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Abstract. The Bounded Degree Deletion problem (BDD) is that
of computing a minimum vertex set in a graph G = (V, E) with degree
bound b : V → Z+, such that, when it is removed from G, the degree
of any remaining vertex v is no larger than b(v). It is a classic prob-
lem in graph theory and various results have been obtained including
an approximation ratio of 2 + ln bmax [30], where bmax is the maximum
degree bound.

This paper considers BDD on directed graphs containing unbounded
vertices, which we call Partially Bounded Degree Deletion

(PBDD). Despite such a natural generalization of standard BDD, it
appears that PBDD has never been studied and no algorithmic results
are known, approximation or parameterized. It will be shown that (1)
in case all the possible degrees are bounded, in-degrees by b− and out-
degrees by b+, BDD on directed graphs can be approximated within
2 + maxv∈V ln(b−(v) + b+(v)), and (2) although it becomes NP-hard to
approximate PBDD better than bmax (even on undirected graphs) once
unbounded vertices are allowed, it can be within max{2, bmax +1} when
only in-degrees (and none of out-degrees) are partially bounded by b.

Keywords: Approximation algorithms · Bounded Degree Deletion
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1 Introduction

The Bounded Degree Deletion problem is a well-known basic problem in
graph theory. It has an application in various areas such as computational biol-
ogy [15] and property testing [29], whereas its “dual problem” of finding maxi-
mum s-plexes, introduced in 1978 [32], has applications in social network anal-
ysis [1,28]. With degree bound of b ∈ Z+, b-Bounded Degree Deletion (or
b-BDD for short) is the problem of computing a minimum cost vertex set X in
a given weighted graph G = (V,E) such that the degree of any remaining vertex
v is bounded by b when all the vertices in X are removed from G.
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Clearly, b-BDD is a generalization of the Vertex Cover (VC) problem, and
another generalization of VC has been recently introduced and actively studied.
The k-Path Vertex Cover (k-PVC) problem [4–6,22,24], also known as Ver-

tex Cover Pk [34–37], Pk-Hitting Set [7], and k-Path Transversal [27],
is the problem of computing a minimum vertex set C such that when all the
vertices in C are removed from G, there remains no path on k vertices. A subset
of vertices in a graph G is called a dissociation set if it induces a subgraph with
maximum degree at most 1. The maximum cardinality of a dissociation set in
G is called the dissociation number of G. The problem of computing the dis-
sociation number was introduced by Yannakakis [40], who also proved it to be
NP-hard in the class of bipartite graphs. See [31] for a survey on the dissociation
number problem. Clearly, VC ≡ 0-BDD ≡ 2-PVC, 1-BDD ≡ 3-PVC (but b-BDD
�≡ (b + 2)-PVC for b ≥ 2), and a dissociation set is the complement of a 3-PVC
(i.e., 1-BDD) solution.

We now summarize below algorithmic results known for b-BDD and related
problems.

VC. It is known approximable within 2 − Θ(1/
√

log n) [23], whereas VC has
been shown hard to approximate within 10

√
5−21 ≈ 1.36 unless P = NP [13]

(or within 2 − ε assuming the unique games conjecture [25]).
b-BDD. The first improvement over the simple (b + 2)-approximation based

on the hitting set formulation was attained in [17] by using the local ratio
method and b-BDD was shown approximable within max{2, b + 1}. Okun
and Barak considered more general b-BDD where b : V → Z+ is an arbitrary
function, and obtained an approximation bound of 2+ln bmax by combination
of the local ratio method and the greedy multicovering [30], where bmax =
maxv∈V b(v). Recently, a new approximation bound of max{2, bmax/2 + 1}
was obtained [19].
b-BDD has been extensively studied in parameterized complexity. It has been
shown that, when parameterized by the size k of the deletion set, the problem
is W [2]-hard for unbounded b and FPT for each fixed b ≥ 0 [15], whereas,
when parameterized by treewidth tw, it is FPT with parameters k and tw,
and W [2]-hard with only parameter tw [3]. A linear vertex kernel of b-BDD
has been developed by generalizing the Nemhauser-Trotter theorem for VC
to b-BDD [10,15,39].
Besides, 2-BDD has been recently highlighted under the name of Co-

Path/Cycle Packing [9,10,16], mostly from the viewpoint of parameter-
ized complexity, due to its important applications in bioinformatics.

3-PVC. It was shown approximable within 2 [36,37] (or within an expected
approximation ratio of 23/11 by a randomized algorithm [24]) in general, and
within 1.57 on cubic graphs [35].

1.1 Our Work and Contributions

We generalize BDD in two directions; in one to the problem of directed degree
bounds, and in the other to the problem where some vertices are allowed to be
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of unbounded degree. Partially b-Bounded Degree Deletion (b-PBDD)

is, given a directed graph G = (V ∪ V0, E) and a degree bound b : V → Z+, to
compute a minimum cost vertex subset X ⊆ V ∪ V0 such that the in-degree of
any vertex v ∈ V remaining after all the vertices in X are deleted from G is at
most b(v). Notice that the degree bound b is defined only on V and no bound is
imposed on V0. To the best of our knowledge, neither version, directed BDD nor
partial BDD, has been previously studied, in either aspect of approximation com-
plexity or parameterized one, except for the case of 1-BDD on directed graphs,
which was shown approximated within 2 [17]. Certainly, 0-PBDD ≡ 0-BDD ≡
VC when V0 = ∅, but b-PBDD �≡ b-BDD even for b = 1.

Directed graphs provide more general computational models than undirected
graphs, but problems tend to be harder to deal with on the former than the lat-
ter. Another type of generalization, in the setting of BDD, is to allow for “don’t
care” nodes. In fact the notion of “covering” or “domination” has been general-
ized to partial “covering/domination” and a significant amount of research work
has been devoted to such extensions [2,8,11,14,20,21,26,33], where, instead of
complete coverage or domination, only a prescribed fraction of covering or domi-
nation is required. Here we consider PBDD having unbounded vertices as defined
above to be a natural extension of BDD to the partial version. The current work
is partially motivated by the fact that the (logarithmically) bounded performance
of the best algorithm for the standard BDD, however, becomes unbounded when
applied to the partial version as will be explained in Sect. 4.1.

This paper presents that (1) in case all the possible degrees are bounded, in-
degrees by b− and out-degrees by b+ (and V0 = ∅), BDD on directed graphs can
be approximated within 2 + maxv∈V ln(b−(v) + b+(v)) by generalizing the algo-
rithm of Okun and Barak [30], and (2) although it becomes NP-hard to approx-
imate b-PBDD better than bmax (even on undirected graphs) once unbounded
degrees are allowed, it can be within max{2, bmax+1} when only in-degrees (and
none of out-degrees) are partially bounded by b.

1.2 Notations and Definitions

For a vertex set X in a digraph G = (V,E), let E(X) = {(u, v) ∈ E | {u, v} ⊆
X}. Let δ−(X) denote the set of arcs entering from outside of X to a vertex
in X, i.e., δ−(X) = {(u, v) ∈ E | u �∈ X, v ∈ X} and δ(X) be the set of arcs
incident to a vertex in X, i.e., δ(X) = {(u, v) ∈ E | {u, v} ∩ X �= ∅}. Let δ−(v)
(δ(v), resp.) denote δ−({v}) (δ({v}), resp.). The in-degree and out-degree of v
is denoted by d−(v) (= |δ−(v)|) and d+(v), respectively. To restrict arcs under
consideration within a certain arc set F , we use δ−

F (X) and d−
F (v) to denote

δ−(X) ∩ F and |δ−(v) ∩ F |, respectively, and d−
E(X)(v) abbreviated to d−

X(v) for
X ⊆ V . For the set of neighboring vertices of u ∈ V , let N+(u) and N−(u)
denote {v ∈ V | (u, v) ∈ E} and {v ∈ V | (v, u) ∈ E}, respectively.

We also use shorthand notations for functions b, d−, and w̄ (to be defined
in Sect. 3) defined on V and Z ⊆ V such as b(Z) =

∑
v∈Z b(v), d−(Z) =∑

v∈Z d−(v), and w̄(Z) =
∑

v∈Z w̄(v).
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2 Approximating PBDD via Submodular Optimization

Assume that b(v) ≤ d−(v),∀v ∈ V , for the rest of paper as one can always reset
b(v) to d−(v), without loss of generality, if b(v) > d−(v). A vertex v ∈ V is called
a tight node in what follows if d−(v) = b(v) (and it is untight if d−(v) > b(v)).

For a directed graph G = (V ∪ V0, E) and b : V → Z+, define the rank
r : 2E → Z+ of F ⊆ E such that

r(F ) =
∑

v∈V

min{d−
F (v), b(v)} +

∑

v∈V0

d−
F (v).

Then (E, r) is a matroid, a direct sum of partition matroids and free matroids,
and an arc set F ⊆ E is independent iff d−

F (v) ≤ b(v), ∀v ∈ V . Thus, PBDD is
the problem of computing X ⊆ V of minimum cost such that the arc set induced
by V − X is independent in (E, r).

Definition 1. For a matroid (E, r) let rd : 2E → Z+ be such that

rd(S) = |S| − (r(E) − r(E \ S)).

Then, rd is a matroid rank function and (E, rd) is called the dual of (E, r).

Proposition 1. Let (E, r) be the matroid defined by (G, b) as above.

– r(E) = b(V ) + d−(V0) (assuming that b(v) ≤ d−(v), ∀v ∈ V ).
– In the dual matroid (E, rd),

• rd(F ) = |F | − (r(E) − r(E \ F ))

=
∑

v∈V

(
d−
F (v) − min{b(v), d−(v)} + min{b(v), d−

E\F (v)}
)

+
∑

v∈V0

(
d−
F (v) − d−(v) + d−

E\F (v)
)

=
∑

v∈V

(
min{b(v) + d−

F (v), d−(v)} − min{b(v), d−(v)})

=
∑

v∈V

min{d−
F (v), d−(v) − b(v)}.

• rd(E) = |E| − r(E) = |E| − b(V ) − d−(V0) = d−(V ) − b(V ).
• rd(δ(v)) =

∑

u∈V

min{d−
δ(v)(u), d

−(u) − b(u)}

=

{
d−(v) − b(v) + (# of untight nodes in N+(v) ∩ V ) if v ∈ V

(# of untight nodes in N+(v) ∩ V ) if v ∈ V0

Let X ⊆ V ∪ V0 be partitioned to X̃,Xt, and X0 s.t. X0 = X ∩ V0, Xt = {v ∈
X \ X0 | v is tight}, and X̃ = X \ (Xt ∪ X0). Likewise, for Y = (V ∪ V0) \ X
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let Y = Ỹ ∪ Yt ∪ Y0 s.t. Y0 = Y ∩ V0, Yt = {v ∈ Y \ Y0 | v is tight}, and
Ỹ = Y \ (Yt ∪ Y0). Then, since

∑

v∈X

rd(δ(v)) =
∑

v∈X̃

rd(δ(v)) +
∑

v∈Xt

rd(δ(v)) +
∑

v∈X0

rd(δ(v))

=
∑

v∈X̃

(d−(v) − b(v)) +
∑

v∈X

(# of untight nodes in N+(v) ∩ V ),

we have

Proposition 2.
∑

v∈X

rd(δ(v)) = d−(X̃) − b(X̃) +
∑

v∈X

∣
∣
∣N+(v) ∩ (X̃ ∪ Ỹ )

∣
∣
∣ .

Note: Propositions 1 and 2 will be useful in proof of Lemma 1.
In general a subset F ⊆ E is independent in a matroid iff F is spanning in

its dual matroid. Thus, X ⊆ V is a b-PBDD solution in G = (V ∪V0, E) iff δ(X)
is spanning in (E, rd). Therefore, b-PBDD on G = (V,E) can be reduced to the
problem of computing X ⊆ V of minimum cost such that δ(X) is spanning in
(E, rd). More formally,

Proposition 3. Define f : 2V → Z+ such that f(W ) = rd(δ(W )). b-PBDD on
G = (V,E) can be formulated as the problem of computing X ⊆ V of minimum
cost such that f(X) = f(V ).

It is known that f as defined above is nondecreasing and submodular, and the
problem of computing minimum X ⊆ V satisfying f(X) = f(V ) for such a
function f is known as the submodular set cover problem.

Definition 2. Let f be a nondecreasing submodular set function defined on the
subsets of a finite ground set N , and wj be a nonnegative cost associated with each
element j ∈ N . The Submodular Set Cover problem (SSC) is to compute:

min
S⊆N

⎧
⎨

⎩

∑

j∈S

wj | f(S) = f(N)

⎫
⎬

⎭
.

The greedy algorithm, together with its performance analysis, is perhaps the
most well-known heuristic for general SSC [38], but the primal-dual algorithm
based on the following LP relaxation of SSC and its dual LP is also known to
deliver better solutions for some of more specific SSC problems (See [18] for more
details).

(P) min
∑

j∈N

wjxj (D) max
∑

S⊆N

fS(N − S)yS

subject to: subject to:
∑

j∈N−S

fS(j)xj ≥ fS(N − S),∀S ⊆ N
∑

S:j �∈S

fS(j)yS ≤ wj ,∀j ∈ N

xj ≥ 0, ∀j ∈ N yS ≥ 0, ∀S ⊆ N
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Here and in the algorithm called PD, the contraction of f onto N − S is the
function fS defined on 2N−S such that fS(X) = f(X ∪S)−f(S) for any S ⊆ N .
If f is nondecreasing and submodular on N , so is fS on N −S, and thus, another
submodular set cover instance (N − S, fS) can be derived for any S ⊆ N . The
performance of PD for general SSC can be estimated by the following theorem.

Theorem 1 ([18]). The performance ratio of the primal-dual algorithm PD for
an SSC instance (N, f) is bounded by

max
{∑

j∈X fS(j)
fS(N − S)

}

where max is taken over any S ⊆ N and any minimal solution X in (N −S, fS).

It is more convenient, when applying Theorem 1 to an instance (G, b) of
b-PBDD, to use it in the following form.

Corollary 1. The performance ratio of PD, when applied to an instance (G =
(V,E), b) of b-PBDD, is bounded by

max

{∑
v∈X rd(δ(v))

rd(E)

}

where (E, r) is the matroid defined by an instance (G, b) and max is taken over
any graph G and any minimal solution X in G.

Proof. Consider the graph Ḡ = G − S obtained from G by removing all the ver-
tices in S, and reformulate b-PBDD on Ḡ = (V̄ , Ē), where V̄ = (V ∪V0)−S, Ē =
E −δ(S), as an SSC instance (Ē, f̄). To do so, let r̄ : 2Ē → Z+ be the rank func-
tion of the matroid defined by (Ē, b̄), such that r̄(F ) =

∑
v∈V̄ min{d̄−

F (v), b̄(v)}
for F ⊆ Ē, r̄d be the dual of r̄, and f̄(T ) = r̄d(δ̄(T )) for T ⊆ V̄ (Note: Here,
δ̄(T ) = δĒ(T ), d̄(v) = dĒ(v), b̄(v) = min{b(v), d̄−(v)} for all T ⊆ V̄ and v ∈ V̄ ).
It can be shown then that fS(T ) = f̄(T ) for any S ⊆ V ∪V0 and T ⊆ (V ∪V0)−S,
and in particular, f̄(v) = fS(v),∀v ∈ V̄ , and f̄(V̄ ) = fS((V ∪ V0) − S). Hence,
we have

max
S⊆V ∪V0

{ ∑
v∈X fS(v)

fS((V ∪ V0) − S)

}

= max

{∑
v∈X f̃(v)

f̃(Ṽ )

}

(1)

where max in RHS is taken over any subgraph Ḡ of G induced by V̄ ⊆ V ∪ V0

and any minimal b-PBDD solution X in Ḡ. It thus follows from Theorem 1 and
Eq. (1) that the performance ratio of PD, when applied to b-PBDD, can be
estimated by bounding

∑
v∈X f(v)

f(V ∪ V0)
=

∑
v∈X rd(δ(v))

rd(E)

for any graph G = (V ∪ V0, E) and any minimal solution X in G. ��
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3 Fully Bounded Degree Deletion

It can be observed, modifying the undirected instance to be used in Sect. 4.1 to
a directed one, that the greedy set cover approximation is embeddable even if
all the in-degrees are bounded in directed graphs. On the other hand, BDD on
directed graphs where both in-degree and out-degree are bounded at every vertex
can be approximated in much the same way as in the case of undirected graphs.
To explain this, suppose all the possible degree bounds are imposed on directed
graph G = (V,E), that is, the in-degree of v by b− : V → Z+ and the out-degree
of v by b+ : V → Z+ for all the vertices v ∈ V (and V0 = ∅ here). Construct
GD from G by replacing each vertex v by two, v1 and v2, connecting all the
incoming arcs of v to v1 while outgoing arcs to v2. When arc orientations are
ignored, GD becomes an undirected bipartite graph. An approximate solution
for G can be computed by applying an existing algorithm A to GD, and taking
v into a solution iff either v1 or v2 (or both) in GD is chosen by A. This way
of reducing directed BDD to undirected one yields a 2ρ-approximation when A
is a ρ-approximation because the optimum with respect to GD is bounded by
twice the optimum with respect to G. So, the fully bounded version of BDD is
approximable within 4+2 ln maxv∈V {b−(v), b+(v)} by running the Okun-Barak
algorithm as A.

The reduction based approach above can be further refined by rebuilding
the Okun-Barak approach within the current framework of submodular opti-
mization. Consider the partition matroids (E, r−) and (E, r+), defined both
on E, based on b− and b+, respectively. Here, X ⊆ V is a solution iff δ(X)
is spanning in both (E, rd−) and (E, rd+), where rd− and rd+ are the dual rank
functions of r− and r+, respectively. Define f : 2V → Z+ such that f(X) =
rd−(δ(X)) + rd+(δ(X)). Then, f is nondecreasing and submodular, and X ⊆ V is
a solution iff f(X) = rd−(δ(X))+rd+(δ(X)) = rd−(E)+rd+(E) = f(V ). Therefore,
the problem can be reduced to SSC (V, f, w).

Let us adopt the following strategy of two stage approximation from [30];
first apply the local ratio method and then the greedy method for SSC.

1st stage. Suppose d−(v) > b−(v) for some v ∈ V . Let S− = {v} ∪ N−(v) and
consider the subgraph G[S−] of G induced by S−. Since any solution for G
including an optimal one must contain v or otherwise, at least (d−(v)−b−(v))
from N−(v), we have a valid inequality

(d−(v) − b−(v))xv +
∑

u∈N−(v)

xu ≥ (d−(v) − b−(v))

for any v with d−(v) > b−(v), where x ∈ {0, 1}V denotes an incidence vector
of a vertex subset. We may thus apply the local ratio reduction to the weighted
graph (G,w) as follows. Define the vertex weight w̄ within G[S−] such that
w̄(v) = d−(v) − b−(v) and w̄(u) = 1, ∀u ∈ N−(v). Let ρ = min{w(u)/w̄(u) |
u ∈ S−} and S−

0 = {u ∈ S− | w(u) = ρw̄(u)} so that S−
0 �= ∅ and w(u) −

ρw̄(u) > 0, ∀u ∈ S− − S−
0 .

Suppose a solution C is computed for G−S−
0 = G[V −S−

0 ] under the weight
w−ρw̄ defined on V −S−

0 . Then, C∪S−
0 is a solution for G and our algorithm
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returns it. The ratio of this solution to the optimum, local to (G[S−], ρw̄), is
bounded by

w̄(S− ∩ (C ∪ S−
0 ))

d−(v) − b−(v)
≤ w̄(S−)

d−(v) − b−(v)

=
2d−(v) − b−(v)
d−(v) − b−(v)

= 2 +
1

d−(v)/b−(v) − 1
.

So, if C is a p-approximation for (G − S−
0 , w − ρw̄), the approximation ratio

of C ∪ S−
0 for (G,w) can be estimated by the following bound

max
{

p, 2 +
1

d−(v)/b−(v) − 1

}

. (2)

Thus, we apply the local ratio approximation to G[S−] and reduce to the
problem on G − S−

0 when such a vertex is found whose in-degree is large
enough relative to its degree bound. Likewise, we may apply the local ratio
reduction to out-degrees, and for v ∈ V with d+(v) > b+(v) we have the
approximation ratio of C ∪ S+

0 for (G,w) bounded by

max
{

p, 2 +
1

d+(v)/b+(v) − 1

}

(3)

when C ⊆ V − S+
0 is a p-approximation for the reduced problem on G − S+

0 .
We apply these local ratio reductions as long as there remains a vertex v with
high degree/degree-bound ratio; i.e., any v with d−(v)/b−(v) or d+(v)/b+(v)
exceeding the threshold β.

2nd stage. We switch to the greedy algorithm for SSC (V, f, w) when vertices
with high degree/degree-bound ratio are exhausted in the 1st stage. Here in
the greedy mode, a vertex v with minimum w(v)/fC({v}) among the remain-
ing vertices is repeatedly added to a solution set C as long as f(C) < f(V ).

We can show the following performance of this algorithm (details are omitted
due to space limitations).

Theorem 2. The (b−, b+)-BDD problem can be approximated within a factor
of 2 + maxv∈V ln(b−(v) + b+(v)) if V0 = ∅.

4 Partially Bounded Degree Deletion

4.1 Approximation Hardness

As was seen in the previous section, the Okun-Barak algorithm or its extension
to directed graphs yields an O(log bmax)-approximation. We observe here that
such performance is possible only when all the degrees, both in-degrees and
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out-degrees, are bounded, and if not, even at a single vertex, the performance
becomes unbounded even if bmax is a fixed constant.

As already seen, the algorithm of Okun and Barak attains the best approx-
imation bound of 2 + ln bmax for general b, by first applying the local ratio
reduction to any v and its neighbors having high d(v) to b(v) ratio, and then
by running the greedy approximation after d(v)/b(v) becomes small enough for
all the remaining vertices v. This approach is possible only when all the degrees
are bounded since, if d(v) is not bounded for some v ∈ V , there is now way of
doing the local reduction at or around v with a reasonable ratio. Consider the
following instance, for example: Let Gb = (Vb, Eb) be a (b − 1)-regular graph on
n vertices, and V c

b be a copy of Vb. Construct a graph G = {Vb ∪ V c
b ∪ {s}, E}

from Gb by, besides having Eb entirely, connecting each vertex of Vb and its copy
in V c

b by an edge, and by having one more vertex s connected with every vertex
in Vb by an edge. Since d(v) = b + 1 if v ∈ Vb, = 1 if v ∈ V c

b , and = n if v = s,
when the degree bound is set s.t. b(v) = b, ∀v ∈ Vb and b(v) = 1, ∀v ∈ V c

b

(and the degree of s is unbounded), the d(v)/b(v) ratio can be made arbitrarily
close to 1 at every v ∈ Vb ∪ V c

b , that there is nowhere to apply the local ratio
reduction. So the algorithm simply runs the standard greedy approximation to
G. Suppose that all the vertices in Vb are of heavy weight while the vertices in V c

b

are respectively assigned with weights of 1, 1/2, 1/3, · · · , 1/n and s is assigned
with 1+ ε. Then, the greedy algorithm outputs V c

b as a solution of which weight
is Θ(log n) times that of the optimal solution {s}.

A more general approximation hardness of PBDD can be derived from that
of Ek-Vertex Cover (EkVC). This is the Vertex Cover problem on k-
uniform hypergraphs, and it is known to be NP-hard to approximate EkVC
within a factor of k − 1 − ε for any ε > 0 and k ≥ 3 [12]. Let H = (V,EH)
denote an instance of EkVC, i.e., a k-uniform hypergraph. Construct a bipartite
instance G = (V ∪ EH , E) of undirected PBDD from H s.t. {v, eH} ∈ E, where
v ∈ V and eH ∈ EH , iff v ∈ eH in H. Set the weight of each vertex in EH heavy
enough that forces choice of vertices only from V and not from EH . Notice that
d(eH) = k, ∀eH ∈ EH , and EkVC is reduced to undirected PBDD by setting
the degree bound of k − 1 on each of them while leaving all the others (in V )
unbounded. It follows from the approximation hardness of EkVC that

Theorem 3. It is NP-hard to approximate PBDD, directed or undirected, within
a factor of bmax − ε for any ε > 0 and bmax ≥ 2.

4.2 Approximation Algorithm

Let us turn to an upper bound in approximation of b-PBDD, and next is a key
lemma here:

Lemma 1. For any minimal b-PBDD solution X ⊆ V ∪ V0 in G = (V ∪ V0, E)
∑

v∈X

rd(δ(v)) ≤ max{2, bmax + 1}rd(E).
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Proof. Omitted due to space limitations. ��
It is immediate from Corollary 1 and Lemma 1 that

Theorem 4. The b-PBDD problem can be approximated withinmax{2, bmax+1}.
The bound of max{2, bmax +1} given in Lemma 1 or Theorem 4 is tight even

if V0 = ∅. Suppose a graph G consists of the vertex set X ∪Y ∪{z} and the edge
set E = X × (Y ∪ {z}) s.t. b(v) = 0, ∀v ∈ X ∪ {z} and b(v) = bmax, ∀v ∈ Y for
some integer bmax. Clearly, X here is a minimal solution for b-PBDD.

Let x and y denote |X| and |Y |, respectively. We have

rd(E) = |E| − b(V ) = x(y + 1) − bmaxy = (x − bmax)y + x

and
∑

v∈X

rd(δ(v)) = x(y + 1) = (x − bmax)y + x + bmaxy

since rd(δ(v)) = y + 1, ∀v ∈ X. Set x = bmax + 1. Then,
∑

v∈X rd(δ(v))
rd(E)

=
x + y + bmaxy

x + y
= 1 +

bmaxy

y + bmax + 1

and
∑

v∈X rd(δ(v))/rd(E) becomes arbitrarily close to 1 + bmax as y → ∞.
Suppose now that each vertex of G is weighted s.t. w(v) = rd(δ(v)). The

algorithm PD may return X as an approximate solution, whose weight is (bmax+
1)(y + 1), whereas {v, z} is an optimal solution for any v ∈ X when y is large
enough, whose weight is d(v)+d(z) = y+bmax+2. Therefore, the ratio of weight
of X to the optimal weight is

(bmax + 1)(y + 1)
y + bmax + 2

= 1 + bmax − b2max + 2bmax + 1
y + bmax + 2

and it approaches arbitrarily close to 1 + bmax as y becomes larger.
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Discret. Appl. Math. 159(12), 1189–1195 (2011)

7. Camby, E., Cardinal, J., Chapelle, M., Fiorini, S., Joret, G.: A primal-dual 3-
approximation algorithm for hitting 4-vertex paths. In: 9th International Collo-
quium on Graph Theory and Combinatorics, ICGT 2014, p. 61 (2014)

8. Case, B.M., Hedetniemi, S.T., Laskar, R.C., Lipman, D.J.: Partial domination in
graphs. arXiv e-prints (2017)

9. Chauve, C., Tannier, E.: A methodological framework for the reconstruction of con-
tiguous regions of ancestral genomes and its application to mammalian genomes.
PLoS Comput. Biol. 4(11), e1000234 (2008)

10. Chen, Z.-Z., Fellows, M., Fu, B., Jiang, H., Liu, Y., Wang, L., Zhu, B.: A lin-
ear kernel for co-path/cycle packing. In: Chen, B. (ed.) AAIM 2010. LNCS, vol.
6124, pp. 90–102. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-
14355-7 10

11. Das, A.: Partial domination in graphs. arXiv e-prints (2017)
12. Dinur, I., Guruswami, V., Khot, S., Regev, O.: A new multilayered PCP and the

hardness of hypergraph vertex cover. SIAM J. Comput. 34(5), 1129–1146 (2005)
13. Dinur, I., Safra, S.: On the hardness of approximating minimum vertex cover. Ann.

Math. (2) 162(1), 439–485 (2005)
14. Elomaa, T., Kujala, J.: Covering analysis of the greedy algorithm for partial cover.

In: Elomaa, T., Mannila, H., Orponen, P. (eds.) Algorithms and Applications.
LNCS, vol. 6060, pp. 102–113. Springer, Heidelberg (2010). https://doi.org/10.
1007/978-3-642-12476-1 7

15. Fellows, M.R., Guo, J., Moser, H., Niedermeier, R.: A generalization of Nemhauser
and Trotter’s local optimization theorem. J. Comput. Syst. Sci. 77(6), 1141–1158
(2011)

16. Feng, Q., Wang, J., Li, S., Chen, J.: Randomized parameterized algorithms for P2-
packing and co-path packing problems. J. Comb. Optim. 29(1), 125–140 (2015)

17. Fujito, T.: A unified approximation algorithm for node-deletion problems. Discret.
Appl. Math. 86(2–3), 213–231 (1998)

18. Fujito, T.: On approximation of the submodular set cover problem. Oper. Res.
Lett. 25(4), 169–174 (1999)

19. Fujito, T.: Approximating bounded degree deletion via matroid matching. In:
Fotakis, D., Pagourtzis, A., Paschos, V.T. (eds.) CIAC 2017. LNCS, vol. 10236, pp.
234–246. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-57586-5 20

20. Gandhi, R., Khuller, S., Srinivasan, A.: Approximation algorithms for partial cov-
ering problems. J. Algorithms 53(1), 55–84 (2004)

21. Halperin, E., Srinivasan, A.: Improved approximation algorithms for the partial
vertex cover problem. In: Jansen, K., Leonardi, S., Vazirani, V. (eds.) APPROX
2002. LNCS, vol. 2462, pp. 161–174. Springer, Heidelberg (2002). https://doi.org/
10.1007/3-540-45753-4 15

22. Jakovac, M., Taranenko, A.: On the k-path vertex cover of some graph products.
Discret. Math. 313(1), 94–100 (2013)

23. Karakostas, G.: A better approximation ratio for the vertex cover problem. ACM
Trans. Algorithms 5(4), art. no. 41 (2009)
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