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Abstract We study an optimal growth model for a single resource based economy.
The resource is governed by the standard model of logistic growth, and is related
to the output of the economy through a Cobb-Douglas type production function
with exogenously driven knowledge stock. The model is formulated as an infinite-
horizon optimal control problem with unbounded set of control constraints and
non-concave Hamiltonian. We transform the original problem to an equivalent
one with simplified dynamics and prove the existence of an optimal admissible
control. Then we characterize the optimal paths for all possible parameter values
and initial states by applying the appropriate version of the Pontryagin maximum
principle. Our main finding is that only two qualitatively different types of behavior
of sustainable optimal paths are possible depending on whether the resource growth
rate is higher than the social discount rate or not. An analysis of these behaviors
yields general criterions for sustainable and strongly sustainable optimal growth
(w.r.t. the corresponding notions of sustainability defined herein).
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1 Introduction

Following the first analysis conducted by Ramsey (1928), the mathematical problem
of inter-temporal resource allocation has attracted a significant amount of attention
over the past decades, and has driven the evolution of first exogenous, and then
endogenous growth theory (see Acemoglu 2009; Barro and Sala-i-Martin 1995).
Employed growth models are typically identified by the production of economic
output, the dynamics of the inputs of production, and the comparative mechanism of
alternate consumption paths. Our framework considers a renewable resource, whose
reproduction is logistic in nature, as the only input to production. The relationship of
the resource with the output of the economy is explained through a Cobb-Douglas
type production function with an exogenously driven knowledge stock. Alternate
consumption paths are compared via a discounted utilitarian approach. The question
that we concern ourselves with for our chosen framework, is the following: what are
the conditions of sustainability for optimal development?

In the context of sustainability, the discounted utilitarian approach may propose
undesirable solutions in certain scenarios. For instance, discounted utilitarianism
has been reported to force consumption asymptotically to zero even when sustain-
able paths with non-decreasing consumption are feasible (Asheim and Mitra 2010).
The Brundtland Commission defines sustainable development as development
that meets the needs of the present, without compromising the ability of future
generations to meet their own needs (Brundtland Commission 1987). In this spirit,
we employ the notion of sustainable development, as a consumption path ensuring
a non-decreasing welfare for all future generations. This notion of sustainability
is natural, and has also been used by various authors in their work. For instance,
Valente (2005) evaluates this notion of sustainability for an exponentially growing
natural resource, and derives a condition necessary for sustainable consumption.
We extend this model by allowing the resource to grow at a declining rate (the
logistic growth model). We build on the work presented previously in Manzoor
et al. (2014) which proves the existence of an optimal path only in the case when the
resource growth rate is higher than the social discount rate and admissible controls
are uniformly bounded.

Our model is formulated as an infinite-horizon optimal control problem with
logarithmic instantaneous utility. The problem involves unbounded controls and
the non-concave Hamiltonian. These preclude direct application of the standard
existence results and Arrow’s sufficient conditions for optimality. We transform
the original problem to an equivalent one with simplified dynamics and prove
the general existence result. Then we apply a recently developed version of the
maximum principle (Aseev and Veliov 2012, 2014, 2015) to our problem and
describe the optimal paths for all possible parameter values and initial states
in the problem. Our analysis of the Hamiltonian phase space reveals that there
are only two qualitatively different types of behavior of the sustainable optimal
paths in the model. In the first case the instantaneous utility is a non-decreasing
function in the long run along the optimal path (we call such paths sustainable).
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The second case corresponds to the situation when the optimal path is sustainable
and in addition the resource stock is asymptotically nonvanishing (we call such
paths strongly sustainable). We show that a strongly sustainable equilibrium is
attainable only when the resource growth rate is higher than the social discount
rate. When this condition is violated, we see that the optimal resource exploitation
rate asymptotically follows the Hotelling rule of optimal depletion of an exhaustible
resource (Hotelling 1974). In this case optimal consumption is sustainable only
if the depletion of the resource is compensated by appropriate growth of the
knowledge stock and/or decrease of the output elasticity of the resource.

The paper is organized as follows. Section 2 sets up the problem. Section 3
establishes the equivalence of the problem with a simpler version, and applies the
maximum principle after proving the existence of an optimal control. Section 4
presents an analysis of the associated Hamiltonian system and formulates the
optimal feedback law. We conclude in Sect. 5 where we develop conditions for
sustainability and strong sustainability of the optimal paths in our model.

The paper draws on a companion working paper (Aseev and Manzoor 2016),
which contains proofs for several auxiliary results related to our model.

2 Problem Formulation

Consider a society consuming a single renewable resource. The resource, whose
quantity is given by S(t) > 0 at each instant of time t ≥ 0, is governed by the
standard model of logistic growth. In the absence of consumption, it regenerates
at rate r > 0 and saturates at carrying capacity K > 0. The society consumes
the resource by exerting effort (exploitation rate) u(t) > 0 resulting in a total
consumption velocity of u(t)S(t) > 0 at time t ≥ 0 respectively. The dynamics
of the resource stock are then given by the following equation:

Ṡ(t) = r S(t)

(
1 − S(t)

K

)
− u(t)S(t), u(t) ∈ (0,∞).

The initial stock of the resource is S(0) = S0 > 0.
We assume a single resource economy whose output Y (t) > 0 at instant t ≥ 0 is

related to the resource by the Cobb-Douglas type production function

Y (t) = A(t)
(
u(t)S(t)

)α
, α ∈ (0, 1]. (1)

Here A(t) > 0 represents an exogenously driven knowledge stock at time t ≥ 0.
We assume Ȧ(t) ≤ μA(t), where μ ≥ 0 is a constant, and A(0) = A0 > 0.

The whole output Y (t) produced at each instant t ≥ 0 is consumed and the
corresponding instantaneous utility is measured by the logarithmic function t �→
lnY (t) = lnA(t) + α [ln S(t) + lnu(t)], t ≥ 0.
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This leads to the following optimal control problem (P1):

J (S(·), u(·)) =
∫ ∞

0
e−ρt [ln S(t) + ln u(t)] dt → max, (2)

Ṡ(t) = rS(t)

(
1 − S(t)

K

)
− u(t)S(t), S(0) = S0, (3)

u(t) ∈ (0,∞), (4)

where ρ > 0 is the subjective discount rate.
By an admissible control in problem (P1) we mean a Lebesgue measurable

locally bounded function u : [0,∞) �→ R
1 which satisfies the control constraint (4)

for all t ≥ 0. By definition, the corresponding to u(·) admissible trajectory
is a (locally) absolutely continuous function S(·) : [0,∞) �→ R

1 which is a
Caratheodory solution (see Filippov 1988) to the Cauchy problem (3) on the whole
infinite time interval [0,∞). Due to the local boundedness of the admissible control
u(·) such admissible trajectory S(·) always exists and is unique (see Filippov 1988,
Section 7). A pair (S(·), u(·)) where S(·) is an admissible control and S(·) is the
corresponding admissible trajectory is called an admissible pair in problem (P1).

Due to (3) for any admissible trajectory S(·) the following estimate holds:

S(t) ≤ Smax = max{S0,K}, t ≥ 0. (5)

The integral in (2) is understood in improper sense, i.e.

J (S(·), u(·)) = lim
T →∞

∫ T

0
e−ρt [ln S(t) + lnu(t)] dt (6)

if the limit exists.
Using estimate (5) and control system (3) it can be easily shown that there is a

decreasing function ω : [0,∞) �→ (0,∞) such that ω(t) → +0 as t → ∞ and for
any admissible pair (S(·), u(·)) the following inequality holds:

∫ T ′

T

e−ρt [ln S(t) + ln u(t)] dt < ω(T ), 0 ≤ T < T ′. (7)

This fact immediately implies that for any admissible pair (S(·), u(·)) the limit
in (6) always exists and is either finite or equals −∞ (see Aseev and Manzoor 2016
for details).

Due to (7) for any admissible pair (S(·), u(·)) the value sup(S(·),u(·)) J (S(·), u(·))
is finite. This allows us to understand the optimality of an admissible pair
(S∗(·), u∗(·)) in the strong sense (Carlson et al. 1991). By definition, an admissible
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pair (S∗(·), u∗(·)) is strongly optimal (or, for brevity, simply optimal) in the problem
(P1) if the functional (2) takes the maximal possible value on this pair, i.e.

J (S∗(·), u∗(·)) = sup
(S(·),u(·))

J (S(·), u(·)) < ∞.

Notice, that the set of control constraints in problem (P1) (see (4)) is nonclosed
and unbounded. Due to this circumstance the standard existence theorems (see
e.g. Balder 1983; Cesari 1983) are not applicable to problem (P1) directly.
Moreover, the situation is complicated here by the fact that the Hamiltonian of
problem (P1) is non-concave in the state variable S. These preclude the usage of
Arrow’s sufficient conditions for optimality (see Carlson et al. 1991).

Our analysis below is based on application of the recently developed normal
form version of the Pontryagin maximum principle (Pontryagin et al. 1964) for
infinite-horizon optimal control problems with adjoint variable specified explicitly
via the Cauchy type formula (see Aseev and Veliov 2012, 2014, 2015). However,
such approach assumes that the optimal control exists. So, the proof of the existence
of an optimal admissible pair (S∗(·), u∗(·)) in problem (P1) and establishing of the
corresponding version of the maximum principle will be our primary goal in the
next section.

3 Existence of an Optimal Control and the Maximum
Principle

Let us transform problem (P1) into a more appropriate equivalent form.
Due to (3) along any admissible pair (S(·), u(·)) we have

d

dt

[
e−ρt ln S(t)

] a.e.= −ρe−ρt ln S(t) + re−ρt − e−ρt
( r

K
S(t) + u(t)

)
, t > 0.

Integrating this equality on arbitrary time interval [0, T ], T > 0, we obtain

∫ T

0
e−ρt ln S(t) dt = ln S0 − e−ρT ln S(T )

ρ

+ r

ρ2

(
1 − e−ρT

)
−

∫ T

0
e−ρt

(
r

ρK
S(t) + u(t)

ρ

)
dt.

Hence, for any admissible pair (S(·), u(·)) and arbitrary T > 0 we have

∫ T

0
e−ρt [ln S(t) + ln u(t)] dt = ln S0 − e−ρT ln S(T )

ρ
+ r

ρ2

(
1 − e−ρT

)

− r

ρK

∫ T

0
e−ρtS(t) dt +

∫ T

0
e−ρt

(
lnu(t) − u(t)

ρ

)
dt. (8)
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Here due to estimate (7) limits of the both sides in (8) as T → ∞ exist
and equal either a finite number or −∞ simultaneously, and due to (5) either (i)

limT →∞ e−ρT ln S(T ) = 0 or (ii) lim infT →∞ e−ρT ln S(T ) < 0.
In the case (i) passing to the limit in (8) as T → ∞ we get

∫ ∞

0
e−ρt [ln S(t) + lnu(t)] dt = ln S0

ρ
+ r

ρ2

− r

ρK

∫ ∞

0
e−ρtS(t) dt +

∫ ∞

0
e−ρt

(
ln u(t) − u(t)

ρ

)
dt, (9)

where both sides in (9) are equal to a finite number or −∞ simultaneously.
In the case (ii) condition lim infT →∞ e−ρT ln S(T ) < 0 implies

∫ ∞

0
e−ρt [ln S(t) + lnu(t)] dt = lim

T →∞

∫ T

0
e−ρt [ln S(t) + lnu(t)] dt = −∞

(see Aseev and Manzoor 2016 for details). Hence, in the case (ii) (9) also holds as
−∞ = −∞.

Neglecting now the constant terms in the right-hand side of (9) we obtain the
following optimal control problem (P̃ 1) which is equivalent to (P1):

J̃ (S(·), u(·)) =
∫ ∞

0
e−ρt

[
ln u(t) − u(t)

ρ
− r

ρK
S(t)

]
dt → max,

Ṡ(t) = rS(t)

(
1 − S(t)

K

)
− u(t)S(t), S(0) = S0, (10)

u(t) ∈ (0,∞). (11)

Further, the function u �→ ln u − u/ρ is increasing on (0, ρ] and it reaches the
global maximum at point u∗ = ρ. Hence, any optimal control u∗(·) in (P̃ 1) (if such
exists) must satisfy to inequality u∗(t) ≥ ρ for almost all t ≥ 0. Hence, without loss
of generality the control constraint (11) in (P̃ 1) (and hence the control constraint (4)
in (P1)) can be replaced by the control constraint u(t) ∈ [ρ,∞). Thus we arrive to
the following (equivalent) problem (P2):

J (S(·), u(·)) =
∫ ∞

0
e−ρt [ln u(t) + ln S(t)] dt → max,

Ṡ(t) = rS(t)

(
1 − S(t)

K

)
− u(t)S(t), S(0) = S0,

u(t) ∈ [ρ,∞). (12)
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Here the class of admissible controls in problem (P2) consists of all locally bounded
functions u(·) satisfying the control constraint (12) for all t ≥ 0.

To simplify dynamics in (P2) let us introduce the new state variable x(·): x(t) =
1/S(t), t ≥ 0. As it can be verified directly, in terms of the state variable x(·)
problem (P2) can be rewritten as the following (equivalent) problem (P3):

J (x(·), u(·)) =
∫ ∞

0
e−ρt [ln u(t) − ln x(t)] dt → max, (13)

ẋ(t) = [u(t) − r] x(t) + a, x(0) = x0 = 1

S0
, (14)

u(t) ∈ [ρ,∞). (15)

Here a = r/K . The class of admissible controls u(·) in (P3) consists of all
measurable locally bounded functions u : [0,∞) �→ [ρ,∞).

Notice, that due to linearity of (14) for arbitrary admissible control u(·) the
corresponding trajectory x(·) can be expressed via the Cauchy formula (see Hartman
1964):

x(t) = x0e
∫ t
0 u(ξ) dξ−rt + ae

∫ t
0 u(ξ) dξ−rt

∫ t

0
e− ∫ s

0 u(ξ) dξ+rs ds, t ≥ 0. (16)

Since the problems (P1), (P2) and (P3) are equivalent we will focus our
analysis below on problem (P3) with simplified dynamics (see (14)) and the closed
set of control constraints (see (15)).

The constructed problem (P3) is a particular case of the following autonomous
infinite-horizon optimal control problem (P4) with exponential discounting:

J (x(·), u(·)) =
∫ ∞

0
e−ρt g(x(t), u(t)) dt → max,

ẋ(t) = f (x(t), u(t)), x(0) = x0, (17)

u(t) ∈ U.

Here U is a nonempty closed subset of Rm, x0 ∈ G is an initial state, G is an open
convex subset of Rn, ρ > 0 is the discount rate, and f : G × U �→ R

n and g :
G×U �→ R

m are given functions. The class of admissible controls in (P4) consists
of all measurable locally bounded functions u : [0,∞) �→ U . The optimality of
admissible pair (x∗(·), u∗(·)) is understood in the strong sense (Carlson et al. 1991).

Problems of type (P4) were intensively studied in last decades (see Aseev
2015a,b, 2016; Aseev et al. 2012; Aseev and Kryazhimskiy 2004; Aseev and
Kryazhimskii 2007; Aseev and Veliov 2012, 2014, 2015). Here we will employ the
existence result and the variant of the Pontryagin maximum principle for problem
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(P4) developed in Aseev (2015b, 2016) and Aseev and Veliov (2012, 2014, 2015)
respectively.

We will need to verify validity of the following conditions (see Aseev 2015b,
2016; Aseev et al. 2012; Aseev and Veliov 2012, 2014, 2015).

(A1) The functions f (·, ·) and g(·, ·) together with their partial derivatives fx(·, ·)
and gx(·, ·) are continuous and locally bounded on G × U .

(A2) There exists a number β > 0 and a nonnegative integrable function λ :
[0,∞) �→ R

1 such that for every ζ ∈ G with ‖ζ − x0‖ < β Eq. (17) with
u(·) = u∗(·) and initial condition x(0) = ζ (instead of x(0) = x0) has a
solution x(ζ ; ·) on [0,∞) in G, and

max
θ∈[x(ζ ;t ),x∗(t)]

∣∣∣e−ρt 〈gx(θ, u∗(t)), x(ζ ; t) − x∗(t)〉
∣∣∣ a.e.≤ ‖ζ − x0‖λ(t).

Here [x(ζ ; t), x∗(t)] denotes the line segment with vertices x(ζ ; t) and x∗(t).
(A3) There is a positive function ω(·) decreasing on [0,∞) such that ω(t) → +0

as t → ∞ and for any admissible pair (x(·), u(·)) the following estimate
holds:

∫ T ′

T

e−ρtg(x(t), u(t)) dt ≤ ω(T ), 0 ≤ T ≤ T ′.

Obviously, condition (A1) is satisfied because f (x, u) = [u − r] x + a,
g(x, u) = ln u − ln x, fx(x, u) = u − r and gx(x, u) = −1/x, x > 0, u ∈ [ρ,∞),
in (P3).

Let us show that (A2) also holds for any admissible pair (x∗(·), u∗(·)) in (P3).
Set β = x0/2 and define the nonnegative integrable function λ : [0,∞) �→ R

1 as
follows: λ(t) = 2e−ρt /x0, t ≥ 0. Then, as it can be seen directly, for any real ζ :
|ζ − x0| < β, the Cauchy problem (14) with u(·) = u∗(·) and the initial condition
x(0) = ζ (instead of x(0) = x0) has a solution x(ζ ; ·) on [0,∞) and

max
θ∈[x(ζ ;t ),x∗(t)]

∣∣∣e−ρt gx(θ, u∗(t)) (x(ζ ; t) − x∗(t))
∣∣∣ a.e.≤ |ζ − x0|λ(t).

Hence, for any admissible pair (x∗(·), x∗(·)) condition (A2) is also satisfied.
Validity of (A3) for any admissible pair (x∗(·), u∗(·)) follows from (7) directly.
For an admissible pair (x(·), u(·)) consider the following linear system:

ż(t) = − [fx(x(t), u(t))]∗ z(t) = [−u(t) + r] z(t). (18)

The normalized fundamental solution Z(·) to Eq. (18) is defined as follows:

Z(t) = e− ∫ t
0 u(ξ) dξ+rt , t ≥ 0. (19)
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Due to (16) and (19) for any admissible pair (x(·), u(·)) we have
∣∣∣e−ρtZ−1(t)gx(x(t), u(t))

∣∣∣

=
∣∣∣∣∣

e−ρt e
∫ t
0 u(ξ) dξ−rt

x0e
∫ t
0 u(ξ) dξ−rt + ae

∫ t
0 u(ξ) dξ−rt

∫ t

0 e− ∫ s
0 u(ξ) dξ+rs ds

∣∣∣∣∣ ≤ e−ρt

x0
, t ≥ 0.

Hence, for any T > 0 the function ψT : [0, T ] �→ R
1 defined as

ψT (t) = Z(t)

∫ T

t

e−ρsZ−1(s)gx(x(s), u(s)) ds

= −e− ∫ t
0 u(ξ) dξ+rt

∫ T

t

e
∫ s
0 u(ξ) dξ−rse−ρs

x(s)
ds, t ∈ [0, T ], (20)

is absolutely continuous, and the function ψ : [0,∞) �→ R
1 defined as

ψ(t) = Z(t)

∫ ∞

t

e−ρsZ−1(s)gx(x(s), u(s)) ds

= −e− ∫ t
0 u(ξ) dξ+rt

∫ ∞

t

e
∫ s
0 u(ξ) dξ−rse−ρs

x(s)
ds, t ≥ 0, (21)

is locally absolutely continuous.
Define the normal form Hamilton-Pontryagin function H : [0,∞) × (0,∞) ×

[ρ,∞)×R
1 �→ R

1 and the normal-formHamiltonianH : [0,∞)×(0,∞)×R
1 �→

R
1 for problem (P3) in the standard way:

H(t, x, u,ψ) = ψf (x, u) + e−ρt g(x, u) = ψ[(u − r)x + a] + e−ρt [lnu − ln x],

H(t, x, ψ) = sup
u≥ρ

H(t, x, u,ψ),

t ∈ [0,∞), x ∈ (0,∞), u ∈ [ρ,∞), ψ ∈ R
1.

Theorem 1 There is an optimal admissible control u∗(·) in problem (P3). More-
over, for any optimal admissible pair (x∗(·), u∗(·)) we have

u∗(t)
a.e.≤

(
1 + 1

Kx∗(t)

)
(r + ρ), t ≥ 0. (22)

Proof Let us show that there is a continuous function M : [0,∞) �→ R
1, M(t) ≥ 0,

t ≥ 0, and a function δ : [0,∞) �→ R
1, δ(t) > 0, t ≥ 0, limt→∞ (δ(t)/t) = 0, such
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that for any admissible pair (x(·), u(·)), satisfying on a setM ⊂ [0,∞), measM >

0, to inequality u(t) > M(t), for all t ∈ M we have

inf
T : T −δ(T )≥t

{
sup

u∈[ρ,M(t)]
H(t, x(t), u,ψT (t)) − H(t, x(t), u(t), ψT (t))

}
> 0,

(23)

where the function ψT (·) is defined on [0, T ], T > 0, by equality (20).
Let (x(·), u(·)) be an arbitrary admissible pair in (P3). Then due to (16) and (19),

for any T > 0 and arbitrary t ∈ [0, T ] we get (see (20))

− x(t)ψT (t) =
[
x0 + a

∫ t

0
e− ∫ s

0 u(ξ ) dξ+rs ds

] ∫ T

t

e−ρs

x0 + a
∫ s

0 e− ∫ τ
0 u(ξ ) dξ+rτ dτ

ds

≥ x0

∫ T

t

e−ρs

x0 + a
∫ s

0 erτ dτ
ds ≥ rx0e

−(r+ρ)t

(rx0 + a)(r + ρ)

[
1 − e−(r+ρ)(T −t)

]
. (24)

For a δ > 0 define the function Mδ : [0,∞) �→ R
1 by equality

Mδ(t) = (rx0 + a)(r + ρ)

rx0
[
1 − e−(r+ρ)δ

]ert + 1

δ
, t ≥ 0. (25)

Then for any T : T − δ > t and arbitrary (x(·), u(·)) the function u �→
H(t, x(t), u,ψT (t)) reaches its maximal value on [ρ,∞) at the point (see (24))

uT (t) = − e−ρt

x(t)ψT (t)
≤ (rx0 + a)(r + ρ)

rx0
[
1 − e−(r+ρ)(T −t )

]ert ≤ Mδ(t) − 1

δ
. (26)

Now, set δ(t) ≡ δ and M(t) ≡ Mδ(t), t ≥ 0. Let (x(·), u(·)) be an admissible
pair such that inequality u(t) > Mδ(t) holds on a set M ⊂ [0,∞), measM > 0.
For arbitrary t ∈ M define the function Φ : [t + δ,∞) �→ R

1 as follows

Φ(T ) = sup
u∈[ρ,M(t)]

H(t, x(t), u,ψT (t)) − H(t, x(t), u(t), ψT (t))

= ψT (t)uT (t)x(t)+e−ρt lnuT (t)−[
ψT (t)u(t)x(t) + e−ρt lnu(t)

]
, T ≥ t+δ.

Due to (26) we have

Φ(T ) = −e−ρt + e−ρt
[−ρt − ln(−ψT (t)) − ln x(t)

]
− [

ψT (t)u(t)x(t) + e−ρt ln u(t)
]
, T ≥ t + δ.
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Hence, due to (20) and (26) for a.e. T ≥ t + δ we get

d

dT
Φ(T ) = − e−ρt

ψT (t)

d

dT

[
ψT (t)

] − u(t)x(t)
d

dT

[
ψT (t)

]

= x(t)
d

dT

[
ψT (t)

] [
e−ρt

−ψT (t)x(t)
− u(t)

]
= x(t)

d

dT

[
ψT (t)

]
(uT (t)−u(t)) > 0.

Hence,

inf
T >0: t≤T−δ

{
sup

u∈[ρ,M(t)]
H(t, x(t), u,ψT (t)) − H(t, x(t), u(t), ψT (t))

}

= inf
T >0: t≤T −δ

Φ(T ) = Φ(t + δ) > 0.

Thus, for any t ∈ M inequality (23) is proved.
Since the instantaneous utility in (13) is concave in u, the system (14) is affine in

u, the set U is closed (see (15)), conditions (A1) and (A3) are satisfied, and since
(A2) also holds for any admissible pair (x∗(·), u∗(·)) in (P3), all conditions of the
existence result in Aseev (2016) are fulfilled (see also Aseev 2015b, Theorem 1).

Hence, there is an optimal admissible control u∗(·) in (P3) and, moreover, u∗(t)
a.e.≤

Mδ(t), t ≥ 0. Passing to a limit in this inequality as δ → ∞ we get (see (25))

u∗(t)
a.e.≤

(
1 + 1

Kx0

)
(r + ρ)ert , t ≥ 0. (27)

Further, it is easy to see that for any τ > 0 the pair (x̃∗(·), ũ∗(·)) defined as
x̃∗(t) = x∗(t + τ ), ũ∗(t) = u∗(t + τ ), t ≥ 0, is an optimal admissible pair in the
problem (P3) taken with initial condition x(0) = x∗(τ ). Hence, using the same
arguments as above we get the following inequality for (x̃∗(·), ũ∗(·)) (see (27)):

ũ∗(t)
a.e.≤

(
1 + 1

Kx̃∗(0)

)
(r + ρ)ert , t ≥ 0.

Hence, for arbitrary fixed τ > 0 we have

u∗(t) = ũ∗(t − τ )
a.e.≤

(
1 + 1

Kx∗(τ )

)
(r + ρ)er(t−τ), t ≥ τ .

Due to arbitrariness of τ > 0 this implies (22). ��
Theorem 2 Let (x∗(·), u∗(·)) be an optimal admissible pair in problem (P3). Then
the function ψ : [0,∞) �→ R

1 defined for pair (x∗(·), u∗(·)) by formula (21)
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is (locally) absolutely continuous and satisfies the conditions of the normal form
maximum principle, i.e. ψ(·) is a solution of the adjoint system

ψ̇(t) = −Hx (x∗(t), u∗(t), ψ(t)) , (28)

and the maximum condition holds:

H(x∗(t), u∗(t), ψ(t))
a.e.= H(x∗(t), ψ(t)). (29)

Proof As it already have been shown above condition (A1) is satisfied and (A2)
holds for any admissible pair (x∗(·), u∗(·)) in (P3). Hence, due to the variant of
the maximum principle developed in Aseev and Veliov (2012, 2014, 2015) the
function ψ : [0,∞) �→ R

1 defined for pair (x∗(·), u∗(·)) by formula (21) satisfies
the conditions (28) and (29). ��

Notice, that the Cauchy type formula (21) implies (see (16) and (19))

ψ(t) = −e− ∫ t
0 u∗(ξ) dξ+rt

∫ ∞

t

e−ρτ e
∫ τ
0 u∗(ξ) dξ−rτ

e
∫ τ
0 u∗(ξ) dξ−rτ

[
x0 + a

∫ τ

0 e− ∫ θ
0 u∗(ξ) dξ+rθ dθ

] dτ

> − e− ∫ t
0 u∗(ξ) dξ+rt

x0 + a
∫ t

0 e− ∫ θ
0 u∗(ξ) dξ+rθ dθ

∫ ∞

t

e−ρτ dτ = − e−ρt

ρx∗(t)
, t ≥ 0. (30)

Thus, due to (21) the following condition holds:

0 < −ψ(t)x∗(t) <
e−ρt

ρ
, t ≥ 0. (31)

Note also, that due to (Aseev 2015a, Corollary to Theorem 3) formula (21)
implies the following stationarity condition for the Hamiltonian (see Aseev and
Kryazhimskii 2007; Michel 1982):

H(t, x∗(t), ψ(t)) = ρ

∫ ∞

t

e−ρsg(x∗(s), u∗(s)) ds, t ≥ 0. (32)

It can be shown directly that if an admissible pair (not necessary optimal)
(x(·), u(·)) together with an adjoint variable ψ(·) satisfies the core conditions (28)
and (29) of the maximum principle and limt→∞ H(t, x(t), ψ(t)) = 0 then condi-
tion (32) holds for the triple (x(·), u(·), ψ(·)) as well (see Aseev and Kryazhimskii
2007, Section 3).

Further, due to the maximum condition (29) for a.e. t ≥ 0 we have

u∗(t) = argmaxu∈[ρ,∞)

[
ψ(t)x∗(t)u + e−ρt ln u

]
.
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This implies (see (31))

u∗(t)
a.e.= − e−ρt

ψ(t)x∗(t)
> ρ, t ∈ [0,∞). (33)

Substituting this formula for u∗(·) in (14) and in (28) due to Theorem 2 we get that
any optimal trajectory x∗(·) together with the corresponding adjoint variable ψ(·)
must satisfy to the Hamiltonian system of the maximum principle:

ẋ(t) = −rx(t) − e−ρt

ψ(t)
+ a,

ψ̇(t) = rψ(t) + 2e−ρt

x(t)
.

(34)

Moreover, estimate (31) and condition (32) must hold as well.
In the terms of the current value adjoint variable λ(·), λ(t) = eρtψ(t), t ≥ 0, one

can rewrite system (34) as follows:

ẋ(t) = −rx(t) − 1

λ(t)
+ a,

λ̇(t) = (ρ + r)λ(t) + 2

x(t)
.

(35)

In terms of variable λ(·) estimate (31) takes the following form:

0 < −λ(t)x∗(t) <
1

ρ
, t ≥ 0. (36)

Accordingly, the optimal control u∗(·) can be expressed as follows (see (33)):

u∗(t)
a.e.= − 1

λ(t)x∗(t)
, t ≥ 0. (37)

Define the normal form current value Hamiltonian M : (0,∞) × R
1 �→ R

1 for
problem (P3) in the standard way (see Aseev and Kryazhimskii 2007, Section 3):

M(x, λ) = eρtH (t, x, ψ), x ∈ (0,∞), λ ∈ R
1. (38)

Then in the current value terms the stationarity condition (32) takes the form

M(x∗(t), λ(t)) = ρeρt

∫ ∞

t

e−ρsg(x∗(s), u∗(s)) ds, t ≥ 0. (39)
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In the next section we will analyze the system (35) coupled with the estimate (36)
and the stationarity condition (39). We will show that there are only two qualitatively
different types of behavior of the optimal paths that are possible. If r > ρ then
the optimal path asymptotically approaches an optimal nonvanishing steady state
while the corresponding optimal control tends to (r + ρ)/2 as t → ∞. If r ≤ ρ

then the optimal path x∗(·) goes to infinity, while the corresponding optimal control
u∗(·) tends to ρ as t → ∞, i.e. asymptotically it follows the Hotelling rule of
optimal depletion of an exhaustible resource (Hotelling 1974).

4 Analysis of the Hamiltonian System

Due to Theorem 2 it is sufficient to analyze the behavior of system (35) only in the
open set Γ = { (x, λ) : x > 0, λ < 0} in the phase plane R2.

Let us introduce functions y1 : (1/K,∞) �→ (−∞, 0) and y2 : (0,∞) �→
(−∞, 0) as follows (recall that a = r/K):

y1(x) = 1

a − rx
, x ∈

(
1

K
,∞

)
, y2(x) = − 2

(ρ + r)x
, x ∈ (0,∞).

Due to (35) the curves γ 1 = {(x, λ) : λ = y1(x), x ∈ (1/K,∞)} and γ 2 =
{(x, λ) : λ = y2(x), x ∈ (0,∞)} are the nullclines at which the derivatives of
variables x(·) and λ(·) vanish respectively.

Two qualitatively different cases are possible: (i) r > ρ and (ii) r ≤ ρ.
Consider case (i). In this case the nullclines γ 1 and γ 2 have a unique intersection

point (x̂, λ̂) which is a unique equilibrium of system (35) in Γ :

x̂ = 2r

(r − ρ)K
, λ̂ = (ρ − r)K

(ρ + r)r
. (40)

The corresponding equilibrium control û(·) is

û(t) ≡ û = ρ + r

2
, t ≥ 0. (41)

The eigenvalues of the system linearized around the equilibrium are given by

σ 1,2 = ρ

2
± 1

2

√
2r2 − ρ2,

which are real and distinct with opposite signs when r > ρ. Hence, by the
Grobman-Hartman theorem in a neighborhood Ω of the equilibrium state (x̂, λ̂)

the system (35) is of saddle type (see Hartman 1964, Chapter 9).
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The nullclines γ 1 and γ 2 divide the set Γ in four open regions:

Γ−,− =
{
(x, λ) ∈ Γ : λ < y1(x),

1

K
< x ≤ x̂

}⋃{
(x, λ) ∈ Γ : λ < y2(x), x̂ < x < ∞

}
,

Γ+,− =
{
(x, λ)∈Γ : λ<y2(x), 0<x ≤ 1

K

}⋃{
(x, λ)∈Γ : y1(x)<λ<y2(x),

1

K
<x <x̂

}
,

Γ+,+ =
{
(x, λ)∈Γ : y2(x) < λ< 0, 0< x ≤ x̂

}⋃{
(x, λ) ∈Γ : y1(x) < λ< 0, x̂ < x < ∞

}
,

Γ−,+ =
{
(x, λ) ∈ Γ : y2(x) < λ < y1(x), x > x̂

}
.

Any solution (x(·), λ(·)) of (35) in Γ has definite signs of derivatives of its (x, λ)-
coordinates in the sets Γ−.−, Γ−.+, Γ+,+, and Γ−,+. These signs are indicated by
the corresponding subscripts.

The behavior of the flows is shown in Fig. 1 through the phase portrait.
For any initial state (ξ, β) ∈ Γ there is a unique solution (xξ,β(·), λξ,β(·)) of the

system (35) satisfying initial conditions x(0) = ξ , λ(0) = β, and due to the standard
extension result this solution is defined on some maximal time interval [0, Tξ,β) in
Γ where 0 < Tξ,β ≤ ∞ (see Hartman 1964, Chapter 2).

Let us consider behaviors of solutions (xξ,β(·), λξ,β(·)) of system (35) in Γ for
all possible initial states (ξ , β) ∈ Γ as t → Tξ,β .

The standard analysis of system (35) shows that only three types of behavior of
solutions (xξ,β(·), λξ,β(·)) of (35) in Γ as t → Tξ,β are possible:

Fig. 1 Phase portrait of (35)
around (x̂, λ̂). Here r = 5,
ρ = 0.1, and K = 2.5

0
1
K 1 2

-1

Γ+,+

Γ−,−

Γ−,+

Γ+,−

γ1

γ2

λ

x
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1. (xξ,β(t), λξ,β(t)) ∈ Γ−,− or (xξ,β(t), λξ,β(t)) ∈ Γ+,− for all sufficiently
large times t . In this case Tξ,β = ∞ and limt→∞ λξ,β(t) = −∞ while
limt→∞ xξ,β(t) = 1/K . Due to Theorem 2 such asymptotic behavior does
not correspond to an optimal path because it contradicts the necessary condi-
tion (36).

2. (xξ,β(t), λξ,β(t)) ∈ Γ+,+ for all sufficiently large times t . In this case
limt→Tξ,β xξ,β(t) = ∞ and limt→Tξ,β λξ,β(t) = 0. If (xξ,β(·), λξ,β(·)) cor-
responds to an optimal pair (x∗(·), u∗(·)) in (P3) then due to Theorem 2
x∗(·) ≡ xξ,β(·), Tξ,β = ∞, limt→∞ x∗(t) = ∞, and limt→∞ λξ,β(t) = 0.
Set λ∗(·) ≡ λξ,β(·) in this case and define the function φ∗(·) by equality
φ∗(t) = λ∗(t)x∗(t), t ∈ [0,∞).

By direct differentiation for a.e. t ∈ [0,∞) we get (see (35))

φ̇∗(t)
a.e.= (ρ + r)λ∗(t)x∗(t) + 2− rλ(t)x∗(t) − 1+ aλ∗(t) = ρφ∗(t) + 1+ aλ∗(t).

Hence,

φ∗(t) = eρt

[
φ∗(0) +

∫ t

0
e−ρs (1 + aλ∗(s)) ds

]
, t ∈ [0,∞). (42)

Since limt→∞ λ∗(t) = 0 the improper integral
∫ ∞
0 e−ρs (1 + aλ∗(s)) ds converges,

and due to (36) we have 0 > φ∗(t) = λ∗(t)x∗(t) > −1/ρ for all t > 0. Due to (42)
this implies

φ∗(0) = −
∫ ∞

0
e−ρs (1 + aλ∗(s)) ds = − 1

ρ
− a

∫ ∞

0
e−ρsλ∗(s) ds.

Substituting this expression for φ∗(0) in (42) we get

φ∗(t) = − 1

ρ
− aeρt

∫ ∞

t

e−ρsλ∗(s) ds, t ∈ [0,∞).

Due to the L’Hospital rule we have

lim
t→∞ eρt

∫ ∞

t

e−ρsλ∗(s) ds = lim
t→∞

∫ ∞
t

e−ρsλ∗(s) ds

e−ρt
= lim

t→∞
λ∗(t)

ρ
= 0.

Hence,

lim
t→∞ u∗(t) = lim

t→∞
−1

λ∗(t)x∗(t)
= lim

t→∞
−1

φ∗(t)
= ρ.

But due to the system (35) and the inequality r > ρ this implies limt→∞ x∗(t) ≤
a < ∞ that contradicts the equality limt→∞ x∗(t) = ∞. So, all these trajectories
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of (35) are the blow up ones. Thus, there are not any trajectories of (35) that
correspond to optimal admissible pairs due to Theorem 2 in the case 2).

3. limt→∞(x(t), λ(t)) = (x̂, λ̂) as t → ∞. In this case, since the equilibrium
(x̂, λ̂) is of saddle type, there are only two trajectories of (35) which tend to
the equilibrium point (x̂, λ̂) asymptotically as t → ∞ and lying on the stable
manifold of (x̂, λ̂). One such trajectory (x1(·), λ1(·)) approaches the point (x̂, λ̂)

from the left from the set Γ+,+ (we call this trajectory the left equilibrium
trajectory), while the second trajectory (x2(·), λ2(·)) approaches the point (x̂, λ̂)

from the right from the set Γ−,− (we call this trajectory the right equilibrium
trajectory). It is easy to see that both these trajectories are fit to estimate (36) and
stationarity condition (39). Hence, (x1(·), λ1(·)), (x2(·), λ2(·)) and the stationary
trajectory (x̂(·), λ̂(·)), x̂(·) ≡ x̂, λ̂(·) ≡ λ̂, t ≥ 0, are unique trajectories of (35)
which can correspond to the optimal pairs in problem (P3) due to Theorem 2.

Due to Theorem 1 for any initial state x0 > 0 an optimal control u∗(·) in
problem (P3) exists. Hence, for any initial state ξ ∈ (0, x̂) there is a unique
β < 0 such that the corresponding trajectory (xξ,β(·), λξ,β(·)) coincides (up to
a shift in time) with the left equilibrium trajectory (x1(·), λ1(·)) on time interval
[0,∞). Analogously, for any initial state ξ > x̂ there is a unique β < 0 such
that the corresponding trajectory (xξ,β(·), , λξ,β(·)) coincides (up to a shift in time)
with the right equilibrium trajectory (x2(·), λ2(·)) on [0,∞). The corresponding
optimal control is defined uniquely by (37). Thus, for any initial state x0 > 0 the
corresponding optimal pair (x∗(·), u∗(·)) in (P3) is unique, and due to Theorem 2
the corresponding current value adjoint variable λ∗(·) is also unique.

Further, to the left of the point (x̂, λ̂) in the set Γ+,+, the function x1(·) increases.
Therefore, while (x1(·), λ1(·)) lies in Γ+,+, the time can be uniquely expressed in
terms of the first coordinate of the trajectory (x1(·), λ1(·)) as a smooth function
t = t1(x), x ∈ (0, x̂). Changing the time variable t = t1(x) on interval (0, x̂), we
find that the function λ−(x) = λ1(t1(x)), x ∈ (0, x̂), is a solution to the following
differential equation on (0, x̂):

dλ(x)

dx
= dλ(t1(x))

dt
× dt1(x)

dx
= λ(x) ((ρ + r)λ(x)x + 2)

x (−rλ(x)x − 1 + aλ(x))
(43)

with the boundary condition

lim
x→x̂−0

λ(x) = λ̂. (44)

Obviously, the curve λ− = {
(x, λ) : λ = λ−(x), x ∈ (0, x̂)

}
corresponds to the

region of the stable manifold of (x̂, λ̂) where x < x̂.
Analogously, to the right of the point (x̂, λ̂) in the set Γ−,−, while (x1(·), λ1(·))

lies in Γ−,−,the function x1(·) decreases. Hence, the time can be uniquely expressed
in terms of the first coordinate of the trajectory (x1(·), λ1(·)) as a smooth function
t = t2(x), x ∈ (x̂,∞). Changing the time variable t = t2(x) on interval (x̂,∞),
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we find that the function λ+(x) = λ2(t2(x)), x > x̂, is a solution to the differential
equation (43) on (x̂,∞) with the boundary condition

lim
x→x̂+0

λ(x) = λ̂. (45)

As above, the curve λ+ = {
(x, λ) : λ = λ+(x), x ∈ (x̂,∞)

}
corresponds to the

region of the stable manifold of (x̂, λ̂) where x > x̂.
Using solutions λ−(·) and λ+(·) of differential equation (43) along with (37) we

can get an expression for the optimal feedback law as follows

u∗(x) =

⎧⎪⎪⎨
⎪⎪⎩

− 1
λ−(x)x

, if x < x̂,

ρ+r
2 , if x = x̂,

− 1
λ+(x)x

, if x > x̂.

Now, consider the case (ii) when r ≤ ρ. In this case y2(x) > y1(x) for all
x > 1/K and hence the nullclines γ 1 and γ 2 do not intersect in Γ . Accordingly,
the system (35) does not have an equilibrium point in Γ .

The nullclines γ 1 and γ 2 divide the set Γ in three open regions:

Γ̂−,− =
{
(x, λ) ∈ Γ : λ < y1(x), x >

1

K

}
,

Γ̂+,− =
{
(x, λ)∈Γ : λ < y2(x), 0 < x ≤ 1

K

}⋃{
(x, λ)∈Γ : y1(x) < λ < y2(x), x >

1

K

}
,

Γ̂+,+ =
{
(x, λ)∈ Γ : y2(x) < λ < 0, 0< x ≤ x̂

}⋃{
(x, λ) ∈ Γ : y1(x) < λ < 0, x̂ < x < ∞

}
,

The behavior of the flows is shown in Fig. 2 through the phase portrait.
Any solution (x(·), λ(·)) of (35) in Γ has the definite signs of derivatives of its

(x, λ) coordinates in each set Γ̂−.−, Γ̂+,+, and Γ̂−,+ as indicated by the subscripts.
The standard analysis of the behaviors of solutions (x(·), λ(·)) of system (35) in

each of sets Γ̂−.−, Γ̂+.− and Γ+,+ shows that there are only two types of asymptotic
behavior of solutions (x(·), λ(·)) of (35) that are possible:
1. limt→∞ x(t) = 1/K , limt→∞ λ(t) = −∞. In this case (x(t), λ(t)) ∈ Γ̂−,−

for all sufficiently large times t ≥ 0. Due to Theorem 2 such asymptotic
behavior does not correspond to an optimal admissible pair because in this case
limt→∞ λ(t)x(t) = −∞ that contradicts condition (36). Thus this case can be
eliminated from the consideration.

2. limt→∞ x(t) = ∞, limt→∞ λ(t) = 0. In this case (x(t), λ(t)) ∈ Γ̂+,+ for all
t ≥ 0. Since the case (1) can be eliminated from the consideration, we conclude
that the case (2) is the only one that can be realized for an optimal admissible pair
(x∗(·), u∗(·)) (which exists) in (P3) due to the maximum principle (Theorem 2).
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Fig. 2 Phase portrait of (35)
in the case r < ρ. Here
r = 0.1, ρ = 0.5, and
K = 2.5
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Let us consider behavior of trajectory (x∗(·), λ∗(·)) of system (35) that corre-
sponds to the optimal pair (x∗(·), u∗(·)) in the set Γ̂+,+ in more details.

As in the subcase (b) of case (i) above, define the function φ∗(·) as follows:

φ∗(t) = λ∗(t)x∗(t), t ∈ [0,∞).

Repeating the calculations presented in the subcase (b) of case (i) we get

φ∗(t) = − 1

ρ
− aeρt

∫ ∞

t

e−ρsλ∗(s) ds, t ∈ [0,∞).

As in the subcase (b) of case (i) above, due to the L’Hospital rule this implies

lim
t→∞ eρt

∫ ∞

t

e−ρsλ∗(s) ds = lim
t→∞

∫ ∞
t

e−ρsλ∗(s) ds

e−ρt
= lim

t→∞
λ∗(t)

ρ
= 0.

Hence,

lim
t→∞ u∗(t) = lim

t→∞
−1

λ∗(t)x∗(t)
= lim

t→∞
−1

φ∗(t)
= ρ.

Thus, asymptotically, any optimal admissible control u∗(·) satisfies the Hotelling
rule (Hotelling 1974) of optimal depletion of an exhaustible resource in the case (ii).

Now let us show that the optimal control u∗(·) is defined uniquely by Theorem 2
in the case (ii).
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Define the function y3 : (0,∞) �→ R
1 and the curve γ 3 ⊂ Γ as follows:

y3(x) = − 1

ρx
, x ∈ (0,∞), γ 3 = {(x, λ) : λ = y3(x), x ∈ (0,∞)} .

It is easy to see that y3(x) ≥ y2(x) for all x > 0 and y3(x) > y1(x) for all
x > 1/K in the case (ii). Hence, the curve γ 3 is located not below γ 2 and strictly
above γ 1 in Γ̂+,+ (see Fig. 2). Notice that if r = ρ then γ 3 coincide with γ 2 while
if r < ρ then γ 3 lies strictly above γ 2 in Γ̂+,+. It can be demonstrated directly that
any trajectory (x(·), λ(·)) of system (35) can intersect curve γ 3 only one time and
only in the upward direction.

Due to (36) a trajectory (x∗(·), λ∗(·)) of system (35) that corresponds to the opti-
mal pair (x∗(·), u∗(·)) lies strictly above γ 3. Since the system (35) is autonomous by
virtue of the theorem on uniqueness of a solution of first-order ordinary differential
equation (see Hartman 1964, Chapter 3) trajectories of system (35) that lie above
γ 3 do not intersect the curve γ 4 = {(x, λ) : x = x∗(t), λ = λ∗(t), t ≥ 0} which is
the graph of the trajectory (x∗(·), λ∗(·)).

Further, trajectory (x∗(·), λ∗(·)) is defined on infinite time interval [0,∞). This
implies that all trajectories

(
xx0,β(·), λx0,β(·)), β ∈ (−1/(ρx0), λ∗(0)), are also

defined on the whole infinite time interval [0,∞), i.e. Tx0,β = ∞ for all β ∈
(−1/(ρx0), λ∗(0)). Thus, we have proved that there is a nonempty set (a continuum)
of trajectories

{
(xx0,β(·), λx0,β(·))}, β ∈ (−1/(ρx0), λ∗(0)), t ∈ [0,∞), of

system (35) lying strictly between the curves γ 3 and γ 4. All these trajectories are
defined on the whole infinite time interval [0,∞) and, hence, all of them correspond
to some admissible pairs

{
(xx0,β(·), ux0,β(·))}. Since these trajectories are located

above γ 3 they satisfy also the estimate (36).
Consider the current value HamiltonianM(·, ·) for (x, λ) lying above γ 3 in Γ̂+,+

(see (38)):

M(x, λ) = sup
u≥ρ

{uλx + ln u} + (a − rx)λ − ln x

= −1 − ln(−λx) + (a − rx)λ − ln x, − 1

ρx
< λ < 0. (46)

For any trajectory (xx0,β(·), λx0,β(·)) of system (35) lying above γ 3 in Γ̂+,+
we have

xx0,β(t) ≥ e(ρ−r)tx0, t ≥ 0.

On the other hand for any trajectory (xx0,β(·), λx0,β (·)) of system (35) lying between
γ 3 and γ 4 in Γ̂+,+ we have

1

2(r + ρ)
< −λx0,β(t)xx0,β(t) <

1

ρ
if xx0,β(t) >

1

K
.
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These imply that for any trajectory (xx0,β(·), λx0,β(·)) of system (35) lying between
γ 3 and γ 4 in Γ̂+,+ and for corresponding adjoint variable ψx0,β

(·), ψx0,β
(t) =

e−ρtλx0,β(t), t ≥ 0, we have

lim
t→∞ H(t, xx0,β(t), ψx0,β

(t)) = lim
t→∞

{
e−ρtM(xx0,β(t), λx0,β(t))

} = 0.

Hence, for any such trajectory (xx0,β(·), λx0,β(·)) of system (35) we have (see (39))

M(xx0,β(t), λx0,β(t)) = ρeρt

∫ ∞

t

e−ρsg(xx0,β(t), λx0,β(t)) ds, t ≥ 0.

Let ux0,β(·) be the control corresponding to xx0,β(·), i.e. ux0,β(t) =
−1/(xx0,β(t)λx0,β(t)). Then taking in the last equality t = 0 we get

J (xx0,β(·), ux0,β(·)) =
∫ ∞

0
e−ρsg(xx0,β(t), λx0,β(t)) ds = 1

ρ
M(xx0 ,β(0), λx0,β(0)).

For any t ≥ 0 function M(x∗(t), ·) (see (46)) increases on {λ : − 1/(ρx∗(t)) <

λ < 0}. Hence, M(x∗(t), ·) reaches its maximal value in λ on the set
{λ : − 1/(ρx) < λ ≤ λ∗(t)} at the point λ∗(t) that correspond to the optimal path
x∗(·). Thus, all trajectories (xx0,β(·), λx0,β(·)) of system (35) lying between γ 3 and
γ 4 in Γ̂+,+ do not correspond to optimal admissible pairs in (P3).

From this we can also conclude that all trajectories (x(·), λ(·)) of system (35)
lying above γ 4 also do not correspond to optimal admissible pars in (P3). Indeed,
if such trajectory (x(·), λ(·)) corresponds to an optimal pair (x(·), u(·)) in (P3) then
it must satisfy to condition (39). But in this case we have λ(0) > λ∗(0) and

J (x(·), u(·)) = 1

ρ
M(x0, λ(0)) = 1

ρ
M(x0, λ∗(0)) = J (x∗(·), λ∗(·)),

that contradicts the fact that functionM(x0, ·) increases on {λ : − 1/(ρx) < λ < 0}.
Thus, for any initial state x0 there is a unique optimal pair (x∗(·), u∗(·)) in (P3) in

the case (ii). The corresponding current value adjoint variable λ∗(·) is also defined
uniquely as the maximal negative solution to equation (see (35))

λ̇(t) = (ρ + r)λ(t) + 2

x∗(t)
(47)

on the whole infinite time interval [0,∞).
The function x∗(·) increases on [0,∞). Therefore, the time can be uniquely

expressed as a smooth function t = t∗(x), x ∈ (0,∞). Changing the time variable
t = t∗(x), we find that the function λ0(x) = λ∗(t∗(x)) is solution to the differential
equation (43) on the infinite interval (0,∞).
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Using solution λ0(·) of differential equation (43) along with (37) we can get an
expression for the optimal feedback law as follows

u∗(x) = − 1

λ0(x)x
, x > 0.

Thus, to find the optimal feedback, we must determine for an initial state x0 > 0 the
corresponding initial state λ0 < 0 such that solution (x∗(·), λ∗(·)) of system (35)
with initial conditions x(0) = x0 and λ(0) = λ0 exists on [0,∞) and λ∗(·) is the
maximal negative function among all such solutions.

Let us summarize the results obtained in this section in the following theorem.

Theorem 3 For any initial state x0 > 0 there is a unique optimal admissible pair
(x∗(·), u∗(·)) in problem (P3), and there is a unique adjoint variable ψ(·) that
corresponds (x∗(·), u∗(·)) due to the maximum principle (Theorem 2).

If r > ρ then there is a unique equilibrium (x̂, λ̂) (see (40)) in the corresponding
current value Hamiltonian system (35) and the optimal synthesis is defined as
follows

u∗(x) =

⎧⎪⎪⎨
⎪⎪⎩

− 1
λ−(x)x

, if x < x̂,

r+ρ
2 , if x = x̂,

− 1
λ+(x)x

, if x > x̂,

where λ−(·) and λ+(·) are the unique solutions of (43) that satisfy the boundary
conditions (44) and (45) respectively. In this case optimal path x∗(·) is either
decreasing, or increasing on [0,∞), or x∗(t) ≡ x̂, t ≥ 0, depending on the initial
state x0. For any optimal admissible pair (x∗(·), u∗(·)) we have limt→∞ x∗(t) = x̂

and limt→∞ u∗(t) = û (see (41)).
If r ≤ ρ then for any initial state x0 the corresponding optimal path x∗(·) in

problem (P3) is an increasing function, limt→∞ x∗(t) = ∞, and the corresponding
optimal control u∗(·) satisfies asymptotically to the Hotelling rule of optimal
depletion of an exhaustible resource, i.e. limt→∞ u∗(t) = ρ. The corresponding
current value adjoint variable λ∗(·) is defined uniquely as the maximal negative
solution to Eq. (47) on [0,∞). The optimal synthesis is defined as

u∗(x) = − 1

λ0(x)x
, x > 0,

where λ0(x) = λ∗(t∗(x)) is the corresponding solution of (43).

In the next section we discuss the issue of sustainability of optimal paths for
different values of the parameters in the model.
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5 Conclusion

Following Solow (1956) we assume that the knowledge stock A(·) grows exponen-
tially, i.e. A(t) = A0e

μt , t ≥ 0, where μ ≥ 0 and A0 > 0 are constants.
Similar to Valente (2005) we say that an admissible pair (S(·), u(·)) is sustain-

able in our model if the corresponding instantaneous utility function t �→ lnY (t),
t ≥ 0, non-decreases in the long run, i.e.

lim
T →∞ inf

t≥T

d

dt
ln Y (t) = lim

T →∞ inf
t≥T

Ẏ (t)

Y (t)
≥ 0.

Substituting Y (t) = A(t) (u(t)S(t))α , A(t) = A0e
μt , t ≥ 0, (see (1)) we get the

following characterization of sustainability of an admissible pair (S(·), u(·)):

μ

α
+ lim

T →∞ inf
t≥T

[
u̇(t)

u(t)
+ Ṡ(t)

S(t)

]
≥ 0. (48)

We call an admissible pair (S(·), u(·)) strongly sustainable if it is sustainable
and, moreover, the resource stock S(·) is non-vanishing in the long run, i.e.

lim
T →∞ inf

t≥T
S(t) = S∞ > 0. (49)

Consider case (i) when r > ρ. In this case due to Theorem 3 there is a unique
optimal equilibrium pair in the problem (see (40) and (41)): û(t) ≡ û = (r + ρ)/2,
Ŝ(t) ≡ Ŝ = (r−ρ)K/(2r) > 0, t ≥ 0, and for any initial state S0 the corresponding
optimal path S∗(·) approaches asymptotically to the optimal equilibrium state Ŝ

while the corresponding optimal exploitation rate u∗(·) approaches asymptotically
to the optimal equilibrium value û. Hence, both conditions (48) and (49) are
satisfied. Thus the optimal admissible pair (S∗(·), u∗(·)) is strongly sustainable in
this case.

Consider case (ii) when r ≤ ρ. In this case due to Theorem 3 for any
initial state S0 the corresponding optimal control u∗(·) asymptotically satisfies the
Hotelling rule of optimal depletion of an exhaustible resource (Hotelling 1974), i.e.
limt→∞ u∗(t) = ρ, and limt→∞ u̇∗(t)/u∗(t) = 0. The corresponding optimal path
S∗(·) is asymptotically vanishing, and

lim
t→∞ Ṡ∗(t)/S∗(t) = lim

t→∞ (r − u∗(t) − rS∗(t)/K) = r − ρ.

Hence, in the case (ii) the sustainability condition (48) takes the following form:

μ

α
+ r ≥ ρ. (50)
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Notice, that in the case α = 1 condition (50) coincides with Valente’s necessary
condition for sustainability in his capital-resource model with a renewable resource
growing exponentially (see Valente 2005).

Since in the case (i) the inequality (50) holds automatically we conclude that (50)
is a necessary and sufficient condition (a criterion) for sustainability of the optimal
pair (S∗(·), u∗(·)) in our model while the stronger inequality

r > ρ

gives a criterion of its strong sustainability.
The criterion (50) gives the following guidelines for sustainable optimal growth:

(1) Take measures to increase growth rate r; (2) Increase ratio of growth rate of
knowledge stock μ to output elasticity α; and (3) Decrease social discount ρ i.e.,
plan long term. The sustainability criterion (50) gives a relationship between the
state of technology (depicted by α), the environment (depicted by r), accumulation
of knowledge (depicted by μ) and foresight of the social planner (depicted by ρ).
According to the guideline 2 above, it is the ratio between μ and α that matters but
not the individual quantities.
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