mutation
step, new individuals are created based on the parent allocation by randomly
exchanging cells with different processor assignments. Parallelization is achieved
using the parallel mode of libstd++, which is a parallel implementation of most
of the algorithms found in the C++ Standard Library.

Optimization Strategies. In order to speed up the evolutionary algorithm,
some problem-specific optimizations are applied. Thereby, the resolution of the
input data can be increased, which allows for the timely computation of parti-
tionings with more nodes. In this implementation, an elitist selection is imple-
mented by employing a Bernoulli distribution to decide whether the parent indi-
viduals should become part of the new generation or not.

With some states, performing single mutations always reduces the fitness
value, while performing multiple mutations at once may result in a better par-
titioning. To overcome local minima, it is often necessary to mutate cells that
are located close to each other. This is achieved by using a normal distribution
around the first change to determine areas for the subsequent changes. In order
to scale, the standard deviation of the distribution is inferred from the input
data size and the number of nodes.

The algorithm sometimes moves away from the best partitioning instead of
refining it, even when elitist selection is applied. While this is intended behavior
to escape local minima, it might lead to a longer runtime, especially in the late
phase when only refinements are required. A strategy to address this problem
is to reset the population with mutations of the best known solution up to that
point in time. These resets are performed based on the number of generations
that have passed since the best known solution was replaced with a better one.
Furthermore, the frequency of these resets is decreased when they do not lead
to a successful outcome.

Results. As illustrated in Fig. 1, the results yielded by this approach corrob-
orate the findings pointed out by Reed et al. [14], i.e. that diagonal partition
borders are preferable since neighboring cells along diagonal borders share a
common remote cell that both are accessing.
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Fig. 1. Partitionings yielded using uninformed search for a 5-point stencil on two to
five nodes with fully-connected topology and square-shaped input data.

Unfortunately, the evolutionary technique reaches its limits soon with higher
input data resolutions, which are necessary to find configurations with more
nodes. Due to the search space explosion, partitionings with many nodes can
hardly be represented without rasterization artifacts on smaller resolutions. Nev-
ertheless, the experiments led to some interesting insights, which the geometric
decomposition approach is taking advantage of.

3.2 Geometric Decomposition

To overcome the limitation imposed by the search space, the geometric decom-
position works with geometric shapes instead of a raster of discrete cells. The
idea is depicted in Fig. 2. In order to partition a given outline shape into poly-
gons, a configurable number of straight lines are randomly placed to subdivide
the space. The resulting fragments (referred to as atomic polygons) are then
combined to as many shapes as there are NUMA nodes in the system. For this
purpose, all combinations are evaluated to determine the best candidate. More
optimized partitionings can be found by performing these steps multiple times
with different random lines. To further refine the partitionings obtained using
this technique, the geometric approach employs a local search.

Fig. 2. Geometric approach: Random lines are generated (a) to fragment the space
into atomic polygons (b), which are merged to match the node count (c).

To find the best partitioning given the initial randomly generated lines, a
cost function is developed that expresses remote access to other nodes in a
continuous, two-dimensional space. A consequence of this approach is that the



602 F. Feinbube et al.

areas of the partition shapes are not necessarily the same size. Therefore, not
only the remote communication cost have to be minimized but also the variation
between the area sizes. To improve the efficiency of our approach, we refine the
best results by applying random changes to the angle and distance of the lines
following the principle of simulated annealing [9].

To map the resulting shapes to an actual NUMA system, the shapes are
converted to a discrete partitioning through rasterization.

Cost Function. The cost of remote communication in the geometric app-
roach are caused by the edges shared by adjacent polygons with different labels.
Mapped to cell grids, polygon edges can be seen as rasterized line segments
spanning Δx cells horizontally and Δy cells vertically. Without loss of general-
ity, assume that Δx > 0, Δy > 0, and Δx ≥ Δy. Seen from the node having
the lower right partition, there are Δx + Δy remote accesses to the node hav-
ing the upper left partition – in general, |Δx| + |Δy|. However, some of the
remote accesses are performed twice and can hence be fetched from the cache.
This always amounts to min (|Δx| , |Δy|) cached remote cost. Thus, the cost for
remote access is:

|Δx| + |Δy| − min (|Δx| , |Δy|) = max (|Δx| , |Δy|) (1)

When considering polygon edges as rasterized line segments of infinite reso-
lution, the cost of a polygon edge e = (p1, p2) becomes:

cost(e) = cost((p1, p2)) = max (|p1,x − p2,x| , |p1,y − p2,y|) (2)

Abraham and Hudak come to similar conclusions [1]. For a single atomic polygon
A = (e1, e2, . . .), the communication cost caused by remote accesses from inside
the polygon is:

cost(A) =
∑

e∈A

cost(e) (3)

In principle, the remote communication cost of the entire geometric parti-
tioning would be the sum of the cost of all atomic polygons. However, some
edges could have been subject to merging polygons in order to match the num-
ber of available nodes. Figure 3a indicates merged edges using the same color
for adjacent polygons. The cost of these merged edges m1,m2, . . . have to be
subtracted from the total remote communication cost – once for each of both
adjacent atomic polygons. Additionally, the border edges of the outline shape
do not contribute any cost, as accesses are neither performed from inside the
outline shape to the outside nor the other way around. For this reason, the cost
of the outline shape’s border edges is subtracted as well.

With atomic polygons A = (A1, A2, . . .), merged edges M = (m1,m2, . . .),
and outline edges O = (o1, o2, . . .), the total cost are then:

cost(A,M,O) =
∑

A∈A

cost(A) − 2 ∗
∑

m∈M

cost(m) −
∑

o∈O

cost(o) (4)
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Fig. 3. The best partitionings found by the geometric approach for three to ten nodes
(a). Two partitionings for eight nodes with diamond shapes (b).

Since the geometric approach does not guarantee that all partition shapes
have the same area, the presented implementation uses a score function to simul-
taneously minimize the cost function as well as the variation between the par-
tition shapes’ areas. Assuming the areas of the smallest and biggest shape are
areamin(A,M) and areamax(A,M), respectively, the total score is defined as:

score(A,M,O) = cost(A,M,O) ∗ areamax(A,M)
areamin(A,M)

(5)

Results. Figure 3a shows the best partitionings found for three to ten nodes
on square-shaped data when only diagonal lines were used. Diagonal lines were
used since they have lowest remote communication cost – while the restriction
improves the efficiency of the geometric approach.

Notably, the results for three to five nodes almost match the results obtained
with the uninformed search. In the experiments, two patterns recurred fre-
quently: a two-part stripe pattern and a diamond pattern.

Two-Part Diagonal Stripe Pattern. An interesting finding is that all partition-
ings with an even number of nodes seem to follow a similar pattern. The partition
shapes form diagonal stripes, each cut in half by a single diagonal line that ranges
from one corner to the opposite one.

Diamond Pattern. For configurations with eight nodes, two better results exist.
When allowing the algorithm to generate more random lines, the patterns in
Fig. 3b emerge. It is interesting to observe that in these cases, triangular shapes
in the corners and diamond-like structures in the middle seem to be preferable.
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Hierarchical Application. The geometric technique can be applied to hier-
archical NUMA topologies. In such cases, each partition is further divided into
sub-partitions, using the same approach. Using this technique, large NUMA sys-
tems with hierarchical topologies (such as the SGI UV300H [17]) can be handled.

4 Theoretical Analysis

In this section, we provide a theoretical analysis of the partitionings observed in
Sect. 3. Optimal communication cost is obtained when maximizing the area of
the partitions in relation to the perimeter. When rectangular partition shapes
are assumed, squares are the optimal rectangular partitioning for 5-point sten-
cils [14]. However, partitioning a given outline with just squares is only possible
for n NUMA nodes with n = k2 for some k ∈ N

+.
For our four-node test system, a square-based partitioning is trivial: Each

shape is circumvented by four edges of length a
2 , where a is the side length of

the two-dimensional input matrix. Each edge amounts to the cost of a (a2 once
for both of the adjacent squares). The total cost are cost = 4

(
2 ∗ a

2

)
= 4a.

Fig. 4. Pattern yielded by the geometric approach, labeled with length ratios.

Next, we consider the non-rectangular four-node pattern with the lowest cost
yielded by the geometric approach (see Fig. 4). As shown in Eq. 6, the commu-
nication cost amount to 3.414a, which is less than the cost of the rectangular
partitioning (4a). Notice that this calculation expects caching to be present. As
only diagonal lines occur in the pattern, both projections would have the same
length.

cost = 2 ∗ b + 2 ∗ (b + f) =
(√

2 + 2
)

a = 3.414a (6)
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5 Evaluation

Here, we evaluate the approaches presented in Sect. 3 using a fully connected
four-node NUMA system (see Table 1) with a 5-point cross-type stencil being
applied to square-shaped data. This evaluation is based on the partitionings
discussed in Sect. 4. Based on the theoretical analysis, we expect that the remote
access cost of the partitioning pattern roughly amount to about 85% (based on
the ratio 3.414a

4.0a ) of the cost of the rectangular reference partitioning.

Table 1. Detailed specifications of the reference system.

HPE ProLiant DL580 G9 Server

CPU 4 × Intel Xeon E7-8890 v3 (Haswell), 18C/36T, 2.5 GHz

Memory 16 × 8 GB DDR4-1600 reg. ECC DIMM

Topology 4 Sockets, Fully interconnected, RMA Penalty: ca. 1.4 [7]

To verify this hypothesis, the number of remote accesses is counted while
performing the stencil computation. In order to reduce noise in the measure-
ment, the simulation of the stencil operation only performs the memory accesses
without executing the actual computation.

5.1 Method of Measurement

While the stencil operation is not required to be computed for evaluation pur-
poses, it is important to make sure that memory accesses are still performed.
In particular, the compiler must not optimize any memory access away. To have
full control over the implementation inline assembler is used.

To evaluate the effect of the refined partitioning, it necessary to count how
many remote memory accesses are performed by the nodes. For this purpose, off-
core hardware performance counters are used. To filter off-core response events,
certain fields in the model-specific registers (MSR) have to be configured. With
this mechanism at hand, it is possible to tailor a special filter suited to measuring
memory accesses on remote nodes regarding data and not instructions. Linux
perf is used to access the off-core performance counters.

In order to measure only the impact of the introduced partitioning pattern,
it is necessary to eliminate all other factors on the number of remote mem-
ory accesses. For this reason, prefetchers are disabled in the evaluation, even
though they would have an effect in practice. Furthermore, automatic NUMA
balancing is disabled to make sure the Linux kernel does not interfere with the
memory placement. Lastly, functions have been implemented that verify that
thread bindings and memory allocations are performed as expected.
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Fig. 5. For larger input grid sizes (a) and larger cell sizes (b), the theoretically com-
puted improvement of the remote communication cost is achieved. Increasing the kernel
size has no effect (c). However, when data is written locally, the cache coherence pro-
tocol introduces additional remote accesses (d).

5.2 Results

In our measurements, a 5-point cross-type stencil is applied to a two-dimensional
input matrix. The geometric partitioning and the rectangular partitioning from
Sect. 4 are both tested and the impact of input data grid size, cell size and kernel
size are investigated.

Dimension of the Input Data Grid. The cell size was fixed at 10 kB, and the
side length ranged from 10 to 1000 cells. The anticipated value of 85% is reached
starting at resolutions of 100 × 100 (see Fig. 5a). This value cannot be obtained
with smaller side lengths, presumably because the resolution is not high enough
and introduces aliasing artifacts.

Variable Cell Size. The grid dimension is fixed to 1000 × 1000, and the cell
size is varied from 10 to 10000 bytes. At around 3 kB, the expected improvement
regarding the number of remote memory accesses is almost reached (see Fig. 5b).
Additional investigations are necessary to identify why the improvements do not
affect smaller cell sizes.

Kernel Size of the Cross-Type Stencil. A grid of 1000 × 1000 cells of size
5 kB is used and the stencil size ranges from 5 to 41 to evaluate the impact of the
stencil size. The result shows that the kernel size does not influence the obtained
improvement concerning the number of remote memory accesses (see Fig. 5c).



Data Partitioning Strategies for Stencil Computations on NUMA Systems 607

Additional Observations. When actual computations are performed, data is
written locally in addition to reading remote data. This results in increased node-
interconnect utilization, likely to be caused by cache coherency traffic among
nodes (see Fig. 5d). To represent real world scenarios more accurately, the theo-
retical model needs to be extended to incorporate the remote accesses introduced
by the cache coherency protocol.

Furthermore, the findings of this evaluation lead to the question which actual
systems could benefit from the newly found partitioning patterns. Even with a
well-suited system, the positive effects of the partitionings highly depend on the
exact configuration, as Reed et al. [14] noticed as well. Partitioning patterns need
to be tailored to the exact number of NUMA nodes and the caching behavior.
Otherwise, applying the partitioning patterns can be counterproductive. While
the geometric decomposition approach is more efficient, the flexibility of the
uninformed search approach allows the consideration of further system charac-
teristics, such as cache line sizes, in its fitness function.

6 Conclusions

With NUMA architectures, accesses to the memory of remote nodes bear higher
latencies than local accesses. Multiple solutions were developed with the objec-
tive of finding data partitionings that reduce the demand of remote memory
accesses during the execution of stencil operations.

First, an uninformed search technique based on evolutionary algorithms was
developed. This approach was conceived to make as little assumptions about
the data, memory access patterns, and the system configuration as possible.
Even though the evolutionary technique is limited to small data grid resolutions
due to the large search space, multiple recurring partitioning patterns could be
observed. Building on these findings, a second, geometric approach was devised.
This technique is based on the temporary assumption that the input data grid is
a resolutionless, two-dimensional space. In this space, partitionings are searched
for by fragmenting the space into simple, polygonal shapes. A new cost function
was introduced in order to translate the concept of remote memory demands
to this continuous representation. The implementations of each approach are
available online1. They are discussed in detail in [10].

A novel partitioning pattern for a four-node NUMA system is identified,
analysed and evaluated – showing the projected communication cost reduction to
85%. Furthermore the impact of various scaling factors was evaluated. To provide
consistent performance improvements in real world scenarios, the influence of the
cache coherency protocol has to be further investigated.
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Abstract. Asymmetric single-ISA multicore processors (AMPs), which
integrate high-performance big cores and low-power small cores, were
shown to deliver better energy efficiency than symmetric multicores for
diverse workloads. Previous work has highlighted that this potential of
AMP systems can be realizable with help from the OS scheduler. Notably,
delivering fairness on AMPs still constitutes an important challenge, as
it requires the scheduler to accurately track the progress of each thread
as it runs on the various core types throughout the execution. In turn,
this progress depends on the speedup that an application derives on a big
core relative to a small one. While existing fairness-aware schedulers take
application relative speedup into consideration when tracking progress,
they do not cater to the performance degradation that may occur nat-
urally due to contention on shared resources among cores, such as the
last-level cache or the memory bus. In this paper, we propose CAMPS,
a contention-aware fair scheduler for AMPs. Our experimental evalua-
tion, which employs real asymmetric hardware and scheduler implemen-
tations in the Linux kernel, demonstrates that CAMPS improves fairness
by 10.6% on average with respect to a state-of-the-art fairness-aware
scheme, while delivering higher throughput.

Keywords: Asymmetric multicore · OS scheduling · Fairness
Linux kernel

1 Introduction

Previous research has shown that asymmetric single-ISA (instruction set archi-
tecture) multicore processors (AMPs), which integrate a mix of complex high-
performance big cores and power-efficient small cores on the same chip, can
deliver higher performance per watt than their symmetric counterparts for
diverse workloads [8,15]. To bring the potential of AMPs to unmodified applica-
tions, the operating system has to face a number of challenges [9], some of which
must be properly addressed by the OS scheduler [10].

Most asymmetry-aware schedulers have been designed to optimize the system
throughput for multi-application workloads [3,7,8,12]. To this end, the scheduler
must devote big cores to running applications that use these cores efficiently,
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since they derive performance improvements (speedup) relative to running on
small cores [8]. Further throughput gains can be obtained by using big cores to
accelerate different scalability bottlenecks present in parallel programs [6,12].

Unfortunately, asymmetry-aware schedulers that strive to optimize through-
put alone are known to be inherently unfair [14]. Unfairness gives rise to a num-
ber of undesirable effects on multicore systems [5,18]. For example, equal-priority
applications may not experience the same performance degradation (slowdown)
when running together relative to the performance observed when each applica-
tion runs alone on the AMP. Moreover, when attempting to optimize through-
put, the completion time of an application on an AMP may largely depend on its
co-runners [14]. These issues make priority-based scheduling policies ineffective,
reduce performance predictability, and can lead to wrong billings in commercial
cloud-like computing services, where users are charged for CPU hours.

These QoS-related issues can be addressed on AMPs via fairness-aware
scheduling algorithms [3,9,14,16]. Most of these algorithms rely on tracking the
progress that individual threads make when running on the various core types
throughout the execution, and attempt to deliver fairness by swapping threads
between different cores based on the observed progress. In tracking progress,
existing schedulers [14,16] factor in the slowdown that a thread experiences when
it is mapped to a small core, which can differ greatly across applications and vary
over time as a program goes through different execution phases [3,12]. Notably,
these schedulers do not consider the performance degradation that comes from
contention on the shared resources among cores, which may also lead to unfair-
ness [5,20]. In current AMP hardware [2,4], clusters of cores of the same type
typically share a last-level cache and other memory-related resources. Applica-
tions running on the various cores may contend for shared resources, which could
degrade their performance in an uneven and unpredictable way [5,18–20].

To address this shortcoming, we propose CAMPS, an OS-level contention-
aware scheduler for AMPs that seeks to optimize fairness while maintain-
ing acceptable throughput. CAMPS is equipped with a novel mechanism to
approximate a thread’s current slowdown, which leverages past performance his-
tory gathered at runtime in low contention scenarios. Unlike other schedulers,
CAMPS does not need special hardware extensions [16] or platform-specific pre-
diction models [7,12,14] to function. Instead, it relies on performance counters
available in commercial hardware, which makes the scheduler highly portable
across architectures. To assess the effectiveness of our proposal, we implemented
it in the Linux kernel and evaluated it on a real AMP platform that features an
ARM big.LITTLE processor [2]. Our analysis reveals that CAMPS improves fair-
ness by 10.6% on average compared to a state-of-the-art fairness-aware schedul-
ing scheme [14], and at the same time improves throughput by up to 17%.

The rest of the paper is organized as follows. Section 2 motivates our pro-
posal and discusses related work. Section 3 outlines the design of the CAMPS
scheduler. Section 4 showcases our experimental results and Sect. 5 concludes.
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2 Background and Related Work

In this section we first introduce the notion of fairness used in our work, and
discuss the challenges associated with determining the slowdown at runtime. We
then present a brief experimental study that showcases the main observation we
exploit to determine the slowdown on-line on AMPs, and discuss related work.

2.1 Fairness on AMPs and Determining the Slowdown

Previous research on fairness for CMPs [5,18] and AMPs [6,14,16] define a
scheme as fair if equal-priority applications in a multi-program workload suf-
fer the same slowdown due to sharing the system. To cope with this notion of
fairness, we turned to the lower-is-better unfairness metric [5]:

Unfairness =
MAX (Slowdown1, ..., Slowdownn)
MIN (Slowdown1, ..., Slowdownn)

(1)

where n is the number of applications in the workload and Slowdowni =
CT sched,i/CT alone,i. In turn, CTsched,i denotes the completion time of applica-
tion i under a given scheduler, and CTalone,i is the completion time of application
i when running alone on the AMP (with all the big cores available).

The slowdown of an individual thread (or that of a single-threaded applica-
tion) observed during a certain execution phase can be defined in terms of the
number of instructions per second (IPS ) as follows:

Slowdown = IPSalone/IPS sched (2)

where IPSalone represents the number of instructions per second observed for the
specific phase when the thread runs alone on the system, and IPS sched denotes
the IPS achieved by the thread when it runs the same execution phase, but in
the context of a multi-program workload under a given scheduling algorithm.

In this work, we assume that the IPSalone on an AMP is maximized when
the thread runs on a high-performance big core in isolation. That is the case
across all the applications explored in our experiments. We should also highlight
that in the context of multi-threaded programs, the IPS can be a somewhat
misleading performance metric, since a thread can exhibit a high IPC when busy
waiting (spinning) for other threads to arrive at a synchronization point (e.g.
barrier). To make the OS scheduler aware of these situations, where threads do
no useful work, our scheduling scheme leverages spin notifications from the user-
level runtime system by following a similar approach to that proposed in [13].

Delivering fairness entails ensuring that the slowdown accumulated by the
various application threads throughout the execution remains as even as pos-
sible [5,14,16,18], while maintaining acceptable throughput. To this end, the
scheduler must be equipped with a mechanism to determine a thread’s slowdown
at runtime. However, measuring the slowdown directly by using Eq. 2 is difficult
in practice; while a thread’s IPS sched can be easily obtained via performance
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counters, accurately determining IPSalone online is a challenging task, even on
symmetric CMPs [20]. For that reason, existing scheduling algorithms for sym-
metric CMPs typically rely on estimation models to approximate IPSalone [18],
or employ different heuristics to determine the degree of performance degrada-
tion indirectly via contention-related metrics [20]. Unfortunately, these schedul-
ing algorithms are not suitable for AMPs, as they assume that the key perfor-
mance metrics used to drive scheduling decisions (e.g., IPC or LLC miss rate)
do not vary across cores when the application runs alone on the system. On cur-
rent AMP hardware [2,4,15], this assumption is not valid, as cores may exhibit
different microarchitectural features and cache sizes [7,14].

Recently proposed fairness-aware schedulers for AMPs [14,16], implicitly rely
on the assumption that the performance degradation experienced by a thread on
an AMP (relative to its solo execution) is negligible when it runs on a big core,
even if it runs simultaneously with other threads. Thus, a thread’s slowdown
is estimated to be 1 when it runs on a big core; and the thread’s big-to-small
performance ratio – also referred to as the speedup factor (SF) [12] – is used to
approximate the slowdown when the thread runs on a small core. In turn, the SF
can be determined online by various means, such as direct measurement (IPC
sampling) [3,8], prediction models based on hardware counters [7,12,14] or by
leveraging special hardware extensions [16].

2.2 Performance Impact of Shared Resource Contention on AMPs

Assuming that a thread’s slowdown is negligible when it runs on a big core
(as done in [14,16]) is unrealistic in scenarios where threads heavily contend
for shared resources with each other. To illustrate this fact, we analyzed the
slowdown experienced by different single-threaded applications under varying
degree of contention. Our analysis reveals that contention-related degradation
can be substantial, and should be accounted for to avoid unfairness.

For our experiment, we used two AMP configurations based on the ARM
Juno development board [2] – equipped with a mix of Cortex A57 and Cortex
A53 cores, and the Intel QuickIA prototype [4], a dual-socket system featuring
an Intel Atom N330 processor and a Xeon E5450 processor. The ARM-based
configuration – presented in more detail in Sect. 4, features two big cores and
four little cores. The Intel-based configuration integrates two big and two small
cores. On both asymmetric platforms, the set of cores of the same type (big or
small), which make up a cluster, share a last-level cache (L2) and a bus interface
(FSB on Intel, AMBA on ARM) with the remaining cores in the cluster. Both
platforms integrate a single DRAM controller shared among all cores.

Our experiment consists in measuring the slowdown experienced by diverse
programs when mapped to a big core and run simultaneously with a different
number of instances of an aggressor application. As the aggressor, we used the
bandwidth benchmark [19], which causes substantial contention on the LLCs,
shared buses and DRAM controller. On our platforms, we observed that this
benchmark is capable of causing even a higher degree of contention than the one
generated by highly memory-intensive SPEC CPU benchmarks, such as lbm.
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Fig. 1. Slowdown experienced by various benchmarks when running together with
several instances of bandwidth on the Juno board (left) and the Intel QuickIA (right).

Figure 1 shows the slowdown (relative to the solo execution) that different
applications experience when running simultaneously with several instances of
the bandwidth application. Note that we measured the slowdown for all bench-
marks in the SPEC CPU2000 and CPU2006 suites, but due to space constraints
we only display the results for a few representative benchmarks that cover the full
spectrum of slowdown values observed on both AMP platforms.For each bench-
mark, which is always assigned to a big core in our experiments, we explored
different scenarios. In the first one, denoted as “1-aggressor-big” in Fig. 1, the
benchmark runs simultaneously with one instance of bandwidth, which is also
mapped to a big core; the small cores remain idle in this case. In the remain-
ing scenarios, labeled as “N -aggressors-small”, N instances of bandwidth are
mapped to small cores; thus, in leaving one big core unused, we remove con-
tention on the LLC and the bus interface associated with the big core cluster,
but not on the DRAM controller (shared among all cores).

As is evident, the performance penalty that a thread may suffer on a big
core due to interference with memory-intensive threads mapped to big cores
is much greater (up to 1.89x on the ARM platform, and 2.98x on the Intel
platform) than the degradation that comes from placing multiple aggressors on
small cores (up to 1.26x, reached with the highest number of simultaneous small-
core aggressors possible). This stems from two main factors. First, the contention
on the LLC and on the shared bus (big-core cluster) is removed completely in the
“N -aggressors-small” scenarios. Second, we observed that the pressure a single
aggressor puts on the shared memory resources is higher when it runs on a big
core than on a small one. We hypothesized that this has to do with the fact that
in-order small cores cannot handle multiple outstanding cache misses, leading to
a smaller bus and memory bandwidth utilization, and as a result to a smaller
degree of contention. This observation suggests that monitoring the IPS of a
thread when it runs on a big core in a contention-free scenario on a big cluster
(e.g. with the other big cores idle) could be a good estimate for IPSalone . Our
scheduling proposal leverages this observation to approximate the slowdown.

We also observe that some programs, such as sixtrack or mesa, experi-
ence very low slowdown when executed together with memory-intensive aggres-
sors. As pointed out in [18,20], CPU-intensive applications with a very small
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working set and good cache locality, or those that do not use the memory
hierarchy substantially, do not experience significant performance penalty due
to contention. As in [18], our scheduling proposal uses the bus transfer rate
(BTR) to identify scenarios where threads are unlikely to suffer from contention
when running on a big core. In our platforms, the BTR is measured as follows:
(bus read accesses ∗ LLC cache line size ∗ processor freq) /total cycle count .

2.3 Related Work

The first approach to fairness-aware scheduling on AMPs was an asymmetry-
aware Round-Robin (RR) scheduler that simply fair-shares big cores among
applications by triggering periodic thread migrations [3]. Fair-sharing big cores
has proven to provide better performance and more repeatable completion times
across runs on AMPs than default schedulers in general-purpose OSes [9,11],
which are largely asymmetry agnostic. For this reason, RR has been widely used
as a baseline for comparison [3,12]. Note, however, that RR and other schemes
that also rely on fair sharing big cores, such as A-DWRR [9] do not take into
account the fact that applications derive different speedup factors when using
big cores on the platform, and that these speedups may vary over time. This
leads to degrading fairness and throughput [14].

Currently, the state-of-the-art OS-level fairness-aware scheduling scheme is
ACFS [14]. To optimize fairness, ACFS leverages per-thread speedup factor (SF)
values to continuously track the relative progress that each thread in the work-
load makes on the AMP, and enforces fairness by evening out the slowdown
observed across applications. A thread’s SF is determined online by feeding
a platform-specific estimation model with the values of different performance
metrics gathered via hardware counters. In [14] the authors experimentally
demonstrated that ACFS clearly outperforms previous fairness-aware schedul-
ing schemes, such as RR [3], Equal-Progress [16], and A-DWRR [9], for a wide
range of workloads running on real asymmetric hardware. The main limitation of
ACFS [14] (also present in previous schemes [16] based on thread progress track-
ing mechanisms), is the fact that the scheduler does not take shared-resource
contention effects into consideration. As our experiments reveal, failing to cater
to the degradation that comes from contention leads the scheduler to exhibit
unfair behavior when multiple memory-intensive programs are included in the
workload. CAMPS effectively improves fairness in this scenario.

3 The CAMPS Scheduler

CAMPS consists of two components: the performance monitor and the core
scheduler. The performance monitor continuously gathers the value of various
runtime metrics for each thread in the workload using performance counters,
and feeds the core scheduler with critical information it needs, such as estimates
of threads’ slowdowns. The core scheduler assigns threads to big and small cores
so as to preserve load balance in the system, and swaps threads between cores
when necessary to ensure that applications achieve similar progress on the AMP.
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In the remainder of this section we first describe the mechanism used by
CAMPS to predict a thread’s slowdown at runtime. Then we outline the progress
tracking mechanism and discuss how fairness is enforced via thread swaps.

3.1 Determining the Slowdown at Runtime

The performance monitor approximates a thread’s current slowdown by using
Eq. 2; the actual IPS is measured with performance counters, and IPSalone is
estimated by using a history table maintained for each thread at runtime. This
table stores IPS values observed in past execution phases when the thread was
mapped to a big core in a low-contention scenario. As shown in Sect. 2, when a
thread runs on a big core, the performance degradation that comes from inter-
ference with small-core threads is typically very low. Based on this observation,
big-core low-contention IPS values are used to approximate the IPSalone .

To detect low-contention scenarios on a big core, the scheduler leverages
the heuristics based on the bus transfer rate (BTR) metric proposed in [17,18].
Essentially, a thread whose BTR is smaller than a given low btr threshold are not
likely to suffer noticeably from contention. In a similar vein, when the aggregate
BTR across threads running a given core cluster falls below a given high btr
threshold we can assume that degradation due to contention will be very low [18].
These thresholds can be quickly determined via synthetic benchmarks [17,18]. If
low-contention scenarios do not occur naturally as a result of the thread-to-core
assignments performed by CAMPS, the core scheduler will enter a special mode
(described later), which introduces low-contention scenarios artificially.

Indexing a thread’s history table, which is necessary to approximate the
slowdown and to record new IPS samples, requires the performance monitor to
figure out whether information on the current program phase already exists in the
table or not. To this end, we leverage a variant of the phase-detection mechanism
used in a previous work [1]. In that work, the scheduler continuously monitors the
percentage of instructions of different types (int/FP, load, store, branches, etc.)
retired during the last sampling period, which make up a instruction type vector
(ITV). Specifically, if the Manhattan distance of the ITVs for two performance
samples (collected at different intervals) is smaller than a threshold, then both
samples are assumed to belong to the same phase. Unfortunately, this scheme
cannot be implemented in the real AMP platform we used, as the Performance
Monitoring Unit is not equipped with the necessary performance events. To
overcome this issue, we adapted this approach by monitoring two alternative
control metrics along with the thread’s BTR and its IPS: the number of L1
cache accesses per 1K instructions, and the percentage of branches retired over
the total instruction count. As the instruction composition, the value of these
two control metrics for a specific phase remain the same under different levels of
shared resource contention, and more importantly, they do not vary significantly
across core types. In addition, we observed that the value of these metrics changes
dramatically when an application enters a new execution phase exhibiting a
different degree of memory intensity and branch-prediction related behavior,
which have a great impact on cross-core performance on AMPs [7,14]. These
facts make the selected control metrics very suitable to index the table.
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The history table is updated at the end of a monitoring interval in which
the thread ran on a big core cluster in a low-contention scenario. If there is
not any information of the current phase, a new IPS entry is created; otherwise
the existing is updated with a running average of the low-contention IPS values
recorded for that phase. When the thread runs on a small core, or a big core
under potential contention, CAMPS accesses the history table to estimate the
slowdown. If the IPS for the current phase is found in the table (i.e. phase
hit), the slowdown is estimated with the ratio of the IPS value retrieved from
the table, and the current IPS value measured in the last sampling interval.
Otherwise (i.e. phase miss), the slowdown is approximated with the ratio of the
average IPS samples stored in the history table, and the current IPS value.

3.2 Progress Tracking and Enforcing Fairness

CAMPS’s core scheduler maintains a progress counter for each thread referred
to as amp progress, which enables the scheduler to track progress and enforce
fairness. This counter tracks how much progress the thread has made thus far
relative to the progress that would have resulted from running it on a big core
the whole time in isolation. When a thread runs for a clock tick on a given core
type, the scheduler increments amp progress by Δamp progress, defined as follows:

Δamp progress = (100 · Wdef) / (CS · Wt) (3)

where Wt is the thread’s weight, derived directly from the application priority
(set by the user); Wdef is the weight of applications with the default priority; and
CS is the thread’s current slowdown as estimated by the performance monitor.

The definition of Δamp progress is very similar to the formula that the ACFS
scheduler [14] uses to update progress counters. The main difference lies in how
the CS factor is defined. ACFS assumes that a thread’s current slowdown is
always 1 (no performance degradation) when it runs on a big core, and uses the
thread speedup factor (predicted via a platform-specific model) to approximate
the slowdown when the thread runs on a small core. In doing so, ACFS does not
take shared resource contention into consideration when updating progress. This
aspect is factored in by CAMPS, as the slowdown is determined by comparing
the thread’s actual performance with an estimate of IPSalone .

Threads mapped to big cores by the scheduler typically make faster progress
than threads running on small ones, which causes unfairness. Note that the
CS factor (slowdown) is usually bigger when the thread runs on a small core;
thus, progress counters of small-core threads are incremented at a slower pace
than that of big-core threads. CAMPS strives to enforce fairness by evening
out the progress counter across threads. To make this possible, it may need to
perform thread swaps (migrations) between different core types every so often.
Like ACFS, CAMPS swaps a thread running on a big core with another thread
running on a small core when the difference of their progress counters exceeds a
given threshold. Specific instructions are provided in [14] for selecting the most
appropriate value of this threshold for a given platform.
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We found that relying on progress counters alone (as ACFS does) is ineffective
in the event that a contention-sensitive application and an aggressor are mapped
to the big-core cluster simultaneously. As shown in Sect. 2, this may slow down
contention-sensitive applications substantially. To overcome this issue, CAMPS
uses the BTR-based heuristics [18] to detect high contention scenarios, and favors
those threads swaps that contribute to reducing contention on the big core cluster
(e.g. a big-core aggressor thread is migrated to a small core). The main goal of
this is to reduce the slowdown experienced by threads mapped to the big-core
cluster simultaneously, and in turn, to improve fairness and throughput.

Finally, it is worth noting that when the number of memory-intensive threads
in the workload is high, low contention scenarios may not occur that often. In
these cases, CAMPS transitions into a non-work-conserving (NWC) mode in
which low contention scenarios are created artificially. To control transitions into
this special mode, the scheduler operates as follows. Every time that a thread
completes k consecutive monitoring intervals (being k a configurable parameter),
CAMPS calculates the thread’s phase-hit rate and the number of IPS samples
that were inserted into the history table over that time period. If the phase-hit
rate is not high enough (falls below 80% in our experimental platform) and not
a single IPS sample was inserted in the table during that period, the scheduler
enters the NWC mode. When in this mode, if the thread was not running on a
big core already, it will be swapped with a big-core thread to preserve load bal-
ance; in doing so, CAMPS tries to select a memory-intensive thread as the swap
partner, so as to reduce contention on the big core cluster. If a low-contention
scenario is still not present on the big-core cluster, the scheduler will disable as
many big cores as necessary (for a very short period of time) to mimic such a sce-
nario. Making this possible comes down to disabling only a few big cores: those
where potentially aggressor (high-BTR) threads are running at this point. The
scheduler transitions back into the normal operating mode when (1) a number
of IPS samples have been gathered, or (2) when the thread blocks/exits.

4 Experimental Evaluation

We compare the effectiveness of CAMPS with that of two previously proposed
fairness-aware schedulers for AMPs: ACFS [14] and an asymmetry-aware Round-
Robin (RR) scheme [3]. We opted to use RR instead of the default OS sched-
uler, which is known to deliver highly variable completion times for compute-
intensive workloads [11]. For the sake of completeness, we also experimented with
a scheduler that attempts to optimize throughput by preferentially running on
big cores those applications that derive a higher big-to-small speedup [7,12]. We
will refer to this scheduler as HSP (High SPeedup). All the schemes considered
in our study were implemented as a separate scheduling class in the Linux kernel
v3.10. Except for RR, all the schedulers rely on performance monitoring counters
(PMCs) to function. Our implementation of HSP and ACFS determine threads’
speedup factors on-line by monitoring different PMC events, and by feeding an
estimation model with the obtained event counts, as described in [11].
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Table 1. Multi-application workloads

Name Applications Name Applications

W1 GemsFDTD, equake, soplex, milc, povray, bzip2 W13 GemsFDTD, bwaves, gamess, hmmer, crafty, astar

W2 galgel, hmmer, soplex, lbm, fma3d, bzip2 W14 bzip2, bwaves, hmmer, lucas, gobmk, gzip

W3 galgel, equake, gamess, lbm, bzip2, astar W15 soplex, art, vortex, lbm, fma3d, gobmk

W4 twolf, bwaves, equake, soplex, astar, gobmk W16 galgel, equake, hmmer, lbm, fma3d, h264ref

W5 GemsFDTD, bwaves, equake, povray, fma3d, astar W17 bwaves, equake, gamess, povray, astar, libquantum

W6 bwaves, equake, gamess, lbm, fma3d, bzip2 W18 GemsFDTD, galgel, gamess, hmmer, astar, libquantum

W7 GemsFDTD, applu, perlbmk, sixtrack, astar, gzip W19 swim, mcf, perlbench, h264ref, gobmk, gzip

W8 bwaves, perlbmk, povray, fma3d, astar, gzip W20 galgel, equake, hmmer, povray, mgrid, gobmk

W9 galgel, perlbmk, sixtrack, mgrid, astar, libquantum W21 galgel, equake, hmmer, bzip2, perlbench, h264ref

W10 GemsFDTD, vortex, perlbmk, fma3d, astar, gzip W22 galgel, equake, gamess, hmmer, sixtrack, povray

W11 bzip2, equake, hmmer, vortex, crafty, astar W23 gamess, art, bzip2, gobmk, sixtrack, vortex

W12 gamess, hmmer, soplex, art, astar, gzip W24 galgel, gamess, hmmer, povray, perlbench, gobmk
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Fig. 2. Unfairness and throughput for workloads in Table 1

To assess the effectiveness of the various algorithms, we employed multi-
application workloads consisting of compute-intensive benchmarks from differ-
ent benchmarks suites (SPEC CPU, PARSEC, etc.) running on two real AMP
platforms with different number of cores. Due to space constraints however, we
could only include the discussion for the results of workloads consisting of single-
threaded programs, and running on the ARM Juno board [2]. In using this kind
of workloads, we ensure a fair comparison against HSP, RR and ACFS, as these
schemes were evaluated before using similar workloads [3,7,14]. The ARM Juno
board used for our experiments features a big.LITTLE processor that consists of
two Cortex A57 “big” cores (running at 1.10 GHz) and four Cortex A53 “small”
cores (running at 850 MHz). Each core has a private L1 cache and shares a last-
level (L2) cache with the other cores of the same type. Specifically, big cores
share a 2 MB/16-way L2 cache, and small ones feature a 1 MB/16-way cache.
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For the evaluation on the Juno board, we randomly built 24 program mixes
that combine a different number of light-sharing programs – whose performance
does not suffer noticeably under contention, and memory-intensive programs,
which are subject to high contention-related performance degradation or put
significant pressure on shared resources. Table 1 displays the workloads sorted
in descending order by the number of memory-intensive programs they include.
Figure 2 reports the unfairness and throughput values for each workload and
scheduler, normalized with respect to the results of the HSP scheduler. To assess
throughput we employed the Aggregate Speedup (ASP) metric as in [11,14].

The results illustrate that optimizing one metric may lead to substantial
degradation of the other metric. This is consistent with what was observed in
previous work [11,14], which underscores that fairness and throughput are largely
conflicting optimization goals on AMPs. As is evident, the HSP scheduler, which
strives to optimize throughput achieves the best ASP values for the most work-
loads, at the expense of the worst unfairness numbers (the higher, the worse)
across the board. Conversely, the remaining schedulers (fairness aware), achieve
substantial reductions in unfairness vs. HSP (up to 72% – CAMPS under W17),
at the cost of potentially high throughput degradation (up to 38% – RR, W19).

ACFS, RR and CAMPS exhibit a clear trend across the board. Specifically,
for most workloads ACFS delivers better throughput and higher reductions in
unfairness than RR. This is the expected behavior since ACFS takes applications’
big-to-small speedups into consideration when distributing big-core cycles among
applications, whereas RR does not. Despite the higher throughput, the fact
that ACFS does not take contention effects into consideration, leads it similar
unfairness figures to those of RR in some cases (e.g. W4-W6, W15 or W17).
By contrast, our proposal (CAMPS) is able to reduce unfairness even further:
by up to 11% with respect to ACFS (W17) and by up to 28% relative to RR
(W19). At the same time, CAMPS is capable to reap higher throughput gains.
Notably, under those workloads with a low degree of contention (W20-W24) –
due to the small number of memory-intensive applications, CAMPS and ACFS
perform very similarly. This demonstrates that our proposal is also suitable for
low-contention scenarios, as it delivers similar unfairness and throughput figures
to ACFS, which provides the best results under these circumstances [14]. All in
all, CAMPS achieves an average 10.6% reduction in unfairness with respect to
ACFS while improving throughput by up to 17% (4% average increase).

Finally, we also observed that HSP is especially affected by contention effects
under workloads W5 and W13-W15, where the two applications with the highest
speedup constitute a pair consisting of an aggressor and a contention-sensitive
program. In these cases, HSP maps these conflicting applications simultaneously
to the two available big cores very often. Despite the fact that the applications
derive benefits from running on a big core alone, they also contend for shared
resources, which gives rise to throughput degradation. Fairness-aware schedulers
mitigate this issue by swapping threads between core types every so often, which
reduces the amount of time that the conflicting applications are mapped together
on the same cluster; this contributes to improving throughput. Specifically, the
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results reveal that all fairness-aware schedulers reap high normalized throughput
figures under these workloads (W5, W13-W15). More importantly, our proposal,
is able to outperform HSP for some of these conflicting workloads (W5 and W15).
This is possible thanks to the fact that CAMPS swaps threads based on their
observed progress and by catering to the degree of contention.

5 Conclusions

In this paper, we have proposed CAMPS, an OS-level fairness-aware scheduler for
asymmetric single-ISA multicores. Unlike other fairness-conscious asymmetry-
aware schemes [3,14,16], our approach effectively caters to the performance
degradation that comes from contention on shared resources among cores.
CAMPS accurately tracks the progress that the various threads in the work-
load make when running on the different core types throughout the execution,
and enforces fairness by evening out the progress across threads. To this end,
CAMPS approximates the current slowdown of an application thread by com-
paring its actual performance, with the performance observed in the past for
the thread when it ran on a big core in low contention scenarios. Notably,
our proposal does not require special hardware extensions [16] or platform-
specific speedup-prediction models [7,14] to function. Instead, CAMPS relies
on performance counters available in commercial AMP platforms, which makes
it portable across CPU architectures. We implemented CAMPS in the Linux ker-
nel and assessed its effectiveness on a real AMP system that features an ARM
big.LITTLE processor. An extensive comparison was performed with existing
asymmetry-aware schedulers [3,7,14,16]. Our experiments reveal that CAMPS
outperforms the state-of-the-art fairness-aware scheme – ACFS [14] – in both
fairness and throughput.

Acknowledgements. This work has been supported by the EU (FEDER) and the
Spanish MINECO under grant TIN 2015-65277-R.

References

1. Annamalai, A., et al.: An opportunistic prediction-based thread scheduling to max-
imize throughput/watt in AMPS. In: Proceedings of PACT 2013, pp. 63–72 (2013)

2. ARM: Juno ARM development platform. http://infocenter.arm.com/help/topic/
com.arm.doc.subset.boards.juno/index.html (2014)

3. Becchi, M., Crowley, P.: Dynamic thread assignment on heterogeneous multipro-
cessor architectures. In: Proceedings of CF 2006, pp. 29–40 (2006)

4. Chitlur, N., et al.: QuickIA: exploring heterogeneous architectures on real proto-
types. In: Proceedings of HPCA 2012, pp. 1–8 (2012)

5. Ebrahimi, E., et al.: Fairness via source throttling: a configurable and high-
performance fairness substrate for multi-core memory systems. In: Proceedings
of ASPLOS 2010, pp. 335–346 (2010)

6. Joao, J.A., et al.: Utility-based acceleration of multithreaded applications on asym-
metric CMPs. In: Proceedings of ISCA, vol. 13, pp. 154–165 (2013)

http://infocenter.arm.com/help/topic/com.arm.doc.subset.boards.juno/index.html
http://infocenter.arm.com/help/topic/com.arm.doc.subset.boards.juno/index.html


622 A. Garcia-Garcia et al.

7. Koufaty, D., et al.: Bias scheduling in heterogeneous multi-core architectures. In:
Proceedings of EuroSys 2010, pp. 125–138 (2010)

8. Kumar, R., et al.: Single-ISA heterogeneous multi-core architectures for multi-
threaded workload performance. In: Proceedings of ISCA 2004, pp. 64–75 (2004)

9. Li, T., et al.: Operating system support for overlapping-ISA heterogeneous multi-
core architectures. In: Proceedings of HPCA 2010, pp. 1–12 (2010)

10. Mittal, S.: A survey of techniques for architecting and managing asymmetric mul-
ticore processors. ACM Comput. Surv. 48(3), 45:1–45:38 (2016)

11. Saez, J.C., et al.: On the interplay between throughput, fairness and energy effi-
ciency on asymmetric multicore processors. Comput. J. (to appear)

12. Saez, J.C., et al.: A comprehensive scheduler for asymmetric multicore systems.
In: Proceedings of EuroSys 2010, pp. 139–152 (2010)

13. Saez, J.C., et al.: Operating system support for mitigating software scalability
bottlenecks on AMPs. In: Proceedings of the CF 2010, pp. 31–40 (2010)

14. Saez, J.C., et al.: Towards completely fair scheduling on asymmetric single-ISA
multicore processors. J. Parallel Distrib. Comput. 102, 115–131 (2017)

15. Samsung: benefits of the big.LITTLE architecture. http://www.samsung.com/
semiconductor/minisite/Exynos/data/benefits.pdf. Accessed 10 Jan 2015

16. Van Craeynest, K., et al.: Fairness-aware scheduling on single-ISA heterogeneous
multi-cores. In: Proceedings of PACT 2013, pp. 177–187 (2013)

17. Xu, D., et al.: On mitigating memory bandwidth contention through bandwidth-
aware scheduling. In: Proceedings of PACT 2010, pp. 237–248 (2010)

18. Xu, D., et al.: Providing fairness on shared-memory multiprocessors via process
scheduling. In: Proceedings of SIGMETRICS 2012, pp. 295–306 (2012)

19. Yun, H., et al.: PALLOC: DRAM bank-aware memory allocator for performance
isolation on multicore platforms. In: Proceedings of RTAS 2014, pp. 155–166. IEEE
(2014)

20. Zhuravlev, S., et al.: Survey of scheduling techniques for addressing shared
resources in multicore processors. ACM Comput. Surv. 45(1), 4:1–4:28 (2012)

http://www.samsung.com/semiconductor/minisite/Exynos/data/benefits.pdf
http://www.samsung.com/semiconductor/minisite/Exynos/data/benefits.pdf


Powernightmares: The Challenge of Efficiently
Using Sleep States on Multi-core Systems

Thomas Ilsche1(B), Marcus Hähnel2, Robert Schöne1, Mario Bielert1,
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Abstract. Sleep states are an important and well-understood feature of
modern server and desktop CPUs that enable significant power savings
during idle and partial load scenarios. Making proper decisions about
how to use this feature remains a major challenge for operating systems
since it requires a trade-off between potential energy-savings and per-
formance penalties for long and short phases of inactivity, respectively.
In this paper we analyze the default behavior of the Linux kernel in
this regard and identify weaknesses of certain default assumptions. We
derive pathological patterns that trigger these weaknesses and lead to
‘Powernightmares’ during which power-saving sleep states are used insuf-
ficiently. Our analysis of a workstation and a large supercomputer reveals
that these scenarios are relevant on real-life systems in default configura-
tion. We present a methodology to analyze these effects in detail despite
their inherent nature of being hardly observable. Finally, we present
a concept to mitigate these problems and reclaim lost power saving
opportunities.

Keywords: Linux · Sleep state · Energy efficiency
Power consumption

1 Introduction

As energy is one of the major cost factors in data-center operations, CPU devel-
opers are constantly pushing towards more aggressive techniques to scale power
consumption with system load. One aspect to achieve this so called power pro-
portionality is the reduction of power consumption during idle phases. These
phases represent a major fraction of the run-time of desktop systems and are
also noteworthy in the server domain. How deep a CPU sleeps determines how
much power it consumes, but also how long it takes to wake up from its slumber.
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For example, depending on the depth of the sleep a typical Haswell server
may consume 73 W in idle and wake up within 25µs or consume 126 W and wake
up within 2µs [3]. The challenge for an operating system (OS) is to ensure that
as much time as possible is spent sleeping as deeply as possible, while satisfying
the latency requirements of the system. The job of the idle governor is to strike
this balance. When investigating unexpected high power usage of one of our test
systems, we found that sometimes the default governor in Linux does not let
the system sleep as deeply as desirable for prolonged idle phases—it caused a
Powernightmare. The same effect was found in our petascale production HPC
system. We traced the cause of this inefficiency, and developed a mitigation that
wakes the system from its nightmare and lets it sleep well again.

The remainder of this work is structured as follows: We explain the details
of sleep states of modern CPUs and their use by the OS in Sect. 2, followed by a
description of the problem and when it occurs in the wild in Sect. 3. We discuss
possible solutions and describe and evaluate our mitigation approach in Sect. 4
before we conclude and give an outlook on future work in Sect. 5.

2 Background and Related Work

The ACPI standard [1] describes different power saving mechanisms. This
includes P-states, which are implemented via voltage and frequency scaling
(DVFS), T-states, which are implemented via clock modulation, and C-states
that are typically implemented via clock gating [15, Sect. 5.2.1.1] and power gat-
ing [15, Sect. 5.3.2]. The four different C-states C0 to C3 are distinguished by
ACPI. Higher C-state numbers refer to deeper sleep states with lower power
consumption and longer wake-up latencies.

2.1 Hardware Perspective on C-States

Contemporary Intel server CPUs implement C-states per core and per package,
referred to as CC -states and PC -states, respectively. Only the former can be
directly influenced by the OS, while the latter are enabled by hardware under
specific circumstances. The CC-state is the lowest of the selected C-states among
all hardware threads on the core. Similarly, the PC-state is determined by the
lowest CC-state of all cores incorporated on the package [6,7, Sect. 4.2.5].

Modern Intel server CPUs implement at least four CC-states: CC0, CC1,
CC3, and CC6 [6,7, Sect. 4.2.4]. The processor core is active and executes
instructions in CC0. In CC1 the processor core is still active and caches are
not flushed. The additional C1E does not differ from CC1 for the core itself,
but allows the package to enter PC1E, if all cores are in C1E or higher. In
CC3, core clocks are stopped, and caches are flushed. In CC6, the core applies
power gating, storing its internal state to a dedicated SRAM. The architectural
state is restored when the core returns to a lower CC-state. Another feature,
called delayed deep C-states (DDCst) is described in [7, Sect. 4.2.4.5]. Here lower
CC-states are used for a short period of time before switching to higher C-states.
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To the best of our knowledge, a documentation of the mechanisms of newer Intel
server processors is currently not available. However, since they are handled like
their predecessors and their desktop counterparts, one can assume that the gen-
eral mechanisms are the same.

There are six different PC-states [7, Sect. 4.2.5]: PC0, PC1, PC1E, PC2, PC3,
and PC6. Similarly to CC0, PC0 refers to the normal operation of the package.
While in PC1, “No additional power reduction actions are taken” [6, Sect. 4.2.5],
core voltage and frequencies are reduced in PC1E. In PC3 and PC6 the last level
cache becomes inaccessible, voltages are lowered, and the power consumption of
uncore components is reduced [7, Sect. 4.2.5].

Higher C-states provide a significant power saving potential, at the cost of
higher exit latencies [13]. Intel describes hardware mechanisms that counter inef-
ficient usages of C-states [14]. These mechanisms, called promotion and demo-
tion, use hardware loops to track C-state residency history and automatically
re-evaluate OS decisions. For promotion, the hardware automatically increases
the C-state, for demotion it lowers the C-state. Intel desktop processors and
previous server processors include a feature called C1E auto-promotion [6,7,
Sect. 4.2.4]. There is no promotion to higher PC-states than PC1E. The proces-
sor core can perform demotion by choosing: (1) CC3 instead of the requested
CC6, and (2) CC1 instead of CC6/CC3. To correct wrong decisions demotions
can be reverted by a mechanism called undemotion. Whether promotion, demo-
tion, and undemotion are enabled is encoded in the PKG CST CONFIG CONTROL
register. On Intel processors, C-states can be requested by the OS in the form
of a hint argument to the mwait instruction.

2.2 Idle Power Conservation Techniques in Linux

An important feature of modern Linux systems is the so called dyntick-idle mode,
also called nohz mode or tickless. This feature reduces the number of scheduling-
clock interrupts for idle cores as opposed to having regular scheduling ticks, e.g.,
every 4 ms. In dyntick-idle mode, a core can remain in idle indefinitely. This is
the default behavior on modern systems [9].

Whenever a core has no task to be scheduled, an idle state is selected. The
cpuidle governor implements the selection policy while the cpuidle driver
implements the architecture-specific mechanism to request an idle state from
the CPU [10]. In our evaluation, we focus on high performance systems with
Intel processors, using the intel idle driver. Idle states correspond to C-states.
Linux currently provides two governors to select idle states.

The ladder governor evaluates on each call whether the previous C-state
was predicted correctly and increases or decreases the depth stepwise. Pallipadi
et al. [10, Sect. 4.1] describe that while “this works fine with periodic tick-based
kernels, this step-wise model will not work very well with tickless kernels”.

The menu governor, which is the default on tickless Linux systems, combines
several factors as a heuristic. It uses an energy break even point based on the
target residency provided by the architecture specific cpuidle driver. The
challenge is to predict the upcoming idle duration.
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The prediction algorithm starts with the known next timer event, and applies
a correction factor based on an exponential moving average on how accurate
this prediction was in the past. Idle times predicted to be longer than 50 ms are
always considered to be perfect, on grounds that longer sleeping times provide
no additional power improvement. Additionally, the repeatable-interval-detector
records the duration of 8 previous intervals and uses their average. Up to two
high values are ignored if the variance across all eight values would be too high.
If the variance is still too high among the six lowest previous times, this predictor
is ignored, otherwise the minimum of the next timer event and the repeatable-
interval-detector is used.

Further, the menu governor tries to limit the performance impact by choosing
C-states with shorter exit latencies on busy systems. Based on the load average
and number of IO wait tasks, a performance multiplier limits the ratio of pre-
dicted idle time and exit latency. A device or user can request a maximum DMA
latency for QOS purposes (PM QOS CPU DMA LATENCY). The latency requirement
is the minimum of both values. Finally, the menu governor selects the highest
enabled C-state with a target residency of no more than the predicted idle
time and an exit latency that does not exceed the latency requirement.

The heuristic relies on many values that have been determined experimen-
tally. Since its last big change1 in 2009, the menu governor has operated like that.
In principle, the ladder governor has not changed since 2007. In our work, we
focus on tickless systems running the menu governor, since it is essential from an
energy-efficiency perspective to avoid unnecessary scheduling-clock interrupts.

Considering the impact on performance and power consumption, the cpuidle
governor was a research target before. Roba and Baruch [11] propose two possi-
ble improvements for the C-state selection heuristic claiming a constant improve-
ment of 10% for their combination. One approach is based on machine learning,
the other tries to improve the responsiveness of the already existing repeatable-
interval-detector in the menu governor. Kanev et al. [8] conducted a state-of-the-
art study for typical datacenter applications. They argue that “the maximum
improvement for both power and latency with a single policy is unlikely” and
thus the menu governor is a compromise in-between. Given the strict latency
requirements in the datacenter domain, Kanev et al resort to DVFS for power
savings. However, both works focus more on improving latency instead of energy.

3 Analysis of Inconsistent Power Saving in Idle

In this section, we identify inefficient power saving decisions in Linux and demon-
strate how to trigger the effect. We also show real world occurrences on an
individual machine and across a production HPC system.

1 cpuidle: fix the menu governor to boost IO performance: https://git.kernel.org/pub/
scm/linux/kernel/git/torvalds/linux.git/commit/?id=69d25870f20c4b2563304f2b79
c5300dd60a067e.

https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=69d25870f20c4b2563304f2b79c5300dd60a067e
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=69d25870f20c4b2563304f2b79c5300dd60a067e
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=69d25870f20c4b2563304f2b79c5300dd60a067e
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Table 1. Properties of systems under test

Testsystem Diana HPC system Taurus

CPU 2 × Xeon E5-2690 v3 2 × Xeon E5-2680 v3

Measurement Per socket at 500 kSa/s [4] Per socket at 100 Sa/s

System (AC) at 20 Sa/s Node (DC) at 1000 Sa/s [2]

Kernel Version 4.11.0-rc8 (8b5d11e) 2.6.32 (Bull SCS4 / RHEL 6.8)

Total system power consumption in different states

All cores C6 73.9 W (total system) 87.0 W (total node)

Core 0 C1E, others C6 106.3 W (total system) n/a∗

All cores C1E 126.1 W (total system) 130.8 W (total node)
∗The old kernel does not support disabling C-states for individual cores.

3.1 Observation

During energy efficiency research on a system with sophisticated power mea-
surement instrumentation [4], we have observed an unexpected behavior: Even
though the system is specifically configured for low idle power consumption, i.e.
few interrupts, the power consumption during idle phases was erratic. While the
baseline idle power is 73 W, sometimes after inconspicuous activities, the total
power consumption remained over 100 W for several seconds. This happened
during times without any explicit activity on the system and was observed by
the external power measurement. The behavior persisted across a wide range of
recent and historic kernel versions. We also observed this effect on a production
HPC system. The underlying issue eluded investigation for a while, in particular
because any active measurement directly impacted the effect under investigation.

3.2 Experimental Platform

For reproduction and analysis of the effect we used two systems: a workstation
for energy measurements (Diana) and a node of a petascale production HPC
system (Taurus). Both are equipped with dual socket Intel Haswell-EP CPUs
and sophisticated energy measurement instrumentation (see Table 1). All energy
measurements are calibrated and verified to high accuracy [2,4,5]. On Diana we
use the high resolution socket power measurements when observing small time
scales. Full system (AC) measurement allows us to perform analysis at larger
time scales. We fixate the core frequency with the userspace P-state governor
and disable HyperThreading to reduce the variance of the measurements. Most
of our observations relate to PC1E or higher, in which power consumption is not
affected by core frequency.

3.3 Tools to Isolate the Effect

To isolate the effect, we combined existing and newly implemented kernel trace-
points, measurement of C-state residencies via the x86 adapt kernel module [12],



628 T. Ilsche et al.

and high resolution power measurements. The power/cpu idle (for older kernels
power/power start) tracepoint provides the selected C-state for each idle gov-
ernor decission. The sched/sched switch tracepoint correlates tasks with the
CPU they are scheduled on. We added a power/menu idle tracepoint to record
the internal decision parameters of the heuristic within the menu governor.

Since we want to observe an idle system, we designed the measurement to
avoid activities as much as possible. Tracepoint events are recorded by the kernel
in a ring buffer. The measurement threads idle in poll() until the buffer is nearly
full. The only regular interruption is from reading the C-state residency counters
of the CPU via x86 adapt every 5333 ms. Even the activity of the measurement
process itself is recorded through the scheduling events. Power measurements are
recorded externally and merged into a common trace file after the experiment.

(a) Repeatedly sleeping for short intervals causing an idle time misprediction. Top:
scheduled tasks per CPU, middle: core C-state requested by the menu governor (ac-
tive [blue], C1E [green], C6 [red]), bottom: power consumption. Note that only socket
power measurements are available at this time granularity.

(b) Full duration of the Powernightmare: requested idle states, power consumption of
both sockets and full system.

Fig. 1. A synthetically triggered Powernightmare on Diana. (Color figure online)
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3.4 Cause, Trigger, and Contributing Factors

The cause of the unusual high idle power consumption is a severe underes-
timation of the upcoming idle time by the menu governor. Its heuristic has
to resort to historic knowledge, as not all events can be known in advance.

#include <unistd.h>
int main() {

#pragma omp parallel
while (1) {

for (int i = 0; i < 8; i++) {
#pragma omp barrier
usleep (10);

}
sleep (10);

}
}

Listing 1. Code to reproduce under-
estimation of the menu governor

Bursts of activity with short idle times
after which the CPU idles for a long
time can confuse the heuristic. Based
on the observation of recent idle times,
the heuristic concludes that a short
idle time will follow, regardless of the
next known timer event being far in
the future. Moreover, due to discarding
long intervals in cases of high variance,
the algorithm will often not correct its
prediction after the first long idle time.
As up to two outliers are ignored by the

heuristic, it can take up to three consecutive wake-up events to recover from a
misprediction. If a CPU goes into a shallow sleep state but stays there for a long
time, it wastes power because it could be sleeping much deeper. We call this a
Powernightmare.

We use the code from Listing 1 to reliably trigger a Powernightmare. This
code repeatedly sleeps for a very short time tricking the menu governor into pre-
dicting an upcoming short idle phase, hence requesting a low C-state. An execu-
tion of this code is shown in Fig. 1a. Our test system Diana is optimized for little
background activity, tasks are scheduled infrequently. Therefore it takes up to
10 s before all involved cores are able to end their Powernightmare—especially
because it takes up to three wake-up events to correct the misprediction (see
Fig. 1b). During the shown Powernightmare, the idle consumption increases from
73 W to 125 W–109 W, depending on the number of cores in CC1. As long as at
least one core is in CC1 state, the respective socket cannot enter the PC6 state,
wasting most of the energy saving potential. The hardware C-state residency
counters are consistent with the selected C-states by the menu governor.

We have seen Powernightmares being triggered in normal operation. On the
production HPC system Taurus it occurs regularly when no jobs are running
on a node. Figure 2a shows a scheduling pattern that happens every 25 s. This
regular activity is related to the parallel Lustre filesystem and the interaction
of its pinger thread (ll ping), the OFA Infiniband network driver (kiblnd sd),
and PortalRPC daemon tasks for each CPU (ptlrpcd). As shown in Fig. 2b,
several cores remain in C1 for up to one second2. Due to regular background
activity, the Powernightmare rarely lasts more than one second on this system.

There are various other causes for Powernightmares on our test systems.
Most of the time, the cause is communication between user and/or kernel tasks
scheduled on different cores, such as systemd-journald and I/O related kernel

2 The power/power start tracepoint event does not distinguish between C1 and C1E.
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(a) Scheduling of Lustre related kernel tasks causing an idle time misprediction.

(b) After the Lustre ping (short power spike) several cores remain in C1 (green) instead
of C6 (red) for ≈1 s causing increased node power consumption.

Fig. 2. A Powernightmare in normal idle on a Taurus HPC node. (Color figure online)

tasks. Another example are updates from a GNU screen status bar that affect a
shell process and the kernel task handling the respective tty, all waiting for one
another for very short time periods. Further causes invole reading model specific
registers, which is done by a kernel worker scheduled on the specific core.

We also observed Powernightmares on an Intel Xeon Phi 7210 machine. How-
ever, the impact there is reduced, due to recurrent events on all cores every
100 ms, which allows the governor to correct a misprediction within 300 ms.

4 Optimization and Results

We identify several approaches to address the problem of wasted energy due to
Powernightmares. Further we describe our selected solution and evaluate it.

4.1 Approaching the Problem

Changing task behavior to avoid triggering a Powernightmare. In many cases
it would be possible to tune the applications or kernel tasks such that they
no longer trigger an idle time misprediction. For instance, pinning tasks that
communicate with each other on the same core could prevent short sleep times
while one task is waiting for the other. The pattern exhibited by Lustre involving
several kernel tasks per core appears to have significant potential for general
improvement. However modifying a wide variety of legacy code is intractable as
a solution. Even for newly written software, the complex interactions between
different components make it hardly feasible to address the problem this way.
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Improving the idle time prediction. A C-state governor must function with
incomplete information. It is conceivable to improve the prediction in some cases,
e.g., using improved heuristics or software hints. However, there will never be
perfect information about upcoming events in general. Applications or outside
influences such as network packets cannot be generally predicted.

Biasing the prediction error. It would be possible to tune the heuristic towards
over-predicting idle times instead of under-predicting them. The resulting energy
savings come at the cost of increased latency. This trade-off could be tunable
according to user preferences. One aspect that can certainly be improved is to
not generally discard long idle times as outliers in the analysis of recent history.

C-state selection by hardware. For Intel processors, the C-state requested by the
mwait command is only a hint to the hardware, which may chose to override
this decision. However, current Intel processors offer no feature to automatically
promote the cores into CC3 or higher. A possibility would be to always request
the highest C-state and then relying on auto-demotion or delayed deep C-states
for low latency as well as auto-undemotion for low power. Then the OS would
no longer be able to enforce latency requirements.

Mitigating the impact. As any modification of the heuristic cannot improve every
possible situation, we focus on mitigating the impact of a misprediction. A simple
workaround is a program that runs a thread pinned to each core which sleeps
for 10 ms in an endless loop. Using a kernel with regular scheduling clock ticks
has a similar effect. This avoids staying in an inefficient sleep state for a long
time but comes at the cost of a permanent background noise. And while it may
save power in some situations, it does increase idle power measurably compared
to perfect deep sleeping. Inspired by this workaround, we describe a solution in
the menu governor without the disadvantages.

4.2 Fallback Timer

To mitigate the effect while avoiding permanent background noise, a core has to
wake up from a shallow sleep state only. To achieve this in the menu governor, we
set a special fallback timer if there is a very large factor between the next known
timer event and the predicted idle time. This fallback timer is set so that if the
prediction heuristic was right, the core wakes up before the timer triggers. We
then cancel the additional timer to avoid generating noise. If the heuristic was
wrong, the programmed wake-up allows to go into a higher C-state and continue
sleeping with lower power consumption. To achieve this, we instruct the kernel
to ignore the recent residency history for the upcoming idle state selection. We
choose to use the hrtimer API of the Linux kernel for our implementation. Reg-
ular timers have too low resolution and will miss their deadline by a significant
margin on tickless kernels, which would render our solution ineffective.
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Fig. 3. The fallback timer corrects a wrong C-state selection after 10ms of shal-
low sleep. Timeline diagram from top to bottom: scheduling activity, core C-states
(active [blue], C1E [green], C6 [red]), power measurements. Note that only socket power
measurements are available at this time granularity. (Color figure online)

4.3 Verification

To determine the effectiveness of our solution, we compare an unmodified kernel
against a patched kernel with enabled fallback timer. We compare normal idle
with no user activity and the worst-case trigger workload as described in List-
ing 1. Powernightmares that occur in normal operation often exhibit a strong
variance and depend on many environmental factors. For the sake of statisti-
cal significance and reproducibility, we focus the quantitative verification on the
simple synthetic workload, that is >99.99% idle, and normal idle configuration.

Figure 3 shows the timeline of a mispredicted idle time. While all cores enter
C1E after the trigger executes, the fallback timer is activated and all cores
can enter a higher C-state. The duration of 10 ms for the fallback timer is an
initial estimate and can be further experimentally refined or dynamically adapted
based on target residencies. Figure 4 shows the statistical density distribution
of power consumption samples during 20 min. If the trigger workload is active
every 10 s, the average system power consumption with the unmodified kernel is
119 W. The modified kernel with active fallback timer reduces the average power
to 74.3 W. During normal idle, in which only few Powernightmares occur, the
system consumes 75.5 W with the unmodified kernel and 73.9 W with the fallback
timer. The difference is hardly statistically significant, but the amount of outliers
is reduced and the standard deviation decreases from 8.1 W to 3.5 W by using the
fallback timer. With tickless disabled, which also implies the ladder governor,
the unmodified kernel is not affected by Powernightmares. The regular timer
interrupts increase idle power to 78.5 W. The trigger workload does not increase
that further. Our results show that the fallback timer prevents Powernightmares,
without causing additional power-overhead in normal idle configurations.

We have not observed any other occurrences of Powernightmares when using
the fallback timer. Due to the production nature of the system, we could not
apply the patch to Taurus. A fair comparison would also require to back-port
the patch to the old kernel version normally used on the system.
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Fig. 4. Combined violin-/box-plot of the Diana power consumption during idle and
trigger workload using an unmodified Linux kernel, our patched kernel with fallback
timer, and an unmodified kernel with disabled tickless (nohz=off).

On our system, it takes on average 1735 cycles (0.67µs) to program a fallback
timer. Since the core has no scheduled task a that point, this cost does not impact
performance but represents a small energy overhead. When waking up before a
set fallback timer triggers, canceling it takes 390 cycles (0.15µs). This time is
added to the wake-up transition latency, which is up to 2.1µs on our system
for C1 and 15µs for C3 [3], not considering the remaining time spent in the
Linux kernel after the wake-up. Considering that this only applies whenever the
governor has to deal with conflicting information and the overhead is an order of
magnitude lower than existing latencies, we conclude that the negative impact
is insignificant for all practical purposes.

5 Summary and Outlook

In this study, we described and analyzed a pattern of inefficient use of sleep
states that leads to a significant waste of energy on idle systems. We developed
a methodology and open-source tools3 to carefully observe these anomalies with-
out altering them. Our investigation reveals that a misprediction of the default
Linux idle governor can cause the system to enter an inappropriate C-state. In
particular, systems with little background activity can stay in this shallow sleep
state for ten seconds or more, wasting significant energy-saving potential. We
designed a solution to mitigate the negative effects by setting a fallback timer
if the idle governor is unsure about the duration of a sleep phase. This allows
the system to enter a deep sleep instead of remaining in a shallow sleep state for
a long time. We demonstrated that our implementation4 effectively reduces the
average power consumption without notable negative side-effects.

3 https://github.com/tud-zih-energy/lo2s/tree/powernightmares.
4 https://github.com/tud-zih-energy/linux/tree/menu idle fallback timer.

https://github.com/tud-zih-energy/lo2s/tree/powernightmares
https://github.com/tud-zih-energy/linux/tree/menu_idle_fallback_timer
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While this study focuses on HPC systems, the effects discussed are not nec-
essarily limited to a specific architecture. The same imperfect idle governor runs
on millions of mobile devices that all rely on effective sleep-state use to conserve
battery life. Since core numbers continue to increase in most devices, so does the
likelihood that at least one will sleep badly and thus prevent shared resources
from saving power. The impact of our work increases with the gap of power con-
sumption between different sleep states. Further efforts to save energy, which rely
on increasing the time spent continuously in idle, would be very susceptible to
Powernightmares. Our work therefore contributes to the energy-proportionality
for a variety of modern and future systems.
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Abstract. Acknowledged multicasts, e.g. for software-based TLB inval-
idation, are a performance critical aspect of runtime environments for
many-core processors. Their latency and peak throughput highly depend
on the topology used to propagate the events and to collect the acknowl-
edgements. Based on the assumption of an inevitable interrupt latency,
previous work focused on very simple flat topologies. However, the emer-
gence of simultaneous multi-threading with locally shared caches enables
interrupt-free multicasts. Therefore, this paper explores and re-evaluates
the design space for dynamic multicast groups based on combining shared
memory with active messages and helping mechanisms. We expect this
new approach to considerably improve the scalability of acknowledged
multicasts on many-core processors.

Keywords: Multicast · Shared memory · Many-core · TLB shootdown

1 Introduction

Multicasts send a message to a selected group of receivers. One of its most
important uses in operating systems is the software-controlled invalidation of
caches, most notably the invalidation of Translation Lookaside Buffer (TLB)
entries after changes to shared address spaces [3–5,18,19,22]. Although a num-
ber of mechanisms have been proposed, often a variant of the TLB shootdown
algorithm [4] is used. The most costly operation in such algorithms is the han-
dling of inter-processor interrupts (IPIs) [3,5,18], which were necessary in order
to enforce the multicast’s completion.

Multi- and many-core architectures provide a large number of processor cores.
For example, the Intel XeonPhi processors contain more than 60 cores with four
hardware threads per core. This poses a scalability challenge [8]: The propaga-
tion and acknowledgment overhead per multicast and the number of concurrent
multicasts grow with the number of threads. In addition, dynamic membership
updates in multicast groups can become more frequent.

One worst case scenario is bulk synchronous parallel processing: All threads
may reconfigure their part of the shared address space after a synchronizing
barrier. Restricting the updates to a few single manager threads would miss

c© Springer International Publishing AG, part of Springer Nature 2018
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parallelization benefits and complicate the applications. Likewise, introducing
partitioned address spaces [8] would require careful use by the applications.

Many applications do not need all of the available hardware threads to fully
utilize the numeric execution resources [7]. With simultaneous multi-threading
(SMT) [21] the threads in a core share the local caches and, most importantly,
the TLB. Hence, with minimal hardware support, an idle thread can invalidate
its neighbor thread’s TLB entries without interrupting the currently running
application.

This paper proposes an interrupt-free TLB invalidation algorithm that
exploits dedicated hardware threads for cross-thread invalidation on shared
TLBs in order to avoid disturbing application threads. Interrupt-free multicasts
raise the question, whether tree- or ring-based multicast topologies can outper-
form conventional flat approaches and provide better trade-offs between latency
and throughput. Hence, the potential performance gains on the Intel XeonPhi
Knights Corner many-core processor are evaluated. However, complex multicast
topologies increase the costs of dynamic membership updates [1] and do not nec-
essarily reflect the hardware’s optimal topology. Consequently, this paper com-
piles a number of strategies that exploit shared memory to skip non-members
dynamically on top of an optimized static topology.

The paper is structured as follows: Sect. 2 surveys related work on multicasts
and TLB invalidation mechanisms. Section 3 outlines an interrupt-free invalida-
tion algorithm which uses that the TLB is shared between multiple hardware
threads. Section 4 explores the design space for dynamic multicast algorithms
that operate on top of static topologies. Section 5 evaluates the potential per-
formance gains and compares dynamic multicasts over static topologies against
adapted topologies.

2 Preliminary and Related Work

The first subsection surveys related work on multicast algorithms and topologies.
Then, their application to TLB invalidation on multi-core processors is reviewed.

2.1 Multicast Topologies

Multicast algorithms distribute messages to multiple receivers over unicast net-
works. In the propagation phase, the message is delivered to each receiver. This
can be carried out in parallel by letting intermediate receiver or support nodes
forward the message, which forms the logical multicast topology. A preemptive
notification, e.g. via interrupt signals, ensures the timely forwarding and process-
ing on all receivers. After processing the message at each receiver, an acknowledg-
ment of the global completion is returned to the multicast’s sender, for example,
to ensure ordering. This can be achieved by aggregating the individual acknowl-
edgments along the multicast topology.

The choice of the topology provides different performance trade-offs. The
throughput, as number of concurrent multicasts per time unit, is limited by the
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node with the highest per-message processing overhead and the most congested
network link. The overhead roughly increases with the number of direct succes-
sors, which favors the simple ring topology. The latency, as time between issuing
the multicast and receiving the acknowledgment, depends on the time needed to
propagate the messages and acknowledgments on the longest path. This favors
flat tree topologies. Finally, the reconfiguration overhead describes the cost of
inserting and removing receivers in the multicast group. Adapting the logical
topology appropriately to the network’s physical topology tends to come with
high construction overhead, which favors simple topologies like rings [1].

A wide range of literature exists on the construction of optimal topologies.
A recent review for many-core architectures can be found in [11]. Low-latency
strategies have been found for many network topologies [10] and performance
models such as the POSTAL model [2,6] and the LogP model [12]. Fractional
trees [15] provide a trade-off between latency and throughput in sparsely con-
nected networks. Similarly, diamond rings [13] balance both by unifying acknowl-
edgment and propagation in a ring-like topology.

A model for optimizing the throughput is the k-item broadcast problem in
which the number of rounds to multicast k messages should be minimized. San-
tos [17] provide a near optimal solution in the LogP model and the circulant
graphs [20] in the simultaneous send–receive model. However, the 2Tree algo-
rithms [16] are easier to implement while achieving near optimal throughput.

This paper does not aim to identify the best topology. Instead, the focus lies
on re-evaluating how much the choice of topology matters on many-core proces-
sors with dynamic multicast groups. Additional optimizations are available on
cache-coherent shared memory systems. Instead of the message-based aggrega-
tion of the acknowledgments, tree combining [23] by a hierarchy of counters in
shared memory can be more efficient.

2.2 Multi-core TLB Invalidation

The translation lookaside buffer (TLB) is a small cache that speeds up the
mapping from logical to physical addresses and access permissions. Each core
contains one or more local TLBs. For various reasons, the TLBs in many-core
architectures are not invalidated by the hardware’s cache-coherence. Instead,
the operating system has to send invalidation requests to all cores (or hardware
threads) that currently use the affected address space. Especially when removing
mappings, the sender has to wait for the global completion in order to ensure
that all threads can no longer access the removed pages.

Thus, the TLB invalidation is a major application of acknowledged multi-
casts. Dynamic groups are maintained in order to not bother unrelated threads
and reduce the system noise. Several algorithms have been proposed in the liter-
ature [3–5,18,19,22] and, often, a variant of [4] is used, which sequentially sends
interrupts to all cores to be invalidated. Barrelfish is a notable exception by
building efficient multicast topologies from a hardware description using a con-
straint solver [3]. However, in scenarios where membership can change rapidly
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rebuilding the entire topology would not be efficient. The following summarizes
the algorithm used by Linux 4.11 on x86 architectures1.

Each hardware thread owns a linked list as a task queue and an array of
pre-allocated per-thread task structures. The tasks consist of a list handle for
the task queue, a function pointer, a generic argument pointer for the function,
and an acknowledgment flag. The interrupt handler processes each task from
its queue and sets the flag. The multicast groups are maintained as bit mask
in each address space. By iterating over the mask, the task for each receiver is
initialized and enqueued. Then, an interrupt is sent to each receiver by either
sending individual interrupts or using hardware multicast support if available.
Finally, the mask is iterated again to wait on each acknowledgment flag.

In conclusion, concurrent multicasts are propagated in parallel with minimal
overhead for the receiver. This results in good throughput and simplicity but
comes with high overhead on the sender side and, hence, high latency.

As preliminary work we investigated the relevant parameters of a 60-core Intel
XeonPhi 5110P (KNC) processor with 1.053 GHz clock using microbenchmarks.
Hence, one processor cycle equates to roughly one nanosecond. The message
transmission overhead is around 1200 cycles. Sending an interrupt between cores
takes around 400 cycles and the next interrupt can be sent when the interrupt
controller is ready again after approximately 1000 cycles. The interrupt latency
from issuing the signal to reaching the interrupt handler was around 1000 cycles.

Typical HPC application on this processor use 60–120 application threads.
Hence, sending the 60–120 messages sequentially would take 72k–144k cycles.
Sending the interrupts sequentially would cost another 60k–120k cycles. By inter-
leaving the interrupt and message transmissions, this could be reduced to 24k–
48k cycles. In summary, a TLB invalidation across 120 threads would take at
least 264k cycles (250 µs) without the acknowledgment when using a flat topol-
ogy. This is 10x higher than other multicast topologies on the same processor,
see for example [11,13].

3 Interrupt-Free TLB Invalidation

This section outlines an interrupt-free invalidation algorithms that avoids oper-
ation system noise on application threads. It exploits that multiple hardware
threads share a TLB. Many applications do not need all of the available hard-
ware threads to fully utilize the numeric execution resources [7]. Thus, one thread
per core can be dedicated to the propagation and processing of TLB invalidation
multicast messages and other operating system tasks.

The first challenge is to avoid interrupting the applications running at a core.
Therefore, the dedicated thread must invalidate the TLB entries for the core’s
neighbor threads without sending interrupts. This can be achieved by exploit-
ing that threads using exactly the same address space share their TLB entries
and, thus, invalidation requests through the INVLPG instruction become effec-
tive for the neighbor threads. On x86 processors that support process context
1 Function smp call function many() in kernel/smp.c.
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identifiers (PCIDs), the PCID of the target address space can be used for invali-
dation through the INVPCID instruction. Finally, reverse-engineering of the TLB
structure can be exploited [9].

The x86 PCIDs are currently not used by Linux because the overhead of mul-
ticasts to unused address spaces would quickly offset the performance gain. How-
ever, the Alpha architecture has a similar feature called address space numbers
(ASNs). There, Linux maintains a small per-core mapping from used address
spaces to their local ASN. Invalidation multicasts are received only for the
actively used address space(s). The others are invalidated upon reloading if a
generation counter inside the address space indicates a skipped invalidation.
The same approach can be used for interrupt-free TLB invalidation on x86 by
tracking the PCIDs on the core level instead of individual hardware threads.

The invalidation requests need to be multicasted only to the non-sleeping
cores. Each core’s dedicated system thread checks if one of its application threads
is affected. Cores waking up from deep sleep invalidate their TLBs anyway.

The second challenge is to avoid sending an interrupt to the dedicated thread.
On processors with MONITOR/MWAIT support, the behavior of MWAIT ensures that
the dedicated thread directly continues its execution whenever a message arrives
in its queue. Without such support, the operating system can implement a sim-
ilar behavior by polling. The dedicated thread goes to sleep when all applica-
tion threads are idle, and is woken up by the first resuming application thread.
Multicasts should skip cores that are in deep sleep, which is achieved by the
mechanisms presented in the next section.

4 Dynamic Membership in a Static Broadcast Topology

Hierarchical multicast topologies may outperform the conventional simple flat
algorithm used by Linux. However, complex topologies increase the cost of
dynamic membership updates. On the other hand, using a static topology, sim-
ilar to a broadcast, bothers non-member threads and leads to high latencies for
small groups. Therefore, mechanisms are needed that emulate dynamic multicast
groups on top of a static hardware-optimized broadcast topology.

The basic idea is to decouple the logical from the physical topology: The role
of intermediate non-member nodes that should not receive a multicast can be
taken over by other nodes via shared memory. The logical topology can con-
tain additional support nodes that do not represent actual processor cores or
hardware threads.

This enables three mechanisms: Shared Memory Acknowledgment and Help-
ing avoid bothering non-member nodes by taking over their role. Skipping can
speed up the helping by jumping over larger subgroups of non-member nodes.

The first subsection defines the necessary node types for such topologies.
Then, the three mechanisms are discussed in more detail.
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Fig. 1. An example topology labeled with node types.

4.1 Node Types for Hierarchical Topologies

In Fig. 1, the three nodes types are illustrated by an example topology: Scatter
nodes have a single predecessor and multiple successors. Their role is to paral-
lelize the multicast’s propagation. Gather nodes have multiple predecessors and
a single successor. Their role is to distribute the aggregation of the acknowl-
edgements. Center nodes are in-between by having just a single predecessor and
successor. The root of the topology is a node without predecessor. At the oppo-
site end, the tail node has no successor and its role is to notify the multicast’s
source about the global completion.

Places represent the possible multicast receivers. For example, these can be
processor cores or hardware threads. A multicast group is the set of places that
shall process each multicast exactly once. The membership information needs to
be readable from all places and can be implemented, for example, by an array
of membership flags in shared memory. Each node of the topology is assigned
to a place. Member nodes belong to places that are part of the multicast group.
Some topologies require additional support nodes, which never will be a member
of the multicast group to prevent repeated processing of the same message.

In tree topologies, for example, the tree leaves become center nodes. Each
intermediate tree node consists of a scatter node and a supporting gather node.
On member scatter nodes, the message can be first forwarded, then processed,
and, after that, acknowledged to the associated gather node. In contrast, ring-
alike topologies have no support nodes. Their gather nodes can be members
and are responsible for message processing on their assigned place. Here, all
member nodes have to forward the message only after processing, because the
propagation of the message implicitly acknowledges that it has been processed.

4.2 Shared Memory Acknowledgment (SmAck)

Gather nodes aggregate the acknowledgment from their predecessors. In a pure
message passing implementation, each predecessor would send an acknowledg-
ment message, which is counted by the gather node. Such message transmissions
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over shared memory would cause more cache traffic than simply decrementing
a shared counter. With SmAck, each predecessor decrements the gather node’s
atomic counter via shared memory. Only when it reaches zero, a single message
is sent to the gather node.

4.3 Helping Non-member Nodes (Help)

Multicasts should not disrupt places that are currently not members of the mul-
ticast group. With a static topology however the respective non-member nodes
are still needed for propagation and acknowledgment aggregation. Each node
can check another node’s membership via shared memory. The Help mecha-
nism forwards messages only to member nodes. For non-member successors, the
sender node performs the successor’s propagation or aggregation role.

In other words, each node traverses the topology recursively along its non-
member nodes and propagates the multicast message only to members. In com-
bination with SmAck, this strategy reduces the acknowledgment aggregation on
support gather nodes to the classic tree combining [23].

4.4 Skipping Non-member Subgroups (Skip)

The Help mechanism has a drawback: With many non-member nodes, a few
nodes will have to scan most of the membership flags and carry out most or
all message transfers. As highlighted in Fig. 2, pairs of gather and scatter nodes
recursively form brackets around a smaller group of nodes. The Skip mechanism
uses this information to jump over entire hierarchical subgroups if such a sub-
group contains no member. Checking a large set of membership flags at each
node would be inefficient. Instead, tree combining [23] can be applied to track
the membership state of each subgroup hierarchically.

Fig. 2. An example skipping hierarchy. The dotted arrows indicate skip targets.
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5 Evaluation

This section evaluates the performance of dynamic multicast groups on top of
static topologies with focus on the latency. Our basic assumption is that cross-
thread TLB invalidation has negligible overhead compared to the multicast itself.
This allows to implement a better portable benchmark based on multicasts with-
out actual TLB invalidation. As described in Sect. 2.2, interrupt-based multicasts
work the same just with additional latency along the longest path.

The first subsection summarizes the benchmark setup and the second sub-
section presents the latency results. This evaluation has obvious room for
improvement: Comparing the overhead of group membership updates, integrat-
ing latency-optimized trees [11], and investigating the throughput with 2Tree
algorithms [16] is open for future work.

5.1 Setup

The benchmark environment is based on user-space threads on top of Linux.
Each thread is pinned to an individual hardware thread using a affinity mask.
The multicast is propagated through active messages via shared memory FIFO
queues based on [14]. All experiments were performed on a 60-core Intel XeonPhi
5110P (KNC) processor with 1.053 GHz clock. For this platform, one thread per
core is used and each polls actively for messages with a delay of 200 cycles when
its queue is empty. If available, as in the more recent Intel XeonPhi Knights
Landing architecture, MONITOR/MWAIT can be used to minimize the polling over-
head.

The impact of the multicast group size is compared for n = 2, 4, 8, 16, 32, 60
members. For each size, 32 configurations are generated by selecting random
members and the measurement is repeated 16 times for each configuration. The
median over all measurements is used to reduce the impact of the operating
system noise. The Static variant uses a single topology across the 60 cores for
all group sizes. In contrast, the Dynamic variant uses smaller topologies that
span just the members.

Different topologies are used to investigate the impact on the multicast mech-
anisms and the general benefit of deeper topologies compared to the classic flat
TLB invalidation. The Flat topology, see Fig. 3(a), mimics the conventional
strategy as described in Sect. 2.2. The acknowledgments are counted in a sin-
gle support node. The Tree topology, see Fig. 3(b), uses a 2-ary balanced tree.
Finally, the Diamond topology, see Fig. 3(c), is based on diamond rings, in which
the gather nodes are responsible for their own cores.

As baseline mechanism, SmAck uses just shared memory acknowledgment
to decrease the amount of messages sent to gather nodes. The Help mechanism
combines helping and shared memory acknowledgment. Finally, the Skip mecha-
nism combines skipping, helping, and shared memory acknowledgment. Because
there are no non-member nodes in the topologies of the Dynamic variant, Skip
does not provide any benefits there and Help just implements tree combining
for the gather phase.
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(a) flat (b) binary tree (c) diamond ring

Fig. 3. Topologies for 8 threads. Helper nodes are grey, dotted arrows indicate possible
skipping paths.

5.2 Results

Figure 4 shows the results of the latency benchmark. The columns represent
the three topologies (Flat, Tree, Diamond) and the rows represent the three
mechanisms (SmAck, Help, Skip). The circles represent the Dynamic topology
variants that consist only of the group members, and the triangles denote the
Static variant that includes all 60 cores. The x-axis is the size of the multicast
groups and the y-axis shows the medium latency.

The latency of the SmAck mechanism on the Dynamic topologies increases
linearly with the group size for the flat topology and logarithmically for the
hierarchical typologies. With the Static variant, the latency is almost constant
with a median around 77k cycles for Flat, 39k for Tree, and 38k for Diamond.
This can be expected because it involves all 60 cores independent of the group
size. Thus, the overhead for a single message is around 1280 cycles based on
the Flat topology. The longest path in the Tree and Diamond topologies is
6 scatter nodes with 2 messages per node plus 6 gather nodes. This predicts a
latency of 23k cycles. The remaining 16k cycles might be caused by additional
overhead from navigating through the more complex topology.

The latency of the Help mechanism on the Dynamic topologies is roughly
equal to the pure SmAck mechanism, except on the Tree topology. The Static
variants have a much higher latency than the Dynamic variants. On the Static
Tree topology, the latency decreases from 38k to 31k cycles for growing group
size. For all 60 members on the Tree topology, Help is 8k cycles faster than
pure SmAck. This difference can be attributed to the tree combining during the
gather phase. Based on the large difference on the Flat topology, it seems that
the membership test of our implementation has a high overhead. This equally
impacts the Static Help on the other topologies. With growing group size, this
overhead is hidden by the parallel propagation.

The Static Skip mechanism performs similar to the Dynamic Help on each
topology but has slightly higher overhead. Compared to Static Help on the
Tree and Diamond topology, it has a much smaller latency for small groups.
On the Flat topology, Skip never happens as long as there is at least one
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Fig. 4. Median latency for the different topologies and propagation mechanisms.

member. Skip actually eliminates the overhead of the Static Help mechanism
on small groups. However, this advantage vanishes for larger group sizes. There,
the additional overhead to check for possible skipping becomes visible.

In summary, Help on the Tree topology performed best for the Dynamic
variant and Skip on the Tree topology performed best for the Static variant.
The difference is negligible for large groups. For groups with just two members,
the Dynamic variant (5.6k cycles) is 3x faster than the Static variant (15.5k
cycles). However, the static variant has likely a larger overhead for topology
updates when the group changes, which was not evaluated in this paper.

Comparing the Flat versus Tree topology, the latency can be halved from
77k to 37k. Of course this difference increases with the number of cores or hard-
ware threads. Interrupts during the propagation would increase the latency to
78k on the Flat and up to 43k on the Tree topology. Hierarchical topologies
benefit more from interrupt-free multicasts than the conventional flat approach.

6 Conclusions

The first part of the paper examined TLB shootdowns as a practical example
for invalidation multicasts on many-core processors. We proposed an interrupt-
free TLB invalidation algorithm that exploits simultaneous multiprocessing by
dedicating superfluous hardware threads to the multicast processing. Similar
algorithms are applicable to other kinds of locally shared caches, for example
non-coherent instruction caches. Such interrupt-free multicasts reduce the oper-
ating system noise by not interrupting applications.
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The second part evaluated the potential performance gains on the Intel
XeonPhi Knights Corner many-core processor with focus on hierarchical multi-
cast topologies and strategies that exploit shared memory to skip non-members
dynamically on top of an optimized static topology. The results show that the
latency can be significantly reduced for large groups (2x for 60 cores) and ben-
efits more from interrupt-free propagation than the conventional flat approach.
Therefore, TLB shootdowns should be redesigned for many-core processors. The
impact on the peak throughput needs further investigation.
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Recent issues with the power consumption of conventional HPC hardware results in
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Abstract. Future Exascale architectures will likely make extensive use
of computing accelerators such as Field Programmable Gate Arrays
(FPGAs) given that these accelerators are very power efficient. Often-
times, these FPGAs are located at the network interface card (NIC) and
switch level in order to accelerate network operations, incorporate con-
tention avoiding routing schemes, and perform computations directly on
the NIC and bypass the arithmetic logic unit (ALU) of the CPU. This
work explores just such a heterogeneous FPGA architecture in the con-
text of two kernels that are driving applications in leadership machines:
the 3-D Fast Fourier Transform (3-D FFT) and Asynchronous Multi-
Tasking (AMT). The machine explored here is a DataVortex system
which consists of conventional processors but with programmable logic
incorporated in the memory architecture. The programmable logic con-
trols the network and is incorporated both in the network interface cards
and the network switches and implements a contention avoiding network
routing. Both the 3-D FFT and AMT kernels show compelling perfor-
mance for deployment to FFT driven applications in both molecular
dynamics and density functional theory.

Keywords: FFT · FPGA · Heterogeneous systems
Asynchronous multitasking · High radix networks
Contention avoiding routing

1 Introduction

Future Exascale architectures will likely make extensive use of computing accel-
erators such as Field Programmable Gate Arrays (FPGAs) given that these
accelerators are very power efficient. Oftentimes, these FPGAs are located at
the network interface card (NIC) such as in the NetFPGA project [16] which
has generated a large body of research on ways this configuration can improve
networks. Programmable logic at the NIC not only offloads computation from
the CPU to the NIC, but also enables more complicated routing schemes and
topologies that can reduce contention at the scales Exascale researchers attempt
to address. This work explores just such a heterogeneous FPGA architecture in

c© Springer International Publishing AG, part of Springer Nature 2018
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the context of two kernels that are driving applications in leadership machines:
the 3-D Fast Fourier Transform (3-D FFT) and Asynchronous Multi-Tasking
(AMT).

The 3-D FFT kernel is a well known high performance computing (HPC)
benchmark and is a key kernel in a wide range of HPC applications includ-
ing molecular dynamics and density functional theory. AMT kernels, on the
other hand, come from those emerging runtime models which combine multi-
threading with some form of message-driven computation. These runtime mod-
els, sometimes referred to as “Asynchronous Multi-Tasking” or “AMT”, feature
the ability to express and perform fine grain thread parallelism in the context
of distributed computation while also supporting the coarse grained parallelism
of conventional parallel programming practice. Some examples of experimen-
tal AMT implementations include OCR [7], Legion [6], the Habanero family
of languages [23,25,29,33], the Grappa framework for distributed shared mem-
ory [30], HPX [3,4], Qthreads [8], X10 [10], and Charm++ [1]. An emerging
challenge for AMT implementations is that they generate a large number of
small messages when operating in the modality of fine grain computation. While
this may present a problem for a conventional system, a heterogeneous FPGA
architecture is better equipped to handle this modality of operation.

The machine explored in this work is a DataVortex 200 series [2] which
consists of conventional processors but with programmable logic incorporated in
the memory architecture. The programmable logic controls the network and is
incorporated both in the network interface cards and the network switches and
implements a contention avoiding network routing. In June 2016 a DataVortex
200 series ranked 20th in the Green Graph 500 list [22] achieving 8.39 MTEPS
per Watt.

For the 3-D FFT kernel, the expanded memory hierarchy in the network
serves to significantly accelerate global memory rotations resulting in a signif-
icant speedup in FFT performance. For the AMT kernel, the incorporation of
programmable logic directly controlling the network enables high memory band-
width for small message sizes. These traits may prove crucial for applications in
an Exascale setting.

This work is structured as follows. Related work is given in Sect. 2, followed
by a detailed description of the prototype system and qualitative analysis of the
potential of this type of architecture for Exascale in Sect. 3. Section 4 explores
AMT runtime system requirements for dynamic applications and presents
microbenchmark results empirically exploring small message behavior on the
machine. Section 5 introduces the 3-D FFT kernel and explores the performance
of this kernel in both a conventional and FPGA accelerated modality. The con-
clusions and directions for future work are given in Sect. 6.

2 Related Work

The incorporation of programmable logic into network interface cards has
become extremely popular. The open source NetFPGA project [16] has been



Accelerating the 3-D FFT Using a Heterogeneous FPGA Architecture 655

cited in hundreds of academic works and is an open source field programmable
gate array (FPGA) PCI Express board with Gigabit or Ten Gigabit Ethernet
networking ports. This project has enabled hundreds of groups to experiment
with programmable logic at the network interface card level with SRAM for data
rearrangement and buffering. There are also many vendors selling PCI Express
boards with programmable logic for building systems like the prototype sys-
tem explored in this work including Bittware [12] and Alpha Data [11]. The
widespread adoption of this technology for networks itself suggests the impor-
tance of studying a prototype system for potential Exascale use. The use of
FPGAs for low-latency contention avoiding networking designs has already been
adopted by high frequency traders in the financial industry [26,28].

Concurrent with the massive interest in programmable logic in network cards
is the large body of topology work aimed at improving communication band-
width through the elimination of link contention. Some examples of adaptive
routing schemes to avoid contention include those of Reed [32], Deniziak and
Tomaszewski [19] and Zhao et al. [36]. Topologies matter for performance and this
is especially well illustrated in the Dragonfly work [24]. A significant strength of
the prototype system explored in this work is the contention-avoiding topology.

3 Experimental Setup

The prototype system for exploring the FFT and AMT kernels is the DataVortex
200 series system described here. The system consists of 8 nodes with one Intel
Xeon E5-1630v3 operating at 3.7 GHz per node and 8 FPGA-based network
interface cards. Each of these cards is an Altera Stratix 5 A7 FPGA and has
32 MB of SRAM. These network interface cards are connected to a switchboard
consisting of four Altera Stratix 5 B6 FPGAs. The cards operate at a throughput
of 550 million packets/sec and are connected across the PCIe 3.0 controller using
eight lanes with an aggregate packet bandwidth of 35.2 GB/s in each direction
for the entire 8 nodes. For network comparison studies, the prototype system also
contains Mellanox Infiniband cards (Connect-X 3 VPI) to provide a redundant
network against which to compare performance. The stream benchmark [9] on a
single core of the prototype system indicates a sustained memory bandwidth of
14.5 GB/s.

All results in this work originate from the prototype system including both
the AMT and FFT control cases which do not use programmable logic with
SRAM and the DataVortex FPGA architecture cases which do. Due to the
small size of the prototype system, there is no expected performance impact
from the contention avoiding routing at the prototype system scale. The con-
tention avoiding routing algorithm implemented is that of Reed [32]. In both the
AMT and FFT kernels, the SRAM of the FPGAs is heavily utilized in order
to accelerate strided memory accesses in conjunction with network operations.
The small message behavior of the FPGA driven network is key for just the
AMT kernel. Small messages are a key component of AMT runtime systems and
have shown significant potential for improving the scalability and performance
of scaling constrained applications [18,34].



656 M. Anderson et al.

4 Asynchronous Multi-tasking Kernel

Asynchonrous Multi-Tasking runtime systems frequently target medium to fine
grain thread parallelism rather than the coarse-grained process parallelism
employed in conventional parallel programming practices. This approach can
significantly improve efficiency in algorithms with irregular and time-varying
execution properties and show promise for Exascale usage. However, dynamic
task and resource management execution for fine grain thread parallelism also
results in a large number of small messages rather than the relatively small
number of large messages that frequently appears when using conventional par-
allel programming practice. An example of this is illustrated in Fig. 1. Figure 1
shows a visualization of the sparsity pattern of network communication and size
of messages for two different execution modalities of the Livermore Unstruc-
tured Lagrangian Explicit Shock Hydrodynamics (LULESH) mini-application.
LULESH [5] is a proxy application representing a commonly used kernel in sci-
entific computation intended to better measure and reflect realizable perfor-
mance on high performance computing architectures than benchmarks such as
High Performance Linpack (HPL) [20] while also serving as a performance mea-
sure for potential Exascale architectures and to optimize for power, energy, and
performance [27]. The two different execution modalities explored are coarse
grain parallelism as typified using conventional parallel programming practice
and asynchronous multi-tasking for fine grain parallelism and the modalities
were explored using the SST/macro simulator [21] where MPI was used for the

(a) Conventional Practice (b) AMT runtime

Fig. 1. A visualization of the sparsity pattern of network communication and size
of messages for the LULESH mini-application for both coarse grained conventional
practice and a fine grained AMT approach. The color indicates the size of the messages
with red being the largest and black being zero size. The conventional practice shows
fewer but larger mesages while the AMT approach shows many more messages of much
smaller size. (Color figure online)
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conventional approach and HPX was used for the AMT approach. LULESH per-
formance and network behavior were simulated on 64 nodes of a Cray XE6 for
both modalities with significant overdecomposition in the AMT modality. The
AMT approach generates significantly many more smaller messages than the
conventional approach. Most networks, however, show their best efficiency with
fewer, larger messages. In order to explore typical AMT behavior, the AMT ker-
nel explored in this section is alltoall communication limited to 8 byte messages.

The prototype system programmable logic network shows behavior substan-
tially different from conventional networks and favors large numbers of small
messages such as what is seen in AMT runtime executions like that of Fig. 1.
Alltoall communication bandwidth for 8 byte messages comparing infiniband
and the programmable logic network of the prototype system is shown in Fig. 2.
For many small messages the programmable logic network significantly increases
communication bandwidth for typical AMT execution modalities. This charac-
teristic may become an important feature for future Exascale architectures and
is a natural consequence of the programmable logic network created for the
prototype system here.

Fig. 2. Alltoall communication bandwidth for 8 byte messages comparing infiniband
and the programmable logic network of the prototype system. For many small mes-
sages such as that in the AMT modality of Fig. 1, the programmable logic network
has the benefit of not only employing contention avoiding routing but also increasing
communication bandwidth for AMT execution modalities.

5 3-D Fast Fourier Transform

The 3-D Fast Fourier Transform (FFT) is a key scientific computing kernel used
in many widely used software frameworks and toolkits. Some of these include
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widely used molecular dynamics toolkits such as NAMD [31] and Gromacs [14]
and Density Functional Theory toolkits such as VASP [17]. In NAMD, the
smooth Particle-Mesh Ewald method [35] is critically dependent on the dis-
tributed 3-D FFT implementation for both performance and scalability. The
3-D FFT is also an important kernel for computational fluid dynamics simula-
tions. Any potential Exascale architecture will need to compute the 3-D FFT
extremely efficiently as well as strong scale without generating a lot of network
contention.

Among the many ways to implement a 3-D FFT, several global memory rota-
tions are usually implemented so that a 1-D FFT is applied along 1-D lengths of
data that are stored consecutively in memory for fast access. No strided memory
accesses occur this way and such 3-D FFT implementations are very fast. How-
ever, such global memory rotations are expensive requiring both a large alltoall
operation and some data reordering. The incorporation of SRAM in the pro-
grammable logic network enables the network to also perform such a memory
rotation when taking each of the x, y, and z FFTs and thereby compute the
FFTs using the fastest memory layout possible. These rotations are illustrated
in Fig. 3. The 3-D data is decomposed across the distributed memory system in
just one dimension giving each CPU access to the entire fast dimension domain
memory each time an FFT is computed. The initial memory layout has fastest
access in the z direction and so the z FFT is computed first. The first rotation
then places fastest memory access in the x direction for computing the x FFT.
The second rotation places the fastest memory access in the y direction for com-
puting the y FFT. The last rotation returns the memory to the original layout.
Rotations in memory and FFT computations are entirely overlapped due to the
expanded memory hierarchy in the network.

Fig. 3. The programmable logic network and associated SRAM are used to perform
quick memory rotations and network communication for optimal memory layout of FFT
computations. For a memory layout that begins with fastest access in the z direction,
the z FFT is computed first. The first rotation then places fastest memory access
in the x direction for computing the x FFT. The second rotation places the fastest
memory access in the y direction for computing the y FFT. The last rotation returns
the memory to the original layout.
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For comparison purposes, the FFT kernel on the programmable logic network
is compared against performance from the widely used MPI-FFTW library [13]
and the FFT NAS Parallel Benchmark [15]. All of the comparison cases using
MPI-FFTW or the NAS Parallel Benchmark were conducted on the prototype
system but used the infiniband network. Figure 4 gives the time to solution for a
fixed problem size, 10243 3-D FFT run from 1 to 8 nodes on the prototype sys-
tem for complex double precision. In this figure, the lower the time to solution,
the better the result. The programmable logic network version significantly out-
performs the MPI-FFTW comparison in each case by around a factor of 4 or 5.
The performance of the programmable logic network FFT is also better even on
a single node, reflecting the usage of the fast programmable logic SRAM for data
rearrangement and optimal FFT computation even while not in a distributed
modality. Figure 5 gives the strong scaling speedup for the complex double 3-D
FFT calculations. The programmable logic network FFT scales linearly with the
number of nodes in both cases in addition to giving the significant performance
advantage illustrated in Fig. 4.

The NAS Parallel Benchmark for FFT enables a comparison in terms of
GFlops with the programmable logic network FFT. This comparison is shown in
Fig. 6. In these results, several different problem sizes were explored consistent
with NAS PB classes A–D while the programmable logic network FFT was
performed at cubic sizes. In each case, the entire 8 node system was used. The
performance improvement when using the programmable logic network versus

Fig. 4. Strong scaling result showing the time to solution between a 10243 complex
double 3-D FFT using either MPI-FFTW over infiniband or the FFT with the pro-
grammable logic network. In this plot, the lower the line, the faster the time to solution
and the better the result. All simulations used the prototype system. The scaling com-
parison for this data is found in Fig. 5.
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the NAS PB over infiniband is between a factor of 3 and 4. The peak sustained
performance for the programmable logic network version of the 3-D FFT was
163.1 GFlops over 8 nodes.

Fig. 5. Strong scaling result showing the speedup between a 10243 complex double 3-D
FFT using either MPI-FFTW over infiniband or the FFT with the programmable logic
network. In this plot, the higher the line, the better the scalability and the result. All
simulations used the prototype system. The time to solution comparison for this data
is found in Fig. 4.

Fig. 6. A comparison of sustained GFlops for the FFT operation comparing the NAS
Parallel FT Benchmark over Infiniband with the FFT over the programmable logic
network. All results used the prototype system and use the the full system (8 nodes).
Multiple 3-D problem sizes are explored. The NAS parallel FT benchmark peaks at 49
GFlops while the FFT over the programmable logic network peaks at 163 GFlops.
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6 Conclusions

Because it is expected that FPGAs will likely play a significant role in reduc-
ing power consumption in emerging and future supercomputers, this work has
explored a heterogeneous FPGA machine which incorporates programmable
logic that both expands the memory architecture and controls the network. Two
application motivated scientific computing kernels were explored on a small 8
node prototype system: an AMT kernel consisting of alltoall with 8 byte mes-
sages and the 3-D fast Fourier transform. While the AMT kernel tested the small
message communication bandwidth capability of the system, the 3-D FFT kernel
tested the global memory rotation capability of the system in order to accelerate
performance over conventional practice.

High communication bandwidth for small messages was explored due to
its importance for asynchronous multi-tasking runtime systems which target
medium to fine grain thread parallelism and generate large numbers of small
messages. This was demonstrated explicitly in this work using the SST/macro
simulator. AMT runtime systems may become key components of the Exas-
cale software stack both to improve efficiency and programmability. The FPGA
machine was able to significantly outperform the equivalent infiniband 8 byte
message alltoall. While a conventional application running on a conventional
machine addresses this performance issue through message coalescence, AMT
applications will often opt to avoid coalescence for greater overlap of computa-
tional phases. In this modality, the FPGA machine shows promise.

Fast rotations in conjunction with the programmable logic network enable
a very fast algorithmic approach to 3-D FFT’s so that the memory layout is
arranged for optimal access at the same time the network exchanges necessary
data between nodes. This results in performance improvements of as much as
a factor of 5 over conventional practice in computing 3-D FFT’s for the small
prototype system in this work. Future work will directly explore the perfor-
mance impact of this architecture on molecular dynamics toolkits like NAMD
and density functional theory toolkits like VASP.
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Abstract. Heterogeneous platforms provide a promising solution for
high-performance and energy-efficient computing applications. This paper pre-
sents our research on usage of heterogeneous platform for a floating-point
intensive kernel. We first introduce the floating-point intensive kernel from the
geographical information system. Then we analyze the FPGA designs generated
by the Intel FPGA SDK for OpenCL, and evaluate the kernel performance and
the floating-point error rate of the FPGA designs. Finally, we compare the
performance and energy efficiency of the kernel implementations on the Arria 10
FPGA, Intel’s Xeon Phi Knights Landing CPU, and NVIDIA’s Kepler GPU.
Our evaluation shows the energy efficiency of the single-precision kernel on the
FPGA is 1.35X better than on the CPU and the GPU, while the energy efficiency
of the double-precision kernel on the FPGA is 1.36X and 1.72X less than the
CPU and GPU, respectively.
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1 Introduction

Compared to central processing units (CPUs) and graphics processing units (GPUs),
field programmable gate arrays (FPGAs) have major advantages in reconfigurability
and performance achieved per watt. This development flow has been augmented with
high-level synthesis (HLS) flow that can convert programs written in a high-level
programming language to Hardware Description Language (HDL) [1]. Using
high-level programming languages such as C, C++, and OpenCL for FPGA-based
development could allow regular software developers, who have little FPGA knowl-
edge, to take advantage of the FPGA-based application acceleration.

OpenCL is an open-source standard for data-parallel heterogeneous computing,
which supports CPUs, GPUs, FPGAs, and other accelerators. OpenCL specifies
functionality that vendors need to implement for their hardware features and pro-
gramming interfaces. In addition, OpenCL makes it easier for a portable design across
multiple hardware platforms and allows developers to optimize the functions for a
specific architecture.

The Intel FPGA SDK for OpenCL supports their Cyclone-, Stratix-, and
Arria-series FPGA platforms [2–4]. Xilinx offers a complete SDAccel development
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environment for OpenCL-based application acceleration on their Kintex-series and
Virtex-7 FPGA products [5].

Recent publications [6–9] on optimizing OpenCL applications on FPGAs show that
there are few detailed analyses of the mapping of various floating-point operations to
FPGAs for a floating-point intensive kernel. The analysis and evaluation of mapping
floating-point operations described in a high-level programming language to hardware
are important because a user can optimize a design that enables the compiler to reduce
FPGA resource usage and increase performance.

To this end, this paper presents our research on the evaluation of a floating-point
intensive kernel compiled with the Intel FPGA SDK for OpenCL employing the
Nallatech 385A FPGA board. The analyses of this kernel reveal how the compiler
optimizes the single- and double-precision kernels and maps each floating-point
arithmetic operation in the kernel to the corresponding hardware floating-point
operator.

The kernel is representative of other floating-point intensive kernels. As far as the
authors know, it has not been evaluated previously on the FPGA-based computing
platform. In this paper, we first introduce the kernel identified in a geographical
information system (GIS) and analyze the FPGA designs generated by the compiler.
Then we measure the kernel execution time and the floating-point error rate of the
FPGA implementations. Finally, we compare the performance and energy efficiency of
the kernels on the Arria 10 FPGA, the Intel Xeon Phi Knights Landing CPU, and the
NVIDIA’s K80 GPU.

2 Background

As a brief overview of the OpenCL programming model, an OpenCL application
consists of host and kernel programs. Its host program is written in standard C/C++ that
runs on most modern microprocessors. The host allocates data arrays in the global
memory that will be read by the kernel. When the data are ready for the kernel, the host
launches the kernel that will be executed on the FPGA device(s). A kernel typically
executes computation by reading data from global memory as specified by the host,
processing it, and then writing the results back into global memory. When the results
are ready, they can be read by the host for validation and post-processing.

Intel and Xilinx websites provide OpenCL literature on implementation, low-level
optimization, and programming interfaces for their hardware features. In many cases,
an optimized kernel with loop unrolling, vectorization, and compute-unit duplication
can achieve better performance on FPGAs, but the resource usage of the resulting
implementations limits the degree of task and data parallelism. In addition, the modules
in the low-level kernel system architecture – including the memory access interface,
local memory usage, work-group dispatch, and the interconnection network – affect
kernel performance.
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3 Related Work

Underwood showed that the use of FPGAs is promising for running applications with
floating-point addition, multiplication and division [10]. Since then, FPGAs have been
gradually decreasing the gap to GPUs and many-core CPUs for particular applications
in terms of peak performance, power consumption, and sustained performance. [11].

In [12], the authors showed that the performance of the double-precision
floating-point matrix multiplication on FPGAs has a 3.48X improvement over that
of the processor, while the power per GFLOP of the FPGA is 7.64X lower than that of
the processor. In addition, the FPGA slices of the 64-bit floating-point addition unit and
multiplication unit is on average 2.5X and 3.1X more than those of the 32-bit
floating-point units, respectively. Due to the FPGA size constraint, the authors only
studied the floating-point add and multiply units.

In [13], the authors presented application characteristics to FPGA, CPU, and GPU
platform mapping using three applications. For their future work, they suggested a
direct comparison between CUDA and a high-level language for FPGAs.

In [6], the authors demonstrated that the OpenCL-based FPGA implementation of a
fractal encoding kernel is 3X and 114X faster than a GPU and a multi-core CPU,
respectively, while consuming 12% and 19% of the power, respectively. They com-
pared the results on Altera Stratix IV 530 and Stratix V A7 FPGAs with a NVIDIA
Fermi C2075, a 40 nm GPU; and an Intel Xeon W3690 host processor, a 32 nm CPU.
Our FPGA results on the Arria 10 GX1150 are compared against the NVIDIA K80, a
28 nm GPU; and an Intel Xeon Phi Knights Landing 7210, a 14 nm CPU. This takes
into account technological advances in the hardware platforms.

In [9], the authors implemented the Monte Carlo simulations option pricing with
three HLS tools from Altera, Xilinx, and Maxeler, and compared the results among
FPGA, CPU, and GPU accelerator platforms. Their results showed that the HLS tools
are suited to accelerating parallel-friendly algorithms. The study, however, didn’t
analyze how floating-point operators in the kernel are implemented on each FPGA
board.

The OpenCL kernels in the CHO benchmark [14] contain implementations of
IEEE-standard double-precision floating-point operations using 64-bit integers, but
none of the kernels have floating-point computations. For a subset of the
OpenCL-based Rodinia benchmark suite, the authors achieved 3.4X greater energy
efficiency using a Stratix V FPGA in comparison to a NVIDIA K20c GPU [8]. Due to
the compiler and board support package issues for their Arria-10 FPGA board at the
time, the results may not reflect the best performance for each kernel.

A key to efficient FPGA implementation for complicated floating-point operations
is to use multiplier-based algorithms to leverage the large amount of hardened DSP
resources integrated into the FPGA devices [15]. For example, Arria 10 FPGAs—
Intel’s first FPGAs that natively support single-precision floating-point computation
using dedicated hardened circuitry—delivers 3.8X increased performance and 3.6X
better energy efficiency than the Stratix V results for the SGEMM kernel [16].

When implementing real-word large floating-point functions on an FPGA, a gen-
eral rule of thumb is that the clock speed of a design implementation would degrade as

666 Z. Jin et al.



Fig. 1. Pseudocodes for the geodesic distance kernel.
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FPGA resource utilization rises above 70–80%. This high-resource utilization often
requires more effort spent on placement, routing, and timing optimization. Intel FPGA
SDK for OpenCL version 16.0.2 Pro Prime, for example, fails to generate FPGA
implementations for two kernels in the CHO benchmark due to routing congestion [17].
In addition, floating-point results generally do not strictly match across different
heterogeneous computing platforms. For example, Leeser et al. give an example of the
numerical accuracy difference in the sequential and parallel versions of a floating-point
intensive program [18] when analyzing the behavior of an OpenCL floating-point
benchmark on different heterogeneous architectures.

4 OpenCL Kernel Implementation

4.1 Kernel Description

The geodesic distance kernel calculates the distance between two geographic coordi-
nates on the earth’s surface. Earth’s shape is modelled as an ellipsoid. The shortest
distance between two points along the surface of an ellipsoid is along the geodesic. The
methods for computing the geodesic distance are available in GIS, software libraries,
standalone utilities, and online tools [19]. The OpenCL kernel is based on the
open-source implementation [20] of the solution to the inverse geodesic problem [21].

Figure 1 presents the pseudocodes for the kernel. Each coordinate of a point is
represented as latitude and longitude in degrees. The default type of the coordinate is
double-precision floating-point type. The kernel is composed of three building blocks
(BB0, BB1 and BB2) annotated in Fig. 1, and is floating-point intensive with more
than 100 floating-point arithmetic operations.

4.2 Analyses of Kernel Implementations

The Intel FPGA SDK for OpenCL compiler generates three block modules in Ver-
ilog HDL corresponding to the three building blocks in the kernel. Table 1 shows the
number of double-precision floating-point operator instances in the Verilog HDL codes
generated by the compiler without any floating-point optimization options enabled.
From the arithmetic expressions in the BB0, the compiler instantiates four divide
operators (dp_div), two square root operators (dp_sqrt) and two combined sine and
cosine operators (dp_sincos) in the HDL library of the Intel FPGA SDK for OpenCL.
There are only 12 multiplications in the BB0, but the number of instantiated multipliers
(dp_mul) is 13. The generated Verilog HDL code reveals that the compiler performs a
global optimization to include the multiplication “su1 * cu2” from the BB1, as “su1”,
“cu2”, and their product have no dependency with other variables in the BB1.

For the BB1, the compiler produces the expected number of operators for sincos,
atan2, and sqrt operations. The compiler, however, instantiates 18 multipliers, less than
the number of multiplications in the expressions. The compiler optimizes away the
multiplications in “cz * 2.0” and “−3.0 * c2a”. For the divide operations, the compiler
instantiates two dividers and converts the “divide by 16.0” operation to an adjustment
to the exponent of the result.
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For the BB2, the compiler attempts to optimize away the “multiply by constant”
operations and is able to factor out the common product “x * x” in the block.
Therefore, the compiler instantiates 13 multiply operators. For the divide operations,
the compiler does not optimize away the “x/6.0”, as “x/6” is not precisely equivalent to
“x * 1/6.0”. Therefore, three dividers are instantiated.

Overall, the compiler instantiates 44 multiply, nine divide, three sincos, one atan2,
and four square root operators. It does not instantiate other floating-point operators
from the HDL IP library. Instead, they are directly implemented using combinational
and sequential logics. While the compiler supports the optimization option of replacing
a * b + c with a multiply-and-add (MAD) operator, a double-precision MAD operator
is not available in the IP library.

The Intel FPGA OpenCL programming guide [22] describes how users can reduce
the amount of floating-point hardware resources with the “–fpc” option of the compiler
command. The option removes floating-point rounding options and conversions
whenever possible.

Table 2 shows the number of double-precision floating-point operators of each type
instantiated by the compiler when using the optimization option. The option removes
intermediary roundings and conversions when possible and changes the rounding
modes to round towards zero for multiply and add operations. Compared to the results
in Table 1, the option directs the compiler to instantiate 44 54 � 54-bit integer mul-
tiply operators because mantissa multiplication requires a 54 � 54-bit hardware
multiplier.

While another floating-point optimization option, “–fp_relaxed”, can lead to more
efficient hardware resource usage by relaxing the order of arithmetic floating-point
operations, the FPGA resource usage report does not show resource reduction for the
kernel.

For the single-precision floating-point kernel, Table 3 shows the number of oper-
ators of each type instantiated by the compiler without any floating-point optimization
options enabled. The compiler instantiates multiply (sp_mul), add (sp_add), subtract
(sp_sub), and compare (sp_cmp) operators from the IP library. The compiler optimizes
the multiply and add operations with multadd (a * b + c) and dot2 (a * b + c * d)
operators. Compared to the double-precision implementations, the compiler can gen-
erate high-performance hardened floating-point implementations by taking advantage

Table 2. Number of double-precision floating-
point operators instantiated by the compiler using
option “–fpc”

Operator BB0 BB1 BB2 Total

dp_div 4 2 3 9

dp_sincos 2 1 0 3
dp_atan2 0 1 0 1

dp_sqrt 2 1 1 4
int_mul 13 18 13 44

Table 1. Number of double-precision floating-
point operators instantiated by the compiler without
using floating-point optimization

Operator BB0 BB1 BB2 Total

dp_mul 13 18 13 44

dp_div 4 2 3 9
dp_sincos 2 1 0 3

dp_atan2 0 1 0 1
dp_sqrt 2 1 1 4
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of the native floating-point operators offered by Arria 10 FPGA devices [23]. The
compiler, however, does not discover additional multiply and add operations using the
“-cl-mad-enable” optimization flag. When the optimization option “–fpc” or “–
fp-relaxed” is enabled for the single-precision floating-point kernel, the compiler may
ignore the option and generate the same Verilog HDL codes.

5 Experimental Results

5.1 Experimental Setup

We chose the Intel Xeon Phi Knights Landing (KNL) 7210 processor with 64 cores and
four threads per core as the target CPU, with high-bandwidth on-package memory in
cache mode. The program is compiled using an Intel C compiler, version 2018 Beta,
with the “-O3” option, OpenMP, and AVX-512 SIMD instruction enabled. Its system
thermal design power is 215 W, and its idle CPU package power is approximately
60 W [24].

We chose the NVIDIA K80 with 2,496 cores as the target GPU. Its peak perfor-
mance is 2.8 TFLOPS for double-precision, and 0.95 TFLOPS for single-precision.
The GPU’s power limit is 149 W with an idle power of 74.15 W with persistence mode
enabled. The program is compiled with CUDA Toolkit 7.5.

We used the Intel’s FPGA SDK for OpenCL version 16.0.2 Pro Prime to compile
the OpenCL kernels into the hardware configuration files. The target FPGA board is a
Nallatech 385A, a PCIe-based FPGA accelerator card that features an Arria 10
GX1150 FPGA device, PCIe x8 Generation 3 host interface, and two banks of 4 GB
DDR3 memory. The theoretical peak floating-point performance of the Arria10 chip is
1.5 TFLOPS, and the theoretical peak memory bandwidth is approximately 34 GB/s.
The FPGA board’s idle power is 27.3 W.

The input test data are retrieved from Maxmind’s world cities database [25] that
includes city, region, country, latitude, and longitude. In our experiment, we extracted
221 cities with unique locations around the world. We chose four cities (Mumbai,

Table 3. Number of single-precision floating-point operators instantiated by the compiler.

Operator BB0 BB1 BB2 Total

sp_mul 13 16 13 42
sp_add 1 4 6 11
sp_sub 1 4 4 9
sp_multadd 2 6 3 11
sp_div 4 2 3 9
sp_sincos 2 1 0 3
sp_dot2 0 1 0 1
sp_atan2 0 1 0 1
sp_sqrt 2 1 1 4
sp_cmp 0 2 0 2
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Sydney, Federal District Mexico, and London) from which the kernel computed dis-
tances to each of the 221 cities.

5.2 Resource Usage, Performance, and Power

Tables 4 and 5 show the FPGA resource usage of double- and single-precision
implementations of the kernel respectively. Replication of the compute unit is repre-
sented as “cuX”, where X indicates the replication times. The maximum frequency
(Fmax) of the double-precision kernels is approximately 230 MHz. Since each com-
pute unit requires 515 DSPs, and there are a total of 1,518 DSPs on the target device,
only two duplicate kernels (cu2) can be implemented. The approximate 30% logic
utilization for each kernel also constrains the number of duplicate kernels. Compared to
the double-precision floating-point kernel, the single-precision version can accommo-
date nine duplicate compute units (cu9), as shown in Table 5. However, the Fmax
decreases from 280 MHz to 212 MHz, as the number of compute units increase from
one to nine.

The kernel execution time is a performance metric that measures the execution time
of a kernel on an FPGA device. Figure 2 shows that the kernel execution time of a
single double-precision compute unit is 198.9 ms and 196.9 ms for cu1 (without –fpc)
and cu1(–fpc), respectively. For two compute units, the kernel execution time depends
on the local work size. When the local work size ranges from 24 to 220, the kernel
execution time reaches the minimum values of 100.5 ms and 103.5 ms, respectively.

For one single-precision compute unit (cu1), as shown in Fig. 3, the execution time
of the kernel is 75 ms, 62% less than the execution time of the double-precision kernel.
For multiple compute units, the kernel execution time also depends on the local work
size. The kernel execution time reaches the minimum values of 21.1 ms for cu4 when
the local work size is 214, and 13 ms for cu9 when the local work size is 28.

The FPGA power consumption results of the double- and single-precision
floating-point kernel are shown in Figs. 4 and 5, respectively. When there is one
compute unit, the power is 35.6 W and 34.7 W for the double-precision floating-point
kernel and its resource-optimized version, respectively. The power of one
single-precision floating-point kernel is only 30.7 W. The power increases to the

Table 4. Resource usage and maximum frequency
of the double-precision kernel implementations.

cu1 cu1 (fpc) cu2 cu2 (fpc)

Logic
utilization

36% 28% 61% 45%

Memory bits 14% 14% 22% 21%
RAM blocks 25% 25% 44% 38%
#DSPs 515 515 1030 1030
Fmax (MHz) 230 233 227 221

Table 5. Resource usage and maximum
frequency of the single-precision kernel
implementations.

cu1 cu4 cu9

Logic
utilization

15% 28% 49%

Memory bits 8% 12% 17%
RAM blocks 18% 35% 63%
#DSPs 160 640 1440
Fmax (MHz) 280 255 212
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maximum 44 W for two double-precision compute units and a maximum of 41.7 W for
nine single-precision compute units. While reducing the FPGA resource usage can
effectively reduce the power, the results show that power consumption is also related to
local work size for multiple compute units.

6 Comparison of CPU, GPU, and FPGA Results

In our experiment, the execution time of the kernel averages over 256 iterations.
The CPU power is measured with an in-house energy trace utility, the GPU power is
measured with the NVIDIA Management Library, and the FPGA power is measured

Fig. 2. Kernel execution time of the double-
precision implementations. The local work
size in the x axis indicates 2local work size.

Fig. 3. Kernel execution time of the single-
precision implementations. The local work size
in the x axis indicates 2local work size.

Fig. 4. Power consumption of the double-
precision kernel implementations. The local
work size in the x axis indicates 2local work size.

Fig. 5. Power consumption of the single-
precision kernel implementations. The local
work size in the x axis indicates 2local work size.
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with Nallatech’s board support package. For the GPU implementations, we use stan-
dard math functions instead of floating-point intrinsic functions [26]. In addition, we do
not employ any floating-point optimizations provided by the CPU and GPU compilers.

As shown in Table 6, the CPU consumes the highest power (190 W), the FPGA the
lowest power (44 W). Due to the DSP and logic resource constraints on the FPGA
device, its execution time is more than 5X slower than the CPU and GPU for the
double-precision kernel, and less than 3.25X slower for the single-precision kernel. The
execution time on the GPU and CPU differ by approximately 1 ms for each kernel.

We define energy efficiency as the number of normalized distance calculations in
millions in a second per watt:

Energy efficiency ¼ n
kernel time�maximum power � 1:0E6

ð1Þ

where n is the normalized size of the input data (i.e., a pair of double-precision
coordinates equivalent to two pairs of single-precision coordinates).

As shown in Fig. 6, the GPU has the best energy efficiency (6.51) for the
double-precision kernel, while the FPGA has the best energy efficiency (15.36) for the
single-precision kernel. The energy efficiency of the single-precision kernel is better
than that of the double-precision kernel on each platform. The energy efficiency of the
single-precision kernel on the FPGA is 1.35X better than the K80 and KNL7210, while
the energy efficiency of the double-precision kernel on the FPGA is 1.36X and 1.72X
less than the CPU and GPU, respectively.

Table 6. Performance and energy efficiency of CPU, GPU and FPGA for the double-precision
(DP) and single-precision (SP) kernels.

CPUDP CPUSP GPUDP GPUSP FPGADP FPGASP

Execution time (ms) 18.3 4 17.7 5.4 100.5 13
Maximum power (W) 190 190 145.5 136.7 44 42

Fig. 6. Million distance calculations per watt for the single-precision and double-precision
kernels on the three platforms.
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7 Conclusion

We introduce the floating-point intensive geodesic distance kernel, analyze the FPGA
designs generated by the compiler, and evaluate the kernel performance, resource
usage, and error rate for the FPGA implementations. Two compute units can be
realized for the double-precision version of the kernel on the Arria 10 GX1150, while
nine can be used for the single-precision version. Single-precision floating-point
computation is suitable for the current generation of FPGA devices, based on FPGA
performance, resource usage, and energy efficiency of single- and double-precision
floating-point kernel implementations.

In the case of the geodesic distance kernel, the energy efficiency of the
single-precision kernel is 1.35X better than the GPU and CPU, while the energy
efficiency of the double-precision kernel is 1.36X and 1.72X less.

The FPGA results are promising as the upcoming 14-nm Stratix 10 GX FPGA
devices are power aware [27] and provide more DSPs, memory, and adaptive logic
resources [28]. The GX 2800 device, for example, has 933,120 ALMs, 5,760 DSPs and
11,721 M20 memory blocks, which will allow more than double the compute units to
be implemented for the kernel.
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Abstract. Reconfigurable architectures are commonly used in the
embedded systems domain to speed up compute-intensive tasks. They
combine a reconfigurable fabric with a general-purpose microprocessor
to accelerate compute-intensive tasks on the fabric while the general-
purpose CPU is used for the rest of the workload. Through the use
of invasive computing, we aim to show the feasibility of this technol-
ogy for HPC scenarios. We demonstrate this by accelerating a proxy
application for the simulation of shallow water waves using the i-Core,
a reconfigurable processor that is part of the invasive computing mul-
tiprocessor system-on-chip. Using a floating-point custom instruction,
the entire computation of numerical fluxes occurring in the application’s
finite volume scheme is performed by hardware accelerators.

Keywords: Invasive computing · High Performance Computing
Tsunami simulation · Reconfigurable processor
Resource-aware computing

1 Introduction

General-purpose graphics processing units (GPGPUs) and accelerator cards
such as the Intel Xeon Phi have brought heterogeneity to today’s High Per-
formance Computing (HPC). While these accelerators focus on general-purpose
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computations to provide benefits for a wide range of applications, the emerg-
ing application-specific accelerators like Google’s Tensor Processing Unit [16] or
Microsoft Catapult [20] offer an additional performance increase at a reduced
power consumption. In contrast to HPC, application-specific accelerators are
used commonly in the domain of embedded systems in the form of application-
specific integrated circuits (ASICs), application-specific instruction-set proces-
sors (ASIPs) or reconfigurable architectures [27]. The latter combine the perfor-
mance and power consumption benefits of application-specific accelerators with
the applicability of general purpose architectures by employing a reconfigurable
fabric (FPGA) that can be flexibly configured to host application-specific accel-
erators at runtime. Accelerator cards featuring a reconfigurable fabric (“fabric”
hereafter) have been used in HPC before. However, such a loose coupling of CPU
and fabric introduces high latencies between accelerators and computations on
the CPU, thus impairing the performance benefits. In the embedded systems
domain, reconfigurable processors are a well-researched architecture that couples
a CPU and a fabric on the same chip. This gives accelerators direct access to the
CPU-internal state, a so-called tight coupling. Therefore, reconfigurable proces-
sors provide acceleration with a low latency (of few CPU cycles) and provide a
performance benefit even when accelerating computations of only a few hundred
cycles.

Our contribution is an integrated demonstration of a reconfigurable HPC sys-
tem consisting of custom hardware, operating system, compiler, and application.
We employ invasive computing [26], which allows us to program our system in a
resource-aware way: The applications can explore available resources at runtime
and allocate them exclusively for the duration of an upcoming computation.
We first introduce how invasive computing is supported throughout our technol-
ogy stack. Then, we present our case study of computing shallow water waves on
the heterogeneous InvasIC multi-processor system-on-chip (MPSoC). Finally, we
detail how we accelerate the shallow water wave computations using i -Core, a
processor with reconfigurable accelerators that is part of the invasive computing
multiprocessor system-on-chip.

2 The Invasive Computing Stack

The governing thought of invasive computing is to grant applications, running on
a massively-parallel computer, temporary exclusive access to resources like pro-
cessor, communication channels and memory [9,26]. A set of granted resources
is called a claim. Applications allocate claims by invading resources, and then
infect them with a program to run. Finally, the application retreats from its
claim, freeing the resources.

Realizing this programming model requires support from the hardware archi-
tecture, the operating system, the compiler and the application. Figure 1 shows
a high-level overview of the invasive computing technology stack providing that
support. Its components will be introduced in the following.
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Fig. 1. High-level overview of the invasive computing technology stack. It targets chal-
lenges to support invasive computing at the architectural, runtime/compiler and pro-
gramming level.

2.1 The InvasIC Hardware Architecture
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Fig. 2. Overview of the InvasIC hardware
architecture used in our work

InvasIC [14] is a heterogeneous Multi-
processor System-on-Chip (MPSoC).
It consists of tiles of different types
that are interconnected using a
network-on-chip (NoC). Within this
work, we employ three types of tiles
for the Shallow Water Equations (see
Sect. 3). (i) RISC tiles contain sev-
eral RISC cores that communicate
over a shared bus, (ii) i -Core tiles
contain RISC cores and an i -Core, a
RISC core with reconfigurable hard-
ware accelerators that are accessi-
ble through instruction-set exten-
sions (see Sect. 4) and (iii) memory
tiles that provide DDR memory. The
hardware architecture used in this
work is shown in Fig. 2. The RISC
cores within these tiles are LEON3

CPU cores (available as part of the Gaisler GRLIB [11]) that implement the
SPARC V8 ISA. Each core on a tile has dedicated L1 data and instruction
caches. Additionally, the cores on a tile share an L2 cache and a tile local mem-
ory (TLM). The TLM is a freely accessible, low-latency and high-throughput
scratchpad memory. All tiles are able to access larger amounts of memory (com-
pared to the TLM) provided by memory tiles, and additionally the TLMs of other
tiles. This tile-external memory is accessed through a network adapter (NA)
providing access to the invasive Network on Chip (iNoC) and cached by the L2
cache. Further details on the architecture can be found in [14,26].
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While the i -Core offers a strict superset of the LEON3’s functionality, and
may hence be used just like a normal LEON3, special care has to be taken when
features unique to the i -Core are used: (i) An application can store intermediate
state that depends on the i -Core so that parts of the further execution need
to be scheduled on the i -Core (ii) Using accelerators, i -Cores can process much
more computations than the LEON3 cores in the same amount of time. Simply
accessing global memory during these computations leads to memory being the
performance bottleneck. We detail challenges (i) and (ii) in Sects. 4.1 and 4.2,
respectively.

2.2 The Invasive Operating System – OctoPOS

OctoPOS [19] is a parallel operating system (POS) for the invasive program-
ming paradigm. It was designed and tailored to run on systems with 1000+
cores and therefore implements a non-traditional threading scheme: Instead of
long-running threads, parallelized control flows are represented as short snip-
pets of code called i -lets. Similar to fibers [25], i -lets use cooperative scheduling
and mostly run to completion. The exclusive access to resources combined with
the mostly-run-to-completion property of i -lets relieves us from the requirement
of temporal isolation through preemption. This in turn avoids frequent context
switches. A run-to-completion i -let leaves no state on the stack upon termina-
tion, which allows OctoPOS to recycle the used stack for the next i -let. Hence, a
single stack can be used by multiple i -lets. This approach makes them lightweight
and inexpensive to create, schedule, and dispatch when compared to traditional
threads.

The cooperative scheduling is based around a synchronization primitive
called signal which is a private semaphore [13] implemented in a wait-free [15]
manner. When an i -let performs a blocking operation, its execution context is
saved. This is the only case that necessitates a binding of the i -let to its stack.

2.3 The Invasive Language

The invasive hardware platform offers a global address space, but caches are not
coherent between tiles. The Asynchronous Partitioned Global Address Space
(APGAS) model [23] and its implementation in X10 [24] are a good fit for this
use-case. Threads within a single address space partition1 may freely access
each others’ memory, while accesses between partitions require the programmer
to invoke a special operation2. We associate each tile with an APGAS address
space partition. Thus, APGAS ensures the separation of cache coherence regions.

To transmit data between partitions, the sender flushes its cache to global
memory. The receiver then clones the data into its partition. This offers an API
similar to shared memory access to the user program and is more efficient than
message passing.

1 An X10 place.
2 at-expression for place-shifting.
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We have developed a custom X10 compiler based on libFIRM [7] in order to
implement X10 on top of the OctoPOS API, mapping X10’s activities directly to
i -lets [18]. Moreover, we have extended X10 to Dynamic X10 [6] which supports
the dynamic resource changes effected by invade and retreat.

3 Shallow Water Equations in X10

Shallow Water Equations in X10 (SWE-X10) is a proxy application for the com-
putation of shallow water waves, a model that may be used to predict the prop-
agation of a tsunami wave given the initial water displacement. Shallow water
waves are governed by a system of hyperbolic partial differential equations. They
are a set of conservation laws for water height (h), and horizontal (hu) and ver-
tical (hv) momenta. Enriched with source terms (S(x, y, t)) for bathymetry and
Coriolis Forces, they are used to capture not just the propagation of tsunami
waves, but also the inundation of coastal regions [8,17].

⎡
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Equation (1) displays the shallow water equations. For their numeric solution, we
use a finite volume scheme on a Cartesian grid with piecewise constant unknown
quantities and an explicit Eulerian time step [17]. We use

Q
(n+1)
i,j = Q

(n)
i,j − Δt

Δx

(
A+ΔQ

(n)

i− 1
2 ,j

+ A−ΔQ
(n)

i+ 1
2 ,j

)
(2)

− Δt

Δy

(
B+ΔQ

(n)

i,j− 1
2

+ B−ΔQ
(n)

i,j+ 1
2

)

to calculate the new values for the unknown quantities h, hu, hv and b in cell
(i, j) at time step n + 1, Q

(n+1)
i,j based on the values of the previous time step.

To this end, we need to determine the fluxes of unknown values into and out of
each cell for each of the cell’s borders. In Eq. (2), this is reflected by A±ΔQ

(n)

i± 1
2 ,j

and B±ΔQ
(n)

i,j± 1
2

for the vertical and horizontal fluxes, respectively. These fluxes
can be computed by solving the Riemann problem at the cell boundary. SWE-
X10 includes several approximate Riemann solvers. Here, we focus on the fWave
solver [3] that we accelerate using the i -Core.

SWE-X10 is written in X10 using the ActorX10 framework [21,22]. Figure 3
depicts a high-level overview of the actor graph. Using actors, we are able to
parallelize the application while avoiding data races and without having to dis-
tinguish between shared and distributed memory. Each actor is assigned a single
patch of the overall grid, and data between patches is exchanged using channels.
The actor uses a patch calculator to compute the updates for the grid points of a
patch. By employing resource-aware programming (see Sect. 2.3), we show how
specialization of the patch calculator enables support for hardware accelerators
so that each instance fully exploits the available resources.
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Fig. 3. Grid and actor graph. Five actors (orange) are shown, together with their
respective patches (blue). Between each two neighboring actors there are four channels,
one pair for simulation data and another for coordination data. (Color figure online)

4 Accelerating SWE-X10 Using i -Core

The i -Core is a runtime-reconfigurable processor, i.e., it combines a processor
core (here: LEON3) with application-specific hardware accelerators. In contrast
to application-specific processors (ASIPs), hardware accelerators are not fixed at
design time. Instead, they can be reconfigured – even at runtime – to accelerate
any given application by the use of a reconfigurable fabric (FPGA). Hardware
accelerators are utilized by so-called custom instructions (CIs) that extend the
ISA of the processor core. A CI invokes execution of a microprogram on the
CI Execution Controller. Using the microprogram, the CI Execution Controller
takes care of data transfers between accelerators and accelerator execution. Thus,
a CI can utilize, potentially in parallel, one or more accelerators. The micropro-
gram implementing a specific CI is obtained by scheduling the CI’s data flow
graph (representing the computations performed by the CI) onto accelerators
that are available on the reconfigurable fabric in a specific configuration (see
[5] for details). CIs can read inputs from the CPU register file and write results
back to it (tight coupling of the reconfigurable fabric). A CI can access the whole
memory hierarchy through the CPU’s cache controller. Additionally, the recon-
figurable fabric is directly connected to the TLM using two 128-bit-wide memory
ports with a single cycle latency. Therefore, the TLM provides a much higher
bandwidth for CIs than accessing the 32-bit-wide system bus. The protocol of
invoking CIs from the CPU pipeline is similar to invoking multicycle instructions
such as integer division from the standard ISA (Fig. 4).

As the invasive computing paradigm guarantees isolation of resources
between applications, each application can adapt the i -Core and configure
application-specific hardware accelerators that provide maximum benefits for the
respective application (in terms of performance but also non-functional prop-
erties like worst-case execution time [12]). For accelerating compute-intensive
floating-point-based applications like SWE-X10, we introduce a set of pipelined
floating-point accelerators that implement generic floating-point operations as
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Fig. 4. Overview of the InvasIC architecture with a detailed view of the i-Core tile

Table 1. Pipelined floating-point accelerators available for i-Core. CIs can utilize
multiple accelerators in parallel. Thus, configuring highly-utilized accelerators multiple
times can benefit a CI’s latency.

Accelerator Operations Min./Max.
latency1

Initiation
interval

FP MAC Add/subtract, multiply, multiply-accumulate 3/5 2

FP DIV Divide, reciprocal 6/6 2

FP SQRT Square root 5/5 2

FP UTIL Min/max, absolute and compare (<,>) 3/3 2
1 Clock cycles on the reconfigurable fabric

listed in Table 1 (details on a previous version of FP MAC can be found in [4]).
To accelerate SWE-X10, we implemented the fWave solver as a CI (fwave) for
i -Core. The fwave instruction performs all 54 floating-point operations of the
fWave solver as a single CI using our floating-point accelerators. This results
in a data-flow graph that consists of 97 nodes (operations) including memory
accesses, address generation, communication between accelerators and accel-
erator execution. On our current i -Core prototype within the InvasIC archi-
tecture, we instantiate i -Core using five reconfigurable containers. We utilize
these containers for SWE-X10 to configure the following accelerators: 2×FP MAC,
1×FP DIV, 1×FP SQRT and 1×FP UTIL. The reconfigurable fabric needs to be
configured once at application startup, which takes ca. 5.5 ms at a reconfigu-
ration bandwidth of 100 MB/s. This configuration enables us to schedule the
97 operations of fwave onto the accelerators in a microprogram consisting of
41 steps. Pipelining is very beneficial for fwave: when disabling it, the number
of steps almost doubles (>71 steps). Each step of the microprogram takes 2
clock cycles (at maximum 100 MHz) on the reconfigurable fabric. In total, the
54 floating-point operations of the fWave solver are executed in 82 cycles using
fwave and our pipelined floating-point accelerators on i -Core.
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CIs like fwave are provided to the X10 programmer using wrapper methods
that are inlined by the compiler. Thus, we can directly access the CIs from X10
with minimal overhead.

4.1 Adaptions to the OctoPOS Operating System

To maximize the utilization of the available resources on the InvasIC architec-
ture, the OctoPOS scheduler has to be able to schedule i -lets over CPU cores
that feature instruction set extensions. More specifically, the instruction set of
the LEON3 is a strict subset of the instructions provided by the i -Core. As a con-
sequence, i -lets that rely on the availability of i -Core CIs have to be scheduled
on an i -Core that is configured accordingly, as the invocation of the CI would
cause an illegal instruction trap otherwise. i -lets that only contain standard
SPARC-V8 instructions can be executed on i -Cores as well.

We therefore allow i -lets to be assigned to a team which may have a different
scheduling domain than non-team members. The scheduler ensures that team
members are only executed on cores belonging to the team’s scheduling domain.
Unlike the original team concept [10], i -lets can be dynamically (re-)assigned to a
team. This enables the dynamic pinning of i -lets to a set of cores. An application
is thus able to create scheduling domains that only contain its invaded i -Cores.
By pinning i -lets containing CIs to such a scheduling domain, it is ensured that
those i -lets do not trap, while other i -lets are still scheduled on all available cores.

4.2 Adaptions in SWE-X10

SWE-X10 only required very minor code changes to make it compatible with
the APIs exposed by the invasive X10 compiler, and therefore most of the work
was spent optimizing the performance on i -Core. In SWE-X10, the computa-
tional hotspot is the calculation of fluxes between cell boundaries, A±ΔQ

(n)

i± 1
2 ,j

and B±ΔQ
(n)

i,j± 1
2
, in Eq. (2). As mentioned in Sect. 3, the code utilizes, amongst

others, the fWave approximate Riemann solver to compute these net updates.
The aforementioned CI of the i -Core may be used as a drop-in replacement for
the X10 implementation of the fWave solver. However, this way the i -Core does
not benefit from its high-bandwidth connection to the TLM, but accesses data
from global memory.

Therefore, we created a specialized subclass with an implementation of the
iteration optimized for the i -Core that buffers data in the TLM. The size of
that memory is limited. Thus, it is impossible to retain the entire patch in
the TLM. Instead, we load the data row-wise, using a triple buffering scheme
with a previous, a current and a next row. The i -let graph for the scheme is
shown in Fig. 5. A task depends on all tasks that are connected to it by an
incoming edge. The iteration starts by synchronously loading the first two rows
into the TLM (L(0) and L(1)), followed by the computation of the horizontal
fluxes for row 0 (H(0)). Now, we perform the loop for rows 1 to N , N being the
number of rows in a patch. In each iteration n, we asynchronously load the next
row (L(n+1)) into memory and perform the vertical flux computations on the
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previous and the current row (V(n−1,n)). After the computation is completed,
we may asynchronously start the write of the previous row back to the global
memory (S(n−1)) and perform the horizontal flux computation on the current
row (H(n)). After clearing the previous row (C(n−1)) and, in case of n = N − 1,
writing back the next row (S(n+1)), the loop returns to the beginning.

Fig. 5. i-let graph for the i-Core patch calculator. Nodes that are not (transitively)
connected may be executed in parallel. Nodes performing I/O operations are depicted
in blue, while nodes performing a computation are depicted in orange. Edges annotated
with a condition are only taken if the condition is met. (Color figure online)

5 Results

First, we evaluate the performance benefits and resource utilization on the recon-
figurable fabric of executing the fWave solver kernel using the i -Core CI com-
pared to execution in software on the LEON3 CPU with different variants of
floating-point support. Afterwards, we evaluate the performance of computing
one simulation step of a whole patch (see Sect. 3) on the i -Core compared to the
LEON3 CPU utilizing its high-performance floating-point unit (FPU-HP).

Table 2 shows execution time and resource utilization results for the fWave
solver kernel. Compared to a standard LEON3 with FPU-HP (fastest floating-
point support variant that also utilizes most resources), i -Core is 7.5 times faster
and 3.8 times more efficient in the use of lookup tables (LUTs) on the Xilinx
Virtex-7 (floating-point operations per second/LUTs).

Table 3 shows the execution time of one iteration of the patch calculators that
perform 7140 to 7320 calls to the previously evaluated fWave solver (depending
on the patch characteristics). The baseline is execution on the LEON3 with FPU-
HP utilizing global memory. Buffering data in the TLM results in a speedup of
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Table 2. Execution time and resource utilization results for the fWave solver ker-
nel executed in software (without floating-point unit (FPU), with “lite” FPU and
“high-performance” FPU from Gaisler) compared to fwave CI on i-Core. Results were
obtained using GRLIB on a Xilinx VC707 board (Virtex-7 FPGA) at 75 MHz.

+ +

µ µ µ µ

1.75×. Execution on the i -Core utilizing global memory speeds up the compu-
tation by 2×. Both optimizations combined alleviate the memory bottleneck for
the i -Core and we achieve a speedup of 4.82× in total.

Table 3. Patch calculator execution time on the LEON3 (with FPU-HP) compared to
execution time on the i-Core, with data in global DDR RAM or buffering in the tile-
local memory (TLM). Results were obtained using the InvasIC Hardware Prototype
on a Synopsis CHIPit system consisting of four Xilinx XC5VLX330 (Virtex-5 FPGA)
at 25 MHz.

6 Related Work

SWE-X10 is based on the C++-application SWE [2,8], a code based on the finite
volume scheme described by LeVeque [17]. SWE features a modular approach,
with one patch per MPI rank. It has been executed on Xeon CPUs [2], Tesla
GPUs [8] and the Xeon Phi [2]. In contrast to SWE-X10, SWE uses a global
communication approach, and does not have lazy activation.

ElasticX10 [1] also allows for a dynamic and asynchronous change in the
amount of places. Compared to this, Dynamic X10 offers more stability: Places
change in a predictable fashion, as the application itself drives the change in
resources, i.e., it is resource aware, enabling it to maximize its performance.

Compared to other reconfigurable processors [27], i -Core has the unique fea-
ture that its CIs are not implemented as one monolithic accelerator, but using
microcode to utilize multiple accelerators. This enables to implement the same
functionality with more or less accelerators and enables to opt for a different
tradeoff between CI latency and fabric area allocated at runtime.
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In contrast to our work, FPGA accelerators such as Microsoft Catapult [20]
are coupled loosely to the CPU, and only effectively speed up large computations.
Application specific accelerators such as the Tensor Processing Unit [16] are not
reconfigurable.

7 Conclusion

In this contribution, we have demonstrated the applicability of techniques from
embedded computing, such as application-specific hardware reconfiguration and
control over the entire technology stack, to HPC. Using the i -Core’s tightly-
coupled reconfigurable fabric, we were able to implement an fWave approximate
Riemann solver in hardware. Thus, we accelerated the computation of fluxes
between cell boundaries, the computational hotspot of SWE-X10, by a factor
of 4.82 over the baseline solution using the LEON3’s high-performance floating
point unit, while utilizing resources on a reconfigurable fabric more efficiently
(in terms of LUTs and DSPs). This contribution demonstrates the feasibility of
accelerating HPC applications using a reconfigurable processor.

Acknowledgments. This work was supported by the German Research Foundation
(DFG) as part of the Transregional Collaborative Research Centre “Invasive Comput-
ing” (SFB/TR 89).
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Sweden, January 2016. Version 1.5.0: http://www.gaisler.com/products/grlib/
grlib.pdf. Retrieved 2 May 2017

12. Damschen, M., Bauer, L., Henkel, J.: Extending the WCET problem to optimize
for runtime-reconfigurable processors. ACM Trans. Archit. Code Optim. 13(4),
45:1–45:24 (2016)

13. Dijkstra, E.W.: The structure of the “THE”-multiprogramming system. Commun.
ACM 11(5), 341–346 (1968)

14. Henkel, J., Herkersdorf, A., Bauer, L., et al.: Invasive manycore architectures. In:
Proceedings of 17th Asia and South Pacific Design Automation Conference (ASP-
DAC), pp. 193–200, January 2012

15. Herlihy, M.: Wait-free synchronization. ACM Trans. Prog. Lang. Syst. (TOPLAS)
13(1), 124–149 (1991)

16. Jouppi, N.P., Young, C., Patil, N., et al.: In-datacenter performance analysis of a
tensor processing unit. arXiv preprint arXiv:1704.04760 (2017)

17. LeVeque, R.J., George, D.L., Berger, M.J.: Tsunami modelling with adaptively
refined finite volume methods. Acta Numerica 20, 211–289 (2011)

18. Mohr, M., Buchwald, S., Zwinkau, A., et al.: Cutting out the middleman: OS-level
support for X10 activities. In: Proceedings of 5th ACM SIGPLAN X10 Workshop,
X10 2015, pp. 13–18. ACM, New York (2015)
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Multiprocessor System-on-Chip, pp. 241–268. Springer, New York (2011). https://
doi.org/10.1007/978-1-4419-6460-1 11

27. Tessier, R., Pocek, K., DeHon, A.: Reconfigurable computing architectures. Proc.
IEEE 103(3), 332–354 (2015)

http://www.gaisler.com/products/grlib/grlib.pdf
http://www.gaisler.com/products/grlib/grlib.pdf
http://arxiv.org/abs/1704.04760
http://x10-lang.org
https://doi.org/10.1007/978-1-4419-6460-1_11
https://doi.org/10.1007/978-1-4419-6460-1_11


Linking Application Description with Efficient
SIMD Code Generation for Low-Precision

Signed-Integer GEMM

Günther Schindler1(B), Manfred Mücke2, and Holger Fröning1
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Abstract. The need to implement demanding numerical algorithms
within a constrained power budget has led to a renewed interest in low-
precision number formats. Exploration of the degrees of freedom provided
both by better support for low-precision number formats on computer
architectures and by the respective application domain remains a most
demanding task, though.

In this example, we upgrade the machine learning framework Theano
and the Eigen linear algebra library to support matrix multiplication
of formats between 32 and 1 bit by packing multiple values in a 32-bit
vector. This approach keeps all the optimizations of Eigen to the overall
matrix operation, while maximizing performance enabled through SIMD
units on modern embedded CPUs. With respect to 32-bit formats, we
achieve a speedup between 0.45 and 21.17 on an ARM Cortex-A15.

1 Introduction

Digital computers implement computer arithmetic over finite number sets. The
past decades saw improved support for higher-precision number formats resulting
in native support of double-precision (64-bit) floating-point on almost all com-
puting platforms from supercomputers to desktops and mobile devices. Recently,
though, there is a substantial interest in reduced-precision number formats to
execute demanding algorithms within limited time, memory, or power budgets.
The key driver for this development are complex algorithms executed on mobile
platforms, for instance for speech recognition, computer vision, or augmented
reality. An extreme example of this trend are binarized neural networks [3], in
which the weights and activations are represented by either a plus one or a minus
one, allowing storing each parameter in a single bit.

Driven by various trends, including big data, deep learning, and a steadily
increasing resolution in image processing, the complexity of applications contin-
ues to grow. This applies to computational complexity, algorithmic complexity,

c© Springer International Publishing AG, part of Springer Nature 2018
D. B. Heras and L. Bougé (Eds.): Euro-Par 2017 Workshops, LNCS 10659, pp. 688–699, 2018.
https://doi.org/10.1007/978-3-319-75178-8_55
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and memory complexity. At the same time, algorithms continue to rely heav-
ily on Basic Linear Algebra Subroutines (BLAS) like matrix-vector or matrix-
matrix multiplication. As an example, a trained neural network uses matrix-
vector and matrix-matrix operations for the inference, in which new information
is detected. As the number of layers for neural networks is continuously grow-
ing, up to extreme examples including 100 or 1000 layers [8], the execution time
and memory footprint for such a workload increases accordingly. Unfortunately,
single-thread performance is stagnating since the end of Dennard scaling, and
now performance scaling usually requires parallelization.

Short-vector units (also known as single-instruction multiple-data – or SIMD
– units) exploit the low cost of data-level parallelism in current CMOS processes.
SIMD units are ubiquitous in current architectures from server CPUs to micro-
controllers. They typically support multiple number formats with throughput
doubling at half of the bit width. While the performance of SIMD units looks
good on paper, the challenge is to map numerical algorithms to matching number
formats and to exploit the complex instruction sets.

Quantization is a form of lossy data compression, with the benefit of lower
memory footprint and lower computational complexity. While originally studied
in the context of computer arithmetic, it can also be seen in the context of
approximate computing, which also looks at different techniques like logic design
[13] and architecture [4], as well as software aspects including data type qualifiers
[10] and loops [11].

This work is motivated by the wish to use complex (BLAS-based) algorithms
for highly resource-constrained systems with limited computational performance.
ARM architectures dominate many domains of embedded computing today. We
see ARM-based CPUs as a viable option that should be explored initially, as
they offer in comparison to specialized processors a relatively high productivity,
versatility and rather unconstrained memory capabilities. By computing locally
on the mobile device, one avoids traffic to cloud-based processing solutions, and
especially the need for online connectivity. Under real-time constraints or secu-
rity considerations this might be a strong argument. We assume that selected
application domains are able to map relevant tasks onto lower-precision number
format. We are concerned with the question how lower-precision number formats
can be effectively used. That includes direct use at the application level as well
as resulting low-level code making best use of available SIMD units.

Here, we report insights from our explorations and optimizations to enable
ARM processors to efficiently perform computations on extremely quantized
data. In particular, the main contributions of this work are as follows:

– A review of architectural support in embedded ARM processors for compu-
tations based on extreme forms of quantizations, in particular non-standard
representations

– The design, optimization, and evaluation of building blocks for efficient quan-
tized computations
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– Based on our findings, a discussion of the implications with regard to the
compute stack, or how to extend the compute stack to allow generalized
forms of such computations.

The remainder of this work is structured as follows: Sect. 2 provides a back-
ground on matrix multiplication, ARM processors, and NEON vector instruc-
tions. Section 3 describes our solution in detail and explains optimizations. Next,
Sect. 4 reports performance results. We discuss our observations in Sect. 5 before
we conclude in Sect. 6.

2 Background

In this section, we shortly introduce the necessary background in combination
with the most important related work.

2.1 Implementation and Optimization of GEMM

One of the key operations in linear algebra is General Matrix Multiply (GEMM).
GEMM is implemented in BLAS. GEMM takes two two-dimensional arrays of
size M × N and N × K as inputs and returns a two-dimensional array of size
M × K. The values of the output matrix are calculated as shown in Eq. 1, with
A and B as input arrays and C as output array.

ci,j =
∑N

n=1
ai,n ∗ bn,j (1)

Thus, GEMM consists of iterating over the input arrays and applying
Multiply-Accumulate (MAC) operations. Despite the simplicity of the GEMM
algorithm it requires multiple, hardware-dependent optimization techniques in
order to achieve high performance on any given architecture. Modern compilers
are capable of detecting cache ineffective source code or integrate some auto-
vectorization, but this is usually not sufficient to reach state-of-the-art perfor-
mance for GEMM. Thus, libraries like Eigen, Atlas, or OpenBLAS focus on
highly optimized BLAS algorithms [6]. For instance, the Eigen library imple-
ments a hand-tuned GEMM that exploits a variety of optimizations for a set of
SIMD-capable processors [7].

2.2 ARM Processors and Their SIMD Extensions

Single Instruction Multiple Data (SIMD) refers to a vectorization technique that
enables the computation of multiple data elements with a single instruction.
With the introduction of the ARMv7 architecture, ARM processors supports a
SIMD extension named NEON [1,2] to accelerate media applications. NEON is
able to process 128 bit wide vectors and supports 16 × 8-bit, 8× 16-bit, 4× 32-
bit, and 2× 64-bit integer and floating-point operations. With the upcoming
introduction of the ARMv8-A architecture and its Scalable Vector Extension
(SVE), ARM is extending the vector processing capabilities for vector lengths
that scale from 128 to up to 2048 bit.
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2.3 ARM NEON ISA Review

Table 1 summarizes the most important NEON instruction for the MAC opera-
tion, relevant to implement GEMM for different number formats.

Table 1. Instruction overview for the MAC operation

Operation Instruction Description

Multiplication VMLA Multiplies the elements of two vectors and
accumulates the elements of a third vector -
Supports 32/16/8 bit

VMUL Multiplies the elements of two vectors - Supports
32/16/8 bit

VMULL Multiplies the elements of two vectors and doubles
the bit width - Supports 32/16/8 bit

VAND+ VEOR Bitwise logic instruction - Supports 32/16/8 bit

Reduction VPADDL Adds adjacent pairs of elements of a vector -
Supports 32/16/8 bit

VPADAL Adds adjacent pairs of elements of a vector and
accumulates the result by elements of a second
vector - Supports 32/16/8 bit

VCNT Counts the number of set bits of a vector -
Supports 8 bit

Accumulation VADD Adds the elements of two vectors - Supports
32/16/8 bit

All instruction listed in Table 1 support the full NEON-SIMD width of 128
bit with the exception of VMULL. Due to bit-width doubling, this instruction
can only process 64-bit vectors.

2.4 Relevant Libraries

Libraries supporting reduced-precision computations are relatively sparse. The
MPFR C++ library [9] which is built upon the MPFR library [5] supports multi-
precision floating-point number formats and is available as support module for
the Eigen library. A library supporting reduced-precision GEMM is Google’s
Gemmlowp1 which is integrated in the application framework Tensorflow and
supports 8-bit representation. The library currently supports CPUs and is opti-
mized for NEON and SSE vectorization. ARM’s Compute Library2 supports
reduced-precision GEMM for 16-bit representation and is supported for NEON-
capable processors.

1 https://github.com/google/gemmlowp.
2 https://github.com/ARM-software/ComputeLibrary.

https://github.com/google/gemmlowp
https://github.com/ARM-software/ComputeLibrary
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3 Reduced-Precision Signed-Integer GEMM
on ARM NEON

Specialized BLAS libraries are pervasively used to improve execution time of
numerical algorithms. Impressive results up to achieving almost theoretical peak
performance exist. However, specialized BLAS libraries generally support single-
and double-precision floating-point only. They typically lack any support for
lower-precision number format.

In this work, we show the optimization potential of a signed-integer GEMM
on a NEON-capable ARM processor. We use 32-, 16-, 8-, 2-, 1-bit signed integer,
and show how NEON SIMD instructions allow for fast data-parallel computation
of GEMM. We extend the Eigen BLAS library, which has demonstrated com-
petitive performance and is widely used, for low-precision integers. In particular,
we show that support for reduced-precision number formats can be implemented
by leaving most of the algorithm untouched and only adapting the highest and
lowest level of the operator. Finally, we integrate this extension in the math-
ematical expression framework Theano [12] to maximize the usability of such
custom forms of representations.

To benefit from the advantages of lower-precision number formats, it is nec-
essary to implement operators that can handle these kinds of representation. For
the GEMM example we can simply extend the equation by another summation
loop as shown in Eq. 2, with W representing the full-precision bit width divided
by the reduced-precision bit width.

ci,j =
∑N

n=1
ai,n ∗ bn,j =

∑N/W

n=1

∑W

w=1
ai,n+w ∗ bn+w,j (2)

We can furthermore simplify this equation by packing W values from a and
b to apacked and bpacked and overwriting the MAC operation (Eq. 3).

ci,j =
∑N/W

n=1
apackedi,n ∗ bpackedn,j (3)

Within the MAC operation, W scalar products can be vectorized in SIMD
fashion and summed up using reduction. As a result, we can extend the Eigen
GEMM operator to support reduced precision by overwriting the MAC opera-
tion, packing W reduced-precision values into a single full-precision value, and
dividing the matrix depth N by W .

In order to integrate the reduced-precision operator into Theano, we propose
the following workflow: the value packing is performed within Theano and the
packed matrices are propagated via references to Eigen’s GEMM operator. Then,
Eigen performs its high-level transformations and forwards the data in form of
128-bit vectors to the customized MAC operator. Finally, the MAC operator
performs the actual computations by exploiting optimized code on SIMD units.

3.1 Implementation

We use the NEON SIMD-MAC operation to evaluate the scalar product of the
input vectors a and b, followed by accumulating the result by input vector c. The
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SIMD-MAC operation is illustrated in Fig. 1 on the example of int8 t input rep-
resentation. As can be seen, the scalar product of two vectors is implemented by
pairwise multiplying elements of input vectors a and b. The results of the multi-
plication are reduced into a int32 t intermediate representation and accumulated
by elements of input vector c. Input and output vectors for the MAC operations
are mapped to the full NEON-SIMD width of 128 bit, with precision depend type
for a and b (int32x4 t, int16x8 t, int8x16 t, int4x32 t, int2x64 t, and int1x32 t)
and full-precision type int32x4 t for input vector c and output vector.

Fig. 1. Simplified illustration of the MAC operation for int8 t representation

A performance-sensitive pitfall of the MAC operation is bit-width doubling
when performing the multiplication in order to avoid integer overflows. Bit-
width doubling is performed for int16 t, int8 t, and int4 t input representation.
int2x64 t and int1x32 t representations cannot cause overflows since the result’s
range is identical with the input range (+1, −1 and −1, 0, +1).

3.2 Supporting Different Bit Widths

The baseline implementation of the MAC operation assumes input vectors a
and b of type int32x4 t. For this case, NEON includes the Fused-Multiply-
Accumulate (FMA) instruction, which is able to multiply and accumulate 4
operands (128-bit vector) in one instruction.

int16x8 t and int8x16 t MAC: NEON also includes FMA instructions for 16-
bit and 8-bit representations. However, the FMA instructions are not applicable
here because the reduction has to be performed after the multiplication and
before the accumulation.

Thus, we use a multiplication instruction with bit-width doubling. Since
instructions with bit-width doubling only can process 64-bit vectors, the mul-
tiplication of the highest and lowest 64 bit of input vectors a and b has to be
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performed sequentially. Then, both resulting vectors are sequentially reduced
by adding adjacent pairs of elements (one reduction layer for int16x8 t MAC
and two reduction layers for int8x16 t MAC). Finally, both resulting vectors are
combined to a single vector and its values are summed up.

int4x32 t MAC: While 16-bit and 8-bit representation is supported inherently
by NEON, it lacks support for 4-bit formats. In particular, the extraction of
int4 t values from the input vectors causes a high instruction overhead. In order
to perform the extraction, we mask out even and odd indexed int4 t values
from the 128-bit input vectors a and b via bit-wise logic operations and split
the values into two separate 128-bit vectors. Once the extraction is done, the
obtained vectors can be simply multiplied without bit-width doubling. Then,
a three-layer reduction is performed before the resulting vector elements are
summed up.

int2x64 t MAC: The multiplication of the int2x64 t MAC is realized by eval-
uating the resulting positive and negative values separately via bit-wise logic
operations (AND, XOR). Then, a 8-bit population count is performed to count
the positive and negative values within a 8-bit vector. The resulting positive val-
ues are subtracted by the resulting negative values. Two reduction levels trans-
form the int8x16 t representation into a int32x4 t intermediate representation
and accumulate the vector by elements of input vector c.

int1x128 t MAC: For the int1x128 t MAC, we use the approach proposed by
Courbariaux et al. [3]. The basic idea is to replace the actual multiplications of
input vectors a and b with bit-wise XOR operations and perform the reduction
via population count. Since NEON includes only a 8-bit population count, we use
two further reduction levels to reduce the results into a int32x4 t intermediate
representation. Afterwards the result is accumulated by input vector c.

3.3 Optimizing Reduction Overhead

Halving the bit representation causes an additional reduction layer within the
MAC operation to obtain a 32-bit intermediate representation. In most cases,
this 32-bit intermediate representation cannot be avoided without causing an
overflow. However, int1 t and int2 t representation differ because the multipli-
cation results are in between −1 and +1.

As shown in Sect. 3.2, the first reduction layer of int1 t and int2 t MAC is
performed via 8-bit population count. Considering that the scalar product of
a row vector and a column vector takes N (matrix depth) accumulations of a
maximum value of 8, the maximum scalar value is N ∗ 8 for the first reduction
layer and N ∗ 16 for the second reduction layer. Therefore, a reduced bit width
(Width) for the intermediate representation is sufficient if N < 2Width

Width holds.
Using this observation, we can modify the GEMM implementation for int1 t

and int2 t input representation to dynamically adapt among 32-bit, 16-bit, and
8-bit intermediate representation by only evaluating the matrix’ depth. Conse-
quently, compared to 32-bit intermediate representation, a 16-bit intermediate
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representation requires one reduction layer less, and an 8-bit intermediate repre-
sentation requires two reduction layer less. Obviously, the resulting representa-
tion of this optimization differs from the expected output representation. Thus,
the last MAC operation of the scalar product of a row vector and a column
vector has to reduce the intermediate representation to a 32-bit output repre-
sentation. As a result, the computational complexity of the reductions can be
reduced from O(n2) to O(n) which directly translates into a significant perfor-
mance improvement for small (N < 32) and mid-sized (N < 4096) matrices.

4 Performance Results

In this section we report execution times and memory footprint of our reduced-
precision signed-integer GEMM Eigen extension. We compare the results to
Eigen’s int32 t GEMM.

All results are obtained via averaging on a system with a 2.32 GHz ARM
quad-core Cortex-A15 CPU and 2 GB DDR3L memory. The C++ source code
with NEON intrinsics is compiled using GNU g++ (version 4.8.4) with the
following command-line switches set: Optimization level: -Ofast, OpenMP par-
allelization: -fopenmp.

Table 2 summarizes the results of the signed-inter GEMM operator. The exe-
cution time refers to the required time to perform the pure matrix multiplication
without memory allocation and value packing.

Table 2. Summary of the obtained results: execution time and speed-up over int32 t
representation

Size Metric int32 t int16 t int8 t int4 t int2 t int1 t

128× 128 Time 0.18 ms 0.37 ms 0.16 ms 0.22 ms 0.12 ms 0.05 ms

Speedup 1.00 0.48 1.06 0.81 1.43 3.61

256× 256 Time 1.34 ms 2.94 ms 1.26 ms 1.66 ms 0.44 ms 0.08 ms

Speedup 1.00 0.46 1.07 0.85 3.10 17.09

512× 512 Time 11.54 ms 24.02 ms 10.03 ms 12.92 ms 3.27 ms 0.54 ms

Speedup 1.00 0.48 1.15 0.89 3.52 21.17

1024× 1024 Time 90.10 ms 192.08 ms 81.63 ms 104.03ms 26.17 ms 4.73 ms

Speedup 1.00 0.47 1.11 0.87 3.43 18.99

2048× 2048 Time 0.70 s 1.52 s 0.61 s 0.83 s 0.20 s 0.04 s

Speedup 1.00 0.46 1.10 0.85 3.45 19.81

4096× 4096 Time 5.53 s 12.15 s 5.10 s 6.57 s 1.60 s 0.26 s

Speedup 1.00 0.46 1.09 0.84 3.43 20.83

8192× 8192 Time 44.72 s 97.36 s 40.88 s 52.53 s 12.74 s 3.11 s

Speedup 1.00 0.45 1.10 0.85 3.50 14.34
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The expected execution time of the core code sequence can be estimated using
instruction latency data from the ARM Technical Reference Manual [1]. Table 3
summarizes the estimated and the actual speed-up of the GEMM operator for
different input representations, compared to int32 t representation. As can be
seen, the expected speed up is achieved in most cases with the exception of small
matrices (<256 × 256) combined with int1 t and int2 t representation. This is
caused by Eigen optimizations which enforce padding of small matrices.

Table 3. Expected and actual speed up of the signed-integer GEMM derived from the
required cycles of the MAC operation

Input rep. Cycles Estimated speed-up Observed speed-up

int32x4 t 6 1 1

int16x8 t 30 0.40 0.45–0.48

int8x16 t 36 0.67 1.06–1.15

int4x32 t 69 0.70 0.81–0.89

int2x64 t 39 2.46 1.43–3.52

int1x128 t 15 12.80 3.61–21.17

Figure 2 shows the improvement of reduced representation over full repre-
sentation in terms of memory footprint and execution time for signed integer
GEMM. The line showing the theoretical improvement assumes that reducing
the bit representation by a certain factor results in a performance improvement

Fig. 2. Memory footprint and execution time of 32-bit and reduced-precision signed
integer GEMM
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of the same factor. Obviously, the memory footprint improvement meets the
expected theoretical improvement since halving the bit representation results in
half the memory usage.

There is a significant gap between theoretical improvement and the improve-
ment of execution time. In particular, for int16 t, int8 t, and int4 t, the GEMM
only performs similar or even worse compared to int32 t. Besides the additional
reduction overhead, this is mainly due to instruction serialization caused by
bit-width doubling when the multiplication is performed. As can be seen, bit
representations without the need of bit-width doubling (int2 t and int1 t) are
clearly superior. The simplicity of computing the int1 t MAC combined with
the reduction optimization (discussed in Sect. 3.3) shows its advantage by nearly
reaching the theoretical improvement.

5 Discussion

The suggested GEMM implementation avoids integer overflows within the MAC
operator and therefore produces the same results as the full-precision operator.
The drawback of this design is that it results in a mismatch between input
and output representation and, most importantly, requires bit-width doubling
in most of the cases. As we have seen, bit-width doubling leads to a significant
performance penalty.

In future work, we plan to show how quantization information can be prop-
agated from the application framework to the operator and extend our custom-
precision GEMM to also support custom quantization. The current implemen-
tation uses a 32-bit data type (int32t) as a container to transparently transport
short vectors of lower-precision data from the application framework (Theano)
via Eigen to actual code, exploiting SIMD units on selected architectures (value
packing). Value packing is required since lower-precision types are not known
and therefore not interpretable by the application framework and Eigen. How-
ever, high-level transformations of matrix operators are optimized on a fixed size
(e.g. SIMD width or cache size) and not a specific data type. As a consequence,
this approach enables the use of these existing transformations on collections of
values packed into 32-bit. Obviously the packed format reduces the granularity
of matrix operations in the application framework and Eigen from single value
to up to 32 values (in the case of 1-bit data types) and, thus, inhibits other
operations on the matrices. Currently we rely on packing/unpacking the data
whenever reduced-/full-precision operators are used. This approach benefits from
a reduced execution time, but the advantage of a reduced memory footprint is
partially lost when the data has to be unpacked.

Ultimately, the number format should therefore be interpretable by other
matrix operators. This could be achieved by matrix operators supporting a
generic (precision-agnostic) data type. The GNU MPFR library [5] implements
multiple-precision floating-point (i.e. with user-defined mantissa and exponent)
computations with correct rounding. Many interfaces to MPFR exist. The
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mpfr::real class3 and bigfloat library implement full-featured interfaces (i.e. keep-
ing all the format information) to C++ and Python respectively. The MPFR
project webpage lists two linear algebra libraries compatible with some MPFR
APIs:

– The ALGLIB.NET project implements multiple-precision linear algebra using
MPFR4

– Eigen, a C++ template library for linear algebra, via Pavel Holoborodko’s
MPFR C++ wrapper [9]

In future work, we plan to use and explore effects on the performance of the
Eigen MPFR wrapper.

6 Conclusion

We presented and discussed an approach of extending linear-algebra operators to
support reduced-precision representations. Using the example of signed-integer
GEMM, we showed that the highly optimized Eigen library can be extended by
only modifying the MAC operation and packing several reduced-precision values
into a 32-bit value. We reviewed the NEON ISA and showed its applicability to
support reduced-precision arithmetic. Based on our findings, we optimized the
MAC operation for NEON-capable processors and integrated our implementa-
tion into Eigen’s GEMM operator and interfaced the operator to the application
framework Theano.

Our results show that selected reduced-precision number formats can benefit
from reduced GEMM execution time on NEON units. In particular, the perfor-
mance of int1 t and int2 t GEMM is promising, and matches well with the rising
interest on these data formats in the machine-learning community [3,14]. 16-, 8-,
and 4-bit signed integer GEMM, however, show no performance advantage over
32-bit for this ARM architecture. Better support for reduction operations would
be needed to achieve performance improvements for these number formats.

Last, we would like to encourage developers of BLAS libraries and application
frameworks to design software with consideration for custom/reduced precision,
as support for these representations is mostly not present today.
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Complementary Papers

The Euro-Par workshops presented in this volume were selected out of submissions
made in February. Two additional workshops were also selected at that time. They
issued a call for submissions, and evaluated the submitted papers exactly the same as
the other workshops. The final number of papers accepted by their respective program
committees was found to be too low by the Euro-Par workshop organization committee
to deserve their organization at the conference. However, even though those workshops
were not formally organized, the papers were presented within other neighboring
workshops, for the interest of the audience. We call those papers “complementary
papers”.

Here is the list of those complementary papers:

– Efficient Implementation of Data Objects in the OSD+-based Fusion Parallel File
System. Juan Piernas and Pilar González-Férez. Presented at the ROME workshop.

– A formula-driven scalable benchmark model for ABM, applied to FLAME GPU.
Eidah Alzahrani, Paul Richmond and Anthony J H Simons. Presented at the APPT
workshop.

– PhotoNoCs: Design Simulation Tool for Silicon Integrated Photonics Towards
Exascale Systems. Juan-José Crespo, Francisco Alfaro and José L. Sánchez. Pre-
sented at the UCHPC workshop.

– On the Effects of Data-aware Allocation on Fully Distributed Storage Systems for
Exascale. Jose A. Pascual, Caroline Concatto, Joshua Lant and Javier Navaridas.
Presented at the ROME workshop.

We would like to thank the organizers of the workshops which attracted and
selected those complementary papers for their work. Their dedication fully contributed
to the overall quality of the scientific program of the Euro-Par workshops. We would
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Abstract. Agent Based Modelling (ABM) systems have become a pop-
ular technique for describing complex and dynamic systems. ABM is the
simulation of intelligent agents and how these agents communicate with
each other within the model. The growing number of agent-based appli-
cations in the simulation and AI fields led to an increase in the number of
studies that focused on evaluating modelling capabilities of these applica-
tions. Observing system performance and how applications behave dur-
ing increases in population size is the main factor for benchmarking in
most of these studies. System scalability is not the only issue that may
affect the overall performance, but there are some issues that need to be
dealt with to create a standard benchmark model that meets all ABM
criteria. This paper presents a new benchmark model and benchmarks
the performance characteristics of the FLAME GPU simulator as an
example of a parallel framework for ABM. The aim of this model is to
provide parameters to easily measure the following elements: system scal-
ability, system homogeneity, and the ability to handle increases in the
level of agent communications and model complexity. Results show that
FLAME GPU demonstrates near linear scalability when increasing pop-
ulation size and when reducing homogeneity. The benchmark also shows
a negative correlation between increasing the communication complex-
ity between agents and execution time. The results create a baseline for
improving the performance of FLAME GPU and allow the simulator to
be contrasted with other multi-agent simulators.

Keywords: Agent based modelling · Benchmarking
Multi-agent systems

1 Introduction

Agent-based modelling (ABM) systems (also known as multi-agent systems)
have become a popular technique to study complex systems in various domains,
such as biology, social sciences and business complexity. ABM can be defined as
a modelling paradigm used to simulate the actions and reactions of individual
entities and to measure their effects on the whole system. Many phenomena,

c© Springer International Publishing AG, part of Springer Nature 2018
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even complex ones, can be described as systems of autonomous agents following
a number of rules to communicate with each other [14].

According to Macal and North [13,14], the structure of an agent-based model
is based on three elements: (1) the number of agents, their attributes and
behaviours; (2) the agents’ relationships and the mechanisms with which they
interact with others; and (3) each agent’s environment, the actions and reactions
of the agent with respect to its environment and other agents. By identifying
and programming these elements, a model designer can easily create an ABM
that simulates reality.

There are a number of popular agent-based modelling and simulation frame-
works that are used to build models such as Swarm, NetLogo, Repast and
MASON. The limitations of scalability and performance in these systems prevent
modellers from simulating complex systems at very large scales. This is because
some of these frameworks were designed to be run on a single CPU architecture
and some of them cannot deal with a large number of agents within one model.
For this reason, a number of platforms and simulators were implemented to deal
with such systems. Repast HPC [28], D-Mason and FLAME GPU [23] are exam-
ples of these kinds of platforms that use parallel and distributed approaches to
run simulations.

There have been several studies in the literature reporting computational
performance in most ABM frameworks [2,7,11] for specific models. Varying the
population size to measure system scalability is the most common benchmark.
A benchmarking process is an excellent method to discover the characteristics of
simulator performance, but unfortunately, so far there is no standard method to
benchmark simulation tools. Thus there is a need to design a benchmark model
that meets complexity and scalability standards. The OpenAB community1 sum-
marised a number of criteria that may affect the performance as follows:

– Arithmetic intensity: the computational complexity of an agent or population.
– Scale: varying population size.
– Model memory: the internal memory requirements of an agent or population.
– Inter-connectivity: the level of communication between agents.
– Homogeneity: divergence of behaviour within an agent or population.

This paper proposes a benchmark model that allows each of these criteria
to be tested and we have implemented this model in FLAME GPU. The main
contribution of this paper is creating a benchmark model that can be a stan-
dard to measure the execution efficiency of the existing ABM systems. This new
model will be able to examine the following elements: system scalability, system
homogeneity, and the ability to handle an increase in the level of agents’ com-
munications and agents’ internal memories. The results will give insight into the
performance characteristics of simulations and provide a baseline for which to
measure simulator improvements.

1 http://www.openab.org/.

http://www.openab.org/
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2 Related Work

Numerous ABMs have been used to address a number of issues such as testing
and analysing simulation tools and comparing ABM platforms, and they have
been used as teaching tools for modelling real systems. This section reviews some
of these models and their purposes.

Railsback et al. [17] proposed a simple model called StupidModel that can
be easily implemented on any ABM platform. This model contains a number
of versions to increase simulation complexity, starting from moving agents to a
full predator-prey model. StupidModel was developed to be a teaching model
for ABM platforms such as NetLogo and Swarm. It is also used as a benchmark
model to compare modelling capabilities and performance between several ABM
platform [11,12,18,27].

Predator-prey is the most commonly used model in the field of ABM and
simulation. Developed by Alfred Lotka (1925) and Vito Volterra (1926), it is
based on two differential equations to describe the dynamics of predator-prey
behaviour. The basic rules of predator-prey in ABM can be summarised as fol-
lows: (1) two types of populations represent prey and predator agents; (2) the
prey population will increase by moving to food resources and decrease by being
eaten by the predators; (3) the predator population will increase by eating the
prey and will decrease by starvation; and (4) both populations are moving ran-
domly and following simple rules to communicate with the environment and with
each other.

Several studies have reported comparisons of execution efficiencies between
ABM platforms using predator-prey models [7,23]. Execution efficiencies have
also been used as a benchmark to show the modelling ability of Repast Sim-
phony [28] and by Borshchev and Filippov [3] to compare three approaches to
simulation modelling: System Dynamics, Discrete Events and ABM.

The Sugarscape model is an artificial society model presented by Epstein
and Axtell in their book Growing Artificial Societies: Social Science from the
Bottom Up [6]. This model was replicated by several ABM platforms such as
NetLogo2, MASON [2] and Repast [24]. Agents in the basic Sugarscape model
follow very simple rules. They move towards deserted areas with high levels of
sugar resources. The Sugarscape Wealth Distribution model, as described by
Epstein and Axtell, has more complexity in the relations between agents.

Boids is an artificial life model developed by Reynolds [20,21] that describes
the behaviour of flocking of fish or birds. According to Reynolds (2001), flock-
ing is an example of emergence, by which the interactions of simple local rules
produce a complex global behaviour. There are three simple steering behaviours
that an agent in the Boids model can follow: (1) alignment, which is steer-
ing towards the average heading of nearby neighbours; (2) separation, steer-
ing to avoid crowding nearest neighbours; and (3) cohesion, steering to move
toward the average position of the immediate flockmates [19]. Flocking models

2 http://ccl.northwestern.edu/netlogo/models/community/Sugarscape.

http://ccl.northwestern.edu/netlogo/models/community/Sugarscape
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have been used widely to measure the modelling ability of some ABM plat-
forms [8,15,18,23].

Rousset et al. [26] used their reference model [25] to benchmark 10 existing
platforms that support parallel and distributed systems. The reference model
they used is based on three main behaviours for each agent: (1) agent percep-
tion, (2) agent communication and (3) agent mobility. This benchmark model
is used to evaluate the ability of each platform regarding their parallelism sup-
port. A large and growing body of literature has focused on the comparison
between parallel and serial execution methods to run simulation [1,4,5,7,11,16].
All ABMs reviewed above were used as benchmarks for two purposes; to eval-
uate modelling capabilities of platforms and/or to make comparisons between
simulators. Observing system performance and how applications behave during
increases in population size is the main factor for benchmarking in most of these
studies. System scalability is not the only issue that may affect the overall perfor-
mance, but there are some issues that need to be dealt with to create a standard
benchmark model that meets all ABM criteria.

3 The Benchmark Model

Our model is based on the concept of particle-based simulation which represents
each molecule in the system as an individual entity. This entity has attributes,
such as position, velocity and type of molecule. Entity movements and the reac-
tions within the system will be computed using these attributes through methods
to update system behaviour. The representation of the molecule (agent) will fol-
low Brownian Dynamics methods, where each agent is represented as a point-like
particle moving randomly in the environment.

This type of model is relevant to a wider class of ABMs. For example, both
cellular models and social system models have similar behaviours, when con-
sidered from the view point of mobile agents with local interactions, birth and
death and binding (combining). To make this model more complex and to meet
all the criteria highlighted above, we propose a reaction-diffusion like model with
different rules. Our model is able to convert formula syntax (such as A + B = C)
that represents a chemical reaction to a number of mobile agents that can com-
municate with each other and captures important characteristics of ABM.

A simple reaction will occur when one A molecule combines with one B
molecule to produce a C molecule, assuming that A + B = C represents the rela-
tionship between the three molecules. The model that resulted from the given
example above contains three agents A, B, and C as follows: agent A (master
agent), agent B (slave agent) and agent C (combined agent). Each of these agent
specifications is defined by a set of variables and functions that help to establish
the simulation. At the beginning of the simulation, agents A and B are moving
randomly, and both agents are communicating with each other looking for the
closest complementary agent. Agent B will send its location and then agent A
will choose the closest B and replied with the ID of closest B. Once the ID of B
is confirmed both agents will die and produce the new agent C.
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3.1 Implementation

This section consists of three parts: (1) an overview of FLAME GPU, (2) how the
benchmark model is implemented using FLAME GPU and (3) model generation.
The FLAME GPU framework [22] is a template for agent-based simulation on
the Graphics Processing Unit (GPU). It consists of a number of X-agents (the
agent representation of an X-machine [10]) specifications. Each instance of an x-
agent has its own memory that holds a set of variables. All instances of x-agents
have transition functions that can read and write to their memory a start state
and an end state. Agents can communicate by sending and receiving messages
and their functions can read and write these messages at any time between start
and end states for each agent. Creating a model using FLAME GPU is very
similar to the original FLAME3 which required writing the model specification
in XML format within an X-Machine Mark-up Language (XMML) document.
However, the syntax that is used to write the model in FLAME GPU uses
an extended version of the FLAME XML schema. The GPUXMML extension
outlines the GPU specific model description elements such as the maximum
size of an agent memory [22]. This allows a formal agent specification to be
transformed to optimised C-based CUDA code through GPU-specific templates.

The FLAME GPU implementation of the above example consists of three
agents A, B, and C. Each agent is defined by a set of variables, transition func-
tions, start and end states, and communication messages as shown in Table 1.
The representation of agents as a state machine is shown in Fig. 1. During a
single iteration of the simulation, each type of agent will move from the start-
ing state to the end state, completing each function in turn. The diagram is
divided into three parts, each part showing the agent-transition functions and
the communication dependency messages (green) for each agent.

At the beginning of the simulation, agents A and B are moving randomly
using their move functions to update their locations during each cycle, as shown
in Fig. 2 Part A. Agent B will use send locationB to output a locationB mes-
sage holding all B information (agent ID, location, etc.). Agent A after that will
get all B’s locations using a need locationB function that inputs the locationB
message. This function will calculate the distance between A and B and then
compare it with the binding radius. If the distance is less than or equal to the
binding radius, the internal memory of A will be updated (the state variable
will be set equal to 2, the defined value of binding (2 is the defined value of the
combined state.), and the closest ID and the closest point will be stored). The
send bindB function will output bindB messages holding the updated informa-
tion for agent A (only messages that have the state variable equal to 2 as a
function condition (An agent function condition indicates that the agent func-
tion should only be applied to agents which meet the defined condition which
are in the correct state specified by current State [22])). In the next step, the
receive bindB function will input bindB messages to check for the closest A
that is ready to combine. B’s internal memory will be updated (the state variable

3 http://flame.ac.uk/.

http://flame.ac.uk/
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Fig. 1. State graph of the model that represents A+ B= C. (Color figure online)

will be set to 3 (3 is the defined value of the dead state.), and the closest ID and
closest point will be stored) after finding the closest A that is ready to combine.
The send combinedB function will output combinedB messages that meet the
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Table 1. Agent specifications

Agent Type Internal Memory Function Name Function Description
Master agent Agent ID

Agent Position:
X,Y,Z
Closest_id

Closest_point

state

1.move_A
2.need_locationB
3. send_bindB
4. created_C
5. death_A

1.To update A’s location
2.Choose closest B
3.Send request to closest B
4.Output agent C
5.Remove agent A from simu-
lation

Slave agent Agent ID
Agent position:
X,Y,Z
Closest_id

Closest_point

state

1.move_B
2.send_locationB
3. receive_bindB
4.send_combinedB

1.To update B’s location
2.Send B location
3.Verify and choose closest A
that is ready to bind.
4.Send notification to A to
combine and then remove
agent B from the simulation

Combined
agent

Agent ID
Agent position:
X,Y,Z
Closest_id

Closest_point

state

move_C To update C’s location

condition (the state variable is equal to 2), and the B agent will be removed from
the simulation. The next function will be created C. This function will input
combinedB messages (only messages that meet the condition that the state is
equal to 3), output agent C, and update A’s internal memory (the state variable
will be updated to meet the next function condition). All A’s that meet the
condition of death A will be removed at this stage. A visualisation of the model
after a number of iterations is shown in Fig. 2 Part B.

Fig. 2. Part A: Screenshot of the first iteration showing agents A (red) and B (yellow)
moving randomly. Part B: Screenshot after 100 iterations showing agents C (blue)
moving randomly and two of A (red) and two of B (yellow) still moving. (Color figure
online)
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To save time and effort, and to implement several chemical reactions at the
same time automatically, a model generator is needed. This section presents a
FLAME GPU model generator that can easily convert lines of formula syntax
into movement models of agents. This generator after parsing the syntaxes will
output three files that are required to run a FLAME GPU model: (1) a FLAME
GPU XML model (XMLModelFile.xml) file that consists of model specifications,
(2) a function.c file that holds the scripted agent functions, and (3) initial values
of each agent for the simulation state data which is stored in a FLAME GPU
XML file (0.xml).

4 Benchmarking Results

The model generator helped to vary the model in a different way and allowed
modelling of different types of chemical reaction. FLAME GPU version 1.4.3 was
used for the performance benchmarking on a NVIDIA GeForce GTX 970 GPU
with 1665 CUDA cores and 4 GB of memory. This section shows four different
benchmarks to measure FLAME GPU framework performance.

Divergence within a population: The purpose of this benchmark is to
observe the system performance when doubling the number of equations. This
benchmark starts with a simple model with three types of agent, ten agent func-
tions and three type of message and ends with more than 40 agent types, 150
agent functions, and 45 message types. Adding more equation input lines (every
line contains three different types of agent) increases the execution time linearly
with a value of regression �0.9945, as shown in Fig. 3 (axis x1 against axis y1).
processing time increases by �0.5 a second with the addition of a new equa-
tion. This benchmark was implemented using an agent population of 2000 for
each type of agent with the same environment size, and each simulation was
performed for 100 iterations.

Divergence within an agent: This benchmark gives us the average execution
time for increasing slave agent types (more chemicals per line). This experiment
will increase divergence within the master agent of this line. Adding a new
chemical will extend the master agent functions, and that means more functions
in each layer every cycle. In FLAME GPU function layers represent the control
flow of simulation processes [9]. All agent functions are executed in a sequential
order to complete one iteration and by adding more functions for the same agent
that will increase execution time in every iteration. This can be observed in the
results in Fig. 3 (axis x2 against axis y2). The processing time is increasing
linearly by increasing chemicals per line given a value of the regression equal to
0.9956. This benchmark was implemented using an agent population of 2000 for
each type of agent with the same environment size, and each simulation was run
for 100 iterations.
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Fig. 3. Processing time of the same environment size against the type of agent that
have been added at every step (appears with a red line). Processing time of the same
environment size against the number of slave agents that has been added every time
(appears with a blue line). (Color figure online)

Population sizes: The goal of this benchmark is to measure the ability of
this model to scale to examine ABM systems scalability. The population size
of each agent type starts with 4,096 agents and ends with 262,144 agents. This
benchmark uses A + B = C as an example to run this experiment for 100 itera-
tions each time. The performance of implementing our model on FLAME GPU
with respect to agent population size is shown in Fig. 4 with linear correlation
coefficient equal to 0.9811.

Fig. 4. Increasing population size led to increased processing time.
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Level of communication and complexity: Two changes have been made to
agent behaviour to slow down the simulation and add extra arithmetic inten-
sity within agent functions: (1) decreased interaction radius and (2) decreased
agent movement speed. Figure 5 (axis x1 against axis y1) shows the relationship
between decreasing the interaction radius and increasing processing time to pro-
duce 50 agents C from the A + B = C equation with same movement speed. This
experiment allows agents to move for a longer time until reaching the needed
radius, during this movement, several operations occur such as calculating agent
position, sending and receiving messages between agents looking for the nearest
agent to combine with. The next experiment is shown in Fig. 5 (axis x2 against
axis y2), which shows the relationship between slowing down the agent speed the
number of iterations required to produce 50 agents. This experiment has been
implemented with a constant radius and same environment size. Slowing down
the movement speed allows additional operations during the simulation and this
help to measure the ability of the system to handle many computational opera-
tions for a long time and how to manage using the resources.

Fig. 5. Decreasing interaction radius led to increased time to produce 50 agents
(appears with a red curve). Decreasing agent movement speed led to increased time to
produce 50 agents (appears with a blue curve) (Color figure online)

5 Conclusion

This paper presents the implementation of a new benchmark model using
FLAME GPU. The aim of this model is to measure the following elements:
system scalability, system homogeneity, and the ability to handle increases in
the level of agent communications and model complexity. Unfortunately, mea-
suring the ability to handle increases in the internal memory requirements of an
agent or population was not covered by this paper. However, it will be involved
in our future work.
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Four benchmark experiments have been carried out, demonstrating the abil-
ity of this benchmark model to examine each element. The first two experiments
focused on increasing agent and population divergence, and this led to increased
the execution time due to the additional agent functions, messages and com-
munication information that is held by these messages. The third experiment
showed that we could easily scale the population size of this model to measure
the system scalability. The results showed that scaling the population size led to
varying the execution time from 0.5 s per 100 iterations for 4069 agents till 72 s
per 100 for 262144 agents. In the last experiment, computational complexity was
added by decreasing the value of two variables that are used within agent func-
tions to update agents behaviour. This experiment causes the model to reach a
steady state at a slower rate, this allows assessment of the system capabilities.

Divergence is known to reduce performance in GPU simulations and our
benchmark model confirms this. The obtained results will be used for assessing
simulator improvements to achieve improved scaling with respect to divergence
and better overall performance for increasing the population size. The perfor-
mance results obtained indicate that our benchmark model is a suitable model
to be used as an experimental tool to evaluate modelling capabilities of an ABM
system if it is replicated in a suitable way.
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Abstract. The need to greatly increase the number of compute nodes to
design exascale systems raises numerous challenges that must be solved
to obtain an efficient system in terms of cost, energy consumption and
performance. Data movement is a critical barrier toward realizing exas-
cale computing systems, and therefore the interconnection network is a
key component of these systems. Among the different technologies that
could contribute to an efficient interconnect, photonics is perhaps the
most disruptive, due to its capabilities to generate, transmit, and receive
high bandwidth signals with superior power efficiencies and inherent
immunity to degradation. However, photonic interconnects lack from
practical buffering, which make these networks circuit switched in its
essence. Therefore, new network architectures are required, both to sat-
isfy the requirements of data transfers between nodes and between the
multiple computing resources of each multicore node. This paper presents
PhotoNoCs as a tool which helps the computer architect to design and
test new approaches of photonics interconnection systems at different lev-
els: On-chip networks for multicore architectures and off-chip networks
for the whole supercomputer.

Keywords: Photonics · SiP · On-chip · Exascale

1 Introduction

Progress in scientific fields including clime, aerospace, biotechnology, and energy,
depends largely on the ability to perform costly and complex simulations. Super-
computers are the only viable option to support such computations, and intense
research is focusing in increasing the computing capability of these systems. In
fact, the main objective is the design of exascale systems, for which it becomes
necessary greatly increase the number of compute nodes. This raises numer-
ous challenges that must be solved to obtain an efficient system in terms of
cost, energy consumption and performance. Some of these challenges are: scal-
able system software, resilience and correctness, programming systems, energy
efficiency, or interconnect technology.
c© Springer International Publishing AG, part of Springer Nature 2018
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A significant growth in parallelism implies the system performance is greatly
determined by the communication generated when running the parallel applica-
tions, even more than the arithmetic operations. Note that data transfers exist
at several levels: between compute and storage nodes, between compute nodes,
and between the multiple computing resources of each multicore node. There-
fore, data movement is a critical barrier toward realizing the exascale systems,
and thus the interconnection network is a key component of exascale systems.

Moving to exascale systems seems that it will not be possible with a tradi-
tional incremental strategy, and significant qualitative changes will be necessary.
In the case of the interconnect systems, different technologies to the traditional
ones could contribute to achieve this objective. Photonics is perhaps the most
disruptive technology, due to its capabilities to transmit, and receive high band-
width signals with higher power efficiency and immunity to degradation.

Significant progress has been made over the past decade in optical device
integration [13–15].

However, photonic devices are different in how they function, and exploiting
all its advantages would require a significant change in how on- and off- chip
interconnects are designed. Nevertheless, this paradigm has some challenges to be
addressed, for example, optical signals cannot be buffered nor processed without
being converted first to the electronic domain. This requires new proposals to
solve these issues.

In this work, we present PhotoNoCs [4] as a tool to fullfil the need for a design
tool at different levels, ranging from on-chip networks, to off-chip networks and
switch design schemes based on silicon photonics. We also evaluate a particular
switch design using PhotoNoCs to probe its new capabilities.

The structure of this paper is as follows: Sect. 2 gives an overview of the
simulation tool PhotoNoCs and its main features. It also provides a background
to understand the building blocks behind photonic technology that allows the
integration of complex devices. Section 3 provides a review on recent microring-
based switches, and it focuses on a particular design to be evaluated in Sect. 4
using PhotoNoCs. Finnally conclusions are presented in Sect. 5.

2 PhotoNoCs Simulator

The PhotoNoCs simulator is developed using OMNeT++ v5.0, an extensible,
modular, component-based C++ simulation library and framework, primarily
for building network simulators. This choice is motivated by the fundamen-
tal requirements behind the PhotoNoCs project: reusability of models, modular
architecture and scalable performance with low memory footprint.

As depicted in Fig. 1, PhotoNoCs is composed of different blocks, being each
of them focused on a single aspect of the system. The gray-colored blocks are
provided by the OMNeT++ framework.
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Fig. 1. Block diagram of the PhotoNoCs design.

2.1 Main Features

Each block shown in Fig. 1 provides new functionality to the simulation tool. For
the sake of brevity, only those characteristics used for this work are described:

1. Photonic network: Several photonic devices are integrated into PhotoNoCs,
the vast majority are based on the Photonic Device Library from the project
PhoenixSim [2]. Using these devices, the programmer can study different
switch designs based on these devices and simulate them. PhotoNoCs then
reports several metrics as described in Sect. 2.3.

2. Electric network: Components and example modules are implemented such
as buffers, arbiters, electrical crossbars, etc. All of these modules are ready
to work together to simulate electrical networks (mainly NoCs).

3. Processing plane: Processors and network interfaces are also modelled. At
the moment, processors are responsible for generating messages, such gen-
eration can be based on traces or synthetic traffic. Network interfaces are
implemented to support electrical, and also optical networks, separately or
both at the same time. In the later case, a selection policy must be config-
ured to select through which network data is transferred (such policies are
available in the tool).

4. Topology description: Because of its modular nature, each module, being
optical switches, or any other module, can be connected using the skeletons
provided in the simulation tool. Progammers can configure any topology using
the Network Description (NED) language provided by OMNeT++.

2.2 The Building Block: Silicon Photonic Microring Based 2 × 2
Switch

This section explains the fundamentals of the basic building block used in this
work, the silicon photonic microring based 2 × 2 switch. This component is
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accurately modelled in the simulation tool PhotoNoCs, and it is the baseline for
complex devices.

The design of a silicon photonic microring-based 2 × 2 switch is shown in
Fig. 2. It is made of two silicon microrings and two crossing silicon waveguides.

When the rings are ON resonance with a given input signal, the signal is
coupled to the ring, to be coupled to the second waveguide. As shown in Fig. 2(b),
the signal goes through the Out2 port.

On the other hand, as shown in Fig. 2(a) if the rings are OFF resonance with
the input signal, the signal passes through the switching element remaining on
the same waveguide, it goes through the Out1 port.

Fig. 2. Silicon photonic microring based 2× 2 switch: (a) microring based 2× 2 switch
in its OFF state; and (b) microring based 2 × 2 switch in its ON state.

It is worth mentioning that both input signals can be dropped into or allowed
to pass both rings simultaneously, this builds a full 2 × 2 switching element.

2.3 Performance Metrics

This section describes a set of physical metrics that characterizes the perfor-
mance of photonic network designs. The following metrics are calculated by the
PhotoNoCs tool and reported for each type of loss depending on the device
physical properties (Sect. 4).

– Insertion Loss: This is the power attenuation incurred by an optical signal
along its path of propagation. Photonic transmission must be realized without
signal regeneration because of the difficulties in creating silicon-based optical
amplifiers. Therefore, insertion loss should be as low as possible.
Then, it is clear that the complexity and size of a network is limited by the
insertion loss since a photonic link can only exhibit a certain amount of loss
before the signal becomes too weak to be received properly.

– Optical Loss Budget: This metric represents the difference of the maxi-
mum injectable laser power into the network and the minimum detectable
power at the receivers. The maximum injectable laser power is limited by the
threshold of undesirable nonlinear optical effects in silicon, which deteriorate
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signal integrity when the signal power is too high.
Wavelength Division Multiplexing (WDM) [1] must be taking into account
if used, although it enables data signals to be transmitted in parallel across
different wavelength channels, the total optical power (sum across all present
wavelength channels) must still remain below this nonlinear limit.
In Eq. 1 is used to calculate the Optical Loss Budget. Where P is the power
threshold of the laser source, S is the photodetector sensitivity, ILmax is the
worst-case optical path insertion loss, and n specifies the amount of wave-
lengths used.

P − S ≥ ILmax + 10 log10(n) (1)

– Crosstalk: Leakage of a small portion of power from signals to intersecting
waveguides along its path of propagation. At a given waveguide intersection,
signals coming from different waveguides will leak a small portion of power
to the other waveguides. This also occurs at resonator-based switches due to
imperfect coupling of the wavelength channels.
If a device is modeled as having N ports from which an optical signal can
ingress or egress, then the message can receive crosstalk from up to N − 1
foreign messages. If M is the set of signals present in the device and Pk is the
power of signal k, then the crosstalk seen by signal s is given by Eq. 2.

Cs =
∑

k∈M,k �=s

Pk

IL(pk.in, ps.out)
(2)

Function IL(pk.in, ps.out) calculates the insertion loss (a portion of the original
signal power) between two ports of the device. pk.in denotes the input port
of any signal other than s, and ps.out is the output port of signal s.

3 Microring-Based Switches

This section reviews developments in microring-based switches for silicon pho-
tonic interconnection networks in many-core computing systems.

Microring-based array filters and switches for multiple-input multiple-output
(MIMO) optical interconnects have long attracted research interest. There have
been several array structures design proposals in different materials including
silicon [3,5–7,9–12].

In this work, to show the simulation tool capabilities, a switch design has
been selected, as shown in Fig. 3. Due to lack of space, only silicon-on-insulator
(SOI) designs are studied.

3.1 Optical Hitless Switch

The optical hitless switch shown in Fig. 3, proposed in [11] is a spatially non-
blocking optical 4 × 4 switch to be used in integrated photonic networks.
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Fig. 3. Optical hitless switch [11].

Table 1. Physical paths microring config-
uration.

Input

N S E W

Output N - None R7 R5

S None - R4 R2

E R8 R6 - None

W R3 R1 None -

Table 2. Non overlapping combinations of
I/O ports.

Input

N S E W Rings used

Configuration 1 W N S E R3, R4

2 W E N S R3, R6, R7, R2

3 W E S N R3, R6, R4, R5

4 S N W E None

5 S W N E R1, R7

6 S E W N R6, R5

7 E W S N R8, R1, R4, R5

8 E W N S R8, R1, R7, R2

9 E N W S R8, R2

The routing is accomplished by having one dedicated waveguide for each
input-output combination. Note that signals are never routed back through their
direction of origin nor to the same direction as another signal.

The previous paragraph states that switching multiple signals through this
switch should be performed in a way that for a given signal s to be sent through
output port o, there must not be any other signal r to be sent through the same
output port o.

Table 1 shows the microrings to be configured to allow any given combination
of I/O ports. On the other hand, the possible 9 combinations of I/O ports which
avoid overlaps on the waveguides used by each flow of data have been included
in Table 2.

4 Evaluation

This section describes the study performed to evaluate the switch design shown
in Sect. 3.1 as well as the capabilites of the simulation tool.

The switch is shown in Fig. 4. The modulator bank needed to inject multiple
wavelengths λn into the waveguide is located at the south port of the switch. The
parameters used to characterize the physical properties of the photonic devices
and types of losses are summarised in Tables 3 and 4.

The switch design has been tested under three different situations that can
arise depending on the output port trying to forward the data. The switch design
shown in Fig. 4 has the modulator located at its south I/O port. This allows to
test three different switching configurations:
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Table 3. Physical properties of the
photonic devices.

Property Value

Laser power 10 dBm

Modulator ring diameter 3µm

2 × 2 switch rings diameter 50µm

Table 4. Characterization of the types
of losses.

Type of loss Value

Propagation 1.5 ∗ 10−4 dB/um

Pass by ring (OFF) 5.0 ∗ 10−3 dB

Drop into ring (ON) 0.5 dB

Crossing (at 90◦) 0.15 dB

Bending 5.0 ∗ 10−3 dB

1. StoN: Data going from the South port to the North port, Fig. 4(a).
2. StoW: Data going from the South port to the West port, Fig. 4(b).
3. StoE: Data going from the South port to the East port, Fig. 4(c).

The previous switching configurations are sufficient to characterize this par-
ticular switch design. Because the optical hitless switch design is inherently sym-
metric, every possible situation is represented with the previous ones.

Fig. 4. Optical hitless switch configurations: (a) South to North configuration; (b)
South to West configuration; and (c) South to East configuration.

Performance results in terms of signal loss and power are shown in Fig. 5. Sim-
ilar results are drawn from each configuration in Fig. 5(a), (b) and (c). Pass by
off resonance rings and propagation losses both develop an exponential increase
as the number of wavelengths used rises. Other sources of signal loss such as
crossings, bendings and drop into rings on resonance do not depend on the num-
ber of wavelengths used, this is due to the use of broadband microrings in the
design.

The fact that passing through rings off resonance (Pass By Ring in the
graphs) and the propagation loss rise with the number of wavelengths used is
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due to the modulator. Modulator microrings have a fixed wavelength resonance
(narrowband microrings), which causes an increase of the number of microrings
needed as the number of wavelengths increases (each microring modulates a
single wavelength).

Moreover, because more microrings are needed as the number of wavelengths
increases, it also has an impact on the modulator design, having to increase the
physical length of the waveguides to go through these microrings.

On the other hand, Fig. 5(d) shows that communication is not feasible
using more than 128 wavelengths, if we consider a photodectector sensitivity
of 13.1 dBm as reported in [8].

Fig. 5. Optical hitless switch performance as number of optical signals increase: (a)
losses going from South to North; (b) losses going from South to West; (c) losses going
from South to East; and (d) signal power for each configuration before reaching the
photodetector.

Finally, Fig. 6 shows for each switch configuration the different sources of
signal loss. Signal loss due to crossings is most significant going from one side
to the opposite of the switch (South to North, Fig. 4(a)), and also, going to the
East (Fig. 4(c)).
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Fig. 6. Loss sources for each switch configuration.

We can conclude that modulator losses as shown in Fig. 5(a), (b) and (c) and
also losses due to waveguide crossings and bendings, as shown in Fig. 6, are the
main sources of signal loss for this switch design.

5 Conclusions

This work presents a detailed characterization of an optical switch design using
the tool PhotoNoCs, an event-driven simulator developed in C++ using the
framework OMNeT++.

First, an overview of the simulation tool and its components have been
described, showing how PhotoNoCs allows to simulate traditional Networks-
on-Chip. However, PhotoNoCs is not limited to NoCs but it also carries detailed
simulation of emerging technologies such as optical communications, allowing
the study and design of different networks and devices (such as switches) to be
applied both, on-chip and off-chip networks.

Results show that PhotoNoCs is able to simulate sofisticated communication
mechanisms with high accuracy due to fine-grained details implemented together
with high level of parametrization and modular design. These features make
PhotoNoCs an effective simulation tool for the manycore design space research
towards the exascale era.
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Abstract. The convergence between computing- and data-centric work-
loads and platforms is imposing new challenges on how to best use the
resources of modern computing systems. In this paper we show the need
of enhancing system schedulers to differentiate between compute- and
data-oriented applications to minimise interferences between storage and
application traffic. These interferences can be especially harmful in sys-
tems featuring fully distributed storage systems together with unified
interconnects, such as our custom-made architecture ExaNeSt. We anal-
yse several data-aware allocation strategies, and found that such strate-
gies are essential to maintain performance in distributed storage systems.

Keywords: Near-data computing · Scheduling · Resource allocation

1 Introduction

Traditional supercomputers have been used to execute large computing-intensive
parallel applications such as scientific codes. However, nowadays new types of
data-oriented applications are becoming increasingly popular. In contrast with
traditional HPC codes, they have to process massive amounts of scientific or
business-oriented data and, hence, impose completely different needs to the com-
puting systems.

Indeed, new hardware and software are being developed to suit these necessi-
ties, such as our novel, custom-made architecture, ExaNeSt [13]. We are working
on the design and construction of a prototype capable of reaching Exascale com-
putation using tens of millions of interconnected low-power-consumption ARM
cores [1]. To support such kind of data-intensive applications we are leveraging a
unified, low-latency interconnect and a fully distributed storage subsystem with
data spread across the nodes. This greatly contrasts with traditional supercom-
puters and datacentres that rely on Storage Area Networks (SAN) to access
the data with separate networks for I/O, system management and application
traffic.

A fully distributed file system allows for near-data computation reducing the
great overheads of moving data from centralized storage to the compute nodes. A
c© Springer International Publishing AG, part of Springer Nature 2018
D. B. Heras and L. Bougé (Eds.): Euro-Par 2017 Workshops, LNCS 10659, pp. 725–736, 2018.
https://doi.org/10.1007/978-3-319-75178-8_58
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single, consolidated interconnect offers enormous power-savings when compared
with multi-network designs. While these design decisions do, indeed, allow us to
cope with power and cost design constraints, they also exacerbate the challenges
arising from workload convergence as storage traffic will be distributed all across
the system which can interfere negatively with application traffic. We show that
job scheduling, in particular the allocation phase where resources are assigned
to applications, can have a huge impact on performance.

This is precisely our objective: understanding to what extent the mix of
application and storage traffic interfere with each other and how this affects
performance. Hence, we conducted an extensive evaluation of data-aware alloca-
tion strategies for data-intensive applications which take into consideration the
location of both storage devices and data when deciding where application tasks
will be allocated. For completeness, we compare these allocation strategies with
a baseline HPC SAN-based system. Our evaluation relies on a novel, generic
application model that generates synthetic workloads mimicking different types
of application, i.e. I/O-, computation- or communication-intensive.

Results show that application performance can be severely degraded when
mixing both types of traffic, unless careful allocation of resources is orches-
trated, but also that proper resource allocation can outperform traditional stor-
age approaches.

The rest of the paper is organized as follows. In Sect. 2 we discuss some previ-
ous works on data-aware allocation for large-scale computing system. Following
in Sect. 3 we provide an overview of the architecture of ExaNeSt, specifically the
storage and interconnection subsystems. We continue in Sect. 4 explaining the
scheduling process and the simple allocation strategies considered in this paper.
Then in Sect. 5 we present the experimental framework used to asses the impact
of these strategies on the performance of the applications. These results are anal-
ysed and discussed in Sect. 6. We close the paper with Sect. 7 which highlights
some concluding remarks and sets some future lines of research arising from the
findings of this work.

2 Related Work

To the best of our knowledge this is the first time that a fully distributed storage
subsystem based on high-performance solid state devices has been leveraged with
a unified interconnect that handles both application and storage traffic in the
context of high-performance computing system. Hence, there is no previous work
tackling resource allocation when such a specific architecture is considered.

Some similar works are focused on allocating applications close to the data
either in memory (Spark, see [20,21]) or in storage (Hadoop, see [4,8,10,24]). In all
cases the authors present scheduling techniques to maintain data locality in either
Hadoop-like or Spark-like clusters. Regarding traditional clusters, the insufficiency
of traditional CPU-oriented batch schedulers was exposed and Stork, a scheduler
that uses a job’s description language to manage data location, was proposed [14].
Other works try to assign the application to the node where the data is mapped
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or at least, as close as possible [22]. Other approaches try to maintain the locality
dynamically based on the status of the system and the network [11]. A detailed
overview of data-aware scheduling can be found in [7].

There exist also plenty of previous work centred around the allocation and
mapping of applications to reduce the overhead of inter-process communica-
tions, mainly within the realms of HPC systems and parallel applications (e.g.
MPI-based). These disregard data locality as the proportion of storage traf-
fic is negligible and, indeed, dealt with by a separate network, as explained
above. Many authors [6,17,18] analyse the extent that inter-application inter-
ference has on their performance. In order to minimise this interference, many
non-contiguous [12,19] and contiguous [18,19] allocation strategies have been
proposed for a range of topologies. Similarly, other works [2,5,17] have tried to
reduce intra-application contention using different techniques to map the tasks
of the application onto the previously selected nodes. This paper motivates the
need for merging these two approaches so to obtain the benefits of minimizing
both inter-process and storage interferences.

3 The ExaNeSt Architecture

In this section we describe ExaNeSt’s architecture. One of the main novelties of
our design is the affordance of non-volatile storage devices [23] (NVM) within
compute nodes so to reduce latency and energy by exploiting data-locality. Com-
pute nodes will access the storage subsystem transparently using BeeGFS [3],
a high performance parallel filesystem that is in charge of reading and writing
data between the local NVMs and the external storage system.

In Fig. 1 we depict an overview of the model we use in this paper for the storage
subsystem which is based on the typical datacentre storage architecture. In the
right side we can see the computing elements (circles) and the NVM devices con-
nected directly to them (squares). Compute nodes access remote NVMs through
our custom-made interconnection network (IN, hereafter) which is also used for

40GbE

I/O NODES

40GbE

COMPUTING NODES

10GbE (Storage Network)

Custom Communications Network

Fig. 1. Visual representation of the ExaNeSt storage architecture. The local NVMs are
attached to the computing nodes sharing the main interconnect (solid). An Ethernet
network is provided for persistent data storage (dashed).
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interprocess-communication (solid lines). NVMs access the external storage back-
end, in the left, using an independent storage network (dashed lines). For simplic-
ity, in this work we have modelled the external storage network as a 10 GB Eth-
ernet network which connects the compute nodes to the storage servers using a
front-end 10 GB switch (this network is only to be used for I/O operations from/to
the persistence storage when applications start/end the execution). As we try to
model a realistic high performance system we also model a 40 GB back-end net-
work which is in charge of data replication within the storage servers. The opera-
tion of this storage system is the typical in big datacenters [15]: when a computing
node writes to disk, one of the servers will be chosen and data-replication to other
servers (the number of replicas is configurable) will occur in the background with-
out requiring user-intervention. In case of read operations the computing elements
will access several storage servers (the number of replicas) and perform the oper-
ation in parallel, in order to improve the throughput. Note that although we have
used this standard model for the storage subsystem, the architecture of the per-
sistent storage is still an open question in ExaNeSt; and more efficient solutions
are likely to be implemented in the final prototype.

For the purpose of this work, we define data to be cached if it is in main
memory which allows very fast access to the data (we assume an average band-
width of 10 GB/s) and non-cached if it is in an NVM. Also we define data as
being local if it is located in the node where it is needed or remote if it is located
in a nearby node where it can be retrieved from using the IN (performed trans-
parently by BeeGFS). Finally data available only in central storage is denoted
as Central. Therefore there are 5 possibilities when applications access data:

– Local access, cached data: This is the fastest access mode. As data are
local and cached in main memory, the only limiting factors will be the latency
(very low) and bandwidth (very high) of the memory.

– Local access, non-cached data: In this case the data are local but not in
RAM. Therefore access to the NVM device is required. The limiting factors
are the latency (low) and bandwidth (high) of the NVM.

– Remote access, cached data: In this case data is not available locally
requiring access through the IN, so the limiting factor in this case will be the
latency and bandwidth of the main IN, which is highly affected by external
factors that could degrade its performance such as traffic interference.

– Remote access, non-cached data: This is the worst possible situation.
The access to the IN is required because the data are not local but, in this
case, both the remote NVM and the IN can become the limiting factor.

– Central access: We differentiate two different scenarios here. In ExaNeSt,
BeeGFS access the external storage when applications start or finish exe-
cution, transferring data between persistent storage and the NVMs, so that
applications always access data from the NVMs. The baseline configuration
(SAN), represents an scenario where the applications do not use the NVMs
so all accesses are done against the external storage; i.e., the SAN will be
accessed whenever applications require to read or write data.
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4 Scheduling and Resource Allocation Strategies

The scheduling process in a supercomputer involves, at least, three different
stages. Applications are submitted to scheduling queues where, following some
scheduling policy [9] such as FCFS, Backfilling or Shortest Job First (SJF), they
are selected to be executed. After this stage, the allocator must find a set of
suitable resources (physical nodes) usually fulfilling some constraints imposed
by the application such as available memory, number of cores, type of architec-
ture, etc. Finally the tasks (instances) of the application are mapped to those
resources. In this Section we focus on the allocation stage in order to analyse
the impact of data location on the performance of the applications.

Once an application has been selected to be run, the allocator will select a
set of computing nodes to place the tasks of the application. In that moment,
the application will request access to the required data and BeeGFS will load
it from persistent storage into local storage. Ideally all the data will be local
to each application, meaning that all accesses will be performed within local
NVMs. However in a real system with many applications running concurrently
and data-oriented applications demanding immense storage space, local-only
accesses could be impossible to accomplish. Figure 2 represents the three pos-
sible types of storage assignment based on the interference they create in the
interconnect:

– Local: All the local storage devices are available to load the data for the
application. This is the ideal scenario where all the storage traffic remains
local and, hence, there is no traffic interference.

– Internal: In this case only some of the local storage devices are available.
This situation could happen if other applications have requested some of these
storage devices previously. This will impose some intra-application interfer-
ence, but will not generate inter-application interference if the applications
are allocated consecutively.

(a) Local. (b) Internal. (c) External.

Fig. 2. Examples of application allocation. Double-circled nodes represent the nodes
assigned for compute whilst grey circles represent these for storage. Note that the 2D
mesh is used for illustration purposes only.
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– External: Some (or all) the storage devices are outside of the partition
assigned to the application. Now, remote accesses to the data will generate
intra- and inter-application interference.

As discussed, the assignment of the storage devices to applications depends
on both internal and external factors. Internal factors are the storage space
required by the application which could be larger than that available within the
local NVMs and the way data is partitioned which could impose access to remote
NVMs. External factors are caused by other applications using NVMs outside
of their local nodes. This will lead to fragmentation making new applications to
allocate storage in remote NVMs instead of in local ones (already busy). In the
long run this may end up with no application being able to use local NVMs.

These factors motivate the need of resource allocation policies in order to
minimize both fragmentation and interference among traffic of different applica-
tions. To this end, the scheduler (allocator) should be enhanced to incorporate
knowledge about the data access patterns of the applications and about the
physical topology of the network. In this work, we consider two very simple
allocation strategies for typical HPC topologies: fat-tree and 3D torus. These
strategies will use contiguous partitions, in which the communications of the
applications remain internal within the assigned nodes. Strategies to look for
contiguous partitions can be found in [16,18,19]. The second strategy is ran-
dom, that mimics the behaviour of a datacenter not using any locality-aware
allocation. At any rate, neither of these strategies considers the actual commu-
nication patterns or the data access patterns of the applications and so there is
no attempt to reduce internal contention. Of course, we envision both reducing
both external and internal contention through optimised allocation essential to
take advantage of the colossal raw computing power of Exascale systems. Indeed,
part of our current work is the design of strategies that take into account specific
information of the applications in order to select the best set of nodes to allocate
them, see e.g., [17]. This selection will consider several application metrics with
the goal of reducing the interference between inter- and intra-application storage
and communication traffic.

5 Experimental Set-Up

In this section we present the simulation environment used to evaluate the effects
of the allocation policies. First we describe the experimental environment which
is composed of the INRFlow simulator and our data-intensive application models.
We conclude the section describing the set of experiments performed.

The evaluation has been carried out using INRFlow, our in-house devel-
oped simulator. INRFlow models the behaviour of parallel systems, including
the topology (link arrangement), the applications and workload generation and
the scheduling policies (selection, allocation and mapping) and measures several
static (application-independent) and dynamic (with applications) properties.

Given the wide variety of applications that we need to consider (HPC from
several scientific domains, big data analytics, etc.) and their different needs in
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terms of communication and storage, we have constructed a generic application
model based on Markov chains which can be fine-tuned to model different appli-
cation types by changing transition probabilities. Figure 3 shows the model we
constructed based on an analysis of ExaNeSt’s applications.

The model is composed of 6 states each of them representing the different
types of operations that can go on during the execution of an application in
the ExaNeSt platform. Note that storage traffic has been split into two different
states in order to be able to model applications with varying IO needs (e.g.
read- or write-intensive, or more balanced access to storage). In particular for
this work we use read-write balanced I/O-intensive applications (75% storage
versus 25% of computation and communications, 12.5% each), leaving other
types of applications, in particular actual applications, as future work.

We evaluate two different types of scenarios. First we measure the runtime
of a single application when multiple access modes are used. In particular, we
measure the impact of accessing cached and non-cached data, of having a varying
number of remote NVMs and of hitting in RAM with different frequency. In this
scenario the applications run in isolation without any interference. The effect
of interferences is evaluated in the second set of experiments in which we run
several applications concurrently using two simple allocation strategies.

All the experiments have been carried out using two different INs. The first
set uses a 4:3-fat-tree and a (4×4×4) torus both with 64 nodes each. The second
uses a 8:3-fat-tree and a (8×8×8) torus with 512 nodes. In this case we use a
larger network to execute four 128-node applications concurrently.

We consider three storage strategies: CACHE is the optimal case in which
all the data is available in the local device, SAN where all I/O operations are
done against the SAN and, finally, STG-k in which k NVMs have been allocated
for the application and the required data are spread among them. If k is equal
to the number of nodes it represents Local allocation, otherwise it represents
Internal allocation (as discussed above). External allocation is not considered in
this paper for the sake of brevity.

Init End
Comp

Read

Comm

Write

Fig. 3. Representation of the Markov chain used to generate synthetic applications.
For the sake of clarity transition probabilities between states are omitted.
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6 Analysis of the Results

In this section we analyse the results in terms of runtime (time required to
process all the events in the trace). For the sake of brevity we only present
results obtained with the fat-tree using consecutive placement, but all other
results (tori and random allocation) are consistent with the ones discussed here.

6.1 Single Application Scenario

Let us start analysing the impact of accessing the NVM device where the required
data is not mapped in main memory. In Fig. 4 we have represented the runtime
with varying percentages of cached data access; 0 indicates that 0% of the oper-
ations are in memory, i.e., we have to always access the storage subsystem, to
100% in which all the data is accessed using main memory.

Results clearly show that when misses occur, that is, when the data must
be loaded from disk, the performance is degraded. This effect is more evident
in remote nodes due to the use of the unified network but it also occurs when
the storage device is local. However in that case the effect is less evident due to
the low latency and high bandwidth of the devices. From the results we can also
notice the effects on the performance of remote accesses comparing the STG-
64 and CACHE strategies. Although both strategies use 64 NVMs devices, the
use of the interconnect to access 50% of the data has severely degraded the
performance of the application increasing the runtime, in average, one order of
magnitude.

Fig. 4. Runtime of one applications running in a 64 nodes network for 50% of accesses
to remote nodes and several ratios of accesses to main memory (0, 25, 50, 75 and 100%).
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Fig. 5. Runtime of one applications running in a 64 nodes network for 50% of accesses
to main memory and several ratios of accesses to remote nodes using 9 storage strategies
(STG-{1, 2, 4, 8, 16, 32, 64}, SAN and CACHE).

Now let us analyse the impact of accessing remote storage devices. Figure 5
shows results for a configuration using 50% of accesses to main memory (cached
data) and varying the amount of accesses to remote nodes from 0% to 100%.
Results are very clear, showing that accessing remote storage devices does not
comes without tremendous overheads. The worst case happens when just one
NVM is used and all the tasks access it to retrieve the data, with the subsequent
contention in the IN and the NVM. Increasing the number of storage devices
makes the traffic spread through the IN, therefore reducing contention. In this
scenario and in the one shown previously, the CACHE strategy is the best per-
former showing that locality for the data (both in memory and in the network)
is required to take advantage of the distributed storage. Regarding the SAN
access strategy, it was expected to perform well because it relies on a completely
independent and high performance network and features immense bandwidth to
the permanent storage. However, even in this case, STG-64 can outperform it
when accessing mostly cached-data.

At any rate, having a single application running in a large parallel system
is uncommon. For this reason, in the next section we will explore the effects of
multiple applications accessing the storage subsystem concurrently.

6.2 Multi-application Scenario

Figure 6 shows the results for the multi-application scenario using contigu-
ous allocation. Due to space constraints we omit the results for the random
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Fig. 6. Runtime of four applications running concurrently in a 512-node fat-tree using
75% of cached data and a varying percent of accesses to remote storage.

allocation, but the conclusions are akin to these presented here. As we can
see, when several applications compete for the network, reducing the number
of remote accesses, below 20–40% remarkably improves the performance of the
applications. Regarding the number of I/O servers for the SAN strategy, we have
evaluated several configurations (we only show here the use of 8, 32 and 128 I/O
servers). Looking at the results it is clear that the SAN approaches perform well
but at the cost of increasing the number of I/O servers. Notice that here we
match the number of computing nodes with the size of the applications; this is
possible for small networks as the one shown here, but clearly unaffordable for
larger networks. In that case the SAN will become a bottleneck for applications.

If we focus on the STG strategies, we can see that if the number of accesses
to remote NVMs is reduced below 25% the runtimes are shortened considerably,
outperforming even the biggest SAN when the STG-128 strategy is used. The
best performer is again the CACHE strategy that minimizes the use of the
network for storage traffic. Notice that these results consider 75% of cached-
data.

In summary, from all the results, we can conclude that when keeping all the
data local is not possible, reducing the number of accesses to remote storage
device is critical to maintain the performance. In any case, if good locality is
achieved, the ExaNeSt storage subsystem can outperform classic storage systems
based on SANs. We want to remark SAN-based systems require the number of
I/O servers to scale with the number of compute nodes in order to keep up
with the performance levels, which will be unaffordable for Exascale-capable
computing systems. Alternatively, the performance of the I/O infrastructure
will be degraded as systems grow. This evaluation remains as future work.
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7 Conclusions and Future Work

In this work we have presented the storage architecture of ExaNeSt composed of
fast NVM devices attached to the computing nodes. These devices provide to the
applications low latency and high bandwidth for accessing the data. However, as
this system will use a unified interconnect for all types of traffic, we wanted to
measure to what extent the performance of the applications could be degraded
and if the addition of specific data-aware allocation policies to the scheduling
system could help alleviating this effect.

First we have seen how much accessing storage devices instead of hot data
mapped into main memory affects the performance. Then, we looked at the
effects of accessing remote storage devices. Finally, we assessed the effects of
inter-application interferences. Our results show the potential benefits that
exploiting locality when mapping data would bring when employing data-locality
aware allocation functions in fully-distributed storage systems.

This has been just a preliminary study to assess whether specific storage
allocation policies can benefit the execution of the applications in ExaNeSt and
other systems using unified interconnects. In future works we will evaluate much
larger networks executing a mix of applications such as communication- and
computation-oriented applications. We also plan to develop specific allocators
to optimise the assignment of resources that take into account both the storage
and application traffic in order to improve application performance.

Acknowledgement. This work was funded by the European Union’s Horizon 2020
research and innovation programme under grant agreement No 671553.
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Universidad de Murcia, Murcia, Spain

{piernas,pilar}@ditec.um.es

Abstract. OSD+s are enhanced object-based storage devices (OSDs)
able to deal with both data and metadata operations via data and direc-
tory objects, respectively. So far, we have focused on designing and
implementing efficient directory objects in OSD+s. This paper, however,
presents our work on also supporting data objects, and describes how the
coexistence of both kinds of objects in OSD+s is profited to efficiently
implement data objects and to speed up some common file operations.
We compare our OSD+-based Fusion Parallel File System (FPFS) with
Lustre and OrangeFS. Results show that FPFS provides a performance
up to 37× better than Lustre, and up to 95× better than OrangeFS,
for metadata workloads. FPFS also provides 34% more bandwidth than
OrangeFS for data workloads, and competes with Lustre for data writes.
Results also show serious scalability problems in Lustre and OrangeFS.

Keywords: FPFS · OSD+ · Data objects · Lustre · OrangeFS

1 Introduction

File systems for HPC environment have traditionally used a cluster of data
servers for achieving high rates in read and write operations, for providing fault
tolerance and scalability, etc. However, due to a growing number of files, and
an increasing use of huge directories with millions or billions of entries accessed
by thousands of processes at the same time [3,8,12], some of these file systems
also utilize a cluster of specialized metadata servers [6,10,11] and have recently
added support for distributed directories [7,10].

Unlike those file systems, that have separate data and metadata clusters, our
in-house Fusion Parallel File System (FPFS) uses a single cluster of object-based
storage device+ (OSD+) [1] to implement those clusters. OSD+s are improved
OSDs that handle not only data objects (as traditional OSDs do) but also direc-
tory objects. Directory objects are a new type of object able to store file names
and attributes, and support metadata-related operations. By using OSD+s, an
FPFS metadata cluster is as large as its data cluster, and metadata is effectively
distributed among all OSD+s comprising the system. Previous results show that
OSD+s have a small overhead, and provide a high throughput [1,2].
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Fig. 1. (a) FPFS’s overview. Each OSD+ supports both data and metadata operations.
(b) Layers implementing an OSD+ device.

So far, we have focused on the development of the metadata part of FPFS.
In this paper, however, we describe how we implement the support for data
objects. We show that the utilization of a unified data and metadata server (i.e.,
an OSD+ device) provides FPFS with a competitive advantage with respect to
other file systems that allows it to speed up some file operations.

We evaluate the performance and scalability of FPFS with data-object sup-
port through different benchmarks, and, for the first time, we compare those
results with that obtained by OrangeFS [10] and Lustre [7], which only recently
have added stable support for distributed directories (and, in the case of Lustre,
for a metadata cluster too). Results show that, for metadata-intensive work-
loads, FPFS provides a throughput that is, at least, one order of magnitude
better than that of OrangeFS and Lustre. For workloads with large files and
large data transfers, FPFS can obtain a bandwidth up to 34% better than the
bandwidth achieved by OrangeFS, and can compete with Lustre in data writes.
Interestingly, results have also spotted some scalability problems of OrangeFS
and Lustre that severely affect their performance in metadata workloads.

2 Overview of FPFS

FPFS [1] uses a single kind of server, called OSD+ device, that acts as both
data and metadata server (see Fig. 1(a)). This approach consequently enlarges
the metadata cluster’s capacity that becomes as large as the data cluster’s.
Moreover, having a single cluster increases system’s performance and scalability,
since there will not be underutilized data or metadata servers.

Traditional OSDs deal with data objects that support operations like creating
and removing objects, and reading/writing from/to a specific position in an
object. We extend this interface to define directory objects, capable of managing
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directories. Therefore, OSD+ devices also support metadata-related operations
like creating and removing directories and files, getting directory entries, etc.

Since there exist no commodity OSD-based disks (note that Seagate’s Kinetic
drives are not full-fledged OSD devices), we use mainstream computers for imple-
menting OSD+s (see Fig. 1(b)). Internally, a local file system stores the objects;
we profit this by directly mapping operations in FPFS to operations in the local
file system, thus reducing the overhead introduced by FPFS.

A directory object is implemented as a regular directory in the local file
system of its OSD+. Any directory-object operation is directly translated to
a regular directory operation. The full pathname of the directory supporting
a directory object is the same as that of its corresponding directory in FPFS.
Therefore, the directory hierarchy of FPFS is imported within the OSD+s by
partially replicating its global namespace.

For each regular file that a directory has, the directory object conceptually
stores its attributes, and the number and location of the data objects that store
the content of the file. The exceptions are size and modification time attributes
of the file, which are stored at its data object(s). These “embedded i-nodes” are
i-nodes of empty files in the local file system; the number and location of the
data objects are also stored in those empty files as extended attributes.

When a metadata operation is carried out by a single OSD+ (creat, unlink,
etc.), the backend file system itself ensures its atomicity and POSIX semantics.
Only for operations like rename or rmdir, that usually involve two OSD+s, the
participating OSD+s need to deal with concurrency and atomicity by themselves
through a three-phase commit protocol [9], without client involvement.

FPFS distributes directory objects (and so the file-system namespace) across
the cluster to make metadata operations scalable with the number of OSD+s,
and to provide a high performance metadata service. For the distribution, FPFS
uses the deterministic pseudo-random function CRUSH [11] that, given a hash
of a directory’s full pathname, returns the ID of the OSD+ containing the cor-
responding directory object. This allows clients to directly access any directory
without performing a path resolution. Thanks to CRUSH, migrations and imbal-
ances when adding and removing devices are minimized. FPFS manages renames
and permission changes via lazy techniques [4].

FPFS also implements management for huge directories, or hugedirs for short,
which are common for some HPC applications [8]. FPFS considers a directory
is huge when it stores more than a given number of files. Once this threshold is
exceeded, the directory is shared out among several nodes [2].

A hugedir is supported by a routing OSD+ and a group of storing OSD+s.
The former is in charge of providing clients with the hugedir’s distribution infor-
mation. The storing OSD+ store the directory’s content. A routing object can
also be a storing object. The storing objects work independently of each other,
thereby improving the performance and scalability of the file system.
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Fig. 2. A regular file in FPFS. The directory entry contains the i-node and also a
reference to the data object.

3 Data Objects

Data objects are storage elements able to store information of any kind. They can
also have associated attributes that users can set and get. Data objects support
different operations, being the reading and writing of data the most important.
Data objects receive an ID, which we call data object ID (DOID), when they
are created. These DOIDs allow us to unequivocally identify an object inside a
given device, although there can be duplicated DOIDs among different devices.
Therefore, a data object is globally identifiable by means of its DOID and the ID
of the device holding it. We call this pair (device ID, data object ID) a globally
unique data object ID (GUDOID).

3.1 Data Objects of a Regular File

When a regular file is created in FPFS, three related elements are also created:
a directory entry, an i-node and a data object. From a conceptual perspective,
the i-node is embedded into the directory entry, so these two elements are stored
together in the corresponding directory object, while the data object is stored
separately. Figure 2 depicts this situation.

FPFS can use two different policies for selecting the OSD+ to store the data
object of a file: same OSD+ and random OSD+. The former, used by default,
stores a data object in the OSD+ of the directory object storing its file’s entry.
This approach reduces the network traffic during file creations because no other
OSD+s participate in the operation. The latter chooses a random OSD+ instead.
This second approach can potentially achieve a better use of resources in some
cases by keeping a more balanced workload, although it increases the network
traffic during creations. Regardless the allocation policy, the i-node of a regular
file stores a reference to its data object by means of its GUDOID.

3.2 Implementation of Data Objects

FPFS internally implements data objects as regular files. When a data object is
created, its DOID is generated as a random integer number. A string with the
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hexadecimal representation of that number is used as name of the regular file
supporting the object. To avoid too large directories, which usually downgrade
performance, files for data objects are distributed into 256 subdirectories.

An open() call on an FPFS file always returns a file descriptor in the OSD+
storing its data object to directly operate on the object. Current implementation
supports read(), write(), fstat(), lseek64(), and fsync() operations. All
of them operate on the data object whose descriptor is passed as argument. The
open() call also returns a key (called secret) for the data object, so only those
clients that have been granted access to the file can use the returned descriptor
to operate on the data object.

3.3 Optimizing the Implementation

If the default allocation policy for data objects is active (i.e., a directory entry for
a regular file and its corresponding data object are stored in the same OSD+), we
can speed up the creation of files and other operations. For instance, when a file
is created, the target OSD+ internally creates an empty file in the directory sup-
porting its directory object. This empty file acts as dentry and embedded i-node
(see Sect. 2). But because data objects are also implemented as files internally,
that empty file can also act as data object. Consequently, creation is quite fast,
and atomic too: the three elements will either exist or not after the operation.
File systems with separate data and metadata servers (at least, from a concep-
tual point of view) incur in a noticeable overhead due to independent operations
in different servers, and the network traffic generated to perform those operations
and guarantee their atomicity.

The overlap between a dentry-inode and its data object disappears, how-
ever, in a few cases: (a) when a directory object is moved, (b) when a file has
several data objects, and (c) for hard links. First case occurs when a directory
object is migrated from an OSD+ to another due to a rename, or when a direc-
tory becomes huge and it is distributed (only dentries are moved, data objects
remain in their original servers). Second case appears when a file has several
data objects, each on a different OSD+ device. In this case, those objects will
exist by themselves right from the start. Finally, third case happens when there
exist files having more than one link. For each of these files, FPFS creates an
i-node object that also has a GUDOID and stores all the file’s attributes (except
size and modification time, as explained), references to its data objects, and a
link counter. The directory entry for a new hard link simply stores the new file
name and the GUDOID of the i-node object of the source file.

4 Experimental Results

We analyze FPFS’s performance, and compare it with that of OrangeFS 2.9.6
and Lustre 2.9.0. This section describes experimental environment and results.
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4.1 System Under Test and Benchmarks

The testbed system is a cluster made up of 12 compute and 1 frontend nodes.
Each node has a Supermicro X7DWT-INF motherboard with two 2.50 GHz Intel
Xeon E5420 CPUs, 4 GB of RAM, a system disk with a 64-bit CentOS 7.2 Linux
distribution, and a test disk (SSD Intel 520 Series of 240 GB). The test disk
supports the OSD+ device for FPFS, and the storage device for OrangeFS and
Lustre. Interconnect is a Gigabit network with a D-Link DGS-1248T switch.

We use Ext4 as backend file system for both FPFS and OrangeFS, while
Lustre uses its Ext4-based file system. We properly set the I/O scheduler used
by the test disk, and the formatting and mounting options used by Ext4, to
try to obtain maximum throughput with FPFS and OrangeFS. Lustre, however,
sets these parameters automatically, and we do not change them.

We configure the three parallel file systems to shared out directories among
all the available servers right from the start. This is because OrangeFS crashes
for relatively small values (<1000) of its DistrDirSplitSize parameter, and
because Lustre does not allow a dynamic distribution of directories.

We use the following scenarios of version 1.2.0-rc1 of the HPCS-IO suite [5]:

– Scenario 4: there are 64 processes with 10 directories each. Processes create
as many files (with sizes between 1 kB and 64 kB) as possible in 50 s.

– Scenario 8: there are 128 processes, each creating a file of 32 MB.
– Scenario 9: a single process issues stat() operations on empty files in a

sequential order.
– Scenario 10: like scenario 9, but stat() operations are issued by 10 processes

(this small number of processes is imposed by the scenario).
– Scenario 12: like scenario 10, but operations are issued by 128 processes.

Scenarios 9, 10, and 12 operate on 256 directories, each containing 10 000
empty files, so they use 2 560 000 files altogether. We discard scenarios that
involve large or shared files (we do not support multi-dataobject files yet), and
scenario 11 (we obtain results identical to those obtained for scenario 9). Pro-
cesses in the different tests are shared out among four compute nodes.

Some scenarios of HPCS-IO place synchronization points among the pro-
cesses, so achieved performance is not as high as it could be. They do not operate
on a single directory either, so benefits of distributing hugedirs are not clear. Due
to this, we also run the following benchmarks, where there is no synchronization
among processes, and a benchmark finishes when the last process completes:

– Create: each process creates a subset of empty files in a shared directory.
– Stat: each process gets the status of a subset of files in a shared directory.
– Unlink: each process deletes a subset of files in a shared directory.

Results shown in the graphs are the average of five runs. Confidence intervals
are also shown as error bars (95% confidence level). Test disks are formatted
before every run of the scenarios 4 and 8, and the preprocess for scenarios 9–12
of HPCS-IO. Test disks are also formatted before every run of the create test.
For the rest of the benchmarks, disks are unmounted/remounted between tests.



Efficient Implementation of Data Objects in the OSD+-Based FPFS 743

Fig. 3. HPCS-IO scenarios 4 and 8. Results for FPFS ( ), Lustre ( ), and
OrangeFS ( ). Note the different Y-axis labels and ranges, and the log scale for
the Y-axis in the read test of scenario 08.

4.2 HPCS-IO

Figure 3(a) depicts the results obtained for scenario 4 of HPCS-IO. We see that
the performance provided by FPFS competes with that provided by Lustre,
and it is almost one order of magnitude better than that of OrangeFS when 8
servers are used. Moreover, OrangeFS hardly improves its performance by adding
servers. Since this scenario creates many small files, we conclude that FPFS and
Lustre deals with data and metadata operations much better than OrangeFS.

Figure 3(b) shows results for scenario 8. When there are only a few files and
large data transfers, results of each file system depend on its implementation
and features. Lustre implements a client-side cache that provides significantly
better aggregated read rates. Lustre is also implemented in kernel space and
uses the interconnect in a more optimized way, introducing a smaller overhead
that allows it to obtain higher aggregated write rates. On the contrary, FPFS
and OrangeFS are implemented in user space and provide no client-side caches.
Despite this, FPFS still obtains a higher aggregated bandwidth than OrangeFS:
up to 23,5% for writes and 4 servers, and up to 34% for reads and 8 servers.
Note that rates hardly increase when the number of servers grows to 8, because
network interface cards (NICs) in the clients are saturated with 8 servers.

Figure 4 depicts results for HPCS-IO scenarios 9, 10, and 12, which only
issue stat() operations on 2 560 000 empty files. In scenario 9, only one process
carries out operations, so performance does not increase with the number of
servers. FPFS achieves around one order of magnitude more operations/s than
OrangeFS, and around 4× the throughput achieved by Lustre. FPFS and Lustre
provide a steady performance regardless the number of servers, while OrangeFS’s
performance slightly decreases when there are more servers.

In scenario 10, FPFS’s performance is more than 12× better than OrangeFS’s
and more than 4× than Lustre’s. All the file systems provide a quite steady
performance, regardless the number of servers. The situation changes for FPFS
and Lustre in scenario 12, where they greatly improve their performance, which
also scales up with the number of servers. OrangeFS, however, does not change
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Fig. 4. HPCS-IO scenarios 9, 10, and 12. Results for FPFS ( ), Lustre ( ),
and OrangeFS ( ). Note the different Y-axis ranges.

Fig. 5. Shared huge directory. Weak scaling when the number of files per server is set
to 400 000. Results for FPFS ( ), Lustre ( ), and OrangeFS ( ). Note
the log scale in the Y-axis.

its behavior, and basically provides the same performance as in scenario 10. Due
to this, FPFS gets more than 95× operations/s than OrangeFS. Note that Lustre
hardly improves its performance with more than two servers. After analyzing the
network traffic, we have seen that Lustre puts different requests for a server in
the same message. This “packaging” adds delays that downgrade performance.

4.3 Single Shared Directory

Figure 5 shows performance achieved, in operations per second, when 256 pro-
cesses, spread across four compute nodes, concurrently access a single shared
huge directory to create, get the status and delete files. Processes work on
equally-sized disjoint subsets of files. The directory contains 400 000 × N files,
where N is the number of servers. The directory is distributed right from the
start. Files are uniformly distributed among the servers, which roughly receive
the same load.
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Graphs show the huge performance of FPFS with respect to the other file
systems. FPFS always gets, at least, one order of magnitude more operations/s,
but it is usually much better (up to 70× more operations/s than OrangeFS, and
37× more than Lustre, in some cases of the unlink test). It is worth noting that,
with just 8 OSD+s and a Gigabit interconnect, FPFS is able to create, stat, and
delete more than 205 000, 298 000 and 221 000 files per second, respectively.

These performance differences between FPFS and the rest can be explained
by the network traffic generated by each file system and some serialization prob-
lems. Lustre and OrangeFS generate a high network traffic that even increases
with the number of servers. Both also usually have a metadata server that
sends and receives much more packets than the rest. Consequently, Lustre and
OrangeFS present serious scalability problems that limit their performance.

5 Related Work

This section focuses only on some of the existing file systems that use a metadata
cluster, support the distribution of directories, and use OSD or similar devices.

Ceph [11] stores data objects in a cluster of OSD devices that work in an
autonomous manner to provide data-object redundancy for fault tolerance, etc.
Contents of directories are written to objects in the OSD cluster, and metadata
operations are carried out by a small cluster of metadata servers. Each metadata
server adaptively splits a directory when it gets too big or experiences too many
accesses. Despite all these features, setting a stable metadata cluster in Ceph
has been no possible (we still have to test latest releases), so we have discarded
this file system in our benchmarks.

OrangeFS [10] also uses a cluster of data servers. They are not OSD devices,
but play a similar role. OrangeFS has supported several metadata servers for
quite a long time, but only recently has introduced the distribution of a directory
among several servers based on ideas from extendible hashing and GIGA+ [8].
When a directory is created, an array of dirdata objects (each on a metadata
server) is allocated. Directory entries are then spread across the different dirdata
objects, whose number is configurable per directory.

Lustre [7] offers a cluster of data servers through OSD devices. Latest versions
of this file system also allow to use several MDTs in the same file system. A
directory can also be shared out among several servers, but this distribution is
static, and it is set up when the directory is created.

FPFS shares some important features with all the above file systems: exis-
tence of several data and metadata servers, use of OSDs or similar devices, data
objects, distributed directories, etc. However, design and implementation aspects
determine the performance and scalability of all of them. For instance, all but
FPFS separate data and metadata services, which makes it difficult, when not
impossible, to optimize some operations that involve both data and metadata
elements. OSD+ devices deployed in FPFS also add a small-overhead software
layer that leverages the underlying local file system to provide an efficient service.
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6 Conclusions

In this paper, we describe the implementation of data objects in an OSD+ device.
We show how OSD+s can internally optimize their implementation to speed up
some common file operations. This kind of optimizations are not possible in other
file systems like Lustre, OrangeFS or Ceph, where data and metadata elements
are, from a conceptual point of view, managed independently.

We add support for data operations to our OSD+-based Fusion Parallel
File System, and compare its performance with that achieved by Lustre and
OrangeFS. Results show that, for metadata-intensive workloads such as creat-
ing, stating and deleting files, FPFS provides a throughput that is, at least,
one order of magnitude better than that achieved by the other file systems,
and up to 95× better than OrangeFS’s, and 37× than Lustre’s. For workloads
with large data transfers, FPFS can obtain up to 34% more aggregated band-
width than OrangeFS, while can compete with Lustre for data writes. Results
also show serious scalability problems in Lustre and OrangeFS that limit their
performance.
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