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Abstract. Differential and linear cryptanalysis are two of the most
effective attacks on block ciphers. Searching for (near) optimal differen-
tial or linear trails is not only useful for the security evaluation of block
ciphers against these attacks, but also indispensable to the cryptana-
lysts who want to attack a cipher with these techniques. In recent years,
searching for trails automatically with Mixed-Integer Linear Program-
ming (MILP) gets a lot of attention. At first, Mouha et al. translated
the problem of counting the minimum number of differentially active
S-boxes into an MILP problem for word-oriented block ciphers. Subse-
quently, in Asiacrypt 2014, Sun et al. extended Mouha et al.’s method,
and presented a technique which can find actual differential or linear
characteristics of a block cipher in both the single-key and related-key
models. In this paper, we refine the constraints of the 2-XOR operation
in order to reduce the overall number of variables and constraints. Exper-
imental results show that MILP models with the refined constraints can
be solved more efficiently. We apply our method to HIGHT (an ISO
standard), and we find differential (covering 11 rounds) or linear trails
(covering 10 rounds) with higher probability or correlation. Moreover, we
find so far the longest differential and linear distinguishers of HIGHT.
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1 Introduction

In recent years, with the rapid development of the Internet of Things (IoT),
the application of micro computing equipment is more and more popular, such
as RFID chips and wireless sensor networks. At the same time, how to ensure
the security of information stored on or transmitted over such devices with con-
strained resources attracts more and more attention. Hence, the pursuit of effi-
cient and secure lightweight block ciphers came into being. Researchers have put
forward many lightweight block ciphers. Roughly speaking, those lightweight
block cipher can be divided into two categories, one type based on small
S-boxes, such as LBlock [1], PRESENT [2], SKINNY [3] and RECTANGLE [4].
Another type doesn’t use S-boxes. Instead, they adopt the ARX construction,
where modular addition, rotation and XOR are used. These operations are easy
to implement in software, such as HIGHT [5], TEA [6], SPECK [7], Sparx [8] etc.

Differential cryptanalysis [9] and linear cryptanalysis [10] are two main
attacks on symmetric-key ciphers. For these attacks, finding an optimal dif-
ferential or linear trails are important to make an effective attack. Among the
methods proposed in the literature on finding optimal differential and linear char-
acteristics, automatic searching is a very popular one, which is relatively easy
to implement. Matsui’s branch and bound search algorithm is the classic meth-
ods for obtaining DES differential characteristics [11]. Recently, with the aim to
raise the efficiency of it, Chen et al. proposed some variant methods [12,13]. In
CT-RSA 2014, Biryukov and Velichkov extended Matsui’s algorithm [14], they
proposed a new automatic search tool to search for the differential characteristics
of ARX ciphers by introducing the new concept of a partial difference distribu-
tion table (pDDT). In 2013, Mouha and Preneel proposed an automatic tool to
search for the optimal differential characteristic for ARX ciphers Salsa20 [15],
The main idea is to convert the problem of searching for differential character-
istics to a Boolean satisfiability problem, which only involves writing out simple
equations for every operation in the cipher, and applies an off-the-shelf SAT
solver. In 2011, Mouha et al. translated the problem of counting the number of
active S-boxes into an MILP problem which can be solved with MILP solvers [16].
Subsequently, In Asiacrypt 2014, Sun et al. extended Mouha et al.’s method, and
presented methods for searching the differential or linear characteristics of bit-
oriented block ciphers both the single-key and related-key models [17]. In FSE
2016, Fu et al. proposed an MILP-based tool for automatic search for differential
and linear trails in ARX ciphers, through the properties of differential and linear
characteristics for modular addition operation, and gave a systematic method to
describe the differential and linear characteristics with some constraints [18]. In
FSE 2017, automatic search was also conducted based on constraint program-
ming, which was able to analyze ciphers with 8 × 8 S-boxes [19].
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HIGHT [5] was introduced by Hong et al. in CHES 2006, which is an ISO stan-
dard lightweight block cipher [20]. The designers gave the differential and linear
attack results, and found some 11-round differential characteristics with proba-
bility 2−58 and several 10-round linear approximations with correlation 2−26.1

In this paper, we improve Sun et al.’s method for automatic search differential
and linear trails based on the MILP model. We accurately describe the 2-XOR
operations with new constraints. The new constraints can reduce the overall
number of variables and constraints in MILP model, which can save the time
for solving the MILP model. Subsequently, we apply our refined MILP model to
the lightweight block cipher HIGHT. As a result, we not only search the better
differential characteristic for 11-round HIGHT and linear approximation for 10-
round HIGHT, but also find the optimal differential characteristic for 13-round
HIGHT and linear approximation for 11-round HIGHT. These results are shown
in Table 1. (The p and cor in the table, represent the probability of differential
characteristic and the correlation of linear approximation respectively)

Table 1. Summary of differential characteristics and linear approximations for HIGHT

Differential characteristics Linear approximations

Rounds logp
2 Reference Rounds logcor

2 Reference

11 −58 [5] 10 −26 [5]

11 −45 This paper 10 −25 This paper

12 −53 This paper 11 −31 This paper

13 −61 This paper - - -

Organization. This paper is organised as follows. In Sect. 2, we introduce the
related knowledge, and give a brief description of the HIGHT. In Sect. 3, we
give a brief introduction the automatic search method of differential and linear
trails based on MILP model. In Sect. 4, a refined MILP model is presented.
As an application, we utilize the refined MILP model to search the differential
and linear characteristics for HIGHT. Then in Sect. 5, the results of differential
and linear cryptanalysis of HIGHT are given. Finally, we conclude the paper in
Sect. 6.

2 Preliminaries

In this section, we introduce some notations and terms, and briefly describe the
lightweight block cipher HIGHT.

1 In [5], the 10-round linear approximation with ε2 = 2−54, ε is called bias. Correspond-
ingly, converted into the 10-round linear approximation with correlation 2−26.
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2.1 Notations

The following notations are used in this paper:

– (X7
i ‖X6

i ‖ · · · ‖X0
i ): The 64-bit input of the i-th round is considered as con-

catenations of 8 bytes Xj
i , 0 ≤ j ≤ 7.

– (SK4i+3‖SK4i+2‖SK4i+1‖SK4i): The 32-bit subkey of the i-th round is con-
sidered as concatenations of 4 bytes SK4i+j , 0 ≤ j ≤ 3.

– ⊕: Bitwise exclusive OR (XOR)
– �: Addition modulo 2n

– x ≪ s: Rotation of x to the left by s positions
– Δx: The XOR difference of x1 and x2, x1 ⊕ x2 = Δx
– x[i]: The bit at position i of word x

2.2 Description of HIGHT

The HIGHT [5] is a lightweight block cipher, it was proposed in CHES 2006,
and was adopted as an ISO standard cryptography. The HIGHT utilize an 8-
branch Type-II generalized Feistel structure, 64-bit block size and 128-bit key
size, consisting of 32 rounds with four parallel Feistel functions in each round.
The round function of HIGHT is shown in Fig. 1.2
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Fig. 1. The round function of HIGHT.
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i || · · · ||x0
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i+1)
as follows:
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x6
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i � (F1(x4

i ) � SK4i).

The F0 and F1 used in the round function are defined as follows:

F0(x) = (x <<< 1) ⊕ (x <<< 2) ⊕ (x <<< 7);
F1(x) = (x <<< 3) ⊕ (x <<< 4) ⊕ (x <<< 6).

2 The Figs. 1, 2 and 3 are generated by TikZ for Cryptographers, please refer to http://
www.iacr.org/authors/tikz/.

http://www.iacr.org/authors/tikz/.
http://www.iacr.org/authors/tikz/.
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The inner functions F0 and F1 provide bitwise diffusion. These functions
can be regarded as linear transformations from GF (2)8 to GF (2)8. The two
linear transformations selected in the design of the cipher have the best diffusion
property.

In this paper, we only consider the single-key model. Therefore, we omit key
schedule in this paper. For further details, please refer to [5].

2.3 Security Analysis Results of HIGHT

Since the HIGHT has been put forward, it has received a great deal of attention.
At present, there are many cryptanalysis results of HIGHT, which also includes
some cryptanalysis results given by the designer.

In [5], the designer gives the differential characteristic probability is 2−58 for
the 11-round HIGHT, and gave the 13-round HIGHT differential attack result.
At the same time, find the 10-round linear approximation with bias ε = 2−27.
By using the linear approximation, the designer proposed 13-round linear attack
for HIGHT, in the attack process, it requires 257 plaintexts with the success
rate 96.7% to recover 36 bits of the subkeys. In addition, the designer use
this 14-round impossible differential characteristic to attack 18-round HIGHT.
This attack requires 246.8 chosen-plaintexts and 2109.2 encryptions of 18-round
HIGHT. Except for some of the above attacks, the designer also presented trun-
cated differential cryptanalysis [21], boomerang attack [22], sliding attack [23]
and related key attack [24] and so on. These results indicate that the HIGHT
has sufficient security.

Lu et al. [25] gave the first impossible differential cryptanalysis result for 25-
round HIGHT, this attack requires 260 chosen-plaintexts and 2126.78 encryptions.
At ACISP 2009, Özen et al. [26] applied the impossible differential technique
to attack 26-round HIGHT with data complexity of 261 plaintexts, and time
complexity of about 2119.53 encryptions. Then, At AFRICACRYPT 2012, Chen
et al. [27] presented the impossible differential attack on the 27-round HIGHT
with data complexity of 258, and time complexity of about 2126.6 encryptions,
which is smaller than exhaustive search. In 2016, Cui et al. [28] proposed MILP-
based automatic tool to search all cases of 17-round impossible differentials that
both hamming weights of input and output differences are one, They found 4
impossible differentials for 17-round HIGHT, which are the longest ones until
now.

At ICISC 2010, Koo et al. [29] presented the first attack on the full HIGHT
using related-key rectangle attack with 2123.169 encryptions, 257.84 data, and 4
related keys.

In 2015, Igarashi et al. [30] gave 19-round HIGTH using meet-in-the-middle
attack with Splice-and-Cut technique, the attacked with 28 bytes of memory,
28 + 2 pairs of chosen plain and cipher texts, and 2120.7 times of the encryption
operation.
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3 MILP-Based Automatic Search for Differential
and Linear Trails

In this section, we first introduce the mixed integer linear programming problem,
Then we briefly describe the method of constructing constraint inequalities for
every operation in the ARX ciphers.

3.1 Mixed Integer Linear Programming (MILP)

MILP: Assume A ∈ Rm×n, b ∈ Rm and c1, c2, · · ·, cn ∈ Rn, find a vector
x = (x1, x2, · · ·, xn), such that the linear function c1x1 + c2x2 + · · · + cnxn is
minimized (or maximized) with respect to the linear constraint Ax ≤ b.

The MILP problem is a kind of optimization problem, which aims at find-
ing the optimal solution of the objective function under the constraints. This
problem can be solved by a lot of commercial software, such as Gurobi [31],
CPLEX [32], MAGMA [33], etc.

3.2 Differential Constraints for Different Operations

Suppose an ARX cipher is composed of the following three operations:

– Rotations
– XOR
– Modular addition

It is obvious that the differential constraint of rotations operation can be
obtained, according to [17], the constraints on the XOR operation as follows.

Constraints for XOR Operation [17]. According to Sun et al.’s differential
automatic search method. For XOR operation with input differences Δa, Δb and
output difference Δc, the constraints are presented as follows:

⎧
⎪⎨

⎪⎩

Δa + Δb + Δc ≥ 2d⊕
d⊕ ≥ Δa, d⊕ ≥ Δb, d⊕ ≥ Δc

Δa + Δb + Δc ≤ 2
(1)

where d⊕ is a dummy variable.

Constraints for Modular Addition Operation [18]. Assume α, β and γ
be n-bit XOR differences, α, β are the input differences for modular addition
operation, and γ is the output difference. In [18], if i = 0, α[i] ⊕ β[i] = γ[i],
the constraints are shown in formula (1), if i ∈ [1, n − 1], Fu et al. proposed 13
inequalities in formula (2) to express it.
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

β[i] − γ[i] + T (α[i], β[i], γ[i]) ≥ 0
α[i] − β[i] + T (α[i], β[i], γ[i]) ≥ 0
−α[i] + γ[i] + T (α[i], β[i], γ[i]) ≥ 0
−α[i] − β[i] − γ[i] − T (α[i], β[i], γ[i]) ≥ −3
α[i] + β[i] + γ[i] − T (α[i], β[i], γ[i]) ≥ 0
−β[i] + α[i + 1] + β[i + 1] + γ[i + 1] + T (α[i], β[i], γ[i]) ≥ 0
β[i] + α[i + 1] − β[i + 1] + γ[i + 1] + T (α[i], β[i], γ[i]) ≥ 0
β[i] − α[i + 1] + β[i + 1] + γ[i + 1] + T (α[i], β[i], γ[i]) ≥ 0
β[i] + α[i + 1] + β[i + 1] − γ[i + 1] + T (α[i], β[i], γ[i]) ≥ 0
γ[i] − α[i + 1] − β[i + 1] − γ[i + 1] + T (α[i], β[i], γ[i]) ≥ −2
−β[i] + α[i + 1] − β[i + 1] − γ[i + 1] + T (α[i], β[i], γ[i]) ≥ −2
−β[i] − α[i + 1] + β[i + 1] − γ[i + 1] + T (α[i], β[i], γ[i]) ≥ −2
−β[i] − α[i + 1] − β[i + 1] + γ[i + 1] + T (α[i], β[i], γ[i]) ≥ −2

(2)

When α[i] = β[i] = γ[i], T (α[i], β[i], γ[i]) = 1; otherwise, T (α[i], β[i], γ[i]) =
0. the differential probability xdp+ is calculated as follows:

xdp+ = 2− ∑n−2
i=0 T (α[i],β[i],γ[i])

Fu et al. set the objective function for r-round differential MILP model as the∑r
j=0

∑n−2
i=0 T (α[i], β[i], γ[i]).

3.3 Linear Constraints for Different Operations

In order to automatically search the linear trial of HIGHT, we must consider the
propagation of the linear masks. Notice that the rotations is a simple bit permu-
tation, we can give the corresponding linear constraints. Next, the constraints
for the following operations can be given.

– XOR
– Branching
– Modular addition

Constraints for XOR Operation [34]. For XOR operation with input masks
a, b and output mask c, include the following constraints:

a = b = c

Constraints for Branching Operation [34]. For branching operation with
input mask a and output masks b, c, include the following constraints:

a ⊕ b ⊕ c = 0

Constraints for Modular Addition Operation [18]. Let modular addition
operation with input masks ∧α,∧β ∈ Fn

2 and output mask Γ ∈ Fn
2 . and
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∧α = (∧α[n−1], · · ·,∧α[0]), ∧β = (∧β [n−1], · · ·,∧β [0]), Γ = (Γ [n−1], · · ·, Γ [0]).
In [18], Fu et al. utilize 8 linear inequalities to describe the possible transitions,
as shown in formula (3).

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

si+1 − Γ [i] − Λα[i] + Λβ [i] + si ≥ 0
si+1 + Γ [i] + Λα[i] − Λβ [i] − si ≥ 0
si+1 + Γ [i] − Λα[i] − Λβ [i] + si ≥ 0
si+1 − Γ [i] + Λα[i] − Λβ [i] + si ≥ 0
si+1 + Γ [i] − Λα[i] + Λβ [i] − si ≥ 0
si+1 − Γ [i] + Λα[i] + Λβ [i] − si ≥ 0
−si+1 + Γ [i] + Λα[i] + Λβ [i] + si ≥ 0
si+1 + Γ [i] + Λα[i] + Λβ [i] + si ≤ 4

(3)

The correlation of addition modulo 2n(cor�) can be computed as follows:
|cor�(Γ,∧α,∧β)| = 2− ∑n−1

i=1 si . Taking the above observation into account,
Fu et al. set the objective function for r-round linear MILP model as the∑r

j=1

∑n−1
i=1 si.

For more details, please refer to [18,35].

4 The Refined MILP Model and Application to HIGHT

In this section, we present our refined MILP model, and then we apply the
refined MILP model to the lightweight block cipher HIGHT.

4.1 The Refined MILP Model

It is observed that the number of variables in the MILP model will affect the
efficiency of the solver. By analyzing the differential propagation of XOR opera-
tion in detail, in Eurocrypt 2017, Sasaki et al. gave the following constraints to
model XOR operation.3

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Δa + Δb + Δc ≤ 2
Δa + Δb ≥ Δc

Δa + Δc ≥ Δb

Δb + Δc ≥ Δa

(4)

where Δa and Δb are the input differences of the XOR operation, and Δc is the
output difference.

In the previous work, we obtain the five constraint inequalities by computing
the H-representation of the convex hull for the four possible differential prop-
agation modes. Now, we obtain the same four constraint inequalitys with the
3 The constraints appear in the slide that Sasaki et al. were reported in Eurocrypt

2017, please refer to https://eurocrypt2017.di.ens.fr/slides/A09-new-impossible-
differential.pdf

https://eurocrypt2017.di.ens.fr/slides/A09-new-impossible-differential.pdf
https://eurocrypt2017.di.ens.fr/slides/A09-new-impossible-differential.pdf
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greedy algorithm [17]. Compared with/the constraints given in the formula (1),
the formula (4) not only introduces no new dummy variables, but also reduces
one constraint, which can reduce 16 variables and constraints in just one round
HIGHT. Similarly, in the modular addition and the branching operations, the
XOR constraints also reduce a part of variables and constraints.

Next, we focus on the functions F0 and F1 for HIGHT.

F0(x) = (x <<< 1) ⊕ (x <<< 2) ⊕ (x <<< 7)
F1(x) = (x <<< 3) ⊕ (x <<< 4) ⊕ (x <<< 6)

For the 2-XOR operations in each function, in accordance with the above
formula (4), we need to introduce an intermediate variable to generate the con-
straints, in this case, we convert constrained F0 and F1 to the following question.

Let Δa⊕Δb⊕Δc = Δd, where Δa, Δb and Δc are the input differences, and
Δd is the output difference. The differential propagation of the 2-XOR operations
is shown in Fig. 2.

Δa Δd

Δb Δc

Fig. 2. The differential propagation of the 2-XOR operations.

By analyzing these possible differential patterns in detail, We give the
constraints as shown in formula (5). These constraints can be clearly seen
from Table 2, we can know the 8 constraints are chosen to describe the pos-
sible difference patterns for the 2 XOR operations. In Table 2, the constraint
Δa + Δb + Δc − Δd ≥ 0 can remove the impossible differential propagation
mode (0, 0, 0, 1). The eight constraint inequalities in formula (5) satisfy all possi-
ble input-output differential modes, and also exclude all impossible input-output
differential modes. ⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Δa + Δb + Δc − Δd ≥ 0
Δa + Δb + Δc − Δd ≤ 2
Δa + Δb + Δd − Δc ≥ 0
Δa + Δb + Δd − Δc ≤ 2
Δa + Δc + Δd − Δb ≥ 0
Δa + Δc + Δd − Δb ≤ 2
Δb + Δc + Δd − Δa ≥ 0
Δb + Δc + Δd − Δa ≤ 2

(5)

By comparing the introduction of the intermediate variable with the con-
straint given by the formula (4), we can reduce 8 variables in each function by
the formula (5). When solving the MILP model with Gurobi, it can save com-
puting time and improve the solving efficiency through the above constraints.
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Table 2. Remove all impossible differential propagations for the 2-XOR operations

Δa Δb Δc Δd Impossible

0 0 0 0

0 0 0 1 � Δa + Δb + Δc − Δd ≥ 0

0 0 1 0 � Δa + Δb + Δd − Δc ≥ 0

0 0 1 1

0 1 0 0 � Δa + Δc + Δd − Δb ≥ 0

0 1 0 1

0 1 1 0

0 1 1 1 � Δb + Δc + Δd − Δa ≤ 2

1 0 0 0 � Δb + Δc + Δd − Δa ≥ 0

1 0 0 1

1 0 1 0

1 0 1 1 � Δa + Δc + Δd − Δb ≤ 2

1 1 0 0

1 1 0 1 � Δa + Δb + Δd − Δc ≤ 2

1 1 1 0 � Δa + Δb + Δc − Δd ≤ 2

1 1 1 1

4.2 Construct the Refined MILP Model for HIGHT

According to the refined constraints given by the XOR and 2-XOR operations, we
apply these refined constraints to the MILP model of the HIGHT. According to
Sun et al. MILP-based automatic search technology and constraints for modular
addition operation, it is easy to construct a refined MILP model for HIGHT.

Without loss of generality, we just give the method of constructing the dif-
ferential MILP model for 1-round HIGHT in detail. The differential and linear
MILP model for r-round HIGHT can be constructed in the similar way.

We assume that the new value introduced in modular addition operation
T (α[i], β[i], γ[i]) is denoted by T

(i)
1 , where i ∈ [0, 6]. As there are 4 modu-

lar addition operations in a round of HIGHT, the number of the new values
T (α[i], β[i], γ[i]) is 28 in total, which is denoted by (T (0)

1 , T
(1)
1 , · · · , T

(27)
1 ). Then

the sum of the values: T
(0)
1 +T

(1)
1 + · · ·+T

(27)
1 is chosen as the objective function

to be minimized.
Assume that the 64-bit input difference for the 1-round HIGHT is denoted

by ΔX = (ΔX0, · · · ,ΔXi, · · · ,ΔX7), where ΔXi is an 8-bit differential vari-
able, ΔXi = (ΔXi

(0),ΔXi
(1) · · · ,ΔXi

(7)). According to the round function of
HIGHT, the 1-8, 17-24, 33-40, 49-56 bits position of the outputs are the same
as the corresponding differential positions of the inputs for 1-round HIGHT.
So, the 64-bit output difference for the 1-round HIGHT is denoted by ΔY =
(ΔX1,ΔY0,ΔX3,ΔY1,ΔX5,ΔY2,ΔX7,ΔY3), where ΔYi is an 8-bit differential
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variable, ΔYi = (ΔYi
(0),ΔYi

(1) · · · ,ΔYi
(7)). At the same time, the output dif-

ference between the four F-functions from left to right is ΔZ = (ΔZ0,ΔZ1),
ΔZi is an 8-bit differential variable, and ΔZi = (ΔZi

(0),ΔZi
(1) · · · ,ΔZi

(7)).
The difference between the output of the first and third addition modulo opera-
tion from left to right is ΔM = (ΔM0,ΔM1), where ΔMi is an 8-bit differential
variable, then ΔMi = (ΔMi

0,ΔMi
(1), · · · ,ΔMi

(7)). These differential variables
are shown in Fig. 3.

F0

ΔX1

ΔZ0ΔM0

0

ΔX0

ΔX1

F1

ΔX3

ΔZ1ΔZ1

0

ΔX2

ΔY0 ΔX3

F0

ΔX5

ΔZ2ΔM1

0

ΔX4

ΔY1 ΔX5

F1

ΔX7

ΔZ3ΔZ3

0

ΔX6

ΔY2 ΔX7 ΔY3

Fig. 3. Differential variable values for the 1-round MILP model of HIGHT.

Firstly, to make sure the non-zero input difference, we should add the
constraint:

ΔX0
(0) + ΔX0

(1) + · · · + ΔX0
(63) ≥ 1

In the first generalized feistel structure, the input difference of the
F-function is (ΔX1

(0),ΔX1
(1), · · · ,ΔX1

(7)), and the output difference is
(ΔZ0

(0),ΔZ0
(1), · · · ,ΔZ0

(7)). When j = 0, according to formula (5), we can
get the constraints as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ΔX1
(1) + ΔX1

(2) + ΔX1
(7) − ΔZ0

(0) ≥ 0
ΔX1

(1) + ΔX1
(2) + ΔX1

(7) − ΔZ0
(0) ≤ 2

ΔX1
(1) + ΔX1

(2) + ΔZ0
(0) − ΔX1

(7) ≥ 0
ΔX1

(1) + ΔX1
(2) + ΔZ0

(0) − ΔX1
(7) ≤ 2

ΔX1
(1) + ΔX1

(7) + ΔZ0
(0) − ΔX1

(2) ≥ 0
ΔX1

(1) + ΔX1
(7) + ΔZ0

(0) − ΔX1
(2) ≤ 2

ΔX1
(2) + ΔX1

(7) + ΔZ0
(0) − ΔX1

(1) ≥ 0
ΔX1

(2) + ΔX1
(7) + ΔZ0

(0) − ΔX1
(1) ≤ 2

(6)

when j ≥ 1, the constraints can be obtained with the same method. So 8× 32 =
256 linear constraints are proposed to describe the differential property for the
2 XOR operations in the 1-round HIGHT.

The constraints of the modular addition operations are introduced in the
following text. In the first generalized feistel structure, the two input differ-
ences are (ΔZ0

(0),ΔZ0
(1), · · · ,ΔZ0

(7)) and 0, the output difference is (ΔM0
(0),

ΔM0
(1), · · · ,ΔM0

(7)). When j = 7, the constraint is ΔZ0
(0) − ΔM0

(0) = 0,
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obviously. According to formula (2), when j = 0, the constraints are shown in
formula (7). ⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−ΔM
(1)
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(0)
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ΔZ
(1)
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(0)
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ΔM
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0 + T

(0)
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−ΔZ
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0 + ΔM

(1)
0 + T

(0)
0 ≤ 3

−ΔZ
(1)
0 + ΔM

(1)
0 − T

(0)
0 ≥ 0

ΔZ
(1)
0 + ΔM

(0)
0 + T

(0)
0 ≥ 0

ΔZ
(0)
0 + ΔM

(0)
0 ≥ 0

−ΔZ
(0)
0 + ΔM

(0)
0 + T

(0)
0 ≥ 0

ΔZ
(1)
0 + ΔZ

(0)
0 − ΔM

(0)
0 + T

(0)
0 ≥ 0

ΔM
(1)
0 + ΔZ

(0)
0 − ΔM

(0)
0 + T

(0)
0 ≥ −2

ΔZ
(0)
0 − ΔM

(0)
0 + T

(0)
0 ≥ −2

−ΔZ
(0)
0 − ΔM

(0)
0 + T

(0)
0 ≥ −2

ΔM
(0)
0 − ΔZ

(0)
0 + T

(0)
0 ≥ −2

(7)

The constraints when 1 ≤ j ≤ 6 can be calculated in the similar way. Therefore,
we can produce 2× (7× 13+1)+2× (7× 13+4) = 374 constraints to represent
the differential property for modular addition in the 1-round HIGHT.

Finally, we focus on the XOR operations, whose input difference are
(ΔX0

(0),ΔX0
(1), · · · ,ΔX0

(7)) and (ΔM0
(0),ΔM0

(1), · · · ,ΔM0
(7)), and the out-

put difference is (ΔY3
(0),ΔY3

(1), · · · ,ΔY3
(7)). When j = 0, the constraints are

shown in formula (8).
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ΔX
(0)
0 + ΔM

(0)
0 − ΔY

(0)
3 ≥ 0

ΔX
(0)
0 + ΔY

(0)
3 − ΔM

(0)
0 ≥ 0

ΔY
(0)
3 + ΔM

(0)
0 − ΔX

(0)
0 ≥ 0

ΔX
(0)
0 + ΔM

(0)
0 + ΔY

(0)
3 ≤ 2

(8)

The constraints when j ≥ 1 can be calculated in the same way. Thus, we have
2 × 4 × 8 = 64 constraints for XOR operation in the 1-round HIGHT. So far, we
construct a complete MILP model for 1-round HIGHT. In total, we have 256 +
374 + 64 + 1 = 695 constraints to exactly describe the difference ΔX → ΔY .

4.3 Comparison of Constraints and Variables in the MILP Model

In order to distinguish these two types of MILP models and also for the con-
venience of our statement in this paper, the MILP model without adding new
constraints is named as the original MILP model, and the MILP model with
new constraints is named as the refined MILP model.

We establish the differential MILP model for r-round HIGHT. The original
MILP model have 776r + 2 constraints and 214r + 65 variables for the r-rounds
HIGHT, but the refined MILP model for r-round HIGHT only needs 694r + 2
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constraints and 108r+65 variables, Figs. 4 and 5 show the number of constraints
and variables in the original and the refined differential MILP model for the first
12-round HIGHT, respectively.

Fig. 4. Comparison of the number of constraints in the original and refined differential
MILP model for the first 12-round.

As you can see in Fig. 4, the original model has 7762 constraints for the
10-round HIGHT, while the refined model has only 6942 constraints, in compar-
ison, 820 constraint inequalities are reduced. In Fig. 5, the original model has
2205 variables for the 10-round HIGHT, while the refined model has only 1145
variables, 1060 variables are reduced.

We establish the linear MILP model for r-round HIGHT. The original MILP
model have 736r+2 constraints and 288r+65 variables for the r-rounds HIGHT,
but the refined MILP model for r-round HIGHT only needs 640r+2 constraints
and 192r + 65 variables, Figs. 6 and 7 show the number of constraints and vari-
ables in the original and the refined linear MILP model for the first 12-round
HIGHT, respectively.

As you can see in Fig. 6, the original model has 7362 constraints for the
10-round HIGHT, while the refined model has only 6402 constraints, in compar-
ison, 960 constraint inequalities are reduced. In Fig. 7, the original model has
2945 variables for the 10-round HIGHT, while the refined model has only 1985
variables, 960 variables are reduced.
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Fig. 5. Comparison of the number of variables in the original and refined differential
MILP model for the first 12-round.

Fig. 6. Comparison of the number of constraints in the original and refined linear
MILP model for the first 12-round.
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Fig. 7. Comparison of the number of variables in the original and refined linear MILP
model for the first 12-round.

5 The Differential and Linear Cryptanalysis for HIGHT

Based on the refined MILP model, according to Sect. 4.2, we generate the differ-
ential and linear MILP models in “lp” format [14] for HIGHT through a small
python program, and call Gurobi 7.0.2 to solve it. There are 108r + 65 variables
and 694r + 1 constraints for r-round HIGHT in differential MILP model, and
there are 192r + 65 variables and 640r + 2 constraints for r-round HIGHT in
linear MILP model. The MILP model was solved on a server, the server config-
uration is shown in Table 3.

Table 3. Experimental environment for solving the MILP model

Item Configuration

CPU Intel Xeon E7-4820 v2

RAM 512 GB

OS Windows Server 2008 R2 Enterprise

Software Python3.5, Gurobi7.0.2

5.1 The Differential Cryptanalysis for HIGHT

By solving the refined differential MILP model, the probability of differential
characteristic for reduced-round HIGHT obtained by our refined MILP model is
listed in Table 4, the pr denotes the probability of differential characteristic for
the r-round HIGHT.
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Table 4. The differential cryptanalysis results for refined MILP model application to
HIGHT

Rounds #variable #constraint log2pr Timing(s)

1 173 695 0 1

2 281 1389 0 1

3 389 2083 −3 15

4 497 2777 −8 130

5 605 3471 −11 636

6 713 4165 −15 8362

7 821 4859 −19 18456

8 929 5553 −25 41251

9 1037 6247 −30 125565

10 1145 6941 −38 489785

11 1253 7635 −45 1012556

12 1361 8329 −53 1801255

13 1469 9023 −61 2518256

14 1577 9717 <−64 -

From Table 4 we know that the refined MILP model for the 11-round HIGTH
consists of 1253 0-1 variables, 7635 constraints. The MILP model can be solved
within 1012556 s and we find the better probability of differential characteris-
tic for 11-round HIGHT is 2−45. Note that the probability of the best single-
key characteristic previously published covering 11-round is 2−58. Furthermore,
using the refined tool, we obtain the new single-key differential characteristics for
HIGHT, which cover larger number of rounds. We obtain the 12- and 13-round
single-key differential characteristics of HIGHT with probability 2−53 and 2−61.
For the 14-round HIGHT, the optimal probability for differential characteristic
is less than 2−64. The probability of success for an exhaustive search, thus, we
concluded that the all-round HIGHT has a sufficient resistance to differential
attacks.

Finally, the differential trails for 12 and 13-round HIGHT are listed in
Tables 5 and 6, respectively.

In order to clarify that the refined MILP model can solve more efficiently,
we establish the MILP model for the first 9-round HIGHT, and solve the MILP
model in the same experimental environment. In less than 10 days, the original
differential MILP model of the first 9-round HIGHT was solved, and the optimal
differential probability is the same as Table 4. But the time expendure of round
1 to 9 is 1 s, 1 s, 123 s, 568 s, 2135 s, 21268 s, 48392 s, 124536 s and 671258 s,
respectively. Figure 8 shows a comparison of the solve time between the original
and the refined differential MILP model for the first 9-round HIGHT.
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Table 5. Differential trail for 12-round HIGHT

Rounds Difference log2pr

0 00008227213AEA01 −0

1 000027A03A4E0100 −6

2 0000A0B84E010000 −6

3 0000B8C801000000 −4

4 0000C80100000000 −4

5 0000010000000000 −3

6 0001000000000000 −1

7 0100000000000082 −2

8 00000000009C8201 −3

9 000000039C7A0100 −8

10 00E803BC7A010000 −5

11 E800BCF801000002 −6

12 00B6F801009002E8 −5

Probability 2−53

Table 6. Differential trail for 13-round HIGHT

Rounds Difference log2pr

0 80008AC28A01A0BB −0

1 0000C2080128BB80 −6

2 000008E528E98000 −10

3 0000E5A8E9800000 −1

4 0000A82C80000000 −8

5 00002C8000000000 −2

6 0000800000000000 −3

7 0080000000000000 −0

8 80000000000000C3 −3

9 000000000072C380 −4

10 0000000C72E98000 −9

11 00A70CF2E9800000 −4

12 A700F22A80000002 −6

13 007B2A80009002A7 −5

Probability 2−61
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Fig. 8. Comparison of the solve time in the original and refined differential MILP
model for the first 9-round HIGHT.

From Fig. 8 we know that the original differential MILP model can be solved
within 671258 s for the 9-round HIGHT. Nevertheless, the refined differential
MILP model just needed 125565 s. Comparatively speaking, the solve time of
the refined MILP model is 5 times faster than the original MILP model.

5.2 The Linear Cryptanalysis for HIGHT

By solving the refined linear MILP model, the correlation of linear approxima-
tion for reduced-round HIGHT obtained by our refined MILP model is listed in
Table 7, the corr denotes the correlation of linear approximation for the r-round
HIGHT.

For linear attack, from Table 7 we know that linear approximation for the
10-round HIGHT with correlation 2−25, the correlation of the best linear approx-
imation previously published covering 10-round is 2−26. Moreover, we obtain the
new linear approximation for 11-round HIGHT with correlation 2−31, the max-
imum linear bias is ε2 = 2−64, then the linear attack on the 11-round HIGHT
require 264 known plaintext, but the all-round HIGHT require plaintext is cer-
tainly greater than 264. Therefore, it can be concluded that all-round HIGHT
are sufficiently resistant to linear attack. Finally, the linear trail for 11-round
HIGHT is listed in Table 8.

In order to clarify that the refined MILP model can solve more efficiently,
we establish the MILP model for the first 8-round HIGHT, and solve the MILP
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Table 7. The linear cryptanalysis results for refined MILP model application to
HIGHT

Rounds #variable #constraint log2corr Timing(s)

1 257 642 0 1

2 449 1282 −1 1

3 641 1922 −2 30

4 833 2562 −4 100

5 1025 3202 −6 207

6 1217 3842 −9 970

7 1409 4482 −12 8216

8 1601 5122 −16 165348

9 1793 5762 −22 464156

10 1985 6402 −25 986423

11 2177 7042 −31 1865719

12 2369 7682 - >30 days

Table 8. Linear trail for 11-round HIGHT

Rounds Mask log2corr

0 3863C24B000001C2 −0

1 01C200000001D638 −5

2 0000000001F65201 −4

3 0000000134530000 −4

4 0000013400000000 −2

5 0001000000000000 −1

6 0100000000000000 −0

7 C200000000000001 −1

8 0C000000000001C2 −3

9 160000000001F60C −2

10 6000000001A44016 −6

11 B000000166601A60 −3

Correlation 2−31

model in the same experimental environment. In less than 10 days, the original
linear MILP model of the first 8-round HIGHT was solved, and the optimal
linear correlation is the same as Table 7. But the time expendure of round 1 to
8 is 1 s, 157 s, 882 s, 5029 s, 18653 s, 79523 s and 4264131 s, respectively. Figure 9
shows a comparison of the solve time between the original and the refined linear
MILP model for the first 8-round HIGHT.
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Fig. 9. Comparison of the solve time in the original and refined linear MILP model for
the first 8-round.

From Fig. 9 we know that the original linear MILP model can be solved
within 426413 s for the 8-round HIGHT. Nevertheless, the refined differential
MILP model just needed 165348 s. By contrast, the solve time of the refined
MILP model is 2.5 times faster than the original MILP model.

6 Conclusion

In this paper, we analyze the differential propagation for the 2-XOR operations
in detail, and improve Sun et al.’s method for describing XOR operation with
refined constraints. In the refined MILP model, the number of variables and
constraints are reduced, which leads to quickly solve for the refined MILP model.

As an application, we implement our refined MILP model to the lightweight
block cipher HIGHT. Compared with the existing attack results, the refined
MILP model searches the optimal differential characteristic and linear approxi-
mation for HIGHT, the differential and linear trails increased to 13-round and
11-round. These results indicate that the refined MILP model is more efficient
in practical cryptanalysis.
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