
M. Sohel Rahman
Wing-Kin Sung
Ryuhei Uehara (Eds.)

 123

LN
CS

 1
07

55

12th International Conference, WALCOM 2018
Dhaka, Bangladesh, March 3–5, 2018
Proceedings

WALCOM: Algorithms
and Computation

Lecture Notes in Computer Science 10755

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zurich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7407

M. Sohel Rahman • Wing-Kin Sung
Ryuhei Uehara (Eds.)

WALCOM: Algorithms
and Computation
12th International Conference, WALCOM 2018
Dhaka, Bangladesh, March 3–5, 2018
Proceedings

123

Editors
M. Sohel Rahman
Bangladesh University of Engineering
and Technology

Dhaka
Bangladesh

Wing-Kin Sung
National University of Singapore
Singapore
Singapore

Ryuhei Uehara
Japan Advanced Institute of Science
and Technology

Ishikawa
Japan

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-75171-9 ISBN 978-3-319-75172-6 (eBook)
https://doi.org/10.1007/978-3-319-75172-6

Library of Congress Control Number: 2018930748

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

© Springer International Publishing AG, part of Springer Nature 2018
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by the registered company Springer International Publishing AG
part of Springer Nature
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

http://orcid.org/0000-0001-9419-6478
http://orcid.org/0000-0003-0895-3765

Preface

This proceedings volume contains papers presented at WALCOM 2018, the 12th
International Conference and Workshop on Algorithms and Computation, held during
March 3–5, 2018, at the Department of Computer Science and Engineering (CSE),
Bangladesh University of Engineering and Technology (BUET), Dhaka, Bangladesh.
The conference covered diverse areas of algorithms and computation, namely,
approximation algorithms, computational geometry, combinatorial algorithms, com-
putational biology, computational complexity, data structures, graph and network
algorithms, and online algorithms. The conference was organized jointly by Bangladesh
Academy of Sciences (BAS), and the Department of Computer Science and Engi-
neering, BUET in cooperation with IEICE Technical Committee on Theoretical
Foundations of Computing (COMP), the Special Interest Group for Algorithms
(SIGAL) of the Information Processing Society of Japan (IPSJ) and EATCS Japan
Chapter.

WALCOM is an annual conference series on all aspects of algorithms and com-
putation and this year marked the 12th successful organization of this event, which has
a special meaning and carries a strong value in our culture. WALCOM started quite
humbly with a vision to patronize the less privileged researchers, especially, in the
South Asian countries without compromising the scientific quality through providing
an international platform to disseminate their high-quality research works. From the
very inception of WALCOM, it was led by a strong Steering Committee comprising
eminent and senior scientists from Bangladesh, Germany, India, Japan, Korea, and the
UK and for each and every event, the technical program was finalized by selecting the
highest quality papers from among those submitted through a rigorous reviewing and
discussion process by the respective Program Committees comprising computer sci-
entists of international repute from different parts of the globe. Notably, the Program
Committee of WALCOM 2018 comprised 37 eminent researchers from Australia,
Bangladesh, Canada, Chile, Egypt, Finland, France, Greece, Hong Kong, India, Israel,
Italy, Japan, Singapore, South Africa, South Korea, Taiwan, UK and USA.

Since its inception, WALCOM has grown substantially in reputation and has been
able to attract researchers and scientists around the globe. Although, initially the idea
was to host WALCOM in Bangladesh and India on alternate years, recently it has gone
beyond that. In particular, in 2016 and 2017, WALCOM was successfully hosted in
Nepal and Taiwan, respectively, and it is planned that in 2020, it will be hosted in
Singapore.

This year we could accept only 22 high-quality papers, which were selected based
on thorough reviewing (at least three review reports per paper) followed by in-depth
discussion sessions by the Program Committee. Following the recent tradition that was
initiated in WALCOM 2015, two Best Paper Awards were also given. We are pleased
to announce that “Online Facility Assignment” authored by Abu Reyan Ahmed,
Md. Saidur Rahman, and Stephen Kobourov and “Boosting over Non-deterministic

ZDDs” authored by Takahiro Fujita, Kohei Hatano, and Eiji Takimoto were selected
for the Best Paper Awards by the Program Committee. We are also delighted to
highlight that following the tradition of the previous years, two special issues—one in
the Journal of Graph Algorithms and Applications and the other in Theoretical
Computer Science—are planned featuring the extended versions of selected papers
from WALCOM 2018.

In addition to the 22 contributed talks, the scientific program of the workshop
included invited talks by three eminent researchers, namely, Prof. Giuseppe Di Battista
of Università Roma Tre, Italy, Prof. Naoki Katoh of Kwansei Gakuin University,
Japan, and Prof. Limsoon Wong, National University of Singapore. We are extremely
grateful to our invited speakers for their excellent talks at the workshop. We thank all
the authors who submitted their works for consideration to WALCOM 2018. We
deeply appreciate the contribution of all Program Committee members and external
reviewers for handling the submissions in a timely manner despite their extremely busy
schedule. We must acknowledge the EasyChair conference management system again
for providing us with their celebrated platform for conference administration. We are
grateful to Springer for publishing the proceedings of WALCOM 2018 in the LNCS
series. As always, we are deeply indebted to the WALCOM Steering Committee for
their continuous guidance, support, and leadership. Above all, we are extremely
grateful to the Organizing Committee of WALCOM 2018 for making the event a grand
success. Last but not the least, we express our heartiest gratitude to the sponsors,
namely, IPDC Finance Ltd. and Dynamic Solutions Innovators (DSi) Ltd. for their kind
and generous support.

March 2018 M. Sohel Rahman
Wing-Kin Sung
Ryuhei Uehara

VI Preface

Organization

WALCOM Steering Committee

Kyung-Yong Chwa KAIST, Korea
Costas S. Iliopoulos KCL, UK
M. Kaykobad BUET, Bangladesh
Petra Mutzel TU Dortmund, Germany
Shin-ichi Nakano Gunma University, Japan
Subhas Chandra Nandy ISI, India
Takao Nishizeki Tohoku University, Japan
C. Pandu Rangan IIT, Madras, India
Md. Saidur Rahman BUET, Bangladesh

WALCOM 2018 Organizers

WALCOM 2018 Supporters

WALCOM 2018 Program Committee

Hee-Kap Ahn POSTECH, South Korea
Muhammad Jawaherul

Alam
Amazon, USA

Md. Shamsuzzoha Bayzid BUET, Bangladesh
Guillaume Blin Université de Bordeaux, France
Jackie Daykin King’s College, London, UK
Amr Elmasry Alexandria University, Egypt
Wing-Kai Hon Nation Tsing Hua University, Taiwan
Seok-Hee Hong University of Sydney, Australia
Giuseppe F. Italiano University of Rome Tor Vergata, Italy
Jesper Jansson The Hong Kong Polytechnic University, Hong Kong,

SAR China
Ralf Klasing CNRS and University of Bordeaux, France
Gad M. Landau University of Haifa, Israel
Hon Wai Leong National University of Singapore, Singapore
Giuseppe Liotta University of Perugia, Italy
Stefano Lonardi University of California, Riverside, USA
Debajyoti Mondal University of Saskatchewan, Canada
Krishnendu

Mukhopadhyaya
Indian Statistical Institute, India

Subhas Chandra Nandy Indian Statistical Institute, India
Gonzalo Navarro University of Chile, Chile
Solon P. Pissis King’s College, London, UK

VIII Organization

Simon J. Puglisi University of Helsinki, Finland
Tomasz Radzik King’s College, London, UK
Atif Hasan Rahman BUET, Bangladesh
M. Sohel Rahman BUET, Bangladesh
Md. Saidur Rahman BUET, Bangladesh
C. Pandu Rangan Indian Institute of Technology, Madras, India
Kunihiko Sadakane The University of Tokyo, Japan
William F. Smyth McMaster University, Canada
Paul Spirakis University of Liverpool, UK
Wing-Kin Sung National University of Singapore, Singapore
Etsuji Tomita The University of Electro-Communications, Japan
Ryuhei Uehara Japan Advanced Institute of Science and Technology,

Japan
Osamu Watanabe Tokyo Institute of Technology, Japan
Bruce Watson Stellenbosch University, South Africa
Sue Whitesides University of Victoria, Canada
Prudence Wong University of Liverpool, UK
Hsu-Chun Yen National Taiwan University, Taiwan

WALCOM 2018 Advisory Committee

Mesbahuddin Ahmed
(Secretary)

BAS, Bangladesh

M. Shamsher Ali (Fellow) BAS, Bangladesh
Naiyyum Choudhury

(Fellow)
BAS, Bangladesh

Quazi Abdul Fattah
(President)

BAS, Bangladesh

Saiful Islam
(Vice-Chancellor)

BUET, Bangladesh

Md. Saidur Rahman CSE, BUET, Bangladesh
M. Kaykobad CSE, BUET, Bangladesh

WALCOM 2018 Organizing Committee

Muhammad Abdullah
Adnan

CSE, BUET, Bangladesh

Ishtiyaque Ahmad CSE, BUET, Bangladesh
Md. Benzir Ahmed CSE, BUET, Bangladesh
Toufique Ahmed CSE, BUET, Bangladesh
Shareef Ahmed CSE, BUET, Bangladesh
Md. Mostofa Akbar CSE, BUET, Bangladesh
Muhammad Rashed Alam CSE, BUET, Bangladesh
Zahangir Alam CSE, BUET, Bangladesh
Mohammed Eunus Ali CSE, BUET, Bangladesh
Muhammad Masroor Ali CSE, BUET, Bangladesh

Organization IX

M. Shamsher Ali BAS, Bangladesh
Mohammad Al-Mahmud CSE, BUET, Bangladesh
Abdus Salam Azad CSE, BUET, Bangladesh
Md. Aashikur Rahman

Azim
CSE, BUET, Bangladesh

Madhusudan Basak CSE, BUET, Bangladesh
Md. Muradul Bashir CSE, BUET, Bangladesh
Md. Shamsuzzoha Bayzid CSE, BUET, Bangladesh
Md. Shariful Islam Bhuyan CSE, BUET, Bangladesh
Naiyyum Choudhury .
Siddhartha Shankar Das CSE, BUET, Bangladesh
Sujoy Das CSE, BUET, Bangladesh
Quazi Abdul Fattah CSE, BUET, Bangladesh
Ch. Md. Rakin Haider CSE, BUET, Bangladesh
Md. Manzurul Hasan CSE, BUET, Bangladesh
Tanzima Hashem CSE, BUET, Bangladesh
Mahmudur Rahman Hera CSE, BUET, Bangladesh
Abu Sayed Md. Latiful

Hoque
CSE, BUET, Bangladesh

Md. Saddam Hossain CSE, BUET, Bangladesh
Mohammad Sajjad Hossain CSE, BUET, Bangladesh
Md. Shohrab Hossain CSE, BUET, Bangladesh
Anindya Iqbal CSE, BUET, Bangladesh
Md. Monirul Islam CSE, BUET, Bangladesh
Mohammad Mahfuzul Islam CSE, BUET, Bangladesh
A. B. M. Alim Al Islam CSE, BUET, Bangladesh
Md. Saiful Islam CSE, BUET, Bangladesh
Md. Monirul Islam CSE, BUET, Bangladesh
Md. Rezaul Karim CSE, BUET, Bangladesh
M. Kaykobad CSE, BUET, Bangladesh
Shahidul Islam Khan CSE, BUET, Bangladesh
Mehnaz Tabassum Mahin CSE, BUET, Bangladesh
M. A. Mazed .
Md. Abul Kashem Mia CSE, BUET, Bangladesh
Md Amir Hossain Mollah CSE, BUET, Bangladesh
Mahjabin Nahar CSE, BUET, Bangladesh
Muhammad Ali Nayeem CSE, BUET, Bangladesh
Mahmuda Naznin CSE, BUET, Bangladesh
Novia Nurain CSE, BUET, Bangladesh
Md. Tarikul Islam Papon CSE, BUET, Bangladesh
Adnan Quaium CSE, BUET, Bangladesh
Md. Ishat - E - Rabban CSE, BUET, Bangladesh
A. K. M. Ashikur Rahman CSE, BUET, Bangladesh
Atif Hasan Rahman CSE, BUET, Bangladesh
Md. Mizanur Rahman CSE, BUET, Bangladesh
Md. Saidur Rahman CSE, BUET, Bangladesh

X Organization

Mohammad Saifur Rahman CSE, BUET, Bangladesh
M. Sohel Rahman CSE, BUET, Bangladesh
Md. Iftekharul Islam Sakib CSE, BUET, Bangladesh
Rakib Ahmed Saleh CSE, BUET, Bangladesh
Nazmus Saquib CSE, BUET, Bangladesh
Md. Abdus Sattar CSE, BUET, Bangladesh
Khaled Mahmud Shahriar CSE, BUET, Bangladesh
Rifat Shahriyar (Secretary) CSE, BUET, Bangladesh
Sadia Sharmin (Joint

Secretary)
CSE, BUET, Bangladesh

Abida Sanjana Shemonti CSE, BUET, Bangladesh
Shaheena Sultana CSE, BUET, Bangladesh
Abu Wasif CSE, BUET, Bangladesh

WALCOM 2018 Additional Reviewers

Ahn, Taehoon
Akrida, Eleni C.
Aravind, N. R.
Bae, Sang Won
Baisya, Dipankar Ranjan
Balaji, Nikhil
Bampas, Evangelos
Bandyapadhyay, Sayan
Banik, Aritra
Barua, Rana
Bentert, Matthias
Bhagat, Subhash
Bhattacharya, Binay
Bilò, Davide
Canzar, Stefan
Charalampopoulos, Panagiotis
Choi, Jongmin
Choi, Yujin
Conte, Alessio
D’Emidio, Mattia
Das, Gautam K.
Das, Syamantak
De Luca, Felice
Deligkas, Argyrios
Di Stefano, Gabriele
Drineas, Petros
Dunkelman, Orr
Elbassioni, Khaled

Epstein, Leah
Evans, Will
Fukunaga, Takuro
Ghosh, Sasthi
Giot, Romain
Giraud, Mathieu
Grabowski, Szymon
Gronemann, Martin
Han, Xin
Idrees, Samah
Johnson, Timothy
Kalyanasundaram, Subrahmanyam
Kardoš, František
Karmakar, Arindam
Kawamura, Akitoshi
Khramtcova, Elena
Kim, Mincheol
Kindermann, Philipp
Kirousis, Lefteris
Kolay, Sudeshna
Krohn, Erik
Laekhanukit, Bundit
Lamprou, Ioannis
Lauri, Juho
Lee, Seungjoon
Mandal, Partha Sarathi
Marino, Andrea
Mestre, Julian

Organization XI

Mhaskar, Neerja
Minato, Shin-Ichi
Mukhopadhyaya, Srabani
Mulzer, Wolfgang
Musco, Christopher
Nayeem, Muhammad Ali
Nicholson, Patrick K.
Nikolaev, Alexey
Oh, Eunjin
Pandey, Arti
Pisanti, Nadia
Rao Satti, Srinivasa
Reddy, Vinod
Roy, Sasanka
Salson, Mikaël

Schieber, Baruch
Schmidt, Jens M.
Seki, Shinnosuke
Shahrokhi, Farhad
Shatabda, Swakkhar
Silveira, Rodrigo
Subramani, K.
Tappini, Alessandra
Uddin, Md Yusuf Sarwar
Uno, Takeaki
Uricaru, Raluca
Valenzuela, Daniel
Viglietta, Giovanni
Wismath, Steve
Yoshinaka, Ryo

WALCOM 2018 Sponsors

XII Organization

Invited Talks

Optimal Sink Location Problems on Dynamic
Flow Networks

Naoki Katoh

Kwansei Gakuin University
naoki.katoh@gmail.com

Abstract. In recent years, catastrophic disasters by massive natural disasters
such as typhoon, earthquake, tsunami, volcano eruption have been increasing in
the world, and disaster management is becoming extremely important more than
ever. For example, in the Tohoku-Pacific Ocean Earthquake that happened in
Japan on March 11, 2011, serious damage was caused by a tsunami. Although
disaster prevention in civil and architectural engineering fields in Japan has been
considered previously mainly from physical aspects, it is difficult to prevent
large tsunamis physically. Therefore, disaster prevention from non-physical
aspects, such as city planning and evacuation planning, has become more
important recently.

In particular, to reduce the deaths due to tsunami is critically important on
coastal areas of Japan. For this, we need to prepare evacuation building so that
people can protect their lives. Such problems are formulated by the use of a
dynamic network which consists of a graph that models a road network in which
a capacity as well as a transit time is associated with each edge, and asks to find
a way to evacuate evacuees originally existing at vertices to facilities (evacua-
tion centers) as quickly as possible. The problem can be viewed as a general-
ization of classical k-center and k-median problems. We shall show recent
results about the difficulty and approximability of a single-facility location for
general networks and polynomial time algorithms for k-facility location prob-
lems in path and tree networks. We also mention the minimax regret version
of these problems, and multi-commodity dynamic flow problems.

Keywords: Disaster prevention • Disaster management • Evacuation
k-center problem • k-median problems • Facility location
Multi-commodity dynamic flow problem

Logic in Computational Biology

Limsoon Wong

National University of Singapore
13 Computing Drive, 117417, Singapore

wongls@comp.nus.edu.sg

Abstract. I will describe some problem-solving principles that are common to
multiple types of problems, even in different disciplines. I will illustrate using
different areas in computer science, medicine, biology, and biotechnology.
These principles are simple logical ways to exploit fundamental properties of
each problem domain, highlighting the value of both logical thought and domain
knowledge, and bringing out the sometimes creative way of applying the former
to the latter in the context of each problem being solved. In the specific context
of computational biology, I will discuss the use of deductive, abductive, and
inductive inference in de-noising protein-protein interaction networks, identi-
fying homologous proteins, inferring key mutations, and diagnosing specific
pediatric leukemias. In the course of this discussion, I will illustrate also the
useful tactics of fixing violation of invariants and guilt by association. As a
demonstration of the universality of logic as a scientific problem-solving para-
digm, I will show parallels in common computer science applications (e.g.
deriving a better database design and securing computers against rootkit
attacks).

Keywords: Computational biology • Logical inference from invariants
Violation of invariants • Guilt by association

This work was supported in part by a Kwan-Im-Thong-Hood-Cho-Temple chair professorship.

http://orcid.org/0000-0003-1241-5441

Morphing Planar Graph Drawings

Giuseppe Di Battista

Roma Tre University, Rome, Italy
giuseppe.dibattista@uniroma3.it

Abstract. Given two drawings C0 and C1 of the same graph G a morph between
C0 and C1 is a continuously changing family of drawings of G indexed by time
t 2 ½0; 1�, such that the drawing at time t ¼ 0 is C0 and the drawing at time t ¼ 1
is C1.

Suppose that both C0 and C1 have a certain geometric property. E.g. they
are planar, their edges are straight-line segments, or their edges are polygonal
lines composed of horizontal and vertical segments. It is interesting, both from
the theoretical and from the applications perspectives, that all the drawings
of the morph preserve that property.

The problem of finding a morph between two drawings of the same graph
that preserves one or more properties is not trivial and attracted the attention of
several researchers since the first half of the twentieth century. As an example,
Cairns in 1944 proved that a morph that preserves planarity of a triangulation
always exists. Thomassen in 1983 extended the result to all planar straight-line
drawings of embedded graphs.

Morphs that preserve a certain property can be classified from several
perspectives. As an example they can be different in terms of vertex trajectories,
in terms of vertex speed, in terms of number of steps, or in terms of arithmetic
precision that is needed to compute the position of the geometric components
of the drawings.

We survey the state-of-the-art on this intriguing topic focusing the attention
on morphs that preserve planarity.

Contents

A Simple Algorithm for r-gatherings on the Line . 1
Shin-ichi Nakano

Enumeration of Nonisomorphic Interval Graphs and Nonisomorphic
Permutation Graphs . 8

Kazuaki Yamazaki, Toshiki Saitoh, Masashi Kiyomi, and Ryuhei Uehara

Secret Key Amplification from Uniformly Leaked Key Exchange
Complete Graph . 20

Tatsuya Sasaki, Bateh Mathias Agbor, Shingo Masuda,
Yu-ichi Hayashi, Takaaki Mizuki, and Hideaki Sone

Approximating Partially Bounded Degree Deletion on Directed Graphs 32
Toshihiro Fujito, Kei Kimura, and Yuki Mizuno

Minimum-Width Annulus with Outliers: Circular, Square,
and Rectangular Cases . 44

Hee-Kap Ahn, Taehoon Ahn, Sang Won Bae, Jongmin Choi,
Mincheol Kim, Eunjin Oh, Chan-Su Shin, and Sang Duk Yoon

Minimum-Width Square Annulus Intersecting Polygons 56
Hee-Kap Ahn, Taehoon Ahn, Jongmin Choi, Mincheol Kim,
and Eunjin Oh

Two New Schemes in the Bitprobe Model . 68
Mirza Galib Anwarul Husain Baig and Deepanjan Kesh

Faster Network Algorithms Based on Graph Decomposition 80
Manas Jyoti Kashyop, Tsunehiko Nagayama, and Kunihiko Sadakane

An Improvement of the Algorithm of Hertli for the Unique
3SAT Problem . 93

Tong Qin and Osamu Watanabe

Random Popular Matchings with Incomplete Preference Lists. 106
Suthee Ruangwises and Toshiya Itoh

Scheduling Batch Processing in Flexible Flowshop with Job Dependent
Buffer Requirements: Lagrangian Relaxation Approach 119

Hanyu Gu, Julia Memar, and Yakov Zinder

Computing Periods. 132
Junhee Cho, Sewon Park, and Martin Ziegler

A Note on Online Colouring Problems in Overlap Graphs
and Their Complements . 144

Marc Demange and Martin Olsen

Online Facility Assignment . 156
Abu Reyan Ahmed, Md. Saidur Rahman,
and Stephen Kobourov

Fault-Tolerant Complete Visibility for Asynchronous Robots
with Lights Under One-Axis Agreement . 169

Aisha Aljohani, Pavan Poudel, and Gokarna Sharma

A Simple, Fast, Filter-Based Algorithm for Circular
Sequence Comparison . 183

Md. Aashikur Rahman Azim, Mohimenul Kabir,
and M. Sohel Rahman

Boosting over Non-deterministic ZDDs . 195
Takahiro Fujita, Kohei Hatano, and Eiji Takimoto

On Multiple Longest Common Subsequence and Common Motifs
with Gaps (Extended Abstract) . 207

Suri Dipannita Sayeed, M. Sohel Rahman,
and Atif Rahman

FPT Algorithms Exploiting Carving Decomposition for Eulerian
Orientations and Ice-Type Models . 216

Shinya Shiroshita, Tomoaki Ogasawara, Hidefumi Hiraishi,
and Hiroshi Imai

On Structural Parameterizations of Happy Coloring, Empire Coloring
and Boxicity. 228

Jayesh Choudhari and I. Vinod Reddy

Complexity of the Maximum k-Path Vertex Cover Problem 240
Eiji Miyano, Toshiki Saitoh, Ryuhei Uehara, Tsuyoshi Yagita,
and Tom C. van der Zanden

On the Parallel Parameterized Complexity of the Graph
Isomorphism Problem . 252

Bireswar Das, Murali Krishna Enduri, and I. Vinod Reddy

Author Index . 265

XX Contents

A Simple Algorithm for r-gatherings on the Line

Shin-ichi Nakano(B)

Gunma University, Kiryu 376-8515, Japan
nakano@cs.gunma-u.ac.jp

Abstract. In this paper we study recently proposed variant of the facil-
ity location problem called the r-gathering problem. Given sets C and F
of points on the plane and distance d(c, f) for each c ∈ C and f ∈ F , an

r-gathering of C to F is an assignment A of C to open facilities F
′ ⊂ F

such that r or more customers are assigned to each open facility. The
cost of an r-gathering is the maximum distance d(c, f) between c ∈ C
and A(c) ∈ F ′ among the assignment, which is maxc∈C{d(c, A(c))}. The
r-gathering problem finds the r-gathering minimize the cost. A poly-
nomial time 3-approximation algorithm for the r-gathering problem is
known. When all C and F are on the line an O((|C|+ |F |) log(|C|+ |F |))
time algorithm and an O(|C| + |F | log2 r+ |F | log |F |) time algorithm to
solve the r-gathering problem are known. In this paper we give a simple
O(|C|+ r2|F |) time algorithm to solve the r-gathering problem. Since in
typical case r << |F | << |C| holds our new algorithm is faster than the
known algorithms.

Keywords: Algorithm · Facility location · Gathering

1 Introduction

The facility location problem and many of its variants are studied [D1,DH1]. In
this paper we study a recently proposed variant of the problem, the r-gathering
problem [AF1,A].

We start with a rather simpler problem. Given a set C of n points on the
plane an r-gather-clustering is a partition of the points into clusters such that
each cluster has at least r points. The cost of an r-gather-clustering is the max-
imum radius among the clusters, where the radius of a cluster is the minimum
radius of the disk which can cover the points in the cluster. The r-gather-
clustering problem [AF1] is the problem to find the r-gather-clustering minimiz-
ing the cost. The problem is NP-complete in general, however a polynomial time
2-approximation algorithm for the problem is known [AF1]. When all C are
on the line, an O(n log n) time algorithm, based on the matrix search method
[FJ1,AS1], for the problem is known [AN1].

In this paper we give an O(rn) time simple algorithm to solve the problem
when all C are on the line, by reducing the problem to the min-max path problem
[GT1] in a weighted directed graph.
c© Springer International Publishing AG, part of Springer Nature 2018
M. S. Rahman et al. (Eds.): WALCOM 2018, LNCS 10755, pp. 1–7, 2018.
https://doi.org/10.1007/978-3-319-75172-6_1

2 S. Nakano

Assume that C is a set of residents on a street and we wish to locate emer-
gency shelters for the residents so that each shelter serves r or more residents.
Then r-gather clustering problem computes optimal locations for shelters which
minimizing the evacuation time span, where each shelter for a cluster is located
at the center of the cluster.

Then we consider the r-gathering problem. Given two sets C and F of points
on the plane and distance d(c, f) for each c ∈ C and f ∈ F , an r-gathering
of C to F is an assignment A of C to open facilities F

′ ⊂ F such that r
or more customers are assigned to each open facility. (Thus no customer is
assigned to each facility in F\F ′

.) The cost of an r-gathering is the maximum
distance d(c, f) between c ∈ C and A(c) ∈ F ′ among the assignment, which is
maxc∈C{d(c,A(c))}. The r-gathering problem finds the r-gathering minimizing
the cost.

Armon [A] gave a simple 3-approximation algorithm for the r-gathering prob-
lem and proves that with the assumption P �= NP the problem cannot be
approximated within a factor less than 3 for any r ≥ 3. When all C and F
are on the line an O((|C| + |F |) log(|C| + |F |)) time algorithm [AN1] and an
O(|C| + |F | log2 r + |F | log |F |) time algorithm [HN1] to solve the r-gathering
problem are known.

In this paper we give an O(|C|+r2|F |) time algorithm to solve the r-gathering
problem when all C and F are on the line. Since in typical case r << |F | << |C|
holds our new algorithm is faster than the known algorithms.

Assume that we are planning an evacuation plan for the residents on a street,
F is a set of possible locations for emergency shelters, and d(c, f) is the time
needed for a person c ∈ C to reach a shelter f ∈ F . Then an r-gathering (when
all C and F are on the line) corresponds to an evacuation assignment such that
each open shelter serves r or more people, and the r-gathering problem finds an
evacuation plan minimizing the evacuation time span.

The remainder of this paper is organized as follows. In Sect. 2 we consider the
r-gather-clustering problem and give an algorithm when all points in C are on
the line. The idea of the algorithm is a reduction to the min-max path problem
for a weighted directed graph. Then in Sect. 3 we give our algorithm for the
r-gathering problem when all points in C and F are on the line. The idea of
our algorithm is (1) a reduction to the min-max path problem for a weighted
directed graph, and (2) carefully bounding the number of edges in the graph.
Finally Sect. 4 is a conclusion.

2 r-gather-clustering on the Line

In this section we consider the r-gather-clustering problem, and give an algorithm
when all points in C are on the line. Let C = {c1, c2, · · · , cn} be points on the
horizontal line and we assume they are sorted from left to right. Our idea is
to reduce the r-gather-clustering problem to the mix-max path problem in a
weighted directed (acyclic) graph. First we have the following two lemmas.

A Simple Algorithm for r-gatherings on the Line 3

Lemma 1. There exists an optimal solution in which the points in each cluster
are consecutive in C.

Proof. Assume otherwise. We say three points ca, cb, cc ∈ C with (1) a < b < c,
(2) ca, cc ∈ Cx and (3) cb ∈ Cy where Cx and Cy are clusters are crossing triple.
By the assumption above any optimal solution has some crossing triple. Let S
be the solution of the r-gather-clustering problem (when all points in C are on
the line) with the minimum number of crossing triples. Let S

′
be the r-gather

clustering derived from S by replacing Cx and Cy by C
′
x and C

′
y so that C

′
x is the

leftmost |Cx| points in Cx ∪ Cy and C
′
y is the rightmost |Cy| points in Cx ∪ Cy.

Now the cost of S
′

is smaller than the cost of S, or S
′

has less crossing triples.
A contradiction. ��

Thus we can assume each cluster in an optimal solution consists of consecu-
tive points {ci, ci+1, · · · , cj} for some i and j.

Lemma 2. There exists an optimal solution in which the number of points in
each cluster is at most 2r − 1.

Proof. Assume otherwise. Then optimal solution has a cluster with more than 2r
points. Then divide each of such clusters into two (or more) clusters, respectively,
so that each cluster has r or more points, but at most 2r − 1 points. Since this
modification does not increase the cost, the resulting clustering is also a solution.

��
Then we define the directed (acyclic) graph D(V,E) and the weight of each

edge, as follows.

V = {p0, p1, p2, · · · , pn}
E = {(pi, pj)|i + r ≤ j ≤ i + 2r − 1}

See an example with r = 3 in Fig. 1. Note that the number |E| of edges is at
most rn. The weight of an edge (pi, pj) is the half of the distance between ci+1

and cj , and denoted by w(pi, pj).
The cost of a directed path from p0 to pn is defined by the weight of the edge

having the maximum weight in the directed path. The min-max path from p0 to
pn is the directed path from p0 to pn with the minimum cost.

Now C has an r-gather-clustering with cost k iff D(V,E) has a directed path
from p0 to pn with cost k. See Fig. 2.

Thus if we can compute the min-max path in D then it corresponds to the
solution of the r-gather-clustering problem. Intuitively, each (directed) edge in
the min-max path corresponds to a cluster of an r-gather-clustering.

We can construct the D(V,E) in O(rn) time. An O(|E| log∗ |V |) time algo-
rithm for the min-max path problem for a directed graph D = (V,E) is known
[GT1]. However, since D(V,E) is a DAG (directed acyclic graph) we can compute
the min-max path from p0 to pn in O(|E|) time by a simple dynamic program-
ming algorithm. (Let wi be the cost of the min-max path from p0 to pi. For each

4 S. Nakano

c

(a)

(b)

1

p
0

p
1

p
2

p
3

p
4

p
5

p
6

p
7

p
8

c2 c3 c4 c5 c6 c7 c8

Fig. 1. (a) A point set C and (b) the weighted directed graph D with r = 3.

c

(a)

(b)

1

p
0

p
1

p
2

p
3

p
4

p
5

p
6

p
7

p
8

c2 c3 c4 c5 c6 c7 c8

Fig. 2. (a) an r-gather clustering (b) its corresponding min-max path of D.

pi we can compute wi by checking each incoming edge (px, pi) to pi and the cost
wx of the min-max path from p0 to px.)

Thus we have the following theorem.

Theorem 1. One can solve the r-gather-clustering problem in O(rn) time, when
all points in C are on the line.

3 r-gathering

In this section we give an algorithm for the r-gathering problem when all points
in C and F are on the line, by reducing the problem to the min-max path
problem for a weighted directed graph, and bounding the number of edges in
the graph.

A Simple Algorithm for r-gatherings on the Line 5

Let C = {c1, c2, · · · , cn} and F = {f1, f2, · · · , fm} be points on the horizontal
line and we assume they are sorted from left to right, respectively. Similar to
Lemma 1 we can assume the points assigned to a facility are consecutive in a
solution.

For consecutive three facilities fj−1, fj and fj+1 in F let mL be the midpoint
of fj−1 and fj , and mR the midpoint of fj and fj+1. We have the following two
lemma.

Lemma 3. Assume that C has 2r or more points on the left of mL. Let ci be
the 2r-th point from right in C ′ where C ′ is the set of points in C on or left of
mL. There exists an optimal solution in which ci′ with i′ < i is never assigned
to fj.

Proof. Assume for a contradiction such ci′ is assigned to fj . We have two cases.
If the rightmost point assigned to fj is on the left of mL then reassigning

the points assigned to fj to fj−1 results in a new r-gathering and since it does
not increase the cost the resulting r-gathering is also a solution of the given
r-gathering problem.

Otherwise, the rightmost point assigned to fj is on or right of mL. Then
at least 2r points on or left of mL are assigned to fj by Lemma 1, with other
points on the right of mL. Let C ′ be the subset of C consisting of the points (1)
assigned to fj , (2) on or left of mL, and (3) but not the rightmost r points on or
left of mL. Note that |C ′| ≥ r holds and C ′ contains ci′ . Reassigning the points
in C ′ to fj−1 results in a new r-gathering and the resulting r-gathering is also a
solution since it does not increase the cost. ��

Intuitively if ci′ is too far from fj then ci′ is never assigned to fj . Symmet-
rically we have the following lemma.

Lemma 4. If C has 2r or more points on the right of mR, then ci′ with i′ > i
is never assigned to fj, where ci is the 2r-th point in C on or right of mR.

We have more lemmas. Let C ′ be the set of points between mL and mR

except the leftmost 2r points and the rightmost 2r points.

Lemma 5. If C has 5r or more points between mL and mR, then the customers
in C ′ are assigned to fj in a solution of the r-gathering problem.

Proof. Immediate from the two lemmas above. ��
Thus if we can compute the solution for C−C ′ then appending the assignment

from the points in C ′ to fj results in the solution for C. From now on we assume
we have removed every such C ′ from C.

We have more lemmas for the boundary case. Let m be the midpoints of f1
and f2 in F .

Lemma 6. If C has 2r or more points on the left of m, then each ci′ with i′ < i
is assigned to f1 in a solution of the r-gathering problem, where ci is the 2r-th
customer in C on the left of m.

6 S. Nakano

Proof. Immediate from Lemma 3. ��
Let m be the midpoints of fm−1 and fm in F .

Lemma 7. If C has 2r or more points on the right of m, then each ci′ with
i′ > i is assigned to fm in a solution of the r-gathering problem, where ci is the
2r-th customer in C on the right of m.

Thus we have the following lemma.

Lemma 8. The number of points in C possibly assigning to each facility f ∈ F
is at most 9r.

Proof. For each fj with 1 < j < m define mL and mR as above. The number of
points possibly assigning to fj is (1) at most 2r on the left of mL, (2) at most
2r on the right of mR, and (3) at most 5r between mL and mR, by the lemmas
above. Similar for f1 and fm. ��

Now we are going to define a weighted directed graph D(V,E) for F and C,
and the weight of each edge.

The set of vertices is defined as follows.

V = {p0, p1, p2, · · · , pn}
For each facility fh with h = 2, 3, · · · ,m − 1 and its possible cluster consisting
of points {ci+1, ci+2, · · · , cj} we define an edge (pi, pj). So (pi, pj) is an edge iff

(1) i + r ≤ j ≤ i + 2r − 1
(2) i ≥ i′ where ci′ is the 2r-th customer on the left of mL, and
(3) j ≤ j′ where cj′ is the 2r-th customer on the right of mR,

where mL and mR are defined for fh as above. Let Eh be the set of edges
consisting of edges defined for fh above. Simillarly we define E1 and Em.

Finally,

E = E1 ∪ E2 ∪ · · · ∪ Em

Note that E may contain many multi-edges.
The weight of an edge (pi, pj) for fh is the maximum of (1) the distance

between ci+1 and fh, and (2) the distance between cj and fh.
The cost of a directed path from p0 to pn is defined by the weight of the edge

having the maximum weight in the directed path. The min-max path from p0 to
pn is the directed path from p0 to pn with the minimum cost.

We need to compute for each fh the 2r-th customer on the left of mL and the
2r-th customer on the right of mR. By scanning the line we can compute them
for all fh in O(|F | + |C|) time in total. Note that each edge in E corresponds to
a pair of customers possibly assigning to a common facility. Thus the number of
the edges in E is at most 81r2|F | by Lemma 8. Thus we can construct D(V,E)
in O(|F | + |C| + r2|F |) time in total.

Similar to Sect. 2 we have reduced the r-gathering problem to the min-max
path problem, and have the following theorem.

Theorem 2. When both C and F are on the line one can solve the r-gathering
problem in O(n + r2m) time, where n = |C| and m = |F |.

A Simple Algorithm for r-gatherings on the Line 7

4 Conclusion

In this paper we have presented an algorithm to solve the r-gather clustering
problem when all C are on the line. The running time of the algorithm is O(rn),
where n = |C|. We also presented an algorithm to solve the r-gathering problem,
which runs in time O(n + r2m), where n = |C| and m = |F | < n.

Can we solve the problem more efficiently or for more general input or cost?

References

[AF1] Aggarwal, G., Feder, T., Kenthapadi, K., Khuller, S., Panigrahy, R., Thomas,
D., Zhu, A.: Achieving anonymity via clustering. Trans. Algorithms 6 (2010).
Article No. 49

[AS1] Agarwal, P., Sharir, M.: Efficient algorithms for geometric optimization. Com-
put. Surv. 30, 412–458 (1998)

[AN1] Akagi, T., Nakano, S.: On r-gatherings on the line. In: Wang, J., Yap, C. (eds.)
FAW 2015. LNCS, vol. 9130, pp. 25–32. Springer, Cham (2015). https://doi.
org/10.1007/978-3-319-19647-3 3

[A] Armon, A.: On min-max r-gatherings. Theor. Comput. Sci. 412, 573–582 (2011)
[D1] Drezner, Z.: Facility Location: A Survey of Applications and Methods. Springer,

New York (1995)
[DH1] Drezner, Z., Hamacher, H.W.: Facility Location: Applications and Theory.

Springer, New York (2004)
[FJ1] Frederickson, G., Johnson, D.: Generalized selection and ranking: sorted matri-

ces. SIAM J. Comput. 13, 14–30 (1984)
[GT1] Gabow, H., Tarjan, R.: Algorithms for two bottleneck optimization problems.

J. Algorithms 9, 411–417 (1988)
[HN1] Han, Y., Nakano, S.: On r-gatherings on the line. In: Proceedings of FCS 2016,

pp. 99–104 (2016)

https://doi.org/10.1007/978-3-319-19647-3_3
https://doi.org/10.1007/978-3-319-19647-3_3

Enumeration of Nonisomorphic Interval Graphs
and Nonisomorphic Permutation Graphs

Kazuaki Yamazaki1, Toshiki Saitoh2, Masashi Kiyomi3, and Ryuhei Uehara1(B)

1 School of Information Science, Japan Advanced Institute of Science
and Technology (JAIST), Nomi, Japan

{torus711,uehara}@jaist.ac.jp
2 School of Computer Science and Systems Engineering,

Kyushu Institute of Technology, Kitakyushu, Japan
toshikis@ces.kyutech.ac.jp

3 International College of Arts and Sciences,
Yokohama City University, Yokohama, Japan

masashi@yokohama-cu.ac.jp

Abstract. In this paper, a general framework for enumerating every ele-
ment in a graph class is given. The main feature of this framework is that
it is designed to enumerate only non-isomorphic graphs in a graph class.
Applying this framework to the classes of interval graphs and permu-
tation graphs, we give efficient enumeration algorithms for these graph
classes such that each element in the class is output in a polynomial time
delay. The experimental results are also provided. The catalogs of graphs
in these graph classes are also provided.

1 Introduction

Recently we have to process huge amounts of data in the area of data mining,
bioinformatics, etc. In most cases, we have to use some certain structure to
solve problems efficiently. We need three efficiencies to deal with a complex
structure; it has to be represented efficiently, essentially different instances have
to be enumerated efficiently, and its properties have to be checked efficiently.
From the viewpoint of the “difference,” in graphs, it is natural to consider that
two graphs are different when they are non-isomorphic. However, in general,
the graph isomorphism problem is difficult to solve efficiently even on restricted
graph classes (see [19]). Though, there are rich structures even if we restricted
to the graph classes that allow us to solve graph isomorphism efficiently.

We investigate the enumeration of a graph class from this viewpoint in this
paper. In this context, there are two previous results by some of the authors
[16,17]. In the paper, the authors gave efficient enumeration algorithms for
proper interval graphs and bipartite permutation graphs. However, they are quite
specific to some common properties of these graph classes, and it is unlikely to
extend to other graph classes. Therefore, we focus on some graph classes such
that graph isomorphism can be solved efficiently, and we develop a general frame-
work that gives us to enumerate all non-isomorphic graphs with n vertices for
c© Springer International Publishing AG, part of Springer Nature 2018
M. S. Rahman et al. (Eds.): WALCOM 2018, LNCS 10755, pp. 8–19, 2018.
https://doi.org/10.1007/978-3-319-75172-6_2

Enumeration of Nonisomorphic Interval Graphs 9

a given integer n, in each of these graph classes. Intuitively, most of the graph
classes in which graph isomorphism can be solved in polynomial time share a
common property: Each graph in the graph class can be characterized by a
canonical tree structure, and graph isomorphism can be checked essentially by
solving the graph isomorphism problem on these labeled trees [12].

There are two well-known graph classes that graph isomorphism can be solved
in polynomial time in this manner; interval graphs [14] and permutation graphs
[4]. We mention that these graph classes have been widely investigated since
they have many applications, and they are very basic graph classes from the
viewpoints of graph theory and algorithms. Therefore many useful properties
have been revealed, and many efficient algorithms have been developed for them
(see, e.g., [3,7,18]). From the practical point of view, when an efficient algorithm
for a graph class is developed and implemented, we need many graphs belonging
to the class to check the reliability of the algorithm. Thus, for such popular graph
classes, efficient enumerations are required [9]. However, as far as the authors
know, these concrete catalogs for these graph classes have never been provided.

In this paper, we first propose a general framework of enumeration of a graph
class in which graph isomorphism can be solved in polynomial time. Then we turn
to the details of applications of this framework to interval graphs and permuta-
tion graphs. We finally give the experimental results of the implementations for
these graph classes. That is, we give the first actual catalogs of non-isomorphic
graphs for these graph classes for small n, where n is the number of vertices.
(We note that, for interval graphs, some related results can be found in [8] from
the viewpoint of counting, not enumeration.) Due to space limitation, all proofs
and some figures are omitted.

2 Preliminaries

We only consider simple graph G = (V,E) with no self-loop and multiple edges.
We assume V = {1, 2, . . . , n} for some n, and |E| = m. For two integers i, j, we
denote by G + {i, j} the graph (V,E ∪ {{i, j}}), and by G − {i, j} the graph
(V,E\{{i, j}}). Let Kn denote the complete graph of n vertices and Pn denote
the path of n vertices of length n − 1.

A graph (V,E) with V = {1, 2, . . . , n} is an interval graph when there is a
finite set of intervals I = {I1, I2, . . . , In} on the real line such that {i, j} ∈ E if
and only if Ii ∩ Ij �= ∅ for each i and j with 0 < i, j ≤ n. We call the interval
set I an interval representation of the graph. For each interval I, we denote by
L(I) and R(I) the left and right endpoints of the interval, respectively (hence
we have L(I) ≤ R(I) and I = [L(I), R(I)]).

A graph G = (V,E) with V = {1, 2, . . . , n} is a permutation graph when there
is a permutation π over V such that {i, j} ∈ E if and only if (i−j)(π(i)−π(j)) <
0. Intuitively, each vertex i in a permutation graph corresponds to a line �i joining
two points on two parallel lines L1 and L2 such that two vertices i and j are
adjacent if and only if the corresponding lines �i and �j intersect. We suppose
that the indices 1, 2, . . . , n of the vertices give the ordering of the points on L1,

10 K. Yamazaki et al.

and the ordering by permutation π over V gives the ordering of the points on
L2. That is, �i joins the ith vertex on L1 and the π(i)th vertex on L2. We call
this intersection model a line representation of the permutation graph.

We define a graph isomorphism between two graphs G1 = (V1, E1) and G2 =
(V2, E2) as follows. The graph G1 is isomorphic to G2 when there is a one-to-one
mapping φ : V1 → V2 such that for any pair of vertices u, v ∈ V1, {u, v} ∈ E1 if
and only if {φ(u), φ(v)} ∈ E2. We denote by G1 ∼ G2 for two isomorphic graphs
G1 and G2.

3 General Framework

For a graph class C, we suppose that the graph isomorphism can be solved in
polynomial time for C. We denote by Iso(n) the time complexity for solving the
graph isomorphism problem for two graphs G1 and G2 of n vertices in the class
C. Here we define the notion of the canonical graph for any given graph G in C
with respect to the graph isomorphism. We first suppose that we can define a
transitive ordering < over isomorphic graphs in C. That is, (1) either G1 < G2

or G2 < G1 holds for any given two graphs G1 = (V,E1) and G2 = (V,E2) such
that G1 ∼ G2 and E1 �= E2, and (2) when G1 < G2 and G2 < G3 for three
isomorphic graphs G1, G2, G3, we have G1 < G3. Then there exists a unique
minimal graph G for any set of all isomorphic graphs in C. We call this graph G
the canonical graph. Our goal is to enumerate all canonical graphs in the class
C. To this goal, we will use the following properties of the class C:

Canonical property: For any graph G in C, we can compute its canonical
graph in polynomial time. That is, the canonical property guarantees that any
graph G can be dealt with its canonical form (in polynomial time).

We use reverse search technique to enumerate all graphs (see [1] for the details
about reverse search). In reverse search, we define a family tree T over the graphs
in the target graph class C by introducing a parent-child relationship between
two graphs G and G′ in C. More precisely, in the class C, we first fix a root node1

GR ∈ C. In this paper, we will use Kn as the root node GR, since Kn belongs
to interval graphs and permutation graphs. For each graph G ∈ C\{GR}, we
assume that its parent G′ of G is uniquely defined and computed in polynomial
time. We will define the parent-child relationship so that it is acyclic, it forms a
tree on the graphs rooted at GR in C. Thus we call the resulting tree spanning
the class C family tree, and denoted by T .

For the current graph G, we will modify G by some basic operation to find
its parent or children in T of the class C. In this paper, we will use “add an
edge” as a basic operation to find its parent. The key requirement is that the
parent should be uniquely determined for each graph except the root node in T .

1 We use two terms “node” and “vertex” to indicate an element in a graph. When
we use “vertex,” it indicates a vertex in the original graph G in the class C. On the
other hand, when we use “node,” it indicates meta-structure of graphs. That is, a
“node” in T indicates a graph in the class C.

Enumeration of Nonisomorphic Interval Graphs 11

In an interval graph (or in a permutation graph) G which is not Kn, there is at
least one edge e such that G + e is an interval graph (or a permutation graph,
respectively). When there are two or more such edges e, we have to determine
the unique parent efficiently. To determine the unique parent for any given graph
G ∈ C\{GR}, we need the following operational property :

Operational property: Let G be any graph in C\{GR}, where GR is the root
node of T of C. Then, there exists at least one graph G′ ∈ C such that G′ is
obtained from G by applying one basic operation. Moreover, we can find minimal
G′, which is determined uniquely, among them in polynomial time.

The operational property guarantees that we can find a unique parent of G
for a given graph G in C\{GR} in polynomial time. However, in reverse search, a
graph G produces the set of potential children S(G). Precisely, the algorithm first
produces a set of graphs S′(G) that consists of the graphs obtained by applying
the reverse of basic operation. In our context, S′(G) is the set of graph G − e
for each edge e. It is guaranteed that all children in the family tree are in S′(G),
but there may be redundant graphs. There are three considerable cases. The first
case is easy; when G − e is not in C, just discard it. The second case is that G
produces two or more isomorphic graphs by the reverse of basic operation. For
example, when G is a complete graph and the basic operation is “add an edge,”
G produces all graphs G−{i, j} for all 1 ≤ i, j ≤ n as potential children of G. In
this case, the algorithm discards all isomorphic graphs except one. Let S(G) be
the set of the nonisomorphic graphs in C obtained from G by the reverse of basic
operation. The last considerable case is that the graph G′ ∈ S(G) has a different
parent. This case occurs when G′ has two (or more) edges e1 and e2 such that
G′ + e1 ∈ C and G′ + e2 ∈ C. In this case, G′ appears in both of S(G′ + e1) and
S(G′ + e2). To avoid redundancy, G′ will check which is the unique parent.

Now we are ready to show the outline of the enumeration algorithm:

Algorithm 1. Outline of Enumeration Algorithm based on Reverse Search
Input : An integer n
Output: All nonisomorphic graphs of n vertices in a graph class C
A set S is initialized by the root node of the family tree of C;
while S is not empty do

Pick up one node that represents a graph G = (V,E) in the class C;
Output G as an element in the class C;
Compute the set S(G) of nonisomorphic graphs in C obtained by the
reverse of basic operation;
// G may produce two or more isomorphic graphs, which

should be avoided here.
foreach G′ ∈ S(G) do

// Check if G is the unique parent of G′.
Compute the unique parent Ĝ′ of G′;
If Ĝ′ is isomorphic to G, push G′ into S;

12 K. Yamazaki et al.

The algorithm enumerates all elements in breadth first search (BFS) manner
when S is realized by a queue, and in depth first search (DFS) manner when S
is realized by a stack. Hereafter, we suppose that it runs in BFS, which makes
proof of correctness simpler.

Let C be the graph class satisfying the properties above. Then we have the
main theorem for the framework:

Theorem 1. We can enumerate all nonisomorphic graphs of n vertices in C
with polynomial time delay. That is, the running time of the algorithm is |Cn|p(n)
for some polynomial function p, where Cn denotes the subset of C that contains
all graphs of n vertices in C.

By Theorem 1, we can establish that there are several graph classes that
admit to enumerate all elements in the class in polynomial time delay. How-
ever, the efficiency of the enumeration is strongly depending on the detailed
implementation for each class. We show two efficient implementations for two
representative graph classes; interval graphs and permutation graphs. We also
show experimental results, that is, we give catalogs for these graph classes. In
both of interval graphs and permutation graphs, we let Kn be the root node of
the family tree, and basic operation is “add an edge” to obtain the parent.

4 Enumeration of Nonisomorphic Interval Graphs

We first focus on the enumeration of interval graphs of n vertices. Let C be the
set of interval graphs of n vertices in this section. We first show the operational
property for C\{GR}, where GR ∼ Kn. (We note that Kn is not only an interval
graph, but also a permutation graph, and we use it as a common root node of
the family trees for both graph classes.)

Lemma 1 [11]. Let G = (V,E) be any interval graph which is not Kn. Then G
has at least one edge e such that G + e is also an interval graph.

4.1 Canonical Representation

We turn to the canonical representation of an interval graph. We first show the
canonical tree structure, and then we give how to obtain a canonical represen-
tation for the graph.

Canonical Tree Representation. As the tree structure for an interval graph,
we use the MPQ-tree model. The notion was developed by Korte and Möhring
[13] as a kind of labeled PQ-tree introduced by Booth and Lueker [2]. We here
give a brief idea, and the details can be found in journal version.

A PQ-tree is a rooted tree T ∗ with two types of internal nodes: P and Q,
which will be represented by circles and rectangles, respectively. The leaves of T ∗

are labeled 1-1 with the maximal cliques of the interval graph G. The frontier
of a PQ-tree T ∗ is the permutation of the maximal cliques obtained by the

Enumeration of Nonisomorphic Interval Graphs 13

ordering of the leaves of T ∗ from left to right. Two PQ-trees T ∗ and T ′∗ are
equivalent, if one can be obtained from the other by applying the following rules;
(1) arbitrarily permute the child nodes of a P-node, or (2) reverse the order
of the child nodes of a Q-node. A graph G is an interval graph if and only if
there is a PQ-tree T ∗ whose frontier represents a consecutive arrangement of
the maximal cliques of G. The MPQ-tree T assigns sets of vertices (possibly
empty) to the nodes of a PQ-tree T ∗ representing an interval graph. A P-node
is assigned only one set, while a Q-node has a set for each of its children (ordered
from left to right according to the ordering of the children).

For a P-node P , this set consists of those vertices of G contained in all
maximal cliques represented by the subtree of P in T , but in no other cliques.

For a Q-node Q, the definition is more involved. Let Q1, · · · , Qm be the set
of the children (in consecutive order) of Q, and let Ti be the subtree of T with
root Qi. We then assign a set Si, called section, to each Qi. Section Si contains
all vertices that are contained in all maximal cliques of Ti and some other Tj ,
but not in any clique belonging to some other subtree of T that is not below Q.
The key property of MPQ-trees is summarized as follows:

Theorem 2 [13, Theorem 2.1]. Let T be the MPQ-tree for an interval graph
G = (V,E). Then we have the following: (a) T can be computed in linear time
and space. (b) Each maximal clique of G corresponds to a path in T from the
root to a leaf, where each vertex v ∈ V is as close as possible to the root. (c) In
T , each vertex v appears in either one leaf, one P-node, or consecutive sections
Si, Si+1, · · · , Si+j for some Q-node with j > 0.

For two interval graphs G1 and G2, let T1 and T2 be the corresponding
MPQ-trees. Then G1 ∼ G2 if and only if T1 ∼ T2 (as labeled trees).

1L

2

3L
4

5

6,7

12

8

9 10 11

φ

3R

1R

8
4 1 3

6
7019 2

11 215

9

10

1

2

5

7

8
4

3 12

6

11(A) (Β)

(C)

Fig. 1. An interval graph, its interval representation, and its corresponding MPQ-tree.

A simple example is given in Fig. 1. For a given interval graph G in Fig. 1(A),
its interval representation is given in Fig. 1(B), and the corresponding MPQ-tree
is given in Fig. 1(C).

14 K. Yamazaki et al.

Canonical String Representation. The MPQ-tree T for an interval graph
G = (V,E) is the canonical form in the sense that for any two isomorphic interval
graphs G1 ∼ G2, the resulting MPQ trees T1 and T2 are also isomorphic and
they can be used to solve the graph isomorphism problem for G1 and G2 in
linear time since it can be solved in linear time on such labeled trees. We further
introduce a canonical string representation for a given interval graph to decide
the parent of an interval graph uniquely. Intuitively, we will introduce a string
representation for an interval graph so that if two interval graphs are isomorphic,
their corresponding strings are exactly the same. We here define two basic cases:
a complete graph Kn is represented by 1234 . . . (n − 1)nn(n − 1) . . . 4321 and
a path Pn is represented by 1213243 . . . i(i − 1)(i + 1)i . . . n(n − 1)n. To define
general canonical string representations, we need more details. The translation
from a given MPQ-tree to the canonical string consists of three phases.

2L

7

3L
4

8

5,6

10

1

11 129

φ

3R

2R

1L2L5L6L8L8R9L9R10L10R6R5R3L7L7R2R11L11R12L12R3R4L4R1R

1L2L5L6L6R5R3L7L7R2R3R4L4R1R

1L2L3L2R3R4L4R1R

1L1R(D) (E)

Fig. 2. The MPQ-tree in left-to-right ordering with relabeling, and its canonical string.

First, we draw the MPQ-tree as an ordered tree which is a rooted tree with
left-to-right ordering specified by the children of each node. The children for a
node are arranged in the ordering from “left-heavy” to “right-light.” That is, we
introduce a total ordering over all MPQ-trees that is a transitive relationship.
This idea can be found in [10], and the details of the ordering for an MPQ-tree
is omitted here. The key property of the ordering is that Ind(T1) and Ind(T2) for
two MPQ-trees are equal if and only if they are isomorphic. Once we draw the
MPQ-tree in the way of the ordered tree defined by the ordering, two drawings
of T1 and T2 are the same (except vertex labelings) if and only if they are
isomorphic.

In the second phase, we relabel the vertices V = {1, 2, 3, . . . , n} according
to the ordering in the breadth first search manner on the drawing of the tree.
(We suppose that a left node is visited before a right node.) By this traverse of
vertices of V in the nodes in a MPQ-tree with the basic rule that the canonical
representation of Kn is 1234 . . . (n − 1)nn(n − 1) . . . 4321, we can observe that
two MPQ-trees T1 and T2 are isomorphic if and only if the resulting drawings
are completely the same including the labels of vertices in V . In this sense, we
call the relabeled MPQ-tree T for an interval graph G the canonical MPQ-tree

Enumeration of Nonisomorphic Interval Graphs 15

of G. For example, when we apply this process to the MPQ-tree in Fig. 1(C),
we obtain the canonicalized MPQ-tree in Fig. 2(D).

In the last phase, we again traverse this canonical MPQ-tree T in breadth
first search manner and generate the canonical string of T as follows: for a P-
node, the algorithm first outputs all left endpoints of the vertices in the node,
make recursive calls for each of its children, and output all right endpoints of the
vertices in the node following the basic rule of Kn. For a Q-node, the algorithm
processes each section by section in the Q-node. Let StrI(G) be resulting string
representation for a given interval graph G. From the canonicalized MPQ-tree
in Fig. 2(D), we obtain the canonical string “1 2 5 6 8 8 9 9 10 10 6 5 3 7 7 2
11 11 12 12 3 4 4 1.” In Fig. 2(E), we add L and R that indicate left and right
endpoints, respectively. We also give each corresponding string for each subtree
rooted at the original root up to level 0, 1, 2, and 3. Combining the results in
[13] and definitions above, we obtain the following theorem.

Theorem 3. Let G = (V,E) be any interval graph with |V | = n and |E| = m.
(1) The canonical MPQ-tree of G and StrI(G) can be computed in O(n + m)
time. (2) |StrI(G)| = 2n. (3) Two interval graphs G1 and G2 are isomorphic if
and only if StrI(G1) = StrI(G2).

4.2 Parent-Child Relationship

As shown in Lemma 1, for any given interval graph G = (V,E) with G �∼ Kn,
there is at least one edge e = {u, v} with e �∈ E such that G+e is also an interval
graph. For the graph G, let T be the canonical MPQ-tree of G. Without loss
of generality, we assume that T is consistent to G from the viewpoint of labels.
That is, when we make T from G, the relabeling process does not change any
label of a vertex in V . By Theorem 3, these G and T can be obtained in linear
time. Now we let Ê = {e = {u, v} | G + e is an interval graph}. Among Ê, we
can pick up a unique edge ê that is the lexicographically smallest element in Ê.
We define the parent of G by G + ê. Clearly, the parent is uniquely determined.

Theorem 4. Let G = (V,E) be any interval graph with |V | = n and |E| = m.
Then its parent can be computed in O(n2(n + m)) time.

4.3 Algorithm Analysis

We here analyze the algorithm and show that each graph is enumerated in poly-
nomial time, which guarantees that this algorithm achieves the polynomial time
delay for each graph. The root node can be enumerated in polynomial time since
it contains Kn. For each graph G in C, we evaluate its running cost consists of
its output, the computation of S(G), and the process for each G′ ∈ S(G). The
output of G takes O(n + m) time. In this framework with the basic operation,
the set S(G) contains at most m children, each of which is obtained from G by
removing an edge. It takes O(m(n+m)) time (by maintaining the set of canonical
string representations in a reasonable data structure, e.g., trie (or prefix tree), we

16 K. Yamazaki et al.

can reduce isomorphic graphs in this process). Then we obtain the set of O(m)
graphs, and each G′ of them has n vertices and m − 1 edges. Now the algorithm
checks if the unique parent of each G′ is G or not. It takes O(n2(n + m)) time
by Theorem 4 for each. Thus, this process takes O(n2m(n + m)) time in total.
Therefore, each graph consumes O(n2m(n+m)) time in total when it is output.
Since m = O(n2) in general, our enumeration algorithm runs in O(n6) time per
graph.

Our main theorem in this section is summarized as follows:

Theorem 5. We can enumerate every nonisomorphic interval graph of n ver-
tices. Each interval graph is enumerated in O(n6) time delay.

4.4 Three Variants of Enumeration

Corollary 1. The algorithm in Theorem 5 can be modified to enumerate (1)
connected graphs, and/or (2) at most n vertices. In any variant, the delay is not
changed from O(n′6), where n′ is the number of vertices of the output graph.

5 Enumeration of Nonisomorphic Permutation Graphs

We next focus on the enumeration of permutation graphs of n vertices. Let C
be the set of permutation graphs of n vertices in this section. We first show the
operational property for C\{GR}, where GR ∼ Kn.

Lemma 2. Let G = (V,E) be any permutation graph which is not Kn. Then G
has at least one edge e such that G + e is also a permutation graph.

5.1 Canonical Representation

Now we turn to the canonical representation of permutation graphs. First, we
introduce the notion of modular decomposition tree.

Canonical Tree Representation. For a graph G = (V,E), a vertex set X ⊆ V
is a module if and only if every vertex x not in X, either every member of X
is adjacent to x or no member of X is adjacent to x. (See [15] for the details.)
Trivial modules are ∅, V , and all the singletons {v} for v ∈ V . A graph (or a
module) is prime if and only if all its modules are trivial. For any permutation
graph G, G has a unique line representation (up to reversal) if and only if it is
prime [6].

In [6], Gallai defined the modular decomposition recursively on a graph with
vertex set V . Intuitively, maximal modules give a unique partition of V recur-
sively, and we have a tree structure with respect to the partition, which is called
the modular decomposition tree. In a modular decomposition tree T , if all chil-
dren are joined by edges in the original graph, the parent of them is called series
node, and if all children are independent, the parent is called parallel node.

Enumeration of Nonisomorphic Interval Graphs 17

It is well known that the modular decomposition tree for a permutation graph
(1) is canonical up to isomorphism [4], and (2) can be computed in linear time
and space (see, e.g., [5]).

In out context, this fact can be summarized as follows. For two given permu-
tation graphs G1 and G2, let T1 and T2 be their modular decomposition trees.
Then G1 ∼ G2 if and only if (1) T1 and T2 satisfy T1 ∼ T2 (as labeled trees),
and (2) corresponding prime modules are isomorphic.

Canonical String Representation. The modular decomposition tree T for a
permutation graph G = (V,E) is the canonical form. As considered for interval
graphs, we again introduce a canonical string representation for a given permu-
tation graph as follows.

We first consider the case that G = (V,E) is a prime module. In this case, as
mentioned, G has a unique line representation up to reversal, and hence G has
two representations given by two permutations π and π′ with π = π′−1. Each
permutation can be represented by a string of length n such that every integer
i ∈ {1, . . . , n} appears exactly once. (E.g., P3 is represented by either 231 or
312.) Therefore, we can choose lexicographically smaller one of π and π′ as the
canonical string representation of G. (E.g., the canonical string representation
of P3 is 231.)

Now we turn to the general case. This case is similar to the case of interval
graphs. We first fix the drawing of the modular decomposition tree according to
a total ordering. Then, we can fix the ordering of modules, and then the corre-
sponding line representation is uniquely determined. We then relabel all vertices
in V such that they appear as 1, 2, . . . , n on L1. From this line representation, we
can obtain the unique permutation π on L2. We regard this π as the canonical
string representation of G.

Now the following theorem is straightforward from the results in [4–6] and
definitions above.

Theorem 6. Let G = (V,E) be any permutation graph with |V | = n and
|E| = m. (1) the canonical modular decomposition tree and the canonical string
representation of G can be computed in O(n + m) time. (2) Two permutation
graphs G1 and G2 are isomorphic if and only if π1 = π2, where πi is the canonical
string representation of Gi.

5.2 Parent-Child Relationship

As shown in Lemma 2, for any given permutation graph G = (V,E) with
G �∼ Kn, there is at least one edge e = {u, v} with e �∈ E such that G + e
is also a permutation graph. Therefore, we can use the same idea used in inter-
val graphs. For a given permutation graph G, let T be the canonical modular
decomposition tree of G. We assume that we relabel G according to its canon-
ical string representation, and T is the corresponding tree. It can be obtained
from the original permutation graph in linear time by Theorem 6. Now we let
Ê = {e = {u, v} | G + e is a permutation graph}. Let ê be the lexicographically
smallest element in Ê. We define the unique parent of G by G + ê.

18 K. Yamazaki et al.

Theorem 7. Let G = (V,E) be any permutation graph with |V | = n and |E| =
m except Kn. Then its parent can be computed in O(n2(n + m)) time.

5.3 Algorithm Analysis

We here turn to analyze the algorithm. Replacing Theorem 4 by Theorem 7, the
analysis is as the same as the case on interval graphs. Therefore, we obtain the
following theorem and corollary.

Theorem 8. We can enumerate every nonisomorphic permutation graph of n
vertices. Each permutation graph is enumerated in O(n6) time delay.

Corollary 2. The algorithm in Theorem 8 can be modified to enumerate (1)
connected graphs, and/or (2) at most n vertices. In any variant, the delay is not
changed from O(n′6), where n′ is the number of vertices of the output graph.

6 Experimental Results

We implemented the proposed algorithms. The number of vertices and the num-
ber of non-isomorphic graphs are summarized as follows, and all these graphs
are available at http://www.jaist.ac.jp/∼uehara/graphs.

of vertices 1 2 3 4 5 6 7 8 9 10 11 12

of interval
graphs

1 2 4 10 27 92 369 1807 10344 67659 491347 3894446

of connected
int. graphs

1 1 2 5 15 56 250 1328 8069 54962 410330 3317302

of permutation
graphs

1 2 4 11 33 138 - - - - - -

of conn. perm.
graphs

1 1 2 6 20 101 - - - - - -

7 Concluding Remarks

We propose a general framework that enumerates all nonisomorphic elements in
a graph class in which graph isomorphism can be solved in polynomial time. As
applications, we give two implementations of the framework for interval graphs
and permutation graphs. The first open problem is efficiency. The implementa-
tions for the graph classes ran in O(n6) time, and the real implementation ran
up to some certain n, and we succeeded to give real catalogs for these classes.
If we can improve running time, we can list up to larger n. The other future
work is to extend this framework to more general classes. Even if graph isomor-
phism cannot be solved in polynomial time, we may enumerate all nonisomorphic
graphs up to some certain n for some simple graph classes.

http://www.jaist.ac.jp/~uehara/graphs

Enumeration of Nonisomorphic Interval Graphs 19

Acknowledgements. This work was supported by JSPS KAKENHI Grant Numbers
26330009, 24106004, 16K1606, and 17H06287, and JST CREST JPMJCR1402.

References

1. Avis, D., Fukuda, K.: Reverse search for enumeration. Discrete Appl. Math. 65,
21–46 (1996)

2. Booth, K.S., Lueker, G.S.: Testing for the consecutive ones property, interval
graphs, and graph planarity using PQ-tree algorithms. J. Comput. Syst. Sci. 13,
335–379 (1976)

3. Brandstädt, A., Le, V.B., Spinrad, J.P.: Graph Classes: A Survey. SIAM,
Philadelphia (1999)

4. Colbourn, C.J.: On testing isomorphism of permutation graphs. Networks 11,
13–21 (1981)

5. Crespelle, C., Paul, C.: Fully dynamic algorithm for recognition and modular
decomposition of permutation graphs. Algorithmica 58(2), 405–432 (2009)

6. Gallai, T.: Transitiv orientierbare Graphen. Acta Mathematica Academae Scien-
tiarum Hungaricae 18, 25–66 (1967)

7. Golumbic, M.C.: Algorithmic Graph Theory and Perfect Graphs. Annals of Dis-
crete Mathematics, vol. 57, 2nd edn. Elsevier, Amsterdam (2004)

8. Hanlon, P.: Counting interval graphs. Trans. Am. Math. Soc. 272(2), 383–426
(1982)

9. Heggernes, P.: Personal communication (2013)
10. Nakano, S., Uno, T.: Constant time generation of trees with specified diameter.

In: Hromkovič, J., Nagl, M., Westfechtel, B. (eds.) WG 2004. LNCS, vol. 3353, pp.
33–45. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30559-0 3

11. Kiyomi, M., Kijima, S., Uno, T.: Listing chordal graphs and interval graphs. In:
Fomin, F.V. (ed.) WG 2006. LNCS, vol. 4271, pp. 68–77. Springer, Heidelberg
(2006). https://doi.org/10.1007/11917496 7

12. Köbler, J., Schöning, U., Torán, J.: The Graph Isomorphism Problem: Its Struc-
tural Complexity. Birkhäuser, Basel (1993)

13. Korte, N., Möhring, R.H.: An incremental linear-time algorithm for recognizing
interval graphs. SIAM J. Comput. 18(1), 68–81 (1989)

14. Lueker, G.S., Booth, K.S.: A linear time algorithm for deciding interval graph
isomorphism. J. ACM 26(2), 183–195 (1979)

15. McConnell, R.M., Spinrad, J.P.: Modular decomposition and transitive orientation.
Discrete Math. 201, 189–241 (1999)

16. Saitoh, T., Otachi, Y., Yamanaka, K., Uehara, R.: Random generation and enu-
meration of bipartite permutation graphs. J. Discrete Algorithms 10, 84–97 (2012).
https://doi.org/10.1016/j.jda.2011.11.001

17. Saitoh, T., Yamanaka, K., Kiyomi, M., Uehara, R.: Random generation and enu-
meration of proper interval graphs. IEICE Trans. Inf. Syst. E93–D(7), 1816–1823
(2010)

18. Spinrad, J.P.: Efficient Graph Representations. American Mathematical Society,
Providence (2003)

19. Uehara, R., Toda, S., Nagoya, T.: Graph isomorphism completeness for chordal
bipartite graphs and strongly chordal graphs. Discrete Appl. Math. 145(3),
479–482 (2004)

https://doi.org/10.1007/978-3-540-30559-0_3
https://doi.org/10.1007/11917496_7
https://doi.org/10.1016/j.jda.2011.11.001

Secret Key Amplification from Uniformly
Leaked Key Exchange Complete Graph

Tatsuya Sasaki1(B), Bateh Mathias Agbor1, Shingo Masuda1,
Yu-ichi Hayashi2, Takaaki Mizuki3, and Hideaki Sone3

1 Graduate School of Information Sciences, Tohoku University,
6–3–09 Aramaki-Aza-Aoba, Aoba, Sendai 980–8579, Japan

tatsuya.sasaki.p2@dc.tohoku.ac.jp
2 Nara Institute of Science and Technology,

8916–5 Takayama, Ikoma, Nara 630–0192, Japan
3 Cyberscience Center, Tohoku University,

6–3 Aramaki-Aza-Aoba, Aoba, Sendai 980–8578, Japan
tm-paper+plkzen@g-mail.tohoku-university.jp

Abstract. We assume that every pair of n players has shared a one-bit
key in advance, and that each key has been completely exposed to an
eavesdropper, Eve, independently with a fixed probability p (and, thus,
is perfectly secure with a probability of 1 − p). Using these pre-shared,
possibly leaked keys, we want two designated players to share a common
one-bit secret key in cooperation with other players so that Eve’s knowl-
edge about the generated secret key will be as small as possible. The
existing protocol, called the st-flow protocol, achieves this, but the spe-
cific probability that Eve knows the generated secret key is unknown. In
this study, we answer this problem by showing the exact leak probability
as a polynomial in p for any number n of players.

Keywords: Key exchange graph · st-numbering
Key agreement protocol · Privacy amplification
Network reliability problem

1 Introduction

Assume that there are n players and an eavesdropper, Eve, where several pairs of
players have shared one-bit secret keys in advance. This situation is represented
by an undirected multigraph G = (V,E), such that each player corresponds to
a vertex v ∈ V , and each pair of players sharing a key corresponds to an edge
e ∈ E. The graph G is called a key exchange graph, and we express the key
corresponding to an edge e as ke ∈ {0, 1}. Figure 1 shows an example of a key
exchange graph, Gex, in which players s and t, s and v, and v and t have shared
one-bit keys kst, ksv, and kvt, respectively.

The pre-shared keys in the key exchange graph G = (V,E) were obtained
using, for example, the Diffie-Hellman key exchange, the RSA algorithm, quan-
tum cryptography, snail mail, e-mail, or face-to-face communication. Further-
more, we assume that some of these keys have been leaked to Eve according to
c© Springer International Publishing AG, part of Springer Nature 2018
M. S. Rahman et al. (Eds.): WALCOM 2018, LNCS 10755, pp. 20–31, 2018.
https://doi.org/10.1007/978-3-319-75172-6_3

Secret Key Amplification from Uniformly Leaked Key Exchange 21

Fig. 1. A key exchange graph Gex = ({s, t, v}, {st, sv, vt})

a certain probability distribution (cf. [12,13]). That is, a leaked-edge set F ⊆ E
occurs according to a leak distribution L, meaning that all keys corresponding
to edges in F are known to Eve (while all keys corresponding to edges in E − F
are not known to Eve)1. We call the pair (G,L) of the key exchange graph
G = (V,E) and the leak distribution L on 2|E| a partially leaked key exchange
graph.

As an introduction to partially leaked key exchange graphs, we first define
some leak distributions for the graph Gex depicted in Fig. 1 by giving specific
probability distributions on 2{st,sv,vt}. The simplest is perhaps the uniform dis-
tribution, where each key leaks independently with a probability of a fixed value,
say 0.1; in this case, the leaked-edge set {kst, ksv, kvt} occurs with a probability
of 0.1 × 0.1 × 0.1, {kst, ksv} occurs with a probability of 0.1 × 0.1 × (1 − 0.1),
and so on. The leak distribution is then L1, as shown in Table 1.

Table 1. Leak distribution L1

In general, pre-shared keys might not leak independently. For example, for
graph Gex, the leak distribution L2 shown in Table 2 is also conceivable. Here,
the probability that all keys leak is 0.1, the probability that only kst leaks is 0.2,
and the probability that no keys leak is 0.7 (other events never occur).

We have shown two examples (Gex,L1) and (Gex,L2) of partially leaked key
exchange graphs. The problem we consider in this study is as follows. Given a
1 In this paper, the expression “Eve does not know key k” means the key is completely
unknown to Eve; that is, she cannot determine whether k = 0 or k = 1 with a
probability of more than 1/2.

22 T. Sasaki et al.

Table 2. Leak distribution L2

Leaked-edge set {kst, ksv, kvt} {kst} ∅
Occurrence probability 0.1 0.2 0.7

partially leaked key exchange graph (G,L), along with two players s and t in G,
we want s and t to share a common one-bit secret key u ∈ {0, 1} in cooperation
with other players so that the probability that Eve knows the generated secret
key u is small. When a protocol P results in s and t sharing a key u for (G,L),
we denote by EP(G,L, s, t), or simply EP(G,L), the probability that Eve knows
u shared by the two players2. Here, we do not care if players other than s
and t happen to know the generated secret key u. We assume that all players
and Eve have an authenticated public channel, as is usually assumed in privacy
amplification schemes (e.g., [2,4,16]).

Consider the partially leaked key exchange graph (Gex,L1) as an example.
If we use the pre-shared key kst as the secret key u, then the leak probability
of u to Eve is 0.1 (because each key in the graph leaks independently with a
probability of 0.1). Denoting this trivial protocol by P1, we have

EP1(G
ex,L1) = 0.1.

As another example, consider a protocol P2 that uses two keys ksv and kvt.
That is, player s first selects a random bit u, and then sends it to player v by
announcing u ⊕ ksv publicly, that is, using ksv as a one-time pad [14]. Next,
player v sends the received bit u to player t in a similar manner, resulting in s
and t sharing the same one-bit secret key u. In this case, the leak probability to
Eve is

EP2(G
ex,L1) = 1 − (1 − 0.1)2 = 0.19,

because the generated secret key u known to Eve only when at least one of keys
ksv and kvt leaks. (Note that player v learns the secret key u here, but this is
not relevant, as mentioned above.)

Combining the two protocols P1 and P2, we immediately have protocol P3

that uses all three pre-shared keys, as follows. We use protocol P1 to share secret
key u1, and use P2 to share u2 between s and t. Then, s and t can obtain the
desired secret key u = u1⊕u2 by XORing. Then, the probability that Eve knows
u is calculated as

EP3(G
ex,L1) = 0.1 × 0.19 = 0.019.

Figure 2 illustrates the three protocols P1, P2, and P3 using directed edges.
Of these three protocols, P3 is the best in terms of the leak probability of u to
Eve. In fact, there exists no protocol P such that

EP(Gex,L1) < EP3(G
ex,L1) = 0.019.

2 Note that the notation P in this paper denotes a protocol, not a power set.

Secret Key Amplification from Uniformly Leaked Key Exchange 23

Fig. 2. Illustrative protocols P1, P2, and P3

Here, P3 is simply the existing st-flow protocol [10] for the case of the partially
leaked key exchange graph (Gex,L1). The st-flow protocol always uses all pre-
shared keys in a given partially leaked key exchange graph, and it has been
proven that the leak probability to Eve through the st-flow protocol is always
minimized [10]. Therefore, for any partially leaked key exchange graph (G,L),
there is no protocol P such that EP(G,L) < Est-flow(G,L) (where the subscript
“st-flow” denotes the st-flow protocol). See Sect. 2 for further detail.

Although the st-flow protocol is optimal in terms of the leak probability to
Eve, it does have two issues.

1. The st-flow protocol exhausts all pre-shared keys in a given key exchange
graph. Therefore, it cannot deal with the case in which “designated players
do not need to minimize the leak probability so that they can leave some
keys for future use.” For example, people might be satisfied with protocol
P1, which has a leak probability of 0.1, leaving two keys fresh, rather than
achieving a leak probability of 0.019 using protocol P3, which exhausts all
three keys. Moreover, as described above, using two keys does not always
reduce the leak probability to Eve below that of using one key. Thus, how to
select pre-shared keys is an important issue.

2. There is no existing method that can determine the value Est-flow(G,L) effi-
ciently, that is, the probability that Eve knows u via the st-flow protocol,
for a given partially leaked key exchange graph (G,L). (We know that it is
minimized, but we do not know what the value is.)

One of the main difficulties in solving the above problems for any general
partially leaked key exchange graph (G,L) is that describing a leak distribution
L could need an exponential size in the number of edges in G. Therefore, we
restrict our attention to the class of uniformly leaked key exchange complete
graphs. That is, for a partially leaked key exchange graph (G,L), we assume that
G is a complete graph Kn (with n = |G|), meaning that every pair of players has
a pre-shared key, and L is uniform, such that each key leaks independently with
a fixed probability p. We denote such a uniformly leaked key exchange complete
graph as (Kn, p). Thus, the previous example of the leaked key exchange graph
(Gex,L1) can be written as (K3, 0.1).

24 T. Sasaki et al.

In this study, we aim to solve the two above-mentioned problems for uni-
formly leaked key exchange complete graphs (Kn, p). Specifically, in Sect. 3, we
give a straightforward protocol, denoted by P�

path, to provide a simple way of
selecting � pre-shared keys, with � ≤ 2n−3. As shown later, the leak probability
is calculated as

EP�
path

(Kn, p) = p(2p − p2)
�−1
2 ,

for an odd number �.
Now, how “relatively” small is EP�

path
(Kn, p)? To see this, we compare it with

Est-flow(Kn, p), which is the minimum leak probability. The simple protocol P�
path

uses at most 2n − 3 keys, while the st-flow protocol uses all (n2 − n)/2 keys in
a complete graph. This relates to the second problem above. In Sect. 4, we give
a complete answer to the second problem by proposing a method to produce
polynomials such as

Est-flow(K10, p) = 2p9 + 16p16 − 17p17 + 56p21 − 184p23 + 240p24

+70p25 − 504p27 − 392p28 + 812p29 − 840p30

−1736p31 + 2464p32 + 6314p33 − 11424p34 + 24304p35

−10640p36 − 36260p37 − 43680p39 + 263760p40

−172200p41 − 272160p42 + 433440p43 − 221760p44

+40320p45,

where n = 10. Of course, we can efficiently produce polynomials for any number
of players n using this method. Our method utilizes a well-known solution to
the two-terminal network reliability problem [3].

We compare the leak probabilities EP�
path

(Kn, p) and Est-flow(Kn, p) in Sect. 5
to describe the trade-off between the number of keys used and the leak probabil-
ity. Then, considering this trade-off, we analyze typical cases, and demonstrate
what kind of key selection would be effective.

Before presenting our results in Sects. 3, 4 and 5, we describe the properties
of the st-flow protocol [10] in Sect. 2.

As described thus far, this study deals with the key-generating problem using
a partially leaked key exchange graph, which can be considered a kind of “privacy
amplification” from partially leaked key exchange graphs. We assume that each
player knows only the pre-shared keys specified by the key exchange graph, and
that all communications among players are broadcast and, hence, are overheard
by Eve. Several previous studies follow the same assumption (e.g., [8,11]). Other
related studies have achieved secret transmission using partial communication
paths, such as Secure Message Transmission or Private Message Transmission,
rather than assuming a key exchange graph (e.g., [1,5–7,15]). Note that our
setting of this paper is different from those: in this paper, all messages are
broadcast even to Eve and, hence, our security is derived from pre-shared keys.

Secret Key Amplification from Uniformly Leaked Key Exchange 25

2 Known Results

In this section, we explain the properties of the st-flow protocol [10].
Although we omit the details, the st-flow protocol generates a directed graph

based on “st-numbering” [9], which minimizes the leak probability of the gener-
ated key u to Eve by utilizing all the pre-shared keys. Hence, given an arbitrary
partially leaked key exchange graph (G,L), it holds that

EP(G,L) ≥ Est-flow(G,L),

for any protocol P.
It is also known that we can characterize whether the generated key u leaks

using a graph theoretic property of leaked-edge sets. Specifically, as shown in
Fig. 3(a), if a leaked-edge set F separates players s and t, then the key u leaks
to Eve. On the other hand, as shown in Fig. 3(b), if a leaked-edge set F does not
separate s and t, then the key u does not leak to Eve.

Therefore, we have the following theorem, where we define the set of all
leaked-edge sets that separate s and t as

Sep(s, t;G) = {F ⊆ E | F separates s and t}
for a graph G = (V,E) and two vertices s and t in G.

Theorem 1 [10]. Let (G,L) be a partially leaked key exchange graph. For any
protocol P, it holds that

EP(G,L) ≥ Est-flow(G,L) =
∑

F∈Sep(s,t;G)

Pr(F),

where Pr(F) is the probability that leaked-edge set F occurs according to L.
Although Theorem 1 guarantees that Est-flow(G,L) is minimized, how to

determine its value analytically is unknown. (We solve this problem in Sect. 4.)

Fig. 3. (a) A leaked-edge set F separates s and t; (b) F does not separate s and t

26 T. Sasaki et al.

3 Simple Protocol for up to 2n − 3 Keys

As mentioned earlier, the st-flow protocol exhausts all (n2 − n)/2 pre-shared
keys in a complete graph. In this section, we demonstrate a simple protocol
P�
path that uses only � pre-shared keys, where � ≤ 2n − 3, for a uniformly leaked

key exchange complete graph (Kn, p), as follows:

1. Select edge st.
2. While the number of selected edges does not exceed �, select two edges that

make up a path of length 2 from s to t (as shown in Fig. 4). Note that there
are exactly n − 2 disjoint paths of length 2 between s and t.

3. If � is an even number of 6 or more, select one edge connecting the vertices,
excluding s and t (as shown in Fig. 5).

The leak probability through the path of length 1 is p, and the path of length
2 is 1 − (1 − p)2 = 2p − p2. Hence, the leak probability using protocol P�

path can
be calculated as in the following lemma.

Lemma 1. Let (Kn, p) be a uniformly leaked key exchange complete graph, and
let � be such that � ≤ 2n − 3. If � is an odd number,

EP�
path

(Kn, p) = p(2p − p2)
�−1
2 .

If � is an even number of 6 or more,

EP�
path

(Kn, p) = p(2p5 − 5p4 + 2p3 + 2p2)(2p − p2)
�−6
2 .

Furthermore, EP2
path

(Kn, p) = p, and EP4
path

(Kn, p) = p(2p − p2).

Fig. 4. The selection of keys up to Step 2 of P�
path

The simple protocol P�
path uses at most 2n − 3 keys, and while the st-flow

protocol uses all (n2 − n)/2 keys. To compare P�
path(Kn, p) with Est-flow(Kn, p),

we give a method to compute Est-flow(Kn, p) in the next section.

Secret Key Amplification from Uniformly Leaked Key Exchange 27

Fig. 5. The selection of keys up to Step 3 of P�
path

4 Finding the Minimum Leak Probability

As mentioned before, there is no known efficient method of obtaining the
leak probability to Eve using the st-flow protocol, even for a uniformly leaked
key exchange complete graph. In this section, we first show that calculating
Est-flow(Kn, p) can be reduced to the two-terminal network reliability problem
[3]. Then, using an existing algorithm to compute the two-terminal network
reliability in complete graphs, we provide a recurrence formula that enables us
to derive Est-flow(Kn, p) for any uniformly leaked key exchange complete graph
(Kn, p).

4.1 Formula for Est-flow(Kn, p)

To explain (a simplified version of) the two-terminal network reliability problem,
we first adopt the following computer network model. A computer network is
represented by an undirected multigraph G = (V,E), such that each computer
corresponds to a vertex v ∈ V , and each communications link corresponds to
an edge e ∈ E. Here, we assume that G is a complete graph Kn, and that each
edge fails independently with a fixed probability p. Hence, this situation can be
represented by a probabilistic graph (Kn, p). For a probabilistic graph (G, p) and
two designated terminals s and t, the two-terminal network reliability R(G, p) is
defined as the probability that s and t are connected. We obtain the two-terminal
network reliability by considering the probability of all “failed-edge” sets, each
of which connect the two terminals.

Considering a uniformly leaked key exchange complete graph (Kn, p) as a
probabilistic graph (Kn, p), we have

R(Kn, p) + Est-flow(Kn, p) = 1. (1)

Therefore, the problem of finding Est-flow(Kn, p) is equivalent to the two-terminal
network reliability problem, which has been well studied in the literature
(e.g., [3]).

The known result [3] tells us that

R(Kn, p) = 1 −
n−1∑

j=1

(
n − 2
j − 1

)
pj(n−j)A(Kj , p), (2)

28 T. Sasaki et al.

where A(G, p) is the “all-terminal” reliability, which is obtained recursively by

A(Kn, p) = 1 −
n−1∑

j=1

(
n − 1
j − 1

)
pj(n−j)A(Kj , p). (3)

Therefore, from Eqs. (1), (2), and (3), we have

Est-flow(Kn, p) = 1 − R(Kn, p)

=
n−1∑

j=1

(
n − 2
j − 1

)
pj(n−j)A(Kj , p). (4)

4.2 Examples of Polynomials

This section provides examples of polynomials that specify Est-flow(Kn, p) derived
from the recurrence formula (4) in the previous subsection:

Est-flow(K4, p) = 2p3 + 2p4 − 5p5 + 2p6;

Est-flow(K5, p) = 2p4 + 6p6 − 7p7 − 12p8 + 18p9 − 6p10;

Est-flow(K6, p) = 2p5 + 8p8 − 3p9 − 44p11 + 20p12 + 78p13 − 84p14 + 24p15;

Est-flow(K7, p) = 2p6 + 10p10 − 11p11 + 20p12 − 70p14 − 80p16

+ 340p17 − 570p19 + 480p20 − 120p21;

Est-flow(K8, p) = 2p7 + 12p12 − 13p13 + 30p15 + 20p16 − 102p17 + 72p18

− 190p19 − 150p20 + 420p21 + 110p22 + 1380p23 − 2700p24

− 1050p25 + 4680p26 − 3240p27 + 720p28;

Est-flow(K9, p) = 2p8 + 14p14 − 15p15 + 42p18 − 70p20 + 98p21

− 322p23 − 462p24 + 1050p25 − 1456p26 + 1680p27

+ 2940p28 − 2030p29 + 420p30 − 19530p31 + 21840p32

+ 18480p33 − 42840p34 + 25200p35 − 5040p36;

Est-flow(K10, p) = 2p9 + 16p16 − 17p17 + 56p21 − 184p23 + 240p24

+ 70p25 − 504p27 − 392p28 + 812p29 − 840p30

− 1736p31 + 2464p32 + 6314p33 − 11424p34 + 24304p35

− 10640p36 − 36260p37 − 43680p39 + 263760p40 − 172200p41

− 272160p42 + 433440p43 − 221760p44 + 40320p45.

5 Comparison

In this section, we illustrate a comparison of the st-flow protocol and the simple
protocol P�

path to provide a guide for determining how many pre-shared keys
people would use.

Secret Key Amplification from Uniformly Leaked Key Exchange 29

Fig. 6. Leak probabilities when p = 0.5, n = 10

Fig. 7. Leak probabilities when p = 0.7, n = 10

The st-flow protocol uses all (n2 − n)/2 pre-shared keys in Kn, while the
simple protocol uses at most 2n − 3 keys. Therefore, the difference is at least
(n2 − 5n + 6)/2 keys. Thus, we want to determine whether to use all the keys or
leave (n2 − 5n+ 6)/2 for future use. The examples presented earlier can be used
to calculate the specific leak probability, and people can judge which would be
better for their own purpose.

As an example, consider K10, and set the probability p to 0.5. Figure 6 shows
the value of EP�

path
(K10, 0.5) for every number �, where � ≤ 17, and the value of

Est-flow(K10, 0.5). Note that the st-flow protocol uses 45 keys.

30 T. Sasaki et al.

Now, set the probability p to 0.7. Figure 7 shows the values of EP�
path

(K10, 0.7)
and the value of Est-flow(K10, 0.7).

We believe that this kind of comparison can help to determine how many
keys to use, based on a target leak probability.

6 Conclusion

We first proposed a simple protocol that does not use all available keys. Then, to
compare it with the st-flow protocol, we described a method to efficiently com-
pute the value of Est-flow(Kn, p) for any uniformly leaked key exchange complete
graph (Kn, p). These results provide a guide for determining how many keys to
use.

It would be interesting future work to design methods that select keys effec-
tively for an arbitrary key exchange graph or an arbitrary leak distribution.
Furthermore, we assumed in this study that it is not relevant whether other
players know the secret key u; however, it may be desirable not to make such
an assumption. For example, using the st-flow protocol or the simple protocol
P�
path, if the selected keys constitute a biconnected graph, u is not known to

other players unless collusion occurs.

Acknowledgement. We thank the anonymous referees, whose comments have helped
us to improve the presentation of the paper. We thank Mr. Shigehiro Matsuda for his
valuable discussions. This work was supported by JSPS KAKENHI Grant Number
15K11983.

References

1. Ahmadi, H., Safavi-Naini, R.: Private message transmission using disjoint paths.
In: Boureanu, I., Owesarski, P., Vaudenay, S. (eds.) ACNS 2014. LNCS, vol. 8479,
pp. 116–133. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-07536-5 8

2. Bennett, C.H., Brassard, G., Crépeau, C., Maurer, U.M.: Generalized privacy
amplification. IEEE Trans. Inf. Theory 41(6), 1915–1923 (1995). https://doi.org/
10.1109/18.476316

3. Colbourn, C.J., Colbourn, C.: The Combinatorics of Network Reliability, vol. 200.
Oxford University Press, New York (1987)

4. Csiszár, I., Narayan, P.: Secrecy capacities for multiple terminals. IEEE Trans. Inf.
Theory 50(12), 3047–3061 (2004). https://doi.org/10.1109/TIT.2004.838380

5. Dolev, D., Dwork, C., Waarts, O., Yung, M.: Perfectly secure message transmission.
J. ACM 40(1), 17–47 (1993). https://doi.org/10.1145/138027.138036

6. Franklin, M.K., Wright, R.N.: Secure communication in minimal connectivity mod-
els. J. Cryptol. 13(1), 9–30 (2000). https://doi.org/10.1007/s001459910002

7. Franklin, M.K., Yung, M.: Secure hypergraphs: Privacy from partial broad-
cast. SIAM J. Discrete Math. 18(3), 437–450 (2004). https://doi.org/10.1137/
S0895480198335215

8. Indo, Y., Mizuki, T., Nishizeki, T.: Absolutely secure message transmission using
a key sharing graph. Discrete Math. Alg. Appl. 4(4) (2012). https://doi.org/10.
1142/S179383091250053X

https://doi.org/10.1007/978-3-319-07536-5_8
https://doi.org/10.1109/18.476316
https://doi.org/10.1109/18.476316
https://doi.org/10.1109/TIT.2004.838380
https://doi.org/10.1145/138027.138036
https://doi.org/10.1007/s001459910002
https://doi.org/10.1137/S0895480198335215
https://doi.org/10.1137/S0895480198335215
https://doi.org/10.1142/S179383091250053X
https://doi.org/10.1142/S179383091250053X

Secret Key Amplification from Uniformly Leaked Key Exchange 31

9. Lempel, A., Even, S., Cederbaum, I.: An algorithm for planarity testing of graphs.
In: Theory of Graphs: International Symposium, pp. 215–232 (1967)

10. Mizuki, T., Nakayama, S., Sone, H.: An application of st-numbering to secret key
agreement. Int. J. Found. Comput. Sci. 22(5), 1211–1227 (2011). https://doi.org/
10.1142/S0129054111008659

11. Mizuki, T., Sato, T., Sone, H.: A one-round secure message broadcasting protocol
through a key sharing tree. Inf. Process. Lett. 109(15), 842–845 (2009). https://
doi.org/10.1016/j.ipl.2009.04.004

12. Nagaraja, S.: Privacy amplification with social networks. In: Christianson, B.,
Crispo, B., Malcolm, J.A., Roe, M. (eds.) Security Protocols 2007. LNCS, vol.
5964, pp. 58–73. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-
17773-6 7

13. Ošt’ádal, R., Švenda, P., Matyáš, V.: A new approach to secrecy amplification in
partially compromised networks (invited paper). In: Chakraborty, R.S., Matyas,
V., Schaumont, P. (eds.) SPACE 2014. LNCS, vol. 8804, pp. 92–109. Springer,
Cham (2014). https://doi.org/10.1007/978-3-319-12060-7 7

14. Vernam, G.S.: Cipher printing telegraph systems for secret wire and radio tele-
graphic communications. Trans. Am. Inst. Electr. Eng. XLV, 295–301 (1926)

15. Wang, Y., Desmedt, Y.: Secure communication in multicast channels: The answer
to franklin and wright’s question. J. Cryptol. 14(2), 121–135 (2001). https://doi.
org/10.1007/s00145-001-0002-y

16. Watanabe, S., Matsumoto, R., Uyematsu, T.: Strongly secure privacy amplification
cannot be obtained by encoder of slepian-wolf code. IEICE Trans. 93(9), 1650–1659
(2010). http://search.ieice.org/bin/summary.php?id=e93-a 9 1650

https://doi.org/10.1142/S0129054111008659
https://doi.org/10.1142/S0129054111008659
https://doi.org/10.1016/j.ipl.2009.04.004
https://doi.org/10.1016/j.ipl.2009.04.004
https://doi.org/10.1007/978-3-642-17773-6_7
https://doi.org/10.1007/978-3-642-17773-6_7
https://doi.org/10.1007/978-3-319-12060-7_7
https://doi.org/10.1007/s00145-001-0002-y
https://doi.org/10.1007/s00145-001-0002-y
http://search.ieice.org/bin/summary.php?id=e93-a_9_1650

Approximating Partially Bounded Degree
Deletion on Directed Graphs

Toshihiro Fujito(B) , Kei Kimura, and Yuki Mizuno

Toyohashi University of Technology, Toyohashi 441-8580, Japan
{fujito,kimura}@cs.tut.ac.jp, mizuno@algo.cs.tut.ac.jp

Abstract. The Bounded Degree Deletion problem (BDD) is that
of computing a minimum vertex set in a graph G = (V, E) with degree
bound b : V → Z+, such that, when it is removed from G, the degree
of any remaining vertex v is no larger than b(v). It is a classic prob-
lem in graph theory and various results have been obtained including
an approximation ratio of 2 + ln bmax [30], where bmax is the maximum
degree bound.

This paper considers BDD on directed graphs containing unbounded
vertices, which we call Partially Bounded Degree Deletion

(PBDD). Despite such a natural generalization of standard BDD, it
appears that PBDD has never been studied and no algorithmic results
are known, approximation or parameterized. It will be shown that (1)
in case all the possible degrees are bounded, in-degrees by b− and out-
degrees by b+, BDD on directed graphs can be approximated within
2 + maxv∈V ln(b−(v) + b+(v)), and (2) although it becomes NP-hard to
approximate PBDD better than bmax (even on undirected graphs) once
unbounded vertices are allowed, it can be within max{2, bmax +1} when
only in-degrees (and none of out-degrees) are partially bounded by b.

Keywords: Approximation algorithms · Bounded Degree Deletion
Partial cover

1 Introduction

The Bounded Degree Deletion problem is a well-known basic problem in
graph theory. It has an application in various areas such as computational biol-
ogy [15] and property testing [29], whereas its “dual problem” of finding maxi-
mum s-plexes, introduced in 1978 [32], has applications in social network anal-
ysis [1,28]. With degree bound of b ∈ Z+, b-Bounded Degree Deletion (or
b-BDD for short) is the problem of computing a minimum cost vertex set X in
a given weighted graph G = (V,E) such that the degree of any remaining vertex
v is bounded by b when all the vertices in X are removed from G.

This work is supported in part by JSPS KAKENHI under Grant Numbers 26330010
and 17K00013.

c© Springer International Publishing AG, part of Springer Nature 2018
M. S. Rahman et al. (Eds.): WALCOM 2018, LNCS 10755, pp. 32–43, 2018.
https://doi.org/10.1007/978-3-319-75172-6_4

http://orcid.org/0000-0001-7892-6426

Approximating Partially Bounded Degree Deletion 33

Clearly, b-BDD is a generalization of the Vertex Cover (VC) problem, and
another generalization of VC has been recently introduced and actively studied.
The k-Path Vertex Cover (k-PVC) problem [4–6,22,24], also known as Ver-

tex Cover Pk [34–37], Pk-Hitting Set [7], and k-Path Transversal [27],
is the problem of computing a minimum vertex set C such that when all the
vertices in C are removed from G, there remains no path on k vertices. A subset
of vertices in a graph G is called a dissociation set if it induces a subgraph with
maximum degree at most 1. The maximum cardinality of a dissociation set in
G is called the dissociation number of G. The problem of computing the dis-
sociation number was introduced by Yannakakis [40], who also proved it to be
NP-hard in the class of bipartite graphs. See [31] for a survey on the dissociation
number problem. Clearly, VC ≡ 0-BDD ≡ 2-PVC, 1-BDD ≡ 3-PVC (but b-BDD
�≡ (b + 2)-PVC for b ≥ 2), and a dissociation set is the complement of a 3-PVC
(i.e., 1-BDD) solution.

We now summarize below algorithmic results known for b-BDD and related
problems.

VC. It is known approximable within 2 − Θ(1/
√

log n) [23], whereas VC has
been shown hard to approximate within 10

√
5−21 ≈ 1.36 unless P = NP [13]

(or within 2 − ε assuming the unique games conjecture [25]).
b-BDD. The first improvement over the simple (b + 2)-approximation based

on the hitting set formulation was attained in [17] by using the local ratio
method and b-BDD was shown approximable within max{2, b + 1}. Okun
and Barak considered more general b-BDD where b : V → Z+ is an arbitrary
function, and obtained an approximation bound of 2+ln bmax by combination
of the local ratio method and the greedy multicovering [30], where bmax =
maxv∈V b(v). Recently, a new approximation bound of max{2, bmax/2 + 1}
was obtained [19].
b-BDD has been extensively studied in parameterized complexity. It has been
shown that, when parameterized by the size k of the deletion set, the problem
is W [2]-hard for unbounded b and FPT for each fixed b ≥ 0 [15], whereas,
when parameterized by treewidth tw, it is FPT with parameters k and tw,
and W [2]-hard with only parameter tw [3]. A linear vertex kernel of b-BDD
has been developed by generalizing the Nemhauser-Trotter theorem for VC
to b-BDD [10,15,39].
Besides, 2-BDD has been recently highlighted under the name of Co-

Path/Cycle Packing [9,10,16], mostly from the viewpoint of parameter-
ized complexity, due to its important applications in bioinformatics.

3-PVC. It was shown approximable within 2 [36,37] (or within an expected
approximation ratio of 23/11 by a randomized algorithm [24]) in general, and
within 1.57 on cubic graphs [35].

1.1 Our Work and Contributions

We generalize BDD in two directions; in one to the problem of directed degree
bounds, and in the other to the problem where some vertices are allowed to be

34 T. Fujito et al.

of unbounded degree. Partially b-Bounded Degree Deletion (b-PBDD)

is, given a directed graph G = (V ∪ V0, E) and a degree bound b : V → Z+, to
compute a minimum cost vertex subset X ⊆ V ∪ V0 such that the in-degree of
any vertex v ∈ V remaining after all the vertices in X are deleted from G is at
most b(v). Notice that the degree bound b is defined only on V and no bound is
imposed on V0. To the best of our knowledge, neither version, directed BDD nor
partial BDD, has been previously studied, in either aspect of approximation com-
plexity or parameterized one, except for the case of 1-BDD on directed graphs,
which was shown approximated within 2 [17]. Certainly, 0-PBDD ≡ 0-BDD ≡
VC when V0 = ∅, but b-PBDD �≡ b-BDD even for b = 1.

Directed graphs provide more general computational models than undirected
graphs, but problems tend to be harder to deal with on the former than the lat-
ter. Another type of generalization, in the setting of BDD, is to allow for “don’t
care” nodes. In fact the notion of “covering” or “domination” has been general-
ized to partial “covering/domination” and a significant amount of research work
has been devoted to such extensions [2,8,11,14,20,21,26,33], where, instead of
complete coverage or domination, only a prescribed fraction of covering or domi-
nation is required. Here we consider PBDD having unbounded vertices as defined
above to be a natural extension of BDD to the partial version. The current work
is partially motivated by the fact that the (logarithmically) bounded performance
of the best algorithm for the standard BDD, however, becomes unbounded when
applied to the partial version as will be explained in Sect. 4.1.

This paper presents that (1) in case all the possible degrees are bounded, in-
degrees by b− and out-degrees by b+ (and V0 = ∅), BDD on directed graphs can
be approximated within 2 + maxv∈V ln(b−(v) + b+(v)) by generalizing the algo-
rithm of Okun and Barak [30], and (2) although it becomes NP-hard to approx-
imate b-PBDD better than bmax (even on undirected graphs) once unbounded
degrees are allowed, it can be within max{2, bmax+1} when only in-degrees (and
none of out-degrees) are partially bounded by b.

1.2 Notations and Definitions

For a vertex set X in a digraph G = (V,E), let E(X) = {(u, v) ∈ E | {u, v} ⊆
X}. Let δ−(X) denote the set of arcs entering from outside of X to a vertex
in X, i.e., δ−(X) = {(u, v) ∈ E | u �∈ X, v ∈ X} and δ(X) be the set of arcs
incident to a vertex in X, i.e., δ(X) = {(u, v) ∈ E | {u, v} ∩ X �= ∅}. Let δ−(v)
(δ(v), resp.) denote δ−({v}) (δ({v}), resp.). The in-degree and out-degree of v
is denoted by d−(v) (= |δ−(v)|) and d+(v), respectively. To restrict arcs under
consideration within a certain arc set F , we use δ−

F (X) and d−
F (v) to denote

δ−(X) ∩ F and |δ−(v) ∩ F |, respectively, and d−
E(X)(v) abbreviated to d−

X(v) for
X ⊆ V . For the set of neighboring vertices of u ∈ V , let N+(u) and N−(u)
denote {v ∈ V | (u, v) ∈ E} and {v ∈ V | (v, u) ∈ E}, respectively.

We also use shorthand notations for functions b, d−, and w̄ (to be defined
in Sect. 3) defined on V and Z ⊆ V such as b(Z) =

∑
v∈Z b(v), d−(Z) =∑

v∈Z d−(v), and w̄(Z) =
∑

v∈Z w̄(v).

Approximating Partially Bounded Degree Deletion 35

2 Approximating PBDD via Submodular Optimization

Assume that b(v) ≤ d−(v),∀v ∈ V , for the rest of paper as one can always reset
b(v) to d−(v), without loss of generality, if b(v) > d−(v). A vertex v ∈ V is called
a tight node in what follows if d−(v) = b(v) (and it is untight if d−(v) > b(v)).

For a directed graph G = (V ∪ V0, E) and b : V → Z+, define the rank
r : 2E → Z+ of F ⊆ E such that

r(F) =
∑

v∈V

min{d−
F (v), b(v)} +

∑

v∈V0

d−
F (v).

Then (E, r) is a matroid, a direct sum of partition matroids and free matroids,
and an arc set F ⊆ E is independent iff d−

F (v) ≤ b(v), ∀v ∈ V . Thus, PBDD is
the problem of computing X ⊆ V of minimum cost such that the arc set induced
by V − X is independent in (E, r).

Definition 1. For a matroid (E, r) let rd : 2E → Z+ be such that

rd(S) = |S| − (r(E) − r(E \ S)).

Then, rd is a matroid rank function and (E, rd) is called the dual of (E, r).

Proposition 1. Let (E, r) be the matroid defined by (G, b) as above.

– r(E) = b(V) + d−(V0) (assuming that b(v) ≤ d−(v), ∀v ∈ V).
– In the dual matroid (E, rd),

• rd(F) = |F | − (r(E) − r(E \ F))

=
∑

v∈V

(
d−
F (v) − min{b(v), d−(v)} + min{b(v), d−

E\F (v)}
)

+
∑

v∈V0

(
d−
F (v) − d−(v) + d−

E\F (v)
)

=
∑

v∈V

(
min{b(v) + d−

F (v), d−(v)} − min{b(v), d−(v)})

=
∑

v∈V

min{d−
F (v), d−(v) − b(v)}.

• rd(E) = |E| − r(E) = |E| − b(V) − d−(V0) = d−(V) − b(V).
• rd(δ(v)) =

∑

u∈V

min{d−
δ(v)(u), d

−(u) − b(u)}

=

{
d−(v) − b(v) + (# of untight nodes in N+(v) ∩ V) if v ∈ V

(# of untight nodes in N+(v) ∩ V) if v ∈ V0

Let X ⊆ V ∪ V0 be partitioned to X̃,Xt, and X0 s.t. X0 = X ∩ V0, Xt = {v ∈
X \ X0 | v is tight}, and X̃ = X \ (Xt ∪ X0). Likewise, for Y = (V ∪ V0) \ X

36 T. Fujito et al.

let Y = Ỹ ∪ Yt ∪ Y0 s.t. Y0 = Y ∩ V0, Yt = {v ∈ Y \ Y0 | v is tight}, and
Ỹ = Y \ (Yt ∪ Y0). Then, since

∑

v∈X

rd(δ(v)) =
∑

v∈X̃

rd(δ(v)) +
∑

v∈Xt

rd(δ(v)) +
∑

v∈X0

rd(δ(v))

=
∑

v∈X̃

(d−(v) − b(v)) +
∑

v∈X

(# of untight nodes in N+(v) ∩ V),

we have

Proposition 2.
∑

v∈X

rd(δ(v)) = d−(X̃) − b(X̃) +
∑

v∈X

∣
∣
∣N+(v) ∩ (X̃ ∪ Ỹ)

∣
∣
∣ .

Note: Propositions 1 and 2 will be useful in proof of Lemma 1.
In general a subset F ⊆ E is independent in a matroid iff F is spanning in

its dual matroid. Thus, X ⊆ V is a b-PBDD solution in G = (V ∪V0, E) iff δ(X)
is spanning in (E, rd). Therefore, b-PBDD on G = (V,E) can be reduced to the
problem of computing X ⊆ V of minimum cost such that δ(X) is spanning in
(E, rd). More formally,

Proposition 3. Define f : 2V → Z+ such that f(W) = rd(δ(W)). b-PBDD on
G = (V,E) can be formulated as the problem of computing X ⊆ V of minimum
cost such that f(X) = f(V).

It is known that f as defined above is nondecreasing and submodular, and the
problem of computing minimum X ⊆ V satisfying f(X) = f(V) for such a
function f is known as the submodular set cover problem.

Definition 2. Let f be a nondecreasing submodular set function defined on the
subsets of a finite ground set N , and wj be a nonnegative cost associated with each
element j ∈ N . The Submodular Set Cover problem (SSC) is to compute:

min
S⊆N

⎧
⎨

⎩

∑

j∈S

wj | f(S) = f(N)

⎫
⎬

⎭
.

The greedy algorithm, together with its performance analysis, is perhaps the
most well-known heuristic for general SSC [38], but the primal-dual algorithm
based on the following LP relaxation of SSC and its dual LP is also known to
deliver better solutions for some of more specific SSC problems (See [18] for more
details).

(P) min
∑

j∈N

wjxj (D) max
∑

S⊆N

fS(N − S)yS

subject to: subject to:
∑

j∈N−S

fS(j)xj ≥ fS(N − S),∀S ⊆ N
∑

S:j �∈S

fS(j)yS ≤ wj ,∀j ∈ N

xj ≥ 0, ∀j ∈ N yS ≥ 0, ∀S ⊆ N

Approximating Partially Bounded Degree Deletion 37

Here and in the algorithm called PD, the contraction of f onto N − S is the
function fS defined on 2N−S such that fS(X) = f(X ∪S)−f(S) for any S ⊆ N .
If f is nondecreasing and submodular on N , so is fS on N −S, and thus, another
submodular set cover instance (N − S, fS) can be derived for any S ⊆ N . The
performance of PD for general SSC can be estimated by the following theorem.

Theorem 1 ([18]). The performance ratio of the primal-dual algorithm PD for
an SSC instance (N, f) is bounded by

max
{∑

j∈X fS(j)
fS(N − S)

}

where max is taken over any S ⊆ N and any minimal solution X in (N −S, fS).

It is more convenient, when applying Theorem 1 to an instance (G, b) of
b-PBDD, to use it in the following form.

Corollary 1. The performance ratio of PD, when applied to an instance (G =
(V,E), b) of b-PBDD, is bounded by

max

{∑
v∈X rd(δ(v))

rd(E)

}

where (E, r) is the matroid defined by an instance (G, b) and max is taken over
any graph G and any minimal solution X in G.

Proof. Consider the graph Ḡ = G − S obtained from G by removing all the ver-
tices in S, and reformulate b-PBDD on Ḡ = (V̄ , Ē), where V̄ = (V ∪V0)−S, Ē =
E −δ(S), as an SSC instance (Ē, f̄). To do so, let r̄ : 2Ē → Z+ be the rank func-
tion of the matroid defined by (Ē, b̄), such that r̄(F) =

∑
v∈V̄ min{d̄−

F (v), b̄(v)}
for F ⊆ Ē, r̄d be the dual of r̄, and f̄(T) = r̄d(δ̄(T)) for T ⊆ V̄ (Note: Here,
δ̄(T) = δĒ(T), d̄(v) = dĒ(v), b̄(v) = min{b(v), d̄−(v)} for all T ⊆ V̄ and v ∈ V̄).
It can be shown then that fS(T) = f̄(T) for any S ⊆ V ∪V0 and T ⊆ (V ∪V0)−S,
and in particular, f̄(v) = fS(v),∀v ∈ V̄ , and f̄(V̄) = fS((V ∪ V0) − S). Hence,
we have

max
S⊆V ∪V0

{ ∑
v∈X fS(v)

fS((V ∪ V0) − S)

}

= max

{∑
v∈X f̃(v)

f̃(Ṽ)

}

(1)

where max in RHS is taken over any subgraph Ḡ of G induced by V̄ ⊆ V ∪ V0

and any minimal b-PBDD solution X in Ḡ. It thus follows from Theorem 1 and
Eq. (1) that the performance ratio of PD, when applied to b-PBDD, can be
estimated by bounding

∑
v∈X f(v)

f(V ∪ V0)
=

∑
v∈X rd(δ(v))

rd(E)

for any graph G = (V ∪ V0, E) and any minimal solution X in G. ��

38 T. Fujito et al.

3 Fully Bounded Degree Deletion

It can be observed, modifying the undirected instance to be used in Sect. 4.1 to
a directed one, that the greedy set cover approximation is embeddable even if
all the in-degrees are bounded in directed graphs. On the other hand, BDD on
directed graphs where both in-degree and out-degree are bounded at every vertex
can be approximated in much the same way as in the case of undirected graphs.
To explain this, suppose all the possible degree bounds are imposed on directed
graph G = (V,E), that is, the in-degree of v by b− : V → Z+ and the out-degree
of v by b+ : V → Z+ for all the vertices v ∈ V (and V0 = ∅ here). Construct
GD from G by replacing each vertex v by two, v1 and v2, connecting all the
incoming arcs of v to v1 while outgoing arcs to v2. When arc orientations are
ignored, GD becomes an undirected bipartite graph. An approximate solution
for G can be computed by applying an existing algorithm A to GD, and taking
v into a solution iff either v1 or v2 (or both) in GD is chosen by A. This way
of reducing directed BDD to undirected one yields a 2ρ-approximation when A
is a ρ-approximation because the optimum with respect to GD is bounded by
twice the optimum with respect to G. So, the fully bounded version of BDD is
approximable within 4+2 ln maxv∈V {b−(v), b+(v)} by running the Okun-Barak
algorithm as A.

The reduction based approach above can be further refined by rebuilding
the Okun-Barak approach within the current framework of submodular opti-
mization. Consider the partition matroids (E, r−) and (E, r+), defined both
on E, based on b− and b+, respectively. Here, X ⊆ V is a solution iff δ(X)
is spanning in both (E, rd−) and (E, rd+), where rd− and rd+ are the dual rank
functions of r− and r+, respectively. Define f : 2V → Z+ such that f(X) =
rd−(δ(X)) + rd+(δ(X)). Then, f is nondecreasing and submodular, and X ⊆ V is
a solution iff f(X) = rd−(δ(X))+rd+(δ(X)) = rd−(E)+rd+(E) = f(V). Therefore,
the problem can be reduced to SSC (V, f, w).

Let us adopt the following strategy of two stage approximation from [30];
first apply the local ratio method and then the greedy method for SSC.

1st stage. Suppose d−(v) > b−(v) for some v ∈ V . Let S− = {v} ∪ N−(v) and
consider the subgraph G[S−] of G induced by S−. Since any solution for G
including an optimal one must contain v or otherwise, at least (d−(v)−b−(v))
from N−(v), we have a valid inequality

(d−(v) − b−(v))xv +
∑

u∈N−(v)

xu ≥ (d−(v) − b−(v))

for any v with d−(v) > b−(v), where x ∈ {0, 1}V denotes an incidence vector
of a vertex subset. We may thus apply the local ratio reduction to the weighted
graph (G,w) as follows. Define the vertex weight w̄ within G[S−] such that
w̄(v) = d−(v) − b−(v) and w̄(u) = 1, ∀u ∈ N−(v). Let ρ = min{w(u)/w̄(u) |
u ∈ S−} and S−

0 = {u ∈ S− | w(u) = ρw̄(u)} so that S−
0 �= ∅ and w(u) −

ρw̄(u) > 0, ∀u ∈ S− − S−
0 .

Suppose a solution C is computed for G−S−
0 = G[V −S−

0] under the weight
w−ρw̄ defined on V −S−

0 . Then, C∪S−
0 is a solution for G and our algorithm

Approximating Partially Bounded Degree Deletion 39

returns it. The ratio of this solution to the optimum, local to (G[S−], ρw̄), is
bounded by

w̄(S− ∩ (C ∪ S−
0))

d−(v) − b−(v)
≤ w̄(S−)

d−(v) − b−(v)

=
2d−(v) − b−(v)
d−(v) − b−(v)

= 2 +
1

d−(v)/b−(v) − 1
.

So, if C is a p-approximation for (G − S−
0 , w − ρw̄), the approximation ratio

of C ∪ S−
0 for (G,w) can be estimated by the following bound

max
{

p, 2 +
1

d−(v)/b−(v) − 1

}

. (2)

Thus, we apply the local ratio approximation to G[S−] and reduce to the
problem on G − S−

0 when such a vertex is found whose in-degree is large
enough relative to its degree bound. Likewise, we may apply the local ratio
reduction to out-degrees, and for v ∈ V with d+(v) > b+(v) we have the
approximation ratio of C ∪ S+

0 for (G,w) bounded by

max
{

p, 2 +
1

d+(v)/b+(v) − 1

}

(3)

when C ⊆ V − S+
0 is a p-approximation for the reduced problem on G − S+

0 .
We apply these local ratio reductions as long as there remains a vertex v with
high degree/degree-bound ratio; i.e., any v with d−(v)/b−(v) or d+(v)/b+(v)
exceeding the threshold β.

2nd stage. We switch to the greedy algorithm for SSC (V, f, w) when vertices
with high degree/degree-bound ratio are exhausted in the 1st stage. Here in
the greedy mode, a vertex v with minimum w(v)/fC({v}) among the remain-
ing vertices is repeatedly added to a solution set C as long as f(C) < f(V).

We can show the following performance of this algorithm (details are omitted
due to space limitations).

Theorem 2. The (b−, b+)-BDD problem can be approximated within a factor
of 2 + maxv∈V ln(b−(v) + b+(v)) if V0 = ∅.

4 Partially Bounded Degree Deletion

4.1 Approximation Hardness

As was seen in the previous section, the Okun-Barak algorithm or its extension
to directed graphs yields an O(log bmax)-approximation. We observe here that
such performance is possible only when all the degrees, both in-degrees and

40 T. Fujito et al.

out-degrees, are bounded, and if not, even at a single vertex, the performance
becomes unbounded even if bmax is a fixed constant.

As already seen, the algorithm of Okun and Barak attains the best approx-
imation bound of 2 + ln bmax for general b, by first applying the local ratio
reduction to any v and its neighbors having high d(v) to b(v) ratio, and then
by running the greedy approximation after d(v)/b(v) becomes small enough for
all the remaining vertices v. This approach is possible only when all the degrees
are bounded since, if d(v) is not bounded for some v ∈ V , there is now way of
doing the local reduction at or around v with a reasonable ratio. Consider the
following instance, for example: Let Gb = (Vb, Eb) be a (b − 1)-regular graph on
n vertices, and V c

b be a copy of Vb. Construct a graph G = {Vb ∪ V c
b ∪ {s}, E}

from Gb by, besides having Eb entirely, connecting each vertex of Vb and its copy
in V c

b by an edge, and by having one more vertex s connected with every vertex
in Vb by an edge. Since d(v) = b + 1 if v ∈ Vb, = 1 if v ∈ V c

b , and = n if v = s,
when the degree bound is set s.t. b(v) = b, ∀v ∈ Vb and b(v) = 1, ∀v ∈ V c

b

(and the degree of s is unbounded), the d(v)/b(v) ratio can be made arbitrarily
close to 1 at every v ∈ Vb ∪ V c

b , that there is nowhere to apply the local ratio
reduction. So the algorithm simply runs the standard greedy approximation to
G. Suppose that all the vertices in Vb are of heavy weight while the vertices in V c

b

are respectively assigned with weights of 1, 1/2, 1/3, · · · , 1/n and s is assigned
with 1+ ε. Then, the greedy algorithm outputs V c

b as a solution of which weight
is Θ(log n) times that of the optimal solution {s}.

A more general approximation hardness of PBDD can be derived from that
of Ek-Vertex Cover (EkVC). This is the Vertex Cover problem on k-
uniform hypergraphs, and it is known to be NP-hard to approximate EkVC
within a factor of k − 1 − ε for any ε > 0 and k ≥ 3 [12]. Let H = (V,EH)
denote an instance of EkVC, i.e., a k-uniform hypergraph. Construct a bipartite
instance G = (V ∪ EH , E) of undirected PBDD from H s.t. {v, eH} ∈ E, where
v ∈ V and eH ∈ EH , iff v ∈ eH in H. Set the weight of each vertex in EH heavy
enough that forces choice of vertices only from V and not from EH . Notice that
d(eH) = k, ∀eH ∈ EH , and EkVC is reduced to undirected PBDD by setting
the degree bound of k − 1 on each of them while leaving all the others (in V)
unbounded. It follows from the approximation hardness of EkVC that

Theorem 3. It is NP-hard to approximate PBDD, directed or undirected, within
a factor of bmax − ε for any ε > 0 and bmax ≥ 2.

4.2 Approximation Algorithm

Let us turn to an upper bound in approximation of b-PBDD, and next is a key
lemma here:

Lemma 1. For any minimal b-PBDD solution X ⊆ V ∪ V0 in G = (V ∪ V0, E)
∑

v∈X

rd(δ(v)) ≤ max{2, bmax + 1}rd(E).

Approximating Partially Bounded Degree Deletion 41

Proof. Omitted due to space limitations. ��
It is immediate from Corollary 1 and Lemma 1 that

Theorem 4. The b-PBDD problem can be approximated withinmax{2, bmax+1}.
The bound of max{2, bmax +1} given in Lemma 1 or Theorem 4 is tight even

if V0 = ∅. Suppose a graph G consists of the vertex set X ∪Y ∪{z} and the edge
set E = X × (Y ∪ {z}) s.t. b(v) = 0, ∀v ∈ X ∪ {z} and b(v) = bmax, ∀v ∈ Y for
some integer bmax. Clearly, X here is a minimal solution for b-PBDD.

Let x and y denote |X| and |Y |, respectively. We have

rd(E) = |E| − b(V) = x(y + 1) − bmaxy = (x − bmax)y + x

and
∑

v∈X

rd(δ(v)) = x(y + 1) = (x − bmax)y + x + bmaxy

since rd(δ(v)) = y + 1, ∀v ∈ X. Set x = bmax + 1. Then,
∑

v∈X rd(δ(v))
rd(E)

=
x + y + bmaxy

x + y
= 1 +

bmaxy

y + bmax + 1

and
∑

v∈X rd(δ(v))/rd(E) becomes arbitrarily close to 1 + bmax as y → ∞.
Suppose now that each vertex of G is weighted s.t. w(v) = rd(δ(v)). The

algorithm PD may return X as an approximate solution, whose weight is (bmax+
1)(y + 1), whereas {v, z} is an optimal solution for any v ∈ X when y is large
enough, whose weight is d(v)+d(z) = y+bmax+2. Therefore, the ratio of weight
of X to the optimal weight is

(bmax + 1)(y + 1)
y + bmax + 2

= 1 + bmax − b2max + 2bmax + 1
y + bmax + 2

and it approaches arbitrarily close to 1 + bmax as y becomes larger.

References

1. Balasundaram, B., Butenko, S., Hicks, I.V.: Clique relaxations in social network
analysis: the maximum k-plex problem. Oper. Res. 59(1), 133–142 (2011)

2. Bar-Yehuda, R.: Using homogeneous weights for approximating the partial cover
problem. J. Algorithms 39(2), 137–144 (2001)

3. Betzler, N., Bredereck, R., Niedermeier, R., Uhlmann, J.: On bounded-degree ver-
tex deletion parameterized by treewidth. Discret. Appl. Math. 160(1–2), 53–60
(2012)

4. Brešar, B., Krivoš-Belluš, R., Semanǐsin, G., Šparl, P.: On the weighted k-path
vertex cover problem. Discret. Appl. Math. 177, 14–18 (2014)

5. Brešar, B., Jakovac, M., Katrenič, J., Semanǐsin, G., Taranenko, A.: On the vertex
k-path cover. Discret. Appl. Math. 161(13–14), 1943–1949 (2013)

42 T. Fujito et al.

6. Brešar, B., Kardoš, F., Katrenič, J., Semanǐsin, G.: Minimum k-path vertex cover.
Discret. Appl. Math. 159(12), 1189–1195 (2011)

7. Camby, E., Cardinal, J., Chapelle, M., Fiorini, S., Joret, G.: A primal-dual 3-
approximation algorithm for hitting 4-vertex paths. In: 9th International Collo-
quium on Graph Theory and Combinatorics, ICGT 2014, p. 61 (2014)

8. Case, B.M., Hedetniemi, S.T., Laskar, R.C., Lipman, D.J.: Partial domination in
graphs. arXiv e-prints (2017)

9. Chauve, C., Tannier, E.: A methodological framework for the reconstruction of con-
tiguous regions of ancestral genomes and its application to mammalian genomes.
PLoS Comput. Biol. 4(11), e1000234 (2008)

10. Chen, Z.-Z., Fellows, M., Fu, B., Jiang, H., Liu, Y., Wang, L., Zhu, B.: A lin-
ear kernel for co-path/cycle packing. In: Chen, B. (ed.) AAIM 2010. LNCS, vol.
6124, pp. 90–102. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-
14355-7 10

11. Das, A.: Partial domination in graphs. arXiv e-prints (2017)
12. Dinur, I., Guruswami, V., Khot, S., Regev, O.: A new multilayered PCP and the

hardness of hypergraph vertex cover. SIAM J. Comput. 34(5), 1129–1146 (2005)
13. Dinur, I., Safra, S.: On the hardness of approximating minimum vertex cover. Ann.

Math. (2) 162(1), 439–485 (2005)
14. Elomaa, T., Kujala, J.: Covering analysis of the greedy algorithm for partial cover.

In: Elomaa, T., Mannila, H., Orponen, P. (eds.) Algorithms and Applications.
LNCS, vol. 6060, pp. 102–113. Springer, Heidelberg (2010). https://doi.org/10.
1007/978-3-642-12476-1 7

15. Fellows, M.R., Guo, J., Moser, H., Niedermeier, R.: A generalization of Nemhauser
and Trotter’s local optimization theorem. J. Comput. Syst. Sci. 77(6), 1141–1158
(2011)

16. Feng, Q., Wang, J., Li, S., Chen, J.: Randomized parameterized algorithms for P2-
packing and co-path packing problems. J. Comb. Optim. 29(1), 125–140 (2015)

17. Fujito, T.: A unified approximation algorithm for node-deletion problems. Discret.
Appl. Math. 86(2–3), 213–231 (1998)

18. Fujito, T.: On approximation of the submodular set cover problem. Oper. Res.
Lett. 25(4), 169–174 (1999)

19. Fujito, T.: Approximating bounded degree deletion via matroid matching. In:
Fotakis, D., Pagourtzis, A., Paschos, V.T. (eds.) CIAC 2017. LNCS, vol. 10236, pp.
234–246. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-57586-5 20

20. Gandhi, R., Khuller, S., Srinivasan, A.: Approximation algorithms for partial cov-
ering problems. J. Algorithms 53(1), 55–84 (2004)

21. Halperin, E., Srinivasan, A.: Improved approximation algorithms for the partial
vertex cover problem. In: Jansen, K., Leonardi, S., Vazirani, V. (eds.) APPROX
2002. LNCS, vol. 2462, pp. 161–174. Springer, Heidelberg (2002). https://doi.org/
10.1007/3-540-45753-4 15

22. Jakovac, M., Taranenko, A.: On the k-path vertex cover of some graph products.
Discret. Math. 313(1), 94–100 (2013)

23. Karakostas, G.: A better approximation ratio for the vertex cover problem. ACM
Trans. Algorithms 5(4), art. no. 41 (2009)

24. Kardoš, F., Katrenič, J., Schiermeyer, I.: On computing the minimum 3-path vertex
cover and dissociation number of graphs. Theoret. Comput. Sci. 412(50), 7009–
7017 (2011)

25. Khot, S., Regev, O.: Vertex cover might be hard to approximate to within 2 − ε.
J. Comput. Syst. Sci. 74(3), 335–349 (2008)

https://doi.org/10.1007/978-3-642-14355-7_10
https://doi.org/10.1007/978-3-642-14355-7_10
https://doi.org/10.1007/978-3-642-12476-1_7
https://doi.org/10.1007/978-3-642-12476-1_7
https://doi.org/10.1007/978-3-319-57586-5_20
https://doi.org/10.1007/3-540-45753-4_15
https://doi.org/10.1007/3-540-45753-4_15

Approximating Partially Bounded Degree Deletion 43

26. Kneis, J., Mölle, D., Rossmanith, P.: Partial vs. complete domination: t-dominating
set. In: van Leeuwen, J., Italiano, G.F., van der Hoek, W., Meinel, C., Sack, H.,
Plášil, F. (eds.) SOFSEM 2007. LNCS, vol. 4362, pp. 367–376. Springer, Heidelberg
(2007). https://doi.org/10.1007/978-3-540-69507-3 31

27. Lee, E.: Partitioning a graph into small pieces with applications to path transversal.
In: Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2017, pp. 1546–1558 (2017)

28. Moser, H., Niedermeier, R., Sorge, M.J.: Exact combinatorial algorithms and exper-
iments for finding maximum k-plexes. J. Comb. Optim. 24(3), 347–373 (2012)

29. Newman, I., Sohler, C.: Every property of hyperfinite graphs is testable. SIAM J.
Comput. 42(3), 1095–1112 (2013)

30. Okun, M., Barak, A.: A new approach for approximating node deletion problems.
Inform. Process. Lett. 88(5), 231–236 (2003)

31. Orlovich, Y., Dolgui, A., Finke, G., Gordon, V., Werner, F.: The complexity of dis-
sociation set problems in graphs. Discret. Appl. Math. 159(13), 1352–1366 (2011)

32. Seidman, S.B., Foster, B.L.: A graph-theoretic generalization of the clique concept.
J. Math. Soc. 6(1), 139–154 (1978)

33. Slav́ık, P.: Improved performance of the greedy algorithm for partial cover. Inform.
Process. Lett. 64(5), 251–254 (1997)

34. Tu, J.: A fixed-parameter algorithm for the vertex cover P3 problem. Inform. Pro-
cess. Lett. 115(2), 96–99 (2015)

35. Tu, J., Yang, F.: The vertex cover P3 problem in cubic graphs. Inform. Process.
Lett. 113(13), 481–485 (2013)

36. Tu, J., Zhou, W.: A factor 2 approximation algorithm for the vertex cover P3

problem. Inform. Process. Lett. 111(14), 683–686 (2011)
37. Tu, J., Zhou, W.: A primal-dual approximation algorithm for the vertex cover P3

problem. Theoret. Comput. Sci. 412(50), 7044–7048 (2011)
38. Wolsey, L.A.: An analysis of the greedy algorithm for the submodular set covering

problem. Combinatorica 2(4), 385–393 (1982)
39. Xiao, M.: On a generalization of Nemhauser and Trotter’s local optimization the-

orem. J. Comput. Syst. Sci. 84, 97–106 (2017)
40. Yannakakis, M.: Node-deletion problems on bipartite graphs. SIAM J. Comput.

10(2), 310–327 (1981)

https://doi.org/10.1007/978-3-540-69507-3_31

Minimum-Width Annulus with Outliers:
Circular, Square, and Rectangular Cases

Hee-Kap Ahn1 , Taehoon Ahn1, Sang Won Bae2(B) , Jongmin Choi1,
Mincheol Kim1, Eunjin Oh1, Chan-Su Shin3, and Sang Duk Yoon1

1 Department of Computer Science and Engineering, POSTECH,
Pohang, South Korea

{heekap,sloth,icothos,rucatia,jin9082,egooana}@postech.ac.kr
2 Department of Computer Science, Kyonggi University, Suwon, South Korea

swbae@kgu.ac.kr
3 Division of Computer and Electronic Systems Engineering,
Hankuk University of Foreign Studies, Yongin, South Korea

cssin@hufs.ac.kr

Abstract. We study the problem of computing a minimum-width annu-
lus with outliers. Specifically, given a set of n points in the plane and a
nonnegative integer k ≤ n, the problem asks to find a minimum-width
annulus that contains at least n − k input points. The k excluded points
are considered as outliers of the input points. In this paper, we are inter-
ested in particular in annuli of three different shapes: circular, square,
and rectangular annuli. For the three cases, we present first and improved
algorithms to the problem.

1 Introduction

An annulus is a region bounded by two concentric circles. There are a few appli-
cations of computing the minimum annulus enclosing a set of points in the plane.
For instance, one of the topics in metrology is to measure the roundness of an
object, which is done mostly by measuring points obtained from the boundary
of the object. If the width of the annulus that covers the measured points is
close to zero or below a predefined threshold, then one can say that the object
is (almost) round. Otherwise, the object is not round enough, and therefore it
should be rejected. Another application is to locate an obnoxious or undesirable
facility in a set of sites that use or get served by the facility in the plane. No one
wants to have an obnoxious facility such as a garbage dump in his/her backyard
but it should be located within a reasonable distance from the sites. A good

H.-K. Ahn, T. Ahn, J. Choi, M. Kim, E. Oh, and S.D. Yoon were supported by the
MSIT (Ministry of Science and ICT), Korea, under the SW Starlab support program
(IITP–2017–0–00905) supervised by the IITP (Institute for Information & communi-
cations Technology Promotion). S.W. Bae was supported by Basic Science Research
Program through the National Research Foundation of Korea (NRF) funded by
the Ministry of Education (2015R1D1A1A01057220). C.-S. Shin was supported by
University Research Grant of Hankuk University of Foreign Studies.

c© Springer International Publishing AG, part of Springer Nature 2018
M. S. Rahman et al. (Eds.): WALCOM 2018, LNCS 10755, pp. 44–55, 2018.
https://doi.org/10.1007/978-3-319-75172-6_5

http://orcid.org/0000-0001-7177-1679
http://orcid.org/0000-0002-8802-4247

Minimum-Width Annulus with Outliers 45

location for such an obnoxious facility is the one whose closest site is far enough
and whose farthest site is not too far.

The minimum-width annulus that encloses a set P of points reflects the
roundness of the point set P well. There has been a fair amount of work on
the minimum-width annulus for a set of points in the plane. However, the data
we obtain in applications often contains outliers which are due to variability in
the measurement or errors in transmission. Outliers can be seen as violation of
constraints in the minimum-width annulus problem: the points in P are to be
covered by the annulus but some of them are allowed to be violated. In this paper,
we study the minimum-width annulus problem for points containing outliers in
the plane.

The minimum-width annulus problem has been studied in computational
geometry. Motivated by the roundness test in metrology, Ebara et al. [9] pre-
sented a simple quadratic time algorithm that computes a minimum-width cir-
cular annulus enclosing a given set of points in the plane using Voronoi dia-
grams. Later, Agarwal et al. [4] presented an algorithm that uses Megiddo’s
parametric search technique and computes the minimum-width circular annulus
in O(n8/5+ε) time for any ε > 0. The problem was reconsidered by Agarwal
et al. [2] as an application of computing the vertices, edges and 2-dimensional
faces of the lower envelopes of multivariate functions. Their algorithm takes
O(n17/11+ε) expected time for any ε > 0. Then, Agarwal and Sharir [3] simpli-
fied and improved their previous algorithm by using vertical decomposition to
O(n3/2+ε) expected time for any ε > 0. Chan gave an (1+ε)-approximation algo-
rithm for the problem [8]. However, there is no algorithm known for the problem
in the presence of outliers, except an approximation algorithm by Har-Peled and
Wang [11].

There also has been research on variations of the minimum-width annulus
problem depending on the shape of the annulus as well as the distance metric
for measuring the width. A square or rectangular annulus is the region bounded
by two concentric axis-parallel squares or rectangles, respectively. Abellanas et
al. [1] presented an O(n)-time algorithm for the rectangular annulus problem and
considered several variations of the problem. Gluchshenko et al. [10] gave an opti-
mal O(n log n)-time algorithm for a minimum-width square annulus that encloses
n points in the plane. Later, Mukherjee et al. [14] presented an O(n2 log n)-time
algorithm that computes a minimum-width rectangular annulus over all ori-
entations, and Bae [5] showed that a minimum-width square annulus over all
orientations can be computed in O(n3 log n) time.

In this paper, we study the problem of computing a minimum-width annulus
that contains at least n−k input points, when n points are given as input points
and k ≤ n is also a part of input. The k excluded points are considered outliers of
the n input points, and this problem is often called the minimum-width annulus
problem with k outliers. We are interested in annuli of three different shapes:
circular, square and rectangular annuli. See Fig. 1 for an illustration.

Very recently, Bae [6] considered the square or rectangular annulus problem
with k outliers and presented several first algorithms. Among them, he presented
an O(k2n log n+ k3n)-time algorithm for the square annulus with k ≥ 1 outliers

46 H.-K. Ahn et al.

Fig. 1. Minimum-width (a) circular, (b) square, and (c) rectangular annuli with k = 7
outliers for a given set of points.

and O(nk2 log k + k4 log3 k)-time algorithm for the rectangular annulus with k
outliers. It is worth noting that, when k is a constant, these running times match
the lower bounds of the problems. On the other hand, no nontrivial algorithm
for the minimum-width circular annulus with outliers is known so far.

Our results in this paper are threefold:

– We give an O(k(kn)3/2+ε)-time algorithm for the minimum-width circular
annulus with k outliers. This is the first nontrivial algorithm for the circular
variant of the problem.

– We present an O(k2n log n)-time algorithm for the minimum-width square
annulus problem with k outliers. This improves the previously best algorithm
by Bae [6], which takes O(k2n log n + k3n) time.

– We also present two algorithms for the minimum-width rectangular annu-
lus with k outliers whose running times are O(n log n + k4 log2 n) and
O(nk2 log k + k4 log2 k). Both of our algorithms are faster than the previ-
ously best known ones [6], which take O(n log2 n + k4 log k log2 n) time and
O(nk2 log k + k4 log3 k) time, respectively.

2 Preliminaries

In this paper, we are interested in annuli of three different shapes: circular,
square, and rectangular annuli. A circular annulus is a closed region in the
plane bounded by two concentric circles. The bigger circle that bounds a circular
annulus A is called the outer circle of A, while the other is called the inner circle
of A. The width of a circular annulus is the difference between the radii of its
outer and inner circles.

For the square and rectangular cases, we only consider axis-parallel squares
and rectangles. So, throughout the paper, any square or rectangle we discuss is
supposed to be axis-parallel, unless stated otherwise. Consider a rectangle, or
possibly a square, R in the plane R

2. We call the intersection point of its two
diagonals the center of R.

An (inward) offset of R by δ > 0 is a rectangle obtained by sliding the four
sides of R inwards by δ. If the shorter side of R is of length r, then the offset of
R by δ = 1

2r is degenerated to a line segment or a point. For any positive δ ≤ 1
2r,

consider an inward offset R′ of R by δ. Then, the closed region A between R

Minimum-Width Annulus with Outliers 47

and R′, including its boundary, is called a rectangular annulus with the outer
rectangle R and the inner rectangle R′. When R is a square and so is R′, the
annulus A is called a square annulus, and R and R′ are called its outer square
and inner square, respectively. The distance δ between the sides of R and R′ is
called the width of the annulus.

Consider an annulus A, regardless of its shape. The complement R2\A of the
annulus A is separated into two connected components. We shall call the outside
of its outer boundary the outside of A and the inside of its inner boundary the
inside of A.

3 Circular Annulus with Outliers

In this section, we consider the problem of finding a minimum-width circular
annulus with k outliers for a given set P of points. As observed in [2–4], the
outer and inner circles of a minimum-width circular annulus are determined by
four points of P : (1) one of its outer and inner circles has three points on it
and the other has one, or (2) both have two points on each. This implies the
following for minimum-width circular annuli with outliers.

Lemma 1. There exists a minimum-width circular annulus A of P with k out-
liers such that one of the following conditions holds: (1) Three points in P lie
on one of the inner and outer circles of A, and one point in P lies on the other
circle. (2) Both the inner and outer circles of A have two points in P on each.

Consider a minimum-width circular annulus A of P with k outliers that
satisfies one of conditions (1) and (2) stated in Lemma 1. Let kin be the number
of points in P that lie in the inside of A and kout = k − kin be the number of
points in P that lie in the outside of A. In the following, we will show that the
center of A is related to the higher-order Voronoi diagrams of P . The order-t
Voronoi diagram of P , denoted by Vt(P), decomposes the plane R

2 into Voronoi
regions such that all points in each Voronoi region share the common t nearest
points among those in P [12]. For more details on the order-t Voronoi diagrams,
refer to Lee [12] and Liu et al. [13].

Lemma 2. There exists a minimum-width circular annulus of P with k out-
liers such that its center lies on a vertex of the overlay of the order-(k′ + 1)
Voronoi diagram Vk′+1(P) of P and the order-(n − 1 − k + k′) Voronoi diagram
Vn−1−k+k′(P) for some 0 ≤ k′ ≤ k.

This already yields a nontrivial algorithm: For each 0 ≤ k′ ≤ k, compute
diagrams Vk′+1(P) and Vn−1−k+k′(P), compute the overlay of the two diagrams,
and check every vertex of the overlay. Since the diagram Vt(P) has complexity
O(t(n − t)) and can be computed in O(t(n − t) log n) time [13], we can compute
a minimum-width circular annulus of P with k outliers roughly in time O(k3n2).
In the following, we give a better solution.

Again, consider two cases stated in Lemma 1. As discussed above, in case
(1), the center of our annulus A lies on a vertex of a higher-order Voronoi dia-
gram. Thus, solutions falling into this case can be found without computing

48 H.-K. Ahn et al.

the overlay. For the purpose, we compute the diagrams V1,V2, . . . ,Vk+1, and
Vn−1,Vn−2, . . . ,Vn−k−1 in O(k2n log n) time [12,13], and prepare each of the dia-
grams with a standard point location structure [7]. Then we are done by checking
each vertex of Vk′+1(P) and its location on Vn−1−k+k′(P), taking O(log n) time
per vertex. Hence, this case can be handled in total O(k2n log n) time.

Case (2) is relatively tricky. As above, consider a minimum-width circular
annulus A of P with k outliers, and assume that this is case (2) and that kin
points in P lie in the inside of A and kout = k −kin points in P lie in the outside
of A. Here, we can directly extend the algorithm by Agarwal and Sharir [3] of
computing the minimum-width annulus in O(n3/2+ε) time as follows. In this
case, as discussed above, each of the outer and inner circles passes through two
points, thus its center lies on an edge of the corresponding higher-order Voronoi
diagram. Using the lifting transformation that maps the points of P into the
points on the paraboloid z = x2 + y2, a circle C with center (a, b) in the xy-
plane is mapped to a plane H(C) which is parallel to the plane tangent to the
paraboloid at point (a, b, a2 + b2). The intersection of H(C) with the paraboloid
is projected to the circle C in the xy-plane. Furthermore, a point lies on, inside,
outside C if and only if its lifted point is on, below, above H(C), respectively.
Thus, if our annulus A misses kin points in its inside and kout points in its
outside, then it is mapped to a pair of parallel planes such that kin points are
below the mapped plane of the inner circle and kout points above the mapped
plane of the outer circle.

A minimum-width annulus is transformed into a pair of two parallel planes
that minimizes a (properly defined) distance function between the planes under
the lifting [3]. In case (2), we observe that each of two mapped planes contains
two lifted points, thus its projected circle has its center on the bisector of the
two points, i.e., on an edge of the higher-order Voronoi diagram. By the same
argument of Agarwal and Sharir [3], the problem of finding two parallel planes,
each containing a line connecting two (lifted) points, with a minimum distance
can be reduced to the problem of computing a closest pair of bichromatic lines
in three dimension. This type of the closest line-pair problem can be solved in
O((|U |+ |L|)3/2+ε) expected time for any positive ε > 0 by a randomized divide-
and-conquer algorithm [3], where U is a set of the candidate lines contained in
the upper plane (pairs of points lying on the outer circle) and L is a set of the
candidate lines contained in the lower plane (pairs of points lying on the inner
circle). Since U is obtained from the edges of the order-(n − kout − 1) Voronoi
diagram Vn−kout−1(P) of P and L is obtained from the edges of the order-(kin+1)
Voronoi diagram Vkin+1(P) of P , we have |U | = O(kout(n − kout)) = O(kn) and
|L| = O(kin(n − kin)) = O(kn). Thus, it takes O((kn)3/2+ε) expected time.

In order to handle case (2), we compute all those higher-order Voronoi dia-
grams, and for each 0 ≤ k′ ≤ k, we invoke the above algorithm for the closest
line-pair problem. This correctly finds a minimum-width circular annulus with
k outliers in case (2), and takes in total O(k(kn)3/2+ε) expected time. Hence,
we conclude the following theorem.

Minimum-Width Annulus with Outliers 49

Theorem 1. Given a set P of n points in the plane and a nonnegative integer
1 ≤ k ≤ n, a minimum-width circular annulus of P with k outliers can be
computed in O(k(kn)3/2+ε) expected time for any ε > 0.

4 Square Annulus with Outliers

In this section, we study the minimum-width square annulus problem with out-
liers, and present an O(k2n log n)-time algorithm that computes a minimum-
width square annulus of a set P of n points with k ≤ n outliers. Throughout
this section, for a point p, we denote by x(p) and y(p) the x-coordinate of p and
the y-coordinate of p, respectively.

4.1 Configuration of Optimal Solutions

Bae [6] showed the following configuration of an optimal solution.

Lemma 3 (Bae [6]). There exists a minimum-width square annulus of P with
k outliers that contains two points in P lying on the opposite sides of its outer
square.

Moreover, the following lemma holds.

Lemma 4. There exists a minimum-width square annulus of P with k outliers
such that (1) one side of its inner square contains a point in P and three sides of
its outer square contain points in P , or (2) two sides of its inner square contain
points in P and two opposite sides of its outer square contain points in P .

Consider a minimum-width square annulus of P with k outliers satisfying the
condition in Lemma 4. We assume without loss of generality that both the left
and right sides of its outer square contain points pL and pR in P , respectively.
In the following, we describe how to find such an optimal solution, if any.

4.2 Finding Candidate Outer Squares

We observe that there are at most k points in P lying to the left of pL. Similarly,
there are at most k points lying to the right of pR. To use this observation, we
compute the set C of pairs (p′

L, p′
R) of points in P such that there are at most k

points in P lying to the left of p′
L and at most k points in P lying to the right

of p′
R. Clearly, the size of C is O(k2) and (pL, pR) is contained in C.
In the following subsection, we present an algorithm that computes a

minimum-width square annulus of P with k outliers in O(n log n) time, pro-
vided we are given pL and pR. To obtain a minimum-width square annulus, we
apply this procedure with each pair of C. Then we obtain O(k2) square annuli
one of which is an optimal solution. We simply choose the one with smallest
width.

50 H.-K. Ahn et al.

4.3 Finding the Largest Inner Square for a Candidate Pair

Assume that we know pL and pR. We present an O(n log n)-time algorithm for
computing a minimum-width square annulus of P with k outliers such that pL

lies on the left side of its outer square and pR lies on the right side of its outer
square.

Consider the squares whose left side contains pL and whose right side con-
tains pR. All these squares have the same side length, that is, the difference
of the x-coordinates of pL and pR, x(pR) − x(pL). Moreover, the centers of
such squares form a vertical line segment �. Specifically, � is the line segment
that connects two points q1 and q2 such that: x(q1) = x(q2) = x(pL) + ρ,
y(q1) = min{y(pL), y(pR)} + ρ, and y(q2) = max{y(pL), y(pR)} − ρ, where
ρ = (x(pR) − x(pL))/2. See Fig. 2(a) for an illustration.

For any point t ∈ �, we denote the square centered at t with side length
x(pR) − x(pL) by Sout(t). By definition, it contains pL and pR on its left and
right sides, respectively. We use Sin(t, r) to denote the inner square centered at
t with side length r. We know r ≤ x(pR) − x(pL), but do not know its exact
value.

In the following, we find a largest possible inner square for a candidate pair
(pL, pR) on the outer square whose corresponding annulus contains at least n−k
points. That is, we maximize r ∈ [0, x(pR)−x(pL)] such that Sout(t) and Sin(t, r)
form a square annulus that contains at least n − k points in P for some t ∈ �.
This determines the minimum-width square annulus for the fixed pair (pL, pR).

For the purpose, we compute the set L of O(n) candidate side lengths of
inner square. We then apply a binary search on the sorted list L of candidate
side lengths using the decision algorithm to find the interval I of two consecutive

Fig. 2. (a) The set of centers of the squares with pL and pR on vertical sides constitutes
a vertical line segment � = q1q2. (b) Candidate side lengths of inner squares with respect
to �. For each point p, its x-distance to � and y-distance to each of the endpoints
q1 and q2 of � are candidate side lengths of inner squares. Precisely, 2|x(p) − x(�)|,
2|y(p) − y(q1)|, and 2|y(p) − y(q2)| are candidate side lengths of inner squares for a
point p ∈ P .

Minimum-Width Annulus with Outliers 51

side lengths in L containing the side length r∗ of the largest inner square whose
corresponding annulus contains at least n − k points of P . To finally obtain r∗,
we apply a linear search on another list of side lengths within I obtained by a
series of certain events which will be described below.

Decision Algorithm. Assume that the points of P are sorted with respect to
their y-coordinates. This allows us to sort the points in any subset P ′ of P with
respect to their y-coordinates in O(n) time. Let r be an input side length.

Imagine that a point t translates from one endpoint to the other endpoint
of � along �. As t translates along �, a point in P enters into Sout(t) or Sin(t, r),
or exits from Sout(t) or Sin(t, r). We call a point t ∈ � such that a point in
P lies on the boundary of Sout(t) or Sin(t, r) an event. Note that for a point t
lying between any two consecutive events along �, the set P ∩ Sout(t) and the
set P ∩ Sin(t, r) remain the same.

We compute all events and sort them along � in O(n) time. Then we translate
t along � and compute the number of points of P lying in the annulus with outer
square Sout(t) and inner square Sin(t, r). Thus, we can determine whether there
is some t ∈ � such that the number of points of P lying in the square annulus
determined by Sout(t) and Sin(t, r) is at least n − k in O(n) time in total.

Lemma 5. Given pL, pR ∈ P and r > 0, we can check in O(n) time whether
there is a square annulus of P with k outliers such that pL lies on the left side
of its outer square, pR lies on the right side of its outer square, and its inner
square has side length at most r for any input r > 0, provided that points in P
are sorted with respect to their y-coordinates.

Binary Search on Candidate Side Lengths. We first compute O(n) can-
didate side lengths of the largest inner square whose corresponding annulus
contains n − k points of P . We then apply a binary search on the sorted list of
these candidate side lengths. This gives us an interval I defined by two consecu-
tive candidate side lengths in the sorted list containing the side length r∗ of the
largest inner square whose corresponding annulus contains n − k points of P .

We consider the distance between each point p ∈ P and the line containing
�, and take twice the value as a candidate side length. We also consider the
difference between y(p) for each p ∈ P and y(q) for each q ∈ {q1, q2}, and take
twice the value as a candidate side length as well. (Recall that q1 and q2 are the
two endpoints of �.) Precisely, 2|x(p) − x(�)|, 2|y(p) − y(q1)|, and 2|y(p) − y(q2)|
are candidate side lengths of inner squares for a point p ∈ P . See Fig. 2(b) for an
illustration. We reject all distances larger than x(pR)−x(pL) as no inner square
of such a large side length defines a square annulus. We apply a binary search
on the sorted list of all candidate side lengths we have taken using the decision
algorithm above. As a result, we obtain the interval I = [r′, r′′) bounded by
two consecutive candidate side lengths, and I contains the side length r∗ of the
largest inner square whose corresponding annulus contains n − k points of P .

52 H.-K. Ahn et al.

Linear Search for r∗ in I. Now we have the interval I = [r′, r′′) containing
the side length r∗ of the largest inner square. For a value r ∈ I, consider a
square S of side length r centered at a point t ∈ �. Imagine that we translate
t from one endpoint of � to the other endpoint (and therefore the square is
translated accordingly.) Then the top side of the square hits a number of points
in P . Observe that the set of points hit by the top side during the translation
remains the same for any value r ∈ I because there is no point p in P with
r′ < 2|x(p) − x(�)| < r′′. This implies that the order of the points hit by the
top side during the translation of the square remains the same even for varying
r ∈ I. This also holds for the bottom side of the square.

For a fixed r ∈ I, consider all points p in P satisfying |x(p) − x(�)| ≤ r/2
and y(q2) − r/2 ≤ y(p) ≤ y(q1) + r/2. They are the points in P that are swept
by the moving inner square. Some of them are hit by the top or the bottom side
during the translation. Let Q be the list of these points sorted along the y-axis.

For a given t ∈ �, let Sin(t) denote the inner square centered at t with largest
side length in I that contains at least n − k points in the annulus determined
by Sout(t) and Sin(t). Let P (t) denote the set of points in P contained in the
annulus. Note that Sin(t) may not be defined for a certain point t ∈ � if the
annulus determined by Sout(t) and the square centered at t with side length
r′ contains less than n − k points. In other words, Sin(t) must have side length
smaller than r′ to contain at least n−k points of P . Recall that r′ is the smallest
value in I. In this case, we let Sin(t) denote the square centered at t with side
length r′. Thus, the number of points in P (t) is strictly smaller than n − k.

Now imagine that we translate t from the upper endpoint of � to the lower
endpoint. Then the set P (t) changes at some points in � during the translation.
We call such a point on � an event. We can characterize the events at which P (t)
may change during the translation as follows. To make the description easier,
we assume that the annulus is open, that is, we consider the points of P lying
on the boundary of the annulus as outliers.

Observation 1. The set P (t) changes only if either (1) a point appears on the
boundary of Sout(t), (2) a point appears on the top side and another point appears
on the bottom side of Sin(t) simultaneously, or (3) a point appears on the top or
bottom side of Sin(t) and the side length of Sin(t) is the smallest value r′ in I.

The three cases correspond to three types of events, respectively. Clearly there
are O(n) events of the first type. Since the points in P are already sorted in their
y-coordinates, we can compute the sorted list of the events of the first type in
O(n) time.

An event of the third type occurs at t = y(p) + r′/2 and t = y(p) − r′/2 for
a point p ∈ Q. As the points in P are already sorted in their y-coordinates, we
can compute the sorted list of the events of the third type in O(n) time. Let E
be the sorted list of the events of the first and the third types.

In the following, we will show that there are O(n) events of the second type.
We compute them in O(n) time while we translate a point t along �. During the
translation, we maintain two pointers, one for the event immediately before t

Minimum-Width Annulus with Outliers 53

and one for the event immediately after t in E . We also maintain a counter that
counts the number of points in P (t). We also maintain the y-coordinates of the
top and bottom sides of Sin(t) in Q during the translation of t.

Let e be the current event on � of any type. We compute the event e′ next
to e along � in O(1) time as follows. Consider first the case that e′ is an event of
the first or third type. If e is an event of the first or third type, then both e and
e′ are in E and e′ is the event next to e in E . Thus we can compute e′ in constant
time. If e is an event of the second type, then we can find the event e′ that occurs
immediately after e in E in constant time as we maintain the location of e in E .
We also compute Sin(e′) and the number of points in P (e′) from the counter of
P (e) in constant time.

Now consider the case that e′ is an event of the second type. There are two
cases on the points pt and pb in Q lying on the top and bottom sides of Sin(e′),
respectively: (i) pt lies on the top side of Sin(e) and pb is the first point in Q
lying below the bottom side of Sin(e), or (ii) pt is the first point in Q lying below
the top side of Sin(e) and pb is the first point in Q lying below the bottom side
of Sin(e). Since we have the y-coordinates of the top and bottom sides of Sin(e)
in Q, we can obtain e′ and Sin(e′) in constant time. Moreover, the number of
events of the second type is O(n) in total because the bottom side of Sin(t) moves
downwards as t moves downwards along �. We compute Sin(e′) and update the
number of points of P (e′) in constant time.

Therefore, we can compute all O(n) events in O(n) time. By Lemma 4, one
of the events is the center of a minimum-width annulus. Note that we obtain the
number of points lying in the annulus for each event during the translation. We
choose the one with the minimum width among the annuli containing at least
n − k points.

Theorem 2. Given a set P of n points in the plane and a nonnegative integer
k with 1 ≤ k ≤ n, a minimum-width square annulus of P with k outliers can be
computed in O(k2n log n) time.

5 Rectangular Annulus with Outliers

In this section, we present two algorithms for computing a minimum-width rect-
angular annulus of a set P of n points with k ≤ n outliers.

Our algorithm is based on the following lemma given by Bae [6]. Due to
this lemma, we can find O(k4) candidates of the outer rectangle of an optimal
annulus as we did in Sect. 4.2.

Lemma 6 (Bae [6]). There exists a minimum-width rectangular annulus of P
with k outliers such that each side of its outer rectangle contains a point in P .

5.1 Finding the Smallest-Width Annulus for a Fixed Outer
Rectangle

We assume that we are given a data structure constructed on P that allows
us to count the number of points of P lying on a query rectangle in O(log n)

54 H.-K. Ahn et al.

time [7]. Such a data structure can be constructed in O(n log n) time and has
O(n log n) size. We also assume that we are given two balanced binary search
trees constructed on P , one Tx with respect to their x-coordinates and the other
Ty with respect to their y-coordinates.

Let R be a candidate outer rectangle. Our goal in this subsection is to find
the minimum-width annulus whose outer rectangle is R. In other words, we find
the inner rectangle with respect to R containing k − kout points of P , where
kout is the number of points in P lying outside of R. Recall that a rectangular
annulus is determined by its outer and inner rectangles and the inner rectangle
is an inward offset of the outer rectangle.

Given a value δ ≥ 0, we can determine in O(log n) time whether the annulus
with outer rectangle R of width at most δ contains at least n − k points by
checking whether at most k − kout points of P lie on the inward offset of R by δ
using the data structure for counting queries. This is our decision algorithm for
a fixed width δ ≥ 0.

Let δ∗ be the minimum width such that our decision algorithm returns a
positive answer, and R∗ be the inward offset of R by δ∗. That is, the annulus
determined by R and R∗ is the optimal solution for fixed outer rectangle R, and
its width is δ∗. To reduce the search space for δ∗, we make use of the observation
that at least one side of R∗ contains a point of P . Consider the case where the
left side of R∗ contains a point p∗ ∈ P . Let x1 be the x-coordinate of the left
side of R and x2 be the x-coordinate of the center of R. Then, it is obvious that
the x-coordinate of p∗ lies in the interval [x1, x2].

Now, we are ready to describe our algorithm to find p∗ and δ∗. It starts with
two standard queries for x1 and x2 on the balanced binary search tree Tx on
P with respect to the x-coordinates, resulting in two paths from the root to a
leaf in Tx. The two search paths share a common part from the root and then
split at some node v of Tx. We traverse Tx again from the split node v. By the
construction, the x-coordinate xv corresponding to v lies in [x1, x2]. We then
apply our decision algorithm for δ = xv − x1. If the result is positive, then we
proceed to the left child of v; otherwise, if negative, then we proceed to the right
child of v. We apply our decision algorithm for this next node repeatedly until
we reach a leaf of Tx. Then, the leaf node corresponds to the point p∗, in this
case. Since the height of Tx is O(log n) and our decision algorithm takes O(log n)
time, this procedure terminates in O(log2 n) time.

The other cases, where p∗ lies on the right, top, or bottom side of R∗, can
be handled in a symmetric way by traversing the binary search tree on P with
respect to the x-coordinates or y-coordinates.

5.2 Putting it all Together

Since we have O(k4) candidate outer rectangles by Lemma 6, we obtain the
following by the above discussion.

Theorem 3. Given a set P of n points in the plane and a nonnegative inte-
ger k ≤ n, a minimum-width rectangular annulus of P with k outliers can be
computed in O(n log n + k4 log2 n) time.

Minimum-Width Annulus with Outliers 55

The time bound in Theorem 3 has a term of n log n, and this does not match
the case of k = 0 in which one can solve the problem in O(n) time [1]. In order
to reduce the running time for small k, we exploit the approach by Bae [6].

A subset K ⊆ P is called a kernel for P if a minimum-width rectangular
annulus of K with k outliers is also a minimum-width rectangular annulus of P
with k outliers at the same time. Bae [6] presented a procedure to compute a
kernel K of size O(k4) in O(nk2 log k + k4) time. After computing such a kernel
K, we compute a minimum-width rectangular annulus of K with k outliers in
O(k4 log2 k) time using Theorem 3. Hence, we conclude the following theorem.

Theorem 4. Given a set P of n points in the plane and an integer 1 ≤ k ≤ n,
a minimum-width rectangular annulus of P with k outliers can be computed in
O(nk2 log k + k4 log2 k) time.

References

1. Abellanas, M., Hurtado, F., Icking, C., Ma, L., Palop, B., Ramos, P.: Best fitting
rectangles. In: Proceedings of the European Workshop on Computational Geome-
try (EuroCG 2003), pp. 147–150 (2003)

2. Agarwal, P.K., Aronov, B., Sharir, M.: Computing envelopes in four dimensions
with applications. SIAM J. Comput. 26(6), 1714–1732 (1997)

3. Agarwal, P., Sharir, M.: Efficient randomized algorithms for some geometric opti-
mization problems. Discrete Comput. Geom. 16, 317–337 (1996)

4. Agarwal, P., Sharir, M., Toledo, S.: Applications of parametric searching in geo-
metric optimization. J. Algo. 17, 292–318 (1994)

5. Bae, S.W.: Computing a minimum-width square annulus in arbitrary orientation.
In: Kaykobad, M., Petreschi, R. (eds.) WALCOM 2016. LNCS, vol. 9627, pp. 131–
142. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-30139-6 11

6. Bae, S.W.: Computing a minimum-width square or rectangular annulus with out-
liers. In: Dinh, T.N., Thai, M.T. (eds.) COCOON 2016. LNCS, vol. 9797, pp.
443–454. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-42634-1 36

7. de Berg, M., Cheong, O., van Kreveld, M., Overmars, M.: Computational Geom-
etry: Algorithms and Applications. Springer, Heidelberg (2008). https://doi.org/
10.1007/978-3-540-77974-2

8. Chan, T.: Approximating the diameter, width, smallest enclosing cylinder, and
minimum-width annulus. Int. J. Comput. Geom. Appl. 12, 67–85 (2002)

9. Ebara, H., Fukuyama, N., Nakano, H., Nakanishi, Y.: Roundness algorithms using
the Voronoi diagrams. In: Abstracts 1st Canadian Conference on Computational
Geometry (CCCG), p. 41 (1989)

10. Gluchshenko, O.N., Hamacher, H.W., Tamir, A.: An optimal O(n log n) algorithm
for finding an enclosing planar rectilinear annulus of minimum width. Oper. Res.
Lett. 37(3), 168–170 (2009)

11. Har-Peled, S., Wang, Y.: Shape fitting with outliers. SIAM J. Comput. 33(2),
269–285 (2004)

12. Lee, D.: On k-nearest neighbor Voronoi diagrams in the plane. IEEE Trans. Com-
put. 31(6), 478–487 (1982)

13. Liu, C.H., Papadopoulou, E., Lee, D.T.: The k-nearest-neighbor Voronoi diagram
revisited. Algorithmica 71, 429–449 (2015)

14. Mukherjee, J., Mahapatra, P., Karmakar, A., Das, S.: Minimum-width rectangular
annulus. Theor. Comput. Sci. 508, 74–80 (2013)

https://doi.org/10.1007/978-3-319-30139-6_11
https://doi.org/10.1007/978-3-319-42634-1_36
https://doi.org/10.1007/978-3-540-77974-2
https://doi.org/10.1007/978-3-540-77974-2

Minimum-Width Square Annulus
Intersecting Polygons

Hee-Kap Ahn , Taehoon Ahn, Jongmin Choi, Mincheol Kim,
and Eunjin Oh(B)

Pohang University of Science and Technology, Pohang, South Korea
{heekap,sloth,icothos,rucatia,jin9082}@postech.ac.kr

Abstract. For k (possibly overlapping) polygons of total complexity n
in the plane, we present an algorithm for computing a minimum-width
square annulus that intersects all input polygons in O(n2α(n) log3 n)
time, where α(·) is the inverse Ackermann function. When input poly-
gons are pairwise disjoint, the running time becomes O(n log3 n). We
also present an algorithm for computing a minimum-width square annu-
lus for k convex polygons of total complexity n. The running times are
O(n log k) for possibly overlapping convex polygons and O(n + k log n)
for pairwise disjoint convex polygons.

1 Introduction

One of the fundamental optimization problems in computational geometry is to
enclose or intersect input objects (such as points, line segments, and polygons)
with a predefined geometric figure (such as a circle, a square, or a rectangle) of
smallest size. There has been a significant amount of work for such enclosure
and intersection problems [4,7,14,15]. Given n points in the plane, Meggido [15]
studied the problem of computing the smallest disk that encloses the points and
presented an O(n)-time algorithm for the problem. Later, Bhattacharya et al. [4]
presented a linear-time algorithm for computing the radius of the smallest closed
hypersphere that intersects all input hyperplanes in d-dimensional Euclidean
space.

In this paper, we consider a variant of the intersection problem: Given k
polygons of total complexity n in the plane, compute a minimum-width axis-
parallel square annulus that intersects all input polygons. A square annulus is
the region bounded by two squares centered at a common point, and its width
is the half of the difference between the side lengths of the two squares.

The problem of computing the minimum-width circular annulus of a set of
points has been extensively studied [1–3,5]. The best known exact algorithm for
this problem takes O(n3/2+ε) time for any constant ε > 0. All these algorithms
are based on the fact that the center of the minimum-width circular annulus is
a vertex of the overlay of the nearest-point and farthest-point Voronoi diagrams

This research was supported by the MSIT (Ministry of Science and ICT), Korea,
under the SW Starlab support program (IITP–2017–0–00905) supervised by the
IITP (Institute for Information & communications Technology Promotion.).

c© Springer International Publishing AG, part of Springer Nature 2018
M. S. Rahman et al. (Eds.): WALCOM 2018, LNCS 10755, pp. 56–67, 2018.
https://doi.org/10.1007/978-3-319-75172-6_6

http://orcid.org/0000-0001-7177-1679

Minimum-Width Square Annulus Intersecting Polygons 57

of the input points. Since the overlay has Θ(n2) complexity in the worst case,
they use methods that avoid computing the whole description of the overlay
explicitly.

A minimum-width axis-parallel square annulus containing n input points
can be computed in O(n log n) time [12]. A main observation used in the algo-
rithm is that the complexity of the farthest-point Voronoi diagram of the input
points under L∞-metric has a constant complexity. Therefore, the overlay of
the nearest-point and farthest-point Voronoi diagrams has O(n) complexity in
this case.

The minimum-width axis-parallel rectangular annulus of a set of n points can
be computed in O(n) time [16] without using Voronoi diagrams. A main observa-
tion is that the outer rectangle of the minimum-width axis-parallel rectangular
annulus is the smallest enclosing rectangle of the input points.

Our Results. Given k (possibly overlapping) polygons of total complexity n in the
plane, we present an O(n2α(n) log3 n)-time algorithm for computing a minimum-
width axis-parallel square annulus that intersects all input polygons, where α(·)
is the inverse Ackermann function. If the polygons are pairwise disjoint, we can
solve the problem in O(n log3 n) time.

We also consider the case that all input polygons are convex, and present
an O(n log k)-time algorithm. When input polygons are pairwise disjoint, the
algorithm takes O(n + k log n) time.

To our best knowledge, these are the first results on the problem.
Due to page limit, some proofs are removed. The missing proofs can be found

in the full version of this paper.

2 Preliminaries

Let P be a set of k polygons of total complexity n. A minimum-width square
annulus of P is an axis-parallel square annulus with the minimum width that
intersects all polygons in P. Figure 1 (Left) shows a minimum-width square
annulus of six polygons. Throughout this paper, a square refers to an axis-parallel
square. We assume the general position condition on P that no two vertices of
the polygons in P have the same x- or y-coordinate. We can avoid this condition
by slightly modifying our algorithm or applying a slight perturbation to the
positions of the vertices [11]. For a finite set X, we use |X| to denote the size
of X.

We define two distance measures which we call the outer-distance and the
inner-distance. For a point x and a polygon P in the plane, we define the outer-
distance between x and P as the half of the side length of the smallest square
centered at x that intersects P and denote it by dO(x, P). For a point x in the
plane, we define the inner-distance between x and P as the half of the side length
of the smallest square centered at x that encloses P and denote it by dI(x, P).
See Fig. 1 (Right) for an illustration.

We consider two Voronoi diagrams of P, one with respect to dI and one with
respect to dO. For a point x in R

2, let FO(x) be the outer-distance between

58 H.-K. Ahn et al.

P

x

dI(x, P)dO(x, P)

Fig. 1. Left: A minimum-width square annulus of six polygons. Right: dO(x, P) is the
half of the side length of the smaller square and dI(x, P) is the half of the side length
of the larger square.

x and the polygon of P farthest from x under dO. Similarly, let FI(x) be the
inner-distance between x and the polygon of P nearest to x under dI . The xy-
projections of FO(·) and FI(·) are the farthest-outer Voronoi diagram (denoted
by vdO) and the nearest-inner Voronoi diagram (denoted by vdI).

The two Voronoi diagrams are subdivisions of R2 into cells, edges and ver-
tices. We call an edge or a vertex of polygons in P a feature. Each Voronoi cell
of vdO and vdI corresponds to a feature e of a polygon P in P. In this case,
we say e defines the Voronoi cell. For vdO, the feature e is nearest from a point
x in the Voronoi cell among all features of P , and P is farthest from x among
all input polygons under the outer-distance. Similarly, for vdI , the feature e is
farthest from a point x in the Voronoi cell among all features of P , and P is
nearest from x among all input polygons under the inner-distance.

The following observation connects a minimum-width square annulus of P
and the farthest-outer and nearest-inner Voronoi diagrams.

Observation 1. For any point x in the plane, the minimum-width square annu-
lus of P centered at x has width max{FO(x) − FI(x), 0}.

A polyhedral terrain is the graph of a piecewise linear continuous surface
in three dimensions that intersects any line parallel to the z-axis in exactly one
connected component (a point or a segment). The graph of FI(x) (and of FO(x))
is a polygonal terrain. We sometimes use FI and FO to denote the graphs of them
if they are understood in context. By the observation above, our problem reduces
to finding the minimum distance in z direction, that is, minx∈R2 FO(x) − FI(x),
between the two polygonal terrains.

Our overall strategy for computing a minimum-width square annulus of
polygons is the following. We first compute two functions FI : R

2 → R and
FO : R2 → R, and thus we obtain vdI and vdO. Then we find the minimum
distance in z direction between FI and FO without constructing the overlay of
vdI and vdO explicitly.

Minimum-Width Square Annulus Intersecting Polygons 59

3 Minimum-Width Square Annulus for Polygons

We are given k polygons of total complexity n. We assume that each polygon
is given as a list of vertices sorted along the polygon boundary. We present an
algorithm for computing a minimum-width square annulus of the polygons. Our
algorithm takes O(n log3 n) time if the input polygons are pairwise disjoint, and
O(n2α(n) log3 n) time otherwise, where α(·) is the inverse Ackermann function.

3.1 Computing Voronoi Diagrams

The Farthest-Outer Voronoi Diagram. Consider the case that the input
polygons are pairwise disjoint. Then the farthest-outer Voronoi diagram is the
L∞-metric version of the Voronoi diagram studied by Cheong et al. [7]. They pre-
sented an O(n log3 n)-time algorithm for computing the farthest-polygon Voronoi
diagram of pairwise disjoint polygons of total complexity n, where the distance
to a site (polygon) is measured by the Euclidean distance to a closest point on
it. Since their algorithm also works for our case under the outer-distance, we can
compute the farthest-outer Voronoi diagram of P in the same time.

Now consider the general case that the input polygons are not necessarily
pairwise disjoint. For a polygon P ∈ P, consider the function that maps a
point x in R

2 to dO(x, P). The graph of this function is a polygonal terrain of
complexity |P |, where |P | denotes the complexity of P . By definition, FO is the
upper envelope of all such polygonal terrains over all polygons in P.

Therefore, the problem reduces to computing the upper envelope of polygonal
terrains of total complexity n, or more generally, computing the upper envelope
of n triangles in R

3. Pach and Sharir [17] showed that the complexity of the upper
envelope of n triangles in R

3 is O(n2α(n)). Edelsbrunner et al. [10] presented
an algorithm for computing the upper envelope in (n2α(n)) time. Therefore, we
can compute the farthest-outer Voronoi diagram vdO of P in O(n2α(n)) time.

The Nearest-Inner Voronoi Diagram. To compute vdI , we use the algo-
rithm for computing abstract Voronoi diagrams given by Klein [13]. Abstract
Voronoi diagrams are based on systems of simple curves. The abstract Voronoi
diagram of N sites has O(N) complexity and can be computed in O(N log N)
time if the family of bisecting curves is admissible [13]. For details, refer the
paper [13].

In our case, we have k sites which are the polygons in P. The bisecting curve
between P and Q in P is defined as the set of points in R

2 equidistant from P and
Q under the inner-distance. The following lemmas imply that the family of the
bisecting curves is admissible. For a polygon P , let R(P) denote the minimum
enclosing axis-parallel rectangle of P .

Lemma 1. The bisecting curve between any two (possibly overlapping) polygons
P and P ′ coincides with the bisecting curve between R(P) and R(P ′).

60 H.-K. Ahn et al.

By Lemma 1, it suffices to consider the minimum enclosing axis-parallel rect-
angle R(P) for each polygon P of P instead of the original polygons. Consider
the case that R(P1) for P1 ∈ P contains R(P2) (and therefore contains P2) for
another polygon P2 ∈ P. In this case, there is no bisecting curve between P1 and
P2. Moreover, P1 has no nonempty Voronoi cell. Thus, we remove all polygons
P ∈ P such that P ′ ⊂ R(P) for another polygon P ′ ∈ P. We can find all such
polygons in O(k log k) time by sweeping the plane with respect to a horizontal
line once. Then we have the following lemma. The following lemma implies that
the bisecting curve between any two polygons in P is nonempty.

Lemma 2. The bisecting curve between any two polygons consists of at most
three edges, one is a line segment and the other two are rays, each of which is
axis-parallel or has slope of ±1 with respect to the x-axis.

Lemmas 1 and 2 imply that the bisecting curve of any pair of two polygons P and
P ′ of P can be computed in constant time once we compute R(P) and R(P ′).
Therefore, we have the following lemma.

Lemma 3. For any two polygons of P, we can compute their bisecting curve in
constant time after processing the polygons in P in O(n) time.

Therefore, the nearest-inner Voronoi diagram vdI of k polygons with n ver-
tices in total has O(n) complexity and we can compute vdI in O(n + k log k)
time.

3.2 Searching the Region Between Two Polygonal Terrains

Our goal in this subsection is to find the minimum distance in z direction between
two polygonal terrains FI and FO. In other words, we seek to find a point that
minimizes FO(x)−FI(x) over all points x ∈ R

2. Notice that FO(x)−FI(x) might
be negative for a point x. In this case, the minimum-width square annulus of P
centered at x has width 0. Since the terrains are piecewise linear, the minimum
distance is achieved at a vertex in the overlay of the two terrains.

Observation 2. There is a vertex v in the overlay of vdI and vdO that gives
the minimum value of FO(x) − FI(x) over all points x ∈ R

2.

Thus a straightforward approach is to compute the overlay of vdI and vdO

and to consider every vertex of the overlay as a candidate. Since the overlay is a
plane graph with O(nN) vertices, edges, and cells, it can be computed in O(nN)
time. Thus this approach can be done in O(nN) time, where N is the complexity
of vdO. Recall that N = O(n) if the polygons in P are pairwise disjoint, and
N = O(n2α(n)) otherwise.

There is an efficient algorithm for computing the minimum distance between
two terrains without computing the overlay of them explicitly, and therefore
achieving o(nN) running time. Chazelle et al. [6] presented an algorithm that
computes the minimum distance in z direction between any two polygonal ter-
rains of total complexity N in O(N4/3+ε) time for any constant ε > 0.

Minimum-Width Square Annulus Intersecting Polygons 61

We may use their approach for our problem. However, in the following, we
show how to improve the running time for our problem to O(N log3 N). We use
the approach in [1–3] together with a few new ideas to reduce the running time.
Specifically, we make use of the fact that each edge of vdI is axis-parallel or has
slope of ±1. Due to this fact, we can encode an edge of FI and FO using only
two variables. Note that in [1–3], each edge of Voronoi diagrams is encoded by
four variables.

Consider a minimum-length segment � parallel to the z-axis, one endpoint
lying on FI and the other endpoint lying on FO.

There are two cases for the endpoints of � [6]: (a) one endpoint is a vertex
of FI or FO, or (b) one endpoint lies on an edge of FI and the other lies on an
edge of FO. Case (a) can be handled as follows. For each vertex v of vdI and
vdO, we compute FI(v) and FO(v) in O(log m) time, where m is the larger of
the complexities of vdI and vdO. Thus we can handle case (a) in O(m log m)
time.

To handle case (b), in the remaining of this section, we present data structures
that allow us to find an edge e′ of vdO with smallest FO(v)−FI(v) in O(log3 m)
time for each edge e of vdI , where v is the intersection point between e and e′.
By applying this procedure to every edge of vdI , we can find a minimum-width
square annulus of P in O(m log3 m) time excluding the time for computing FI

and FO for case (b), where m is the larger of the complexities of vdI and vdO.

Pairs of Edge Subsets. We first compute, for each edge e of vdI , the edges
e′ of vdO intersecting e. Once we have the edges of vdO intersecting e for each
edge e of vdI , we consider the line containing each such edge e′ of vdO, instead
of e′.

To do this, we construct a set of edge pairs of vdI and vdO as follows.
Consider a set E of pairs (E,E′) each of which consists of a subset E of the edge
set of vdI and a subset E′ of the edge set of vdO. We call E an ie-partition if
(1) every edge in E of each pair (E,E′) of E intersects every edge in E′ and
(2) there exists a pair (E,E′) ∈ E for each e ∈ E and e′ ∈ E′ with e ∩ e′ �= ∅.
The size of an ie-partition is the sum of |E| + |E′| over all pairs (E,E′) of the
ie-partition.

For the proof of the following lemma, see Sect. 4 of [6].

Lemma 4 ([6]). An ie-partition of size O(m log2 m) can be constructed in
O(m log2 m) time.

Reduction to Ray-Shooting Towards a Lower Envelope. We compute an
ie-partition E of size O(m log2 m). Then for each pair (E,E′) of E , we construct
a data structure that allows us to find, for each (query) edge e ∈ E, an edge e′

of E′ with smallest FO(v) − FI(v), where v is the intersection point between e
and e′.

62 H.-K. Ahn et al.

Recall that an edge of E is axis-parallel or has slope of ±1. We construct four
data structures to handle these cases. In the following, we show how to handle
the edges of E of slope 1. We can handle the other cases analogously.

Since every edge e in E intersects every edge in E′ for a pair (E,E′), we
simply treat each edge in E ∪ E′ as the line containing the edge. We can encode
a line e of E using two variables: its y-intercept and the coordinate of the feature
defining e and lying below e. To see this, observe that e is a part of the bisector
of two features, say p1 and p2. One of them, say p1, lies below e. For any point x
in e, the L∞-distance between x and p1 is determined by only one coordinate of
p1. Thus, to encode the distance between a point in e and p1, it suffices to use
only one of two coordinates of p1. We map each edge e ∈ E to the point μ(e)
whose x- and y-coordinates are the y-coordinate of e and one coordinate of the
feature defining e and lying below e, respectively.

For each edge e′ ∈ E′, we consider a surface σe′(α, β, γ) = 0 such that for
every e ∈ E,

σe′(α, β, FO(v) − FI(v)) = 0, (1)

where (α, β) = μ(e) and v is the intersection point between e and e′. Notice that
such a surface is not unique.

Lemma 5. There is a plane σe′(α, β, γ) = 0 satisfying Eq. (1) for each edge e′

in E′. Moreover, we can compute it in constant time for each edge in E′.

For each edge e′ ∈ E′, we use σe′(α, β, γ) = 0 to denote the plane satisfying
Eq. (1). The following lemma reduces the problem to the problem of vertical
ray-shooting towards the lower envelope of the planes σe′(α, β, γ) = 0 for all
edges e′ ∈ E′. This lemma holds by definition of σe′(α, β, γ) = 0.

Lemma 6. For an edge e ∈ E, let e′ be an edge of E′ such that σe′(α, β, γ) = 0
is the lowest plane among all planes for the edges of E′ intersected by the line
passing through μ(e) and parallel to the z-axis. Then e′ is the edge of E′ with
smallest FO(v) − FI(v), where v is the intersection point of e and e′.

Ray-Shooting Towards the Lower Envelope. We compute the lower enve-
lope of all planes σe′(α, β, γ) = 0 for all edges e′ ∈ E′ in O(|E′| log |E′|) time [8],
and then we find the face of the lower envelope intersecting the line parallel to
the z-axis and passing through μ(e) for each edge e ∈ E in O(log |E′|) time [18].
Then for each edge e ∈ E, we have an edge e′ ∈ E′ with smallest FO(v) − FI(v)
by Lemma 6, where v is the intersection point of e and e′. We can do this in
O(|E| log |E′| + |E′| log |E′|) time for every edge e in E in total.

We do this for every pair of E . Since the sum of |E| + |E′| over all pairs
(E,E′) in E is O(m log2 m), the total running time is O(m log3 m).

Theorem 1. Given a set P of polygons of total complexity n, a minimum-width
square annulus of P can be computed in O(n2α(n) log3 n) time. When the poly-
gons are pairwise disjoint, the running time becomes O(n log3 n).

Minimum-Width Square Annulus Intersecting Polygons 63

4 Minimum-Width Square Annulus for Convex Polygons

In this section, we consider the case that every polygon in P is convex. We
assume that each polygon is given as a list of vertices sorted along the polygon
boundary. Our algorithm takes O(n + k log n) time if the polygons are pairwise
disjoint, and O(n log k) time otherwise, where k is the number of the convex
polygons of P and n is the total complexity of the convex polygons.

The overall strategy is similar to the general case described in Sect. 3. A main
observation for speeding up the algorithm is that the farthest-outer Voronoi
diagram consists of O(1) xy-monotone polygonal curves and O(n) rays.

4.1 Properties of the Farthest-Outer Voronoi Diagram

We provide several combinatorial properties of the farthest-outer Voronoi dia-
gram of convex polygons. Some of them are extensions of the properties for the
case that sites are line segments which were given by Dey and Papadopoulou [9].

Definer of vdO . We define the definer of vdO as follows. We use it for analyzing
combinatorial properties of the farthest-outer Voronoi diagram. Let x be a point
in the Voronoi cell C corresponding to a feature e of a polygon P ∈ P. We use
s(x) to denote a point (or an axis-parallel line segment) at which the smallest
axis-parallel square centered at x ∈ C and intersecting P intersects e. The definer
of vdO is the union of s(x) for all points x ∈ R

2.
Consider the case that s(x) is in the top side (excluding its endpoints) of

the smallest axis-parallel square centered at x and intersecting P. Then P is
the polygon which has the highest bottom side among all polygons in P. Thus,
there is only one feature e whose Voronoi cell belongs to this case. We denote
the horizontal line passing through e by �t. This also holds for the other cases,
that is, s(x) lying on the bottom, left, and right sides, excluding their endpoints.
In this way, we obtain four axis-parallel lines �i for i = t, b, r, l. (We use b for the
bottom side, r for the right side, and l for the left side.)

Consider the case that s(x) lies on a corner, say the top-right corner, of the
smallest intersecting square of P centered at x. The top-right corner lies in the
north-east quadrant defined by �r and �t. However, note that x is not contained
in the north-east quadrant. Otherwise, the smallest intersecting square of P
centered at x does not intersect the polygon defining at least one of �t, �b, �l and
�r, which is a contradiction.

We claim that there is a convex polygonal curve γ1 containing s(x) for any
x ∈ R

2 belonging to the case that s(x) lies on the top-right corner. For any poly-
gon P in P, the intersection of the boundary of P with the top-right quadrant
defined by �r and �t consists of at most two boundary chains of P . This is simply
because P is convex. If there are exactly two boundary chains of P in the inter-
section, dO(x, P) is determined by the chain of P closer to the the origin of the
quadrant, that is, dO(x, P) coincides with the outer-distance between x and the
convex chain. Otherwise, no feature of P belongs to this case.

64 H.-K. Ahn et al.

Thus, by definition, s(x) lies on the upper envelope of all such convex chains
for all polygons in P. We denote the upper envelope by γtr. The same holds for
the other cases, that is, s(x) is a corner other than the top-right corner, and we
obtain four convex polygonal curves γtr, γbr, γtl and γbl.

Thus, the definer of vdO consists of four features of the polygons in P defining
�t, �b, �l and �r each, and four convex polygonal curves γtr, γbr, γtl and γbl.

Properties of the Farthest-Outer Voronoi Diagram. Each edge of vdO

is either a line segment or a ray. We call an edge of the first type bounded and
an edge of the second type unbounded. Recall that FO(x) is the outer-distance
between x and the polygon in P farthest from x for a point x ∈ R

2. We say a
function is convex if the region above its graph is a convex set.

Lemma 7. Every cell in the farthest-outer Voronoi diagram is unbounded.

Since the polygons are convex, the distance function dO for each polygon is
convex, and therefore FO(·), the upper envelope of the graphs of dO’s, is also
convex.

Lemma 8. The function FO : R2 → R is convex.

Lemma 9. There are O(1) xy-monotone polygonal curves whose union contains
every vertex and every bounded edge of vdO.

Lemma 10. The farthest-outer Voronoi diagram of (possibly overlapping) con-
vex polygons of total complexity n has complexity O(n).

Proof. We first consider the bounded edges and the vertices of vdO. By
Lemma 9, there are O(1) xy-monotone polygonal curves whose union contains
every vertex and every bounded edge of vdO. Moreover, such xy-monotone
polygonal curves have complexity of O(n) in total since the complexity of the
definer of vdO is O(n). Therefore, there are O(n) bounded edges and vertices of
vdO.

Now consider the unbounded edges of vdO. An unbounded edge of vdO has
one vertex of vdO as its endpoint. Since there are O(n) vertices of vdO, the
number of the unbounded edges of vdO is O(n).

Each cell is bounded by at least one edge of vdO. Moreover, each edge of
vdO is incident to exactly two cells of vdO. Therefore, the number of the cells
of vdO is O(n), and the complexity of vdO is O(n).

4.2 Computing the Farthest-Outer Voronoi Diagram

Lemma 11. The farthest-outer Voronoi diagram of k (possibly overlapping)
convex polygons of total complexity n can be computed in O(n log k) time.

Proof. We use a scheme similar to the one by Dey and Papadopoulou [9]. Recall
that the definer of vdO consists of four vertices of polygons in P and four convex

Minimum-Width Square Annulus Intersecting Polygons 65

chains. We can compute the four vertices in the definer of vdO in O(n) time as
follows. For the vertex defining �t, we consider the polygons in P one by one and
find the lowest vertex of each polygon. Then we choose the highest one among
all the lowest vertices, which defines �t. The other vertices of the definer of vdO

can be computed in a similar way.
We can compute the convex chain γtr in O(n log k) time as follows. For each

polygon P ∈ P intersecting the top-right quadrant defined by �t and �r, we find
the maximal convex chain of the intersection of the boundary of P with the
quadrant. We can find all such convex chains for all polygons in P in O(n) time
in total. Then we compute the upper envelope of the convex chains in O(n log k)
time using divide-and-conquer technique. Therefore the total construction of the
definer of vdO takes O(n log k) time.

After constructing the definer of vdO, we can construct vdO in O(n) time
using the approach of Dey and Papadopoulou [9]. Once we have the definer of
vdO, we can compute the order of the Voronoi cells at infinity in O(n) time.
Then we sweep the plane towards the center of P and compute vdO in O(n)
time in total. Therefore, we can compute the farthest-outer Voronoi diagram of
k possibly intersecting convex polygons in O(n log k) time in total.

For pairwise disjoint convex polygons, the upper envelopes can be computed
in O(n) time since each upper envelope is a part of a polygon boundary in P.

Lemma 12. The farthest-outer Voronoi diagram of k pairwise disjoint convex
polygons of total complexity n can be computed in O(n) time.

4.3 Searching the Region Between Two Polygonal Terrains

As shown in Sect. 3, the problem of computing a minimum-width annulus of
P reduces to the problem of computing the minimum distance in z-direction
between FO(x) and FI(x). In this case, FO(x) is convex by Lemma 8.

We can compute a minimum-width annulus of P in O(n log n) time using
the algorithm by Zhu [19]. The algorithm by Zhu computes the minimum dis-
tance in z-direction between two polyhedral terrains, one of which is convex in
O(N log N) time, where N is the total complexity of FO(x) and FI(x).

We improve the running time for this procedure to O(n + k log n) using the
structural properties of vdO. Recall that there are two cases for endpoints of a
minimum-length segment � parallel to the z-axis: (a) one endpoint is a vertex
of FI or FO, or (b) one endpoint lies on an edge of FI and the other lies on an
edge of FO.

For the subcase of (a) that one endpoint is a vertex of FI , we simply compute
FO(v) for every vertex v in FI in O(log n) time. Since there are O(k) vertices of
FI , this takes O(k log n) time in total.

In the following, we consider the subcase of (a) that one endpoint is a vertex
of FO and case (b). Lemma 9 states that there are O(1) xy-monotone polygonal
curves containing all the bounded edges. Moreover, each vertex of vdO lies on
one of the xy-monotone polygonal curves. We first compute the intersection of

66 H.-K. Ahn et al.

each xy-monotone polygonal curve with the edges of vdI . We show that there
are O(k) intersection points which can be computed in O(n + k log k) time. Due
to lack of space, we omit how we handle the latter case for the unbounded edges
of vdO. This can be found in the full version of the paper.

Bounded Edges and Vertices of vdO . Due to Lemma 13, we can compute
the intersection points of all edges of vdI with the bounded edges of vdO in total
O(n+k log k) time. Also, we can compute FI(v) for each vertex v of FO in O(n+
k log k) time in total. To prove Lemma 13, we need the following observation.

Observation 3. For any edge h of vdI , the smallest axis-parallel rectangle con-
taining h is not intersected by any other edge of vdI .

Lemma 13. For a xy-monotone polygonal curve γ in the union of the bounded
edges of vdO, there are O(n) intersection points of γ with the edges of vdI .
Moreover, we can compute the intersection points in O(n + k log k) time.

Proof. We consider the vertical decomposition M of vdI obtained by drawing
two vertical extensions from every endpoint of an edge of vdI , one extension
going upwards and one going downwards. The vertical decomposition M is a
finer subdivision of vdI .

We claim that there are O(k) intersection points of γ with the edges of M.
Without loss of generality, we assume that γ is increasing, that is, as we move a
point in γ from one endpoint to the other endpoint, both x- and y-coordinates
are increasing or decreasing.

Note that an edge of M is axis-parallel or has slope of ±1. An axis-parallel
edge of M intersects γ at most once. An edge of slope −1 intersects γ at most
once. Consider an edge e of slope 1. It is possible that γ intersects e more than
once. However, we claim that the total number of intersection points for all edges
of M of slope 1 is O(n). To see this, we observe that the part of γ lying between
any two intersection points of e with γ is contained in the smallest axis-parallel
rectangle containing e. This is because γ is xy-monotone. By Observation 3, the
rectangle is not intersected by any other edge of vdI (of M). Therefore, the
claim holds, and there are O(n) intersection points of γ with the edges of vdI .

Now, we present an algorithm for computing all intersection points. We com-
pute M in O(k log k) time [8]. Since M is a trapezoidal decomposition of R2 of
complexity O(k), we can traverse the cells along γ in O(n+K log k) time, where
K is the number of intersection points of the edges of M parallel to the y-axis
with γ. Since K is O(k), we can compute the intersection points in O(n+k log k)
time in total.

In summary, we can compute the minimum distance in z-direction between
FO and FI in O(k log n) time once FO and FI are given.

Theorem 2. Given a set P of k convex polygons of total complexity n, a
minimum-width square annulus of P can be computed in O(n log k) time. When
the polygons are pairwise disjoint, the running time becomes O(n + k log n).

Minimum-Width Square Annulus Intersecting Polygons 67

References

1. Agarwal, P.K., Aronov, B., Sharir, M.: Computing envelopes in four dimensions
with applications. SIAM J. Comput. 26(6), 1714–1732 (1997)

2. Agarwal, P.K., Sharir, M.: Efficient randomized algorithms for some geometric
optimization problems. Discrete Comput. Geom. 16(4), 317–337 (1996)

3. Agarwal, P.K., Sharir, M., Toledo, S.: Applications of parametric searching in
geometric optimization. J. Algorithms 17(3), 292–318 (1994)

4. Bhattacharya, B.K., Jadhav, S., Mukhopadhyay, A., Robert, J.M.: Optimal algo-
rithms for some intersection radius problems. Computing 52(3), 269–279 (1994)

5. Chan, T.M.: Approximating the diameter, width, smallest enclosing cylinder, and
minimum-width annulus. Int. J. Comput. Geom. Appl. 12(1–2), 67–85 (2002)

6. Chazelle, B., Edelsbrunner, H., Guibas, L.J., Sharir, M.: Algorithms for bichro-
matic line-segment problems and polyhedral terrains. Algorithmica 11(2), 116–132
(1994)

7. Cheong, O., Everett, H., Glisse, M., Gudmundsson, J., Hornus, S., Lazard, S., Lee,
M., Na, H.-S.: Farthest-polygon voronoi diagrams. Comput. Geom. 44(4), 234–247
(2011)

8. de Berg, M., Cheong, O., van Kreveld, M., Overmars, M.: Computational Geome-
try: Algorithms and Applications. Springer TELOS, Santa Clara (2008)

9. Dey, S.K., Papadopoulou, E.: The L∞(L1) farthest line-segment Voronoi diagram.
In: Ninth International Symposium on Voronoi Diagrams in Science and Engineer-
ing, ISVD 2012, pp. 49–55 (2012)

10. Edelsbrunner, H., Guibas, L.J., Sharir, M.: The upper envelope of piecewise linear
functions: algorithms and applications. Discrete Comput. Geom. 4(4), 311–336
(1989)

11. Edelsbrunner, H., Mücke, E.P.: Simulation of simplicity: a technique to cope with
degenerate cases in geometric algorithms. ACM Trans. Graph. 9(1), 66–104 (1990)

12. Gluchshenko, O.N., Hamacher, H.W., Tamir, A.: An optimal O(n log n) algorithm
for finding an enclosing planar rectilinear annulus of minimum width. Oper. Res.
Lett. 37(3), 168–170 (2009)

13. Klein, R.: Concrete and Abstract Voronoi Diagrams. Springer, Heidelberg (1989).
https://doi.org/10.1007/3-540-52055-4

14. Löffler, M., van Kreveld, M.: Largest bounding box, smallest diameter, and related
problems on imprecise points. Comput. Geom. 43(4), 419–433 (2010)

15. Megiddo, N.: Linear-time algorithms for linear programming in R
3 and related

problems. SIAM J. Comput. 12(4), 759–776 (1983)
16. Mukherjee, J., Mahapatra, P.R.S., Karmakar, A., Das, S.: Minimum-width rectan-

gular annulus. Theoret. Comput. Sci. 508, 74–80 (2013)
17. Pach, J., Sharir, M.: The upper envelope of piecewise linear functions and the

boundary of a region enclosed by convex plates: Combinatorial analysis. Discrete
Comput. Geom. 4, 291–309 (1989)

18. Sarnak, N., Tarjan, R.E.: Planar point location using persistent search trees. Com-
mun. ACM 29(7), 669–679 (1986)

19. Zhu, B.: Computing the shortest watchtower of a polyhedral terrain in O(n log n)
time. Comput. Geom. 8(4), 181–193 (1997)

https://doi.org/10.1007/3-540-52055-4

Two New Schemes in the Bitprobe Model

Mirza Galib Anwarul Husain Baig and Deepanjan Kesh(B)

Indian Institute of Technology Guwahati, Guwahati, India
{mirza.baig,deepkesh}@iitg.ernet.in

Abstract. In this paper, we describe two new explicit schemes in the
bitprobe model that, to the best of our knowledge, improves upon the
existing schemes in the literature. One such scheme is to store three
elements using two queries in the adaptive bitprobe model. Previously,
the maximum number of elements that can be handled using two queries
in the adaptive model is two, which is due to Radhakrishnan et al. [2].
A corollary of this result is an explicit scheme for storing three elements
using three queries in the non-adaptive model, a first such scheme in the
model. The second scheme is to store four elements using four queries in
the non-adaptive bitprobe model. The previous scheme to store such a
configuration was a non-explicit scheme due to Alon and Fiege [1], and
we provide an explicit scheme for the same.

1 Introduction

Consider an universe U of m elements. Further, consider a subset S of U contain-
ing n elements. In the bitprobe model, we study the problem of storing the subset
S in a datastructure of size s such that membership queries can be answered by
probing at most t bits of the datastructure. For a given m and n, the schemes
in this model try to optimise the space used by the datastructure, s, and the
number of bitprobes used for membership queries, t. Such schemes are often
denoted by (n,m, s, t). To decide membership of an element of U in the sub-
set S, the location of a bitprobe might depend on the answers of the previous
bitprobes. Such schemes are called adaptive. If the location of every bitprobe is
independent of the answers we receive in other bitprobes, the schemes are called
non-adaptive.

Nicholson et al. [3] has surveyed the bitprobe model with discussions about
current state of the art and a selection of open problems. The reader is adviced
to refer to their article for further reading.

1.1 The Problem Statements

In this paper, we address the following two problems. The first one is to design
an explicit adaptive scheme for storing three elements and deciding membership
queries using two bitprobes, i.e. an adaptive scheme for the case when n = 3
and t = 2. A corollary of this scheme would be a non-adaptive scheme for n = 3

c© Springer International Publishing AG, part of Springer Nature 2018
M. S. Rahman et al. (Eds.): WALCOM 2018, LNCS 10755, pp. 68–79, 2018.
https://doi.org/10.1007/978-3-319-75172-6_7

Two New Schemes in the Bitprobe Model 69

and t = 3. The second problem we tackle is to design a non-adaptive scheme
for storing four elements and deciding membership using four bitprobes, i.e. a
non-adaptive scheme for n = 4 and t = 4.

1.2 Previous Results

Alon and Fiege [1] in their seminal paper presented an adaptive (n,m, s, 2)
scheme where s = o(m), which has been further improved by Garg and Radhakr-
ishnan [4], but both of their schemes are non-explicit. The explicit scheme that
accomodates the most number of elements for t = 2 is due to Radhakrishnan
et al. [2] where they present a (2,m,O(m2/3), 2) scheme.

For the case n = 3 and t = 3 in the non-adaptive bitprobe model, there does
not exist any explicit scheme with s = o(m).

In the non-adaptive bitprobe model, the best known explicit scheme with
t = 4 and s = o(m) is due to Blue [5], and their scheme can handle a subset of
size at most three (n = 3); the best known non-explicit scheme is due to Alon
and Fiege [1], and it can handle n = o(m).

1.3 Our Contribution

We present an explicit adaptive scheme for n = 3 and t = 2 that uses
s = O(m2/3) bits of storage. This scheme improves upon the (2,m,O(m2/3), 2)
scheme of Radhakrishnan et al. [2]. It uses a novel technique of mapping the
elements of our universe into the integral points of a three dimensional cube,
and then looking into the projections of the various points onto the two dimen-
sional faces of the cube. A by-product of this scheme is a non-adaptive scheme
for n = 3 and t = 3, and using s = O(m2/3) bits. Our final scheme is a non-
adaptive scheme for n = 4 and t = 4, and uses s = O(m2/3) bits. This scheme,
too, uses the approach described above.

This approach of thinking about the arrangement of elements of our universe
as being part of a cube is our central contribution. The versatility of our approach
is demonstrated by the fact that it also gives simplified schemes for n = 2 and
any t (Kesh [6]).

2 Arrangement of Elements

In the three dimensional space with coordinate axes x, y, and z, consider a cube
in the first orthant. The cube has sides of magnitude m1/3, and it is so placed that
one of its vertices lies on the origin, and its sides are parallel to the coordinate
axes. The number of points, within and on the cube, with all integer coordinates
is m. We place all of the m elements of our universe U on those points. Going
forward, we would refer to an element of U by the coordinates of the point on
which it lies. As an example, an element of U lying on the point (a, b, c) will be
called as the element (a, b, c). As a consequence, we will use the words ‘element’
and ‘point’ interchangeably.

70 M. G. A. H. Baig and D. Kesh

Based on simple geometric constructions, we now define four distinct partitions
of our universe U . The partitions are named X ,Y,Z, and D. We start by defining
the partition X .

For an element (a, b, c), the set X(a, b, c) is defined as follows. Draw a line
through the point (a, b, c) which is normal to the yz-plane and parallel to the
x-axis. The elements of U that falls on this line belong to the set X(a, b, c).
More formally,

X(a, b, c) = { (d, e, f) ∈ U | e = b and f = c } .

The next two observations would prove that for two elements (a, b, c) and
(d, e, f) of our universe, the corresponding sets X(a, b, c) and X(d, e, f) are either
equal or disjoint.

Observation 1. If an element (d, e, f) belongs to the set X(a, b, c), then the
sets X(a, b, c) and X(d, e, f) are equal.

Proof. From the geometric intuition of the sets X(a, b, c) and X(d, e, f), it is
clear that the two sets must be equal. There is only one line that is normal to
the yz-plane, is parallel to the x-axis, and passes through both the points.

We now argue the same formally. As (d, e, f) belongs to X(a, b, c), we have
e = b and f = c. So, the point (d, e, f) is actually the point (d, b, c). Let (g, h, i)
be a member of X(d, b, c). Then, we must have h = b and i = c. So, the point
(g, h, i) is the same as the point (g, b, c), and hence, it also belongs to X(a, b, c).
Therefore, we have X(d, e, f) ⊆ X(a, b, c).

What we have argued so far is the following – if a point (d, e, f) belongs to
the set X(a, b, c), then X(d, e, f) ⊆ X(a, b, c). If we can now prove that the point
(a, b, c) also belongs to the set X(d, e, f), then we would have established that
X(a, b, c) ⊆ X(d, e, f), which in turn would prove the observation.

As it is given that (d, e, f) ⊆ X(a, b, c), so, we have e = b and f = c. So,
the point (a, b, c) is actually the point (a, e, f), and from the definition of the set
X(d, e, f), if follows that (a, b, c) = (a, e, f) ∈ X(d, e, f).

Observation 2. If an element (d, e, f) does not belong to the set X(a, b, c), then
the sets X(a, b, c) and X(d, e, f) are disjoint.

Proof. The geometric interpretation of the sets X(a, b, c) and X(d, e, f) tells us
that if the point (d, e, f) does not lie on the line defining the set X(a, b, c), then
the line defining the set X(d, e, f) is parallel to the line X(a, b, c). We proceed
to argue formally.

As the point (d, e, f) does not lie on the line defining the set X(a, b, c), then
either e �= b, or f �= c, or both. Without loss of generality, let us assume that
the y-coordinates of the two points are unequal, i.e. e �= b. For an arbitrary
point (g, h, i) belonging to the set X(d, e, f), we have h = e �= b. So, the point
(g, h, i) cannot belong to the set X(a, b, c). This proves that the sets X(a, b, c)
and X(d, e, f) are disjoint.

Two New Schemes in the Bitprobe Model 71

We now define the partition X as follows:

X =
{
X(0, a, b) | 0 ≤ a, b < m1/3

}
.

For X to be a partition, the sets forming X must be disjoint and they must
cover the whole universe U . Observation 2 guarantees that the first property is
satisfied. We prove next that every element of U belongs to some member of
X . This is easy to see as an element (a, b, c) lies on the line defining the set
X(0, b, c).

The following lemma states the size of the partition.

Lemma 1. The size of the partition X is m2/3.

Proof. This is an easy consequence of the definition of X .

The partitions Y and Z are similarly defined. We start by defining the sets
Y (a, b, c) and Z(a, b, c).

Y (a, b, c) = { (d, e, f) ∈ U | d = a and f = c } ;
Z(a, b, c) = { (d, e, f) ∈ U | d = a and e = b } .

So, the set Y (a, b, c) is defined by the line through the point (a, b, c) which is
normal to the xz-plane and parallel to the y-axis. Similarly, the set Z(a, b, c) is
defined by the line through the point (a, b, c) which is normal to the xy-plane
and parallel to the z-axis. We can now define the partitions Y and Z.

Y =
{
Y (a, 0, b) | 0 ≤ a, b < m1/3

}
Z =

{
Z(a, b, 0) | 0 ≤ a, b < m1/3

}

We can also make the following comment about the size of these partitions.

Lemma 2. The size of the partitions Y and Z are both equal to m2/3.

We will not formally argue any of the facts about the partitions Y and Z as
the arguments follows closely along the lines of the proof of the properties of
partition X .

The last partition we define is the partition D. As usual, we start by defining
the set D(a, b, c). This set consists of all those points that lie on that line through
the point (a, b, c) which lies completely on the xy-plane through the point and
has a slope of 45◦ on that plane. Formally, the set is defined thus.

D(a, b, c) = { (d, e, f) ∈ U | f = c and d − a = e − b }
Finally, the partition D is defined as follows.

D =
{
D(a, 0, b) | 0 ≤ a, b < m1/3

} ⋃ {
D(0, a, b) | 0 ≤ a, b < m1/3

}

The size of this partition is given in the following lemma.

Lemma 3. The size of partition D is 2 × m2/3.

Again, the proof of the properties of this partition follows directly from the
geometric interpretation of the sets that form the partition, and we leave it for
the reader to argue.

72 M. G. A. H. Baig and D. Kesh

3 The Adaptive Scheme

In this section, we present the first of the two schemes – an explicit scheme in
the adaptive bitprobe model for three elements (n = 3) and two queries (t = 2).

3.1 Our Datastructure

Our datastructure consists of three tables, one for each of the partitions X ,Y,
and Z of Sect. 2. To abstain from introducing too many notations and risk losing
clarity, we abuse the notation for the partitions and use them to denote the
tables in our datastructure as well. It will be clear from the context whether
the notation X denotes the partition of U or the table corresponding to that
partition.

For every set in the various partitions, we reserve one bit in the corresponding
table in our datastructure. Again, we abuse the notation and use the name for a
set to also refer to its corresponding bit in our datastructure. To take an example,
X(a, b, c) would refer to a set in partition X and also the bit reserved for the set
in the table X .

The following lemma follows directly from the Lemmas 1 and 2.

Lemma 4. The size of our datastructure is 3 × m2/3.

3.2 The Query Scheme

In the adaptive bitprobe model, the query scheme is described by a binary tree,
called in the literature as the decision tree. This tree tells us the location of
a bitprobe, given that the answers of the previous bitprobes are known. The
decision tree for our scheme is shown in Fig. 1.

Consider an element (a, b, c) of U , and we want to determine whether the
element belongs to the subset S. From the definitions of sets and partitions, we
know that the element belongs to the set X(0, b, c) in table X , the set Y (a, 0, c)
in Y, and the set Z(a, b, 0) in table Z. The decision tree tells us that the first
query will be made in table Z. The location of the bitprobe will be at Z(a, b, 0). If
the bit stored in that location is 0, we need to follow the left child and query the
location Y (a, 0, c) in table Y. On the other hand, we need to query the location
X(0, b, c) in table X if the bit stored is 1. We deduce that the element (a, b, c)
belongs to the subset S if and only if the second query returns 1.

3.3 The Storage Scheme

Consider an arbitrary subset S = { (a1, b1, c1), (a2, b2, c2), (a3, b3, c3) } of our
universe U . The storage scheme describes how to set the bits of our datastructure
so that the query scheme can answer correctly. The assignment of bits depend
on the how the members of S are chosen from U . We describe each such case
separately, and provide the proof of correctness alongside it.

Two New Schemes in the Bitprobe Model 73

Z

Y X

No Yes No Yes

0 1

0 1 0 1

Fig. 1. The decision tree for the adaptive bitprobe scheme.

Case I – Let us consider the scenario when the x-coordinate of the three points
are equal, i.e. a1 = a2 = a3 = a (say). The members of S in this case looks like
{ (a, b1, c1), (a, b2, c2), (a, b3, c3) }.

We set the bits in table Z as follows – Z(a, b1, 0) = Z(a, b2, 0) = Z(a, b3, 0) =
1. The rest of the bits in the table is set to 0. In table Y, all bits are set to 0.
In table X , we have the following arrangement – X(0, b1, c1) = X(0, b2, c2) =
X(0, b3, c3) = 1, and the rest of the bits are set to 0.

We now argue that in this case the query algorithm gives correct answers.
Consider an element (a′, b′, c′) of U which upon query in our datastructure got a
Yes. Then it must got the Yes from table X as all the bits of table Y are set to 0.
To go to table X , it must get a 1 from table Z. Without loss of generality, let it
get the 1 from the bit Z(a, b1, 0). So, it must be the case that a′ = a and b′ = b1,
and the element in question is (a′, b′, c′) = (a, b1, c′). In table X , it will query
such a bit whose y-coordinate is b1, and which has been set to 1. One such bit
is X(0, b1, c1). If b1 = b2, then X(0, b2, c2) could also be a possible candidate. If
our element queries the bit X(0, b1, c1), then c′ = c1. So, the element in question
is (a′, b′, c′) = (a, b1, c1), which indeed is a member of S. We can argue similarly
in other cases as well.

Case II – Let us now consider the scenario where two elements of S have the
same x-coordinate, and the remaining element’s x-coordinate is different from
the other two. Without loss of generality, let a1 = a2 = a (say), and a �= a3.
So, the elements of the set S are { (a, b1, c1), (a, b2, c2), (a3, b3, c3) }. We would
consider two subcases, one in which the y-coordinate of the third element is
equal to the y-coordinate of one of the first two elements, the other in which the
y-coordinate of the third element is distinct from the y-coordinates of the first
two elements.

Case II(A) – We consider the first subcase here, in which the y-coordinate of
the third element is equal to the y-coordinate of one of the first two elements.
Without loss of generality, let b1 = b3 = b (say). So, the elements of S are

74 M. G. A. H. Baig and D. Kesh

{ (a, b, c1), (a, b2, c2), (a3, b, c3) }. A further complication might arise if b = b2.
We consider the possibility in the subcases below.

Case II(A)(a) – Let us consider the scenario where b �= b2. So, the elements of
S remain as { (a, b, c1), (a, b2, c2), (a3, b, c3) }. If such is the case, in table Z, we set
Z(a, b′, 0) = 1, for all b′ �= b. We also setZ(a3, b, 0) = 1. The rest of the bits of table
Z are set to 0. In table Y, we set Y (a, 0, c1) = 1, and all the other bits to 0. Finally,
in table X , we setX(0, b2, c2) = X(0, b, c3) = 1, and the other bits to 0.

We now argue that this arrangement of bits in our datastructure is correct.
Consider an element (a′, b′, c′) that got a Yes upon query in our datastructure.
Since both tables Y and X have one or more bits set to 1, (a′, b′, c′) could have
got its Yes answer from either of them.

Let us first consider the case where the element (a′, b′, c′) went to table Y
and got its 1 from there. Y (a, 0, c1) is the only bit in that table that is set to
1. So, we have a′ = a and c′ = c1, which makes the element (a′, b′, c′) to be
(a, b′, c1). The only bit in table Z which is set to 0 and has its x-coordinate as
a is Z(a, b, 0), and our element must query this bit. So, we further have b′ = b.
Thus the element (a′, b′, c′) = (a, b, c1), a member of S.

The other case to consider iswhen the element (a′, b′, c′)went to tableX and got
a Yes. The way bits are set in X , we have either b′ = b2, c

′ = c2 or b′ = b, c′ = c3.
So, the element could be one of (a′, b2, c2) and (a′, b, c3). The only way (a′, b2, c2)
can get a 1 in table Z is by querying the bit Z(a, b2, 0), which implies that a′ = a,
and (a′, b′, c′) = (a, b2, c2). (a′, b, c3) can get a 1 from table Z by querying the bit
Z(a3, b, 0). So, we have a′ = a3, and hence (a′, b′, c′) = (a3, b, c3). So, in all of the
cases, (a′, b′, c′) turns out to be a member of S.

Case II(A)(b) – We next consider the case where b = b2. The elements of S,
now, would be { (a, b, c1), (a, b, c2), (a3, b, c3) }. This case is not too dissimilar
from the previous case in the arrangement of its elements. The assignment of
table Z remains unchanged. In table Y, we set Y (a, 0, c1) = Y (a, 0, c2) = 1, and
all the other bits to 0. Finally, in table X , we set X(0, b, c3) = 1, and the other
bits to 0.

The proof of correctness is similar to the previous case, and we omit it for
the sake of brevity.

Case II(B) – We now consider the second subcase where the y-coordinate of
the third element is distinct from the y-coordinate of the other two elements.
So, the set S is { (a, b1, c1), (a, b2, c2), (a3, b3, c3) }. If such is the case, we set
Z(a, b1, 0) = Z(a, b2, 0) = Z(a3, b3, 0) = 1, and the rest of the bits of table Z to
0. All bits of table Y are set to 0. The table X , only the following bits are set to
1 – X(0, b1, c1),X(0, b2, c2),X(0, b3, c3).

We again argue that only elements of S upon query in our datastructure will
get a Yes answer. Let (a′, b′, c′) be an arbitrary element which got a Yes from
our datastructure. Then, it must go to table X to get that answer, as all the
elements of table Y are set to 0. Let it be the case that it got a 1 by querying
the bit X(0, b1, c1). So, it must be the case that b′ = b1 and c′ = c1, and hence
(a′, b′, c′) = (a′, b1, c1). For such an element to get a 1 from table Z, it must

Two New Schemes in the Bitprobe Model 75

query Z(a, b1, 0), and thus a′ = a. So, we have (a′, b′, c′) = (a, b1, c1), a member
of S. We can similarly argue that if (a′, b′, c′) queries some other bit in X to get
a 1, it will still be a member of S.

Case III – The last case to consider is when the x-coordinates of all the members
of S are distinct. We set the bits of the three tables as follows. In table Z,
Z(a1, b1, 0) = Z(a2, b2, 0) = Z(a3, b3, 0) = 0, and the rest of the bits are set to 1.
In table Y, Y (a1, 0, c1) = Y (a2, 0, c2) = Y (a3, 0, c3) = 1, and the other bits are
set to 0. All bits in table X are set to 0.

Once again we argue that if an element, say (a′, b′, c′), upon query in our
datastructure got a Yes, then it must be a member of S. The element can
get a Yes only from table Y. Without loss of generality, let us assume that it
queried Y (a1, 0, c1). In this case, we have a′ = a1, c

′ = c1, and hence (a′, b′, c′) =
(a1, b′, c1). In table Z, it must get a 0 so that it can go to table Y, and the only
bit which is set to 0 and whose x-component is a1 is the bit Z(a1, b1, 0). This
gives us b′ = b1, and thus (a′, b′, c′) = (a1, b1, c1), which is a member of S.

This concludes the description of the storage scheme and our proof of cor-
rectness. We can now summarise the conclusions of this section as follows.

Theorem 5. There is an explicit adaptive (3,m, 3 × m2/3, 2) scheme.

This scheme also gives rise to a non-adaptive scheme. If we decide to probe
all the tables of our decision tree irrespective of the findings on our first query in
table Z, then we would have made three bitprobes in our datastructure, instead
of two. More importantly, the scheme now becomes non-adaptive as the location
of every query is fixed. The query scheme, on getting the results of the three
queries, can now decide membership by consulting the decision tree of Fig. 1.
Thus, we can claim the following.

Corollary 6. There is an explicit non-adaptive (3,m, 3 × m2/3, 3) scheme.

4 The Non-adaptive Scheme

We present our final scheme, an explicit non-adaptive scheme for four elements
(n = 4) and four queries (t = 4).

4.1 Our Datastructure

Our datastructure consists of four tables, one for each partition of Sect. 2, namely
X ,Y,Z, and D. As in the previous section, we refrain from introducing too many
notations and use the notations for the partitions to denote the tables in our
datastructure as well. Furthermore, we reserve one bit for every set in a partition
in its corresponding table. As before, we use the same name for the sets in the
partitions and the corresponding bits in the tables. As an example, D(a, b, c)
would refer to a set in partition D and also the bit reserved for the set in the
table D.

The following lemma follows directly from the Lemmas 1, 2, and 3.

Lemma 7. The size of our datastructure is 5 × m2/3.

76 M. G. A. H. Baig and D. Kesh

4.2 The Query Scheme

If we want to ascertain the membership in set S of an element (a, b, c) of U , we
query its corresponding bits in each of the tables of our datastructure, namely
the bit X(0, b, c,) in table X , the bit Y (a, 0, c,) in table Y, and so on. Upon
receiving the query answers, we apply the majority function to determine the
membership in S. If the majority of the bits returned is 1, then and only then
we declare that the element in question is a member of S.

4.3 The Storage Scheme

In this section, we describe how to set the bits of our datastructure such that
the query scheme can correctly answer membership queries. The way bits are
set depends upon how the members of S are chosen. We discuss below each such
case, and provide proof of correctness of the scheme alongside it.

In the following discussion, we assume that S = {(a1, b1, c1), (a2, b2, c2),
(a3, b3, c3), (a4, b4, c4)}.

Case I – Let us assume that all the four members of S lie in the same xy-plane,
i.e. c1 = c2 = c3 = c4 = c(say). In this case, we set the bits corresponding
to each member of S in tables X ,Y, and Z to 1. The rest of the bits in all of
the tables, including D, are set to 0. So, for the element (a1, b1, c), X(0, b1, c) =
Y (a1, 0, c) = Z(a1, b1, 0) = 1, and similarly for the other members of S.

We now provide the correctness proof of our scheme in this scenario. Let us
assume that an element (a′, b′, c′), upon query in our datastructure, has got the
majority of its answers as 1. As all of the bits of table D is set to 0, it must
get 1 from each of the tables X ,Y, and Z. As only four bits in table Z are
set to 1, let us assume that it got its 1 from the bit Z(a1, b1, 0). This implies
that a′ = a1 and b′ = b1, and hence the point in question is (a1, b1, c′). This
point also got a 1 when it queried table X . This table also has four bits set to 1
corresponding to the four members of S. The element (a1, b1, c′) will query such
of bit of X which is set to 1 and whose y-coordinate is b1. X(a1, b1, c) is one such
bit. If b1 = b2, then X(a2, b2, c) is also a possible candidate. Let us assume that
(a1, b1, c′) queried the set X(a1, b1, c). It immediately gives us c′ = c, and thus
the point (a′, b′, c′) is actually the point (a1, b1, c), which indeed is a member of
S. We can similarly argue if other sets are queried.

Case II – We now assume that three members of S are in one xy-plane, and the
other member is in a different plane. Let the three members in the same plane
be the first three members of S. So, we have c1 = c2 = c3 = c(say), and c4 �= c.
This scenario gives rise to two different arrangement of the elements that have
to be handled differently.

Case II(A) – Let us assume that in partition Z, the element (a4, b4, c4) lies in
one of the sets of the other three elements of S. Without loss of generality, let
that element be (a1, b1, c). From Observation 1, if (a4, b4, c4) ∈ Z(a1, b1, c) then
Z(a4, b4, c4) = Z(a1, b1, c) = Z(a1, b1, 0). Thus, we have a1 = a4 and b1 = b4. So,
the four elements of S are {(a1, b1, c), (a2, b2, c), (a3, b3, c), (a1, b1, c4)}. If that is

Two New Schemes in the Bitprobe Model 77

the case, we set the bits corresponding to each member of S in tables X ,Y, and
Z to 1. The rest of the bits in all of the tables, including D, are set to 0.

If an element (a′, b′, c′) got a majority of its query answers as 1, it must get
those from tables X ,Y, and Z. In table Z, it can either query the bit Z(a1, b1, 0)
or any of the other two sets that are set to 1. If it queries Z(a1, b1, 0), we have
a′ = a1 and b′ = b1. In table X , it will query such a set whose y-coordinate is b1
and which is set to 1. Two such sets are X(0, b1, c) and X(0, b1, c4). If b1 = b2,
then X(0, b2, c2) is another candidate. If our element queries X(0, b1, c1), then
we have c′ = c, and thus (a′, b′, c′) = (a1, b1, c) which is a member of S. We can
similarly argue the other cases.

If instead of querying the set Z(a1, b1, 0) in table Z, if (a′, b′, c′) queries any
of the other sets that are set to 1, say Z(a2, b2, 0), we can similarly argue that
the element (a′, b′, c′) will again be a member of S. We leave the details in such
cases to the reader.

Case II(B) – We now consider the scenario when the element (a4, b4, c4) does
not lie in any of the sets of the other three elements in partition Z. Then for the
element (a4, b4, c4), we set the bits X(0, b4, c4) and Y (a4, 0, c4) in tables X and
Y, respectively, to 1. Also in table D, we set one of the bits D(a4 − b4, 0, c4) or
D(0, b4 − a4, c4) to 1, according as a4 is greater than or less than b4. Without
loss of generality, let us assume that a4 ≥ b4. For the other three elements, we
set their bits in tables X ,Y, and Z to 1. All the other bits in all of the tables
are set to 0.

Consider an element (a′, b′, c′) which got majority of its queries as 1. The
z-coordinate of the point could either be equal to c, or be equal to c4, or it could
be distinct from both c and c4. We consider each of these cases separately.

Case II(B)(i) – Let c′ be different from c and c4. Then, its queries into the
tables X and Y must return 0. This is due to the fact that the z-coordinates of
all the bits that are set to 1 in tables X and Y are either c or c4. To take an
example, if it queried the bit X(0, b1, c) and hence got a 1, then c′ = c, which
contradicts our assumption. So, in this scenario, the element (a′, b′, c′) cannot
get more than two 1s, and hence no such element can get a Yes answer.

Case II(B)(ii) – Let c′ be equal to c4. To get a majority of its answer as 1, it
must get a 1 from one of the tables X and Y. Let it be the table X . We want
such a set of X which has its z-coordinate equal to c4 and is set to 1. The only
set satisfying the constraints is X(0, b4, c4), which gives us b′ = b4.

We now look at query it made in table D. If it returned a 0, then for the sake
of majority, its query into table Y must return 1. The set whose z-coordinate
is c4 and is set to 1 in this table is Y (a4, 0, c4), and hence a′ = a4. So, we have
(a′, b′, c′) = (a4, b4, c4), a member of S. If the query made in table D returned a
1, then it must be the case that a′ − (a4 − b4) = b′ − 0 = b4 − 0, which implies
that a′ = a4. So, we have (a′, b′, c′) = (a4, b4, c4), a member of S. Other cases
similarly follows.

Case II(B)(iii) – The final case we look into is when c′ = c. As all bits that are
set to 1 in table D has the z-coordinate equal to c4, the element (a′, b′, c) must

78 M. G. A. H. Baig and D. Kesh

get a 0 upon query in this table. So, the query answers from all the other tables
must be 1. In table Z, there are three sets whose corresponding bits are set to
1. If the element queries the set Z(a1, b1, 0), then we have a′ = a1 and b′ = b1.
So, the element (a′, b′, c′) must be (a1, b1, c), a member of S. We can argue the
other cases similarly.

Case III – We now consider the scenario when at most two members of S
belong to the same xy-plane. This case is much simpler that the previous ones –
we set the bits corresponding to the members of S in tables X , Y and D to 1,
and the rest of the bits, including those of table Z to 0.

The proof is this case is also similar to the proofs done in the previous cases.
The only thing that we have to consider is when an xy-plane contains two ele-
ments, and when all the elements are on a separate xy-plane. As a demonstration
we prove one such case next, and leave the rest of the cases to the reader.

Let the first two elements of S, namely (a1, b1, c1) and (a2, b2, c2), belong to
the same xy-plane. We also assume that a1 ≥ b1 and a2 ≥ b2. This implies in
the bits D(a1 − b1, 0, c1) and D(a2 − b2, 0, c2) are set to 1. Consider the element
(a′, b′, c′) which also belongs to this plane. We prove that in this scenario, if the
element (a′, b′, c′) upon query in our datastructure got a Yes, then it must be a
member of S. From our assumptions, we have c1 = c2 = c′ = c(say). As all the
bits of table Z has its bits set to 0, (a′, b′, c) must get 1 from rest of the tables.

In table X , the only bits set to 1 and with z-coordinate equal to c is X(0, b1, c)
and X(0, b2, c). Let the element query the set X(0, b1, c). This gives us b′ = b1,
and hence the element in question is (a′, b1, c). The bits of table Y that are set
to 1 and have the z-coordinate c are Y (a1, 0, c) and Y (a2, 0, c), and our element
must have queried one of these sets. So, the element (a′, b′, c′) could be one of
(a1, b1, c) and (a2, b1, c). If the element is (a1, b1, c), it is already a member of S
and we have nothing to prove.

We now consider the case of (a′, b′, c′) = (a2, b1, c). The bits of table D that
are set to 1 with z-coordinate c are D(a1−b1, 0, c) and D(a2−b2, 0, c). This tells
us that if the element (a′, b′, c′) is actually the element (a1, b2, c), then either
a1 = a2 or b1 = b2. In both of these cases, the element is a member of S.

We now conclude the description of our storage scheme and the proof of
correctness. The following theorem summarises the result of this section.

Theorem 8. There is an explicit non-adaptive (4,m, 5 × m2/3, 4) scheme.

5 Conclusion

We have proposed a novel technique for visualising the arrangement of elements
in the bitprobe model, that of arranging the elements on the integral points of
a suitably sized three dimensional cube. This gives us, what essentially is, three
new results, one in the domain of adaptive bitprobe model, and two in the non-
adaptive model. The technique can be extended to higher dimensional cubes,
and has already given interesting results in the two query adaptive bitprobe
model (Kesh [6]). We believe that this technique will give improved results in
several other scenarios in both the adaptive and non-adaptive model.

Two New Schemes in the Bitprobe Model 79

References

1. Alon, N., Feige, U.: On the power of two, three and four probes. In: Proceedings
of the Twentieth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA
2009, New York, NY, USA, 4–6 January 2009, pp. 346–354 (2009)

2. Radhakrishnan, J., Raman, V., Srinivasa Rao, S.: Explicit deterministic construc-
tions for membership in the bitprobe model. In: auf der Heide, F.M. (ed.) ESA
2001. LNCS, vol. 2161, pp. 290–299. Springer, Heidelberg (2001). https://doi.org/
10.1007/3-540-44676-1 24

3. Nicholson, P.K., Raman, V., Srinivasa Rao, S.: A survey of data structures in the
bitprobe model. In: Brodnik, A., López-Ortiz, A., Raman, V., Viola, A. (eds.) Space-
Efficient Data Structures, Streams, and Algorithms: Papers in Honor of J. Ian Munro
on the Occasion of His 66th Birthday. LNCS, vol. 8066, pp. 303–318. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-40273-9 19

4. Garg, M., Radhakrishnan, J.: Set membership with a few bit probes. In: Proceedings
of the Twenty-Sixth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA
2015, San Diego, CA, USA, 4–6 January 2015, pp. 776–784 (2015)

5. Blue, R.: The bit probe model for membership queries: non-adaptive bit queries.
Master of Science Thesis (2009)

6. Kesh, D.: On adaptive bitprobe schemes for storing two elements. In: Gao, X.,
Du, H., Han, M. (eds.) COCOA 2017. LNCS, vol. 10627, pp. 471–479. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-71150-8 39

https://doi.org/10.1007/3-540-44676-1_24
https://doi.org/10.1007/3-540-44676-1_24
https://doi.org/10.1007/978-3-642-40273-9_19
https://doi.org/10.1007/978-3-319-71150-8_39

Faster Network Algorithms Based
on Graph Decomposition

Manas Jyoti Kashyop1, Tsunehiko Nagayama2, and Kunihiko Sadakane2(B)

1 Department of Computer Science and Engineering,
Indian Institute of Technology Madras, Chennai, India

manasjk@cse.iitm.ac.in
2 Department of Mathematical Informatics, Graduate School of Information Science

and Technology, The University of Tokyo, Tokyo, Japan
sada@mist.i.u-tokyo.ac.jp

Abstract. We propose faster algorithms for the maximum flow problem
and related problems based on graph decomposition. Our algorithms first
construct indices (data structures) from a given graph, then use them
for solving the problems. A basic problem is an all pairs maximum flow
problem, which consists of two stages. In a preprocessing stage we con-
struct an index, and in a query stage we process the query using the
index. We can solve all pairs maximum flow problem and minimum cut
problem using the indices. Time complexities of our algorithms depend
on the size of the maximum triconnected component in the graph, say r.
Our algorithms run faster than known algorithms if r is small. The max-
imum flow problem can be solved in O(nr) time, which is faster than the
best known O(nm) algorithm [Orlin 2013] if r = o(m), where n and m
are the numbers of vertices and edges, respectively.

1 Introduction

In this paper, we propose faster algorithms for the maximum flow problem and
other related problems based on graph decomposition. The basic problem we
consider is the following:

Max Flow Indexing Problem(MFIP): Given a directed graph, we prepro-
cess it to construct an index. Then given two vertices s, t, we compute the
value of the maximum s − t flow using the index.

Let n and m be the number of vertices and edges of a given graph (network),
respectively, throughout this paper.

We also consider the following problems using the algorithm for MFIP:

Maximum s − t flow problem: Given a directed graph and two vertices s, t,
compute the maximum s − t flow.

The work was supported in part by JSPS KAKENHI 16K12393.

c© Springer International Publishing AG, part of Springer Nature 2018
M. S. Rahman et al. (Eds.): WALCOM 2018, LNCS 10755, pp. 80–92, 2018.
https://doi.org/10.1007/978-3-319-75172-6_8

Faster Network Algorithms Based on Graph Decomposition 81

All Pairs Max Flow Problem (APMFP): Given a directed graph, compute
the values of the maximum flow between every pair of vertices.

Minimum Cut Problem (MCP): Given a directed graph, compute the value
of the minimum cut of the graph.

The MFIP is a problem consisting of two stages: a preprocessing stage for
constructing an index from a given graph, and a query stage for computing the
desired value using the index given two vertices. If the graph is static and we
need to compute the maximum flow values for many pairs of vertices, by using an
index (data structure) constructed in the preprocessing stage, the queries can be
done faster than computing the value without preprocessing. The extreme case is
that in the preprocessing stage we compute maximum flow values for every pair
of vertices and store them in a two-dimensional array. Then a query is trivially
done in constant time. However this approach is not efficient because the index
uses O(n2) space even if the input size is linear in n, and a naive algorithm for
constructing the index solves the maximum flow problem O(n2) times. Another
extreme case is to use the input graph as the index. Then the preprocessing
time is constant but the query time is equal to that for solving a maximum flow
problem. Therefore there is a trade-off between preprocessing time, query time,
and index size. For a problem consisting of a preprocessing stage and a query
stage, an algorithm is called a 〈p(n), q(n)〉 time algorithm if the preprocessing
time is p(n) and the query time is q(n).

1.1 Related Work

The maximum flow problem is well studied [7,8,10,18,20]. Among them, the
fastest algorithm runs in O(nm) time. There are also algorithms for special
cases of graphs, for example the O(n log log n) time algorithm for undirected
planar graphs [17], the O(n log n) time algorithm for directed planar graphs [4],
the linear time algorithm for constant tree-width graphs [13].

For MFIP and APMFP on undirected graphs, the Gomory-Hu tree [11] can
be used as an index. However it is known [3] that there is no such structure for
directed graphs. For constant tree-width graphs, APMFP is solved in O(n2 +
γ3 log γ) time on planar graphs, or O(n2 + γ4 log γ) time if m = O(n) [2], where
γ is the number of hammocks obtained by the hammock decomposition [9].

For the minimum cut problem, there are O(nm + n2 log n) time algorithm
for undirected graphs [19] and O(nm log(n2/m)) time algorithm for general
graphs [14]. Tables 1 and 2 summarize complexities of existing algorithms and
our algorithms.

1.2 Our Contribution

We propose faster algorithms for the above problems based on graph decompo-
sition. Namely, we use BC-trees [16] and SPQR-trees [23] for decomposition. A
BC-tree represents the biconnected components of a graph, and an SPQR-tree
represents the triconnected components of a biconnected graph. The performance

82 M. J. Kashyop et al.

Table 1. Complexities of max-flow problem, APMF, and MCP where n, m, γ, r denote
the number of nodes, the number of edges, the number of hammocks, and the maximum
size of triconnected components, respectively.

Problem Reference Graph class Time complexity

Maximum flow [18,20] General O(nm)

[17] Undirected planar O(n log log n)

[4] Directed planar O(n log n)

[13] Constant tree-width O(n)

Theorem 4 General O(m + nr)

APMFP [2] Constant tree-width O(n2)

[2] Planar O(n2 + γ3 log γ)

[2] m = O(n) O(n2 + γ4 log γ)

Theorem 7 General O (
m + nr3 + n2

)

MCP [19] Undirected O(nm + n2 log n)

[14] General O(nm log(n2/m))

Corollary 1 General O (
m + nr3 + n2

)

Table 2. Complexities of MFIP. If T1(k, n) = λ(k, n), T2(k, n) = 1. If T1(k, n) = 1,
T2(k, n) = α(n). The functions λ(k, n) and α(n) are the inverse Ackermann function
defined in Sect. 2.4

Reference Graph class Complexity

[2] Constant tree-width 〈O(nT1(k, n)), O(T2(k, n))〉
Theorem 5 General 〈O(m + nT1(k, n) + nr3), O(T2(k, n))〉

of our algorithms depends on a parameter of graphs: the size of the maximum tri-
connected components, denoted by r. If a given graph is decomposed into small
triconnected components, our algorithms run faster than existing algorithms.
For example, for MCP, our algorithm is faster than [19] if r = O(n1/3), and
faster than [14] if r = O(m1/3). For the maximum flow problem, our algorithm
is faster than [20] if r = o(m). For MFIP, the algorithm of Arikati et al. [2]
works efficiently for constant tree-width graphs. However the time complexities
are doubly exponential to the tree-width, and finding the tree decomposition is
NP-hard. On the other hand, the time complexity of our algorithm is polynomial
in r. We also provide support for dynamic update and queries for s− t max flow
in time O(nr) which is better than recomputing the best known algorithm if
r = o(m).

Faster Network Algorithms Based on Graph Decomposition 83

2 Preliminaries

2.1 BC-Trees

BC-trees [16] are trees representing the biconnected component decomposition
of a connected graph, defined as follows.

Definition 1. Let G = (V,E) be a connected graph.

(i) A vertex v ∈ V is called a cut vertex of G if removing v from G makes the
graph disconnected.

(ii) A maximal connected subgraph of G that does not have any cut vertex is
called a block of G.

(iii) A tree T = (B ∪ C,F) is called a BC-tree of G if it satisfies the following.
– C is the set of cut vertices of G and B is the set of blocks of G.
– Any c ∈ C and any b ∈ B are adjacent in T i.e. (b, c) ∈ F ⇐⇒ the block

corresponding to b contains the cut vertex c.

2.2 SPQR Trees

SPQR tree [23] data structure is used to maintain triconnected components of
a biconnected graph.

Following updates are supported by dynamic SPQR trees:
InsertEdge(v1, v2): Insert an edge between vertices v1 and v2.
InsertVertex(v, v1, v2): Split the edge (v1, v2) into two edges (v1, v) and (v, v2)
by inserting vertex v.
SPQR tree supports the following query operation:
ThreePaths(v1, v2): Returns TRUE if three vertex disjoint paths exist between
vertices v1 and v2.
The following results are known.

Theorem 1 [23]. Let G be a biconnected graph with n vertices and m edges. An
SPQR tree data structure uses O(n) space and supports operation ThreePaths in
O(1) time and can be constructed in O(n + m) time.

Theorem 2 [23]. An SPQR tree data structure for biconnected graphs supports
a sequence of k operations consisting of ThreePaths, InsertEdge or InsertVertex
in time O(kα(k, n)) where n is the number of InsertVertex operations and α(k, n)
denotes the Ackermann’s function inverse.

2.3 Mimicking Networks

In this section, we review mimicking networks [13].
Let N = (G = (V,E), c) be a network and let Q = {q1, . . . , qk} ⊆ V . If a

function f : E → R≥0 satisfies f(e) ≤ c(e) for al e ∈ E, and if (v) = 0 for
all v ∈ V \ Q, where if (v) =

∑
e∈δ+(v) f(e) − ∑

e∈δ−(v) f(e), δ+(v) denotes the
set of edges going out of v and δ−(v) denotes the set of edges entering v and

84 M. J. Kashyop et al.

f is called a Q-flow. For a Q-flow f , (if (q1), . . . , if (qk)) is called the external
flow w.r.t. f . If we consider all feasible Q-flows, the set of all external flows
define a subset of RQ. We call it the external flow pattern of N w.r.t. Q. It
is proved [13] that any external flow pattern is expressed by a set of 2k + 1
linear inequalities. External flow patterns can be also expressed by mimicking
networks. Let N ′ = (G′ = (V ′, E′), c′) be a network satisfying Q ⊆ V ′. If the
external flow pattern of N ′ w.r.t. Q coincides with that of N w.r.t. Q, N ′ is
called a mimicking network of N with terminal set Q. Hagerup et al. [13] proved
the following.

Lemma 1 [13]. For any network and its vertex subset Q, there exists a mim-
icking network N ′ = (G′ = (V ′, E′), c′) with terminal set Q ⊆ V ′ such that
|V ′| ≤ 22

|Q|
.

Therefore, if the number of terminals is constant, the size of the mimicking
network is also constant. Furthermore, for undirected graphs with four terminals,
there exists a mimicking network with five nodes [5].

2.4 Tree Product Queries

We use algorithms for the tree product query problem, defined as follows.

Tree product query. Given a semi-group (S, ◦), a tree T = (V,E), and a
function f : V → S, compute f(u) ◦ f(w1) ◦ f(w2) ◦ · · · ◦ f(v) for given
u, v ∈ V , where (u,w1, . . . , v) denotes the u − v path.

If the preprocessing time is p(n) and the time for a query is q(n), we denote
the time complexity by 〈p(n), q(n)〉. The following is known.

Theorem 3 [1,6]. There exists algorithms for tree product queries with time
complexity 〈O(knλ(k, n)),O(k)〉 and 〈O(kn),O(α(n))〉 for any k > 0 where
λ(k, n) and α(n) are the inverse Ackermann functions. The index sizes are
O(knλ(k, n)) and O(kn), respectively.

3 Preprocessing

In this section, we show preprocessing algorithms for solving max-flow problem
using SPQR trees.

3.1 Constructing D0 Data Structure

First we give a data structure D0 which stores in each node μ of the SPQR tree for
a graph G = (V,E), the edge capacity of the mimicking network corresponding
to the node μ.

If μ is an S-node, its skeleton is a polygon, consisting of the reference edge
{u, v} and a path connecting u and v. Here the reference edge can be considered

Faster Network Algorithms Based on Graph Decomposition 85

as the network outside of the skeleton. If we see the skeleton from outside, it
is the path between u and v. Then we can regard the path as an edge between
u and v. Its capacity is the minimum among edges on the path if the graph is
undirected. If the graph is undirected, we create two directed edges (u, v) and
(v, u). Their edge capacities are defined analogously.

If μ is a P-node, its skeleton is a graph with two vertices u, v and k multiple
edges between them. Among k edges, one is the reference edge. Therefore we
store an edge between u and v whose capacity is the summation of those of the
edges except the reference edge.

If μ is an R-node, its skeleton is a triconnected graph. Let {u, v} be the
reference edge. If the graph is undirected, we compute the minimum cut value
c between u and v in the skeleton without the edge {u, v}, and we store an
edge with capacity c. If the graph is directed, we compute both u − v and v − u
minimum cut values and store two edges whose capacities are those values.

We analyze the time complexity of the above algorithm. For S- and P-node,
it takes time proportional to the number of edges in the SPQR tree, which is
O(m). For each R-node, we compute max-flow constant times. Let ni and ri be
the numbers of nodes and edges in the skeleton of a node μi of the SPQR tree.
Then it takes O(niri) time for computing max-flow [20]. Therefore the total time
for computing the D0 data structure is

∑

μi

O(niri) = O(
∑

μi

nir) = O(nr)

where r = max ri is the maximum size of skeletons.

Lemma 2. Given an SPQR tree of a biconnected graph which has n nodes and
the maximum size of whose triconnected components is r, the D0 data structure
is stored in O(m) space and constructed in O(nr) time.

3.2 Constructing D1 Data Structure

Next we compute D1 data structure which stores in each node of the SPQR
tree, a mimicking network with four terminals, that is, of constant size. Let μ
be a node of the SPQR tree, v1, v2, . . . , vk−1 be its children, and {u, v} be the
reference edge of μ.

If μ is an S-node, let q1 = u, q2, . . . , qk = v be the nodes of the skeleton. The
capacities of edges {q1, q2}, {q2, q3}, . . . , {qk−1, qk} are stored in the D0 data
structure. For node vi, we store the following graph with at most four terminals
{qi, qi+1, u, v}. The graph has at most two edges: {u, qi}, {qi+1, v}. The edge
capacities are the minimum of those of {q1, q2}, . . . , {qi−1, qi}, the minimum of
those of {qi, qi+1}, . . . , {qk−1, qk}, respectively. That is, the graph is obtained by
deleting the edge {qi−1, qi} merging other edges into two. The edge capacities
are computed in O(k) time as follows. If we know the minimum edge capacity
of {q1, q2}, . . . , {qj−1, qj}, the minimum edge capacity after adding another edge
{qj , qj+1} is computed in constant time. By repeating this, we obtain all the
edge capacities.

86 M. J. Kashyop et al.

If μ is a P-node, let e1, e2, . . . , ek be the edges of the skeleton, and ek be the
reference edge. Assume that the edge ei corresponds to the children vi. Then
for each vi, we store a graph with two terminals {u, v}. The edge capacity is
∑k−1

j=1 c(ej) − c(ei) where c(ej) is the capacity of ej for undirected graphs. For
directed graphs it is computed analogously. We can compute those graphs for
all children of μ in O(k) time.

If μ is an R-node, for each child vi of μ, we compute a mimicking network
M(Gsk[μ]\{{u, v}, {s, t}}, {u, v, s, t}) where s, t are end points of the reference
edge of vi. If the skeleton of μ has ni nodes and ri edges, the mimicking network
is computed in O(niri) time. Therefore for each R-node, it takes O(nir

2
i) time.

The total time for all R-nodes is O(nr2).

Lemma 3. Given an SPQR tree of a biconnected graph which has n nodes and
the maximum size of whose triconnected components is r, the D1 data structure
is stored in O(m) space and constructed in O(nr2) time.

3.3 Constructing D2 Data Structure

The D2 data structure is to store for each pair {s1, t1}, {s2, t2} of edges of each
R-node μ whose reference edge is {u, v}, the mimicking network with at most
six terminals M(Gsk[μ]\{{u, v}, {s1, t1}, {s2, t2}}, {u, v, s1, t1, s2, t2}). For the
node μ with ni nodes and ri edges, it takes O(nir

3
i) time. Then the total time

is O(nr3). The space is O(mr) because for each node we store at most r − 1
mimicking networks of constant size.

Lemma 4. Given an SPQR tree of a biconnected graph which has n nodes and
the maximum size of whose triconnected components is r, the D2 data structure
is stored in O(mr) space and constructed in O(nr3) time.

4 Computing s − t Max Flow in O(m + nr) Time

In this section, we show an algorithm for computing s− t max flow in O(m+nr)
time using the D0 data structure. First we consider an input graph is bicon-
nected. We compute the SPQR tree in O(n + m) time, then construct the D0

data structure in O(nr) time.
From each of the given nodes s, t, we choose an arbitrary Q-node containing

the node. Let μs, μt be the nodes, and p be their lowest common ancestor. Let
v0 = μs, v1, . . . , vd = p be the nodes in the SPQR tree on the path from μs to
p. For each node vi in v1, . . . , vd−1, we compute the mimicking network with at
most four terminals by merging the mimicking networks for siblings of vi. This
is actually the same as M(Gsk[vi+1]\{{u, v}, {x, y}}, {u, v, x, y}), which is in the
D1 data structure, where {u, v} and {x, y} are the reference edges of vi+1 and
vi, respectively, Note that we do not compute those networks for all children of
an R-node; only for the child having the Q-node for s in its subtree. Similarly for
nodes between μt and p, we compute mimicking networks. We also compute for

Faster Network Algorithms Based on Graph Decomposition 87

nodes between p and the root of the SPQR tree, the mimicking networks with
at most four terminals.

Finally we merge all the mimicking networks computed above. Because two
mimicking networks adjacent in the tree have two common vertices, we can
merge them. Let n1, r1 and n2, r2 be the number of nodes and edges in the two
skeletons, respectively. The time complexity to merge the mimicking networks is
O((n1 +n2)(r1 +r2)) = O((n1 +n2)r). Then the total time complexity is O(nr).
Now we have a mimicking network with four terminals s, s′, t, t′ where s′ and
t′ are the other end points of the edges in the Q-node containing s and t. By
adding the edges {s, s′} and {t, t′} to the mimicking network and computing the
s− t minimum cut, we obtain the answer. This is done in constant time because
the mimicking network is of constant size.

Once the value of the s − t max flow is obtained, we can compute the flow
itself. If the external flow of a mimicking network is fixed, we can obtain the
flow in a skeleton by computing max flows constant times. And once the flow
value of an edge of a skeleton is fixed, we can recursively compute the flow for
the skeleton. The time complexity is the same as computing the max flow value.

Next we consider a general graph. First we compute the BC-tree in O(n + m)
time. If s and t belong to the same biconnected component, we are done. Oth-
erwise, for all blocks in the BC-tree on the path from the one containing s to the
one containing t, we compute minimum cut values, and obtain the result. The time
complexity is O(m + nr).

Theorem 4. For a graph with n nodes and m edges whose maximum tricon-
nected component is of size r, an s − t max flow is computed in O(m + nr)
time.

5 Algorithms for MFIP

In this section we give algorithms for the MFIP. The results are summarized as
follows.

Theorem 5. For a directed network with n vertices and m edges,

(i) after O (
m + nλ(k, n) + nr3

)
-time preprocess, using an index of size

O (m + nλ(k, n) + mr), the value of the maximum flow is computed in con-
stant time, or

(ii) after O (
m + nr3

)
-time preprocess, using an index of size O (m + mr), the

value of the maximum flow is computed in O(α(n)) time,
(iii) after O (

m + nr2
)
-time preprocess, using an index of size O (m), the value

of the maximum flow is computed in O(α(n) + r2) time,

where r is the maximum size of triconnected components in the underlying undi-
rected graph.

The proof is in the following subsections.

88 M. J. Kashyop et al.

5.1 Algorithms for Fast Queries

To solve MFIP in a biconnected graph, we use the D1 and the D2 data structures
and the tree product query data structure. In each node of the SPQR tree, a
mimicking network is stored as D1. Because merging of mimicking networks is
associative, we can use the data structure for tree product queries for those
mimicking networks. The preprocess and query times are either O(nλ(k, n)) and
O(1), or O(n) and O(λ(k, n)) for any k ≥ 0.

Assume that vertices s, t are given as a query. For each of s, t, we choose
an arbitrary Q-node containing the node. Let μs, μt be the nodes, and p
be their lowest common ancestor. Let qs and qt be children of p on the
path between μs and p and on the path between μt and p, respectively.
Then the mimicking network Ms between μs and qs is computed by using
the tree product query data structure. Similarly the mimicking network Mt

between μt and qt is computed. We also compute the mimicking network Mp

for nodes between p and the root of the SPQR tree using the tree product
query data structure. Then we merge Ms,Mt,Mp, and the mimicking net-
work M(Gsk[p]\{{u, v}, {s1, t1}, {s2, t2}}, {u, v, s1, t1, s2, t2}) where {u, v} are
the common vertices between Mp and M(Gsk[p]), {s1, t1} are the common ver-
tices between Ms and M(Gsk[p]), and {s2, t2} are the common vertices between
Mt and M(Gsk[p]). Because M(Gsk[p]) is stored in the D2 data structure and
it is of constant size (six terminals), we can merge them in constant time, and
compute the max flow value in constant time.

If the graph is not biconnected, in the preprocessing stage we construct the
BC-tree and for each biconnected component we construct the SPQR tree and
the tree product query data structure. Then for the BC-tree, we preprocess it
for tree product queries.

5.2 An Algorithm with Small Index

Here we give an algorithm using O(m) space based on the D1 data structure
and the tree product query data structure. The algorithm is different from that
in the previous subsection that we do not use the D2 data structure. Therefore
for a query we have to solve max-flow problems in two nodes (p and the root).
Because the number of edges in a skeleton is at most r, the max-flow can be
solved in O(r2) time.

6 Dynamic Update and Query

Our algorithm supports the following dynamic update operations:

– InsertVertex(v, v1, v2): Split the edge (v1, v2) into two edges (v1, v) and
(v, v2) by inserting vertex v. If c was the capacity for the edge (v1, v2) then
capacity for each of the edge (v1, v) and (v, v2) is c.

– InsertEdge(v1, v2, c): Add an edge between vertices v1 and v2 with capacity c.
– UpdateCapacity(v1, v2, c): Change the capacity of the edge (v1, v2) to c.

Faster Network Algorithms Based on Graph Decomposition 89

Whenever an edge is deleted from graph, we will updating the capacity of the
edge to 0 without actually deleting the edge. We use the same procedures as
mentioned in [23] to update the SPQR tree. We update D1 data structures for
every update. D0 data structures are also updated in similar way and within the
same update time.

InsertVertex(v, v1, v2):
After the update, edges (v1, v) and (v, v2) have the same capacity as that of the
edge (v1, v2). Therefore updating D1 data structures will take O(1) time.

InsertEdge(v1, v2, c):
We will divide the update operation into two phases: local update and global
update. If D1 data structure for a child of an R-node or a P-node or an S-node
α gets updated, we need to update D1 data structures for all the other children
of α. But we will update the data structures only in the path starting from the
new Q-node till the root of the SPQR tree. We delay the update for all other
children of α until those structures are required in a Query. We mark those
children of α as dirty using a dirty bit for every child node. Therefore if α has k
children then marking all of them as dirty will take O(k) time. Let λ be the new
Q-node corresponding to edge (v1, v2). Let r be the maximum size of triconnected
components of the given graph. Suppose v1 and v2 have exactly one common
allocation node and let it be μ. Suppose μ is an R-node. Let p be the parent of
node μ. To update the SPQR tree, an edge between λ and μ is added.

Local update : D1 data structure for λ is computed in constant time. Updating
D1 data structure for μ will take time O(MF (Gsk(μ))). We mark all the other
children of node μ as dirty. Remaining updates of D1 data structure will be
handled in global update. So time required for local updates is O(|V (Gsk(μ)| ·
|E(Gsk(μ)|) + O(|E(Gsk(μ)|) = O(nr). Where n is currently the number of
vertices in the graph G.

Global update: We update D1 structures from p till root of the SPQR tree.
Let (i, j) be an edge in that path. We have already updated D1 data structure
for node i and let k be the parent of j. Suppose j is an S-node or P-node.
In that case number of children of j is O(n). For each children updating D1

structure takes constant time and hence updating for all the children will take
O(n) time. If j is a R-node then updating D1 data structure for j will take time
O(Gsk(j)). We will update the D1 structure for only one child which is in the
path from new Q-node to j. We will mark all other children of j as dirty. Now
since maximum number of R-nodes in the path till root node is O(n), total time
for updating D1 data structure along the path will take O(n.r) time. Let T ′ be
the total time required for marking the children of all the R-nodes. Then, T ′ =
O(|E(Gsk(r1))|)+O(|E(Gsk(r2))|)+· · ·+O(|E(Gsk(rk))|). Since skeletons of the
R-nodes are edge disjoint, T ′ = O(m), where m is currently the number of edges
in the entire graph G. No other D1 data structure need to be updated because
it is not difficult to observe that subnetwork corresponding to other branches of
the SPQR tree are edge disjoint.

90 M. J. Kashyop et al.

If μ is an S-node then local update takes O(1) time. If μ is a P-node then
local update takes O(n) time. Suppose v1 and v2 does not have any common
allocation node. After updating the SPQR tree, local update step takes O(nr)
time. In all these cases, global update step takes O(nr) time.

UpdateCapacity(v1, v2, c):
After this update SPQR tree remains the same. D1 structure is updated starting
from the Q-node where capacity has been changed till the root of the SPQR tree.
Time complexity analysis for this update is similar to global update and hence
time required is O(nr).

Query for s − t Max Flow:
As explained in Sect. 4, computation of s − t max flow involves D0 and D1 data
structure. After selecting arbitrary Q-nodes containing s and t, finding a dirty
ancestor if any will take O(n) time. If there is one, then we will update the D1

data structure along the path till root node. A similar analysis as seen in global
update will give us Query time as O(nr).

Theorem 6. In dynamic setting, operation InsertVertex can be supported in
O(1) time and InsertEdge, UpdateCapacity and Query for s− t max flow can be
supported in O(nr) time. Here r is currently the maximum size of triconnected
components in the underlying undirected graph.

7 Algorithms for Other Problems

The APMFP can be solved by computing the values of maximum flows for every
pair of vertices using the D2 data structure and the tree product query data
structure.

Theorem 7. The values of maximum flows of all pairs of vertices is computed
in O (

m + nr3 + n2
)
time.

The minimum cut problem is also solved trivially by finding the maximum
of all maximum flow values.

Corollary 1. The value of the minimum cut is computed in O (
m + nr3 + n2

)

time.

8 Concluding Remarks

We have proposed faster algorithms for network problems, especially the maxi-
mum flow and the minimum cut problems, based on graph decomposition. Dif-
ferent from an existing work [2] based on the tree decomposition whose time
complexity is doubly exponential to the tree-width, time complexities of our
algorithms depend polynomially on a parameter r, the size of the maximum
triconnected component. More importantly, triconnected component decompo-
sition can be done in linear time, whereas finding a tree decomposition with

Faster Network Algorithms Based on Graph Decomposition 91

minimum tree-width is NP-hard if the tree-width is not constant. Though r = m
in the worst case, our algorithms are faster than existing ones for small r cases.
For the s − t maximum flow problem, our algorithm runs in O(nr) time, which
is faster than the fastest algorithm [20] if r = o(m).

Our approach based on triconnected component decomposition can be easily
applied for other network problems such as the shortest-path problem, network
reliability problem. Our future work is to extend the scope of our approach and
to show practical performance on real networks.

References

1. Alon, N., Schieber, B.: Optimal preprocessing for answering on-line product
queries. Technical report, Tel-Aviv University (1987)

2. Arikati, S.R., Chaudhuri, S., Zaroliagis, C.D.: All-pairs min-cut in sparse networks.
J. Algorithms 29, 82–110 (1998)

3. Benczúr, A.A.: Counterexamples for directed and node capacitated cut-trees. SIAM
J. Comput. 24, 505–510 (1995)

4. Borradaile, G., Klein, P.: An O(n log n) algorithm for maximum st-flow in a
directed planar graph. In: Proceedings of the Seventeenth Annual ACM-SIAM
Symposium on Discrete Algorithm, pp. 524–533 (2006)

5. Chaudhuri, S., Subrahmanyam, K.V., Wagner, F., Zaroliagis, C.D.: Computing
mimicking networks. Algorithmica 20, 31–49 (2000)

6. Chazelle, B.: Computing on a free tree via complexity-preserving mappings. Algo-
rithmica 2, 337–361 (1987)

7. Edmonds, J., Karp, R.M.: Theoretical improvements in algorithmic efficiency for
network flow problems. J. ACM 19, 248–264 (1972)

8. Ford, L.R., Fulkerson, D.R.: Maximal flow through a network. Can. J. Math. 8,
399–404 (1956)

9. Frederickson, G.N.: Using cellular graph embeddings in solving all pairs shortest
paths problems. In: Proceedings of 30th Annual Symposium on Foundations of
Computer Science, pp. 448–453 (1989)

10. Goldberg, A.V., Tarjan, R.E.: A new approach to the maximum-flow problem. J.
ACM 35, 921–940 (1988)

11. Gomory, R.E., Hu, T.C.: Multi-terminal network flows. J. Soc. Ind. Appl. Math.
9, 551–570 (1961)

12. Gutwenger, C., Mutzel, P.: A linear time implementation of SPQR-trees. In: Marks,
J. (ed.) GD 2000. LNCS, vol. 1984, pp. 77–90. Springer, Heidelberg (2001). https://
doi.org/10.1007/3-540-44541-2 8

13. Hagerup, T., Katajainen, J., Nishimura, N., Radge, P.: Characterizations of k-
terminal flow networks and computing network flows in partial k-trees. In: Pro-
ceedings of the Sixth Annual ACM-SIAM Symposium on Discrete Algorithms, pp.
641–649 (1995)

14. Hao, J.X., Orlin, J.B.: A faster algorithm for finding the minimum cut in a directed
graph. J. Algorithms 17, 424–446 (1994)

15. Harel, D., Tarjan, R.E.: Fast algorithms for finding nearest common ancestors.
SIAM J. Comput. 13, 338–355 (1984)

16. Hopcroft, J., Tarjan, R.: Algorithm 447: efficient algorithms for graph manipula-
tion. Commun. ACM 16, 372–378 (1973)

https://doi.org/10.1007/3-540-44541-2_8
https://doi.org/10.1007/3-540-44541-2_8

92 M. J. Kashyop et al.

17. Italiano, G.F., Nussbaum, Y., Sankowski, P., Wulff-Nilsen, C.: Improved algorithms
for min cut and max flow in undirected planar graphs. In: Proceedings of the Forty-
Third Annual ACM Symposium on Theory of Computing, pp. 313–322 (2011)

18. King, V., Rao, S., Tarjan, R.E.: A faster deterministic maximum flow algorithm.
J. Algorithms 17, 447–474 (1994)

19. Nagamochi, H., Ibaraki, T.: Computing edge-connectivity in multigraphs and
capacitated graphs. SIAM J. Discrete Math. 5, 54–66 (1988)

20. Orlin, J.B.: Max flows in O(nm) time, or better. In: Proceedings of the Forty-Fifth
Annual ACM Symposium on Theory of Computing, pp. 765–774 (2013)

21. Robertson, N., Seymour, P.D.: Graph minors. III. Planar tree-width. J. Comb.
Theory Ser. B 36, 49–64 (1984)

22. Shing, M.T., Hu, T.C.: A decomposition algorithm for multi-terminal networks
flows. Discrete Appl. Math. 13, 165–181 (1986)

23. Di Battista, G., Tamassia, R.: On-line maintenance of triconnected components
with SPQR-trees. Algorithmica 15(4), 302–318 (1996)

24. Niedermeier, R.: Invitation to fixed-parameter algorithms. Oxford Lecture Series
in Mathematics and its Application (2006). ISBN 9780198566076

An Improvement of the Algorithm of Hertli
for the Unique 3SAT Problem

Tong Qin(B) and Osamu Watanabe

School of Computing, Tokyo Institute of Technology, Tokyo, Japan
{qin5,watanabe}@is.titech.ac.jp

Abstract. We propose a simple idea for improving the randomized algo-
rithm of Hertli for the Unique 3SAT problem. Using recently developed
techniques, we can derive from this algorithm the currently the fastest
randomized algorithm for the general 3SAT problem.

1 Introduction

The 3SAT problem is a problem of deciding whether a given 3CNF formula is
satisfiable, where a 3CNF formula is a propositional Boolean formula expressed
as a conjunction of 3-clauses consisting of at most three literals. (A k-clause is
a disjunction of k literals, and a literal is either a Boolean variable or a negated
Boolean variable). The Unique 3SAT problem that we discuss in this paper
is a variation of the 3SAT problem where we may assume that a given input
formula has at most one satisfying assignment. The 3SAT problem is one of
the typical NP-complete problems, and in particular, it has been a target of
obtaining better exponential-time algorithms. For a given 3CNF formula F over
n variables, the straightforward approach for solving the problem is to check for
every possible assignment to n variables whether it satisfies F , i.e., F is evaluated
true by the assignment. This needs ˜O(2n)-time1 in the worst case. While it has
been believed that no polynomial-time algorithm exists for the 3SAT problem,
we can expect an algorithm that has a better exponential-time bound. In fact,
researchers have proposed various clever algorithms for the 3SAT problem that
have better exponential-time bounds.

We review briefly some of important algorithms for the 3SAT problem. Note
that such algorithms are usually defined for more general kSAT problems for
any k ≥ 3; but here we focus only on the 3SAT problem. In 1997, Paturi et al.
[5] proposed a randomized algorithm (which is now called PPZ) that runs in
˜O(1.588n)-time. In 1998, Paturi et al. [4] improved it and obtain a faster algo-
rithm (which is now called PPSZ). They showed that it runs in ˜O(1.364n)-time
for the 3SAT problem; though they also showed that it runs in ˜O(1.308n)-time
1 Throughout this paper, we use n, the number of variables of an input formula, as
a size parameter. Following the standard convention on this topic, we ignore the
polynomial factor for discussing the time complexity of algorithms, and by ˜O(T (n))
we denote O(T (n)p(n)) for some polynomial p.

c© Springer International Publishing AG, part of Springer Nature 2018
M. S. Rahman et al. (Eds.): WALCOM 2018, LNCS 10755, pp. 93–105, 2018.
https://doi.org/10.1007/978-3-319-75172-6_9

http://orcid.org/0000-0001-8177-0573
http://orcid.org/0000-0003-0284-7566

94 T. Qin and O. Watanabe

for the Unique 3SAT problem, it was left open to show that this time bound
holds for the 3SAT problem in general. Soon after, Schöning [6] proposed a ran-
domized algorithm of a different type that runs in ˜O(1.334n)-time for the 3SAT
problem. Since then several improvements have been reported until Hertli [1]
proved that the ˜O(1.308n)-time bound of PPSZ indeed holds for the 3SAT prob-
lem in general. More recently, there are some more improvements in relation
to the Unique 3SAT problem. Though an improvement is extremely small (an
improvement of, say, the 25th digit of the exponential base 1.308 · · ·), Hertli [2]
showed a way to improve the Unique 3SAT problem, which we refer as Hertli’s
algorithm in this paper. Furthermore, Hertli [3] (Theorem 6.2) and Scheder and
Steinberger [7] gave general methods to make use of a randomized algorithm
for the Unique 3SAT problem for solving the general 3SAT problem while keep-
ing similar exponential-time bounds. Thus, based on Hertli’s algorithm, we can
show an algorithm for the 3SAT problem that is better than PPSZ (though the
improvement is extremely small).

In this paper we give a simple idea for improving Hertli’s algorithm and
show that it indeed gives a better exponential-time bound than Hertli’s algorithm
(Theorem 2). Therefore (again the improvement is extremely small) we can apply
the methods of Hertli and Scheder and Steinberger to derive an algorithm that
has a yet better time bound over the currently known algorithms.

The improvement over PPSZ that Hertli’s algorithm achieves is obtained
by considering several cases and by giving a better treatment for each case.
One of the key ideas is to use (together with PPSZ) Wahlström’s algorithm
[8] that performs better than PPSZ if a target formula consists of small num-
ber of clauses, which is guaranteed that the degree of the formula is bounded.
The degreek of a variable x of a 3CNF formula F is the number of k-clauses
of F containing x or x as a literal. We say (in this paper) that a formula is
b-degreek bounded if the largest degreek of its variables is at most b. For any
CNF formula F and any set W of variables of F , let F \ W denote a formula
obtained by removing all clauses containing some variable in W . In order to use
Wahlström’s algorithm, Hertli introduced the following condition separating the
“dense/sparse” cases determined by a parameter Δ, 0 < Δ < 1:

A formula F is Δ-sparse if there exists a set W of at most Δn variables of
F such that F \ W is 4-degree3 bounded. Otherwise, F is Δ-dense.

For the sparse case (that is, the case where we assume that a target formula
F is Δ-sparse) Hertli’s algorithm executes the sparse-case algorithm. This algo-
rithm guesses the above set W of variables in a straightforward way and then
use the combination of PPSZ and Wahlström’s algorithm on F \ W , improving
the efficiency of PPSZ. On the other hand, the dense-case algorithm is executed
for the case where we assume that a target formula F is Δ-dense. Starting from
F3 := F , it first repeats Δn/2 iterations of collecting a clause that is chosen
randomly from clauses of F3 that contain a randomly chosen degree3 ≥ 5 vari-
able (whose existence is guaranteed by the Δ-denseness), while modifying F3

by removing clauses containing the variables of the selected clause. Let F2 be

An Improvement of the Algorithm of Hertli for the Unique 3SAT Problem 95

the set of Δn/2 clauses obtained by this process. Then there is a way to assign
values to the variables in F2 that is better than the random guess. By using this
way of choosing a partial assignment, the dense-case algorithm can search a sat.
assignment for F more efficiently than PPSZ.

We notice that the above set W of variables can be found when creating
F2 in the dense-case algorithm. That is, while the dense-case algorithm tries to
get clauses from F3, if it cannot find any degree3 ≥5 variable in F3, then a set
of variables removed from F3 in the dense-case algorithm is indeed the set W
witnessing the Δ-sparseness of F in the above condition. Thus, the sparse-case
algorithm also begin with the iteration of the dense-case algorithm for computing
W . In this way, we can avoid the straightforward guess part of the sparse-case
algorithm. In order to justify this idea, we introduce a “soft” condition replacing
the above “hard” condition for the Δ-sparseness/-denseness.

In this paper, we assume that the reader is familiar with [2], and we will skip
reviewing several technical details common with [2].

Preliminaries
We prepare some of the key notions for our discussion. For any k ≥ 2, a kCNF
formula is a CNF formula consisting of k-clauses having exactly k literals. On
the other hand, (≤k)CNF formula consists of (≤ k)-clauses, clauses having at
most k literals. A 1-clause is often called a unit clause.

Consider any CNF formula F over n Boolean variables. We use vbl(F) to
denote the set of variables of F . We use x to denote a variable of F , and for a
variable x, its literal, i.e., x or its negation x, is denoted by �(x). Throughout
this paper we use F to denote a current target CNF formula (usually, a given
input to an algorithm that we discuss) and use V and n to denote respectively
vbl(F) and |vbl(F)|, that is, the set of Boolean variables of F and its size.

An assignment is a mapping α from V to {0, 1}. We sometimes consider a
partial assignment whose value is undefined on some variable(s). For any assign-
ment α and any subset U of V , we use α|U to denote the partial assignment
that is the same as α on U and that is undefined on V \ U . For any (partial)
assignment, we use F [α] to denote a formula obtained by assigning a value α(x)
(if it is defined) to each variable x and then simplifying the resulting formula. In
general, by, e.g., F [x1 ← 0, x2 ← 1] we mean a formula obtained by simplifying
F after assigning these values to its variables x1 and x2.

Consider any formula F with n variables. A satisfying assignment (in short,
sat. assignment) of F is an assignment such that F [α] = 1, i.e., true. We say
that α is a unique sat. assignment (of F) if it is a sat. assignment and there
is no other assignment satisfying F . For any d ≥ 1, d-isolated sat. assignment
(of F) is a sat. assignment that has no other sat. assignment within Hamming
distance d. It is easy to see that a unique sat. assignment is maximally isolated,
that is, n-isolated, and hence, d-isolated for any d ≤ n. For any sat. assignment
α (of F), a clause of F is called critical (for a variable x w.r.t. α) if only �(x)
in the clause is evaluated 1 under the assignment α. For any d ≥ 1, if α is a
d-isolated, then every variable of F has at least one critical clause. We say that
a partial assignment β (for F) is consistent with another (partial) assignment

96 T. Qin and O. Watanabe

α (for F) if for each variable x of F , either β(x) = undefined or β(x) = α(x)
holds. If F has a unique sat. assignment α, then for any partial assignment β
consistent with α, α remains the unique assignment of F [β].

Algorithms we consider in this paper are all randomized algorithms unless
explicitly stated otherwise. In general, for any algorithm described as a pro-
cedure A and any input instance w, by A(w) we mean the execution of A on
the input w, which is sometimes regarded as a random process determined by
the random choices of A. Throughout the following technical discussion, by a
sat. algorithm we mean a procedure that yields one of the sat. assignments of
a given satisfiable formula (or reports “failure” and stops if a sat. assignment
is not obtained). For any sat. algorithm A, its success probability is a function
mapping the size parameter n to the smallest probability that the algorithm
yields a sat. assignment for any satisfiable formula (that also satisfies a certain
assumption defined in each context) with n variables. In this paper, we propose
sat. algorithms with subexponential-time bounds and have success probabilities
better than the one for PPSZ that is 2−(S+o(1))n where S is a constant 0.386 · · ·
(see Lemma 2 of the next section). Typically, we consider a procedure X with
time complexity bounded above by 2o(n) and success probability (on a certain
subset of satisfiable 3CNF formulas) bounded below by 2−(S−ε+o(1))n for some
constant ε > 0. In this paper, we call the amount ε the efficiency improvement
of X (on the target instance set). Clearly, the inverse of the success probability
gives an expected number of executions of X to get a sat. assignment, and we
can easily define a bounded error randomized algorithm for the decision problem
with the corresponding exponential-time bound.

2 Hertli’s Algorithm

We recall Hertli’s algorithm and some of the facts from [2] necessary for our
discussion. We follow [2] and use the same algorithms and lemmas including the
usage of symbols as much as possible (except for correcting some minor errors
and introducing additional notation).

For main sat. algorithms, Hertli’s algorithm uses PPSZ [4] and Wahlström’s
algorithm [8]. First consider PPSZ and discuss two minor changes on PPSZ
introduced in [2] for simplifying analysis. We start with some notions.

Definition 1. For any s, we say that a CNF formula F s-implies a literal � if
there exists a subformula G ⊆ F with |G| ≤ s such that all satisfying assignment
of G set � to 1. (Throughout this paper, we use s0(n) = log n for s. This choice
is enough to guarantee the performance of PPSZ as stated below).

Definition 2. For any CNF formula F over n variables and for any of its
variable x, we say that x is forced (during the execution of PPSZ) if F s0(n)-
implies its literal �(x). Otherwise, we say that x is guessed (during the execution
of PPSZ).

An Improvement of the Algorithm of Hertli for the Unique 3SAT Problem 97

Definition 3. A random placement π is a mapping from V to [0, 1] such that
for each x, π(x) is chosen independently and uniformly at random from [0, 1]. In
general, for any parameter p ∈ [0, 1), a random (≥ p)-placement π is a mapping
from V to [p, 1] defined in the same way.

With these notions, we formally define a procedure PPSZ stated as
Algorithm 1. This PPSZ is different from the original PPSZ in the following
two points: (i) the s0-implication is used to “force” an assignment of a variable
instead of applying the s0-bounded resolution; and (ii) a random placement is
used instead of a random permutation. It is shown [2] that the important prop-
erties of the original PPSZ are kept under these modifications, which are stated
as lemmas below (Lemmas 1 and 2).

In the following, as a lower bound of the success probability of a sat. algo-
rithm A, we consider the probability that A yields some particular target sat.
assignment. For simplifying our statement we use, unless otherwise stated explic-
itly, F to denote any satisfiable (≤3)CNF-formula and α∗ to denote any of its
sat. assignment α∗ regarded as a target assignment. We may assume that F
also satisfies a certain condition given in each context. Let EA denote the event
that A(F) yields α∗. Below let PPSZ(F |π0, α∗) denote the execution of PPSZ
on F by using π0 for its random placement π and α∗ for β. Note that PPSZ is
deterministic if we fix π and β in the algorithm.

Lemma 1. Consider any satisfiable (≤3)CNF F . For any placement π,
define G(π) to denote the number of guessed variables during the execution
PPSZ(F |π, α∗). Then we have Pr[EPPSZ] ≥ Expπ[2−G(π)] ≥ 2Expπ[−G(π)].

Lemma 2. Define S and Sp by

S =

∫ 1

0

(

1 − min

{

1,
r2

(1 − r)2

})

dr and Sp =

∫ 1

p

(

1 − min

{

1,
r2

(1 − r)2

})

dr

Consider any satisfiable (≤3)CNF F that has a log s0(n)-isolated sat. assignment
α∗. For any π, let G(π) be (as the above lemma) the number of guessed variables
during the execution PPSZ(F |π, α∗). Also, for any p ∈ [0, 1/2], let Gp(π) be the
number of variables with placement > p that are guessed during the execution
PPSZ(F |π, α∗). Then we have

(1) Expπ[G(π)] = (S + o(1))n,
(2) for any p ∈ [0, 1/2], Expπ[Gp(π)] = (Sp + o(1))n,
(3) S = 2 ln 2−1 = 0.386 · · · , and Sp = S −p+ I(p), where I(p) :=

∫ p

0
r2

(1−r)2 dr.

From these lemmas, we have the following bounds.

Lemma 3. Let F be any satisfiable (≤3)CNF that has a log s0(n)-isolated
sat. assignment α∗. Then Pr[EPPSZ] is at least 2−(S+o(1))n. Furthermore, sup-
pose that we pick every variable of F with prob. p independently, and let
Vp be the resulting set. Let EPPSZ,Vp

denote the event that PPSZ(F [α∗|Vp
])

returns α∗|V \Vp
. Then we have ExpVp

[log Pr[EPPSZ,Vp
]] ≥ Expπ[−Gp(π)] =

−(Sp + o(1))n.

98 T. Qin and O. Watanabe

Algorithm 1. PPSZ input: a (≤3)CNF formula F

1: V ← vbl(F); n ← |V |
2: Choose β u.a.r. from all assignments on V
3: Choose π u.a.r. as a random placement of V
4: Let α be a partial assignment on V , initially undefined for all x ∈ V ,
5: for x ∈ V , in ascending order of π(x) do
6: if F s0(n)-implies �(x) then set α(x) to satisfy this literal (← x is forced)
7: else α(x) ← β(x) (← x is guessed)
8: F ← F [x → α(x)]
9: end for
10: return α if α is a sat. assignment (otherwise, report “failure”)

We consider the above bound 2−(S+o(1))n as a target, and we propose algo-
rithms for certain types of input formulas with some “efficiency improvements”
that is, algorithms that have success probabilities larger than 2−(S−ε+o(1))n for
some ε > 0. The first such example is PPSZ itself; PPSZ performs better if a
given formula has many variables with more than one critical clauses [2].

Lemma 4. Let F be any (≤3)CNF formula that has a log s0(n)-isolated sat.
assignment α∗. If Δn variables of F have more than one critical clause, then
Pr[EPPSZ] ≥ 2−(S−0.00145···Δ+o(1))n. Furthermore, if F has more than Δn vari-
ables that have a critical 2-clause, then Pr[EPPSZ] ≥ 2−(S−0.0353Δ+o(1))n.

Wahlström [8] proposed a deterministic algorithm for solving the CNF-SAT
problem. Here we denote by WAHLSTROM the following procedure based on
Wahlström’s algorithm.

Lemma 5. For any CNF formula F with no unit clause that has average degree
at most d, 4 < d ≤ 5, WAHLSTROM(F) computes one of its sat. assignment
in time ˜O(20.115707···(d−1)n).

Note that the time complexity of WAHLSTROM is not 2o(n). Thus, we
consider the following randomized procedure W rand: For a given input CNF
formula F over n variables with average degree ≤ d, W rand(d, F) executes
the above procedure with probability 2−0.115707(d−1)n, and otherwise it stops
the computation immediately with failure. Clearly, the success probability of
W rand(F) is 2−0.115707(d−1)n, and its expected running time is 2o(n).

Now we consider Hertil’s algorithm HERTLI stated as Algorithm 2. First
we remark on our way to state algorithms by pseudo codes. In the following
algorithms such as Algorithm 2, we consider several cases on a given formula, and
execute a sat. algorithm on the formula or its subformula that works efficiently
for each case. Though it is not stated explicitly, by, e.g., “Execute PPSZ(F ′)” we
mean to (i) execute the procedure PPSZ on F ′, (ii) compute a sat. assignment of
the input formula of the procedure based on the obtained sat. assignment, and
then (iii) terminate the computation by yielding the computed sat. assignment.
Clearly, if the execution at the step (i) fails, then the computation is terminated

An Improvement of the Algorithm of Hertli for the Unique 3SAT Problem 99

reporting “failure.” Note also that it may not be easy to determine which case
actually holds for a given formula. Therefore, we consider all the cases in parallel.
By “assume Φ then · · · ” in our algorithm descriptions, we mean to execute the
“· · · ” part in parallel with the other cases assuming that Φ holds.

Algorithm 2. HERTLI
input: a (≤3)CNF formula F , parameter:Δ1,Δ2, δ3, δ4, p

1: V ← vbl(F); n ← |V |;
2: assume F has more than Δ1n var.s with more than one critical clause then
3: Execute PPSZ(F)
4: assume otherwise then
5: Choose u.a.r. a size Δ1n subset W1 of V and an assignment α1 on W1;

(assume below that W1 and α1 are correctly chosen)
6: F ′ ← F [α1]; V ′ ← vbl(F ′); n′ ← |V ′|
7: assume F ′ is Δ2-dense then (what follows is the dense-case algorithm)
8: F2 ← GetInd2Clauses(F ′)
9: Execute DensePPSZp(F

′, F2)
10: assume otherwise then (what follows is the sparse-case algorithm)
11: Choose u.a.r. a size Δ2n

′ subset W2 of V ′ and an assignment α2 on W2;
(assume below that W2 and α2 are correctly chosen)

12: F ′′ ← F ′[α2];
13: Execute SparsePPSZ(F ′′)

Subprocedures2 GetInd2Clauses, DensePPSZp, and SparsePPSZ that are
used in HERTLI are stated as Algorithms 3, 4, and 5.

Based on [2,3]3 we can show that the following efficiency improvement is
possible by HERTLI on uniquely satisfiable 3CNF formulas.

Theorem 1. Use values given in the “value of [3]” column of Table 1 for the
parameters of the procedure HERTLI and its subprocedures, and also for ε0. For
any uniquely satisfiable 3CNF formula F , let EHERTLI denote the event that
HERTLI(F) yields the sat. assignment of F . Then we have log Pr[EHERTLI] ≥
−(S − ε0 + o(1))n.

We explain the proof of the theorem by showing that each procedure achieves
its required task with desired probability. From now on till the end of this section,
2 In [2], the part of the algorithm HERTLI corresponding to the statements 5–16
of Algorithm2 is stated as algorithm OneCC (i.e., Algorithm3 in [2]). On the
other hand, we omit specifying it here and include it in Algorithm2. In order to
use algorithm numbering consistent with [2], we skip Algorithm3 here and state
GetInd2Clauses as Algorithm4. While DensePPSZp and SparsePPSZ correspond
to procedures Dense (Algorithm5) and Sparse (Algorithm6) of [2], we modify their
descriptions for the sake of our later explanation. As a whole, the procedure HERTLI
is essentially the same as Hertli’s algorithm stated in [2].

3 Due to some minor error in [2], the choice of parameters in [2] is not appropriate,
which has been corrected in [3]. Here we use this corrected version.

100 T. Qin and O. Watanabe

Algorithm 3. GetInd2Clauses input: a (≤3)CNF formula F ′

1: V ′ ← vbl(F ′); n′ ← |V ′|;
2: F3 ← { C ∈ F : |C| = 3 }; F2 ← ∅; W ′

2 ← ∅;
3: for T2(n) times do (Define T2(n) = �Δ2n/2�.)
4: x ← a variable of F3 with deg3(F3, x) ≥ 5 (failure stop if no such variable exists)

5: Choose C u.a.r. from all clauses of F3 with �(x) ∈ C
6: C2 ← C \ {�(x)}
7: F2 ← F2 ∪ {C2}; W ′

2 ← W ′
2 ∪ vbl(C2)

8: F3 ← { C ∈ F3 : vbl(C) ∩ vbl(C2) = ∅ }
9: end for
10: return F2

Algorithm 4. DensePPSZp

input: a (≤3)CNF formula F ′ and a 2CNF formula F2, parameter: p ∈ (0, 1)
1: V ′ ← vbl(F ′); n′ ← |V ′|;
2: V ′

p ← pick each x ∈ V ′ with probability p
3: Let α′

2 be a partial assignment on V ′ initially undefined for all x ∈ V ′

4: for C2 ∈ F2 do
5: if vbl(C2) ⊆ Vp then (let u and v are two literals of C2)

6: (α′
2(u), α

′
2(v)) ←

{

(0, 0) with probability 1/5 (= 3/15), and
(0, 1), (1, 0), or (1, 1) with probability 4/15 for each

7: end for
8: for x ∈ V ′

p do
9: if α′

2(x) is undefined then α′
2(x) ←u.a.r. {0, 1}

10: end for
11: execute PPSZ(F ′[α′

2])

Algorithm 5. SparsePPSZ input: a (≤3)CNF formula F ′′

1: Let α′′ be a partial assignment on F ′′ initially undefined for all x ∈ vbl(F ′′)
2: ˜F ← F ′′;
3: if ˜F has a unit clause then Extend α′′ to satisfy all unit clauses and simplify ˜F

(if an unsat. clause is derived in ˜F during this step, then stop with “failure”)

4: while ˜F has some clause do
5: ˜V ← vbl(˜F); ñ ← |˜V |
6: F2 ← { C ∈ ˜F : |C| = 2 }
7: if |F2| ≤ δ3ñ then

8: Execute W rand(2δ3 + 4, ˜F)
9: else
10: assume ˜F has δ4ñ critical 2-clauses then Execute PPSZ(˜F)
11: assume otherwise then

(that is, more than 1 − δ4/δ3 of 2-clauses of F2 are noncritical)
12: Choose C u.a.r. from F2

13: Extend α′′ to satisfy all literals in C and simplify ˜F
14: end while

An Improvement of the Algorithm of Hertli for the Unique 3SAT Problem 101

Table 1. Parameters used in Hertli’s algorithm and our improvements

Name Reference Name in [2] Value in [3] New value

ε0 Theorem1 ε2 10−25 2.47 · 10−19

ε1 Lemma 7 ε3 10−3 (2.32 · · ·) · 10−3

ε2 Lemma 8 ε1 10−20 (9.23 · · ·) · 10−15

Δ1 Δ1 10−22 1.6595 · 10−16

Δ2 Δ2 5 · 10−5 3.7736 · 10−3

δ3 − 1/10 0.159227

δ4 − 1/30 0.06572

p p∗ 5 · 10−7 (3.82 · · ·) · 10−5

q − − (105Δ2n)
−1

we fix F (also V and n) to be any 3CNF formula with a unique sat. assignment
α∗. Thus, by “success probability” we mean the probability that α∗ is obtained.
We assume that variables in the procedures with the same name are given these
values and that parameters used in the procedures are set values given in the
“value in [3]” column of Table 1. Values of this column are also used efficiency
improvements ε0, ε1, and ε2. We also assume that n is quite large so that our
choice of parameters would make sense.

First consider the outline of HERTLI. From Algorithm2 we see that HERTLI
uses three sat. algorithms for the following three cases:

(H1) := [F has more than Δ1n variables with more than one critical clause]
(H2) := [¬ (H1) ∧ F ′

∗ is Δ2-dense]
(H3) := [¬ (H1) ∧ F ′

∗ is Δ2-sparse]

That is, PPSZ(F), DensePPSZp(F ′
∗, F2,∗), and SparsePPSZ(F ′′

∗) are executed
when (H1), (H2), and (H3) holds.

Here we consider the situation where the values of the variables W1, α1, W2,
and α2 of HERTLI are guessed “appropriately” and take the following values:

W1,∗ = the set of variables with more than one critical clause,
W2,∗ = a set of var.s of size ≤ 2T2(n) s.t. F \ W2,∗ is 4-degree3 bounded,
α1,∗ = α∗|W1,∗ , and α2,∗ = α∗|W2,∗

Then the variables F ′, F ′′, F2 are set the following values: F ′
∗ = F [α1,∗], F ′′

∗ =
F ′

∗[α1,∗], and F2,∗ = GetInd2Clauses(F ′
∗), where the last one is for the case that

GetInd2Clauses(F ′
∗) successfully returns a result. We also use V ′

∗ , n′
∗, V

′′
∗ , and n′′

∗
for the corresponding values, i.e., vbl(F ′

∗), |vbl(F ′
∗)|, vbl(F ′′

∗), and |vbl(F ′′
∗)|.

The case where (H1) holds is simple; in fact, we have already prepared
Lemma 4 for this case, which gives the following success probability bound.

102 T. Qin and O. Watanabe

Lemma 6. Suppose that (H1) holds for F . Then we have log Pr[EPPSZ] ≥ −(S−
0.00145 · · · Δ1 + o(1))n. That is, the log of the success probability of the line
2–3 of HERTLI is at least −(S − 0.00145 · · · Δ1 + o(1))n, which is larger than
−(S − ε0 + o(1))n.

Thus, for proving the theorem, it suffices to guarantee the efficiency improve-
ment ε0 for the other cases.

For the case where (H3) holds, the procedure SparsePPSZ is used. Its task
is simply to get a sat. assignment for F ′′

∗ given in this case. For its success
probability, we have the following lemma, which is proved as Lemma6 in [2].
Below we use H(r) to denote the binary entropy, and use the well-known bound
log

(

n
rn

) ≤ H(r)n that holds for any r ∈ [0, 1] such that rn is an integer.

Lemma 7. Suppose that (H3) holds for F . Let ESparse denote the event that
SparsePPSZ(F ′′

∗) returns α∗|V ′′∗ . Then we have log Pr[ESparse] ≥ −(S − ε1 +
o(1))n′′

∗ . That is, the efficiency improvement of SparsePPSZ on F ′′
∗ is at least

ε1. Furthermore, including the probability of guessing W1,∗, α1,∗, W2,∗, and α2,∗,
the log of the success probability of the line 10–13 of HERTLI is at least −(S +
Δ1 + H(Δ1) + Δ2 + H(Δ2) − ε1)n, which is larger than −(S − ε0 + o(1))n.

Finally consider the case where (H2) holds. In this case, HERTLI first exe-
cutes GetInd2Clauses(F ′

∗) to get a set F2,∗ of T2(n) independent 2-clauses, and
then executes DensePPSZp(F ′

∗, F2,∗) to get a sat. assignment for F ′
∗. Since (H2)

holds, it is easy to see that the execution GetInd2Clauses(F ′
∗) always termi-

nates successfully. Then 2-clauses of F2,∗ are obtained from 3-clauses of F ′
∗;

furthermore, it follows from (H2) that on average (w.r.t. the randomness of
GetInd2Clauses) at least 4/5 2-clauses in F2,∗ are from noncritical 3-clauses of
F ′

∗. This is a key to derive the following lower bound on the success probability
of the execution DensePPSZp(F ′

∗, F2,∗).

Lemma 8. Suppose that (H2) holds for F . Then GetInd2Clauses successfully
returns a set of T2(n) independent 2-clauses. Let EDensep

denote the event that
DensePPSZp(F ′

∗, F2,∗) returns α∗|V ′∗ . Then we have log Pr[EDensep] ≥ −(S +
I(p)−a0Δ2p

2+o(1))n′
∗, where a0 = 0.00505 · · · . That is, the efficiency improve-

ment of DensePPSZp on (F ′
∗, F2,∗) is at least ε2 := maxp(−I(p)+ a0Δ2p

2).
Thus, including the probability of guessing W1,∗ and α1,∗, the log of the success
probability of the line 7–9 of HERTLI is at least −(S +Δ1+H(Δ1)−ε2+o(1))n,
which is larger than −(S − ε0 + o(1))n.

3 Our Improvements

As explained in Introduction, the key idea of our main improvement is to use
GetInd2Clauses for obtaining W2 instead of guessing it randomly in the straight-
forward way, thereby removing the −H(Δ2) term from the efficiency improve-
ment of the sparse case (Lemma 7). In order to give a condition that this idea
works, we introduce a “soft” version of the Δ-sparseness/-denseness.

An Improvement of the Algorithm of Hertli for the Unique 3SAT Problem 103

Algorithm 6. newHERTLI
input: a (≤3)CNF formula F , parameter:Δ1,Δ2, δ3, δ4, p, q

1: V ← vbl(F); n ← |V |;
2: assume F has more than Δ1n var.s with more than one critical clause then
3: Execute PPSZ(F)
4: assume otherwise then
5: Choose u.a.r. a size Δ1n subset W1 of V and an assignment α1 on W1;
6: F ′ ← F [α1]; V ′ ← vbl(F ′); n′ ← |V ′|
7: assume F ′ is (Δ2, q)-dense then
8: F2 ← GetInd2Clauses(F ′)
9: Execute DensePPSZp(F

′, F2)
10: assume otherwise then
11: W2 ← GetInd2Clauses+q (F

′)
12: Choose α2 u.a.r. from all assignments on W2;
13: F ′′ ← F ′[α2];
14: Execute SparsePPSZ(F ′′)

The new algorithm is given as Algorithm6. It uses a procedure
GetInd2Clauses+q for computing a set W2 corresponding to the one guessed in
the original Hertli’s algorithm. This procedure is obtained by modifying the
procedure GetInd2Clauses on two points. For a given formula F ′, instead of
computing a set F2 of independent 2-clauses, GetInd2Clauses+q aims to compute
a set W2 such that F ′ \ W2 becomes 4-degree3 bounded. Thus, the line 4 of
Algorithm 3 is modified so that if x cannot be found, then the algorithm stops
successfully by reporting W2. On the other hand, the termination of its main
for-loop, i.e., the line 3–9 part of Algorithm3, is regarded as an undesired situa-
tion. GetInd2Clauses+q tries this part for 1/q times for a given parameter q and
stops with “failure” if a desired W2 is not obtained by all trials.

Our new condition is to determine which of GetInd2Clauses and
GetInd2Clauses+q is likely to succeed. Consider the execution GetInd2
Clauses(F ′). We regard it as a random process of collecting an independent
2-clause from F ′ \ W2 to F2 while choosing a variables x with deg3(x) ≥ 5 ran-
domly. For each t ≥ 1, let Nt denote the event that there exists a degree3 ≥5
variable in F3 at beginning of the tth iteration of the main for-loop and hence
the algorithm executes the tth iteration. We define N≤t ⇐⇒ ∧

1≤i≤t Ni and qt

= Pr[¬Nt |N≤t−1].

Definition 4. For any q ∈ [0, 1] and Δ > 0, a 3CNF formula F is (Δ, q)-dense
if qt ≤ q for all t, 1 ≤ t ≤
Δn/2�; otherwise, F is (Δ, q)-sparse.

This is the new condition used in Algorithm3. Although not exactly the same,
the (Δ, 0)-dense/sparse condition is practically the same as the Δ-dense/sparse
condition w.r.t. the execution of GetInd2Clauses.

Now our task is to show that the success probability of the new sparse case
is in fact improved and that the success probability of the new dense case is
not so affected. Similar to the previous discussion, we consider the execution of

104 T. Qin and O. Watanabe

the procedure newHERTLI when some sufficiently large and uniquely satisfiable
3CNF formula F is given as an input; the symbols such as F ′

∗, etc. are used in
the same way as before while we leave the choice of parameter values for a later
discussion. For a given parameter q, we define (H2)+q and (H3)+q by

(H2)+q := [¬(H1) ∧ F ′
∗ is (Δ2, q)-dense]

(H3)+q := [¬(H1) ∧ F ′
∗ is (Δ2, q)-sparse]

We first show that the success probability is improved for the (Δ2, q)-sparse
case. In the following, let T2 denote T2(n) and N denote the event

∧

1≤i≤T2
Ni.

Lemma 9. Suppose that (H3)+q holds for F . Then with Ω(1) probability W2 is
successfully computed by GetInd2Clauses+q (F ′

∗). Thus, including the probability
of guessing W1,∗, α1,∗, and α2,∗, the log of the success probability of the line
10−14 of newHERTLI is at least −(S + Δ1 + H(Δ1) + Δ2 − ε1)n, where ε1 is a
lower bound for the efficiency improvement of SparsePPSZ on F ′′

∗ .

Then by following lemma we can say that DensePPSZ works as well even
under the condition (H2)+q .

Lemma 10. Suppose that (H2)+q holds for F . Then with probability at least
1 − T2q, F2,∗ is successfully computed by GetInd2Clauses(F ′

∗). Recall that
EDensep

denote the event that DensePPSZp(F ′
∗, F2,∗) returns α∗|V ′∗ . We have

log Pr[EDensep] ≥ −(S + I(p) − aqΔ2p
2 + o(1))n, where

aq =
1
2

(

2 + log
(

4
15

)

− 1
5(1 − T2q)

log
(

4
3

))

,

which is close to a0 of Lemma 8 by setting q = (105T2)−1 = (105Δ2n)−1.

As stated Lemma 8, a lower bound for the efficiency improvement of
DensePPSZp(F ′

∗, F2,∗) is calculated as ε2 := maxp(−I(p)+ aqΔ2p
2). Then includ-

ing theprobability of guessingW1,∗,α1,∗, andα2,∗, the log of the success probability
of the line 7–9 of newHERTLI is at least −{Δ1 + H(Δ1) + (S − ε2)(1 − Δ1)}n.

Now by setting the parameters used in the algorithms appropriately, we can
show the following efficiency improvement.

Theorem 2. For the procedure newHERTLI, use values given in the “new
value” column of Table 1 for its parameters and also for ε0. For any uniquely
satisfiable 3CNF formula, the log of its success probability is at least −(S − ε0 +
o(1))n.

References

1. Hertli, T.: 3-SAT faster and simpler-unique-SAT bounds for PPSZ hold in general.
In: FOCS 2011, pp. 277–284 (2011)

2. Hertli, T.: Breaking the PPSZ barrier for unique 3-SAT. In: Esparza, J., Fraigniaud,
P., Husfeldt, T., Koutsoupias, E. (eds.) ICALP 2014. LNCS, vol. 8572, pp. 600–611.
Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-43948-7 50

https://doi.org/10.1007/978-3-662-43948-7_50

An Improvement of the Algorithm of Hertli for the Unique 3SAT Problem 105

3. Hertli, T.: Improved exponential algorithms for SAT and ClSP. A thesis for Doctor
of Sciences of ETH Zurich (2015)

4. Paturi, R., Pudlak, P., Saks, M.E., Zane, F.: An improved exponential-time algo-
rithm for k-SAT. J. ACM 52(3), 337–364 (2005)

5. Paturi, R., Pudlak, P., Zane, F.: Satisfiability coding lemma. Chicago J. Theor.
Comput. Sci. 11–19 (1999)

6. Schöning, U.: A probabilistic algorithm for k-SAT and constraint satisfaction prob-
lems. In: FOCS 1999, pp. 410–414 (1999)

7. Scheder, D., Steinberger, J.P.: PPSZ for general k-SAT - making Hertli’s analysis
simpler and 3-SAT faster. In: CCC 2017, pp. 9:1–9:15 (2017)

8. Wahlström, M.: An algorithm for the SAT problem for formulae of linear length. In:
Brodal, G.S., Leonardi, S. (eds.) ESA 2005. LNCS, vol. 3669, pp. 107–118. Springer,
Heidelberg (2005). https://doi.org/10.1007/11561071 12

https://doi.org/10.1007/11561071_12

Random Popular Matchings with Incomplete
Preference Lists

Suthee Ruangwises(B) and Toshiya Itoh

Department of Mathematical and Computing Science,
Tokyo Institute of Technology, Yokohama, Japan

ruangwises.s.aa@m.titech.ac.jp, titoh@c.titech.ac.jp

Abstract. For a set A of n people and a set B of m items, with each per-
son having a preference list that ranks some items in order of preference,
we consider the problem of matching every person with a unique item.
A matching M is popular if for any other matching M ′, the number of
people who prefer M to M ′ is not less than the number of those who pre-
fer M ′ to M . For given n and m, consider the probability of existence of
a popular matching when each person’s preference list is independently
and uniformly generated at random. Previously, Mahdian showed that
when people’s preference lists are strict (containing no ties) and complete
(containing all items in B), if α = m/n > α∗, where α∗ ≈ 1.42 is the root
of equation x2 = e1/x, then a popular matching exists with probability
1 − o(1); and if α < α∗, then a popular matching exists with probability
o(1), i.e. a phase transition occurs at α∗. In this paper, we investigate
phase transitions in more general cases when people’s preference lists are
not complete. In particular, we show that in the case that each person
has a preference list of length k, if α > αk, where αk ≥ 1 is the root of
equation xe−1/2x = 1 − (1 − e−1/x)k−1, then a popular matching exists
with probability 1 − o(1); and if α < αk, then a popular matching exists
with probability o(1).

Keywords: Popular matching · Incomplete preference lists
Phase transition · Complex component

1 Introduction

Consider the problem of matching people with items, with each person having a
preference list that ranks some items in order of preference. This simple problem
models many important real-world situations, such as the assignment of DVDs to
subscribers [12], graduates to training positions [8], and families to government-
subsidized housing [18].

The main target of such problems is to find the “optimal” matching in each
situation. Various definitions of optimality have been proposed. The least restric-
tive one is Pareto optimality [1,2,16]. A matching M is Pareto optimal if there
is no other matching M ′ such that at least one person prefers M ′ to M but

A full version of the paper is available at https://arxiv.org/abs/1609.07288.

c© Springer International Publishing AG, part of Springer Nature 2018
M. S. Rahman et al. (Eds.): WALCOM 2018, LNCS 10755, pp. 106–118, 2018.
https://doi.org/10.1007/978-3-319-75172-6_10

http://orcid.org/0000-0002-2820-1301
https://arxiv.org/abs/1609.07288

Random Popular Matchings with Incomplete Preference Lists 107

no one prefers M to M ′. Other stronger definitions include rank-maximality [9]
(allocating maximum number of people to their first choices, then maximum
number to their second choices, and so on), and popularity [3,6] defined below.

1.1 Popular Matching

Consider a set A of n people and a set B of m items, with α = m/n. Throughout
this paper, we assume that m ≥ n and thus α ≥ 1. Each person has a preference
list that ranks some items in order of preference. A preference list is strict if it
does not contain ties, and is complete if it contains all items in B. We want to
match every person with a unique item. In a matching M , for each person a ∈ A
and item b ∈ B, let M(a) be an item matched with a, and M(b) be a person
matched with b (for convenience, let M(a) be null for an unmatched person a).

Let ra(b) be the rank of item b in a’s preference list, with the most preferred
item having rank 1, the second most preferred item having rank 2, and so on (for
convenience, let ra(null) = ∞). For any pair of matchings M and M ′, we define
φ(M,M ′) to be the number of people who prefer M to M ′, i.e. φ(M,M ′) =
|{a ∈ A|ra(M(a)) < ra(M ′(a))}|. We then define a matching M to win over
a matching M ′ (and M ′ to lose to M) if there are more people who prefer M
to M ′ than those who prefer M ′ to M , i.e. φ(M,M ′) > φ(M ′,M). A popular
matching is a matching that does not lose to any other matching. A popular
matching may or may not exist, depending on the people’s preference lists.

A probabilistic variant of this problem, the random popular matching prob-
lem, studies the probability that a popular matching exists in a random instance
for each value of n and m, when each person’s preference list is defined indepen-
dently by selecting the first item b1 ∈ B uniformly at random, the second item
b2 ∈ B \ {b1} uniformly at random, the third item b3 ∈ B \ {b1, b2} uniformly at
random, and so on.

1.2 Related Work

The concept of popularity of a matching was first introduced by Gardenfors [6] in
the context of the stable marriage problem. Abraham et al. [3] presented the first
polynomial time algorithm to find a popular matching in a given instance, or to
report that none exists. The algorithm runs in O(m+n) time when the preference
lists contain no ties, and in O(m

√
n) time when the preference lists contain

ties. Later, Mestre [15] generalized the algorithm to find a popular matching in
the case that people are given different voting weights. That algorithm runs in
O(m+n) time when ties are not allowed, and in O(min(k

√
n, n)m) time when ties

are allowed, where k is the number of distinct weights. A variant of this problem
known as the capacitated house allocation problem allows an item to be matched
with more than one person. Manlove and Sng [13] presented an algorithm to
determine whether a popular matching exists in this setting. The algorithm
runs in O(

√
Cn + L) time when ties are not allowed, and in O((

√
C + n)L)

time when ties are allowed, where C is the total capacity and L is the total
length of people’s preference lists. The notion of a popular matching also applies
when the preference lists are two-sided (matching people with people), both

108 S. Ruangwises and T. Itoh

in the bipartite graph (marriage problem) and non-bipartite graph (roommates
problem). Biró et al. [4] developed an algorithm to test popularity of a matching
in these two settings and proved that determining whether a popular matching
exists in these settings is an NP-hard problem when ties are allowed.

While a popular matching does not always exist, McCutchen [14] introduced
two measures of the unpopularity of a matching, the unpopularity factor and the
unpopularity margin, and showed that the problem of finding a matching that
minimizes either measure is an NP-hard problem. Huang et al. [7] later gave
algorithms to find a matching with bounded values of these measures in certain
instances. Kavitha et al. [11] introduced the concept of a mixed matching, which
is a probability distribution over matchings, and proved that a mixed matching
that is popular always exists.

For the probabilistic variant of strict and complete preference lists, Mahdian
[12] proved that if α = m/n > α∗, where α∗ ≈ 1.42 is the root of equation
x2 = e1/x, then a popular matching exists with high probability (1 − o(1) prob-
ability) in a random instance. On the other hand, if α < α∗, a popular matching
exists with low probability (o(1) probability). The point α = α∗ can be regarded as
a phase transition point, at which the probability rises from asymptotically zero
to asymptotically one. Itoh and Watanabe [10] later studied the case when peo-
ple are given two weights w1, w2 with w1 ≥ 2w2, and found a phase transition at
α = Θ(n1/3).

1.3 Our Results

The probabilistic variant in the case that preference lists are not complete, with
every person’s preference list having the same length k, was mentioned and
conjectured by Mahdian [12] and simulated by Abraham et al. [3], but the exact
phase transition point, or whether it exists at all, had not been found yet. In
this paper, we study that case and discover a phase transition at α = αk, where
αk ≥ 1 is the root of equation xe−1/2x = 1 − (1 − e−1/x)k−1. In particular,
we prove that for k ≥ 4, if α > αk, then a popular matching exists with high
probability; and if α < αk, then a popular matching exists with low probability.
For k ≤ 3, in which the equation does not have a solution in [1,∞), a popular
matching always exists with high probability for every value of α ≥ 1.

2 Preliminaries

For convenience, we create a unique auxiliary last resort item �a for each per-
son a ∈ A and append �a to the end of a’s preference list, i.e. �a has lower
preference than all other items in the list. By introducing the last resort items,
we can assume that every person is matched because we can simply match any
unmatched person a with �a. Note that these last resort items are not in B and
do not count toward m, the total number of “real items”.

For each person a ∈ A, let f(a) be the item at the top of a’s preference list.
Let F be the set of items b ∈ B such that there exists a person a′ ∈ A with
f(a′) = b, and let S = B − F . Then, for each person a ∈ A, let s(a) be the
highest ranked item in a’s preference list that is not in F . Note that s(a) is
well-defined for every a ∈ A because of the existence of last resort items.

Random Popular Matchings with Incomplete Preference Lists 109

Definition 1. A matching M is A-perfect if every person a ∈ A is matched with
either f(a) or s(a).

Abraham et al. proved the following lemma, which holds for any instance
with strict (not necessarily complete) preference lists.

Lemma 1 [3]. In a given instance with strict preference lists, a popular match-
ing exists if and only if an A-perfect matching exists.

It is worth noting a simple but useful lemma about independent and uniform
selection of items at random proved by Mahdian, which will be used throughout
this paper.

Lemma 2 [12]. Suppose that we pick y elements from the set {1, ..., z} indepen-
dently and uniformly at random (with replacement). Let a random variable X be
the number of elements in the set that are not picked. Then, E[X] = e−y/zz−Θ(1)
and Var[X] < E[X].

3 Complete Preference Lists Setting

We first consider the setting that every person’s preference list is strict and
complete. Note that when m > n and the preference lists are complete, the last
resort items are not necessary.

From a given instance, we construct a top-choice graph, a bipartite graph with
parts B and S such that each person a ∈ A corresponds to an edge connecting
f(a) ∈ B and s(a) ∈ S. Note that multiple edges are allowed in this graph.
Previously, Mahdian proved the following lemma.

Lemma 3 [12]. In a given instance with strict and complete preference lists, an
A-perfect matching exists if and only if its top-choice graph does not contain a
complex component, i.e. a connected component with more than one cycle.

By Lemmas 1 and 3, the problem of determining whether a popular match-
ing exists is equivalent to determining whether the top-choice graph contains
a complex component. However, the difficulty is that the number of vertices
in the randomly generated top-choice graph is not fixed. Therefore, a random
bipartite graph G(x, y, z) with fixed number of vertices is defined as follows to
approximate the top-choice graph.

Definition 2. For integers x, y, z,G(x, y, z) is a bipartite graphwithV ∪ U as a set
of vertices, where V = {v1, v2, ..., vx} and U = {u1, u2, ..., uy}. Each of the z edges
of G(x, y, z) is selected independently and uniformly at random (with replacement)
from the set of all possible edges between a vertice in V and a vertice in U .

This auxiliary graph has properties closely related to the top-choice graph.
Mahdian then proved that if α > α∗ ≈ 1.42, then G(m,h, n) contains a complex
component with low probability for a range of values of h, and used those prop-
erties to conclude that the top-choice graph also contains a complex component
with low probability, thus a popular matching exists with high probability.

110 S. Ruangwises and T. Itoh

Theorem 1 [12]. In a random instance with strict and complete preference lists,
if α > α∗, where α∗ ≈ 1.42 is the solution of the equation x2e−1/x = 1, then a
popular matching exists with probability 1 − o(1).

Theorem 1 serves as an upper bound of the phase transition point in the case
of strict and complete preference lists. On the other hand, the following lower
bound was also proposed by Mahdian along with a sketch of the proof, although
the fully detailed proof was not given.

Theorem 2 [12]. In a random instance with strict and complete preference lists,
if α < α∗, then a popular matching exists with probability o(1).

4 Incomplete Preference Lists Setting

The previous section shows known results in the setting that preference lists are
strict and complete. However, preference lists in many real-world situations are
not complete, as people may regard only some items as acceptable for them.

In the setting that the preference lists are strict but not complete, we will
consider the case that every person’s preference list has equal length k (not
counting the last resort item).

Definition 3. For a positive integer k ≤ m, an instance with k-incomplete prefer-
ence lists is an instance with every person’s preference list having length exactly k.

Definition 4. For a positive integer k ≤ m, a random instance with strict
and k-incomplete preference lists is an instance with each person’s preference
list is chosen independently and uniformly from the set of all m!

(m−k)! possible
k-permutations of the m items in B at random.

Recall that F = {b ∈ B|∃a′ ∈ A, f(a′) = b} and for each person a ∈ A, s(a) is
the highest ranked item in a’s preference list not in F . The main difference from
the complete preference lists setting is that, in the incomplete preference lists
setting s(a) can be either a real item or the last-resort item �a. For each person
a ∈ A, let Pa be the set of items in a’s preference list (not including the last resort
item �a). We then define A1 = {a ∈ A|Pa ⊆ F} and A2 = {a ∈ A|Pa � F}. We
have s(a) = �a if and only if a ∈ A1.

4.1 Top-Choice Graph

Analogously to the complete preference lists setting, we define the top-choice
graph of an instance with strict and k-incomplete preference lists to be a bipar-
tite graph with parts B and S ∪ L, where L = {�a|a ∈ A} is the set of last
resort items. Each person a ∈ A2 corresponds to an edge connecting f(a) ∈ B
and s(a) ∈ S. We call these edges normal edges. Each person a ∈ A1 corre-
sponds to an edge connecting f(a) ∈ B and s(a) = �a ∈ L. We call these
edges last resort edges.

Random Popular Matchings with Incomplete Preference Lists 111

Although the statement of Lemma 3 proved by Mahdian [12] is for the com-
plete preference lists setting, exactly the same proof applies to incomplete pref-
erence lists setting as well. The proof first shows that an A-perfect matching
exists if and only if each edge in the top-choice graph can be oriented such that
each vertex has at most one incoming edge (because if an A-perfect matching
M exists, we can orient each edge corresponding to a ∈ A toward the endpoint
corresponding to M(a), and vice versa). Then, the proof shows that for any top-
choice graph H, each edge of H can be oriented in such manner if and only if H
does not have a complex component. Thus we can conclude the following lemma.

Lemma 4. In a given instance with strict and k-incomplete preference lists, an
A-perfect matching exists if and only if its top-choice graph does not contain a
complex component.

In contrast to the complete preference lists setting, the top-choice graph
in the incomplete preference lists setting has two types of edges with different
distributions: normal edges and last resort edges, and cannot be approximated
by G(x, y, z) defined in the previous section. Therefore, we have to construct
another auxiliary graph G′(x, y, z1, z2) as follows.

Definition 5. For integers x, y, z1, z2, G′(x, y, z1, z2) is a bipartite graph with
V ∪ U ∪ U ′ as a set of vertices, where V = {v1, v2, ..., vx}, U = {u1, u2, ..., uy},
and U ′ = {u′

1, u
′
2, ..., u

′
z1+z2

}. This graph has z1 + z2 edges. Each of the first z1
edges is selected independently and uniformly at random (with replacement) from
the set of all possible edges between a vertice in V and a vertice in U . Then, each
of the next z2 edges is constructed by the following procedures: Uniformly select a
vertex vi from V at random (with replacement); then, uniformly select a vertex
u′

j that has not been selected before from U ′ at random (without replacement)
and construct an edge (vi, u

′
j).

The intuition of G′(x, y, z1, z2) is that we approximate the top-choice graph
in the incomplete preference list setting, with V , U , and U ′ correspond to B, S,
and L, respectively, and the first z1 edges and the next z2 edges correspond to
normal edges and last resort edges, respectively.

Similarly to the complete preference lists setting, this auxiliary graph has
properties closely related to the top-choice graph in incomplete preference lists
setting, as shown in the following lemma. The proof of this lemma, which used
the same technique as in Mahdian’s proof of [12, Lemma 3], is shown in the full
version.

Lemma 5. Suppose that α = m/n, the top-choice graph H has t normal edges
and n − t last resort edges for a fixed integer t ≤ n, and E is an arbitrary event
defined on graphs. If the probability of E on the random graph G′(m,h, t, n − t)
is at most O(1/n) for every fixed integer h ∈ [e−1/αm − m2/3, e−1/αm + m2/3],
then the probability of E on the top-choice graph H is at most O(n−1/3).

112 S. Ruangwises and T. Itoh

4.2 Size of A2

Since our top-choice graph has two types of edges with different distributions,
the first thing we want to bound is the number of each type of edges. Note that
the top-choice graph has |A2| normal edges and |A1| last resort edges, so the
problem is equivalent to bounding the size of A2.

We will prove the following lemma, which shows that in a random instance
with strict and k-incomplete preference lists, the ratio |A2|

n lies around a constant
1 − (1 − e−1/α)k−1 with high probability.

Lemma 6. In a random instance with strict and k-incomplete preference lists,

1 − (1 − e−1/α)k−1 − c <
|A2|
n

< 1 − (1 − e−1/α)k−1 + c

with probability 1 − o(1) for any constant c > 0.

Proof. Let c > 0 be any constant. If k = 1, then we have Pa ⊆ F for every
a ∈ A, which means |A2| = 0 and thus the lemma holds. From now on, we will
consider the case that k ≥ 2.

From Lemma 2, with y = n and z = m, we have

E[|F |] = m − E[|S|] = (1 − e−1/α)m + Θ(1);
Var(|F |) = Var(|S|) < E[|S|] < c1E[|F |],

for some constant c1 > 0. Let c′ = c
(k−1)(c+4) . By bounding the binomial expan-

sions, we can verify that

(1 − e−1/α − c′)k−1 > (1 − e−1/α)k−1 − c

4
; (1)

(1 − e−1/α + c′)k−1 < (1 − e−1/α)k−1 +
c

4
. (2)

Also, from Chebyshev’s inequality we have

Pr
[∣∣|F | − E[|F |]∣∣ ≥ c′ · E[|F |]] ≤ Var[|F |]

(c′ · E[|F |])2 ≤ c1
c′2 · E[|F |] = O(1/n). (3)

Let I = [(1 − e−1/α − c′)m, (1 − e−1/α + c′)m]. From (3) and the fact that
E[|F |] = (1 − e−1/α)m + Θ(1), we have |F | ∈ I with probability 1 − O(1/n) =
1 − o(1) for sufficiently large m.

Now suppose that |F | = q for some fixed integer q ∈ I. For each a ∈ A, we
have a ∈ A1 if and only if Pa −{f(a)} ⊆ F . Consider that we first independently
and uniformly select the first-choice item of every person in A from the set B at
random, creating the set F . Then, for each a ∈ A, we uniformly select the remain-
ing k − 1 items in a’s preference list one by one from the remaining m − 1 items

Random Popular Matchings with Incomplete Preference Lists 113

in B − {f(a)} at random. Among the (k − 1)!
(
m−1
k−1

)
possible ways of selection,

there are (k − 1)!
(

q−1
k−1

)
ways such that Pa − {f(a)} ⊆ F , so

Pr
[
a ∈ A1

∣
∣|F | = q

]
= Pr

[
Pa − {f(a)} ⊆ F

∣
∣|F | = q

]

=
(k − 1)!

(
q−1
k−1

)

(k − 1)!
(
m−1
k−1

) =

(
q−1
k−1

)

(
m−1
k−1

) .

Since
(

q−1
k−1

)
/
(
m−1
k−1

)
converges to

(
q
m

)k−1 when m becomes very large for every

q ∈ I, it is sufficient to consider Pr
[
a ∈ A1

∣
∣|F | = q

]
=

(
q
m

)k−1. Using this with
(1) and (2), we can prove that

(1 − e−1/α)k−1 − c

2
< Pr[a ∈ A1] < (1 − e−1/α)k−1 +

c

2
,

where the detailed proof is given in the full version. This is equivalent to

1 − (1 − e−1/α)k−1 − c

2
< Pr[a ∈ A2] < 1 − (1 − e−1/α)k−1 +

c

2
.

Finally, from this we can bound the expected value and variance of |A2|, and
use Chebyshev’s inequality to prove that

1 − (1 − e−1/α)k−1 − c <
|A2|
n

< 1 − (1 − e−1/α)k−1 + c

with probability 1 − o(1), where the detailed proof is given in the full version. ��

5 Main Results

For each value of k, we want to find a phase transition point αk such that if
α > αk, then a popular matching exists with high probability; and if α < αk,
then a popular matching exists with low probability. We do so by proving the
upper bound and lower bound separately.

5.1 Upper Bound

Lemma 7. Suppose that α = m/n and 0 ≤ β < αe−1/2α. Then, the probability
that G′(m,h, βn, (1 − β)n) contains a complex component is at most O(1/n) for
every fixed integer h ∈ [e−1/αm − m2/3, e−1/αm + m2/3].

Proof. By the definition of G′(m,h, βn, (1−β)n), each vertex in U ′ has degree at
most one, thus removing U ′ does not affect the existence of a complex component.
Moreover, the graph G′(m,h, βn, (1−β)n) with part U ′ removed has exactly the
same distribution as G(m,h, βn) defined in Definition 2. Therefore, it is sufficient
to consider the graph G(m,h, βn) instead.

Using the same technique as in Mahdian’s proof of [12, Lemma 4], let
X and Y be subsets of vertices of G(m,h, βn) in V and U , respectively.

114 S. Ruangwises and T. Itoh

Define BADX,Y to be an event that X ∪ Y contains either two vertices joined
by three disjoint paths or two disjoint cycles joined by a path as a spanning
subgraph. We call such subgraphs bad subgraphs. Note that every graph that
contains a complex component must contain a bad subgraph. Then, let p1 = |X|,
p2 = |Y |, and p = p1 + p2. Observe that BADX,Y can occur only when
|p1 − p2| ≤ 1, so p1, p2 ≥ p−1

2 . Also, there are at most 2p2 non-isomorphic
bad graphs with p1 vertices in V and p2 vertices in U , with each of them having
p1!p2! ways to arrange the vertices, and there are at most (p + 1)!

(
βn
p+1

) (
1

mh

)p+1

probability that all p + 1 edges of each graph are selected in our random proce-
dure. So, the probability of BADX,Y is at most

2p2p1!p2!(p + 1)!
(

βn

p + 1

)(
1

mh

)p+1

≤ 2p2p1!p2!
(

βn

mh

)p+1

.

By union bound, the probability that at least one BADX,Y occurs is at most

Pr

⎡

⎣
∨

X,Y

BADX,Y

⎤

⎦ ≤
∑

p1,p2

(
m

p1

)(
h

p2

)
2p2p1!p2!

(
βn

mh

)p+1

≤
∑

p1,p2

mp1

p1!
· hp2

p2!
· 2p2p1!p2!

(
β

αh

)p+1

=
∑

p1,p2

2p2

h

(
β

α

)p+1 (m

h

)p1

≤
∞∑

p=1

O(p2)
n

(
β

α

)p (
e−1/α − m−1/3

)−p/2

=
O(1)

n

∞∑

p=1

p2
(

α2

β2

(
e−1/α − m−1/3

))−p/2

.

By the assumption, we have α2e−1/α > β2, so α2

β2 (e−1/α − m−1/3) > 1 for
sufficiently large m, thus the above sum converges. Therefore, the probability
that at least one BADX,Y happens is at most O(1/n). ��

We can now prove the following theorem as an upper bound of αk.

Theorem 3. In a random instance with strict and k-incomplete preference lists,
if αe−1/2α > 1 − (1 − e−1/α)k−1, then a popular matching exists with probability
1 − o(1).

Proof. Since αe−1/2α > 1 − (1 − e−1/α)k−1, we can select a small enough δ1 > 0
such that αe−1/2α > 1 − (1 − e−1/α)k−1 + δ1. Let J1 = [(1 − (1 − e−1/α)k−1 −
δ1)n, (1 − (1 − e−1/α)k−1 + δ1)n]. From Lemma 6, |A2| ∈ J1 with probability
1 − o(1). Moreover, we have β = t

n < αe−1/2α for any integer t ∈ J1.
Define E1 to be an event that a popular matching exists in a random instance.

First, consider the probability of E1 conditioned on |A2| = t for each fixed
integer t ∈ J1. By Lemmas 5 and 7, the top-choice graph contains a complex
component with probability O(n−1/3) = o(1). Therefore, from Lemmas 1 and 4

Random Popular Matchings with Incomplete Preference Lists 115

we can conclude that a popular matching exists with probability 1 − o(1), i.e.
Pr

[
E1

∣
∣|A2| = t

]
= 1 − o(1) for every fixed integer t ∈ J1. So

Pr[E1] =
∑

t

Pr[|A2| = t] · Pr
[
E1

∣
∣|A2| = t

]

≥
∑

t∈J1

Pr[|A2| = t] · Pr
[
E1

∣
∣|A2| = t

] ≥ Pr[|A2| ∈ J1] · (1 − o(1))

= (1 − o(1))(1 − o(1)) = 1 − o(1).

Thus a popular matching exists with probability 1 − o(1). ��

5.2 Lower Bound

Lemma 8. Suppose that α = m/n and αe−1/2α < β ≤ 1. Then, the probability
that G′(m,h, βn, (1 − β)n) does not contain a complex component is at most
O(1/n) for every fixed integer h ∈ [e−1/αm − m2/3, e−1/αm + m2/3].

Proof. Again, by the same reasoning as in the proof of Lemma7, we can consider
the graph G(m,h, βn) instead of G′(m,h, βn, (1−β)n), but now we are interested
in an event that G(m,h, βn) does not contain a complex component.

Since αe−1/2α < β, for sufficiently small ε > 0, we still have αe−1/2α <
(1 − ε)3/2β. Consider the random bipartite graph G(m,h, (1 − ε)βn) with parts
V having m vertices and U having h vertices. For each vertex v, let a random
variable rv be the degree of v. Since there are (1 − ε)βn edges in the graph, the
expected value of rv for each v ∈ V is c1 = (1−ε)βn

m = (1−ε)β
α . Since e−1/αm +

m2/3 < e−1/αm
1−ε for sufficiently large m, the expected value of rv for each v ∈ U is

c2 =
(1 − ε)βn

h
>

(1 − ε)βn

e−1/αm + m2/3
>

(1 − ε)βn

e−1/αm/(1 − ε)
=

(1 − ε)2β
αe−1/α

for sufficiently large m. Furthermore, each rv has a binomial distribution, which
converges to Poisson distribution when m becomes very large. The graph can
be viewed as a special case of inhomogeneous random graph [5,17]. With the
assumption that c1c2 > (1−ε)3β2

α2e−1/α > 1, we can conclude that the graph contains a
giant component (a component containing a constant fraction of vertices of the
entire graph) with probability 1 − O(1/n), where the explanation is shown in
the full version.

Finally, consider the construction of G(m,h, βn) by putting εβn more random
edges into G(m,h, (1 − ε)βn). If two of those edges land in the giant component
C, a complex component will be created. Since C has size of a constant fraction
of m, each edge has a constant probability to land in C, so the probability that
at most one edge will land in C is exponentially low. Therefore, G(m,h, βn) does
not contain a complex component with probability at most O(1/n). ��

We can now prove the following theorem as a lower bound of αk.

116 S. Ruangwises and T. Itoh

Theorem 4. In a random instance with strict and k-incomplete preference
lists, if αe−1/2α < 1 − (1 − e−1/α)k−1, then a popular matching exists with
probability o(1).

Proof. Like in the proof of Theorem 3, we can select a small enough δ2 > 0
such that αe−1/2α < 1 − (1 − e−1/α)k−1 − δ2. Let J2 = [(1 − (1 − e−1/α)k−1 −
δ2)n, (1 − (1 − e−1/α)k−1 + δ2)n]. We have |A2|

n ∈ J2 with probability 1 − o(1)
and β = t

n > αe−1/2α for any integer t ∈ J2.
Now we define E2 to be an event that a popular matching does not exist

in a random instance. By the same reasoning as in the proof of Theorem3, we
can prove that Pr

[
E2

∣
∣|A2| = t

]
= 1 − o(1) for every fixed t ∈ J2 and reach an

analogous conclusion that Pr[E2] = 1 − o(1). ��

5.3 Phase Transition

Since f(x) = xe−1/2x−(1−(1−e−1/x)k−1) is an increasing function in [1,∞) for
every k ≥ 1, f(x) = 0 can have at most one root in [1,∞). That root, if exists,
will serve as a phase transition point αk. In fact, for k ≥ 4, f(x) = 0 has a
unique solution in [1,∞); for k ≤ 3, f(x) = 0 has no solution in [1,∞) and
αe−1/2α > 1 − (1 − e−1/α)k−1 for every α ≥ 1, so a popular matching always
exists with high probability regardless of value of α without a phase transition.
Therefore, from Theorems 3 and 4 we can conclude our main theorem below.

Theorem 5. In a random instance with strict and k-incomplete preference lists
with k ≥ 4, if α > αk, where αk ≥ 1 is the root of equation xe−1/2x = 1 −
(1 − e−1/x)k−1, then a popular matching exists with probability 1 − o(1); and
if α < αk, then a popular matching exists with probability o(1). For k ≤ 3, a
popular matching always exists with probability 1 − o(1) in a random instance
with k-incomplete preference lists for every α ≥ 1.

5.4 Discussion

For each value of k ≥ 4, the phase transition point occurs at the root
αk ≥ 1 of equation xe−1/2x = 1 − (1 − e−1/x)k−1 as shown in Fig. 1. Note

Fig. 1. Solution in [1, ∞) of the equation xe−1/2x = 1 − (1 − e−1/x)k−1 for each k ≥ 4,
with the dashed line plotting x = α∗ ≈ 1.42

Random Popular Matchings with Incomplete Preference Lists 117

that as k increases, the right-hand side of the equation converges to 1, thus αk

converges to Mahdian’s value of α∗ ≈ 1.42 in the case with complete preference
lists.

References

1. Abdulkadiroğlu, A., Sönmez, T.: Random serial dictatorship and the core from
random endowments in house allocation problems. Econometrica 66(3), 689–701
(1998)

2. Abraham, D.J., Cechlárová, K., Manlove, D.F., Mehlhorn, K.: Pareto optimality
in house allocation problems. In: Fleischer, R., Trippen, G. (eds.) ISAAC 2004.
LNCS, vol. 3341, pp. 3–15. Springer, Heidelberg (2004). https://doi.org/10.1007/
978-3-540-30551-4 3

3. Abraham, D.J., Irving, R.W., Kavitha, T., Mehlhorn, K.: Popular matchings. In:
Proceedings of the 16th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), pp. 424–432 (2005)

4. Biró, P., Irving, R.W., Manlove, D.F.: Popular matchings in the marriage and
roommates problems. In: Calamoneri, T., Diaz, J. (eds.) CIAC 2010. LNCS, vol.
6078, pp. 97–108. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-
13073-1 10

5. Bollobás, B., Janson, S., Riordan, O.: The phase transition in inhomogeneous ran-
dom graphs. Random Struct. Algorithms 31(1), 3–122 (2007)

6. Gärdenfors, P.: Match making: assignments based on bilateral preferences. Behav.
Sci. 20, 166–173 (1975)

7. Huang, C.-C., Kavitha, T., Michail, D., Nasre, M.: Bounded unpopularity match-
ings. In: Gudmundsson, J. (ed.) SWAT 2008. LNCS, vol. 5124, pp. 127–137.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-69903-3 13

8. Hylland, A., Zeckhauser, R.: The efficient allocation of individuals to positions. J.
Polit. Econ. 87(22), 293–314 (1979)

9. Irving, R.W., Kavitha, T., Mehlhorn, K., Michail, D., Paluch, K.: Rank-maximal
matchings. ACM Trans. Algorithms 2(4), 602–610 (2006)

10. Itoh, T., Watanabe, O.: Weighted random popular matchings. Random Struct.
Algorithms 37(4), 477–494 (2010)

11. Kavitha, T., Mestre, J., Nasre, M.: Popular mixed matchings. In: Albers, S.,
Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W. (eds.) ICALP
2009. LNCS, vol. 5555, pp. 574–584. Springer, Heidelberg (2009). https://doi.org/
10.1007/978-3-642-02927-1 48

12. Mahdian, M.: Random popular matchings. In: Proceedings of the 7th ACM Con-
ference on Electronic Commerce (EC), pp. 238–242 (2006)

13. Manlove, D., Sng, C.T.S.: Popular matchings in the weighted capacitated house
allocation problem. J. Discrete Algorithms 8(2), 102–116 (2010)

14. McCutchen, R.M.: The least-unpopularity-factor and least-unpopularity-margin
criteria for matching problems with one-sided preferences. In: Laber, E.S.,
Bornstein, C., Nogueira, L.T., Faria, L. (eds.) LATIN 2008. LNCS, vol. 4957,
pp. 593–604. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-
78773-0 51

15. Mestre, J.: Weighted popular matchings. In: Bugliesi, M., Preneel, B., Sassone, V.,
Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4051, pp. 715–726. Springer, Heidelberg
(2006). https://doi.org/10.1007/11786986 62

https://doi.org/10.1007/978-3-540-30551-4_3
https://doi.org/10.1007/978-3-540-30551-4_3
https://doi.org/10.1007/978-3-642-13073-1_10
https://doi.org/10.1007/978-3-642-13073-1_10
https://doi.org/10.1007/978-3-540-69903-3_13
https://doi.org/10.1007/978-3-642-02927-1_48
https://doi.org/10.1007/978-3-642-02927-1_48
https://doi.org/10.1007/978-3-540-78773-0_51
https://doi.org/10.1007/978-3-540-78773-0_51
https://doi.org/10.1007/11786986_62

118 S. Ruangwises and T. Itoh

16. Roth, A.E., Postlewaite, A.: Weak versus strong domination in a market with
indivisible goods. J. Math. Econ. 4, 131–137 (1977)

17. Söderberg, B.: General formalism for inhomogeneous random graphs. Phys. Rev.
E 66(6), 066121 (2002)

18. Yuan, Y.: Residence exchange wanted: a stable residence exchange problem. Eur.
J. Oper. Res. 90, 536–546 (1996)

Scheduling Batch Processing in Flexible
Flowshop with Job Dependent Buffer

Requirements: Lagrangian Relaxation Approach

Hanyu Gu, Julia Memar(B), and Yakov Zinder

University of Technology Sydney, PO Box 123, Broadway, NSW 2007, Australia
{hanyu.gu,julia.memar,yakov.zinder}@uts.edu.au

Abstract. The paper presents a Lagrangian relaxation based algorithm
for scheduling jobs in the two-stage flowshop where the first stage is com-
prised of several parallel identical machines and the second stage consists
of a single machine processing jobs in the predefined batches. Motivated
by applications where unloading and loading occur when the means of
transportation are changed, the processing of the jobs, constituting a
batch, can commence only if this batch has been allocated a portion of
a limited buffer associated with the flowshop. This portion varies from
batch to batch and is released only after the completion of the batch pro-
cessing on the second stage machine. Each batch has a due date and the
objective is to minimise the total weighted tardiness. The effectiveness of
the proposed algorithm is demonstrated by computational experiments.

Keywords: Scheduling · Flexible flowshop · Weighted total tardiness
Limited buffer · Lagrangian relaxation

1 Introduction

This paper is motivated by various systems where the change of the means
of transportation requires the considerable storage space (referred below as a
buffer). For example, in the case of supply chains of mineral resources, the mate-
rial is transported by a fleet of trains or trucks and is stored as stockpiles on the
so called pads prior to loading for the second stage of transportation. At this
second stage the stockpiles are transported in groups. It is common to reserve
the entire space for all stockpiles of a group prior to the arrival of the first load
for these stockpiles and to release this space only after the completion of loading
all stockpiles of the group for further transportation [5].

Another source of motivation is various computerised systems where files
are to be loaded prior to their processing in the batch mode. Here, the com-
puter memory can be viewed as a buffer. Analogously to the mentioned above
transportation systems, in such computerised systems the portion of the buffer,
required for all files that are to be processed as one batch, should be reserved
prior to the loading the first file of the batch and is released only after the
completion of this batch [10,11].
c© Springer International Publishing AG, part of Springer Nature 2018
M. S. Rahman et al. (Eds.): WALCOM 2018, LNCS 10755, pp. 119–131, 2018.
https://doi.org/10.1007/978-3-319-75172-6_11

120 H. Gu et al.

This can be modelled as the two-stage flexible flowshop with a buffer of
limited capacity, where each job is processed first on one of the parallel identical
machines (first stage) and then by the single machine (second stage). The set of
all jobs is partitioned into batches. This partition is predefined and it is a part of
input. The partition is applicable to the second stage only, i.e. the second stage
machine processes jobs in these predefined batches. The second stage machine
can process at most one batch at a time.

The first stage operation of a job can be assigned to any of the first stage
parallel identical machines. Each of these machines can process at most one job
at a time. The first stage operations of all jobs, constituting a batch, must be
completed before the start of the batch processing on the second stage machine.

Each batch seizes a portion of the buffer from the start of processing the
jobs, constituting this batch, on the first stage machines till the completion of
the processing this batch on the second stage machine. The portion of the buffer,
seized by the batch, remains the same during this entire period and varies from
batch to batch.

Although it is well known that the scheduling models, where the buffer
requirements vary from job to job, better reflect numerous practical situations in
comparison with the models where the buffer just limits the number of jobs [15],
the literature on flowshop scheduling focuses almost entirely on the latter mod-
els [1,2,14]. Furthermore, most of these publications consider only buffers that
restrict number of jobs that completed one stage of processing and are waiting
for the next stage and ignore the important situation when a job occupies the
buffer for the whole period of its processing, including the time between comple-
tion of one operation and the start of the next one. To the authors knowledge,
only few publications address this gap in the literature on flowshop scheduling
[4,7–13]. This paper contributes to this efforts as follows:

– by studying a two-stage flexible flowshop with batch processing on the second
stage that, to the authors’ knowledge, has been never considered previously;

– by considering the problem of minimising the total weighted tardiness - the
objective that, to the authors’ knowledge, never has been studied for the
models with job dependent buffer requirements;

– by presenting a new Lagrangian based algorithm together with the results of
computational experiments that demonstrate its effectiveness.

The considered scheduling problem is strongly NP -hard because even its par-
ticular case with no buffer, no batches, and the objective of the total completion
time is strongly NP -hard [6].

It also can be viewed as a resource constrained scheduling problem [1], but
in contrast to the common resource constrained scheduling models, where the
additional resource is used only when a machine processes an operation, in this
paper the resource (buffer) is used from the start of processing the jobs, consti-
tuting a batch, on the first stage machines till the completion of the processing
this batch on the second stage machine.

Scheduling Batch Processing 121

The rest of the paper is organised as follows. Section 2 introduces notation
and an integer programming formulation. The Lagrangian relaxation approach
is described in Sect. 3. The proposed Lagrangian heuristic is discussed in Sect. 4.
The results of computational experiments are presented in Sect. 5. Conclusions
are outlined in Sect. 6.

2 Notation and Integer Programming Formulation

Let N = {1, ..., n} be the set of jobs that are to be processed; nb be the number
of batches; Nk be the set of jobs in batch k, 1 ≤ k ≤ nb; and M be the number of
parallel identical first stage machines. Denote by pi the processing time of job i on
a first stage machine; by ρk the processing time of batch k. All processing times
are integer. Each batch k has the associated due date dk and weight wk, and
requires b(k) units of buffer capacity which it seises from the start of processing
of the first job of the batch till the batch completion by the second stage machine.
At any time, the total buffer requirement cannot exceed the buffer capacity B.

Assume that processing of jobs commences at time t = 0. A schedule is
two sets, {S1

1 , ..., S1
n} and {S2

1 , ..., S2
nb

}, where S1
i is the time when a first stage

machine starts processing job i and S2
k is the time when the second stage machine

starts processing batch k. The goal is to find a schedule with the smallest value
of total weighted tardiness

∑nb

k=1 wkTk, where Ck = S2
k + ρk is the completion

time of batch k and Tk = max{0, Ck − dk} is the tardiness of batch k.

2.1 Integer Programming Formulation

Let integer T be the planning horizon, i.e. Ck ≤ T for all batches. For each job
i ∈ N and integer index t ∈ [0, T), define

xit =
{

1, if S1
i = t

0, otherwise. (1)

For each batch 1 ≤ k ≤ nb and integer index t ∈ [0, T), define

ykt =
{

1, if S2
k = t

0, otherwise. (2)

For each batch 1 ≤ k ≤ nb and integer index t ∈ [0, T), define

zkt =

⎧
⎪⎨

⎪⎩

1, if
∑

i∈Nk

t∑

τ=0

xit > 0

0, otherwise.

(3)

In other words, zkt = 1 if there exists i ∈ Nk such that S1
i ≤ t.

122 H. Gu et al.

Then, the considered scheduling problem can be formulated as the following
integer linear program:

min
nb∑

k=1

wkTk, (4)

subject to

T−1∑

t=0

xit = 1, for 1 ≤ i ≤ n (5)

n∑

i=1

t∑

τ=max{0,t−pi+1}
xiτ ≤ M, for 0 ≤ t < T (6)

∑

i∈Nk

t∑

τ=0

xiτ − zkt|Nk| ≤ 0, for 0 ≤ t < T, 0 ≤ k ≤ nb (7)

∑

i∈Nk

t∑

τ=0

xiτ − zkt ≥ 0, for 0 ≤ t < T, 0 ≤ k ≤ nb (8)

T−1∑

t=0

t(ykt − xit) ≥ pi, for i ∈ Nk, 0 ≤ k ≤ nb (9)

nb∑

k=1

b(k)

(

zkt −
t−ρk∑

τ=0

ykτ

)

≤ B, for 0 ≤ t < T (10)

nb∑

k=1

t∑

τ=max{0,t−ρk+1}
ykτ ≤ 1, for 0 ≤ t < T (11)

T−1∑

t=0

ykt = 1, for 1 ≤ k ≤ nb (12)

Tk ≥
T−1∑

t=0

tykt + ρk − dk, for 1 ≤ k ≤ nb (13)

Tk ≥ 0, xit, ykt, zkt ∈ {0, 1}, for i ∈ N, 0 ≤ t < T, 1 ≤ k ≤ nb (14)

The constraints (5) and (12) guarantee, that a job or a batch starts only once
on the first or on the second stage, correspondingly; (6) and (11) are capacity
constraints for the first and the second stage, correspondingly; (7) and (8) define
value of zkt, which is used for the buffer capacity constraint (10). The constraint
(9) prevent a batch to start processing on the second stage before all jobs of the
batch have been processed on the first stage. The constraint (13) together with
Tk ≥ 0 introduce tardiness Tk.

Scheduling Batch Processing 123

3 Lagrangian Relaxation

The Lagrangian Relaxation is obtained by dualizing (6), (10) and (11) for the
chosen nonnegative Lagrange multipliers vt, ut and qt, where 0 ≤ t < T :

min
nb∑

k=1

wkTk +
T−1∑

τ=0

vτ

⎛

⎝
n∑

i=1

τ∑

λ=max{0,τ−pi+1}
xiλ − M

⎞

⎠

+
T−1∑

τ=0

uτ

(
nb∑

k=1

b(k)

(

zkτ −
τ−ρk∑

λ=0

ykλ

)

− B

)

+
T−1∑

τ=0

qτ

⎛

⎝
nb∑

k=1

τ∑

λ=max{0,τ−ρk+1}
ykλ − 1

⎞

⎠ (15)

subject to (5), (7)–(9) and (12)–(14). Denote by v, u and q the sets of all vt, ut

and qt, correspondingly. The problem above can be decomposed into nb separate
subproblems as follows. For each 1 ≤ k ≤ nb let Zk(v, u, q) be the optimal value
of the objective function of the integer linear program:

min wkTk +
∑

i∈Nk

T−1∑

τ=0

vτ

τ∑

λ=max{0,τ−pi+1}
xiλ

+ b(k)
T−1∑

τ=0

uτ

(

zkτ −
τ−ρk∑

λ=0

ykλ

)

+
T−1∑

τ=0

qτ

τ∑

λ=max{0,τ−ρk+1}
ykλ (16)

subject to

T−1∑

t=0

xit = 1, for i ∈ Nk (17)

∑

i∈Nk

t∑

τ=0

xiτ − zkt|Nk| ≤ 0, for 0 ≤ t < T (18)

∑

i∈Nk

t∑

τ=0

xiτ − zkt ≥ 0, for 0 ≤ t < T (19)

T−1∑

t=0

t(ykt − xit) ≥ pi, for i ∈ Nk (20)

T−1∑

t=0

ykt = 1 (21)

Tk ≥
T−1∑

t=0

tykt + ρk − dk (22)

Tk ≥ 0, xit ∈ {0, 1}, ykt ∈ {0, 1}, zkt ∈ {0, 1}, for i ∈ Nk 0 ≤ t < T (23)

124 H. Gu et al.

Let LR(v, u, q) be the optimal value of the objective function (15). As values
Zk(v, u, q) are independent from each other, LR(v, u, q) is a sum of Zk(v, u, q)
and a linear combination of parameters:

LR(v, u, q) =
nb∑

k=1

Zk(v, u, q) −
T−1∑

t=0

(Mvt + But + qt) (24)

Therefore, the Lagrangian Relaxation can be solved for the chosen Lagrangian
multipliers by solving nb separate integer linear programs (16)–(23).

In order to update the sets of Lagrangian multipliers v, u and q to maximise
LR(v, u, q), i.e. to solve the Lagrangian dual problem, we use the standard sub-
gradient method [3], where at each iteration the solution of the current Lagrange
Relaxation problem and the smallest current value of the objective function pro-
vided by a feasible schedule are used to obtain the new set of the multipliers for
the next iteration.

3.1 Solution of the Lagrangian Relaxation Subproblems

Each of the nb Lagrangian Relaxation subproblems can be solved with the effi-
cient technique described below. Assume that a batch k starts processing at time
s and completes at time t+ρk. This implies, that the batch completes on the first
stage by time t. Then the objective function (16) can be presented as follows:

min wkTk +
∑

i∈Nk

t−1∑

τ=s

vτ

τ∑

λ=max{s,τ−pi+1}
xiλ

+ b(k)
t+ρk−1∑

τ=s

uτ +
t+ρk−1∑

τ=t

qτ

τ∑

λ=max{t,τ−ρk+1}
ykλ (25)

Denote by g(s, t) the following

g(s, t) = wkTk + b(k)
t+ρk−1∑

τ=s

uτ +
t+ρk−1∑

τ=t

qτ ,

and denote by f(s, t)

f(s, t) = min
∑

i∈Nk

t−1∑

τ=s

vτ

τ∑

λ=max{s,τ−pi+1}
xiλ (26)

Taking into account that
τ∑

λ=max{0,τ−ρk+1}
ykλ = 1 for all t ≤ τ ≤ t+ ρk − 1, (25)

can be presented as
f(s, t) + g(s, t) (27)

Scheduling Batch Processing 125

For job i ∈ Nk processed on the first stage within the interval [s, t] and assuming
that t − s ≥ pi, denote by fi(s, t) the following:

fi(s, t) = min
xiτ=1;τ=s,...,t−pi

t−1∑

λ=s

vλ

λ∑

α=max{0,λ−pi+1}
xiα

Observe that
λ∑

α=max{0,λ−pi+1}
xiα = 1 only for τ ≤ λ ≤ τ + pi − 1. Hence

fi(s, t) = min
τ=s,...,t−pi

τ+pi−1∑

λ=τ

vλ

Observe that fi(s, s + pi) =
∑s+pi−1

λ=s vλ and

fi(s, t + 1) = min{fi(s, t),
t∑

λ=t−pi+1

vλ}

Then f(s, t) can be presented as follows:

f(s, t) = min
i∈Nk

⎧
⎨

⎩

s+pi−1∑

λ=s

vλ +
∑

j �=i;j∈Nk

fj(s, t)

⎫
⎬

⎭

Then
Zk(v, u, q) = min

[s,t]
(f(s, t) + g(s, t)) ,

where 0 ≤ s < s + ρk ≤ t ≤ T − ρk.

3.2 Choice of the Planning Horizon

The planning horizon T has a significant impact on the efficiency of the solution
method for the Lagrangian Relaxation problem. A naive upper bound for T can
be estimated as T ≤ ∑

i∈N pi +
∑

1≤k≤nb
ρk. However, this upper bound of the

planning horizon can be tightened which is beneficial to the performance of the
Lagrangian Relaxation solution approach.

Let σ∗ be an optimal schedule for criterion of total weighted tardiness. We
assume that σ∗ is an active schedule.

Definition 1. A time interval is incomplete, if during the entire interval at
least one machine is idle on the first stage at any point of time, and there are
no batches processed on the second stage.

Definition 2. A time interval is full, if during the entire interval there are no
idle machines on the first stage at any point of time, and there are no batches
processed on the second stage.

126 H. Gu et al.

Definition 3. A time interval is loaded, if during the entire interval there is a
batch processed on the second stage at any point of time.

Lemma 1. For any incomplete time interval there is at least one machine on
the first stage which is idle during the entire time interval.

Proof. Consider the machine on the first stage which is idle at the start of the
interval. If any job starts on this machine during the interval, it would imply
that either the schedule is not active and the job could start earlier, or that there
was not enough space in the buffer before the start of the job, hence a batch had
to be released from the buffer immediately before the job started. This would
imply that the batch has been processed during the interval, which contradicts
to the interval being incomplete. �

Definition 4. Let the list of batches be constructed in increasing order of
batches’ completion times. An incomplete time interval is canonically partitioned,
if it is partitioned into subintervals such that for each subinterval there is a job
selected as follows. Among all jobs which are processed during the entire subin-
terval, select a job from the batch on the earliest position on the list of batches.
The selected job is a canonical cover of the subinterval.

Theorem 1. The set of canonical covers of all incomplete intervals contains at
most one job from each batch.

Proof. Assume that for the incomplete intervals [t1, t2] and [t3, t4], t2 ≤ t3, the
corresponding canonical covers are jobs i1 and i2, and both jobs are from the
same batch j and S1

i2
> t1. If the intervals are consecutive, i.e. t2 = t3, then by

virtue of Lemma 1, there is an idle machine on the first stage for the entire time
interval [t1, t2], hence i2 could start earlier, which contradicts to the schedule
being active.

Assume that the intervals are not consecutive, i.e. t2 < t3. Then there is at
least one machine from either stage is not idle on the interval [t2, t3], overwise
the schedule would not be active. Assume that a batch k starts on second stage
at time S2

k, and t2 ≤ S2
k < t3. There are two possibilities: either the second

stage machine is idle before batch k starts and there is a job h from the batch k
such that the completion time of the job Ch = S2

k and the starting time of job
h S1

h > t2; or there are batches scheduled on the second stage before k which
prevent k to start earlier. Observe, that since both intervals are incomplete, the
batches will have to start and complete during the interval [t2, t3].

In the former case, if S1
h ≤ t1, then h had to be selected as the canonical cover

for the interval [t1, t2], as batch k completes before batch j. If S1
h > t1, than by

virtue of Lemma 1 there is an idle machine at time t1 on the first stage, hence
h could have started earlier, which contradicts to the schedule being active. In
the latter case, select the batch which started before k with the earliest starting
time such that the second stage machine is idle before the batch starts on second
stage and repeat the reasoning for the former case.

Since both intervals are incomplete, there is no batch processed on the entire
interval [t1, t4]. Hence there is at least one machine is not idle on the first stage

Scheduling Batch Processing 127

during the interval [t2, t3]. If there is a full interval within [t2, t3], then some
batch must have completed on second stage to release buffer space immediately
before the full interval started, overwise by virtue of Lemma 1 some job scheduled
during the full interval could have started earlier on an idle machine. However
we have shown above that there is no batch processed [t1, t4]. Hence the only
option left to consider is that [t2, t3] is an incomplete interval. Similar to the
above, in this case by virtue of Lemma 1 there is an idle machine on the first
stage on both intervals [t1, t2] and [t2, t3], and hence i2 could have started earlier,
which contradicts to the schedule being active. �

Let I, F and L be the total length of incomplete, full an loaded time intervals,
correspondingly, in schedule σ∗. Then taking into account the Theorem1,

max
1≤k≤nb

Ck(σ
∗) = L + F + I

≤
∑

1≤k≤nb

ρk +

∑
i∈N pi − I

M
+ I =

∑

1≤k≤nb

ρk +

∑
i∈N pi

M
+ (1 − 1

M
)I

≤
∑

1≤k≤nb

ρk +

∑
i∈N pi

M
+ (1 − 1

M
)

∑

1≤k≤nb

max
i∈Nk

pi (28)

Hence the upper bound for planning horizon T can be set to the value of (28).

4 Lagrangian Heuristic

The optimal solution obtained by Lagrangian Relaxation for given Lagrangian
multipliers, provides the starting times of jobs on the first stage machines and
batches on both - the first and the second stages. The schedule, specified by these
starting times, is often not feasible, so the proposed Lagrangian Heuristic uses
the orders defined by these starting times, to construct a feasible schedule and
perhaps improve upper bound for the objective function. Denote by π1 and π2 the
permutations specified by the starting times of the batches on the first and the
second stage, correspondingly. For each batch k denote by πk the permutation of
jobs in the batch specified by job’s starting times. In [7] we considered two-stage
flowshop with independent buffers and proposed a few Lagrangian Heuristics,
which are based on “no-wait” and “wait” approach. The “no-wait” Lagrangian
Heuristic can violate the permutations, whereas the “wait” heuristic strictly
follows these permutations. The “wait” heuristic which followed π1 on both
stages, provided the best values of objective function for most of test instances.
The algorithm below is based on this heuristic.

In the proposed algorithm we assume that on both stages the schedule is
defined by the same order π determined by the order of batches on the first
stage, and the algorithm processes batches strictly in this order on each stage.
It is easy to see that for any permutation π such a schedule exists. Similar to [7],
consider batch j on position π−1(j) in π. If total buffer requirement of batches
in positions before and including π−1(j) does not exceed the buffer capacity,

128 H. Gu et al.

then all these batches can be processed on the first stage in order of π without
violating the buffer capacity. If for batch j

∑

1≤u≤π−1(j)

b(π(u)) > B, (29)

then we will determine the smallest position kj in π such that
∑

1≤u≤π−1(j)

b(π(u)) −
∑

1≤u≤kj

b(π(u)) ≤ B. (30)

It is easy to see that kj < π−1(j), and hence in order to have enough buffer space
for j to start on the first stage, it is sufficient to wait till all the batches i which
were placed on the first stage before and including position kj : π−1(i) ≤ kj , are
processed on the second stage. We refer to each batch j, for which (29) holds,
as to ordinary batch.

4.1 Wait Algorithm

Denote by t1 and t2 the current minimal starting time available for unscheduled
batches on the first and the second stage, correspondingly. Denote by pos1 and
pos2 the current position in π on first and the second stages, correspondingly.
Let τm be the current minimal starting time available for unscheduled jobs on
machine m of the first stage, 1 ≤ m ≤ M . Set all τm, t1 and t2 to zero and set
pos1 = pos2 = 1.

First stage:

– if all batches are scheduled on the first stage, go to Second stage step;
– if batch j on the current position pos1 is not ordinary batch or the batch

q = π−1(kj) is scheduled and S2
q +ρ2 ≤ t1, then set the starting times to jobs

i ∈ Nj , assigning job i in the order specified by πj to the machine m with
smallest τm: S1

i = τm; change τm = τm + pi. Once all jobs from batch j have
been scheduled, set t1 = min1≤m≤M τm and the completion time of batch j
on the first stage C1

j = maxi∈Nj
(S1

i + pi); increase the current position pos1
by one, and go to Second stage step;

– if for the ordinary batch j on the current position pos1 the batch q = π−1(kj)
is scheduled but S2

q + ρ2 > t1, then set t1 = S2
q + ρ2, and for all 1 ≤ m ≤ M ,

set τm = max{τm, t1}; go to the previous step to schedule batch j on the first
stage;

– if for the ordinary batch j on the current position pos1 the batch q = π−1(kj)
has not been scheduled, go to Second stage step.

Second stage:

– if all batches are scheduled on the second stage, stop;
– if for the batch j on the current position pos2 its completion time on the first

stage C1
j ≤ t2, then assign S2

j = t2, set t2 = S2
j + ρj , increase the current

position pos2 by one, and go to First stage step;
– if for the batch j on the current position pos2 C1

j > t2, then set t2 = C1
j and

go to the previous step to schedule batch j on the second stage.

Scheduling Batch Processing 129

5 Computational Experiments

The computational experiments aimed to compare the Lagrangian Heuristic and
an integer program run on CPLEX software. The computational experiments
were conducted by the second author on a personal computer with Intel Core
i5 processor CPU@1.70 GHz, using Ubuntu 14.04 LTS, with base memory 4096
MB. The algorithms were implemented using C programming language. The
test instances were generated randomly, with processing times chosen from the
interval [1, 10], weights chosen from the interval (0, 2] and buffer requirements
chosen from the interval [100, 1000]. A due date for each batch k was chosen
from the interval [ρk + 10, 2(ρk + 10)]. Each test set consisted of ten instances
which were defined by the number of jobs (25, 50 or 100), the number of batches
(3, 5 or 10) and the number of machines on the first stage (2, 5 or 10). For each
set the experiments were conducted for buffer sizes B1 = bmax, B2 = 2bmax

and B3 = 3bmax, where bmax is the maximum buffer requirement among all
batches of an instance. Such randomly generated instances allowed to analyse
the impact of variation of the parameters. The upper bound (28) was used for
the planning horizon for both Lagrangian Heuristic and integer program run
on CPLEX. The subgradient algorithm in the Lagrangian Heuristic was run
for 1000 iterations, and the time limit for both - the heuristic and the integer
program was 30 min for instances with 50 or 100 jobs, and 15 min for instances
with 25 jobs. The Table 1 provides the summary of computational experiments.
Each test set is represented in the first column in the format nb −N −M , where
for each instance of the set nb is number of batches, N is number of jobs and
M is number of machines on the first stage. Columns 2–4 contain the number
of instances from each set, where the best solution LH found by the Lagrangian
Heuristic is not worse than the best solution IP found by the integer program;
columns 5–7 contain the number of instances from each set, where the run time
of Lagrangian Heuristic tLH is less than 50% of run time tIP of the integer
program executed on CPLEX; columns 8–10 contain the number of instances
from each set, where the integer program found a feasible solution within the
given time; columns 11–13 contain the number of instances from each set, where
the integer program found an optimal solution.

The computational experiments have shown promising results and provided
insights into how various combinations of buffer size, number of jobs and batches
and number of machines on the first stage affect computational complexity. For
large instances with 100 jobs the Lagrangian Heuristic provided a feasible solu-
tion within 2–15 min for most instances, with a few instances within 22–30 min;
while direct integer program failed to obtain a feasible solution for many large
instances within 30 min. However, for some large instance the best solution pro-
vided by Lagrangian Heuristic was achieved on the first iteration and it was not
improved during the run of the algorithm. For medium instances with 50 jobs
the Lagrangian Heuristic found better solutions for 30%–100% of instances for
various sets depending on the number of machines on the first stage and buffer
size. For small instances of 25 jobs the Lagrangian Heuristic provided not worse
solutions than the integer program for some instances with smaller buffer B1 in

130 H. Gu et al.

Table 1. Summary

Set LH ≤ IP tLH ≤ 0.5tIP IP found feas IP found opt

B1 B2 B3 B1 B2 B3 B1 B2 B3 B1 B2 B3

10-100-2 10 10 10 3 3 3 0 0 0 0 0 0

10-100-10 10 9 0 10 10 10 0 2 10 0 1 3

5-100-2 10 10 9 10 5 5 0 3 5 0 0 0

5-100-5 10 9 7 10 10 10 1 6 10 0 0 0

5-100-10 10 4 1 10 10 10 4 10 10 0 2 2

3-100-2 10 6 4 6 6 6 0 8 10 0 0 0

3-50-2 10 10 8 10 10 10 9 10 10 0 2 4

3-50-5 7 6 3 10 9 7 10 10 10 5 9 10

3-50-10 8 3 3 8 3 1 10 10 10 10 10 10

3-25-2 5 7 5 10 6 4 10 10 10 5 10 10

3-25-5 7 3 2 6 1 0 10 10 10 10 10 10

shorter time of 10–40 s, while it took up to 15 min for the integer program to
find a feasible solution. However for larger buffer sizes B2 and B3 the integer
program solved all small instances to optimality and outperformed the in terms
of time and quality of solutions for most of the instances. It would be interesting
to compare the solution obtained by the Lagrangian Heuristic with the optimum
one for all instances. However it took 7 h for CPLEX to improve by 2.8% a fea-
sible (still not optimal) solution for the instance with 100 jobs partitioned into
10 batches, 10 parallel machines on the first stage and the buffer capacity B3.
For the similar instance with 2 parallel machines and a smaller buffer B1, in 7 h
CPLEX could not even find a feasible solution.

6 Conclusion

This paper is concerned with the two-stage flexible flowshop with batch pro-
cessing and a limited buffer. The buffer requirements vary from batch to batch.
The objective function is the total weighted tardiness. This problem is new
and is applicable to a range of areas from supply chains to multimedia com-
puterised systems. For this NP -hard problem, the paper presents an integer
program and a new Lagrangian relaxation based algorithm that decomposes the
problem with efficient algorithm for each part of this decomposition. The com-
putational experiments demonstrated superiority of the presented approach to
the straightforward application of CPLEX optimisation software.

Scheduling Batch Processing 131

References

1. Brucker, P., Knust, S.: Complex Scheduling. GOR-Publications. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-23929-8

2. Emmons, H., Vairaktarakis, G.: Flow Shop Scheduling: Theoretical Results, Algo-
rithms, and Applications. Springer, New York (2013). https://doi.org/10.1007/
978-1-4614-5152-5

3. Fisher, M.L.: The Lagrangian relaxation method for solving integer programming
problems. Manage. Sci. 50(12), 1861–1871 (2004)

4. Fung, J., Zinder, Y.: Permutation schedules for a two-machine flow shop with
storage. Oper. Res. Lett. 44(2), 153–157 (2015)

5. Fung, J., Singh, G., Zinder, Y.: Capacity planning in supply chains of mineral
resources. Inf. Sci. 316, 397–418 (2015)

6. Garey, M., Johnson, D., Sethi, R.: The complexity of flowshop and jobshop schedul-
ing. Math. Oper. Res. 1(2), 117–129 (1976)

7. Gu, H., Memar, J., Zinder, Y.: Efficient Lagrangian heuristics for the two-stage
flow shop with job dependent buffer requirements. In: IWOCA 2017 Proceedings.
LNCS (2017, accepted)

8. Kononov, A., Hong, J.-S., Kononova, P., Lin, F.-C.: Quantity-based buffer-
constrained two-machine flowshop problem: active and passive prefetch models
for multimedia applications. J. Sched. 15(4), 487–497 (2012)

9. Kononova, P.A., Kochetov, Y.A.: The variable neibourhood search for two machine
flowshop problem with passive prefetch. J. Appl. Ind. Math. 19(5), 63–82 (2013)

10. Lin, F.-C., Hong, J.-S., Lin, B.M.T.: A two-machine flowshop problem with process-
ing time-dependent buffer constraints - an application in multimedia presentations.
Comput. Oper. Res. 36(4), 1158–1175 (2009)

11. Lin, F.-C., Hong, J.-S., Lin, B.M.T.: Sequence optimization for media objects with
due date constraints in multimedia presentations from digital libraries. Inf. Syst.
38(1), 82–96 (2013)

12. Lin, F.-C., Lai, C.-Y., Hong, J.-S.: Minimize presentation lag by sequencing media
objects for auto-assembled presentations from digital libraries. Data Knowl. Eng.
66(3), 382–401 (2008)

13. Lin, F.-C., Lai, C.-Y., Hong, J.-S.: Heuristic algorithms for ordering media objects
to reduce presentation lags in auto-assembled multimedia presentations from dig-
ital libraries. Electron. Libr. 27(1), 134–148 (2009)

14. Pinedo, M.L.: Scheduling: Theory, Algorithms, and Systems. Springer, New York
(2012). https://doi.org/10.1007/978-1-4614-2361-4

15. Witt, A., Voß, S.: Simple heuristics for scheduling with limited intermediate stor-
age. Comput. Oper. Res. 34(8), 2293–2309 (2007)

https://doi.org/10.1007/978-3-642-23929-8
https://doi.org/10.1007/978-1-4614-5152-5
https://doi.org/10.1007/978-1-4614-5152-5
https://doi.org/10.1007/978-1-4614-2361-4

Computing Periods. . .

Junhee Cho(B), Sewon Park, and Martin Ziegler

KAIST School of Computing, Daejeon, Republic of Korea
{junheecho,sewon,ziegler}@kaist.ac.kr

Abstract. A period is the difference between the volumes of two semi-
algebraic sets. Recent research has located their worst-case complexity
in low levels of the Grzegorczyk Hierarchy. The present work introduces,
analyzes, and evaluates three rigorous algorithms for rigorously comput-
ing periods: a deterministic, a randomized, and a ‘transcendental’ one.

Keywords: Exact Real Computation ⋅ Reliable numerics
Computational algebraic geometry ⋅ Randomized algorithms

1 Introduction

A period is the absolutely convergent integral of a multivariate rational function
with integer coefficients over Euclidean domains given by polynomial inequalities
with integer coefficients [KZ01]:

∫
Δ

p(x1, . . . , xd)
q(x1, . . . , xd) dx1 ⋯ dxd , (1)

where Δ ⊆ R
d is a Boolean combination of strict and non-strict polynomial

inequalities pj(�x) > 0 and qi(�x) ≥ 0 over, like p and q, integer coefficients:
p, q, p1, . . . , pJ , q1, . . . , qI ∈ Z[X1,⋯,Xd]. Periods are receiving increasing inter-
est in Algebraic Model Theory as they have finite descriptions (the polynomials’
coefficients) and include all algebraic reals as well as some transcendentals:

√
2 = ∫

t∶2t2≤1

t dt, ln(x) =
x

∫
1

1/t dt = ∫
t≤x,s⋅t≤1

1dsdt, π = ∫
x2
+y2
≤1

1dxdy (2)

Every period can be expressed as difference of two semi-algebraic volumes:
For co-prime p, q ∈ Z[X1, . . . ,Xd], Eq. (1) translates to

∫
Δp,q,+

1d�x dy − ∫
Δp,q,−

1d�x dy = vol(Δp,q,+) − vol(Δp,q,−) , (3)

Based on ideas presented at CCA 2017, this work was supported by the National
Research Foundation of Korea (grant NRF-2017R1E1A1A03071032) and the Inter-
national Research & Development Program of the Korean Ministry of Science and
ICT (grant NRF-2016K1A3A7A03950702). We thank the anonymous referees for
feedback!

c© Springer International Publishing AG, part of Springer Nature 2018
M. S. Rahman et al. (Eds.): WALCOM 2018, LNCS 10755, pp. 132–143, 2018.
https://doi.org/10.1007/978-3-319-75172-6_12

Computing Periods. . . 133

where Δp,q,+ ∶= {(�x, y) ∶ 0 ≤ y ⋅ q(�x) ≤ p(�x) ∧ q(�x) > 0} ∪ {(�x, y) ∶ 0 ≥ y ⋅ q(�x) ≥
p(�x)∧q(�x) < 0} and Δp,q,− ∶= {(�x, y) ∶ 0 ≥ y ⋅q(�x) ≥ p(�x)∧q(�x) > 0} ∪ {(�x, y) ∶
0 ≤ y ⋅q(�x) ≤ p(�x)∧q(�x) < 0}. Note that Δp,q,+,Δp,q,− ⊆ R

d+1 may be unbounded
even when Δ was bounded. However by means of Singularity Resolution one can
w.l.o.g. restrict to compact domains [VS17, Theorem 1.1]. This shows that sum
and (Cartesian) product of periods are again periods.

Many interesting open questions evolve around periods; for instance [KZ01,
Problem 1] of whether there exists an algorithm that, given two representa-
tions of periods, decides whether they are equal or not? Or [KZ01, Problem 3]
asking for an ‘explicit’ example of a real number that is not a period. Inner-
mathematical candidates are 1/π and e = ∑n 1/n!, but proving so seems infeasi-
ble with the current methods. The family of (semi-algebraic domains and thus
also of) periods being countable, non-periods must be abundant.

In fact every period is computable in the sense of Recursive Analysis
[Tur37,Wei00]; therefore any uncomputable real, such as the Halting Problem
encoded in binary or random reals [BDC01] like Chaitin’s Ω, cannot be periods.
More precisely each period is of lower elementary complexity in Grzegorczyk’s
Hierarchy [Yos08,TZ10,SWG12]. Note that such improved upper complexity
bounds give rise to more candidates of non-periods.

Problem 1. Characterize the computational complexity of periods!

Moreover efficient algorithms for computing (i.e. producing guaranteed high-
precision approximations to) periods enable Experimental Mathematics [KZ01,
Problem 2]; cmp. [Bai17].

We present three such algorithms: a deterministic one, a randomized (Las
Vegas) one, and a transcendental one (to be clarified below). We prove them
correct; describe their implementation in the convenient Exact Real Computation
paradigm; estimate their cost in the (possibly unrealistic) unit cost model; and
empirically analyze and compare their behaviour in terms of the output precision
and the degree of the polynomial involved.

Subsection 1.1 recalls central notions, properties, and practice of real compu-
tation; Subsect. 1.2 puts things in perspective to related work. Our algorithms are
presented, and proven correct, in Sect. 2. In Sect. 3 we introduce our implementa-
tion, performance measurements, and their evaluation/interpretation. Section 4
expands on future work.

1.1 Real Computation

Regular floating-point arithmetic incurs rounding errors that accumulate over
time and hamper reliable computations. Interval calculations keep track of
the error bounds—which may blow up beyond use and due to overlap render
comparisons meaningless. The present work peruses the iRRAM C++ library
[Mül01,MZ14], providing real numbers as abstract data type with exact opera-
tions and partial comparison: A test “y > 0” freezes in case y = 0.

134 J. Cho et al.

Indeed it is well-known from Recursive Analysis that equality of real (and not
just algebraic) numbers is equivalent to the complement of the Halting Prob-
lem [Wei00, Exercise 4.2.9]. Here, computing y ∈ R means to produce dyadic
approximations an/2n, an ∈ Z, to y up to absolute error 1/2n; similarly for real
arguments x.

To write total programs in spite of comparison being partial, a parallel
disjunction is provided: calling the non-deterministic or multivalued ‘function’
choose(x1 > 0, . . . , xk > 0) returns some integer j such that xj > 0 holds, pro-
vided such j exists.

Subject to this modified semantics of tests, Exact Real Computation allows to
conveniently process real arguments and intermediate results as entities, näıvely
without precision considerations. On the other hand the output/return value of
a function in iRRAM merely needs to be provided in approximation up to absolute
error 2p for any parameter p ∈ Z passed. The following algorithm demonstrates
this paradigm with the trisection method for finding the (promised unique and
simple) root of a given continuous function f ∶ [0; 1] → [−1; 1] while avoiding
the sign test “0 < f(a) ⋅ f(b′)” to fail in case b′ already happens to be a root:

Algorithm . REAL Trisection(INTEGER p, REAL → REAL f)
1: REAL ∋ a ∶= 0; REAL ∋ b ∶= 1

2: while choose (b − a > 2p−1 , 2p
> b − a) == 1 do

3: REAL a′ ∶= 2
3
a + 1

3
b; REAL b′ ∶= 1

3
a + 2

3
b;

4: if choose (0 > f(a) ⋅ f(b′) , 0 > f(a′) ⋅ f(b)) == 1

5: then b ∶= b′ else a ∶= a′ end if

6: end while; return a

Remark 2. A caveat, in Exact Real Computation the bit—as opposed to unit—
cost of each operation may well depend on the value (and internal precision) of
the data being processed. For instance a sign test “x > 0” will take time between
linear and quadratic in n ≈ log2(1/∣x∣): to obtain the dyadic approximation an/2n

of x up to error 2−n and verify it to be strictly larger than 2−n. Similarly, a parallel
test choose(x1 > 0, . . . , xk > 0) will take time roughly k ⋅ minj<k log(1/∣xj ∣).

1.2 Periods and Their Computational Complexity

It has been shown that periods are of lower elementary complexity [TZ10,
SWG12]. The present subsection recalls this and related notions with their con-
nections to resource-bounded complexity.

In Grzegorczyk’s Hierarchy, Lower Elementary means the smallest class of
total multivariate functions f ∶ Nd → N = {0,1,2,⋯} containing the constants,
projections, successor, modified difference x � y = max{x − y,0}, and is closed
under composition and bounded summation f(�x, y) = ∑y

z=0 g(�x, z).
We write M2 = E2 for the smallest class of such f containing the con-

stants, projections, successor, modified difference, binary multiplication, and

Computing Periods. . . 135

closed under both composition and bounded search μ(f)(�x, y) = min{z ≤ y ∶
f(z̄, z) = 0}.

A real number r is lower elementary if there exist lower elementary integer
functions f, g, h ∶ N → N with ∣r − f(N)−g(N)

h(N)
∣ < 1/N for all N > 0; similarly for a

real number in M2.
A real number r is computable in time t(n) and space s(n) if a Turing

machine can, given n ∈ N and within these resource bounds, produce some an ∈ Z
with ∣r − an/2n∣ ≤ 2−n [Ko91].

Fact 3

(a) All functions from M2 are lower elementary; and the latter functions grow
at most polynomially in the value of the arguments. In terms of the binary
input length and with respect to bit-cost, lower elementary functions are
computable using a linear amount of memory for intermediate calculations
and output, that is, they belong to the complexity class FSPACE(n).

(b) FSPACE(n) is closed under bounded summation and therefore coincides with
the class of lower elementary functions. The 0/1-valued functions (that is,
decision problems) in M2 exhaust the class SPACE(n) [Rit63, Sect. 4]; cmp.
[Kut87].

(c) π and e = ∑n 1/n! and Liouville’s transcendental number L = ∑n 10−n! and
the Euler-Mascheroni Constant γ = limn (− ln(n) + ∑n

k=1 1/k) are all lower
elementary [Sko08, Sect. 3].

(d) The set of lower elementary real numbers constitutes a real closed field:
Binary sum and product and reciprocal of lower elementary real numbers,
as well as any real root of a non-zero polynomial with lower elementary
coefficients, are again lower elementary [SWG12, Theorem 2].

(e) Arctan, natural logarithm and exponential as well as Γ and ζ function map
lower elementary reals to lower elementary reals [TZ10, Sect. 9].

(f) Natural logarithm maps periods to periods; ζ(s) is a period for every integer
s ≥ 2 [KZ01, Sect. 1.1].

(g) Periods are lower elementary [TZ10, Corollary 6.4].
(h) Given a Boolean expression ϕ(x1,⋯, xm) as well as the degrees and coeffi-

cients of the polynomials pj defining its constituents Spj
, deciding whether

the semi-algebraic set ϕ(Sp1 ,⋯, Spm
) is non-empty/of given dimension

[Koi99] is complete for the complexity class NP0
R
⊇ NP.

Item (a) follows by structural induction. Together with (b) it relates resource-
oriented to Grzegorczyk’s structural Complexity Theory. Note that the hardness
Result (h) does not seem to entail a lower bound on the problem of approximat-
ing a fixed volume; in fact many of the usual reductions among real algebraic
decision problems [Mee06] fail under volume considerations. Common efficient
and practical algorithms tailored for approximating L, e, γ, or the period π do
so up to absolute error 1/N ∶= 2−n within time polynomial in the binary pre-
cision parameter n = log2 N [Kan03]; whereas the best runtime bound known
for SPACE(n) is only exponential [Pap94, Problem 7.4.7]. On the other hand
exponential-time algorithms may well be practical [FG06,KF10].

136 J. Cho et al.

2 Our Algorithms and Their Analyses

In view of Eq. (3) and Subsects. 1.1 and 1.2, this section devises and analyzes
algorithms that approximate, up to guaranteed absolute error 2−n, the volume
of the set of solutions �x to a (given) disjunction of m conjunctions of monic
polynomial inequalities, each of maximum degree ≤ k in d variables with integer
coefficients between −2� and +2�.

By appropriate integer scaling and shifting, it suffices to restrict to the unit
cube [0; 1)d and to strict inequalities; see Fact 5(a) below. The common basic
idea underlying all of our algorithms is to divide [0; 1]d into sub-cubes

Q�c,N ∶= [�c
N

; �c+�1
N

) = ∏d

i=1
[ci

N
; ci+1

N
), �c ∈ [N]d , (4)

where [N] ∶= {0, . . . ,N − 1} and �1 ∶= (1, . . . ,1); then determine the signs of the
polynomials pj in some point �x�c,N ∈ Q�c,N ; and count those, where the constraints
pj(�x�c,N) > 0 are met, with uniform weight vol(Q�c,N) = N−d.

However (I) a polynomial’s sign may vary within a Q�c,N , the above approach
can incur an error. Moreover (II) �x�c,N may happen to be (close to) a root of pj ;
in which case determining the sign of pj(�x�c,N) may take long in terms of bit-
cost, or fail entirely. The sequel describes our approaches to still achieve totally
correct algorithms: Subsect. 2.1 takes care of (I), while Subsects. 2.3, 2.2, and 2.4
describe three different approaches to avoid (II).

2.1 Recap on Real Algebraic Geometry

Regarding (I) in the case d = 1 a sign change can affect, namely occur in, at most
m ⋅ k of the sub-intervals Qc,N : because each of the m univariate polynomials
of degree ≤ k can have at most k roots. So taking N ≥ m ⋅ k ⋅ 2n guarantees the
required error bound 2−n. A multivariate polynomial on the other hand may
have infinitely many roots—which however can form only a bounded number
of connected components. This allows us to generalize the 1D analysis of (I) as
follows:

Lemma 4

(a) In case d = 2 and for any fixed non-zero polynomial p ∈ R[X,Y] of maximum
degree k, at most 1+(k−1) ⋅ (k−2)/2+2(N +1) ⋅k of the N ×N sub-squares
Q�c,N can contain roots of p.

(b) In case d = 2 and for an arbitrary finite family of non-zero polynomials pj

of maximum degree k, at most 1 + (2k − 1) ⋅ (2k − 2)/2 + 4(N + 1) ⋅ k of the
N × N sub-squares Q�c,N can contain simultaneous roots of all the pj.

(c) For d ≥ 3 and any fixed non-zero polynomial p ∈ R[X1, . . . ,Xd] of maximum
degree k, at most kd + kd−1 ⋅ d ⋅ (N + 1) of the Nd sub-(hyper)cubes Q�c,N can
contain roots of p.

(d) For d ≥ 3 and an arbitrary finite family of non-zero polynomials of maximum
degree k, at most k ⋅ (2k − 1)d + k ⋅ (2k − 1)d−2 ⋅ d ⋅ (N + 1) of the Nd sub-
(hyper)cubes Q�c,N can contain simultaneous roots of all of them.

Computing Periods. . . 137

(e) It holds kd +kd−1 ⋅d ⋅ (N +1) ≤ Nd ⋅2−n for all N ≥ 3k ⋅2n/(d−1) and k ≥ d ≥ 3.

Note that the number m of polynomials in a conjunction ⋂m
j=1 pj(�x) = 0 barely

affects the above bounds, since in the real setting it is equivalent to the single
equation of double degree ∑m

j=1 p2j(�x) = 0.
In order to guarantee absolute error bound 2−n, all our algorithms described

in the following subsections will in case d = 2, rather than apply the concise but
asymptotic Lemma 4(e), build on Lemma 4(a) and use binary search to find the
least N ∈ N satisfying N2 ≥ 2n ⋅ (1 + (k − 1) ⋅ (k − 2)/2 + 2(N + 1) ⋅ k).
Proof

(a) By Fact 5(c) below, the roots of p can form at most c ≤ 1 + (k − 1)⋅
(k − 2)/2 connected components in R

2. Of course such a component may
extend through more than one of the sub-squares Q�c,N ; however in order to
do so, it must cross one of the N + 1 horizontal lines or one of the N + 1
vertical lines forming the sub-division of [0; 1]2. More precisely for compo-
nent C to extend to MC ∈ N of the N2 sub-squares, it must intersect at
least MC −1 of the 2(N +1)2 segments of the 2(N +1) aforementioned lines;
and for all c components to extend to a total of M of the N2 sub-squares,
they have to intersect these lines in at least M − c points—distinct points,
since connected components do not meet. However p restricted to any of the
2(N + 1) lines boils down to a univariate polynomial (either in X or in Y)
of degree at most k, and hence can have at most k roots on each such line:
requiring M − c ≤ 2k ⋅ (N + 1).

(b) Joint roots of the real pj of maximum degree k are precisely the roots of the
single polynomial ∑j p2j of maximum degree 2k.

(c) Similarly to the proof of (a), the roots of p can form at most cd ≤ kd connected
components according to Fact 5(d). For any such component C to extend
to MC ∈ N of the Nd sub-(hyper)cubes, it must intersect at least MC − 1 of
the d ⋅ (N + 1)d facets of the overall subdivision induced by the d ⋅ (N + 1)
hyperplanes; and for all cd components to extend to a total of M of the Nd

sub-cubes, they have to intersect these hyperplanes in at least M−cd different
components! However p restricted to any of the d ⋅ (N +1) hyperplanes boils
down to a (d − 1)-variate polynomial of maximum degree at most k, whose
roots can form at most cd−1 ≤ kd−1 connected components according to
Fact 5(d): M − cd ≤ cd−1 ⋅ d ⋅ (N + 1).

(d) Similarly.
(e) Apply inequality ∣x∣d+∣y∣d ≤ (∣x∣+∣y∣)d to xd ∶= 2n ⋅(kd+d⋅kd−1) ≤ 2kd ⋅2n⋅d/(d−1)

and yd ∶= N ⋅ d ⋅ kd−1 ⋅ 2n, taking into account d
√

2 + d−1
√

d ≤ 3 for all d ≥ 3. ⊓⊔
Fact 5

(a) The set {�x ∶ p(�x) = 0} of roots of a non-zero polynomial p has measure zero.
(b) Let S1, . . . , Sd ⊆ R be arbitrary subsets of cardinality ∣Si∣ > k and p ∈

R[X1, . . .Xd] non-zero of maximal degree ≤ k. Then there exists some
�x ∈ ∏d

i=1 Si with p(�x) ≠ 0.

138 J. Cho et al.

(c) Let p ∈ R[X,Y] denote a bivariate polynomial of maximum degree k. Then
the number of connected components of {(x, y) ∶ x, y ∈ R, p(x, y) = 0} is at
most 1 + (k − 1) ⋅ (k − 2)/2.

(d) If Δ ⊆ R
d is the zero set of one polynomial of maximum degree k, then it has

at most kd connected components; if it is the conjunction of (any number
of) such sets, then it has at most k ⋅ (2k − 1)d connected components.

(e) For p1, . . . , pd pairwise distinct primes, �x ∶= (e
√

2, e
√

3, . . . , e
√

pd) is alge-
braically independent: q(�x) ≠ 0 for every non-zero d-variate polynomial q

with integer coefficients; and more generally q(A ⋅ �x +�b) ≠ 0 for any vector
�b ∈ Ad with algebraic coefficients and invertible d × d-matrix A ∈ GLd(A).

Claim (b) strengthens (a) and proceeds by induction on d: For any fixed
(x1, . . . xd−1) ∈ ∏d−1

i=1 Si, p(x1, . . . xd−1, Xd) is a univariate polynomial of degree
≤ k. Claim (c) is Harnack’s Curve Theorem [PP16, Theorem 48.1], (d) its gener-
alization due to Milnor and Thom [HRR90, Theorem 9]; (e) is the Lindemann-
Weierstrass Theorem, applied to linear independence of prime square roots over
rationals.

2.2 A Real Randomized Algorithm

In order to avoid (II) accidentally hitting a root �x of some constraint polynomial
p when trying to determine its sign in the sub-cube Q�c,N ∋ �x, randomization
provides an arguably easiest solution: By Fact 5 the probability for this to occur
is zero. So picking a random �x ∈ Q�c,N gives rise to a Las Vegas-type algo-
rithm: always correct, but with running time proportional to log (1/p(�x)); recall
Remark 2.

Randomization has become ubiquitous in Theoretical Computer Science—
regarding discrete problems [MU05]: In the real setting it has only (yet thor-
oughly) been considered with respect to computability; cmp. [BGH15].

Here we have designed the first truly real random number generator in Exact
Real Computation. Each call produces some r ∈ [0; 1] independently with respect
to the uniform distribution: Repeating d times, shifting by �c and scaling with 1/N
then yields the sought �x ∈ Q�c,N . Internally our real generator in turn builds on a
generic source of independent fair coin flips; equivalently: independent uniformly
distributed integers in the range from 0 to 2n − 1, for any given n ∈ N. (The
uniform distribution on [0; 1] is then easily converted to other popular continuous
ones such as, say, Gaussian on R.)

2.3 A Deterministic Algorithm

With the dimension d fixed, we can avoid the problem of derandomizing Polyno-
mial Identity Testing and still get an efficient deterministic algorithm in Exact
Real Computation for finding the sign of any given non-zero p ∈ R[X1, . . . ,Xd]
of maximal degree ≤ k in some non-root �x ∈ Q�c,N : Based on Fact 5(b), evaluate
p’s sign on the (k + 1)d points of a (k + 1) ×⋯ × (k + 1) grid in Q�c,N in parallel,
recall Remark 2.

Computing Periods. . . 139

2.4 A Transcendental Algorithm

By Fact 5(e), algebraically independent arguments �x = (x1, . . . , xd) avoid prob-
lem (II) and can be computed efficiently: deterministically. (Any tuple of inde-
pendent random reals of course is algebraically independent with certainty.) This
algorithm thus takes such a �x and scales and shifts it by dyadic rationals to lie
in Q�c,N .

3 Implementation and Evaluation

Evaluating a given d-variate polynomial of maximal degree ≤ k takes O(kd)
arithmetic operations. Combined with Lemma 4(e), we conclude that the number
of operations performed by the randomized and by the transcendental algorithm
(Subsects. 2.2 and 2.4) to achieve guaranteed output absolute error 2−n is O(kd+1⋅
2n/(d−1)); the deterministic algorithm (Subsect. 2.3) incurs an additional factor
O(kd).

However this analysis only counts the number of operations, that is, referring
to an algebraic or unit-cost measure—as opposed to the more realistic bit-cost
measure taking into account aspects of internal or working precision.

The latter seem hard to estimate, though, since they depend not only on
the output precision n and the polynomial degree k, but also on (the coefficient
vector of) the polynomial constraints p under consideration: which in the worst-
case may give rise to unbounded running times. For a more realistic assessment
we have thus implemented, empirically evaluated and compared the practical
performance of the above three algorithms on the following kinds of benchmark
polynomials:

The bivariate polynomials X2+Y 2−1 and (X−2)2+(X ⋅Y −1)2 representing1

the transcendental periods π and ln(2); recall Eq. (2); and for d = 2 and d = 3
the multivariate scaled Wilkinson-type Polynomials I pn,d ∶= ∏d

i=1 ∏k
j=1 (Xi − j

k
)

deliberately placing roots at points on a grid that the deterministic algorithm
will try to determine their signs in and Wilkinson-type Polynomials II pn,d ∶=
∏k

j=1 (∏d
i=1 Xi − j

k
).

3.1 Computing Environment

The above three algorithms were implemented without multithreading in Exact
Real Computation based on the iRRAM C++ library [Mül01,MZ14] commit
487a123. Their source codes and the experiment results are available for down-
load from url https://github.com/junheecho/period and https://github.com/
junheecho/iRRAM. We have executed and timed them on a computer with
Intel® Core™ i7-6950X processor with 10 cores, 20 threads running at 3.00 GHz
and 64 GB of RAM. Less than 20 processes ran at the same time so that they do
not impede each other. The source code is compiled with g++ 5.4.0 on Ubuntu
16.04.3 LTS. We focus on CPU time; memory was never a problem.
1 Of course the specific periods π and ln(2) admit other, more efficient algorithms.

https://github.com/junheecho/period
https://github.com/junheecho/iRRAM
https://github.com/junheecho/iRRAM

140 J. Cho et al.

3.2 Performance Results

We have measured, for each of the three above algorithms and each of the
above benchmark polynomials as input, the CPU time in dependence on n;
for the Wilkinson-type Polynomials also on k. We have then fitted the results
to the model/ansatz exp(n ⋅ β − α)—for the Wilkinson-type Polynomials to
exp(n ⋅ β − α) ⋅ kγ—and plotted both. We have also fitted the result for the
Wilkinson-type Polynomials to exp(k ⋅ γ + n ⋅ β − α) but the R2 scores show
the aforementioned model is more suitable. We have also plotted and fitted the
ratios of the algorithms’ respective performances to the aforementioned models:
See the following figures (Table 1 and Fig. 1).

Table 1. Parameter regression of CPU time

Input Algorithm Regression R2 score

π Randomized exp(1.31n − 9.51) 0.99

Deterministic exp(1.14n − 7.69) 0.88

Transcendental exp(1.34n − 9.73) 1.00

(the ratio over the randomized) Deterministic exp(−3 ⋅ 10−5n + 0.03) 0.00

Transcendental exp(−0.07n + 0.88) −0.66

ln(2) Randomized exp(1.38n − 11.74) 1.00

Deterministic exp(1.30n − 10.65) 1.00

Transcendental exp(1.31n − 10.75) 1.00

(the ratio over the randomized) Deterministic exp(−0.09n + 1.09) 0.62

Transcendental exp(0.07n − 0.57) 0.38

Wilkinson-type Polynomials I Randomized exp(1.38n − 12.32) ⋅ k3.33 0.89

exp(1.01k + 1.37n − 11.95) 0.49

Deterministic exp(1.37n − 12.34) ⋅ k4.24 0.98

exp(1.30k + 1.37n − 12.10) 0.51

Transcendental exp(1.22n − 10.27) ⋅ k2.94 0.95

exp(0.90k + 1.21n − 10.01) 0.86

(the ratio over the randomized) Deterministic exp(0.05n − 0.54) ⋅ k0.94 0.63

exp(0.31k + 0.05n − 0.60) 0.73

Transcendental exp(−0.01n + 0.41) ⋅ k−0.17
−0.05

exp(−0.05k − 0.01n + 0.42) −0.06

Wilkinson-type Polynomials II Randomized exp(1.25n − 10.39) ⋅ k2.80 0.98

exp(0.73k + 1.24n − 9.82) 0.76

Deterministic exp(1.27n − 10.47) ⋅ k3.55 0.99

exp(0.95k + 1.28n − 10.01) 0.88

Transcendental exp(1.26n − 10.19) ⋅ k2.64 0.99

exp(0.66k + 1.24n − 9.36) 0.92

(the ratio over the randomized) Deterministic exp(0.08n − 1.03) ⋅ k1.03 0.73

exp(0.28k + 0.08n − 0.96) 0.85

Transcendental exp(0.02n + 0.12) ⋅ k−0.15 0.11

exp(−0.04k + 0.02n + 0.07) 0.12

Computing Periods. . . 141

Fig. 1. CPU time (sec.) of computing periods via Wilkinson-type Polynomials I

3.3 Interpretation

Our measurements confirm the predicted running times polynomial in k and
exponential in n. They furthermore exhibit an exponential advantage of the
randomized and the transcendental algorithm over the deterministic one. The
performances of the randomized and the transcendental algorithms are iden-
tical. The difference of performance is little with respect to n, but significant
with respect to k; thus, the performances of all algorithms are identical when
computing π and ln(2) because n is the only parameter.

Following the Balls-into-Bins paradigm [BCSV06], we have tried a synthesis
of the randomized and the deterministic algorithm (Subsects. 2.2 and 2.3) that
evaluates the polynomial’s sign at two random points in parallel—however with
no benefit in performance.

142 J. Cho et al.

4 Conclusion and Perspectives

We have present three algorithms rigorously computing periods: a deterministic
one, that evaluates the constraint polynomials at sufficiently many dyadic points
simultaneously such as to guarantee at least one missing its roots; a random-
ized (and arguably first rigorous real) one, that misses roots almost surely; and
one evaluating at an appropriate algebraically independent argument that by
definition cannot constitute a root.

Although all three take time exponential in the output precision n, they
exhibit significant differences in practical performance. Perhaps surprisingly,
evaluating at two random points in parallel (and thus automatically choosing
the ‘better’ one) turned out to be slower, not faster, than a single one.

For now we have focused on the case of two (and three) variables. Future
work will extend in that, and the following directions:

(a) Picking up on the first paragraph of Sect. 3, we will try to identify reason-
able parameters of the polynomials p ∈ Z[X1, . . . ,Xd] under consideration,
in addition to their maximal degree bound k, to devise a refined rigorous
parameterized bit-cost analysis.

(b) The question remains open as of whether every fixed period can be computed
(i.e. approximated up to absolute error 2−n) in time polynomial in n.

(c) In the spirit of Experimental Mathematics, we plan to algorithmically search
for new (candidate, linear or algebraic) relations among periods.

References

[Bai17] Bailey, D.H.: Jonathan Borwein: experimental mathematician. Exp. Math.
26(2), 125–129 (2017)

[BCSV06] Berenbrink, P., Czumaj, A., Steger, A., Vöcking, B.: Balanced allocations:
the heavily loaded case. SIAM J. Comput. 35(6), 1350–1385 (2006)

[BDC01] Becher, V., Daicz, S., Chaitin, G.: A highly random number. In: Calude,
C.S., Dinneen, M.J., Sburlan, S. (eds.) Combinatorics, Computability and
Logic. Discrete Mathematics and Theoretical Computer Science, pp. 55–68.
Springer, London (2001). https://doi.org/10.1007/978-1-4471-0717-0 6

[BGH15] Brattka, V., Gherardi, G., Hölzl, R.: Las Vegas computability and algo-
rithmic randomness. In: Mayr, E.W., Ollinger, N. (eds.) 32nd International
Symposium on Theoretical Aspects of Computer Science (STACS 2015).
Leibniz International Proceedings in Informatics (LIPIcs), vol. 30, pp. 130–
142. Schloss Dagstuhl-Leibniz-Zentrum für Informatik, Dagstuhl (2015)

[FG06] Flum, J., Grohe, M.: Parameterized Complexity Theory. Texts in Theo-
retical Computer Science. An EATCS Series. Springer, Heidelberg (2006).
https://doi.org/10.1007/3-540-29953-X

[HRR90] Heintz, J., Recio, T., Roy, M.-F.: Algorithms in real algebraic geometry
and applications to computational geometry. In: Goodman, J.E., Pollack,
R., Steiger, W. (eds.) Discrete and Computational Geometry: Papers from
the DIMACS Special Year. DIMACS Series in Discrete Mathematics and
Theoretical Computer Science, vol. 6, pp. 137–164. DIMACS/AMS (1990)

https://doi.org/10.1007/978-1-4471-0717-0_6
https://doi.org/10.1007/3-540-29953-X

Computing Periods. . . 143

[Kan03] Kanada, Y.: . J. Math. Cult. 1(1), 72–83 (2003)
[KF10] Kratsch, D., Fomin, F.V.: Exact Exponential Algorithms. Texts in Theo-

retical Computer Science. An EATCS Series. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-16533-7

[Ko91] Ko, K.-I.: Complexity Theory of Real Functions. Progress in Theoreti-
cal Computer Science. Birkhäuser, Boston (1991). https://doi.org/10.1007/
978-1-4684-6802-1

[Koi99] Koiran, P.: The real dimension problem is NPR-complete. J. Complex.
15(2), 227–238 (1999)

[Kut87] Kutylowski, M.: Small Grzegorczyk classes. J. Lond. Math. Soc. 36(2), 193–
210 (1987)

[KZ01] Kontsevich, M., Zagier, D.: Periods. In: Engquist, B., Schmid, W. (eds.)
Mathematics Unlimited – 2001 and Beyond, pp. 771–808. Springer,
Heidelberg (2001). https://doi.org/10.1007/978-3-319-50926-6 12

[Mee06] Meer, K.: Optimization and approximation problems related to polynomial
system solving. In: Proceedings of the 2nd Conference on Computability in
Europe (CiE 2006), pp. 360–367 (2006)

[MU05] Mitzenmacher, M., Upfal, E.: Probability and Computing - Randomized
Algorithms and Probabilistic Analysis. Cambridge University Press, New
York (2005)

[Mül01] Müller, N.T.: The iRRAM: exact arithmetic in C++. In: Blanck, J., Brattka,
V., Hertling, P. (eds.) CCA 2000. LNCS, vol. 2064, pp. 222–252. Springer,
Heidelberg (2001). https://doi.org/10.1007/3-540-45335-0 14

[MZ14] Müller, N.T., Ziegler, M.: From calculus to algorithms without errors.
In: Hong, H., Yap, C. (eds.) ICMS 2014. LNCS, vol. 8592, pp.
718–724. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-
44199-2 107

[Pap94] Papadimitriou, C.H.: Computational Complexity. Addison-Wesley, Boston
(1994)

[PP16] Popescu-Pampu, P.: What is the Genus?. LNM, vol. 2162. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-42312-8

[Rit63] Ritchie, R.W.: Classes of predictably computable functions. Trans. Am.
Math. Soc. 106(1), 139–173 (1963)

[Sko08] Skordev, D.: On the subrecursive computability of several famous constants.
J. Univers. Comput. Sci. 14(6), 861–875 (2008)

[SWG12] Skordev, D., Weiermann, A., Georgiev, I.: M2-computable real numbers. J.
Logic Comput. 22(4), 899–925 (2012)

[Tur37] Turing, A.M.: On computable numbers, with an application to the
“Entscheidungsproblem”. Proc. Lond. Math. Soc. 42(2), 230–265 (1937)

[TZ10] Tent, K., Ziegler, M.: Computable functions of reals. Münster J. Math. 3,
43–65 (2010)

[VS17] Viu-Sos, J.: A semi-canonical reduction for periods of Kontsevich-Zagier.
arXiv:1509.01097 (2017)

[Wei00] Weihrauch, K.: Computable Analysis. Texts in Theoretical Computer Sci-
ence. An EATCS Series. Springer, Heidelberg (2000). https://doi.org/10.
1007/978-3-642-56999-9

[Yos08] Yoshinaka, M.: Periods and elementary real numbers. arXiv:0805.0349
(2008)

https://doi.org/10.1007/978-3-642-16533-7
https://doi.org/10.1007/978-1-4684-6802-1
https://doi.org/10.1007/978-1-4684-6802-1
https://doi.org/10.1007/978-3-319-50926-6_12
https://doi.org/10.1007/3-540-45335-0_14
https://doi.org/10.1007/978-3-662-44199-2_107
https://doi.org/10.1007/978-3-662-44199-2_107
https://doi.org/10.1007/978-3-319-42312-8
http://arxiv.org/abs/1509.01097
https://doi.org/10.1007/978-3-642-56999-9
https://doi.org/10.1007/978-3-642-56999-9
http://arxiv.org/abs/0805.0349

A Note on Online Colouring Problems
in Overlap Graphs and Their Complements

Marc Demange1 and Martin Olsen2(B)

1 School of Science, RMIT University, Melbourne, Australia
marc.demange@rmit.edu.au

2 BTECH, Aarhus University, Aarhus, Denmark
martino@btech.au.dk

Abstract. We consider online versions of different colouring problems
in interval overlap graphs, motivated by stacking problems. An instance
is a system of time intervals presented in non-decreasing order of the left
endpoints. We consider the usual colouring problem as well as b-bounded
colouring and the same problems in the complement graph. We also con-
sider the case where at most b intervals of the same colour can include
the same element. For these versions, we obtain a logarithmic compet-
itive ratio with respect to the maximum ratio of interval lengths. The
best known ratio for the usual colouring was linear, and to our knowl-
edge other variants have not been considered. Moreover, pre-processing
allows us to deduce approximation results in the offline case. Our method
is based on a partition of the overlap graph into permutation graphs,
leading to a competitive-preserving reduction of the problem in overlap
graphs to the same problem in permutation graphs. This new partition
problem by itself is of interest for future work.

1 Introduction

The problem we consider is originally motivated by stacking problems (see, e.g.,
[1,11]). After unloading a ship, containers are stored in the port before being
uploaded again on another ship or truck. Due to space and logistics constraints,
stored containers are stacked such that the container needing to leave first is
preferably on the top of a stack, and in this work, we will consider the perfect
case where this constraint is always satisfied. The problem is then to arrange the
containers so as to minimise the space used on the floor. Additional constraints,
like a maximum height of the stacks, are also natural. In a real context, the
arrival time of ships and the final destination of their containers are not known or
partially known in advance and one needs to stack the newly arrived containers
without knowing details about the future ones. This constraint motivates the
online version [14], where containers are supposed to arrive in any order and
are allocated to stacks without taking into account future containers. A similar
online model motivated by track assignment problems in railway optimisation
c© Springer International Publishing AG, part of Springer Nature 2018
M. S. Rahman et al. (Eds.): WALCOM 2018, LNCS 10755, pp. 144–155, 2018.
https://doi.org/10.1007/978-3-319-75172-6_13

A Note on Online Colouring Problems in Overlap Graphs 145

is studied in [3,4] with a constraint on the number of trains per track. In this
context, another natural restriction is the midnight condition that states that all
trains are at the station at some time.

The stacking problem (in the perfect case) and the track assignment problem
can be modelled as a colouring problem1 in a specific class of graphs, called over-
lap graphs, representing incompatibilities between containers in a single stack
(resp., trains on a track). Vertices correspond to the set R of time intervals
during which containers are stored in the port and two vertices are linked if
the related intervals overlap, i.e., they intersect but none is contained in the
other. In this case, the related containers need to be in different stacks. R is
referred to as an interval system and all intervals are assumed to have non neg-
ative left endpoints. If all intervals in a system intersect, the related graph is a
permutation graph [6,7], formally defined later. So, our work deals with online
colouring of overlap graphs and permutation graphs. The cases where stacks have
a maximum height and tracks have a maximum capacity motivate variants of
graph colouring, precisely the b-bounded load colouring defined later and the
b-bounded colouring, where colour classes cannot exceed the size b. In a theoret-
ical perspective we address a generalisation, called H-colouring, for a hereditary
property H; it includes in particular (b-bounded) clique covering correspond-
ing to (b-bounded) colouring in the complementary graph. Main definitions are
given in the next section and for all graph notions not defined here, the reader is
referred to [7].

Related work
For the offline version, 4-colourability has been shown NP-complete in overlap
graphs [16]. Colouring permutation graphs can be done in polynomial time, even
in an online set-up using a First-Fit strategy if the permutation is presented from
left to right, as explained in the next section. However, the b-bounded colouring
problem is NP-hard in permutation graphs for b ≥ 6 [9]. Clique covering is also
known to be hard in overlap graphs [10] and other NP-hard versions of stacking
problems are considered in [1,11].

To our knowledge, the best known polynomial approximation for colouring
overlap graphs is a (log n)-approximation [2], where n is the number of vertices.
It applies to the larger class of subtree filament graphs [10]. A 2-approximation
in overlap graphs is claimed in [16], but it is contradicted in [11]. For clique
covering overlap graphs, a (log β(G))-approximation is proposed in [10], where
β(G) denotes the optimal value for the graph G. This is improved in [15]: for an
instance GR defined by an interval system R, a 2(1 + log α̃(R))-approximation
is proposed, where α̃(R) is the maximum number of pairwise disjoint intervals.
If α(GR) is the independence number of GR, we have α̃(R) ≤ α(GR) ≤ β(GR).

Online colouring of overlap graphs has mainly been considered in [4], where
a O

(

L
�

)

-competitive algorithm is proposed if intervals are processed from left
to right2, L and � being the largest and smallest interval lengths, respectively.

1 Colour vertices using the minimum number of colours such that adjacent vertices
have different colours.

2 I.e., in non-decreasing order of their left endpoint.

146 M. Demange and M. Olsen

It is improved into O
(

log2 L
log log L

)

if � is known in advance. Online colouring of
permutation graphs, however, has been widely studied (see, e.g. [13]). In [4],
online b-bounded colouring is considered in permutation graphs and a (2−1/σ)-
competitive algorithm is proposed, where σ is the minimum between b and the
offline optimal value; moreover it is the best possible competitive ratio. For over-
lap graphs processed from left to right, it is shown [4] that a constant competitive
ratio cannot be achieved. The proof can easily be transformed to show that a
K(log log n)-competitive ratio cannot be guaranteed for some constant K.

Our contribution
Here, we propose a O

(

log(L
�)

)

-competitive online algorithm when intervals are
processed from left to right; so an improvement from a linear to a logarithmic
ratio and moreover, the result also holds for other H-colouring problems like
clique covering, b-bounded colouring and b-bounded clique covering (Theorem 2)
as well as for b-bounded load colouring (Theorem 3). These results are obtained
using a partition of an overlap graph into permutation graphs, a new problem
interesting by itself. It leads to a competitive-preserving reduction transforming
an online algorithm in permutation graphs into an online algorithm in overlap
graphs with a competitive ratio increased by a logarithmic factor (Theorem 1).
This narrows the gap between the best competitive ratio and the best lower
bound.

Even though we mainly focus on the online version, we conclude by showing
how to use our online algorithms for the offline cases. We derive a O(log α̃(R))-
approximation for several colouring problems (Theorem 4). It slightly improves
the best known approximation for colouring and clique covering in overlap
graphs. Moreover, the same holds for the bounded versions, which constitutes,
to our knowledge, the first approximations for these problems. It is worth not-
ing that these approximation results are derived from online algorithms. Since
a constant competitive ratio cannot be achieved, it highlights the question - left
open - whether offline colouring is constant approximable in overlap graphs.

2 Preliminaries

N, N∗ and Z will denote the set of natural numbers, the set of positive natural
numbers and the set of integers, respectively. In a graph G an independent set
is a set of pairwise non-adjacent vertices while a clique is an independent set in
the complement G of G. The independence number and the clique number of G
denote the maximum size of an independent set and of a clique in G, respectively.

Overlap and permutation graphs
All real intervals are assumed to have non-negative left endpoints and]a, b[and
]c, d[overlap if a < c < b < d. Given a system R of open intervals, the related
overlap graph, GR = (R,ER), is defined such that adjacent vertices correspond
to overlapping intervals [6]. The interval graph associated with R has the same
vertex set but two vertices are linked if the related intervals intersect. We refer

A Note on Online Colouring Problems in Overlap Graphs 147

Fig. 1. BBQ arrangement B of intervals (above) and the related permutation graph
(below) associated with the permutation πB = (2, 3, 1, 5, 4, 6, 8, 10, 9, 7) or equivalently,
for instance, the list QB = (0.5, 1.5, 0, 2.5, 2.1, 3.5, 4.5, 5.5, 5.3, 4.1).

to the clique number of this interval graph as the load of R, and we denote by
α̃(R) its independence number.

Permutation graphs are usually defined from a permutation π = (π1, . . . , πn).
The vertex set of Gπ is {π1, . . . , πn} with an edge between πi and πj if i < j and
πi > πj (see Fig. 1); we equivalently define GQ from any list Q = (q1, . . . , qn)
of pairwise distinct numbers. It is a well known subclass of overlap graphs:
in particular the overlap graph induced by a system of pairwise intersecting
intervals (midnight condition) is a permutation graph (see, e.g. [4]). We call
such a set of intersecting intervals a brochette of intervals and two brochettes
are independent if every two intervals in different brochettes are disjoint; a set
of pairwise independent brochettes is called a BBQ arrangement. Given a BBQ
arrangement B with k brochettes B1, . . . , Bk, we denote by GBi

= (Vi, Ei) the
permutation graph associated with Bi. The overlap graph GB associated with B
is then the disjoint union of G1, . . . , Gk, which is clearly a permutation graph:

Proposition 1. BBQ arrangements always induce permutation graphs.

Figure 1 gives an example of a BBQ arrangement B with the related permu-
tation graph GB , the corresponding permutation π and an example of a list QB

satisfying GB = GQB
if we rename by qi the vertex πi, for i = 1, . . . , n. QB is

chosen without positive integral values to avoid any confusion with values in π.

H-colouring problems and their online version
Graph colouring and its generalisations are extensively studied, in particular for
their applications in scheduling. In the Minimum H-colouring problem, colour
classes are constrained to satisfy a fixed hereditary property H. For overlap
graphs, defined by an interval system R, suppose we are given a hereditary
property H on interval systems, i.e., whenever a system satisfies H, so does any
subsystem. Then, the Minimum H-colouring problem is to partition any interval
system R into a minimum number of colour classes that all satisfy H. Table 1
lists the H-colouring problems we consider here and the related properties H.

Other examples of H-colouring include cocolouring [12] or split-colouring [5].
In the online version of colouring problems, vertices are presented one by one and
each time a new vertex is presented, one needs to irrevocably decide its colour. If
we number the vertices v1, . . . , vn in the order of presentation, an online colouring

148 M. Demange and M. Olsen

Table 1. Examples of H-colouring problems in an overlap graph defined by R.

Problem Property H satisfied by each colour class R′ ⊂ R

colouring GR′ is an independent set (no overlap)

b-bounded colouring GR′ is an independent set and |R′| ≤ b

clique covering GR′ is a clique (every two intervals overlap)

b-bounded clique covering GR′ is a clique and |R′| ≤ b

b-bounded load colouring GR′ is an independent set and R′ is of load at most b

algorithm decides the colour of vertex vk using only the structure of the subgraph
induced by vertices v1, . . . , vk and the colours of vertices v1, . . . , vk−1.

It is sometimes relevant to impose a specific order of presentation for the
vertices. In this work, the instance is an overlap graph defined by a system of
intervals and we assume that intervals are presented in non-decreasing order
of their left endpoints, called the left to right order. For instance, in Fig. 1,
the labelling of intervals, written from left to right, corresponds to the related
permutation πB . Note that πB cannot be performed online but an equivalent
list of numbers such as QB can.

Consequently, when considering a permutation graph defined by a BBQ
arrangement presented from left to right, one can use any online algorithm using
a list of numbers presented from left to right. In this case in particular, the greedy
First Fit algorithm, that assigns the first possible colour to the new presented
vertex, determines an optimal colouring (see, e.g., [4]).

The quality of an online algorithm is characterised by the competitive ratio.
For a colouring problem, we denote by β(G) the optimal value for G: it is the
chromatic number χ(G) of G for the usual colouring problem, the bounded
chromatic number χb(G) for the b-bounded colouring problem, or more gen-
erally χH(G) for the H-colouring problem. Given an online algorithm A for
H-colouring, we denote by λ(G,O) the value of the online solution computed
for G presented in the order O. A is said to guarantee the competitive ratio
of ρ if we have λ(G,O) ≤ ρ × β(G) for any graph G and order O within the
considered model. Since we only consider the order from left to right, we will
omit the parameter O.

Even if it is not systematically considered in the literature, it is relevant to
analyse the complexity of online algorithms. An online algorithm is said to be
polynomial if each step can be performed in polynomial time with respect to the
number of already presented vertices. In the offline case, the approximation ratio
of a polynomial algorithm is defined in a similar way as the competitive ratio.

3 Partitioning an Overlap Graph into Permutation
Graphs

Our general strategy is to partition an overlap graph into permutation sub-
graphs: given an interval system R, we partition it into BBQ arrangements, called

A Note on Online Colouring Problems in Overlap Graphs 149

clusters, Pk, k ∈ B ⊂ N, each inducing a permutation graph. As we will show,
this can be done online when intervals are presented from left to right.

Note then that each cluster is presented from left to right, which will allow
us to apply known online algorithms for permutation graphs on each part (See
Sect. 4). Even though the complement of an overlap graph is not always an
overlap graph, the fact that the class of permutation graphs is stable by com-
plementation will allow us to derive similar results for clique covering.

To help understanding the main idea, we first describe a (offline) decompo-
sition that requires the lengths L and �. Then, in Proposition 2, we show that
this decomposition can be performed online, and we also show how to handle
the case where L is not known in advance (� will never be requested).

The offline decomposition
Without loss of generality, we assume that the left endpoint of the first interval
is 0. The decomposition works like a sieve based on nested discrete sets Si defined
as follows. Let λ be the first interval length. We define kL =

⌈

log2
(

L
λ

)⌉

+ 1 and
k� =

⌊

log2
(

λ
�

)⌋

+ 1. For −kL ≤ i ≤ k�, we set Si = {k2−iλ, k ∈ N
∗} and Si = ∅

for i < −kL or i > k�. Note that S−kL
⊂ . . . ⊂ S0 ⊂ . . . ⊂ Sk�

.
We see sets Si as positions of vertical spikes of various lengths, as illustrated

in Fig. 2. The spikes in S−kL
are the longest ones and Si+1 is obtained by adding

a shorter spike between every two spikes in Si. Using the BBQ metaphor, we see
the full instance as a steak sliced into pieces of meat (intervals) to be dropped
and skewered on the first (longest) spike corresponding to an element of Si for
some i. The cluster Pi is defined as the intervals skewed at level i: it is the set
of intervals that intersect Si but do not intersect Si−1. Since k� > log2

(

λ
�

)

, we
have for every I ∈ R, I ∩ Sk�

�= ∅. So, no interval is left outside clusters.
We claim that each cluster Pi can be partitioned into independent brochettes,

thus is a BBQ arrangement, and consequently, the graph associated with Pi is
a permutation graph. Denoting I =]aI , bI [, we have indeed:

∀I ∈ R : I ∈ Pj ⇔ j = min
{

i ∈ {−kL, . . . , k�} :
⌈

2iaI

λ

⌉

≤
⌊

2ibI

λ

⌋}

(1)

If j > −kL, Eq. (1) means that the interval
[

2jaI

λ ; 2jbI

λ

]

includes an integer while

interval
[

2j−1aI

λ ; 2j−1bI

λ

]

does not; if j = −kL, then
[

2−kLaI

λ
2−kLbI

λ

]

includes an

integer. Note that, for i = −kL, the distance 2kLλ between two distinct elements
of S−kL

is at least 2L. Consequently,

∀x1, x2 ∈ Si, I1, I2 ∈ Pi : [x1 ∈ I1 ∧ x2 ∈ I2 ∧ x1 �= x2] ⇒ I1 ∩ I2 = ∅,

which proves the claim. A brochette in Pi corresponds to an element s ∈ Si\Si−1;
in this case, (s, i) (called a skew) is said to be active.

Since Si = ∅ for i < −kL or i > k�, there are at most (kL + k� + 1) ≤
(⌊

log2(
L
�)

⌋

+ 4
)

permutation graphs in the decomposition.
We know show that this decomposition can be performed online. Intervals

are considered from left to right and Fig. 2 corresponds to the time t = t0.

150 M. Demange and M. Olsen

Fig. 2. The steak is sliced into intervals to be dropped on several layers Pi of brochettes.
Active skews are thick, in particular (s, 1), (s, 0) and (s, −1) are inactive if s ∈ S−2. If
the distance between the brochettes in the top layer is at least 2L then each Pi is a
BBQ arrangement.

Proposition 2 (Partition into permutation graphs). Algorithm1 described
below is a polynomial online algorithm that partitions an overlap graph defined
by an interval system presented from left to right into at most

(

2
⌊

log2(
L
�)

⌋

+ 7
)

permutation graphs defined by a BBQ arrangement.
Moreover, if L is known in advance, a simplified version of the algorithm

guarantees a number of at most
(⌊

log2(
L
�)

⌋

+ 4
)

permutation graphs in the
decomposition.

Proof. As soon as a new interval is presented it will be assigned to a cluster
corresponding to a BBQ arrangement. During this process a cluster will be
called open if it is non-empty. If we decide to assign an interval to a not yet
open cluster then we will open a new one for this interval. Note that, for a
given L, �, I, if the cluster Pj of I is determined by Relation (1), then j’s value
does not change if � is replaced by a smaller value �̃. If L is replaced by a
larger value L̃ however, then j may change only if j = −kL. Consequently, this
decomposition can directly be performed online if L is known in advance with a
maximum number of

(⌊

log2(
L
�)

⌋

+ 4
)

BBQ-arrangements in the decomposition.
In this case, the algorithm is simplified since the clusters R are not required (the
simplified version of the algorithm can be easily derived).

If L is not known in advance, we need to make a specific treatment for any
interval I0 placed in P−kL0

where L0 is the largest known interval length when
I0 is revealed. Algorithm 1 shows how to perform the partition dynamically. To
handle the above mentioned problem, it creates two kinds of clusters, Q and
T . Roughly speaking a cluster P−kL0

in the previous decomposition might be
doubled if L0 is the largest known interval length when the cluster is open.

Line 6 ensures that, at any step of the online process, � and L are respectively
equal to the minimum and the maximum length of already revealed intervals.
Once a set Si is defined as non-empty, its definition will not change. New non-
empty sets Si are added when the values of L or � are updated. Lines 10 and 12
determine in which cluster the interval should be put.

A Note on Online Colouring Problems in Overlap Graphs 151

Consider first a cluster Tj0 for some j0. Intervals in Tj0 are assigned at lines 12,
which means that j0 > −kL each time an interval has been assigned to it. For any
such interval]aI ; bI [the interval

[

2j0−1aI

λ ; 2j0−1bI

λ

]

does not include any integer

number, and consequently, neither do the intervals
[

2haI

λ ; 2hbI

λ

]

for h < j0. Thus,
Relation (1) will hold for any interval I ∈ Tj0 after the Algorithm stops and the
previous analysis shows that Tj0 is a BBQ arrangement of intervals.

Consider now a cluster Qj0 ; intervals have been assigned in this cluster at
lines 10. Consider the last interval I ∈ Qj0 revealed at the online step n0:
denoting by L0 the longest length of intervals revealed at steps i ≤ n0 we have
j0 = −kL0 . All intervals in Qj0 are of length at most L0 and intersect Sj0

(see lines 8 and 10). The distance between any two elements in Sj0 is at least
2−j0λ ≥ 2L0. Since all intervals are open we deduce that Qj0 is a BBQ arrange-
ment of intervals. All in all, the original overlap graph defined by an interval
system is partitioned online into at most (2kL + k� + 1) ≤

(

2
⌊

log2(
L
�)

⌋

+ 7
)

BBQ arrangements of intervals, each revealed from left to right. Note finally
that, at each step of the online process (new presented interval), the algorithm
requires a linear complexity to decide in which cluster the interval should be
added. It concludes the proof.

Algorithm 1. Partition into permutation graphs
Require: An overlap graph G = (R, ER) presented online from left to right (the

maximum length L is not known in advance).
Ensure: A partition of R, (P1, . . . , Pp) such that G[Pi] is a permutation graph.
1: Ti ← ∅, i ∈ Z

2: Qi ← ∅, i ∈ Z

3: � ← λ, L ← λ
4: When the first interval I is presented, set λ as its length and add I to T0

5: for each new interval I =]aI , bI [do
6: � ← min{bI − aI , �}, L ← max{bI − aI , L}
7: kL ←

⌈
log2

(
L
λ

)⌉
+ 1, k� ←

⌊
log2

(
λ
�

)⌋
+ 1

8: j ← min
{

i ∈ {−kL, . . . , k�} :
⌈

2iaI
λ

⌉
≤

⌊
2ibI

λ

⌋}

9: if j = −kL then
10: Add I to Qj

11: else
12: Add I to Tj

13: end if
14: end for
15: The final partition is (T−kL+1, . . . , Tk�) ∪ (Q−kL , . . . , Q0)

4 Competitiveness Through Partitioning

Using Proposition 2, we reduce a large class of online H-colouring problems on
overlap graphs to the same problem on permutation graphs:

152 M. Demange and M. Olsen

Theorem 1 (Online reduction). For any online algorithm for a H-Colouring
problem guaranteeing a competitive ratio of ρ on permutation graphs defined by
a BBQ arrangement presented from left to right, there is an online algorithm
for the same problem on overlap graphs defined by an interval system presented
from left to right guaranteeing the competitive ratio

(

2
⌊

log2(
L
�)

⌋

+ 7
)

ρ. If L is
known in advance the ratio is

(⌊

log2(
L
�)

⌋

+ 4
)

ρ.
Moreover, if the former online algorithm is polynomial, then the latter is

polynomial as well.

Proof. We can partition online the overlap graph into
(

2
⌊

log2(
L
�)

⌋

+ 7
)

permu-
tation graphs defined by a BBQ arrangement using Proposition 2. If L is known
in advance, then the number of parts is reduced to

(⌊

log2(
L
�)

⌋

+ 4
)

.
Note that each BBQ arrangement in the decomposition is presented from left

to right. This allows us to apply the online algorithm for permutation graphs
on each BBQ arrangement using different colour sets. This defines a feasible H-
colouring of the whole graph. Since the H-chromatic number is not increasing
from a graph to a subgraph, the result immediately follows. Note finally that,
since Algorithm 1 requires at each step a linear complexity, this reduction trans-
forms a polynomial online algorithm for permutation graphs into a polynomial
online algorithm in overlap graphs, which concludes the proof.

Combining this reduction and known competitive algorithms in permutation
graphs presented from left to right leads to the following result:

Theorem 2. The following online competitive ratios can be guaranteed by a
polynomial online algorithm in overlap graphs defined by an interval system pre-
sented from left to right:

1. 2
⌊

log2(
L
�)

⌋

+ 7 for (unbounded) colouring and clique covering;

2.
(

2
⌊

log2(
L
�)

⌋

+ 7
)

(

2 − 1
min{b,β(GR)}

)

for b-bounded colouring and b-bounded
clique covering, where β(GR) represents the offline optimal value in GR.

Proof. Given a BBQ arrangement B presented from left to right, one can perform
online a list QB defining the permutation graph GQB

(see Fig. 1). Moreover, the
list Q−1

B obtained by changing all signs in QB , also performed online, defines the
complement graph GQ−1

B
= GQB

. Consequently, all results applying to online
colouring permutation graphs also apply to online clique covering.

(1) For the usual colouring problem, the greedy algorithm First Fit is an
online exact algorithm (1-competitive) for permutation graphs defined by a BBQ
arrangement presented from left to right. Using the previous remark it gives as
well an exact online algorithm for clique covering. We conclude using Theorem 1.

(2) For the online b-bounded colouring problem in a permutation graph GQ asso-
ciated with a list Q presented from left to right, an online algorithm guaranteeing
the competitive ratio 2 − 1/σ is proposed in [4], where σ = min{b, χb(GQ)}. We
conclude the case of b-bounded colouring by noting that, if GQ is a subgraph
of an overlap graph G, we have: 2 − 1

min{b,χb(GQ)} ≤ 2 − 1
min{b,χb(G)} . The same

holds in the complementary graph GQ−1
B

= GQB
, which concludes the proof.

A Note on Online Colouring Problems in Overlap Graphs 153

To our knowledge this is the first non-obvious competitive analysis for online
b-bounded colouring of overlap graphs and their complements. Note finally that
Theorem 1 can be applied for a problem defined directly on an interval system
R like, for example, b-bounded load colouring.

Consider a BBQ arrangement B processed from left to right, the brochettes
Bi, i = 1, . . . , k, can be determined online. An online solution for b-bounded load
colouring can be performed using the algorithm in [4] on each brochette, and
then, reusing the same colour set when passing to the next brochette. The overall
number of colours is the maximum number of colours used in a single brochette
and the same holds for a BBQ arrangement B: β(B) = max

i=1,...,k
(χb(GBi

)). Since

min(b, χb(GBi
)) ≤ min(b, β(B)), for all i = 1, . . . , k, the algorithm in [4] gives a

(

2 − 1
min(b,β(B))

)

-competitive algorithm for b-bounded load colouring in a BBQ
arrangement. Using the same analysis as in Theorem 2-(2), we have:

Theorem 3. There is a polynomial online algorithm for b-bounded load colour-
ing in an interval system R presented from left to right with competitive ratio
(

2
⌊

log2(
L
�)

⌋

+ 7
)

(

2 − 1
min{b,β(R)}

)

, where β(R) represents the related offline
optimal value in R.

5 Approximation of Offline Variants

We finally show how combining our online results with a preprocessing step gives
new approximation results for various colouring problems in overlap graphs.

Proposition 3. Given an interval system R of size n and ε > 0, we can modify
R in O(n log n)-time, preserving the relative position of intervals (containment,
overlapping and disjoint relation), so that in the new system R′, the maximum
length L(R′) and the minimum length �(R′) satisfy L(R′)

�(R′) ≤ (2 + ε)α̃(R).

Proof. Given R, assume w.l.g. that the 2n endpoints are all distinct and sort
them in increasing order as in [8]. It requires O(n log n)-time and since then the
transformation is linear. The idea is to stretch and compress intervals without
changing their relative position. Each time we move an endpoint of an interval,
we may move accordingly other endpoints, keeping their relative order and a
positive distance between two consecutive end-points.

Let 1 > ε > 0 and define β ≤ ε
ε+4 . Now pick in polynomial time a set S with

α̃(R) pairwise disjoint intervals; the complexity is O(n) once the endpoints are
sorted [8]. Stretch or compress intervals in S so that they all have length 1 and
rearrange them such that the distance between the right endpoint of an interval
and the left endpoint of the consecutive interval is β. We may move accordingly
other endpoints of intervals in order to keep the same relative order is R.

Number intervals in S from left to right, S = {s1, . . . , s|S|} with |S| = α̃(R)
and denote by A the left endpoint of s1 and by B the right endpoint of s|S|. We
now define three sub-intervals Li, Ri and Mi for each si ∈ S, each of length β. Li

shares the left endpoint with si, Ri shares the right endpoint with si and Mi is on

154 M. Demange and M. Olsen

the middle of si. In other words, Li and Ri are small zones in the left and right
part of si, respectively, while Mi is a small zone in the middle. Since β < 1

3 , these
three zones are disjoint. We first consider intervals with the right endpoint greater
than B or the left endpoint less than A (note there is no left endpoint on the right
of B neither right endpoint on the left of A by optimality of S). We compress these
intervals so that all endpoints in the system are between A − β

2 and B + β
2 ; this

can be done in linear time. Now we consider all intervals that are contained in one
of the intervals si in S. We refer to this set of intervals as Hi. Two intervals in
Hi intersect by optimality of S; so their largest left endpoint is smaller than their
smallest right endpoint. For every i we now move all the left endpoints of intervals
in Hi to Li without changing the relative order of endpoints in the whole system.
We move the right endpoints to Ri in the same manner. Finally all the endpoints
that are in some si \ (Li ∪ Ri) (these endpoints have not been moved until now)
are moved into Mi without changing their relative position. All in all, computing
these modifications requires linear time.

We claim that the new system R′ satisfies L(R′)
�(R′) ≤ (2 + ε)α̃(R). Indeed, note

first that L(R′) ≤ |B − A| + β = α̃(R)(1 + β). Consider now an interval I in
R′ of length less than (1 − 2β) (if any). I cannot be contained in an interval si

due to modifications performed in Hi and it cannot have its two endpoints in
[A − β

2 , B + β
2] \ ∪isi (outside the zone covered by S) by optimality of S. So,

it necessarily overlaps one interval si ∈ S and by optimality of S it overlaps all
intervals in Hi as well. We deduce that I has one of its endpoints in Mi and
the other one outside si. Thus, I is of length at least 1

2 − β
2 , which means that

�(R′) ≥ 1
2 − β

2 . Consequently, L(R′)
�(R′) ≤ 2α̃(R)

(

1+β
1−β

)

≤ (2+ε)α̃(R) since 4β
1−β ≤ ε.

This concludes the proof.

We deduce approximation results using our online results with L a priori
known. For clique covering overlap graphs, it improves by a factor 2 the ratio
in [15].

Theorem 4. For an interval system R, minimum colouring and clique covering
GR are (log α̃(R) + c)-approximable, for a constant c. This ratio is doubled for
b-bounded colouring and b-bounded clique covering GR as well as b-bounded load
colouring of R.

6 Concluding Remarks

Our contribution is twofold. First, we highlight the problem of partitioning an
overlap graph into permutation graphs that seems interesting by itself. It is simi-
lar to the partition into layers in [2] but to our knowledge, it has not been consid-
ered in an online set-up until now. Our results motivate this approach that leads
to improved competitive algorithms. Surprisingly, it leads to improved approx-
imation algorithms in the offline case as well. The main advantage is to reduce
colouring problems in overlap graphs to the same problems in permutation
graphs. Since the partition can be done online, it leads to competitive-preserving

A Note on Online Colouring Problems in Overlap Graphs 155

reductions. Since the class of permutation graphs is stable by complement while
the class of overlap graphs is not, this approach allows to solve the same problem
in the complement of an overlap graph as well. This method could be used also
for other combinatorial problems. Our results highlight two questions we leave
open for the offline case: can we partition an overlap graph in less than a loga-
rithmic factor of permutation graphs and are the considered problems constant
approximable in overlap graphs?

Acknowledgments. The authors would like to thank anonymous referees for their
helpful comments.

References

1. Avriel, M., Penn, M., Shpirer, N.: Container ship stowage problem: complexity
and connection to the coloring of circle graphs. Discret. Appl. Math. 103(1–3),
271–279 (2000)

2. Černý, J.: Coloring circle graphs. Electron. Notes Discret. Math. 29, 457–461
(2007)

3. Cornelsen, S., Di Stefano, G.: Track assignment. J. Discret. Algorithms 5(2), 250–
261 (2007)

4. Demange, M., Di Stefano, G., Leroy-Beaulieu, B.: On the online track assignment
problem. Discret. Appl. Math. 160(7–8), 1072–1093 (2012)

5. Ekim, T., de Werra, D.: On split-coloring problems. J. Combin. Optim. 10, 211–225
(2005)

6. Gavril, F.: Algorithms for a maximum clique and a maximum independent set of
a circle graph. Networks 3(3), 261–273 (1973)

7. Golumbic, M.C.: Algorithmic Graph Theory and Perfect Graphs (Annals of Dis-
crete Mathematics, vol. 57). North-Holland Publishing Co., Amsterdam (2004)

8. Gupta, U.I., Lee, D.T., Leung, J.Y.-T.: Efficient algorithms for interval graphs and
circular-arc graphs. Networks 12(4), 459–467 (1982)

9. Jansen, K.: The mutual exclusion scheduling problem for permutation and com-
parability graphs. Inf. Comput. 180, 71–81 (2003)

10. Keil, J.M., Stewart, L.: Approximating the minimum clique cover and other hard
problems in subtree filament graphs. Discret. Appl. Math. 154(14), 1983–1995
(2006)

11. König, F.G., Lübbecke, M.E.: Sorting with complete networks of stacks. In: Hong,
S.-H., Nagamochi, H., Fukunaga, T. (eds.) ISAAC 2008. LNCS, vol. 5369, pp. 895–
906. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-92182-0 78

12. Lesniak, L., Straight, H.J.: The cochromatic number of a graph. Ars Combin. 3,
39–46 (1977)

13. Nikolopoulos, S.D., Papadopoulos, C.: On the performance of the first-fit coloring
algorithm on permutation graphs. Inf. Process. Lett. 75(6), 265–273 (2000)

14. Olsen, M., Gross, A.: Probabilistic analysis of online stacking algorithms. In:
Corman, F., Voß, S., Negenborn, R.R. (eds.) ICCL 2015. LNCS, vol. 9335, pp.
358–369. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24264-4 25

15. Shahrokhi, F.: A new upper bound for the clique cover number with applications.
arXiv preprint arXiv:1502.06168 (2015)

16. Unger, W.: On the k-colouring of circle-graphs. In: Cori, R., Wirsing, M. (eds.)
STACS 1988. LNCS, vol. 294, pp. 61–72. Springer, Heidelberg (1988). https://doi.
org/10.1007/BFb0035832

https://doi.org/10.1007/978-3-540-92182-0_78
https://doi.org/10.1007/978-3-319-24264-4_25
http://arxiv.org/abs/1502.06168
https://doi.org/10.1007/BFb0035832
https://doi.org/10.1007/BFb0035832

Online Facility Assignment

Abu Reyan Ahmed1(B) , Md. Saidur Rahman2, and Stephen Kobourov1

1 Department of Computer Science, University of Arizona, Tucson, USA
abureyanahmed@email.arizona.edu, kobourov@cs.arizona.edu

2 Department of Computer Science and Engineering,
Bangladesh University of Engineering and Technology, Dhaka, Bangladesh

saidurrahman@cse.buet.ac.bd

Abstract. We consider the online facility assignment problem, with a
set of facilities F of equal capacity l in metric space and customers arriv-
ing one by one in an online manner. We must assign customer ci to facility
fj before the next customer ci+1 arrives. The cost of this assignment is
the distance between ci and fj . The total number of customers is at most
|F |l and each customer must be assigned to a facility. The objective is
to minimize the sum of all assignment costs. We first consider the case
where facilities are placed on a line so that the distance between adja-
cent facilities is the same and customers appear anywhere on the line.
We describe a greedy algorithm with competitive ratio 4|F | and another
one with competitive ratio |F |. Finally, we consider a variant in which
the facilities are placed on the vertices of a graph and two algorithms in
that setting.

1 Introduction

Let F = {f1, f2, · · · , f|F |} be a set of facilities, each with capacity l. We first
consider the case when facilities are placed on line L, such that the distance
between every pair of adjacent facilities is d, where d is a constant. An input
sequence I = {c1, c2, · · · , cn} is a set of n customers who arrive one at a time in
an online manner, with ci corresponding to the location of customer i on the line
L. The distance between a customer ci and a facility fj is the Euclidean distance
between ci and fj . We later consider the case in which the facilities are located
on the vertices of a graph G = (V,E) and customers appear on the vertices of
G. In that case, the distance between a customer ci and a facility fj is equal to
the number of edges in the shortest path between ci and fj .

Any algorithm for this problem must assign a customer ci to a facility fj
before the next customer ci+1 arrives, where the cost of that assignment is the
distance between ci and fj . The total number of customers is at most |F |l as
every facility can serve at most l customers and each customer must be assigned
to a facility. The objective is to minimize the total cost of all assignments. We
call this problem the online facility assignment problem. This problem arises

Work on this project was funded in part by NSF grant CCF-AF 1712119.

c© Springer International Publishing AG, part of Springer Nature 2018
M. S. Rahman et al. (Eds.): WALCOM 2018, LNCS 10755, pp. 156–168, 2018.
https://doi.org/10.1007/978-3-319-75172-6_14

http://orcid.org/0000-0001-6830-9053

Online Facility Assignment 157

naturally in different practical applications, such handling online orders for a
restaurant with multiple locations, and handling network packets in network
with multiple routers.

1.1 Related Work

In the classical facility location problem, customer locations are known ahead
of time and the objective is to compute locations for a set of facilities that
can handle all the customers. The Fermat-Weber problem is considered the first
facility location problem, studied as early as in the 17th century; see the survey
of Drezner [9] and the textbook by Drezner and Hamacher [10]. A recently
proposed facility location variant is the r-gathering problem. An r-gathering
of a set of customers C for a set of facilities F is an assignment of C to open
facilities F ′ ⊂ F such that r or more customers are assigned to each open facility.
Armon [3] describes a simple 3-approximation algorithm for this problem. Akagi
and Nakano [1] provide an O((|C| + |F |) log |C| + |F |) time algorithm to solve
the r-gathering problem when all customers in C and facilities in F are on the
real line.

The online facility assignment problem is also related to the k-server problem
proposed by Manasse et al. [16], which requires scheduling the movement of a
set of k servers, represented as points in a metric space, in order to handle
requests that are also in the form of points in the space. For each request, the
algorithm must determine which server to move to the requested point, with the
goal of minimizing the total distance covered by all servers. This problem has
been extensively studied [5–8,14,15,18].

Despite similarities, the k-server problem and the online facility assignment
problem are different. The servers in the k-server problem are movable, whereas
the positions of facilities are fixed in the online facility assignment problem.
Therefore, a customer placed very close to a previous customer is easily served
in the server problem which is not true for the facility assignment problem.

The facility assignment problem is also related to the matching problem [17],
which is one of the fundamental and well-studied optimization problems. The
facility assignment problem can be seen as a generalization of the matching
problem, where each facility has capacity l ≥ 1. Online variants of matching
have been extensively studied [2,4,11–13]. Kao et al. [12] provide a randomized
lower bound of 4.5911 for online matching on a line. We provide a random-
ized algorithm, which is 9

2 -competitive for a class of input sequences. Antoniadis
et al. [2] describe an o(n)-competitive deterministic algorithm for online match-
ing on a line.

1.2 Our Contributions

We first consider the case where both the facilities F and the customers C
are on a line. We propose Algorithm Greedy and show that it has competitive
ratio 4|F |. Introducing randomization in Algorithm Greedy leads to an improved

158 A. R. Ahmed et al.

performance of 9/2 for a special class of input instances. We then describe Algo-
rithm Optimal-Fill and show it has competitive ratio |F |.

We next consider the case where both the facilities F and the customers
C are located on the vertices of an unweighted graph G = (V,E). We show
that Algorithm Greedy has competitive ratio 2|E(G)| and Algorithm Optimal-
Fill has competitive ratio |E(G)||F |/r, where r is the radius of G. Finally, we
consider the case where a customer leaves after receiving service at a facility. We
define service time as the amount of service time needed, and study the facility
assignment problem with limited service time.

The rest of this paper is organized as follows. In Sect. 2 we provide basic
definitions. In Sect. 3 we study the online facility assignment problem on a line.
In Sect. 4 we study the graph version of the problem. In Sect. 5 we introduce a
service time parameter t in our model and show that no deterministic algorithm
is competitive when t = 2.

2 Preliminaries

A graph G = (V,E) consists of a finite set V of vertices and a finite set E of
edges; each edge is an unordered pair of vertices. We often denote the set of
vertices G by V (G) and the set of edges by E(G). We say G is unweighted if
every edge of G has equal weight. Let u and v be two vertices of G. If G has
a u, v-path, then the distance from u to v is the length of a shortest u, v-path,
denoted by dG(u, v) or simply by d(u, v). If G has no u, v-path then d(u, v) = ∞.
The eccentricity of a vertex u in G is maxv∈V (G)d(u, v) and denoted by ε(u). The
radius r of G is minu∈V (G)ε(u) and the diameter of G is maxu∈V (G)ε(u). The
center of G is the subgraph of G induced by vertices of minimum eccentricity.

In the online facility assignment problem, we are given a set of facilities
F = {f1, f2, · · · , f|F |} of equal capacity l in a metric space, and an input sequence
of customers I = {c1, c2, · · · , cn} which is a set of n customers who arrive one at
a time in an online manner, with ci corresponding to the location of customer
i in the given space. We say an input I is well distributed if there is at least
one customer between any two adjacent facilities. The capacity of a facility is
reduced by one when a customer is assigned to it. We denote the current capacity
of facility fi by capacityi. A facility fi is called free if capacityi > 0. Any
algorithm ALG for this problem must assign a customer ci to a free facility fj
before a new customer ci+1 arrives. The cost of this assignment is the distance
between ci and fj , which is denoted by distance(fj , ci). The total number of
customers is, at most, |F |l and each customer must be assigned to a facility. For
any input sequence of customers I, Cost ALG(I) is defined as the total cost of
all assignments made by ALG. The objective is to minimize Cost ALG(I).

We say an algorithm is optimal if, for any input sequence of customers, the
total cost of the assignment it provides is the minimum possible. We denote an
optimal algorithm by OPT. An online algorithm ALG is c-competitive if there
is a constant α such that, for all finite input sequences I,

Cost ALG(I) ≤ c.Cost OPT(I) + α.

Online Facility Assignment 159

The factor c is called the competitive ratio of ALG. When the additive constant
α is less than or equal to zero (i.e., Cost ALG(I) ≤ c.Cost OPT(I)), we may
say, for emphasis, that ALG is strictly c-competitive. An algorithm is called
competitive if it attains a constant competitive ratio c. Although c may be a
function of the problem parameters, it must be independent of the input I. The
infimum over the set of all values c such that ALG is c-competitive is called the
competitive ratio of ALG and is denoted by R(ALG).

3 Facility Assignment on a Line

Let F = {f1, f2, · · · , f|F |} be a set of facilities placed on a line, such that the
distance between every pair of adjacent facilities is d, where d is a constant. An
input sequence I = {c1, c2, · · · , cn} is a set of n customers who arrive one at a
time in an online manner, with ci corresponding to the location of customer i on
the line. In Sect. 3.1 we describe Algorithm Greedy with competitive ratio 4|F |.
In Sect. 3.2 we introduce randomization to Algorithm Greedy and show that it
is 9

2 -competitive for a special class of input sequences. In Sect. 3.3 we describe
Algorithm Optimal-Fill and show it has competitive ratio |F |.

3.1 Algorithm Greedy

Here we describe and analyze the natural greedy algorithm, which assigns each
customer to the nearest free facility.

Algorithm Greedy
Input: Customers I = {c1, · · · , cn}, facilities F = {f1, · · · , f|F |}, capacity

l
Output: An assignment of C to F and the total cost of that assignment
sum ← 0;
for i ← 1 to |F | do

capacityi = l;

for i ← 1 to n do
min ← ∞;
index ← −1;
for j ← 1 to f do

if capacityj > 0 and distance(fj , ci) < min then
min ← distance(fj , ci);
index ← j;

assign ci to findex;
capacityindex ← capacityindex − 1;
sum ← sum + min;

Result: sum is the total cost

We can analyze the online algorithm in the context of a game between an
online player and a malicious adversary. The online player runs the online

160 A. R. Ahmed et al.

algorithm on an input created by the adversary. The adversary, based on the
knowledge of the online algorithm, constructs the worst possible input (i.e., one
that maximizes the competitive ratio). Consider Algorithm Greedy above and
the adversary strategy of making an instance very costly for Algorithm Greedy
but, at the same time, inexpensive for OPT. The following lemma gives a lower
bound for OPT’s cost.

Lemma 1. Let d be the distance between all adjacent facilities. If the assign-
ments of OPT and Algorithm Greedy are not the same, then OPT’s cost is at
least d

2 .

Proof. Let cx be the first customer for which the assignments of OPT and Algo-
rithm Greedy differ. The optimal cost for assigning cx is at least d

2 . Hence the
total optimal cost is at least d

2 . ��
The following theorem determines the worst input sequence an adversary can

construct for Algorithm Greedy and provides a competitive ratio.

Theorem 1. Let F = {f1, f2, · · · , f|F |} be a set of facilities placed on the line,
such that the distance between every pair of adjacent facilities is d, where d is a
constant. Then R(Algorithm Greedy) ≤ 4|F |.
Proof. Recall the definition of a well distributed input sequence, namely that
there is at least one customer between any two adjacent facilities. When the
metric space is a line, all customers have cost less than d in the optimum assign-
ment of a well distributed input sequence. However, if the input sequence is not
well distributed, there are some customers with assignment cost greater than d.
We consider these two cases separately. For both cases, assume now that the
facilities have unit capacity. Later we will also deal with the case for capacity l,
where l > 1.

Let fl is the leftmost facility and fr be the rightmost facility. Consider a
customer c who appears to the left of fl. The distance between c and fl is
distance(fl, c). Both Cost Algorithm Greedy(I) and Cost OPT(I) must pay the
amount distance(fl, c). The ratio of Cost Algorithm Greedy(I) to Cost OPT(I)
increases when distance(fl, c) decreases. The case when c appears to the right of
fr is analogous. Now consider the case where customers appear between fl and
fr, since the ratio does not increase if customers appear outside of this range
(because both OPT and Algorithm Greedy have to consider the region outside
this range).

We first consider the case when all customers have costs less than d in the
optimum assignment. In the worst case, the adversary places all the customers
very close to the facilities except the first customer c1 as illustrated in Fig. 1.
The total cost of Algorithm Greedy is no more than 2|F |d. In the optimum
assignment all customers ci have cost εi except c1. The cost of the first customer
c1 is γ, where γ > d

2 (Lemma 1). Then Cost Algorithm Greedy(I)
Cost OPT(I) ≤ 2|F |d

d
2

= 4|F |.

Online Facility Assignment 161

Fig. 1. The configurations of Algorithm Greedy and OPT

In the second case, k customers have costs greater than d in the optimum
assignment. Hence, the total cost of the optimum assignment is at least kd.
We have assumed that the customers at distance less than d are assigned with
cost zero by the optimal algorithm and there are |F | − k such customers. In the
assignment created by Algorithm Greedy, each of these customers would have
cost at most d. Note that if any of these customers have cost greater than d,
then that assignment A can be easily transformed to an equivalent assignment
B with total cost equal to that of the original assignment A and so that |F | − k
customers have cost no more than d. The transformation goes one step at a
time, as follows. If a customer c1 assigned to a facility f1 by OPT has cost
less than or equal to d and c1 is assigned to a facility f2 in A and has cost
greater than d, then we get a new assignment A′ by assigning c1 to f1 and c2
to f2, where c2 was the customer assigned to f1 in A. Similarly, we can swap
the next pair to get assignment A′′, and continue this process until we get the
equivalent assignment B. There are |F | − k customers in B with cost at most
d and each of the remaining k customers have a cost at most (|F | − 1)d. Then
Cost Algorithm Greedy(I)

Cost OPT(I) ≤ (|F |−1)dk+(|F |−k)d
kd = (k+1)|F |

k − 2.

In the analysis above we assumed unit capacity; now let each facility have
capacity l, where l > 1. Suppose that there exists an input sequence of customers
I for which the ratio is greater than 4|F |. We can partition I into I1, I2, · · · , Il
in such a way that the following conditions hold:

– Ii ∩ Ij = ∅ for 1 ≤ i, j ≤ l and i �= j.
– I1 ∪ I2 ∪ · · · ∪ Il = I.
– Exactly one customer from Ii is assigned to a facility fj for 1 ≤ i ≤ l and

1 ≤ j ≤ |F |.

Then there exists a set Imax ∈ {I1, I2, · · · , Il} such that the ratio of the
corresponding cost of Algorithm Greedy to the cost of OPT is greater than 4|F |.
If we take a set of facilities with unit capacities and place the customers of Imax

in the same order as they appear in I, the ratio would be greater than 4|F |
which is a contradiction to the bound of unit capacity. ��

Note that this algorithm does not generalize to non-equidistant facilities. In
particular, if the distances between adjacent facilities increase exponentially, this
algorithm can be forced to pay a factor of O(2|F |) more than OPT.

162 A. R. Ahmed et al.

3.2 Algorithm σ-Randomized-Greedy

In this section we introduce randomness to the greedy method of the previ-
ous section and show that better competitive ratios can be obtained. With
deterministic online algorithms, the adversary knows the full strategy and can
select the worst input sequence. This is not possible if ALG is a randomized
algorithm. An oblivious adversary must choose a finite input sequence I in
advance. ALG is c-competitive against an oblivious adversary if for every such
I, E[Cost ALG(I)] ≤ c.Cost OPT(I) + α where α is a constant independent
of I, and E[.] is the mathematical expectation operator taken with respect to
the random choices made by ALG. Since the offline player does not know the
outcomes of the random choices made by the online player, Cost OPT(I) is not
a random variable and there is no need to take its expectation.

We introduce randomness in Algorithm Greedy, described in the previous
section, and call the new method Algorithm σ-Randomized-Greedy. Let fx be
the facility which is nearest to customer cy and let σ be a real number. Then
σ-Randomized-Greedy checks whether the distance between cy and fx is less
than σ and if so then cy is assigned to fx. Otherwise, σ-Randomized-Greedy
tosses a fair coin before assigning a customer to a facility, choosing the nearest
free facility to the right (left) if the coin comes heads (tails).

We will next show that Algorithm σ-Randomized-Greedy performs better
than Algorithm Greedy.

Algorithm σ-Randomized-Greedy
Input: Customers I = {c1, · · · , cn}, facilities F = {f1, · · · , f|F |}, capacity

l
Output: An assignment of C to F and the total cost of that assignment
sum ← 0;
for i ← 1 to |F | do

capacityi = l;

for i ← 1 to n do
min ← ∞;
index ← −1;
for j ← 1 to |F | do

if capacityj > 0 and distance(fj , ci) < min then
min ← distance(fj , ci);
index ← j;

if min ≥ σ then
randomly select the nearest free facility fk to the left or right;
min ← distance(fk, ci);
index ← k;

assign ci to findex;
capacityindex ← capacityindex − 1;
sum ← sum + min;

Result: sum is the total cost

Online Facility Assignment 163

Theorem 2. Let I be a well distributed request sequence for Algorithm Greedy.
Let γ be the optimal cost for the first customer and εi be the optimal cost
for ith customer where i > 1. If σ > εi for all i and σ ≤ γ then Algorithm
σ-Randomized-Greedy is 9

2 -competitive for I.

Proof. Let F = {f1, f2, · · · , f|F |} be a set of facilities, such that the distance
between every pair of adjacent facilities is d, where d is a constant. Recall that
if an input I of customers has the property that all assignments cost less than d
in the optimum solution, then I is well distributed. The first customer c1 is placed
closer to f2 (Fig. 1) in order to fool Algorithm Greedy. Algorithm Greedy assigns
c1 to f2. Except the first customer c1, the adversary places every customer ck very
close to facility fk. Since Algorithm Greedy has already assigned c1 to f2, it can not
assign c2 to the same facility. Similarly, for every customer ck, Algorithm Greedy
assigns it to fk+1 although it is very close to fk. Algorithm σ-Randomized-Greedy
overcomes this situation by using randomness. Consider the first customer c1 who
is close to f2. Algorithm σ-Randomized-Greedy chooses either f1 or f2 with equal
probability 1

2 . Similarly for every customer ck, Algorithm σ-Randomized-Greedy
chooses either fk+1 or fk with equal probability 1

2 . Then

E[Cost σ-Randomized-Greedy(I)] =
d

4
+

|F |−2∑

i=1

{ 1
2i+1

(2id − d

2
)}

+
1

2|F |−1
{2(|F | − 1)d − d

2
}

<
d

4
+ d

|F |−2∑

i=1

i

2i

<
d

4
+ 2d

=
9d

4

Since the optimum cost is at least d/2, Algorithm σ-Randomized-Greedy is
9
2 -competitive for I. ��

This shows that Algorithm σ-Randomized-Greedy can obtain better
(expected) competitive ratios than Algorithm Greedy, for appropriate values
of σ. In the theorem above the value of σ is very small compared to d. If a
customer ci is placed beside a facility fj such that the distance between ci and
fj is less than σ, then it is assumed that there is no harm to assign ci to fj .

3.3 Competitive Analysis of Algorithm Optimal-Fill

In Sect. 3.1, we showed that Algorithm Greedy can be easily fooled by placing all
the customers very close to the facilities except for the first customer. We next
describe Algorithm Optimal-Fill, which is more efficient than Algorithm Greedy.
The idea is that when a new customer ci arrives, Algorithm Optimal-Fill finds out

164 A. R. Ahmed et al.

facility fj that would be selected by an optimal assignment of all the customers
c1, c2, · · · , ci. Algorithm Optimal-Fill then assigns ci to fj .

Algorithm Optimal-Fill
Input: Customers I = {c1, · · · , cn}, facilities F = {f1, · · · , f|F |}, capacity

l
Output: An assignment of C to F and the total cost of that assignment
sum ← 0;
for i ← 1 to n do

let fj be the new facility chosen by an optimal assignment of
customers c1, c2, · · · , ci;
assign ci to fj ;
sum ← sum + distance(fj , ci);

Result: sum is the total cost

The following theorem shows that Algorithm Optimal-Fill performs better
than deterministic greedy method.

Theorem 3. Let F = {f1, f2, · · · , f|F |} be a set of facilities placed on the line,
such that the distance between every pair of adjacent facilities is d, where d is a
constant. Then R(Algorithm Optimal-Fill) ≤ |F |.
Proof. In the worst case, the adversary can place each customer except the first
one on top of a facility, so the cost is zero, while Algorithm Optimal-Fill has to
pay for each of these customers. The adversary pays only for the first customer
and all others are free, because they are placed on top of their facilities. However,
Algorithm Optimal-Fill has to pay at least d for each of them. The two algorithms
(OPT and Optimal-Fill) are illustrated with an example with 5 facilities and 5
customers in Fig. 2.

Then Cost Algorithm Optimal−Fill(I)
Cost OPT(I) = d+2d+···+(|F |−1)d+ d

2
|F |d

2

< |F | ��

Fig. 2. The adversary places the first customer c1 between f3 and f4. Algorithm
Optimal-Fill assigns c1 to f3 because it is a little bit closer compared to f4. The
adversary now places c2 exactly on f3. Algorithm Optimal-Fill assigns c2 to f4 because
f3 and f4 are chosen by an optimal assignment for customers c1 and c2. The adversary
then places c3 exactly on f4. Algorithm Optimal-Fill assigns c3 to f2 because f2 is the
new facility chosen by an optimal assignment for customers c1, c2 and c3.

Online Facility Assignment 165

Note that R(Algorithm Optimal-Fill) is not affected when the distances
between adjacent facilities are different.

4 Facility Assignment on Connected Unweighted Graphs

We now consider the case where the facilities F are placed on the vertices of a
connected unweighted graph G = (V,E) and customers arrive one by one in an
online manner at vertices of G. We show that Algorithm Greedy has competitive
ratio 2|E(G)| and Algorithm Optimal-Fill has competitive ratio |E(G)||F |/r,
where r is the radius of G.

4.1 Competitive Analysis of Algorithm Greedy

In Sect. 3.1 we analyzed Algorithm Greedy on a line. The following theorem
describes the performance of Algorithm Greedy in the graph setting.

Theorem 4. Let M be a connected unweighted graph. Then R(Algorithm
Greedy) ≤ 2|E(M)|.
Proof. We assume that the facilities have unit capacity since the analysis is
similar for capacity l, where l > 1. Two facilities fi and fj are adjacent if there
exists a path P from fi to fj such that no other facilities are situated on P .
Recall the definition of a well distributed input sequence: an input I is well
distributed if there is at least one customer between any two adjacent facilities.
We first prove the claim for an input I which is well distributed. Then we show
how to transform I to I ′ such that I ′ is well distributed and the competitive
ratios of I and I ′ are the same.

We consider two cases; M is a tree and M contains at least one cycle. If M is
a tree, we assume that every leaf contains a facility, since R(Algorithm Greedy)
does not increase in the other case. In the worst case Cost Greedy(I) is less
than 2|E(M)| and Cost OPT(I) is equal to one as shown in Fig. 3. A square
box represents a facility and the input customers are shown by their sequence
numbers. In this case competitive ratio is 2|E(M)|.

Fig. 3. The configurations of Algorithm Greedy and OPT for a tree and a cycle.

166 A. R. Ahmed et al.

If M contains a cycle, R(Algorithm Greedy) does not increase. Consider a
set of facilities F placed situated on a cycle. In the worst case Cost Greedy(I)
is less than |E(M)| and Cost OPT(I) is equal to one, as shown in Fig. 3. In this
case the competitive ratio is |E(M)|.

Now suppose the input sequence I is not well distributed. Let M′ be the
minimum subgraph of M so that all customers are situated on M′. Consider
the set of facilities situated on M′. In the worst case the customers assigned
to those facilities by Algorithm Greedy incur total cost less than 2|E(M′)| and
OPT incurs only unit cost. If OPT incurs cost x to assign a customer to a
remaining facility, then Algorithm Greedy incurs at most x + |E(M′)| cost to
assign a customer to that facility. Hence, Cost Greedy(I) ≤ Cost OPT(I) − 1 +
|E(M′)|(|E(M)|− |E(M′)|)+2|E(M′)|. It follows that if |E(M′)| is small then
Algorithm Greedy will perform similar to OPT. The larger the value of |E(M′)|
the more well distributed the input I becomes. Hence R(Algorithm Greedy) ≤
2|E(M)|. ��

Theorem 4 immediately yields the following corollary.

Corollary 1. Let M be a connected unweighted graph and a set of facilities F
is placed on the vertices of M so that distance between two adjacent facilities is
equal. Then R(Algorithm Greedy) ≤ 4|F |.

4.2 Competitive Analysis of Algorithm Optimal-Fill

In Sect. 3.3 we showed that Algorithm Optimal-Fill was more efficient than
Algorithm Greedy, when the metric space was a line. In the case of a con-
nected unweighted graph, it is not straight-forward to determine whether Algo-
rithm Optimal-Fill is better than Algorithm Greedy. The answer depends on the
number of edges, facilities and the radius of the graph. The following theorem
describes the performance of Algorithm Optimal-Fill.

Theorem 5. Let M be a connected unweighted graph and a set of facilities F

is placed on the vertices of M. Then R(Algorithm Optimal-Fill) ≤ |E(M)||F |
r .

Proof. The proof is similar to the analysis of Theorem 4. It is sufficient to consider
the case when M is a tree and I is well distributed. Let x be a vertex in the center of
M which is not a facility. If no such vertex exists, the first customer c1 is placed on
a vertex which is not a facility and the distance from the center of M is minimum.
Otherwise, c1 is placed on x. In the worst case, Algorithm Optimal-Fill pays a cost
equal to the distance between two facilities for each customer, except the first one
(see Fig. 4). The adversary pays a cost which is no more than radius only for the
first customer. Algorithm Optimal-Fill traverses an edge no more than |F | times.
Hence, R(Algorithm Optimal-Fill) is at most |E(M)||F |

r . ��

Online Facility Assignment 167

5 Facility Assignment with a Finite Service Time

Until now we have assumed that if a customer ci is

Fig. 4. Worst case of
Algorithm Optimal-Fill

assigned to a facility fj , then ci remains there forever.
In other words, the service time of anassignment is
infinite. Hence a facility with capacity l can provide
service to at most l customers. If there are |F | facilities,
the total number of customers is limited to |F |l. In
this section we study the facility assignment problem
with a finite service time t. We assume a unit time
interval between arrivals of customers. When t = 1,
the service time is unit. Let cw be assigned to fx. and
let us consider the case where all facilities have unit
capacities (l = 1). If cy is next to cw then we can also
assign cy to fx although cw was assigned to fx. For unit
service time, both Algorithm Greedy and Algorithm
Optimal-Fill provide the optimal solution. When the service time is two (t = 2),
we can not assign cy to fx. However, if cz arrives just after cy, then we can assign
cz to fx.

Theorem 6. Let t be the time needed to provide service to a assigned customer.
No deterministic algorithm ALG is competitive for t = 2.

Proof. Let I = (c1, c2, · · · , cn) be the input sequence. The adversary places the
first customer c1 between any two adjacent facilities fi and fi+1. Suppose ALG
has assigned c1 to fi. The adversary now places c2, c3, · · · , cn exactly on the
facilities assigned for c1, c2, · · · , cn−1. The adversary runs the optimal algorithm.
It assigns c1 to fi+1, which incurs cost less than d, the distance between fi and
fi+1. The adversary does not pay any cost for the later assignments, because
each customer is placed exactly on a facility. However, ALG pays at least d for
each assignment except the first one. ��

6 Conclusion

We considered the online facility assignment problem and analyzed several algo-
rithms: Algorithm Greedy, Algorithm σ-Randomized-Greedy and Algorithm
Optimal-Fill. We analyzed the performance of these algorithms in two metric
spaces: the 1-dimensional line and a simple, connected, unweighted graph. On
the line, we made another strong assumption: that the distance between any two
adjacent facilities is the same. The algorithms we describe do not generalize to
the case when these distances are arbitrary. In Theorem 2, we further assumed
that the input sequence of customers is also well distributed. It would be inter-
esting to find out what happens one or both of these assumptions are dropped.
In the graph setting we do not make any assumptions about how the facilities are
distributed among the vertices, or about how customers are distributed among
the vertices. However, our results in this setting are weaker, in the sense that

168 A. R. Ahmed et al.

they depend on parameters such as the number of edges in the graph and its
radius. A natural question to ask is whether stronger results exist in the graph
setting, as well as in other metric spaces.

References

1. Akagi, T., Nakano, S.: On r-gatherings on the line. In: Wang, J., Yap, C. (eds.)
FAW 2015. LNCS, vol. 9130, pp. 25–32. Springer, Cham (2015). https://doi.org/
10.1007/978-3-319-19647-3 3

2. Antoniadis, A., Barcelo, N., Nugent, M., Pruhs, K., Scquizzato, M.: A o(n)-
competitive deterministic algorithm for online matching on a line. In: Bampis,
E., Svensson, O. (eds.) WAOA 2014. LNCS, vol. 8952, pp. 11–22. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-18263-6 2

3. Armon, A.: On min-max r-gatherings. Theor. Comput. Sci. 412(7), 573–582 (2011)
4. Bansal, N., Buchbinder, N., Gupta, A., Naor, J.S.: An O(log2 k)-competitive algo-

rithm for metric bipartite matching. Algorithmica 68(2), 390–403 (2012)
5. Bartal, Y., Koutsoupias, E.: On the competitive ratio of the work function algo-

rithm for the k-server problem. Theor. Comput. Sci. 324(2–3), 337–345 (2004)
6. Bein, W.W., Chrobak, M., Larmore, L.L.: The 3-server problem in the plane.

Theor. Comput. Sci. 289(1), 335–354 (2002)
7. Chrobak, M., Karloff, H., Payne, T., Vishwanathan, S.: New results on server

problems. SIAM J. Discrete Math. 4(2), 291–300 (1990)
8. Chrobak, M., Larmore, L.L.: An optimal on-line algorithm for k-servers on trees.

SIAM J. Comput. 20(1), 144–148 (1991)
9. Salhi, S., Drezner, E.: Facility location: a survey of applications and methods. J.

Oper. Research Soc. 47(11), 1421 (1995). https://doi.org/10.2307/3010210
10. Drezner, Z., Hamacher, H.W.: Facility Location: Applications and Theory.

Springer, Heidelberg (2004)
11. Kalyanasundaram, B., Pruhs, K.: Online weighted matching. J. Algorithms 14(3),

478–488 (1993)
12. Kao, M.Y., Reif, J.H., Tate, S.R.: Searching in an unknown environment: an opti-

mal randomized algorithm for the cow-path problem. Inf. Comput. 131(1), 63–79
(1996)

13. Khuller, S., Mitchell, S.G., Vazirani, V.V.: On-line algorithms for weighted bipar-
tite matching and stable marriages. Theor. Comput. Sci. 127(2), 255–267 (1994)

14. Kleinberg, J.M.: A lower bound for two-server balancing algorithms. Inf. Process.
Lett. 52(1), 39–43 (1994)

15. Koutsoupias, E., Papadimitriou, C.: The 2-evader problem. Inf. Process. Lett.
57(5), 249–252 (1996). https://doi.org/10.1016/0020-0190(96)00010-5

16. Manasse, M.S., McGeoch, L.A., Sleator, D.D.: Competitive algorithms for server
problems. J. Algorithms 11(2), 208–230 (1990)

17. Schrijver, A.: Combinatorial Optimization: Polyhedra and Efficiency, Algorithms
and Combinatorics, vol. 24. Springer, Heidelberg (2003)

18. Sleator, D.D., Tarjan, R.E.: Amortized efficiency of list update and paging rules.
Commun. ACM 28(2), 202–208 (1985)

https://doi.org/10.1007/978-3-319-19647-3_3
https://doi.org/10.1007/978-3-319-19647-3_3
https://doi.org/10.1007/978-3-319-18263-6_2
https://doi.org/10.2307/3010210
https://doi.org/10.1016/0020-0190(96)00010-5

Fault-Tolerant Complete Visibility
for Asynchronous Robots with Lights

Under One-Axis Agreement

Aisha Aljohani, Pavan Poudel, and Gokarna Sharma(B)

Department of Computer Science, Kent State University, Kent, OH 44242, USA
aaljoha6@kent.edu, {ppoudel,sharma}@cs.kent.edu

Abstract. We consider the distributed setting of N autonomous mobile
robots that operate in Look-Compute-Move (LCM) cycles and commu-
nicate with other robots using colored lights under the robots with lights
model. We study the fundamental Complete Visibility problem of
repositioning N robots on a plane so that each robot is visible to all
others. We assume obstructed visibility under which a robot cannot see
another robot if a third robot is positioned between them on the straight
line connecting them. We are interested in fault-tolerant algorithms. We
study fault-tolerance with respect to failures on the mobility of robots.
Therefore, any algorithm for Complete Visibility is required to provide
visibility between all non-faulty robots, independently of the behavior of
the faulty ones. We model mobility failures as crash faults in which each
faulty robot is allowed to stop its movement at any time and, once the
faulty robot stopped moving, that robot will remain stationary indefi-
nitely thereafter. There exists an algorithm for this problem that toler-
ates a single faulty robot in the semi-synchronous setting under both-axis
agreement. In this paper, we provide the first algorithm for this problem
that tolerates f ≤ N faulty robots in the asynchronous setting under
one-axis agreement. The proposed algorithm is collision-free – robots do
not share positions and their paths do not cross, energy efficient – each
robot performs at most one move, and handles non-rigidity of the robot
movements.

1 Introduction

In the well-celebrated classical model of distributed computing by mobile robots,
each robot is modeled as a point in the plane [11]. The robots are assumed to
be autonomous (no external control), anonymous (no unique identifiers), indis-
tinguishable (no external identifiers), and disoriented (no agreement on local
coordinate systems and units of distance measures). They execute the same algo-
rithm. Each robot proceeds in Look-Compute-Move (LCM) cycles: When a robot
becomes active, it first gets a snapshot of its surroundings (Look), then computes
a destination point based on the snapshot (Compute), and finally moves towards
the destination point (Move). Moreover, the robots are oblivious, i.e., in each

c© Springer International Publishing AG, part of Springer Nature 2018
M. S. Rahman et al. (Eds.): WALCOM 2018, LNCS 10755, pp. 169–182, 2018.
https://doi.org/10.1007/978-3-319-75172-6_15

http://orcid.org/0000-0002-4930-4609

170 A. Aljohani et al.

LCM cycle, each robot has no memory of its past LCM cycles [11]. Furthermore,
the robots are silent because they do not communicate directly, and only vision
and mobility enable them to coordinate their actions.

While silence has advantages, direct communication is preferred in many
other situations, for example, hostile environments, which makes coordination
efficient and relatively viable. One model that incorporates direct communication
is the robots with lights model [9,11,15], where each robot has an externally
visible light that can assume colors from a constant sized set, and hence robots
can explicitly communicate with each other using these colors. The colors are
persistent; i.e., the color is not erased at the end of a cycle. Except for lights,
the robots are oblivious as in the classical model.

Di Luna et al. [13] gave the first algorithm for robots with lights to solve
the fundamental Complete Visibility problem defined as follows: Given an
arbitrary initial configuration of N autonomous mobile robots located in distinct
points on a plane, they reach a configuration in which each robot is in a distinct
position from which it can see all other robots. Initially, some robots may be
obstructed from the view of other robots and the total number of robots, N , is
not known to robots. The importance of this problem is that it makes it possible
to solve many other robotic problems, including gathering, shape formation, and
leader election, under obstructed visibility [12,16]. Most importantly, it recovers
unobstructed visibility configuration starting from an obstructed visibility con-
figuration. Subsequently, several papers [12,16] solved this problem minimizing
number of colors. Recently, faster runtime algorithms [18–20] were studied for
this problem in the lights model (details in Related Work). This problem is
also called Mutual Visibility in some papers [12,16].

In this paper, we are interested in the fault-tolerant algorithms for Com-

plete Visibility in the robots with lights model. We study fault-tolerance
with respect to failures on the mobility of robots. Therefore, any algorithm for
Complete Visibility is required to provide visibility between all non-faulty
robots, independently of the behavior of the faulty ones and the locations of the
faulty robots. We model mobility failures as crash faults where each faulty robot
is allowed to stop its movement at any moment of time and remains stationary
indefinitely thereafter [2]. The only previous work that studied faults for this
problem is [3] in which the authors solved the problem for a single faulty robot
in the semi-synchronous setting under both-axis agreement. In this paper, we
focus on solving this problem tolerating f > 1 faulty robots in the weakest fully
asynchronous setting and under weaker one-axis agreement.

Contributions. We consider the same robot model as in [12,13], namely, robots
are oblivious except for a persistent light that can assume a constant number
of colors. Visibility could be obstructed by other robots in the line of sight and
N is not known. We assume that the setting is asynchronous where there is
no notion of common time and robots perform their LCM cycles at arbitrary
time. We also assume non-rigid moves – a robot in motion can be stopped (by
an adversary) before it reaches its destination point with the only constraint
that the robot moves at least distance Δ > 0, otherwise Complete Visibility

Fault-Tolerant Complete Visibility for Asynchronous Robots 171

cannot be solved [12]. As in [13], we assume that two robots cannot head to
the same destination and their paths when they move cannot cross. This would
constitute a collision. Furthermore, we assume one-axis agreement – all robots
agree on either x-axis or y-axis [11]. In this paper, we prove the following result.

Theorem 1. For any input configuration of N ≥ 3 robots (with lights) in dis-
tinct positions in a plane, Complete Visibility can be solved tolerating (up to)
N crash-faulty robots using 4 colors in O(N) time without collisions in the asyn-
chronous setting.

To the best of our knowledge, Theorem 1 is the first result for Complete

Visibility that tolerates (up to) N faulty robots in the asynchronous setting.
In the semi-synchronous (and also fully synchronous) setting, Theorem 1 only
needs 2 colors, which is optimal with respect to the number of colors used [12].
One prominent feature of our algorithm is that each robot moves at most once
during the execution and it has implications on energy efficiency of robots on
solving Complete Visibility.

When the robots are fault-free, the idea used in the existing algorithms
[12,13,16,18–20] is to reposition the robots so that they all become corners
of a N -corner convex hull. After that, a property of the convex hull guarantees
that there is a line connecting each corner with all others of the hull without
any third robot being collinear on those lines, i.e., a convex hull naturally solves
Complete Visibility. However, when robots are faulty, the faulty robots may
be in the interior of the convex hull and it is challenging to guarantee that all
non-faulty robots see each other (that is, faulty robots do not block the view for
the non-faulty robots to see each other). Since robots are oblivious and non-faulty
robots do not know which robots are faulty, this task becomes quite challeng-
ing. Aljohani and Sharma [3] managed to address this challenge only when at
most one robot in the interior of the hull experiences fault. In this paper, we
develop a technique in which non-faulty robots do not need to be positioned on
the corners of a hull to see other non-faulty robots and this gives the scalability
on number of faults that can be tolerated. Our idea is to move the robots in a
sequence starting from the Southmost robot and ending at the Northmost robot,
and guarantee that, when a robot makes a move, it moves to a position in such
a way that it sees from that position all robots that are positioned South of it
(both faulty and non-faulty).

Related Work. Di Luna et al. [13] gave the first algorithm for Complete

Visibility in the robots with lights model. They solved the problem using 6
colors in the semi-synchronous setting and 10 colors in the asynchronous setting
under both rigid and non-rigid movements. Di Luna et al. [12] solved the problem
using 2 colors in the semi-synchronous setting under rigid movements. They
solved the problem using 3 colors in the semi-synchronous setting under non-rigid
movements and in the asynchronous setting under rigid movements. They also
provided a solution using 3 colors in the asynchronous setting under non-rigid
movements under one-axis agreement. Sharma et al. [16] improved the number
of colors in the solution of Di Luna et al. [12] from 3 to 2. In the classical

172 A. Aljohani et al.

oblivious model (with no lights), Bhagat et al. [5] solved Complete Visibility

under one-axis agreement without the need of robots to be positioned on the
corners of a convex hull. However, all these results provided no runtime analysis.
Moreover, none of these results tolerate faults.

Vaidyanathan et al. [20] considered runtime for the very first time for Com-

plete Visibility giving an algorithm that runs in O(log N) time using O(1) col-
ors in the fully synchronous setting under rigid movements. Later, Sharma et al.
[18] provided an O(1) time algorithm using O(1) colors in the semi-synchronous
setting under rigid movements. Recently, Sharma et al. [17,19] provided an O(1)
time algorithm using O(1) colors in the asynchronous setting under rigid move-
ments. However, all these algorithms are not fault-tolerant. Aljohani and Sharma
[3] provided an algorithm that tolerates one faulty robot when robots have both
axis agreement in the semi-synchronous setting under rigid movements. The algo-
rithm we present in this paper assumes one-axis agreement, handles non-rigid
movements, and works in the fully asynchronous setting.

The computational power of the robots with lights model is studied in [9]
while the robots are working on the Euclidean plane and in [10] while the robots
are working on graphs.

The obstructed visibility, in general, is considered in the problem of uniformly
spreading robots operating on a line [6] and also in the near-gathering problem
[14] where collisions must be avoided among robots. It is also considered in
the so-called fat robots model [1,8] in which robots are not points, but non-
transparent unit discs. However, these works do not consider faulty robots. The
faults are considered for the gathering problem in the classical oblivious robots
model [2,4]. Our definition of crash faults is borrowed from [2].

Paper Organization. The rest of the paper is organized as follows. We present
the robot model and preliminaries in Sect. 2. We then present and analyze our
fault-tolerant Complete Visibility algorithm in Sect. 3 and conclude in Sect. 4.
Some proofs and pseudocodes are omitted due to space constraints.

2 Model and Preliminaries

Robots. We consider a distributed system of N autonomous robots from a set
Q = {r1, . . . , rN}. Each robot ri ∈ Q is a (dimensionless) point that can move
in the two-dimensional Euclidean plane R

2. Throughout the paper, we denote
by ri the robot ri as well as its position pi in R

2. We assume that each robot
ri ∈ Q shares one coordinate axis with other robots in Q, i.e., they agree on
either x-axis or y-axis (we use y-axis).

A robot ri can see, and be visible to, another robot rj if and only if there
is no third robot rk in the line segment rirj connecting ri and rj . Each robot
ri ∈ Q has a light that can assume a color at a time from a set of constant
number of different colors. We denote the color of a robot ri ∈ Q at any time by
variable ri.light. If ri.light = Red, then it means that ri has color Red. Moreover,
the color Red of ri is seen by all robots that can see ri at that time (ri also can
see its current color). The execution starts at time t = 0 and at time t = 0 all
robots in Q are stationary with each of them colored Off.

Fault-Tolerant Complete Visibility for Asynchronous Robots 173

Look-Compute-Move. Each robot ri is either active or inactive. When a robot
ri becomes active, it performs the “Look-Compute-Move” cycle as described
below.

– Look: For each robot rj that is visible to it, ri can observe the position of
rj on the plane and the color of the light of rj . Robot ri can also observe
its own color and position; that is, ri is visible to itself. Each robot observes
positions on its own frame of reference. That is, two different robots observing
the position of the same point may produce different coordinates. However,
a robot observes the positions of points accurately within its own reference
frame.

– Compute: In any LCM cycle, ri may perform an arbitrary computation using
only the colors and positions observed during the “look” portion of that LCM
cycle. This includes determination of a (possibly) new position and color for
ri for the start of next LCM cycle. Robot ri maintains this new color from
that cycle to the next.

– Move: At the end of the LCM cycle, ri changes its light to the new color and
moves to its new position.

Robot Activation. In the fully synchronous setting (FSYNC), every robot
is active in every LCM cycle. In the semi-synchronous setting (SSYNC), at
least one robot is active, and over an infinite number of LCM cycles, every
robot is active infinitely often. In the asynchronous setting (ASYNC), there
is no common notion of time and no assumption is made on the number and
frequency of LCM cycles in which a robot can be active. The only guarantee is
that every robot is active infinitely often. The moves of the robots may be non-
rigid – during the Move phase the robots move in a straight line but they may
stop their movement before they reach to the destination point computed in the
Compute phase, with the only exception that they move at least some distance
Δ > 0. We assume that the faulty robot can crash at any moment of time. After
the robot crashes, it does not move again (i.e., stays stationary indefinitely).
However, even after the robot crashes, we assume that it does not have impact
on the operations of its light. That is, the robot can correctly change its color
to any color in the color set according to the algorithm. We will argue in Sect. 4
that it seems necessary to guarantee termination tolerating f > 1 robot faults
even under one-axis agreement.

Runtime. For the FSYNC model, we measure time in rounds, where one round
is one LCM cycle. As a robot in the SSYNC (and ASYNC) model could stay
inactive for an indeterminate number of cycles and (time), we use the notion of
an epoch to measure runtime [7]. Let t0 denote the start time of the computation.
Epoch i is time period from ti−1 to ti where ti is the earliest time after ti−1 when
all robots have executed a complete LCM cycle at least once. In the FSYNC
model, an epoch is one round (one LCM cycle). We will use the term “time”
generically to mean rounds for the FSYNC model and epochs for the SSYNC
and ASYNC models.

174 A. Aljohani et al.

Configuration. A configuration Ct = {(rt1, col
t
1), . . . , (r

t
N , coltN)} defines the

positions of the robots in Q and their colors for any time t ≥ 0. A configuration
for a robot ri ∈ Q, Ct(ri), defines the positions of the robots in Q that are visible
to ri (including ri) and their colors, i.e., Ct(ri) ⊆ Ct, at time t. For simplicity,
we sometime write C,C(ri) to denote Ct,Ct(ri), respectively.

Fig. 1. Visible area

Visible Area. Let A be a set of points
(which are the current positions of the robots
in R

2) and P be the convex hull of the points
in A. P has the property that all the points
of A are either in the perimeter or in its
interior. The points in the perimeter of P
are either on corners of P or on the edges
of P, which we call corner and side points
of P, respectively. Let Qc,Qs,Qi be the set
of points at corners, sides, and the interior of
P. Moreover, let ci be a corner point of P and a, b be the counterclockwise and
clockwise neighbors of ci in the perimeter of P. The visible area for ci, denoted
as V isible Area(ci), is a polygonal subregion inside P within the triangle ciuw,
where u,w are the midpoints of edges cia, cib, respectively. According to this
computation, the visible areas for any two corner points of P are disjoint. Due
to obstructed visibility, V isible Area(ci) is computed based on C(ci) and the
corresponding hull P(ci). This computation is used in Sect. 3.

We now outline how V isible Area(ci) is computed for any corner ci of P.
The pseudocode is omitted due to space constraints. Initially, ci sets the triangle
ciuw as its V isible Area(ci). However, if ci sees some point of A inside ciuw,
then it sets as V isible Area(ci) the triangle ciyz such that there is no point
inside ciyz. Note that yz is parallel to ab. Let c′ be a point in C(ci). For every
other point c′′ ∈ C(ci), c′′ �= c′, c′′ �= ci, ci computes a line, L′, parallel to cic′′
passing through c′. Let HP be the half-plane divided by L′ such that ci is in
HP . Corner ci then updates its V isible Area(ci) by keeping only the portion
of V isible Area(ci) that is in the half-plane HP . This process is repeated for
all c′ ∈ C(ci)\{ci} and V isible Area(ci) is updated in every iteration. Now
from the area V isible Area(ci) that remains, ci removes the points that are
in the perimeter of V isible Area(ci) and also the points that are part of the
lines ←→cix, x ∈ C(ci)\{a, b, ci}, passing inside of V isible Area(ci). This removal of
points is crucial to guarantee that when ci moves to a point in V isible Area(ci),
it does not become collinear with any robot in Qs,Qi. Figure 1 illustrates the
computation of V isible Area(ci); the shaded area is V isible Area(ci) for corner
ci of P except the points on the lines inside it (e.g., the point of lines cic′ and
cic′′ inside V isible Area(ci). We have the following lemma from [18].

Lemma 1. V isible Area(ci) for each corner robot ci in P is non-empty. More-
over, when ci moves to a point inside V isible Area(ci) and no other robot in P
is moving simultaneously with ci, then ci remains as a corner of P and all the
other robots in P are visible to ci (and vice-versa).

Fault-Tolerant Complete Visibility for Asynchronous Robots 175

3 Algorithm

In this section, we present our Complete Visibility algorithm for N ≥ 3
robots with lights tolerating f ≤ N faulty robots, starting from any arbitrary
initial configuration with robots being in the distinct positions in a plane. The
algorithm works in the ASYNC setting handling non-rigid moves, under the
assumption that robots have one-axis agreement. We first provide a high level
overview and then give its details.

Algorithm 1. Complete Visibility for a robot ri ∈ Q in the ASYNC
model
1 // Look-Compute-Move cycle for each robot ri ∈ Q
2 Hor(ri) ← horizontal line passing through ri;
3 C(ri) ← configuration C for robot ri (including ri);
4 CHor(ri) ← configuration C(ri) of robots South of Hor(ri);
5 if |CHor(ri)| = ∅ then
6 if ri.light = Off ∧ there is no other robot on Hor(ri) then ri.light = Final;
7 if ri.light = Off ∧ there are robots on Hor(ri) ∧ ri is the endpoint robot on

Hor(ri) then ri.light = Intermediate;
8 if ri.light = Intermediate then
9 Set ri.light = Transit and move vertically South distance 1;

10 if ri.light = Transit ∧ ri sees no Intermediate colored robot then
ri.light = Final;

11 if |CHor(ri)| �= ∅ then
12 if ri.light = Off ∧ there is no other robot on Hor(ri) ∧ ri sees no robot

colored Off, Intermediate, or Transit South of Hor(ri) then
13 Vi ← V isible Area(ri,CHor(ri) ∪ {ri});
14 Hor(rj) ← horizontal line passing through robot rj South of Hor(ri)

closest to Hor(ri);
15 Vi ← Vi after removing the area South of Hor(rj);
16 Set ri.light = Transit and move to a point in Vi;
17 if ri.light = Off ∧ there are robots on Hor(ri) ∧ ri is the endpoint robot on

Hor(ri) ∧ there is no robot colored Off, Intermediate, or Transit South of
Hor(ri) then ri.light = Intermediate;

18 if ri.light = Intermediate then
19 Vi ← V isible Area(ri,CHor(ri) ∪ {ri});
20 if there is another robot rk on Hor(ri) then
21 L′ ← line connecting rk with a robot r South of Hor(ri) such that

there is no robot in the cone area formed by lines Hor(ri) and
←→rkr;

22 Hor(rj) ← horizontal line passing through robot rj South of
Hor(ri) closest to Hor(ri);

23 Vi ← Vi after removing the area beyond line L′ and South of
Hor(rj);

24 else Vi ← Vi after removing the area South of Hor(rj);
25 Set ri.light = Transit and move to a point in Vi;
26 if ri.light = Transit ∧ ri sees no Intermediate colored robot then

ri.light = Final;

176 A. Aljohani et al.

High Level Overview of the Algorithm. The goal is to make robots progress
toward a configuration where no three non-faulty robots are collinear and no
faulty robot is in a line connecting two non-faulty robots. When all (non-faulty)
robots in Q satisfy this property, this solves Complete Visibility. All previous
algorithms for Complete Visibility [12,13,16,18–20] arrange robots on the
corners of a convex hull. Although convex hull is not the required condition for
Complete Visibility (i.e., it is a sufficient condition), the correctness analysis
becomes easier. However, when faulty robots are in hull’s interior, it is difficult
to arrange robots on the corners of a hull.

Our idea is to develop a technique which does not require robots to be posi-
tioned on the corners of a convex hull, and hence scales on the number of faults it
can tolerate. Let C0 be any initial configuration of the robots in Q with robots
being in the distinct positions on the plane. Let L be a vertical line (robots
agree on y-axis). The robots in Q can be projected to L so that all the robots
are between positions bL and tL on L, where bL is bottommost position on L
that the robots in Q are projected to and tL is the topmost position on L that
the robots on L are projected to. There can be at most N different points on L
that the robots in Q can be projected to. The idea in our algorithm is to ask the
robots whose positions were projected on bL to move first. Those robots then
terminate. Until this time, the robots that are not projected to bL do nothing.
After that, the robots that are projected to a point b1L (the neighboring point of
bL on L) move and terminate; the robots that are not projected to b1L do nothing.
This process then repeats until the robots that are projected to tL move and
terminate. The algorithm then finishes. We show that this process guarantees
that Complete Visibility is achieved for the non-faulty robots in Q even when
(up to) f ≤ N robots experience faults.

At any time which robots of Q move and which robots of Q do not move is
determined through the colors displayed on the lights. We need to be careful how
the robots move when two or more robots are projected to the same position on
L. We handle this issue by asking robots that are at the two extremal points on
the horizontal line they are positioned on to move first and then their neighbors
can move subsequently.

In C0, all robots in Q have color Off and are stationary. But, in the Com-

plete Visibility configuration, all robots in Q have color Final. The algo-
rithm uses four colors Final, Transit, Intermediate, and Off. The colors
Intermediate and Transit are to synchronize the simultaneous moves of the
(at most) two robots at any moment of time in the ASYNC setting to make sure
that Complete Visibility is achieved satisfying Theorem 1. These two colors
are not required in the SSYNC (and FSYNC) setting (details in Sect. 4). More-
over, robots do not know N and their termination decision is solely based on the
color they assume. The robots work autonomously only having the information
about the robots they see.

Details of the Algorithm. The pseudocode of the algorithm is given in Algo-
rithm1. Initially at C0, the lights of all robots are set to color Off and the robots
are stationary. Let ri be a robot in Q. Let Hor(ri) be a horizontal line passing

Fault-Tolerant Complete Visibility for Asynchronous Robots 177

through the position of ri. We first discuss how ri moves if it sees no robot
South of Hor(ri), i.e., ri is the Southmost robot in the configuration. Robot
ri can determine whether it is a Southmost robot or not as it knows y-axis.
Robot ri simply changes its color to Final without moving if it sees no other
robot on Hor(ri). If ri sees some other robot on Hor(ri), it changes its color to
Intermediate (without moving) if it is positioned on Hor(ri) such that it sees
robots on only one side on Hor(ri). We call ri the endpoint robot on Hor(ri)
if the above condition is satisfied. Otherwise, ri is on Hor(ri) with at least a
robot on Hor(ri) on its both sides and ri does nothing until it either becomes
the endpoint robot on Hor(ri) (fault-free case) or the robot on at least one side
of Hor(ri) is colored Final (faulty case). After ri is colored Intermediate, it
assumes color Transit and moves distance 1 vertically South. If ri is colored
Transit, it assumes color Final if it sees no Intermediate colored robot. If ri
sees an Intermediate colored robot, they both were on Hor(ri) before ri moved,
and the waiting makes sure that the Intermediate colored robot also moves
before ri terminates. This makes synchronization easier in the ASYNC setting.
We will discuss in Sect. 4 this is not needed in the SSYNC (and FSYNC)
setting.

We now discuss how ri moves if it sees at least a robot South of Hor(ri).
Robot ri does not move until it sees at least a Off, Intermediate, or
Transit colored robot South of Hor(ri). The idea here is for ri to com-
pute V isible Area(ri,CHor(ri) ∪ {ri}) considering the robots South of Hor(ri)
that it sees and move to a point in V isible Area(ri,CHor(ri) ∪ {ri}). If
ri is the only robot on Hor(ri), it assumes color Transit and moves to
a point in V isible Area(ri,CHor(ri) ∪ {ri}). If ri is not the only robot
on Hor(ri) but an endpoint robot on Hor(ri), then it first assumes color
Intermediate from Off. After ri colored Intermediate, it moves as fol-
lows: ri computes V isible Area(ri,CHor(ri) ∪ {ri}) and moves to a point
in V isible Area(ri,CHor(ri) ∪ {ri}) assuming color Transit. After colored
Transit, it sets its light to Final if it does not see any Intermediate col-
ored robot. If it sees an Intermediate colored robot rj , rj must be North of
Hor(ri) and it waits until rj assumes color Transit. After colored Final, ri
terminates its computation when it becomes active next time.

We restrict how a point in V isible Area(ri,CHor(ri) ∪ {ri}) is selected to
avoid robot collisions. Suppose Hor(rj) is the horizontal line passing through a
robot rj South of Hor(ri) such that there is no robot between lines Hor(ri) and
Hor(rj). We restrict that ri can not move to positions of Hor(rj) or South of
it. This will avoid collisions between robots of Hor(ri) and Hor(rj). To avoid
collisions between two robots of Hor(ri) (that can move simultaneously) and
also to make sure that the moves of those robots do not block the visibility of
each other to see the robots South of Hor(ri), we restrict ri not to move on
or beyond rkr (in addition to not moving beyond Hor(rj)), where rk is the
neighboring robot of ri on Hor(ri) and r is the robot South of Hor(ri) such
that there is no robot in the cone area formed by lines Hor(ri) and rkr. Figure 2
illustrates these ideas.

178 A. Aljohani et al.

Fig. 2. (a) V isible area(ri) for ri (black region) is computed by removing the part of
it beyond rkr (red region) and (b) disjoint V isible Area(ri) and V isible Area(rk) for
two robots ri, rk on Hor(ri) (black regions) using the technique of (a). (Color figure
online)

Analysis of the Algorithm. We now analyze the correctness of the algorithm.
Particularly, we show that the algorithm solves Complete Visibility starting
from any initial configuration C0 with all robots in Q being in the distinct
positions in the plane and (up to) N robots become faulty. We further show
that the algorithm terminates in O(N) time and the execution is collision- and
deadlock-free. We start with the following lemma.

Lemma 2. Let Hor(ri) and Hor(rj) be horizontal lines passing through robots
ri, rj such that there is no robot in the area between lines Hor(ri) and Hor(rj) and
Hor(rj) is in South of Hor(ri). No robot on Hor(ri) is colored Intermediate,
Transit, or Final until all the robots on Hor(rj) are colored Final.

Lemma 3. When a robot ri on Hor(ri) computes V isible Area(ri,CHor(ri) ∪
{ri}), it is a corner of the convex hull P of the robots of CHor(ri) ∪ {ri}.
Proof. We have that CHor(ri) consists of the robots South of Hor(ri) that ri
sees. Therefore, when ri computes a convex hull P(ri) of the robots in CHor(ri)∪
{ri}, it makes an angle of <180◦ with its two neighboring corners of P(ri) since
all the robots on CHor(ri) are in one side of Hor(ri).
�
Lemma 4. When a (non-faulty) robot ri moves once, it sees all robots (both
faulty and non-faulty) South of Hor(ri).

Proof. We have from Lemma 1 that when a corner ri of a convex hull P moves
to a point in V isible Area(ri,CHor(ri) ∪ {ri}) and no other robot is moving
simultaneously with ri, ri sees all other robots of P (corners, side, and interior).
We have from Lemma 3 that ri is a corner of a convex hull P formed by the
robots in CHor(ri) ∪ {ri}. When ri moves in Algorithm 1, no other robot of P
formed from CHor(ri) ∪ {ri} is moving, therefore ri sees all the robots that are
South of Hor(ri). It only remains to show that, at most one other robot r on
Hor(ri) that is moving simultaneously with ri is also visible to ri and vice-versa.
This is immediate from the visible areas V isible Area(ri,CHor(ri) ∪ {ri}) and
V isible Area(r,CHor(r) ∪ {r}) computed by ri and r, respectively. Let a, b be

Fault-Tolerant Complete Visibility for Asynchronous Robots 179

the left and right neighbors of ri in P(ri) among the robots in CHor(ri) ∪ {ri}.
Moreover, let a′, b′ be the left and right neighbors of r in P(r) among the robots
in CHor(r) ∪ {r}. We have that V isible Area(ri) does not contain the area
beyond line rb′ and V isible Area(r) does not contain the area beyond line ria
(Fig. 2). Therefore, even if ri, r move simultaneously, ri does not become collinear
with r in line rx connecting r with any robot x ∈ CHor(r) and r does not
become collinear with ri in line rix connecting ri with any robot x ∈ CHor(ri).
Moreover, even after ri and r move simultaneously, ri sees r and vice-versa
follows immediately since they move in the area between Hor(ri) and Hor(rj)
with rj the same robot in the view of both ri, r and there is no third robot in
that area.
�
Lemma 5. Each (non-faulty) robot does at most one move during entire
execution.

Proof. Pick any robot ri. If it is a Southmost robot and there is no robot on
Hor(ri), it terminates without moving. If it picks color Intermediate, then
it does so without moving. If it picks color Transit, then it moves. If ri is
already colored Transit, it changes its color to Final without moving. If ri is
colored Final, it terminates. Therefore, a robot ri moves only once when it picks
color Transit either from Off or from Intermediate. Therefore, each non-faulty
robot moves at most once.
�
Lemma 6. Algorithm1 is collision-free.

Proof. Let Hor(ri) and Hor(rj) be two horizontal lines such that there is no
robot in the area between Hor(ri) and Hor(rj). Let Hor(rj) be South of
Hor(ri). The robots on lines Hor(ri) and Hor(rj) do not collide since the robots
on Hor(ri) never reach to positions of Hor(rj) and the robots on Hor(rj) never
move North of Hor(rj). Therefore, it only remains to show that the robots on
Hor(ri) do not collide with each other. We have that at most 2 endpoint robots
ri, rk on Hor(ri) move simultaneously. The robots move in such a way that ri
does not cross line rkr and rk does not cross line ria (as defined in Fig. 2b) and
hence this avoids collisions between them.
�
Lemma 7. Algorithm1 is deadlock-free.

Lemma 8. Algorithm1 runs for O(N) epochs.

Lemma 9. The non-rigid movements of robots do not impact the guarantees of
the algorithm.

Proof. Let di be the point in V isible Area(ri) that ri moves under rigid move-
ments. Let ridi be the line segment connecting ri with di before ri moves to
di. Under non-rigid movements, ri may stop anywhere between ri and di (we
know that it does not stop at ri since it moves at least Δ > 0). We have from
V isible Area(ri) that ri is visible to all other non-moving robots if it moves
to any point in V isible Area(ri). According to the visible area construction,

180 A. Aljohani et al.

all points in line ridi contain inside the visible area V isible Area(ri). There-
fore, even under non-rigid movements, the algorithm provides all guarantees we
obtained under rigid movements.
�

Proof of Theorem 1. We have Theorem 1 combining the results of Lemmas 4–9.

4 Discussion and Concluding Remarks

Improved Color Algorithm for the SSYNC (and FSYNC) Model. In
the SSYNC setting (and the FSYNC setting), we need only two colors in
Algorithm 1, which is optimal with respect to the number of colors when N is not
known [12]. In particular, we do not need colors Intermediate and Transit. The
colors Intermediate and Transit in Algorithm 1 are to synchronize the moves
of the robots when there are two or more robots on a horizontal line Hor(ri) in
the ASYNC setting. However, in the SSYNC (and also in the FSYNC) setting,
this can be achieved without these colors since: (i) if only one robot ri of Hor(ri)
moves at round k, at round k + 1, the other robot rj already sees ri South of
Hor(ri) and it can move in such a way that all the robots South of Hor(ri) see
it; (ii) if both robots ri, rj on Hor(ri) move in round k, then at round k+1 they
will be on their final positions, all the robots South of Hor(ri) see both of them,
and ri, rj see each other. All these results can be proved extending the analysis
of Sect. 3 and runtime is still O(N).

Impact of Correctness of Lights after Faults. The tolerance to faults in
our algorithm depends on the correctness of the colors of the lights even after
robots experience (mobility) faults. I.e., even after robot becomes faulty, lights
can be correctly set from Off to Final, possibly going through the changes to
Intermediate and Transit (without moving). If the robot color stays as the
color it has at the time of fault, then we cannot guarantee termination and
also whether Complete Visibility is solved. This is because, it is difficult
to determine for a robot ri whether the (non-faulty) robots that are South of
Hor(ri) already moved once or not. Therefore, it is an open problem to solve
Complete Visibility in this setting tolerating multiple faults. The algorithm
in [3] handles a single fault even when the light stays at the color at the time of
fault.

Concluding Remarks. We have presented, to our best knowledge, the first
fault-tolerant algorithm for the Complete Visibility problem using 4 colors
for robots with lights in the ASYNC setting under non-rigid movements and
one-axis agreement, tolerating (up to) N faulty robots, not known a priori. The
algorithm terminates in O(N) time avoiding collisions. The previous work [3]
was only able to handle one faulty robot in the SSYNC setting under rigid
movements and both-axis agreement using 3 colors. We then showed that the
number of colors can be improved from 4 to 2 in the SSYNC setting (and also
in the FSYNC) setting.

Fault-Tolerant Complete Visibility for Asynchronous Robots 181

Many questions remain for future work. It will be interesting to minimize
the number of colors from 4 to 2 in our algorithm in the ASYNC setting. Most
importantly, it will be interesting to remove the one-axis agreement assumption
and solve this problem tolerating multiple faults when lights can be faulty in
addition to mobility faults.

References

1. Agathangelou, C., Georgiou, C., Mavronicolas, M.: A distributed algorithm for
gathering many fat mobile robots in the plane. In: PODC, pp. 250–259 (2013)

2. Agmon, N., Peleg, D.: Fault-tolerant gathering algorithms for autonomous mobile
robots. SIAM J. Comput. 36(1), 56–82 (2006)

3. Aljohani, A., Sharma, G.: Complete visibility for mobile agents with lights toler-
ating a faulty agent. In: APDCM, pp. 834–843 (2017)

4. Bhagat, S., Chaudhuri, S.G., Mukhopadhyaya, K.: Fault-tolerant gathering of asyn-
chronous oblivious mobile robots under one-axis agreement. J. Discrete Algorithm.
36, 50–62 (2016)

5. Bhagat, S., Chaudhuri, S.G., Mukhopadhyaya, K.: Formation of general posi-
tion by asynchronous mobile robots under one-axis agreement. In: Kaykobad, M.,
Petreschi, R. (eds.) WALCOM 2016. LNCS, vol. 9627, pp. 80–91. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-30139-6 7

6. Cohen, R., Peleg, D.: Local spreading algorithms for autonomous robot systems.
Theor. Comput. Sci. 399(1–2), 71–82 (2008)

7. Cord-Landwehr, A., Degener, B., Fischer, M., Hüllmann, M., Kempkes, B., Klaas,
A., Kling, P., Kurras, S., Märtens, M., Meyer auf der Heide, F., Raupach, C.,
Swierkot, K., Warner, D., Weddemann, C., Wonisch, D.: A new approach for ana-
lyzing convergence algorithms for mobile robots. In: Aceto, L., Henzinger, M.,
Sgall, J. (eds.) ICALP 2011. LNCS, vol. 6756, pp. 650–661. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-22012-8 52

8. Czyzowicz, J., Gasieniec, L., Pelc, A.: Gathering few fat mobile robots in the plane.
Theor. Comput. Sci. 410(6–7), 481–499 (2009)

9. Das, S., Flocchini, P., Prencipe, G., Santoro, N., Yamashita, M.: Autonomous
mobile robots with lights. Theor. Comput. Sci. 609, 171–184 (2016)

10. D’Emidio, M., Frigioni, D., Navarra, A.: Characterizing the computational power
of anonymous mobile robots. In: ICDCS, pp. 293–302 (2016)

11. Flocchini, P., Prencipe, G., Santoro, N.: Distributed computing by oblivious mobile
robots. Synth. Lectur. Distrib. Comput. Theor. 3(2), 1–185 (2012)

12. Luna, G.A.D., Flocchini, P., Chaudhuri, S.G., Poloni, F., Santoro, N., Viglietta,
G.: Mutual visibility by luminous robots without collisions. Inf. Comput. 254,
392–418 (2017)

13. Di Luna, G.A., Flocchini, P., Gan Chaudhuri, S., Santoro, N., Viglietta, G.: Robots
with lights: overcoming obstructed visibility without colliding. In: Felber, P., Garg,
V. (eds.) SSS 2014. LNCS, vol. 8756, pp. 150–164. Springer, Cham (2014). https://
doi.org/10.1007/978-3-319-11764-5 11

14. Pagli, L., Prencipe, G., Viglietta, G.: Getting close without touching: Near-
gathering for autonomous mobile robots. Distrib. Comput. 28(5), 333–349 (2015)

15. Peleg, D.: Distributed coordination algorithms for mobile robot swarms: new direc-
tions and challenges. In: Pal, A., Kshemkalyani, A.D., Kumar, R., Gupta, A. (eds.)
IWDC 2005. LNCS, vol. 3741, pp. 1–12. Springer, Heidelberg (2005). https://doi.
org/10.1007/11603771 1

https://doi.org/10.1007/978-3-319-30139-6_7
https://doi.org/10.1007/978-3-642-22012-8_52
https://doi.org/10.1007/978-3-319-11764-5_11
https://doi.org/10.1007/978-3-319-11764-5_11
https://doi.org/10.1007/11603771_1
https://doi.org/10.1007/11603771_1

182 A. Aljohani et al.

16. Sharma, G., Busch, C., Mukhopadhyay, S.: Mutual visibility with an optimal num-
ber of colors. In: Bose, P., G ↪asieniec, L.A., Römer, K., Wattenhofer, R. (eds.)
ALGOSENSORS 2015. LNCS, vol. 9536, pp. 196–210. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-28472-9 15

17. Sharma, G., Vaidyanathan, R., Trahan, J.L.: Constant-time complete visibility
for asynchronous robots with lights. In: Spirakis, P., Tsigas, P. (eds.) SSS 2017.
LNCS, vol. 10616, pp. 265–281. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-69084-1 18

18. Sharma, G., Vaidyanathan, R., Trahan, J.L., Busch, C., Rai, S.: Complete visibility
for robots with lights in O(1) time. In: Bonakdarpour, B., Petit, F. (eds.) SSS 2016.
LNCS, vol. 10083, pp. 327–345. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-49259-9 26

19. Sharma, G., Vaidyanathan, R., Trahan, J.L., Busch, C., Rai, S.: Logarithmic-time
complete visibility for asynchronous robots with lights. In: IPDPS, pp. 513–522
(2017)

20. Vaidyanathan, R., Busch, C., Trahan, J.L., Sharma, G., Rai, S.: Logarithmic-time
complete visibility for robots with lights. In: IPDPS, pp. 375–384 (2015)

https://doi.org/10.1007/978-3-319-28472-9_15
https://doi.org/10.1007/978-3-319-69084-1_18
https://doi.org/10.1007/978-3-319-69084-1_18
https://doi.org/10.1007/978-3-319-49259-9_26
https://doi.org/10.1007/978-3-319-49259-9_26

A Simple, Fast, Filter-Based Algorithm
for Circular Sequence Comparison

Md. Aashikur Rahman Azim(B), Mohimenul Kabir, and M. Sohel Rahman

Department of Computer Science and Engineering, Bangladesh University
of Engineering and Technology, Dhaka 1215, Bangladesh

aashikazim@gmail.com, mahibuet045@gmail.com, sohel.kcl@gmail.com

Abstract. This paper deals with the circular sequence comparison prob-
lem, a fundamental step in many important tasks in bioinformatics,
which appears as an interesting problem in many biological contexts.
Traditional algorithms for measuring approximation in sequence com-
parison are based on the notions of distance or similarity, and are gen-
erally computed through sequence alignment techniques. The circular
sequence comparison (CSC) problem consists in finding all comparisons
of the rotations of a pattern P of length m in a text T of length n.
In CSC, we consider comparisons with minimum distance from circular
pattern P to text T under the Hamming distance model. In this paper,
we present a simple and fast filter-based algorithm to solve the CSC
problem. We compare our algorithm with the state of the art algorithms
and the results are found to be excellent. In particular, our algorithm
runs almost twice as fast than the state of the art. Much of the efficiency
of our algorithm can be attributed to its filters that are effective but
extremely simple and lightweight.

1 Introduction

Sequence alignment is a standard technique in bioinformatics for visualizing the
relationships between residues in a collection of evolutionarily or structurally
related proteins and DNA. In this paper, we consider the pairwise circular
sequence comparison problem. Under the edit distance model, it consists in
finding an optimal linear alignment of two circular strings. This problem for
two strings P and T of length m and n ≥ m, respectively, can be solved under
the edit distance model.

The circular pattern, denoted C(P), corresponding to a given pattern P =
P1 . . . Pm, is formed by connecting P1 with Pm and forming a sort of a cycle;
this gives us the notion where the same circular pattern can be seen as m dif-
ferent linear patterns, which would all be considered equivalent. In the sequence
comparison (CSC) problem, the authors of [1] presented an algorithm based on
the suffix array [2] to solve the CSC problem that finds the rotation of P such
that the β-blockwise q-gram distance between the rotated P and T is minimal,
thereby solving exactly the circular sequence comparison problem under the β-
blockwise q-gram distance measure. In this article, we are interested to solve the
c© Springer International Publishing AG, part of Springer Nature 2018
M. S. Rahman et al. (Eds.): WALCOM 2018, LNCS 10755, pp. 183–194, 2018.
https://doi.org/10.1007/978-3-319-75172-6_16

184 Md. A. R. Azim et al.

problem CSC using the state of the art algorithm just stated above of [1] with
a preprocessing of filtering techniques.

1.1 Applications and Motivations

Circular patterns are known to occur in the DNA of viruses [3,4], bacteria [5],
eukaryotic cells [6], and archaea [7]. Gusfield [8] rightfully identified the algo-
rithms on circular strings to be important in the analysis of organisms with such
structures.

Double-stranded, circular chromosomes and plasmids are found in most bac-
teria and archaea. Whole-genome comparison is a very useful tool in classifying
bacterial strains, as well as in inferring phylogenetic associations among them.
This is due to the dense structure of bacterial chromosomes, caused by the
absence of introns, and the organisation of genes into operons. The extended
benefit of aligning plasmids is the ability to identify important genes, such as
antibiotic resistance genes, thereby enabling their study and exploitation by
genetic engineering techniques [9].

Circular strings have been studied in the context of sequence alignment. In
[10], basic algorithms for pair wise and multiple circular sequence alignment
have been presented. These results have later been improved in [11], where an
additional preprocessing stage is added to speed up the execution time of the
algorithm. Lee et al. [12] have considered Hamming distance and have presented
efficient algorithms for finding the optimal alignment and consensus sequence of
circular sequences on this distance metric. Interested readers are referred to [3–
8,10–12] and references therein for further discussion on applications of circular
pattern matching in computational molecular biology and other areas.

1.2 Our Contribution

In this paper, we present a fast and efficient algorithm for the exact Circu-
lar Sequence Comparison (CSC) problem based on some filtering techniques.
In our prior work [13] we presented SimpLiFiCPM that is a filter-based algo-
rithm to handle the exact version of the circular pattern matching (CPM) prob-
lem. SimpLiFiCPM is a filter-based algorithm that can solve the CPM problem
very efficiently and can beat the state of the art algorithms by a good mar-
gin. However, we will introduce the same filtering techniques to preprocess the
circular sequences and the DNA sequences. Our algorithm, referred to as the
SFF-CSC algorithm (pronounced “Simple, Fast, Filter-based CSC Algorithm”)
henceforth, employs a number of simple and effective filters to preprocess the
given sequences. After this preprocessing, we get a text of reduced length on
which we can apply any existing state of the art algorithms to find the solution
of CSC problem. In summary, SFF-CSC algorithm, in some sense simplifies the
search space of the exact circular sequence comparison problem.

We have conducted extensive experiments to compare our SFF-CSC algo-
rithm with the state of the art algorithms and the results are found to be excel-
lent. In particular, SFF-CSC algorithm runs almost twice as fast than the state

A Simple, Fast, Filter-Based Algorithm for Circular Sequence Comparison 185

of the art. Our algorithm turns out to be much faster in practice because of
the huge reduction in the search space through filtering. Also, the filtering tech-
niques we use are simple and lightweight but as can be realized from the results,
extremely effective.

1.3 Road Map

The rest of the paper is organized as follows. Section 2 gives a preliminary
description of some terminologies and concepts related to stringology that will
be used throughout this paper. Section 3 presents a brief literature review. In
Sect. 4 we describe our filtering algorithms. Section 5 presents the experimental
results. Section 6 draws conclusion followed by some future research directions.

2 Preliminaries

Let Σ be a finite alphabet. A string is a sequence of zero or more symbols from
alphabet Σ. The set of all strings over Σ is denoted by Σ∗. The length of a
string w is denoted by |w|. The empty string ε is a string of length 0, that is,
|ε| = 0. Let Σ+ = Σ∗− {ε}. For a string w = xyz, x, y and z are called a
prefix, factor (or equivalently, substring), and suffix of w, respectively. The i-th
character of a string w is denoted by w[i] for 1 ≤ i ≤ |w|, and the factor of a
string w that begins at position i and ends at position j is denoted by w[i : j] for
1 ≤ i ≤ j ≤ |w|. For convenience, we assume w[i : j] = ε if j < i. A k-factor is a
factor of length k. A suffix array of string w of length |w| is defined by an integer
array of size |w| which stores the starting positions of all lexicographically sorted
suffixes of w. Again, let Σq denote the set of all strings of length q over Σ for
q = 1, 2, . . . ,∞. A q-gram is any string v = a1a2 . . . aq in Σq.

A circular string of length m can be viewed as a traditional linear string which
has the left-most and right-most symbols wrapped around and stuck together in
some way. Under this notion, the same circular string can be seen as m different
linear strings, which would all be considered equivalent. Given a string P of
length m, we denote by Pi = P[i + 1 : m]P[1 : i], 0 ≤ i < m, the i-th rotation
of P and P0 = P.

Example 1. Suppose we have a pattern P = atcgatg. The pattern P has
the following rotations (i.e., conjugates): P1 = tcgatga,P2 = cgatgat,P3 =
gatgatc,P4 = atgatcg,P5 = tgatcga,P6 = gatcgat.

The Hamming distance between strings P and T , both of length n, is the
number of positions i, 1 ≤ i ≤ n, such that P[i] �= T [i]. Given a non-negative
integer k, we write P ≡k T or equivalently say that P k-matches T , if the
Hamming distance between P and T is at most k. In biology, the Hamming
distance is sometimes referred to as the Mutation distance.

We consider the DNA alphabet, i.e., Σ = {a, c, g, t}. Following the approach
of [13,14], we assign a numeric value to each character of the alphabet as follows.
Each character is assigned the number from the range [1...|Σ|] to the characters of

186 Md. A. R. Azim et al.

Σ following their inherent lexicographical order. We use num(x), x ∈ Σ to denote
the numeric value of the character x. So, we have num(a) = 1, num(c) = 2,
num(g) = 3 and num(t) = 4,. For a string S, we use the notation SN to denote
the numeric representation of the string S; and SN [i] denotes the numeric value
of the character S[i]. The concept of circular string and their rotations also apply
naturally on their numeric representations as is illustrated in Example 2 below.

Example 2. Suppose we have a pattern P = atcgatg. The numeric representa-
tion of P is PN = 1423143. And this numeric representation has the follow-
ing rotations: P1

N = 4231431, P2
N = 2314314, P3

N = 3143142, P4
N = 1431423,

P5
N = 4314231, P6

N = 3142314.

We give some further definitions related to the problem we study [1,15]. The
q-gram profile of a string P is the vector Gq(P), where q > 0 and Gq(P)[v]
denotes the total number of occurrences of q-gram v ∈

∑q in P. The q-gram
distance between two strings P and T is defined as

Dq(P, T) =
∑

v∈∑q

|Gq(P)[v] − Gq(T)[v]|.

Note that Dq is a pseudo-metric as Dq(P, T) can be 0 even if P �= T . And the β-
blockwise q-gram distance two strings P and T of length m and n, respectively,
is defined as

Dβ,q(P, T) =
β−1∑

j=0

Dq(P[
jm

β
...

(j + 1)m
β

− 1], T [
jn

β
...

(j + 1)n
β

− 1]).

In this paper, we consider the following problem, where we search for the i-th
rotation of P that minimizes its blockwise distance from T as defined in ([16]).
Ties are broken arbitrarily.

Problem 1 [16] (Circular Sequence Comparison (CSC)). Given a pattern P of
length m, a text T of length n ≥ m, and integers β ≥ 1 and q < m, find i such
that Dβ,q(Pi, T) is minimal.

The filters, we use related to the approach we study of [13] only give false
positive [13].

3 Brief Literature Review

The blockwise circular sequence comparison problem for two strings P and T
of length m and n ≥ m, respectively, can be solved under the edit [17] distance
model in time O(nm log m) [18]. This blockwise distance framework is a really
powerful filtering step for the actual circular edit distance computation [19].
Several other super-quadratic [20] and approximate quadratic-time [21] algo-
rithms exist. Trivially, for molecular biology applications, the same problem can
be solved in time O(nm2), if the problem uses scoring matrices and affine gap

A Simple, Fast, Filter-Based Algorithm for Circular Sequence Comparison 187

penalty scores. A direct application of pairwise circular sequence comparison is
progressive multiple circular sequence alignment [10,11,22,23]. Multiple circular
sequence alignment has also been considered in [24] under the Hamming [25]
distance model.

In [1], the authors introduced a fast exact algorithm for circular sequence
comparison under some realistic model. We studied the β-blockwise q-gram dis-
tance between two strings P and T , that is, a more powerful generalization of
the q-gram distance introduced as a string distance measure in [15]. Intuitively,
and similarly to [17,26], this generalization comprises partitioning P and T in β
blocks each, as evenly as possible, computing the q-gram distance between the
corresponding block pairs, and then summing up the distances computed block-
wise. The authors of [1] presented an algorithm based on the suffix array [2]
that finds the rotation of P such that the β-blockwise q-gram distance between
the rotated P and T is minimal, in time and space O(βm + n), where m = |P|
and n = |P|, thereby solving exactly the circular sequence comparison problem
under the β-blockwise q-gram distance measure.

4 Filtering Algorithm

As has been mentioned above, our algorithm is based on some filtering tech-
niques. In [13], the authors presented a framework based on a number of filters.
Here, we will be using filters used by SimpLiFiCPM [13] to make it useful and
effective in the context of CSC problem. In what follows, we follow the notations
of [13]. We start with a brief overview of our approach below based on the filters
of [13].

4.1 Overview of Our Approach

We employ a number of filters to compute a set N of indexes of T such that C(P)
matches T at position i ∈ N in such a way that there are no false negatives.

4.2 Filters of [13]

We employ a total of 6 filters of [13]. The key to observations of [13] and the
resulting filters is the fact that each observation of the filters results in a unique
output when applied to the rotations of a circular string. For example, consider
a hypothetical function X . We will always have the relation that X (P) = X (Pi)
for all 0 ≤ i < n. Recall that, P0 actually denotes P. For the sake of conciseness,
for such functions, we will abuse the notation a bit and use X (C(P)) to represent
X (Pi) for all 0 ≤ i < |P|.

Filter 1 of [13]. In [13], the authors defined the function sum() on a string P
of length m as follows: sum(P) =

∑m
i=1 PN [i]. Filter 1, is based on this sum()

function which observation as follows.

Observation 1 [13]. Consider a circular string P and a linear string T both
having length n. If C(P) matches T , then we must have sum(C(P)) = sum(T).

188 Md. A. R. Azim et al.

Filters 2 and 3 of [13]. Following the notation of second and third filters
of [13], the observation of filters 2 and 3 can be defined as follows. Filters 2
and 3, depend on a notion of distance between consecutive characters of a string.
The distance between two consecutive characters of a string P of length m is
defined by distance(P[i],P[i + 1]) = PN [i] − PN [i + 1], where 1 ≤ i ≤ m − 1.
The authors of [13] defined total distance(P) =

∑m−1
i=1 distance(P[i],P[i + 1]).

The absolute version of same filter can be defined as: abs total distance(P) =
∑m−1

i=1 abs(distance(P[i],P[i + 1])), where abs(x) returns the magnitude of x
ignoring the sign. Before we apply these two functions on our strings to get our
filters, we need to do a simple pre-processing on the respective string, i.e., P in
this case as follows. We extend the string P by concatenating the first character
of P at its end. We use ext(P) to denote the resultant string. So, we have
ext(P) = PP[1]. Since, ext(P) can simply be treated as another string, we can
easily extend the notation and concept of C(P) over ext(P) and we continue to
abuse the notation a bit for the sake of conciseness as mentioned at the beginning
of Sect. 4.2 (just before Sect. 4.2).

The observations of Filter 2 and 3 of [13] are as follows.

Observation 2 [13]. Consider a circular string P and a linear string T both
having length n and assume that A = ext(P) and B = ext(T). If C(P) matches
T , then, we must have abs total distance(C(A)) = abs total distance(B). Note
carefully that the function abs total distance() has been applied on the extended
strings.

Observation 3 [13]. Consider a circular string P and a linear string T both
having length n and assume that A = ext(P) and B = ext(T). If C(P) matches
T , then, we must have total distance(C(A)) = total distance(B). Note carefully
that the function total distance() has been applied on the extended strings.

Filter 4 of [13]. Filter 4 uses the sum() function used by Filter 1, albeit,
in a slightly different way. In particular, it applies the sum() function on
individual characters. So, for x ∈ Σ the authors of [13] defined sumx(P) =∑

1≤i≤|P|,P[i]=x PN [i]. The observation of filter 4 of [13] is as follows.

Observation 4 [13]. Consider a circular string P and a linear string T both
having length n. If C(P) matches T , then, we must have sumx(C(P)) = sumx(T)
for all x ∈ Σ.

Filter 5 of [13]. Filter 5 depends on modulo operation between two consecutive
characters. A modulo operation between two consecutive characters of a string
P of length m is defined as follows: modulo(P[i],P[i + 1]) = PN [i]%PN [i + 1],
where 1 ≤ i ≤ m − 1. The authors of [13] defined sum modulo(P) to be the
summation of the results of the modulo operations on the consecutive characters
of P. More formally, sum modulo(P) =

∑m−1
i=1 modulo(P[i],P[i + 1]). Note that

this observation is applied on the extended versions of the respective strings. The
observation of filter 5 of [13] is as follows.

A Simple, Fast, Filter-Based Algorithm for Circular Sequence Comparison 189

Observation 5 [13]. Consider a circular string P and a linear string T both
having length n and assume that A = ext(P) and B = ext(T). If C(P) matches
T , then, we must have sum modulo(C(A)) = sum modulo(B). Note carefully
that the function sum modulo() has been applied on the extended strings.

Filter 6 of [13]. In Filter 6 the author of [13] employed the xor() operation. A
bitwise exclusive-OR (xor()) operation between two consecutive characters of a
string P of length m is defined as follows: xor(P[i],P[i+1]) = PN [i]∧PN [i+1],
where 1 ≤ i ≤ m − 1. They defined sum xor(P) to be the summation of the
results of the xor operations on the consecutive characters of P. More formally,
sum xor(P) =

∑m−1
i=1 xor(P[i],P[i + 1]). Note that this observation is applied

on the extended versions of the respective strings. The observation of filter 6 of
[13] is as follows.

Observation 6 [13]. Consider a circular string P and a linear string T both
having length n and assume that A = ext(P) and B = ext(T). If C(P) matches
T , then, we must have sum xor(C(A)) = sum xor(B). Note carefully that the
function sum xor() has been applied on the extended strings.

4.3 The Approach of Our Algorithm

Now we present two algorithms to solve the exact CSC problem applying the six
filters (Observations 1–6) presented above. It takes as input the pattern P[1 : m]
of length m, the text T [1 : n] of length n, block-size β and q-gram size q. It
calls Procedure ECPS FT of [13] with P[1 : m] as the parameter and uses
its output for exact CSC problem. (Procedure ECPS FT is used to find the
pattern signature of input pattern P[1 : m]. This procedure takes circular pattern
P[1 : m] as input and gives output the calculated values of all six observations
[13].) We apply a sliding window approach with a window length of m and
calculate the values applying the functions according to Observations 1 : 6 on
the factor of T captured by the window for exact CSC problem. Note that for
Observations 2, 3, 5 and 6 we need to consider the extended string and hence the
factor of T within the window need be extended accordingly for calculating the
values. After we calculate the values for a factor of T , we check it against the
returned values of Procedure ECPS FT . If it matches, then we save the matched
index and length bookkeeping purposes. Note that in case of overlapping factors
(e.g., when the consecutive windows need to save), Procedure SFF-CSC saves
only the non-overlapped characters.

Now note that we can compute the values of consecutive factors of T using
the sliding window approach quite efficiently as follows. For the first factor, i.e.,
T [1..m] we exactly follow the strategy of Procedure ECPS FT . When it is done,
we slide the window by one character and we only need to remove the contribu-
tion of the left most character of the previous window and add the contribution
of the rightmost character of the new window. The functions are such that this
can be done very easily using simple constant time operations. The only other

190 Md. A. R. Azim et al.

Algorithm 1. Algorithm SFF-CSC using procedure ECPS FT of [13]
1: procedure SFF-CSC(T [1 : n], P[1 : m],β,q)

2: call ECPS FT of [13](P[1 : m])
3: save the return value of observations 1 : 6 for further use here

4: define an array of size 4 to keep fixed value of A, C, G, T
5: initialize fixed array to {1, 2, 3, 4}
6: lastIndex ← 1

7: startIndex ← −1
8: length ← −1

9: define vector pair bookShelf to save startIndex and length
10: for i ← 1 to m do

11: calculate different filtering values in T [1 : m] via observations 1 : 6 and make a
running sum

12: end for

13: if 1 : 6 observations values of P[1 : m] vs 1 : 6 observations values of T [1 : m] have a
match then

14: � Found a filtered match
15: lastIndex ← m
16: startIndex ← 1

17: length ← m

18: end if

19: for i ← 1 to n − m do
20: calculate different filtering values in T [1 : m] via observations 1 : 6 by subtracting

i-th value along with wrapped value and adding i + m-th value and new wrapped value to
the running sum

21: if 1 : 6 filtering values of P[1 : m] vs 1 : 6 filtering values of T [i + 1 : i + m] have a
match then

22: � Found a filtered match
23: if i > lastIndex then

24: if startIndex �= −1 then

25: bookShelf.add(make pair(startIndex, length))
26: end if
27: startIndex ← i + 1
28: length ← 0
29: end if
30: if i + m > lastIndex then

31: if i < lastIndex then
32: j ← lastIndex + 1
33: else

34: j ← i + 1
35: end if

36: length ← length + (i + 1 + m) − j
37: lastIndex ← i + m
38: end if

39: end if
40: end for

41: bookShelf.add(make pair(startIndex, length))

42: minDistance ← ∞
43: saveI ← −1

44: for k ← 1 to bookShelf.size() do
45: call saCSC [1](bookShelf.get(pair(k)),β,q)

46: save the minimum distance in minDistance and corresponding index i in saveI
47: end for

48: Output saveI and minDistance
49: end procedure

A Simple, Fast, Filter-Based Algorithm for Circular Sequence Comparison 191

issue that needs be taken care of is due to the use of the extended string in two of
the filters. But this too does not need more than simple constant time operations.
Therefore, overall runtime of the algorithm is O(m)+O(n−m) = O(n) up to line
43 in Procedure SFF-CSC (Algorithm 1). For rest of the Algorithm from line 44,
we find reduced text T ′ (say) after filtering where the start index and length of
each reduced text are saved for bookkeeping purposes in Procedure SFF-CSC.
At this point we can use any algorithm that can solve the CSC problem and
apply it over T ′ and output the best comparison which minimizes the q-gram
distance based on the distance matrix described for Problem1. Now, suppose
we use Algorithm A at this stage which runs in O(f(|T ′|)) time. Then, clearly,
the overall running time of our approach is O(n)+O(f(|T ′|)). In our implemen-
tation we have used saCSC the recent algorithm of [1] to solve the exact CSC
problem. In particular, in [1], the authors presented a circular sequence com-
parison algorithm using suffix-array construction. They built a library to solve
CSC problem. The library is freely available and can be found here: [27]. We
only apply saCSC on the reduced string to solve exact version of the problem.

5 Experimental Results

We have implemented SFF-CSC and conducted extensive experiments to ana-
lyze its performance. We show the comparison based on the experimental result
between saCSC of [1] and our algorithm. Algorithm saCSC [1] has been imple-
mented as library functions in the C programming language under GNU/Linux
operating system. The library implementation is distributed under the GNU
General Public License (GPL). It takes as input the pattern P of length m, the
text T of length n, and integers block-size, β > 1 and q-grams, q < m, and
returns the rotation of P for which blockwise q-gram distance is minimal with
T according to the Problem1.

5.1 Datasets

We have used real genome data in our experiments as the text string, T . This
data has been collected from [28]. Here, we have taken 700 MB of data for our
experiments. We have generated random patterns of different length by a random
indexing technique in this 700 MB of text string.

5.2 Environment

We have conducted our experiments on a Samsung Laptop of Intel Core(TM)
i5-2430M CPU @2.40 GHz processor product family and 4 GB of RAM under
GNU/Linux. We have coded the SFF-CSC algorithm in C++ using a GNU
compiler with General Public License (GPL). As has been mentioned already
above, our implementation of the SFF-CSC algorithm uses the saCSC [1]. With
the help of the library used in [1], we have compared the running time of saCSC
of [1] and the SFF-CSC algorithm.

192 Md. A. R. Azim et al.

5.3 Experimental Results

Here we represent the main experimental results and comparisons between our
algorithm SFF-CSC and saCSC of [1]. Table 1 reports the elapsed time and
speed-up comparisons for various pattern sizes (2000 ≤ m ≤ 1200000) and
for various q-grams sizes (5 ≤ q ≤ 40) and block-size β =

√
m. In [1], the

authors presented that their algorithm saCSC performs better for the block
size, β =

√
m. The is the reason why we set β =

√
m in our experimental setup.

As can be seen from Table 1, our algorithm runs faster than saCSC in all cases.
In order to analyze and understand the effect of our filters we have run a

second set of experiments as follows. We have run experiments on three variants
of SFF-CSC algorithm where the first variant (SFF-CSC-[1..3]) only employs
Filters 1 through 3, the second variant (SFF-CSC-[1..4]) only employs Filters
1 through 4, and finally the third variant (SFF-CSC-[1..5]) employs Filters 1
through 5. This experiment result is available at online1. From the result it
can be checked that saCSC is able to beat SFF-CSC-[1..3] in a number of cases.
However, SFF-CSC-[1..4] and SFF-CSC-[1..5] run significantly faster than saCSC

Table 1. Elapsed-time (in seconds) and speed-up comparison between saCSC [1] and
our algorithm (exact CSC) considering all the six filters for a text of size 700 MB. Here,
β =

√
m.

m q Elapsed Elapsed Speed m q Elapsed Elapsed Speed

time (s) of time (s) of up of time (s) of time (s) of up of

saCSC SFF-CSC SFF-CSC saCSC SFF-CSC SFF-CSC

2000 5 41 22 1.9 250000 25 129 66 2

3000 5 42 21 2 300000 25 140 69 2

4000 5 45 25 1.8 350000 25 147 74 2

5000 5 44 23 1.9 400000 25 160 78 2.1

6000 5 47 25 1.9 450000 25 172 81 2.1

2000 10 39 18 2.2 500000 30 203 99 2.1

3000 10 44 20 2.2 550000 30 255 105 2.4

4000 10 47 26 1.8 650000 30 266 123 2.2

5000 10 52 28 1.9 700000 30 301 143 2.1

6000 10 57 26 2.2 750000 30 333 192 1.7

5000 15 60 31 1.9 800000 35 402 195 2.1

6000 15 63 32 2 850000 35 498 240 2.1

7000 15 60 29 2.1 900000 35 578 256 2.3

8000 15 66 32 2.1 950000 35 710 280 2.5

9000 15 67 34 2 1000000 35 880 423 2.1

10000 20 56 27 2.1 1100000 40 902 440 2.1

50000 20 63 33 1.9 1150000 40 935 510 1.8

100000 20 111 52 2.1 1200000 40 1020 550 1.9

150000 20 106 51 2.1 1200000 40 1022 530 1.9

200000 20 123 62 2 1200000 40 1045 501 2.1

1 https://goo.gl/bKZ52e.

https://goo.gl/bKZ52e

A Simple, Fast, Filter-Based Algorithm for Circular Sequence Comparison 193

of [1] in all cases. This indicates that as more and more effective filters are
imposed, our algorithm performs better.

6 Conclusions

In this paper, we have employed some effective lightweight filtering techniques
to reduce the search space of the Circular Sequence Comparison (CSC) problem.
We have presented SFF-CSC algorithm, an extremely fast algorithm based on
the above-mentioned filters. Much of the speed of our algorithm comes from
the fact that our filters are effective but extremely simple and lightweight. In
our experiments, SFF-CSC has achieved a minimum of two-fold speed-up than
the state of the art algorithms. The most intriguing feature of the SFF-CSC
algorithm is perhaps its capability to plug in any algorithm to solve CSC and
take advantage of it. We are now working towards adapting the filters so that it
could work for the approximate (heuristic) version of CSC of [1].

References

1. Grossi, R., Iliopoulos, C.S., Mercas, R., Pisanti, N., Pissis, S.P., Retha, A., Vayani,
F.: Circular sequence comparison: algorithms and applications. Algorithms Mol.
Biol. 11(1), 12 (2016)

2. Manber, U., Myers, G.: Suffix arrays: a new method for on-line string searches.
SIAM J. Comput. 22(5), 935–948 (1993)

3. Dulbecco, R., Vogt, M.: Evidence for a ring structure of polyoma virus DNA. Proc.
Natl. Acad. Sci. 50(2), 236–243 (1963)

4. Weil, R., Vinograd, J.: The cyclic helix and cyclic coil forms of polyoma viral DNA.
Proc. Natl. Acad. Sci. 50(4), 730–738 (1963)

5. Thanbichler, M., Wang, S., Shapiro, L.: The bacterial nucleoid: A highly organized
and dynamic structure. J. Cell Biochem. 96(3), 506–521 (2005)

6. Lipps, G.: Plasmids: Current Research and Future Trends. Caister Academic Press,
Norfolk (2008)

7. Allers, T., Mevarech, M.: Archaeal genetics - the third way. Nat. Rev. Genet. 6,
58–73 (2005)

8. Gusfield, D.: Algorithms on Strings, Trees and Sequences. Cambridge University
Press, New York (1997)

9. Del Castillo, C.S., Hikima, J., Jang, H.B., Nho, S.W., Jung, T.S., Wongtavatchai,
J., Kondo, H., Hirono, I., Takeyama, H., Aoki, T.: Comparative sequence analysis
of a multidrug-resistant plasmid from aeromonas hydrophila. Antimicrob. Agents
Chemother. 57(1), 120–129 (2013)

10. Mosig, A., Hofacker, I., Stadler, P., Zell, A.: Comparative analysis of cyclic
sequences: viroids and other small circular RNAs. German Conference on Bioin-
formatics. LNI, vol. 83, pp. 93–102 (2006)

11. Fernandes, F., Pereira, L., Freitas, A.: CSA: an efficient algorithm to improve
circular DNA multiple alignment. BMC Bioinform. 10, 1–13 (2009)

12. Lee, T., Na, J.C., Park, H., Park, K., Sim, J.S.: Finding optimal alignment and
consensus of circular strings. In: Amir, A., Parida, L. (eds.) CPM 2010. LNCS,
vol. 6129, pp. 310–322. Springer, Heidelberg (2010). https://doi.org/10.1007/978-
3-642-13509-5 28

https://doi.org/10.1007/978-3-642-13509-5_28
https://doi.org/10.1007/978-3-642-13509-5_28

194 Md. A. R. Azim et al.

13. Azim, M.A.R., Iliopoulos, C.S., Rahman, M.S., Samiruzzaman, M.: SimpLiFiCPM:
a simple and lightweight filter-based algorithm for circular pattern matching. Int.
J. Genomics 2015, 10 (2015). Article ID 259320

14. Azim, M.A.R., Iliopoulos, C.S., Rahman, M.S., Samiruzzaman, M.: A fast and
lightweight filter-based algorithm for circular pattern matching. In: ACM Confer-
ence on Bioinformatics, Computational Biology, and Health Informatics (2014)

15. Ukkonen, E.: Approximate string-matching with q-grams and maximal matches.
Theor. Comput. Sci. 92(1), 191–211 (1992)

16. Helinski, D.R., Clewell, D.: Circular DNA. Annu. Rev. Biochem. 40(1), 899–942
(1971)

17. Peterlongo, P., Sacomoto, G.A.T., do Lago, A.P., Pisanti, N., Sagot, M.-F.: Lossless
filter for multiple repeats with bounded edit distance. Algorithms Mol. Biol. 4(1),
3 (2009)

18. Maes, M.: On a cyclic string-to-string correction problem. Inf. Process. Lett. 35(2),
73–78 (1990)

19. Ayad, L.A., Barton, C., Pissis, S.P.: A faster and more accurate heuristic for cyclic
edit distance computation. Pattern Recogn. Lett. 88(Suppl. C), 81–87 (2017)

20. Marzal, A., Barrachina, S.: Speeding up the computation of the edit distance for
cyclic strings. In: Proceedings of the 15th International Conference on Pattern
Recognition, vol. 2, pp. 891–894 (2000)

21. Bunke, H., Bhler, U.: Applications of approximate string matching to 2D shape
recognition. Pattern Recogn. 26(12), 1797–1812 (1993)

22. Barton, C., Iliopoulos, C.S., Kundu, R., Pissis, S.P., Retha, A., Vayani, F.: Accu-
rate and efficient methods to improve multiple circular sequence alignment. In:
Bampis, E. (ed.) SEA 2015. LNCS, vol. 9125, pp. 247–258. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-20086-6 19

23. Ayad, L.A.K., Pissis, S.P.: MARS: improving multiple circular sequence alignment
using refined sequences. BMC Genomics 18(1), 86 (2017)

24. Lee, T., Na, J.C., Park, H., Park, K., Sim, J.S.: Finding consensus and optimal
alignment of circular strings. Theor. Comput. Sci. 468, 92–101 (2013)

25. Peterlongo, P., Pisanti, N., Boyer, F., do Lago, A.P., Sagot, M.F.: Lossless filter for
multiple repetitions with hamming distance. J. Discrete Algorithms 6(3), 497–509
(2008)

26. Rasmussen, K.R., Stoye, J., Myers, E.W.: Efficient q-gram filters for finding all
ε-matches over a given length. J. Comput. Biol. 13(2), 296–308 (2006)

27. https://github.com/solonas13/csc
28. http://hgdownload-test.cse.ucsc.edu/goldenPath/hg19/bigZips/

https://doi.org/10.1007/978-3-319-20086-6_19
https://github.com/solonas13/csc
http://hgdownload-test.cse.ucsc.edu/goldenPath/hg19/bigZips/

Boosting over Non-deterministic ZDDs

Takahiro Fujita1(B), Kohei Hatano2,3, and Eiji Takimoto1

1 Department of Informatics, Kyushu University, Fukuoka, Japan
{takahiro.fujita,eiji}@inf.kyushu-u.ac.jp

2 Faculty of Arts and Science, Kyushu University, Fukuoka, Japan
hatano@inf.kyushu-u.ac.jp
3 RIKEN AIP, Tokyo, Japan

Abstract. We propose a new approach to large-scale machine learning,
learning over compressed data: First compress the training data some-
how and then employ various machine learning algorithms on the com-
pressed data, with the hope that the computation time is significantly
reduced when the training data is well compressed. As the first step,
we consider a variant of the Zero-Suppressed Binary Decision Diagram
(ZDD) as the data structure for representing the training data, which
is a generalization of the ZDD by incorporating non-determinism. For
the learning algorithm to be employed, we consider boosting algorithm
called AdaBoost∗ and its precursor AdaBoost. In this work, we give effi-
cient implementations of the boosting algorithms whose running times
(per iteration) are linear in the size of the given ZDD.

1 Introduction

Most tasks in machine learning are formulated as optimization problems of var-
ious types. Recently, the amount of data to be treated is growing enormously
large, and so the demands on scalable optimization methods are increasing. Prob-
abilistic approach such as stochastic gradient descent methods [3] is now widely
employed as standard techniques for large scale machine learning. Obviously,
these methods require the time and/or the space complexity to be proportional
to the size of given data.

In this paper, we propose a new approach: learning over compressed data.
That is, we first compress the given data somehow, and then employ vari-
ous machine learning algorithms on the compressed data without explicitly re-
constructing the original data. To be more precise, for any target machine learn-
ing algorithm to be employed, we apply an efficient algorithm running over the
compressed data, which simulates the behavior of the target algorithm running
over the original data, with the hope that the time and space complexity are
significantly reduced when the data is well compressed. Although the complex-
ity for compressing data of the first phase needs to be sufficiently small, we can
expect great improvement of time and space complexity, especially when high
compression ratio is achieved.

c© Springer International Publishing AG, part of Springer Nature 2018
M. S. Rahman et al. (Eds.): WALCOM 2018, LNCS 10755, pp. 195–206, 2018.
https://doi.org/10.1007/978-3-319-75172-6_17

196 T. Fujita et al.

The methodology of working over compressed data has gained much atten-
tion in the areas of database and data mining, where various methods have been
developed, say, for the string search from a compressed string and the frequent
word extraction from compressed texts [2,4,8]. But, as far as the authors are
aware, most of all the methods developed so far are limited to simple tasks
such as search and counting, and few results are known for more complex
tasks such as optimization in machine learning. Notable exceptions contain the
results of Nishino et al. [14] and Tabei et al. [18], respectively. Their methods
use string compression techniques to perform matrix-based computations under
small memory spaces. Our method, we will show later, is completely different
from theirs.

As the first step toward establishing a general methodology of learning from
compressed data, we consider a variant of the Zero-Suppressed Binary Decision
Diagram (ZDD) as the data structure for representing the training data. The
ZDD is a general data structure for representing a family of sets [7,10], and is
appropriate for our purpose. One of the reasons is that many results are reported
in the literature that the ZDD indeed has ability of compactly representing
various data in various domains [5,11,12].

In this paper, we slightly generalize the ZDD by incorporating non-
determinism and propose a new data structure called the non-deterministic ZDD
(NZDD, for short). The NZDD has more flexibility for representing data because
of the non-determinism. Also, our efficient simulation algorithms (showed later)
fit naturally to the NZDDs. On the other hand, it seems to be NP-hard to
construct an NZDD of minimal size from a given training data. An efficient
construction method of succinct NZDDs is left as future work.

For the learning algorithm to be employed over the NZDD represen-
tation of the training data, we consider a boosting algorithm called the
AdaBoost∗ [16]. The AdaBoost∗ is a refined version of the seminal boosting
algorithm AdaBoost [1] and is guaranteed to find a hyperplane that maximizes
the margin. In this paper, we give an efficient implementation of the AdaBoost∗.
Its running time (per iteration) does not depend on the size of training data but
is only linear in the size of the given NZDD. In addition, our proposed framework
can be applicable to the AdaBoost as well and a similar guarantee also holds.

So, our method takes advantage when the size of NZDD is much smaller than
the size of the training data, provided that the time complexity of constructing
the NZDD is moderately small.

2 Problem Statement and AdaBoost∗
First we describe the problem of 1-norm hard margin maximization and then
briefly review the AdaBoost∗ which is one of the boosting algorithms that solve
the problem.

Boosting over Non-deterministic ZDDs 197

2.1 1-Norm Hard Margin Maximization

Let X be a set called the instance space, and assume that we are given a finite set
of base hypotheses H = {h1, h2, . . . , hn} ⊆ {h : X → {0, 1}}. Note that the base
hypotheses are usually assumed to take values in {−1, 1}, but since any function
g : X → {−1, 1} can be represented as the difference of 0–1 valued functions
(e.g., g(x) = 1[g(x) = 1] − 1[g(x) = −1]), we can assume 0–1 valued hypotheses
without loss of generality. The base hypothesis class H defines a feature map,
which maps any instance x ∈ X to the feature vector (h1(x), h2(x), . . . , hn(x))
in the feature space {0, 1}n. Later we will regard the feature vector for x as the
set H(x) = {hj | hj(x) = 1} and thanks to the assumption above, any base
hypothesis hj �∈ H(x) takes value 0 for x, which is a crucial property that makes
our algorithm work.

Now we give the problem statement of 1-norm hard margin maximization.
The input is a sample S = {(x1, y1), . . . , (xm, ym)} ⊆ X × {−1, 1}, where xi

for yi = 1 is called a positive instance and xi for yi = −1 a negative instance,
and the output is a hyperplane in the feature space that separates the positive
instances from the negative instances as much as possible. More precisely, the
goal is to find

α∗ = arg max
α∈{Rn|‖α‖1=1}

min
1≤i≤m

yi

n∑

j=1

αjhj(xi). (1)

We denote by α ∈ {Rn | ‖α‖1 = 1} the hyperplane whose normal vector is
α, which also represents the convex combination of base hypotheses f(x) =∑n

j=1 αjhj(x). Note that since the 1-norm of α is normalized, |f(x)| denotes the
distance of the feature vector (h1(x), . . . , hn(x)) to the hyperplane α measured
by ∞-norm. Thus, the signed distance yif(xi) (which is positive if and only if
f correctly classifies xi) is called the margin of the hyperplane α with respect
to the labeled instance (xi, yi). Let ρ = mini yif(xi) be the minimum margin of
α over all labeled instances in the sample. Note that α∗ is the hyperplane that
maximizes ρ. It is well known that if ρ > 0, which means that the sample S
is linearly separable, then the combined hypothesis f has a generalization error
bound that is proportional to 1/ρ [9]. So, the goal of maximizing ρ is natural.
Let ρ∗ = mini yi

∑
j α∗

jhj(xi) be the optimal margin.
In what follows, we assume without loss of generality that all labeled feature

vectors (h1(xi), . . . , hn(xi), yi) are distinct.

2.2 AdaBoost∗
The optimization problem (1) can be formulated as a linear programming prob-
lem of size O(nm) and hence efficiently solved by an LP solver. However, in many
cases, the number n of base hypotheses is very large (sometimes infinite), and
thus the problem is infeasible for LP solvers. In such cases, boosting may provide
an alternative way. In particular, the AdaBoost∗ of Rätsch and Warmuth [16]
provably converges to the maximum margin ρ∗ within precision ν in 2 log(m

ν2)

198 T. Fujita et al.

Algorithm 1. AdaBoost∗
Input S = {(x1, y1), . . . , (xm, ym)} ⊆ X × {−1, 1}
Output f

1. Let αj = 0 for j = 1, . . . , n
2. Let d1(i) = 1/m for i = 1, . . . , m
3. For t = 1, . . . , T

(a) Compute the edges
γt,j =

∑m
i=1 dt(i)yihj(xi) for j = 1, . . . , n.

(b) Let jt = arg max1≤j≤n |γt,j |; γt = γt,jt .
(c) Set ρt = minr=1,...,t |γr| − ν;
(d) Update coefficients αjt = αjt + 1

2
log 1+γt

1−γt
− 1

2
log 1+ρt

1−ρt

(e) Update weights
dt+1(i) = dt(i) exp(−αjtyihjt(xi))/Zt

for i = 1, . . . , m, where
Zt =

∑m
i=1 dt(i) exp (−αjtyihjt(xi))

4. Let f(x) =
∑n

j=1

αj

‖α‖1
hj(x)

iterations. Below we describe how the AdaBoost∗ behaves when applied to the
base hypothesis class H. On each round t = 1, 2, . . . , T , it (i) computes a dis-
tribution dt over the sample S, (ii) finds a base hypothesis hjt ∈ H with the
maximum edge (average margin) with respect to dt, and (iii) updates the coeffi-
cient αjt . Finally, normalizing the coefficient α, it obtains a final hypothesis f .
A pseudocode is given in Algorithm 1, where part (ii) above is implemented in
a very naive manner: compute the edges of all base hypotheses (line 3-(a)) and
then choose the maximum among them (line 3-(b)). So, this implementation is
inefficient for a very large n. But, AdaBoost∗ (and any other boosting algorithm)
has a considerable advantage over LP solvers when the hypothesis class H has
an efficient implementation, called the base learner, for this part: to find a base
hypothesis with the maximum edge from a given distribution over the sample.
In this case, the two lines (3-(a) and 3-(b)) are replaced by the base learner. The
next theorem shows a performance guarantee of the AdaBoost∗.

Theorem 1 (Rätsch and Warmuth [16]). If T ≥ 2 log m
ν2 , then AdaBoost∗

(Algorithm1) outputs a combined hypothesis f such that min1≤i≤m yif(xi) ≥
ρ∗ − ν.

In this paper, we consider the situation where the size n of H is small but the
sample size m is very large, as is often the case, and both the direct applications
of LP solvers and the AdaBoost∗ may be useless.

2.3 AdaBoost

The AdaBoost, proposed by Freund and Schapire [1], is a precursor of the
AdaBoost∗. The algorithm, unlike the AdaBoost∗, is not shown to provably max-
imize the hard margin. However, it is shown that it achieves at least half of the

Boosting over Non-deterministic ZDDs 199

maximum hard margin asymptotically under weak technical conditions [15,16].
Besides, the AdaBoost is much more popular because of its simplicity and the
empirical performances. The behavior of the AdaBoost is almost the same as
the AdaBoost∗. More precisely, instead of 3. (c) and (d) in Algorithm 1, the
AdaBoost updates the coefficient as αjt = αjt + 1

2 log 1+γt

1−γt
. Therefore, the theo-

retical results we will show also are applicable to the AdaBoost.

3 A Dag Representation for Samples

As a data structure for storing the sample, we propose a dag representation for
a family of sets called the non-deterministic ZDD (NZDD, for short). It can be
seen as a generalization of the ZDD by incorporating non-determinism.

Fig. 1. An NZDD representation for {{a, b}, {a, b, c}, {a, d, e}, {b, c, d}, {b, d}}

3.1 Non-deterministic ZDD (NZDD)

An NZDD is specified by a 4-tuple G = (V,E,Σ,Φ), where (V,E) is a directed
acyclic graph with a single root and a single leaf, Σ is a ground set, and Φ :
E → 2Σ is a function that assigns to each edge e a subset Φ(e) of Σ. Note that
Φ(e) can be the empty set ∅. Furthermore we require the additional properties
as described below. Let PG be the set of all paths from the root to the leaf in
G, where a path P in PG is specified by the set of edges in P , i.e., P ⊆ E.

1. Every path P ∈ PG represents a subset S(P) ⊆ Σ defined as S(P) =⋃
e∈P Φ(e). Thus, the NZDD G defines a subset family as L(G) = {S(P) |

P ∈ PG} ⊆ 2Σ .
2. For every pair of paths P, P ′ ∈ PG, S(P) �= S(P ′) if P �= P ′.
3. For every path P ∈ PG, Φ(e) ∩ Φ(e′) = ∅ for any e, e′ ∈ P with e �= e′.

Note that by the second property, there exists a one-to-one correspondence
between the set of paths PG and the subset family L(G). In particular, we have
|PG| = |L(G)|. The third property says that every element a ∈ Σ appears at
most once in every path P ∈ PG. That is, letting E(a) = {e ∈ E | a ∈ Φ(e)},
we have |E(a) ∩ P | ≤ 1 for every P ∈ PG. Finally, we define the size of G as
|G| =

∑
e∈E |Φ(e)|. Note that the size |G| can be significantly small as compared

with the number of paths |PG|. In other words, the NZDD G is a compact
representation for the subset family L(G). As an example, we give in Fig. 1 an
NZDD that represents a subset family.

200 T. Fujita et al.

3.2 NZDD Representation for the Sample

Now we describe how we represent the sample S as an NZDD.
Recall that H(x) = {hj ∈ H | hj(x) = 1} for each instance x ∈ X. Let

Z+ = {H(xi) | (xi, 1) ∈ S} and Z− = {H(xi) | (xi,−1) ∈ S} be the subset
families with the ground set Σ = H, which correspond to the positive and the
negative instances in the sample S, respectively. Let G+ and G− be NZDDs for
the families Z+ and Z−, respectively. That is, L(G+) = Z+ and L(G−) = Z−.
Finally, the NZDD G for the sample S is obtained by (i) putting an additional
node as the global root with two outgoing edges labeled with ∅, where one edge is
connected to the root of G+ and the other is to the root of G−, and (ii) merging
the leaves of G+ and G− to a single leaf (See Fig. 2 for example). Note that G
is not necessarily a minimal NZDD even if G+ and G− are minimal, because G
may be further simplified by merging a node in G+ and a node in G−. But, we
define G in this way, so that any path in G+ and any path in G− are disjoint.

Fig. 2. (i) An NZDD G+ for Z+ = {{h1, h3}, {h2, h3}}; (ii) An NZDD G− for
Z− = {{h1, h2, h4}, {h2, h4}, {h3}}; (iii) An NZDD for the sample consisting of positive
instances Z+ and negative instances Z−

3.3 Relations to ZDDs and NFAs

We show that the ZDD representation is a special case of the NZDD represen-
tation. To see this, we consider the class of NZDDs of the following form:

1. Each edge e is labeled with either a singleton or the empty set. That is,
|Φ(e)| ≤ 1.

2. Each internal node has one or two outgoing edges. If it has two outgoing
edges, one of them is labeled with the empty set.

3. There exists a fixed ordering over Σ such that for any pair of edges e and
e′ labeled with singletons {a} and {a′}, respectively, if e is an ancestor of e′,
then a precedes a′ in this ordering.

It is easy to see that any ZDD can be seen as an NZDD in this form.

Boosting over Non-deterministic ZDDs 201

Conversely, consider the class of NZDDs of the following form:

1. It is ordered. That is, the third condition above is satisfied.
2. For each pair of edges e and e′ outgoing from a common node, Φ(e) ∩ Φ(e′) =

∅.

Then, we can show that any NZDD of this class has an equivalent ZDD of the
same size. So, only the difference of ordered NZDDs from ZDDs is that we allow
non-determinism, i.e., Φ(e) ∩ Φ(e′) �= ∅.

Next we consider the relation of ordered NZDDs to NFAs. Under the ordering
over Σ, we can identify a subset {a1, a2, . . . , ak} ⊆ Σ with a string a1a2 · · · ak ∈
Σ∗ over the alphabet Σ, where a1 < a2 < · · · < ak under the ordering <. Note
that the empty set corresponds to the empty string ε. In this way, a subset family
can be seen as a language. From this viewpoint, we can regard an NZDD G as an
NFA that recognizes the language L(G), with the root identified with the start
state and the leaf with the unique accepting state. The difference is that, in the
NZDD representation, we have only a single accepting path for each string in
the language. This implies that any DFA for such a language can be converted
to an NZDD in an obvious way. Note that in order to make the accepting state
unique, we may need to put an additional leaf and connecting every accepting
state to the leaf by an additional edge labeled with the empty set (ε-transition).

3.4 Complexity of Constructing NZDDs

When given a subset family L ⊆ 2Σ , we want to compute a minimal NZDD G
with L(G) = L. So far, the time complexity of the problem is unknown, but it
seems to be NP-hard because so are the closely related problems, namely, con-
struction of a minimal ZDD (over all ordering) [7] and construction of a minimal
NFA [6]. On the other hand, we have a polynomial time algorithm for construct-
ing a minimal ZDD when given an ordering [17] and a linear time algorithm for
constructing a minimal DFA for a finite language [17]. So, practically, we can
use these algorithms for constructing an ordered NZDD of small size.

4 Simulating AdaBoost∗ over an NZDD Representation
for The sample

In this section, we give an algorithm that efficiently simulates the AdaBoost∗
over an NZDD G that represents a sample S = {(x1, y1), . . . , (xm, ym)}, without
explicitly reconstructing the sample S from G. In particular, the running time
(per iteration) of our algorithm does not depend on the sample size m but is
linear in the size of G. First we state the main theorem.

Theorem 2. There exists an algorithm that, when given an NZDD G that rep-
resents a sample S, exactly simulates AdaBoost∗ whose running time is O(|G|)
per iteration.

202 T. Fujita et al.

So, if the sample is significantly compressed in the NZDD representation, our
algorithm runs much faster than the direct application of the AdaBoost∗ when
the computation time of constructing G from S is negligible. More specifically, if
we use a linear time algorithm for constructing an NZDD from a minimal DFA
as described in the previous section, then the total running time of our algorithm
is O(nm+T |G|), whereas the total running time of the direct application of the
AdaBoost∗ is O(nmT). So, if |G|
 nm, then our algorithm would be faster1.

Further, since the AdaBoost is almost identical to the AdaBoost∗ in an algo-
rithmic sense, we have the following corollary as well.

Corollary 3. There exists an algorithm that, when given an NZDD G repre-
senting S, simulates AdaBoost whose running time is O(|G|) per iteration.

Below we describe a basic idea of the algorithm. Obviously, we cannot explic-
itly maintain the distribution dt over the sample S. Instead, we maintain one
weight wt,e for each edge e of G, so that the edge weights wt implicitly repre-
sents dt. The same idea is used in [19] to efficiently simulate online prediction
algorithms with multiplicative update rules, where the decision space is the set
of paths of a given directed acyclic graph.

To describe the idea formally, we need some additional notations. Recall that
there exists a one-to-one correspondence between the sample S and the set of all
root-to-leaf paths PG in G. So, we identify a labeled instance (xi, yi) ∈ S with
a path P ∈ PG, and we will denote the weight for the instance by dt(P) instead
of dt(i). Furthermore, let P+

G and P−
G denote the set of paths that pass through

G+ and the set of paths that pass through G−, respectively.
Now we give the two conditions C1 and C2 that the edge weights wt need to

satisfy, so as to represent the path distribution dt.

C1. The edge weights wt need to satisfy

dt(P) =
∏

e∈P

wt,e

for every path (labeled instance) P ∈ PG.
C2. The outflow from each internal node should be one. That is, wt need to

satisfy ∑

a:(u,a)∈E(G)

wt,(u,a) = 1

for every internal node u, where E(G) denotes the set of edges of G.

What we need to show is how to simulate AdaBoost∗ efficiently by using the
edge weights wt. More precisely, we need to simulate the two parts of AdaBoost∗:

(a) updating the path distributions dt (corresponding to Line 2 and Line 3-(e)
of Algorithm 1), and

(b) computing the edges γt,j (corresponding to Line 3-(a)).

In the following subsections, we give algorithms that simulate the two parts.
1 Note that it always holds that |G| ≤ nm.

Boosting over Non-deterministic ZDDs 203

Algorithm 2. Initializing the path distribution
1. Let w′

e = 1 for all edges in G.
2. Apply the Weight Pushing algorithm to w′ and get w1.

Algorithm 3. Updating the path distribution
1. Forall e ∈ E(G), let w′

e = wt,e

2. Forall e ∈ E(G+) such that hjt ∈ Φ(e), let w′
e = w′

e exp(−αjt)
3. Forall e ∈ E(G−) such that hjt ∈ Φ(e), let w′

e = w′
e exp(αjt)

4. Apply the Weight Pushing algorithm to w′ and get wt+1.

4.1 Updating the Path Distributions dt

To simulate this part, we use the Weight Pushing algorithm developed by [13],
which rearranges the edge weights so that relative weights on the path remain
unchanged but again satisfy the two conditions. More precisely, the Weight Push-
ing algorithm has the following property.

Proposition 4 (Mohri [13]). When given arbitrary edge weights w′
e ≥ 0, the

Weight Pushing algorithm produces edge weights we in time O(|E|) such that we

satisfies condition C2 and

∏

e∈P

we =
∏

e∈P w′
e∑

P∈PG

∏
e∈P w′

e

for every path P ∈ PG.

The initialization of the path weights (d1(P) = 1/m) of Line 2 of Algorithm 1
can be realized by the two steps as described in Algorithm 2. It is justified by
Proposition 4 which implies

∏

e∈P

w1,e =
1

|PG| = 1/m = d1(P).

Moreover, the running time of Algorithm2 is O(|E|).
The update of path distributions of Line 3-(e) of Algorithm1 can be realized

by multiplying the weights of the edges e such that hjt ∈ Φ(e), and applying the
Weight Pushing algorithm. See Algorithm3 for more details.

Below we give a justification of Algorithm 3.

Lemma 5. Algorithm3 exactly simulates Line 3-(e) of Algorithm1 in time
O(|E|).

204 T. Fujita et al.

Proof. Let P be a path in PG that corresponds to a labeled instance (xi, yi) and
examine the quantity

∏
e∈P w′

e. Recall that
⋃

e∈P

Φ(e) = {hj ∈ H | hj(xi) = 1}

by the definition of the NZDD construction for S.
First consider the case where hjt(xi) = 0. In this case, there is no edge e ∈ P

such that hjt ∈ Φ(e). Therefore, w′
e = wt,e for all edges e in P . Thus,

∏

e∈P

w′
e =

∏

e∈P

wt,e = dt(P)

= dt(P) exp(−αjtyihjt(xi))
= dt(i) exp(−αjtyihjt(xi)).

Next consider the case where yi = 1 (i.e., P passes through G+) and hjt(xi) =
1. In this case, there exists a unique edge e ∈ P such that hjt ∈ Φ(e). The
uniqueness comes from Property 3 of the NZDD. So, w′

e = wt,e exp(−αjt) for
the edge e. Since hjt �∈ Φ(e′) for any other edge e′ ∈ P , we have

∏

e∈P

w′
e =

(
∏

e∈P

wt,e

)
exp(−αjt)

= dt(P) exp(−αjtyihjt(xi))
= dt(i) exp(−αjtyihjt(xi)).

For the last case where yi = −1 and hjt(xi) = 1, a similar argument to the
case above gives

∏

e∈P

w′
e =

(
∏

e∈P

wt,e

)
exp(αjt)

= dt(P) exp(−αjtyihjt(xi))
= dt(i) exp(−αjtyihjt(xi)).

Hence for all paths P , we have
∏

e∈P

w′
e = dt(i) exp(−αjtyihjt(xi)).

Therefore, Proposition 4 ensures that wt+1 represents the path distribution dt+1

as desired. ��

4.2 Computing the Edges γt,j

To compute γt,j , we first compute the following quantity

fe =
∑

P∈PG:e∈P

dt(P)

Boosting over Non-deterministic ZDDs 205

for all edges e, which can be interpreted as the probability flow of edge e, i.e.,
the probability that the path P goes through edge e when P is chosen according
to the distribution dt. Since G is a directed acyclic graph, we can compute fe

for all edges e by dynamic programming (e.g., the forward-backward algorithm)
in linear time. Then, it is not hard to see that γt,j can be computed by

γt,j =
∑

e∈E(G+):hj∈Φ(e)

fe −
∑

e∈E(G−):hj∈Φ(e)

fe.

We summarize the result as in the following lemma.

Lemma 6. There exists an algorithm that exactly simulates Line 3-(a) of
Algorithm1 in time O(|G|).

Theorem 2 follows from Lemmas 5 and 6.

5 Conclusions

We have proposed the NZDD, a variant of ZDDs for representing the training
data succinctly and algorithms, given a NZDD, simulate AdaBoost∗ as well
as AdaBoost on the training data efficiently. As future work, we will evaluate
empirical performances of our method on real and synthetic data sets. Also,
investigation of efficient construction methods of NZDDs is important. One of
open problems is to extend our method to the 1-norm soft margin maximization,
where additional constraints make the theoretical results of the direct application
of our method worse. Also, the problem of obtaining similar results for the 2-
norm support vector machines remains open.

Acknowledgments. We thank anonymous reviewers for helpful comments. This work
is supported in part by JSPS KAKENHI Grant Number JP16J04621, JP16K00305 and
JP15H02667, respectively.

References

1. Freund, Y., Schapire, R.E.: A decision-theoretic generalization of on-line learning
and an application to boosting. J. Comput. Syst. Sci. 55(1), 119–139 (1997)

2. Goto, K., Bannai, H., Inenaga, S., Takeda, M.: Fast q-gram mining on SLP com-
pressed strings. J. Discrete Algorithms 18, 89–99 (2013)

3. Hazan, E.: Introduction to Online Convex Optimization. Now Publishers Inc.,
Hanover (2016)

4. Hermelin, D., Landau, G.M., Landau, S., Weimann, O.: A unified algorithm for
accelerating edit-distance computation via text-compression. In: 26th International
Symposium on Theoretical Aspects of Computer Science (STACS 2009) (2009)

5. Inoue, T., Takano, K., Watanabe, T., Kawahara, J., Yoshinaka, R., Kishimoto, A.,
Tsuda, K., Minato, S., Hayashi, Y.: Distribution loss minimization with guaranteed
error bound. IEEE Trans. Smart Grid 5(1), 102–111 (2014)

6. Jiang, T., Ravikumar, B.: Minimal NFA problems are hard. SIAM J. Comput.
22(6), 1117–1141 (1993)

206 T. Fujita et al.

7. Knuth, D.E.: Art of Computer Programming. Fascicle 1, The: Bitwise Tricks &
Techniques; Binary Decision Diagrams, vol. 4. Addison-Wesley, Reading (2009)

8. Lifshits, Y.: Processing compressed texts: a tractability border. In: Proceedings of
the 18th Annual Conference on Combinatorial Pattern Matching, CPM 2007, pp.
228–240 (2007)

9. Mangasarian, O.L.: Arbitrary-norm separating plane. Oper. Res. Lett. 24(1–2),
15–23 (1999)

10. Minato, S.: Zero-suppressed BDDs for set manipulation in combinatorial problems.
In: Proceedings of the 30th International Conference on Design Automation, DAC
1993 (1993)

11. Minato, S., Uno, T.: Frequentness-transition queries for distinctive pattern mining
from time-segmented databases. In: Proceedings of the 10th SIAM International
Conference on Data Mining (SDM 2010), pp. 339–349 (2010)

12. Minato, S., Uno, T., Arimura, H.: LCM over ZBDDs: fast generation of very large-
scale frequent itemsets using a compact graph-based representation. In: Pacific-
Asia Conference on Knowledge Discovery and Data Mining, pp. 234–246 (2008)

13. Mohri, M.: General algebraic frameworks and algorithms for shortest-distance
problems. Technical report, Technical Memorandum 981210–10TM, AT&T Labs-
Research, 62 pages (1998)

14. Nishino, M., Yasuda, N., Minato, S., Nagata, M.: Accelerating graph adjacency
matrix multiplications with adjacency forest. In: Proceedings of the 2014 SIAM
International Conference on Data Mining (SDM 2014), pp. 1073–1081 (2014)

15. Rätsch, G.: Robust boosting via convex optimization: theory and applications.
Ph.D. thesis, University of Potsdam (2001)

16. Rätsch, G., Warmuth, M.K.: Efficient margin maximizing with boosting. J. Mach.
Learn. Res. 6, 2131–2152 (2005)

17. Revuz, D.: Minimisation of acyclic deterministic automata in linear time. Theor.
Comput. Sci. 92, 181–189 (1992)

18. Tabei, Y., Saigo, H., Yamanishi, Y., Puglisi, S.J.: Scalable partial least squares
regression on grammar-compressed data matrices. In: Proceedings of the 22nd
ACM SIGKDD International Conference on Knowledge Discovery and Data Min-
ing (KDD 2016), pp. 1875–1884 (2016)

19. Takimoto, E., Warmuth, M.: Path kernels and multiplicative updates. J. Mach.
Learn. Res. 4, 773–818 (2003)

On Multiple Longest Common Subsequence
and Common Motifs with Gaps

(Extended Abstract)

Suri Dipannita Sayeed(B), M. Sohel Rahman, and Atif Rahman

Department of Computer Science and Engineering,
Bangladesh University of Engineering and Technology, Dhaka 1000, Bangladesh

suri.esha6@gmail.com, {msrahman,atif}@cse.buet.ac.bd

Abstract. Motif finding is the problem of identifying recurring patterns
in sequences. It has been widely studied and several variants have been
proposed. Here, we address the problem of finding common motifs with
gaps that are present in all strings of a finite set. We prove that the prob-
lem is NP-hard by reducing the multiple longest common subsequence
(MLCS) problem to it. We also provide a branch and bound algorithm
for MLCS and show how the algorithm can be extended to give an algo-
rithm for finding common motifs with gaps after common factors that
occur in all the strings have been identified.

Keywords: Computational biology · Motif finding · Complexity
Branch and bound

1 Introduction

Motifs are recurring patterns in sequences and motif finding is a widely stud-
ied problem in computational biology. It has diverse applications for example
in identifying co-expressed genes. Expression of a gene usually requires bind-
ing of a transcription factor in the promoter region. Presence of near identical
sequences in promoter regions of genes indicates that they are regulated by the
same transcription factor and are likely to be co-expressed.

In many cases, the motifs may not be identical and motif finding algorithms
need to be robust to differences in sequences. In addition, motifs may not be
contiguous. Considering these, the problem of finding common motifs with gaps
was introduced [2,5]. Antoniou et al. gave an algorithm polynomial in length
of strings and exponential in number of strings using finite automata and con-
jectured that asymptotically more efficient algorithms may not be possible [2].
Other variants of the problem with constraints on lengths of gaps have also been
proposed and algorithms have been provided [1].

In this paper, we prove that the problem of finding common motif with gaps is
NP-hard, for alphabet size of four or more, by reducing to it the multiple longest
common subsequence (MLCS) problem, i.e., the problem of finding the longest
c© Springer International Publishing AG, part of Springer Nature 2018
M. S. Rahman et al. (Eds.): WALCOM 2018, LNCS 10755, pp. 207–215, 2018.
https://doi.org/10.1007/978-3-319-75172-6_18

208 S. D. Sayeed et al.

common subsequence among a set of sequences. MLCS is also a well studied
problem in theoretical computer science and has applications in computational
genomics. MLCS was proved NP-hard by Maier [7] and dynamic programming
algorithms are known that run in time O(nd), for d sequences with maximum
length, n [6]. Wang et al. [9] gave a dominant point based algorithm with the
divide and conquer approach to compute the dominant points and designed a
Quick-DP algorithm using those points and later Yang et al. [10] presented a pro-
gressive algorithm with efficient parallelization. Huang and Lim gave a branch
and bound algorithm using minimum of pairwise longest common subsequence
lengths as a bounding condition [4]. As MLCS problem is widely used in pro-
tein and genome sequence analysis, further improvement of the algorithm can
contribute significantly in the studies of computational genomics [3].

In this paper, first we formally settle the question of complexity of the prob-
lem of finding common motifs with gaps. We also present a branch and bound
algorithm for computing the longest common subsequences of a set of strings. We
pre-process the sequences to explore more promising paths first and to speed-up
the pruning process and we explore bounding strategies previously not consid-
ered [4]. We then extend this algorithm to find common motifs with gaps. We
first find the common factors appearing in all the strings and then use a branch
and bound algorithm to chain together the factors. Although this problem is
treated as a hard problem in the literature and is handled accordingly, to the
best of our knowledge this is the first attempt to prove the hardness thereof for-
mally. And the reduction from MLCS allows us to adapt the branch and bound
algorithm for MLCS to solve the problem of finding common motifs with gaps.

The rest of the paper is organized as follows. We give the problem definitions
in Sect. 2 and prove the hardness of the problem of finding common motifs with
gaps in Sect. 3. The algorithms are presented in Sect. 4 along with examples.
Finally, in Sect. 5 we conclude the paper.

2 Background

A motif is a common pattern that appears frequently among a set of genome
sequences. In this section we formally define the two problems that we are going
to address in the rest of the paper.

2.1 Common Motifs with Gaps

Consider a set of strings S = {S1, S2, .., Sd} over the alphabet Σ = {A,C,G, T}
and two integers p,q, where 1 ≤ p ≤ q ≤ min(|Sj | : j ∈ {1, . . . , d}) are given. The
problem of finding common motifs with gaps (CMG) aims at finding common
words P1, P2, ..., Pm such that: P1 ∗di,1 P2 ∗di,2 · · · ∗di,m−1 Pm occurs in Si, for all
i ∈ {1, . . . , d}, m > 1, p ≤ |Pj | ≤ q for all j ∈ {1, . . . , m} and di,j ≥ 1 for all
i ∈ {1, . . . , d}, j ∈ {1, . . . , m − 1}. Here, ∗ is the don’t care symbol that matches
any character in Σ.

On Multiple Longest Common Subsequence and Common Motifs with Gaps 209

For example, given a set of three strings S = S1, S2, S3 and minimum factor
size, p = 1 and maximum factor size, q = 2, the substrings AC, AA and CA
form the common motifs that satisfy the required criteria as highlighted below:

S1 = ACAAAACACAAA
S2 = ACACCAACCACA
S3 = CACAAACCACCA

In the optimization version of the problem, we want to maximize m i.e. we
seek a common motif with gaps with maximum number of factors and in the
decision version of the problem, for a given m, we want to check whether there
is a common motif with gaps with ≥ m factors.

2.2 Multiple Longest Common Subsequence

The Multiple Longest Common Subsequence (MLCS) problem aims at finding a
longest subsequence shared among a set of sequences. Let, S = {S1, S2, S3,...,Sd}
be a set of sequences over a finite alphabet Σ. The Longest Common Subsequence
(LCS) of set S is a sequence s with length �, such that it is of the highest length
among all subsequences that are shared among all Si, i ∈ {1, . . . , d}. For example,

S1 = informatics
S2 = bioinformatics
S3 = proteomics

One of the subsequences for this example is s1 = mics, one is s2 = tics and
another is s3 = omics. The longest one is s3 = omics. Notably, this sequence
may not necessarily be unique.

In the optimization and decision versions of the problem we intend to find
an LCS of the maximum length and decide if there is an LCS greater or equal
to a given length, respectively.

3 Complexity of Common Motifs with Gaps

Theorem 1. CMG problem is NP-complete.

Proof. To show that the decision version of CMG ∈ NP , for a given set
S = {S1, S2, . . . , Sd} of sequences, a sub-sequence s′ of common factors, and
an integer m > 1, we can easily check in polynomial time whether s′ consists
of m or more factors and satisfy the length constraints if any, and whether the
factors in s′ appear in the right order in every sequence of S.

We next prove MLCS ≤P CMG which shows that CMG is NP -hard.
Given an instance of MLCS over an alphabet Σ given by sequences T =

{T1, T2, . . . , Td}, we construct an instance of CMG, S = {S1, S2, . . . , Sd} over
the alphabet {A,C,G, T} such that there exists an LCS of length k for set T if,
and only if, S has a CMG of k factors as follows:

210 S. D. Sayeed et al.

1. First we relabel the characters of the MLCS instance using integers from
{1, . . . , |Σ|} and convert each integer into its binary form.

2. We then replace ‘0’s and ‘1’s by ‘A’s and ‘C’s respectively to get strings over
{A,C} for each integer.

3. Finally we put these strings in the same order in each Si as the corresponding
integers appeared in Ti separated by ‘G’s in S1 and ‘T’s in all other Si and
we set minimum factor length p = �log |Σ|�.
Following is an example of the construction:

a b c d
b a c d
a c b d

⇒
1 2 3 4
2 1 3 4
1 3 2 4

⇒
001 010 011 100
010 001 011 100
001 011 010 100

⇒
AAC G ACA G ACC G CAA
ACA T AAC T ACC T CAA
AAC T ACC T ACA T CAA

Now we show that this transformation of T into S is a reduction.
First suppose that T has a solution, that is a sequence t′ of k characters are

present in every sequence of T in exactly the same order. These characters, i.e.,
integers in t′ will correspond to substrings of each Si and these substrings will
form a sequence s′ of k factors. s′ is a common motif sequence with k factors
since according to the construction the factors must appear in each Si in exactly
the same order and there must be a gap of length at least one between any two
factors.

Conversely, suppose, S has a common gapped motif sequence s′ with k fac-
tors, k > 1, that follows a certain order in every sequence Si. Note that since
‘G’ was used as the separator in S1 and ‘T’ was used in all other strings, each
factor must be strings over {A,C} and corresponds to an integer in the LCS
instance by construction, and they will follow the same order in every sequence
giving us a common subsequence of length k in all strings in T . 	

4 Algorithms

Algorithms are known for both MLCS and CMG problems that run in time
polynomial in lengths of sequences and exponential in the number of sequences.
Complexity results in [7] and in this paper indicate that asymptotically faster
algorithms are unlikely. However, search space may be reduced by pruning lead-
ing to faster algorithms in practice. Here we present branch and bound algo-
rithms for both MLCS and CMG problems.

4.1 A Branch and Bound Algorithm for MLCS Problem

Given a set of sequences, S = {S1, S2, . . . , Sd}, where |Si| ≤ n for 1 ≤ i ≤ d,
we preprocess the sequences to explore promising paths first and prune the
search space using the value of the best solution found so far and the upper
bound on values of solutions the path being explored may lead to. The algorithm
uses memoization to avoid redundancy of work, i.e., the values of subproblems
already calculated are stored in a table, V indexed by vectors of indices into the
sequences.

On Multiple Longest Common Subsequence and Common Motifs with Gaps 211

Preprocessing. We preprocess the sequences to generate candidate lists that
will be used to decide in what order nodes are visited during the search process.
The candidate list for the first element of the longest common subsequence, Cinit,
consisting of triples <element,minMultiplicity,minDistance>, is generated as
follows:

1. Process each sequence, Si and list each element e, the distance of its first
occurrence to the end of the sequence, de,i and the number of times it appears
in the sequence, me,i.

2. Intersect the lists to get elements common in all sequences. When we intersect
we retain the minimum of distances to ends of the sequences for an element,
and the minimum multiplicity of the element. Therefore, minMultiplicity
and minDistance entries corresponding to element, which appears in all the
sequences, are given by:

minMultiplicity = min
1≤i≤d

melement,i

minDistance = min
1≤i≤d

delement,i

3. Sort the triples in descending order of minimum distance to ends of sequences
and record the sum of multiplicities.

The elements will be explored according to the order in the candidate list,
the intuition being an element more distant to the ends of the sequences has
more room for other elements to follow it in the LCS.

Similarly, for each element x that appears Kx times in all the sequences, we
construct lists Cx,k for 1 ≤ k ≤ Kx of triples corresponding to elements that
follow the k-th occurrence of x in all the sequences.

For a finite alphabet, each such list can be constructed in time O(nd) and
since there can be at most n such lists, preprocessing takes O(n2d) time.

Branch and Bound. At each node, we take as input a vector of indices
I = <i1, i2, . . . , id> and a common subsequence, α of the sequences
S1[1 . . . i1], S2[1 . . . i2], . . . , Sd[1 . . . id], i.e., common subsequence up to I. We also
maintain the best solution found so far globally. We start at <0, . . . , 0> with
the common subsequence ε.

Then, at each node, we do the following:

1. Look up the last character and its multiplicity in α and retrieve the corre-
sponding candidate list.

2. Iterate through the <element,minMultiplicity,minDistance> triples in the
candidate list.

3. Estimate upper bound (see Pruning conditions discussed shortly) to check
if the branch can be pruned.

212 S. D. Sayeed et al.

4. Find positions P = <p1, p2, . . . , pd> in each sequence following the input
indices where element occurs. Note that such positions may not exist in some
sequences as the k-th occurrence of x in α may correspond to a position in
Si to the right of the position of the k-th occurrence of x in Si. We skip such
entries.

5. If <p1, p2, . . . , pd> has already been computed, then look up the value. Oth-
erwise, explore <p1, p2, . . . , pd> and update the best solution if needed.

Pruning Conditions. Suppose we are considering for exploration a triple,
<element,minMultiplicty,minDistance> and suppose this would be the �-th
occurrence of element in the common subsequence. The following properties can
be used to calculate an upper bound on the maximum possible value, ṽ in the
subtree rooted at the node:

1. ṽ can not exceed 1+minDistance since there are only minDistance elements
after element in at least one of the sequences.

2. Similarly, sum of multiplicities of Celement,� is an upper bound on the number
of elements that can follow element in the common subsequence.

3. Let y = element and pi(y, �) be the position of the �-th occurrence of y in the
i-th sequence. Now V [p1(y, �), . . . , pd(y, �)] is an upper bound on ṽ because
the position in Si that corresponds to the �-th occurrence of y in the common
subsequence must be greater than or equal to pi(y, �) for 1 ≤ i ≤ d.

The algorithm is summarized in Algorithm1.

Algorithm 1. MLCS
1: Initialize: bestSolution ← 0
2: MLCS-B&B (<0, . . . , 0>, ε)
3: procedure MLCS-B&B(I, α)
4: x ← lastElement(α)
5: k ← multiplicity(α, x)
6: v ← 0
7: for each <y, m, d> ∈ Ck,x do
8: � ← multiplicity(α, y)+1
9: ṽ ← min(d + 1, multiplictySum(Cy,�) + 1, V [p1(y, �), . . . pd(y, �)])

10: if ṽ + |α| > bestSolution then
11: P ← getNextPos(I, y)
12: if P is valid then
13: if V [P] is not null then
14: v ← max(v, 1 + V [P])
15: else
16: v ←max(v, 1+MLCS-B&B (P, α.y))

17: if v + |α| > bestSolution then
18: bestSolution ← v + |α|
19: V [I] ← v
20: Return v

On Multiple Longest Common Subsequence and Common Motifs with Gaps 213

An Illustrative Example. A simulation of the algorithm on an example is
shown in Fig. 1.

Fig. 1. Simulation of Algorithm 1 on an example set

4.2 A Branch and Bound Algorithm for CMG

We now extend the method discussed above and present a branch and bound
algorithm for finding common motifs with gaps (CMG). We are given a set of
strings, S = {S1, S2, . . . , Sd}, and integers p, q giving upper and lower bounds
on factor lengths respectively.

The first step is to find common factors. Then we use an approach similar to
the one for finding MLCS taking into account that there may be multiple factors
overlapping a position in a string, at most one of which can be present in the
final solution.

Identifying Common Factors. We first identify common factors, i.e., sub-
strings with lengths between p and q that appear in all the strings and record
start indices (and end indices implicitly) of their occurrences in every string.
This can be done efficiently using approaches such as suffix trees [8], finite
automata [2]. For each string Si, where 1 ≤ i ≤ d, we create a list of factors,
Fi consisting of all occurrences of all the common factors in the string sorted in
ascending order of their end indices.

Candidate List Generation. The factor lists are then processed to generate
candidate lists in a similar approach to the one used for preprocessing MLCS
instances. In this context, a factor, f1 will be in the list of candidates to follow

214 S. D. Sayeed et al.

the k-th occurrence of factor f2 if in each factor list there is an entry for f1 with
start index exceeding the end index of k-th occurrence of factor f2 by at least
2. The candidate lists are sorted in descending order of minimum distances of
factors from the ends of factor lists.

Branch and Bound and Pruning Conditions. The branch and bound algo-
rithm now proceeds as the one for finding MLCS producing a common motif with
highest number of factors.

An Illustrative Example. Figure 2 shows simulation of the algorithm for
finding common motifs with gaps on a sample instance. The factor lists consist
of pairs denoting the factor string and its start position sorted in increasing order
of their end positions i.e. sum of the start positions and the lengths of factors.
Note that although TCG follows TG in each of the factor lists, it is not included
in the list of candidates to follow the first occurrence of TG since it overlaps
with TG in two of the strings. We also see that although TGC is a common
factor of the strings, it does not appear in the final common motif with gap as
that would lead a motif with only one factor. However, substrings of TGC are
considered as factors - TG in S1 and S3 and GC in S2 - to obtain a common
motif with three factors.

Fig. 2. Simulation of the algorithm for finding common motifs with gaps on an example

5 Conclusions

In this paper, we have addressed two problems with applications in genomics -
finding a longest common subsequence of multiple sequences (MLCS) and find-
ing common motifs with gaps (CMG). MLCS is known to be NP-hard and its
reduction to CMG in this paper formally proves that CMG is NP-hard as well.

On Multiple Longest Common Subsequence and Common Motifs with Gaps 215

While this makes polynomial time algorithms for the problems unlikely, we have
proposed a branch and bound algorithm with preprocessing to prune the search
space that may reduce running time for many instances of the problems. Future
work will include implementation of the algorithms to test the speed-up achieved
compared to existing algorithms of the problems and subsequent application to
real datasets.

References

1. Antoniou, P., Crochemore, M., Iliopoulos, C., Peterlongo, P.: Application of suf-
fix trees for the acquisition of common motifs with gaps in a set of strings. In:
International Conference on Language and Automata Theory and Applications
(2007)

2. Antoniou, P., Holub, J., Iliopoulos, C.S., Melichar, B., Peterlongo, P.: Finding
common motifs with gaps using finite automata. In: Ibarra, O.H., Yen, H.-C. (eds.)
CIAA 2006. LNCS, vol. 4094, pp. 69–77. Springer, Heidelberg (2006). https://doi.
org/10.1007/11812128 8

3. Chen, Y., Wan, A., Liu, W.: A fast parallel algorithm for finding the longest com-
mon sequence of multiple biosequences. BMC Bioinformatics 7(4), S4 (2006)

4. Huang, G., Lim, A.: An effective branch-and-bound algorithm to solve the k-longest
common subsequence problem. In: Proceedings of the 16th European Conference
on Artificial Intelligence, pp. 191–195. IOS Press (2004)

5. Iliopoulos, C.S., McHugh, J., Peterlongo, P., Pisanti, N., Rytter, W., Sagot, M.F.:
A first approach to finding common motifs with gaps. Int. J. Found. Comput. Sci.
16(06), 1145–1154 (2005)

6. Korkin, D., Wang, Q., Shang, Y.: An efficient parallel algorithm for the multi-
ple longest common subsequence (MLCS) problem. In: 2008 37th International
Conference on Parallel Processing, ICPP 2008, pp. 354–363. IEEE (2008)

7. Maier, D.: The complexity of some problems on subsequences and supersequences.
J. ACM (JACM) 25(2), 322–336 (1978)

8. Marsan, L., Sagot, M.F.: Extracting structured motifs using a suffix tree algorithms
and application to promoter consensus identification. In: Proceedings of the Fourth
Annual International Conference on Computational Molecular Biology, pp. 210–
219. ACM (2000)

9. Wang, Q., Korkin, D., Shang, Y.: A fast multiple longest common subsequence
(MLCS) algorithm. IEEE Trans. Knowl. Data Eng. 23(3), 321–334 (2011)

10. Yang, J., Xu, Y., Sun, G., Shang, Y.: A new progressive algorithm for a multiple
longest common subsequences problem and its efficient parallelization. IEEE Trans.
Parallel Distrib. Syst. 24(5), 862–870 (2013)

https://doi.org/10.1007/11812128_8
https://doi.org/10.1007/11812128_8

FPT Algorithms Exploiting Carving
Decomposition for Eulerian Orientations

and Ice-Type Models

Shinya Shiroshita(B), Tomoaki Ogasawara, Hidefumi Hiraishi,
and Hiroshi Imai

Graduate School of Information Science and Technology, The University of Tokyo,
7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan

{castle phidnight,t.ogasawara,hiraishi1729,imai}@is.s.u-tokyo.ac.jp

Abstract. An Eulerian orientation of an undirected graph is an orien-
tation of edges such that, for each vertex, both the indegree and the
outdegree are the same. Eulerian orientations are important in a variety
of fields. In statistical physics, the partition function of the so-called ice
model, which is the special case of the ice-type model, is related to the
number of Eulerian orientations of a 4-regular graph, which is the value
of its Tutte polynomial at the point (0,−2). The problem of counting the
number of Eulerian orientations in a 4-regular graph is #P-complete, and
yet there is an FPT (Fixed Parameter Tractable) algorithm for it with
respect to the tree-width of the graph.

This paper presents two FPT algorithms based on a carving decom-
position. One of them counts the number of Eulerian orientations for a
general graph in O(k · (2

√
2)k · n) time and O(2k · n) memory consump-

tion, and the other calculates the partition function of a general ice-type
model for a 4-regular graph in O(k·(2

√
2)k ·n) time and O(2k ·n+(2

√
2)k)

memory consumption where, for an input graph, k is the carving-width
and n is the size of the vertex set.

1 Introduction

An Eulerian circuit for an undirected graph is a closed walk which visits every
edge of a graph exactly once. For the problem of finding an Eulerian circuit, the
solution that Euler showed is considered as one of the origins of graph theory [8].
An Eulerian orientation of an undirected graph G is an orientation of edges such
that, for each vertex, both the indegree and the outdegree are the same. It is
known that G has an Eulerian orientation if and only if G has an Eulerian circuit.

Eulerian orientations have various significances in several fields. In statistical
physics, Pauling [16] introduced the so-called ice problem on a toroidal square
lattice, and derived a rough value about its physical quantity in terms of the
number of ‘ice configurations’. Lieb [12] presented its exact value, thus resolv-
ing the case of square lattices, and opening research on other general cases.
Welsh [24] pointed out that, for a 4-regular planar graph, the number of ice con-
figurations is the number of Eulerian orientations, which is equal to the value of
c© Springer International Publishing AG, part of Springer Nature 2018
M. S. Rahman et al. (Eds.): WALCOM 2018, LNCS 10755, pp. 216–227, 2018.
https://doi.org/10.1007/978-3-319-75172-6_19

FPT Algorithms Exploiting Carving Decomposition 217

Tutte polynomial at the point (0,−2). This holds for a general 4-regular graph
via nowhere zero 3-flows [25]. Moreover, Welsh also referred to investigating the
#P-completeness of these problems in connection with the #P-completeness
of evaluating the Tutte polynomial of a graph. In graph theory, motivated by
a problem of evaluating the permanent of doubly stochastic matrices and the
(0,1)-matrix posed by Minc [14] and van der Waerden [23], Schrijver gave the
upper and lower bounds of the number of Eulerian orientations [18].

An Eulerian orientation of a graph can be computed in polynomial time.
However, computing the number of Eulerian orientations is not easy. Mihail
and Winkler [13] showed that computing the number of Eulerian orientations is
#P-complete in a general graph, while there exists an FPRAS for this problem.
The problem for a planar graph was shown to remain #P-complete [7]. Valiant [22]
introduced holographic algorithms in connection with quantum computing, and
proved that there exists a polynomial-time algorithm that computes the number
of orientations of a 3-regular graph such that, for each vertex, both the indegree
and the outdegree are less than three. Huang and Lu [11] advanced research on the
notion of holographic algorithms and showed that, for 2k-regular graphs, counting
the number of Eulerian orientations is #P-complete for any k ≥ 2.

The problem of counting the number of Eulerian circuits is similar to that
for orientations. Brighton and Winkler [3] presented the proof that the counting
Eulerian tours is #P-complete. Even for a 4-regular planar graph, the counting
Eulerian tours remains #P-complete [10]. Chebolu et al. [6] claimed that the
counting Eulerian tours can be solved in polynomial time on bounded tree-width,
and then Balaji et al. [2] proved that there exists a polynomial-time algorithm
for counting Eulerian tours on bounded tree-width (efficiently even in parallel
computing).

In recent years, for such an intractable problem, there exist many studies
that measure the complexity of a problem with respect to parameters and the
input size. A problem is said to be FPT (Fixed Parameter Tractable) if the
problem can be solved in f(k) · nO(1) time where f(k) is an arbitrary function
in a parameter k and n is the input size. An FPT algorithm, with respect to
the path-width, of computing the Tutte polynomial was constructed by Sekine
et al. [19]. Andrzejak [1] and Noble [15] independently showed that there exists
a polynomial-time algorithm for computing the Tutte polynomial in graphs of
bounded tree-width, and the algorithm in the latter paper is FPT. By this exis-
tence of an FPT algorithm which computes the Tutte polynomial, we consider
that there exists an FPT algorithm on tree-width that counts the number of
Eulerian orientations. With respect to the research of Sasák [17] that tree-width
is bounded by carving-width, Noble’s algorithm is also an FPT on carving-width.
However, this algorithm has the time complexity at least the square of the input
size.

In this paper, we propose an FPT algorithm for counting Eulerian orienta-
tions in a general graph by exploiting a carving-width as a parameter, and runs
in O(k ·(2√

2)k ·n) time and O(2k ·n) memory where, for an input general graph,
k is the carving-width and n is the size of the vertex set. Our algorithm is based

218 S. Shiroshita et al.

Fig. 1. Configurations of the ice-type model.

on dynamic programming on a binary tree corresponding to the decomposition,
which recursively determines orientations of the subgraph induced by each node
of the tree. We use a linear-time algorithm of Thilikos et al. [21] to construct a
carving decomposition of any undirected graph whose width is not more than a
given parameter k.

In Sect. 4, we focus on the partition function of the ice-type model (or the
six-vertex model) introduced by Lieb [12], which is the generalized version of
the ice problem. The model gets six parameters describing the weight of each
configuration, which affect the weight of each Eulerian orientation. Figure 1
shows six possible configurations of each vertex. From the viewpoint of computa-
tional complexity, Cai et al. [5] divided paremeters into two classes: calculating
their partition funcution can be done in polynomial time, or it is #P-hard. Cai
et al. [4] categorized paremeters into three cases: polynomial time in general
graphs, polynomial time in planar graphs, or #P-hard even in planar graphs.
This paper provides another FPT algorithm which evaluates the partition func-
tion of ice-type models for any 4-regular graph in O(k · (2

√
2)k · n) time and

O(2k · n + (2
√

2)k) memory consumption.

2 Definitions

2.1 Graph Definitions

Let G = (V,E) be a graph (can be undirected or directed), and let V (G) (E(G))
be the vertex (edge) set of G. We denote as G[V ′](V ′ ⊆ V) the subgraph of G
induced by V ′. Each edge connects two different vertices. There may exist a set
of two vertices which has more than one edge connecting them.

For a directed graph, we call a directed edge as an arc. If an arc is directed
from a vertex y to a vertex x, then x is called the head and y is called the tail.
For each vertex v, the indegree din(v) is the number of arcs whose head is v, and
the outdegree dout(v) is the number of arcs whose tail is v.

An Eulerian circuit for an undirected graph is a closed walk which visits each
edge of G exactly once. An Eulerian orientation of an undirected graph G is an
orientation of all edges such that, for each vertex v, both din(v) and dout(v) are
the same.

We also define a cut of a graph. For a graph G = (V,E), a cut of G is a
partition of V into two vertex set (A,B). The cut-set of a cut (A,B) is the set
of edges crossing between A and B. The size of a cut is defined as the number
of edges in its cut-set.

FPT Algorithms Exploiting Carving Decomposition 219

2.2 Carving Decomposition

A carving decomposition of a graph G = (V,E) is an unrooted binary tree T
whose leaves correspond to the vertices of G. For any edge e of T , the graph
T − e is consisted of exactly two connected components. Let (Xe, V \ Xe) be
a cut where Xe ⊆ V and for any vertices v, w whose corresponding leaves are
in the same conponent of T − e, either v, w ∈ Xe or v, w ∈ V \ Xe holds. The
width of a carving decomposition T is the maximum size of a cut by Xe and
V \ Xe of all e ∈ E(T), and the carving-width of G is the minimum width of
all carving decompositions of G. A carving-width was introduced by Seymour
and Thomas [20]. It is NP-complete that deciding whether the carving-width of
a graph is at most k.

We assume that a carving decomposition of an input graph is already com-
puted by using the algorithm of Thilikos et al. [21]. In order to use dynamic
programming, we assume that the decomposition is given as a rooted binary
tree, which is generated from an unrooted binary tree by adding a root node on
some edge and directions on every edge.

3 Algorithm for Eulerian Orientations

This section describes our FPT algorithm counting the number of Eulerian orien-
tations. We call it Algorithm1 for convenience. It is based on dynamic program-
ming on a carving decomposition. Algorithm1 gets an input graph G = (V,E)
of n vertices and m edges and its carving decomposition as a rooted binary tree
whose width is k.

Algorithm1 recursively evaluates the number of orientations of the induced
subgraph of G on each node of the decomposition. One important aspect is that
once two different orientations of the same subgraph have the same vector of
din − dout of n vertices, we have no necessity of distinguishing them on parent
nodes. So we only need to calculate the number of possible orientations for each
combination of din − dout of n vertices. Algorithm1 focuses on only a subset of
the combinations for each node S, denoted by DS , in order to bound the number
of operations on each node by a function of k. Figure 2 shows the pseudo-code
of Algorithm1. Time complexity is O(k · (2

√
2)k · n) and memory complexity is

O(2k · n).

3.1 Description of Algorithm1

This subsection introduces some additional definitions for the latter subsections.
For convenience, we assume that each vertex is numbered from v1 to vn. We

denote each node of the decomposition as the vertex set it contains. We define the
degree vector dvecA = (din(v1)−dout(v1), din(v2)−dout(v2), ..., din(vn)−dout(vn))
of the set of arcs A which is a vector of n intergers representing din − dout of
each vertex.

220 S. Shiroshita et al.

Fig. 2. The pseudo-code of Algorithm1.

Let EA,B of two disjoint vertex sets A,B ⊆ V be a set of edges which
expand from one set to the other. For any subset S ⊆ V and any vertex v ∈ S,
let BS(v) = E{v},V \S be a set of edges connecting v and a vertex in V \ S, and
let BS(vi) = {−|BS(vi)|,−|BS(vi)| + 2, ..., |BS(vi)|} be the set of integers that
din(vi) − dout(vi) must be on the node S. DS = {(a1, a2, ..., an)|ai ∈ BS(vi) for
1 ≤ i ≤ n} is a set of n-element vectors we consider on node S. The following
Lemma 1 shows that we do not have to consider any degree vector not in DS .

Lemma 1. For any Eulerian orientation O of E(G) and any vertex set S ⊆ V ,
let OS be the orientation of E(G[S]) satisfying OS ⊆ O. Then, dvecOS

∈ DS.

Proof. If dvecOS
/∈ DS , there is a vertex v such that din(v) − dout(v) /∈ BS(v).

By the similarity, we may assume that din(v) − dout(v) ≥ |BS(v)| + 1. In order
to make din(v) − dout(v) = 0 on O, there must be at least |BS(v)| + 1 out-edges
adjacent to v in O \ OS . However, there are only |BS(v)| edges adjacent to v in
E \ E(G[S]). ��

Lemma 2 bounds |DS | by the size of the cut(S, V \ S), which is less than or
equal to the carving-width.

Lemma 2. |DS | ≤ 2ES,V \S for any vertex set S ⊆ V .

Proof. For any sequence of nonnegative integers a1, a2, ...an′ , we define

Π+(a1, a2, ...an′) =
n′∏

i=1

(ai + 1).

FPT Algorithms Exploiting Carving Decomposition 221

By the definition of DS , |DS | = Π+(|BS(v1)|, |BS(v2)|, ..., |BS(vn)|).
Since

∑n
i=1 |BS(vi)| = ES,V \S ,

|DS | ≤ max
a1,a2,...,an∈Z≥0,

∑n
i=1 ai=ES,V \S

Π+(a1, a2, ..., an)

≤ max
n′∈Z+

{
max

a1,a2,...,an′∈Z≥0,
∑n′

i=1 ai=ES,V \S

Π+(a1, a2, ..., an′)
}

For any sequence a1, a2, ..., an′ which satisfies ak ≥ 2 for some 1 ≤ k ≤ n′,

Π+(a1, a2, ..., an′) < Π+(a1, a2, ..., ak−1) · ak · 2 · Π+(ak+1, ak+2, ..., an′)
∴ Π+(a1, a2, ..., an′) < Π+(a1, a2, ..., ak−1, ak − 1, 1, ak+1, ak+2, ..., an′).

So we need not consider any sequence containing an integer larger than 1.
Every sequence a1, a2, ..., an′ containing only 0 or 1 satisfies Π+(a1,

a2, ..., an′) = 2ES,V \S . Therefore, |DS | ≤ 2ES,V \S . ��
We use a 0–1 vector eS = {(av1 , av2 , ..., avn

)|avi
= 1 if vi ∈ S and avi

= 0
otherwise} to describe the subset S ⊆ V . We also denote the operator x ◦ y
as the Hadamard product of n-element vectors x, y. That is, (x1, x2, ..., xn) ◦
(y1, y2, ..., yn) = (x1y1, x2y2, ..., xnyn).

3.2 Correctness and Complexity

This subsection describes correctness and time/memory complexity of
Algorithm 1.

Theorem 1. Algorithm1 correctly counts the number of Eulerian orientations.

Proof. Before showing Theorem 1, we first prove the following lemma:

Lemma 3. For any internal node S, its children L,R and orientation X of
EL,R, let f be any function which gets v ∈ S and a directed edge set O and returns
0 or 1 depending only on the directions of v’s adjacent edges in O. Let AS′,X be
the orientation set of G[S′] containing X. Let PS = {O|O ∈ AS′,X , f(v,O) = 1
for all v ∈ S′}. Let PC(C ∈ {L,R}) be the set of an orientation O′ of E(G[C])
satisfying f(v,O′∪X) = 1 for all v ∈ C. Then, PS = {p∪X ∪q|p ∈ PL, q ∈ PR}.
Proof (Lemma 3). We will prove both inclusion relations.

[⊆] For any O ∈ PS , let OL be a subset of O included in E(G[L]). For any
v ∈ L, the combination of directions of adjacent edges of v on OL ∪ X is equal
to that of O. Therefore, OL ∈ PL. It is also true for R.

[⊇] For any pair of OL ∈ PL and OR ∈ PR and for any vertex v ∈ S, the
directions of adjacent edges of v on OL∪X∪OR is equal to those of OL∪X(v ∈ L)
or OR ∪ X(v ∈ R) because no vertex contain both edges of OL and OR. ��

222 S. Shiroshita et al.

For each node S and degree vector σ ∈ DS , let AS,σ be the set of orientations
of E(G[S]) whose degree vector is equal to σ. We prove |AS,σ| = dpS [σ] by the
following induction:

When S is a leaf node, DS = {(0, 0, ..., 0)} and AS,(0,0,...,0) = {∅}. Therefore
|AS,(0,0,...,0)| = 1 = dpS [(0, 0, ..., 0)].

When S is an internal node and its children L,R satisfy the induction
hypothesis, let A′

X,S,σ be a set of orientations of E(G[S]) containing an ori-
entation X of EL,R. By Lemma 3, A′

X,S,σ = {p ∪ X ∪ q|p ∈ AL,(σ−dvecX)◦eL
, q ∈

AR,(σ−dvecX)◦eR
} because the constraint of the Eulerian orientation depends only

on din − dout of each vertex. Therefore,

dpS [σ] =
∑

X

|A′
X,S,σ|

=
∑

X

(|AL,(σ−dvecX)◦eL
| · |AR,(σ−dvecX)◦eR

|)

=
∑

X

(dpL[(σ − dvecX) ◦ eL] · dpR[(σ − dvecX) ◦ eR]).

��
Theorem 2. Algorithm1 has O(k · (2

√
2)k · n) time complexity where k is the

carving-width of the input graph.

Proof. We show that our algorithm calculates all elements of the dynamic pro-
gramming tables of all nodes on the subtree of the decomposition rooted by S
in O(k · (2

√
2)k · nS) time where nS is the number of nodes on the subtree.

When S is a leaf node, our algorithm returns dpS in constant time.
When S is an internal node and its children L,R satisfy the induction hypoth-

esis, running time of RecursivePartOfAlgorithm1 are bounded by O(k · (2√
2)k ·

nS) respectively. The total number of operations accessing to one element of dpL

on RecursivePartOfAlgorithm1(S) is equal to O(|DS | · 2EL,R). Accessing a value
in dpL costs O(k) time because we can calculate an index from at most k integers.
The above argument is also correct for dpR. By Lemma 2, |DS | ≤ 2EL,V \S+ER,V \S .
They mean that the calculating time of all elements of dpS is bounded by
O(k · 2EL,V \S+ER,V \S+EL,R). By the definition of k, EL,V \S + ER,V \S ≤ k,
EL,V \S + EL,R ≤ k, and ER,V \S + EL,R ≤ k are satisfied. By gathering them,
EL,V \S +ER,V \S +EL,R ≤ (3/2)k. It means that the calculation time is bounded
by O(k · 2(3/2)k) = O(k · (2

√
2)k).

Since the number of nodes on the decomposition is O(n), the whole time
complexity is O(k · (2

√
2)k · n). ��

Theorem 3. Algorithm1 has O(2k · n) memory complexity where k is the
carving-width of the input graph.

Proof. By Lemma 2, the number of elements on dpS is bounded by O(2k) for
any node S of the decomposition. ��

FPT Algorithms Exploiting Carving Decomposition 223

4 Algorithm for Ice-Type Models

This section describes the other algorithm, denoted as Algorithm2, which cal-
culates the partition function of an ice-type model of a 4-regular graph. Like
Algorithm1, Algorithm2 uses the carving decomposition and treats Eulerian ori-
entations on each node of the tree. While Algorithm1 stores the number of
orientations, Algorithm2 stores the summation of the current partition function
of each orientation on the dynamic programming table. Algorithm2 uses vectors
slightly different from degree vectors as the key of the table.

Figure 3 shows the pseudo-code of Algorithm2. We can calculate the given
4-regular graph’s partition function in O(k · (2

√
2)k · n) time consumption and

O(2k · n + (2
√

2)k) memory consumption. In the pseudo-code, we define that a
state vector σ of S does not contradicts to an orientation X of EL,R if and only
if there exists an orientation O of S such that O contains X and svecO = σ.

4.1 Description of Algorithm2

An ice-type model is a pair of a 4-regular graph and six parameters ε1, ε2, ..., ε6
denoting the energy of each configuration. The partition function Z of the model
is equal to

∑
X e−(n1ε1+n2ε2+...+n6ε6)/kBT where X is an Eulerian orientation of

an input graph, ni is the number of vertices on X forming i-th configuration,
kB is Boltzmann’s constant and T is the temperature of the system.

Fig. 3. The pseudo-code of Algorithm2.

224 S. Shiroshita et al.

On a subgraph, there exists a vertex the directions of whose adjacent edges
are partially undecided. We apply the energy of its configuration to current
partition function when three of the four edges’ orientation are fixed.

For each vertex v, we have to remember the direction of adjacent edges
to decide the configuration. Instead of the degree vector, we use alternative
n-element vector state vector denoted by svec. For any orientation A, svecA is
an n-element vector whose i-th element explains the status of vi by an integer.

Let dS(v) be the number of edges on a node S incident to v. We use the fol-
lowing strategy: storing a pair of directions of adjacent edges if dS(v) = 2 and
din − dout otherwise. Our idea is that, when dS(v) < 2, we can determine the
direction by din − dout and when dS(v) > 2, we need not know the direction since
the energy of v has already been applied. Let B′

S(v) = {1, 2, 3, 4} if dS(v) = 2 and
B′

S(v) = BS(v) otherwise. Let SS = {(a1, a2, ..., an)|ai ∈ B′
S(vi) for 1 ≤ i ≤ n}

be a state vector set we consider on node S. Lemma 4 bounds the size of SS .

Lemma 4. |SS | ≤ 2ES,V \S for any node S.

Proof. Let ai be the number of vertices whose dS is i. Since |B′
S(v)| ≤ 2 for any v

satisfying dS(v)
= 2, |SS | ≤ 2a0+a1+a3+a4 · 4a2 = 2ES,V \S−2a2 · 4a2 = 2ES,V \S . ��
In order to reduce time complexity, Algorithm2 uses a converted vector, which

is a pair of a state vector and tags. A converted vector cvecO,X is defined on a
directed edge set O and its subset X. Its state vector is equal to svecO. A tag
is a 0–1 bit attached to each vertex with exactly two adjacent edges in O \ X
and at least one adjacent edge in X. We denote such a vertex as an exceptional
vertex. Each tag explains the direction of the adjacent edge in X (if there exist
two adjacent edges in X, the tag focuses on the smaller index one). Note that
the tag uniquely detemines the configuration of the corresponding vertex.

Algorithm2 uses three functions: CV, CZ and RCV. CV(node S, state vector
σS of S, edge set E′) returns a set of converted vectors {cvecO∪X,X |O,X is a
orientation of E(G[S]), E′ respectively, svecO = σ}. Since S contains at most k/2
vertices whose dS is two, |CV(S, σS , E′)| ≤ 2k/2 =

√
2

k
. CZ(converted vector σ∗)

returns a correction value of the conversion. Let n′
i(1 ≤ i ≤ 6) be the number

of exceptional vertices in σ∗ whose configuration number is i, then CZ(σ∗)=
e−(n′

1ε1+n′
2ε2+...+n′

6ε6)/kBT . RCV(node S, state vector σ, orientation X) returns
a converted vector σ∗. Let O be an orientation of E(G[S]) containing X and
cvecO = σ. Then σ∗ = cvecO,X .

4.2 Correctness and Complexity

This subsection describes correctness and time/memory complexity of Algo-
rithm2.

Theorem 4. Algorithm2 correctly evaluates the partition function of 4−regular
graph of the ice-type model.

FPT Algorithms Exploiting Carving Decomposition 225

Proof. For any node S, let A∗
S,σ be the set of orientations of E(G[S]) whose state

vector is σ. Let H(S,O) = n1ε1+n2ε2+...+n6ε6 for any orientation O of E(G[S])
where ni is the number of vertices whose dS ≥ 3 and whose configuration number
is i on the orientation O. Let Z(S, σ) =

∑
O∈A∗

S,σ
e−(n1ε1+n2ε2+...+n6ε6)/kBT . The

following argument shows that Z(S, σ) = dpS [σ] by induction.

When S is a leaf node, SS = {(0, 0, ..., 0)}. Z and dpS satisfy Z(S, (0,
0, ..., 0)) = dpS [(0, 0, ..., 0)] = 1.

Next, we consider the case S is an internal node whose children L and R
satisfy the induction hypothesis. Let X be an orientation of EL,R and σ∗ =
RCV(S, σ,X). Let A∗∗

X,S,σ be a set of orientations of E(G[S]) such that its ele-
ment O contains X and svecO = σ. Note that for each vertex, directions of
adjacent edges holding the restriction of σ∗ are equal to those of both σ and
X. Let Apart

X,S,σ∗
S′

(S′)(S′ ∈ {L,R}) be a set of orientations of E(G[S′]) whose
element O′ satisfies cvecO′∪X,X = σ∗

S′ . By Lemma 3, A∗∗
X,S,σ = {p ∪ X ∪ q|p ∈

Apart
X,S,σ∗◦eL

(L), q ∈ Apart
X,S,σ∗◦eR

(R)} because the restriction of configuration is
also dependent only on adjacencies of each vertex. Thus,

Z(S, σ) =
∑

O∈A∗
S,σ

e−H(S,O)/kBT

=
∑

X

∑

O∈A∗∗
X,S,σ

e−H(S,O)/kBT

=
∑

X

(
∑

p∈Apart
X,S,σ∗◦eL

(L)

e−H(L,p∪X)/kBT)(
∑

q∈Apart
X,S,σ∗◦eR

(R)

e−H(R,X∪q)/kBT)

=
∑

X

dp′
L[σ ◦ eL]dp′

R[σ ◦ eR]

To get the last equation, it is enough to show the following lemma:

Lemma 5. For any node S and its child C ∈ {L,R}, ∑
p∈Apart

X,S,σ∗◦eC
(C)

e−H(C,p∪X)/kBT = dp′
C [σ∗ ◦ eC].

Proof (Lemma 5). Let P be a set of a state vector σ of C satisfying
σ∗ ◦ eC ∈ CV (C, σ,EL,R).

dp′
C [σ∗ ◦ eC] =

∑

σ∈P

CZ(σ∗) · dpC [σ] =
∑

σ∈P

Z(C, σ) · CZ(σ∗)

Z(C, σ) · CZ(σ∗) is equal to the sum of e−H(C,p∪X)/kBT for any orientation
p of E(G[C]) whose state vector is σ. Therefore,

∑
σ∈P Z(C, σ) · CZ(σ∗) =∑

p∈Apart
X,S,σ∗◦eC

(C) e−H(C,p∪X)/kBT . ��

The above argument shows that Algorithm2 outputs Z(G, (0, 0, ..., 0)), which is
what we want to evaluate. ��

226 S. Shiroshita et al.

Theorem 5. Algorithm2 has O(k · (2
√

2)k · n) time complexity where k is the
carving-width of the input graph.

Proof. For each call of RecursivePartOfAlgorithm2, the total number of exe-
cution of lines in the loop of σC and σ∗

C is bounded by O((2
√

2)k) because
|SS | ≤ 2k (Lemma 4) and |CV| ≤ √

2
k
. By Lemma 4, that of the line dpS

is bounded by 2ES,V \S+EL,R . By the same argument shown in Theorem 2,
2ES,V \S+EL,R ≤ (2

√
2)k. Since each function can be calculated in O(k), the total

time consumption for each recursion is O(k · (2
√

2)k). ��
Theorem 6. Algorithm2 has O(2k · n + (2

√
2)k) memory complexity where k is

the carving-width of the input graph.

Proof. The number of non-zero contents of dp′
C and dpS is bounded by |SC | ·

|CV|, |SS | respectively. Lemma 4 shows that they are bounded by O((2
√

2)k),
O(2k) respectively. We only need to store dp to calculate the dynamic program-
ming table of its parents. ��

5 Conclusion

We introduced FPT algorithms based on a carving decomposition. When a
carving-width is constant, as in ice problems, they are linear in time and space.

Our method focuses on the fact that for any subgraph induced by S, the
number of degree vectors |DS | is bounded by the number of edges between S and
V \S. So there is a possibility of finding an FPT algorithm of another parameter,
especially if the parameter can limit the number of edges like carving-width.

Now we discuss another width parameter. For a clique-width, Fomin et al. [9]
proved that the graph coloring problem is W [1]-hard parameterized by clique-
width, therefore we suppose that the problem of computing the Tutte polynomial
is W [1]-hard parameterized by clique-width. From the above, the existence of an
FPT algorithm of a clique-width that counts the number of Eulerian orientations
is unlikely.

Acknowledgment. The work by the third and fourth authors was supported in part
by KAKENHI JP15H01677, JP16K12392, JP17K12639. The authors also thank anony-
mous reviewers for their helpful comments.

References

1. Andrzejak, A.: An algorithm for the Tutte polynomials of graphs of bounded
treewidth. Discret. Math. 190(1–3), 39–54 (1998)

2. Balaji, N., Datta, S., Ganesan, V.: Counting Euler tours in undirected bounded
treewidth graphs. In: Proceedings of the 35th IARCS Annual Conference on Foun-
dation of Software Technology and Theoretical Computer Science, pp. 246–260
(2015)

FPT Algorithms Exploiting Carving Decomposition 227

3. Brightwell, G.R., Winkler, P.: Counting Eulerian circuits is #P-complete. In: Pro-
ceedings of the Seventh Workshop on Algorithm Engineering and Experiments and
the Second Workshop on Analytic Algorithmics and Combinatorics, pp. 259–262
(2005)

4. Cai, J.-Y., Fu, Z., Shao, S.: A complexity trichotomy for the six-vertex model.
arXiv:1704.01657 [cs.CC] (2017)

5. Cai, J.-Y., Fu, Z., Xia, M.: Complexity classification of the six-vertex model.
arXiv:1702.02863 [cs.CC] (2017)

6. Chebolu, P., Cryan, M., Martin, R.: Exact counting of Euler tours for graphs of
bounded treewidth. arXiv:1310.0185 [cs.DM] (2013)

7. Creed, P.J.: Counting and sampling problems on Eulerian graphs. Ph.D. thesis,
The University of Edinburgh (2010)

8. Euler, L.: Solutio problematis ad geometriam situs pertinentis. Commentarii
Academiae Scientiarum Petropolitanae 8, 128–140 (1741)

9. Fomin, F.V., Golovach, P.A., Lokshtanov, D., Saurabh, S.: Intractability of clique-
width parameterizations. SIAM J. Comput. 39(5), 1941–1956 (2010)

10. Ge, Q., Stefankovic, D.: The complexity of counting Eulerian tours in 4-regular
graphs. Algorithmica 63(3), 588–601 (2012)

11. Huang, S., Pinyan, L.: A dichotomy for real weighted Holant problems. Comput.
Complex. 25(1), 255–304 (2016)

12. Lieb, E.H.: Residual entropy of square ice. Phys. Rev. 162(1), 162–172 (1967)
13. Mihail, M., Winkler, P.: On the number of Eularian orientations of a graph. In:

Proceedings of the Third Annual ACM/SIGACT-SIAM Symposium on Discrete
Algorithms, pp. 138–145 (1992)

14. Minc, H.: Upper bounds for permanents of (0,1)-matrices. Bull. Am. Math. Soc.
69, 789–791 (1963)

15. Noble, S.D.: Evaluating the tutte polynomial for graphs of bounded tree-width.
Comb. Probab. Comput. 7(3), 307–321 (1998)

16. Pauling, L.: The structure and entropy of ice and of other crystals with some
randomness of atomic arrangement. J. Am. Chem. Soc. 57(12), 2680–2684 (1935)

17. Sasák, R.: Comparing 17 graph parameters. Master’s thesis, The University of
Bergen (2010). http://bora.uib.no/handle/1956/4329

18. Schrijver, A.: Bounds on the number of Eulerian orientations. Combinatorica 3(3),
375–380 (1983)

19. Sekine, K., Imai, H., Tani, S.: Computing the Tutte polynomial of a graph of
moderate size. In: Proceedings of the 6th International Symposium on Algorithms
and Computation, pp. 224–233 (1995)

20. Seymour, P.D., Thomas, R.: Call routing and the Ratcatcher. Combinatorica 14(2),
217–241 (1994)

21. Thilikos, D.M., Serna, M.J., Bodlaender, H.L.: Constructive linear time algorithms
for small cutwidth and carving-width. In: Goos, G., Hartmanis, J., van Leeuwen, J.,
Lee, D.T., Teng, S.-H. (eds.) ISAAC 2000. LNCS, vol. 1969, pp. 192–203. Springer,
Heidelberg (2000). https://doi.org/10.1007/3-540-40996-3 17

22. Valiant, L.G.: Holographic algorithms (Extended Abstract). In: Proceedings of the
45th Symposium on Foundations of Computer Science, pp. 306–315 (2004)

23. van der Waerden, B.L.: Aufgabe 45. Jber. Deutsch. Math.-Verein. 35, 117 (1926)
24. Welsh, D.J.A.: The computational complexity of some classical problems from

statistical physics. In: Disorder in Physical Systems, vol. 307, pp. 307–321. Oxford
University Press (1990). http://www.statslab.cam.ac.uk/∼grg/books/jmh.html

25. Welsh, D.J.A.: Complexity: Knots, Colourings and Counting. Cambridge Univer-
sity Press, Cambridge (1995)

http://arxiv.org/abs/1704.01657
http://arxiv.org/abs/1702.02863
http://arxiv.org/abs/1310.0185
http://bora.uib.no/handle/1956/4329
https://doi.org/10.1007/3-540-40996-3_17
http://www.statslab.cam.ac.uk/~grg/books/jmh.html

On Structural Parameterizations of Happy
Coloring, Empire Coloring and Boxicity

Jayesh Choudhari and I. Vinod Reddy(B)

IIT Gandhinagar, Gandhinagar, India
{choudhari.jayesh,reddy vinod}@iitgn.ac.in

Abstract. Distance parameters are extensively used to design efficient
algorithms for many hard graph problems. They measure how far a graph
is from belonging to some class of graphs. If a problem is tractable on a
class of graphs F, then distances to F provide interesting parameteriza-
tions to that problem. For example, the parameter vertex cover measures
the closeness of a graph to an edgeless graph. Many hard problems are
tractable on graphs of small vertex cover. However, the parameter ver-
tex cover is very restrictive in the sense that the class of graphs with
bounded vertex cover is small. This significantly limits its usefulness in
practical applications. In general, it is desirable to find tractable results
for parameters such that the class of graphs with the parameter bounded
should be as large as possible. In this spirit, we consider the parameter
distance to threshold graphs, which are graphs that are both split graphs
and cographs. It is a natural choice of an intermediate parameter between
vertex cover and clique-width. In this paper, we give parameterized algo-
rithms for some hard graph problems parameterized by the distance to
threshold graphs. We show that Happy Coloring and Empire Color-

ing problems are fixed-parameter tractable when parameterized by the
distance to threshold graphs. We also present an approximation algo-
rithm to compute the Boxicity of a graph parameterized by the distance
to threshold graphs.

Keywords: Parameterized complexity · Threshold graphs
Algorithm

1 Introduction

Many interesting practical problems are NP-complete and it is unlikely that a
polynomial time algorithm exists for one of these problems. To cope with hard
problems many techniques have been introduced, one such technique is param-
eterized complexity theory. Unlike classical complexity theory, in parameterized
complexity theory the running time of an algorithm is measured as a function of
input size and an additional measure called the parameter. The aim here is to
design algorithms that solve the problem in polynomial time in the size of the
input such that the degree of the polynomial is independent of the parameter.
These kinds of algorithms are called fixed parameter tractable (FPT) algorithms.
c© Springer International Publishing AG, part of Springer Nature 2018
M. S. Rahman et al. (Eds.): WALCOM 2018, LNCS 10755, pp. 228–239, 2018.
https://doi.org/10.1007/978-3-319-75172-6_20

Happy Coloring, Empire Coloring and Boxicity 229

More precisely, we say that a problem is FPT if it can be solved in f(d)nO(1)

time for some computable function f, where d is the value of the parameter and
n is the size of the problem instance.

There may be several interesting parameterizations for any given problem.
However, there are two popular approaches to select a parameter for optimization
problems on graphs. First, the natural parameter is the size of solution (objec-
tive function). Second, the parameters which do not involve objective function,
which are selected based on the structure of the graph called structural graph
parameters. For example, the parameter vertex cover number measures the close-
ness of a graph to an independent set. In this paper we focus on some special
group of structural parameters known as distance-to-triviality parameters [15].
They measure how far a graph is from some class of graphs where the problem is
tractable. If a problem is known to be tractable on some class of graphs F then
the distance to F gives an interesting parameterization to that problem. Our
notion of distance to a graph class is the vertex deletion distance. For a class F

of graphs we say that X ⊆ V(G) is an F-modulator of a graph G if G \ X ∈ F. If
the size of the smallest modulator to F is d, we say that the distance of G to the
class F is d.

Related Work. One of the well-studied parameter in the research of struc-
tural parameters is tree-width. The parameter tree-width measures closeness
of graph from a tree (distance to “tree”). The notions of tree-decomposition
and tree-width are commonly used to design efficient algorithms for hard prob-
lems. Courcelle [9] showed that every decision problem on graphs expressible
in monadic second-order logic is fixed-parameter tractable when parameterized
by tree-width of the input graph. Cai [8] studied the parameterized complexity
of Graph Coloring with respect to several distance-to-triviality parameters.
For instance, he showed that Graph Coloring is FPT when parameterized by
edge deletion distance to split graphs, whereas, it is W[1]-hard parameterized
by vertex deletion distance to split graphs. It is para-NP-hard when parame-
terized by vertex or edge deletion distance to bipartite graphs. Bulian et al. [7]
introduced the notion of elimination distance to triviality, which is a generaliza-
tion of distance to triviality and showed that Graph Isomorphism problem is
FPT when parameterized by elimination distance to bounded degree. Hartung et
al. [16] showed that 2-Club problem is FPT with respect to distance to cluster
graphs and distance to co-cluster graphs. Das et al. [12] showed that the Graph

Motif problem is FPT when parameterized by distance to threshold graphs.
For a detailed survey of structural and distance parameters we refer the reader
to [7,18]

Our Contributions. The class of graphs we are interested in this paper are thresh-
old graphs, which are graphs that are both split and cographs. The parameter
we consider is distance to threshold graphs, which is a generalization of both
vertex cover and distance to clique parameters. It is an intermediate parameter
between vertex cover and clique-width (see Fig. 1). The problems we consider
in this paper are FPT when parameterized by vertex cover. But the parameter

230 J. Choudhari and I. V. Reddy

Fig. 1. A schematic showing the relation between the various parameters. An arrow
from parameter a to b indicates that a is larger than b.

vertex cover is very restrictive and rarely useful for practical purposes. Study-
ing the parameterized complexity of these problems with respect to distance to
threshold graphs improves the understanding of tractable parameterizations.

The problems we study in this paper are Happy Coloring, Empire Col-

oring and Boxicity. We parameterize all these problems with distance to
threshold graphs and obtain the following results:

• We give an FPT algorithm for Happy Coloring problem when parameter-
ized by distance to threshold graphs.

• We present an FPT algorithm for Empire Coloring problem when param-
eterized by distance to threshold graphs.

• We give
(
2 + 1

box(G)

)
-approximation algorithm for Boxicity when parame-

terized by distance to threshold graphs, where box(G) is the boxicity of the
graph G.

2 Preliminaries

In this section, we introduce the notation and the terminology that we need
to describe our algorithms. Most of our notation is standard. We use [k] to
denote the set {1, 2, . . . , k}. All graphs we consider in this paper are undirected,
connected, finite and simple. For a graph G = (V, E), let V(G) and E(G) denote
the vertex set and edge set of G respectively. An edge in E between vertices x

and y is denoted as xy for simplicity. For a subset X ⊆ V(G), the graph G[X]

denotes the subgraph of G induced by vertices of X. Also, we abuse notation and
use G \ X to refer to the graph obtained from G after removing the vertex set
X. E[X, Y] denote the set of edges in G between X and Y. For a vertex v ∈ V(G),

Happy Coloring, Empire Coloring and Boxicity 231

N(v) denotes the set of vertices adjacent to v and N[v] = N(v) ∪ {v} is the closed
neighborhood of v. A vertex is called universal vertex if it is adjacent to every
other vertex of the graph.

A cograph is a graph which does not contain any P4 (an induced path on
four vertices). A split graph is a graph whose vertices can be partitioned into a
clique and an independent. A graph is a threshold graph if it can be constructed
from the one-vertex graph by repeatedly adding either an isolated vertex or a
universal vertex (see Fig. 2). The class of threshold graphs is the intersection
of split graphs and cographs [19]. We denote a threshold graph as G = (C, I),
where (C, I) denotes the partition of G into a clique and an independent set,
respectively. It is easy to see that every induced subgraph of a threshold graph
is also a threshold graph. We have the following characterization of threshold
graphs:

Fig. 2. Example of a threshold graph G, where each Ci and Ii represents a set of vertices
having same neighbors. Every vertex of C1 is a universal vertex in G.

Proposition 1 [19]. For a graph G = (V, E), the following statements are equiv-
alent:

1. G is a threshold graph.
2. G is a (P4, C4, 2K2)-free graph
3. For any x, y ∈ V(G) either N(x) ⊆ N[y] or N(y) ⊆ N[x].

It is easy to see that checking whether a given graph G has vertex deletion
distance d to the class of threshold graphs fixed-parameter tractable. The result
follows from the fact that threshold graphs are characterized by a finite set
of forbidden induced subgraphs (see Proposition 1). Therefore without loss of
generality, in this paper, we assume that threshold graph modulator is given as
a part of the input.

Parameterized Complexity. A parameterized problem denoted as (I, d) ⊆ Σ∗ ×N,
where Σ is fixed alphabet and d is called the parameter. We say that the problem
(I, d) is fixed parameter tractable with respect to parameter d if there exists an
algorithm which solves the problem in time f(d)|I|O(1), where f is a computable
function. For a detailed survey of the methods used in parameterized complexity,
we refer the reader to the texts [11,14].

232 J. Choudhari and I. V. Reddy

3 Happy Coloring

Let G be an undirected vertex colored graph. A vertex v in G is happy if all
the neighbors of v have color same as that of v. Given a partially colored graph
G with � colors, the Max Happy Vertices (�-MHV) problem is to color all
the remaining vertices such that the number of happy vertices is maximized.
The �-MHV problem is NP-hard [23] for � � 3 and solvable in polynomial time
for � � 2. Recently in several papers [2–4,21] this problem has been studied
from the parameterized complexity perspective. The problem is FPT when the
parameter is either vertex cover number or distance to clique [21]. The Max

Happy Vertices can be solved in polynomial time on cographs [21] using the
notion of modular decomposition. In this section first we give a polynomial time
algorithm for Max Happy Vertices problem on threshold graphs and this
approach do not need the modular decomposition. Next, we present an FPT
algorithm to this problem when parameterized by distance to threshold graphs.

Max Happy Vertices Parameter: d := |X|

Input: A graph G, a partial coloring p : S → [�] for some S ⊆ V(G), a positive
integer k and a subset X ⊆ V(G) such that G \ X is a threshold graph
Output: Is there a coloring c : V(G) → [�] such that c|S = p and the number
of happy vertices in G with respect to c is at least k?

Lemma 1. Max Happy Vertices problem can be solved in polynomial time
on threshold graphs.

Proof. Let G be a threshold graph and p : S ⊆ V(G) → [�] is a partial coloring
of G. Recall that every connected threshold graph contains a universal vertex.
Therefore, the color of every happy vertex in any optimal coloring1 is the same
as the color of a universal vertex. If S contains two universal vertices u and v

such that p(u) �= p(v) then no vertex of G is happy in any optimal coloring. If
all universal vertices in S are colored with a single color by p, then coloring all
uncolored vertices of G with that color maximizes the number of happy vertices.
If S does not contain any universal vertices, then in any optimal coloring all
universal vertices receive a single color, so we guess the color of the universal
vertices in O(�) time then color all the remaining uncolored vertices with the
color of universal vertices. ��

We now show that Max Happy Vertices is FPT parameterized by distance to
threshold graphs.

Theorem 1. Max Happy Vertices problem is FPT when parameterized by
the size of the modulator to threshold graphs.

Proof. Let (G, S, p, �, k) be an instance of Max Happy Vertices problem. Let
X ⊆ V(G) of size d such that G \X = (C, I) is a threshold graph. We assume that

1 A coloring is optimal if it maximizes the number of happy vertices.

Happy Coloring, Empire Coloring and Boxicity 233

both C and I are non-empty. If C = ∅ then X is a vertex cover of G and if I = ∅
then G is at most d distance to a clique. In both cases we use the algorithm
given in [21] to solve the problem. We divide the proof into two cases based on
the number of precolors (�).

If � � d, the idea is to try over all possible colorings of X and for each
coloring, we try to extend it to coloring of G. An optimal coloring is the one
which maximizes the number of happy vertices. First, we guess the colors of
uncolored vertices of X. We further guess the partition of X into Xh and Xu,
where Xh and Xu denotes the set of happy and unhappy vertices in the coloring
c. Note that if two vertices x, y ∈ Xh have a common neighbor in G \X, then the
guessing Xh is invalid. For each vertex x ∈ XH, color all its neighbors with the
color of x. Now we need to color the uncolored vertices of G \ X. Let U be the
set of universal vertices in the threshold graph G \X. The main observation that
we use here is that in any optimal coloring the color of every happy vertex in
G \X is same as that of the universal vertices. If there exist two vertices u, v ∈ U

colored differently then no vertex of G \ X is happy in any optimal coloring.
In this case, we can arbitrarily color the remaining vertices of G \ X. If U has
some colored vertices which are colored with the same color, then color all the
remaining uncolored vertices of G with the color of u, where u ∈ U ∩ S.

If no vertex of U is colored, then we guess the color of universal vertices.
Since in any optimal coloring the color of every happy vertex in G \X is same as
color of the universal vertices. So, we color all the remaining uncolored vertices
of G with the color of universal vertices.

If � > d, then we partition the vertices of X into Xh and Xu. We further guess
the partition Xh = (Xh1

, · · · , Xht
) into t � d partitions, where all vertices in

Xhi
∪ N(Xhi

), i ∈ [t] get the same color in an optimal coloring. Observe that for
i, j ∈ [t], i �= j, N(Xhi

)∩ N(Xhj
) = ∅ : if the intersection is non-empty then all the

vertices in the intersection are not happy, contradiction to our guess.
Since Xhi

is happy there does not exist two vertices u and v in the set
Xhi

∪ N(Xhi
) such that p(u) �= p(v). For each i ∈ [t], if at least one vertex is

precolored in Xhi
∪N(Xhi

) then assign same color to all vertices of Xhi
∪N(Xhi

).
It remains to color the sets Xhi

∪ N(Xhi
), which do not have any precolored

vertices. If |S ∩ U| � 2 and if there exists u and v in S ∩ U such that p(u) �= p(v)

then no vertex in G \ X is happy. In this case, for each i ∈ [t] we color all
uncolored vertices of Xhi

∪ N(Xhi
) greedily with the color which did not appear

in Xh so far. And if |S∩U| � 1, then, first we guess the color of universal vertices
U in O(�) time. Next, we guess the set Xhi

∪ N(Xhi
) which gets the color of

universal vertices. At the end we color all vertices of Xhi
∪ N(Xhi

) greedily with
the color which did not appear in Xh so far.

Running time analysis. If � � d, then trying all possible colorings of X requires
O(dd) time. Guessing the partition of X into Xh and Xu requires O(2d) time.
Next, guessing the color of universal vertices takes O(�) time. After guessing the
color of X and universal vertices, we need O(m+n) time to color the remaining
vertices of the graph. So the whole algorithm takes O(dd+12d(m + n)) time.

234 J. Choudhari and I. V. Reddy

If � > d, then it takes O(2d) time to guess the partition ofX into Xh and Xu. Run-
ning through all possible ways of partitioning the vertices of Xh = (Xh1

, · · · , Xht
)

takes O(dd) time. Guessing the color of universal vertices takes O(�) time, then
guessing the set Xhi

∪ N(Xhi
) which gets the color of universal vertices takes time

O(t), and then to color the remaining vertices of the graph we need O(m+n) time.
So the algorithm runs in time O(2dddt �(m + n)). ��
Li and Zhang [23] also studied an edge variant of the problem called Maximum

Happy Edges (�-MHE). It is defined as follows, in a vertex colored graph an
edge is happy if both endpoints are colored with the same color. Given a partially
vertex colored graph, the �-MHE problem is to extend it to a total coloring of
the graph such that the number of happy edges is maximized. Unfortunately,
we could not resolve the parameterized complexity of this problem with respect
to distance to threshold graphs. We do not even know whether this problem is
polynomial solvable or NP-complete on threshold graphs. We leave them as open
questions.

Open Problem 1. Is �-MHE FPT when parameterized by the distance to
threshold graphs?

Another important direction to pursue is to study the parameterized complex-
ity of both �-MHV and �-MHE problems with respect to distance to cluster
graphs. This is an intermediate parameter lies between vertex cover and clique-
width [13]. It is not comparable with distance to threshold graphs (see Fig. 1).

Open Problem 2. What is the parameterized complexity of �-MHV and �-MHE
when parameterized by distance to cluster (cluster vertex deletion number)?

4 Empire Coloring

Empire coloring problem was first studied by Heawood [17] in his 1890 paper
in which he refuted a previous proof of the Four Color Theorem. The k-empire
coloring problem is to color the vertices of G with at most k colors such that
all vertices in a block get the same color and adjacent vertices belong to differ-
ent blocks get distinct color. If the size of each block is one then the problem
is equivalent to classical graph coloring problem. The problem is NP-hard on
trees [20] for k � 3. We study the problem from the parameterized algorith-
mic perspective and show that the problem is FPT when parameterized by the
distance to threshold graphs.

Empire Coloring Parameter: d := |X|

Input: A graph G, a partition B1, · · · , Bt of V(G), a positive integer k and a
subset X ⊆ V(G) such that G \ X is a threshold graph
Output: Is there an empire coloring of G using at most k colors?

First, we show that the empire coloring problem can be reduced to a graph
coloring problem on a smaller graph. Let (G, (B1, · · · , Bt), k) be an instance of

Happy Coloring, Empire Coloring and Boxicity 235

the empire coloring problem. We construct a new graph H from G as follows.
The vertex set of H contains one vertex for each block, say {b1, · · · , bt} and there
is an edge between two vertices bi and bj in H if there exists two vertices u ∈ Bi

and v ∈ Bj such that uv ∈ E(G). The following Lemma is similar to the one used
in [20].

Lemma 2. Let G and H be the graphs as defined above. (G, (B1, · · · , Bt), k) has
a k-empire coloring if and only if H has a k-coloring.

Proof. Let CG and CH denote the k-empire coloring and k-coloring of graphs G

and H respectively. Given a k-empire coloring CG of G we construct a k-coloring
of H as follows. If CG(Bi) = {c} then assign CH(bi) = c for all i ∈ [t]. Suppose
CH is not a proper coloring of H, i.e., there exists two vertices bi, bj ∈ V(H) such
that bibj ∈ E(H) and CH(bi) = CH(bj). This implies there exists u ∈ Bi and
v ∈ Bj such that uv ∈ E(G) and CG(u) = CG(v) which is a contradiction to CG

is an empire coloring of G.
For the other direction, let CH be a k-coloring of H. If CH(bi) = c, then for all

u ∈ Bi assign CG(u) = c. It is easy to see that CG is a k-empire coloring of G. ��
Corollary 1. Let G and H be the graphs defined above. If G is a threshold graph,
then H is also a threshold graph.

Proof. The proof follows from Lemma 2 and the fact that every induced subgraph
of a threshold graph is also a threshold graph. ��

Form the above corollary and using the fact that Graph Coloring problem
is polynomial time solvable on threshold graphs, we can see that empire coloring
problem on threshold graphs can be solved in polynomial time. We now show
that empire coloring is FPT parameterized by the distance to threshold graphs.

Theorem 2. Empire Coloring problem is FPT when parameterized by size
of the modulator to threshold graphs.

Proof. Let (G, (BG
1 , · · · , BG

t), X, k) be an instance of the empire coloring problem,
where X ⊆ V(G) of size d such that G \ X is a threshold graph. Define Di =

BG
i ∩(V(G)\X) for all i ∈ [t], then (D1, · · · , Dt) is a partition of G[V(G)\X]. Note

that some Di’s might be empty. We construct a graph G ′ from G by replacing all
vertices in the set Di with a vertex di, and there is an edge between two vertices
di and dj in G ′ \X if there exists two adjacent vertices u ∈ Di and v ∈ Dj. There
is an edge between a vertex x ∈ X and di ∈ Di if there exists a vertex v ∈ Di

such that xv ∈ E(G). For x, y ∈ X, xy ∈ E(G ′) iff xy ∈ E(G). Formally,

V(G ′) = {d1, · · · , dt} ∪ X

E(G ′) = E[X] ∪ {didj | ∃ u ∈ Di, v ∈ Dj, and uv ∈ E(G)}

∪ {xdi | ∃ x ∈ X, v ∈ Di, and xv ∈ E(G)}

Note that each vertex di in the independent set of the threshold graph G ′ \X is
such that BG

i ∩ CG = ∅, where CG is the clique part of V(G) \X. Also, the size of

236 J. Choudhari and I. V. Reddy

the graph G ′ is at most t+ d (where, t � k) and G ′ \X is still a threshold graph
(from Corollary 1). It is easy to see that (G, (BG

1 , · · · , BG
t), X, k) has a k-empire

coloring if and only if (G ′, (d1 ∪ (BG
1 ∩ X), · · · , dt ∪ (BG

t ∩ X)), X, k) has a k-empire
coloring.

Now, for each vertex di in the independent set of the threshold graph G ′ \X,
if BG

i ∩ X �= ∅ then delete the vertex di and connect all the vertices in N(di) to
the vertices in BG

i ∩ X. Hereafter, the remaining vertices dj in the independent
set of G ′ \ X are such that BG

j ∩ X = ∅ and BG
j ∩ CG = ∅, where CG is the clique

part of V(G) \ X.
We partition the vertices of independent set I of G ′ based on their neighbor-

hood in X. For a subset U ⊆ X define T I
U := {x ∈ I | NG′(x)∩X = U} (NG′(x) is the

neighborhood of x in G ′). There are at most 2d possible subsets in the partition
of I (where d = |X|). For each U ⊆ X there exists a vertex vU ∈ T I

U such that
NG′(w) ⊆ NG′(vU) for all w ∈ T I

U, which implies all uncolored vertices in T I
U can

be colored with the color of vU. This is because for any two vertices v, w ∈ T I
U

the neighborhood of v and w is same in X, and as G ′ \ X is a threshold graph,
∃vU ∈ T I

U such that NG′(w) ⊆ NG′(vU).
Now, we build a new graph H from G ′ by replacing vertices in set T I

U with
vertex vU for all U ⊆ X. The size of independent set IH in H is at most 2d.
Observe that H \ (X ∪ IH) is a clique with size of the modulator (X ∪ IH) at most
d+2d. So now we have an instance (H, (BH

1 , · · · , BH
t), k), where (BH

1 , · · · , BH
t) is a

partition of V(H) and H \X is a clique. We solve the empire coloring on reduced
graph H as follows.

We run through of all possible (at most (d + 2d)
d+2d

) ways of precoloring
X ∪ IH. For each precoloring of X ∪ IH, we test whether it is empire coloring or
not. If the coloring is empire coloring then we extend it to color the clique H \X

as follows. First for each clique vertex di in H if BH
i ∩ X �= ∅ then color di with

the color present in BH
i ∩ X. We color the remaining clique vertices by finding

the maximum matching in following bipartite graph J.
The vertex set of the graph J contains uncolored clique vertices as one parti-

tion and precolors as the other partition. A vertex v is adjacent to a color c, if v

is not adjacent to a vertex colored with c in H. Find the maximum matching in
this bipartite graph J and we can color clique vertices based on this matching.
We color the remaining clique vertices with new colors.

Running time analysis. The construction of graph H from G can be done
in polynomial time. Trying all possible colorings of X takes O((d + 2d)

d+2d

)

time. For each possible coloring the bipartite graph can be build in O(m) time
and has at most n vertices. A maximum matching in a bipartite graph can be
found in O(n +

√
nm) time. Therefore the running time of whole algorithm is

O((d + 2d)
d+2d

)(n +
√

mn)(m + n)). ��

5 Boxicity

A k-box is a Cartesian product of k-intervals [a1, b1]×· · ·× [ak, bk]. A k-box rep-
resentation of a graph is a mapping of vertices to a k-box such that two vertices

Happy Coloring, Empire Coloring and Boxicity 237

are adjacent in G iff their corresponding k-boxes have non-empty intersection.
The minimum value of k for which G has a k-box representation is called boxicity
of G, denoted by box(G). Alternatively, boxicity can be defined in terms of inter-
val graphs [22]. The boxicity of a graph G is equal to the smallest integer k such
that G can be expressed as the intersection of k interval graphs on the vertex
set V(G). Boxicity was introduced by Roberts [22] in 1969 and has applications
in biology and ecology. Cozens [10] showed that computing boxicity of a graph
is NP-complete. Several authors studied the problem from the parameterized
complexity perspective. The problem is FPT when parameterized by the vertex
cover number [1] and cluster vertex deletion number [6].

In this section, we give an upper bound for boxicity of a graph G in terms
of the size of the threshold graph modulator. We also give a (2 + 1

box(G))-
approximation algorithm for boxicity problem parameterized by size of the
threshold graph modulator.

Boxicity Parameter: d := |X|

Input: A graph G, an integer k, a vertex subset X ⊆ V(G) of size d such
that G \ X is a threshold graph.
Output: Is box(G) � k?

Lemma 3. Let G be a graph and X ⊆ V(G) of size d such that G \ X = (C, I) is
a threshold graph, then box(G) � d + 1.

Proof. Let G1 and G2 be the graphs obtained from G, as follows.

V(G1) = V(G), E(G1) = E(X) ∪ {uv | u, v ∈ C ∪ I} ∪ E[X, C ∪ I]

V(G2) = V(G), E(G2) = {uv | u, v ∈ X} ∪ E(C ∪ I) ∪ {uv | u ∈ X, v ∈ C ∪ I}

It is easy to see that G is the intersection of G1 and G2. The graph G2 is a
threshold graph with clique C ∪ X and independent set I. We know that every
threshold graph is an interval graph [5], therefore boxicity of G2 is one. Observe
that X ⊆ V(G1) of size at most d such that G1 \ X is a clique, i.e., G1 is at most
d-distance to a clique. We now show that boxicity of the graph G1 is at most d.
Let X = {x1, · · · , xd} ⊆ V(G1) such that G1 \X is a clique. Let H1, · · · , Hd are the
interval graphs defined as follows.

V(Hi) = V(G1), E(Hi) = {vxi | v ∈ NG1
(xi)} ∪ {uv | u, v ∈ V(G1) \ {xi}}

It is easy to see that for each i ∈ [d], Hi is an interval graph and E(G1) =

∩d
k=1E(Hi). Therefore box(G) � d+ 1, this concludes the proof of the lemma. ��

Theorem 3. Let G be a graph and X ⊆ V(G) of size d such that G \ X is a
threshold graph. Then we can find a t-boxicity of G such that t � 2box(G) + 1 in
FPT-time.

Proof. Let G be a graph and X ⊆ V(G) such that G \ X = (C, I). Let G1 (resp.
G2) be the subgraph of G induced by vertices X ∪ C (resp. X ∪ I). Observe that

238 J. Choudhari and I. V. Reddy

X ⊆ V(G1) is a vertex cover of G1 and X ⊆ V(G2) such that G2 \X is a clique. We
can compute the boxicity of the graphs G1 and G2 using the algorithms given
in [1] and [6] respectively. Let G3 be the threshold graph induced by vertices
C∪ I. Since every threshold graph is an interval graph, the boxicity of G3 is one.
Now we define the graphs H1 , H2 and H3 as follows.

V(H1) = V(G1) ∪ I, E(H1) = E(G1) ∪ {uv | u ∈ V(G1), v ∈ I}

V(H2) = V(G2) ∪ C, E(H2) = E(G2) ∪ {uv | u ∈ V(G2), v ∈ C}

V(H3) = V(G3) ∪ X, E(H3) = E(G3) ∪ {uv | u ∈ V(G3), v ∈ X}

Note that adding universal vertices does not change the boxicity of the graph,
therefore we have box(Gi) = box(Hi) for i ∈ {1, 2, 3}. It is easy to see that
the intersection of edge sets of graphs H1, H2 and H3 is E(G). This implies
box(G) � box(G1) + box(G2) + 1, Since box(G1), box(G2) � box(G), We get a
t-box representation of G consisting of at most 2box(G) + 1 interval graphs. ��

Open Problem 3. Is Boxicity FPT when parameterized by the distance to
threshold graphs?

Acknowledgements. The authors are grateful to the anonymous referees for their
valuable remarks and suggestions that significantly helped them improve the quality
of the paper. The first author acknowledges support from Tata Consultancy Services
(TCS) Research Fellowship.

References

1. Adiga, A., Chitnis, R., Saurabh, S.: Parameterized algorithms for boxicity. In:
Cheong, O., Chwa, K.-Y., Park, K. (eds.) ISAAC 2010. LNCS, vol. 6506, pp. 366–
377. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17517-6 33

2. Agrawal, A.: On the parameterized complexity of happy vertex coloring. In: Inter-
national Workshop on Combinatorial Algorithms. Springer (2017, in press)

3. Aravind, N.R., Kalyanasundaram, S., Kare, A.S.: Linear time algorithms for happy
vertex coloring problems for trees. In: Mäkinen, V., Puglisi, S.J., Salmela, L. (eds.)
IWOCA 2016. LNCS, vol. 9843, pp. 281–292. Springer, Cham (2016). https://doi.
org/10.1007/978-3-319-44543-4 22

4. Aravind, N., Kalyanasundaram, S., Kare, A.S., Lauri, J.: Algorithms and hardness
results for happy coloring problems. arXiv preprint arXiv:1705.08282 (2017)

5. Brandstädt, A., Le, V.B., Spinrad, J.P.: Graph Classes: A Survey. SIAM (1999)
6. Bruhn, H., Chopin, M., Joos, F., Schaudt, O.: Structural parameterizations for

boxicity. Algorithmica 74(4), 1453–1472 (2016)
7. Bulian, J.: Parameterized complexity of distances to sparse graph classes. Technical

report, University of Cambridge, Computer Laboratory (2017)
8. Cai, L.: Parameterized complexity of vertex colouring. Discrete Appl. Math.

127(3), 415–429 (2003)
9. Courcelle, B.: The monadic second-order logic of graphs. I. recognizable sets of

finite graphs. Inf. Comput. 85(1), 12–75 (1990)
10. Cozzens, M.B.: Higher and multi-dimensional analogues of interval graphs (1982)

https://doi.org/10.1007/978-3-642-17517-6_33
https://doi.org/10.1007/978-3-319-44543-4_22
https://doi.org/10.1007/978-3-319-44543-4_22
http://arxiv.org/abs/1705.08282

Happy Coloring, Empire Coloring and Boxicity 239

11. Cygan, M., Fomin, F.V., Kowalik, L., Lokshtanov, D., Marx, D., Pilipczuk, M.,
Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-21275-3

12. Das, B., Enduri, M.K., Misra, N., Reddy, I.V.: On structural parameterizations
of graph Motif and Chromatic number. In: Gaur, D., Narayanaswamy, N.S. (eds.)
CALDAM 2017. LNCS, vol. 10156, pp. 118–129. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-53007-9 11

13. Doucha, M., Kratochv́ıl, J.: Cluster vertex deletion: a parameterization between
vertex cover and clique-width. In: Rovan, B., Sassone, V., Widmayer, P. (eds.)
MFCS 2012. LNCS, vol. 7464, pp. 348–359. Springer, Heidelberg (2012). https://
doi.org/10.1007/978-3-642-32589-2 32

14. Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity, vol. 4.
Springer, London (2013). https://doi.org/10.1007/978-1-4471-5559-1

15. Guo, J., Hüffner, F., Niedermeier, R.: A structural view on parameterizing prob-
lems: distance from triviality. In: Downey, R., Fellows, M., Dehne, F. (eds.) IWPEC
2004. LNCS, vol. 3162, pp. 162–173. Springer, Heidelberg (2004). https://doi.org/
10.1007/978-3-540-28639-4 15

16. Hartung, S., Komusiewicz, C., Nichterlein, A., Suchỳ, O.: On structural parame-
terizations for the 2-club problem. Discrete Appl. Math. 185, 79–92 (2015)

17. Heawood, P.J.: Map-colour theorem. Proc. London Math. Soc. s2–51(1), 161–175
(1949)

18. Lampis, M.: Structural parameterizations of hard graph problems. City University
of New York (2011)

19. Mahadev, N.V., Peled, U.N.: Threshold Graphs and Related Topics, vol. 56. Else-
vier, Amsterdam (1995)

20. McGrae, A.R., Zito, M.: The complexity of the empire colouring problem. Algo-
rithmica 68(2), 483–503 (2014)

21. Misra, N., Reddy, I.V.: The parameterized complexity of happy colorings. arXiv
preprint arXiv:1708.03853 (2017)

22. Roberts, S.: On the boxicity and cubicity of a graph. In: Recent Progresses in
Combinatorics, pp. 301–310 (1969)

23. Zhang, P., Li, A.: Algorithmic aspects of homophyly of networks. Theor. Comput.
Sci. 593, 117–131 (2015)

https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1007/978-3-319-53007-9_11
https://doi.org/10.1007/978-3-319-53007-9_11
https://doi.org/10.1007/978-3-642-32589-2_32
https://doi.org/10.1007/978-3-642-32589-2_32
https://doi.org/10.1007/978-1-4471-5559-1
https://doi.org/10.1007/978-3-540-28639-4_15
https://doi.org/10.1007/978-3-540-28639-4_15
http://arxiv.org/abs/1708.03853

Complexity of the Maximum k-Path Vertex
Cover Problem

Eiji Miyano1, Toshiki Saitoh1, Ryuhei Uehara2, Tsuyoshi Yagita1(B),
and Tom C. van der Zanden3

1 Kyushu Institute of Technology, Iizuka, Japan
{miyano,toshikis}@ces.kyutech.ac.jp, yagita@theory.ces.kyutech.ac.jp

2 Japan Advanced Institute of Science and Technology, Nomi, Japan
uehara@jaist.ac.jp

3 Utrecht University, Utrecht, The Netherlands
T.C.vanderZanden@uu.nl

Abstract. This paper introduces the maximum version of the k-path
vertex cover problem, called the Maximum k-Path Vertex Cover

problem (MaxPkVC for short): A path consisting of k vertices, i.e., a
path of length k − 1 is called a k-path. If a k-path Pk includes a vertex
v in a vertex set S, then we say that S or v covers Pk. Given a graph
G = (V,E) and an integer s, the goal of MaxPkVC is to find a vertex
subset S ⊆ V of at most s vertices such that the number of k-paths cov-
ered by S is maximized. MaxPkVC is generally NP-hard. In this paper
we consider the tractability/intractability of MaxPkVC on subclasses of
graphs: We prove that MaxP3VC and MaxP4VC remain NP-hard even
for split graphs and for chordal graphs, respectively. Furthermore, if the
input graph is restricted to graphs with constant bounded treewidth,
then MaxP3VC can be solved in polynomial time.

1 Introduction

One of the most important and most fundamental computational problems in
graph theory, combinatorial optimization, and theoretical computer science is
the Minimum Vertex Cover problem (MinVC). Indeed, as one of the seminal
results in computational complexity theory, the decision version of MinVC was
listed in Karp’s original 21 NP-complete problems in [10].

Very recently, Brešar, Kardoš, Katrenič, and Semanǐsin introduced a gener-
alized variant of MinVC, called the Minimum k-Path Vertex Cover problem
(MinPkVC), motivated by the need to secure the data integrity of wireless sensor
networks from attackers [5]: Let G = (V,E) be a simple undirected graph, where
V and E denote the set of vertices and the set of edges, respectively. V (G) and
E(G) also denote the vertex set and the edge set of G, respectively. A path
consisting of k vertices, i.e., a path of length k − 1 is called a k-path. If a k-path

This work is partially supported by JSPS KAKENHI Grant Numbers JP16K16006,
JP17H06287, JP17K00016, JP24106004, JP26330009, and JST CREST
JPMJCR1402.

c© Springer International Publishing AG, part of Springer Nature 2018
M. S. Rahman et al. (Eds.): WALCOM 2018, LNCS 10755, pp. 240–251, 2018.
https://doi.org/10.1007/978-3-319-75172-6_21

Complexity of the Maximum k-Path Vertex Cover Problem 241

Pk contains a vertex v in a vertex set S, then we say that the set S or the vertex
v covers Pk. Given a graph G, the goal of MinPkVC is to find a vertex subset
S ⊆ V (G) of minimum cardinality such that S covers all the k-paths in G. In the
same paper, Brešar et al. proved the NP-hardness of MinPkVC and designed a
linear-time algorithm for MinPkVC on trees for k ≥ 3. Furthermore, the authors
proved that MinPkVC can be expressed by Extended Monadic Second Order
Logic, which implies that MinPkVC can be solved in linear time on graphs with
bounded treewidth by Courcelle’s theorem [8]. Subsequently, due to its wide
applicability to many practical problems, MinPkVC has been studied intensively.
Indeed, for example, a large number of results on approximation [6,12,15,16,19],
fixed-parameter tractability [11,14] and exact algorithms [17] for MinP3VC and
MinP4VC have been reported.

The classical/original MinVC has several variants; one of the most popular
variants is the Maximum Vertex Cover problem (MaxVC), which is often
called the Partial Vertex Cover problem: Given a graph G and an integer
s, the goal of MaxVC is to find a vertex subset S ⊆ V (G) of s vertices such that
the number of edges covered by S is maximized. It is known that MaxVC also
has many applications in real life (see, e.g., [7]). It is known [1,7] that MaxVC
is NP-hard even on bipartite graphs, though the minimization version MinVC is
solvable in polynomial time on them.

For the general version MinPkVC, therefore, it would be natural to consider
the maximization problem; this paper introduces the Maximum k-Path Cover

problem (MaxPkVC): Given a graph G and an integer s, the goal of MaxPkVC
is to find a vertex subset S ⊆ V (G) of size at most s such that the number
of k-paths covered by S is maximized. One can see that MaxP2VC is generally
NP-hard since it is identical to MaxVC. Therefore, we focus on the case where
k ≥ 3. For any fixed integer k ≥ 3, MaxPkVC is NP-hard in the general case since
MinPkVC can be considered as a special case of MaxPkVC. In this paper, we are
interested in the tractability and the intractability of MaxPkVC on subclasses of
graphs.

Our main results are summarized as follows:

(i) MaxP3VC remains NP-hard for the class of split graphs.
(ii) MaxP4VC remains NP-hard for the class of chordal graphs.
(iii) MaxP3VC can be solved in polynomial time if the input graph is

restricted to graphs with constant bounded treewidth.

Due to the page limitation, we omit some proofs from this extended abstract.

2 Preliminaries

Let G = (V,E) be a simple undirected graph, where V and E denote the set of
vertices and the set of edges, respectively. V (G) and E(G) also denote the vertex
set and the edge set of G, respectively. We denote an edge with endpoints u and
v by {u, v}. A path of length k −1 from a vertex v1 to a vertex vk is represented
as a sequence of vertices such that Pk = 〈v1, v2, . . . , vk〉, which is called a k-path.

242 E. Miyano et al.

For a vertex v, the set of vertices adjacent to v, i.e., the open neighborhood of v
is denoted by N(v). Let deg(v) = |N(v)| be the degree of v. Let G[S] denote the
subgraph of G induced by a vertex subset S ⊆ V (G).

A graph G is chordal if each cycle in G of length at least four has at least
one chord, where the chord of a cycle is an edge between two vertices of the
cycle that is not an edge of the cycle. A graph G is split if there is a partition of
V (G) into a clique set V1 and an independent set V2 such that V1 ∩ V2 = ∅ and
V1 ∪ V2 = V (G). A treewidth of a graph is defined in Sect. 5.

The problem MaxPkVC that we study in this paper is defined as follows for
any fixed integer k:

Maximum k-Path Vertex Cover (MaxPkVC)
Given a graph G and an integer s, the goal of MaxPkVC is to find
a vertex subset S ⊆ V (G) of size at most s such that the number
of k-paths covered by S is maximized.

As mentioned in Sect. 1, it is known [5] that the minimum variant MinPkVC
of our problem is NP-hard for any fixed integer k ≥ 2. It is important here to
note that MinPkVC can be considered as a special case of MaxPkVC, i.e., the
essentially equivalent goal of MinPkVC is to find a vertex subset S of size at
most s such that S covers all the k-paths in the input graph. Therefore, the
NP-hardness of MaxPkVC is straightforward:

Theorem 1. [5] For any fixed integer k ≥ 2, MaxPkVC is NP-hard.

Moreover, it is known that MinP3VC is a dual problem of the Maximum

Dissociation Set problem, which was introduced in [18]. Yannakakis [18], and
Papadimitriou and Yannakakis [13] proved that the problem is NP-hard even on
bipartite graphs, and on planar graphs, respectively. Similarly to the above, we
can obtain the following theorem:

Theorem 2. [13,18] MaxP3VC is NP-hard on (i) bipartite graphs and (ii)
planar graphs.

3 NP-Hardness of MaxP3VC on Split Graphs
and MaxP4VC on Chordal Graphs

In this section, we prove the NP-hardness of MaxP3VC on split graphs and
MaxP4VC on chordal graphs. Let us define a decision version of MaxP3VC,
denoted by MaxP3VC(t): Given a graph G, and two integers s and t, deter-
mine if the graph G has a vertex subset S ⊆ V (G) of size at most s such that
the total number of 3-paths covered by S is at least t. The first result of this
section is:

Theorem 3. MaxP3VC(t) is NP-complete, even on split graphs.

Complexity of the Maximum k-Path Vertex Cover Problem 243

Proof. First, we prove that MaxP3VC(t) is in NP. Every path of three vertices in
the graph G can be enumerated in O(|V |3) time, thus if we nondeterministically
guess a set S of s vertices, we can check whether at least t 3-paths are covered
by those s vertices in polynomial time.

Next, we show that there exists a polynomial-time reduction from the
Restricted Exact Cover by Three Sets (RX3C) problem to MaxP3VC(t).
The input is a finite set X = {x1, x2, . . . , x3q} of 3q elements and a collection C
of 3q 3-element subsets of X, where each element of X appears in exactly three
subsets of C. RX3C asks if C contains an exact cover for X, that is, a subcollection
C′ ⊆ C such that every element of X occurs in exactly one member of C′. RX3C
is shown to be NP-complete by Gonzalez [9]. We give the reduction such that
the original instance of RX3C is a yes-instance if and only if the MaxP3VC(t)
instance is also a yes-instance. Let n = 3q for a while. As an input of RX3C,
let X = {x1, x2, . . . , xn} be a set of n elements. Also, let C = {C1, C2, . . . , Cn}
be a collection of n 3-element sets. Then, we construct a graph G = (V,E)
corresponding to an instance (X, C) of RX3C as follows: The constructed graph
G consists of the following vertices: (i) n vertices, vC1 through vCn

, called the
set vertices, corresponding to the n sets, C1 through Cn, respectively, (ii) n
vertices, vx1 through vxn

, called the element vertices, corresponding to the n
elements, x1 through xn, respectively, and (iii) corresponding to each set Ci

(i ∈ {1, 2, . . . , n}), n2 vertices, vCi,1 through vCi,n2 , i.e., n3 vertices in total,
called pendant vertices. Let C = {vC1 , vC2 , . . . , vCn

}, EL = {vx1 , vx2 , . . . , vxn
},

and P = {vC1,1, . . . , vC1,n2 , vC2,1, . . . , vCn,n2}. The edge set E(G) is as follows:
(iv) The subgraph induced by the set C of n vertices forms a clique Kn of size
n, i.e., we add all possible edges between any pair of vertices in C into E(G).
(v) If xi ∈ Cj for i ∈ {1, 2, . . . , n} and j ∈ {1, 2, . . . , n}, then we add an edge
{vxi

, vCj
} into E(G). Note that each set vertex vCi

is adjacent to exactly three
element vertices and furthermore each element vertex vxj

is adjacent to exactly
three set vertices. (vi) For each i ∈ {1, 2, . . . , n} and each j ∈ {1, 2, . . . , n2}, the
pendant vertex vCi,j is connected to vCi

by adding an edge {vCi,j , vCi
}. Finally,

we set s = q and t = 81q5/2 + 45q4 + 23q3 + 15q2/2 + 7q. This completes the
reduction, which clearly can be done in polynomial time. One can verify that
the constructed graph G is split since the set vertices form a clique, and the
remaining vertices form an independent set.

As an example, if we are given X = {1, 2, 3, 4, 5, 6} and a collection C =
{C1, C2, . . . , C6} = {{1, 3, 5}, {1, 4, 5}, {3, 4, 6}, {2, 4, 6}, {1, 2, 6}, {2, 3, 5}} as an
RX3C instance, the graph constructed above is illustrated in Fig. 1. One can see
that C′ = {C1, C4} is a possible solution.

Before showing the correctness of our reduction, we make important obser-
vations: (1) Each set vertex vCi

can cover at least
(
n2

2

)
= Ω(n4) 3-paths, i.e.,

〈vCi,j , vCi
, vCi,k〉 for 1 ≤ j, k ≤ n2 and j �= k. (2) On the other hand, every

element or pendant vertex can cover at most O(n2) 3-paths. Therefore, in order
to cover as many 3-paths as possible, it would be the most effective to select set
vertices into a solution of MaxP3VC(t).

244 E. Miyano et al.

Fig. 1. Constructed graph G

The following lemma shows the correctness of the reduction:

Lemma 1. RX3C is yes if and only if MaxP3VC(t) is yes, i.e., there is a vertex
subset S of size at most q such that S can cover at least 81q5/2 + 45q4 + 23q3 +
15q2/2 + 7q 3-paths.

This completes the proof of Theorem 3. �

By using a very similar reduction with small modification, we can obtain the

following theorem:

Theorem 4. MaxP4VC(t) is NP-complete, even on chordal graphs.

4 Algorithm for MaxP3VC on Trees

In the next section we present a polynomial-time algorithm for MaxP3VC on
graphs with bounded treewidth, but, in order to make our basic ideas clear,
this section provides a simpler algorithm running in polynomial time only for
MaxP3VC on trees. In the following, let T denote the given tree, and especially,
let Tvroot

denote the subtree of T whose root is vroot.
Intuitively, our algorithm is based on dynamic-programming, keeping the

minimum number of uncovered 3-paths from the bottom to the top of the
tree. For every vertex, the following two steps are considered in our algorithm:
[I] Introduce Step and [II] Join Step, and in each step, the table in which the
minimum number of uncovered 3-paths is stored is updated. After computing
the minimum number of uncovered 3-paths of a certain subtree, our algorithm
proceeds to the parent vertex u of the root of the subtree. Then, we say that
u is in Introduce Step (see Fig. 2). Also, there may exist some subtrees whose
parent of the root of each subtree is u. In such case, our algorithm merges those
subtrees one by one, by joining the same parent u, and computes the minimum
number of uncovered 3-paths. In this joining step, we say u is in Join Step (see
Fig. 3).

Now, we are going to show the recursive formulas with precise notation. Let
c[v; b, �, r] denote the number of uncovered 3-paths, where v denotes the vertex

Complexity of the Maximum k-Path Vertex Cover Problem 245

Fig. 2. Vertex u is in Introduce Step; u is in the cover (Left), or not (Right)

Fig. 3. Vertex u is in Join Step

Table 1. Table when the root is in the cover

Solution size -

0 ∞
1 in 1

2 in 2

...
...

s in s

we are currently looking at, b ∈ {1, 0} denotes whether the vertex is selected
in the cover (b = 1) or not (b = 0) as a root, � ∈ {0, 1, 2, . . . , s} denotes the
size of the solution, and r ∈ {0, . . . , n − 1} denotes the number of unselected
children. Note that, when a vertex is in Introduce Step and chosen in the cover,
we do not need to consider the fourth argument r. This is because the 3-paths
including the vertex in Introduce Step and its children are already covered by
the vertex in Introduce Step. We show the tables in Tables 1 and 2, where each
entry denotes the minimum number of uncovered 3-paths under a set of some
arguments. When a vertex v is in Introduce Step, first we consider two cases;
b = 1 or b = 0, that is, whether we put v in the cover or not. If b = 1, then we
only consider the solution size �, ranging it from 1 to s. For example, in Table 1,
in 1 stands for c[v; 1, 1, ∗], and there is stored the minimum number of uncovered
3-paths under these conditions. Similarly, if b = 0, then there are s + 1 and n
options for the solution size and the number of unselected children of the root.
Each of the entry, such as out 00, out 01 and so on, stores the minimum number
of the 3-paths with each argument. Utilizing this table, the algorithm proceeds
from the bottom to the top.

Leaf: If the vertex u is a leaf, then there are no uncovered 3-paths, thus we have
c[u; 0, 0,−] = c[u; 1, 1,−] = 0.

246 E. Miyano et al.

Table 2. Table when the root is NOT in the cover

Solution size The number of children of the root NOT chosen in cover

0 1 . . . n − 1

0 out 00 out 01 . . . out 0(n − 1)

1 out 10 out 11 . . . out 1(n − 1)

2 out 20 out 21 out 2(n − 1)

...
...

...
. . .

...

s out s0 out s1 out s(n − 1)

Introduce Step: If the vertex u is in Introduce Step, assuming v, the child
vertex of u, has d children, we consider two cases: u is in the cover or not.

(i) u is in the cover: As mentioned before, we do not need to consider the
fourth argument, so we have only to take care of the size of the solution
which ranges from 1 to s. If the size of the solution is 1, then we refer to
out d of v, c[v; 0, 0, d]. This is because the root v is in the cover and the
solution size we assume now is 1, v is not in the cover and the size of the
solution for v is 0, and also v has d unselected children. If the solution size
is 2, then it becomes little complicated. We have to take the minimum of
{in 1, out 1d, out 1(d − 1)} of v. This is because if the solution size is 2, from
the assumption that we put u into the cover set, then we have to consider
where one more vertex in the cover is in the subtree Tu. There are following
three options in this case: (i) v is also in the cover set, (ii) even the children
of v do not have the selected vertex, in other words, all of the d children of
v are all unselected vertices, and (iii) one of the d children is in the cover
set. Thus we refer three entries, and take the minimum of them. In the same
manner, c[u; 1, ∗,−] is calculated as follows, and also the table for u when the
root is in (see Table 1) is updated with the following values:

c[u; 1, i,−] =

⎧
⎪⎨

⎪⎩

∞ if i = 0
c[v; 0, 0, d] if i = 1
min0≤j≤i−1{c[v; 1, i − 1, ∗], c[v; 0, i − 1, d − j]} if 2 ≤ i ≤ s

(ii) u is not in the cover: Since G is tree, we do not have to consider the case
where the number of unselected children is 2, · · · , n − 1. Thus we can set all
the entries of Table 2 whose number of unselected children is 2, · · · , n − 1
with ∞. In other words, we have only to consider the case where the number
of unselected children is 0 or 1. Furthermore, if u has 0 unselected children
(which means v is in the cover) and the solution size is 1, · · · , s, it is clear
that we refer to the root-in table of v, corresponding to the solution size. If u
has 1 uncovered child (which similarly means v is not in the cover), then we

Complexity of the Maximum k-Path Vertex Cover Problem 247

have to take the minimum depending on the solution size. Thus c[u; 0, ∗, ∗] is
calculated as follows:

c[u; 0, i, j] =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∞ if i = 0 and j = 0
c[v; 1, i,−] if 1 ≤ i ≤ s and j = 0
c[v; 0, 0, d] if i = 0 and j = 1
min0≤d′≤i{c[v; 0, i, d − d′] + d − d′} if 1 ≤ i ≤ s and j = 1

Join Step: If the vertex u is in Join Step, then we update the table of u. As
with Introduce Step, we consider two cases: the root is in the cover or not.
Let us assume that u is in Join Step, and let vL and vR be the left and right
child of u, respectively. Also, for clarity, we specially introduce uL and uR such
that u = uL = uR, whose child is vL and vR respectively.

(i) u is in the cover: We do not have to consider the fourth argument, as we
mentioned. We update the table ranging the size of the solution from 0 to
s. If the size of the solution is 0, we set the entry as ∞. If the size of the
solution is 1, then we just add the number of uncovered 3-paths c[uL; ∗, ∗, ∗]
and c[uR; ∗, ∗, ∗]. Note that u is selected in the cover, therefore the solution
S has only u in this case. If the size of the solution is 2, then we have to take
the minimum from two choices: one more solution is in the left subtree or the
right subtree, say TvL

or TvR
. Thus c[u; 1, ∗,−] is calculated as follows:

c[u; 1, i,−] =

{
∞ if i = 0
min1≤j≤i{c[uL; 1, i − j + 1,−] + c[uR; 1, j,−]} if 1 ≤ i ≤ s

(ii) u is not in the cover: If the vertex which is not selected in the cover is in
Join Step, then uncovered 3-paths whose central vertex is u, in other words,
the uncovered 3-paths going through from the left subtree TuL

to the right
subtree TuR

may exist. Thus we have to take them into consideration in
updating the table of u. There are two tables for subtrees TuL

and TuR
, so

we have to take the minimum among all the possible combinations of the
size of the solution and the number of unselected children of those subtrees,
considering newly appearing uncovered 3-paths going from TuL

to TuR
. Note

that these newly appearing uncovered 3-paths can be calculated by multi-
plying the two numbers of unselected children, the number of the unselected
children in TuL

and TuR
. Let i, iL, and iR be the variables which respectively

denotes the size of the solution in the subtree Tu, TuL
, and TuR

. Note that
iR = i − iL holds. Also, let j, jL, and jR be the variables which respectively
denotes the number of the unselected children in the subtree Tu, TuL

, and
TuR

. Note that jR = j − jL also holds. c[u; 0, ∗, ∗] is calculated as follows:

c[u; 0, i, j] = min
0≤i≤s

min
0≤j≤n−1

{c[uL; 0, iL, jL] + c[uR; 0, iR, jR] + jL · jR}

Note that, since we can assume that for any vertex v, the number of unse-
lected children r is always at least deg(v) − s − 1, the number of cases in the
dynamic programming table is O(s2). The running time for the algorithm is
dominated for that of Join Step, which (using this observation) is O(s4).

248 E. Miyano et al.

Theorem 5. MaxP3VC on trees of n vertices can be solved in O(s4 · n) time,
where s is the prescribed size of the 3-path vertex cover.

5 Algorithm for MaxP3VC on Graphs with Bounded
Treewidth

In this section, we show that MaxP3VC admits a polynomial-time algorithm
for graphs with bounded treewidth. In particular, we show that there exists an
O((s + 1)2tw+4 ·4tw ·n)-time algorithm, where tw denotes the treewidth, which is
defined later. Thus, MaxP3VC is in XP with respect to the parameter treewidth
(and FPT with respect to the combined parameter s + tw).

Our algorithm uses dynamic programming on a nice tree decomposition [2]
of the input graph G. Given a graph G, a tree decomposition of G is a tree T
with for each node vT ∈ V (T) a subset XvT

⊆ V (G) (called bag) such that

– for every (u, v) ∈ E(G), there is a vT ∈ V (T) such that {u, v} ⊆ XvT
, and

– for every v ∈ V (G), the subset {vT ∈ V (T) | v ∈ XvT
} induces a connected

subtree of T .

The width of a tree decomposition is maxvT ∈T |XvT
| − 1, and the treewidth

of a graph G is the minimum width taken over all tree decompositions of G. To
avoid confusion, from now on we shall refer to the vertices of T as “nodes”, and
“vertex” shall refer exclusively to vertices of G.

We designate an arbitrary node of T as root of the tree decomposition. Given
a node vT ∈ T , we denote by G[vT] the subgraph of G induced by XvT

and the
vertices in bags of nodes which are descendants of vT in T . We moreover assume
that our (rooted) decomposition is nice, that is, each of the nodes vT ∈ T is one
of the four types:

– Leaf: vT is a leaf of T , and |XvT
| = 1.

– Introduce: vT has a single child node uT , and XvT
differs from XuT

only by
the inclusion of one additional vertex w. We say that w is introduced in vT .

– Forget: vT has a single child node uT . XvT
differs from XuT

only by the
removal of one vertex w. We say that vertex w is forgotten in vT .

– Join: vT has two children uT and u′
T . Moreover, XuT

= Xu′
T

= XvT
.

We note that a tree decomposition can be converted into a nice tree decom-
position of the same width. Moreover, we can assume that the size of a tree
decomposition (i.e. the number of bags) is linear in |V (G)| [2].

Given a node vT of a tree decomposition of G, a partial solution is a subset
S ⊆ V (G[vT]) of size at most s. Since the number of 3-paths in G is equal to

∑

v∈V

1
2
deg(v)(deg(v) − 1),

Complexity of the Maximum k-Path Vertex Cover Problem 249

we define the cost of a partial solution (relative to a node vT) S to be
∑

v∈V (G[vT])\(S∪XvT
)

1
2
degvT ,S(v)(degvT ,S(v) − 1),

where degvT ,S(v) is taken to be the degree of v in the subgraph of G induced by
V (G[vT])\S. This definition, which does not take into account the degrees of the
vertices in XvT

, is convenient because the degrees of the vertices in XvT
are not

yet fixed, and may change as new vertices are introduced. However, if we assume
the root bag of the tree decomposition is empty (which may be accomplished
by introducing a series of forget bags after the root bag), then a partial solution
with minimum cost corresponds to an optimal solution to the MaxP3VC instance.

As is usual for dynamic programming on tree decompositions, we group par-
tial solution by characteristics. Given a partial solution S for node vT of the nice
tree decomposition (with associated bag XvT

and subgraph G[vT]), its charac-
teristic (�, S′, f) consists of the size of the solution � = |S|, its intersection with
the bag S′ = XvT

∩ S, together with a function f : XvT
→ {0, 1, . . . , s} such

that f(v) = |{u ∈ S | u ∈ N(v)}|, which, for each vertex v in the bag XvT
, tells

us how many of its neighbors are in the partial solution.
For each characteristic, we store the minimum cost of a partial solution with

that characteristic, which we denote by c(�, S′, f). Next, we show how to recur-
sively compute for each type of node in a nice tree decomposition the set of char-
acteristics of a partial solutions, and for each such characteristic, the minimum
number of 3-paths not covered by a partial solution with that characteristic.

Leaf: If vT ∈ V (T) is a leaf node, then XvT
= {v} for some v ∈ V (G). Then

there are exactly two partial solutions for G[vT]: the empty partial solution,
which has characteristic (0, ∅, f) where f(v) = 0 and the partial solution that
includes v, which has characteristic (1, {v}, f), where f(v) = 0. In both cases,
c(0, ∅, f) = c(1, {v}, f) = 0.

Introduce: Suppose that vT ∈ V (T) is an introduce node, and v is the vertex
being introduced. Let (�, S′, f) be a characteristic for the child node of vT . In
the partial solutions (for the child node) with this characteristic, we may (if
� < s) choose to either add the vertex v or not. In the case where we add v,
the corresponding partial solutions have characteristic (�+1, S′ ∪{v}, f ′), where
f ′(v) = |{u ∈ S′ | u ∈ N(v)}|, and, if u �= v and u �∈ N(v), f ′(u) = f(u), and, if
u �= v and u ∈ N(v), f ′(u) = f(u) + 1. In the case where we do not add v, the
corresponding partial solutions will have characteristic (�, S′, f ′), where f ′(v) =
|{u ∈ S′ | u ∈ N(v)}|, and, if u �= v , f ′(u) = f(u). Since v is not adjacent to
any vertex in G[vT]\XvT

, the cost of these partial solutions remains unchanged.
Note, however, that taking two partial solutions with distinct characteristics may
end up having the same characteristic after vertex v is introduced. In this case,
we should take the cost (for the new characteristic) to be the minimum of the
costs for the original partial solutions.

Forget: Suppose that vT ∈ V (T) is a forget node, and v is the vertex being
forgotten. Let (�, S′, f) be a characteristic for the child node of vT . If S is a

250 E. Miyano et al.

partial solution with this characteristic, then, viewed as a partial solution with
respect to node vT , it will have characteristic (�, S′ \ {v}, f ′), where f ′ is the
restriction of f to the domain S′ \ {v}. If v /∈ S′ and f(v) < deg(v), then the
cost of this partial solution increases by 1

2 (deg(v) − f(v))(deg(v) − f(v) − 1),
otherwise it remains unchanged. As before, since multiple characteristics for the
child node may end up having the same characteristic in vT , and we should take
the new cost of the characteristic to be the minimum of the updated costs.

Join: Suppose that vT ∈ V (T) is a join node, and v1
T and v2

T are its children. Let
(�1, S′

1, f1) (resp., (�2, S′
2, f2)) be a characteristic for v1

T (resp., v2
T). Assume that

S′
1 = S′

2, which we henceforth denote simply by S′, and that �1 + �2 − |S| ≤ s.
If we take the union of partial solutions, S1 relative to v1

T with characteristic
(�1, S′, f1) and S2 relative to v2

T with characteristic (�2, S′, f2), then we obtain
a new partial solution (relative to vT) with characteristic (�1 + �2 − |S′|, S′, f ′),
where f ′(v) = f1(v)+f2(v)−|{u ∈ S′ | u ∈ N(v)}|. Since V (G[v1

T])∩V (G[v2
T]) =

XvT
, in G[vT], the degree of a vertex v ∈ V (G[vT])\(XvT

∪S) is equal to its degree
in (the subgraph of G induced by) G[v1

T]\S (resp., G[v2
T]\S) if v ∈ V (G[v1

T])\S
(resp., v ∈ V (G[v2

T]) \ S). Therefore, the cost of this new partial solution is
equal to the sum of the costs of the partial solutions S1 and S2. Since once
again, multiple (combinations of) characteristics for the child nodes may give
rise to the same characteristic for vT , we can find the minimum cost of a partial
solution for a given characteristic by taking the minimum over all (combinations
of) characteristics for the child nodes.

For any node, there are at most (s+1)tw+22tw+1 characteristics. The running
time is dominated by the time taken for a join node, which is O((s + 1)2tw+4 ·
4tw+1). Since we can assume that our tree decomposition has at most O(n)
nodes, we obtain a O((s + 1)2tw+4 · 4tw · n)-time algorithm. This assumes a
tree decomposition is given as part of the input. A tree decomposition can be
computed in 2O(tw3)n time [3], or a 5-approximate tree decomposition can be
computed in time O(1)twn [4].

Theorem 6. MaxP3VC on n-vertex graphs of treewidth tw can be solved in
O((s + 1)2tw+4 · 4tw · n) time, where s is the prescribe size of the 3-path ver-
tex cover.

References

1. Apollonio, N., Simeone, B.: The maximum vertex coverage problem on bipartite
graphs. Dis. Appl. Math. 165, 37–48 (2014)

2. Betzler, N., Niedermeier, R., Uhlmann, J.: Tree decompositions of graphs: saving
memory in dynamic programming. Dis. Optim. 3, 220–229 (2006)

3. Hans, L.: A linear-time algorithm for finding tree-decompositions of small
treewidth. SIAM J. Comput. 25(6), 1305–1317 (1996)

4. Bodlaender, H.L., Drange, P.G., Dregi, M.S., Fomin, F.V., Lokshtanov, D.,
Pilipczuk, M.: A O(ckn) 5-approximation algorithm for treewidth. SIAM J. Com-
put. 45(2), 317–378 (2016)

Complexity of the Maximum k-Path Vertex Cover Problem 251

5. Brešar, B., Kardoš, F., Katrenič, J., Semanǐsin, G.: Minimum k-path vertex cover.
Dis. Appl. Math. 159(12), 1189–1195 (2011)

6. Camby, E.: Connecting hitting sets and hitting paths in graphs. Ph.D. thesis,
Doctoral Thesis (2015)

7. Caskurlu, B., Mkrtchyan, V., Parekh, O., Subramani, K.: On partial vertex
cover and budgeted maximum coverage problems in bipartite graphs. In: IFIP
International Conference on Theoretical Computer Science, pp. 13–26. Springer,
Heidelberg (2014)

8. Courcelle, B.: Graph rewriting: an algebraic and logic approach. In: Handbook of
Theoretical Computer Science, vol. B, pp. 193–242 (1990)

9. Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theor.
Comput. Sci. 38, 293–306 (1985)

10. Karp, R.: Reducibility among combinatorial problems. In: Compleixty of Computer
Computations, pp. 85–103 (1972)

11. Katrenič, J.: A faster FPT algorithm for 3-path vertex cover. Inf. Process. Lett.
116(4), 273–278 (2016)

12. Li, X., Zhang, Z., Huang, X.: Approximation algorithms for minimum (weight)
connected k-path vertex cover. Dis. Appl. Math. 205, 101–108 (2016)

13. Papadimitriou, C.H., Yannakakis, M.: The complexity of restricted spanning tree
problems. J. ACM 29(2), 285–309 (1982)

14. Jianhua, T., Jin, Z.: An FPT algorithm for the vertex cover P4 problem. Dis. Appl.
Math. 200, 186–190 (2016)

15. Jianhua, T., Zhou, W.: A factor 2 approximation algorithm for the vertex cover
P3 problem. Inf. Process. Lett. 111(14), 683–686 (2011)

16. Jianhua, T., Zhou, W.: A primal-dual approximation algorithm for the vertex cover
P3 problem. Theor. Comput. Sci. 412(50), 7044–7048 (2011)

17. Xiao, M., Kou, S.: Exact algorithms for the maximum dissociation set and mini-
mum 3-path vertex cover problems. Theor. Comput. Sci. 657, 86–97 (2017)

18. Yannakakis, M.: Node-deletion problems on bipartite graphs. SIAM J. Comput.
10, 310–327 (1981)

19. Zhang, Z., Li, X., Shi, Y., Nie, H., Zhu, Y.: PTAS for minimum k-path vertex cover
in ball graph. Inf. Process. Lett. 119, 9–13 (2017)

On the Parallel Parameterized Complexity
of the Graph Isomorphism Problem

Bireswar Das, Murali Krishna Enduri(B), and I. Vinod Reddy

IIT Gandhinagar, Gandhinagar, India
{bireswar,endurimuralikrishna,reddy vinod}@iitgn.ac.in

Abstract. In this paper, we study the parallel and the space complexity
of the graph isomorphism problem (GI) for several parameterizations.

Let H = {H1, H2, · · · , Hl} be a finite set of graphs where |V (Hi)| ≤ d
for all i and for some constant d. Let G be an H-free graph class i.e.,
none of the graphs G ∈ G contain any H ∈ H as an induced subgraph.
We show that GI parameterized by vertex deletion distance to G is in
a parameterized version of AC1, denoted Para-AC1, provided the colored
graph isomorphism problem for graphs in G is in AC1. From this, we
deduce that GI parameterized by the vertex deletion distance to cographs
is in Para-AC1.

The parallel parameterized complexity of GI parameterized by the size
of a feedback vertex set remains an open problem. Towards this direc-
tion we show that the graph isomorphism problem is in Para-TC0 when
parameterized by vertex cover or by twin-cover.

Let G′ be a graph class such that recognizing graphs from G′ and
the colored version of GI for G′ is in logspace (L). We show that GI for
bounded vertex deletion distance to G′ is in L. From this, we obtain
logspace algorithms for GI for graphs with bounded vertex deletion dis-
tance to interval graphs and graphs with bounded vertex deletion dis-
tance to cographs.

1 Introduction

Two graphs G = (Vg, Eg) and H = (Vh, Eh) are said to be isomorphic if there is a
bijection f : Vg → Vh such that for all pairs {u, v} ∈ (

Vg

2

)
, {u, v} ∈ Eg if and only

if {f(u), f(v)} ∈ Eh. Given a pair of graphs as input the problem of deciding if
the two graphs are isomorphic is known as the graph isomorphism problem (GI).
Whether this problem has a polynomial-time algorithm is one of the outstanding
open problem in the field of algorithms and complexity theory. It is in NP but
very unlikely to be NP-complete as it is in NP ∩ coAM [7]. Recently Babai [4]
designed a quasi-polynomial time algorithm for GI improving the best previ-
ously known runtime 2O(

√
n logn) [2,37]. However, efficient algorithms for GI have

been discovered for various restricted classes of graphs e.g., planar graphs [26],

M. K. Enduri — Supported by Tata Consultancy Services (TCS) research fellowship.

c© Springer International Publishing AG, part of Springer Nature 2018
M. S. Rahman et al. (Eds.): WALCOM 2018, LNCS 10755, pp. 252–264, 2018.
https://doi.org/10.1007/978-3-319-75172-6_22

On the Parallel Parameterized Complexity GI 253

bounded degree graphs [31], bounded genus graphs [33], bounded tree-width
graphs [6] etc.

For restricted classes of graphs the complexity of GI has been studied more
carefully and finer complexity classifications within P have been done. Lindell [29]
gave a deterministic logspace algorithm for isomorphism of trees. In the recent
past, there have been many logspace algorithms for GI for restricted classes of
graphs e.g., K3,3 or K5 minor free graphs [19], planar graphs [18], bounded
tree-depth graphs [16], bounded tree-width graphs [21] etc. On the other hand
parallel isomorphism algorithms have been designed for graphs with bounded
eigenvalue multiplicity [3], bounded color class graphs [32] etc.

The graph isomorphism problem has been studied in the parameterized
framework for several graph classes with parameters such as the tree-depth [8],
the tree-distance width [36], the connected path distance width [34] and recently
the tree-width which corresponds to a much larger class [30]. A more detailed
list of FPT algorithms for GI in parameterized setting can be found in [9].

While there are many results on the parallel or the logspace complexity of
problems in the parameterized framework [20], very little is known in this direc-
tion for GI. The parameterized analogues of classical complexity classes have
also been studied in [12,22,23]. The class Para-C is the family of parameterized
problems that are in C after a pre-computation on the parameter, where C is a
complexity class. In this paper we study the graph isomorphism problem from a
parameterized space and parallel complexity perspective. Recently Chandoo [14]
showed that GI for circular-arc graphs is in Para-L when parameterized by the
cardinality of an obstacle set.

Since the graph isomorphism problem parameterized by tree-width has a
logspace [21] as well as a separate FPT algorithm [30] it is natural to ask if
we can design a parameterized parallel algorithm for this problem. In fact, the
parallel complexity of GI parameterized by the well known but weaker parameter
feedback vertex set number (FVS) is also unknown. We make some progress in
this direction by showing that GI parameterized by the size of a vertex cover,
which is a weaker parameter than the FVS, is parallelizable in the parameterized
setting.

Let G be a graph class characterized by a finite set of forbidden induced
subgraphs (see Sect. 3 for the formal definition). Kratsch et al. [28] gave an FPT
algorithm for GI parameterized by the distance to G by taking a polynomial time
colored graph isomorphism algorithm for graphs in G as a subroutine. In Sect. 3,
we show that the result of [28] is parallelizable in the parameterized framework.
More precisely, we give a Para-AC1 algorithm for this problem. As a consequence,
observe that GI parameterized by the distance to cographs is in Para-AC1.

Using bounded search tree method we also design a parallel recognition algo-
rithm for graphs parameterized by the distance to G. One would ask if the
problem is in Para-L using the same method as in [12] and [20]. However, the
recent corrigendum Cai et al. [13] suggests that this may need completely new
ideas.

254 B. Das et al.

In the above mentioned parallel analogue of the result by Kratsch et al. [28],
G is a class of graphs characterized by a finite set of forbidden induced subgraphs.
Instead of that if we take G to be the set of bounded tree-width graphs then
the parallel parameterized complexity is again open. Note that the analogous
preconditions of the theorem by Kratsch et al. [28] in this scenario is met by
the logspace GI algorithm for bounded tree-width graphs by Elberfeld et al.
[21]. In fact, the problem is open even when G is just the set of forests because
this is the same problem: GI parameterized by feedback vertex set number. We
study the graph isomorphism problem for bounded distance to any graph class G
under reasonable assumptions: the colored version of GI for the class G and the
recognition problem for G are in L. We give a logspace isomorphism algorithm
for such classes of graphs.

In Sect. 4, we show that GI is in Para-TC0 when parameterized by the ver-
tex cover number. By using the recognition algorithm for graphs parameterized
by the vertex cover number due to [5], we first design a recognition algorithm
for graphs parameterized by twin-cover number. We then prove that the graph
isomorphism problem parameterized by twin-cover is in Para-TC0.

2 Preliminaries

The basic definitions and notations of standard complexity classes are from [1]
and the definitions of parameterized versions of complexity classes are from
[12,22,35]. A parameterized problem is pair (Q, k) of a language Q ⊆ Σ∗ and
a parameterization k : Σ∗ → N that maps input instances to natural numbers,
their parameter values1. The class Para-C is defined to be the family of problems
that are in C after a precomputation on the parameter where C is a complexity
class.

Definition 1 [22]. For a complexity class C, a parameterized problem (Q, k)
belongs to the para class Para-C if there is an alphabet Π, a computable function
π : N → Π∗ and a language A ⊆ Σ∗ × Π∗ with A ∈ C such that for all x ∈ Σ∗

we have x ∈ Q ⇔ (x, π(k(x))) ∈ A.

If the complexity class C is L then we get the complexity class Para-L. The
following equivalent definition of Para-L is convenient when designing Para-L
algorithms.

Definition 2 [22]. A parameterized problem (Q, k) over Σ is in Para-L if there
is function f : N → N such that the question x ∈ Q can be decided within space
f(k) + O(log |x|).
The parameterized parallel complexity classes are defined by using the basic
complexity classes in place of L in above and basic gates (AND and OR gates)
as follows [35]:

1 Often we write k in stead of k(x).

On the Parallel Parameterized Complexity GI 255

Para-ACi (Para-TCi): The class of languages that are decidable via family of
circuits over basic gates (resp. together with threshold gates) with unbounded
fan-in, size O(f(k)nO(1)), and depth O(f(k) + logi n) if i > 0 and depth O(1) if
i = 0. From the definition of Para-C, we know that for two complexity classes C
and C′, C ⊆ C′ if and only if Para-C ⊆ Para-C′ [5]. Hence we have the following
relation between complexity classes Para-AC0

� Para-TC0 ⊆ Para-L ⊆ Para-AC1.
There exists a circuit class Para-AC0↑ in between Para-AC0 and Para-AC1 which is
strictly more powerful than Para-AC0. The definition of Para-AC0↑ is as follows.

Definition 3 [5]. Para-AC0↑ is a class of languages that are decidable via family
of circuits over basic gates with unbounded fan-in, size O(f(k)nO(1)), and depth
g(k) where f and g are computable functions.

The depth of the circuits in this class is bounded by a function that depends
only on the parameter. We have Para-AC0

� Para-AC0↑ ⊆ Para-AC1 and Para-
AC0

� Para-L ⊆ Para-AC1. We do not know relation between Para-AC0↑ and
Para-L. The computational versions of all the above circuit classes can be defined
in the usual manner by having multiple output gates.

In this paper, the graphs we consider are undirected and simple. For a graph
G = (V,E), let V (G) and E(G) denote the vertex set and edge set of G respec-
tively. An edge {u, v} ∈ E(G) is denoted as uv for simplicity. For a subset
S ⊆ V (G), the graph G[S] denotes the subgraph of G induced by the vertices of
S. We use notation G \S to refer the graph obtained from G after removing the
vertex set S. For a vertex u ∈ V (G), N(u) denotes the set of vertices adjacent
to u and N [u] = N(u)∪{u}. For a set X ⊆ V (G), N(X) denoted as ∪v∈XN(v).

In this paper we study problems similar to the graph modification problems
where given a graph G, and a graph class G the task is to apply some graph
operations (such as vertex or edge deletions) on G to get a graph in G. For
example, if G is the class of edgeless graphs then the number of vertices to be
deleted from graph G to make it edgeless is the vertex cover problem. For a
graph class G, the distance to G of a graph G is the minimum number of vertices
to be deleted from G to get a graph in G. For a positive integer k, we use G +kv
to denote the family of graphs such that each graph in this family can be made
into a graph in G by removing at most k vertices.

Cographs are P4-free graphs i.e., they do not contain any induced paths on
four vertices. Interval graphs are the intersection graphs of a family of intervals
on the real line. A graph is a threshold graph if it can be constructed recursively
by adding an isolated vertex or a universal vertex.

The parameterized Vertex Cover problem has input a graph G and a
positive integer k. The problem is to decide the existence of a vertex set X ⊆
V (G) of size at most k such that for every edge uv ∈ E(G), either u ∈ X or
v ∈ X. A minimal vertex cover of a graph is a vertex cover that does not contain
another vertex cover.

256 B. Das et al.

Definition 4. Let G be a graph. The set X ⊆ V (G) is said to be twin-cover of
G if for every edge uv ∈ E(G) either
(a) u ∈ X or v ∈ X, or (b) u and v are twins2.

An edge between a pair of twins is called a twin edge. The graph G′ obtained by
removing a twin-cover from G is a disjoint collection of cliques [24].

A kernel for a parameterized problem Q is an algorithm which transforms
an instance (I, k) of Q to an equivalent instance (I ′, k′) in polynomial time such
that k′ ≤ k and |I ′| ≤ f(k) for some computable function f . For more details
on parameterized complexity see [20].

In this paper, a coloring of a graph is just a mapping of the vertices of a
graph to a set of colors, and it need not be proper.

Definition 5. The colored graph isomorphism problem is to decide the exis-
tence of a color preserving isomorphism between a pair of colored graphs G =
(V,E) and G′ = (V ′, E′), i.e., there exists a bijection mapping ϕ : V → V ′,
satisfying the following conditions: (1) (u, v) ∈ E ⇔ (ϕ(u), ϕ(v)) ∈ E′ for all
u, v ∈ V (2) color(v) = color(ϕ(v)) for all v ∈ V .

Due to the space limitation, some of the proofs can be found in the full version
of the paper [17].

3 GI for Distance to a Graph Class is in Para-AC1

In this Section, first we give a generic method to solve GI for graphs from G +kv
in Para-L provided there is a logspace colored GI algorithm for graphs in G and
a Para-L algorithm for enumerating vertex deletion sets.

Theorem 1. Let G be a any graph class. Suppose enumerating all the vertex
deletion sets of G + kv is in Para-L and the colored graph isomorphism problem
for graphs from G is in L. Then the graph isomorphism problem for graphs from
G + kv is in Para-L.

Proof. Let AI be a logspace algorithm to check whether two given input colored
graphs G1 and G2 from G are isomorphic. We assume that graphs G1 and G2 are
at a distance at most k from G. If G1 and G2 belong to G then use the algorithm
AI to check the isomorphism between G1 and G2. Otherwise we consider a
vertex deletion set S ⊆ V (G1) of minimum size (say s) such that G1 \ S ∈ G
and all possible vertex deletion sets S1, S2, · · · , Sm of size s for G2 such that
G2 \ Si ∈ G for all i ∈ [m] given as input. Notice that m ≤ f(k).

For each i ∈ [m], the algorithm iterates over all possible isomorphisms
between G[S] to G[Si], and tries to extend them to isomorphisms from G1 to
G2 with the help of the colored graph isomorphism algorithm AI applied on
some colored versions of G1 \ S and G2 \ Si, where the colors of the vertices
are determined by their neighbors in the corresponding deletion set. A crucial

2 Two vertices u and v are twins if N(u) \ {v} = N(v) \ {u}.

On the Parallel Parameterized Complexity GI 257

observation is that any bijective mapping from S to Si can be viewed as a string
in [s]s and can be encoded as a string of length O(k log k). The string is x1 · · · xs

encodes the map that sends the ith vertex in S to the xith vertex in Si.
For all i algorithm iterates over all s! bijective mappings from S to Si using

string of length O(s log s). Next it checks whether the bijective mapping is actu-
ally an isomorphism from G1[S] to G2[Si]. For each isomorphism ϕ from S to Si,
we need to check whether this isomorphism can be extended to an isomorphism
from G1 \ S to G2 \ Si by using algorithm AI . We color the vertices of G1 \ S
according to their neighbourhood in S. Two vertices of G1 \ S get same color if
they have the same neighbourhood in S. A vertex u in G1 \ S and a vertex v
in G2 \ Si will get same color if ϕ(N(u) ∩ S) = N(v) ∩ Si. We query algorithm
AI with input the graphs G1 \ S and G2 \ Si colored as above. If the algorithm
AI says ‘yes’ then G1

∼= G2 and the algorithm accepts the input. Otherwise it
tries the next isomorphism from S to Si. If for all i and all isomorphisms from
S to Si, the algorithm AI rejects then the we conclude that G1 � G2 and the
algorithm rejects the input.

We note few more details of the algorithm to demonstrate that it uses small
space. The enumeration over the Si’s can be done using a log m bit counter. To
check if two vertices u in G1 \ S and v in G2 \ S2 have same color in logspace
we can inspect each vertex in G1, find out if it in S, find out if it is a neighbour
of u, and check if its image under ϕ is a neighbour of v. This needs constantly
many counters.
�

Next we give a Para-AC0↑ recognition algorithm for graphs parameterized
by the distance to a graph class G by using the bounded search tree technique,
where G is characterized by finitely many forbidden induced subgraphs.

Definition 6 [28]. A class G of graphs is characterized by finitely many forbid-
den induced subgraphs if there is a finite set of graphs H = {H1,H2, · · · ,Hl}
such that a graph G is in G if and only if G does not contain Hi as an induced
subgraph for any i ∈ {1, 2, · · · , l}.
Let G and H be classes as defined above. We use the bounded search tree tech-
nique [11,20] to find a set S of size at most k such that G\S ∈ G. In this method
we can compute all deletion sets of size at most k. Let d be the size of the largest
forbidden induced subgraph in H. The algorithm constructs a tree T as follows.
The root of the tree is labelled with the empty set. It finds a forbidden induced
subgraph Hi ∈ H of size at most d in G. Any vertex deletion set S must contain
a vertex of Hi. We add |V (Hi)| many children to the root labelled with vertices
of Hi. In general if a node is labelled with a set P , then we find a forbidden
induced subgraph Hj in G \ P and create |V (Hj)| many children for the node
labeled P and label each child with P ∪ {vi}, where vi ∈ Hj . If there exists a
node labeled with a set S in T of size at most k such that G \S ∈ G, then S is a
required vertex deletion set. From this, we also know that there are at most dk

minimal vertex deletion sets of size at most k. Using the same process we can
also find all the minimal vertex deletion sets of size at most k.

258 B. Das et al.

Cai et al. [12] implemented bounded search tree method and kernelization to
find the vertex cover in Para-L in 1997. However, the implementation of bounded
search tree method in Para-L was reported to have some errors [13]. Thus, this
paper seems to give the first implementation of bounded search tree method in
Para-AC0↑. Let us recall form Sect. 2, that there is no known relation between
Para-AC0↑ and Para-L.

Lemma 1. Let G be a class of graphs characterized by finitely many forbidden
induced subgraphs H = {H1,H2, · · · ,Hl} with |V (Hi)| ≤ d for all 1 ≤ i ≤ l
where d is a constant. On input a graph G, the problem of computing all vertex
deletion sets of size at most k is in Para-AC0↑ where k is the parameter.

Proof. The idea to implement the bounded search tree method in Para-AC0↑ is
as follows:

Consider the set of all subsets of size at most d that induce a forbidden
subgraph in G. We order these subsets lexicographically to obtain a list L =
A1, · · · , Am where for each i, G[Ai] is isomorphic to some graph in H. Notice
that m = O(nd). The list L can be computed in Para-AC0↑ by first producing
all subsets of V (G) of size at most d and then keeping only those that induce a
subgraphs isomorphic to some H in H. Observe that any vertex deletion set must
contain at least one vertex from each Ai for all i. The algorithm uses all strings
Γ = γ1 · · · γk ∈ [d]k in parallel to pick the vertex deletion sets S of size at most k
as follows: Let us concentrate on the part of the circuit that processes a particular
string Γ = γ1 · · · γk. Initially the deletion set S is empty. The algorithm puts
the γith vertex (in lexicographic order) of A1 in S if |A1| ≥ γ1. If |A1| < γ1 the
computation ends in this part of the circuit. Suppose the algorithm has already
picked i vertices using γ1 · · · γi. It picks the (i + 1)th vertex using γi+1. To do
so it picks the first set Aj in the list L such that Aj ∩ S = φ (if Aj ∩ S
= φ
we say that Aj is ‘hit’ by S). Then it puts the γi+1th vertex of Aj in S if
|Aj | ≥ γi+1. Otherwise the computation ends in the part processing Γ . If on or
before reaching γk we have obtained a set S such that Aj ∩ S
= φ for all j, the
algorithm has successfully found a vertex deletion set. We say that the algorithm
is in phase i if it processing γi.

To see that the algorithm can be implemented in Para-AC0↑, we just need to
observe that in each phase the algorithm has to maintain the list of sets in L
that are not yet hit by S. The depth of the circuit is O(k) and the total size is
dkpoly(n).
�
We implemented the bounded search tree method in Para-AC0↑. This imple-
mentation can be used not only to recognize the graph class defined in the
Definition 6 but also, as we can show, for designing Para-AC0↑ algorithms for the
problems Restricted Alternating Hitting Set and Weight ≤ k q-Cnf

Satisfiability (for more details see in [17]).
The next theorem is obtained by replacing the complexity class Para-L by

Para-AC1 in Theorem 1. The proof of the theorem uses similar ideas and the
implementation is easier. Moreover, because of Lemma 1 we do not have to
assume the existence of an algorithm that outputs all the vertex deletion sets.

On the Parallel Parameterized Complexity GI 259

Theorem 2. Let G be a class of graphs characterized by finitely many forbidden
induced subgraphs H = {H1,H2, · · · ,Hl} with |V (Hi)| ≤ d for all 1 ≤ i ≤ l
where d is a constant. Suppose the colored graph isomorphism problem for graphs
from G is in AC1. Then the graph isomorphism problem for graphs from G + kv
is in Para-AC1.

Corollary 1. The graph isomorphism problem parameterized by the distance to
cographs is in Para-AC1.

Proof. Recall that cographs are graphs without any induced P4. The colored
graph isomorphism for cographs was shown to be in L using logspace algo-
rithm to find the modular decomposition [25]. From this along with Theorem 2
and Lemma 1, we deduce that the graph isomorphism problem for distance to
cographs is in Para-AC1.
�
As a consequence of the above corollary, we can also solve graph isomorphism
problem for some of the other graph classes e.g., distance to cluster (disjoint
union of cliques), distance to threshold graphs in Para-AC1 by using the gener-
alized meta Theorem 2.

For larger parameters like vertex-cover, distance to clique and twin-cover,
we can get better complexity theoretic results which we discuss in the following
section.

4 GI Parameterized by Vertex Cover is in Para-TC0

In this section we give a parameterized parallel algorithm for GI parameterized
by vertex cover. Sam Buss [10] showed that Vertex Cover admits a polynomial
kernel. Based on this kernelization result, Cai et al. [12], Elberfeld et al. [22] and
Bannach et al. [5] showed that Vertex Cover is in Para-L, Para-TC0 and Para-
AC0 respectively. These methods not only determines the existence of a vertex
cover of size at most k but can also output all vertex covers of size at most k
in Para-AC0. We give a brief overview of the procedure to enumerate all vertex
covers of size at most k by using kernelization method given in [5,12,22].

Observe that any vertex of degree more than k must belong to any vertex
cover of a given graph G. For the graph G = (V,E), consider the set VH = {v ∈
V (G)

∣
∣d(v) > k}. If |VH | is more than k then we declare that there is no k sized

vertex cover. Let us assume |VH | = b. Consider the set VL = {v ∈ V (G)
∣
∣d(v) ≤

k and N(v) \ VH
= ∅} of vertices that have at least one neighbour outside VH .
Notice that none of the edges in G[VL] are covered by VH . Let S′ be a vertex
cover of G[VL]. It is easy to see that VH ∪ S′ forms a vertex cover of G. On the
other hand if S is a vertex cover of G then VL ∩ S is a vertex cover of G[VL]. If
the cardinality of VL is more than (k − b)(k + 1) then reject (because the graph
induced by vertices VL with k−b vertex cover and all vertices degree bounded by
k has no more than (k − b)(k + 1) vertices). So the cardinality of VL is not more
than (k − b)(k + 1). We can use the best known vertex cover algorithm [15] to
find the (k − b) vertex cover on the sub graph induced by vertices VL. Elberfeld
et al. [22] pointed that the parallel steps of this process are the following:

260 B. Das et al.

i. Checking whether the vertex belongs to VH .
ii. Checking whether |VH | at most k.
iii. Checking whether |VL| at most k(k + 1).
iv. Computing the induced subgraph G[VL] from G.

The computation of above steps can be implemented by Para-AC0 circuits [5].
The above process finds all vertex covers of size at most k by enumerating all
the 2|VL| possible binary strings on length |VL|.
Theorem 3. The graph isomorphism problem parameterized by vertex cover is
in Para-TC0.

Proof. Given two input graphs G and H with vertex cover of size at most k,
we need to test if G to H are isomorphism in Para-TC0. Using the kernelization
method of Bannach et al. [5] we can recognize whether these two graphs have
same sized vertex covers or not. For the graph G we find a minimal vertex
cover S of size at most k and for graph H we find all minimal vertex covers
S1, S2, · · · , Sm, each of size at most k. Notice that m is at most 2k. We know
that if G ∼= H then G[S] ∼= H[Si] for some 1 ≤ i ≤ m. We try all isomorphisms
from the minimal vertex cover S of G to each minimal vertex cover Si of H.
Suppose G[S] ∼= H[Si] via ϕ. We need to extend this isomorphism from the
independent set G \ S to H \ Si. There are at most k! isomorphisms between
G[S] to H[Si]. The algorithm processes all pairs (S, Si) and all the isomorphisms
in parallel.

For each isomorphism ϕ, we need to check whether this ϕ can be extended to
an isomorphism between G \ S to H \ Si. We partition the vertices of the graph
G \S into at most 2k sets (called ‘types’) based on their neighborhood in S. For
each U ⊆ S let TG(U, S) = {u ∈ G \ S | N(u) = U}. It is not hard to see that
G ∼= H if and only if there is a minimal vertex cover Si of H and an isomorphism
ϕ from G[S] to H[Si] such that for each U ⊆ S, |TG(U, S)| = |TH(ϕ(U), Si)|.
The problem of testing whether G is isomorphic to H reduces to counting the
number of vertices in each type. We represent each type using an n-length binary
string, where ith entry is one if vi belongs to that type and zero otherwise. Since
the Bit Count

3 problem is in TC0, counting the number of vertices in a type
can be implemented using a TC0 circuit. In summary, for each Si and each
isomorphism between G[S] and H[Si], and for each U ⊆ S we check whether
|TG(U, S)| = |TH(ϕ(U), Si)|. This completes the proof.
�
Corollary 2. The graph isomorphism problem is in Para-TC0 when parameter-
ized by the distance to clique.

Proof. We apply Theorem 3 to the complements of the input graphs.
�
Corollary 3. The graph isomorphism problem parameterized by the size of a
twin-cover is in Para-TC0.

3 Counting the number one’s in n length binary string.

On the Parallel Parameterized Complexity GI 261

Proof. To find the twin-cover, we first remove all the twin edges and then com-
pute a vertex cover of size at most k in the resulting graph as was done in [24].
The first step runs through all edges and deletes an edge if it is a twin edge. Next
it finds a vertex cover in the resulting graph which can be done in Para-AC0 [5].
Thus, computing all the twin-covers can be done in Para-AC0.

Now we describe the process of testing isomorphism. The idea for testing
isomorphism of the input graphs parameterized by the size of a twin-cover is
similar to that in the proof of Theorem 3. Let S1 be a fixed twin-cover in G1

and S2 be a twin-cover in G2 of same size. The algorithm processes all such
(S1, S2) pairs in parallel. First fix an isomorphism (say σ) from S1 to S2 and try
to extend it to G1 \ S1 to G2 \ S2. Again, all such isomorphisms are processed
in parallel. We know that the graph G \ S obtained by removing a twin-cover
S from G is a disjoint collection of cliques. Any two vertices in a clique C have
same neighbourhood in G i.e., if u, v ∈ C then N [u] = N [v]. Thus, the ‘type’ of
a clique is completely determined by the neighbourhood of any of the vertices in
the vertex deletion set, and the size of the clique. Formally, with respect to the
isomorphism σ, a clique Cg1 in G1\S1 and a clique Cg2 in G2\S2 have same type
if (1) |V (Cg1)| = |V (Cg2)| and (2) σ(N(Cg1)) = N(Cg2). The algorithm needs to
check that the number of cliques in each type is same in both the graphs. This
problem can again be reduced to instances of the Bit Count problem.

It is easy to see that, the above process can be implemented in Para-TC0.
�

5 Logspace GI Algorithms for Bounded Distance
to Graph Classes

In this Section, we show that for fixed k GI for graphs in G + kv is in L if the
colored GI for graphs in G is in L where G is a graph class. From this result we
obtain that GI for cographs + kv and interval + kv graphs is in L. Note that
these results are not in the parameterized complexity theory framework. The
proof of the following theorem can be found in [17].

Theorem 4. Let k be a fixed and G be a class of graphs. Suppose the problem
of deciding if a given graph is in G and the colored graph isomorphism problem
for graphs in G is in L. Then the graph isomorphism problem for graphs from
G + kv is in L.

Suppose graph class G is define as in Definition 6. It is not hard to see the
problem of deciding if a graph G is in a class G characterized by finitely many
forbidden induced subgraphs is in logspace (See Lemma 2 in [17]). The proof of
the next corollary follows from Lemma 2 [17] and Theorem 4.

Corollary 4. Let the graph class G be characterized by finitely many forbidden
induced subgraphs H = {H1,H2, · · · ,Hl} with |V (Hi)| ≤ d for all 1 ≤ i ≤ l
where d is a constant. The graph isomorphism problem for graphs with bounded
vertex deletion from G is in L provided the colored graph isomorphism problem
for graphs from G is in L.

262 B. Das et al.

Corollary 5. The graph isomorphism problem is in L for following graph
classes: (1) distance to interval graphs (2) distance to cographs.

Proof. The proof of (1), follows from Theorem 4 and the logspace algorithm for
colored GI for interval graphs (see [27]).
The proof of (2), follows from Corollary 4 and the logspace isomorphism algo-
rithm for colored GI for cographs [25].
�

6 Conclusion

In this paper we showed that graph isomorphism problem is in Para-TC0 when
parameterized by the vertex cover number of the input graphs. We also stud-
ied the parameterized complexity of graph isomorphism problem for the class
of graphs G characterized by finitely many forbidden induced subgraphs. We
showed that graph isomorphism problem is in Para-AC1 for the graphs in G + kv
if there is an AC1 algorithm for colored-GI for the graph class G. From this result,
we show that GI parameterized by the distance to cographs is in Para-AC1.

The following questions remain open. Can we get a parameterized logspace
algorithm for GI parameterized by feedback vertex set number? Does the problem
admit parameterized parallel algorithm? Elberfeld et al. [21] showed that GI is
in logspace for graphs of bounded tree-width. In this paper, we showed that GI
for some subclasses of bounded clique-width graphs is in L. It is an interesting
open question to extend these results to bounded clique-width graphs.

References

1. Arora, S., Barak, B.: Computational Complexity: A Modern Approach. Cambridge
University Press, Cambridge (2009)

2. Babai, L.: Moderately exponential bound for graph isomorphism. In: Gécseg, F.
(ed.) FCT 1981. LNCS, vol. 117, pp. 34–50. Springer, Heidelberg (1981). https://
doi.org/10.1007/3-540-10854-8 4

3. Babai, L.: A Las Vegas-NC algorithm for isomorphism of graphs with bounded mul-
tiplicity of eigenvalues. In: 27th Annual Symposium on Foundations of Computer
Science, pp. 303–312. IEEE (1986)

4. Babai, L.: Graph isomorphism in quasipolynomial time. In: 48th Annual ACM
SIGACT Symposium on Theory of Computing, pp. 684–697. ACM (2016)

5. Bannach, M., Stockhusen, C., Tantau, T.: Fast parallel fixed-parameter algorithms
via color coding. In: Parameterized and Exact Computation, p. 224 (2015)

6. Bodlaender, H.L.: Polynomial algorithms for graph isomorphism and chromatic
index on partial k-trees. J. Algorithms 11(4), 631–643 (1990)

7. Boppana, R.B., Hastad, J., Zachos, S.: Does co-NP have short interactive proofs?
Inform. Process. Lett. 25(2), 127–132 (1987)

8. Bouland, A., Dawar, A., Kopczyński, E.: On tractable parameterizations of graph
isomorphism. In: Parameterized and Exact Computation, pp. 218–230 (2012)

9. Bulian, J., Dawar, A.: Graph isomorphism parameterized by elimination distance
to bounded degree. Algorithmica 75(2), 363–382 (2016)

https://doi.org/10.1007/3-540-10854-8_4
https://doi.org/10.1007/3-540-10854-8_4

On the Parallel Parameterized Complexity GI 263

10. Buss, J.F., Goldsmith, J.: Nondeterminism within P*. SIAM J. Comput. 22(3),
560–572 (1993)

11. Cai, L.: Fixed-parameter tractability of graph modification problems for hereditary
properties. Inform. Process. Lett. 58(4), 171–176 (1996)

12. Cai, L., Chen, J., Downey, R.G., Fellows, M.R.: Advice classes of parameterized
tractability. Ann. Pure Appl. Logic 84(1), 119–138 (1997)

13. Cai, L., Chen, J., Downey, R.G., Fellows, M.R.: Advice classes of parameterized
tractability-corrigendum (2017)

14. Chandoo, M.: Deciding circular-arc graph isomorphism in parameterized logspace.
In: 33rd Symposium on Theoretical Aspects of Computer Science (2016)

15. Chen, J., Kanj, I.A., Xia, G.: Improved upper bounds for vertex cover. Theoret.
Comput. Sci. 411(40–42), 3736–3756 (2010)

16. Das, B., Enduri, M.K., Reddy, I.V.: Logspace and FPT algorithms for graph iso-
morphism for subclasses of bounded tree-width graphs. In: Rahman, M.S., Tomita,
E. (eds.) WALCOM 2015. LNCS, vol. 8973, pp. 329–334. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-15612-5 30

17. Das, B., Enduri, M.K., Reddy, I.V.: On the parallel parameterized complexity of
the graph isomorphism problem. arXiv preprint arXiv:1711.08885 (2017)

18. Datta, S., Limaye, N., Nimbhorkar, P., Thierauf, T., Wagner, F.: Planar graph
isomorphism is in log-space. In: 24th Annual IEEE Conference on Computational
Complexity, pp. 203–214 (2009)

19. Datta, S., Nimbhorkar, P., Thierauf, T., Wagner, F.: Graph isomorphism for K3,3-
free and K5-free graphs is in log-space. In: LIPIcs-Leibniz International Proceedings
in Informatics, vol. 4 (2009)

20. Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity.
Springer Science & Business Media, London (2013). https://doi.org/10.1007/978-
1-4471-5559-1

21. Elberfeld, M., Schweitzer, P.: Canonizing graphs of bounded tree width in logspace.
In: 33rd Symposium on Theoretical Aspects of Computer Science (2016)

22. Elberfeld, M., Stockhusen, C., Tantau, T.: On the space complexity of parameter-
ized problems. In: Parameterized and Exact Computation, pp. 206–217 (2012)

23. Flum, J., Grohe, M.: Describing parameterized complexity classes. Inf. Comput.
187(2), 291–319 (2003)

24. Ganian, R.: Improving vertex cover as a graph parameter. Discrete Math. Theoret.
Comput. Sci. 17(2), 77–100 (2015)

25. Grußien, B.: Capturing polynomial time using modular decomposition. In: 32nd
Annual Symposium on Logic in Computer Science (LICS), pp. 1–12 (2017)

26. Hopcroft, J.E., Wong, J.K.: Linear time algorithm for isomorphism of planar graphs
(preliminary report). In: Proceedings of the Sixth Annual ACM Symposium on
Theory of Computing, pp. 172–184. ACM (1974)

27. Köbler, J., Kuhnert, S., Laubner, B., Verbitsky, O.: Interval graphs: canonical
representations in logspace. SIAM J. Comput. 40(5), 1292–1315 (2011)

28. Kratsch, S., Schweitzer, P.: Isomorphism for graphs of bounded feedback vertex set
number. In: Kaplan, H. (ed.) SWAT 2010. LNCS, vol. 6139, pp. 81–92. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-13731-0 9

29. Lindell, S.: A logspace algorithm for tree canonization. In: Proceedings of the 24th
Annual ACM Symposium on Theory of Computing, pp. 400–404. ACM (1992)

30. Lokshtanov, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Fixed-parameter
tractable canonization and isomorphism test for graphs of bounded treewidth.
SIAM J. Comput. 46(1), 161–189 (2017)

https://doi.org/10.1007/978-3-319-15612-5_30
http://arxiv.org/abs/1711.08885
https://doi.org/10.1007/978-1-4471-5559-1
https://doi.org/10.1007/978-1-4471-5559-1
https://doi.org/10.1007/978-3-642-13731-0_9

264 B. Das et al.

31. Luks, E.M.: Isomorphism of graphs of bounded valence can be tested in polynomial
time. J. Comput. Syst. Sci. 25(1), 42–65 (1982)

32. Luks, E.M.: Parallel algorithms for permutation groups and graph isomorphism.
In: 27th Symposium on Foundations of Computer Science, pp. 292–302 (1986)

33. Miller, G.: Isomorphism testing for graphs of bounded genus. In: Proceedings of
12th Annual ACM Symposium on Theory of Computing, pp. 225–235. ACM (1980)

34. Otachi, Y.: Isomorphism for graphs of bounded connected-path-distance-width. In:
Chao, K.-M., Hsu, T., Lee, D.-T. (eds.) ISAAC 2012. LNCS, vol. 7676, pp. 455–464.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-35261-4 48

35. Stockhusen, C.: On the space and circuit complexity of parameterized problems.
Ph.D. thesis, Dissertation, Lübeck, Universität zu Lübeck, 2017 (2017)

36. Yamazaki, K., Bodlaender, H.L., de Fluiter, B., Thilikos, D.M.: Isomorphism for
graphs of bounded distance width. Algorithmica 24(2), 105–127 (1999)

37. Zemlyachenko, V., Konieko, N., Tyshkevich, R.: Graph isomorphism problem (Rus-
sian). In: The Theory of Computation I, Notes Sci. Sem. LOMI 118 (1982)

https://doi.org/10.1007/978-3-642-35261-4_48

Author Index

Agbor, Bateh Mathias 20
Ahmed, Abu Reyan 156
Ahn, Hee-Kap 44, 56
Ahn, Taehoon 44, 56
Aljohani, Aisha 169
Azim, Md. Aashikur Rahman 183

Bae, Sang Won 44
Baig, Mirza Galib Anwarul Husain 68

Cho, Junhee 132
Choi, Jongmin 44, 56
Choudhari, Jayesh 228

Das, Bireswar 252
Demange, Marc 144

Enduri, Murali Krishna 252

Fujita, Takahiro 195
Fujito, Toshihiro 32

Gu, Hanyu 119

Hatano, Kohei 195
Hayashi, Yu-ichi 20
Hiraishi, Hidefumi 216

Imai, Hiroshi 216
Itoh, Toshiya 106

Kabir, Mohimenul 183
Kashyop, Manas Jyoti 80
Kesh, Deepanjan 68
Kim, Mincheol 44, 56
Kimura, Kei 32
Kiyomi, Masashi 8
Kobourov, Stephen 156

Masuda, Shingo 20
Memar, Julia 119
Miyano, Eiji 240
Mizuki, Takaaki 20
Mizuno, Yuki 32

Nagayama, Tsunehiko 80
Nakano, Shin-ichi 1

Ogasawara, Tomoaki 216
Oh, Eunjin 44, 56
Olsen, Martin 144

Park, Sewon 132
Poudel, Pavan 169

Qin, Tong 93

Rahman, Atif 207
Rahman, M. Sohel 183, 207
Rahman, Md. Saidur 156
Reddy, I. Vinod 228, 252
Ruangwises, Suthee 106

Sadakane, Kunihiko 80
Saitoh, Toshiki 8, 240
Sasaki, Tatsuya 20
Sayeed, Suri Dipannita 207
Sharma, Gokarna 169
Shin, Chan-Su 44
Shiroshita, Shinya 216
Sone, Hideaki 20

Takimoto, Eiji 195

Uehara, Ryuhei 8, 240

van der Zanden, Tom C. 240

Watanabe, Osamu 93

Yagita, Tsuyoshi 240
Yamazaki, Kazuaki 8
Yoon, Sang Duk 44

Ziegler, Martin 132
Zinder, Yakov 119

	Preface
	Organization
	Invited Talks
	Optimal Sink Location Problems on Dynamic Flow Networks
	Logic in Computational Biology
	Morphing Planar Graph Drawings
	Contents
	A Simple Algorithm for r-gatherings on the Line
	1 Introduction
	2 r-gather-clustering on the Line
	3 r-gathering
	4 Conclusion
	References

	Enumeration of Nonisomorphic Interval Graphs and Nonisomorphic Permutation Graphs
	1 Introduction
	2 Preliminaries
	3 General Framework
	4 Enumeration of Nonisomorphic Interval Graphs
	4.1 Canonical Representation
	4.2 Parent-Child Relationship
	4.3 Algorithm Analysis
	4.4 Three Variants of Enumeration

	5 Enumeration of Nonisomorphic Permutation Graphs
	5.1 Canonical Representation
	5.2 Parent-Child Relationship
	5.3 Algorithm Analysis

	6 Experimental Results
	7 Concluding Remarks
	References

	Secret Key Amplification from Uniformly Leaked Key Exchange Complete Graph
	1 Introduction
	2 Known Results
	3 Simple Protocol for up to 2n-3 Keys
	4 Finding the Minimum Leak Probability
	4.1 Formula for
	4.2 Examples of Polynomials

	5 Comparison
	6 Conclusion
	References

	Approximating Partially Bounded Degree Deletion on Directed Graphs
	1 Introduction
	1.1 Our Work and Contributions
	1.2 Notations and Definitions

	2 Approximating PBDD via Submodular Optimization
	3 Fully Bounded Degree Deletion
	4 Partially Bounded Degree Deletion
	4.1 Approximation Hardness
	4.2 Approximation Algorithm

	References

	Minimum-Width Annulus with Outliers: Circular, Square, and Rectangular Cases
	1 Introduction
	2 Preliminaries
	3 Circular Annulus with Outliers
	4 Square Annulus with Outliers
	4.1 Configuration of Optimal Solutions
	4.2 Finding Candidate Outer Squares
	4.3 Finding the Largest Inner Square for a Candidate Pair

	5 Rectangular Annulus with Outliers
	5.1 Finding the Smallest-Width Annulus for a Fixed Outer Rectangle
	5.2 Putting it all Together

	References

	Minimum-Width Square Annulus Intersecting Polygons
	1 Introduction
	2 Preliminaries
	3 Minimum-Width Square Annulus for Polygons
	3.1 Computing Voronoi Diagrams
	3.2 Searching the Region Between Two Polygonal Terrains

	4 Minimum-Width Square Annulus for Convex Polygons
	4.1 Properties of the Farthest-Outer Voronoi Diagram
	4.2 Computing the Farthest-Outer Voronoi Diagram
	4.3 Searching the Region Between Two Polygonal Terrains

	References

	Two New Schemes in the Bitprobe Model
	1 Introduction
	1.1 The Problem Statements
	1.2 Previous Results
	1.3 Our Contribution

	2 Arrangement of Elements
	3 The Adaptive Scheme
	3.1 Our Datastructure
	3.2 The Query Scheme
	3.3 The Storage Scheme

	4 The Non-adaptive Scheme
	4.1 Our Datastructure
	4.2 The Query Scheme
	4.3 The Storage Scheme

	5 Conclusion
	References

	Faster Network Algorithms Based on Graph Decomposition
	1 Introduction
	1.1 Related Work
	1.2 Our Contribution

	2 Preliminaries
	2.1 BC-Trees
	2.2 SPQR Trees
	2.3 Mimicking Networks
	2.4 Tree Product Queries

	3 Preprocessing
	3.1 Constructing D0 Data Structure
	3.2 Constructing D1 Data Structure
	3.3 Constructing D2 Data Structure

	4 Computing s-t Max Flow in O(m+nr) Time
	5 Algorithms for MFIP
	5.1 Algorithms for Fast Queries
	5.2 An Algorithm with Small Index

	6 Dynamic Update and Query
	7 Algorithms for Other Problems
	8 Concluding Remarks
	References

	An Improvement of the Algorithm of Hertli for the Unique 3SAT Problem
	1 Introduction
	2 Hertli's Algorithm
	3 Our Improvements
	References

	Random Popular Matchings with Incomplete Preference Lists
	1 Introduction
	1.1 Popular Matching
	1.2 Related Work
	1.3 Our Results

	2 Preliminaries
	3 Complete Preference Lists Setting
	4 Incomplete Preference Lists Setting
	4.1 Top-Choice Graph
	4.2 Size of A2

	5 Main Results
	5.1 Upper Bound
	5.2 Lower Bound
	5.3 Phase Transition
	5.4 Discussion

	References

	Scheduling Batch Processing in Flexible Flowshop with Job Dependent Buffer Requirements: Lagrangian Relaxation Approach
	1 Introduction
	2 Notation and Integer Programming Formulation
	2.1 Integer Programming Formulation

	3 Lagrangian Relaxation
	3.1 Solution of the Lagrangian Relaxation Subproblems
	3.2 Choice of the Planning Horizon

	4 Lagrangian Heuristic
	4.1 Wait Algorithm

	5 Computational Experiments
	6 Conclusion
	References

	Computing Periods…
	1 Introduction
	1.1 Real Computation
	1.2 Periods and Their Computational Complexity

	2 Our Algorithms and Their Analyses
	2.1 Recap on Real Algebraic Geometry
	2.2 A Real Randomized Algorithm
	2.3 A Deterministic Algorithm
	2.4 A Transcendental Algorithm

	3 Implementation and Evaluation
	3.1 Computing Environment
	3.2 Performance Results
	3.3 Interpretation

	4 Conclusion and Perspectives
	References

	A Note on Online Colouring Problems in Overlap Graphs and Their Complements
	1 Introduction
	2 Preliminaries
	3 Partitioning an Overlap Graph into Permutation Graphs
	4 Competitiveness Through Partitioning
	5 Approximation of Offline Variants
	6 Concluding Remarks
	References

	Online Facility Assignment
	1 Introduction
	1.1 Related Work
	1.2 Our Contributions

	2 Preliminaries
	3 Facility Assignment on a Line
	3.1 Algorithm Greedy
	3.2 Algorithm -Randomized-Greedy
	3.3 Competitive Analysis of Algorithm Optimal-Fill

	4 Facility Assignment on Connected Unweighted Graphs
	4.1 Competitive Analysis of Algorithm Greedy
	4.2 Competitive Analysis of Algorithm Optimal-Fill

	5 Facility Assignment with a Finite Service Time
	6 Conclusion
	References

	Fault-Tolerant Complete Visibility for Asynchronous Robots with Lights Under One-Axis Agreement
	1 Introduction
	2 Model and Preliminaries
	3 Algorithm
	4 Discussion and Concluding Remarks
	References

	A Simple, Fast, Filter-Based Algorithm for Circular Sequence Comparison
	1 Introduction
	1.1 Applications and Motivations
	1.2 Our Contribution
	1.3 Road Map

	2 Preliminaries
	3 Brief Literature Review
	4 Filtering Algorithm
	4.1 Overview of Our Approach
	4.2 Filters of SimpLiFiCPM
	4.3 The Approach of Our Algorithm

	5 Experimental Results
	5.1 Datasets
	5.2 Environment
	5.3 Experimental Results

	6 Conclusions
	References

	Boosting over Non-deterministic ZDDs
	1 Introduction
	2 Problem Statement and AdaBoost*
	2.1 1-Norm Hard Margin Maximization
	2.2 AdaBoost*
	2.3 AdaBoost

	3 A Dag Representation for Samples
	3.1 Non-deterministic ZDD (NZDD)
	3.2 NZDD Representation for the Sample
	3.3 Relations to ZDDs and NFAs
	3.4 Complexity of Constructing NZDDs

	4 Simulating AdaBoost* over an NZDD Representation for The sample
	4.1 Updating the Path Distributions dt
	4.2 Computing the Edges t,j

	5 Conclusions
	References

	On Multiple Longest Common Subsequence and Common Motifs with Gaps (Extended Abstract)
	1 Introduction
	2 Background
	2.1 Common Motifs with Gaps
	2.2 Multiple Longest Common Subsequence

	3 Complexity of Common Motifs with Gaps
	4 Algorithms
	4.1 A Branch and Bound Algorithm for MLCS Problem
	4.2 A Branch and Bound Algorithm for CMG

	5 Conclusions
	References

	FPT Algorithms Exploiting Carving Decomposition for Eulerian Orientations and Ice-Type Models
	1 Introduction
	2 Definitions
	2.1 Graph Definitions
	2.2 Carving Decomposition

	3 Algorithm for Eulerian Orientations
	3.1 Description of Algorithm1
	3.2 Correctness and Complexity

	4 Algorithm for Ice-Type Models
	4.1 Description of Algorithm2
	4.2 Correctness and Complexity

	5 Conclusion
	References

	On Structural Parameterizations of Happy Coloring, Empire Coloring and Boxicity
	1 Introduction
	2 Preliminaries
	3 Happy Coloring
	4 Empire Coloring
	5 Boxicity
	References

	Complexity of the Maximum k-Path Vertex Cover Problem
	1 Introduction
	2 Preliminaries
	3 NP-Hardness of MaxP3VC on Split Graphs and MaxP4VC on Chordal Graphs
	4 Algorithm for MaxP3VC on Trees
	5 Algorithm for MaxP3VC on Graphs with Bounded Treewidth
	References

	On the Parallel Parameterized Complexity of the Graph Isomorphism Problem
	1 Introduction
	2 Preliminaries
	3 GI for Distance to a Graph Class is in Para-AC1
	4 GI Parameterized by Vertex Cover is in Para-TC 0
	5 Logspace GI Algorithms for Bounded Distance to Graph Classes
	6 Conclusion
	References

	Author Index

