
Fault-Tolerant Complete Visibility
for Asynchronous Robots with Lights

Under One-Axis Agreement

Aisha Aljohani, Pavan Poudel, and Gokarna Sharma(B)

Department of Computer Science, Kent State University, Kent, OH 44242, USA
aaljoha6@kent.edu, {ppoudel,sharma}@cs.kent.edu

Abstract. We consider the distributed setting of N autonomous mobile
robots that operate in Look-Compute-Move (LCM) cycles and commu-
nicate with other robots using colored lights under the robots with lights
model. We study the fundamental Complete Visibility problem of
repositioning N robots on a plane so that each robot is visible to all
others. We assume obstructed visibility under which a robot cannot see
another robot if a third robot is positioned between them on the straight
line connecting them. We are interested in fault-tolerant algorithms. We
study fault-tolerance with respect to failures on the mobility of robots.
Therefore, any algorithm for Complete Visibility is required to provide
visibility between all non-faulty robots, independently of the behavior of
the faulty ones. We model mobility failures as crash faults in which each
faulty robot is allowed to stop its movement at any time and, once the
faulty robot stopped moving, that robot will remain stationary indefi-
nitely thereafter. There exists an algorithm for this problem that toler-
ates a single faulty robot in the semi-synchronous setting under both-axis
agreement. In this paper, we provide the first algorithm for this problem
that tolerates f ≤ N faulty robots in the asynchronous setting under
one-axis agreement. The proposed algorithm is collision-free – robots do
not share positions and their paths do not cross, energy efficient – each
robot performs at most one move, and handles non-rigidity of the robot
movements.

1 Introduction

In the well-celebrated classical model of distributed computing by mobile robots,
each robot is modeled as a point in the plane [11]. The robots are assumed to
be autonomous (no external control), anonymous (no unique identifiers), indis-
tinguishable (no external identifiers), and disoriented (no agreement on local
coordinate systems and units of distance measures). They execute the same algo-
rithm. Each robot proceeds in Look-Compute-Move (LCM) cycles: When a robot
becomes active, it first gets a snapshot of its surroundings (Look), then computes
a destination point based on the snapshot (Compute), and finally moves towards
the destination point (Move). Moreover, the robots are oblivious, i.e., in each
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LCM cycle, each robot has no memory of its past LCM cycles [11]. Furthermore,
the robots are silent because they do not communicate directly, and only vision
and mobility enable them to coordinate their actions.

While silence has advantages, direct communication is preferred in many
other situations, for example, hostile environments, which makes coordination
efficient and relatively viable. One model that incorporates direct communication
is the robots with lights model [9,11,15], where each robot has an externally
visible light that can assume colors from a constant sized set, and hence robots
can explicitly communicate with each other using these colors. The colors are
persistent; i.e., the color is not erased at the end of a cycle. Except for lights,
the robots are oblivious as in the classical model.

Di Luna et al. [13] gave the first algorithm for robots with lights to solve
the fundamental Complete Visibility problem defined as follows: Given an
arbitrary initial configuration of N autonomous mobile robots located in distinct
points on a plane, they reach a configuration in which each robot is in a distinct
position from which it can see all other robots. Initially, some robots may be
obstructed from the view of other robots and the total number of robots, N , is
not known to robots. The importance of this problem is that it makes it possible
to solve many other robotic problems, including gathering, shape formation, and
leader election, under obstructed visibility [12,16]. Most importantly, it recovers
unobstructed visibility configuration starting from an obstructed visibility con-
figuration. Subsequently, several papers [12,16] solved this problem minimizing
number of colors. Recently, faster runtime algorithms [18–20] were studied for
this problem in the lights model (details in Related Work). This problem is
also called Mutual Visibility in some papers [12,16].

In this paper, we are interested in the fault-tolerant algorithms for Com-
plete Visibility in the robots with lights model. We study fault-tolerance
with respect to failures on the mobility of robots. Therefore, any algorithm for
Complete Visibility is required to provide visibility between all non-faulty
robots, independently of the behavior of the faulty ones and the locations of the
faulty robots. We model mobility failures as crash faults where each faulty robot
is allowed to stop its movement at any moment of time and remains stationary
indefinitely thereafter [2]. The only previous work that studied faults for this
problem is [3] in which the authors solved the problem for a single faulty robot
in the semi-synchronous setting under both-axis agreement. In this paper, we
focus on solving this problem tolerating f > 1 faulty robots in the weakest fully
asynchronous setting and under weaker one-axis agreement.

Contributions. We consider the same robot model as in [12,13], namely, robots
are oblivious except for a persistent light that can assume a constant number
of colors. Visibility could be obstructed by other robots in the line of sight and
N is not known. We assume that the setting is asynchronous where there is
no notion of common time and robots perform their LCM cycles at arbitrary
time. We also assume non-rigid moves – a robot in motion can be stopped (by
an adversary) before it reaches its destination point with the only constraint
that the robot moves at least distance Δ > 0, otherwise Complete Visibility
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cannot be solved [12]. As in [13], we assume that two robots cannot head to
the same destination and their paths when they move cannot cross. This would
constitute a collision. Furthermore, we assume one-axis agreement – all robots
agree on either x-axis or y-axis [11]. In this paper, we prove the following result.

Theorem 1. For any input configuration of N ≥ 3 robots (with lights) in dis-
tinct positions in a plane, Complete Visibility can be solved tolerating (up to)
N crash-faulty robots using 4 colors in O(N) time without collisions in the asyn-
chronous setting.

To the best of our knowledge, Theorem 1 is the first result for Complete
Visibility that tolerates (up to) N faulty robots in the asynchronous setting.
In the semi-synchronous (and also fully synchronous) setting, Theorem 1 only
needs 2 colors, which is optimal with respect to the number of colors used [12].
One prominent feature of our algorithm is that each robot moves at most once
during the execution and it has implications on energy efficiency of robots on
solving Complete Visibility.

When the robots are fault-free, the idea used in the existing algorithms
[12,13,16,18–20] is to reposition the robots so that they all become corners
of a N -corner convex hull. After that, a property of the convex hull guarantees
that there is a line connecting each corner with all others of the hull without
any third robot being collinear on those lines, i.e., a convex hull naturally solves
Complete Visibility. However, when robots are faulty, the faulty robots may
be in the interior of the convex hull and it is challenging to guarantee that all
non-faulty robots see each other (that is, faulty robots do not block the view for
the non-faulty robots to see each other). Since robots are oblivious and non-faulty
robots do not know which robots are faulty, this task becomes quite challeng-
ing. Aljohani and Sharma [3] managed to address this challenge only when at
most one robot in the interior of the hull experiences fault. In this paper, we
develop a technique in which non-faulty robots do not need to be positioned on
the corners of a hull to see other non-faulty robots and this gives the scalability
on number of faults that can be tolerated. Our idea is to move the robots in a
sequence starting from the Southmost robot and ending at the Northmost robot,
and guarantee that, when a robot makes a move, it moves to a position in such
a way that it sees from that position all robots that are positioned South of it
(both faulty and non-faulty).

Related Work. Di Luna et al. [13] gave the first algorithm for Complete
Visibility in the robots with lights model. They solved the problem using 6
colors in the semi-synchronous setting and 10 colors in the asynchronous setting
under both rigid and non-rigid movements. Di Luna et al. [12] solved the problem
using 2 colors in the semi-synchronous setting under rigid movements. They
solved the problem using 3 colors in the semi-synchronous setting under non-rigid
movements and in the asynchronous setting under rigid movements. They also
provided a solution using 3 colors in the asynchronous setting under non-rigid
movements under one-axis agreement. Sharma et al. [16] improved the number
of colors in the solution of Di Luna et al. [12] from 3 to 2. In the classical
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oblivious model (with no lights), Bhagat et al. [5] solved Complete Visibility
under one-axis agreement without the need of robots to be positioned on the
corners of a convex hull. However, all these results provided no runtime analysis.
Moreover, none of these results tolerate faults.

Vaidyanathan et al. [20] considered runtime for the very first time for Com-
plete Visibility giving an algorithm that runs in O(log N) time using O(1) col-
ors in the fully synchronous setting under rigid movements. Later, Sharma et al.
[18] provided an O(1) time algorithm using O(1) colors in the semi-synchronous
setting under rigid movements. Recently, Sharma et al. [17,19] provided an O(1)
time algorithm using O(1) colors in the asynchronous setting under rigid move-
ments. However, all these algorithms are not fault-tolerant. Aljohani and Sharma
[3] provided an algorithm that tolerates one faulty robot when robots have both
axis agreement in the semi-synchronous setting under rigid movements. The algo-
rithm we present in this paper assumes one-axis agreement, handles non-rigid
movements, and works in the fully asynchronous setting.

The computational power of the robots with lights model is studied in [9]
while the robots are working on the Euclidean plane and in [10] while the robots
are working on graphs.

The obstructed visibility, in general, is considered in the problem of uniformly
spreading robots operating on a line [6] and also in the near-gathering problem
[14] where collisions must be avoided among robots. It is also considered in
the so-called fat robots model [1,8] in which robots are not points, but non-
transparent unit discs. However, these works do not consider faulty robots. The
faults are considered for the gathering problem in the classical oblivious robots
model [2,4]. Our definition of crash faults is borrowed from [2].

Paper Organization. The rest of the paper is organized as follows. We present
the robot model and preliminaries in Sect. 2. We then present and analyze our
fault-tolerant Complete Visibility algorithm in Sect. 3 and conclude in Sect. 4.
Some proofs and pseudocodes are omitted due to space constraints.

2 Model and Preliminaries

Robots. We consider a distributed system of N autonomous robots from a set
Q = {r1, . . . , rN}. Each robot ri ∈ Q is a (dimensionless) point that can move
in the two-dimensional Euclidean plane R

2. Throughout the paper, we denote
by ri the robot ri as well as its position pi in R

2. We assume that each robot
ri ∈ Q shares one coordinate axis with other robots in Q, i.e., they agree on
either x-axis or y-axis (we use y-axis).

A robot ri can see, and be visible to, another robot rj if and only if there
is no third robot rk in the line segment rirj connecting ri and rj . Each robot
ri ∈ Q has a light that can assume a color at a time from a set of constant
number of different colors. We denote the color of a robot ri ∈ Q at any time by
variable ri.light. If ri.light = Red, then it means that ri has color Red. Moreover,
the color Red of ri is seen by all robots that can see ri at that time (ri also can
see its current color). The execution starts at time t = 0 and at time t = 0 all
robots in Q are stationary with each of them colored Off.



Fault-Tolerant Complete Visibility for Asynchronous Robots 173

Look-Compute-Move. Each robot ri is either active or inactive. When a robot
ri becomes active, it performs the “Look-Compute-Move” cycle as described
below.

– Look: For each robot rj that is visible to it, ri can observe the position of
rj on the plane and the color of the light of rj . Robot ri can also observe
its own color and position; that is, ri is visible to itself. Each robot observes
positions on its own frame of reference. That is, two different robots observing
the position of the same point may produce different coordinates. However,
a robot observes the positions of points accurately within its own reference
frame.

– Compute: In any LCM cycle, ri may perform an arbitrary computation using
only the colors and positions observed during the “look” portion of that LCM
cycle. This includes determination of a (possibly) new position and color for
ri for the start of next LCM cycle. Robot ri maintains this new color from
that cycle to the next.

– Move: At the end of the LCM cycle, ri changes its light to the new color and
moves to its new position.

Robot Activation. In the fully synchronous setting (FSYNC), every robot
is active in every LCM cycle. In the semi-synchronous setting (SSYNC), at
least one robot is active, and over an infinite number of LCM cycles, every
robot is active infinitely often. In the asynchronous setting (ASYNC), there
is no common notion of time and no assumption is made on the number and
frequency of LCM cycles in which a robot can be active. The only guarantee is
that every robot is active infinitely often. The moves of the robots may be non-
rigid – during the Move phase the robots move in a straight line but they may
stop their movement before they reach to the destination point computed in the
Compute phase, with the only exception that they move at least some distance
Δ > 0. We assume that the faulty robot can crash at any moment of time. After
the robot crashes, it does not move again (i.e., stays stationary indefinitely).
However, even after the robot crashes, we assume that it does not have impact
on the operations of its light. That is, the robot can correctly change its color
to any color in the color set according to the algorithm. We will argue in Sect. 4
that it seems necessary to guarantee termination tolerating f > 1 robot faults
even under one-axis agreement.

Runtime. For the FSYNC model, we measure time in rounds, where one round
is one LCM cycle. As a robot in the SSYNC (and ASYNC) model could stay
inactive for an indeterminate number of cycles and (time), we use the notion of
an epoch to measure runtime [7]. Let t0 denote the start time of the computation.
Epoch i is time period from ti−1 to ti where ti is the earliest time after ti−1 when
all robots have executed a complete LCM cycle at least once. In the FSYNC
model, an epoch is one round (one LCM cycle). We will use the term “time”
generically to mean rounds for the FSYNC model and epochs for the SSYNC
and ASYNC models.
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Configuration. A configuration Ct = {(rt1, col
t
1), . . . , (r

t
N , coltN )} defines the

positions of the robots in Q and their colors for any time t ≥ 0. A configuration
for a robot ri ∈ Q, Ct(ri), defines the positions of the robots in Q that are visible
to ri (including ri) and their colors, i.e., Ct(ri) ⊆ Ct, at time t. For simplicity,
we sometime write C,C(ri) to denote Ct,Ct(ri), respectively.

Fig. 1. Visible area

Visible Area. Let A be a set of points
(which are the current positions of the robots
in R

2) and P be the convex hull of the points
in A. P has the property that all the points
of A are either in the perimeter or in its
interior. The points in the perimeter of P
are either on corners of P or on the edges
of P, which we call corner and side points
of P, respectively. Let Qc,Qs,Qi be the set
of points at corners, sides, and the interior of
P. Moreover, let ci be a corner point of P and a, b be the counterclockwise and
clockwise neighbors of ci in the perimeter of P. The visible area for ci, denoted
as V isible Area(ci), is a polygonal subregion inside P within the triangle ciuw,
where u,w are the midpoints of edges cia, cib, respectively. According to this
computation, the visible areas for any two corner points of P are disjoint. Due
to obstructed visibility, V isible Area(ci) is computed based on C(ci) and the
corresponding hull P(ci). This computation is used in Sect. 3.

We now outline how V isible Area(ci) is computed for any corner ci of P.
The pseudocode is omitted due to space constraints. Initially, ci sets the triangle
ciuw as its V isible Area(ci). However, if ci sees some point of A inside ciuw,
then it sets as V isible Area(ci) the triangle ciyz such that there is no point
inside ciyz. Note that yz is parallel to ab. Let c′ be a point in C(ci). For every
other point c′′ ∈ C(ci), c′′ �= c′, c′′ �= ci, ci computes a line, L′, parallel to cic′′
passing through c′. Let HP be the half-plane divided by L′ such that ci is in
HP . Corner ci then updates its V isible Area(ci) by keeping only the portion
of V isible Area(ci) that is in the half-plane HP . This process is repeated for
all c′ ∈ C(ci)\{ci} and V isible Area(ci) is updated in every iteration. Now
from the area V isible Area(ci) that remains, ci removes the points that are
in the perimeter of V isible Area(ci) and also the points that are part of the
lines ←→cix, x ∈ C(ci)\{a, b, ci}, passing inside of V isible Area(ci). This removal of
points is crucial to guarantee that when ci moves to a point in V isible Area(ci),
it does not become collinear with any robot in Qs,Qi. Figure 1 illustrates the
computation of V isible Area(ci); the shaded area is V isible Area(ci) for corner
ci of P except the points on the lines inside it (e.g., the point of lines cic′ and
cic′′ inside V isible Area(ci). We have the following lemma from [18].

Lemma 1. V isible Area(ci) for each corner robot ci in P is non-empty. More-
over, when ci moves to a point inside V isible Area(ci) and no other robot in P
is moving simultaneously with ci, then ci remains as a corner of P and all the
other robots in P are visible to ci (and vice-versa).
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3 Algorithm

In this section, we present our Complete Visibility algorithm for N ≥ 3
robots with lights tolerating f ≤ N faulty robots, starting from any arbitrary
initial configuration with robots being in the distinct positions in a plane. The
algorithm works in the ASYNC setting handling non-rigid moves, under the
assumption that robots have one-axis agreement. We first provide a high level
overview and then give its details.

Algorithm 1. Complete Visibility for a robot ri ∈ Q in the ASYNC
model
1 // Look-Compute-Move cycle for each robot ri ∈ Q
2 Hor(ri) ← horizontal line passing through ri;
3 C(ri) ← configuration C for robot ri (including ri);
4 CHor(ri) ← configuration C(ri) of robots South of Hor(ri);
5 if |CHor(ri)| = ∅ then
6 if ri.light = Off ∧ there is no other robot on Hor(ri) then ri.light = Final;
7 if ri.light = Off ∧ there are robots on Hor(ri) ∧ ri is the endpoint robot on

Hor(ri) then ri.light = Intermediate;
8 if ri.light = Intermediate then
9 Set ri.light = Transit and move vertically South distance 1;

10 if ri.light = Transit ∧ ri sees no Intermediate colored robot then
ri.light = Final;

11 if |CHor(ri)| �= ∅ then
12 if ri.light = Off ∧ there is no other robot on Hor(ri) ∧ ri sees no robot

colored Off, Intermediate, or Transit South of Hor(ri) then
13 Vi ← V isible Area(ri,CHor(ri) ∪ {ri});
14 Hor(rj) ← horizontal line passing through robot rj South of Hor(ri)

closest to Hor(ri);
15 Vi ← Vi after removing the area South of Hor(rj);
16 Set ri.light = Transit and move to a point in Vi;
17 if ri.light = Off ∧ there are robots on Hor(ri) ∧ ri is the endpoint robot on

Hor(ri) ∧ there is no robot colored Off, Intermediate, or Transit South of
Hor(ri) then ri.light = Intermediate;

18 if ri.light = Intermediate then
19 Vi ← V isible Area(ri,CHor(ri) ∪ {ri});
20 if there is another robot rk on Hor(ri) then
21 L′ ← line connecting rk with a robot r South of Hor(ri) such that

there is no robot in the cone area formed by lines Hor(ri) and
←→rkr;

22 Hor(rj) ← horizontal line passing through robot rj South of
Hor(ri) closest to Hor(ri);

23 Vi ← Vi after removing the area beyond line L′ and South of
Hor(rj);

24 else Vi ← Vi after removing the area South of Hor(rj);
25 Set ri.light = Transit and move to a point in Vi;
26 if ri.light = Transit ∧ ri sees no Intermediate colored robot then

ri.light = Final;
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High Level Overview of the Algorithm. The goal is to make robots progress
toward a configuration where no three non-faulty robots are collinear and no
faulty robot is in a line connecting two non-faulty robots. When all (non-faulty)
robots in Q satisfy this property, this solves Complete Visibility. All previous
algorithms for Complete Visibility [12,13,16,18–20] arrange robots on the
corners of a convex hull. Although convex hull is not the required condition for
Complete Visibility (i.e., it is a sufficient condition), the correctness analysis
becomes easier. However, when faulty robots are in hull’s interior, it is difficult
to arrange robots on the corners of a hull.

Our idea is to develop a technique which does not require robots to be posi-
tioned on the corners of a convex hull, and hence scales on the number of faults it
can tolerate. Let C0 be any initial configuration of the robots in Q with robots
being in the distinct positions on the plane. Let L be a vertical line (robots
agree on y-axis). The robots in Q can be projected to L so that all the robots
are between positions bL and tL on L, where bL is bottommost position on L
that the robots in Q are projected to and tL is the topmost position on L that
the robots on L are projected to. There can be at most N different points on L
that the robots in Q can be projected to. The idea in our algorithm is to ask the
robots whose positions were projected on bL to move first. Those robots then
terminate. Until this time, the robots that are not projected to bL do nothing.
After that, the robots that are projected to a point b1L (the neighboring point of
bL on L) move and terminate; the robots that are not projected to b1L do nothing.
This process then repeats until the robots that are projected to tL move and
terminate. The algorithm then finishes. We show that this process guarantees
that Complete Visibility is achieved for the non-faulty robots in Q even when
(up to) f ≤ N robots experience faults.

At any time which robots of Q move and which robots of Q do not move is
determined through the colors displayed on the lights. We need to be careful how
the robots move when two or more robots are projected to the same position on
L. We handle this issue by asking robots that are at the two extremal points on
the horizontal line they are positioned on to move first and then their neighbors
can move subsequently.

In C0, all robots in Q have color Off and are stationary. But, in the Com-
plete Visibility configuration, all robots in Q have color Final. The algo-
rithm uses four colors Final, Transit, Intermediate, and Off. The colors
Intermediate and Transit are to synchronize the simultaneous moves of the
(at most) two robots at any moment of time in the ASYNC setting to make sure
that Complete Visibility is achieved satisfying Theorem 1. These two colors
are not required in the SSYNC (and FSYNC) setting (details in Sect. 4). More-
over, robots do not know N and their termination decision is solely based on the
color they assume. The robots work autonomously only having the information
about the robots they see.

Details of the Algorithm. The pseudocode of the algorithm is given in Algo-
rithm1. Initially at C0, the lights of all robots are set to color Off and the robots
are stationary. Let ri be a robot in Q. Let Hor(ri) be a horizontal line passing
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through the position of ri. We first discuss how ri moves if it sees no robot
South of Hor(ri), i.e., ri is the Southmost robot in the configuration. Robot
ri can determine whether it is a Southmost robot or not as it knows y-axis.
Robot ri simply changes its color to Final without moving if it sees no other
robot on Hor(ri). If ri sees some other robot on Hor(ri), it changes its color to
Intermediate (without moving) if it is positioned on Hor(ri) such that it sees
robots on only one side on Hor(ri). We call ri the endpoint robot on Hor(ri)
if the above condition is satisfied. Otherwise, ri is on Hor(ri) with at least a
robot on Hor(ri) on its both sides and ri does nothing until it either becomes
the endpoint robot on Hor(ri) (fault-free case) or the robot on at least one side
of Hor(ri) is colored Final (faulty case). After ri is colored Intermediate, it
assumes color Transit and moves distance 1 vertically South. If ri is colored
Transit, it assumes color Final if it sees no Intermediate colored robot. If ri
sees an Intermediate colored robot, they both were on Hor(ri) before ri moved,
and the waiting makes sure that the Intermediate colored robot also moves
before ri terminates. This makes synchronization easier in the ASYNC setting.
We will discuss in Sect. 4 this is not needed in the SSYNC (and FSYNC)
setting.

We now discuss how ri moves if it sees at least a robot South of Hor(ri).
Robot ri does not move until it sees at least a Off, Intermediate, or
Transit colored robot South of Hor(ri). The idea here is for ri to com-
pute V isible Area(ri,CHor(ri) ∪ {ri}) considering the robots South of Hor(ri)
that it sees and move to a point in V isible Area(ri,CHor(ri) ∪ {ri}). If
ri is the only robot on Hor(ri), it assumes color Transit and moves to
a point in V isible Area(ri,CHor(ri) ∪ {ri}). If ri is not the only robot
on Hor(ri) but an endpoint robot on Hor(ri), then it first assumes color
Intermediate from Off. After ri colored Intermediate, it moves as fol-
lows: ri computes V isible Area(ri,CHor(ri) ∪ {ri}) and moves to a point
in V isible Area(ri,CHor(ri) ∪ {ri}) assuming color Transit. After colored
Transit, it sets its light to Final if it does not see any Intermediate col-
ored robot. If it sees an Intermediate colored robot rj , rj must be North of
Hor(ri) and it waits until rj assumes color Transit. After colored Final, ri
terminates its computation when it becomes active next time.

We restrict how a point in V isible Area(ri,CHor(ri) ∪ {ri}) is selected to
avoid robot collisions. Suppose Hor(rj) is the horizontal line passing through a
robot rj South of Hor(ri) such that there is no robot between lines Hor(ri) and
Hor(rj). We restrict that ri can not move to positions of Hor(rj) or South of
it. This will avoid collisions between robots of Hor(ri) and Hor(rj). To avoid
collisions between two robots of Hor(ri) (that can move simultaneously) and
also to make sure that the moves of those robots do not block the visibility of
each other to see the robots South of Hor(ri), we restrict ri not to move on
or beyond rkr (in addition to not moving beyond Hor(rj)), where rk is the
neighboring robot of ri on Hor(ri) and r is the robot South of Hor(ri) such
that there is no robot in the cone area formed by lines Hor(ri) and rkr. Figure 2
illustrates these ideas.



178 A. Aljohani et al.

Fig. 2. (a) V isible area(ri) for ri (black region) is computed by removing the part of
it beyond rkr (red region) and (b) disjoint V isible Area(ri) and V isible Area(rk) for
two robots ri, rk on Hor(ri) (black regions) using the technique of (a). (Color figure
online)

Analysis of the Algorithm. We now analyze the correctness of the algorithm.
Particularly, we show that the algorithm solves Complete Visibility starting
from any initial configuration C0 with all robots in Q being in the distinct
positions in the plane and (up to) N robots become faulty. We further show
that the algorithm terminates in O(N) time and the execution is collision- and
deadlock-free. We start with the following lemma.

Lemma 2. Let Hor(ri) and Hor(rj) be horizontal lines passing through robots
ri, rj such that there is no robot in the area between lines Hor(ri) and Hor(rj) and
Hor(rj) is in South of Hor(ri). No robot on Hor(ri) is colored Intermediate,
Transit, or Final until all the robots on Hor(rj) are colored Final.

Lemma 3. When a robot ri on Hor(ri) computes V isible Area(ri,CHor(ri) ∪
{ri}), it is a corner of the convex hull P of the robots of CHor(ri) ∪ {ri}.
Proof. We have that CHor(ri) consists of the robots South of Hor(ri) that ri
sees. Therefore, when ri computes a convex hull P(ri) of the robots in CHor(ri)∪
{ri}, it makes an angle of <180◦ with its two neighboring corners of P(ri) since
all the robots on CHor(ri) are in one side of Hor(ri). 
�
Lemma 4. When a (non-faulty) robot ri moves once, it sees all robots (both
faulty and non-faulty) South of Hor(ri).

Proof. We have from Lemma 1 that when a corner ri of a convex hull P moves
to a point in V isible Area(ri,CHor(ri) ∪ {ri}) and no other robot is moving
simultaneously with ri, ri sees all other robots of P (corners, side, and interior).
We have from Lemma 3 that ri is a corner of a convex hull P formed by the
robots in CHor(ri) ∪ {ri}. When ri moves in Algorithm 1, no other robot of P
formed from CHor(ri) ∪ {ri} is moving, therefore ri sees all the robots that are
South of Hor(ri). It only remains to show that, at most one other robot r on
Hor(ri) that is moving simultaneously with ri is also visible to ri and vice-versa.
This is immediate from the visible areas V isible Area(ri,CHor(ri) ∪ {ri}) and
V isible Area(r,CHor(r) ∪ {r}) computed by ri and r, respectively. Let a, b be
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the left and right neighbors of ri in P(ri) among the robots in CHor(ri) ∪ {ri}.
Moreover, let a′, b′ be the left and right neighbors of r in P(r) among the robots
in CHor(r) ∪ {r}. We have that V isible Area(ri) does not contain the area
beyond line rb′ and V isible Area(r) does not contain the area beyond line ria
(Fig. 2). Therefore, even if ri, r move simultaneously, ri does not become collinear
with r in line rx connecting r with any robot x ∈ CHor(r) and r does not
become collinear with ri in line rix connecting ri with any robot x ∈ CHor(ri).
Moreover, even after ri and r move simultaneously, ri sees r and vice-versa
follows immediately since they move in the area between Hor(ri) and Hor(rj)
with rj the same robot in the view of both ri, r and there is no third robot in
that area. 
�
Lemma 5. Each (non-faulty) robot does at most one move during entire
execution.

Proof. Pick any robot ri. If it is a Southmost robot and there is no robot on
Hor(ri), it terminates without moving. If it picks color Intermediate, then
it does so without moving. If it picks color Transit, then it moves. If ri is
already colored Transit, it changes its color to Final without moving. If ri is
colored Final, it terminates. Therefore, a robot ri moves only once when it picks
color Transit either from Off or from Intermediate. Therefore, each non-faulty
robot moves at most once. 
�
Lemma 6. Algorithm1 is collision-free.

Proof. Let Hor(ri) and Hor(rj) be two horizontal lines such that there is no
robot in the area between Hor(ri) and Hor(rj). Let Hor(rj) be South of
Hor(ri). The robots on lines Hor(ri) and Hor(rj) do not collide since the robots
on Hor(ri) never reach to positions of Hor(rj) and the robots on Hor(rj) never
move North of Hor(rj). Therefore, it only remains to show that the robots on
Hor(ri) do not collide with each other. We have that at most 2 endpoint robots
ri, rk on Hor(ri) move simultaneously. The robots move in such a way that ri
does not cross line rkr and rk does not cross line ria (as defined in Fig. 2b) and
hence this avoids collisions between them. 
�
Lemma 7. Algorithm1 is deadlock-free.

Lemma 8. Algorithm1 runs for O(N) epochs.

Lemma 9. The non-rigid movements of robots do not impact the guarantees of
the algorithm.

Proof. Let di be the point in V isible Area(ri) that ri moves under rigid move-
ments. Let ridi be the line segment connecting ri with di before ri moves to
di. Under non-rigid movements, ri may stop anywhere between ri and di (we
know that it does not stop at ri since it moves at least Δ > 0). We have from
V isible Area(ri) that ri is visible to all other non-moving robots if it moves
to any point in V isible Area(ri). According to the visible area construction,
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all points in line ridi contain inside the visible area V isible Area(ri). There-
fore, even under non-rigid movements, the algorithm provides all guarantees we
obtained under rigid movements. 
�

Proof of Theorem 1. We have Theorem 1 combining the results of Lemmas 4–9.

4 Discussion and Concluding Remarks

Improved Color Algorithm for the SSYNC (and FSYNC) Model. In
the SSYNC setting (and the FSYNC setting), we need only two colors in
Algorithm 1, which is optimal with respect to the number of colors when N is not
known [12]. In particular, we do not need colors Intermediate and Transit. The
colors Intermediate and Transit in Algorithm 1 are to synchronize the moves
of the robots when there are two or more robots on a horizontal line Hor(ri) in
the ASYNC setting. However, in the SSYNC (and also in the FSYNC) setting,
this can be achieved without these colors since: (i) if only one robot ri of Hor(ri)
moves at round k, at round k + 1, the other robot rj already sees ri South of
Hor(ri) and it can move in such a way that all the robots South of Hor(ri) see
it; (ii) if both robots ri, rj on Hor(ri) move in round k, then at round k+1 they
will be on their final positions, all the robots South of Hor(ri) see both of them,
and ri, rj see each other. All these results can be proved extending the analysis
of Sect. 3 and runtime is still O(N).

Impact of Correctness of Lights after Faults. The tolerance to faults in
our algorithm depends on the correctness of the colors of the lights even after
robots experience (mobility) faults. I.e., even after robot becomes faulty, lights
can be correctly set from Off to Final, possibly going through the changes to
Intermediate and Transit (without moving). If the robot color stays as the
color it has at the time of fault, then we cannot guarantee termination and
also whether Complete Visibility is solved. This is because, it is difficult
to determine for a robot ri whether the (non-faulty) robots that are South of
Hor(ri) already moved once or not. Therefore, it is an open problem to solve
Complete Visibility in this setting tolerating multiple faults. The algorithm
in [3] handles a single fault even when the light stays at the color at the time of
fault.

Concluding Remarks. We have presented, to our best knowledge, the first
fault-tolerant algorithm for the Complete Visibility problem using 4 colors
for robots with lights in the ASYNC setting under non-rigid movements and
one-axis agreement, tolerating (up to) N faulty robots, not known a priori. The
algorithm terminates in O(N) time avoiding collisions. The previous work [3]
was only able to handle one faulty robot in the SSYNC setting under rigid
movements and both-axis agreement using 3 colors. We then showed that the
number of colors can be improved from 4 to 2 in the SSYNC setting (and also
in the FSYNC) setting.
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Many questions remain for future work. It will be interesting to minimize
the number of colors from 4 to 2 in our algorithm in the ASYNC setting. Most
importantly, it will be interesting to remove the one-axis agreement assumption
and solve this problem tolerating multiple faults when lights can be faulty in
addition to mobility faults.
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