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Abstract This chapter describes the nullor-based modelling of active devices from
the circuit level of abstraction. After a brief overview on the nullor concept and its
properties, the modelling of active devices not only at the voltage-mode but also at the
current-mode and the mixed-mode of operation from two-port and four-terminal
network point of view are described in details. The circuit analysiswith nullors and the
topological approach for transfer function generation by two-graph tree enumeration
as well are presented. The generalized topological formula with homogeneous
parameters is proved for all the circuit functions, and a simple representation of the
four types of controlled sources by admittances is proposed, that allows a uniform
treatment of the entire circuit in terms of admittances. In order to implement the
procedure, the rules to automatically generate the two graphs and to enumerate
the common spanning trees are presented. Some simplifications in the circuit and in
the two graph structure before tree generation and a graph representation on levels,
improve the efficiency of the tree enumeration procedure. The original approach, in
which each edge is labelled with an admittance term, could handle only one type of
active element, namelyVCCS (voltage controlled current source), but themethodwas
further developed by many researchers for general linear circuits to include virtually
all active elements. Some techniques to convert theCCVSs (current controlled voltage
sources), VCVSs (voltage controlled voltage sources) and CCCSs (current controlled
current sources) in equivalent schemes containing only VCCSs together with
admittances and the inductance modelling proposed in the literature are discussed.

1 Introduction

According to the symbolic analysis principles, the Nodal Analysis Method
(NAM) is restrictive because the admittance matrix must contain only the elements
compatible with the Nodal Analysis (NA). The problem can be easily resolved
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through the Modified Nodal Analysis Method (MNAM), adding a row and a col-
umn for each element which is not compatible with the classic Nodal Analysis
Method [1–7]. One of the problems generated by this kind of approach is related to
the size of the admittance matrix. This matrix will become bigger, according to the
structure of the circuit and types of its elements.

Regarding the models to be used in the analogue circuit analysis, the requirement
of a high accuracy could lead to complicated calculations and then compact models
are preferred mainly for the use of much more simple equations [3–7]. These
models are more effective for the optimization of design and simulation time during
the analysis process. From this point of view, the nullors proved already their
efficiency in the active devices modelling. In the models based on nullors, the
parasitic elements can be included to analyze their contribution to the analogue
circuit response. All the four controlled sources can also be represented with
equivalent circuits using nullor elements. Consequently, the nullors are very useful
for the analogue circuits modelling because the circuit topology can be described
using only two-terminal components like resistors, capacitors, nullators, norators,
independent and controlled sources. Considering that the model should be devel-
oped in the simplest manner and the accuracy of the circuit behaviour simulation
must be in acceptable limits, this chapter will show the problems related to the
small-signal models of the active devices modelled with nullors.

The nullator is an ideal circuit with two terminals (Table 2.1a), which is char-
acterized by null values for the current and voltage at the terminals. It has two
equations: i = 0, v = 0.

The norator is an ideal circuit with two terminals (Table 1b), which is charac-
terized by random values for the current (i) and voltage (v) at the terminals. In other
words, the norator does not have any equation. The current and the voltage values
of this element are affected only by the external circuit connected to its terminals.

These two circuit elements can be used only in norator-nullator pairs called
nullors (Table 1c), which has the number of equations equal to the number of gates.
The nullor can be considered as an idealized operational amplifier, which has at the
input gate null voltage and current and at the output gate an undetermined voltage
and current (obtained by multiplying the null inputs by an infinite factor gain). In
Fig. 1d, e is presented the symbol for the current (voltage) mirror.

Techniques for the analysis of linear/linearized circuit have been performed
using the nullator and norator as theoretical active devices, [6–14]. Tellegen was the
first who presented the ideal operational amplifier theory and later, in 1964, Carlin
considered nullators and norators as single active devices in the circuit analysis—
called nullor [5]. He thought that these active devices cannot be built physically.
Tellegen also took in consideration that these devices must be seen only as
mathematical models without any physical support. Table 1 presents the behaviour
of the nullators, norators and nullors from the point of view of the voltage,
respectively of the current, in Gv

—the voltage graph and, respectively Gi
—the

current graph, [1–9].
The input port of the nullor is modelled by the nullator which is characterized by

two equations:
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v1 = v2 = arbitrary, i1 = i2 = 0. ð1Þ

So, the nullator is simultaneously an open-circuit in Gi current graph and a
short-circuit in Gv voltage graph. The output port of the nullor is modelled by the
norator where both, the voltage and the current have arbitrary values:

v1 ≠ v2 = arbitrary, i1 = i2 = arbitrary ð2Þ

With these properties the nullor is a two-port element accepted as a universal
active element [1–16, 30–34]. This concept means that the nullor along with
capacitors and resistors can be used to design a maximum number of functions with
the minimum number of active devices. If a suitable set of linear and nonlinear

Table 1 The behaviour of the nullators, norators and nullors

Symbol Definitions Voltage graph Gv Current graph Gi

Nullator
(a)

v1 = v2
i1 = i2 = 0

v1 = v2 ⇒ n1 ≡ n2
any i1 = i2

v1
i1

v2 i2
any v1, v2
i1 = i2 = 0

Norator
(b)

any v1, v2
any i1 = i2

v1
i1

v2 i2

any v1, v2
i1 = i2 = 0

v1 = v2 ⇒ n1 ≡ n2
any i1 = i2

Nullor
(c)

i1 = i2 = 0
v1 = v2
any v3, v4
any i3 = i4

v1 = v2 = arbitrary

⇒ n1 ≡ n2,

any i1 = i2,
i3 = i4 = 0, any v3 ≠ v4

any v1 ≠ v2 v1,
i1 = i2 = 0;
v3 = v4 ⇒ n3 ≡ n4
any i3 = i4
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passive elements is available, then no active element other than nullors are needed
to implement any linear or nonlinear circuit function. So nullators, norators,
resistances, along with capacitances can synthesize a complete set of linear or
linearized equations.

2 Nullor Equivalences

From the beginning, the nullor circuit has been considered very efficient for the
analog circuit analysis, modelling and synthesis. Therefore, there are many records
regarding methods and algorithms based on nullor circuits, used for the active
devices analysis and modelling [19–34]. Because any analog network can be
modelled with nullators, norators and impedances, it is useful to mention the
equivalence between some connections. These are shown in Fig. 2. For instance, in
Fig. 2a, a current cannot flow from a to b since the current through the nullator is
zero, so a series connection of the nullator and norator is equivalent to an
open-circuit. In Fig. 2b, the current can flow from a to b through the norator, also
the voltage across a and b becomes zero according to the property of the nullator, so
a parallel connection of the nullator and norator is equivalent to a short-circuit. The
remaining connections have equivalences according to the nullator and norator i−v
characteristics.

In another approach, the nullors along with grounded resistors can be manipu-
lated in order to obtain inverting properties, features that the nullator and the norator

Fig. 1 a Nullator symbol; b Norator symbol; c Nullor symbol; d Current mirror; e Voltage mirror
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cannot model by themselves [30, 31]. The main purpose of the introduction of the
inverting properties is that the behaviour of some active devices involves inverting
the voltage and current input-signals. In this sense, the Current-Mirror (CM) and the
Voltage-Mirror (VM), both as active devices, can perform this task and their
behaviour also should be modelled with nullors, [30–34]. Thus, by manipulating
the nullor along with grounded resistors, the behaviour of a CM or of a VM, both
with ideal unity-gain can easily be obtained, as shown in Fig. 3, [1].

Therefore, by analyzing the equivalent circuits, one can see that the VM, shown
in Fig. 3a, is characterized by:

v2 = − v1 = arbitrary, i1 = i2 = 0. ð3Þ

and the CM, shown in Fig. 2b, is characterized by:

v2 ≠ v1 = arbitrary, i1 = i2 = arbitrary ð4Þ

At the end, the inverting behaviour of the nullator and norator is achieved. In
[24, 31, 32], the nullor—based models of the VM and CM include parasitic ele-
ments. In the same manner as for the nullor, equivalences between the combinations
of nullators, norators, CMs, VMs and impedances can be obtained. Note, however,
that if v1 or v2 terminal from Fig. 3a is grounded and by applying the equivalences
shown in Fig. 1, the VM is reduced to a nullator. In the same manner, if any
terminal in Fig. 3b is grounded by applying the equivalences shown in Fig. 2, then
a norator is obtained.

Fig. 2 Nullator and norator equivalences

Circuit Analyses with Nullors 95



3 Loop Current Method for Circuits with Nullors

As it is well-known, the loop current method is based on introducing the loop
currents as intermediary quantities which satisfy the first Kirchhoff’s current law
(KCL) and which can be determined by applying the Kirchhoff’s voltage law
(KVL) on the independent loops of the electric circuit.

Taking into account the definition of the nullator as a circuit element through
which the current does not flow, it is useful and recommended to choose loop
currents such that they do not flow through the branches that contain nullators. In
order to respect such a condition, the branches containing the nullators should be
eliminated by introducing an open-circuit between the terminals at which a nullator
is connected. This leads to a decrease of the number of independent loops (li) with
the nullator number (nn)

li = b− n+1− nn, ð5Þ

where: b—is the number of the circuit branches and n—is the number of the circuit
nodes.

Applying KVL on the independent loops li a system of independent equations
results from which we further can determine the loop currents.

The branch currents are expressed as an algebraic sum of the loop currents that
flow through the respective branch.

If the electric circuit contains current sources, the branches which contain such
sources cannot belong to a tree; a single loop current will be chosen to flow through
such branch. The loop current value will be given by the source current.

In order that the system of li equations does not contain as unknowns the norator
voltages, the li independent loops must not contain branches with norators.

Fig. 3 Nullor and grounded resistor-based VM (a) and CM (b)
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The norator branches are replaced by open-circuits while the branches with nul-
lators are kept.

The loop current equations corresponding to a number of li loops become:

∑
li

j=1
∑

h∈ lj½ �∩ lk½ �
Rh

0
@

1
AIlj = ∑

h∈ lk½ �
Eh, ð6Þ

where: Ilj—is the loop current corresponding to the lj loop and Eh—is the e.m.f of bh
branch.

If we consider the current and voltage graphs with their loop-branch incidence
matrices Bi and Bv(see Table 1), then the matrix form of the loop current equations,
[7, 9–14], can be written as follows:

BvRb Bi� � t
� �

Iib =Bv Eb +RbJbð Þ, ð7Þ

where, for example, Iib (Rb) is the loop current vector in the current graph Gi (the
diagonal matrix of the branch resistances).

Example 1 See (Figs. 4 and 5).
The loop current equations are obtained by applying the KVL on the indepen-

dent loops from the voltage graph (Fig. 6) and taking the currents from attached to
the loops from the current graph (Fig. 5). Proceeding in this manner, it results the
following system of Eqs. (8a) and (8b)

R3 ⋅ Il1 +R5 ⋅ Il1 +R4 ⋅ Il1 −R5 ⋅ Il2 = 0

R5 ⋅ Il2 +R2 ⋅ Il2 −R5 ⋅ Il1 = −E2

(
. ð8a; bÞ

From Eq. 8b it results:

Il2 =
−E2 + J1 ⋅R5

R2 +R5
. ð9Þ

From Eq. 8a it results:

Il3 =
− J1 ⋅ R3 +R5ð Þ+R5 ⋅ −E2 + J1 ⋅R5

R2 +R5

� �
R4

. ð10Þ

Fig. 4 Initial circuit to be
analyzed using loop current
method
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4 Nodal Analysis Method for Circuits with Nullors

The unknown variables of this method are represented by the n − 1 electric
potentials corresponding to the circuit nodes, excepting the nth node whose
potential is the reference potential and it is considered to be zero. These unknowns
satisfy KVL for any circuit loop. The computation of these unknowns is based on
KCL written in n − 1 nodes and on the generalized Ohm’s law to express each
branch current depending on the node potentials.

The equations of the node potentials for the circuits containing nullators will
have a different form taking into account that the voltage at the nullator terminals is
equal to zero, which results in a decrease of the number of the unknown potentials
(Fig. 7).

If the circuit contains norators, the norator currents should not be present in the
system of equations. This is why we choose sections that do not include the
branches with norators.

∑
N − 1

j=1
∑

h∈ lj½ �∩ lk½ �
Gh

0
@

1
AVj = − ∑

h∈ lk½ �
Jh +

Eh

Rh

� �
. ð11Þ

Fig. 5 Choosing of the loop
currents

Fig. 6 Loops for KVL
writing
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Considering the current and voltage graphs with their reduced node-branch
incidence matrices Ai and Bv(see Table 1) the matrix form of the nodal equations,
[7, 9–14], is:

AiGb Avð Þ t� �
Vv

n− 1 = −Ai GbEb + Jbð Þ, ð12Þ

where, for example, Vv
n− 1 (Gb) is the potential vector of the n − 1 independent

nodes from the voltage graph Gv (the diagonal matrix of the branch conductances).

Example 2 The nodal analysis method for the circuits containing nullors can be
applied as follows: KCT is written in the independent nodes of the current graph
and there are used the potentials associated to the n − 1 independent nodes from the
voltage graph. Applying the Nodal analysis method, we obtain the following
Eqs. (13)–(18) (Fig. 8):

Appling the KCL in the node (n1) it results:

V1

R3
= J1. ð13Þ

According to the KCL on the cut-set (S2) to obtain:

V2

R5
+

V2

R2
= − J1 −

E2

R2
. ð14Þ

From Eq. (13) it results:

V1 =R3 ⋅ J1. ð15Þ

From (14) we can obtain:

V2 =
R5 ⋅R2 ⋅ − J1 − E2

R2

� �
R2 +R5

, ð16Þ

Fig. 7 The equations of the node potentials for the branches containing nullators
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I4 =
V2 −V1

R4
=

R5 ⋅R2 ⋅ − J1 −
E2
R2

� �
R2 +R5

−R3J1
R4

, ð17Þ

I2 =
V2 −V4 +E2

R2
=

R5 ⋅R2 ⋅ − J1 −
E2
R2

� �
R2 +R5

+E2

R2
. ð18Þ

The values obtained for I2 and I4 are the same as those obtained by using the
loop method.

5 The Generalized Topological Formula for Transfer
Function Generation by Two-Graph Tree Enumeration

5.1 Introduction

One of the most important approaches for nonreciprocal circuit analysis is the
two-graph tree enumeration method, mainly due to Mayeda and Seshu [16]. The
original approach, in which each edge is labelled with an admittance term, could
handle only one type of active element, namely VCCS, but the method was further
developed by many researchers for general linear circuits to include virtually all
active elements. In [17] some techniques to convert the CCVSs, VCVSs and
CCCSs in equivalent schemes containing only VCCSs and admittances are intro-
duced, and some techniques to model an inductance proposed in the literature are
discussed. The resulted models have a bigger number of branches in the two graphs
and some supplementary nodes are introduced in the original circuit. The method

Fig. 8 Initial circuit to be analyzed using Nodal Analysis Method
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based on a two-graph representation using a unity gyrator to model the
non-admittance components was implemented [18] in order to obtain symbolic
network function expressions in other terms than admittances. The price paid by all
these approaches consists in the increase of the circuit complexity leading to a
bigger number of common spanning trees.

Topological formulas for transfer functions of active networks using tree enu-
meration method have been derived firstly by Mayeda and Seshu, but their pro-
cedure for determining the sign factor is tedious. In [15] the main results in this
direction up to that date are presented, and similar formulas are obtained while
modelling all the controlled sources by equivalent schemes containing only two
terminal elements and VCCSs. A sorting scheme is preferred to obtain symbolic
network functions from the node determinant of an augmented network.

Based on the original concepts of the two-graph tree enumeration method a
modelling technique of the four types of controlled sources has been elaborated and
a topological formula with homogeneous parameters for the transfer admittance has
been proved using the nodal approach [7]. Some innovative approaches to symbolic
generation of the transfer functions have been developed: an algorithm using sys-
tematic loop opening and closing, a diakoptic approach, and a procedure based on
graph decomposition on levels [7–14].

In this chapter, a set of rules for generating and using the two graphs is stated,
and the generalization of the topological formula to generate all network functions
is proved. These rules are applicable to a linear circuit containing: all four types of
linear controlled sources, resistors, inductors, capacitors, nullors (for ideal opamps
operating in the linear mode), and any multi-terminal or multiport circuit element
having an equivalent scheme made up only by two-terminal elements and con-
trolled sources. The generalized topological formula with homogeneous parameters
that we propose to generate the transfer functions, can handle our models for the
four types of controlled sources in a very efficient manner. Performing some
reductions in the structure of the two graphs and representing them on levels we
obtain an important improvement of the common tree enumeration process.

In Sect. 5.2 of this chapter we obtain the equivalent schemas in admittances that
model in the two graphs the four types of controlled sources starting from the
functional schemas with nullors. This representation makes possible the proof of the
generalized topological formula with homogeneous parameters, valid for any
transfer function of a lumped, linear and time-invariant circuit. Section 5.3 is
dedicated to this proof. It is shown that the numerators of all the four types of
transfer functions are identical and the treatment of the input/output ports according
to the transfer function to be generated is given.

Section 5.4 is dedicated to a very efficient algorithm for tree enumeration in a
graph represented on levels, which was implemented for network function gener-
ation, and Sect. 5.5 describes an efficient algorithm for sign factor generation. In
Sect. 5.6 the rules for automatic generation of the network functions are introduced,
and some techniques to increase the efficiency of the common spanning tree enu-
meration are discussed. The entire procedure of network function generation
including simplification after generation is illustrated in Sect. 5.7.
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5.2 Controlled Source Modelling in the Two Graphs

Consider two-port containing only linear passive two-terminal elements (resistors,
capacitors, and inductors). It is well known that any circuit function can be written
as a ratio of admittance polynomials using Kirchhoff’s topological formula. Each
monomial in these polynomials corresponds to the admittance value of a tree. This
property leads to a circuit graph whose edges have the admittances as their weights.

Kirchhoff’s type topological formulas have been developed byMayeda and Seshu
[16] for circuits containing linear passive two-terminal elements and voltage con-
trolled current sources (VCCS) only. In these formulas each monomial corresponds
to a common tree in the current graph Gi and the voltage graph Gv in which each
passive element is represented by an edge having the admittance as its weight; a
VCCS is modelled by an edge with the same weight (the control admittance) but with
different positions in the two graphs: the position of the controlling branch in Gi and
the position of the controlled branch in Gv. Gi is used to write the Kirchhoff’s current
law whileGv is used for the Kirchhoff’s voltage law. The constitutive equations of all
circuit elements are written as relationships between the Gi currents and Gv voltages.

Consider now a circuit containing two terminal elements and control sources of
any type. In order to extend the abovementioned formulas to circuits with passive
two-terminal elements and any type of controlled sources we build equivalent
schemes of these sources using nullators and norators (nullors). A nullor equivalent
scheme of a controlled source leads to its Gv and Gi representations considering the
following properties: from the current point of view the nullator is an open-circuit
while the norator is a short-circuit, and from the voltage point of view the nullator is
a short-circuit while the norator is an open-circuit.

Starting from the equivalent schemes with nullors in Fig. 9, the two graph
models of the controlled sources using only two terminal admittances can be built
as it is shown in Fig. 9. The parameters associated with the controlled and the
controlling branches are presented in Table 3. The subscript C is used for the
controlling branch and the subscript c for the controlled one.

As it is shown in Fig. 9 the four types of controlled sources are modelled in the
two graphs as follows:

• CCVS is modelled by a branch having the transfer impedance subscript identical
with the controlled branch Zc =ZcC , having as parameter Yc =1 ̸ZcC, and which
takes distinct positions in the two graphs:

– In Gi it is connected to the controlling port, and it is oriented like the
controlling current, the controlled branch being short-circuited;

– In Gv this branch is connected to the controlled port, having the same
direction with the voltage across this branch, the controlling branch being
short-circuited.

In this way, a CCVS leads to a node contraction in each graph: in Gi the nodes of
the controlled branch coincide, while in Gv the nodes of the controlling branch
coincide. In order to keep the numbering of nodes in natural order (that is especially
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Fig. 9 Controlled source modelling in the two graphs
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useful in tree enumeration and in the sign factor computation), we reduce by one all
node numbers greater than the number of the eliminated node.

For programming needs we keep in Gi the node towards the voltage across the
controlled branch is oriented (c’’), the other node number (c’) being allocated to the
new node introduced to identify the controlling branch.

• VCCS is modelled by a branch having the transfer admittance subscript identical
with the controlled branch Yc = YcC , and which takes distinct positions in the
two graphs:

– In Gi it is connected to the controlled port, and it is oriented like the con-
trolled current, the controlling branch being open;

Fig. 9 (continued)
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– In Gv this branch is connected to the controlling port, having the same
direction with the controlling voltage, the controlled branch being open.

This controlled source does not modify the number of the two graph nodes.

• A VCVS is equivalent with a VCCS Jm = Im =YCVCð Þ, in cascade with a CCVS
with negative trans-impedance (Ec = − Zcð Þ ⋅ − Imð Þ), and it is modelled

– In Gv by two branches having the controlled branch number respectively that
of the controlling branch, and the parameters presented in the Table 2; they
are connected to the controlled branch, respectively to the controlling one,

Fig. 9 (continued)
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having the direction of the voltage across the controlled source, and
respectively of the controlling voltage;

– In Gi the two branches are connected in series, having the nodes m’ and m”
that are supplementary nodes. In order to keep the current graph node
numbering, the number of the node m” will be that towards the voltage
across the controlled branch is oriented (c”≡ m”); the number of the
eliminated node (c’) will be attached to the other one (c’≡ m’). The con-
trolled branch is oriented from c” to c’, and the controlling one from c’ to c”.

• A CCCS is equivalent with a CCVS connected in cascade with a VCCS, being
modelled

– In Gi by two branches having the controlled branch number and respectively
those of the controlling branch, and the parameters presented in the Table 2;
these branches are connected to the controlled port, respectively to the
controlling one, having the direction of the controlled current, respectively of
the controlling one;

– In Gv the two branches are connected in parallel and they have two common
nodes, namely the node in which the controlled current goes in (c”) and the
other one having the number of the node eliminated by short-circuiting of the
controlling branch in Gv (C’). The two branches have the same direction in
respect of their terminals.

Remarks

1. The other circuit elements (resistors, uncoupled inductors, capacitors) keep in
the two graphs the same position as in the initial circuit, and are represented by
their admittances.

2. The magnetic couplings are modelled by inductors and CCVSs [10].
3. The above modelling technique of the four controlled sources leads to two

directed graphs having admittance branches only.
4. The two graphs have the same number of nodes, branches and loops. They differ

only by the location of the controlling and controlled branches of the four types
of controlled sources.

5. Because any branch contraction in the two graphs causes the elimination of one
node, the number of nodes in Gi and Gv is smaller than in the initial circuit with
the number of CCVSs: nGi = nGv = n− nCCVS.

In Table 3 is given a comparison with some reported techniques taking into
account the number of branches used to model the circuit elements in both graphs
and the supplementary node number.

106 M. Iordache et al.



5.3 Generalized Topological Formula for Network Function
Generation

Let us consider a linear nonreciprocal circuit (LNC) with null initial (i.c.) state and
without independent sources and its associated model for operational calculus
(Laplace). If we add to the input port an independent current source (Fig. 10), we
can define the transfer impedance

Zoi = d Vo

Ji Io =0

����� . ð19Þ

The nodal equations of the circuit take the matrix form:

Yn− 1Vn− 1 = Ji, ð20Þ

where Ji can be expressed as

Ji = Y Vo′ −Vo′′ð Þ, ð21Þ

with

Y = d 1
Zoi

. ð22Þ

Table 2 Controlled source equations

Controlled Equations Associated Parameter

Source Controlled branch Controlling branch
CCVS VC =0; Yc =1 ̸Zc Yc =1 ̸Zc
VCCS IC =0; Yc Yc
VCVS IC =0; Ec =Vc =AcCVC = ZcYCVC Yc =1 ̸Zc =1 ̸AcC YC =1 S
CCCS VC =0; Yc =BcC YC =1 ̸ZC =1 S

Table 3 Comparison with some reported techniques

Lin’s Models
[17]

Rodanski’s Models
[18]

Our Models

Controlled
source

Branches in
the two graphs

Extra
nodes

Branches in
the two graphs

Extra
nodes

Branches in
the two graphs

Extra
nodes

Resistor
inductor
capacitor

3 1 3 1 1 0

CCVS 4 1 5 2 1 −1
VCVS 3 1 3 1 2 0
CCCS 2 or 4 0 or 2 3 1 2 0
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The Eq. (21) is equivalent to the substitution of Ji by a VCCS. Substituting
Eq. (21) in (20) and rearranging we obtain:

Y
0
n− 1Vn− 1 = 0. ð23Þ

Consider the current and voltage graphs with their reduced node-branch inci-
dence matrices Ai and Av.

Writing the Kirchhoff’s current law in the current graph we obtain:

AiIib =0, ð24Þ

where the branch currents can be expressed as:

Iib =YbVv
b. ð25Þ

The branch voltages in the voltage graph are:

Vv
b = ðAvÞtVv

n− 1. ð26Þ

Substituting (26) in (25) and the last one in (24) we obtain:

AiYbðAvÞtVv
n− 1 = 0. ð27Þ

If we denote

AiYbðAvÞt =Y
0
n− 1, ð28Þ

we obtain (23).
Because the system (27) contains linear dependent equations it follows:

detðAiYbðAvÞtÞ=0. ð29Þ

Yb being a symmetrical matrix, applying Binet-Cauchy theorem [6, 7] it results:

detðAiYbðAvÞtÞ= ∑
nc

k=1
Δi

kΔ
v
kPk, ð30Þ

where:Δi
k and Δv

k are determinants of order n − 1, made up with elements of Ai and
(Av)t matrices, taking the k-th group of n − 1 columns of Ai and respectively n − 1
rows of (Av)t; Pk is the product of the operational branch admittances of Ai columns,
respectively of (Av)t rows that make up the k-th group; nc =Cn− 1

b .
Because Δi

k and Δv
k are nonzero if and only if the k-th groups of branches

corresponding to the n − 1 columns (rows) of Ai ((Av)t) form trees in Gi (Gv) [7],
(30) may be written as:
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detðAiYbðAvÞtÞ= ∑
tc

k=1
Δi

kΔ
v
kPk = ∑

tc

k =1
εkPk =0, ð31Þ

where: tc is the total number of common trees of Gi and Gv; Pk is the operational
admittance product of the common tree Tk branches; εk represents the sign factor of
the pair k of common trees.

In the expression (31) there are two kinds of terms: terms that contain the
admittance Y, and the others that do not contain it, so that it follows:

detðY0
n− 1Þ= ∑

tc

k=1
εkPk = YT1ðsÞ+ TpðsÞ=0, ð32Þ

where:

T1ðsÞ= ∑
k∈ ðT1cÞ

εktk, ð33Þ

Tp sð Þ= ∑
k∈ ðTpcÞ

εktk, ð34Þ

and εk =±1—is the sign factor for each common spanning tree of the pairs (Gi
1,G

v
1),

respectively (Gi
p,G

v
p), where G

i
1 (G

v
1) is the current (voltage) graph containing a unit

weight branch at the input (output) port, and Gi
p (Gv

p) represents the current (volt-
age) graph in which the input/output ports are in short-circuit or open according to
the generated network function (see Table 4); T1cðTpcÞ is the set of the common

Fig. 10 The LNC transfer impedance definition

Table 4 Treatment of the
input/output ports

The circuit The circuit port
Function Input Output

Zoi Open Open
Yoi Short-circuit Short-circuit
Aoi Short-circuit Open
Boi Open Short-circuit
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spanning trees of Gi
1,G

v
1 (Gi

p,G
v
p); tk is the product term equal to the product of

branch admittances of the common spanning tree k.
From Eq. (32) we obtain:

Y = −
Tp sð Þ
T1 sð Þ . ð35Þ

According to (22) it results that

Zoi = −
T1 sð Þ
Tp sð Þ . ð36Þ

In the following we shall prove that, according to this approach, any transfer
function of a lumped, linear, and time-invariant circuit, can be expressed in the
form:

Foi = −
T1 sð Þ
Tp sð Þ , ð37Þ

all the four transfer functions having the same numerator, the denominator being
different depending on the way the input and the output ports of the circuit are
treated. From the above it results that the problem of generating all product terms in
the irreducible expression of the transfer function is converted to the problem of
finding all common spanning trees of the two graphs.

Let us consider a two-port circuit, containing any linear multi-terminal circuit
elements that have an equivalent scheme made up only by two-terminal circuit
elements and controlled sources. Modelling the controlled sources in the two graphs
by two terminal circuit elements as in Fig. 9 allows a uniform treatment in
admittances of the entire linear nonreciprocal circuit (LNC).

1. Transfer impedance

Using the circuit represented in Fig. 11, we define its transfer impedance as

Z
0
oi =

V
0
o

Ji
, ð38Þ

from which we can obtain the LNC transfer impedance:

Zoi = lim
Yi → 0
Yo→ 0

Z
0
oi = −

T1 sð Þ
Tp sð Þ , ð39Þ

where:
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• T1 is the sum of the algebraic values of the common trees in the graphs that
contain the unity branch at the input (in Gi) respectively at the output (in Gv);

• Tp is the sum of the algebraic values of the common trees in Gi and Gv obtained
by opening the input and output ports.

2. Transfer admittance

The transfer admittance of the circuit in Fig. 12 is:

Y
0
oi =

I
0
o

Ei
=

YoV
0
o

Ji ̸Yi
= YiYoZ

0
oi, ð40Þ

and those of the LNC results as:

Yoi = lim
Yi →∞
Yo→∞

Y
0
oi = lim

Yi →∞
Yo→∞

YiYoZ
0
oi. ð41Þ

Using the generalized Feussner formula for two branches we obtain:

Yoi = lim
Yi →∞
Yo→∞

YiYoZ
0
oi =

= − lim
Yi →∞
Yo→∞

YiYo
T1

YiYoT
0
Yi, scYo, sc +YiT

0
Yi, scYo, op + YoT

0
Yi, opYo, sc +T 0

Yi, opYo, op

=

=
− T1

T 0
Yi, scYo, sc

= − T1
TY
p
,

ð42Þ

Fig. 11 The general scheme for transfer impedance definition

Fig. 12 The general scheme for transfer admittance definition
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where: T1 is the same as in the case of Zoi, and TY
p =T

0
Yi, scYo, sc is the sum of the

algebraic values of the trees that are common to the Gi and Gv obtained by
short-circuiting the input and output ports.

3. Voltage Gain
Using the circuit in Fig. 13 we define the voltage gain as:

A
0
oi =

V
0
o

Ei
=

V
0
o

Ji ̸Yi
=

YiV
0
o

Ji
=YiZ

0
oi, ð43Þ

from which we obtain the LNC transfer function

Aoi = lim
Yi →∞
Yo→ 0

A
0
oi = lim

Yi →∞
Yo→ 0

YiZ
0
oi. ð44Þ

Applying the generalized Feussner formula we obtain:

Aoi = lim
Yi →∞
Yo→ 0

YiZ
0
oi =

= − lim
Yi →∞
Yo→ 0

Yi
T1

YiYoT
0
Yi, scYo, sc +YiT

0
Yi, scYo, op + YoT

0
Yi, opYo, sc +T 0

Yi, opYo, op

=

=
− T1

T 0
Yi, scYo, op

= − T1
TA
p
,

ð45Þ

where: T1 is the same as in the case of Zoi and Yoi, and TA
p is the sum of the

algebraic values of the trees that are common to the Gi and Gv obtained by
short-circuiting the input port and opening the output port.

4. Current gain
For the circuit in Fig. 14 the current gain is:

Fig. 13 The general scheme for voltage gain definition
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B
0
oi =

I
0
o

Ji
=

YoV
0
o

Ji
=YoZ

0
oi, ð46Þ

and for the LNC we obtain

Boi = lim
Yi → 0
Yo →∞

B
0
oi = lim

Yi → 0
Yo →∞

YoZ
0
oi, ð47Þ

that means

Boi = lim
Yi → 0
Yo→∞

YoZ
0
oi =

= − lim
Yi → 0
Yo→∞

Yo
T1

YiYoT
0
Yi, scYo, sc +YiT

0
Yi, scYo, op +YoT

0
Yi, opYo, sc +T 0

Yi, opYo, op

=

=
− T1

T 0
Yi, opYo, sc

= − T1
TB
p
,

ð48Þ

Fig. 14 The general scheme for current gain definition

Fig. 15 Current and voltage graphs that contain the unit branch
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where: T1 is the same as in the above three cases, and TB
p is the sum of the

algebraic values of the trees that are common to the Gi and Gv obtained by
opening the input port and short-circuiting the output port.

From the above analysis, we can conclude that to obtain all the transfer functions
the input/output ports must be treated as in Table 4.

For the automatic generation of the graphs Gi
1 and Gv

1 the input gate of the
analyzed circuit is connected to a current source that is controlled by the output gate
voltage, which has the transfer admittance equal to the unit [27]. According to the
Sect. 5.2 it will be represented in the two graphs as in Fig. 15.

5.4 Algorithm for Tree Enumeration in a Graph
Represented on Levels

We have proved that the network functions generation by the topological method of
tree enumeration, in the case of nonreciprocal circuits, means the generation of all
common spanning trees. Since the number of graph trees increases rapidly with the
graph size, a highly efficient algorithm is needed. This problem was widely studied
and several algorithms of varying efficiency have been proposed in the literature.
Ones of the well-known are Minty’s algorithm which has the complexity O(b + n
+bt), and the algorithm due to Gabow and Myers having the complexity O(b + n
+nt), where b is the number of branches, n is the number of graph nodes, and t is
the number of spanning trees.

The most used is, however, Char’s algorithm, that some studies [23] show it to
be superior to the other ones. This algorithm generates for the beginning an initial
spanning tree which needs O(b + n) operations, and starting from this one it
enumerates all the spanning trees of the graph. During this enumeration, the
algorithm generates also certain sequences which are not trees, called non-tree
sequences. The original algorithm has the complexity O(b + n+n(t + t0)), where t0
is the number of non-tree sequences.

An implementation, called MOD-CHAR, of Char’s spanning tree enumeration
algorithm, introduces several heuristics for the selection of the initial spanning tree
and for decreasing the number of the non-tree sequences. With these improvements
for almost all graphs, the complexity of MOD-CHAR is O(nt) [21–23]. It seems
that for large dense graphs the complexity of MOD-CHAR algorithm is O(t), being
superior to Char’s original algorithm, while for sparse graphs, it seems that Char’s
original implementation is superior to MOD-CHAR [22].
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In the following we present an efficient algorithm for the enumeration of all the
common spanning trees based on a representation on levels of the two graphs, and
on a sequential computation (by substituting a branch in the previous common
spanning tree), which has the complexity O(t) for all kinds of graphs [13].

Let us consider the connected graph represented in Fig. 16a, and described on
levels as in Fig. 16b, where:

n, b, l—represent the number of nodes, branches, and levels, respectively;
b[i] = (xi, yi)—is the branch i, connected between the nodes xi and yi; the node

set is ordered so that

– level (xi) ≤ level (yi);
– ∀ 0 ≤ i ≤ b − 1, level (xi) ≤ level (xi +1) and level (yi) ≤ level (yi +1);

niv[j] is the first node of level j, with 0 ≤ j ≤ l;
bet[k] is the first branch which connects the levels k and k + 1, where 0 ≤ k≤

l − 1;
inter[m] is the first branch which connects two nodes from the level m, where 1

≤ m ≤ l − 1;
The algorithm for tree enumeration is the following:

9

7
8

6

0

3
2

5

1

4

0
1

2

3 5

6
7 8
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12

13

4

n = 10
b = 14
l = 5
niv = (0,1,4,7,9)
bet = (0,6,9,13)
inter = (3,12)

b[0]=[0,1]       b[1]=[0,2]
b[2]=[0,3]       b[3]=[1,2]
b[4]=[2,3]       b[5]=[2,3]
b[6]=[1,4]       b[7]=[2,5]
b[8]=[3,6]       b[9]=[4,7]
b[10]=[5,7]
b[11]=[6,8]
b[12]=[7,8]
b[13]=[7,9]

(a) (b)

Fig. 16 Graph representation on levels
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place inside (level, k) 
if (level=0) {write tree; output of procedure}
place between (level, niv[level])
for i=k to bet[level]-1 do

{ 
save the colors on the stack
put in the tree (i) 
place inside (level, i+1)
take off from the tree the last registration
restore the colors from the stack

 } 
place between (level, col) 

OK=1
for C=col to niv[level+1]-1 do

if exist the color C
for i=bet[level-1] to inv[level]-1 do

if color[b[i].y]=C
{
OK=0
save the colors on the stack
put in the tree (i) 
place rest (level, C, i+1)
take off from the tree the last registration
restore the colors from the stack
} 

if (OK=1) place inside (level-1, inv[level-1]);

place rest (level,col,k) 
place between (level, col+1)
for i=k to inv[level]-1 do

if color[b[i].y]=col
if do not make a cycle ⇔ if color [b[i].x]≠col

{            
save the colors on the stack
put in the tree (i) 
place rest (level, col, i+1)
take off from the tree the last registration
restore the colors from the stack
} 
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Remarks

1. The representation of any graph in level form is equivalent with node sorting. If
a heap-sort procedure is used, the time complexity is O(blgb + nlgn) while
using an array technique it will be O(2b + 2n) [12].

2. The algorithm does not generate any non-tree sequence.
3. Any branch that obeys the algorithm rules, when is introduced in the sequence,

leads to a tree.
4. The time complexity of the tree enumeration algorithm is proportional to the

number of trees, O(kt), where k is, statistically, about 1, when the time allocated
for the level decomposition of the graph is neglected.

5. The space complexity is O(n + n2), when the necessary of memory for pre-
serving the graph structure (which is insignificant) is neglected.

Testing the algorithm for many graphs, to make a comparison with Char’s
algorithm, we obtained the results presented in Table 5, and in Fig. 17.

We can see that the efficiency of our algorithm rises rapidly with the number of
trees.

5.5 Algorithm for Sequential Generation of the Sign Factor

For all the terms of the numerator and of the denominator the sign factor must be
computed. The sign of the tree admittance product can be found using Mayeda and
Seshu’s algorithm [8] or performing a depth-first or breadth-first traversal on both
the Gi and Gv trees [2]. In [10, 11] an original method for the sign factor deter-
mination is presented. The tree admittance product sign εk is defined as:

εk =MTi
k
⋅MTv

k
, ð49Þ

where MTi
k
,MTv

k
are major determinants from the branch-node incidence matrices Ai

and Av corresponding to the common spanning trees Ti
k and Tv

k , respectively. To
describe the current (voltage) spanning tree Ti

k (T
v
k ) we use a matrix with two rows

Table 5 Comparison
between the proposed
algorithm and Char’s
algorithm

Number of the
trees

Time [s]
Char’s
algorithm

Algorithm on
levels

107512 0.53 0.56
9877412 14.1 8.66
61314527 82 55
103472385 154 103
220581744 235 156
1182369421 7920 1860
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and n − 1 columns (n being the node number of the graph)—called the current
(voltage) tree description matrix CTDM (VTDM). Each column of this matrix
contains the initial node and the final node of the tree branch corresponding to this
column. For example, the tree description matrix (TDM) corresponding to the
spanning tree shown in Fig. 18 has the following form:

TDM=
1 2 4 4 6 7 5 6
2 4 3 6 7 5 8 9

	 

. ð50Þ

The determinants MTi
k
and MTv

k
are computed by performing simple operations

on the rows of the tree description matrices. In Fig. 18 is described the computing
algorithm of the determinant MT corresponding to the spanning tree
T = b1, b2, b3, b4, b5, b6, b7, b8f g.

Let B, N be two finite sets B, N ⊂ N. The directed graph is, by definition, the
triplet G= B,N, fð Þ, in which f :B→N ×N. Let x= x1, x2ð Þ be an element of the set
N × N. We define:

p1:N ×N→N, p1 xð Þ= x1; p2:N ×N→N, p2 xð Þ= x2, ð51Þ

the projections of an element in N × N. Let T = b1, b2, . . . , bn− 1f g, with
bj ∈B, 1≤ j≤ n− 1, be a spanning tree and let

P=
p1 f b1ð Þð Þ p1 f b2ð Þð Þ . . . p1 f bn− 1ð Þð Þ
p2 f b1ð Þð Þ p2 f b2ð Þð Þ . . . p2 f bn− 1ð Þð Þ

" #
, ð52Þ

be the matrix built with the rows 1 and 2 of TDM corresponding to the spanning
tree T.

The algorithm for the determinant MT calculation has the following steps:

Fig. 17 Comparison with
Char’s algorithm
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Fig. 18 Algorithm of the
sign factor determination
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1. In the matrix P, we assign zero value to the node with the greatest index (e.g. n9
in Fig. 18). In this way, we obtain a matrix which is denoted by P0;

2. We are looking for the node which exists only once in the matrix P0, beginning
with the node having the smallest index. Let this be nj = pk bj

� �
, with k = 1 or

k = 2 (e.g. n1 in Fig. 18);
3. We develop the determinant MT on the row corresponding to the node nj,

namely

MT = − 1ð Þnj + jM j
T , ð53Þ

if k = 1, and

MT = − 1ð Þnj + j+1M j
T , ð54Þ

if k = 2, where j is the column of the matrix P0 corresponding to the node nj,
and M j

T represents the determinant obtained from MT after the elimination of the
row nj and of the column j;

4. If the node number nj, found in step 2, is less than the greatest node number in
P0 (if nj < n− 1), then all elements of P0 having the values greater than nj are
reduced by a unit, and all columns of the matrix P0, which are on the right side
of the column j, change the places with a column to the left side. Thus, we
obtain a matrix Pm, m←m+1 (initially m←0), having the column number less
than P0 with a unit;

5. If nj ≥ 1 and if the column number of the matrix Pm is greater than one, go to
step 2, where the matrix Pm takes the place of the matrix P0. If the nj =1 and if
the matrix Pm has a single column, the determinant M j

T is developed on the row
corresponding to the node n1 and go to step 6;

6. Check up if the exponent of − 1ð Þ is an even or odd number.

In order to reduce the time needed to generate the circuit functions, a very fast
algorithm for calculating the sign factor was developed and implemented. It is
based on sequential computation, because knowing the sign of a term we can find
the sign of the following by performing simple elementary operations (permuta-
tions) in a vector with n elements, representing the number of the graph nodes.
These permutations aim to preserve the summations between lines of the reduced
node-branch incidence matrix, without having to store it in the memory.

The algorithm pseudocode has the following structure:
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ordine (x)
j=0
for I=1 to x do if rel[I]=I then inc(j)
if odd[j] return 1

else return −1 

add edge
while x≠rel[x] x=rel[x]
if (x=nv) 

while y≠rel[y] y=rel[y];
rel[y]=nv; 
s= −s⋅ordine(y)

else s= s⋅ordine(y)

compute sign
s=1, for I=1 to nv do rel[I]=I
for I=1 to nv−1 do add edge(I) 
return(j)

5.6 Automatic Generation of the Transfer Functions

As it has been shown in Sect. 5.6, in order to compute a transfer function, we have
to use two pairs of graphs: Gi

1,G
v
1

� �
, for the numerator product terms, and

Gi
p,G

v
p

� �
(in accordance with Table 4), for the denominator product terms.

For the automatic generation of Gi
1,G

v
1

� �
, we must connect at the input port of

the circuit a VCCS having as controlling variable the output voltage, the transfer
admittance being 1. For this source, the controlled branch number is 1, while the
controlling branch number is 2 (Fig. 19, LNC—Linear Nonreciprocal Circuit).

Fig. 19 Automatic generation of Gi
1,G

v
1

� �
and Gi

p,G
v
p

� �
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For the automatic generation of Gi
p,G

v
p

� �
we must connect at the input/output

ports some ideal independent current sources having null currents and the last
branch numbers: b − 1, respectively b (Fig. 19).

The algorithm for transfer impedance Zoi generation involves the following
steps:

1. Gyrator circuits, voltage or current inverters, magnetic couplings, operational
amplifiers and, in general, the multipole or multiport circuit elements contained
in the analyzed circuit are replaced by equivalent schemes consisting of bipolar
circuit elements and controlled sources only;

2. Controlled sources are simulated by passive two terminals elements that have
distinct positions in Gi and Gv graphs (see Table 4);

3. Graphs Gi
1 and Gv

1 are generated (Figs. 15a and b). In Gi
1 the branch with the

unit weight connects the input port terminals, having the same sense as the sense
of the input variable corresponding to the transfer function to be generated and
the output port is open. In Gv

1, the branch with unit weight connects the output
port terminals in the same sense as the sense of the output variable corre-
sponding to the transfer function to be generated, the input port being open;

4. Graphs Gi
p and Gv

p are generated. In these graphs, the entry-exit ports are treated
as in Table 4;

5. Determine the array of trees common to the graphs Gi
1 and Gv

1 that contains the
branch with the unit weight

A1c =Ai
1 ∩Av

1 ð55Þ

where Ai
1 Av

1

� �
is the array of the trees that contain the branch with the unit

weight in the graph Gi
1 Gv

1

� �
;

6. Determine the array of trees common to the graphs Gi
p and Gv

p

Apc =Ai
p ∩Av

p, ð56Þ

with Ai
p Av

p

� �
, the array of the trees from the graph Gi

p Gv
p

� �
;

7. For each pair of common trees k, generated at steps P5 or P6, the sign factor εk is
calculated with one of the algorithms described in Sect. 5;

8. Calculate the algebraic sum of tree values εkPk for the A1c set and then for the
set Apc, Pk being the product of the weights (of operational admittances) of the
common tree k branches;

9. With formula (37) calculate the transfer impedance Zoi;

If the numerator and the denominator of the relation (37) are multiplied by the
product of the operational impedances of all branches of the circuit, it results:
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Zei = −
C1

Cp
, ð57Þ

where:

C1 = ∑
k∈C1c

εkPck, ð58Þ

is the algebraic sum of the values (in impedances) of the co-trees common to the
graphs Gi

1 and Gv
1 corresponding to the common trees that contain the branch with

the unit weight and:

Cp = ∑
k∈Cpc

εkPck, ð59Þ

is the algebraic sum of the values (in impedances) of the co-trees common to the
graphs Gi

p and Gv
p.

It is easily to show [14, 21] that formula (55) can be used to generate any circuit
function corresponding to the input-output ports treated as in Table 4.

Therefore

Foi = −
C1

Cp
, ð60Þ

where the function Foi may be: the transfer impedance (either input or output), the
transfer admittance (either input or output), the voltage transfer (gain) factor or the
current transfer (gain) factor.

The algorithm for generating any of the above mentioned circuit functions is
identical to the one presented for the transfer impedance Zoi, the only difference
being the treatment of the input-output ports (Table 4). To define input impedance
(admittance), the input-output structure of the port is defined in Fig. 20a, b) by
using a passive linear circuit (PLC). Analog is defined also the input-output
structure of the two-port circuit for the calculation of the output impedance (the
output admittance).

Fig. 20 The input-output structure of the two-port circuit for the calculation of the input
impedance (a) and input admittance (b)
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Before generating the transfer function in symbolic form, by tree enumeration in
the two graphs, we must do some simplifications either in the circuit or in the
structure of the two graphs called approximation-before-computation (ABC).

Firstly, for each parameter x, we perform a numerical computation of the transfer
function sensitivity in the frequency range of interest.

This information could give us the reason to eliminate some branches either by
element removal or by contraction of its terminal nodes that simplify the circuit
structure. In order to control the accuracy of the computational process, we have to
evaluate the errors in the transfer function magnitude and in the transfer function
argument due to these operations in the frequency range of interest. Once the circuit
structure was simplified, we can generate the two pairs of graphs: Gi

1,G
v
1

� �
and

Gi
p,G

v
p

� �
. In order to simplify the generation of all their common spanning trees,

we perform some operations in the structure of these graphs, namely:

• Contraction of the unity weight branches;
• Substitution of the parallel branches in these graphs by an equivalent branch

having the admittance equal to the sum of the parallel admittances;
• Contraction of all branches having a node of degree one.

After the generation of the spanning trees in the reduced graphs, we must add
successively all the branches eliminated in the first step. This procedure increases
the enumeration efficiency of the common spanning tree in the two pairs of graphs

— Gi
1,G

v
1

� �
, and Gi

p,G
v
p

� �
.

To obtain the symbolic transfer function in a form to be easily interpreted, two
approximation strategies are possible: approximation-during-computation
(ADC) that produces the approximate expression without knowledge of the exact
symbolic expression, and approximation-after-computation (AAC) that firstly
generates the exact symbolic expression and operating on it produces an approxi-
mated one. The simplified form can be obtained because only a small number of the
terms in the irreducible expanded expression of the transfer function have an
important contribution in the numerator or in the denominator value. Of course, the
most efficient method is to generate only the significant common trees (whose tree
admittance value is not negligible) in an ADC process. To this end the common
spanning trees must be generated in decreasing order of magnitude until the gen-
erated set is a good approximation of the exact network function value. Also, the
generation of the common spanning trees in decreasing order of magnitude must be
performed for each frequency of interest. Some techniques for ADC were reported
[16, 23–26], based on a sensitivity simplification scheme, a 2-, respectively
3-matroid-intersection algorithm and on the determinant decision diagram
(DDD) representation of the system determinant. Although it is not easy to compare
the implementations of these algorithms because of the different simplification
before generation performed, and because of the different error criteria, it seems
[24] that ADC based on DDD yields better results concerning the time needed to
generate a term in comparison with the other techniques.
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In this chapter, an AAC procedure to obtain a network function in reduced
symbolic form is adopted. To this end the numerator and the denominator
expressions must be ordered in the decreasing order of the complex frequency
powers. The coefficients of each complex frequency power must be ordered in the
decreasing order of their values as well, and then the terms with the smallest value
will be eliminated one by one if the magnitude and phase errors are kept within
imposed limits in the frequency range of interest.

A very fast program for the network function generation in reduced symbolic
form has been obtained by implementing the modelling technique of the controlled
sources associated with the generalized topological formula and with the algorithm
for common tree enumeration and sign factor computation.

5.7 Description of the Software Application SATE—
Symbolic Analisys by Trees Enumeration

The symbolic generation algorithm of circuit functions for analogue linear and/or
nonlinear (piecewise-linear approximation) circuits described in Sect. 5.6 have been
implemented in a program called SATE—Simbolic Analysis by Tree Enumeration
[28]. Starting from the description of the circuit through a netlist input file (cir. file
extension), SATE generates symbolically, partial symbolically or numerically form
any circuit function with respect to the user-specified input/output ports for the
linear and/or non-linear (piecewise-linear approximation around a point of opera-
tion) electrical circuits.

The input data for the software application are:

nnode, nb, pulsation

where: nnode—is the number of circuit nodes, nb—is the branch number, and
pulsation (angular frequency) is the pulsation value.

Follows a set of nb lines describing the branches of the circuit. The circuit
elements are assigned as type numbers: 1—for resistors; 2—for capacitors; 3—for
inductors; 8—for controlled sources ec(iC); 9—for controlled sources jc(vC); 10—
for controlled sources ec(vC); 11—for controlled sources jc(iC) and 12—for the
description of input-output ports.

For RLC circuit passive elements, the description statement has the form:

element_type parameter_real_value initial_node final_node

For a controlled source, the description statement has the following structure:

source_type parameter_real_value parameter_imaginary_value ini-
tial_node_c final_node_c initial_node_C final_node_C
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where
initial_node_c final_node_c (initial_node_C final_node_C) represent the ini-

tial and final nodes for the controlled branch (controlling branch).
The last line of the input file describes the input/output ports and it has the

following format:

12 initial_node_i final_node_i initial_node_o final_node_o

Remarks

1. The program gives to the branches numbers from 0 to b;
2. The last numbered branch, corresponding to the last line in the input file list,

represents the branch weighting 1 in the current graph Gi
1 and in the voltage

graph Gv
1;

3. In the case of the current-controlled sources, ec(iC) and jc(iC), the controlling
ports are simulated by resistors with a very low resistance value (<10−8Ω);

4. In the case of the homogeneous controlled sources (e(v) and j(i)), the program
assigns two branches to each source (in the following sequence: the controlled
branch, the controlling branch), taking into account the modelling of these
sources in the current graph or the voltage graph [20, 27]. Parameters corre-
sponding to the two branches are assigned as follows:
Aj k = Yk

Yj
, where Yk = 1 S and Yj = 1

Aj k
, for the source ec (vC),

Bj k =
Yj
Yk
, where Yk = 1 S and Yj =Bj k, for the source jc(iC);

5. Magnetically coupled inductors are simulated by current-controlled voltage
sources [20, 27, 28].

The main program compute.bat coordinates the entire process of generating the
circuit function by successively calling the following subprograms:

• cv_graph.exe—it determines the current and voltage graphs;
• tree.exe—it generates the trees common to the two graphs;
• comp_fix.exe—it calculates the numerator and denominator terms of the circuit

function;
• getfunc.exe—it factories the numerator and denominator expressions according

to the chosen parameter;
• draw.exe—it draws the amplitude–frequency and phase–frequency character-

istics of the generated circuit function.

The SATE program command line is:
compute input_file_name x

where:

• input_file_name—is the input file name with the extension cir (on the call the
file extension is not written)

• and x represents the type of the circuit function that will be generated, as
follows:
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– 1—the transfer impedance Zei sð Þ;
– 2—the transfer admittance Yei sð Þ;
– 3—the voltage transfer (gain) factor Aei sð Þ;
– 4—the current transfer (gain) factor Bei sð Þ.
The SATE program generates the following output files:

• file_name.gr1—it contains the required information about the current graph;
• file_name.gr(x + 1)—it contains the required information about the voltage

graph;
• file_name.ar1—it symbolically displays the numerator of the circuit function

(A1 from formula (19));
• file_name.ar(x + 1)—it symbolically displays the denominator of the circuit

function (Ap from formula (19));
• a file containing numeric information about the value of the circuit function: the

real part, the imaginary part, the module and the argument.

6 Examples

Example 3 Let us consider the linear circuit with lumped parameters represented in
Fig. 21a. We want to determine the operational transfer admittance Yoi from the
input port i’–i” to the output port o’–o”, assuming that all the other parameters of
the circuit are known.
In Fig. 21, additional sources were also represented J1 = 1.V2, J13 = 0A and
J14 = 0A, which aim to facilitate the automatic generation of graphs Gi

1,G
v
1 (source

J1 = 1.V2) and Gi
p,G

v
p (sources J13 = 0A and J14 = 0A). The numbering of addi-

tional sources was done as indicated above.
In Fig. 21b–e the graphs Gi

1 and Gv
1 (Gi

p and Gv
p) are represented. The loops

resulting by connecting in short-circuit of certain pairs of nodes in the graphs
Gi

1,G
v
1,G

i
p and Gv

p have not been drawn in Fig. 21b–e (the branches of these loops
cannot belong to the trees of these graphs).

The set of trees common to the graphs Gi
1 and Gv

1 (Figs. 21b and c), which
contains the branch 1i in Gi

1 and, respectively, branch 1o in Gv
1 is:

A1c = 1i, 6, 9, 12; 1o, 6, 9, 12ð Þ, 1i, 4, 10, 11; 1o, 4, 10, 11ð Þf g. ð61Þ

The set of trees common to the graphs Gi
p and Gv

p (Figs. 21d and e) has the
following structure:

Circuit Analyses with Nullors 127



Apc = 9, 12ð Þ; 10, 12ð Þf g, ð62Þ

Applying the above algorithm we obtain:

Yoi =
G6G9G12 +G4G10G11

G9 +G10ð ÞG12
ð63Þ

or

Fig. 21 A linear circuit and its pairs of graphs Gi
1 and Gv

1, respectively Gi
p and Gv

p`
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Yoi =
R4R10R11 +R6R9R12

R4R6R11 R9 +R10ð Þ . ð64Þ

Expressions (61) and (62) have been compared with those obtained with the
programs TFSYG—Transfer Function SYmbolic Generation and CSAP—Circuit
Symbolic Analysis Program, [28, 29], and it has been observed that these are
identical.

Remarks

1. The trees common to the graphs Gi
1 and Gv

1, that contain the common branch of
weight 1, are identical with the trees common to the graphs Gi

1, 1i, sc and Gv
1, 1o, sc ,

obtained from the graphs Gi
1 and Gv

1, in which the branches 1i and 1o are
short-circuited.

2. In the case of the nonlinear circuits, any of the four transfer functions of the
circuit can be calculated with formula (35) or (58), at every time moment
tn+1 = tn + 1, by making the circuit passive and by linearization around the
operating point at this time moment.

Example 4 Let be the small signal equivalent circuit of a three-stage CMOS
transistor amplifier, represented in Fig. 22. The voltage transfer (gain) factor has to
be generated symbolically, in relation to the input-output ports, 1–5 and 4–5,
respectively.

Using the algorithm based on the graph decomposition on levels, respectively of
the SATE (Symbolic Analysis by Tree Enumeration) software [14, 21], we can
proceed as follows:

1. The input file, ex2.cir, has to be edited with the following structure:

5 13 314.00000000000000E + 0001 (nodes number, branches number,
pulsation)
1 1000.0 1 5 (branch type, parameter value, initial node, final node)

Fig. 22 Equivalent scheme of a small signal amplifier
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9 0.001 0.0 2 5 1 5 (9-source j(u), real value, imaginary value, initial node, final
node for the controlled variable, initial node, final node for the controlling
variable)
1 1000.0 2 5
2 0.1e−08 2 5
9 0.001 0.0 3 5 2 5
1 1000.0 3 5
2 0.1e−08 3 5
9 0.001 0.0 4 5 3 5
1 20000.0 4 5
2 0.1e−08 4 5
2 0.1e−08 2 4
2 0.1e−08 3 4
12 1 5 4 5 (input and output ports)

1. After SATE program running, the following results are obtained:

Terms of the circuit function counter
Sign factor The value of common trees (in admittances)
1 C7C11G2 1s2

1 G2 1G5 3G8 6

−1 C12G5 3G2 1s

1 C11C12G2 1s2

1 C11G6G2 1s

Terms of the circuit function denominator
Sign
factor

The value of common trees (in
admittances)

Sign
factor

The value of common trees (in
admittances)

1 C11G3G6s 1 C7C10C11s3

1 C4C11G6s2 1 C7C12G3s2

1 G3G6G9 1 C4C7C12s3

1 C4G6G9s 1 C7C11C12s3

1 C11G6G9s −1 G5 3G8 6C11s

1 C10G3G6s 1 C11C12G5 3s2

1 C4C10G6s2 1 C11C12G3s2

1 C10C11G6s2 1 C4C11C12s3

1 C12G3G6s 1 C12G3G8 6s

1 C4C12G6s2 1 C4C12G8 6s2

1 C11C11G6s2 1 C11C12G8 6s2

1 C4C7G3s2 1 C12G3G9s

1 C4C7C11s3 1 C4C12G9s2

1 C7G3G9s 1 C11C12G9s2

1 C4C7G9s2 1 C10C12G3s2

(continued)
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(continued)

1 C7C11G9s2 1 C4C10C12s3

1 C7C10G3s2 1 C10C11C12s3

1 C4C7C10s3

If

G1 =G3 =G6 =G,C4 =C7 =C10 =C11 =C12 =C,G2 1 =G5 3 =G8 6 =Gm

then the voltage transfer gain becomes:

Aoi = −
Gm C2s2 +C G−Gmð Þs+G2

m

� �
8C3s3 +C2 3Gm +10G+4G9ð Þs2 +C GGm +3G2 + 4GmG9 −G2

m

� �
s+G2G9

The sensitivity of the voltage transfer gain in relation to the parameter Gm,
SA0i
Gm

= ∂A0i
∂Gm

⋅ Gm
Aoi

, has the expression:

Sei =(-16*C^4*s^4*Gm+28*C^4*s^4*G+8*C^4*s^4*G9+16*C^3*s^3*G^2+ 
+3*C^2*s^2*G^3+21*C^3*s^3*Gm^2+6*Gm^3*C^2*s^2+3*Gm^2*G^2*G9+ 
+16*C^5*s^5-20*C^3*s^3*G*Gm-8*C^3*s^3*Gm*G9+2*C^2*s^2*G^2*G9+ 

+4*C^3*s^3*G*G9-6*C^2*s^2*G^2*Gm+C*s*G^3*G9+ 
+29*C^2*s^2*Gm^2*G+8*C^2*s^2*Gm^2*G9+ 

+2*Gm^3*C*s*G+9*Gm^2*C*s*G^2+8*Gm^3*C*s*G9- 
-2*C*s*Gm*G^2*G9)/((2*C^2*s^2+C*s*G-C*s*Gm+Gm^2)*(8*C^3*s^3+ 

+3*C^2*s^2*Gm+10*C^2*s^2*G+4*C^2*s^2*G9+C*s*G*Gm+3*C*s*G^2+ 
+4*C*s*Gm*G9+G^2*G9)). 

For the numeric values C = 1 nF, G = 0.001 S, Gm = 0.001 S, G9 = 0.00005 S
and replacing s with jω, the voltage gain expression Aei jωð Þ becomes:

Aoi jωð Þ= −
125000 ⋅ ω2 − 0.1 ⋅ 1013ð Þ

jω3 + 0.165 ⋅ 107ω2 − 4 ⋅ 1011jω− 625.1013
.

Figure 23 shows the Bode diagram, and Fig. 24 presents the distribution of
poles and zeros in the complex plane.

Circuit Analyses with Nullors 131



For the above numeric values, the output file provides the following data about
the required circuit function:

Real part: +1.999243e + 01 Imaginary part: 4.022459e + 01
Module: 1.999648e + 01 Argument: 3.121475e + 00
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Example 5 The circuit in Fig. 25a, contains two operational amplifiers and passive
circuit elements R, C. This circuit operates in a permanent harmonic regime as a
capacitance multiplier with respect to the input terminals (4−5). By replacing the
operational amplifiers with the equivalent scheme of Fig. 25b, the equivalent circuit
represented in Fig. 25c, is obtained. The complex input impedance Zii ωð Þ (with
respect to the input terminals 4−7) has to be calculated with SATE.

For the case when the resistances R5 =R7 = 0Ω;R4 =R6 = 1 Meg; C3 = 10 pF
(node 6 becomes 1, node 5 becomes 3, node 7 becomes 5, and the resistance R6

becomes R5) and the voltage gains a8 4 = a9 6 = 2 ⋅ 105, the input file required by
the SATE software, ex3.cir, has the following structure:

Fig. 25 Capacitance multiplier
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5 8 314.0
1 100.0 1 2
1 1e + 05 2 3
2 1e−11 3 4
1 1e + 06 4 1
1 1e + 06 5 2
10 2e + 05 0.0 5 1 4 1
10 2e + 05 0.0 5 3 5 2
12 4 5 4 5

For homogeneous controlled sources ec vCð Þ and jc iCð Þð Þ, the program assigns
two branches to each source (in this sequence: the controlled branch, the controlling
branch). For the considered circuit, in the above simplified situation, where e8
becomes e6 with the controlling branch l7 and e9 becomes e8 with the controlling
branch l9, the corresponding voltage gains have the expressions:

where: G7 = 1 S and G9 = 1 S, and G6 =G8 = 1 ̸2 ⋅ 105 S.
Results from the output file are as follows:

Terms of the circuit function numerator Terms of the circuit function denominator
Sign
factor

The value of common trees (in
admittances)

Sign
factor

The value of common trees (in
admittances)

1 G1G6G8 −1 jωC3G5G6G8

1 G1G7G8 −1 jωC3G5G7G8

1 G2G6G8 −1 G4G5G6G8

1 G2G6G9 −1 G1jωC3G6G8

1 G2G7G8 −1 G1jωC3G7G8

1 G2G7G9 −1 G1jωC3G7G9

1 G5G6G8 −1 G1G4G6G8

1 G5G7G8 −1 G2jωC3G6G8

−1 G2jωC3G6G9

−1 G2jωC3G7G8

−1 G2jωC3G7G9

−1 G2G4G6G8

−1 G2G4G6G9

For the numeric values, the output file of the program provides the following
data about the required circuit function:

Real part: 5.010559e−001 Imaginary part: −3.165607e + 005
Module: 3.165607e + 005 Argument: −1.570795e + 000
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If the two operational amplifiers are considered identical (a6 7 = a8 9 =A) and
the resistances R4 =R6 →∞, while R5, R7 = 0Ω, then the input complex impedance
expression becomes

Zii ωð Þ= 1+Að Þ ⋅ A G1 +G2ð Þ+G2½ � G2ð Þ
jωC3 A2 G1 +G2ð Þ+A G1 + 2G2ð Þ+G1 +G2½ �

Assuming that the operational amplifiers are ideal A→∞ð Þ we obtain:

Zii ωð Þ= G2

jωC3 G1 +G2ð Þ =
1

jωC3 1 + R2
R1

� � .

The input impedance sensitivity, in respect of the conductance G1, has the
expression:

SZii ωð Þ
G1

= −
G1

G1 +G2
.

From the last expression of the complex input impedance an equivalent capacity
results as:

Ce =C3 1 +
R2

R1

� �
=10.10− 12 1 +

105

102

� �
=10.01.10− 9 F= 10.01 nF.

This capacitance is about a thousand times greater than capacity C3. This circuit
is used in integrated circuits technology to achieve high capacities. Due to minia-
turization, integrated circuit technology usually produces capacitors with low
capacities. The multiplication effect of the capacity is called the Miller effect for
capacities [20, 27].

Fig. 26 A circuit containing all types of controlled sources
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Example 6 The circuit containing all the types of controlled sources shown in
Fig. 26, has the graphs Gi

1, G
v
1

� �
shown in Fig. 27a and b. By performing the

contractions presented in paragraph 6, we obtain the reduced graphs Gi
1r, G

v
1r

� �
shown in Fig. 27c and d.

After operating the simplifications, the number of spanning trees in the two
reduced graphs becomes much smaller. If we make similar simplifications in the

graphs Gi
p, G

v
p

� �
, shown in Fig. 28a and b, we get the reduced graphs Gi

pr, G
v
pr

� �
from Fig. 28c and d. The results of these simplifications are shown in Table 6. The
number of trees in a graph has been calculated as it is presented in [20, 27].

We can observe a significant reduction in the number of trees in this simplifi-
cation phase.

Fig. 27 The complete graphs Gi
1, G

v
1

� �
and the reduced ones Gi

1r , G
v
1r

� �
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The command equations of the controlled sources are as follows:

j1 = 1 ⋅ v2, e12 = a12, 13v13 =R12G13v13 =
G13

G12
v13,

j14 = b14, 15i15 =G14R15i15 =
G14

G15
i15, e16 =R16i17 =

1
G16

i15.
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Fig. 28 The complete graphs Gi
p,G

v
p

� �
and the reduced ones Gi

pr ,G
v
pr

� �

Table 6 The results of the
simplification procedure

nt,Gi
1
= 360⇒ nt,Gi

1r
=28 nt,Gi

p
=126⇒ nt,Gi

pr
=28

nt,Gv
1
= 360⇒ nt,Gv

1r
=28 nt,Gv

p
=122⇒ nt,Gv

pr
=24
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The above simplifications do not affect the accuracy of the calculation, because
they are operated in the graphs structure, which simplifies it, maintaining their
equivalence.

If we consider C3 = C4 = C5 = C6 = C; G7 = G8 = G9 = G, then the voltage
gain factor Aoi has the following expression:

Aoi G12 G15 G10 ( ) + ( ) + 2. G16 C G 3. C G2 s 2. G16 G2 ( := 

( ) −  +  − 3. G15 C2 G12 G2 3. G15 C2 G13 G2 4. C2 G16 G12 G15 G 2. C2 G16 G13 G15 G s2 2. C G10 G15 G12 G16 G( + 

3. C G12 G15 G16 G2 3. G15 C G10 G13 G2 2. C G16 G13 G15 G2 C G10 G14 G12 G16 G +  +  −  + 

2. G16 C G13 G10 G15 G + ) s 2. G16 G13 G10 G15 G2 + )

For the numeric values of the parameters

C=1.0e04 F;G= 0.0001 S;G10 = 0.0002 S;G16 = 0.0001 S;

G14 = 2.0 S;G15 = 1.0 S;G13 = 4.0 S and G12 = 1.0 S.

Figure 29 shows the Bode diagram, and Fig. 30 presents the distribution of
poles and zeros in the complex plane.

Example 7 The analog circuit shown in Fig. 31 contains all four types of linear

controlled sources. The graph pairs Gi
1,G

v
1

� �
, and Gi

p,G
v
p

� �
, generated according to

the rules presented in Sect. 5, are given in Figs. 32 and 33, respectively.
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At the beginning, we generate the voltage gain Aoi_ex(s), and we evaluate it at the
nominal parameter values, keeping only the complex frequency s as a symbol. Then
we compute the transfer function sensitivity Aoi_ex (s, x) in respect of each
parameter x. The analysis is performed considering an initial sampling in the fre-
quency range of interest and checking the error in some intermediate points. The
circuit elements that have a small value of the relative sensitivity in this frequency
range can be eliminated. To this end both zero-admittance (element removal) and a
zero-impedance (contraction of the terminal nodes) can be used. The value of the
voltage gain in which some nodes/branches have been contracted/eliminated, Aoi

ap(s), is computed.
The magnitude and phase errors are given by:

ε Aoij j =
Aoi ex jωð Þj j− Aoi ap jωð Þ�� ��

Aoi ex jωð Þj j , ð65Þ

ΔϕAoi
=

arg Aoi ex jωð Þð Þ− arg Aoi ap jωð Þ� �
arg Aoi ex jωð Þð Þ . ð66Þ

For the circuit in Fig. 31 we find that only the capacitor C22 can be eliminated by
contraction of its nodes, because the voltage gain sensitivity is small in the fre-
quency range of interest, as it is shown in Fig. 34. In Fig. 35 the error variations in
the same frequency range of the transfer function magnitude and of the transfer
function phase are represented.

After the capacitor C22 removal, and applying the above procedure we obtain the

reduced graphs Gi
1r,G

v
1r

� �
and Gi

p,G
v
p

� �
. The tree number reduction of these

graphs is shown in Table 7.
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If the representation of the inductors and controlled sources based on the unity
gyrator model [3, 4], is used, the number of trees in the current graph increases at
least at 2821968 (612 times bigger than with our models). The running time to
enumerate these trees on an AMD XP 2700, 2.16 GHz, 512 MB of RAM is pre-
sented by comparison in Table 8.

The next step is to generate the numerator and the denominator expressions of
the transfer function in the decreasing order of the complex frequency powers, and
the coefficients of each complex frequency power in the decreasing order of their
values. In this way we can eliminate one by one, the terms with the smallest values,
if an error criteria for the magnitude and phase is verified over the frequency range.

The numerator of the voltage gain for the analog circuit in Fig. 31 has the
following full symbolic expression:

numerator C3 C18 L21 Y14 ( ) +  + L6 C10 L7 Y15 L5 L6 C10 Y15 L5 C10 L7 Y15 s4 := 
C3 C18 L21 Y14 ( ) +  + L7 C10 R17 Y15 C10 L7 R17 Y16 L5 C10 Y15 R17 s3 + 

C3 C18 L21 Y14 ( ) +  + L5 Y15 L7 Y15 Y11 R4 L7 Y15 s2 + ,

and the denominator contains 387 terms.
According to the above procedure of elimination we obtain finally a reduction in

the transfer function denominator from 387 to 31 terms.

Fig. 31 Circuit diagram
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In Fig. 36 the exact magnitude curve (502 terms in the denominator), that
without C22 (387 terms in the denominator), and the approximated magnitude (31
terms in the denominator) are represented, and in Fig. 37 we can see the phase
variation in the three cases. The maximum error of the transfer function magnitude
is 1.6%.

A new method to formulate the system of equations in order to compute
fully-symbolic small-signal characteristics of analog circuits by applying standard
NA and/or loop current method has been presented.

Fig. 32 Gi
1,G

v
1

� �
graphs
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Fig. 33 Gi
p,G

v
p

� �
graphs

Fig. 34 Sensitivity
magnitude function of C22

and frequency f
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Fig. 35 Errors in voltage
gain magnitude and in voltage
gain phase

Table 7 Tree number reduction of the graphs from Figs. 32 and 33

tGi
1
= 4608 tGv

1
= 3326 tGi

p
=4608 tGv

p
=3340

tGi
1r
=1792 tGv

1r
=209 tGi

pr
=1792 tGv

pr
=358

Table 8 Comparison of running time for enumerating the trees corresponding to the graphs from
Figs. 32 and 33

Number of trees Time for tree Enumeration [seconds]

Algorithm on level Char’s algorithm
4608 ≤ 1 μs ≤ 1 μs
2821968 1,781 4

Fig. 36 Variation of the
voltage gain magnitude in the
frequency range
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7 Conclusions

By modelling electronic devices with equivalent circuits containing nullors and by
associating to the analyzed circuit two graphs: one corresponding to the current one
—Gi, necessary to formulate the KCL, and one corresponding to the voltage one—
Gv, necessary to formulate the KVL, the nodal equations and the loop current
equations can be formulated very simple for any non-reciprocal circuit. The two
graphs have the same number of branches, nodes and independent loops, but they
differ by their different positions they occupy in the two graphs, by the branches
used to simulate the controlled sources and, in general, by the branches corre-
sponding to the equivalent circuits containing nullors used to model the electronic
devices. The characteristics of the branches are written using the voltages from the
voltage graph and the currents from the current graph.

In this chapter, we propose a simple modelling procedure of the controlled
sources in the two graphs. The equivalent circuits based on the functional schemes
with nullors model both the controlling port and the controlled one by admittances
placed in different positions in the two graphs. The two graphs obtained in this way
have the same number of branches, nodes, and loops. A new method to formulate
the system of equations in order to compute fully-symbolic small-signal charac-
teristics of analog circuits by applying standard NA and/or loop current method has
been presented.

A set of rules for generating and using the two graphs is stated, and the gen-
eralization of the topological formula to generate all network functions is proved.
These rules are applicable to a linear circuit containing: all four types of linear
controlled sources, resistors, inductors, capacitors, nullors (for ideal opamps

Fig. 37 Phase variation in
the frequency range
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operating in the linear mode), and any multi-terminal or multiport circuit element
having an equivalent scheme made up only by two-terminal elements and con-
trolled sources.

The models with nullors for all active electronic devices are more effective for
the optimization of design and simulation time during the analysis process. From
this point of view, the nullors proved already their efficiency in the active devices
modelling. In the models based on nullors, the parasitic elements can be included to
analyze their contribution to the analog circuit response. All the four controlled
sources can also be represented with equivalent circuits using nullor elements.
Consequently, the nullors are very useful for the analog circuits modelling because
the circuit topology can be described using only two-terminal components like
resistors, capacitors, nullators, norators, independent and controlled sources. Con-
sidering that the model should be developed in the simplest manner and the
accuracy of the circuit behaviour simulation must be in acceptable limits, this
chapter will show the problems related to the small-signal models of the active
devices modelled with nullors.

Unlike other similar approaches our approach does not introduce supplementary
branches and nodes with respect to initial circuit. Moreover, the number of nodes in
the two graphs is smaller than in the initial circuit with the number of CCVS.
Modelling the controlled sources by admittances allows an efficient generation of
the network functions via the generalized topological formula with homogeneous
parameters. This formula works for linear nonreciprocal networks containing any
type of controlled sources. The rules for the automated generation of the two graph
pairs using the controlled source models proposed in this chapter and a represen-
tation on levels of the graphs were implemented in a very fast program for the
symbolic transfer function computation.

The generalized topological formula can generate any network function in a full
symbolic form for very large-scale analog circuits because the numerator and the
denominator terms are generated one by one and stored as lists. This gives the
superiority of the topological approach in contrast to the determinant method that
cannot provide a full symbolic form because of the symbolic manipulator that
cannot solve huge systems of algebraic equations.

The list form in which the numerator and the denominator are obtained also
allows performing the simplification after generation in a simple manner.

Examples have been introduced to show the usefulness of the nullor-based
models and the potential of the proposed approach for the analysis and design of the
analog linear/nonlinear circuits.

From two-port and four-terminal network point of view, all the proposed models
have been generated by taking into account the impedance levels associated to the
input-output terminals along with the gain-equations of the active devices. As one
can see throughout the chapter, the nullor-based models are not complex and they
can quickly be included into symbolic analyzers. Further, nullor-based active
device models by including parasitic elements, has also been introduced. Further-
more, a novel method to formulate the system of equations in order to compute
fully-symbolic small-signal characteristics of analog circuits by applying only
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standard NA has been presented. Thus, by using the relationships of nullators and
norators and by manipulating their data-structures, the admittance matrix can
quickly be constructed, avoiding waste of CPU-time and memory in the formula-
tion process. Examples have been introduced to show the usefulness of the
nullor-based models and the potentiality of the proposed formulation method
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