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Abstract This chapter gives a description of the extension of Generalized
Parameter Extraction Method (GPEM) for symbolic analysis of large-scale analog
circuits containing pathological elements. The brief overview of the parameter
extraction approach is included. An algorithm implementing the concept of Higher
Order Summative Cofactors (HOSC) for determinants computation of the patho-
logical element-based circuits is proposed. In this chapter, we also present the
hierarchical decomposition techniques of upward and downward analysis of elec-
tronic circuits by GPEM. The proposed techniques are used in freeware symbolic
analyzer CirSym. Several examples are presented to illustrate the advantages of the
GPEM applications.
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1 Introduction

Most of the modern symbolic circuit analysis techniques are based on matrix cal-
culus [1–10] or operations with circuit graph [3, 4, 10–15]. However, the usage of
matrix representation or graph model may lead to the terms cancellations and
produces some pseudo-dependencies in functions. In this chapter, we introduce the
basics and advances of circuit analysis by parameter extraction approach which
provides the effective symbolic calculation without constructing the circuit equa-
tions. Parameter extraction method was developed at the beginning of the XX
century by Friedrich Wilhelm Feussner, one of the Kirchhoff’s pupils. The formulae
presented in [16, 17] provide the calculation of circuit determinant and doesn’t need
the circuit description as the matrix or topological graph. The determinant of Z-
circuit (y-circuit) is defined by Feussner as the determinant of the corresponding
loop impedance (nodal admittance) matrix. The diacoptic formulae for bisection of
the circuit by one or two nodes were also proposed in [16] to improve the com-
putational efficiency of parameter extraction method.

The parameter extraction approach was used in the various symbolic analysis
techniques [5, 18–26]. Several researches were based on Feussner’s publications
[19, 23, 25–27]. M. E. Parten and R. H. Seacat proposed the method of network
functions calculation of nullor-based circuit by extraction of all elements parameters
until the residual circuits that contain only the norators and nullators is derived [23,
25, 26]. However, this method can be used only for active circuits with ideal
operational amplifiers. The formula for extraction of controlled sources parameters
was proposed by R. Hashemian in [19], but it deals with combinatorial enumeration.
The Feussner’s diacoptic formulae were used by S. M. Chang and G. MWierzba for
symbolic analysis of networks with nullors. However, the decomposition method
proposed in [28, 29] is based on matrix manipulations and suffers from the tedious
algorithm of determinant sign calculation. Also, some additional transformations of
equivalent circuit are needed to use the bisection formulae in a matrix form.

The advantages of techniques of Feussner and his successors were implemented
in GPEM [30–40]. GPEM is an effective tool for symbolic analysis, diagnosis, and
synthesis of analog circuits. The parameter extraction cancellation-free method for
symbolic analysis of switched capacitor circuits has been developed in [37]. The
techniques of computation of the symbolic circuit functions sensitivities in Bode’s
form and in Hoang’s form are described in [36]. The implementation of parameter
extraction approach for symbolic circuit analysis by means of the Middlebrook’s
extra element theorem was proposed in [33]. The symbolic technique for analog
fault diagnosis was introduced in [38]. Several GPEM-based circuit synthesis
algorithms were developed: (1) an algorithm of automated synthesis of all existing
equivalent pathological element-based circuits that correspond to the given poly-
nomial network function [34]; (2) a design algorithm of OTA-based circuits [32];
(3) an algorithm of circuit synthesis using transformation of trees with pathological
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elements [39]. Several GPEM-based computer programs for automated circuit
analysis and synthesis were developed. The symbolic analyzer CirSym developed
by V. Filaretov is available online: http://intersyn.net/en/cirsym.html.

GPEM can be successfully used for symbolic analysis of active circuits with
pathological mirror elements. However, the technique proposed in [35] deals with
the big amount of special cases of elements connections which complicate the
symbolic analysis of large circuits. In this chapter, the new approach to the cal-
culation of pathological element-based circuits by GPEM is presented.

The decomposition procedures can significantly increase the efficiency of
symbolic analysis [4, 14, 15, 41–44]. In this chapter, we also present the hierar-
chical decomposition techniques of upward analysis and downward analysis of
large-scale circuits by GPEM.

The chapter comprises three main sections. Section 2 introduces the basics of
GPEM. The usage of parameter extraction formulae for circuit determinant
expansion is discussed. The rules of degeneracy and simplification of the patho-
logical element-based circuits are considered. Section 3 gives the application of
GPEM to the generation of symbolic circuit functions in the case of
Single-Input-Single-Output (SISO) and Multiple-Input-Single-Output (MISO) cir-
cuits. In Sect. 4 the extension of the method of residual circuits [23] by usage of
GPEM and the concept of HOSC [22, 45] is presented. Section 5 focuses on
hierarchical decomposition approaches to circuit analysis. The techniques of
upward analysis and downward analysis by GPEM are proposed. The illustrative
examples of usage of GPEM and its applications are included in this chapter.
Conclusions summarize the results of the chapter.

2 The Basics of GPEM

2.1 Feussner’s Formulae for Determinant Expansion
of the Passive Circuit

Classic Feussner’s formulae for extraction of impedance or admittance parameters
are presented below [16, 17]:

Δ= ZΔðZ→∞Þ+ΔðZ =0Þ, ð1Þ

Δ= yΔðy→∞Þ+Δðy=0Þ, ð2Þ

where Δ is a circuit determinant; Δ(z → ∞) and Δ(y = 0) are the determinants of
subcircuits in which extracted element is deleted; Δ(y → ∞) and Δ(z = 0) are the
determinants of subcircuits in which extracted element is short-circuited.
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Recursive usage of the formulae (1) and (2) provides the reduction of an initial
circuit to several residual topologies shown in Fig. 1 which determinants can be
calculated by Ohm’s Law. GPEM using the complex impedance of the inductors
and the complex admittance of capacitors in the Laplace domain: ZL = sL and
yc = sC correspondingly.

The circuit-algebraic expressions that contain the parameters symbols, mathe-
matical signs and derived subexpressions in the form of subcircuits, can be useful
for illustration of the process of determinant expansion by parameters extraction
[28]. For example, the Feussner’s formulae can be expressed in the circuit-algebraic
form as following:

ZZ + = , ð3Þ

yy = + . ð4Þ

The diacoptic approach to circuit analysis was discussed by Feussner long before
the publications of G. Kron [46]. He proposed the technique of circuit decomposition

ZIin
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Fig. 1 The residual circuits and their determinants
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(bisection) based on following formulae for bisection of the circuit by one or two
nodes correspondingly:

Δ=Δ1Δ2 ð5Þ

Δ=Δ1Δ2ða, bÞ+Δ1ða, bÞΔ2, ð6Þ

where Δ1 and Δ2 are determinants of the first and second subcircuits in which the
node a in (5) and nodes a and b in (6) are opened, Δ1(a,b) and Δ2(a,b) are
determinants of subcircuits in which the nodes a and b are shorted.

In the circuit-algebraic form the bisection formulae by one or two nodes are
shown below correspondingly:

=1 2
a 1 a 2.

a
, ð7Þ

.= +1
a

b 1
a 

b
2. 1

a

b
2.2

ð8Þ
Example 1 Let’s consider the determinant calculation procedure in the case of the
simple two-section LC-ladder circuit shown in Fig. 2 to illustrate the usage of
Feussner’s formulae.

The bisection of the ladder by two nodes a and b by usage of (6) leads to the
following circuit algebraic expression:

ð9Þ

The parameter extraction procedures for determinants calculation of four sub-
circuits in (9) are shown below:

L1 L2

C1 C2
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b

Fig. 2 LC-ladder circuit
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y1
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b

= y1
Z1 +

Z1 = y1(Z1)+1, ð10Þ
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ð12Þ
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y2
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= y2. ð13Þ

The result of the substitution of (10)–(13) into (9) can be expressed as:

Δ= ðy1ðZ1Þ+1ÞðZ2ðy2Þ+1Þ+ Z1y2. ð14Þ

The Feussner’s formulae provide quite efficient symbolic determinant calcula-
tion of passive circuit. M. E. Parten and R. H. Seacat implemented (1) and (2) to the
analysis of nullor-based circuits by extraction of all elements parameters until the
residual circuits which contain only the norators and nullators [23]. The well-known
equivalent transformations of parallel or series connection of norator and nullator
were used for determinants computation of residual nullor circuits. However, this
method can be used only for active circuits with ideal operational amplifiers. The
new formula for extraction of parameters of controlled sources (CS) was needed to
extend the Feussner’s approach.
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2.2 Extraction of Controlled Sources Parameters

The formula for the extraction of CS parameter was proposed by R. Hashemian in
1977 [19]:

Δ= χΔðχ→ nullorÞ+Δðχ =0Þ, ð15Þ

where χ is a parameter of arbitrary CS, Δ(χ → nullor) is a determinant of the
circuit in which a CS element is replaced by nullor, Δ(χ = 0) is a determinant of the
circuit in which the parameter of CS is equal to zero.

Hashemian has used formula (15) for simultaneous expansion of determinant by
parameters of all n CS which circuit contains. Such technique leads to the enu-
meration of 2n summands and cannot provides the generation of expression in the
compact size.

The formula (15) was developed by V. Filaretov in 1998 irrespective of
Hashemian’s publication [19]. The recursive extraction of CS parameters by
(15) was proposed. Also instead of original Carlin’s nullor shown in Fig. 3a [47]
the concept of oriented nullor, introduced in network theory by A.G. Davies [48]
and J. Braun [49], is used in GPEM. The orientation of nullor provides simpler
computation of the determinant expression sign of the residual nullor-based circuit
as shown in Fig. 4a and b.

The oriented nullor is successfully used for calculation of network functions
[49], as well as for active devices simulation [35]. For example, the equivalent
circuits of voltage mirror (VM) and current mirror (CM) in which g = 1 are shown
in Fig. 3c and Fig. 3d correspondingly. The pathological mirrors are useful ideal
circuit elements for modeling active devices with voltage and current reversing [2,
7–9, 50–53].

(a) (b) (c) (d)

211

gg

211
g g

+

–

+

–

Nullator Nullator NoratorNorator

Fig. 3 Nullor symbol a, oriented nullor symbol b, the equivalent nullor circuits of pathological
mirrors: VM c and CM d
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Fig. 4 The residual circuits consists of nullor a–b, controlled sources c–f
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The subcircuits may include more than one oriented nullor. There are several
simple rules that can help to deal with such cases: (1) enumerate the nullator-norator
pairs; (2) invert the sign of determinant in the case of inversion of the norator or
nullator orientation; (3) invert the sign of determinant in the case of the pair
numbers interchanging between two norators or two nullators.

The circuit-algebraic expressions for the parameter extraction cases for each of
the four depended sources, using formula (15), are shown below:

KV
=  K +V +

–

ð16Þ

=  GV +GV

ð17Þ

=  Н
НI ++

–
I

ð18Þ

=  BBI +
I

ð19Þ
where K is a control parameter of voltage controlled voltage source (VCVS), G is
a control parameter of voltage controlled current sources (VCCS), H is a control
parameter of current controlled voltage source (CCVS) and B is a control parameter
of current controlled current source (CCCS).

The determinant of the circuit with pathological elements can be equal to zero
[28, 29, 54, 55]. Such circuits are called the degenerated circuits. The check for the
degeneracy of subcircuits derived by usage of formulae (1), (2), (5), (6) and (15) is
very important part of the process of symbolic analysis by GPEM.
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2.3 Degeneracy and Simplification of Circuits Containing
Pathological Elements

Although topological conditions of circuit degeneracy were introduced for the first
time in the mid-1970s [54, 55] the degeneracy check still can be confusing for
circuit designers in the certain cases [56]. Therefore in GPEM, the generalized
topological conditions are used. The determinant of circuit is equal to zero in
following cases: (1) the circuit consists of several not connected subcircuits; (2) the
circuit contains at least one loop consisting only of voltage sources and norators or
controlling currents of CS and nullators; (3) the circuit contains at least one
cross-section consisting only of the current sources and norators or controlling
voltages of CS and nullators. Note that the voltage sources and current sources
mentioned in topological conditions can be the input sources or depended sources
as well.

The determinant of the circuit consisting only of nullors is nonzero if there is a
tree which includes all of the norators while the collection of remaining branches
(nullators) is the complement of such a tree and vice versa.

The degenerated circuits cannot be equivalent to each other because responses of
the signal in such circuits are indeterminate. Therefore the equivalent transforma-
tion of the parallel connection of voltage source and norator into voltage source
as shown in [53, 56], the transformation of the series connection of the current
source and norator into current source as shown in [56], and the short-circuiting of
the current source and nullator connected in series as shown in [53], are not correct.

In Tables 1 and 2 we present the special cases of elements connections derived
by usage of parameter extraction formulae and topological conditions which con-
sidered above.

Table 1 The circuit elements in short-circuit and in open loop

Element type Special connection case
Element shorted Element opened

Impedance Parameter extracted –

element deleted
Element shorted

Admittance Element deleted Parameter extracted –

element shorted
Voltage source Δ = 0 Element shorted
Controlling current of CS Δ = 0 Element shorted
Current source Element deleted Δ = 0
Controlling voltage of CS Element deleted Δ = 0
Nullator Δ = 0 Δ = 0
Norator Δ = 0 Δ = 0
VM Δ = 2 Δ = 0
CM Δ = 2 Δ = 0
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3 Symbolic Circuit Analysis by GPEM

3.1 Symbolic Analysis of SISO Circuits

The network function of a linear circuit can be expressed as a ratio of two rational
symbolic expressions. The numerator is the determinant of the circuit, in which the
input source and response are replaced by an oriented norator and nullator corre-
spondingly [49]. The denominator is the determinant of the circuit, in which the
input and output signals are equal to zero.

The circuit-algebraic expressions for the circuit functions calculation are shown
in the Fig. 5. For determinants calculation of network that contains any linear
models of active circuit elements, including the controlled sources and pathological
elements, the parameter extraction formulae (1), (2), (15) and bisection formulae
(5)–(6) are recursively used. Each of the derived subcircuits must be checked by
topological conditions for the solvability and degeneracy. As result, the residual
circuits presented in Fig. 1 and Fig. 4 is obtained.

The order of parameter extraction can be chosen arbitrarily. So the calculated
determinant can be presented as the rational polynomial expression if the reactive
elements is extracted first.

(a) (b)

(c) (d)

(e) (f)

=
Iout

Vin

IoutVinVout

Vin

Vin

Vout =

Vout =
IoutIin Iout

Iin

Iin
=

Vout

Iin

=Vin

Iout

Vin

Iout
=

Iin Vout

Iin

Vout

Fig. 5 The circuit-algebraic expressions of the circuit functions
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The GPEM-based symbolic analyzer CirSym is developed by V. Filaretov. The
program is freeware available in two versions: offline and online http://intersyn.net/
en/cirsym.html. The input data is a slightly modified Spice-compatible netlist, which
can be entered online or loaded as a cir-file. Circuit nodes should be numbered as
integers. The passive impedance and admittance elements are identified by uppercase
and lowercase characters correspondingly: R, L, C and g, l, c. Controlled sources are
identified by following symbols: K is a parameter of VCVS, G is a parameter of
VCCS, H is a parameter of CCVS and B is a parameter of CCCS. Pathological
elements are identified as follows:N is a nullor,M is aVM-CMpair,T is aCM-nullator
pair andQ is a norator-VM pair. Note that the input voltage source should be defined
as EMF source and described by symbolE. CirSym-online provides the calculation of
several circuits at once. The end of the netlist for each circuit and the end of the whole
of input data are notified by strings « .end » and « .total » correspondingly.

Example 2 Let’s consider the simple high-pass filter circuit containing the non-ideal
OpAmp that modeled by VCVS as shown in Fig. 6. For the sake of clarity, we
calculate the numerator and denominator of voltage transfer function separately.

Numerator calculation. The parameter sC1 can be extracted from the numerator
subcircuit in accordance with Table 2 due to the series connection of admittance
and norator:

Δ3 = K1V1

V1

K1V1

V1

g2

g1

sC2
= sC1

g2

g1

sC1 sC2

+
–

+
–

1 2
3

0

1 2 3

0 

ð20Þ
Parallel connection of voltage source of VCVS also provides simplified extraction

of parameterK1. There are two nullors in the circuit now and theymust be enumerated.
The interchanging of numbers between two norators leads to inversion of expression
sign and provides the usage of the equivalent transformation of nullor as shown in
Fig. 4a. The admittance g2 is deleted in accordance with Table 2. The sign of deter-
minant is changed again in the consequence of the equivalent transformation of
norator and nullator which are labeled by « 2 » in accordance with Fig. 4b.

Δ3 = s2C1C2 K1

1

2

1

2 =   s2C1C2 K1.

g2

2

2

g2

= –s2C1C2 K1

1 3 

0 0

3 

ð21Þ

42 V. Filaretov et al.

http://intersyn.net/en/cirsym.html
http://intersyn.net/en/cirsym.html


Denominator calculation. Two subcircuits that correspond to the determinants
Δ(K1 → nullor) and Δ(K1 = 0) is derived as result of the VCVS parameter
extraction by formula (15). The first subcircuit can be easily reduced to expres-
sion –K1g2sC2 by usage of Tables 1 and 2. Note that the negative sign is the
consequence of orientation of norator and nullator as shown in Fig. 4b. The second
subcircuit can be expanded by extraction of the multibranch parameter (sC1 + g2).

0 0 0 

2 2
1 1

2 

g2

g1
sC1

sC2
= K1

g2

g1
sC1

sC2

+ =

g2

g1
sC1

sC2
Δ =

K1V1

V1

+
–

= – K1g2sC2+(sC1+g2)(sC2+g1)+sC2g1.

g1

sC1+g2

sC2

g1(sC1+g2)

sC2

= – K1g2sC2 + =–K1g2sC2 + g1

sC2

+ =

1 2 1 2 1 2 

ð22Þ
The resulting transfer function can be expressed as follows:

H =
Δ3

Δ
=

s2C1C2K1

−K1g2sC2 + ðsC1 + g2ÞðsC2 + g1Þ+ sC2g1
. ð23Þ

3.2 Symbolic Circuit Analysis of MISO Circuits

The nullator controlled multidimensional source [31] can be used for calculation of
response function Vout of arbitrary MISO circuit that consists of n voltage sources
and m current sources as shown in Fig. 7a. In that case, all of the input sources is
transformed into controlled sources which will be oriented opposite [18]. All of the
sources is controlled by the same nullator as shown in Fig. 7b. Parameters of input

1

2

g2

g1
C1 C2

K1V1
Vin Vout+

–

3

V1
0

Fig. 6 VSSC-based
equivalent circuit of high-pass
filter
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sources V1, V2, …, Vn and I1, I2, …, In is used as parameters of the nullator
controlled multidimensional source. The properties of a nullator of a multidimen-
sional source are the same as the properties of a standard nullator. Thus, all known
operations with nullators are still valid. Obviously, the network can include only
one nullator controlled multidimensional source.

The following recursive formula was proposed in [31] to calculate the numerator
of k-th voltage or current function of MISO circuit:

Δk = piΔ1 +Δ2. ð24Þ

where pi is a source parameter Vi or Ii, Δ1 is the determinant of network in which
the source with parameter pi corresponding to Vi or Ii is replaced by a norator, the
nullator of the multidimensional source is replaced by a standard nullator, and
parameters of all other sources are equal to zero; Δ2 is the determinant of network
in which the parameter of extracted source is equal to zero. Note that Δ2 is equal to
zero if all m + n parameters of sources have been extracted.

Let’s use the formula (15) to extract parameter V1 in numerator circuit which is
presented in Fig. 7b. As result we obtained the circuit-algebraic expression that
shown below:

.

…

…

Δk =V1 +

1 

1 

– + – +
V2 Vn

I1 I2 Im

…

…

ð25Þ
As can be seen from (25), the extracted voltage source in the first subcircuit is

transformed into norator while parameters of others sources are equal to null.
Therefore the first subcircuit contains only one nullor and can be calculated by

(a) (b)

…

…

V1 V2 Vn

I1 I2 Im

– + – + – +

V1

Vk

V2
…

…
I1 I2

Vn

Im

+ – + – + –

Fig. 7 The circuit with n input voltage sources and m input current sources a, circuit with nullator
controlled multidimensional source b
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formulae (1), (2), (15). Others sources parameters can be extracted from the second
subcircuit in a similar way.

Example 3 The usage of the concept of nullator controlled multidimensional
source can be explained by means of the symbolic analysis example of the sum-
ming amplifier circuit with Vout = Δk/Δ shown in Fig. 8a.

Numerator calculation. The equivalent circuit shown in Fig. 8b is used for
calculation of voltage function numerator Δk by formula (24). There are two
nullor-based subcircuits as result of the extraction of parameters V1 and V2. The
determinant expressions can be easily derived by using simplification conditions in
Table 2 as follows:

21

2

R3

R2R1

1
21

2

R3

R2R1

1V1 +V2Δk=
21

2

R3

R2
1= V1 +

21
2

R3

R1
1+V2 = –V1R2

22
1

R3

1 22
1

R3

1– V2R1 = –V1R2R3 – V2R1R3. 

ð26Þ
Denominator calculation. The voltages of both sources V1 and V2 are equal to

null. There is only one regular nullor in the subcircuit. The determinant expansion
by using Table 2 is trivial:

R2

R3

1 1

R1

R3

1 1
Δ = = R1R2

1 1
= R1R2 = R1R2.

ð27Þ

(a) (b)R1

+
–

+
–

R2

R3

V1

V2
Vout

R1

R2

R3

V1

V2+
–

+
– 1 1

2

Fig. 8 a The summing amplifier circuit, b equivalent circuit with nullator controlled multidi-
mensional source
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4 The Technique of Determinant Expansion
of Pathological Element-Based Residual Circuits

As seen from examples in previous subsections, the usage of formulae (1), (2), (5),
(6) and (15) along with the conditions of circuit degradation and simplification from
Tables 1 and 2 is easy, intuitive and effective especially in the case of relatively
small circuits. However, the big amount of special connections of elements com-
plicates the symbolic analysis of large subcircuits that contain only of pathological
elements which are the result of extraction of all impedances, admittances, and CS.
A more simple technique of determinants computation of the pathological
element-based residual circuits is needed.

4.1 Expansion of Determinants of Pathological
Element-Based Residual Circuits

The main idea of the new approach is that the determinant of the residual circuit,
which contains only the pathological elements, can be calculated by usage of matrix
algebra operations instead of simplification by conditions presented in Tables 1 and
2. The connection of norator or nullator (VM or CM) to the circuit leads to the
summation (subtraction) of rows or columns in circuit the admittance matrix. The
rows or columns numbers correspond to the nodes numbers of the circuit. The
concept of HOSC [22, 45] can be useful to represent the matrices in such
operations.

The higher order cofactor is a cofactor of a cofactor. The n-th order cofactor can
be identified by a symbol Δr1,k1,r2,k2,…rn, kn, where r1, r2, …, rn and k1, k2,…, kn are
the numbers of deleted rows and columns respectively. If at least one deletion in the
higher order cofactor has a summative form, then cofactor is called a higher order
summative cofactor.

For example, the first-order HOSC can be described as Δ(a±b)(c±d), where a and
b are the numbers of rows, c and d are the numbers of columns. In the case of
summation of numbers (a + b) or (c + d) the row a is added to row b or the column
c is added to column d. In the case of subtraction of numbers (a–b) or (c–d) the
entries of the row a or the column c is inverted before addition to the row b or to the
column d correspondingly. Note, that the added row a or column c is deleted from
the matrix. The following notation Δ(a+0)(c+0), where zero is the number of
grounded node in the circuit, means the deletion operation of the row a and column
c. Obviously, Δ(a–0)(c–0) = Δ(a+0)(c+0).

The matrices of pathological elements are presented in Table 3, where N is a
symbol of the norator-nullator pair, Q is a symbol of the VM-norator pair, T is a
symbol of the nullator-CM pair, M is a symbol of the VM-CM pair. If one of the
matrix entries is null the determinant of pathological element matrix is equal to
zero. In Table 3 the matrix identities for all four pathological elements in the form
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of HOSC are proposed. To prove the matrix identities presented in Table 3 one can
apply the Laplace’s cofactor expansion.

Matrix representation of pathological elements provides the way to reduce the
matrix of the residual circuit by extraction of virtual parameters that are equal in
absolute values:

Δ=
X ⋅Δða±bÞðc±dÞ, a= c

−X ⋅Δða±bÞðc±dÞ, a≠ c

(
, ð28Þ

where X is a symbol of pathological element written at the intersection of rows
a and b and columns c and d of the circuit matrix, Δ(a±b)(c±d) is the circuit matrix
transformed in accordance with Table 3.

The recursive usage of the formula (28) provides the calculation of determinant
of the matrix of the residual circuit. The determinant of the non-degenerated
nullor-based residual circuit can take on values Δ = 1 or Δ = –1. The determinant
value of non-degenerated residual circuit containing pathological mirrors can be
multiple of 2.

Table 3 The equivalent HOSC and matrices of pathological elements

Element type Matrix identity in form of HOSC Matrix elements

1 N (norator-nullator pair)
a

b

c

d

Δ a+ bð Þðc+ dÞ =
Δ a+0ð Þðc+0Þ +Δ b+0ð Þðd+0Þ

−Δ a+0ð Þðd+0Þ −Δ b+0ð Þðc+0Þ

c d
a N –N
b –N N

2 T (nullator-CM pair)
a

b

c

d

Δ a− bð Þðc+ dÞ =
Δ a+0ð Þðc+0Þ −Δ b+0ð Þðd+0Þ

−Δ a+0ð Þðd+0Þ +Δ b+0ð Þðc+0Þ

c d
a T –T
b T –T

3 Q (VM-norator pair)
a

b

c

d

Δ a+ bð Þðc− dÞ =
Δ a+0ð Þðc+0Þ −Δ b+0ð Þðd+0Þ

+Δ a+0ð Þðd+0Þ −Δ b+0ð Þðc+0Þ

c d
a Q Q
b –Q –Q

4 M (VM-CM pair)
a

b

c

d

Δ a− bð Þðc− dÞ =
Δ a+0ð Þðc+0Þ +Δ b+0ð Þðd+0Þ

+Δ a+0ð Þðd+0Þ +Δ b+0ð Þðc+0Þ

c d
a M M
b M M
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Example 4 Suppose that the pathologic element-based circuit shown in Fig. 9a is a
residual circuit of a certain network in which all of the impedances, admittances,
and CS were extracted.

The HOSC list and its representation in the form of circuit matrix can be
expressed as follows:

Δð1− 2Þð2+ 1Þ, ð1− 3Þð0+ 1Þ, ð1+ 3Þð1+3Þ, ð29Þ
1 2 3

1 –T1–T2+N1 T1 –N1
2 –T1 T1
3 –T2–N1 N1

ð30Þ

Let’s extract T1 from the matrix by formula (28). The symbol of the first
nullator-CM pair is deleted as shown below:

1 2 3
1 –T2+N1 –N1
2
3 –T2–N1 N1

ð31Þ

The subtraction of entries at rows 1 and 2 leads to inversion of the entries of row 1:

1 2 3
2 T2–N1 N1
3 –T2–N1 N1

ð32Þ

The result of the addition of entries in columns 2 and 1 is shown below:

1 3
2 T2–N1 N1
3 –T2–N1 N1

ð33Þ

(a)

(b)

210

3N1

T2

T1

1

2

3

4
5

6

7

0

N1

M1

M2

M3 M4

Q1T1

Fig. 9 The pathologic element-based residual circuits
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Now let’s rearrange the numbers of columns and rows as follows:

2 3
2 T2–N1 N1
3 –T2–N1 N1

ð34Þ

The number of the row a is not equal to the number of the column c (1 ≠ 2), so
in accordance with (28):

2 3
2 –T2+N1 –N1
3 T2+N1 –N1

ð35Þ

As seen from (35), the types of non-extracted pathological elements is changed
as following T2 → N2 and N1 → T3:

2 3
2 N2+T3 –T3
3 –N2+T3 –T3

ð36Þ

Now let’s extract the symbol of nullor N2:

2 3
2 T3 –T3
3 T3 –T3

ð37Þ

The result of the addition of the entries in rows 2 and 3 is shown below:

2 3
3 2T3 –2T3

ð38Þ

The last step is the addition of columns 0 and 2 which leads to deletion of
column 2:

3
3 –2T3

ð39Þ

The value of the determinant is Δ = –2.
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4.2 The Algorithm of Determinant Expansion Directly
from HOSC of Residual Circuits

The HOCS pairs (a ± b)(c ± d) can be extracted instead of the pathological ele-
ments symbols. The determinant expansion of residual circuits directly from HOSC
is more appropriate for automatic calculation. The algorithm proposed is shown in
Fig. 10. The input data is the HOSC list of a certain circuit in which all of the
elements except the pathological mirrors and nullors were extracted by formulae
(1), (2) and (15).

The individual aspects of analysis stages are detailed below:

1. The netlist of the residual circuit is transformed into the HOSC list.

1. HOSC list of n elements

Yes
END

2. Check for circuit degeneracy conditions

Meet the 
conditions?

No

3. Perform the equivalent transformations

4. Calculate the sign of determinant

Is transformation 
performed?

No

Yes

n=1

5. Extract the arbitrary HOSC pair (a±b)(c±d)

6. Replace the rows and columns numbers of non-extracted 
HOSC pairs as follows:  a b, d.

Yes

No

a=c
Yes

7. Replace the rows and columns indexes of non-extracted 
HOSC pairs as follows: a

No

Fig. 10 The flow chart of algorithm
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2. At the beginning of computation process and after every extraction iteration the
HOSC list must be checked for circuit degeneracy conditions. If the HOSC list
includesmore than one element then determinant is equal to zero in following cases:

ða + aÞ→Δ=0; ð40Þ

ðc + cÞ→Δ=0. ð41Þ

If the HOSC list includes only one element that differs from Δ(a+b)(a+b) = 1 and
Δ(a+b)(b+a) = –1, then determinant is equal to zero. For example: Δ(a+b)(c+d) = 0.

3. Several equivalent transformations must be performed in the HOSC list:

I. Determinant doubling (2Δ):
ða− aÞ→ ða + 0Þ, ð42Þ

ðc− cÞ→ ðc + 0Þ. ð43Þ

II. The transformations of the HOSC list elements with null summand:

ða− 0Þ→ ða + 0Þ; ð44Þ

ðc− 0Þ→ ðc + 0Þ; ð45Þ

ð0− aÞ→ ða + 0Þ; ð46Þ

ð0+ aÞ→ − ða + 0Þ; ð47Þ

ð0− cÞ→ ðc + 0Þ; ð48Þ

ð0+ cÞ→ − ðc + 0Þ. ð49Þ

III. The transformations of the HOSC list elements with the first negative
number:

ðð− aÞ+ bÞ→ − ðb+ ð− aÞÞ→ − ðb− aÞ→ − ða− bÞ, ð50Þ

− að Þ− bð Þ→ b− − að Þð Þ→ b+ að Þ→ − a+ bð Þ, ð51Þ

− cð Þ+ dð Þ→ − d+ − cð Þð Þ→ − d− cð Þ→ − c− dð Þ, ð52Þ

− cð Þ− dð Þ→ d− − cð Þð Þ→ d+ cð Þ→ − c+ dð Þ. ð53Þ

4. The default positive sign of determinant must be inverted in the case of trans-
formations (47), (49), (50)–(53) or extraction of the HOCS pair (a + b)
(c + d) in which a ≠ c (see step 7).
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5. The extraction of arbitrary HOSC pair (a + b)(c + d) decreases HOSC list by
one.

6. After extraction of HOCS pair (a ± b)(c ± d) the numbers of rows of
non-extracted HOSC pairs will be replaced as follow: a → b. The numbers of
columns is replaced in a similar way: c → d. If a = c the analysis procedure
repeats from degeneracy checking. In the opposite case, the next step must be
performed.

7. If a ≠ c the rows and columns numbers of non-extracted HOSC pairs is
replaced as follows: a → c. This operation is inverting of the sign of the
determinant.

The algorithm of calculation of determinant of the residual circuit consisting of
pathological elements only is implemented in circuit analyzer CirSym.

Example 5 The sequence of operations of determinant calculation of the pathologic
element-based residual circuit which is shown in Fig. 9a is presented in Table 4 in
accordance with the algorithm proposed.

As can be seen, the result of calculation by the expansion of HOSC list is the
same as result of matrix expansion in Example 4.

Example 6 Suppose that pathologic element-based circuit shown in Fig. 9b is a
residual circuit of a certain active network in which all of the impedances, admit-
tances, and CS were extracted. The HOSC list of pathological elements is written
below in the following order: N1, M1, M2, M3, M4, Q1, T1.

Table 4 The expansion of HOSC list (29)

Operation HOSC list Determinant

1 Extraction of (1, 2)(2 + 1) Δ 1− 3ð Þ 0+ 1ð Þ, 1 + 3ð Þð1+ 3Þ Δ
2 Rows: 1 → –2; Col.: 2 → 1 Δ − 2− 3ð Þ 0+ 1ð Þ, − 2+ 3ð Þ 1+ 3ð Þ
3 Rows and Col.:1 → 2 Δ − 2− 3ð Þ 0+ 2ð Þ, − 2+ 3ð Þ 2+ 3ð Þ
4 Changing sign 1 ≠ 2 Δ − 2− 3ð Þ 0+ 2ð Þ, − 2+ 3ð Þ 2+ 3ð Þ –Δ
5 Transformation by (51) Δ 2+ 3ð Þ 0+ 2ð Þ, − 2+ 3ð Þð2+ 3Þ Δ
6 Transformation by (50) Δ 2+ 3ð Þ 0+ 2ð Þ, 2, 3ð Þ 2+ 3ð Þ –Δ
7 Transformation by (49) Δ 2+ 3ð Þ 2+ 0ð Þ, 2, 3ð Þ 2+ 3ð Þ Δ
8 Extraction of (2 + 3)(2 + 0) Δ 2, 3ð Þ 2+ 3ð Þ Δ
9 Rows: 2 → 3; Col.: 2 → 0 Δ 3ð Þð0+ 3Þ
10 Saving sign 2 = 2 Δ 3ð Þ 0+ 3ð Þ Δ
11 Doubling by (42) Δ 3+ 0ð Þ 0+ 3ð Þ 2Δ
12 Transformation by (49) Δ 3+ 0ð Þ 3+ 0ð Þ –2Δ
Result –2Δ
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Δ 1+ 3ð Þ 1+4ð Þ, 2− 3ð Þ 3− 5ð Þ, 3− 4ð Þ 4− 5ð Þ, 4− 5ð Þ 2− 6ð Þ, 5− 6ð Þ 3− 7ð Þ, 7 + 3ð Þ 5− 7ð Þ, 7− 1ð Þð6+ 4Þ. ð54Þ

The sequence of operations of determinant calculation is presented in Table 5.
The obtained results of examples which considered above are confirmed by

usage of CirSym.

5 Circuit Decomposition in GPEM

There are two hierarchical decomposition approaches to circuit analysis. The first
one is called upward analysis and it is based on the combination of subcircuits [44].
The downward analysis deals with recursive usage of circuit bisection. Both of
decomposition approaches are implemented in GPEM. The upward analysis pro-
vides the generation of circuit function in the form of sequence of expressions
(SoE). Many symbolic circuit analysis techniques provide the solution in the form
of SoE [1, 5, 6, 44, 57–59] and the sequence can be made very compact [59]. The
single nested expression of circuit function can be obtained by downward analysis.

5.1 The Downward Analysis

In this section, we present the generalized topological approach to circuit bisection
which can be explained by matrix decomposition procedures. Let’s consider the
arbitrary fully populated matrices A, B, and C = A+B of the same order n = 3.
The determinant of C can be expressed as shown below:

detðCÞ=
c11 c12 c13
c21 c22 c23
c31 c32 c33

������
������=

a11 + b11 a12 + b12 a13 + b13
a21 + b21 a22 + b22 a23 + b23
a31 + b31 a32 + b32 a33 + b33

������
������. ð55Þ

The expression (55) can be transformed in consequence of linearity of the
determinant as follows:

detðCÞ=
a11 a12 a13
a21 a22 a23
a31 a32 a33

�������
�������+

a11 a12 b13
a21 a22 b23
a31 a32 b33

�������
�������+

a11 b12 a13
a21 b22 a23
a31 b32 a33

�������
�������+

b11 a12 a13
b21 a22 a23
b31 a32 a33

�������
�������+ .

+

a11 b12 b13
a21 b22 b23
a31 b32 b33

�������
�������+

b11 a12 b13
b21 a22 b23
b31 a32 b33

�������
�������+

b11 b12 a13
b21 b22 a23
b31 b32 a33

�������
�������+

b11 b12 b13
b21 b22 b23
b31 b32 b33

�������
�������,

ð56Þ
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or more briefly as

detðCÞ= detðA+BÞ= detA+ ∑Δð1Þ+ ∑Δð2Þ+ . . . + ∑ΔðkÞ
+ . . . + ∑Δðn− 1Þ+ detB, ð57Þ

where Δ(k) is the determinant derived by operation of replacement of all the entries
of k columns of matrix A by the entries of corresponding columns of matrix B. The
sum in (57) is the sum over all possible combinations of k columns in A and B.

In accordance with Laplace theorem if we are given a selection of k rows i1, i2,
…, ik of a square n-order matrix M the determinant can be characterized as the sum
[60]:

Δ= − 1ð Þ∑k
z=0 iz + ∑k

z=0 jzMi1, i2, ..., ik
j1, j2, ..., jk M

i1, i2, ..., ik
j1, j2, ..., jk , ð58Þ

where j1, j2,…, jk specify the columns ofM,M i1, i2, ..., ik
j1, j2, ..., jk is the complementary minor

of the minor Mi1, i2, ..., ik
j1, j2, ..., jk . Note that the columns vary over all possible combinations

of k columns.
The Eq. (57) can be expressed by usage of (58) as following [61]:

detðCÞ= detðA+BÞ= detA+ ∑
n− 1

k =1
∑ ð− 1Þ∑k

z=0 iz + ∑k
z=0 jzBkAk + detB, ð59Þ

where Bk is the minor of order k of matrix B, Ak is the complementary minor of (n–
k) order formed by the determinant of the matrix A from which k rows and columns
associated with minor Bk have been removed.

The expression (59) seems not quite effective for determinant expansion of the
fully populated matrix. But the circuit matrix usually is sparse. Thereby the formula
(59) can be quite useful for the symbolic circuit analysis by hierarchical decom-
position. Let’s consider the graphical models of arbitrary circuit matrices A, B, and
C = A+B of the same order n which are presented in Fig. 11. The parameters of
circuits’ elements are written in the entries in the shaded areas of matrices A and
B. The values of the entries in the non-shaded areas are equal to null. The inter-
section of the rows and columns, which corresponds to the common nodes of

A B C=A+B

(a) (b) (c)

Fig. 11 The graphical models of arbitrary circuit matrices A, B, and C = A+B
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circuits is shown as the double-shaded area in matrix C. Suppose that the set of
common nodes includes the grounded node. Thereby for determinant calculation of
circuit matrix C by (59), we can use only the minors and cofactors that correspond
to the common nodes of subcircuits. The other minors and cofactors are equal to
zero.

The Feussner’s diacoptic formulae (5) and (6) represent the particular cases of
circuit bisection. The operation of short-circuiting of the nodes a and b in bisection
formula (6) is equivalent to a parallel connection of norator and nullator into those
nodes, which causes the deletion of the correspondent column and the row of
subcircuit matrix [62]. Therefore, the derived subcircuit may be called a «minor of
circuit» by analogy with the term «minor of matrix». The symbolic expression of
minor of the circuit can be calculated using formulae (1), (2) and (15).

The binary arrays represent the minors of the circuit with m number of external
nodes; one of which is considered as a grounded node. The dimension of an array is
2n, where n = (m–1). The first n elements of the binary array form the norator
vector and the last n elements form the nullator vector. There are two possible
values for each element of vector: 0 or 1. The unity value of some entry of norator
(nullator) vector means that norator (nullator) is inserted into the circuit between the
correspondent node and grounded node. The norator and nullator of the inserted
nullor are oriented in the same direction. In the case of zero value, the node is in
open loop. The positions of entries in the vector can be presented by the tuple that
consists of labels of a subcircuit external nodes excluding the basic node.

The number of binary arrays for an arbitrary subcircuit can be calculated by the
formula:

v= ∑
n

i=0

i
n

� �2
, ð60Þ

where i
n

� �
is a binomial coefficient.

The bisection formula (59) can be transformed by usage of the binary arrays
concept for decomposition of the circuit by m nodes as follows:

∑
v

i=1
δiΔ1ðbiÞΔ2ðbiÞ, ð61Þ

where Δ1(bi) is a first subcircuit minor which corresponds to the binary array bi;
Δ2(bi) is a second subcircuit minor which corresponds to the binary array bi.

The norators and nullators that are inserted into the circuit minors can be enu-
merated in accordance with the values of the entries in the corresponding binary
array. The binary array that corresponds to the circuit minors with enumerated
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nullors is called the enumerated binary array. Instead of nullator and norator con-
nection information, this array contains nullor number which particular nullator and
norator belong to. For example, the binary array b = 110101 of some circuit minor
includes the two nullors labeled by « 1 » and « 2»; using those numbers binary
array can be transformed into the following enumerated binary array: b’ = 120102.

The nullor circuit that corresponds to the sum of two enumerated binary arrays,
is consist of n norator-nullator pairs, connected in parallel. Norator-nullator pairs
must be labeled by the same number to use the nullor simplification. If the labels of
a norator and nullator of certain nullor are different the permutation of labels in the
sum result of two enumerated binary arrays is needed. The determinant of nullor
circuit is δ = 1 if the amount of such permutations is even. In the opposite case, the
sign of the product of Δ1(bi) and Δ2(bi) in (61) is negative.

In the case of circuit bisection by three nodes (n = 2) the dimension of binary
arrays is 2n = 4. The six binary arrays which are presented in Fig. 12 can be
derived as the result of bisection. They are corresponding to the circuit minors of

1 2

Δ12

1001

0

21
Δ11

1010

0

1
Δ11,22

1111

0 2

2 2

1

1

21
Δ Δ21Δ22

0101 01100000

000

21 21

Fig. 12 The circuit minors and binary arrays of three-node subcircuit

Table 6 The binary arrays,
the enumerated binary arrays,
the sum results of enumerated
binary arrays and the
determinants values in the
case of circuit bisection by 3
nodes

i bi bi b′i b′i b′i + b′i δi

1 0000 1111 0000 1212 1212 1
2 0101 1010 0101 2020 2121 1
3 0110 1001 0110 2002 2112 –1
4 1001 0110 1001 0220 1221 –1
5 1010 0101 1010 0202 1212 1
6 1111 0000 1212 0000 1212 1
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the first subcircuit in (61). The binary arrays of the second subcircuit can be
obtained by operation of the one’s complement of the binary number. The tuple of
common (or external) nodes of subcircuits can be written as 1212. The binary
arrays, their enumerated forms, the sum results of two enumerated binary arrays and
the determinants values of corresponding nullor circuits are presented in Table 6.

The decomposition formula (61) in the case of bisection by three nodes can be
expressed as follows:

Δ=Δ1 b1ð ÞΔ2ðb1Þ+Δ1 b2ð ÞΔ2ðb2Þ−Δ1 b3ð ÞΔ2ðb3Þ−
−Δ1 b4ð ÞΔ2ðb4Þ+Δ1 b5ð ÞΔ2ðb5Þ+Δ1 b6ð ÞΔ2ðb6Þ.

ð62Þ

The circuit-algebraic form of (62) is presented below:

= .21 1 2 +

1 . 2+ 1 2.

+

+

1 . 2 –

.

– 1 2 – 1 2..

0

1

2

ð63Þ
Let’s consider the case of circuit bisection by four nodes (n = 3) as shown in

Fig. 13a. The dimension of binary arrays is 2n = 6. The binary arrays in which the
number of unities in norator vector differs from a number of unities in nullator

(a) (b)
3

2
21

1

0

3   4

2

21 1

0

Fig. 13 The model of circuit bisection by four nodes a, the model of combination of two
subcircuits b
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vector are excluded from search space 000000 to 111111 in accordance with (60).
Thereby twenty binary arrays for each of subcircuit are presented in Table 7, as
well as their enumerated forms, the sum results of two enumerated binary arrays
and the determinants values of corresponding nullor circuits.

The decomposition formula (61) in the case of bisection by four nodes can be
expressed as follows:

Δ=Δ1 b1ð ÞΔ2ðb1Þ+Δ1 b2ð ÞΔ2ðb2Þ−Δ1 b3ð ÞΔ2ðb3Þ+Δ1 b4ð ÞΔ2ðb4Þ−Δ1 b5ð ÞΔ2ðb5Þ+
Δ1 b6ð ÞΔ2ðb6Þ−Δ1 b7ð ÞΔ2ðb7Þ+Δ1 b8ð ÞΔ2ðb8Þ−Δ1 b9ð ÞΔ2ðb9Þ+Δ1 b10ð ÞΔ2ðb10Þ+

Δ1 b11ð ÞΔ2ðb11Þ−Δ1 b12ð ÞΔ2ðb12Þ+Δ1 b13ð ÞΔ2ðb13Þ−Δ1 b14ð ÞΔ2ðÞ+Δ1 b15ð ÞΔ2ðb15Þ−
Δ1 b16ð ÞΔ2ðb16Þ+Δ1 b17ð ÞΔ2ðb17Þ−Δ1 b18ð ÞΔ2ðb18Þ+Δ1 b19ð ÞΔ2ðb19Þ+Δ1 b20ð ÞΔ2ðb20Þ.

ð64Þ

The bisection operation by the proposed formula (61) can be used for every
derived circuit minors provides the downward hierarchical decomposition of the
circuit for closed-form determinant expressions calculation. Note, that the
input-port and output-port of certain CS, nullor or pathological mirrors pair, cannot
be included separately in different subcircuits.

5.2 The Upward Hierarchical Analysis

The upward hierarchical analysis by GPEM starts from the decomposition of the
circuit by bisection formula (61) and follows by the pairwise combination of
subcircuits. The binary arrays and corresponding circuit minors are used for the
representation of subcircuits. Suppose two n-port circuits combined into one circuit
by m ports, which may be called the common nodes. Let’s consider the input and
output ports of the circuit as external nodes. Some of the common nodes of the
combined circuit can be also the external nodes.

The following algorithm is used for the combination of two subcircuits:

1. Generate the set of binary arrays for each of subcircuits.
2. Perform the pairwise comparison of binary arrays using the entries that corre-

spond to common nodes of subcircuits to find the pairs of joint binary arrays.
Two binary arrays are called jointed if the entries values that correspond to the
common nodes are complementary and the sum of those values is not equal to
zero.

3. Generate the set of binary arrays of the combined circuit using joint binary
arrays. The values of binary arrays must be written in accordance with circuit
tuple in the following order: firstly, the values of binary arrays which corre-
spond to the non-common external nodes of the first subcircuit, next, the values
of the binary arrays which correspond to the common nodes, and, finally,
the values of the binary arrays which correspond to the non-common external
nodes of the second subcircuit. The unity must be written into binary array
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entries that correspond to the common external nodes of the combined circuit if
there are the unity values in the corresponding entries of the joint binary arrays.

4. Calculate the sign of circuit minors product represented by joint binary arrays
according to (61). The sign is positive if the number of permutations in
the enumerated joint binary arrays is even and vice versa. If the values of entries
that correspond to the common external nodes are equal to unity in both joint
binary arrays then the unity values of such entries in one of the binary arrays
must be replaced by zero.

5. Summarize the circuit minors products that correspond to the pairs of joint
binary arrays for each of combined circuit minors.

Let’s consider the following example to illustrate the usage of the proposed
algorithm. The circuit with three nodes labeled by 3, 4 and 0 shown in Fig. 13b is
obtained by combining two subcircuits 1 and 2 with four external nodes. Thereby
the dimension of binary arrays is equal to 6 in the case of the separated subcircuits
and to 4 in the case of the combined circuit.

A number of external nodes is the same in both subcircuits, therefore we can use
the set of binary arrays from the second column in Table 7. The tuples of binary
arrays of first and second subcircuits can be expressed as 312312 and 124124

Table 7 The binary arrays, the enumerated binary arrays, the sum results of enumerated binary
arrays and the determinants values in the case of circuit bisection by 4 nodes

i bi bi b′i b′i b′i + b′i δi

1 000000 111111 000000 123123 123123 1
2 001001 110110 001001 230230 231231 1
3 001010 110101 001010 230203 231213 –1
4 001100 110011 001100 230023 231123 1
5 010001 101110 010001 203230 213231 –1
6 010010 101101 010010 203203 213213 1
7 010100 101011 010100 203023 213123 –1
8 011011 100100 012012 300300 312312 1
9 011101 100010 012102 300030 312132 –1
10 011110 100001 012120 300003 312123 1
11 100001 011110 100001 023230 123231 1
12 100010 011101 100010 023203 123213 –1
13 100100 011011 100100 023023 123123 1
14 101011 010100 102012 030300 132312 –1
15 101101 010010 102102 030030 132132 1
16 101110 010001 102120 030003 132123 –1
17 110011 001100 120012 003300 123312 1
18 110101 001010 120102 003030 123132 –1
19 110110 001001 120120 003003 123123 1
20 111111 000000 123123 000000 123123 1
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correspondingly. Obviously, we need to take into account only the entries 1212 that
correspond to the common nodes of subcircuits to find the set of joint binary arrays
pairs and their signs. For example, two binary arrays b2 = 001001 and
b13 = 100100 are jointed because their values at the entries 1212 are mutually
complementary: 0101 and 1010. The sign can be calculated by summation of values
at the entries of the binary arrays 1212 in the enumerated form:
0101 + 2020 = 2121. Thereby the sign of the product of two circuit minors D1(b2)
∙D2(b13) is positive.

Let’s consider another pair of joint binary arrays b5 = 010001 and b9 = 011101.
The values at the entries 1212 are 1001 and 0110 correspondingly. The sum result
of entries in the enumerated form is 1221, therefore the sign of the product of two
circuit minors D1(b5)∙D2(b9) is negative.

The tuple of binary arrays of the combined circuit consists of labels of
non-common external nodes: 3434. The values at such entries in the joint binary
arrays are used to generate the combined circuit binary arrays. For example, the
values of b2 and b13 at the entries 3434 are 0000. The binary array 0101 of the
combined circuit corresponds to the combination of the pair: b5 and b9. The binary
arrays of combined circuit and corresponding joint binary arrays are presented in
Table 8.

The circuit minors of combined circuit can be calculated in accordance with
Table 8 as following:

Δ 0000ð Þ=Δ1 b1ð ÞΔ2 b19ð Þ+Δ1 b2ð ÞΔ2 b13ð Þ−Δ1 b3ð ÞΔ2 b12ð Þ−Δ1 b5ð ÞΔ2 b9ð Þ+Δ1 b6ð ÞΔ2 b8ð Þ+Δ1 b8ð ÞΔ2 b2ð Þ,
Δ 0101ð Þ=Δ1 b1ð ÞΔ2 b20ð Þ+Δ1 b2ð ÞΔ2 b15ð Þ−Δ1 b3ð ÞΔ2 b14ð Þ−Δ1 b5ð ÞΔ2 b9ð Þ+Δ1 b6ð ÞΔ2 b8ð Þ+Δ1 b8ð ÞΔ2 b2ð Þ,

Δ 0110ð Þ=Δ1 b4ð ÞΔ2 b16ð Þ−Δ1 b7ð ÞΔ2 b10ð Þ+Δ1 b9ð ÞΔ2 b4ð Þ−Δ1 b10ð ÞΔ2 b3ð Þ,
Δ 1001ð Þ=Δ1 b11ð ÞΔ2 b18ð Þ−Δ1 b12ð ÞΔ2 b17ð Þ+Δ1 b14ð ÞΔ2 b11ð Þ−Δ1 b17ð ÞΔ2 b5ð Þ,

Δ 1010ð Þ=Δ1 b13ð ÞΔ2 b17ð Þ+Δ1 b15ð ÞΔ2 b13ð Þ−Δ1 b16ð ÞΔ2 b12ð Þ−Δ1 b18ð ÞΔ2 b7ð Þ+Δ1 b19ð ÞΔ2 b6ð Þ+Δ1 b20ð ÞΔ2 b1ð Þ,
Δ 1111ð Þ=Δ1 b13ð ÞΔ2 b20ð Þ+Δ1 b15ð ÞΔ2 b15ð Þ−Δ1 b16ð ÞΔ2 b14ð Þ−Δ1 b18ð ÞΔ2 b9ð Þ+Δ1 b19ð ÞΔ2 b8ð Þ+Δ1 b20ð ÞΔ2 b2ð Þ.

ð65Þ

As seen from (65), generation of SoE by proposed algorithm involves a large
number of calculations of circuit minors. However, decomposition of the circuit
with nullors can be simplified by using degeneracy conditions [29]. Thereby the
number of circuit minors can be significantly reduced by using the following rules:

1. The zero value must be written in norator vector of subcircuit binary array at the
entry that corresponds to the external node a if there is a norator of certain nullor
or VM between nodes a and 0 in the subcircuit.

2. The unity value must be written in norator vector of subcircuit binary array at
the entry that corresponds to the common external node a if there is a norator of
certain nullor or VM between nodes a and 0 in the second subcircuit.

3. The zero value must be written in nullator vector of subcircuit binary array at the
entry which corresponds to the external node a if there is a nullator of certain
nullor or CM is connected between nodes a and 0 in the subcircuit.
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4. The unity value must be written in nullator vector of subcircuit binary array at
the entry that corresponds to the common external node a if there is a norator of
certain nullor or CM between nodes a and 0 in the second subcircuit.

For example, suppose that in three-node nullor-equivalent subcircuit there is
norator which is connected between nodes 2 and 0. In accordance with proposed

Table 8 The joint binary arrays of subcircuits 1 and 2 and binary arrays of combined circuit

The binary arrays
of combined circuit
(tuple 3434)

The joint binary arrays of subcircuits 1 and 2 δ

The tuple 312312 The tuple 124124

0000 b1 = 000000 b19 = 110110 1
b2 = 001001 b13 = 100100 1
b3 = 001010 b12 = 100010 –1
b5 = 010001 b7 = 010100 –1
b6 = 010010 b6 = 010010 1
b8 = 011011 b1 = 100100 1

0101 b1 = 000000 b20 = 000000 1
b2 = 001001 b15 = 101101 1
b3 = 001010 b14 = 101011 –1
b5 = 010001 b9 = 011101 –1
b6 = 010010 b8 = 011011 1
b8 = 011011 b2 = 001001 1

0110 b4 = 001100 b16 = 101110 1
b7 = 010100 b10 = 011110 –1
b9 = 011101 b4 = 001100 1
b10 = 011110 b3 = 001010 –1

1001 b11 = 100001 b18 = 110101 1
b12 = 100010 b17 = 110011 –1
b14 = 101011 b11 = 100001 1
b17 = 110011 b5 = 010001 1

1010 b13 = 100100 b19 = 110110 1
b15 = 101101 b13 = 100100 1
b16 = 101110 b12 = 100010 –1
b18 = 110101 b7 = 010100 –1
b19 = 110110 b6 = 010010 1
b20 = 000000 b1 = 000000 1

1111 b13 = 100100 b20 = 000000 1
b15 = 101101 b15 = 101101 1

b16 = 101110 b14 = 101011 –1
b18 = 110101 b9 = 011101 –1
b19 = 110110 b8 = 011011 1
b20 = 000000 b2 = 001001 1
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rules, only three binary arrays is generated instead of six which presented in
Table 6: 0000, 1001, 1010.

Example 7 Let’s consider the band-pass filter shown in Fig. 14, which was firstly
symbolically calculated in the paper [44] by J. A. Starzyk and A. Konczykowska.
This is a well-known test circuit for symbolic analysis methods. It contains 13
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Fig. 14 The band-pass filter [44]
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Fig. 15 The subcircuit-level model of band-pass filter
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OpAmps modeled by nullors, and 36 resistors and 8 capacitors modeled by
admittances.

The filter can be decomposed into the five subcircuits as shown in Fig. 15. Note
that for the sake of clarity the common nodes of subcircuits are renumbered. The
original nodes labels are shown in brackets in Fig. 15. The subcircuit 1 presented in
Fig. 16 is topologically identical to the subcircuits 2–4. Therefore the subcircuits 2–
4 can be easily derived from Fig. 16 by substitution of identification numbers of
symbols of resistors and capacitors correspondingly by the following formulae:

NR = i+8ðj− 1Þ, ð66Þ

NC = i+2ðj− 1Þ, ð67Þ

where i is an identification number in subcircuit 1, j = {2,3,4} is a number of one of
the subcircuits 2–4.

There are four external nodes in subcircuits 1–4. In this case, 20 binary arrays
can be derived. However the equivalent circuit of filter includes the 13 nullor,
therefore, the number of binary arrays can be greatly reduced by usage of Rules I
and II: b1 = 101011, b2 = 101101, b3 = 101110. The tuples of binary arrays for
the subcircuits 1–4 can be expressed as follows: 123123, 234234, 345345, 456456.

In the case of subcircuit 5 in Fig. 16b which includes three external nodes the
number of binary arrays can be reduced to the two: b1 = 1001, b2 = 1010. The
tuple of these binary arrays is following: 5656.

The expressions of circuit minors of subcircuits 1 and 5 calculated by GPEM are
presented below:

Δ1 b1ð Þ= − g1g5sC2 g2 + g4 + g8ð Þ,
Δ1 b2ð Þ= g1 + g3ð Þ g6 + sC1ð Þg4pC2 + g5g7g8½ �,

Δ1 b3ð Þ= g2g5sC2 g1 + g3ð Þ,
Δ5 b1ð Þ= g33 g34 + g36ð Þ,
Δ5 b2ð Þ= g36 g33 + g35ð Þ.

ð68Þ
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Fig. 16 The first a and fifth b subcircuits of band-pass filter
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The expressions of circuit minors of subcircuits 2–4 can be derived from (68) by
renumbering of symbols numbers in accordance with (66) and (67):

Δ2 b1ð Þ= − g9g13sC4 g10 + g12 + g16ð Þ,
Δ2 b2ð Þ= g9 + g11ð Þ g14 + sC3ð Þg12sC2 + g13g15g16½ �,

Δ2 b3ð Þ= g10g13sC4 g9 + g11ð Þ,
Δ3 b1ð Þ= − g17g21sC6 g18 + g20 + g24ð Þ,

Δ3 b2ð Þ= g17 + g19ð Þ g22 + sC5ð Þg20sC6 + g21g23g24½ �,
Δ3 b3ð Þ= g18g21sC6 g17 + g19ð Þ,

Δ4 b1ð Þ= − g25g29sC8 g26 + g28 + g32ð Þ,
Δ4 b2ð Þ= g25 + g27ð Þ g30 + sC7ð Þg28sC8 + g29g31g32½ �,

Δ4 b3ð Þ= g26g29sC8 g25 + g27ð Þ.

ð69Þ

The transfer function of the filter can be expressed as result of the combination
of circuit minors (68) and (69) by using the hierarchical tree presented in Fig. 17.
The labels of vertices 1–5 are corresponding to the numbers of subcircuits 1–5 in
Fig. 15. The labels of vertices 6–9 are corresponding to the numbers of new sub-
circuits which are obtained by the bottom-up combination of subcircuits. Obvi-
ously, the original filter circuit which corresponds to the vertex 9 is the final result
of subcircuits combination.

Let’s consider the combination of subcircuits 1 and 2 by nodes 0, 2 and 3. The
entries 2323 must be taken into account to find the set of joint binary arrays pairs
and their signs. Note that the values at the entries which correspond to the common
non-external node 2 must be mutually complementary, while the value in the entries
which correspond to the common external node 3 cannot be equal to zero. The pairs
of joint binary arrays, binary arrays of combined subcircuit 6 are presented in
Table 9.

The combination of other subcircuits can be performed in a similar way.
Thereby the final quite compact SoE of filter transfer function is expressed as
following:

6
7

8
9

5

4

3

2 1

Fig. 17 The hierarchical tree
for combination of circuit
minors of band-pass filter
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Δ6 b1ð Þ=Δ1 b1ð ÞΔ2 b1ð Þ,Δ6 b2ð Þ=Δ1 b2ð ÞΔ2 b2ð Þ−Δ1 b3ð ÞΔ2 b1ð Þ,
Δ6 b3ð Þ=Δ1 b2ð ÞΔ2 b3ð Þ, Δ7 b1ð Þ=Δ6 b1ð ÞΔ3 b1ð Þ,

Δ7 b2ð Þ=Δ6 b2ð ÞΔ3 b2ð Þ−Δ6 b3ð ÞΔ3 b1ð Þ, Δ7 b3ð Þ=Δ6 b2ð ÞΔ3 b3ð Þ,
Δ8 b1ð Þ=Δ7 b1ð ÞΔ4 b1ð Þ,Δ8 b2ð Þ=Δ7 b2ð ÞΔ4 b2ð Þ−Δ7 b3ð ÞΔ4 b1ð Þ,

Δ8 b3ð Þ=Δ7 b2ð ÞΔ4 b3ð Þ,Δ9 b1ð Þ=Δ8 b1ð ÞΔ5 b1ð Þ,
Δ9 b2ð Þ=Δ8 b2ð ÞΔ5 b2ð Þ−Δ8 b3ð ÞΔ5 b1ð Þ, H =Δ9 b1ð Þ ̸Δ9 b2ð Þ.

ð70Þ

The obtained result (70) can be verified by numerical simulation or exact
comparison with the symbolic solution presented in [44].

6 Conclusion

In this chapter, we briefly review the basics of GPEM and its applications for
symbolic analysis of large circuits with pathological element-based active device
models. The method can be used for analysis of circuits containing all linear circuit
elements, including nullors, four types of controlled sources, and pathological
mirrors. We start with the parameter extraction formulae and circuit degeneracy
conditions. Then we introduce an algorithm to improve the efficiency of determi-
nants calculation of residual circuits containing pathological elements only. Such
circuits can be derived from active networks in which all of the impedances,
admittances, and CS were extracted. The algorithm proposed is based on the
concept of HOSC and provides the determinant calculation by usage of simple
matrix algebra operations instead of topological simplifications. Further, the hier-
archical decomposition procedures for symbolic analysis of large circuits by GPEM
have been introduced. The techniques proposed of upward analysis and downward
analysis provide the calculation of a circuit function in the form of a single nested
expression or in the form of sequence of expressions correspondingly. All descri-
bed algorithms were implemented in the computer program for circuit analysis
CirSym.

Table 9 The joint binary arrays of subcircuits 1 and 2 and binary arrays of combined circuit

The binary arrays
of combined
subcircuit 6 (tuple
134134)

The joint binary arrays of subcircuits 1 and 2 δ

The tuple 123123 The tuple 234234

1 101011 2
b1 = 101011

1
b1 = 101011

1

2 101101 b2 = 101101 b2 = 101101 1
b2 = 101101 b3 = 101110 –1

3 101110 b3 = 101110 b1 = 101011 1
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