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Foreword

This book focuses on some kind of mystery circuit elements, namely norator,
nullator, nullor, current mirror, and voltage mirror, all of them known as patho-
logical elements. As you will see along the chapters of this book, the mystery of
those pathological elements relies on its usefulness to perform circuit modeling,
symbolic circuit analysis, circuit synthesis, circuit design and to develop applica-
tions that involve modern active devices. The nullor concept was introduced to
model the ideal behavior of the operational amplifier, and since the works of
B. D. H. Tellegen and H. J. Carlin in the 60s, nowadays many researchers intro-
duced contributions on analysis, synthesis, and design of active circuits. More
recently, Prof. A. M. Soliman and co-authors have introduced contributions in this
new millennium by using the current mirror and voltage mirror, which as a pair they
form a universal element, as the nullor does, and they are useful to analyze and
discover new designs of active devices.

The editors are active researchers that have already published works on these
topics, and they have included a Preface that lists detailed statistics on publications
and contributions associated with pathological elements. Personally, I met Prof.
Mourad at the SMACD conference held at Gammarth, Tunisia, in 2012. From that
time, I have followed his research not only on topics involving pathological ele-
ments, but also on circuit optimization. Professor Marian has also published several
works using pathological elements in analysis and synthesis of analog circuits. Both
editors have been organized eleven chapters in this book entitled: Pathological
Elements in Analog Circuit Design, which is divided into two parts where you can
find details to infer the significance of the pathological elements and of the fixator in
analysis, synthesis, design and applications. The chapters highlight the use of the
pathological elements to model transistors, voltage amplifiers, current amplifiers,
impedance converters, current conveyors, inverting conveyors, operational
transconductance amplifiers, operational transresistance amplifiers, and other
modern active devices.
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Without a doubt, this book will make your imagination to explore new chal-
lenges in the application of pathological elements for the modeling, analysis,
synthesis, and applications of analog circuits, and we will be happy reading your
contributions in these topics.

Puebla, México/Ciudad
de México, México

Esteban Tlelo-Cuautle
Professor at Instituto Nacional de Astrofísica,

Óptica y Electrónica
Centro de Investigación y de Estudios

Avanzados del IPN
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Preface

Prior to 1960, electronic circuits and systems were produced by connecting discrete
component to discrete devices. Each component or device was packaged separately
and connected by means of conducting wires. So, the procedures for analysis,
synthesis, and design of electronic circuits were relatively simple. Some network
theory and basic techniques were used for such purpose. Circuits were most often
analyzed using a combination of Kirchhoff’s voltage and current laws. Models of
active devices invariably involved resistors, capacitors, inductors, and dependent
sources.

In the 1960s, the integrated circuit was developed. This device created entire
electronic circuits on or in a silicon wafer. The devices are interconnected through
the silicon material or by very small conducting metal strips, deposited on the
wafer. Since then, thousands of devices and components can be created on a very
small wafer to produce very complex circuits. Although the integrated circuit is
technically a circuit composed of thousands of components and devices, it is
referred to as an electronic device. Many types of integrated circuits are available,
for example, operational amplifiers, current conveyors, transconductance amplifiers,
and so on. Due to their complexity, such new elements cannot be analyzed by the
conventional simple laws of network theory. The development of new integrated
circuits and the complexity of their constructions had stimulated the network the-
orists to consider new basic elements which allow the circuit designer to analyze
and synthesize integrated circuits in more simpler and effective ways. Among
various basic elements proposed so far, nullors, which are the combinations of
nullators and norators, have been regarded to be universal building blocks since all
existing analog circuit building blocks can be represented using these elements.

Although the origin of the nullor concept itself was advanced as early as 1961–
1964, for many years this element was largely regarded as theoretical concept with
singular properties. Nowadays, this singular element is considered as a very useful
and powerful “tool-kit” as it can be argued by the increasing large number of
published papers dealing with the use of such a particular element in analog circuit
design (see Fig. 1).
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The mirror is another singular element which provides a framework not only for
analysis, synthesis, and design of integrated circuits but also for interrelating
between different network elements. It is a relatively newly known singular element
(when compared to the nullor). It was proposed in 1999.

Nullors and mirrors are also called “pathological elements” because they do not
possess the classical and the conventional obvious properties. Such pathological
elements are used in a large spectrum of applications in the modern circuit and
system theory, as well as in the design practice. Figure 2 shows the evolution of the
use of these pathological elements in analog circuit design and synthesis (the source
of these statistics is “Google Scholar” with the keywords “pathological elements”,
“analog”, “circuit”).

In view of the above, therefore, it clearly appears timely to propose a book on
these pathological elements and their applications in analog circuit modeling,
analysis, and synthesis.
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Fig. 2 Annual evolution (since 2000) of the number of papers on Google Scholar. (Keywords:
pathological elements analog circuit)—updated on December 17, 2017
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words: Nullor analog circuit)
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As far as is known, no book has so far been published on this topic yet. This
book will fill this void.

The editors have invited some experts from related disciplines involved in the
synthesis and design of analog circuits using pathological elements to contribute
and give a comprehensive overview of their particular field. In addition, an open
call for chapters was launched. A large number of interesting proposals were
submitted. Few of them were selected for inclusion in the book.

The book is divided into two parts:
Part I is entitled “Pathological Elements in the Analysis and the Synthesis of

Analog Circuits.” It encompasses six chapters.
Part II has the title “Pathological Elements in the Design of Analog Circuits.” It

contains five chapters.
Hereafter, the eleven chapters are succinctly introduced.
Chapter 1 is entitled “Symbolic Analysis and Synthesis of Analog Circuits

Using Nullors and Pathological Mirror Elements” and is proposed by Miguel A.
Duarte-Villaseñor, Esteban Tlelo-Cuautle, Luis Gerardo de la Fraga, and Carlos
Sánchez-López. It reviews advantages of the (Modified) Nodal Analysis ((M)NA)
theory and details the inclusion of pathological voltage mirrors and current mirrors
into the NA formulation.

It shows how to perform symbolic circuit analysis and then how to synthesize
those circuit elements using MOS transistors. It is also highlighted that from such
kind of circuit modeling, one can transform a voltage-mode circuit into a
current-mode one and vice-versa. The authors show the design of both modes of
operation at the transistor level of design, for which they also provide details on the
synthesis approach where each nullator, norator, voltage mirror, and current mirror
can have multiple options to be implemented with MOS transistors. Several
examples are provided to appreciate the advantages of the NA formulation from
analog circuits modeled by nullors and mirrors, the symbolic circuit analysis, the
transformation from voltage-mode to current-mode and vice-versa, and the syn-
thesis of pathological circuits by using MOS transistors.

Chapter 2, “Generalized Parameter Extraction Method for Symbolic Analysis of
Analog Circuits Containing Pathological Elements”, authored by Vladimir Filare-
tov, Konstantin Gorshkov, Sergey Kurganov, and Maxim Nedorezov deals with a
description of the extension of Generalized Parameter Extraction Method (GPEM)
for symbolic analysis of large-scale analog circuits containing pathological ele-
ments. A brief overview of the parameter extraction approach is offered. An
algorithm implementing the concept of Higher Order Summative Cofactors
(HOSCs) for determinants computation of the pathological elements-based circuits
is also proposed. Furthermore, the hierarchical decomposition techniques of upward
and downward analysis of electronic circuits by GPEM are presented.

Chapter 3, entitled “Two-Graph-Based Semi-topological Analysis of Electronic
Circuits with Nullors and Pathological Mirrors” and proposed by Marian Pierz-
chala and Mourad Fakhfakh, deals with the abstraction level elements such as
nullator, norator, current mirrors, and voltage mirrors that have been very useful in
the analysis of linear circuits. In this chapter, the authors propose a method for the
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analysis of linear circuits with the pathological elements which are based on the
two-graph representation of these elements and the semi-topological procedure of
calculations of the network functions. For completeness, the method has been
extended to encompass RLC-elements, all types of controlled sources, voltage, and
current independent sources. The procedure of calculation is based on the product
matrices and on a numerical formula of evaluation of unimodular determinants. No
sign rule is required for their evaluations, and canceling terms are extracted during
their evaluations.

Chapter 4, “Circuit Analyses with Nullors” authored by Mihai Iordache, Lucia
Dumitriu, Dragos Niculae, Marilena Stanculescu, Victor Bucata, and Georgiana
Rezmerita, is dedicated to the analysis of the circuit with nullors using the topo-
logical approach for transfer function generation by two-graph tree enumeration.
The nullor-based modeling of active devices from the circuit level of abstraction is
described in detail, and the generalized topological formula with homogeneous
parameters is proved for all the circuit functions. The simple representation of the
four types of controlled sources by admittances allows a uniform treatment of the
entire circuit in terms of admittances. Rules to automatically generate the two
graphs and to enumerate the common spanning trees are presented, and a discussion
considering the known conversion techniques of the controlled sources is offered.

Chapter 5 that is entitled “Symbolic Sensitivity Analysis Enhanced by Nullor
Model and Modified Coates Flow Graph” and proposed by Irina Asenova and
Franciszek Balik shows how pathological elements like nullors can be exploited to
symbolic sensitivity analysis enhancement. A method of first-, second-order, and
multiparameter symbolic sensitivity determination based on the nullor model of
active devices and modified Coates flow graph is presented. The method performs
symbolic sensitivity analysis with respect to various circuit parameters appeared not
only at one location in the nullor model. Illustrative examples on symbolic sensi-
tivity analysis are given. Advantages of the proposed Coates graph-based method
are stressed. Comparison results for the multiparameter sensitivity calculations
of the voltage transfer function are presented via application examples.

Chapter 6 titled “Synthesis of Electronic Circuits Structures on the Basis of
Active Switches”, which is authored by Marian Pierzchala and Mourad Fakhfakh,
presents a novel idea for the synthesis of electronic circuits’ structures. It is based
on the use of “active switches” which can be considered as circuit implementation
of the pathological elements since they connect and/or disconnect different elements
in the circuits and thus impose on their terminals specific voltages and currents in a
similar way as nullors and mirrors. Furthermore, the authors shows that this new
technique allows not only demystifying the process of finding new circuits struc-
tures but also opens large research areas for proposing new ones.

Chapter 7 “Applications of the Voltage Mirror-Current Mirror in Realizing
Active Building Blocks” by Ahmed M. Soliman highlights four alternative real-
izations of the nullator using a single voltage mirror (VM) or two VMs. Similarly
four alternative realizations of the norator using a single current mirror (CM) or two
CMs are also demonstrated. It is also shown that the VM-CM pair can be used to
realize a nullor and many other analog basic building blocks without the use of any
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external resistors. The use of the VM-CM pair with additional resistors to realize
the family of controlled sources, transconductance amplifiers, and other active
building blocks using NAM expansion is included. Moreover, it is shown that the
Nullator-CM pair as well as its adjoint which is the VM-Norator pair can also be
used as universal building blocks.

Chapter 8, “Circuit Biasing Using Fixator-Norator Pairs—A Tutorial” by Reza
Hashemian, describes a procedure based on local biasing. This procedure initiates
from port nullification and extends to nonlinear device nullification. It is shown that
when a device internally powered but is nullified through its ports, it is locally
biased. The difference between locally biased devices with full supplies or with
reduced number of supplies is discussed. It is presented the technique of biasing
through the use of fixator norator pairs (FNPs) that allow fixing each circuit tran-
sistor to its designated operating point, just like local biasing, while the power
supplies remain in their normal location in the circuit (global biasing). Properties on
fixators and norators are discussed, and component modeling using FNPs are
introduced.

Chapter 9 titled “Fixator-Norator Pair Based Design of Analog Circuits”
authored by R. Rohith Krishnan and S. Krishnakumar focuses on an approach
toward the design and analysis of analog circuits via the use of fixator-norator pairs
(FNPs). A brief explanation about the possible realizations of FNPs is introduced,
and then the use of FNPs in source allocation, source transformation, and biasing
design are presented. The proposed chapter also deals with the design of analog
integrated circuits based on FNPs. In addition, the chapter considers a complete AC
performance design case. All the proposed techniques are proved via some example
circuits.

Chapter 10 entitled “Application of Fixator-Norator Pairs in Analog Circuit
Design” by Reza Hashemian introduces fixator norator pairs (FNPs) as powerful
tools for designing analog circuits. It stresses the application of FNPs in analog
circuit designs, including biasing, gain, input and output impedances, and fre-
quency responses. It also highlights the use of FNPs in designing active loads and
current mirrors in IC circuits. The author shows the utility and the necessity of
using a model circuit for designing a circuit with a specific bandwidth and fre-
quency profile. This model circuit provides the frequency response needed, and
FNP is used to force the original circuit to follow the model circuit on its
bandwidth.

Chapter 11, “Nullor-Based Negative-Feedback Memristive Amplifiers:
Symbolic-Oriented Modelling and Design”, by Arturo Sarmiento-Reyes and José
Balaam Alarcón-Angulo deals with a new strategy for the design of nullor-based
memristive amplifiers with memistor realization of the nullor. This strategy allows
the implementation of the amplifier in a full memristive circuit. Moreover, a fully
symbolic memristor model is introduced, and the most important fingerprints are
highlighted. This model is used along the analysis and design steps. The model has
been recast as a behavioral model in Verilog-A. In the first stage, the memristive
amplifiers are composed by the nullor and a memristive feedback network. Noise
and harmonic analyses are carried out with symbolic and numerical simulations. In
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the second stage, the nullor is implemented by a memistor. Special attention has
been devoted to the noise contribution of the memistor. Finally, a transmemristance
amplifier has been used as case study for the memistor implementation of the nullor,
and noise and harmonic analyses are also offered.

Finally, the editors wish to use this opportunity to thank all the authors for their
valuable contributions, and the reviewers for their help for improving the contri-
butions’ qualities.

The editors are also very thankful to Thomas Ditzinger, Springer Executive
Editor, for his valuable support. Our thanks go also to all the Springer team,
especially to Ramya Chandran, Springer Project Coordinator, for her continued
assistance throughout the preparation of the book.

Enjoy reading the book.

Sfax, Tunisia Mourad Fakhfakh
Wrocław, Poland Marian Pierzchala
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Pathological Elements in the Analysis
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Symbolic Analysis and Synthesis of Analog
Circuits Using Nullors and Pathological
Mirror Elements

Miguel A. Duarte-Villaseñor, Esteban Tlelo-Cuautle,
Luis Gerardo de la Fraga and Carlos Sánchez-López

Abstract It has been demonstrated that symbolic circuit analysis of analog circuits
modeled by nullors and pathological mirror elements leads us to deal with the nodal
admittance (NA) matrix that is more compact than by using traditional modified
nodal analysis (MNA). This chapter reviews such a theory and details the inclusion
of pathological voltage mirrors and current mirrors into the NA formulation. In this
manner, from a circuit topology consisting of nullors and mirrors we show how to
perform symbolic circuit analysis and then how to synthesize those circuit elements
using MOS transistors. It is also highlighted that from such kind of circuit mod-
eling, one can transform a voltage-mode circuit into a current-mode one and vice
versa. We show the design of both modes of operation at the transistor level of
design, for which we also provide details on the synthesis approach where each
nullator, norator, voltage mirror and current mirror can have multiple options to be
implemented with MOS transistors. Several examples are provided to appreciate the
advantages of the NA formulation from analog circuits modeled by nullors and
mirrors, the symbolic circuit analysis, the transformation from voltage-mode to
current-mode and vice versa, and the synthesis of pathological circuits by using
MOS transistors. The synthesized circuits are unity-gain-cells, a current conveyor, a
current-feedback operational amplifier, and an operational transconductance
amplifier, which are designed with standard CMOS integrated circuit technology,
and they are applied to implement active filters and oscillators.
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1 Introduction

By April 23 in 1954, during the Seminario Matematico e Fisico di Milano, B. D. H.
Tellegen stated that [1]: The nullator (the linear time-invariant one-port with
v = i = 0) and the norator (the linear time-invariant one-port with v and i arbitrary),
which are shown in Fig. 1a, both are singular elements. Ten years later, Carlin
published the article entitled “singular network elements” [2], where he discussed
the physical realizability of the singular linear network elements: the nullator (si-
multaneously an open and a short circuit), and the norator (the unique nonreciprocal
one-port with arbitrary port voltage and current). Carlin modeled the nullor as a
two-port network consisting of one nullator and one norator as shown in Fig. 1a.
The nullor can also be modeled by two nullators and two norators as shown in
Fig. 1b, because from the properties of the nullator, the current at the output port
remains through the norators while the voltage across the nullators remains equal to
zero. Carlin also predicted that the nullor would be amenable for use in practical
electronic systems, as highlighted in the rest of this chapter.

Using the nullor, the ideal model of the bipolar junction transistor (BJT) was
introduced in [3], where the base (B), collector (C) and emitter (E) terminals are
denoted as shown in Fig. 2a. As one sees, the voltage between BE is the sum of the
voltage across the nullator and the resistor, however, since the voltage across the
nullator beings zero, then the input voltage drops across terminals AB where a
resistor is connected. Also, since the current through the nullator beings zero, then
the current through the resistor goes to the output through the collector. In a similar
way, nowadays the model in Fig. 2a can be used to describe the MOSFET whose
terminals are gate (G), drain (D) and source (S). In both models for the BJT and
MOSFET, the output current is proportional to the inverse of the resistance value,
which for amplifier design it is known as the transconductance denoted by gm. In an
extended version like the topology shown in Fig. 2b, the output is also a current that
is proportional to the transconductance gm in which the input voltage drops because
the voltage across the nullators being zero, so that io = gmvin and the direction is
imposed by the polarities of the nullators, i.e. the negative input goes to terminal A
and the positive input goes to B, so that the polarity of the transconductance gm goes

(a) (b)

Fig. 1 Nullor representation using: a One nullator and one norator, and b two nullors and two
norators
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from B(+) to A(−), as denoted by the arrows in the norators at the output port, and as
shown in Fig. 2b. It is also possible to joint a nullator-norator pair to model a
negative-type second-generation current conveyor, as shown in Fig. 2c, where the
equations vx = vy, iy = 0 and iz = −ix are accomplished. These models will be used
in the next sections to show how to perform symbolic analysis and synthesis of
nullor and pathological mirror networks.

The authors in [4] also introduced a nullor model of the transistor, but they
pointed out that the use of T parameters permit certain advantages over the
nullor-based model in the design of transistor networks. Later, in [5] the nodal
admittance matrix formulation was introduced for the ideal amplifier or circuits
consisting of nullors and passive circuit elements. This contribution was quite
useful to perform computer analysis of nullor networks, as highlighted in [6], where
a nullor version of a generalized immittance convertor (GIC) was analyzed, and
where the nullator was labeled as Z and the norator as A. The program was
implemented in Fortran IV, the maximum number of nodes was 20 and maximum
numbers of branches 40, but those limits were only restricted by the size of the
computer’s core store.

The term pathological was introduced in 1976 [7], it was referred to nullor
circuits for circuit analysis. The usefulness of the nullor for circuit analysis
established a challenge for circuit design, so that the first monolithic implementa-
tion of the nullor, which was also referred as a universal active device, was
introduced in 1977. That way, the authors in [8] claimed that if the floating nullor
(having both the input and output port independently floating) is used, then all kinds
of transfer functions could be fixed by using the minimum number of external
passive and precision components. Up to now, still the design of the monolithic
integrated nullor is a challenge because of the need to provide large internal gain.
The integrated design presented in 1977 was developed by using bipolar technology
and the floating nullor consisted of a differential input stage, a symmetrical level
shift stage, and a differential output stage.

It was until 2010 that the authors in [9] introduced the concepts of the patho-
logical voltage mirror (VM) and current mirror (CM) elements. Both pathological
mirrors could also be used as a pair to model a universal active element, as it was

(a) (b) (c)

Fig. 2 Ideal model of: a The bipolar junction transistor (BJT) (or metal-oxide-semiconductor
field-effect-transistor (MOSFET)), b the operational transconductance amplifier (OTA), and
c negative-type second-generation current conveyor (CCII-)
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done for the nullor. The work in [9] showed that the pathological VM-CM pair
provides two alternative realizations for the nullor, and it is also capable of realizing
the traditional operational amplifier and the four types of the second-generation
current conveyors (CCII), namely: the negative-type CCII-, the positive-type CCII
+, the inverting CCII- (ICCII-), and the inverting CCII+ (ICCII+), as shown in
Figs. 3 and 4, respectively. The VM and CM are connected in a special way to
accomplish the equations modeling each kind of current conveyor, for example:
vx = vy, iy = 0 and iz = −ix for the CCII-; vx = vy, iy = 0 and iz =+ix for the CCII
+; vx = −vy, iy = 0 and iz = −ix for the ICCII-; and vx = −vy, iy = 0 and iz = +ix
for the ICCII+.

In a high level of abstraction, the nullor can also be implemented by joining two
CCIIs as already shown in [10], however the CCII has a parasitic resistance at its
X-port terminal and then the equivalent circuit looks like an OTA, as shown in
Fig. 2b. The authors in [10] compared their CMOS design of a fully balanced
four-terminal floating nullor (FBFTFN) with other integrated realizations. Those
authors highlighted that their FBFTFN was superior providing suitability for
ultra-low-voltage and low-power applications. The FBFTFN was designed with
TSMC 0.18 μm n-well CMOS technology with supply voltage of 0.5 V and dis-
sipation power of 9.4 μW, and it employed the bulk-driven quasi-floating-gate
(BD-QFG) metal–oxide–semiconductor transistor technique to provide the capa-
bility of ultra-low-voltage, low-power operations as well as extended input voltage
range. To demonstrate the usefulness of the CMOS FBFTFN, it was tested by
implementing fully balanced filters, such as: band-pass Sallen–Key filter,
voltage-mode universal biquadratic filter and current-mode sixth-order low-pass
filter. However, this novel integrated design has also parasitic impedances that for
direct current it also can be modeled as parasitic resistance as shown in Fig. 2b.

As one can infer, by using nullators, norators, VMs and CMs one can model all
kinds of active devices, as already shown in [11–24], where in some cases they are
called pathological circuit elements. Their usefulness in computing symbolic

(a) (b)

Fig. 3 Pathological VM-CM pair used to model the a negative-type second-generation current
conveyor (CCII-) and the b positive-type second-generation current conveyor (CCII+), taken from
[9]
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expressions have also been demonstrated in various recent works, where the main
goal is to get insights into the effect of each circuit element in the biasing and sizing
of analog integrated circuits to enhance performances in alternate and direct current,
and time domains. As already mentioned in [11], very efficient symbolic analysis
methods, such as nodal analysis, Coates flow graphs, and two-graphs are widely
used. The works in [11, 12] used ICCII-based circuits to show the usefulness of
performing graph operations to compute symbolic expressions. A more general
modeling approach for current conveyors is given in [13], where one can find
models of single and multiple outputs (MO) for the first, second and third gener-
ation current conveyors, their inverting topologies and their positive and negative
types denoted as (MO)(I)CCI(II)(III)±. In [13], the authors showed how to include
parasitic elements to the current conveyors, as done in [14]. Other active devices are
modeled by using pathological elements trying to capture the dominant behavior, as
shown in [15], and including differencing voltage and current characteristics, as
highlighted in [16]. As one sees, the pathological VM-CM pair is quite useful to
increase the modeling capabilities of active devices because they can provide
multi-outputs (MO) [17], as it is quite common in integrated circuit design using
current mirror topologies at the transistor level of abstraction.

A very complete list of pathological equivalents of fully differential active devices
is given in [18], where some examples are provided to show how to perform sym-
bolic nodal analysis. Other nullor equivalents and pathological realizations for
application to symbolic circuit analysis are given in [19–24]. If one performs
symbolic analysis of only nullor networks, the VM-CM pair can be modeled using
nullor equivalents as shown in [25], which allows including parasitic elements to the
MO versions. The next section shows some examples of performing symbolic nodal
analysis of analog integrated circuits modeled by nullators, norators, VMs and CMs.
Afterwards, we show how to transform a circuit working in voltage-mode to a circuit
working in current-mode and vice versa. In such a case the adjoint and duality
properties are applied, as already shown in [26], where some examples show their

(a) (b)

Fig. 4 Pathological VM-CM pair used to model the a inverting CCII- and the b inverting CCII+,
taken from [9]
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usefulness to solve the problems such as the inflexible positions of the port variables,
and inability for the conditions that both circuit and voltage of a port are independent
(or dependent) variables.

The symbolic analysis tools are quite useful to analyze all kinds of analog
integrated circuits modeled by nullators, norators, VMs and CMs, and working in
either voltage or current modes. In fact, in the synthesis of analog circuits, a
symbolic analysis tool can be used in the loop for verifying the desired transfer
function and then to test the frequency response. Among the synthesis approaches
based on nodal analysis, some key references are [27–29]. In such cases, every
nullator, norator, VM and CM can be implemented with transistors, as demon-
strated in [30], where the nullator is synthesized by a voltage follower (VF), the
norator is synthesized by a current follower (CF), and the VM and CM by their
corresponding CMOS topologies. All of them can be extended to provide multiple
outputs, as shown in the rest of this chapter. Section 2 summarizes the recent
advances in symbolic analysis techniques for design automation of nanometer VLSI
systems [31]. Section 3 shows the transformation of voltage-mode circuits to
current-mode ones and vice versa. Section 4 shows the synthesis of the pathological
nullator, norator, VM and CM elements by using CMOS integrated circuit tech-
nology. Section 5 shows some integrated circuit designs of unity-gain cells, current
conveyors, current-feedback operational amplifier and OTA, which are optimized
by metaheuristics like in [32], and they are applied to implement active filters and
oscillators. Finally, the conclusions are listed in Sect. 6.

2 Symbolic Nodal Analysis of Circuits Modeled by Nullors
and Mirrors

Symbolic circuit analysis is a complement to numerical simulation, and it is a
systematic approach to obtaining the knowledge of analog building blocks in
analytic form. The history of symbolic circuit analysis is given in [31], in which is
mentioned that this field gained real momentum in the 1950s when electric com-
puters were introduced and used for circuit analysis, while the first general-purpose
circuit analysis programs emerged in the early 1960s, when a basic goal behind
computer-aided design and analysis of analog circuits was to formulate network
equations by matrix algebraic or topological techniques. In the frequency domain,
the circuit equations of a lumped linear or linearized time-invariant analog circuit
can be formulated by applying nodal analysis in the general matrix form given by
(1), where A is an n × n sparse admittance matrix (n as the rank of the matrix), b is
a vector of external sources, and x the vector of unknowns.

Ax ¼ b ð1Þ
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Symbolic analysis of analog integrated circuits solves (1) in which the matrix
elements aij can be real numbers, rationals in the frequency domain s, semi-symbolic
or fully symbolic expressions. Reference [31] provides graph and matrix-based
methods to solve (1). For example, the RC filter shown in Fig. 5 consists of oper-
ational amplifiers (opamps) that are modeled using the nullor and the independent
voltage source is transformed to an independent current source among nodes 1 and 2.
As already shown in [13–19, 23–25], the order of the nodal admittance matrix must
be equal to the number of nodes minus the number of nullors, so that the resulting
system of equations has the form like in (1), and it is given by (2). The reduced
matrix was obtained by applying the nullator and norator properties, which are
summarized as follows:

1. If a nullator is connected between node i and ground, from its voltage property
node i has the same potential as ground, and therefore the voltage variable
associated to node i is eliminated, thus reducing one column in the admittance
matrix.

2. If a nullator is floating, e.g. connected between nodes i and j, from its voltage
property both nodes i and j are virtually connected, so that a single voltage-node
variable vi, j is associated to both nodes i and j, thus reducing one column in the
admittance matrix.

3. If a norator is connected between node k and ground, from its current property
node k should be grounded and therefore eliminated as current variable, thus
reducing one row in the admittance matrix.

4. If a norator is floating, e.g. connected between nodes k and l, from its current
property both nodes k and l are virtually connected, so that a single
current-branch variable ik, l is associated to both nodes k and l, thus reducing one
row in the admittance matrix.

Fig. 5 RC filter consisting of operational amplifiers modeled by nullors
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ð2Þ

In the previous RC filter, the opamps are modeled by nullors and avoid
non-idealities but the models can also include parasitic elements, as shown in [13].
The solution to (2) can be obtained by applying the methods given in [31].

As one can infer, to take advantage on performing computer-aided analysis all
active devices should be modeled with the appropriate pathological elements.
Figure 2a shows the ideal model of the BJT or MOS transistor, and Fig. 2b shows
an extended version to model the OTA and which can also be associated to
modeling the voltage-controlled current source (VCCS). Figure 6 shows the nullor
equivalents of the four controlled sources, voltage-controlled voltage source
(VCVS), VCCS, current-controlled voltage source (CCVS), and current-controlled
current source (CCCS), which can be used to model any kind of active devices. For
example: Fig. 7 shows the four terminals MOSFET including parasitic resistances
at the drain, gate, source and bulk terminals, the output conductance go, and par-
asitic capacitors among two terminals. The conventional model consists of two
VCCSs that have been implemented by one nullor and one resistor because one
nullator-norator pair is in parallel and it is equivalent to a short circuit.

The current mirror is quite useful in designing active devices like the OTA Miller
shown in Fig. 8a, in which two current mirrors are embedded, one by M3–M4 and
the other by M5–M6–M7. Those current mirrors can be modeled using nullors to
obtain the nullor equivalent shown in Fig. 8b, where one can count 15 nodes (node 5
is already grounded but labeled to appreciate de joint connection of a nullator-norator
pair associated to MOSFET M5 in Fig. 8a) and Fig. 9 nullors or nullator-norator
pairs. In this manner, the system of equations formulates an admittance matrix
having an order equal to the number of nodes (15), minus the number of nullors (9):
15 – 9 = 6. One can also perform sensitivity analysis after solving the system of
equations and noise analysis, as already detailed in Chap. 9 in [31].

The pathological VM and CM elements can also be used to model active devices
with multiple-outputs. For instance, Fig. 9 shows the nullor-CM equivalent of a
current mirror with one negative current-output iz- and one positive current-output
iz+. Such an equivalent can be used to analyze the current-mode filter that consists of
one current follower (CF) labeled as 2 in Fig. 10a, one 2-outputs current mirror
labeled as 1, one 3-outputs current mirror labeled as 3, 2 resistors R1 and R2, and 2
capacitors C1 and C2. Those current mirrors can be modeled by using the equivalent
from Fig. 9 leading to the pathological equivalent shown in Fig. 10b, where it can be
appreciated that 3 resistors are added to the outputs to measure the currents for the
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Fig. 6 Nullor equivalents of the four controlled sources

Fig. 7 Small-signal model of
the four terminals MOSFET
including parasitic elements
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band-pass (BP), high-pass (HP) and low-pass (LP) filter responses. After performing
nodal analysis of this pathological equivalent, the symbolic expressions are
given by,

IBP
Iin

¼ s g1
C1

s2 þ s g1
C1

þ g1g2
C1C2

;
IHP
Iin

¼ s2

s2 þ s g1
C1

þ g1g2
C1C2

;
ILP
Iin

¼
g1g2
C1C2

s2 þ s g1
C1

þ g1g2
C1C2

ð3Þ

(a)

(b)

Fig. 8 Miller amplifier: a MOSFET circuit and its b nullor equivalent taken from [31]
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Fig. 9 Two-outputs current mirror modeled by three nullators, two norators and one CM

(a)

(b)

Fig. 10 a Current-mode universal filter taken from [33], and b its pathological equivalent using
the current mirror equivalent shown in Fig. 9
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This example highlights the usefulness of using the pathological current mirror
element to model active devices with the goal of computing analytical expressions.
That way, the main advantage of the derived pathological models relies on the
application of symbolic nodal analysis (NA) to formulate smaller matrices com-
pared to traditional modified nodal analysis (MNA) formulation. As pointed out, the
pathological equivalents also allow including parasitic elements, so that the derived
behavioral models capture the real behavior of the active devices.

3 Adjoint Transformations of Circuits Containing Nullors
and Mirrors

Current-mode circuits like the examples given above are quite useful in some
analog signal processing applications. However, since the majority of analog
integrated circuit designers are quite familiar with voltage-mode circuits, it is quite
convenient to know how to convert the voltage-mode designs into their
current-mode versions. As highlighted in [26], the main idea is replacing the ele-
ments in the voltage-mode circuits by their adjoints, and this task is pretty simple
when nullators, norators, CM and VMs, model the voltage-mode circuits. In this
manner, this section shows some examples of converting voltage-mode circuits that
are modeled by pathological elements, to current-mode ones. The main steps are
associated to interchange nullators and voltage mirrors with norators and current
mirrors, respectively.

Lets us consider the voltage follower shown on the left of Fig. 11. It consists of a
nullator connected between nodes AB and a norator connected between node B and
ground. As one sees, the input port drives a voltage input vin connected between
node A and ground, while the output is measured at node B with respect to ground.
Interchanging the nullator/norator by the norator/nullator but keeping the nodes
intact are the main operations to obtain the adjoint equivalent. In this manner, now
the norator is connected between nodes AB as shown on the right of Fig. 11, and
the nullator is connected between node B and ground. The input/output port from
the voltage follower now becomes the output/input port of the current follower, as

Fig. 11 Transforming a voltage follower into a current follower
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highlighted in Fig. 11. It is trivial to obtain the voltage follower from the current
follower by performing the same operations on interchanging the nullor/norator by
the norator/nullator and converting the input/output port from the current follower
to become the output/input port of the voltage follower. In both cases the transfer
function equals to 1, i.e. Vout/Vin = 1 and Iout/Iin = 1.

A more elaborated example consists on transforming the OTA-based filter
shown in Fig. 12a, which is working in voltage-mode, into its current-mode ver-
sion. In this case one must set references to the four nullator-norator pairs, and to
the input and output ports. Each nullator-norator pair is joined by one of their
terminals that are connected to the transconductance gm. The capacitor practically
remains intact and the nullators are interchanged by the norators, the input/output
port in Fig. 12a will become the output/input port of the current-mode OTA-based
filter in Fig. 12b. By computing the symbolic transfer functions applying the nodal
analysis method described in the previous section, both analytical expressions in
voltage-mode and current-mode are the same,

Vout

Vin
¼ Iout

Iin
¼ gm

sCþ gm
ð4Þ

(a)

(b)

Fig. 12 Transforming the a voltage-mode OTA-based filter, into b the current-mode one
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The same operations apply for VM-CM pairs; they must be interchanged when
transforming a voltage-mode circuit into a current-mode one and vice versa. The
difficulty arises when either the nullator or norator is associated to a VM or CM, in
such a case; one must find the adjoint of each element independently of its
associated pair.

4 Synthesis of Nullators, Norators, Voltage Mirrors
and Current Mirrors

The singular or pathological elements can be synthesized by transistors if each
nullator has its corresponding norator pair as already modeled in Fig. 2a and in
Fig. 11, where the voltage follower is modeled by the nullator but a norator is
required to fix the output, and where the current follower is modeled by the norator
but it needs a nullator to fix the input. For instance, in [34] the nullator is syn-
thesized by MOS transistors when it is modeled as a voltage follower, for which
several cases arises because the voltage follower can be modeled by a single, two or
four nullators, as shown in Fig. 13, and then each nullator must be accompanied by
a norator that can be connected in different ways.

Taking the voltage follower from Fig. 13a, there are several possibilities to add a
norator (labeled as P in Fig. 14) to the nullator (labeled as O in Fig. 14), as shown
in Fig. 14, the norator can be added to node 1, node 2 or in parallel to the nullator
between nodes 1–2. All these nullator-norator (O-P) pairs can be synthesized by the
MOS transistor, from Fig. 2a with the resistance equal to zero. Another problem
arises when the O-P pairs are in parallel because the source terminal is associated to
the node that joints both singular elements, and from Fig. 14c, the source can be
associated to node 1 or node 2. All these combinations lead to different topologies,
which will require voltage and current biases, as shown in Fig. 15, where one can
see some possibilities of adding biases to one O-P pair. Finally, the implementation
by using MOS transistors for synthesizing O-P pairs and by using MOS current
mirrors to implement the current sources (Ibias1 and Ibias2 shown in Fig. 15) is given
in Fig. 16, where only three CMOS topologies are shown, and they were synthe-
sized by beginning from Fig. 13a. As one can infer, by beginning the synthesis

(a) (b) (c)

Fig. 13 Nullator equivalents for modeling the voltage follower
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process from Fig. 13c, more O-P combinations arises than those shown in Fig. 14,
more possibilities of adding voltage and current biases, and more possibilities of
synthesizing each O-P pair and current biases by MOS transistors. The authors in
[35] improved the work in [34] by applying genetic algorithms to synthesize the
voltage follower. Therefore, a chromosome consisting of four genes was proposed,
as shown in (5), where the small signal gene (genSS) includes O-P pairs which
connections from Fig. 14 can be encoded by two bits (in (5) there are 8 bits
associated to the voltage follower modeled by four nullators as in Fig. 13c), the
synthesis of each O-P pair can be done by using the P-channel or N-channel MOS
transistor, so that one bit is required to encode each O-P pair leading to genSMos.
The possibilities of adding current biases can be encoded by two bits for each O-P
pair leading to genBias, and finally, the current biases (like Ibias1 and Ibias2 shown in
Fig. 15) can be synthesized by MOS current mirrors for which many topologies
already exist in the literature (for example: simple current mirror, Widlar current
mirror, cascode current mirror and so on), in (5) genCM consists of two bits
meaning that each current bias can be replaced by any of the four MOS current
mirrors. As one can infer, the chromosome in (5) leads us to deal with
8 + 4 + 8 + 2 = 22 bits that in decimal notation equals to 4,194,304 combina-
tions!, thus this problem is quite suitable for applying metaheuristics.

ChromosomeVF ¼ 00100010|fflfflfflfflfflffl{zfflfflfflfflfflffl}
genSS

0011|ffl{zffl}
genSMos

10101111|fflfflfflfflfflffl{zfflfflfflfflfflffl}
genBias

00|{z}
genCM

ð5Þ

The synthesis of the norator can be associated to the current follower, as the one
shown on the right side of Fig. 11. The synthesis process can be performed quite
similar as for the synthesis of the nullor but the biases are now majorly voltage
sources than current ones, it is an open problem that has been partially solved in
[30], where several new topologies synthesized by MOS transistors are provided.

The synthesis of the voltage mirror (VM) can be seen as an extended case of the
voltage follower (VF). Lets us consider Fig. 17 that embeds a VF that can be
connected in two combinations. Basically, the chromosome in (5) can be

(a) (b) (c)

Fig. 14 Adding a norator to the nullator from Fig. 13a
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augmented by one bit associated to the kind of connection of the output of the VF,
e.g. to the P-channel or N-channel MOS transistor. From this reasoning, the syn-
thesis of the VM by MOS transistors can be performed by beginning with the
synthesis of the voltage follower (VF) and adding two complementary MOS
transistors, as shown in Fig. 17, therefore the chromosome is like in (5) but adding
one bit to encode the P-channel (MINV2) or N-channel (MINV1) MOS transistors.
The authors in [35] provide details of this synthesis approach.

The synthesis of current mirrors with single or multiple outputs can be associated
to the model given in Fig. 9, where it can be appreciated the association of O-P
pairs but the pathological CM can be implemented with MOS transistors as already
shown in [30], and where one can find new MOS topologies.

(a) (b) (c)

(d) (e) (f)

Fig. 15 Adding voltage and current biases to the nullator-norator (O-P) pairs from Fig. 14
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Fig. 16 Three CMOS topologies of the voltage follower synthesized by beginning from Fig. 13a

(a) (b)

Fig. 17 Synthesis of the voltage mirror (VM) by beginning with the synthesis of the voltage
follower (VF) and adding two complementary MOS transistors
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5 CMOS Implementation of Unity-Gain-Cells
and Mixed-Mode Analog Circuits

This section shows the implementation of synthesized circuits like unity-gain-cells,
a current conveyor, a current-feedback operational amplifier, and an operational
transconductance amplifier, which are designed with standard CMOS integrated
circuit technology, and they are applied to implement active filters and oscillators.

The four unity-gain cells are the voltage follower (VF), current follower (CF),
voltage mirror (VM) and current mirror (CM). A well-known VF is shown in
Fig. 18, it is synthesized from Fig. 13c: Fig. 18a shows ideal current biases that are
synthesized by simple current mirrors in Fig. 18b. Those ideal current biases can
also be synthesized by other kinds of current mirrors. The voltage mirror can be
synthesized by embedding a VF as shown in Fig. 19a, and the whole CMOS
implementation is shown in Fig. 19b.

The current mirror can be implemented as shown in Fig. 20, which is based on
the cascode topology. The current mirror is embedded between the input and output
ports labeled as iin and iout + , respectively. The third column of MOS transistors
replicates the current output iout + that is inverted with another current mirror to
provide the current-outputs iout− that are associated to a current follower because
they go out. In this topology, the input current iin is mirrored by the output iout + ,
and is copied twice by the embedded current followers by the outputs iout−.

Fig. 18 Voltage follower synthesized from Fig. 13c
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Fig. 19 Voltage mirror consisting of: a An inverting topology and a voltage follower (VF), and
synthesizing the VF by Fig. 18b

Fig. 20 CMOS implementation of the current follower and current mirror
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The four UGCs, namely: VF, VM, CF and CM can be superimposed or inter-
connected to provide different kinds of amplifiers like current conveyors and current
feedback operational amplifiers. For example, Fig. 21f shows the interconnection of
a VF with a CM to synthesize a positive-type second-generation current conveyor
(CCII+). It can be done by using the VF from Fig. 18a, where: if the current biases
are synthesized by simple current mirrors it leads to the VF shown in Fig. 22a, but
if the current biases are independently synthesized, e.g. Idd1 and Iss3 by CMs
mirroring the current reference Iref and if Idd2 and Iss4 are synthesized by cascode
CMs providing another port, one gets the CCII+ shown in Fig. 22b. It is easy to see
that the ICCII+ can be synthesized by using the VM shown in Fig. 19b. In general,
similar interconnections can be performed between two UGCs from Fig. 21 to find
novel three terminals amplifiers that work in mixed-mode because they process
both voltage and current signals.

(a) (i)

(b) (j)

(c) (k)

(d) (l)

(e) (m)

(f) (n)

(g) (o)

(h) (p)

Fig. 21 Examples on interconnecting two UGCs to synthesize three terminals amplifiers
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Fig. 22 VF that is superimposed with CMs to synthesize a CCII+

Fig. 23 CCI that is synthesized by a VF and a two-outputs CM, taken from [36]
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The UGCs can also provide multiple outputs like the current mirror topologies.
They are useful for implementing the first-generation current conveyor (CCI) that
must accomplish Vx = Vy, Iy = Ix, and Iz = Ix. From these equations it is easy to
see that the currents at ports Y and Z mirror the input current at port X, leading to
the CMOS circuit shown in Fig. 23, where the VF is different from the previous
circuits and the simple CM provides two outputs. For this and the previous circuits,
symbolic analysis can be performed to get insights on their behaviors when syn-
thesizing with different CMOS topologies. For instance, current conveyors present
parasitic resistances at their ports that can be minimized by searching for new
topologies or by performing circuit optimization [32].

One can also interconnect more than two UGCs, for example: the
current-feedback operational amplifier (CFOA) is basically composed of a CM
sandwiched by two VFs. Again, by using the VF shown in Fig. 18 and the cascode
CM, the resulting CMOS CFOA is shown in Fig. 24, which is also the connection
of a CCII+ with a VF. Other VF and CM topologies can also be used to synthesize
the CFOA, those topologies will provide different performances that can be com-
pared to choose the most suitable design to accomplish target design specifications.

Fig. 24 CCII+ that is connected to another VF to synthesize a CFOA
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For example, the implementation of the CFOA-based universal mixed-mode filter
shown in Fig. 25 requires CFOAs with minimum parasitic impedance at port X and
high bandwidth response to improve the design introduced in [37], where the
cut-off frequency is low as 100 kHz. Symbolic nodal analysis can be applied to
know the effect of the parasitic resistances and capacitances of the CFOA and then
to enhance the frequency response of the filter.

The synthesis of the operational transcoductance amplifier (OTA) is more dif-
ficult than for mixed-mode circuits by interconnecting UGCs. OTAs are based on a
differential pair implemented by two MOSFETs and then more stages are added to
increase the gain on the whole amplifier. The gains consist of MOSFETs acting as
amplifiers and current mirrors to bias those stages. As the OTA provides current at
its output port, then one can use multiple-outputs current mirrors to bias and pro-
vide outputs. See for example the OTA designed in [38] and shown in Fig. 26 that
has N-channel MOSFETs at its input and simple current mirrors to provide
multi-outputs. This OTA has been used in [38] to implement the first-order all-pass
filter that consists of two OTAs, one grounded resistor and one grounded capacitor,
as shown in Fig. 27. By performing symbolic analysis, the transfer function of this
filter is given by (6). Furthermore, this filter can be used to synthesize the
current-mode multi-phase sinusoidal oscillator (MSO) shown in Fig. 28, for which
the condition of oscillation (CO) and the frequency of oscillation (FO) are given by
(7) and (8), respectively, where n is related to the number of stages or first-order
all-pass filter sections.

In [38], the sinusoidal outputs provided by the MSO was set up to n = 5, and the
OTA realization was compared with the one implemented with current-differencing

Fig. 25 CFOA-based universal biquadratic filter, taken from [37]
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Fig. 26 OTA providing one negative output (−Io), and three positive outputs (+Ioc)

Fig. 27 OTA-based first order all-pass filter

Fig. 28 MSO realized by the cascade connection of first order all-pass filter sections
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cascaded transconductance amplifiers (CDCTAs), concluding on the suitability of
OTAs with multiple-outputs to implement the MSO. In this chapter we show the
oscillations with n = 10 and n = 20 in Figs. 29 and 30, respectively.

I01
Iin1

¼ gm2R
s C
gm1

� 1

s C
gm1

þ 1

 !
ð6Þ

CO : gm2R ¼ 1 ð7Þ

FO : wosc ¼ gm1
c

tan
π

2n

� �
ð8Þ

Fig. 29 MSO with n = 10 and C = 2 nF to work at FO = 1.71 MHz with gm = 21.59 I/V
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6 Conclusions

This chapter discussed the application of symbolic analysis to analog circuits that
can be modeled by nullors and pathological current and voltage mirrors. Several
related references were provided to highlight that the symbolic analysis of analog
circuits modeled by nullors and pathological mirror elements leads us to deal with
the nodal admittance (NA) matrix that is more compact than by using traditional
modified nodal analysis (MNA).

The second part was devoted to the synthesis of nullor and pathological net-
works by MOSFETs. It was shown how to synthesize unity-gain cells (UGCs) and
mixed-mode amplifiers from nullator, norator and pathological descriptions. Sev-
eral examples showed that mixed-mode amplifiers can be synthesized from the
interconnections of UGCs, and also that operational amplifiers like the OTA can be
synthesized by multiple-output current mirrors, differential pairs and so on.
Although not shown by examples, a circuit modeled by nullors or pathological
elements that is working in voltage-mode can be transformed a current-mode one
and vice versa.

The application of UGCs and mixed-mode amplifiers can be found in recent
literature. In this chapter the reader can infer that still one can find novel topologies

Fig. 30 MSO with n = 20 and C = 3.4 nF to work at FO = 2 MHz with gm = 86.40 I/V

28 M. A. Duarte-Villaseñor et al.



when synthesizing analog circuits from nullor and pathological element descrip-
tions. In addition, symbolic analysis can be performed to get insights on the
behavior of the topologies to mitigate undesired parasitic elements and then to
improve their performances.
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Abstract This chapter gives a description of the extension of Generalized
Parameter Extraction Method (GPEM) for symbolic analysis of large-scale analog
circuits containing pathological elements. The brief overview of the parameter
extraction approach is included. An algorithm implementing the concept of Higher
Order Summative Cofactors (HOSC) for determinants computation of the patho-
logical element-based circuits is proposed. In this chapter, we also present the
hierarchical decomposition techniques of upward and downward analysis of elec-
tronic circuits by GPEM. The proposed techniques are used in freeware symbolic
analyzer CirSym. Several examples are presented to illustrate the advantages of the
GPEM applications.

Related topics of book: Analog circuits, circuit simulation, symbolic analysis of circuits
containing pathological elements, controlled sources, nullor, voltage mirrors and current mirrors,
symbolic Simulation CAD.

V. Filaretov ⋅ S. Kurganov
Department of Electrical Engineering, Ulyanovsk State Technical University,
Ulyanovsk, Russia
e-mail: vvfil@mail.ru

S. Kurganov
e-mail: sakurganov@mail.ru

K. Gorshkov (✉)
Department of EEPEMS, ITMO University, St. Petersburg, Russia
e-mail: k.gorshkov@list.ru

M. Nedorezov
Department of Aeromechanics and Flight Engineering,
Moscow Institute of Physics and Technology, Moscow, Russia
e-mail: nedmv@rambler.ru

© Springer International Publishing AG, part of Springer Nature 2018
M. Fakhfakh and M. Pierzchala (eds.), Pathological Elements in Analog Circuit
Design, Lecture Notes in Electrical Engineering 479,
https://doi.org/10.1007/978-3-319-75157-3_2

31

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-75157-3_2&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-75157-3_2&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-75157-3_2&amp;domain=pdf


1 Introduction

Most of the modern symbolic circuit analysis techniques are based on matrix cal-
culus [1–10] or operations with circuit graph [3, 4, 10–15]. However, the usage of
matrix representation or graph model may lead to the terms cancellations and
produces some pseudo-dependencies in functions. In this chapter, we introduce the
basics and advances of circuit analysis by parameter extraction approach which
provides the effective symbolic calculation without constructing the circuit equa-
tions. Parameter extraction method was developed at the beginning of the XX
century by Friedrich Wilhelm Feussner, one of the Kirchhoff’s pupils. The formulae
presented in [16, 17] provide the calculation of circuit determinant and doesn’t need
the circuit description as the matrix or topological graph. The determinant of Z-
circuit (y-circuit) is defined by Feussner as the determinant of the corresponding
loop impedance (nodal admittance) matrix. The diacoptic formulae for bisection of
the circuit by one or two nodes were also proposed in [16] to improve the com-
putational efficiency of parameter extraction method.

The parameter extraction approach was used in the various symbolic analysis
techniques [5, 18–26]. Several researches were based on Feussner’s publications
[19, 23, 25–27]. M. E. Parten and R. H. Seacat proposed the method of network
functions calculation of nullor-based circuit by extraction of all elements parameters
until the residual circuits that contain only the norators and nullators is derived [23,
25, 26]. However, this method can be used only for active circuits with ideal
operational amplifiers. The formula for extraction of controlled sources parameters
was proposed by R. Hashemian in [19], but it deals with combinatorial enumeration.
The Feussner’s diacoptic formulae were used by S. M. Chang and G. MWierzba for
symbolic analysis of networks with nullors. However, the decomposition method
proposed in [28, 29] is based on matrix manipulations and suffers from the tedious
algorithm of determinant sign calculation. Also, some additional transformations of
equivalent circuit are needed to use the bisection formulae in a matrix form.

The advantages of techniques of Feussner and his successors were implemented
in GPEM [30–40]. GPEM is an effective tool for symbolic analysis, diagnosis, and
synthesis of analog circuits. The parameter extraction cancellation-free method for
symbolic analysis of switched capacitor circuits has been developed in [37]. The
techniques of computation of the symbolic circuit functions sensitivities in Bode’s
form and in Hoang’s form are described in [36]. The implementation of parameter
extraction approach for symbolic circuit analysis by means of the Middlebrook’s
extra element theorem was proposed in [33]. The symbolic technique for analog
fault diagnosis was introduced in [38]. Several GPEM-based circuit synthesis
algorithms were developed: (1) an algorithm of automated synthesis of all existing
equivalent pathological element-based circuits that correspond to the given poly-
nomial network function [34]; (2) a design algorithm of OTA-based circuits [32];
(3) an algorithm of circuit synthesis using transformation of trees with pathological
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elements [39]. Several GPEM-based computer programs for automated circuit
analysis and synthesis were developed. The symbolic analyzer CirSym developed
by V. Filaretov is available online: http://intersyn.net/en/cirsym.html.

GPEM can be successfully used for symbolic analysis of active circuits with
pathological mirror elements. However, the technique proposed in [35] deals with
the big amount of special cases of elements connections which complicate the
symbolic analysis of large circuits. In this chapter, the new approach to the cal-
culation of pathological element-based circuits by GPEM is presented.

The decomposition procedures can significantly increase the efficiency of
symbolic analysis [4, 14, 15, 41–44]. In this chapter, we also present the hierar-
chical decomposition techniques of upward analysis and downward analysis of
large-scale circuits by GPEM.

The chapter comprises three main sections. Section 2 introduces the basics of
GPEM. The usage of parameter extraction formulae for circuit determinant
expansion is discussed. The rules of degeneracy and simplification of the patho-
logical element-based circuits are considered. Section 3 gives the application of
GPEM to the generation of symbolic circuit functions in the case of
Single-Input-Single-Output (SISO) and Multiple-Input-Single-Output (MISO) cir-
cuits. In Sect. 4 the extension of the method of residual circuits [23] by usage of
GPEM and the concept of HOSC [22, 45] is presented. Section 5 focuses on
hierarchical decomposition approaches to circuit analysis. The techniques of
upward analysis and downward analysis by GPEM are proposed. The illustrative
examples of usage of GPEM and its applications are included in this chapter.
Conclusions summarize the results of the chapter.

2 The Basics of GPEM

2.1 Feussner’s Formulae for Determinant Expansion
of the Passive Circuit

Classic Feussner’s formulae for extraction of impedance or admittance parameters
are presented below [16, 17]:

Δ= ZΔðZ→∞Þ+ΔðZ =0Þ, ð1Þ

Δ= yΔðy→∞Þ+Δðy=0Þ, ð2Þ

where Δ is a circuit determinant; Δ(z → ∞) and Δ(y = 0) are the determinants of
subcircuits in which extracted element is deleted; Δ(y → ∞) and Δ(z = 0) are the
determinants of subcircuits in which extracted element is short-circuited.
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Recursive usage of the formulae (1) and (2) provides the reduction of an initial
circuit to several residual topologies shown in Fig. 1 which determinants can be
calculated by Ohm’s Law. GPEM using the complex impedance of the inductors
and the complex admittance of capacitors in the Laplace domain: ZL = sL and
yc = sC correspondingly.

The circuit-algebraic expressions that contain the parameters symbols, mathe-
matical signs and derived subexpressions in the form of subcircuits, can be useful
for illustration of the process of determinant expansion by parameters extraction
[28]. For example, the Feussner’s formulae can be expressed in the circuit-algebraic
form as following:

ZZ + = , ð3Þ

yy = + . ð4Þ

The diacoptic approach to circuit analysis was discussed by Feussner long before
the publications of G. Kron [46]. He proposed the technique of circuit decomposition

ZIin

V/Iin = Z/1

V Z

Δ = 1

y
Iin

V/Iin = 1/y

V y

Δ = y
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–
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y
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Vin

+
–

I/Vin = y/1 Δ = 1

Fig. 1 The residual circuits and their determinants
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(bisection) based on following formulae for bisection of the circuit by one or two
nodes correspondingly:

Δ=Δ1Δ2 ð5Þ

Δ=Δ1Δ2ða, bÞ+Δ1ða, bÞΔ2, ð6Þ

where Δ1 and Δ2 are determinants of the first and second subcircuits in which the
node a in (5) and nodes a and b in (6) are opened, Δ1(a,b) and Δ2(a,b) are
determinants of subcircuits in which the nodes a and b are shorted.

In the circuit-algebraic form the bisection formulae by one or two nodes are
shown below correspondingly:

=1 2
a 1 a 2.

a
, ð7Þ

.= +1
a

b 1
a 

b
2. 1

a

b
2.2

ð8Þ
Example 1 Let’s consider the determinant calculation procedure in the case of the
simple two-section LC-ladder circuit shown in Fig. 2 to illustrate the usage of
Feussner’s formulae.

The bisection of the ladder by two nodes a and b by usage of (6) leads to the
following circuit algebraic expression:

ð9Þ

The parameter extraction procedures for determinants calculation of four sub-
circuits in (9) are shown below:
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b

Fig. 2 LC-ladder circuit
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Z1

y1

a

b

= y1
Z1 +

Z1 = y1(Z1)+1, ð10Þ

Z2

y2

a

b

= Z2 +
y2 y2 = Z2(y2)+1, ð11Þ
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= Z1,

Z1

y1
ð12Þ

b

Z2

y2

a

= y2. ð13Þ

The result of the substitution of (10)–(13) into (9) can be expressed as:

Δ= ðy1ðZ1Þ+1ÞðZ2ðy2Þ+1Þ+ Z1y2. ð14Þ

The Feussner’s formulae provide quite efficient symbolic determinant calcula-
tion of passive circuit. M. E. Parten and R. H. Seacat implemented (1) and (2) to the
analysis of nullor-based circuits by extraction of all elements parameters until the
residual circuits which contain only the norators and nullators [23]. The well-known
equivalent transformations of parallel or series connection of norator and nullator
were used for determinants computation of residual nullor circuits. However, this
method can be used only for active circuits with ideal operational amplifiers. The
new formula for extraction of parameters of controlled sources (CS) was needed to
extend the Feussner’s approach.
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2.2 Extraction of Controlled Sources Parameters

The formula for the extraction of CS parameter was proposed by R. Hashemian in
1977 [19]:

Δ= χΔðχ→ nullorÞ+Δðχ =0Þ, ð15Þ

where χ is a parameter of arbitrary CS, Δ(χ → nullor) is a determinant of the
circuit in which a CS element is replaced by nullor, Δ(χ = 0) is a determinant of the
circuit in which the parameter of CS is equal to zero.

Hashemian has used formula (15) for simultaneous expansion of determinant by
parameters of all n CS which circuit contains. Such technique leads to the enu-
meration of 2n summands and cannot provides the generation of expression in the
compact size.

The formula (15) was developed by V. Filaretov in 1998 irrespective of
Hashemian’s publication [19]. The recursive extraction of CS parameters by
(15) was proposed. Also instead of original Carlin’s nullor shown in Fig. 3a [47]
the concept of oriented nullor, introduced in network theory by A.G. Davies [48]
and J. Braun [49], is used in GPEM. The orientation of nullor provides simpler
computation of the determinant expression sign of the residual nullor-based circuit
as shown in Fig. 4a and b.

The oriented nullor is successfully used for calculation of network functions
[49], as well as for active devices simulation [35]. For example, the equivalent
circuits of voltage mirror (VM) and current mirror (CM) in which g = 1 are shown
in Fig. 3c and Fig. 3d correspondingly. The pathological mirrors are useful ideal
circuit elements for modeling active devices with voltage and current reversing [2,
7–9, 50–53].

(a) (b) (c) (d)

211

gg

211
g g

+

–

+

–

Nullator Nullator NoratorNorator

Fig. 3 Nullor symbol a, oriented nullor symbol b, the equivalent nullor circuits of pathological
mirrors: VM c and CM d
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I
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Fig. 4 The residual circuits consists of nullor a–b, controlled sources c–f
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The subcircuits may include more than one oriented nullor. There are several
simple rules that can help to deal with such cases: (1) enumerate the nullator-norator
pairs; (2) invert the sign of determinant in the case of inversion of the norator or
nullator orientation; (3) invert the sign of determinant in the case of the pair
numbers interchanging between two norators or two nullators.

The circuit-algebraic expressions for the parameter extraction cases for each of
the four depended sources, using formula (15), are shown below:

KV
=  K +V +

–

ð16Þ

=  GV +GV

ð17Þ

=  Н
НI ++

–
I

ð18Þ

=  BBI +
I

ð19Þ
where K is a control parameter of voltage controlled voltage source (VCVS), G is
a control parameter of voltage controlled current sources (VCCS), H is a control
parameter of current controlled voltage source (CCVS) and B is a control parameter
of current controlled current source (CCCS).

The determinant of the circuit with pathological elements can be equal to zero
[28, 29, 54, 55]. Such circuits are called the degenerated circuits. The check for the
degeneracy of subcircuits derived by usage of formulae (1), (2), (5), (6) and (15) is
very important part of the process of symbolic analysis by GPEM.
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2.3 Degeneracy and Simplification of Circuits Containing
Pathological Elements

Although topological conditions of circuit degeneracy were introduced for the first
time in the mid-1970s [54, 55] the degeneracy check still can be confusing for
circuit designers in the certain cases [56]. Therefore in GPEM, the generalized
topological conditions are used. The determinant of circuit is equal to zero in
following cases: (1) the circuit consists of several not connected subcircuits; (2) the
circuit contains at least one loop consisting only of voltage sources and norators or
controlling currents of CS and nullators; (3) the circuit contains at least one
cross-section consisting only of the current sources and norators or controlling
voltages of CS and nullators. Note that the voltage sources and current sources
mentioned in topological conditions can be the input sources or depended sources
as well.

The determinant of the circuit consisting only of nullors is nonzero if there is a
tree which includes all of the norators while the collection of remaining branches
(nullators) is the complement of such a tree and vice versa.

The degenerated circuits cannot be equivalent to each other because responses of
the signal in such circuits are indeterminate. Therefore the equivalent transforma-
tion of the parallel connection of voltage source and norator into voltage source
as shown in [53, 56], the transformation of the series connection of the current
source and norator into current source as shown in [56], and the short-circuiting of
the current source and nullator connected in series as shown in [53], are not correct.

In Tables 1 and 2 we present the special cases of elements connections derived
by usage of parameter extraction formulae and topological conditions which con-
sidered above.

Table 1 The circuit elements in short-circuit and in open loop

Element type Special connection case
Element shorted Element opened

Impedance Parameter extracted –

element deleted
Element shorted

Admittance Element deleted Parameter extracted –

element shorted
Voltage source Δ = 0 Element shorted
Controlling current of CS Δ = 0 Element shorted
Current source Element deleted Δ = 0
Controlling voltage of CS Element deleted Δ = 0
Nullator Δ = 0 Δ = 0
Norator Δ = 0 Δ = 0
VM Δ = 2 Δ = 0
CM Δ = 2 Δ = 0
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3 Symbolic Circuit Analysis by GPEM

3.1 Symbolic Analysis of SISO Circuits

The network function of a linear circuit can be expressed as a ratio of two rational
symbolic expressions. The numerator is the determinant of the circuit, in which the
input source and response are replaced by an oriented norator and nullator corre-
spondingly [49]. The denominator is the determinant of the circuit, in which the
input and output signals are equal to zero.

The circuit-algebraic expressions for the circuit functions calculation are shown
in the Fig. 5. For determinants calculation of network that contains any linear
models of active circuit elements, including the controlled sources and pathological
elements, the parameter extraction formulae (1), (2), (15) and bisection formulae
(5)–(6) are recursively used. Each of the derived subcircuits must be checked by
topological conditions for the solvability and degeneracy. As result, the residual
circuits presented in Fig. 1 and Fig. 4 is obtained.

The order of parameter extraction can be chosen arbitrarily. So the calculated
determinant can be presented as the rational polynomial expression if the reactive
elements is extracted first.

(a) (b)

(c) (d)

(e) (f)

=
Iout

Vin

IoutVinVout

Vin

Vin

Vout =

Vout =
IoutIin Iout

Iin

Iin
=

Vout

Iin

=Vin

Iout

Vin

Iout
=

Iin Vout

Iin

Vout

Fig. 5 The circuit-algebraic expressions of the circuit functions
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The GPEM-based symbolic analyzer CirSym is developed by V. Filaretov. The
program is freeware available in two versions: offline and online http://intersyn.net/
en/cirsym.html. The input data is a slightly modified Spice-compatible netlist, which
can be entered online or loaded as a cir-file. Circuit nodes should be numbered as
integers. The passive impedance and admittance elements are identified by uppercase
and lowercase characters correspondingly: R, L, C and g, l, c. Controlled sources are
identified by following symbols: K is a parameter of VCVS, G is a parameter of
VCCS, H is a parameter of CCVS and B is a parameter of CCCS. Pathological
elements are identified as follows:N is a nullor,M is aVM-CMpair,T is aCM-nullator
pair andQ is a norator-VM pair. Note that the input voltage source should be defined
as EMF source and described by symbolE. CirSym-online provides the calculation of
several circuits at once. The end of the netlist for each circuit and the end of the whole
of input data are notified by strings « .end » and « .total » correspondingly.

Example 2 Let’s consider the simple high-pass filter circuit containing the non-ideal
OpAmp that modeled by VCVS as shown in Fig. 6. For the sake of clarity, we
calculate the numerator and denominator of voltage transfer function separately.

Numerator calculation. The parameter sC1 can be extracted from the numerator
subcircuit in accordance with Table 2 due to the series connection of admittance
and norator:

Δ3 = K1V1

V1

K1V1

V1

g2

g1

sC2
= sC1

g2

g1

sC1 sC2

+
–

+
–

1 2
3

0

1 2 3

0 

ð20Þ
Parallel connection of voltage source of VCVS also provides simplified extraction

of parameterK1. There are two nullors in the circuit now and theymust be enumerated.
The interchanging of numbers between two norators leads to inversion of expression
sign and provides the usage of the equivalent transformation of nullor as shown in
Fig. 4a. The admittance g2 is deleted in accordance with Table 2. The sign of deter-
minant is changed again in the consequence of the equivalent transformation of
norator and nullator which are labeled by « 2 » in accordance with Fig. 4b.

Δ3 = s2C1C2 K1

1

2

1

2 =   s2C1C2 K1.

g2

2

2

g2

= –s2C1C2 K1

1 3 

0 0

3 

ð21Þ
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Denominator calculation. Two subcircuits that correspond to the determinants
Δ(K1 → nullor) and Δ(K1 = 0) is derived as result of the VCVS parameter
extraction by formula (15). The first subcircuit can be easily reduced to expres-
sion –K1g2sC2 by usage of Tables 1 and 2. Note that the negative sign is the
consequence of orientation of norator and nullator as shown in Fig. 4b. The second
subcircuit can be expanded by extraction of the multibranch parameter (sC1 + g2).

0 0 0 

2 2
1 1

2 

g2

g1
sC1

sC2
= K1

g2

g1
sC1

sC2

+ =

g2

g1
sC1

sC2
Δ =

K1V1

V1

+
–

= – K1g2sC2+(sC1+g2)(sC2+g1)+sC2g1.

g1

sC1+g2

sC2

g1(sC1+g2)

sC2

= – K1g2sC2 + =–K1g2sC2 + g1

sC2

+ =

1 2 1 2 1 2 

ð22Þ
The resulting transfer function can be expressed as follows:

H =
Δ3

Δ
=

s2C1C2K1

−K1g2sC2 + ðsC1 + g2ÞðsC2 + g1Þ+ sC2g1
. ð23Þ

3.2 Symbolic Circuit Analysis of MISO Circuits

The nullator controlled multidimensional source [31] can be used for calculation of
response function Vout of arbitrary MISO circuit that consists of n voltage sources
and m current sources as shown in Fig. 7a. In that case, all of the input sources is
transformed into controlled sources which will be oriented opposite [18]. All of the
sources is controlled by the same nullator as shown in Fig. 7b. Parameters of input

1

2

g2

g1
C1 C2

K1V1
Vin Vout+

–

3

V1
0

Fig. 6 VSSC-based
equivalent circuit of high-pass
filter
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sources V1, V2, …, Vn and I1, I2, …, In is used as parameters of the nullator
controlled multidimensional source. The properties of a nullator of a multidimen-
sional source are the same as the properties of a standard nullator. Thus, all known
operations with nullators are still valid. Obviously, the network can include only
one nullator controlled multidimensional source.

The following recursive formula was proposed in [31] to calculate the numerator
of k-th voltage or current function of MISO circuit:

Δk = piΔ1 +Δ2. ð24Þ

where pi is a source parameter Vi or Ii, Δ1 is the determinant of network in which
the source with parameter pi corresponding to Vi or Ii is replaced by a norator, the
nullator of the multidimensional source is replaced by a standard nullator, and
parameters of all other sources are equal to zero; Δ2 is the determinant of network
in which the parameter of extracted source is equal to zero. Note that Δ2 is equal to
zero if all m + n parameters of sources have been extracted.

Let’s use the formula (15) to extract parameter V1 in numerator circuit which is
presented in Fig. 7b. As result we obtained the circuit-algebraic expression that
shown below:

.

…

…

Δk =V1 +

1 

1 

– + – +
V2 Vn

I1 I2 Im

…

…

ð25Þ
As can be seen from (25), the extracted voltage source in the first subcircuit is

transformed into norator while parameters of others sources are equal to null.
Therefore the first subcircuit contains only one nullor and can be calculated by

(a) (b)

…

…

V1 V2 Vn

I1 I2 Im

– + – + – +

V1

Vk

V2
…

…
I1 I2

Vn

Im

+ – + – + –

Fig. 7 The circuit with n input voltage sources and m input current sources a, circuit with nullator
controlled multidimensional source b
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formulae (1), (2), (15). Others sources parameters can be extracted from the second
subcircuit in a similar way.

Example 3 The usage of the concept of nullator controlled multidimensional
source can be explained by means of the symbolic analysis example of the sum-
ming amplifier circuit with Vout = Δk/Δ shown in Fig. 8a.

Numerator calculation. The equivalent circuit shown in Fig. 8b is used for
calculation of voltage function numerator Δk by formula (24). There are two
nullor-based subcircuits as result of the extraction of parameters V1 and V2. The
determinant expressions can be easily derived by using simplification conditions in
Table 2 as follows:

21

2

R3

R2R1

1
21

2

R3

R2R1

1V1 +V2Δk=
21

2

R3

R2
1= V1 +

21
2

R3

R1
1+V2 = –V1R2

22
1

R3

1 22
1

R3

1– V2R1 = –V1R2R3 – V2R1R3. 

ð26Þ
Denominator calculation. The voltages of both sources V1 and V2 are equal to

null. There is only one regular nullor in the subcircuit. The determinant expansion
by using Table 2 is trivial:

R2

R3

1 1

R1

R3

1 1
Δ = = R1R2

1 1
= R1R2 = R1R2.

ð27Þ

(a) (b)R1

+
–

+
–

R2

R3

V1

V2
Vout

R1

R2

R3

V1

V2+
–

+
– 1 1

2

Fig. 8 a The summing amplifier circuit, b equivalent circuit with nullator controlled multidi-
mensional source
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4 The Technique of Determinant Expansion
of Pathological Element-Based Residual Circuits

As seen from examples in previous subsections, the usage of formulae (1), (2), (5),
(6) and (15) along with the conditions of circuit degradation and simplification from
Tables 1 and 2 is easy, intuitive and effective especially in the case of relatively
small circuits. However, the big amount of special connections of elements com-
plicates the symbolic analysis of large subcircuits that contain only of pathological
elements which are the result of extraction of all impedances, admittances, and CS.
A more simple technique of determinants computation of the pathological
element-based residual circuits is needed.

4.1 Expansion of Determinants of Pathological
Element-Based Residual Circuits

The main idea of the new approach is that the determinant of the residual circuit,
which contains only the pathological elements, can be calculated by usage of matrix
algebra operations instead of simplification by conditions presented in Tables 1 and
2. The connection of norator or nullator (VM or CM) to the circuit leads to the
summation (subtraction) of rows or columns in circuit the admittance matrix. The
rows or columns numbers correspond to the nodes numbers of the circuit. The
concept of HOSC [22, 45] can be useful to represent the matrices in such
operations.

The higher order cofactor is a cofactor of a cofactor. The n-th order cofactor can
be identified by a symbol Δr1,k1,r2,k2,…rn, kn, where r1, r2, …, rn and k1, k2,…, kn are
the numbers of deleted rows and columns respectively. If at least one deletion in the
higher order cofactor has a summative form, then cofactor is called a higher order
summative cofactor.

For example, the first-order HOSC can be described as Δ(a±b)(c±d), where a and
b are the numbers of rows, c and d are the numbers of columns. In the case of
summation of numbers (a + b) or (c + d) the row a is added to row b or the column
c is added to column d. In the case of subtraction of numbers (a–b) or (c–d) the
entries of the row a or the column c is inverted before addition to the row b or to the
column d correspondingly. Note, that the added row a or column c is deleted from
the matrix. The following notation Δ(a+0)(c+0), where zero is the number of
grounded node in the circuit, means the deletion operation of the row a and column
c. Obviously, Δ(a–0)(c–0) = Δ(a+0)(c+0).

The matrices of pathological elements are presented in Table 3, where N is a
symbol of the norator-nullator pair, Q is a symbol of the VM-norator pair, T is a
symbol of the nullator-CM pair, M is a symbol of the VM-CM pair. If one of the
matrix entries is null the determinant of pathological element matrix is equal to
zero. In Table 3 the matrix identities for all four pathological elements in the form
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of HOSC are proposed. To prove the matrix identities presented in Table 3 one can
apply the Laplace’s cofactor expansion.

Matrix representation of pathological elements provides the way to reduce the
matrix of the residual circuit by extraction of virtual parameters that are equal in
absolute values:

Δ=
X ⋅Δða±bÞðc±dÞ, a= c

−X ⋅Δða±bÞðc±dÞ, a≠ c

(
, ð28Þ

where X is a symbol of pathological element written at the intersection of rows
a and b and columns c and d of the circuit matrix, Δ(a±b)(c±d) is the circuit matrix
transformed in accordance with Table 3.

The recursive usage of the formula (28) provides the calculation of determinant
of the matrix of the residual circuit. The determinant of the non-degenerated
nullor-based residual circuit can take on values Δ = 1 or Δ = –1. The determinant
value of non-degenerated residual circuit containing pathological mirrors can be
multiple of 2.

Table 3 The equivalent HOSC and matrices of pathological elements

Element type Matrix identity in form of HOSC Matrix elements

1 N (norator-nullator pair)
a

b

c

d

Δ a+ bð Þðc+ dÞ =
Δ a+0ð Þðc+0Þ +Δ b+0ð Þðd+0Þ

−Δ a+0ð Þðd+0Þ −Δ b+0ð Þðc+0Þ

c d
a N –N
b –N N

2 T (nullator-CM pair)
a

b

c

d

Δ a− bð Þðc+ dÞ =
Δ a+0ð Þðc+0Þ −Δ b+0ð Þðd+0Þ

−Δ a+0ð Þðd+0Þ +Δ b+0ð Þðc+0Þ

c d
a T –T
b T –T

3 Q (VM-norator pair)
a

b

c

d

Δ a+ bð Þðc− dÞ =
Δ a+0ð Þðc+0Þ −Δ b+0ð Þðd+0Þ

+Δ a+0ð Þðd+0Þ −Δ b+0ð Þðc+0Þ

c d
a Q Q
b –Q –Q

4 M (VM-CM pair)
a

b

c

d

Δ a− bð Þðc− dÞ =
Δ a+0ð Þðc+0Þ +Δ b+0ð Þðd+0Þ

+Δ a+0ð Þðd+0Þ +Δ b+0ð Þðc+0Þ

c d
a M M
b M M
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Example 4 Suppose that the pathologic element-based circuit shown in Fig. 9a is a
residual circuit of a certain network in which all of the impedances, admittances,
and CS were extracted.

The HOSC list and its representation in the form of circuit matrix can be
expressed as follows:

Δð1− 2Þð2+ 1Þ, ð1− 3Þð0+ 1Þ, ð1+ 3Þð1+3Þ, ð29Þ
1 2 3

1 –T1–T2+N1 T1 –N1
2 –T1 T1
3 –T2–N1 N1

ð30Þ

Let’s extract T1 from the matrix by formula (28). The symbol of the first
nullator-CM pair is deleted as shown below:

1 2 3
1 –T2+N1 –N1
2
3 –T2–N1 N1

ð31Þ

The subtraction of entries at rows 1 and 2 leads to inversion of the entries of row 1:

1 2 3
2 T2–N1 N1
3 –T2–N1 N1

ð32Þ

The result of the addition of entries in columns 2 and 1 is shown below:

1 3
2 T2–N1 N1
3 –T2–N1 N1

ð33Þ

(a)

(b)

210

3N1

T2

T1

1

2

3

4
5

6

7

0

N1

M1

M2

M3 M4

Q1T1

Fig. 9 The pathologic element-based residual circuits
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Now let’s rearrange the numbers of columns and rows as follows:

2 3
2 T2–N1 N1
3 –T2–N1 N1

ð34Þ

The number of the row a is not equal to the number of the column c (1 ≠ 2), so
in accordance with (28):

2 3
2 –T2+N1 –N1
3 T2+N1 –N1

ð35Þ

As seen from (35), the types of non-extracted pathological elements is changed
as following T2 → N2 and N1 → T3:

2 3
2 N2+T3 –T3
3 –N2+T3 –T3

ð36Þ

Now let’s extract the symbol of nullor N2:

2 3
2 T3 –T3
3 T3 –T3

ð37Þ

The result of the addition of the entries in rows 2 and 3 is shown below:

2 3
3 2T3 –2T3

ð38Þ

The last step is the addition of columns 0 and 2 which leads to deletion of
column 2:

3
3 –2T3

ð39Þ

The value of the determinant is Δ = –2.
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4.2 The Algorithm of Determinant Expansion Directly
from HOSC of Residual Circuits

The HOCS pairs (a ± b)(c ± d) can be extracted instead of the pathological ele-
ments symbols. The determinant expansion of residual circuits directly from HOSC
is more appropriate for automatic calculation. The algorithm proposed is shown in
Fig. 10. The input data is the HOSC list of a certain circuit in which all of the
elements except the pathological mirrors and nullors were extracted by formulae
(1), (2) and (15).

The individual aspects of analysis stages are detailed below:

1. The netlist of the residual circuit is transformed into the HOSC list.

1. HOSC list of n elements

Yes
END

2. Check for circuit degeneracy conditions

Meet the 
conditions?

No

3. Perform the equivalent transformations

4. Calculate the sign of determinant

Is transformation 
performed?

No

Yes

n=1

5. Extract the arbitrary HOSC pair (a±b)(c±d)

6. Replace the rows and columns numbers of non-extracted 
HOSC pairs as follows:  a b, d.

Yes

No

a=c
Yes

7. Replace the rows and columns indexes of non-extracted 
HOSC pairs as follows: a

No

Fig. 10 The flow chart of algorithm
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2. At the beginning of computation process and after every extraction iteration the
HOSC list must be checked for circuit degeneracy conditions. If the HOSC list
includesmore than one element then determinant is equal to zero in following cases:

ða + aÞ→Δ=0; ð40Þ

ðc + cÞ→Δ=0. ð41Þ

If the HOSC list includes only one element that differs from Δ(a+b)(a+b) = 1 and
Δ(a+b)(b+a) = –1, then determinant is equal to zero. For example: Δ(a+b)(c+d) = 0.

3. Several equivalent transformations must be performed in the HOSC list:

I. Determinant doubling (2Δ):
ða− aÞ→ ða + 0Þ, ð42Þ

ðc− cÞ→ ðc + 0Þ. ð43Þ

II. The transformations of the HOSC list elements with null summand:

ða− 0Þ→ ða + 0Þ; ð44Þ

ðc− 0Þ→ ðc + 0Þ; ð45Þ

ð0− aÞ→ ða + 0Þ; ð46Þ

ð0+ aÞ→ − ða + 0Þ; ð47Þ

ð0− cÞ→ ðc + 0Þ; ð48Þ

ð0+ cÞ→ − ðc + 0Þ. ð49Þ

III. The transformations of the HOSC list elements with the first negative
number:

ðð− aÞ+ bÞ→ − ðb+ ð− aÞÞ→ − ðb− aÞ→ − ða− bÞ, ð50Þ

− að Þ− bð Þ→ b− − að Þð Þ→ b+ að Þ→ − a+ bð Þ, ð51Þ

− cð Þ+ dð Þ→ − d+ − cð Þð Þ→ − d− cð Þ→ − c− dð Þ, ð52Þ

− cð Þ− dð Þ→ d− − cð Þð Þ→ d+ cð Þ→ − c+ dð Þ. ð53Þ

4. The default positive sign of determinant must be inverted in the case of trans-
formations (47), (49), (50)–(53) or extraction of the HOCS pair (a + b)
(c + d) in which a ≠ c (see step 7).
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5. The extraction of arbitrary HOSC pair (a + b)(c + d) decreases HOSC list by
one.

6. After extraction of HOCS pair (a ± b)(c ± d) the numbers of rows of
non-extracted HOSC pairs will be replaced as follow: a → b. The numbers of
columns is replaced in a similar way: c → d. If a = c the analysis procedure
repeats from degeneracy checking. In the opposite case, the next step must be
performed.

7. If a ≠ c the rows and columns numbers of non-extracted HOSC pairs is
replaced as follows: a → c. This operation is inverting of the sign of the
determinant.

The algorithm of calculation of determinant of the residual circuit consisting of
pathological elements only is implemented in circuit analyzer CirSym.

Example 5 The sequence of operations of determinant calculation of the pathologic
element-based residual circuit which is shown in Fig. 9a is presented in Table 4 in
accordance with the algorithm proposed.

As can be seen, the result of calculation by the expansion of HOSC list is the
same as result of matrix expansion in Example 4.

Example 6 Suppose that pathologic element-based circuit shown in Fig. 9b is a
residual circuit of a certain active network in which all of the impedances, admit-
tances, and CS were extracted. The HOSC list of pathological elements is written
below in the following order: N1, M1, M2, M3, M4, Q1, T1.

Table 4 The expansion of HOSC list (29)

Operation HOSC list Determinant

1 Extraction of (1, 2)(2 + 1) Δ 1− 3ð Þ 0+ 1ð Þ, 1 + 3ð Þð1+ 3Þ Δ
2 Rows: 1 → –2; Col.: 2 → 1 Δ − 2− 3ð Þ 0+ 1ð Þ, − 2+ 3ð Þ 1+ 3ð Þ
3 Rows and Col.:1 → 2 Δ − 2− 3ð Þ 0+ 2ð Þ, − 2+ 3ð Þ 2+ 3ð Þ
4 Changing sign 1 ≠ 2 Δ − 2− 3ð Þ 0+ 2ð Þ, − 2+ 3ð Þ 2+ 3ð Þ –Δ
5 Transformation by (51) Δ 2+ 3ð Þ 0+ 2ð Þ, − 2+ 3ð Þð2+ 3Þ Δ
6 Transformation by (50) Δ 2+ 3ð Þ 0+ 2ð Þ, 2, 3ð Þ 2+ 3ð Þ –Δ
7 Transformation by (49) Δ 2+ 3ð Þ 2+ 0ð Þ, 2, 3ð Þ 2+ 3ð Þ Δ
8 Extraction of (2 + 3)(2 + 0) Δ 2, 3ð Þ 2+ 3ð Þ Δ
9 Rows: 2 → 3; Col.: 2 → 0 Δ 3ð Þð0+ 3Þ
10 Saving sign 2 = 2 Δ 3ð Þ 0+ 3ð Þ Δ
11 Doubling by (42) Δ 3+ 0ð Þ 0+ 3ð Þ 2Δ
12 Transformation by (49) Δ 3+ 0ð Þ 3+ 0ð Þ –2Δ
Result –2Δ
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Δ 1+ 3ð Þ 1+4ð Þ, 2− 3ð Þ 3− 5ð Þ, 3− 4ð Þ 4− 5ð Þ, 4− 5ð Þ 2− 6ð Þ, 5− 6ð Þ 3− 7ð Þ, 7 + 3ð Þ 5− 7ð Þ, 7− 1ð Þð6+ 4Þ. ð54Þ

The sequence of operations of determinant calculation is presented in Table 5.
The obtained results of examples which considered above are confirmed by

usage of CirSym.

5 Circuit Decomposition in GPEM

There are two hierarchical decomposition approaches to circuit analysis. The first
one is called upward analysis and it is based on the combination of subcircuits [44].
The downward analysis deals with recursive usage of circuit bisection. Both of
decomposition approaches are implemented in GPEM. The upward analysis pro-
vides the generation of circuit function in the form of sequence of expressions
(SoE). Many symbolic circuit analysis techniques provide the solution in the form
of SoE [1, 5, 6, 44, 57–59] and the sequence can be made very compact [59]. The
single nested expression of circuit function can be obtained by downward analysis.

5.1 The Downward Analysis

In this section, we present the generalized topological approach to circuit bisection
which can be explained by matrix decomposition procedures. Let’s consider the
arbitrary fully populated matrices A, B, and C = A+B of the same order n = 3.
The determinant of C can be expressed as shown below:

detðCÞ=
c11 c12 c13
c21 c22 c23
c31 c32 c33

������
������=

a11 + b11 a12 + b12 a13 + b13
a21 + b21 a22 + b22 a23 + b23
a31 + b31 a32 + b32 a33 + b33

������
������. ð55Þ

The expression (55) can be transformed in consequence of linearity of the
determinant as follows:

detðCÞ=
a11 a12 a13
a21 a22 a23
a31 a32 a33

�������
�������+

a11 a12 b13
a21 a22 b23
a31 a32 b33

�������
�������+

a11 b12 a13
a21 b22 a23
a31 b32 a33

�������
�������+

b11 a12 a13
b21 a22 a23
b31 a32 a33

�������
�������+ .

+

a11 b12 b13
a21 b22 b23
a31 b32 b33

�������
�������+

b11 a12 b13
b21 a22 b23
b31 a32 b33

�������
�������+

b11 b12 a13
b21 b22 a23
b31 b32 a33

�������
�������+

b11 b12 b13
b21 b22 b23
b31 b32 b33

�������
�������,

ð56Þ
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or more briefly as

detðCÞ= detðA+BÞ= detA+ ∑Δð1Þ+ ∑Δð2Þ+ . . . + ∑ΔðkÞ
+ . . . + ∑Δðn− 1Þ+ detB, ð57Þ

where Δ(k) is the determinant derived by operation of replacement of all the entries
of k columns of matrix A by the entries of corresponding columns of matrix B. The
sum in (57) is the sum over all possible combinations of k columns in A and B.

In accordance with Laplace theorem if we are given a selection of k rows i1, i2,
…, ik of a square n-order matrix M the determinant can be characterized as the sum
[60]:

Δ= − 1ð Þ∑k
z=0 iz + ∑k

z=0 jzMi1, i2, ..., ik
j1, j2, ..., jk M

i1, i2, ..., ik
j1, j2, ..., jk , ð58Þ

where j1, j2,…, jk specify the columns ofM,M i1, i2, ..., ik
j1, j2, ..., jk is the complementary minor

of the minor Mi1, i2, ..., ik
j1, j2, ..., jk . Note that the columns vary over all possible combinations

of k columns.
The Eq. (57) can be expressed by usage of (58) as following [61]:

detðCÞ= detðA+BÞ= detA+ ∑
n− 1

k =1
∑ ð− 1Þ∑k

z=0 iz + ∑k
z=0 jzBkAk + detB, ð59Þ

where Bk is the minor of order k of matrix B, Ak is the complementary minor of (n–
k) order formed by the determinant of the matrix A from which k rows and columns
associated with minor Bk have been removed.

The expression (59) seems not quite effective for determinant expansion of the
fully populated matrix. But the circuit matrix usually is sparse. Thereby the formula
(59) can be quite useful for the symbolic circuit analysis by hierarchical decom-
position. Let’s consider the graphical models of arbitrary circuit matrices A, B, and
C = A+B of the same order n which are presented in Fig. 11. The parameters of
circuits’ elements are written in the entries in the shaded areas of matrices A and
B. The values of the entries in the non-shaded areas are equal to null. The inter-
section of the rows and columns, which corresponds to the common nodes of

A B C=A+B

(a) (b) (c)

Fig. 11 The graphical models of arbitrary circuit matrices A, B, and C = A+B
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circuits is shown as the double-shaded area in matrix C. Suppose that the set of
common nodes includes the grounded node. Thereby for determinant calculation of
circuit matrix C by (59), we can use only the minors and cofactors that correspond
to the common nodes of subcircuits. The other minors and cofactors are equal to
zero.

The Feussner’s diacoptic formulae (5) and (6) represent the particular cases of
circuit bisection. The operation of short-circuiting of the nodes a and b in bisection
formula (6) is equivalent to a parallel connection of norator and nullator into those
nodes, which causes the deletion of the correspondent column and the row of
subcircuit matrix [62]. Therefore, the derived subcircuit may be called a «minor of
circuit» by analogy with the term «minor of matrix». The symbolic expression of
minor of the circuit can be calculated using formulae (1), (2) and (15).

The binary arrays represent the minors of the circuit with m number of external
nodes; one of which is considered as a grounded node. The dimension of an array is
2n, where n = (m–1). The first n elements of the binary array form the norator
vector and the last n elements form the nullator vector. There are two possible
values for each element of vector: 0 or 1. The unity value of some entry of norator
(nullator) vector means that norator (nullator) is inserted into the circuit between the
correspondent node and grounded node. The norator and nullator of the inserted
nullor are oriented in the same direction. In the case of zero value, the node is in
open loop. The positions of entries in the vector can be presented by the tuple that
consists of labels of a subcircuit external nodes excluding the basic node.

The number of binary arrays for an arbitrary subcircuit can be calculated by the
formula:

v= ∑
n

i=0

i
n

� �2
, ð60Þ

where i
n

� �
is a binomial coefficient.

The bisection formula (59) can be transformed by usage of the binary arrays
concept for decomposition of the circuit by m nodes as follows:

∑
v

i=1
δiΔ1ðbiÞΔ2ðbiÞ, ð61Þ

where Δ1(bi) is a first subcircuit minor which corresponds to the binary array bi;
Δ2(bi) is a second subcircuit minor which corresponds to the binary array bi.

The norators and nullators that are inserted into the circuit minors can be enu-
merated in accordance with the values of the entries in the corresponding binary
array. The binary array that corresponds to the circuit minors with enumerated
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nullors is called the enumerated binary array. Instead of nullator and norator con-
nection information, this array contains nullor number which particular nullator and
norator belong to. For example, the binary array b = 110101 of some circuit minor
includes the two nullors labeled by « 1 » and « 2»; using those numbers binary
array can be transformed into the following enumerated binary array: b’ = 120102.

The nullor circuit that corresponds to the sum of two enumerated binary arrays,
is consist of n norator-nullator pairs, connected in parallel. Norator-nullator pairs
must be labeled by the same number to use the nullor simplification. If the labels of
a norator and nullator of certain nullor are different the permutation of labels in the
sum result of two enumerated binary arrays is needed. The determinant of nullor
circuit is δ = 1 if the amount of such permutations is even. In the opposite case, the
sign of the product of Δ1(bi) and Δ2(bi) in (61) is negative.

In the case of circuit bisection by three nodes (n = 2) the dimension of binary
arrays is 2n = 4. The six binary arrays which are presented in Fig. 12 can be
derived as the result of bisection. They are corresponding to the circuit minors of

1 2

Δ12

1001

0

21
Δ11

1010

0

1
Δ11,22

1111

0 2

2 2

1

1

21
Δ Δ21Δ22

0101 01100000

000

21 21

Fig. 12 The circuit minors and binary arrays of three-node subcircuit

Table 6 The binary arrays,
the enumerated binary arrays,
the sum results of enumerated
binary arrays and the
determinants values in the
case of circuit bisection by 3
nodes

i bi bi b′i b′i b′i + b′i δi

1 0000 1111 0000 1212 1212 1
2 0101 1010 0101 2020 2121 1
3 0110 1001 0110 2002 2112 –1
4 1001 0110 1001 0220 1221 –1
5 1010 0101 1010 0202 1212 1
6 1111 0000 1212 0000 1212 1

Generalized Parameter Extraction Method for Symbolic Analysis … 57



the first subcircuit in (61). The binary arrays of the second subcircuit can be
obtained by operation of the one’s complement of the binary number. The tuple of
common (or external) nodes of subcircuits can be written as 1212. The binary
arrays, their enumerated forms, the sum results of two enumerated binary arrays and
the determinants values of corresponding nullor circuits are presented in Table 6.

The decomposition formula (61) in the case of bisection by three nodes can be
expressed as follows:

Δ=Δ1 b1ð ÞΔ2ðb1Þ+Δ1 b2ð ÞΔ2ðb2Þ−Δ1 b3ð ÞΔ2ðb3Þ−
−Δ1 b4ð ÞΔ2ðb4Þ+Δ1 b5ð ÞΔ2ðb5Þ+Δ1 b6ð ÞΔ2ðb6Þ.

ð62Þ

The circuit-algebraic form of (62) is presented below:

= .21 1 2 +

1 . 2+ 1 2.

+

+

1 . 2 –

.

– 1 2 – 1 2..

0

1

2

ð63Þ
Let’s consider the case of circuit bisection by four nodes (n = 3) as shown in

Fig. 13a. The dimension of binary arrays is 2n = 6. The binary arrays in which the
number of unities in norator vector differs from a number of unities in nullator

(a) (b)
3

2
21

1

0

3   4

2

21 1

0

Fig. 13 The model of circuit bisection by four nodes a, the model of combination of two
subcircuits b
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vector are excluded from search space 000000 to 111111 in accordance with (60).
Thereby twenty binary arrays for each of subcircuit are presented in Table 7, as
well as their enumerated forms, the sum results of two enumerated binary arrays
and the determinants values of corresponding nullor circuits.

The decomposition formula (61) in the case of bisection by four nodes can be
expressed as follows:

Δ=Δ1 b1ð ÞΔ2ðb1Þ+Δ1 b2ð ÞΔ2ðb2Þ−Δ1 b3ð ÞΔ2ðb3Þ+Δ1 b4ð ÞΔ2ðb4Þ−Δ1 b5ð ÞΔ2ðb5Þ+
Δ1 b6ð ÞΔ2ðb6Þ−Δ1 b7ð ÞΔ2ðb7Þ+Δ1 b8ð ÞΔ2ðb8Þ−Δ1 b9ð ÞΔ2ðb9Þ+Δ1 b10ð ÞΔ2ðb10Þ+

Δ1 b11ð ÞΔ2ðb11Þ−Δ1 b12ð ÞΔ2ðb12Þ+Δ1 b13ð ÞΔ2ðb13Þ−Δ1 b14ð ÞΔ2ðÞ+Δ1 b15ð ÞΔ2ðb15Þ−
Δ1 b16ð ÞΔ2ðb16Þ+Δ1 b17ð ÞΔ2ðb17Þ−Δ1 b18ð ÞΔ2ðb18Þ+Δ1 b19ð ÞΔ2ðb19Þ+Δ1 b20ð ÞΔ2ðb20Þ.

ð64Þ

The bisection operation by the proposed formula (61) can be used for every
derived circuit minors provides the downward hierarchical decomposition of the
circuit for closed-form determinant expressions calculation. Note, that the
input-port and output-port of certain CS, nullor or pathological mirrors pair, cannot
be included separately in different subcircuits.

5.2 The Upward Hierarchical Analysis

The upward hierarchical analysis by GPEM starts from the decomposition of the
circuit by bisection formula (61) and follows by the pairwise combination of
subcircuits. The binary arrays and corresponding circuit minors are used for the
representation of subcircuits. Suppose two n-port circuits combined into one circuit
by m ports, which may be called the common nodes. Let’s consider the input and
output ports of the circuit as external nodes. Some of the common nodes of the
combined circuit can be also the external nodes.

The following algorithm is used for the combination of two subcircuits:

1. Generate the set of binary arrays for each of subcircuits.
2. Perform the pairwise comparison of binary arrays using the entries that corre-

spond to common nodes of subcircuits to find the pairs of joint binary arrays.
Two binary arrays are called jointed if the entries values that correspond to the
common nodes are complementary and the sum of those values is not equal to
zero.

3. Generate the set of binary arrays of the combined circuit using joint binary
arrays. The values of binary arrays must be written in accordance with circuit
tuple in the following order: firstly, the values of binary arrays which corre-
spond to the non-common external nodes of the first subcircuit, next, the values
of the binary arrays which correspond to the common nodes, and, finally,
the values of the binary arrays which correspond to the non-common external
nodes of the second subcircuit. The unity must be written into binary array
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entries that correspond to the common external nodes of the combined circuit if
there are the unity values in the corresponding entries of the joint binary arrays.

4. Calculate the sign of circuit minors product represented by joint binary arrays
according to (61). The sign is positive if the number of permutations in
the enumerated joint binary arrays is even and vice versa. If the values of entries
that correspond to the common external nodes are equal to unity in both joint
binary arrays then the unity values of such entries in one of the binary arrays
must be replaced by zero.

5. Summarize the circuit minors products that correspond to the pairs of joint
binary arrays for each of combined circuit minors.

Let’s consider the following example to illustrate the usage of the proposed
algorithm. The circuit with three nodes labeled by 3, 4 and 0 shown in Fig. 13b is
obtained by combining two subcircuits 1 and 2 with four external nodes. Thereby
the dimension of binary arrays is equal to 6 in the case of the separated subcircuits
and to 4 in the case of the combined circuit.

A number of external nodes is the same in both subcircuits, therefore we can use
the set of binary arrays from the second column in Table 7. The tuples of binary
arrays of first and second subcircuits can be expressed as 312312 and 124124

Table 7 The binary arrays, the enumerated binary arrays, the sum results of enumerated binary
arrays and the determinants values in the case of circuit bisection by 4 nodes

i bi bi b′i b′i b′i + b′i δi

1 000000 111111 000000 123123 123123 1
2 001001 110110 001001 230230 231231 1
3 001010 110101 001010 230203 231213 –1
4 001100 110011 001100 230023 231123 1
5 010001 101110 010001 203230 213231 –1
6 010010 101101 010010 203203 213213 1
7 010100 101011 010100 203023 213123 –1
8 011011 100100 012012 300300 312312 1
9 011101 100010 012102 300030 312132 –1
10 011110 100001 012120 300003 312123 1
11 100001 011110 100001 023230 123231 1
12 100010 011101 100010 023203 123213 –1
13 100100 011011 100100 023023 123123 1
14 101011 010100 102012 030300 132312 –1
15 101101 010010 102102 030030 132132 1
16 101110 010001 102120 030003 132123 –1
17 110011 001100 120012 003300 123312 1
18 110101 001010 120102 003030 123132 –1
19 110110 001001 120120 003003 123123 1
20 111111 000000 123123 000000 123123 1
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correspondingly. Obviously, we need to take into account only the entries 1212 that
correspond to the common nodes of subcircuits to find the set of joint binary arrays
pairs and their signs. For example, two binary arrays b2 = 001001 and
b13 = 100100 are jointed because their values at the entries 1212 are mutually
complementary: 0101 and 1010. The sign can be calculated by summation of values
at the entries of the binary arrays 1212 in the enumerated form:
0101 + 2020 = 2121. Thereby the sign of the product of two circuit minors D1(b2)
∙D2(b13) is positive.

Let’s consider another pair of joint binary arrays b5 = 010001 and b9 = 011101.
The values at the entries 1212 are 1001 and 0110 correspondingly. The sum result
of entries in the enumerated form is 1221, therefore the sign of the product of two
circuit minors D1(b5)∙D2(b9) is negative.

The tuple of binary arrays of the combined circuit consists of labels of
non-common external nodes: 3434. The values at such entries in the joint binary
arrays are used to generate the combined circuit binary arrays. For example, the
values of b2 and b13 at the entries 3434 are 0000. The binary array 0101 of the
combined circuit corresponds to the combination of the pair: b5 and b9. The binary
arrays of combined circuit and corresponding joint binary arrays are presented in
Table 8.

The circuit minors of combined circuit can be calculated in accordance with
Table 8 as following:

Δ 0000ð Þ=Δ1 b1ð ÞΔ2 b19ð Þ+Δ1 b2ð ÞΔ2 b13ð Þ−Δ1 b3ð ÞΔ2 b12ð Þ−Δ1 b5ð ÞΔ2 b9ð Þ+Δ1 b6ð ÞΔ2 b8ð Þ+Δ1 b8ð ÞΔ2 b2ð Þ,
Δ 0101ð Þ=Δ1 b1ð ÞΔ2 b20ð Þ+Δ1 b2ð ÞΔ2 b15ð Þ−Δ1 b3ð ÞΔ2 b14ð Þ−Δ1 b5ð ÞΔ2 b9ð Þ+Δ1 b6ð ÞΔ2 b8ð Þ+Δ1 b8ð ÞΔ2 b2ð Þ,

Δ 0110ð Þ=Δ1 b4ð ÞΔ2 b16ð Þ−Δ1 b7ð ÞΔ2 b10ð Þ+Δ1 b9ð ÞΔ2 b4ð Þ−Δ1 b10ð ÞΔ2 b3ð Þ,
Δ 1001ð Þ=Δ1 b11ð ÞΔ2 b18ð Þ−Δ1 b12ð ÞΔ2 b17ð Þ+Δ1 b14ð ÞΔ2 b11ð Þ−Δ1 b17ð ÞΔ2 b5ð Þ,

Δ 1010ð Þ=Δ1 b13ð ÞΔ2 b17ð Þ+Δ1 b15ð ÞΔ2 b13ð Þ−Δ1 b16ð ÞΔ2 b12ð Þ−Δ1 b18ð ÞΔ2 b7ð Þ+Δ1 b19ð ÞΔ2 b6ð Þ+Δ1 b20ð ÞΔ2 b1ð Þ,
Δ 1111ð Þ=Δ1 b13ð ÞΔ2 b20ð Þ+Δ1 b15ð ÞΔ2 b15ð Þ−Δ1 b16ð ÞΔ2 b14ð Þ−Δ1 b18ð ÞΔ2 b9ð Þ+Δ1 b19ð ÞΔ2 b8ð Þ+Δ1 b20ð ÞΔ2 b2ð Þ.

ð65Þ

As seen from (65), generation of SoE by proposed algorithm involves a large
number of calculations of circuit minors. However, decomposition of the circuit
with nullors can be simplified by using degeneracy conditions [29]. Thereby the
number of circuit minors can be significantly reduced by using the following rules:

1. The zero value must be written in norator vector of subcircuit binary array at the
entry that corresponds to the external node a if there is a norator of certain nullor
or VM between nodes a and 0 in the subcircuit.

2. The unity value must be written in norator vector of subcircuit binary array at
the entry that corresponds to the common external node a if there is a norator of
certain nullor or VM between nodes a and 0 in the second subcircuit.

3. The zero value must be written in nullator vector of subcircuit binary array at the
entry which corresponds to the external node a if there is a nullator of certain
nullor or CM is connected between nodes a and 0 in the subcircuit.
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4. The unity value must be written in nullator vector of subcircuit binary array at
the entry that corresponds to the common external node a if there is a norator of
certain nullor or CM between nodes a and 0 in the second subcircuit.

For example, suppose that in three-node nullor-equivalent subcircuit there is
norator which is connected between nodes 2 and 0. In accordance with proposed

Table 8 The joint binary arrays of subcircuits 1 and 2 and binary arrays of combined circuit

The binary arrays
of combined circuit
(tuple 3434)

The joint binary arrays of subcircuits 1 and 2 δ

The tuple 312312 The tuple 124124

0000 b1 = 000000 b19 = 110110 1
b2 = 001001 b13 = 100100 1
b3 = 001010 b12 = 100010 –1
b5 = 010001 b7 = 010100 –1
b6 = 010010 b6 = 010010 1
b8 = 011011 b1 = 100100 1

0101 b1 = 000000 b20 = 000000 1
b2 = 001001 b15 = 101101 1
b3 = 001010 b14 = 101011 –1
b5 = 010001 b9 = 011101 –1
b6 = 010010 b8 = 011011 1
b8 = 011011 b2 = 001001 1

0110 b4 = 001100 b16 = 101110 1
b7 = 010100 b10 = 011110 –1
b9 = 011101 b4 = 001100 1
b10 = 011110 b3 = 001010 –1

1001 b11 = 100001 b18 = 110101 1
b12 = 100010 b17 = 110011 –1
b14 = 101011 b11 = 100001 1
b17 = 110011 b5 = 010001 1

1010 b13 = 100100 b19 = 110110 1
b15 = 101101 b13 = 100100 1
b16 = 101110 b12 = 100010 –1
b18 = 110101 b7 = 010100 –1
b19 = 110110 b6 = 010010 1
b20 = 000000 b1 = 000000 1

1111 b13 = 100100 b20 = 000000 1
b15 = 101101 b15 = 101101 1

b16 = 101110 b14 = 101011 –1
b18 = 110101 b9 = 011101 –1
b19 = 110110 b8 = 011011 1
b20 = 000000 b2 = 001001 1
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rules, only three binary arrays is generated instead of six which presented in
Table 6: 0000, 1001, 1010.

Example 7 Let’s consider the band-pass filter shown in Fig. 14, which was firstly
symbolically calculated in the paper [44] by J. A. Starzyk and A. Konczykowska.
This is a well-known test circuit for symbolic analysis methods. It contains 13
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Fig. 14 The band-pass filter [44]
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Fig. 15 The subcircuit-level model of band-pass filter
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OpAmps modeled by nullors, and 36 resistors and 8 capacitors modeled by
admittances.

The filter can be decomposed into the five subcircuits as shown in Fig. 15. Note
that for the sake of clarity the common nodes of subcircuits are renumbered. The
original nodes labels are shown in brackets in Fig. 15. The subcircuit 1 presented in
Fig. 16 is topologically identical to the subcircuits 2–4. Therefore the subcircuits 2–
4 can be easily derived from Fig. 16 by substitution of identification numbers of
symbols of resistors and capacitors correspondingly by the following formulae:

NR = i+8ðj− 1Þ, ð66Þ

NC = i+2ðj− 1Þ, ð67Þ

where i is an identification number in subcircuit 1, j = {2,3,4} is a number of one of
the subcircuits 2–4.

There are four external nodes in subcircuits 1–4. In this case, 20 binary arrays
can be derived. However the equivalent circuit of filter includes the 13 nullor,
therefore, the number of binary arrays can be greatly reduced by usage of Rules I
and II: b1 = 101011, b2 = 101101, b3 = 101110. The tuples of binary arrays for
the subcircuits 1–4 can be expressed as follows: 123123, 234234, 345345, 456456.

In the case of subcircuit 5 in Fig. 16b which includes three external nodes the
number of binary arrays can be reduced to the two: b1 = 1001, b2 = 1010. The
tuple of these binary arrays is following: 5656.

The expressions of circuit minors of subcircuits 1 and 5 calculated by GPEM are
presented below:

Δ1 b1ð Þ= − g1g5sC2 g2 + g4 + g8ð Þ,
Δ1 b2ð Þ= g1 + g3ð Þ g6 + sC1ð Þg4pC2 + g5g7g8½ �,

Δ1 b3ð Þ= g2g5sC2 g1 + g3ð Þ,
Δ5 b1ð Þ= g33 g34 + g36ð Þ,
Δ5 b2ð Þ= g36 g33 + g35ð Þ.

ð68Þ
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Fig. 16 The first a and fifth b subcircuits of band-pass filter
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The expressions of circuit minors of subcircuits 2–4 can be derived from (68) by
renumbering of symbols numbers in accordance with (66) and (67):

Δ2 b1ð Þ= − g9g13sC4 g10 + g12 + g16ð Þ,
Δ2 b2ð Þ= g9 + g11ð Þ g14 + sC3ð Þg12sC2 + g13g15g16½ �,

Δ2 b3ð Þ= g10g13sC4 g9 + g11ð Þ,
Δ3 b1ð Þ= − g17g21sC6 g18 + g20 + g24ð Þ,

Δ3 b2ð Þ= g17 + g19ð Þ g22 + sC5ð Þg20sC6 + g21g23g24½ �,
Δ3 b3ð Þ= g18g21sC6 g17 + g19ð Þ,

Δ4 b1ð Þ= − g25g29sC8 g26 + g28 + g32ð Þ,
Δ4 b2ð Þ= g25 + g27ð Þ g30 + sC7ð Þg28sC8 + g29g31g32½ �,

Δ4 b3ð Þ= g26g29sC8 g25 + g27ð Þ.

ð69Þ

The transfer function of the filter can be expressed as result of the combination
of circuit minors (68) and (69) by using the hierarchical tree presented in Fig. 17.
The labels of vertices 1–5 are corresponding to the numbers of subcircuits 1–5 in
Fig. 15. The labels of vertices 6–9 are corresponding to the numbers of new sub-
circuits which are obtained by the bottom-up combination of subcircuits. Obvi-
ously, the original filter circuit which corresponds to the vertex 9 is the final result
of subcircuits combination.

Let’s consider the combination of subcircuits 1 and 2 by nodes 0, 2 and 3. The
entries 2323 must be taken into account to find the set of joint binary arrays pairs
and their signs. Note that the values at the entries which correspond to the common
non-external node 2 must be mutually complementary, while the value in the entries
which correspond to the common external node 3 cannot be equal to zero. The pairs
of joint binary arrays, binary arrays of combined subcircuit 6 are presented in
Table 9.

The combination of other subcircuits can be performed in a similar way.
Thereby the final quite compact SoE of filter transfer function is expressed as
following:

6
7

8
9

5

4

3

2 1

Fig. 17 The hierarchical tree
for combination of circuit
minors of band-pass filter
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Δ6 b1ð Þ=Δ1 b1ð ÞΔ2 b1ð Þ,Δ6 b2ð Þ=Δ1 b2ð ÞΔ2 b2ð Þ−Δ1 b3ð ÞΔ2 b1ð Þ,
Δ6 b3ð Þ=Δ1 b2ð ÞΔ2 b3ð Þ, Δ7 b1ð Þ=Δ6 b1ð ÞΔ3 b1ð Þ,

Δ7 b2ð Þ=Δ6 b2ð ÞΔ3 b2ð Þ−Δ6 b3ð ÞΔ3 b1ð Þ, Δ7 b3ð Þ=Δ6 b2ð ÞΔ3 b3ð Þ,
Δ8 b1ð Þ=Δ7 b1ð ÞΔ4 b1ð Þ,Δ8 b2ð Þ=Δ7 b2ð ÞΔ4 b2ð Þ−Δ7 b3ð ÞΔ4 b1ð Þ,

Δ8 b3ð Þ=Δ7 b2ð ÞΔ4 b3ð Þ,Δ9 b1ð Þ=Δ8 b1ð ÞΔ5 b1ð Þ,
Δ9 b2ð Þ=Δ8 b2ð ÞΔ5 b2ð Þ−Δ8 b3ð ÞΔ5 b1ð Þ, H =Δ9 b1ð Þ ̸Δ9 b2ð Þ.

ð70Þ

The obtained result (70) can be verified by numerical simulation or exact
comparison with the symbolic solution presented in [44].

6 Conclusion

In this chapter, we briefly review the basics of GPEM and its applications for
symbolic analysis of large circuits with pathological element-based active device
models. The method can be used for analysis of circuits containing all linear circuit
elements, including nullors, four types of controlled sources, and pathological
mirrors. We start with the parameter extraction formulae and circuit degeneracy
conditions. Then we introduce an algorithm to improve the efficiency of determi-
nants calculation of residual circuits containing pathological elements only. Such
circuits can be derived from active networks in which all of the impedances,
admittances, and CS were extracted. The algorithm proposed is based on the
concept of HOSC and provides the determinant calculation by usage of simple
matrix algebra operations instead of topological simplifications. Further, the hier-
archical decomposition procedures for symbolic analysis of large circuits by GPEM
have been introduced. The techniques proposed of upward analysis and downward
analysis provide the calculation of a circuit function in the form of a single nested
expression or in the form of sequence of expressions correspondingly. All descri-
bed algorithms were implemented in the computer program for circuit analysis
CirSym.

Table 9 The joint binary arrays of subcircuits 1 and 2 and binary arrays of combined circuit

The binary arrays
of combined
subcircuit 6 (tuple
134134)

The joint binary arrays of subcircuits 1 and 2 δ

The tuple 123123 The tuple 234234

1 101011 2
b1 = 101011

1
b1 = 101011

1

2 101101 b2 = 101101 b2 = 101101 1
b2 = 101101 b3 = 101110 –1

3 101110 b3 = 101110 b1 = 101011 1
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Two-Graph Based Semi-topological
Analysis of Electronic Circuits
with Nullors and Pathological Mirrors

Marian Pierzchala and Mourad Fakhfakh

Abstract Abstraction level elements such as nulattor, norator, current mirrors and
voltage mirrors have been very useful in the analysis of linear circuits. In this
chapter, we proposed a method for the analysis of linear circuits with the patho-
logical elements which is based on the two-graph representation of these elements
and the semi-topological procedure of calculations of the network functions. For
completeness, the method has been extended to encompass RLC–elements, all
types of controlled sources, voltage and current independent sources. The procedure
of calculation is based on the product matrices and on a numerical formula of
evaluation of unimodular determinants. No sign rule is required for their evalua-
tions, and canceling terms are extracted during their evaluations. In this chapter the
symbolic analysis is preferred because symbolic expressions give good insight on
the behavior of the circuit and can also be used in the optimization procedures.

1 Introduction

Nullors and mirrors are often used to model active devices. They are named
pathological or singular because they possess ideal characteristics and are specified
according to the constraints they impose on their terminal voltages and currents.
Pathological elements are very useful in modeling and analysis of analog circuits
[1–10]. In this chapter we advocates deal with the symbolic analysis because
symbolic expressions give good insight on the behavior of the circuit and can also
be used within optimization procedures. Actually, the literature offers a large
number of publications dealing with the symbolic analysis of analog circuits using
the above-mentioned pathological elements. These publications can be divided into
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two groups: in the first one the authors analyze the RLC–nullor circuits, i.e. the
circuits in which the mirrors are replaced by their nullor equivalents (see for
example [11, 12]) and the second one, in which the authors analyze the RLC,
nullor-mirror circuits, i.e. the circuits without replacing the mirror elements with
their nullor equivalents (for example [13, 14]). Regarding the formulation methods
we can distinguish the following ones: the modified nodal analysis [15, 11, 13], the
generalized parameter extraction method [12] and the two-graph method [14]. In
this chapter we propose a new method which analyzes the RLC, nullor-mirror
circuits on the base of signal-flow graph in the two-graph version. The method is
semi-topological in the sense that the matrices (loop and cutset) are formulated
using voltage and current graphs and the calculation of the network functions is
realized numerically.

2 Primitive Signal-Flow Graphs as a Base
of Semi-topological Analysis of Electronic Circuits
with Nullors and Mirrors

Consider first the simpler case of network consisting of immittance (impedance or
admittance) elements and independent sources only. We assume that the indepen-
dent voltage sources contain no loops, and the independent current sources contain
no cut-sets. Then, it is always possible to select a tree T such that all voltage sources
are tree branches, and all current sources are links (cotree branches). The network
branches are divided into four sets (each set may be empty) indicated by subscript
as follows:

E: independent voltage sources
I: independent current sources,
ZT: impedance branches in the tree,
YC: admittance branches in the cotree.

For such network [16] a unique signal-flow graph can be constructed, as illus-
trated in Fig. 1. In Fig. 1, BYE, BYZ denote the fundamental loop matrices and
QZI, QZY denote the fundamental cut-set matrices. For the passive networks
QZY = −(BYZ)

t and the matrices YY and ZZ have a diagonal form.

ZZYY

QZY QZI

BYE BYZE VY VZ

IY IZ II

Fig. 1 The SFG of passive
networks
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For the active networks, i.e. networks with controlled sources, matrices YY and
ZZ are no longer diagonal. Few methods have been proposed in the literature to
overcome this problem. The two-graph method was the first to appear in the lit-
erature [17]. Since the matrices of two different graphs, namely the current graph GI

and the voltage graph GV, have been used to formulate the equations, the matrices
BYE, BYZ and QZI, QZY should be calculated individually, i.e. QZY ≠ −(BYZ)

t. In
the original method only voltage controlled current sources can be used. Two-graph
stamps of the other linear controlled sources were proposed in [18], they are given
in Table 1. With these stamps matrices ZZ and YY will have diagonal forms.

Table 1 Two-graph stamps for controlled sources

Symbol V-graph I-graph
VC

VS

m

n

Vkl

k

l
μ Vkl

+
-

k

1μ

l

m

μ

n

a
b

k

1µ

l

µ
m
n

a

b

CC
CS i

l n

β i

k m m

n

a

1β

b

β
k
l

k

1β

l

m

β

n

a
b

CC
VS i

k

l

m

n

rmi+
-

k
l

m

rm

n

k

mrm

l

n

VC
CS Vkl

k

l

m

n
gmVkl

k m

gm

nl

k m

gm

n

Two-Graph Based Semi-topological Analysis … 73



VCVS, CCCS, CCVS and VCCS refer respectively to voltage controlled current
sources, current controlled voltage sources, current controlled current sources and
voltage controlled current sources.

In the classical signal flow-graph method, the transmission from the source node
Xs to the dependent node Xj is obtained by the Mason’s formula [19].

Tjs =
Xj

Xs
=

∑PkΔk

Δ
ð1Þ

where
Δ = 1 − (the sum of all loop weights) + (the sum of all second-order loop

weights) − (the sum of all third-order loop weights) + ⋯

Pk = weight of the kth path from the source node Xs to the dependent node Xj,
Δk = the sum of those terms in Δ without any constituent loops touching the

path Pk.
The summation is taken over all paths from Xs to Xj.
The calculation of the Mason’s formula is reduced to that of enumerating some

subgraphs in the SFG. In this sense the SFG method with Mason’s formula is called
a topological method.

Mason’s formula for computing the transfer functions, as given by Eq. (1) has
two distinct sets of topological rules: one for the denominator Δ, and the other for
the numerator ∑PkΔk. From the practical point of view, it would be very conve-
nient to evaluate both the denominator and numerator numerically. This is made
possible by the use of the semi-topological method. The semi-topological formulas
are based on the topological method. But once the basic matrices are determined
from the voltage and current graphs, the remainder will depend only on the
matrices, and the flow graphs are not required for their evaluations. Furthermore,
the evaluating procedure is indirect and purely numerical. The procedure consists of
using the new matrices, named the product matrices [20], which are based on the
product graph [21]. In the following, we will apply (see Eqs. (2a, 2b) such formula
for the analysis of connected, linear, time-invariant active or passive networks
modeled with RLC elements, voltage controlled current sources and independent
current and voltage sources [22]. Later, these formulae will be generalized to the
networks containing all types of controlled sources, nullors, mirrors, voltage and
current independent sources.

Theorem
Let Tv

qp (T
i
qp) denote the voltage (current) transmission (or gain) from the voltage

source Vsp (the current source Isp) to the voltage Vq across (the current source Iq
through) the tree (cotree) branch Zq (Yq) in the nonreciprocal network Nn. Then, we
have:
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Tv
qp =

∑h
k=1 ∑mðiqÞ ð∏k

m=1 ZimYjmÞðdetPvs1
k ÞðdetPi

kÞ
h i

1+ ∑h
k=1 ∑m ð∏k

m=1 ZimYjmÞðdetPv
kÞðdetPi

kÞ
h i ð2aÞ

Ti
qp =

− ∑h
k =1 ∑mðjqÞ ð∏k

m=1 ZimYjmÞðdetPv
kÞðdetPis1

k Þ
h i

1+ ∑h
k=1 ∑m ð∏k

m=1 ZimYjmÞðdetPv
kÞðdetPi

kÞ
h i ð2bÞ

In (2a, 2b), Σm means the summation of all possible im’s and jm’s. ΣmðiqÞ is the
summation of all possible im’s including iq in and all possible jm’s. ΣmðjqÞ is the

summation of all possible im’s including iq in jm’s, and ∏k
m=1 ZimYjm is the product

of k impedances and k admittances of the (k x k) submatrix Pk
v, Pk

vs1, Pk
i , Pk

is1. The
subscript q of iq and jq is borrowed from the measuring branch immitance Zq (Yq) to
denote the corresponding row and column.

Definitions
Let Nn be a nonreciprocal network with n nodes N1, …, Nn, b branches B1, …,

Bb, s sources (v voltage sources Vs1, …, Vsv and i current sources Isv+1, …, Iss) and
c voltage controlled current sources.

Definition 1. [22] V–substituted Voltage Product Matrix Pvs1 (I–substituted
Current Product Matrix Pis1)

The V- substituted voltage (I-substituted current Product Matrix) Pvs1 (Pis1) is
obtained from Voltage (Current) Product Matrix Pv (Pi) as follows:

(i) Substitute 0 for every element of the row (column) named as Zq (Yq) of P
v (Pi),

(ii) For the elements of this row (column)

(a) Substitute +1, if the tree (cotree) branch of the voltage source Vsp (current
source Isp) has the same arrow orientation as the cotree branch (tree
branch) in the voltage (current) graph Gvs (Gis) when cuttsetting,

(b) Substitute −1, if the tree (cotree) branch of the voltage source Vsp (current
source Isp) has the opposite arrow orientation as the cotree branch (tree
branch) in Gvs (Gis) when cuttsetting,

(c) Keep 0, otherwise.

Definition 2. [20] Voltage Product Matrix Pv (Current Product Matrix Pi)
The voltage (current) product matrix Pv (Pi) is defined as the product matrix of

the voltage (current) graph Gv (Gi). In Pv or Pi, we give the name Zi to the ith row;
Yj to the jth column, when r + 1 ≤ j ≤ r + µ = b, and Yci to the jth column,
when b + 1 ≤ j ≤ b + c, j = b + 1.

Example
A nonreciprocal network [22] is shown in Fig. 2, where it is desired to obtain the

voltage transmission Tv
21.
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(a)

Y46

Y6

Y5Y4

Y64 Y45

Z1
Z2 Z3

VS1
(b)

Z1 Z2 Z3

Y46

Y6

Y5Y4

Y64

Y45

IS1

(c)

Z1 Z2 Z3

Y46

Y6

Y5Y4

Y64 Y45

(d)

Z1 Z2 Z3

Y46

Y6

Y5Y4

Y64

Y45

(e)

+-
Vs1 Y6

Y45V5 Y64V4

Y4 Y5

Y46V6

Z1 Z2 Z3 Is1VZ1 VZ2

Fig. 2 a A nonreciprocal network, b Gvs, c Gis, d Gv, e Gi
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From Fig. 2 we have:

Pv = Y4 Y5 Y6 Y45 Y46 Y64

Z1 1 0 −1 0 −1 1
Z2 −1 −1 0 −1 0 −1
Z3 0 1 1 1 1 0

Pi = Y4 Y5 Y6 Y45 Y46 Y64

Z1 1 0 −1 1 1 −1
Z2 −1 −1 0 −1 −1 0
Z3 0 1 1 0 0 1

Pvs = Y4 Y5 Y6 Y45 Y46 Y64

Z1 1 0 −1 0 −1 1
Z2 0 0 1 0 1 0
Z3 0 1 1 1 1 0

Pis = Y4 Y5 Y6 Y45 Y46 Y64

Z1 1 0 −1 1 1 −1
Z2 −1 0 0 −1 −1 0
Z3 0 −1 1 0 0 1

All possible combinations for the evaluation of the nominator of the voltage
transmission Tv

21 from the voltage source Vs1 to the voltage V2 across the tree branch
Z2 are given in Table 2.

Finally, from formula (2a) we obtain:

Tv
21 =

− Z2Y46 − Z1Z2Y4Y6 + Z1Z2Y46Y64 + Z2Z3Y5Y6 −Z2Z3Y5Y46 + Z2Z3Y6Y45
Δ

ð3aÞ

where the denominator Δ is the same as in [20].
All possible combinations for the evaluation of the nominator of the current

transmission Ti
52 from the current source Is2 to the voltage I5 throw the cotree

branch Y5 are given in Table 3.
Finally, from formula (2b) we obtain:

Ti
52 =

Z3Y5 + Z1Z3Y4Y5 +Z2Z3Y4Y5 + Z1Z3Y5Y6 − Z1Z3Y5Y46 − Z2Z3Y5Y46 − Z1Z3Y5Y64
Δ

ð3bÞ

where the denominator Δ is the same as in [20].
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Table 2 Combinations for the evaluation of the nominator of the voltage transmission from Vs1 to
V2 across the tree branch Z2

k i0ms
j0ms

� �
Pvs
k Pi

k detPvs
k detPi

k Product

1 2
6

� �
1 0 1 0 0

2 2
46

� �
1 −1 1 −1 −Z2Y46

2 1 2
4 6

� �
1 − 1
0 1

� �
1 − 1
− 1 0

� �
1 −1 −Z1Z2Y4Y6

2 1 2
4 46

� �
1 − 1
0 1

� �
1 1
− 1 − 1

� �
1 0 0

2 1 2
5 6

� �
0 − 1
0 1

� �
0 − 1
− 1 0

� �
0 −1 0

2 1 2
5 46

� �
0 − 1
0 1

� �
0 1
− 1 − 1

� �
0 1 0

2 1 2
6 45

� �
− 1 0
1 0

� �
− 1 1
0 − 1

� �
0 1 0

2 1 2
6 46

� �
− 1 − 1
1 1

� �
− 1 1
0 − 1

� �
0 1 0

2 1 2
6 64

� �
− 1 1
1 0

� �
− 1 − 1
0 0

� �
−1 0 0

2 1 2
46 64

� �
− 1 1
1 0

� �
1 − 1
− 1 0

� �
−1 −1 Z1Z2Y46Y64

2 2 3
4 6

� �
0 1
0 1

� �
− 1 0
0 1

� �
0 −1 0

2 2 3
4 46

� �
0 1
0 1

� �
− 1 − 1
0 0

� �
0 0 0

2 2 3
5 6

� �
0 1
1 1

� �
− 1 0
1 1

� �
−1 −1 Z2Z3Y5Y6

2 2 3
5 46

� �
0 1
1 1

� �
− 1 − 1
1 0

� �
−1 1 −Z2Z3Y5Y46

2 2 3
6 45

� �
1 0
1 1

� �
0 − 1
1 0

� �
1 1 Z2Z3Y6Y45

2 2 3
6 46

� �
1 1
1 1

� �
0 − 1
1 0

� �
0 1 0

2 2 3
6 64

� �
1 0
1 0

� �
0 0
1 1

� �
0 0 0

2 2 3
45 46

� �
0 1
1 1

� �
− 1 − 1
0 0

� �
−1 0 0

(continued)
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Table 2 (continued)

k i0ms
j0ms

� �
Pvs
k Pi

k detPvs
k detPi

k Product

3 1 2 3
4 5 6

� �
1 0 − 1
0 0 1
0 1 1

2
4

3
5 1 0 − 1

− 1 − 1 0
0 1 1

2
4

3
5 −1 0 0

3 1 2 3
4 5 46

� �
1 0 − 1
0 0 1
0 1 1

2
4

3
5 1 0 1

− 1 − 1 − 1
0 1 0

2
4

3
5 −1 0 0

3 1 2 3
4 6 45

� �
1 − 1 0
0 1 0
0 1 1

2
4

3
5 1 − 1 − 1

− 1 0 − 1
0 1 0

2
4

3
5 1 0 0

3 1 2 3
4 6 46

� �
1 − 1 − 1
0 1 1
0 1 1

2
4

3
5 1 − 1 1

− 1 0 − 1
0 1 0

2
4

3
5 0 0 0

3 1 2 3
4 6 64

� �
1 − 1 1
0 1 0
0 1 0

2
4

3
5 1 − 1 − 1

− 1 0 0
0 1 1

2
4

3
5 0 0 0

3 1 2 3
4 45 46

� �
1 0 − 1
0 0 1
0 1 1

2
4

3
5 1 1 1

− 1 − 1 − 1
0 0 0

2
4

3
5 −1 0 0

3 1 2 3
4 46 64

� �
1 − 1 1
0 1 0
0 1 0

2
4

3
5 1 1 − 1

− 1 − 1 0
0 0 1

2
4

3
5 0 0 0

3 1 2 3
5 6 45

� �
0 − 1 0
0 1 0
1 1 1

2
4

3
5 0 − 1 1

− 1 0 − 1
1 1 0

2
4

3
5 0 0 0

3 1 2 3
5 6 46

� �
0 − 1 − 1
0 1 1
1 1 1

2
4

3
5 0 − 1 1

− 1 0 − 1
1 1 0

2
4

3
5 0 0 0

3 1 2 3
5 6 64

� �
0 − 1 1
0 1 0
1 1 0

2
4

3
5 0 − 1 − 1

− 1 0 0
1 1 1

2
4

3
5 −1 0 0

3 1 2 3
5 45 46

� �
0 0 − 1
0 0 1
1 1 1

2
4

3
5 0 1 1

− 1 − 1 − 1
1 0 0

2
4

3
5 0 0 0

3 1 2 3
5 46 64

� �
0 − 1 1
0 1 0
1 1 0

2
4

3
5 0 1 − 1

− 1 − 1 0
1 0 1

2
4

3
5 −1 0 0

3 1 2 3
6 45 46

� �
− 1 0 − 1
1 0 1
1 1 1

2
4

3
5 − 1 1 1

0 − 1 − 1
1 0 0

2
4

3
5 0 0 0

3 1 2 3
6 45 64

� �
− 1 0 1
1 0 0
1 1 0

2
4

3
5 − 1 1 − 1

0 − 1 0
1 0 1

2
4

3
5 1 0 0

(continued)
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Table 2 (continued)

k i0ms
j0ms

� �
Pvs
k Pi

k detPvs
k detPi

k Product

3 1 2 3
6 46 64

� �
− 1 − 1 1
1 1 0
1 1 0

2
4

3
5 − 1 1 − 1

0 − 1 0
1 0 1

2
4

3
5 0 0 0

3 1 2 3
45 46 64

� �
0 − 1 1
0 1 0
1 1 0

2
4

3
5 1 1 − 1

− 1 − 1 0
0 0 1

2
4

3
5 −1 0 0

Table 3 Combinations for the evaluation of the nominator of the current transmission from Is2 to
I5 throw the cotree branch Y5

k i0ms
j0ms

� �
Pv
k Pis

k detPv
k detPis

k Product

1 3
5

� �
1 −1 1 −1 −Z3Y5

2 1 3
4 5

� �
1 0
0 1

� �
1 0
0 − 1

� �
1 −1 −Z1Z3Y4Y5

2 1 3
5 6

� �
0 − 1
1 1

� �
0 − 1
− 1 1

� �
1 −1 −Z1Z3Y5Y6

2 1 3
5 45

� �
0 0
1 1

� �
0 1
− 1 0

� �
0 1 0

2 1 3
5 46

� �
0 − 1
1 1

� �
0 1
− 1 0

� �
1 1 Z1Z3Y5Y46

2 1 3
5 64

� �
0 1
1 0

� �
0 − 1
− 1 1

� �
−1 −1 Z1Z3Y5Y64

2 2 3
4 5

� �
− 1 − 1
0 1

� �
− 1 0
0 − 1

� �
−1 1 −Z2Z3Y4Y5

2 2 3
5 6

� �
− 1 0
1 1

� �
0 0
− 1 1

� �
−1 0 0

2 2 3
5 45

� �
− 1 − 1
1 1

� �
0 1
− 1 0

� �
0 1 0

2 2 3
5 46

� �
− 1 0
1 1

� �
0 − 1
− 1 0

� �
−1 −1 Z2Z3Y5Y46

2 2 3
5 64

� �
− 1 − 1
1 0

� �
0 0
− 1 1

� �
1 0 0

3 1 2 3
4 5 6

� �
1 0 − 1
− 1 − 1 0
0 1 1

2
4

3
5 1 0 − 1

− 1 0 0
0 − 1 1

2
4

3
5 0 −1 0

3 1 2 3
4 5 45

� �
1 0 0
− 1 − 1 − 1
0 1 1

2
4

3
5 1 0 1

− 1 0 − 1
0 − 1 0

2
4

3
5 0 0 0

(continued)
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3 Two-Graph Models of Nullors and Mirrors

In order to deal with circuits containing nullors and mirrors, it is necessary to
employ a network formalism which can be applied to all varieties of linear
networks.

An analysis method for circuits with nullors was first proposed by Carlin [23],
and it was very well explained by Bruton [24]. These earlier works are based on the
use of nodal equations. Many efforts have been made to improve this method. One
formulation based on indefinite admittance matrices that leads to a simpler procedure
was described by Lin in [16]. This procedure has overcome the problem related to
the fact that one end of a norator (or a nullator) must be connected to the reference
node. However, this method makes the matrix reduction process more complex by
manipulating and deleting one column and one row for each nullator and norator,
respectively. Another method uses the modified nodal approach (MNA), in which
additional columns and rows are incorporated into the standard admittance matrix
[16, 25]. However, for the MNA, the dimensions of the matrix and the basis for the

Table 3 (continued)

k i0ms
j0ms

� �
Pv
k Pis

k detPv
k detPis

k Product

3 1 2 3
4 5 46

� �
1 − 1 − 1
− 1 − 1 0
0 1 1

2
4

3
5 1 0 1

− 1 0 − 1
0 − 1 0

2
4

3
5 0 0 0

3 1 2 3
4 5 64

� �
1 − 1 1
− 1 − 1 − 1
0 1 0

2
4

3
5 1 0 − 1

− 1 0 0
0 − 1 1

2
4

3
5 0 −1 0

3 1 2 3
5 6 45

� �
0 0 0
− 1 − 1 − 1
1 1 1

2
4

3
5 0 − 1 1

0 0 − 1
− 1 1 0

2
4

3
5 0 −1 0

3 1 2 3
5 6 46

� �
0 0 − 1
− 1 − 1 0
1 1 1

2
4

3
5 1 1 1

− 1 − 1 − 1
0 0 0

2
4

3
5 0 0 0

3 1 2 3
5 6 64

� �
0 0 1
− 1 − 1 − 1
1 1 0

2
4

3
5 1 1 − 1

− 1 − 1 0
0 0 1

2
4

3
5 0 0 0

3 1 2 3
5 45 46

� �
0 0 − 1
− 1 − 1 0
1 1 1

2
4

3
5 0 1 1

− 1 − 1 − 1
1 0 0

2
4

3
5 0 0 0

3 1 2 3
5 45 64

� �
0 0 1
− 1 − 1 − 1
1 1 0

2
4

3
5 0 1 − 1

− 1 − 1 0
1 0 1

2
4

3
5 0 0 0

3 1 2 3
5 46 64

� �
0 − 1 1
− 1 0 − 1
1 1 0

2
4

3
5 0 − 1 − 1

− 1 0 0
1 1 1

2
4

3
5 0 0 0
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representation are dependent on the type of elements contained in the circuit. This
problem does not exist in the method which uses the nodal admittance matrix
(NAM), as the dimensions of this matrix are determined by the number of nodes in
the circuit, but the problem of infinite matrix elements, such as for nullors, remains.
A symbolic representation of a nullor in a circuit in the NAM has recently been
proposed using a form of a limit variable, called an infinity-variable, or ∞-variable
[26, 27]. The NAM may be then transformed into a port matrix by a process of
matrix reduction and the transfer function may be obtained from the port matrix.
Although the NAM improves the MNA, it creates a complex matrix reduction
process by manipulating and deleting columns and rows. To improve the compu-
tation of fully symbolic expression in analog circuits with nullors, other methods
have been proposed in [28–31]. These methods use standard nodal analysis, and
according to the nullor properties, the corresponding procedure adds or substrates
the values of the appropriate columns or rows to generate the final nodal matrix.
Next, by applying Laplace expansion it is possible to calculate the transfer functions.
These methods are universal, because they allow the analysis of fully differential
active devices [29] and are relatively simple, but they suffer from the well-known
limitations of the nodal analysis technique, i.e. it is possible to directly handle only
voltage-controlled current sources and independent current sources. The other
controlled sources and voltage independent sources must be modeled by equivalent
circuits. Additionally, when coefficients of the NAM or modified nodal matrix have
different weights, which is the most general case in the analysis of active networks,
then the Laplace expansion of any determinant or cofactor will generate the can-
cellation terms [16]. Thus, even in the new formulation method using pathological
element based active device models that is proposed in [28], the number of can-
cellation terms is just curtailed, and not reduced to zero.

Nowadays two methods of computation the network functions for the circuits
with nullors and mirrors [12, 14] without the excess terms were presented. One of
these methods is based on the generalized parameter extraction method [12] and the
second on the topological two-graph method [14]. In this work we propose a novel
technique that is semi-topological and is based on the two-graph method [17].
Basically, the two-graph method consists of constructing a voltage graph GV and a
current graph GI. Actually, GV and GI constructed from an inspection of the circuit
in which nullators and mirrors are replaced by appropriate two-graph stamps (see
Table 4).

3.1 Two-Graph Stamps of Nullators and Mirrors

A nullator is defined as having its voltage and current simultaneously equal to zero.
A norator has an arbitrary voltage and current. The models of nullator and norator
have their representation in the current and voltage graph [32], the so called
two-graph ‘stamps’, shown in Table 4.
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The voltage mirror imposes two constraints on its voltage and current,
Vk = Vm = arbitrary [33, 34] and Ik = Im = 0, then the voltage mirror may be
represented in the circuit for deriving KVL and in the circuit for deriving KCL by
two different equivalent circuits. The nodes k and l may be considered as equipo-
tential. So, we can shortcut the nodes k and m and introduce a new node k,m in the
circuit for calculating KVL. Of course, for the calculation of KCL, we have two
nodes k and m (see Table 4).

The current mirror imposes two constraints on its voltage and current, Vk,
Vm = arbitrary and Ik = −Im = arbitrary [33, 34] than the current mirror may be
represented in the circuit for deriving KVL and in the circuit for deriving KCL by
two different equivalent circuits. So, because of the fact that the currents in nodes
k and m are the same, we can shortcut the nodes k and m and introduce new node k,
m in the circuit for the calculation of KCL. Of course, for the calculation of KVL
we have two nodes k and m (see Table 4).

Therefore, if we have circuits with norators, mirrors and controlled sources, than
we have to calculated the fundamental loop and cutset matrices on the base two
different graphs.

Table 4 Two-graph stamps for norators and mirrors

Symbol I-Graph V-Graph

Nullator k l k l k l

Norator k l k l k l

Nullor k m

l n

k

l

m n

m

n

lk

V-mirror

+

k

m   n

l

+
− −

mk

l   n

k   m

l   n
I-mirror k

m   n

l

+ +
− −

k   m

l   n

mk

l   n
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3.2 Examples

3.2.1 The ICCII+-Base Inverting Low-Pass Filter

To illustrate the method of formulation of the network functions for linear, analog
circuits with mirrors, consider the ICCII+-based inverting low-pass filter (see
Fig. 3). This example is taken from [11, (Fig. 8a)]. The mirror-based circuit is

ICCII
X

Y

Z
R1

R2

C2

+
Vin

C1

Fig. 3 The ICCII+-base
inverting low-pass filter

ICCII

X

Y

Z
R1

R2

C2

+Vin

C1

1

3

2

4

Fig. 4 The mirror-based
circuit of the ICCII+-base
inverting low-pass filter

R2

C1
C2

R1 C1

R1

R2

C2 Vin
C2

R1 R2

C1

(c)(b)(a)

Fig. 5 The graphs of the circuit: a the cold voltage graph (Gv), b the cold current graph (Gi), c the
voltage graph with the independent voltage source (Gvs)
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shown in Fig. 4. (In this Figure we do not use an equivalent circuit for the inde-
pendent voltage source as it was done in [11, Fig. 8c] because in the proposed
method we can use both independent voltage sources as independent current
sources). If we use the two-graph stamps for the mirrors (given in Table 4), we can
draw the voltage (Gv) and the current (Gi) cold graphs (see Fig. 5, where the cold
graph means the graph with all the independent sources removed) [17]. Addi-
tionally, we draw the voltage graph (Gvs) with the independent voltage source [22].

On the basis of Fig. 5 we can directly obtain the product matrices Pv = QLa, and
Pi = QLb, where QLx (x = a, b denote the graphs from Fig. 5a, b) is the submatrix
of the fundamental cutset matrix Qf = [Ir QL] and Pvs is the V-substituted Voltage
Product Matrix.

Pv = Y1 = G1 Y2 = G2

Z1 = 1/sC1 −1 1
Z2 = 1/sC2 0 −1

Pi = Y1 = G1 Y2 = G2

Z1 = 1/sC1 0 1
Z2 = 1/sC2 −1 −1

Pvs = Y1 = G1 Y2 = G2

Z1 = 1/sC1 −1 0
Z2 = 1/sC2 0 −1

All the possible combinations for evaluation of the nominator of the voltage
transmission from the voltage source Vsp to the voltage Vq across the tree branch
Z1 = 1/sC1 are given in Table 5.

All the possible combinations for evaluation of the denominator of the voltage
transmission from the voltage source Vsp to the voltage Vq across the tree branch
Z1 = 1/sC1 are given in Table 6.

Table 5 Combinations for evaluation of the nominator of the voltage transmission from Vsp to the
Vq across the tree branch

k iq
jq

� �
Pvs
k Pi

k detPvs
k detPi

k Product

1 1
1

� �
−1 0 −1 0 0

1 1
2

� �
0 1 0 1 0

2 1 2
1 2

� �
− 1 0
0 − 1

� �
0 1
− 1 − 1

� �
1 1 G1G2/(s

2C1C2)
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Finally, we obtain from formula (2a)

Tv
C1, In =

G1G2 ̸ðs2C1C2Þ
1+G2 ̸sC1 +G2 ̸ðsC2Þ+G1G2 ̸ðs2C1C2Þ

=
1

s2C1C2R1R2 + sðC1 +C2ÞR1 + 1

ð4Þ

And this result is the same as in [11].

Table 6 Possible combinations for evaluation of the denominator of the voltage transmission
from Vsp to Vq across the tree branch

k iq
jq

� �
Pv
k Pi

k detPv
k detPi

k Product

1 1
1

� �
−1 0 −1 0 0

1 1
2

� �
1 1 1 1 G2/sC1

1 2
1

� �
0 −1 0 −1 0

1 2
2

� �
−1 −1 −1 −1 G2/sC2

2 1 2
1 2

� �
− 1 1
0 − 1

� �
0 1
− 1 − 1

� �
1 1 G1G2/(s

2C1C2)

ICCII

ICCII

X

Y
Z

Z
X

Y

G1

G2

Y2Y1

+Vin

Fig. 6 ICCII-based voltage
mode filter

G1

G2

Y2Y1

+Vin

X

Y

Z

X

Y

Z

ICCII

ICCII

Fig. 7 An equivalent circuit
of the ICCII-based voltage
mode filter
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3.2.2 The Filter with Second Generation Current Conveyor

The next example presents a filter with a second generation current conveyor (see
Fig. 6). This circuit is borrowed from [14, (Fig. 9)], which also was used in [11, 13,
35]. It is composed of two ICC (second generation current conveyor) blocks, a
positive type (ICCII+) and a negative type (ICCII−). An equivalent circuit is shown
in Fig. 7. If we use the two-graph stamps for the mirrors (Table 6), we can draw
(Fig. 8) the voltage (Gv) and current (Gi) cold graphs. Additionally, we draw the
voltage graph (Gvs) with the independent voltage source.

If we use the two-graph stamps for the mirrors (Table 4), we can draw (Fig. 8)
the voltage (Gv) and current (Gi) cold graphs (where the cold graph means the graph
with all the independent sources removed) [17]. Additionally, we draw the voltage
graph (Gvs) with the independent source [22].

On the basis of Fig. 8 we can obtain directly the product matrices: Pv = QLa,
Pi = QLb, where QLx (x = a, b denote the graphs from Fig. 8a, b) is the submatrix
of the fundamental cutset matrix Qf = [Ir QL], and Pvs is the V-substituted Voltage
Product Matrix.

Pv = G1 G2

Z1 = 1/Y1 1 0
Z2 = 1/Y2 0 1

Pi = G1 G2

Z1 = 1/Y1 0 1
Z2 = 1/Y2 −1 1

Pvs = G1 G2

Z1 = 1/sC1 1 0
Z2 = 1/sC2 0 1

All the possible combinations for evaluation of the nominator of the voltage
transmission from the voltage source Vsp to the voltage Vq across the tree branch
Z2 = 1/Y2 are given in Table 7.

G2

Z1=
1/Y1

Z2=1/Y2
G1 Z1=

1/Y1

G1

G2

Z2=
1/Y2

(b)(a)

Vin
G2

G1

Z2=1/Y2

Z1=1/Y1

(c)

Fig. 8 The graphs of the circuit: a the cold voltage graph (Gv), b the cold current graph (Gi), the
voltage graph with the independent voltage source (Gvs)
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All the possible combinations for evaluation of the denominator of the voltage
transmission from the voltage source Vsp to the voltage Vq across the tree branch
Z2 = 1/Y2 are given in Table 8.

Finally, from formula (2a) we obtain:

Tv
Z, In =

G1Z2
1 +G2Z2 +G1G2Z1Z2

=
G1Y1

Y1Y2 +Y1G2 +G1G2

ð5Þ

this result is the same as in [14].

Table 7 Combinations for evaluation of the nominator of the voltage transmission from the
voltage source Vsp to the voltage Vq across the tree branch Z2

k iq
jq

� �
Pvs
k Pi

k detPvs
k detPi

k Product

1 1
1

� �
1 0 1 0 0

1 1
2

� �
0 1 0 1 0

2 1 2
1 2

� �
1 0
0 1

� �
0 1
− 1 1

� �
1 1 G1G2Z1Z2

Table 8 Combinations for evaluation of the denominator of the voltage transmission from Vsp to
Vq across the tree branch

k iq
jq

� �
Pv
k Pi

k detPv
k detPi

k Product

1 1
1

� �
1 0 1 0 0

1 1
2

� �
0 1 0 1 0

1 2
1

� �
0 −1 0 −1 0

1 2
2

� �
1 1 1 1 G2Z2

2 1 2
1 2

� �
1 0
0 1

� �
0 1
− 1 1

� �
1 1 G1G2Z1Z2
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4 Conclusions

In this chapter, we proposed a method for analysis of liner circuits with RLC
elements, all type of controlled sources, nullors-mirrors circuits, i.e. the circuits
without the replacing the mirror elements with their nullor equivalents. It is based
on the two-graph representation of these elements and semi-topological procedure
of calculations of the network functions. The procedure of calculations is based on
the product matrices and a numerical formula for the evaluation of unimodular
determinants. The evaluating procedure is systematic, purely numerical and no sign
rule is required. The formulas do not hold the terms that can be canceled and no
extra attention is required for canceling terms.

In this chapter we advocate the symbolic analysis because symbolic expressions
give good insight on the behavior of the circuit and can also be used in optimization
procedures.
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Circuit Analyses with Nullors

Mihai Iordache, Lucia Dumitriu, Dragos Niculae,
Marilena Stanculescu, Victor Bucata and Georgiana Rezmerita

Abstract This chapter describes the nullor-based modelling of active devices from
the circuit level of abstraction. After a brief overview on the nullor concept and its
properties, the modelling of active devices not only at the voltage-mode but also at the
current-mode and the mixed-mode of operation from two-port and four-terminal
network point of view are described in details. The circuit analysiswith nullors and the
topological approach for transfer function generation by two-graph tree enumeration
as well are presented. The generalized topological formula with homogeneous
parameters is proved for all the circuit functions, and a simple representation of the
four types of controlled sources by admittances is proposed, that allows a uniform
treatment of the entire circuit in terms of admittances. In order to implement the
procedure, the rules to automatically generate the two graphs and to enumerate
the common spanning trees are presented. Some simplifications in the circuit and in
the two graph structure before tree generation and a graph representation on levels,
improve the efficiency of the tree enumeration procedure. The original approach, in
which each edge is labelled with an admittance term, could handle only one type of
active element, namelyVCCS (voltage controlled current source), but themethodwas
further developed by many researchers for general linear circuits to include virtually
all active elements. Some techniques to convert theCCVSs (current controlled voltage
sources), VCVSs (voltage controlled voltage sources) and CCCSs (current controlled
current sources) in equivalent schemes containing only VCCSs together with
admittances and the inductance modelling proposed in the literature are discussed.

1 Introduction

According to the symbolic analysis principles, the Nodal Analysis Method
(NAM) is restrictive because the admittance matrix must contain only the elements
compatible with the Nodal Analysis (NA). The problem can be easily resolved
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through the Modified Nodal Analysis Method (MNAM), adding a row and a col-
umn for each element which is not compatible with the classic Nodal Analysis
Method [1–7]. One of the problems generated by this kind of approach is related to
the size of the admittance matrix. This matrix will become bigger, according to the
structure of the circuit and types of its elements.

Regarding the models to be used in the analogue circuit analysis, the requirement
of a high accuracy could lead to complicated calculations and then compact models
are preferred mainly for the use of much more simple equations [3–7]. These
models are more effective for the optimization of design and simulation time during
the analysis process. From this point of view, the nullors proved already their
efficiency in the active devices modelling. In the models based on nullors, the
parasitic elements can be included to analyze their contribution to the analogue
circuit response. All the four controlled sources can also be represented with
equivalent circuits using nullor elements. Consequently, the nullors are very useful
for the analogue circuits modelling because the circuit topology can be described
using only two-terminal components like resistors, capacitors, nullators, norators,
independent and controlled sources. Considering that the model should be devel-
oped in the simplest manner and the accuracy of the circuit behaviour simulation
must be in acceptable limits, this chapter will show the problems related to the
small-signal models of the active devices modelled with nullors.

The nullator is an ideal circuit with two terminals (Table 2.1a), which is char-
acterized by null values for the current and voltage at the terminals. It has two
equations: i = 0, v = 0.

The norator is an ideal circuit with two terminals (Table 1b), which is charac-
terized by random values for the current (i) and voltage (v) at the terminals. In other
words, the norator does not have any equation. The current and the voltage values
of this element are affected only by the external circuit connected to its terminals.

These two circuit elements can be used only in norator-nullator pairs called
nullors (Table 1c), which has the number of equations equal to the number of gates.
The nullor can be considered as an idealized operational amplifier, which has at the
input gate null voltage and current and at the output gate an undetermined voltage
and current (obtained by multiplying the null inputs by an infinite factor gain). In
Fig. 1d, e is presented the symbol for the current (voltage) mirror.

Techniques for the analysis of linear/linearized circuit have been performed
using the nullator and norator as theoretical active devices, [6–14]. Tellegen was the
first who presented the ideal operational amplifier theory and later, in 1964, Carlin
considered nullators and norators as single active devices in the circuit analysis—
called nullor [5]. He thought that these active devices cannot be built physically.
Tellegen also took in consideration that these devices must be seen only as
mathematical models without any physical support. Table 1 presents the behaviour
of the nullators, norators and nullors from the point of view of the voltage,
respectively of the current, in Gv

—the voltage graph and, respectively Gi
—the

current graph, [1–9].
The input port of the nullor is modelled by the nullator which is characterized by

two equations:
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v1 = v2 = arbitrary, i1 = i2 = 0. ð1Þ

So, the nullator is simultaneously an open-circuit in Gi current graph and a
short-circuit in Gv voltage graph. The output port of the nullor is modelled by the
norator where both, the voltage and the current have arbitrary values:

v1 ≠ v2 = arbitrary, i1 = i2 = arbitrary ð2Þ

With these properties the nullor is a two-port element accepted as a universal
active element [1–16, 30–34]. This concept means that the nullor along with
capacitors and resistors can be used to design a maximum number of functions with
the minimum number of active devices. If a suitable set of linear and nonlinear

Table 1 The behaviour of the nullators, norators and nullors

Symbol Definitions Voltage graph Gv Current graph Gi

Nullator
(a)

v1 = v2
i1 = i2 = 0

v1 = v2 ⇒ n1 ≡ n2
any i1 = i2

v1
i1

v2 i2
any v1, v2
i1 = i2 = 0

Norator
(b)

any v1, v2
any i1 = i2

v1
i1

v2 i2

any v1, v2
i1 = i2 = 0

v1 = v2 ⇒ n1 ≡ n2
any i1 = i2

Nullor
(c)

i1 = i2 = 0
v1 = v2
any v3, v4
any i3 = i4

v1 = v2 = arbitrary

⇒ n1 ≡ n2,

any i1 = i2,
i3 = i4 = 0, any v3 ≠ v4

any v1 ≠ v2 v1,
i1 = i2 = 0;
v3 = v4 ⇒ n3 ≡ n4
any i3 = i4
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passive elements is available, then no active element other than nullors are needed
to implement any linear or nonlinear circuit function. So nullators, norators,
resistances, along with capacitances can synthesize a complete set of linear or
linearized equations.

2 Nullor Equivalences

From the beginning, the nullor circuit has been considered very efficient for the
analog circuit analysis, modelling and synthesis. Therefore, there are many records
regarding methods and algorithms based on nullor circuits, used for the active
devices analysis and modelling [19–34]. Because any analog network can be
modelled with nullators, norators and impedances, it is useful to mention the
equivalence between some connections. These are shown in Fig. 2. For instance, in
Fig. 2a, a current cannot flow from a to b since the current through the nullator is
zero, so a series connection of the nullator and norator is equivalent to an
open-circuit. In Fig. 2b, the current can flow from a to b through the norator, also
the voltage across a and b becomes zero according to the property of the nullator, so
a parallel connection of the nullator and norator is equivalent to a short-circuit. The
remaining connections have equivalences according to the nullator and norator i−v
characteristics.

In another approach, the nullors along with grounded resistors can be manipu-
lated in order to obtain inverting properties, features that the nullator and the norator

Fig. 1 a Nullator symbol; b Norator symbol; c Nullor symbol; d Current mirror; e Voltage mirror
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cannot model by themselves [30, 31]. The main purpose of the introduction of the
inverting properties is that the behaviour of some active devices involves inverting
the voltage and current input-signals. In this sense, the Current-Mirror (CM) and the
Voltage-Mirror (VM), both as active devices, can perform this task and their
behaviour also should be modelled with nullors, [30–34]. Thus, by manipulating
the nullor along with grounded resistors, the behaviour of a CM or of a VM, both
with ideal unity-gain can easily be obtained, as shown in Fig. 3, [1].

Therefore, by analyzing the equivalent circuits, one can see that the VM, shown
in Fig. 3a, is characterized by:

v2 = − v1 = arbitrary, i1 = i2 = 0. ð3Þ

and the CM, shown in Fig. 2b, is characterized by:

v2 ≠ v1 = arbitrary, i1 = i2 = arbitrary ð4Þ

At the end, the inverting behaviour of the nullator and norator is achieved. In
[24, 31, 32], the nullor—based models of the VM and CM include parasitic ele-
ments. In the same manner as for the nullor, equivalences between the combinations
of nullators, norators, CMs, VMs and impedances can be obtained. Note, however,
that if v1 or v2 terminal from Fig. 3a is grounded and by applying the equivalences
shown in Fig. 1, the VM is reduced to a nullator. In the same manner, if any
terminal in Fig. 3b is grounded by applying the equivalences shown in Fig. 2, then
a norator is obtained.

Fig. 2 Nullator and norator equivalences
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3 Loop Current Method for Circuits with Nullors

As it is well-known, the loop current method is based on introducing the loop
currents as intermediary quantities which satisfy the first Kirchhoff’s current law
(KCL) and which can be determined by applying the Kirchhoff’s voltage law
(KVL) on the independent loops of the electric circuit.

Taking into account the definition of the nullator as a circuit element through
which the current does not flow, it is useful and recommended to choose loop
currents such that they do not flow through the branches that contain nullators. In
order to respect such a condition, the branches containing the nullators should be
eliminated by introducing an open-circuit between the terminals at which a nullator
is connected. This leads to a decrease of the number of independent loops (li) with
the nullator number (nn)

li = b− n+1− nn, ð5Þ

where: b—is the number of the circuit branches and n—is the number of the circuit
nodes.

Applying KVL on the independent loops li a system of independent equations
results from which we further can determine the loop currents.

The branch currents are expressed as an algebraic sum of the loop currents that
flow through the respective branch.

If the electric circuit contains current sources, the branches which contain such
sources cannot belong to a tree; a single loop current will be chosen to flow through
such branch. The loop current value will be given by the source current.

In order that the system of li equations does not contain as unknowns the norator
voltages, the li independent loops must not contain branches with norators.

Fig. 3 Nullor and grounded resistor-based VM (a) and CM (b)
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The norator branches are replaced by open-circuits while the branches with nul-
lators are kept.

The loop current equations corresponding to a number of li loops become:

∑
li

j=1
∑

h∈ lj½ �∩ lk½ �
Rh

0
@

1
AIlj = ∑

h∈ lk½ �
Eh, ð6Þ

where: Ilj—is the loop current corresponding to the lj loop and Eh—is the e.m.f of bh
branch.

If we consider the current and voltage graphs with their loop-branch incidence
matrices Bi and Bv(see Table 1), then the matrix form of the loop current equations,
[7, 9–14], can be written as follows:

BvRb Bi� � t
� �

Iib =Bv Eb +RbJbð Þ, ð7Þ

where, for example, Iib (Rb) is the loop current vector in the current graph Gi (the
diagonal matrix of the branch resistances).

Example 1 See (Figs. 4 and 5).
The loop current equations are obtained by applying the KVL on the indepen-

dent loops from the voltage graph (Fig. 6) and taking the currents from attached to
the loops from the current graph (Fig. 5). Proceeding in this manner, it results the
following system of Eqs. (8a) and (8b)

R3 ⋅ Il1 +R5 ⋅ Il1 +R4 ⋅ Il1 −R5 ⋅ Il2 = 0

R5 ⋅ Il2 +R2 ⋅ Il2 −R5 ⋅ Il1 = −E2

(
. ð8a; bÞ

From Eq. 8b it results:

Il2 =
−E2 + J1 ⋅R5

R2 +R5
. ð9Þ

From Eq. 8a it results:

Il3 =
− J1 ⋅ R3 +R5ð Þ+R5 ⋅ −E2 + J1 ⋅R5

R2 +R5

� �
R4

. ð10Þ

Fig. 4 Initial circuit to be
analyzed using loop current
method

Circuit Analyses with Nullors 97



4 Nodal Analysis Method for Circuits with Nullors

The unknown variables of this method are represented by the n − 1 electric
potentials corresponding to the circuit nodes, excepting the nth node whose
potential is the reference potential and it is considered to be zero. These unknowns
satisfy KVL for any circuit loop. The computation of these unknowns is based on
KCL written in n − 1 nodes and on the generalized Ohm’s law to express each
branch current depending on the node potentials.

The equations of the node potentials for the circuits containing nullators will
have a different form taking into account that the voltage at the nullator terminals is
equal to zero, which results in a decrease of the number of the unknown potentials
(Fig. 7).

If the circuit contains norators, the norator currents should not be present in the
system of equations. This is why we choose sections that do not include the
branches with norators.

∑
N − 1

j=1
∑

h∈ lj½ �∩ lk½ �
Gh

0
@

1
AVj = − ∑

h∈ lk½ �
Jh +

Eh

Rh

� �
. ð11Þ

Fig. 5 Choosing of the loop
currents

Fig. 6 Loops for KVL
writing
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Considering the current and voltage graphs with their reduced node-branch
incidence matrices Ai and Bv(see Table 1) the matrix form of the nodal equations,
[7, 9–14], is:

AiGb Avð Þ t� �
Vv

n− 1 = −Ai GbEb + Jbð Þ, ð12Þ

where, for example, Vv
n− 1 (Gb) is the potential vector of the n − 1 independent

nodes from the voltage graph Gv (the diagonal matrix of the branch conductances).

Example 2 The nodal analysis method for the circuits containing nullors can be
applied as follows: KCT is written in the independent nodes of the current graph
and there are used the potentials associated to the n − 1 independent nodes from the
voltage graph. Applying the Nodal analysis method, we obtain the following
Eqs. (13)–(18) (Fig. 8):

Appling the KCL in the node (n1) it results:

V1

R3
= J1. ð13Þ

According to the KCL on the cut-set (S2) to obtain:

V2

R5
+

V2

R2
= − J1 −

E2

R2
. ð14Þ

From Eq. (13) it results:

V1 =R3 ⋅ J1. ð15Þ

From (14) we can obtain:

V2 =
R5 ⋅R2 ⋅ − J1 − E2

R2

� �
R2 +R5

, ð16Þ

Fig. 7 The equations of the node potentials for the branches containing nullators
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I4 =
V2 −V1

R4
=

R5 ⋅R2 ⋅ − J1 −
E2
R2

� �
R2 +R5

−R3J1
R4

, ð17Þ

I2 =
V2 −V4 +E2

R2
=

R5 ⋅R2 ⋅ − J1 −
E2
R2

� �
R2 +R5

+E2

R2
. ð18Þ

The values obtained for I2 and I4 are the same as those obtained by using the
loop method.

5 The Generalized Topological Formula for Transfer
Function Generation by Two-Graph Tree Enumeration

5.1 Introduction

One of the most important approaches for nonreciprocal circuit analysis is the
two-graph tree enumeration method, mainly due to Mayeda and Seshu [16]. The
original approach, in which each edge is labelled with an admittance term, could
handle only one type of active element, namely VCCS, but the method was further
developed by many researchers for general linear circuits to include virtually all
active elements. In [17] some techniques to convert the CCVSs, VCVSs and
CCCSs in equivalent schemes containing only VCCSs and admittances are intro-
duced, and some techniques to model an inductance proposed in the literature are
discussed. The resulted models have a bigger number of branches in the two graphs
and some supplementary nodes are introduced in the original circuit. The method

Fig. 8 Initial circuit to be analyzed using Nodal Analysis Method
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based on a two-graph representation using a unity gyrator to model the
non-admittance components was implemented [18] in order to obtain symbolic
network function expressions in other terms than admittances. The price paid by all
these approaches consists in the increase of the circuit complexity leading to a
bigger number of common spanning trees.

Topological formulas for transfer functions of active networks using tree enu-
meration method have been derived firstly by Mayeda and Seshu, but their pro-
cedure for determining the sign factor is tedious. In [15] the main results in this
direction up to that date are presented, and similar formulas are obtained while
modelling all the controlled sources by equivalent schemes containing only two
terminal elements and VCCSs. A sorting scheme is preferred to obtain symbolic
network functions from the node determinant of an augmented network.

Based on the original concepts of the two-graph tree enumeration method a
modelling technique of the four types of controlled sources has been elaborated and
a topological formula with homogeneous parameters for the transfer admittance has
been proved using the nodal approach [7]. Some innovative approaches to symbolic
generation of the transfer functions have been developed: an algorithm using sys-
tematic loop opening and closing, a diakoptic approach, and a procedure based on
graph decomposition on levels [7–14].

In this chapter, a set of rules for generating and using the two graphs is stated,
and the generalization of the topological formula to generate all network functions
is proved. These rules are applicable to a linear circuit containing: all four types of
linear controlled sources, resistors, inductors, capacitors, nullors (for ideal opamps
operating in the linear mode), and any multi-terminal or multiport circuit element
having an equivalent scheme made up only by two-terminal elements and con-
trolled sources. The generalized topological formula with homogeneous parameters
that we propose to generate the transfer functions, can handle our models for the
four types of controlled sources in a very efficient manner. Performing some
reductions in the structure of the two graphs and representing them on levels we
obtain an important improvement of the common tree enumeration process.

In Sect. 5.2 of this chapter we obtain the equivalent schemas in admittances that
model in the two graphs the four types of controlled sources starting from the
functional schemas with nullors. This representation makes possible the proof of the
generalized topological formula with homogeneous parameters, valid for any
transfer function of a lumped, linear and time-invariant circuit. Section 5.3 is
dedicated to this proof. It is shown that the numerators of all the four types of
transfer functions are identical and the treatment of the input/output ports according
to the transfer function to be generated is given.

Section 5.4 is dedicated to a very efficient algorithm for tree enumeration in a
graph represented on levels, which was implemented for network function gener-
ation, and Sect. 5.5 describes an efficient algorithm for sign factor generation. In
Sect. 5.6 the rules for automatic generation of the network functions are introduced,
and some techniques to increase the efficiency of the common spanning tree enu-
meration are discussed. The entire procedure of network function generation
including simplification after generation is illustrated in Sect. 5.7.
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5.2 Controlled Source Modelling in the Two Graphs

Consider two-port containing only linear passive two-terminal elements (resistors,
capacitors, and inductors). It is well known that any circuit function can be written
as a ratio of admittance polynomials using Kirchhoff’s topological formula. Each
monomial in these polynomials corresponds to the admittance value of a tree. This
property leads to a circuit graph whose edges have the admittances as their weights.

Kirchhoff’s type topological formulas have been developed byMayeda and Seshu
[16] for circuits containing linear passive two-terminal elements and voltage con-
trolled current sources (VCCS) only. In these formulas each monomial corresponds
to a common tree in the current graph Gi and the voltage graph Gv in which each
passive element is represented by an edge having the admittance as its weight; a
VCCS is modelled by an edge with the same weight (the control admittance) but with
different positions in the two graphs: the position of the controlling branch in Gi and
the position of the controlled branch in Gv. Gi is used to write the Kirchhoff’s current
law whileGv is used for the Kirchhoff’s voltage law. The constitutive equations of all
circuit elements are written as relationships between the Gi currents and Gv voltages.

Consider now a circuit containing two terminal elements and control sources of
any type. In order to extend the abovementioned formulas to circuits with passive
two-terminal elements and any type of controlled sources we build equivalent
schemes of these sources using nullators and norators (nullors). A nullor equivalent
scheme of a controlled source leads to its Gv and Gi representations considering the
following properties: from the current point of view the nullator is an open-circuit
while the norator is a short-circuit, and from the voltage point of view the nullator is
a short-circuit while the norator is an open-circuit.

Starting from the equivalent schemes with nullors in Fig. 9, the two graph
models of the controlled sources using only two terminal admittances can be built
as it is shown in Fig. 9. The parameters associated with the controlled and the
controlling branches are presented in Table 3. The subscript C is used for the
controlling branch and the subscript c for the controlled one.

As it is shown in Fig. 9 the four types of controlled sources are modelled in the
two graphs as follows:

• CCVS is modelled by a branch having the transfer impedance subscript identical
with the controlled branch Zc =ZcC , having as parameter Yc =1 ̸ZcC, and which
takes distinct positions in the two graphs:

– In Gi it is connected to the controlling port, and it is oriented like the
controlling current, the controlled branch being short-circuited;

– In Gv this branch is connected to the controlled port, having the same
direction with the voltage across this branch, the controlling branch being
short-circuited.

In this way, a CCVS leads to a node contraction in each graph: in Gi the nodes of
the controlled branch coincide, while in Gv the nodes of the controlling branch
coincide. In order to keep the numbering of nodes in natural order (that is especially
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Fig. 9 Controlled source modelling in the two graphs
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useful in tree enumeration and in the sign factor computation), we reduce by one all
node numbers greater than the number of the eliminated node.

For programming needs we keep in Gi the node towards the voltage across the
controlled branch is oriented (c’’), the other node number (c’) being allocated to the
new node introduced to identify the controlling branch.

• VCCS is modelled by a branch having the transfer admittance subscript identical
with the controlled branch Yc = YcC , and which takes distinct positions in the
two graphs:

– In Gi it is connected to the controlled port, and it is oriented like the con-
trolled current, the controlling branch being open;

Fig. 9 (continued)
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– In Gv this branch is connected to the controlling port, having the same
direction with the controlling voltage, the controlled branch being open.

This controlled source does not modify the number of the two graph nodes.

• A VCVS is equivalent with a VCCS Jm = Im =YCVCð Þ, in cascade with a CCVS
with negative trans-impedance (Ec = − Zcð Þ ⋅ − Imð Þ), and it is modelled

– In Gv by two branches having the controlled branch number respectively that
of the controlling branch, and the parameters presented in the Table 2; they
are connected to the controlled branch, respectively to the controlling one,

Fig. 9 (continued)
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having the direction of the voltage across the controlled source, and
respectively of the controlling voltage;

– In Gi the two branches are connected in series, having the nodes m’ and m”
that are supplementary nodes. In order to keep the current graph node
numbering, the number of the node m” will be that towards the voltage
across the controlled branch is oriented (c”≡ m”); the number of the
eliminated node (c’) will be attached to the other one (c’≡ m’). The con-
trolled branch is oriented from c” to c’, and the controlling one from c’ to c”.

• A CCCS is equivalent with a CCVS connected in cascade with a VCCS, being
modelled

– In Gi by two branches having the controlled branch number and respectively
those of the controlling branch, and the parameters presented in the Table 2;
these branches are connected to the controlled port, respectively to the
controlling one, having the direction of the controlled current, respectively of
the controlling one;

– In Gv the two branches are connected in parallel and they have two common
nodes, namely the node in which the controlled current goes in (c”) and the
other one having the number of the node eliminated by short-circuiting of the
controlling branch in Gv (C’). The two branches have the same direction in
respect of their terminals.

Remarks

1. The other circuit elements (resistors, uncoupled inductors, capacitors) keep in
the two graphs the same position as in the initial circuit, and are represented by
their admittances.

2. The magnetic couplings are modelled by inductors and CCVSs [10].
3. The above modelling technique of the four controlled sources leads to two

directed graphs having admittance branches only.
4. The two graphs have the same number of nodes, branches and loops. They differ

only by the location of the controlling and controlled branches of the four types
of controlled sources.

5. Because any branch contraction in the two graphs causes the elimination of one
node, the number of nodes in Gi and Gv is smaller than in the initial circuit with
the number of CCVSs: nGi = nGv = n− nCCVS.

In Table 3 is given a comparison with some reported techniques taking into
account the number of branches used to model the circuit elements in both graphs
and the supplementary node number.
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5.3 Generalized Topological Formula for Network Function
Generation

Let us consider a linear nonreciprocal circuit (LNC) with null initial (i.c.) state and
without independent sources and its associated model for operational calculus
(Laplace). If we add to the input port an independent current source (Fig. 10), we
can define the transfer impedance

Zoi = d Vo

Ji Io =0

����� . ð19Þ

The nodal equations of the circuit take the matrix form:

Yn− 1Vn− 1 = Ji, ð20Þ

where Ji can be expressed as

Ji = Y Vo′ −Vo′′ð Þ, ð21Þ

with

Y = d 1
Zoi

. ð22Þ

Table 2 Controlled source equations

Controlled Equations Associated Parameter

Source Controlled branch Controlling branch
CCVS VC =0; Yc =1 ̸Zc Yc =1 ̸Zc
VCCS IC =0; Yc Yc
VCVS IC =0; Ec =Vc =AcCVC = ZcYCVC Yc =1 ̸Zc =1 ̸AcC YC =1 S
CCCS VC =0; Yc =BcC YC =1 ̸ZC =1 S

Table 3 Comparison with some reported techniques

Lin’s Models
[17]

Rodanski’s Models
[18]

Our Models

Controlled
source

Branches in
the two graphs

Extra
nodes

Branches in
the two graphs

Extra
nodes

Branches in
the two graphs

Extra
nodes

Resistor
inductor
capacitor

3 1 3 1 1 0

CCVS 4 1 5 2 1 −1
VCVS 3 1 3 1 2 0
CCCS 2 or 4 0 or 2 3 1 2 0
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The Eq. (21) is equivalent to the substitution of Ji by a VCCS. Substituting
Eq. (21) in (20) and rearranging we obtain:

Y
0
n− 1Vn− 1 = 0. ð23Þ

Consider the current and voltage graphs with their reduced node-branch inci-
dence matrices Ai and Av.

Writing the Kirchhoff’s current law in the current graph we obtain:

AiIib =0, ð24Þ

where the branch currents can be expressed as:

Iib =YbVv
b. ð25Þ

The branch voltages in the voltage graph are:

Vv
b = ðAvÞtVv

n− 1. ð26Þ

Substituting (26) in (25) and the last one in (24) we obtain:

AiYbðAvÞtVv
n− 1 = 0. ð27Þ

If we denote

AiYbðAvÞt =Y
0
n− 1, ð28Þ

we obtain (23).
Because the system (27) contains linear dependent equations it follows:

detðAiYbðAvÞtÞ=0. ð29Þ

Yb being a symmetrical matrix, applying Binet-Cauchy theorem [6, 7] it results:

detðAiYbðAvÞtÞ= ∑
nc

k=1
Δi

kΔ
v
kPk, ð30Þ

where:Δi
k and Δv

k are determinants of order n − 1, made up with elements of Ai and
(Av)t matrices, taking the k-th group of n − 1 columns of Ai and respectively n − 1
rows of (Av)t; Pk is the product of the operational branch admittances of Ai columns,
respectively of (Av)t rows that make up the k-th group; nc =Cn− 1

b .
Because Δi

k and Δv
k are nonzero if and only if the k-th groups of branches

corresponding to the n − 1 columns (rows) of Ai ((Av)t) form trees in Gi (Gv) [7],
(30) may be written as:
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detðAiYbðAvÞtÞ= ∑
tc

k=1
Δi

kΔ
v
kPk = ∑

tc

k =1
εkPk =0, ð31Þ

where: tc is the total number of common trees of Gi and Gv; Pk is the operational
admittance product of the common tree Tk branches; εk represents the sign factor of
the pair k of common trees.

In the expression (31) there are two kinds of terms: terms that contain the
admittance Y, and the others that do not contain it, so that it follows:

detðY0
n− 1Þ= ∑

tc

k=1
εkPk = YT1ðsÞ+ TpðsÞ=0, ð32Þ

where:

T1ðsÞ= ∑
k∈ ðT1cÞ

εktk, ð33Þ

Tp sð Þ= ∑
k∈ ðTpcÞ

εktk, ð34Þ

and εk =±1—is the sign factor for each common spanning tree of the pairs (Gi
1,G

v
1),

respectively (Gi
p,G

v
p), where G

i
1 (G

v
1) is the current (voltage) graph containing a unit

weight branch at the input (output) port, and Gi
p (Gv

p) represents the current (volt-
age) graph in which the input/output ports are in short-circuit or open according to
the generated network function (see Table 4); T1cðTpcÞ is the set of the common

Fig. 10 The LNC transfer impedance definition

Table 4 Treatment of the
input/output ports

The circuit The circuit port
Function Input Output

Zoi Open Open
Yoi Short-circuit Short-circuit
Aoi Short-circuit Open
Boi Open Short-circuit

Circuit Analyses with Nullors 109



spanning trees of Gi
1,G

v
1 (Gi

p,G
v
p); tk is the product term equal to the product of

branch admittances of the common spanning tree k.
From Eq. (32) we obtain:

Y = −
Tp sð Þ
T1 sð Þ . ð35Þ

According to (22) it results that

Zoi = −
T1 sð Þ
Tp sð Þ . ð36Þ

In the following we shall prove that, according to this approach, any transfer
function of a lumped, linear, and time-invariant circuit, can be expressed in the
form:

Foi = −
T1 sð Þ
Tp sð Þ , ð37Þ

all the four transfer functions having the same numerator, the denominator being
different depending on the way the input and the output ports of the circuit are
treated. From the above it results that the problem of generating all product terms in
the irreducible expression of the transfer function is converted to the problem of
finding all common spanning trees of the two graphs.

Let us consider a two-port circuit, containing any linear multi-terminal circuit
elements that have an equivalent scheme made up only by two-terminal circuit
elements and controlled sources. Modelling the controlled sources in the two graphs
by two terminal circuit elements as in Fig. 9 allows a uniform treatment in
admittances of the entire linear nonreciprocal circuit (LNC).

1. Transfer impedance

Using the circuit represented in Fig. 11, we define its transfer impedance as

Z
0
oi =

V
0
o

Ji
, ð38Þ

from which we can obtain the LNC transfer impedance:

Zoi = lim
Yi → 0
Yo→ 0

Z
0
oi = −

T1 sð Þ
Tp sð Þ , ð39Þ

where:
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• T1 is the sum of the algebraic values of the common trees in the graphs that
contain the unity branch at the input (in Gi) respectively at the output (in Gv);

• Tp is the sum of the algebraic values of the common trees in Gi and Gv obtained
by opening the input and output ports.

2. Transfer admittance

The transfer admittance of the circuit in Fig. 12 is:

Y
0
oi =

I
0
o

Ei
=

YoV
0
o

Ji ̸Yi
= YiYoZ

0
oi, ð40Þ

and those of the LNC results as:

Yoi = lim
Yi →∞
Yo→∞

Y
0
oi = lim

Yi →∞
Yo→∞

YiYoZ
0
oi. ð41Þ

Using the generalized Feussner formula for two branches we obtain:

Yoi = lim
Yi →∞
Yo→∞

YiYoZ
0
oi =

= − lim
Yi →∞
Yo→∞

YiYo
T1

YiYoT
0
Yi, scYo, sc +YiT

0
Yi, scYo, op + YoT

0
Yi, opYo, sc +T 0

Yi, opYo, op

=

=
− T1

T 0
Yi, scYo, sc

= − T1
TY
p
,

ð42Þ

Fig. 11 The general scheme for transfer impedance definition

Fig. 12 The general scheme for transfer admittance definition
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where: T1 is the same as in the case of Zoi, and TY
p =T

0
Yi, scYo, sc is the sum of the

algebraic values of the trees that are common to the Gi and Gv obtained by
short-circuiting the input and output ports.

3. Voltage Gain
Using the circuit in Fig. 13 we define the voltage gain as:

A
0
oi =

V
0
o

Ei
=

V
0
o

Ji ̸Yi
=

YiV
0
o

Ji
=YiZ

0
oi, ð43Þ

from which we obtain the LNC transfer function

Aoi = lim
Yi →∞
Yo→ 0

A
0
oi = lim

Yi →∞
Yo→ 0

YiZ
0
oi. ð44Þ

Applying the generalized Feussner formula we obtain:

Aoi = lim
Yi →∞
Yo→ 0

YiZ
0
oi =

= − lim
Yi →∞
Yo→ 0

Yi
T1

YiYoT
0
Yi, scYo, sc +YiT

0
Yi, scYo, op + YoT

0
Yi, opYo, sc +T 0

Yi, opYo, op

=

=
− T1

T 0
Yi, scYo, op

= − T1
TA
p
,

ð45Þ

where: T1 is the same as in the case of Zoi and Yoi, and TA
p is the sum of the

algebraic values of the trees that are common to the Gi and Gv obtained by
short-circuiting the input port and opening the output port.

4. Current gain
For the circuit in Fig. 14 the current gain is:

Fig. 13 The general scheme for voltage gain definition
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B
0
oi =

I
0
o

Ji
=

YoV
0
o

Ji
=YoZ

0
oi, ð46Þ

and for the LNC we obtain

Boi = lim
Yi → 0
Yo →∞

B
0
oi = lim

Yi → 0
Yo →∞

YoZ
0
oi, ð47Þ

that means

Boi = lim
Yi → 0
Yo→∞

YoZ
0
oi =

= − lim
Yi → 0
Yo→∞

Yo
T1

YiYoT
0
Yi, scYo, sc +YiT

0
Yi, scYo, op +YoT

0
Yi, opYo, sc +T 0

Yi, opYo, op

=

=
− T1

T 0
Yi, opYo, sc

= − T1
TB
p
,

ð48Þ

Fig. 14 The general scheme for current gain definition

Fig. 15 Current and voltage graphs that contain the unit branch
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where: T1 is the same as in the above three cases, and TB
p is the sum of the

algebraic values of the trees that are common to the Gi and Gv obtained by
opening the input port and short-circuiting the output port.

From the above analysis, we can conclude that to obtain all the transfer functions
the input/output ports must be treated as in Table 4.

For the automatic generation of the graphs Gi
1 and Gv

1 the input gate of the
analyzed circuit is connected to a current source that is controlled by the output gate
voltage, which has the transfer admittance equal to the unit [27]. According to the
Sect. 5.2 it will be represented in the two graphs as in Fig. 15.

5.4 Algorithm for Tree Enumeration in a Graph
Represented on Levels

We have proved that the network functions generation by the topological method of
tree enumeration, in the case of nonreciprocal circuits, means the generation of all
common spanning trees. Since the number of graph trees increases rapidly with the
graph size, a highly efficient algorithm is needed. This problem was widely studied
and several algorithms of varying efficiency have been proposed in the literature.
Ones of the well-known are Minty’s algorithm which has the complexity O(b + n
+bt), and the algorithm due to Gabow and Myers having the complexity O(b + n
+nt), where b is the number of branches, n is the number of graph nodes, and t is
the number of spanning trees.

The most used is, however, Char’s algorithm, that some studies [23] show it to
be superior to the other ones. This algorithm generates for the beginning an initial
spanning tree which needs O(b + n) operations, and starting from this one it
enumerates all the spanning trees of the graph. During this enumeration, the
algorithm generates also certain sequences which are not trees, called non-tree
sequences. The original algorithm has the complexity O(b + n+n(t + t0)), where t0
is the number of non-tree sequences.

An implementation, called MOD-CHAR, of Char’s spanning tree enumeration
algorithm, introduces several heuristics for the selection of the initial spanning tree
and for decreasing the number of the non-tree sequences. With these improvements
for almost all graphs, the complexity of MOD-CHAR is O(nt) [21–23]. It seems
that for large dense graphs the complexity of MOD-CHAR algorithm is O(t), being
superior to Char’s original algorithm, while for sparse graphs, it seems that Char’s
original implementation is superior to MOD-CHAR [22].

114 M. Iordache et al.



In the following we present an efficient algorithm for the enumeration of all the
common spanning trees based on a representation on levels of the two graphs, and
on a sequential computation (by substituting a branch in the previous common
spanning tree), which has the complexity O(t) for all kinds of graphs [13].

Let us consider the connected graph represented in Fig. 16a, and described on
levels as in Fig. 16b, where:

n, b, l—represent the number of nodes, branches, and levels, respectively;
b[i] = (xi, yi)—is the branch i, connected between the nodes xi and yi; the node

set is ordered so that

– level (xi) ≤ level (yi);
– ∀ 0 ≤ i ≤ b − 1, level (xi) ≤ level (xi +1) and level (yi) ≤ level (yi +1);

niv[j] is the first node of level j, with 0 ≤ j ≤ l;
bet[k] is the first branch which connects the levels k and k + 1, where 0 ≤ k≤

l − 1;
inter[m] is the first branch which connects two nodes from the level m, where 1

≤ m ≤ l − 1;
The algorithm for tree enumeration is the following:

9

7
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0

3
2

5

1

4

0
1
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3 5

6
7 8

109 11

12

13

4

n = 10
b = 14
l = 5
niv = (0,1,4,7,9)
bet = (0,6,9,13)
inter = (3,12)

b[0]=[0,1]       b[1]=[0,2]
b[2]=[0,3]       b[3]=[1,2]
b[4]=[2,3]       b[5]=[2,3]
b[6]=[1,4]       b[7]=[2,5]
b[8]=[3,6]       b[9]=[4,7]
b[10]=[5,7]
b[11]=[6,8]
b[12]=[7,8]
b[13]=[7,9]

(a) (b)

Fig. 16 Graph representation on levels
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place inside (level, k) 
if (level=0) {write tree; output of procedure}
place between (level, niv[level])
for i=k to bet[level]-1 do

{ 
save the colors on the stack
put in the tree (i) 
place inside (level, i+1)
take off from the tree the last registration
restore the colors from the stack

 } 
place between (level, col) 

OK=1
for C=col to niv[level+1]-1 do

if exist the color C
for i=bet[level-1] to inv[level]-1 do

if color[b[i].y]=C
{
OK=0
save the colors on the stack
put in the tree (i) 
place rest (level, C, i+1)
take off from the tree the last registration
restore the colors from the stack
} 

if (OK=1) place inside (level-1, inv[level-1]);

place rest (level,col,k) 
place between (level, col+1)
for i=k to inv[level]-1 do

if color[b[i].y]=col
if do not make a cycle ⇔ if color [b[i].x]≠col

{            
save the colors on the stack
put in the tree (i) 
place rest (level, col, i+1)
take off from the tree the last registration
restore the colors from the stack
} 
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Remarks

1. The representation of any graph in level form is equivalent with node sorting. If
a heap-sort procedure is used, the time complexity is O(blgb + nlgn) while
using an array technique it will be O(2b + 2n) [12].

2. The algorithm does not generate any non-tree sequence.
3. Any branch that obeys the algorithm rules, when is introduced in the sequence,

leads to a tree.
4. The time complexity of the tree enumeration algorithm is proportional to the

number of trees, O(kt), where k is, statistically, about 1, when the time allocated
for the level decomposition of the graph is neglected.

5. The space complexity is O(n + n2), when the necessary of memory for pre-
serving the graph structure (which is insignificant) is neglected.

Testing the algorithm for many graphs, to make a comparison with Char’s
algorithm, we obtained the results presented in Table 5, and in Fig. 17.

We can see that the efficiency of our algorithm rises rapidly with the number of
trees.

5.5 Algorithm for Sequential Generation of the Sign Factor

For all the terms of the numerator and of the denominator the sign factor must be
computed. The sign of the tree admittance product can be found using Mayeda and
Seshu’s algorithm [8] or performing a depth-first or breadth-first traversal on both
the Gi and Gv trees [2]. In [10, 11] an original method for the sign factor deter-
mination is presented. The tree admittance product sign εk is defined as:

εk =MTi
k
⋅MTv

k
, ð49Þ

where MTi
k
,MTv

k
are major determinants from the branch-node incidence matrices Ai

and Av corresponding to the common spanning trees Ti
k and Tv

k , respectively. To
describe the current (voltage) spanning tree Ti

k (T
v
k ) we use a matrix with two rows

Table 5 Comparison
between the proposed
algorithm and Char’s
algorithm

Number of the
trees

Time [s]
Char’s
algorithm

Algorithm on
levels

107512 0.53 0.56
9877412 14.1 8.66
61314527 82 55
103472385 154 103
220581744 235 156
1182369421 7920 1860
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and n − 1 columns (n being the node number of the graph)—called the current
(voltage) tree description matrix CTDM (VTDM). Each column of this matrix
contains the initial node and the final node of the tree branch corresponding to this
column. For example, the tree description matrix (TDM) corresponding to the
spanning tree shown in Fig. 18 has the following form:

TDM=
1 2 4 4 6 7 5 6
2 4 3 6 7 5 8 9

	 

. ð50Þ

The determinants MTi
k
and MTv

k
are computed by performing simple operations

on the rows of the tree description matrices. In Fig. 18 is described the computing
algorithm of the determinant MT corresponding to the spanning tree
T = b1, b2, b3, b4, b5, b6, b7, b8f g.

Let B, N be two finite sets B, N ⊂ N. The directed graph is, by definition, the
triplet G= B,N, fð Þ, in which f :B→N ×N. Let x= x1, x2ð Þ be an element of the set
N × N. We define:

p1:N ×N→N, p1 xð Þ= x1; p2:N ×N→N, p2 xð Þ= x2, ð51Þ

the projections of an element in N × N. Let T = b1, b2, . . . , bn− 1f g, with
bj ∈B, 1≤ j≤ n− 1, be a spanning tree and let

P=
p1 f b1ð Þð Þ p1 f b2ð Þð Þ . . . p1 f bn− 1ð Þð Þ
p2 f b1ð Þð Þ p2 f b2ð Þð Þ . . . p2 f bn− 1ð Þð Þ

" #
, ð52Þ

be the matrix built with the rows 1 and 2 of TDM corresponding to the spanning
tree T.

The algorithm for the determinant MT calculation has the following steps:

Fig. 17 Comparison with
Char’s algorithm
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Fig. 18 Algorithm of the
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1. In the matrix P, we assign zero value to the node with the greatest index (e.g. n9
in Fig. 18). In this way, we obtain a matrix which is denoted by P0;

2. We are looking for the node which exists only once in the matrix P0, beginning
with the node having the smallest index. Let this be nj = pk bj

� �
, with k = 1 or

k = 2 (e.g. n1 in Fig. 18);
3. We develop the determinant MT on the row corresponding to the node nj,

namely

MT = − 1ð Þnj + jM j
T , ð53Þ

if k = 1, and

MT = − 1ð Þnj + j+1M j
T , ð54Þ

if k = 2, where j is the column of the matrix P0 corresponding to the node nj,
and M j

T represents the determinant obtained from MT after the elimination of the
row nj and of the column j;

4. If the node number nj, found in step 2, is less than the greatest node number in
P0 (if nj < n− 1), then all elements of P0 having the values greater than nj are
reduced by a unit, and all columns of the matrix P0, which are on the right side
of the column j, change the places with a column to the left side. Thus, we
obtain a matrix Pm, m←m+1 (initially m←0), having the column number less
than P0 with a unit;

5. If nj ≥ 1 and if the column number of the matrix Pm is greater than one, go to
step 2, where the matrix Pm takes the place of the matrix P0. If the nj =1 and if
the matrix Pm has a single column, the determinant M j

T is developed on the row
corresponding to the node n1 and go to step 6;

6. Check up if the exponent of − 1ð Þ is an even or odd number.

In order to reduce the time needed to generate the circuit functions, a very fast
algorithm for calculating the sign factor was developed and implemented. It is
based on sequential computation, because knowing the sign of a term we can find
the sign of the following by performing simple elementary operations (permuta-
tions) in a vector with n elements, representing the number of the graph nodes.
These permutations aim to preserve the summations between lines of the reduced
node-branch incidence matrix, without having to store it in the memory.

The algorithm pseudocode has the following structure:
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ordine (x)
j=0
for I=1 to x do if rel[I]=I then inc(j)
if odd[j] return 1

else return −1 

add edge
while x≠rel[x] x=rel[x]
if (x=nv) 

while y≠rel[y] y=rel[y];
rel[y]=nv; 
s= −s⋅ordine(y)

else s= s⋅ordine(y)

compute sign
s=1, for I=1 to nv do rel[I]=I
for I=1 to nv−1 do add edge(I) 
return(j)

5.6 Automatic Generation of the Transfer Functions

As it has been shown in Sect. 5.6, in order to compute a transfer function, we have
to use two pairs of graphs: Gi

1,G
v
1

� �
, for the numerator product terms, and

Gi
p,G

v
p

� �
(in accordance with Table 4), for the denominator product terms.

For the automatic generation of Gi
1,G

v
1

� �
, we must connect at the input port of

the circuit a VCCS having as controlling variable the output voltage, the transfer
admittance being 1. For this source, the controlled branch number is 1, while the
controlling branch number is 2 (Fig. 19, LNC—Linear Nonreciprocal Circuit).

Fig. 19 Automatic generation of Gi
1,G

v
1

� �
and Gi

p,G
v
p

� �
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For the automatic generation of Gi
p,G

v
p

� �
we must connect at the input/output

ports some ideal independent current sources having null currents and the last
branch numbers: b − 1, respectively b (Fig. 19).

The algorithm for transfer impedance Zoi generation involves the following
steps:

1. Gyrator circuits, voltage or current inverters, magnetic couplings, operational
amplifiers and, in general, the multipole or multiport circuit elements contained
in the analyzed circuit are replaced by equivalent schemes consisting of bipolar
circuit elements and controlled sources only;

2. Controlled sources are simulated by passive two terminals elements that have
distinct positions in Gi and Gv graphs (see Table 4);

3. Graphs Gi
1 and Gv

1 are generated (Figs. 15a and b). In Gi
1 the branch with the

unit weight connects the input port terminals, having the same sense as the sense
of the input variable corresponding to the transfer function to be generated and
the output port is open. In Gv

1, the branch with unit weight connects the output
port terminals in the same sense as the sense of the output variable corre-
sponding to the transfer function to be generated, the input port being open;

4. Graphs Gi
p and Gv

p are generated. In these graphs, the entry-exit ports are treated
as in Table 4;

5. Determine the array of trees common to the graphs Gi
1 and Gv

1 that contains the
branch with the unit weight

A1c =Ai
1 ∩Av

1 ð55Þ

where Ai
1 Av

1

� �
is the array of the trees that contain the branch with the unit

weight in the graph Gi
1 Gv

1

� �
;

6. Determine the array of trees common to the graphs Gi
p and Gv

p

Apc =Ai
p ∩Av

p, ð56Þ

with Ai
p Av

p

� �
, the array of the trees from the graph Gi

p Gv
p

� �
;

7. For each pair of common trees k, generated at steps P5 or P6, the sign factor εk is
calculated with one of the algorithms described in Sect. 5;

8. Calculate the algebraic sum of tree values εkPk for the A1c set and then for the
set Apc, Pk being the product of the weights (of operational admittances) of the
common tree k branches;

9. With formula (37) calculate the transfer impedance Zoi;

If the numerator and the denominator of the relation (37) are multiplied by the
product of the operational impedances of all branches of the circuit, it results:
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Zei = −
C1

Cp
, ð57Þ

where:

C1 = ∑
k∈C1c

εkPck, ð58Þ

is the algebraic sum of the values (in impedances) of the co-trees common to the
graphs Gi

1 and Gv
1 corresponding to the common trees that contain the branch with

the unit weight and:

Cp = ∑
k∈Cpc

εkPck, ð59Þ

is the algebraic sum of the values (in impedances) of the co-trees common to the
graphs Gi

p and Gv
p.

It is easily to show [14, 21] that formula (55) can be used to generate any circuit
function corresponding to the input-output ports treated as in Table 4.

Therefore

Foi = −
C1

Cp
, ð60Þ

where the function Foi may be: the transfer impedance (either input or output), the
transfer admittance (either input or output), the voltage transfer (gain) factor or the
current transfer (gain) factor.

The algorithm for generating any of the above mentioned circuit functions is
identical to the one presented for the transfer impedance Zoi, the only difference
being the treatment of the input-output ports (Table 4). To define input impedance
(admittance), the input-output structure of the port is defined in Fig. 20a, b) by
using a passive linear circuit (PLC). Analog is defined also the input-output
structure of the two-port circuit for the calculation of the output impedance (the
output admittance).

Fig. 20 The input-output structure of the two-port circuit for the calculation of the input
impedance (a) and input admittance (b)
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Before generating the transfer function in symbolic form, by tree enumeration in
the two graphs, we must do some simplifications either in the circuit or in the
structure of the two graphs called approximation-before-computation (ABC).

Firstly, for each parameter x, we perform a numerical computation of the transfer
function sensitivity in the frequency range of interest.

This information could give us the reason to eliminate some branches either by
element removal or by contraction of its terminal nodes that simplify the circuit
structure. In order to control the accuracy of the computational process, we have to
evaluate the errors in the transfer function magnitude and in the transfer function
argument due to these operations in the frequency range of interest. Once the circuit
structure was simplified, we can generate the two pairs of graphs: Gi

1,G
v
1

� �
and

Gi
p,G

v
p

� �
. In order to simplify the generation of all their common spanning trees,

we perform some operations in the structure of these graphs, namely:

• Contraction of the unity weight branches;
• Substitution of the parallel branches in these graphs by an equivalent branch

having the admittance equal to the sum of the parallel admittances;
• Contraction of all branches having a node of degree one.

After the generation of the spanning trees in the reduced graphs, we must add
successively all the branches eliminated in the first step. This procedure increases
the enumeration efficiency of the common spanning tree in the two pairs of graphs

— Gi
1,G

v
1

� �
, and Gi

p,G
v
p

� �
.

To obtain the symbolic transfer function in a form to be easily interpreted, two
approximation strategies are possible: approximation-during-computation
(ADC) that produces the approximate expression without knowledge of the exact
symbolic expression, and approximation-after-computation (AAC) that firstly
generates the exact symbolic expression and operating on it produces an approxi-
mated one. The simplified form can be obtained because only a small number of the
terms in the irreducible expanded expression of the transfer function have an
important contribution in the numerator or in the denominator value. Of course, the
most efficient method is to generate only the significant common trees (whose tree
admittance value is not negligible) in an ADC process. To this end the common
spanning trees must be generated in decreasing order of magnitude until the gen-
erated set is a good approximation of the exact network function value. Also, the
generation of the common spanning trees in decreasing order of magnitude must be
performed for each frequency of interest. Some techniques for ADC were reported
[16, 23–26], based on a sensitivity simplification scheme, a 2-, respectively
3-matroid-intersection algorithm and on the determinant decision diagram
(DDD) representation of the system determinant. Although it is not easy to compare
the implementations of these algorithms because of the different simplification
before generation performed, and because of the different error criteria, it seems
[24] that ADC based on DDD yields better results concerning the time needed to
generate a term in comparison with the other techniques.
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In this chapter, an AAC procedure to obtain a network function in reduced
symbolic form is adopted. To this end the numerator and the denominator
expressions must be ordered in the decreasing order of the complex frequency
powers. The coefficients of each complex frequency power must be ordered in the
decreasing order of their values as well, and then the terms with the smallest value
will be eliminated one by one if the magnitude and phase errors are kept within
imposed limits in the frequency range of interest.

A very fast program for the network function generation in reduced symbolic
form has been obtained by implementing the modelling technique of the controlled
sources associated with the generalized topological formula and with the algorithm
for common tree enumeration and sign factor computation.

5.7 Description of the Software Application SATE—
Symbolic Analisys by Trees Enumeration

The symbolic generation algorithm of circuit functions for analogue linear and/or
nonlinear (piecewise-linear approximation) circuits described in Sect. 5.6 have been
implemented in a program called SATE—Simbolic Analysis by Tree Enumeration
[28]. Starting from the description of the circuit through a netlist input file (cir. file
extension), SATE generates symbolically, partial symbolically or numerically form
any circuit function with respect to the user-specified input/output ports for the
linear and/or non-linear (piecewise-linear approximation around a point of opera-
tion) electrical circuits.

The input data for the software application are:

nnode, nb, pulsation

where: nnode—is the number of circuit nodes, nb—is the branch number, and
pulsation (angular frequency) is the pulsation value.

Follows a set of nb lines describing the branches of the circuit. The circuit
elements are assigned as type numbers: 1—for resistors; 2—for capacitors; 3—for
inductors; 8—for controlled sources ec(iC); 9—for controlled sources jc(vC); 10—
for controlled sources ec(vC); 11—for controlled sources jc(iC) and 12—for the
description of input-output ports.

For RLC circuit passive elements, the description statement has the form:

element_type parameter_real_value initial_node final_node

For a controlled source, the description statement has the following structure:

source_type parameter_real_value parameter_imaginary_value ini-
tial_node_c final_node_c initial_node_C final_node_C
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where
initial_node_c final_node_c (initial_node_C final_node_C) represent the ini-

tial and final nodes for the controlled branch (controlling branch).
The last line of the input file describes the input/output ports and it has the

following format:

12 initial_node_i final_node_i initial_node_o final_node_o

Remarks

1. The program gives to the branches numbers from 0 to b;
2. The last numbered branch, corresponding to the last line in the input file list,

represents the branch weighting 1 in the current graph Gi
1 and in the voltage

graph Gv
1;

3. In the case of the current-controlled sources, ec(iC) and jc(iC), the controlling
ports are simulated by resistors with a very low resistance value (<10−8Ω);

4. In the case of the homogeneous controlled sources (e(v) and j(i)), the program
assigns two branches to each source (in the following sequence: the controlled
branch, the controlling branch), taking into account the modelling of these
sources in the current graph or the voltage graph [20, 27]. Parameters corre-
sponding to the two branches are assigned as follows:
Aj k = Yk

Yj
, where Yk = 1 S and Yj = 1

Aj k
, for the source ec (vC),

Bj k =
Yj
Yk
, where Yk = 1 S and Yj =Bj k, for the source jc(iC);

5. Magnetically coupled inductors are simulated by current-controlled voltage
sources [20, 27, 28].

The main program compute.bat coordinates the entire process of generating the
circuit function by successively calling the following subprograms:

• cv_graph.exe—it determines the current and voltage graphs;
• tree.exe—it generates the trees common to the two graphs;
• comp_fix.exe—it calculates the numerator and denominator terms of the circuit

function;
• getfunc.exe—it factories the numerator and denominator expressions according

to the chosen parameter;
• draw.exe—it draws the amplitude–frequency and phase–frequency character-

istics of the generated circuit function.

The SATE program command line is:
compute input_file_name x

where:

• input_file_name—is the input file name with the extension cir (on the call the
file extension is not written)

• and x represents the type of the circuit function that will be generated, as
follows:
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– 1—the transfer impedance Zei sð Þ;
– 2—the transfer admittance Yei sð Þ;
– 3—the voltage transfer (gain) factor Aei sð Þ;
– 4—the current transfer (gain) factor Bei sð Þ.
The SATE program generates the following output files:

• file_name.gr1—it contains the required information about the current graph;
• file_name.gr(x + 1)—it contains the required information about the voltage

graph;
• file_name.ar1—it symbolically displays the numerator of the circuit function

(A1 from formula (19));
• file_name.ar(x + 1)—it symbolically displays the denominator of the circuit

function (Ap from formula (19));
• a file containing numeric information about the value of the circuit function: the

real part, the imaginary part, the module and the argument.

6 Examples

Example 3 Let us consider the linear circuit with lumped parameters represented in
Fig. 21a. We want to determine the operational transfer admittance Yoi from the
input port i’–i” to the output port o’–o”, assuming that all the other parameters of
the circuit are known.
In Fig. 21, additional sources were also represented J1 = 1.V2, J13 = 0A and
J14 = 0A, which aim to facilitate the automatic generation of graphs Gi

1,G
v
1 (source

J1 = 1.V2) and Gi
p,G

v
p (sources J13 = 0A and J14 = 0A). The numbering of addi-

tional sources was done as indicated above.
In Fig. 21b–e the graphs Gi

1 and Gv
1 (Gi

p and Gv
p) are represented. The loops

resulting by connecting in short-circuit of certain pairs of nodes in the graphs
Gi

1,G
v
1,G

i
p and Gv

p have not been drawn in Fig. 21b–e (the branches of these loops
cannot belong to the trees of these graphs).

The set of trees common to the graphs Gi
1 and Gv

1 (Figs. 21b and c), which
contains the branch 1i in Gi

1 and, respectively, branch 1o in Gv
1 is:

A1c = 1i, 6, 9, 12; 1o, 6, 9, 12ð Þ, 1i, 4, 10, 11; 1o, 4, 10, 11ð Þf g. ð61Þ

The set of trees common to the graphs Gi
p and Gv

p (Figs. 21d and e) has the
following structure:
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Apc = 9, 12ð Þ; 10, 12ð Þf g, ð62Þ

Applying the above algorithm we obtain:

Yoi =
G6G9G12 +G4G10G11

G9 +G10ð ÞG12
ð63Þ

or

Fig. 21 A linear circuit and its pairs of graphs Gi
1 and Gv

1, respectively Gi
p and Gv

p`

128 M. Iordache et al.



Yoi =
R4R10R11 +R6R9R12

R4R6R11 R9 +R10ð Þ . ð64Þ

Expressions (61) and (62) have been compared with those obtained with the
programs TFSYG—Transfer Function SYmbolic Generation and CSAP—Circuit
Symbolic Analysis Program, [28, 29], and it has been observed that these are
identical.

Remarks

1. The trees common to the graphs Gi
1 and Gv

1, that contain the common branch of
weight 1, are identical with the trees common to the graphs Gi

1, 1i, sc and Gv
1, 1o, sc ,

obtained from the graphs Gi
1 and Gv

1, in which the branches 1i and 1o are
short-circuited.

2. In the case of the nonlinear circuits, any of the four transfer functions of the
circuit can be calculated with formula (35) or (58), at every time moment
tn+1 = tn + 1, by making the circuit passive and by linearization around the
operating point at this time moment.

Example 4 Let be the small signal equivalent circuit of a three-stage CMOS
transistor amplifier, represented in Fig. 22. The voltage transfer (gain) factor has to
be generated symbolically, in relation to the input-output ports, 1–5 and 4–5,
respectively.

Using the algorithm based on the graph decomposition on levels, respectively of
the SATE (Symbolic Analysis by Tree Enumeration) software [14, 21], we can
proceed as follows:

1. The input file, ex2.cir, has to be edited with the following structure:

5 13 314.00000000000000E + 0001 (nodes number, branches number,
pulsation)
1 1000.0 1 5 (branch type, parameter value, initial node, final node)

Fig. 22 Equivalent scheme of a small signal amplifier
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9 0.001 0.0 2 5 1 5 (9-source j(u), real value, imaginary value, initial node, final
node for the controlled variable, initial node, final node for the controlling
variable)
1 1000.0 2 5
2 0.1e−08 2 5
9 0.001 0.0 3 5 2 5
1 1000.0 3 5
2 0.1e−08 3 5
9 0.001 0.0 4 5 3 5
1 20000.0 4 5
2 0.1e−08 4 5
2 0.1e−08 2 4
2 0.1e−08 3 4
12 1 5 4 5 (input and output ports)

1. After SATE program running, the following results are obtained:

Terms of the circuit function counter
Sign factor The value of common trees (in admittances)
1 C7C11G2 1s2

1 G2 1G5 3G8 6

−1 C12G5 3G2 1s

1 C11C12G2 1s2

1 C11G6G2 1s

Terms of the circuit function denominator
Sign
factor

The value of common trees (in
admittances)

Sign
factor

The value of common trees (in
admittances)

1 C11G3G6s 1 C7C10C11s3

1 C4C11G6s2 1 C7C12G3s2

1 G3G6G9 1 C4C7C12s3

1 C4G6G9s 1 C7C11C12s3

1 C11G6G9s −1 G5 3G8 6C11s

1 C10G3G6s 1 C11C12G5 3s2

1 C4C10G6s2 1 C11C12G3s2

1 C10C11G6s2 1 C4C11C12s3

1 C12G3G6s 1 C12G3G8 6s

1 C4C12G6s2 1 C4C12G8 6s2

1 C11C11G6s2 1 C11C12G8 6s2

1 C4C7G3s2 1 C12G3G9s

1 C4C7C11s3 1 C4C12G9s2

1 C7G3G9s 1 C11C12G9s2

1 C4C7G9s2 1 C10C12G3s2

(continued)
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(continued)

1 C7C11G9s2 1 C4C10C12s3

1 C7C10G3s2 1 C10C11C12s3

1 C4C7C10s3

If

G1 =G3 =G6 =G,C4 =C7 =C10 =C11 =C12 =C,G2 1 =G5 3 =G8 6 =Gm

then the voltage transfer gain becomes:

Aoi = −
Gm C2s2 +C G−Gmð Þs+G2

m

� �
8C3s3 +C2 3Gm +10G+4G9ð Þs2 +C GGm +3G2 + 4GmG9 −G2

m

� �
s+G2G9

The sensitivity of the voltage transfer gain in relation to the parameter Gm,
SA0i
Gm

= ∂A0i
∂Gm

⋅ Gm
Aoi

, has the expression:

Sei =(-16*C^4*s^4*Gm+28*C^4*s^4*G+8*C^4*s^4*G9+16*C^3*s^3*G^2+ 
+3*C^2*s^2*G^3+21*C^3*s^3*Gm^2+6*Gm^3*C^2*s^2+3*Gm^2*G^2*G9+ 
+16*C^5*s^5-20*C^3*s^3*G*Gm-8*C^3*s^3*Gm*G9+2*C^2*s^2*G^2*G9+ 

+4*C^3*s^3*G*G9-6*C^2*s^2*G^2*Gm+C*s*G^3*G9+ 
+29*C^2*s^2*Gm^2*G+8*C^2*s^2*Gm^2*G9+ 

+2*Gm^3*C*s*G+9*Gm^2*C*s*G^2+8*Gm^3*C*s*G9- 
-2*C*s*Gm*G^2*G9)/((2*C^2*s^2+C*s*G-C*s*Gm+Gm^2)*(8*C^3*s^3+ 

+3*C^2*s^2*Gm+10*C^2*s^2*G+4*C^2*s^2*G9+C*s*G*Gm+3*C*s*G^2+ 
+4*C*s*Gm*G9+G^2*G9)). 

For the numeric values C = 1 nF, G = 0.001 S, Gm = 0.001 S, G9 = 0.00005 S
and replacing s with jω, the voltage gain expression Aei jωð Þ becomes:

Aoi jωð Þ= −
125000 ⋅ ω2 − 0.1 ⋅ 1013ð Þ

jω3 + 0.165 ⋅ 107ω2 − 4 ⋅ 1011jω− 625.1013
.

Figure 23 shows the Bode diagram, and Fig. 24 presents the distribution of
poles and zeros in the complex plane.
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For the above numeric values, the output file provides the following data about
the required circuit function:

Real part: +1.999243e + 01 Imaginary part: 4.022459e + 01
Module: 1.999648e + 01 Argument: 3.121475e + 00
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Example 5 The circuit in Fig. 25a, contains two operational amplifiers and passive
circuit elements R, C. This circuit operates in a permanent harmonic regime as a
capacitance multiplier with respect to the input terminals (4−5). By replacing the
operational amplifiers with the equivalent scheme of Fig. 25b, the equivalent circuit
represented in Fig. 25c, is obtained. The complex input impedance Zii ωð Þ (with
respect to the input terminals 4−7) has to be calculated with SATE.

For the case when the resistances R5 =R7 = 0Ω;R4 =R6 = 1 Meg; C3 = 10 pF
(node 6 becomes 1, node 5 becomes 3, node 7 becomes 5, and the resistance R6

becomes R5) and the voltage gains a8 4 = a9 6 = 2 ⋅ 105, the input file required by
the SATE software, ex3.cir, has the following structure:

Fig. 25 Capacitance multiplier
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5 8 314.0
1 100.0 1 2
1 1e + 05 2 3
2 1e−11 3 4
1 1e + 06 4 1
1 1e + 06 5 2
10 2e + 05 0.0 5 1 4 1
10 2e + 05 0.0 5 3 5 2
12 4 5 4 5

For homogeneous controlled sources ec vCð Þ and jc iCð Þð Þ, the program assigns
two branches to each source (in this sequence: the controlled branch, the controlling
branch). For the considered circuit, in the above simplified situation, where e8
becomes e6 with the controlling branch l7 and e9 becomes e8 with the controlling
branch l9, the corresponding voltage gains have the expressions:

where: G7 = 1 S and G9 = 1 S, and G6 =G8 = 1 ̸2 ⋅ 105 S.
Results from the output file are as follows:

Terms of the circuit function numerator Terms of the circuit function denominator
Sign
factor

The value of common trees (in
admittances)

Sign
factor

The value of common trees (in
admittances)

1 G1G6G8 −1 jωC3G5G6G8

1 G1G7G8 −1 jωC3G5G7G8

1 G2G6G8 −1 G4G5G6G8

1 G2G6G9 −1 G1jωC3G6G8

1 G2G7G8 −1 G1jωC3G7G8

1 G2G7G9 −1 G1jωC3G7G9

1 G5G6G8 −1 G1G4G6G8

1 G5G7G8 −1 G2jωC3G6G8

−1 G2jωC3G6G9

−1 G2jωC3G7G8

−1 G2jωC3G7G9

−1 G2G4G6G8

−1 G2G4G6G9

For the numeric values, the output file of the program provides the following
data about the required circuit function:

Real part: 5.010559e−001 Imaginary part: −3.165607e + 005
Module: 3.165607e + 005 Argument: −1.570795e + 000
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If the two operational amplifiers are considered identical (a6 7 = a8 9 =A) and
the resistances R4 =R6 →∞, while R5, R7 = 0Ω, then the input complex impedance
expression becomes

Zii ωð Þ= 1+Að Þ ⋅ A G1 +G2ð Þ+G2½ � G2ð Þ
jωC3 A2 G1 +G2ð Þ+A G1 + 2G2ð Þ+G1 +G2½ �

Assuming that the operational amplifiers are ideal A→∞ð Þ we obtain:

Zii ωð Þ= G2

jωC3 G1 +G2ð Þ =
1

jωC3 1 + R2
R1

� � .

The input impedance sensitivity, in respect of the conductance G1, has the
expression:

SZii ωð Þ
G1

= −
G1

G1 +G2
.

From the last expression of the complex input impedance an equivalent capacity
results as:

Ce =C3 1 +
R2

R1

� �
=10.10− 12 1 +

105

102

� �
=10.01.10− 9 F= 10.01 nF.

This capacitance is about a thousand times greater than capacity C3. This circuit
is used in integrated circuits technology to achieve high capacities. Due to minia-
turization, integrated circuit technology usually produces capacitors with low
capacities. The multiplication effect of the capacity is called the Miller effect for
capacities [20, 27].

Fig. 26 A circuit containing all types of controlled sources
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Example 6 The circuit containing all the types of controlled sources shown in
Fig. 26, has the graphs Gi

1, G
v
1

� �
shown in Fig. 27a and b. By performing the

contractions presented in paragraph 6, we obtain the reduced graphs Gi
1r, G

v
1r

� �
shown in Fig. 27c and d.

After operating the simplifications, the number of spanning trees in the two
reduced graphs becomes much smaller. If we make similar simplifications in the

graphs Gi
p, G

v
p

� �
, shown in Fig. 28a and b, we get the reduced graphs Gi

pr, G
v
pr

� �
from Fig. 28c and d. The results of these simplifications are shown in Table 6. The
number of trees in a graph has been calculated as it is presented in [20, 27].

We can observe a significant reduction in the number of trees in this simplifi-
cation phase.

Fig. 27 The complete graphs Gi
1, G

v
1

� �
and the reduced ones Gi

1r , G
v
1r

� �
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The command equations of the controlled sources are as follows:

j1 = 1 ⋅ v2, e12 = a12, 13v13 =R12G13v13 =
G13

G12
v13,

j14 = b14, 15i15 =G14R15i15 =
G14

G15
i15, e16 =R16i17 =

1
G16

i15.
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Fig. 28 The complete graphs Gi
p,G

v
p

� �
and the reduced ones Gi

pr ,G
v
pr

� �

Table 6 The results of the
simplification procedure

nt,Gi
1
= 360⇒ nt,Gi

1r
=28 nt,Gi

p
=126⇒ nt,Gi

pr
=28

nt,Gv
1
= 360⇒ nt,Gv

1r
=28 nt,Gv

p
=122⇒ nt,Gv

pr
=24
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The above simplifications do not affect the accuracy of the calculation, because
they are operated in the graphs structure, which simplifies it, maintaining their
equivalence.

If we consider C3 = C4 = C5 = C6 = C; G7 = G8 = G9 = G, then the voltage
gain factor Aoi has the following expression:

Aoi G12 G15 G10 ( ) + ( ) + 2. G16 C G 3. C G2 s 2. G16 G2 ( := 

( ) −  +  − 3. G15 C2 G12 G2 3. G15 C2 G13 G2 4. C2 G16 G12 G15 G 2. C2 G16 G13 G15 G s2 2. C G10 G15 G12 G16 G( + 

3. C G12 G15 G16 G2 3. G15 C G10 G13 G2 2. C G16 G13 G15 G2 C G10 G14 G12 G16 G +  +  −  + 

2. G16 C G13 G10 G15 G + ) s 2. G16 G13 G10 G15 G2 + )

For the numeric values of the parameters

C=1.0e04 F;G= 0.0001 S;G10 = 0.0002 S;G16 = 0.0001 S;

G14 = 2.0 S;G15 = 1.0 S;G13 = 4.0 S and G12 = 1.0 S.

Figure 29 shows the Bode diagram, and Fig. 30 presents the distribution of
poles and zeros in the complex plane.

Example 7 The analog circuit shown in Fig. 31 contains all four types of linear

controlled sources. The graph pairs Gi
1,G

v
1

� �
, and Gi

p,G
v
p

� �
, generated according to

the rules presented in Sect. 5, are given in Figs. 32 and 33, respectively.
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At the beginning, we generate the voltage gain Aoi_ex(s), and we evaluate it at the
nominal parameter values, keeping only the complex frequency s as a symbol. Then
we compute the transfer function sensitivity Aoi_ex (s, x) in respect of each
parameter x. The analysis is performed considering an initial sampling in the fre-
quency range of interest and checking the error in some intermediate points. The
circuit elements that have a small value of the relative sensitivity in this frequency
range can be eliminated. To this end both zero-admittance (element removal) and a
zero-impedance (contraction of the terminal nodes) can be used. The value of the
voltage gain in which some nodes/branches have been contracted/eliminated, Aoi

ap(s), is computed.
The magnitude and phase errors are given by:

ε Aoij j =
Aoi ex jωð Þj j− Aoi ap jωð Þ�� ��

Aoi ex jωð Þj j , ð65Þ

ΔϕAoi
=

arg Aoi ex jωð Þð Þ− arg Aoi ap jωð Þ� �
arg Aoi ex jωð Þð Þ . ð66Þ

For the circuit in Fig. 31 we find that only the capacitor C22 can be eliminated by
contraction of its nodes, because the voltage gain sensitivity is small in the fre-
quency range of interest, as it is shown in Fig. 34. In Fig. 35 the error variations in
the same frequency range of the transfer function magnitude and of the transfer
function phase are represented.

After the capacitor C22 removal, and applying the above procedure we obtain the

reduced graphs Gi
1r,G

v
1r

� �
and Gi

p,G
v
p

� �
. The tree number reduction of these

graphs is shown in Table 7.
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If the representation of the inductors and controlled sources based on the unity
gyrator model [3, 4], is used, the number of trees in the current graph increases at
least at 2821968 (612 times bigger than with our models). The running time to
enumerate these trees on an AMD XP 2700, 2.16 GHz, 512 MB of RAM is pre-
sented by comparison in Table 8.

The next step is to generate the numerator and the denominator expressions of
the transfer function in the decreasing order of the complex frequency powers, and
the coefficients of each complex frequency power in the decreasing order of their
values. In this way we can eliminate one by one, the terms with the smallest values,
if an error criteria for the magnitude and phase is verified over the frequency range.

The numerator of the voltage gain for the analog circuit in Fig. 31 has the
following full symbolic expression:

numerator C3 C18 L21 Y14 ( ) +  + L6 C10 L7 Y15 L5 L6 C10 Y15 L5 C10 L7 Y15 s4 := 
C3 C18 L21 Y14 ( ) +  + L7 C10 R17 Y15 C10 L7 R17 Y16 L5 C10 Y15 R17 s3 + 

C3 C18 L21 Y14 ( ) +  + L5 Y15 L7 Y15 Y11 R4 L7 Y15 s2 + ,

and the denominator contains 387 terms.
According to the above procedure of elimination we obtain finally a reduction in

the transfer function denominator from 387 to 31 terms.

Fig. 31 Circuit diagram
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In Fig. 36 the exact magnitude curve (502 terms in the denominator), that
without C22 (387 terms in the denominator), and the approximated magnitude (31
terms in the denominator) are represented, and in Fig. 37 we can see the phase
variation in the three cases. The maximum error of the transfer function magnitude
is 1.6%.

A new method to formulate the system of equations in order to compute
fully-symbolic small-signal characteristics of analog circuits by applying standard
NA and/or loop current method has been presented.

Fig. 32 Gi
1,G

v
1

� �
graphs
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Fig. 33 Gi
p,G

v
p

� �
graphs

Fig. 34 Sensitivity
magnitude function of C22

and frequency f
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Fig. 35 Errors in voltage
gain magnitude and in voltage
gain phase

Table 7 Tree number reduction of the graphs from Figs. 32 and 33

tGi
1
= 4608 tGv

1
= 3326 tGi

p
=4608 tGv

p
=3340

tGi
1r
=1792 tGv

1r
=209 tGi

pr
=1792 tGv

pr
=358

Table 8 Comparison of running time for enumerating the trees corresponding to the graphs from
Figs. 32 and 33

Number of trees Time for tree Enumeration [seconds]

Algorithm on level Char’s algorithm
4608 ≤ 1 μs ≤ 1 μs
2821968 1,781 4

Fig. 36 Variation of the
voltage gain magnitude in the
frequency range
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7 Conclusions

By modelling electronic devices with equivalent circuits containing nullors and by
associating to the analyzed circuit two graphs: one corresponding to the current one
—Gi, necessary to formulate the KCL, and one corresponding to the voltage one—
Gv, necessary to formulate the KVL, the nodal equations and the loop current
equations can be formulated very simple for any non-reciprocal circuit. The two
graphs have the same number of branches, nodes and independent loops, but they
differ by their different positions they occupy in the two graphs, by the branches
used to simulate the controlled sources and, in general, by the branches corre-
sponding to the equivalent circuits containing nullors used to model the electronic
devices. The characteristics of the branches are written using the voltages from the
voltage graph and the currents from the current graph.

In this chapter, we propose a simple modelling procedure of the controlled
sources in the two graphs. The equivalent circuits based on the functional schemes
with nullors model both the controlling port and the controlled one by admittances
placed in different positions in the two graphs. The two graphs obtained in this way
have the same number of branches, nodes, and loops. A new method to formulate
the system of equations in order to compute fully-symbolic small-signal charac-
teristics of analog circuits by applying standard NA and/or loop current method has
been presented.

A set of rules for generating and using the two graphs is stated, and the gen-
eralization of the topological formula to generate all network functions is proved.
These rules are applicable to a linear circuit containing: all four types of linear
controlled sources, resistors, inductors, capacitors, nullors (for ideal opamps

Fig. 37 Phase variation in
the frequency range
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operating in the linear mode), and any multi-terminal or multiport circuit element
having an equivalent scheme made up only by two-terminal elements and con-
trolled sources.

The models with nullors for all active electronic devices are more effective for
the optimization of design and simulation time during the analysis process. From
this point of view, the nullors proved already their efficiency in the active devices
modelling. In the models based on nullors, the parasitic elements can be included to
analyze their contribution to the analog circuit response. All the four controlled
sources can also be represented with equivalent circuits using nullor elements.
Consequently, the nullors are very useful for the analog circuits modelling because
the circuit topology can be described using only two-terminal components like
resistors, capacitors, nullators, norators, independent and controlled sources. Con-
sidering that the model should be developed in the simplest manner and the
accuracy of the circuit behaviour simulation must be in acceptable limits, this
chapter will show the problems related to the small-signal models of the active
devices modelled with nullors.

Unlike other similar approaches our approach does not introduce supplementary
branches and nodes with respect to initial circuit. Moreover, the number of nodes in
the two graphs is smaller than in the initial circuit with the number of CCVS.
Modelling the controlled sources by admittances allows an efficient generation of
the network functions via the generalized topological formula with homogeneous
parameters. This formula works for linear nonreciprocal networks containing any
type of controlled sources. The rules for the automated generation of the two graph
pairs using the controlled source models proposed in this chapter and a represen-
tation on levels of the graphs were implemented in a very fast program for the
symbolic transfer function computation.

The generalized topological formula can generate any network function in a full
symbolic form for very large-scale analog circuits because the numerator and the
denominator terms are generated one by one and stored as lists. This gives the
superiority of the topological approach in contrast to the determinant method that
cannot provide a full symbolic form because of the symbolic manipulator that
cannot solve huge systems of algebraic equations.

The list form in which the numerator and the denominator are obtained also
allows performing the simplification after generation in a simple manner.

Examples have been introduced to show the usefulness of the nullor-based
models and the potential of the proposed approach for the analysis and design of the
analog linear/nonlinear circuits.

From two-port and four-terminal network point of view, all the proposed models
have been generated by taking into account the impedance levels associated to the
input-output terminals along with the gain-equations of the active devices. As one
can see throughout the chapter, the nullor-based models are not complex and they
can quickly be included into symbolic analyzers. Further, nullor-based active
device models by including parasitic elements, has also been introduced. Further-
more, a novel method to formulate the system of equations in order to compute
fully-symbolic small-signal characteristics of analog circuits by applying only
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standard NA has been presented. Thus, by using the relationships of nullators and
norators and by manipulating their data-structures, the admittance matrix can
quickly be constructed, avoiding waste of CPU-time and memory in the formula-
tion process. Examples have been introduced to show the usefulness of the
nullor-based models and the potentiality of the proposed formulation method
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Symbolic Sensitivity Analysis Enhanced
by Nullor Model and Modified Coates
Flow Graph

Irina Asenova and Franciszek Balik

Abstract In this chapter it was shown, how such the pathological elements like
nullors can be exploited to symbolic sensitivity analysis enhancement. A method of
first-, second-order and multiparameter symbolic sensitivity determination based on
the nullor model of active devices and modified Coates flow graph is presented. The
method performs symbolic sensitivity analysis with respect to various circuit
parameters appeared not only at one location in the nullor model, respectively in the
modified Coates flow graph. Illustrative examples on symbolic sensitivity analysis
are given. In symbolic sensitivity analysis very important role plays the number of
additionally generated expressions and in consequence additional number of
arithmetical operations. The main drawback of some methods based on the adjoint
graph or on the two-graph technique, i.e. the necessity to multiply analyze the
corresponding graph, is avoided. Advantages of the method suggested are that, the
matrix inversion is not required and due to the modified Coates graph this method is
significantly simplified. Simplifications of the method introduced lead to the sig-
nificant reduction of the final symbolic expressions without violation of accuracy.
This simplification method can be considered as SBG–type (Simplification Before
Generation) and has an important impact on symbolic analysis. In the chapter, it
was shown that the presented method is more effective than the transimpedance
method taking the number of arithmetical operations and the circuit insight into
consideration. Comparison results for the multiparameter sensitivity calculations of
the voltage transfer function for a fourth-order low pass filter and a second-order
high pass filter are presented.
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1 Introduction

Sensitivity analysis plays an important role in determining the critical design
variables in analog circuit analysis and synthesis [1, 2]. Symbolic analysis opens up
new possibilities for the development of computer-aided design tools that can
analyze an analog circuit topology and automatically size the components for a
given set of specifications. Symbolic circuit analysis, its advantages and differences
with numerical methods and first symbolic simulation is describes in [3]. A sym-
bolic simulator performs the same function as the designers traditionally do by hand
analysis. The difference is that the analysis is now much faster done by a computer,
and does not make many errors [4]. Sensitivity analysis is used in a wide range of
areas such as prediction and evaluation of change in the characteristics of a network
due to the change in the parameters, and optimization design of the network [5].
The Modified Coates Flow Graph (MCFG) [6] allows to simplify the analysis of
first-order sensitivity on the base of some network partial transfer functions [7, 8].
According to the classical formulae, the calculation of the first- and second-order
transfer function sensitivities needs in the first place to find the corresponding
derivatives. This is the main problem sensitivity analysis and its investigation is an
object of some special methods, described in the literature [9, 10]. Once the circuit
equations are derived, the relevant derivatives of each equation can be computed
symbolically and then the differential sensitivity can be calculated using the chain
rule of differentiation. This solution was proposed first in [11] and was extended in
[12, 13] by representing a sequence of expressions (SoE) as directed acyclic graph
(DAG) and providing an algorithm for analyzing the DAG. Although the method is
conceptually simple it does not always generate the optimal sequence [13]. This is
due to the fact that the number of additional expressions, required for sensitivity
calculations, heavily depends on the position of the symbol with respect to which
the derivatives are calculated. The Transimpedance (TI) method overcomes these
drawbacks [2]. Another additional property of the Transimpedance method is that it
can be easily used in symbolic large-change multiparameter sensitivity analysis
[14]. The main drawback of some methods based on the adjoint graph is the
necessity to analyze the corresponding graph twice [15] and the suggested method
gets over it. Coates flow graph (CFG) is useful and often used in the network theory
and in the linear system theory [16]. On the other hand, the main factor that plays
important meaning during the analysis of an active electrical network is offering a
simplified basis that must present all its active elements. Authors in the paper [17]
proved a theorem that determinates the basis consisted by passive elements and
only one active element, i.e. a nullor. It is used as a universal active element for an
equivalent representation of active networks [18–21] for instance two-ports active
networks, depended sources, transistors, amplifiers and etc. However, the
input-output resistance and capacitance, gain, input offset voltage or current and
the frequency response are all finite. This is the reason to include these effects in the
nullor-based models [22], chap. 3. In this manner, any analog network can be
modeled with nullors and impedances, and the equivalence between them is
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introduced in [22–24]. The nullor equivalents of the pathological elements voltage
mirror and current mirror and their application to symbolic analysis were introduced
in [25]. In this chapter, the equivalent nullor model of the active circuit is a starting
point for the sensitivity analysis. On the base of nullor models using some network
partial transfer functions, a method for the first-order sensitivity analysis of active
networks is describe in [26]. This method is improved and simplified in [27, 28]
using the modified Coates flow graph [29]. An algorithm and a computer program
“HoneySen” illustrate the method proposed [28]. The symbolic equations generated
by symbolic analysis help not only understand the first-order functional behavioral
of an analog circuit, but also provide insight into second-order effects in the circuit.
In some network optimization schemes, it is desirable to know the dependence of
first-order sensitivity on the elements of the network [6, 30]. In [31–33] the nullor
model is combined with the MCFG aiming at the calculation of the multiparameter
sensitivity (MS) in a symbolic form. The sequence of numbering the nodes in the
equivalent nullor model is very important for the symbolic sensitivity analysis and
for the input data of the special software developed. Sometimes after the nullor
equivalent transformations a nullor model with some particular connections
between its elements can be gotten. In the presented chapter they are considered and
the right sequence of numbering of the nodes in the nullor model is presented, for
instance:

• when a nullator or more nullators are connected with the source vertex, i.e. the
source vertex is an isolated one in the equivalent nullor model;

• when a norator is connected between two nullators;
• when a norator or more norators are connected with the source vertex;
• when a norator and a nullator are connected with the source vertex;
• when norators have a common node in the equivalent nullor network.

2 Nullor-Modified Coates Flow Graph Symbolic
Sensitivity Analysis Method

The nullator and norator [20] are elements that could facilitate the symbolic sen-
sitivity analysis of active circuits by applying nodal analysis (NA). As a result of
the combination between nullor representation and modified Coates flow graph
(FG), an expression for a first-, second order and multiparameter symbolic sensi-
tivity analysis is obtained.
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2.1 Composing of an Equivalent Nullor Model

This section analyses a case when more than one parameter is likely to vary in a
given circuit. Suppose that p parameters exist having very small fractional pertur-
bations from their nominal values. According to [22–25] an equivalent nullor model
N is composed by a designer. Let us assume that there are m + n + R + 1 nodes,
where R is the number of the nullors in N. In accordance with [26, 28] the nodes,
numbered from 1 to m represent network sources, nodes from m + 1 to m + n are
inner nodes, that all or some of them can be considered as outgoing nodes, and the
node m + n + 1 is the common node for the nullor model. The sequence of the
nodes in the nullor model is determined as follows:

• Incoming (sources) nodes—1,…, m;
• Outgoing nodes as follows:

– p nodes, connected to edges with passive elements;
– Ne nodes, connected with the ground by a norator;
– 2 Nf nodes, connected with Nf norators;
– Nfr nodes, connected with a norator that is situated between 2 nodes, one of

them is connected with a nullator;
– n′f nodes that are one of the two nodes, connected with the nullators;

• R ¼ nf þ ne nodes that are removed as follows:

– nf nodes, corresponding to the second node, connected with the nullators;
– ne nodes, connected with the nullators grounded.

Once the nullor model is established, a modification of the initial modified
Coates flow graph, representing the equivalent nullor model, is implemented. This
modification, performed according to the algorithm described in [27], reflects the
nullor influence on the network transfer functions, reduces the nullor model com-
plexity, and the admittance matrix respectively. Due to this modification, R vertices
from the initial modified Coates flow graph are removed. These vertices (nodes in
the nullor model) correspond to the number of nullators and they are strictly
determined, i.e. they are the last ones in the sequence of the numbering. In this
manner, it is very clear between which two nodes (vertices) the transfer function is
determined after the reduction of the nullor model complexity.

The reduction is implemented, and some transformations of the initial modified
Coates flow graph are performed due to the rules described in [22] chap. 5.

The validity of the rules for modification of the initial flow graph is verified by
comparison of the reduced admittance matrix with the one obtained using the nullor
properties described in [20].

Sometimes after the nullor equivalent transformations [18] a nullor model with
some special connections between its elements can be gotten. In the presented
section they are considered and the right sequence of numbering of the nodes in the
nullor model is shown.
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2.1.1 A Nullator or More Nullators Are Connected with the Source
Node

In this case the source node is appeared as an isolated one in the equivalent nullor
model.

The sequence of the numbering of the nodes in N is determined as follows:

• incoming(sources) nodes—1,…, m;
• outgoing nodes—m + 1,…, m + n as follows:

– p nodes, connected to edges with passive elements;
– Ne nodes, connected to the ground by means of a norator;
– 2 Nf nodes, connected only with Nf norators;
– Nfr nodes, connected to a norator that is situated between two nodes, one of

them is connected to a nullator;
– n′f nodes (that is one of the two nodes) connected with the nullators. When a

nullator or more nullators are connected with the source node, this node is
missed at that point, because the source node is already numbered;

• R ¼ nf þ ne nodes that are removed, as follows:

– nf nodes, corresponding to the second node, connected to a nullator;
– ne nodes, connected to grounded nullators.

When a nullator or more nullators are connected with the source node in the
equivalent nullor model, then in the income data for the algorithm and for the
computer program “HoneySen” the source node has to be connected with
itself.

Example 2.1.1 Let us show the numbering of the nodes for the impedance con-
verter shown in Fig. 1 and find its MCFG. The nodes, corresponding to the vertices
in the initial CFG that dropout, have numbers 4 and 5. An equivalent nullor model
N can be composed and it is shown in Fig. 2.

An initial form of the modified Coates signal flow graph for the passive part of
the model is presented in Fig. 3. Following the sequence of modification in [22]
Chap. 5, and the notes written in Sect. 2.1.1, we obtain MCFG shown in Fig. 4.

Fig. 1 Impedance converter
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2.1.2 A Norator Is Connected Between Two Nullators
in the Equivalent Nullor Model

The sequence of the numbering of the nodes in N is determined as the above
sequence with the additional difference, namely:

– n′f outgoing nodes, connected with the norator situated between two nodes,
connected with nullators. This connection is considered only as two nullators in
the equivalent nullor model. Then the common nodes between the norator and
both of the nullators are chosen for outgoing ones.

Example 2.1.2 Let us find the Modified Coates flow graph for the equivalent nullor
model shown in Fig. 5.

Fig. 2 Equivalent nullor
model N

Fig. 3 Initial Coates flow
graph

Fig. 4 Modified Coates flow
graph

154 I. Asenova and F. Balik



According to the sequence of numbering, for the this special case, m ¼ 1, p ¼ 0,
Ne ¼ 1, 2Nf ¼ 0, Nfr ¼ 0, n′f ¼ 2. As can be seen there are four outgoing nodes and
three nodes, 5, 6 and 7, corresponding to the vertices in the initial Coates flow
graph, that dropout.

The initial Coates flow graph for the passive part of the network follows from
Fig. 5. It is shown in Fig. 6. Following the sequence of modification given in [22]
we obtain equivalently transformed MCFG presented in Fig. 7.

2.1.3 A Norator or More Norators Are Connected with the Source
Node

Example 2.1.3 Let us consider a converter of negative immitances (Fig. 8) with its
equivalent nullor model N, shown in Fig. 9.

As can be seen a norator is connected with the source vertex in N. Important and
at the same time, very simple act for the sensitivity determination is that the source

Fig. 5 Equivalent nullor
model

Fig. 6 Initial Coates flow
graph
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vertex in the initial CFG, shown in Fig. 10, has to be divided [23] to two vertices
(Fig. 11), connected with a transmission coefficient t21 ¼ G3 ¼ 1. Later the
sequence of the nodes is determined as it is defined in [26] (Fig. 12).

Fig. 7 Modified Coates flow
graph

Fig. 8 Converter of negative
immitances

Fig. 9 Equivalent nullor
model
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2.1.4 A Norator and a Nullator Are Connected with the Source Node

Then:

• the nullator is considered as one, connected between a pair nodes;
• the norator is considered as a norator, connected between a pair nodes in the

nullor model, when one of the nodes is incident of the nullator.

Example 2.1.4 For an equivalent nullor model presented in Fig. 13, in the income
data for the algorithm and the computer program according to [26] has to be
written:

Fig. 10 Initial Coates FG

Fig. 11 Initial Coates FG
with a source-vertex divided

Fig. 12 Modified Coates
flow graph
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• a number of the outgoing nodes: 2 nodes, as follows—1, 2;
• pairs nodes, connected with a nullator: 2 pairs, as follows (1, 3) and (2, 4);
• a norator between pair nodes, one of them is connected with a nullator: 2

norators between two pair nodes, as follows (1, 4) and (2, 3).

Then, m ¼ 1, p ¼ 0, Ne ¼ 0, 2Nf ¼ 0, Nfr ¼ 2, n′f ¼ 2.
According to the Sect. 2.1.1 the source vertex has to be connected with itself.

Both of Coates FG’s, the initial and the modified one, are shown in Fig. 14a, b,
respectively.

2.1.5 Norators Have a Common Node in the Equivalent Nullor Model

For this case has to be taken into account: i. a norator connected with the source
node, considered in Sect. 2.1.3; ii. the pairs of the nodes connected with the
norators must be written in ascending order in the income data.

Example 2.1.5 For this case an equivalent nullor model N of a converter of pos-
itive immitances is considered and shown in Fig. 15.

The initial form of the MCFG for the passive part of the network is shown in
Fig. 16.

Fig. 13 Equivalent nullor
model

Fig. 14 Initial and modified
Coates FG
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According to Sect. 2.1.3 for t31 ¼ 1 and following the sequence of modification
given in [22] chap. 5, we obtain MCFG in Fig. 17.

The correctness of the method considered is confirmed by comparison of the
symbolic results for transfer function sensitivity analysis obtained by the method
described in [20].

Fig. 15 Equivalent nullor model of a converter of positive immitances

Fig. 16 Initial Coates FG

Fig. 17 Modified Coates FG
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2.2 Determination of the Partial Transfer Functions
and the First-, Second-Order and Multiparameter
Symbolic Sensitivity by Nullor Model

Voltage transfer function Tba sð Þ is under consideration. Then normalized first- and
second-order sensitivity, STbaY1 and STbaY1Y2 , of rational transfer function Tba sð Þ with
respect to circuit parameters Y1 sð Þ and Y2 sð Þ are respectively [7, 8]:

STba Sð Þ
Y1 Sð Þ ¼ Y1 sð Þ

Tba sð Þ
∂Tba Sð Þ
∂Yji Sð Þ

dYji Sð Þ
dY1 Sð Þ ð1Þ

STba Sð Þ
Y1 Sð ÞY2 Sð Þ ¼

Y1 sð ÞY2 sð Þ
Tba sð Þ

∂
2Tba Sð Þ

∂Y1 Sð Þ∂Y2 Sð Þ ; ð2Þ

where

∂
2Tba Sð Þ

∂Y1 Sð Þ∂Y2 Sð Þ ¼
∂Tia Sð Þ
∂Ykl Sð Þ

dYkl Sð Þ
dY2 Sð Þ Tbj Sð Þþ ∂Tbj Sð Þ

∂Ykl Sð Þ
dYkl Sð Þ
dY2 Sð Þ Tia Sð Þ; ð3Þ

Yji sð Þ ¼ aji sð Þþ Y1 sð Þ and Ykl sð Þ ¼ akl sð Þþ Y2 sð Þ are edges of the MCFG and
elements of reduced admittance matrix Y(s); aji Sð Þ and akl Sð Þ contain other network
parameters, for a; i; l ¼ 1; . . . ;mþ n; b; j; k ¼ mþ 1; . . . ;mþ n.

The MCFG allows us to simplify the sensitivity analysis on the base of certain
network partial transfer functions. According to [7, 8] derivatives ∂Tba Sð Þ�∂Yji Sð Þ
in (1), ∂Tia Sð Þ=∂Ykl Sð Þ and ∂Tbj Sð Þ�∂Ykl Sð Þ in (3) are as follow:

∂Tba Sð Þ�∂Yji Sð Þ ¼ Tia Sð ÞTbj Sð Þ
∂Tia Sð Þ=∂Ykl Sð Þ ¼ Tla Sð ÞTik Sð Þ
∂Tbj Sð Þ�∂Ykl Sð Þ ¼ Tlj Sð ÞTbk Sð Þ:

ð4Þ

When parameters Y1 Sð Þ and Y2 Sð Þ simultaneously participate in more then one
edge in the modified Coates flow graph, respectively in the reduced admittance
matrix Y(s), the first- and second-order symbolic sensitivities are respectively:

STba Sð Þ
Y1 Sð Þ ¼ Y1 sð Þ

Tba sð Þ∑ji
Tia Sð ÞTbj Sð Þ dYji Sð Þ

dY1 Sð Þ ð5Þ

STba Sð Þ
Y1 Sð ÞY2 Sð Þ ¼

Y1 sð ÞY2 sð Þ
Tba sð Þ ∑

ji
Tbj ∑

kl
TlaTik

dYkl Sð Þ
dY2 Sð Þ þ ∑

ji
Tia ∑

kl
TljTbk

dYkl Sð Þ
dY2 Sð Þ

" #
ð6Þ
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or

STba Sð Þ
Y1 Sð Þ ¼ Y1 sð Þ

ΔbaΔ
∑
j;i
ΔiaΔbj

dYji Sð Þ
dY1 Sð Þ ð7Þ

STba Sð Þ
Y1 Sð ÞY2 Sð Þ ¼

Y1 sð ÞY2 sð Þ
ΔbaΔ2 : ∑

ji
Δbj ∑

kl
ΔlaΔik

dYkl Sð Þ
dY2 Sð Þ þ ∑

ji
Δia ∑

kl
ΔljΔbk

dYkl Sð Þ
dY2 Sð Þ

" #
:

ð8Þ

Determinants Δba, Δia, Δla, and Δbj, Δbk, Δik, Δlj, and Δ can be obtained by the
modified Coates flow graph and its sub-graphs GMC

kl , GMC
kj and GMC

0 , respectively, as
follows:

• GMC
0 is obtained by GMC due to the removal of all outgoing edges from the

vertex-source;
• GMC

k1 , for k ¼ 2; . . . ; n, is obtained from GMC due to the removal of all outgoing
edges, including the self-loop in the vertex k with a signal Vk Sð Þ and moving
the vertex-source into the vertex k. As a result follows Yjk ¼ 0, Ykk ¼ 0 and the
originals of the outgoing edges from the vertex-source are moved toward the
vertex k;

• GMC
kj is obtained from GMC

0 by removing all outgoing edges, including the
self-loop, from the vertex k, as well as by removing all incoming edges,
including the self-loop, from the vertex j and must be added an edge Yjk ¼ �1.

Consequently

Δkq ¼ ∑
R

Q¼1
�1ð ÞNQPQ ð9Þ

where

NQ—is the number of the loops in the Q-th separation of loops in the sub-graph;
R—the number of separations from loops in the sub-graph;

PQ—the product of loop transmission coefficients in Q-th separation of loops in
the sub-graph. Every separation of loops must be incident to all graph vertices and
every one vertex must be incident with only one incoming edge and one outgoing
edge.

The method suggested in this chapter performs multiparameter sensitivity
analysis with respect to various circuit parameters too [31]. Suppose that
p parameters exist having very small fractional perturbations from their nominal
values. Magnitude of multiparameter symbolic sensitivity MST of transfer function
Tba Sð Þ is
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MST ¼ ∑
p

i¼1
STYi Sð Þ
��� ��� ð10Þ

The sequence of the main steps of the suggested method of first-, second-order
and multiparameter symbolic sensitivity analysis is as follows:

1. Compose the equivalent nullor circuit of the active network.
2. Get the information about the network function required and the elements with

respect to which the sensitivities are to be calculated. Determine the location of
the nullators and norators [31].

3. Perform symbolic reduction of nullor circuit complexity (initial modified Coates
flow graph) using the rules for transformation in order to reflect the nullor effect
[22], chap. 5.

4. Calculate the partial transfer functions and the relevant determinants of the
sub-graphs.

5. Calculate the first-order symbolic sensitivity of the transfer function by applying
(7).

6. Calculate the second-order symbolic sensitivity of the transfer function by
applying (8).

7. Calculate the multiparameter symbolic sensitivity of the transfer function by
applying (10).
The method suggested automatically performs the rules of modification, gen-
erates the symbolic admittance reduced matrix, determinants, partial transfer
functions, first-, second-order and multiparameter symbolic sensitivity with
respect to parameters in the circuit.

2.3 Examples

In this section, examples concerning the symbolic analysis of analog circuits are
presented to show that the proposed symbolic method is applicable to first-, second
order and multiparameter sensitivity analysis.

Example 2.3.1 A circuit example, taken from [9] is shown in Fig. 18 to illustrate
the proposed method. The first- and second-order symbolic sensitivities of the
transfer function T Sð Þ ¼ U3=U1 with respect to parameters G4 and sC2 are calcu-
lated. Multiparameter symbolic sensitivity MST31 is obtained too. The equivalent
nullor model N is composed and shown in Fig. 19.

An initial form of the MCFG for the passive part of the network is shown in
Fig. 20a. The node corresponding to the vertex in the initial flow graph that is
removed has number 5.

After applying the rules of modification, the modified Coates flow graph follows.
It is represented in Fig. 20b.
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We suppose that voltage transfer function T31 is under consideration. When
Y1 Sð Þ ¼ G4 and Y2 Sð Þ ¼ sC2 from the MCFG (Fig. 20b) follows: Y21 ¼ G4,
Y22 ¼ G4 þ sC2 þ a22, Y23 ¼ �sC2, for a22 ¼ G2 þ sC1.

For determination of the first-order sensitivities four sub-graphs and their
solutions are required: Δ21, Δ31, Δ32 are obtained using sub-graphs GMC

21 , GMC
31 and

GMC
32 , respectively, shown in Fig. 21. The determinant Δ together with the possible

combinations of loops (1F’s) and their products are obtained using sub-graph GMC
0 ,

shown in Fig. 22.

Fig. 18 The STAR network

Fig. 19 The nullor model of the STAR network

Fig. 20 Initial and modified Coates flow graphs

Symbolic Sensitivity Analysis … 163



D21=Y44*(G4*G6-G1*sC2)-G2*G4*Y55-G2*G1*sC1, 
where Y44=G2+G7+sC1; Y55=G1+G3+G6

D22=-Y44*G6+Y55*G2 

D31= -Y22*G1*Y44+sC1*sC1*G1+sC1*Y55*G4 

D32=-sC1*Y55 

Fig. 21 Sub-graphs GMC
21 , GMC

22 , GMC
31 , GMC

32 and their 1F’s
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Taking into account (5) the first-order symbolic sensitivities ST31G4
and ST31sC2

are
respectively:

ST31G4
¼ G4

T31

∂T31
∂G4

¼ G4

T31

∂T31
∂Y21

dY21
dG4

þ ∂T31
∂Y22

dY22
dG4

� �

¼ G4

T31
T11T32 þ T21T32ð Þ ¼ G4

Δ31
1þ Δ21

Δ

� �
Δ32

ð11Þ

ST31sC2
¼ sC2

T31

∂T31
∂sC2

¼ sC2

T31

∂T31
∂Y22

dY22
dsC2

þ ∂T31
∂Y23

dY23
dsC2

� �

¼ sC2

T31
T21T32 � T31T32ð Þ ¼ sC2

Δ31Δ
Δ21 � Δ31ð ÞΔ32:

ð12Þ

Taking into account (6) and (8) the second-order symbolic sensitivity ST31G4;sC2
is

respectively:

ST31G4sC2
¼ G4sC2

T31
: T21T22 � T31T22ð ÞT32 þ T22T32 � T32T32ð Þ T11 þ T21ð Þ½ �

ð13Þ

ST31G4sC2
¼ G4sC2

Δ31Δ

:
Δ21 � Δ31ð ÞΔ22Δ32

Δ
þ Δ22 � Δ32ð ÞΔ32 1þ Δ21

Δ

� �� �
:

ð14Þ

For determination of the second-order sensitivity is required only one sub-graph
GMC

22 more, shown in Fig. 21.

D=Y22*G6*Y44-Y22*G2*Y55-sC1*sC1*G6-sC1*sC2*Y55 

Fig. 22 Sub-graph GMC
0 and its 1F’s
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According to (10) the method suggested calculates the magnitude of multipa-
rameter sensitivity MST31 of transfer function T31 with respect to all parameters:

MST31 ¼ ∑
7

i¼1
ST31Gi

�� ��þ ∑
2

i¼1
ST31sCi

�� �� ð15Þ

where

ST31G1
¼ G1

T31

∂T31
∂G1

¼ G1

Δ31
1þ Δ41

Δ

� �
Δ33

ST31G2
¼ G2

T31

∂T31
∂G2

¼ G1

Δ31Δ
Δ41 � Δ31ð ÞΔ33

ST31G3
¼ G3

T31

∂T31
∂G3

¼ G3

Δ31Δ
Δ41Δ33

ST31G6
¼ G6

T31

∂T31
∂G6

¼ G6

Δ31Δ
Δ41 � Δ31ð ÞΔ33

ST31G7
¼ G7

T31

∂T31
∂G7

¼ G7

Δ31Δ
Δ41Δ34

ST31sC1
¼ sC1

T31

∂T31
∂sC1

¼ sC1

Δ31Δ
Δ21 � Δ41ð Þ Δ32 � Δ34ð Þ:

ð16Þ

For determination of multiparameter sensitivity are required seven sub-graphs
(GMC

21 , GMC
31 , GMC

41 , GMC
32 ,GMC

33 , GMC
34 and GMC

0 ).

Example 2.3.2 Let us find the multiparameter sensitivity of the voltage transfer
function T51ðsÞ ¼ UoðsÞ=UiðsÞ ¼ U5=U1 for the fourth-order low-pass filter,
shown in Fig. 23a. Its equivalent nullor model is presented in Fig. 23b. The initial
form of the MCFG is given in Fig. 24a. Considering the sequence of numbering
[31], vertices (nodes) 8 and 9 in the initial flow graph (equivalent nullor model) are
removed. These nodes are strictly determined in the input data. They correspond to
the last ones in the sequence of numbering the nodes. According to rules 1, 3 and 5
of transformation of the initial flow graph described in [22], chap. 5, MCFG follows
and it is shown in Fig. 24b.

Having in mind (10) MST ¼ ∑
p

i¼1
STYi sð Þ the algebraic value of multiparameter

symbolic sensitivity is

MST51 ¼ ST51g þ ST51G þ ∑
2

i¼1
ST51Gi

þ ∑
2

i¼1
ST51sCi

; ð17Þ
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where

ST51g ¼ g
T51

∂T51
∂g

¼ g
T51

T11T52 þ 2T21T52 � T21T54 � T61T52 þ T61T54 þ T61T56ð Þ

ST51G ¼ G
T51

∂T51
∂G

¼ G
T51

T31T53 � T41T53 � T71T53 � T31T55 þ T71T55 þ T71T57ð Þ

ST51G1
¼ G1

T51

∂T51
∂G1

¼ G1

T51
�T41T56 þ T61T56ð Þ

ST51G2
¼ G2

T51

∂T51
∂G2

¼ G2

T51
�T51T57 þ T71T57ð Þ

ST51sC1
¼ sC1

T51

∂T51
∂sC1

¼ sC1

T51
T21T52 þ T41T52 þ T61T54ð Þ

ST51sC2
¼ sC2

T51

∂T51
∂sC2

¼ sC2

T51
T31T53 þ T51T53 þ T71T55ð Þ

ð18Þ

Partial transfer functions T21, T31, T41, T51, T61, T71, T52, T53, T54, T55, T56, T57
and determinants D21, D31, D41, DT51, D61, D71, D52, D53, D54, D55, D56,
D57 are obtained using sub-graphs GMC

21 , G
MC
31 , G

MC
41 , GMC

51 , GMC
61 , GMC

71 , GMC
52 , GMC

53 ,
GMC

54 , GMC
55 , GMC

56 , GMC
57 and GMC

0 , respectively.

Fig. 23 Fourth-order low-pass filter (a) its equivalent nullor model (b)

Symbolic Sensitivity Analysis … 167



Determinant D together with the possible combinations of loops Ri, for i ¼
1; . . . ; 9 and their products (1F’s) obtained using sub-graph GMC

0 are presented in
[32]. The generated expressions can be easily transformed to the nested form
(computer printout) and they are presented in Sect. 3. All partial transfer functions
determined are: T21 = D21/D; T31 = D31/D; T41 = D41/D; T51 = D51/D;
T61 = D61/D; T71 = D71/D; T52 = D52/D; T53 = D53/D; T54 = D54/D;
T55 = D55/D; T56 = D56/D; T57 = D57/D.

Example 2.3.3 Let us find the multiparameter sensitivity of the voltage transfer
function T sð Þ ¼ Uo sð Þ=Ui sð Þ ¼ U3=U1 for the second-order high-pass filter shown
in Fig. 25a. The equivalent nullor model and its modified Coates flow graph are
presented in Fig. 25b and c, respectively.

The reduction of the nullor model complexity is related with removing of two
nodes (R = 2). The symbolic result for the algebraic value of the multiparameter
symbolic sensitivity with respect to all parameters is

MS ¼ ðG2 � G1 � G4 � �sC2ð Þð ÞþG3 � � sC2 � G1 � �sC2ð Þð Þð Þþ
þG4 � � sC2 � G1 � G2þ sC1ð Þð Þð Þþ sC1 � G1 � G4 � ð�sC2Þ
þ sC2 � G1 � G4 � G2þ sC1ð ÞÞ= sC2 � G1 � G2þ sC1ð Þ � G4� sC2 � G3ð Þð Þ � 1

ð19Þ

Fig. 24 Initial and modified Coates flow graphs
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Fig. 25 a Second-order high-pass filter; b its equivalent nullor model; c modified Coates flow
graph
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The magnitude of the multiparameter sensitivities MSk of the transfer function
with respect to all parameters for f ¼ 1000 Hz is obtained by the expression

MSk ¼ ∑
6

i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Re Sið Þk
	 
2 þ Im Sið Þk

	 
2q
; ð20Þ

where Si is the sensitivity with respect to parameter i.

3 SANMCFG Method Versus TI

In symbolic sensitivity analysis very important role plays the number of addi-
tionally generated expressions and in consequence additional number of arith-
metical operations. Simplifications of the modified Coates flow graph introduced in
this chapter lead to the significant reduction of the final symbolic expressions
without violation of accuracy because of that this contribution is very important.
This simplification method can be considered as SBG–type (Simplification Before
Generation) and has significant impact on symbolic sensitivity analysis. Such
simplification method is not known in literature devoted to symbolic sensitivity
analysis [2, 11, 13]. In this section we compare the number of arithmetical oper-
ations and the circuit insight of the method presented with the two-port tran-
simpedance method, which has been already related to other symbolic sensitivity
analysis methods [2].

3.1 Comparison of Arithmetical Operations

In this section we will compare the number of arithmetical operations of the nulor
model and modified Coates flow graph method (SANMCFG) with the number of
arithmetical operations of the two-port transimpedance method while calculating
the multiparameter sensitivity. We will take the following assumptions: each long
arithmetical operation such as multiplication and division denoted as M/D (or
Mults) corresponds to 6 flops and each short arithmetical operation such as addition
and subtraction denoted as A/S (or Adds) corresponds to 2 flops. Let the sum of all
flops will be the arithmetical effectiveness measure. Basing on this measure we will
compare our method denoted as SANMCFG with the transimpedance method
denoted as TI. The comparison tests were performed for:

• fourth-order LP filter circuit presented in this chapter as Example 2.3.2 and
shown in Fig. 23a;

• second-order HP filter, presented in Fig. 25.
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The manner, in which the number of flops was calculated, is shown in the listing
below. This listing concerns the fourth-order LP filter (computer printout):

MS = ((S1 + S2 + S3 + S4 + S5 + S6)/(D))/(D51); % Mults:2, Adds:5,
Flops:22,

where:
D51 = (G^2)*(g^2)*(Y66)*(Y77); %Mults: 5, Flops: 30
D = (((((((((Y22)*(Y33)*G1*(Y46)*G2*(Y57))-((Y22)*G*sC2*G1*(Y46)*(Y

77)))-((Y22)*G2*(G^2)*G1*(Y46)))- (g*sC1*(Y33)*G2*(Y57)*(Y66))) +(g*s
C1*G*sC2*(Y66)*(Y77))) + (g*sC1*G2*(G^2)*(Y66)))-(G1*(g^2)*(Y33)*G2*
(Y57))) + (G1*(g^2)*G*sC2*(Y77))) + G1*(g^2)*G2*(G^2);%Mults: 45, Adds:
8, Flops: 286

s = j*2*π*f; % f – frequency, Mults: 2, Flops: 12
sC1 = s*C1; sC2 = s*C2; % Mults: 2, Flops: 12
Y22 = 2 g + sC1; Y33 = 2G + sC2; Y46 = g+sC1; Y57 = G+sC2; Y77 = G

+G2; Y66 = g+G1; % Adds: 6, Flops: 12
% Total SM Mults: 56, Adds: 19, Flops: 374
S1 = (g) * (D*D52 + (2*D21-D61)*D52 + (- D21 + D61)*D54 + D61*D56);

% Mults:6, Adds:5, Flops: 46, % Total S1 Mults: 97, Adds: 18, Flops: 618
S2 = …; Flops: 494, S3 = …; Flops: 252, S4 = …; Flops: 228, S5 = …; Flops:

352, S6 = …; Flops: 264,

Table 1 Comparison of TI and SANMCFG arithmetical operation measures in case of
fourth-order LP filter

Sens. function Symbolic analysis M/D A/S Flops

ST51g SANMCFG(S1) 97 18 618
TI 88 54 636

ST51G
SANMCFG(S2) 77 16 494
TI 91 51 648

ST51G1
SANMCFG(S3) 40 6 252
TI 38 19 266

ST41G2
SANMCFG(S4) 36 6 228
TI 26 15 186

ST41C1
SANMCFG(S5) 56 8 352
TI 61 36 438

ST41C2
SANMCFG(S6) 42 6 264
TI 58 34 416

SM SANMCFG 56 19 374
TI 0 0 0
Total: 404 362 79 209 2582 2590
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MS = ((S1 + S2 + S3 + S4 + S5 + S6)/(D))/(D51); % Mults:2, Adds:5,
Flops:22

% Total MS Mults: 404, Adds: 79, Flops: 2582
Expressions for Si are given in [32].
The results of calculations are collected in Table 1 and compared with those

obtained by using the transimpedance method.
Similar calculations were made for the second-order HP filter, for which we

obtained the following number of total flops: for SANMCFG 190 and for TI 456.
We see, that in regard to arithmetical operations measure, the SANMCFG

method is superior to TI method in case of smaller circuits and comparable to TI
method in case of bigger circuits (see Table 1). For LP fourth-order filter the
SANMCFG method needs 2582 flops while TI method needs 2590 flops. On the
other hand, for HP second-order circuit the SANMCFG method needs 190 flops
while TI method needs 456 flops.

Symbolic methods generate symbolic expressions in different forms, which need
different number of arithmetical operations. This measure strongly depends on the
form of representation of multiparameter sensitivity function. In the above com-
parisons, the performance measures were calculated as a sum of partial measures of
partial relative sensitivities, because the multiparameter sensitivity represents such
sum. For the fourth-order LP filter, the generated expressions can be easily trans-
formed to the nested form, shown below (computer printout):

s = j*2*_*f; % f – frequency, % Mults: 2, Flops: 12
sC1 = s*C1; sC2 = s*C2; % Mults: 2, Flops: 12
Y22 = 2 g + sC1;Y33 = 2G + sC2;Y46 = g+sC1;Y57 = G+sC2;Y77 = G+G2;
Y66 = g + G1; % Adds: 6, Flops: 12
D21 = ((g*(Y33)*G1*(Y46)*G2*(Y57))-(g*G*sC2*G1*(Y46)*(Y77)))−

(g*G2*(G^2)*G1*(Y46)); % Mults:15, Adds:2, Flops:94
D31 = …; % Flops:30, D41 = …; % Flops:94, D51 = …; Flops:30,
D52 = …; % Flops: 24, D53 = …; % Flops: 76, D54 = …; Flops: 24,
D55 = …; % Flops:76, D56 = …; % Flops: 50, D57 = …; Flops: 154
D61 = …; % Flops: 94, D71 = …; %, Flops: 30
D = …; % Mults: 45, Adds: 8, Flops: 286
MS = ((g*(D*D52 + (2*D21−D61)*D52 + (−D21 + D61)*D54 + D61*D56)+
G * ((D31−D41−D71)*D53 + (−D31 + D71)*D55 + D71*D57)+
G1 * ((−D41 + D61)*D56) + G2 * ((−D51 + D71)*D57) + sC1 *
((D21 + D41)*D52 + D61*D54) + sC2 * ((D31 + D51)*D53 +
D71*D55))/(D))/(D51); % Mults: 22, Adds: 21, Flops: 174
% Total Flops: 1272 (Expressions for Di are given in [32]).
It should be noticed that if the multiparameter sensitivity is recorded in nested

form, shown above, it needs 1272 flops, only! In this representation, the
SANMCFG method becomes superior to the TI standard method (without simpli-
fications). The sequence of expressions shown above can be directly calculated in
Matlab environment.
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3.2 Comparison of Circuit Insights

Let us look at the Example 2.3.3 (HP second—order filter) more precisely.
The SANMCFG method generates the following expression of the sensitivity
function ST31G2

:

ST31G2
¼ G2= sC2 � G1 � G2þ sC1ð Þ � G4ð Þ � sC2 � G3ð Þð Þð Þ

� � � G1 � G4ð Þ � � sC2ð Þð Þð Þ ð21Þ

After small rearrangement we get more familiar forms

ST31G2
¼ �G2G4

ðG2 þ sC1ÞG4 � sC2G3
¼ � G2G4

G2G4 þ sðG4C1 � G3C2Þ ð22Þ

If we accept the appropriate time constants equal: R3C1 ¼ R4C2, then this
sensitivity will not be depended on frequency and will be equal to −1.

On the other hand, TI method generates the following SoE (computer printout).

Z21 ¼ G1*s*C2

Zoi ¼ Z21

Z11 ¼ �ðG3*s*C2 - G4*(G2þ s*C1))

Zii ¼ Z11

Z24 ¼ G1*s*C2

Zok ¼ �Z24

Z31 ¼ �G1*G4

Zki ¼ Z31

D00 ¼ G1*Z11

STvG2 ¼ �G2*Zki*Zok/(Zoi*D00)

ð23Þ

Basing on this SoE, it is not possibly to predict the result obtained above, easily.

Let us consider the sensitivity measure ∑
j
ST31Gj

�����
����� = MSj j, j = 1,2,…,6,

where MS is determined by (19).
After canceling common factors sC2*G1 in nominator and denominator in (19)

and after small rearrangement we get more familiar form:

MSj j ¼ �G2G4 þ sC2G3 � G4 G2 þ sC1ð Þ � sC1G4 þG4 G2 þ sC1ð Þ
G2 þ sC1ð ÞG4 � sC2G3

� 1
����

���� ¼
¼ �G2G4 þ sC2G3 � G4 G2 þ sC1ð Þ � sC1G4 þ sC2G3

G2 þ sC1ð ÞG4 � sC2G3

����
����

ð24Þ
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It is not difficult to recognize that nominator is two times greater than denom-
inator. In this way we obtain very important property of this circuit—its multipa-
rameter sensitivity measure is independent on frequency and is equal to 2: MS = 2.
On the other hand, basing on series of SoE generated by TI method, it is almost
impossible to anticipate such important property of this circuit.

Resuming, it can be stated, that:

• in respect to arithmetical operation measure, the presented method is compa-
rable to the TI method and even superior after transformation the generated
expressions into nested form;

• Moreover, the SANMCFG method gives much better circuit insight than TI
method.

4 Conclusion

The method of nullor model and modified Coates flow graph for symbolic sensi-
tivity determination automatically can generate symbolic admittance reduced
matrix, determinants, partial transfer functions, symbolic first-, second-order and
multiparameter sensitivities.

It is based on the equivalent nullor model of active devices and modified Coates
flow graph. The method suggested in this chapter performs symbolic first-,
second-order and multiparameter sensitivities analysis with respect to various cir-
cuit parameters to tune circuit parameters during sizing. “HoneySen” software
implements the sequence of actions according to the presented method. To verify its
applicability several examples are examined, some of them are: with a fourth order
low pass filter and with a second-order high-pass filter.

A method of symbolic sensitivity determination is used for special cases of
symbolic sensitivity analysis using nullors. It is based on some transformations of
the modified Coates flow graph of the nullor model of the passive part in order to
reflect the nullator-norator pairs’ influence on the network transfer functions.

Advantages of the suggested method are that it is not necessary to multiply
analyze the corresponding graph and the modified node admittance matrix inversion
is not required. The carried out comparison tests showed the presented method to be
comparable to the transimpedance method (and to other this kind of methods) in
respect to arithmetical operation measure. After transformation the generated
expressions into nested form, the proposed method becomes even more effective for
middle-size circuits. Moreover, our investigations showed the presented method to
be superior to the transimpedance method under the account for the circuit insight.
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Synthesis of Electronic Circuits
Structures on the Basis of Active
Switches

Marian Pierzchala and Mourad Fakhfakh

Abstract A novel idea for synthesis of electronic circuits’ structures is presented.
It is based on the use of ‘active switches’ which can be considered as circuit
implementation of the pathological elements since they connect and/or disconnect
different elements in the circuits and thus impose on their terminals specific volt-
ages and currents in a similar way as nullors and mirrors. Furthermore, the proposed
technique consists of using a combinatorial approach; this allows not only
demystifying the process of finding new circuits structures, but also opens large
research areas for proposing new ones, as it will be shown in the chapter.

Keywords Synthesis of circuits structures � Pathological elements
Active switches � Signal-flow graph � Combinatorial approaches

1 Introduction

During the past six decades, researchers were looking for new analog circuit
structures overcoming the limitations of conventional elements and allowing the
design of complex circuits in different manners, thus performing different perfor-
mances in terms of accuracy, sensitivity, speed, power consumption, circuit com-
plexity, etc. [1, 2]. Such circuits are usually designed by skilled analog designers
using largely intuitive design approaches. However, intuitive design methods have
the following disadvantages.
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1. Known circuit topologies are favored, although there may exist alternative
topologies that are more suitable. Innovations in circuit topology largely depend
on deep insights of the designers.

2. It takes a long time for a designer to become experienced, thus such approaches
are specific to skilled.

3. The intuitive approach is not very suitable for implementation in a CAD system.

These observations argue the need for the proposal of design methodologies that
explore the design space in a more systematic way [3]. A natural way to explore a
specific design space systematically is using graph theory. Of course, rules for
selecting the useful solutions are needed here.

Systematic generation of all elementary transconductance-based circuits by
using linear graphs has already been considered by a plethora of published works;
see for instance [3–5]. In [5], a restriction has been implemented that consists of
generating only circuits with at least one non-zero transmission parameter.

The combinatorial approach we propose in this work is similar to the one in [5]
but instead of linear graphs we use a primitive signal-flow graph [6]. Further,
one-port elements (resistors, capacitors) are used instead of transconductors. As a
criterion of usefulness the same rule as in [5] will be used, i.e. the generated circuits
should have at least one non-zero transmission parameter.

Our design technique allows generating, not only the already known circuits, but
also proposing new ones. Moreover, it allows explaining how such building blocks
can be built from scratch. It is to be stressed that the use of the known pathological
elements is a particular case of the proposed approach, as it will be detailed below.

In addition, our approach consists of using ‘active switches’ [7, 8] to generate
different possible combinations of connecting one (or more) one-port(s) between
the input and the output of a two-port circuit. Thus, Kirchhoff voltage laws
(KVL) and Kirchhoff current (KCL) laws are fulfilled in a particular way, leading to
the construction of different loop and cutset matrices, and as a consequence, it
allows generating ‘new’ circuits. Primitive signal-flow graph is also used to screen
the generated circuits.

The rest of the chapter is structured in three main sections. In the first one, i.e.
Sect. 2, we present the use of primitive flow-graphs as a base of a combinatorial
approach for searching new analog two-ports. In Sect. 3, we give details of
switching one, two and three one-port elements via the use of the ‘active switches’,
for generating the active blocks. Then, in Sect. 4, we deal with some practical
implementations of the proposed method.
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2 Primitive Signal-Flow Graphs as a Base
of a Combinatorial Approach for Constructing
Analog Building Blocks

Consider the simpler case of a network consisting of immittance (impedance or
admittance) elements and independent sources only. We assume that the indepen-
dent voltage sources contain no loops, and the independent current sources contain
no cutsets [9]. Then, it is always possible to select a tree T such that all voltage
sources are tree branches and all current sources are links (cotree branches).
Therefore a unique primitive signal-flow graph can be constructed [9] in which the
three basic laws: Kirchhoff Voltage Law (KVL), Kirchhoff Current Law (KCL) and
Ohm Law (OhmL) are clearly displayed. Figure 1 shows the general layout of a
primitive signal-flow graph.

In Fig. 1 we adopt the following labels:
E–independent voltage sources,
I–independent current sources,
ZZ–impedance branches in the tree,
YY–admittance branches in the cotree (links)
BYE–loop submatrix between elements in E and YY,
BYZ–loop submatrix between elements in YY and ZZ,
QZI–cutset submatrix between elements in I and ZZ,

QZY–cutset submatrix between elements ZZ and YY.
For the passive networks (R, L, C) with independent sources we can write [9]

QZY ¼ �Bt
YZ ð1Þ

but for the active networks, we have:

QZY 6¼ �Bt
YZ ð2Þ

Inequality (2) shows that it is possible to generate many active circuits in a
systematic way. We should only propose a method which enables constructing the
structures which fulfil the above inequalities. In this paper, we propose such amethod
that is based on using the active switches [7, 8], which enables connecting a number
of passive elements in two different configurations. In the first configuration we will
calculate the KVL to obtain the submatrix BYZ and in the second configuration we

VY

IY

E

I

VZ

IZ

ZZYY

QZY QZI

BYE BYZFig. 1 General layout of a
primitive signal-flow graph
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will calculate KCL to obtain submatrix QZY. Due to the fact that these two config-
urations are different, inequality (2) is fulfilled. In the next step, we have to check up
if such circuit has a practical meaning. As a criterion of ‘the usefulness’, we will only
consider generated circuits having at least one non-zero transmission parameter,
where transmission parameters are defined as shown in Fig. 2.

The transmission parameters can be calculated using any method. We use
signal-flow graphs (SFG) and the Mason’s formula [6, 9] due to their ‘visual’
properties.

3 Searching for New Circuits Structures
by a Combinatorial Approach

3.1 Circuits Structures with One Resistor

First, we consider one port resistor which can be characterized by three quantities,
see Fig. 3:

• The nominal value of the resistance R,
• The voltage across its terminals Vk,l,
• The current flowing through that element Ikl,

It is possible to imagine that using the active switches [7, 8] we can construct a
two-port circuit, as shown in Fig. 4, in which the resistor will be connected
optionally to the input or to the output of the circuit depending on the considered
basic law, i.e. Kirchhoff voltage law or Kirchhoff current law, so inequality (2) is
fulfilled.

In the considered situation we have the next possibilities:

• For the calculation of the loop submatrix BYZ, resistor R is connected to the
input of the two-port circuit, and for the calculation of cutset submatrix QZY,
resistor R is connected to the output (Actually, we have four such possibilities,
as shown in Fig. 5).

+
-

+
-

+
-

V1 V2

I1 I2E

I

RL=1/GL

+
-

VRL

IRL

Ku=VRL/E; Ki=IRL/I; RT=VRL/I; GT=IRL/E

Fig. 2 The transmission
parameters
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• For the calculation of the loop submatrix BYZ, resistor R is connected to the
circuit’s output, and for the calculation of the cutset submatrix QZY, the resistor
is connected to the input (Similarly, we have four such possibilities but we show
only one, see Fig. 6).

If we would like to check up on the usefulness of such circuits, we should
calculate their parameters. This can be done by any chosen method. Here, we use
signal flow-graphs (SFG) [6, 9] due to their visual properties, as mentioned above.

We check now the properties of two-ports circuits with the first combination of
the resistors shown in the Fig. 5. We will calculate the transmission parameters
using an independent voltage source on the input and a short circuit (RL = 0) on the
output (see Fig. 2). The corresponding signal flow-graphs are shown in Fig. 7.

From these SFGs we can see that the corresponding resistor connections can be
considered as a V to I converter: IRL = �G E.

Consider now the circuit with the second combination of the resistor connection
shown in Fig. 6. We will calculate the transmission parameter using an independent
current source on the input and an open-circuit (GL = 0) at the output (see Fig. 2).
The signal-flow graph of this circuit is depicted in Fig. 8.

Similarly, as for the SFGs of Fig. 7, we can see that this resistor connection
realizes the I to V conversion: VGL = R I. Of course, we can put into use the
crossover connections, thus enlarging the number of possible solutions.

R=1/G Vkl

Ikl
k

l

Fig. 3 The resistor

`

RV1 V2

I1

I1

I2

I2

Fig. 4 A two port circuit

Synthesis of Electronic Circuits Structures … 181



G=1/RV1 V2

k
I2

l

m

n

I1

G=1/RV1 V2

k
I2

l

m

n

I1

KVL KCL

(a)  The direct connection of the resistor R to the input and to the output. 
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(b) The crossover connection of the resistor R to the input and direct to the output 
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(c) The direct connection of the resistor R to the input and crossover the output. 
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(d) The crossover connection of the resistor R to the input and to the output. 

Fig. 5 The first combination of the resistor connections. a The direct connection of the resistor
R to the input and to the output. b The crossover connection of the resistor R to the input and direct
to the output. c The direct connection of the resistor R to the input and crossover the output. d The
crossover connection of the resistor R to the input and to the output
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3.2 Circuits Structures with Two Resistors

If we consider the possible connections of two resistors with different nominal
values (R1 and R2) with the help of the active switches [7, 8], than we can construct
the two port circuits shown in Fig. 9 in which the resistors will be connected
optionally in series or in parallel to the input or to the output of the circuit
depending on the considered basic law, i.e. KVL or KCL. Accordingly, we have the
following possibilities (among many others):

Now, we can check up the usefulness of the above circuits.
The circuit shown in Fig. 9a does not have any interesting properties because it

presents two separate circuits, see SFG depicted in Fig. 10 (this SFG presents a
circuit with the independent voltage source on the input and a short-circuit (RL = 0)
at the output).

However, the remaining configurations are very interesting. For example, the
circuit shown in Fig. 9b can be considered as a two-port with transmissions both
from the input to the output and from the output to the input. If we connect the
independent current source to the input (output) and the open-circuit to the output
(input) then this two-port can be consider as the current controlled voltage source
(CCVS) with the coefficient of the transmission equal to R2, from the output to the
input and the CCVS with the transmission coefficient equal to R1 from the input to
the output, see SFG in Figs. 11a and b.

There exists in these combination admittedly parasitic interaction of the output
current (IGL) on the voltage (VI) of the independent current source I, but it can be
omitted, because GL = 0. It can be also omitted, if the value of resistor R1(R2) is
very small (with a boundary value approaching to zero).

If both resistors take the boundary values, i.e. R1 ! 0, R2 ! 1, the combina-
tion from Fig. 9b may be consider as four terminal nullor [10]. This is evident from
Fig. 9b because for the process of the calculations of the KVL we have at the input
a short-circuit and at the output an open-circuit. And vice versa, for the process of
the calculations of the KCL we have at the input an open-circuit, and at the output a
short-circuit.

There is also another application of this configuration. If we use the crossover
connection between resistor R1 and the input in the circuit for the calculation of the

R=1/GV1 V2

k
I2

l

m

n

I1

KVL

R=1/GV1 V2

k
I2

l

m

n

I1

KCL

Fig. 6 The second combination of the resistor connections (we show only one among the four
possibilities)
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Fig. 7 SFGs of the circuits
with the first combination of
the resistor connections
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Fig. 8 SFG of the circuit
with the second combination
of the resistor connections
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KVL, then this circuit (Fig. 12) will work as a gyrator [11] in the impedance form
with different transmission coefficients R1, R2 (see Fig. 13).

In turn, the configuration from Fig. 9c can work as a voltage controlled voltage
source (VCVS), (see the corresponding SFG in Fig. 14) with the transmission
coefficient µ = −G1R2.
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Fig. 9 The case of two resistors: few connection possibilities
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However, this circuit is not an ideal VCVS because it has an output resistance
that is equal to R2.

The circuit given in Fig. 9d can work as a VCVS that transmits the signal from
the output to the input with the transmission coefficient µ = −R1G2 and the inner
resistance Rin = R1, see SFG given in Fig. 15.
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E

IE

VG2

IG2

1

-1

G2G1
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Fig. 10 SFG of the circuit of Fig. 9a
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Fig. 9 (continued)
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The next configuration (shown in Fig. 9e) can work as a voltage controlled
voltage source (VCVS) with the transmission coefficient µ = −G1R2 and both the
input and the output resistances values are equal to infinity (see Fig. 16).

This configuration is very interesting. If we choose the same value for both
resistors (i.e. R1 = R2), then this circuit will work as an inverting voltage follower
with input and output resistances equal to infinity. Moreover, if we use the cross-
over connection between resistors R2 and R1 (in the circuit for KCL calculation) and
take equal values of resistors (R1 = R2 = R), then this circuit will work as a voltage
mirror.
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VI

I
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IR2

-1

R2R1

VGL

IGL

GL

1

1-1

VR1

IR1

VGL

I

VR2

IR2

R2R1

1
VI

-1

IGL

GL=0

1-1

(b)

(a)

Fig. 11 a SFG of the circuit shown in Fig. 9b with the independent current source on the input
and the open-circuit on the output. b SFG of the circuit shown in Fig. 9b with the independent
current source on the output and the open-circuit on the input
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Fig. 12 The combination of the two resistors which works as gyrator
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Fig. 13 The SFG of the circuit from Fig. 12 (V1 = −VI1 = −R1 I2; V2 = −VI2 = R2I1)
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Fig. 14 SFG of the circuit from the Fig. 9c
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Fig. 15 SFG of the circuit shown in Fig. 9d
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Fig. 16 SFG of the circuit from the Fig. 9e
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Fig. 17 SFG of the circuit of the Fig. 9f
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Fig. 19 Combination with two parallel resistors in the input (KVL) and two separate resistors
(KCL)

VR1

IR1

VI

I

VG2

IG2

1

G2R1

VRL

IRL
-1

1

-1

RL

Fig. 20 SFG of the circuit shown in Fig. 19
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In turn, the configuration of Fig. 9f can work as a current controlled voltage
source (CCVS) transmitting the signal from the output to the input with the
transmission coefficient Rtran = −R1 and the output resistance Rout = R2 (see cor-
responding SFG in Fig. 17).

The configuration shown in Fig. 9g can work as a VCVS (see SFG in Fig. 18)
with the transmission coefficient µ = G1R2, and the input resistance equal to R1.

Of course, we can continue this analysis, but not all combinations are interesting.
So we will show only some of them. For example the combination given in Fig. 19
will work as a CCCS with the transmission coefficient b = R1G2 (see Fig. 20) and
the input resistance Rin = R1.

A small modification of the above combination is shown in Fig. 21. It will
permit constructing non-inverting current followers (for R1 = R2) with the input
and output resistances equal to infinity, or the current mirror circuits (see SFG in
Fig. 22).

Another interesting circuit can be constructed by the combination shown in
Fig. 23.

This circuit has the SFG representation shown in Fig. 24.
The network function of this circuit can be calculated by direct application of

Mason rule [6] to the graph of Fig. 24:

T sð Þ ¼ VRL

E
¼ �G1RL

1þG1R2
¼ � 1

R1 þR2
RL ¼ �gmRL ð3Þ
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Fig. 21 Combination with two parallel resistors (KVL) and two separate resistors (KCL)
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Fig. 22 SFG of the circuit shown in Fig. 21
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where gm 1
R1R2

This configuration works very stable, since the gain depends only on the values
of the resistors; precisely the controlled amplifier (the gain value can be coarsely
fixed by R1, then finalized by the resistor R2, smaller than R1).

3.3 Circuits Structures with Three and Four Resistors

Circuits with only two resistors are not enough flexible. For example, the circuit
shown in Fig. 9c has an output resistance equal to R2, and, simultaneously, this value
is a part of the transmission coefficient µ = G1R2. If we introduce additional ele-
ments in the inner structure of the circuit, we will have the possibility to remove this
inconvenience. Moreover, it will be possible to build new structures. Of course, it is
not possible to present all combinations of three and four resistors in the volume of
one chapter; thus, we will present only a few solutions. For example, if we consider
the combination of three resistors depicted in Fig. 25, we can see that this circuit is
equivalent to the voltage controlled voltage source (VCVS) with the transmission
coefficient is equal to µ = −G1R2 and the output resistance is equal to R3, whereas
the input resistance is equal to infinity, see the corresponding graph given in Fig. 26.

If we would like to have a particular circuit working as a voltage controlled
voltage source with definite values of input and output resistances, we should
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Fig. 23 Combination with two serial resistors in the input (for KVL) and the output (for KCL)
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Fig. 24 SFG of the circuit of Fig. 19
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consider the combination of four resistors shown in Fig. 27 which SFG is given in
Fig. 28.

If we compare the SFG of the above circuit with the SFG of a VCVS with the
input resistance equal to Rin, the output resistance equal to Rout, and the trans-
mission coefficient equal to µ (see the equivalent circuit and the corresponding SFG
given in Figs. 29 and 30, respectively), we can see that this circuit can work as a
VCVS with Rin = R4, Rout = R3 and the transmission coefficient µ = G1R2.

Another combination of four resistors is presented in Fig. 31. It is easy to check
that this circuit works as a current controlled current source (CCCS) with the input
resistance equal to R4, the output resistance equal to R3 and the transmission
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Fig. 25 A circuits with three resistors
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Fig. 26 SFG of the circuit of Fig. 25
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Fig. 27 A circuit with four resistors (a 1st possible combination)
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Fig. 28 SFG of the four resistor based VCVS shown in Fig. 27

Rout

Vin

m

n

Iin

Rin

k

l

GL VGL
+
-
Vout=−μVkl

E

IE
Ikl

+
-

IGL

Fig. 29 An equivalent circuit of a VCVS

Vkl

Ikl

E

IE

VRout

IRout

1

RoutGin

VGL

IGL

GL

Vcon

Icon

1 1

-1

μ

-1

- 1

-1

Fig. 30 SFG of the VCVS of Fig. 29

V2V1 V2

I2
m

n

I1

KVL

V1

I2
m

n

I1

KCL

R3R4R2R1

R1

R4 R2R3

k

l

k

l

Fig. 31 A circuit with four resistors (a 2nd possible combination)

Synthesis of Electronic Circuits Structures … 193



coefficient b equal to R1G2 (see the corresponding SFG in Fig. 32, and the CCCS’s
equivalent circuit and SFG in Figs. 33 and 34).

3.4 Circuits with Resistors and Passive Elements

The palette of these circuits structures can be made larger, particularly if we
introduce not only resistors but the other passive elements (capacitors and induc-
tors), also. In this chapter we will show only a few structures because the number of
possible combinations is very large. We also consider only the combinations with
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Fig. 32 SFG of the CCVS shown in Fig. 31
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Fig. 34 SFG of the equivalent circuit of the CCCS depicted in Fig. 33
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resistors and capacitors because in the integrated circuits the inductors are not very
‘popular’.

If, in the first combination of the element connections (see Fig. 5), we introduce
a capacitor instead of a resistor, then we obtain structures of a differentiator circuit.
It is easy to see that the voltages on the resistor RL are equal (see Fig. 7)
VRL ¼ ðþ=�ÞsCRL.

In turn, the structures on the basis of Fig. 8, with the capacitor instead of resistor,
will work as an integrator with the time-constant equal to 1/(sCRL). However, in
both solutions the time-constant of the structures depends on the output resistor RL.
This inconvenience may be overcome when using the combinations with two
elements. For example, if, in the Fig. 9e, we introduce a capacitor C in the place of
the resistor R1 (see SFG in Fig. 16), we obtain a classical differentiator with the
time-constant equal to (−sCR2). In turn, if we introduce in Fig. 9e a capacitor C in
the place of resistor R2, we obtain a classical integrator (see SFG in Fig. 16) with
the time-constant equal to (−1/sCR1).

Another interesting circuit may be obtained on the basis of the structure shown
in Fig. 19 if we introduce in the place of resistor R1 a capacitor C. In this case we
obtain a high pass filter with the network function equal to (see SFG in Fig. 24):

T sð Þ ¼ VZL

E
¼ sCRL

1þ sCR2
¼ sRL=R2

sþ 1= CR2ð Þ ð4Þ

The palette of the combinations is very reach. We present only few examples to
show the viability and the potentiality of the proposed method.

4 Practical Implementations

In order to be able to fulfill KVL and KCL for the circuits proposed above, a special
kind of switches has to be used. These switches have been proposed by the authors
in [7, 8], and are denominated KVL-S and KCL-S. The former works as a closed
switch (a shortcut) to fulfill the KVL, and as an open switch when KCL is con-
sidered. i.e. each KVL switch (KVL-S) will be switched on for the calculation of
the Kirchhoff voltage law and switched off for the calculation of the Kirchhoff
current law. And vice versa, each KCL switch (KCL-S) will be switched off for the
calculation of the Kirchhoff voltage law and switch on for the calculation of the
Kirchhoff current law.

Figure 35 shows the two possible forms for connecting a grounded or a floating
resistor (capacitor).

There are many electronic elements that can ensure the concept of ‘active
switches’. The most known ones are the operational amplifiers (Op-Amp) and the
operational floating amplifier (OFA) [12, 13]. Op-Amps and OFAs working in the
negative feedback topology, with the gain A very large (ideally infinite), can be
considered as ‘active switches’, as shown in Figs. 36 and 37.
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By means of this element we can realize, for example, the configuration shown
in Fig. 9g (Fig. 38).

For calculating KVL and KCL for the above circuit, KVL-S and KCL-S
switches have to be switched on/off accordingly, as shown in Fig. 39.

Now, we will show, on the basis of Fig. 39, that the circuit of Fig. 38 realizes the
configuration given in Fig. 9g.

In the first step, we redraw these Figures, as it is shown (see Fig. 40).
In the second step we depict how the branches are connected and what are the

reference directions for branch currents and voltages. For this purpose we draw two
directed graphs associated with the circuit, the first for the directions of voltages
(Gdv) and the second for the directions of currents (Gdi), see Fig. 41.

In the third step we choose the trees of these graphs (heavy lines in Fig. 41) and
determine the loop matrix BT associated with the given tree and cutset matrix QL

associated with the given cotree (see Table 1).

G=1/R

KVL-S KCL-S

KVL-S KCL-S

(a)

G=1/R

KVL-S KCL-S

(b)

Fig. 35 Depiction of the use of the ‘active switches: a the floating conductance is connected to
fulfill the KVL, b the grounded conductance is connected to fulfill the KCL
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Fig. 37 The operational
floating amplifier and its
equivalent circuit with active
switches
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Fig. 40 The circuit of Fig. 39: a Circuit for calculation of KVL, b Circuit for calculation of KCL

Synthesis of Electronic Circuits Structures … 197



On the basis of the above matrices and Ohm law we can directly draw a
primitive signal-flow graph (see Fig. 18).

The corresponding transfer function of this circuit can be calculated with
Mason’s formula help:

T sð Þ ¼ VRL

E
¼ �G1R2 ð5Þ

Using the operational floating amplifier, we can realize any of the above shown
combinations, for example the configuration given in Fig. 5a can be built as
depicted in Fig. 42.

The equivalent circuits for the calculations of KVL and KCL are shown in
Figs. 43a and b. Using the above procedure we can show that this circuit realizes
the SFG shown in Fig. 7a and that this combination realizes a V to I converter
presented in [13]:

I2 ¼ GV1 ð6Þ

E          VG1 VR2 VGL

(a)

IE IR2

IG1

(b)

Fig. 41 The directed graphs of the circuits from Fig. 40: a Gdv, b Gdi

Table 1 The BT and QL matrices of the circuit from Fig. 39

BT E VR2 QL IG1

VG1 1 0 IE -1
VGL 0 1 IR2 1
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Fig. 42 A V to I converter
presented in [13]
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5 Conclusion

In this chapter, we propose a novel method for designing structures of analog
building blocks and finding new ones. The approach is based on a combinatorial
approach. One only has to check “all” possible combinations of connecting resistors
to the input, to the output and between each other. The active switches are used to
ensure KVL and KCL. The number of possible combination is very large. Already
known active building blocks can thus be built. Furthermore, new structures can be
investigated. The palette of these combinations can be made larger, particularly if
we use not only resistors but also the other passive elements (capacitors and
inductors). Thus, we believe that this work opens a large spectrum of future
researches in this field.
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Part II
Pathological Elements in the Design of

Analog Circuits



Applications of the Voltage
Mirror-Current Mirror in Realizing
Active Building Blocks

Ahmed M. Soliman

Abstract In this chapter four alternative realizations of the nullator using a single
VM or two VMs are summarized. Similarly four alternative realizations of the
norator using a single CM or two CMs are also demonstrated. It is also shown that
the VM-CM pair can be used to realize a Nullor, A Voltage Op Amp, A Current Op
amp, Voltage follower (VF), Voltage Inverter (VI), Current follower (CF), current
Inverter (CI), Current Conveyors CCII+, CCII-, ICCII+ and an ICCII- without the
use of any external resistors. The use of the VM-CM pair with additional resistors
to realize the family of controlled sources, transconductance amplifiers and other
active building blocks using NAM expansion is included. Finally it is shown the
Nullator-CM pair as well as its adjoint which is the VM-Norator pair can also be
used as Universal building blocks.

1 Introduction

The first two pathological elements were introduced in the literature by Carlin in 1964
[1] and are two terminal elements known as a nullator and a norator. A nullator has its
voltage and current equal to zero. A norator has its voltage and current being arbitrary.
A Nullor is a two port circuit element with its two ports being a nullator and a norator
as shown in Fig. 1a. The Nullor is self adjoint [2, 3] and is floating [4] as is evident
from its Nodal Admittance Matrix (NAM) given by [5–7]:
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The nullator and norator can also realize the Operational Amplifier (Op Amp) [8]
as shown in Fig. 1b, the Voltage Follower (VF) as shown in Fig. 1c, Current
Follower (CF) as shown in Fig. 1d, Current Op Amp as shown in Fig. 1e, the
Current Conveyor (CCII-) [9], as shown in Fig. 1f.

The NAM stamp for the Voltage Op Amp is given by:

a b
c ∞i½ −∞i� ð2Þ

(a) Nullor

(b) Voltage Op Amp 

(c) Voltage Follower

b, c a 

a c

b
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+ +
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+
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- -

(d) Current Follower

(e) Current Op Amp

(f) CCII - 

Y 

Z-X

I I
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d a, c
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Fig. 1 Nullators and Norators realizing active blocks

204 A. M. Soliman



The Current Op Amp is the adjoint to the VOA and is floating. Its NAM stamp is
given by:

a
c
d

∞i

−∞i

� �
ð3Þ

The CCII- is self adjoint and is floating; its NAM stamp is given by:

X
Z−

∞i −∞i

−∞i ∞i

� �X Y

ð4Þ

It is worth noting that with the Y terminal grounded, the CCII- realizes the CF as
shown in Fig. 1d.

The nullator and norator cannot realize a CCII+ unless two external resistors are
added to them [10], they cannot also realize the Inverting Current Conveyors (ICCII
+ and ICCII-) [10] without adding external resistors to them.

2 The Voltage Mirror and Current Mirror

The two additional pathological elements defined as the Voltage Mirror (VM) and
the Current Mirror (CM) were introduced in the literature by Awad and Soliman in
1999 [10]. The VM and CM were used in the realization of different active building
blocks in [10–18].

The VM is a two port circuit elements shown symbolically in Fig. 2a and is
defined by:

V1 = −V2 ð5aÞ

I1 = I2 = 0 ð5bÞ

The CM is a two port circuit elements shown symbolically in Fig. 2b and is
defined by:

V1 andV2 are arbitrary ð6aÞ

I1 = I2 and are also arbitrary ð6bÞ

Although the pathological CM has the same symbol as the regular CM it is a
bi-directional element and has a theoretical existence.

Although the VM and the CM cannot be realized using Nullor elements alone,
they can be realized however if two additional resistors are allowed with the Nullor
elements as will be summarized in the next section.
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3 Realization of VM and CM Using Nullor Elements
and Resistors

Two alternative realizations of the voltage mirror using two nullators, a norator and
two equal resistors are shown in Fig. 3a and b, respectively. The realization shown
in Fig. 3a uses grounded resistors whereas the realization shown in Fig. 3b uses
floating resistors. It is seen that the currents I1 and I2 are equal to zero and the
ground current equals to zero.

I1

+ 
V1 V2

+ + 
_ __ _

+
V2

V1

(a) (b)

I1
I2 I2

Fig. 2 The mirror elements a Voltage mirror b Current mirror
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Fig. 3 Two alternative realizations of the VM using Nullor elements [10]
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Two alternative realizations of the current mirror using a nullator, two norators
and two equal resistors are shown in Fig. 4a and b respectively. The realization
shown in Fig. 4a uses grounded resistors [10] whereas the realization shown in
Fig. 4b uses floating resistors [19, 20]. It is seen that the circuit shown in Fig. 4a is
the adjoint of that shown in Fig. 3a and the circuit shown in Fig. 4b is the adjoint of
that shown in Fig. 3b.

4 The VM and CM Realizing Nullators and Norators

Two alternative realizations for the nullator using a single VM are shown in Fig. 5a
and b [15]. For the circuit of Fig. 5a the voltage at the common node of the VM
which is (V1 + V2)/2 is forced to be equal to V2 due to direct connection, Thus,
V2 =V1.

(a)

(b)

R R1 2
V1 V1

I1 I1 I1

2I1

I1

V
2

R

1 2

R

I1

I1
I1
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2I
1

Fig. 4 Two alternative realizations of the CM using Nullor elements [10]
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Two alternative realizations for the nullator using two VMs are shown in Fig. 5c
and d [15]. The circuit of Fig. 5d is a special case from the difference cell given in
Fig. 11 of [15].

(d)

V V

V/2

(c)

V V
-V

(a)
(b)

V

V

V

VV1 V2

Fig. 5 Four alternative Nullator realizations using VM
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Two alternative realizations for the norator using a single CM are shown in
Fig. 6a and b [15]. Also two alternative realizations for the norator using two CMs
are shown in Fig. 6c and d [15]. The current arrows clearly demonstrates the
circuits realize a norator.
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I/2
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Fig. 6 Four alternative Norator realizations using CM
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5 The VM-CM Pair Realizing Active Building Blocks

The VM-CM pair which is a universal element is shown in Fig. 7a where:

Ia = Ib = 0 ð7aÞ

Vaf = −Vbf ð7bÞ

Ic = Id and are arbitrary ð8aÞ

Vcg andVdg are also arbitrary ð8bÞ

(a) 
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gVM-CM

a

b

f 
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d

g

Id

VM CM
Ia

Ib

Ic

Fig. 7 The VM-CM pair as a universal element [13]
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The suggested symbol for the VM-CM pair is shown in Fig. 7b. The NAM
stamp for this universal element is given by Eq. (9), from which it is seen that it is
self adjoint and floating.

c
d
g

∞i ∞i − 2∞i

∞i ∞i − 2∞i

− 2∞i − 2∞i 4∞i

2
4

3
5

a b f

ð9Þ

In the next section the application of the VM-CM pair in the realization of the Op
Amp family is summarized and the NAM stamp for each building block is given.

5.1 Realization of the Op Amp Family

Figure 8a represents the realization of the nullor using a VM-CM pair by con-
necting the common terminal of the VM f to b and the common terminal of the CM
g to d. This is equivalent to adding the two columns b and f in the NAM given by
Eq. (9) and adding the two rows d and g and the NAM becomes as given by
Eq. (10) which represents the NAM of the Nullor.

(b) Op Amp realized using VM-CM pair

(c) Voltage follower realized using VM-CM pair

VM-CM

VV V 

VM-CM

VM-CM
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-V 

(a) Nullor realized using VM-CM pair

a

b

c 

d 

VM-CMf g

(d)Voltage inverter realized using VM-CM pair

Fig. 8 Realization of the op Amp family using VM-CM pair
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c
d, g

∞i −∞i

−∞i ∞i

� �a b, f

ð10Þ

The realization given in Fig. 8a can also be considered as a combination of
Figs. 5a and 6a in realizing a nullator and a norator from a VM and a CM
respectively. The realization of the Op Amp is given in Fig. 8b as well as the
voltage follower and voltage inverter are given in Fig. 8c and d respectively.

5.2 Realization of the Current Conveyor Family

As previously stated the current conveyor family cannot be realized using nullors
only except the CCII- which is realized using a nullator and a norator with a
common terminal as shown in Fig. 1f.

The CCII+ is realized using the VM-CM pair as shown in Fig. 9a, its NAM
stamp is given by:

x
Z+

∞i −∞i

∞i −∞i

� �X Y

ð11Þ

From Eq. (11) it is seen that the CCII+ is not floating.
The CCII- is realized using the VM-CM pair as shown in Fig. 9b, its NAM

stamp is given by Eq. (4).
The ICCII+ is realized using the VM-CM pair as shown in Fig. 9c, its NAM

stamp is given by Eq. (12). From Eq. (12) it is seen that the ICCII+ is self adjoint
and is not floating.

x
Z+

∞i ∞i

∞i ∞i

� �X Y

ð12Þ

The ICCII- is realized using the VM-CM pair as shown in Fig. 9d, its NAM
stamp is given by Eq. (13); from which it is seen that the ICCII- is floating and is
the adjoint of the CCII+.

X Y

x

Z−
∞i ∞i

−∞i −∞i

� � ð13Þ
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The floating CCII introduced by Soliman and Saad in [21] is realized using the
VM-CM pair as shown in Fig. 9e, its NAM stamp is given by Eq. (14) from which
it is seen that it is floating.

X
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2
4

3
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(c) ICCII+ realized using VM-CM pair (d) ICCII- realized using VM-CM pair
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Fig. 9 Realization of the CCII family using VM-CM pair
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5.3 Realization of Current Follower and Current Inverter

The Current Follower (CF) which is the adjoint of the Voltage Follower (VF) is
realized using the VM-CM pair as shown in Fig. 10a.

The Current inverter (CI) which is the adjoint of the Voltage Inverter (VI) is
realized using the VM-CM pair as shown in Fig. 10b [22]. It is worth noting that
the CI cannot be realized using nullators and norators without adding resistors.

(a) CF realized using VM-CM pair.

(b) CI realized using VM-CM pair

I1

VM-CM
I

1

I 1

I1

VM-CM
I

1

I
1

Fig. 10 Realization of CF and CI using VM-CM pair
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6 Realization of Controlled Sources

6.1 Realization of VCVS Using VM-CM Pair

The well-known realization of the VCVS using Op Amp is shown in Fig. 11a with
a voltage gain = 1 + G1/G2. Its Nullor realization is shown in Fig. 11b. It is seen
that one of the two resistors is floating.

(a)

 (b) 

G2

G1

VI

VO

G1

+

G2

VI

VO

OA
_

Fig. 11 Non-inverting VCVS realization using Op Amp
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For VCVS if the requirement of low output impedance is relaxed on the account
of the VCVS being loaded at port 2 by a high impedance such as port 1 of another
VCVS, then the Y matrix can be simplified as follows [5, 23]:

Y =
0 0
−N D

� �
ð15Þ

For a positive gain VCVS of gain Av=G1 ̸G2, take N=G1 and D=G2

therefore:

Y=
0 0

−G1 G2

� �
ð16Þ

Adding a CM between nodes 2 and 3 to move –G1 to the 3, 1 position, it follows
that:

00 0

Y 0G0 2

0 0G1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

= ð17Þ

Adding a nullator between nodes 1 and 3 to move the G1 to the diagonal 3, 3
position it follows that:

00 0

Y 00

0 0 G1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

= G2
ð18Þ

The VCVS is shown in Fig. 12a which is practically realizable by a single CCII+.
An alternative expansion for Y in Eq. (16) is possible using a VM between

nodes 1 and 3 and a norator between nodes 2 and 3 as follows:

00 0

Y 0G0 2

0 0 G1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

=
ð19Þ

The VCVS realization is using a VM-Norator pair (ICCII-) is shown in Fig. 12b.
For a negative gain VCVS and from Eq. (15) and taking N= −G1 and D=G2

therefore:

216 A. M. Soliman



(a) Non-inverting VCVS realized using 
       VM-CM pair

(b) Alternative non-inverting VCVS realized using 
VM -CM pair
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(c) Inverting VCVS realized using VM-CM pair
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(d) Alternative inverting VCVS realized using 
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(e) Additional inverting VCVS realized using VM-CM pair
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Fig. 12 Five alternative realizations of the VCVS using VM-CM pair
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Y =
0 0
G1 G2

� �
ð20Þ

Adding a nullator between nodes 1 and 3 and a norator between nodes 2 and 3 to
move the G1 to the diagonal 3, 3 position it follows that:

2

1

00 0

Y 0G0

0 0 G

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

= ð21Þ

The grounded resistor inverting VCVS realization using CCII- [23] is shown in
Fig. 12c.

An alternative realization of the grounded resistor inverting VCVS is shown in
Fig. 12d which in fact is using ICCII+. Another alternative realization of the
grounded resistor inverting VCVS is shown in Fig. 12e which is not using any of
the CCII family.

6.2 Realization of CCCS Using VM-CM Pair

The Nullor realization of the CCCS is shown in Fig. 13 which is the adjoint of
Fig. 11b with a current gain = 1 + G1/G2. It is seen that one of the resistor R2 is
floating.

Following similar NAM expansion steps, four realizations for the CCCS are
given in Fig. 14.

6.3 Realization of TA Using VM-CM Pair

Several pathological realizations of the VCCS also known as Transconductance
Amplifiers (TA) are given in the literature [23–25].

The TA- is defined by the following admittance matrix Y:

Y =
0 0
G 0

� �
ð22Þ

The TA+ is defined by the following admittance matrix Y:

Y =
0 0
−G 0

� �
ð23Þ
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Fig. 13 Realization of CCCS using Nullor

(a) Realization of CCCS of a positive gain using
      VM-CM pair

(b) Alternative realization of CCCS of a positive gain 
      using VM-CM pair
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(c) Realization of CCCS of Negative gain using 
      VM-CM pair

(d) Alternative realization of CCCS of Negative gain 
      using VM-CM pair
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Fig. 14 Four alternative realizations of the CCCS using VM-CM pair
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The realizations of the TA using the VM-CM pair can be generated using NAM
expansion and are summarized in Fig. 15. The realization of Fig. 15b is using the
common terminal of the VM and the CM. The realizations of Fig. 15c, d are using
the common terminal of the CM.

In the next section two alternative universal building blocks are mentioned very
briefly to limit the Chapter length.

7 The OMA and the VM-Norator Pair

The VM-Norator pair also known as the OMA [26] is shown symbolically in
Fig. 16a and is realized using the VM-CM pair as in Fig. 16b.The OMA is rep-
resented by the following equations:

(c)TA+ realized using VM-CM pair

(d)Double output TA realized using VM-CM pair

V

2G

GV

VM-CM

GV

V

2G

GV

VM-CM

(a) TA- realized using VM-CM pair

(b) Alternative TA- realized using VM-CM pair.

V

G

GV

VM-CM

V

G

GV

VM-CM

Fig. 15 Four alternative realizations of the TA using VM-CM pair
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Va = Vb, Ic = Id ð24Þ

Its NAM stamp is given by Eq. (24) from which it is seen that it is a non-floating
building block.

The Nullator-CM pair is also a universal building block and is shown symbol-
ically in Fig. 16c and is realized using the VM-CM pair in Fig. 16d, Its NAM
stamp is given by Eq. (23) from which it is seen that it is a floating building block
and is the adjoint of the OMA [4].

c
d

∞i −∞i

∞i −∞i

� �a b

ð25Þ

c
d

∞i ∞i

−∞i −∞i

� �a b

ð26Þ

(a) The OMA as a non-floating element

CM

c 

d 

a

b 

Nullator

(b) Realization of OMA using VM-CM pair

a

b

c 

d 

VM-CM

(c) The VM–Norator pair as a floating element

b
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d

c

VM Norator

(d)Realization of VM-Norator pair

a

b
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VM-CM

Fig. 16 The OMA and the VM-Norator pair as adjoints
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8 Conclusions

The importance of the VM-CM pair as a universal element is demonstrated in this
chapter. The realization of a nullator using a single VM or two VMs is summarized.
Also the realization of a norator using a single CM or two CMs is also included.

The use of the VM-CM pair with additional resistors to realize the family of the
controlled sources, transconductance amplifiers and other active building blocks
with NAM expansion demonstration has been included.

Finally it is shown the Nullator-CM pair as well as its adjoint which is the
VM-Norator pair can also be used as Universal building blocks [27].
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Circuit Biasing Using Fixator-Norator
Pairs—A Tutorial

Reza Hashemian

Abstract A procedure based on local biasing is presented in this chapter. This
procedure initiates from port nullification and extends to nonlinear device nullifi-
cation. It is shown that when a device internally powered but is nullified through its
ports it is locally biased. A device can be locally biasing with full supplies, or with
reduced number of supplies, and the differences are discussed. The main advantage
of local biasing of a device is separating it from the rest of the circuit and bias it
individually based on its requirements. Disadvantages of local biasing, however, is
its practicality, requiring numerous supply sources and in disarrays. The solution
presented here is biasing through the use of fixator norator pairs (FNPs). By using
FNP we are able to fix each transistor to its designated operating point, just like
local biasing, while the power supplies remain in their normal location in the circuit
(global biasing). Properties on fixators and norators are discussed and component
modeling using FNPs are introduced. These models are of two types, linear and
nonlinear. The effort in this chapter has been on making it a tutorial on the subject,
and this has been done through several examples. The examples start from simple
circuits and move into more elaborate integrated circuits.

Keywords Amplifiers ⋅ Analog circuit design ⋅ Biasing design
Fixator-norator pairs ⋅ Local biasing ⋅ Nullification

1 Introduction

Biasing of large and complex analog circuits has always been a great challenge for
the designers. The challenge is normally in two areas. First, to get the number of
iterations minimized and make the convergence possible and rather quick; second,
to move to the right regions of operations for the active components so that the
output signals could get far from being distorted or clipped. Both problems become
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complex as the number of active devices increase, the design requirements become
tighter, and more efficient designs are in demand. One difficulty appears to be the
lack of separation between the linear and nonlinear components in the circuit during
the process. Traditional biasing techniques deal with the circuit as a whole, with no
break or circuit partitioning; hence, the complexity quickly increases as the circuit
grows [1, 2].

Recently a new biasing technique has been introduced that somewhat breaks the
tradition [3–5]. It starts with biasing nonlinear components (say transistors) indi-
vidually, and makes each transistor to become DC-isolated and to operate at its own
selective operating point (OP). Here each transistor is biased locally without
interfering with other components in the circuit. A major advantage in using this
technique is to deal with nonlinearity locally and to avoid any nonlinear operation
in the original circuit, as a whole. One may even claim zero nonlinearity being
involved in this situation. This is because biasing individual transistors to operate at
their desired OPs is just a matter of local sourcing.

In the method presented by Verhoeven et al. [3] the design of amplifiers is
carried out linearly and in AC domain. Here the circuit biasing—performed at the
end of the design—is reduced to just the transistors’ biasing, which is again a local
sourcing of the transistors, so that they can get to the OPs intended for each, without
being interfered by other DC sources. This technique makes each transistor
DC-isolate and it uses controlled sources for local adjustments. Although the
controlled sources are later removed but initially they cause timely iterations until
they are eliminated. In [4] this author presents a somewhat similar biasing method,
called “local biasing”. Despite the technique used in [3], here no controlled source
is used for the biasing purposes. In addition, it is shown [3, 4] that in each locally
biased port only one DC source delivers power to the device and the other source is
sitting idle. As demonstrated, this property helps to cut down the number of biasing
sources in the circuit by half, and the other half can be replaced with coupling
capacitors. This is of course for the case that the biasing voltage sources are sitting
idle. Similarly, in the case of the current sources delivering zero power inductors
can replace them.

With all advantages and significant simplifications local biasing offers [4, 5], one
major difficulty still remains to be addressed. The question is how to deal with those
“scattered supplies” used in the circuit due to the local biasing? As expected, each
bipolar transistor needs four (voltage and current) sources to get locally biased.
There are known circuit techniques [3, 6] that are used to deal with the problem.
The method proposed by Verhoeven et al. [3] uses shifts and other source transfer
techniques to reduce the sources and push them to specific locations [6]. Tech-
niques such as voltage dividing, source shifting, and current sourcing and mirroring
help to reduce the number of DC supplies and push them to the right locations in
the circuit. As expected, the method is more gradual and long and tedious proce-
dures used often reduce the attraction and practicality of these methods. In addition,
by implementing these procedures, there is no guaranty to ensure an optimal or a
desirable solution.
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In our methodology we are offering a new source transformation technique that
despite the conventional one it does the entire process in a single step. We may
begin the design of an analog circuit by choosing a desirable circuit topology. In
case the design uses discrete components the nonlinear components (transistors)
represent the drivers that must be biased to selected OPs. Now, because the regions
of operations are specified for the drivers we can simply replace the transistors by
their small signal linear models, bypassing the entire nonlinearity, and go directly
for the design of the (linearized) AC circuit. Note that because no DC analysis is
attempted yet then no DC supplies are specified. Indeed, in our methodology the
circuit biasing is pushed to the end and it begins when the AC design is successfully
completed, and the regions of operations (or simply OPs) for the drivers are
specified, for maximum output swings and minimum distortions.

On the other hand, if the target circuit is an integrated circuit then we are facing
with two types of nonlinear components: the drivers and the supporting compo-
nents, such as current sources, current mirrors and active loads. Similar to the
previous case here we also start the design for AC signals. We replace the drivers
with their small signal linear models at the desired OPs, and the other nonlinear
supporting components are also replaced with their linearized equivalent impe-
dances for small signals (such as a dynamic load resistance ro), as specified by the
design criteria.

Up to this point, the process of analog circuit design has followed a conventional
routine. We still need to know how to design the biasing of the circuit to fulfill the
following two conditions: (i) have the DC (voltage) supplies with specified values
located at their selective locations in the circuit, and (ii) have the drivers, as well as
the supporting components, biased at their selective OPs. In most cases the location
of supplies, such as VCC and VDD, and their values are predetermined for the
design. In such cases the question is, how to fulfill both set of requirements: (i) have
the DC power supplies with specified values and specified locations in the circuit,
and (ii) achieve the AC design requirements without any nonlinear iterations and
with minimum design efforts? As discussed before, one way to do this is to design
for the AC case first with the load and node impedances required for the design and
do the biasing later. Traditional biasing methods start with fixed supplies at fixed
locations in the circuit; whereas our method is to start biasing the individual
transistors and move the biasing sources to the desired locations later. With the first
method nonlinearity is unavoidable and because of the fixed AC models of the
transistors fulfilling all design specifications is hard and time consuming. However,
the difficulty with the individually biasing the transistors is to end up with too many
(voltage and current) sources in the circuit, and unless we move all the sources to
one or two designated locations, for the DC supplies, the job is incomplete. Again,
what makes the proposed technique more attractive is the fact that, in one step this
move takes place and those one or two supplies get replaced for all the sources used
for the individual transistors biasing. This certainly eliminates all those conven-
tional source reduction and transformation as well.
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The tool we are going to use to achieve our goal is fixator-norator pair.1 It is
shown that while the use of fixators help to keep the critical biasing specs
unchanged the matching norators actually find the values and the locations of the
DC supplies. As it is shown, the use of fixator-norator pairs (or actually nullor pairs)
is temporary here. The pair actually works as a catalyst, and get removed from the
circuit after the DC supplies are allocated. This suggests that, there is no need to
replace the norators with actual devices (such as Op-Amps or OTAs and so on). In
fact, because of the temporary nature of the nullor pairs ideal controlled sources of
type VCVS, VCCS, CCVS, and CCCS with high gains, approaching infinity, will
perfectly do the job.

The use of nullor pair in analog designs has been very extensive [7–9].
Tlelo-Cuautle also introduces biasing techniques for amplifiers at nullor levels [10,
11]. These techniques use nullor pairs and their governing rules to simplify the
biasing. The pairs are then replaced with transistors or Op-Amps for the final
design. Haigh, Clarke and Radmore introduce a new framework for linear active
circuits that use a special type of limit-variable in the circuit admittance matrix. This
variable being initially finite can approach infinity resembling high gain Op-Amps
or transistors as nullors [12–14]. Claudio Beccari [15] also uses the nullor concept
eloquently to find and allocate the transmission zeros in a circuit.

The method proposed in this article is using nullor pairs (in form of
fixator-norator pairs FNPs) quite differently. The pairs are used as tools to reallocate
the DC supplies and conduct the DC power to the transistors, and then disappear. It
is only during the circuit analysis and simulation that, in a fixator-norator pair, the
fixator is used to sense certain specified current or voltage (OP) in the circuit. This
sensing then tries to control a voltage across or a current through the associated
norator. As a result, the voltage or current found for each norator is, in fact, an
indication that indeed a DC (voltage or current) supply exists at the location that has
caused the biasing. We repeat this for all critical ports (with biasing specified) until
all supplies are allocated.

The rest of the materials in this article are arranged as follows. Section 2 is on
fixator-norator pairs. The behavior and properties of fixators and norators are dis-
cussed in this section. Local biasing is reviewed in Sect. 3. Models of locally biased
MOS and bipolar transistors are given in this section. The use of fixator-norator
pairs in global biasing of analog circuits is investigated in Sect. 4. Rules governing
the fixators and norators are also discussed here. Section 5 is on implementation
aspects of fixator-norator pairs for biasing. An algorithm developed in this section
provides a systematic procedure into the design of biasing for analog circuits. Two
examples are worked out in Sect. 6 that use the FNP methodology introduced here
as the basis for the biasing design of analog VLSI circuits. Finally, Sect. 7 con-
cludes our discussions on analog circuit design with emphasis on biasing.

1This is similar to nullor pair except a fixator-norator pair can accept sources.
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2 Nullification

To begin with, we need to define some terms that are used in the chapter [4]. We
should also notify that all our discussions here apply to DC supplies and biasing,
unless stated otherwise. We start from a port, which is a two terminal in a circuit
used for signal or power exchanges. Later we move into devices, particularly
nonlinear devices such as diodes BJT and MOS transistors for biasing purposes.

2.1 Port Nullification

In a circuit N, a port j(vj, ij) is null if the voltage vj across the port and the current ij
through the port are both zero. In an unpowered circuit all ports are null. The
question is, how do we nullify a port when the circuit has one or more DC supplies?
Let us first define Nullification. In a circuit N with one or more DC supplies, a port j
(vj, ij) is nullified if a voltage source vj and a current source ij are added to the port
in order to make it null. Specifically, consider a circuit N, shown in Fig. 1a, which
is partitioned into two sub-circuits N1 and N2, connected together through a port j
(vj, ij). To nullify the port, all we need to do is to add two pairs of vj and ij sources
to both sides of the port, as shown in Fig. 1b. This generates a null port k(vk, ik), but
apparently nothing changes inside N1 or N2. Now we can separate the two newly
formed sub-circuits N’1 and N’2 from port k(vk, ik) and leave the ports open, short
circuited, or even connect either sub-circuits to another two-terminal circuit with no
power supply in it; and in all doing this no change takes place inside N1 or N2. For
example, sub-circuit N’1 in Fig. 1b can be reduced to N1 when all DC supplies are
removed, as indicated in Fig. 1c.

Another important point to notice is that, in a port nullification only one source
supplies (or consumes) power, and the other source stands idle. For example, in the
port nullification given in Fig. 1b and c only the current sources are supplying
power and the voltage sources stay idle. It will be revered if we move the current
sources to the other side of the voltage sources.

Example 1 Consider the MOS diode circuit of Fig. 2a. The MOS transistor is
characterized by: µnC’ox = 200 µA/V2, W/L = 10/2, and Vtn = 1 V. The circuit is
partitioned into two parts, N1 and N2, connected together through a port j(vj, ij). If
we analyse the circuit for DC operation we find that vj, = 3 V and ij = 1 mA. Next
we apply a procedure similar to that in Fig. 1c, which is removing all supplies from
N1 and augmenting N2 with a voltage source vj and a current source ij as shown in
Fig. 2b. This causes the port k(vk, ik) to get nullified. So, if we remove vj and ij
sources from N1 and include them in N2 we get two sub-circuits N’1 and N’2
separated by the null port k(vk, ik), as shown in Fig. 2b. Note that N’1 is only a
resistance network with no source, apparently nullified, and it can be reduced to a
single resistor. This is the same as the Thevenin equivalent resistor Rth = 2.86 KΩ.
In other words, the combination of Rth and the two sources, vj, = 3 V and ij = 1
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mA, form the hybrid equivalent circuit (H-model) of N1, as shown in Fig. 3 [16],
and reported in [17, 18]. Notice that for the MOS diode, on the right, a gate-source
voltage of VGS = 3 V will produce a current of

ID =
1
2
μnC

0
oxW ̸L VGS −Vtnð Þ2 = 1

2
.200.10 ̸2 3− 1ð Þ2 = 2mA.

Hence, including the two sources, vj, = 3 V and ij = 1 mA into the sub-circuit
N2 will nullify its port, as expected.

2.2 Multi-port Networks

Port nullification can be generalized to include multi-port networks. Examples are
BJT or MOS transistors. In general, consider a circuit N, partitioned into two
sub-circuits N1 and N2 that are connected together through n ports, j(vj, ij), all j = 1,
2, … n, as shown in Fig. 4a. Next, we nullify the ports by adding voltage sources vj
and current sources ij to each port, as demonstrated in Fig. 4b. This simply creates n
new and nullified ports j0(v0j, i0j), all j = 1, 2, … n. This is for the sub-network N2.
To nullify the ports from the other side, it is sufficient to remove all DC supplies
from N1. Note also that if we remove N2 in Fig. 4b we basically leave N1 in its
H-model [18].

The following algorithm provides a simple procedure to nullify circuit ports.

Algorithm 1
Consider a circuit N that is partitioned into two sub-circuits N1 and N2, through n
ports. Let us assume N1 contains the power supplies and the DC Power Conducting
(DCPC) components of N, and N2 consists primarily of the nonlinear devices. To
nullify the ports we need to go through the following steps:

N1 N2

Ij

Vj

(a)

N2

Ij

VjIj

VjIk

Vk
N1 Ij

VjIj

Vj

N’2

(b)

N’1

N1 N2Ij

VjIk

Vkno DC 

supply

(c)

N’2N’1

Fig. 1 Circuit nullification process; a Partitioned circuit, N1: the power supplier, and N2: devices
to be nullified; b Power removed from N1 and N2, nullified; c Both N’1 and N’2 nullified
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1. For each port j(vj, ij), all j = 1, 2, … n, add a voltage source vj and a current
source ij to the port in N2, as shown in Fig. 4b.

2. Remove all supplies from N1.

Example 2 Consider a two stage BJT amplifier with feedback, shown in Fig. 5a.
The transistors are biased through a power supply VCC, and a current source IS.
Next, we partition the amplifier into two sections (sub-circuits) N1 and N2, where
N2 consists of the two transistors, and N1 keeps the rest of the circuit that includes
the power supplies and the DCPC components. By doing this we have simply
separated the nonlinear components from the linear portion of the amplifier. Next,
we can identify four ports connecting the two sub-circuits together. These ports are
the base-emitter and the collector-emitter ports of the two transistors. Now, to
nullify the ports we add the following sources to the ports: VB1, I1, IS, VE2, VC2, and
I2 as demonstrated in Fig. 5b. To comply with Algorithm 1, we also need to remove
the supply sources (VCC and IS) from N1. The idea is that, if these voltage and
current sources can take care of the biasing of the transistors then there is no need to
have any extra supply in the circuit. The main point here is that, now are able to
assign our desired set of biasing conditions through these six sources instead of
relying on the circuit supplies (VCC and IS) and the associated DCPC components.

(a) (b)

Fig. 2 Circuits for Example 1. a Partitioned circuit, N1: the linear and power supplier, and N2: the
device to be nullified; b N’1 and N’2 nullified (Power removed from N’1)

Fig. 3 Circuits for Example
1. Partitioned circuit, N1:
H-model equivalent circuit,
and N2: the device to be
nullified
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In order to simulate the circuit we need to find the right values for the sources
VB1, I1, IS, VE2, VC2, and I2 by assume our desirable (biasing) values to the tran-
sistors. Here are the biasing values: VBE1 = 0.6 V, VCE1 = 2 V, VBE2 = 0.7 V,
VCE2 = 4 V, IB1 = 10 μA, IC1 = 1 mA, IB2 = 100 μA, and IC2 = 10 mA.

Fig. 4 Multi-port nullification; a Partitioned circuit, N1: the linear and power supplier, and N2:
devices to be nullified; b N’1 and N’2 nullified (Power removed from N’1)
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Fig. 5 Circuits for Example 2. a A two stage BJT amplifier with feedback; b Partitioned circuit
into N’1: the power supplies removed, and N’2: nullified devices
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These are the biasing design specs, and based on these values we need to calculate
the sources specified in Fig. 5b. From the circuits in Fig. 5 we get:

VB1 =VBE1 = 0.6V
I1 = IB1 = 10 μA
IS = IC1 + IB2 = 1.1mA
VE2 =VCE1 −VBE2 = 1.3V
VC2 =VCE2 + IE2 = 5.3V
I2 = IC2 = 10mA

Now the circuit in Fig. 5b is prepared for biasing. The following list is part of the
WinSpice code used for the simulation, and Fig. 6 shows the transient response of
the amplifier with local biasing in place.

Several points can be observed here:

1. From the WinSpice listing we notice that, although we have eight port variables
VB1, IB1, VC1, IC1, VB2, IB2, VC2, and IC2 but practically we are limited to four,
which are IB1, VC1, IB2, and VC2, and the rest are computed by the devices
models. We will pick up on this, and the reason for that in a later section.

2. Notice that the output plot does not show any DC component attached to it. This
indicates that there is no need to insulate DC from AC signals through coupling
capacitors, or by any other means. This is also true for the input signal that again
doesn’t need any coupling capacitor to operate. This is a major property of
nullification (and later local biasing) that the DC signal is well contained within
the devices itself, because they are externally nullified, and DC blocked.
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v–i characteristic curve: Our next investigation is to see how port nullification is
mapped into the port’s characteristic curve. In a circuit, the v–i characteristic curve
of a port shows the relationship between its voltage and current variables as they
change. Given the v–i characteristic of a port j(vj, ij), the port nullification moves
the coordinates to the port’s operating point Q(vj, ij), as a new origin. For example,
Fig. 7a shows an nMOS transistor unbiased; hence, the Q-point of the output port is
at the origin. This is because VDS = 0 and ID = 0, as plotted in Fig. 7b. Now, if we
bias the transistor by a current source Ij the operating point moves to Q(Vj, Ij) on the
characteristic curve, exhibiting a voltage of VDS = Vj. Now by adding a voltage
source Vj to the port we actually nullify the port as shown in Fig. 7c. This means
the new port coordinate axis (vk and ik) have moved to the Q-point In this case a
null port k(vk, ik) is created and the origin of the coordinate axis is simply the port
Q-point. This is shown in Fig. 7d. In conclusion, by adding a power source, in this
case Ij, to the port we bias the port to a Q(Vj, Jj) point, and then by adding a voltage
source Vj to the port we nullify the port and move the origin of the new axis to the
Q point. This simply means that by port nullification we have been able to move
into the linear region of the device characteristic curve (as indicated in Fig. 7d)
without any need to externally bias the device. This leads us to Property 1.

Property 1 Augment a port j(vj, ij) with a current source Ij and a voltage source Vj

so that it operates at a Q(Vj, Ij) point on the port characteristic curve (Fig. 7c). The
port is then nullified and the v–i coordinate axis move to Q, as the new origin,
shown in Fig. 7d.

A circuit or device is nullified if all its ports are nullified. By a device we
typically mean a nonlinear component such as a diode, a BJT or an MOS transistor.

Fig. 6 Transient response of the amplifier with the devices being nullified
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3 Local Biasing

A port is locally biased if it is nullified. A circuit or a device is locally biased if it is
nullified, i.e., all its ports are nullified. Note that local biasing of a circuit or a device
is not unique. A port can be locally biased for any operating point (OP). This is also
true for a device with multiple ports.

3.1 Local Biasing of Devices

To locally bias a device in a circuit all ports in the device must be nullified and
remain nullified during the circuit operation. By giving the ports specifications in a
device we can always nullify each port by adding a pair of voltage and current
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Fig. 7 nMOS output characteristic curves; a unbiased device with the Q-point at the origin;
b locally biased device with a new Q point, still at the origin
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sources to each port, as described earlier. The schematic representation of locally
biased diodes, BJT transistors, and MOS transistors, along with their symbolic
representations, are given in Fig. 8. Note that in Fig. 8c the current sources are
absent in gate and substrate ports for the MOS transistor. This is because these ports
do not carry any DC current.

3.2 Properties of Local Biasing

There are certain properties of local biasing that are important in circuit operations,
and particularly in distinction between DC and AC behavior of circuits. The fol-
lowings describe some of these properties.

Theorem 1 Connecting locally biased devices together, directly or through a
resistor network, does not make any changes in the devices operations, and it still
makes the combined circuit locally biased.

D(VD, ID)
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Fig. 8 Schematic representation of locally biased devices: diodes, BJT transistors, and MOS
transistors, along with their symbolic representations
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Proof The proof is simple. Since the ports voltages and currents in any locally
biased are zero connecting ports together makes no changes in them. In fact, there is
no way for the devices to exchange (DC) power between them through the nullified
ports.

As an example consider the circuit in Fig. 9. If the transistors are locally biased
then the entire circuit is locally biased. That is, the DC current going through its
nodes, 1, 2, 3, and 4, are all zero, and the DC voltage across any two nodes is also
zero. In fact a generalized version of this property is given in Fig. 4.

Based on Theorem 1 we can state the following: virtually, if the transistors used
in a design are each locally biased to the right operating point (see Fig. 7c and d)
then the transistors can be used as ordinary circuit components, like resistors,
without biasing, and still operate in the linear region for AC. Hence, a major
application of Theorem 1 is in circuit design for performance (AC design). Once we
configure the circuit, such as the one in Fig. 9, and locally bias the transistors, then
we can change the resistors and even change the biasing of the devices (as long as
they remain locally biased) in order to meet the AC design criteria. In other words,
the biasing of a circuit is done as long as its transistors remain locally biased and
any component variation aiming at the AC design does not change the biasing
behavior. In mathematical terms we may state that, local biasing and designing for
AC operation are orthogonal.

Property 2 If all devices within a circuit are locally biased then there is no need to
have any DC supply in the rest of the circuit. In addition, any port of a circuit with
no DC supply is nullified.

Property 3 The biasing strategy, whether it is local or global, does not affect the
AC analysis of a circuit.

R1

R3

R4

1
M1

M2

R22

3

4

Fig. 9 Symbolic
representation of a locally
biased circuit
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Property 3 is true because the DC supplies are all removed during the AC
analysis; hence, there is no difference between the circuits being locally or globally
biased. During the AC analysis we only need to have the operating points of the
devices specified to get their small signal models.

Property 4 In a circuit that its transistors are locally biased, the DC power is
contained within the locally biased components. Hence, by tapping to any node,
which is not inside a locally biased transistor, we can directly input or output an AC
signal without using a coupling capacitor.

Property 5 The power consumption within a circuit that its devices are locally
biased is minimized.

Property 5 is true because in a circuit that its transistors are locally biased the DC
power in contained within the locally biased components, and no were else, i.e., the
rest of the circuit spend zero DC power.

4 Local Biasing Devices With Reduced Number
of Supplies

With all the advantages and properties described for local biasing there are two
major problems with it. First of all, there are too many local sources present in the
circuit, i.e., a pair of voltage and current supplies for each port. Besides, these
supply sources are spread within the circuit, and mostly not grounded. On the other
hand, as we did find out, from two sources for each port only one carries power and
the other one is just holding to the port voltage or current to nullify it. The second
problem is that, a port, like a two-terminal component, needs only one of its
variables (voltage or current) to be specified and the other one is obtained through
the circuit analysis. Therefore, assigning both variables to a port may simply cause
deviation from the port nullification, and hence the local biasing invalidates. So, the
solution is to assign only one variable to each port and let the circuit provide the
other port variable.

This makes us to propose a new local biasing scheme that addresses both
problems, and provides a solution. In this scheme, one source is specified for each
port and the other source is replaced with a reactive element. The reactive com-
ponent is a capacitor in case a voltage source needs to be replaced, and it is an
inductor in case a current source is aimed to be replaces. This is called Local
Biasing with Reduced number of Supplies (LBRS) versus the previous scheme
called Local Biasing with full Supplies (LBFS). Figure 10 shows LBRS applied to
diodes, BJTs, and MOS transistors. Notice that Fig. 10 is identical to Fig. 8, except
in Fig. 10 each port has one powered (voltage or current) source and the other
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source is replaced with a reactive element, which is a capacitor replacing the port
voltage source, and an inductor replacing the port current source. Initially, we may
think of replacing voltage and current sources with capacitors and inductors may
still complicate the locally biased circuits because of too many reactive elements.
Although this may be true, but we should realize that with the capacitors and
inductors added to the circuit for LBRS the circuit becomes totally DC free, when
outside of the locally biased transistors. This, according to Property 4, allows us to
directly tap into any node in the circuit to input a signal or receive an output signal
without using any coupling capacitor that is commonly used in typical cases.

Example 3 Let us revisit the BJT amplifier discussed in Example 2, Fig. 5a. The
transistors are locally biased using the LBRS technique in this example, as shown in
Fig. 11. The reduced WinSpice code is also given below.
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Fig. 10 Schematic representation of locally biased devices with reduced number of supplies:
a diodes, b BJT transistors, and c MOS transistors, along with their symbolic representations
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After simulating the circuit we get the simulation results for biasing as follows.

DC Operating Point . . . 100%
VBE1 = 6.463970e− 01 V
VCE1 = 2.000000e+ 00 V
VBE2 = 7.059513e− 01 V
VCE2 = 4.000000e+ 00 V

Fig. 11 Circuit for Example 3. Locally biased devices with reduced number of supplies, using
capacitors and inductors instead
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Notice that although we have provided only the biasing currents, the biasing
voltages VCE1 = 2 V and, VCE2 = 4 V, are computed through the simulation.

Next, we simulate the amplifier for the transient analysis, and the output results
from stages 1 and 2 are plotted in Fig. 12. Note that although the amplifier does not
uses any coupling capacitors except for those in the local biasing, the input signal
and the output responses are purely AC.

Finally, we can compute the DC power consumption PLBRS of the amplifier by
adding the powers spent in the local biasing of the two transistors as:

PLBRS ≅VCE1IC1 +VCE2IC2 = 2*1+ 4*10= 42mW

Compare this with the DC power PNB spent in normal biasing situation, which is:

PNB ≅VCC IR + IC1 + IB2 + IC2ð Þ=9* 0.03+ 1+ 0.1+ 10ð Þ=100mW

Therefore, the power saving is more than double. This concludes the example.

4.1 DC Nullator Representation of Devices

As we discussions before, if a device is “perfectly” locally biased then the device
ports are nullified. However, these ports may not stay null if some DC sources are
added to the circuit containing the devices, such as external power supplies. So, we
can call these ports slashed-nullators, and symbolize them as shown in Fig. 13c.
A slashed-nullator becomes a nullator only when a perfect locally biased is guar-
anteed. Figure 13 displays a combination of Figs. 8 and 10 equivalent locally
biased devices in two types, full supplies and reduced supplies. In addition the
devices can also be symbolized by one or more slashed-nullators, as shown in

Fig. 12 Transient response of the locally biased amplifier
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Fig. 13 Locally biased, and locally biased with reduced number of supplies for diodes, BJT and
MOS transistors; their representations by slashed-nullators
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Fig. 13c, f, and i. As an example for a slashed-nullator, consider Fig. 14, which
shows a CE amplifier with the BJT being locally biased. The transistor can be
represented by two slashed-nullators displayed in Fig. 13f. These slashed-nullators
can become nullators only if the external supply VCC is removed from the circuit, in
which case the BJT is perfectly biased, locally. In what follows, we assume perfect
local biasing unless stated otherwise.

5 Fixator-Norator Pairs in Biasing Designs

We discussed local biasing and its properties in Sects. 3 and 4. The main property
of local biasing is its ability to totally remove global biasing in circuits by biasing
individual devices, instead. The advantage was a “divide and concur” strategy that
makes biasing device-independent and simple. The down side of this strategy,
however, is having too many DC (voltage and current) supplies in the circuit, plus
the fact that these supplies are distributed within the circuit and without being
necessarily grounded. In Sect. 4 we proposed a technique that uses reactive ele-
ments, such as capacitors and inductors, to cut the number of supplies into half, but
still not only the number of supplies are large for large circuits, many supplies
remain ungrounded. As it turns out, one solution to both problems is to use Fixator
Norator Pairs (FNP) as we will discuss it here.

5.1 Fixator

A fixator is very similar to a nullator, except a fixator represents a fixed current
source as well as a fixed voltage source. In fact, a nullator can be considered a
special case of a fixator, where both its current and voltage sources are zero.
Figure 15 shows two versions of a fixator depending on whether (1) the voltage
source Vj consumes (or provides) power in the fixator and the current source Ij stays
idle, or (2) the other way around. In Fig. 15a the voltage source consumes power,
and Fig. 15b is its symbolic representation. In Fig. 15c the power consuming
source is left out, and Fx(0, Ij) is a current fixator. Figure 15d, e, and f are similar to
a, b, and c, except here the current source consumes power, and Fx(Vj, 0) represents
a voltage fixator.

In a circuit, a fixator must always be paired with a norator, where, the fixator sets
both port variables according to a design spec, and the paring norator provides the
require conditions for the fixator to operate.
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5.2 Rules Governing Fixators and Norators

A fixator represents a current source and a voltage source combined; hence, its rules
must comply with both. For instance, a current source in series with a fixator may
violate KCL, and a voltage source in parallel with a fixator may violate KVL. In
general, a cutset of fixators with or without current sources may violate KCL and a
loop of fixators with or without voltage sources may violate KVL.

A cutset of norators with or without current sources and fixators are not all
independent, and a loop of norators with or without voltage sources and fixators are
not all independent either.

Here are some other properties of the pair:

• A fixator Fx(V, I) consumes power, and the power consumed is P = V*I.
• A resistance R in series with a Fx(V, I) is absorbed by the fixator and the fixator

becomes Fx(V1, I); where V1 = V + R*I. A resistance R in parallel with a Fx
(V, I) is absorbed by the fixator and the fixator becomes Fx(V, I1); where
I1 = I + V/R.

• A current source IS in parallel with a fixator Fx(V, I) is absorbed by the fixator
and the fixator becomes Fx(V, I1); where I1 = I + IS.

• A voltage source VS in series with a fixator Fx(V, I) is absorbed by the fixator
and the fixator becomes Fx(V1, I); where V1 = V + VS.

• A current source in series with a norator absorbs the norator with no change; and
a voltage source in parallel with a norator absorbs the norator with no change. In
addition, a current source in parallel with a norator is absorbed by the norator;
and a voltage source in series with a norator is absorbed by the norator.

• A resistance in series or in parallel with a norator is absorbed by the norator.
• A norator in series with a fixator Fx(V, I) becomes a current source I; and a

norator in parallel with a fixator Fx(V, I) becomes a voltage source V.

(a) (b)

(d) (e)

Ik

VkIj

VjIj

Vj

Fx(Vj, Ij)

Ik

VkIj

VjIj

Vj

Fx(Ij, Vj)

(c)
Vj

Fx(0, Ij)

(f)

Ij Fx(Vj, 0)

Fx(Vj, Ij)

Fx(Ij, Vj)

Fig. 15 Fixators; a and b voltage powered fixator and its symbol; c current fixator; d and
e current powered fixator and its symbol; f voltage fixator
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5.3 Fixators and Local Biasing

A major property of a fixator is that, when it is assigned to a circuit port it keeps its
biasing (voltage and current) fixed. In a first glance we may think that local biasing
does the same. It uses supplies internally to bias a transistor to a certain operating
point and nullifying its ports. The difference, however, is that, local biasing does not
guaranty to keep the biasing of a port fixed, it does it only when the ports remain
null. What might happen is that, if after local biasing (and nullifying) a port we
bring a new DC source to the circuit the biasing condition of the port may change
and the port in no longer null. This is not the case in fixator. Fixators guarantee the
biasing stay fixed. Fixators do not add any extra source to the circuit, but they make
the existing sources in the circuit to provide the right conditions for the specified
biasing. In other words, fixators only set the biasing requirements, and it is up to the
remaining circuit to fulfill these requirements. Another major difference between
local biasing and using fixators is that, with local biasing we can run the AC
operation in a circuit, but not with the fixators attached. The fixators must be
removed after their design job in done.

Just like local biasing models, diodes and transistors can also have fixator
models, as shown in Fig. 16. The left column in the figure shows the devices that
are normally biased, and the next two columns show the biasing being fixed
(i changed to I and v changed to V). This indicates that there are two types of fixator
models for each device. In the first type, shown in the middle column, the entire
device is replaced with its model consisting of one or more fixators. In the second
type, shown in the last column, the device remains intact but fixators are added to
set specific variables in the device fixed. One may ask, why two types of models,
and what are their differences? To explain this, we need to go back to the same
discussion we did for local biasing. Here again, there are two fixed variables
assigned to each port in the first type (the middle column), whereas only one is
needed, and the other variable must be found through the circuit analysis. There-
fore, providing fixed values for both port variables may cause deviation from the
actual port characteristic, and subsequently from the device characteristic, as well.
The advantage of using the first type, however, is its linearity and hence simplicity
to analyze the circuit.

In the second type (the right column), the device remains in the circuit and
typically one variable per port is only fixed. The other variable is found through the
circuit analysis. This is definitely the most accurate model but the disadvantage is
that the circuit remains nonlinear as its original. In our analysis, in this chapter, we
more prefer to use the second type of models unless stated otherwise.
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5.4 Fixators Norator Pairs (FNP)

Fixators cannot stay alone in a circuit. This is because they have two variables
(voltage and current) specified, and this violates Kirchhoff Laws. Norators, with no
specified port variables, on the other hand can pair with fixators in a circuit.
However, a fixator can pair with a norator only if they are mutually sensitive to each
other. Actually a norator must be highly (theoretically infinitely) dependent on the
pairing fixator, and a fixator must also be sensitive to the changes taking place in its
pairing norator. The next question is, how the pairing takes place in a circuit that
has multiple number of fixators and norators? The correct answer is that, it happens
“collectively”. Contrary to dependent sources that the controlling and controlled
components always appear in pairs, in FNPs no paring is necessary, as long as the
number of fixators and norators are equal. A full discussion on this is given in [19].
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Fig. 16 Fixator modeling of the devices, diodes, BJT and MOS transistors, and a circuit port; a,
d, and g normally (globally) biased devices; b, e, h, and k linear fixator models; c, f, and i the
actual fixator models with the device included
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There is one exception, however, which is, when we use a typical circuit simulator
like SPICE we need to replace each FNP with a controlled source. Therefore,
because of the nature of controlled sources we are forced to pair the fixators and
norators when dealing with conventional simulators.

We are now ready to put all this into an algorithm.

Algorithm 2

1. Given a circuit configuration (topology) with a certain number of biasing
requirements, we start locally biasing the circuit. This biasing makes each
device being biased separately, and based on its own biasing criteria. We then
remove all other DC supplies from the circuit.

2. After the local biasing is completed and tested we introduce fixators to keep the
biasing fixed. To do this, we need to replace the locally biased transistors (Fig. 8
or 10) with the fixator models that are given in Fig. 16. As mentioned earlier,
there are two types of fixator models for each device, linear and non-linear. Here
we need to choose the one that is more appropriate for our design case.

3. Next we need to allocate one norator for each fixator in the circuit. Each norator
will be then replaced with either a DC (voltage or current) source or just as DC
Power Conduction components (DCPCs), which is typically a resistor, or a
transistor in ICs.

4. We then need to add DC supplies to the circuit, or alternatively one or more of
the norators can be assigned to provide power to the circuit.

5. All circuit components and devices are in place for simulation now except for
the fixators and norators that are only pathological components and they must be
replaced with controlled sources. The closest components to replace a pair
(FNP) is a controlled source with a very high gain. Among these sources a
VCVS or a VCCS is a candidate for a FNP with current fixator, and a CCVS or
a CCCS is a candidates for a FNP with voltage fixators. Current and voltage
fixators are displayed in Fig. 15.

6. We now simulate the circuit. Following the circuit simulation we get four
choices for each norator to decide. In general a norator k, represented by Vk and
Ik as its voltage and current, can be replaced with a voltage source Vk, a current
source Ik, a (DCPC) resistor Rk = Vk/Ik, or a combination of them.

7. Finally, we replace the norators with their replacement components found, and
then remove the fixators from the circuit. The biasing design is now completed.

Example 4 Let us revisit the BJT amplifier discussed in Example 2 one more time.
Referring to Fig. 5a we would like to bias the transistors, Q1 and Q2, for IB1 = 10
μA, VCE1 = 2 V, IB2 = 100 μA, and VCE2 = 4 V. Next, to keep the biasing values
fixed during the process we use fixators. And from two types of device modeling by
fixators, discussed before, we select the second type shown in Fig. 16f. Now we
need to select four paring norators. We choose the components RE, RF, IS, and RC

to replace them with the norators we need, namely N1, N2, N3, and N4, respectively,
as shown in Fig. 17.
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Now to simulate the circuit we need to pair each fixator with a norator in the
circuit and then assign a controlled source to each FNP. Although this step can
almost be arbitrary, but with a little effort we can find pairs of fixators and norators
that are quite sensitive to each other. The following list shows the four FNPs that
are paired and replaced with the controlled sources specified.

• N1(-, -) and Fx(10 μA, 0) as a VCVS with the gain of 103.
• N2(-, -) and Fx(2 V, 0) as a CCVS with the gain of 107.
• N3(-, -) and Fx(100 μA, 0) as a VCCS with the gain of 103.
• N4(-, -) and Fx(4 V, 0) as a CCVS with the gain of 107.

And the SPICE coding for the FNPs are given below:
e1 2 0 2 11 1.0e03
h2 5 2 V2 1.0e07
g3 1 3 3 12 1.0e03
h4 1 4 V4 1.0e07

Here is how we can describe each fixator: (1) the fixator Fx(10 μA, 0) is rep-
resented by a 10 μA current source from node 2−11, and (2) the fixator Fx(2 V, 0)
is represented by a 2 V voltage source V2. Similar situation holds for the other two
fixators Fx(100 μA, 0) and Fx(4 V, 0).

Next, we simulate the circuit so constructed and find the component values
replacing the norators. The followings are the results after the circuit is simulated.

vout

iin 100 KΩ

Q1

Q2

N1(-, -)

VCC = 9 V

Fx(100 μA, 0) 

Fx(2 V, 0) 

Fx(4 V, 0) 

Fx(10 μA, 0) 

N2(-, -)

N4(-, -)
N3(-, -)

Fig. 17 Two stage BJT amplifier circuit with feedback using FNP for the biasing design
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DCOperating Point . . . 100%

VBE1 = 6.463985e− 01V

VCE1 = 2.000009V

VBE2 = 7.059356e− 01V

VCE2 = 3.999971V

N1 = 1.284133e + 02Ω
N2 = 3.999971Ω
N3 = 1.100027e− 03A

N4 = 3.708204e + 02Ω

.

Note that N1, N2, and N4 are (DCPC) resistors, but N3 is a current supplier. Note
also that the values obtained are quite close to the original values given in Examples
2 and 3.

Finally, to finish off the biasing situation and prepare the amplifier for transient
analysis, we need to do the followings: (1) replace the norators with the components
found, (2) remove the fixator from the circuit and apply the input signal iin, and
(3) run the circuit for the transient analysis. The response is shown to be very close
to what we see in Fig. 6. This concludes our example.

Example 5 Here, we are interested to design the biasing of a two stage MOS
amplifier with feedback, shown in Fig. 18. The schematic provides the topology of
the amplifier with the component values specified. Table 1 shows the transistors
sizes along with their Operating Points (OPs), where the substrate effect is ignored
for simplicity. As one of the criterions, to have the output waveform distortion free
we have selected to have VSD2 = 4 V. This provide us with a maximum of 6 V
output voltage swing.

Next, we locally bias the transistors. Figure 19 shows the schematic diagram of
the amplifier when the transistors are locally biased, using the reduced supply
scheme, i.e., instead of adding current supplies, ID1 and ID2, for the drain currents we
have used two inductors L1 and L2, in order to keep the ports nullified. In fact this
scheme proves to be more effective than the one with complete sources (Fig. 8). This
is because, it not only guaranties the nullity of the ports (a requirement for local
biasing) but it also help us to find the actual current values needed for ID1 and ID2.
These values are found to be ID1 = 7.151974e-05 A and ID2 = 7.997803e-04 A,
which are very close to the assigned values in Table 1. In case the differences
between the spec values and the calculations exceed the tolerance we can either settle
with the calculated values or make changes to get closer, for example, change VGS.

After the transistors are locally biased we simulate the circuit for AC and
transient analysis. It is at this stage that we can choose values for the circuit resistors
and adjust them to meet the performance design criteria. These performance design
criteria may include the gain, and input and output impedances. Because we are
only doing biasing design here we assume the performance design is already carried
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out and the circuit resistors are found, and Table 2 provides these resistor values for
the amplifier. So, the only components left to be determined are the four power
supplies, VGG, VDD, VSS, and IS.

VDD

VSS

VGG

vs IS
R1 R2

R3

R4

R5

M1

M2

Fig. 18 Initial configuration
of a CMOS amplifier with
feedback

Table 1 Biasing design with
specified values

Devices W/L μm VGS V VDS V ID μA
M1 20/1 1.0 1.9 70
M2 50/1 −1.8 −4.0 800

M1

M2

VGS1

VDS1 VSG2
VSD2

L1

L2

R5
R1 R2

R3 R4

Fig. 19 Locally biased
(reduced supplies) for the
CMOS amplifier

Table 2 Component values
for Example 5

R1 KΩ R2 KΩ R3 KΩ R4 KΩ R5 KΩ
46.5 15 85 5.4 0.85
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Given the selected OPs, our next move is to replace the transistors with their
fixator models. This stage of the design is needed to move from the local biasing to
global (normal) biasing, and determine the values for the power supplies. We use
the linear fixator model in this example, displayed in Fig. 16h. The MOS transistors
are now totally replaced with their fixator models. Next, the fixators need to be
paired with four norators, and these norators occupy the supplies, VGG, VDD, VSS,
and IS, locations, as seen in Fig. 20. Our circuit is now ready for simulation. Notice
that the entire circuit is linear.

Another important point to mention here is that, we are trying to keep the
resistors unchanged in order not to disturb the performance design, and that is why
we are focusing more on assigning the computed power supplies. However, this
may not always work. The reason is that in most design cases the power supplies
are standardized and need to stay at values such as 5, 3.3, 1.8, 1.0 V, whereas in
finding the values through computation may send us way off. We can think of two
solutions for this. Either use voltage dividers/references to adjust the values, or
adjust the power conducting resistors in the circuit. Although the second solution is
less complicated and more power friendly but the resistors obtained for DC biasing
may be way different from those found in the performance design. In lumped
analog circuits, these differences are typically solves by using bypass capacitors.
For example, in a CS (common source) amplifier design with a source resistance,
portion of the resistor is normally bypassed to boost the gain. In case of the
integrated circuit the difference between (DC) static and (AC) dynamic resistors are
typically solved by using dynamic loadings using active components.

We are now ready to solve the linear circuit with FNPs. Again, we use high gain
dependent sources, very similar to what we used in Example 4. Note that the use of
high-gain dependent sources are just temporary and do not appear in the actually

2

8
7

1

3

5
6

4

VDD

VGG

Vs IS

R1 R2

R3 R4

R5

VSS

Fx(1 V, 0)

Fx(1.9 V, 71.5 μA)
Fx(4 V, 800 μA)

Fx(1.8 V, 0)

Fig. 20 The linear DC
modeling of the CMOS
amplifie using the
fixator-norator modeling
concept
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designed circuit. The following is a partial SPICE code for this simulation. Notice
that the fixator model used in this simulation code is the nonlinear mode type,
shown in Fig. 16i. The difference is that, instead of using ID1 = 7.151974e-05 A
and ID2 = 7.997803e-04 A found earlier in local biasing case, we are using the
actual transistors M1 and M2 to carry the currents. The results show the same
values.

M1 4 2 5 5 N_1u L=1u W=20u
M2 7 4 6 6 P_1u L=1u W=50u
r1 5 0 46.47k
r2 7 5 15k
r3 4 1 85.3k
r4 6 3 5.376k
r5 7 0 854
*
vg1 2 5 DC 1.0
vd1 4 5 DC 1.9
vg2 6 4 DC 1.8
vd2 6 7 DC 4
hg 2 0 vd1 1.0e8
fs 5 0 vg1 1.0e5
hd 1 0 vg2 1.0e8
hs 3 0 vd2 1.0e8

After the norators’ voltages and currents are found it is then up to us to play with
these values, which previously we categorized them into four types: voltage
sources, current sources, resistors (voltage/current), or a combination of the three.
Our selection in this example is clear as calculated by Spice and shown below:

VGG = 2.000169V

VDD = 8.994837V

VSS = 9.000755V

IS = 30.01714 μA

To make it simpler and more practical, in reference to Fig. 18, we can combine
VDD and VSS and assume VDD = 9 V. Also we take VGG = 2 V, and IS = 30 μA.
This concludes our example.

6 Fixator-Norator Pairs in VLSI Biasing Designs

In the following two examples the FNP methodology is applied to analog integrated
circuits for biasing designs.

Example 6 This example presents a negative feedback amplifier; fully explained in
reference [3]. Figure 21 shows a simplified schematic of the amplifier after it has
gone through the performance design in the three areas: noise reduction, clipping/
distortion reduction, and high loop-gain-poles-product.2 To do the biasing design

2For details please refer to Chap. 10 in [3].
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we need to first specify the values for the DC supplies and their locations in the
circuit. Next, we need to select the operating points (OPs) for the transistors so that
they can fulfill the design specs. For the actual power supplies, we choose two DC
sources of 4 and −4 V, as selected in [3]. For evaluating the component values we
need such as the power supplies and the DCPCs we go through FNP design
procedure. According to the criteria given for the performance design the FNP
procedure must address the following specs.

• The emitters of Q1 and Q2 must be driven by a high impedance current source,
IE.

• The base of Q2 must be driven by a low impedance voltage source, VB2.
• The collector of Q1 can be driven directly by VCC.
• The collector of both Q2 and Q3 must be driven by high impedance current

sources IS2 and IS3, to maximize the gain.
• The base current of Q1 can be provided through a feedback resistor Rf.

3

To proceed with the design we choose the collector-emitter voltages of the
transistors Q2 and Q3 (vCE2 and vCE3) to be the “critical” design criteria. Note that
the voltage VCE1 of Q1 is not critical because it is directly connected to VCC. Next,
we assume all the three collector currents iC1, iC2, and iC3 to be also “critical”.
Table 3, columns 1 and 2, provides all these five critical values for the transistors
OPs, and it also gives all five fixators that keep the critical values unchanged during

IS
1n Q1

Q2
Q3

Cf Cc

ClRl

Fig. 21 A three stage amplifier topology after going through the performance AC design [3]

Table 3 Bias design specs and fixator-norators

Critical specs Fixator representations Norator representations

IC1 = 0.1 mA Fx(0, 0.1 mA) RF
VCE2 = 0.67 V Fx(0.67 V, 0) VB2
IC2 = 0.5 mA Fx(0, 0.5 mA) IE
VCE3 = 2.2 V Fx(2.2 V, 0) IS3
IC3 = 3.6 mA Fx(0, 3.6 mA) IS2

3The resistance Rf is in the bias loop and part of a required AC filter.
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the design process. Column 3, on the other hand, shows five pairing norators that
are going to be replaced with appropriate circuit components, as specified in the
table. Figure 22 is extracted from Fig. 21 after the FNPs, specified in Table 3, are
added to the circuit.

Again, to simulate the circuit we need to replace the FNPs with high gain
controlled sources. The following is a partial SPICE code showing five controlled
sources used for the five FNPs.

ic1 2 a DC 1.0e-04
e1 4 51 2 a 1.0e8
vce2 c 7 DC 0.67
hb2 Vb2 0 vce2 1.0e8
ic2 3 c DC 0.5m
ge 7 11 3 c 1.0e8
vce3 e 0 DC 2.2
fc3 21 4 vce3 1.0e8
ic3 4 e DC 3.6m
gc2 12 3 4 e 1.0e8

In Table 4, column 1 shows the type of controlled source used for each FNP,
column 2 is the list of the controlling fixators, and column 3 shows the results
obtained from the simulation, which are the ultimate components values for the
design.

Finally, we remove the controlled sources (FNPs) from the circuit and replace
each norator with its appropriate component listed in Table 4. The final amplifier so
designed is depicted in Fig. 23. As expected, the resulted DC sourcing matches
with those in [3], but here obtained much quicker.

Example 7 This example presents a two-stage CMOS Op-Amp [2]. The design
uses low voltage 50 nm CMOS technology. Figure 24 provides a partial structure

IS2

Q3

- VEE = - 4V

VCC = 4V IS3

IE

VB2

Rf

In

Out

Q1 Q2

Fx(2.2 V, 0)

Fx(0, 0.5 mA)Fx(0, 0.1 mA)

Fx(0, 3.6 mA)

Fx(0.67 V, 0)

Fig. 22 The three stage
amplifier with fixator-norator
pairs indicating the biasing
design specs
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for the amplifier including the assigned FNPs. Below is the list of some design
specs that are specified for this amplifier.

Output voltage swing 100–900 mV
Gain Stage current 10 μA
Differential Stage current 20 μA
Voltage Gain 60 dB
Drivers’ W/L in 50 nm scale M1: 50/2, M2: 50/2, M5: 100/2

For the biasing design purpose we particularly focus on the first two design
criteria, i.e., to maximum the output swing, and get the current flow for the gain
stage as specified. For the output voltage swing, we like to fix VSD5 = 0.47 V, and
for the gain stage current flow we fix the current at ID5 = 10 μA. These assump-
tions translate into producing two fixators for the parameters. For the first one we
assign Fx(0.47 V, 0) to the transistor M2 to keep VSD5 constant at 0.47 V, and for
the second criterion we assign Fx(0, 10 μA) to the drain of M2 to keep ID5 constant
at 10 μA, as shown in Fig. 24. Now, with the two design specs fixed we need to
assign two norators to pair with the fixators. We have selected the two active loads/
current mirrors, RS and RD to replace them with two norators. The two FNPs

Table 4 Component values
for the specified biasing

VCVC FX(0, 0.1 mA) RF = 1.53 MEGΩ
CCVS FX(0.67 V, 0) VB2 = 0.677 V
VCCS FX(0, 0.5 mA) IE = 0.607 mA
CCCS FX(2.2 V, 0) IS3 = 3.601 mA
VCCS FX(0, 3.6 mA) IS2 = 0.523 mA

Q3

Rf

In

Out

Q1 Q2

607 μA

0.677 V

1.53MEG

VCC = 4V 

-VEE = -4V 

IE

523 μAIS2
IS3 3.6 mA

VB2

Fig. 23 The three stage
amplifier with complete
biasing
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chosen for the biasing design are then (Fx(0, 10 μA), RD) and (Fx(0.47 V, 0), RS).
For the first FNP there is no need to go through simulation. We can simply replace
the norator RD with the static load RD = (1−0.47)/10 = 53 KΩ.

For the second FNP we do the followings. Here we aim at VS, the source voltage
for the differential stage. So with the fixator Fx(0.47 V, 0) we simply get VS =
0.123 V for the pairing norator. And by having IS = 20 μA we get the static load
for the current mirror as RS = 6.47 KΩ. This concludes our biasing design.

For the performance design, we need a dynamic load for the gain stage not less
than rd = 420 KΩ in order to get an overall gain of 60 dB for the amplifier.
A similar procedure finds the dynamic resistance of the differential stage which is
rs = 41 KΩ, as listed in Table 5. Table 5 also provides other design criteria as well,
including the static loads. Next, with the values found the circuit is simulated using
WinSPICE and the DC simulation results are given as listed.

TEMP = 27 deg C
DC analysis… 100%%
vs = 1.228951e-01
v(5) = 4.695930e-01

Vout

VDD = 1 V

M5
M1 M2

M4M3

V- V+VS

RS
rd

Fx(0, 10 μA)

Fx(0.47 V, 0)

Fig. 24 Partial structure of a two-stage CMOS Op-Amp with fixator-norator pairs

Table 5 Parameter needed for DCPC designs

Amplifier
stage

Component
voltage Vj

Component
current Ij

Dynamic
resistance ro

Static
resistance Ro

Differential 122.8951 mV 18.99460 μA 41 KΩ 6.47 KΩ
Gain 530 mV 10.09308 μA 420 KΩ 53 KΩ
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vs1#branch = 1.899460e-05
vs2#branch = 1.009308e-05
WinSpice 3 ->

To complete the biasing design, the last step in here is to design the current
mirrors/loads for both stages. Table 5 provides the parameter values needed for the
designs of two DCPCs. The component needed for the differential pair is going to
be a low voltage and low resistance component. A simple experiment reveals that
one or more MOS transistors in the triode region will fulfill this requirement. For
the Gain stage, the dynamic resistance must be high for the high gain and a cascode
MOS current source structure is what is needed. This finalizes the design of the
Op-Amp with the transistor sizing also given in Fig. 25.

7 Conclusion

The chapter is presented as a tutorial for biasing analog circuits using fixator-norator
pairs. It starts introducing port nullification, which is an essential step in local biasing
of the devices. This nullification is extended to nonlinear device nullification, which
then leads us to actual local biasing of the devices. This step is important because it
DC insulates the devices and bias them based on their design specs. It is shown how
a device can be internally powered with no need to external power supplies. There

Vout

M5
M1 M2

M4M3

M9 M8

V- V+

IO

VS

M7 M6

VB1

VB2

VDD = 1 V

50/2

50/2

100/2

100/2

50/250/2

100/2100/2

100/2

Fig. 25 Completed structure
of a two-stage CMOS
Op-Amp
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are, however, some draw backs in local biasing strategy. The problem is with its
practicality, requiring numerous supply sources and in disarrays. The solution pre-
sented in this chapter is performing biasing through the use of FNPs. By using FNP
we are able to fix each transistor to its designated operating point, just like any local
biasing, while the power supplies remain in their original location in the circuit,
called global biasing. Properties on fixators and norators are discussed and
FNP-based modeling are introduced for nonlinear devices, diodes, BJTs, and MOS
transistors. These models are of two types, linear and nonlinear. The linear models
are trying to fix all the device parameters for certain specified operating points,
whereas, the nonlinear models adopt themselves to the type of the devices.
Apparently linear models are not well suited for the cases that the devices charac-
teristics are varying from time to time. However, this is the price we need to pay for
the linearity and simplicity we get. There are numerous examples that start from
simple circuits and move into more elaborate integrated circuits.
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Fixator-Norator Pair Based Design
of Analog Circuits

R. Rohith Krishnan and S. Krishnakumar

Abstract An approach towards the design and analysis of analog circuits is pre-
sented in this chapter. Fixator-Norator Pair (FNP), which is a combination of nullor
plus sources, is the key element in this technique. A brief explanation about the
possible realizations of FNPs is introduced in this chapter, which is followed by the
use of FNPs in source allocation, source transformation, and biasing design. Second
section deals with the design of analog integrated circuits based on FNPs. The
design is primarily adhered with the design of active loads and/or current mirrors
for satisfying the requirements of a given amplifier circuit. Feedback is an integral
part of many analog circuits, so that the design automation of feedback networks is
advantageous; which is also covered in this chapter. Finally, the complete AC
performance design case is considered and it is a two-step process. FNP along with
the linear equivalent model of the target circuit together does the first step, which is
the design for input and output resistance and gain. The second step performs the
design for bandwidth, i.e., mainly the cut-off frequencies. This is based on Bode
plot analysis, which requires a reference circuit having the same frequency response
as that of the desired one. All the proposed techniques are proved with the help of
example circuits so that the reader can better understand the proposed method.

1 Introduction

Design of analog circuits is an artwork, where a skilled designer renders the design
task into a careful selection of topology and circuit components. Normally, as the
circuit length grows, the difficulty in design process also increases [1]. A designer
may come across situations, not limited to source allocation, transformation, biasing
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design and frequency response design where his/her empirical skill is checked. The
task becomes even complex when large number of nonlinear devices comes into
play. We need a linear-like approach to treat such nonlinear circuits so that the
difficulty associated with design process can be reduced [2]. This chapter proposes a
tool called Fixator Norator Pair (FNP), which is a combination of nullor and source
(s). The FNPs are temporary circuit components, and a fixator and norator should
always be used in pairs. The pairs can be removed and replaced with actual circuit
components if the final design is met [1–3]. A fixator keeps a critical design spec at
the desired level and at the same time, its pairing norator helps to renders the spec
into a suitable supporting component such as DC sources or passive devices. In an
analog circuit design, to fix ‘n’ number of unknowns we need a maximum of ‘n’
FNPs. Sometimes, a careful analysis of the circuit under consideration directly
provides solutions for some of the design specs, which means less number of
unknowns to be find out and less number of FNPs required. In all the cases, the
‘unknown’ should have an effect on the design spec to be fixed, otherwise the
feedback effect between fixator and norator fails. The basic idea is that, to define the
value of an unknown for keeping a design spec fixed at a desired level, one can use
FNP. Here, fixator fixes the design spec and norator defines the unknown. Once the
unknown is defined, FNPs can be removed and instead real components can be
placed [1–3].

Analog circuit design, diagnosis, and analysis are active areas of research [4, 5].
Among them, nullors, voltage mirror, and current mirrors share a dominant part [6,
7]. Nullors find applications in modeling of active elements and design of current
mode filters [8]. Parametric fault detection, computer aided design and synthesis of
active circuits are some other applications of nullors [9]. The pathological elements
voltage mirrors and current mirrors are also employed in analog design. Symbolic
analysis of analog circuits is another area which is gaining greater attention [10–
12]. The combination of nullor and sources is called an FNP [1–3], which is an
emerging tool in the design of analog circuits. Some of the advantages of FNP over
its predecessors are ease of usability, simplicity in operation and its flexibility.
Verhoeven et al. [13], proposed a method for the design of amplifiers based on
controlled sources. Here, transistors are DC isolated and biased separately using
controlled sources. Such a local biasing scheme allows the designer to do the
designing of rest of the circuit in a linear way. At the end, local biasing sources are
replaced with normal DC sources and current mirrors. Reza Hashemian [14] pre-
sented a somewhat similar methodology, but no controlled sources are used. In this
method, the total number of local biasing sources is cut down to half, and the other
half is replaced with storage elements. Local biasing results in large number of DC
sources. One can use source transformation techniques to cut-down their number
but the process is tedious and time-consuming. Later, Hashemian [1] introduced a
more advanced tool, the FNP. It avoids most of the difficulties associated with local
biasing. The pair found applications in source allocation, source transformation,
biasing design, design of analog ICs, design of feedback networks and in frequency
response designs. They are described in detail in the following sections.
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2 The Tool

Fixator Norator Pair is the key tool in the proposed method, so a brief description
about the tool is essential. This section gives an idea about the tool and its possible
realizations.

Fixators: They are theoretical two terminal devices having a fixed current
through and a fixed voltage across them. We can represent a fixator by
Fx(Vx, Ix), where Vx is the voltage across the fixator and Ix is the
current through the fixator.

Norators: They are another theoretical two terminal devices in which both the
current through and voltage across them can take any values.

Nullator: Equal to a fixator, but both the current through and voltage across the
device are zero. That is a norator means a fixator Fx(0,0).

Nullor: A two-port device with a nullator at its input port and norator at the
output port. Thus a fixator is the combination of nullor and sources

There are many different ways to realize the nullors; among them the use of ideal
controlled sources and op-amps are popular [1, 3]. So realization of FNPs based on
these two elements is discussed in this chapter.

Fixators are of two types; voltage fixator and current fixator. In a voltage fixator,
the voltage source supplies/consumes power and the current source is inactive. On
the other hand, in a current fixator, the current source supplies/consumes power and
voltage source is inactive. Figure 1 represents the symbolic representation of var-
ious types of fixators and Fig. 2 gives the realization of fixators using controlled
sources with very high gain (109) and op-amps.

In a voltage fixator the current through the voltage source, which controls the
pairing norator, is monitored. Hence current controlled voltage source (CCVS) or
current controlled current source (CCCS) of very high gain can be employed to
work as voltage fixator. Similarly, in the case of current fixator, voltage across the
current source regulates the norator. Hence such fixators can be realized using
voltage controlled voltage source (VCVS) or voltage controlled current source
(VCCS) of very high gain.

Op-amps are perfect nullors. Their input ports behave as nullators because both
the voltage across and current through these ports are ideally zero. The output port

Fig. 1 Fixators; a and b current fixators; c and d voltage fixators; e symbol of a fixator
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of op-amp is a norator, as the voltage and current sink/source at this port is
unspecific. But it maintains a feedback effect between the ports. Thus op-amps are
an ideal candidate to work as FNPs. Figure 2 shows the possible realizations of
FNPs using ideal controlled sources as well as using op-amps. Op-amp fixators
have the advantage that they are real components. Hence they can be realized in
electronics labs, and designs can be made using the actual components we are
expecting to use in our final circuit. But fixators using controlled sources are easier
to insert and use in simulators. They allow more flexibility in usage than op-amps.
In Fig. 2, points A and B denote the critical port, whose port value is to be fixed.
Points C and D represent the port where the design supporting component is to be
placed. This component may be sources or passive components such as resistors,
capacitors or inductors. In some cases, a combination of two or more of these
components is required to attain the given design spec. For problems such as
biasing design and source allocation, current through and voltage across the norator
provides required solutions. But in case of frequency response related designs, Bode
plot and/or impedance function of norator is beneficial.

3 Source Allocation and Source Transformation

In this section, application of FNP in source allocation and transformation is dis-
cussed. Many times a designer may come across issues regarding source allocation
and transformation in his/her designs. With the traditional approaches, the designer
has to rely upon some source shifting and transformation techniques, including
voltage dividing, shifting, and current mirroring. But such methods are long and

Fig. 2 Realization of fixators using controlled sources and op-amp; a and b current fixators; c and
d voltage fixators
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time-consuming. With the proposed approach, the designing becomes much simple.
To demonstrate the technique, two examples are illustrated here, first one is a diode
circuit and the second one is a common emitter amplifier circuit.

Example 1 Consider a simple diode circuit as shown in Fig. 3. The diode is biased
with three sources but value of one of them, V1 is unspecified. Our requirement is to
design the value of V1 so that the diode current will be fixed at 1 mA. In the figure,
R1 = R2 = 4.7 kΩ, R3 = 3.3 kΩ, R4 = 1 kΩ, R5 = 860 Ω, V2 = 1 V, and
I1 = 320 µA. The design steps are stated below.

1. Take the circuit under test, add a current fixator of 1 mA series to the diode.
This will fix the diode current at 1 mA.

2. Replace V1 with the pairing norator.
3. Simulate the circuit, analyze the voltage across norator. The norator voltage is

equal to the required value of V1.
4. Remove FNP from the circuit and place V1 into its original position. V1 have a

value which is obtained in step 3.
5. Now, if we analyze this updated circuit, we can see that the diode current is

1 mA.

Here, we can see that the method does not affect the actual structure of the
circuit, and the design method obeys all the network laws. Next question is how to
implement the pair into the circuit. Figure 4a and b show the two possible

Fig. 3 a A diode circuit;
b design of V1 to get a diode
current of 1 mA
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Fig. 4 Implementing FNP into diode circuit; a using op-amp; b using controlled source;
c arrangement for simulation
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implementations of the FNP method using op-amp and controlled source respec-
tively. Figure 4c shows the circuit arrangement for simulation. Here, FNP is
implemented by using the voltage controlled source E2 together with current source
IX. The input port of E2 works as the nullator and its output port behaves as a
norator. The voltage across the output port of E2 represents V1, which is to be
determined. Simulations show that V1 = 3 V. We get same results with both the
op-amp and controlled source realizations. If we re-simulate the circuit with
designed value of V1, we can see that the diode current is 1 mA.

In the remaining sections, we use the symbolic representation of FNPs for
convenience in illustrations. The FNPs are implemented using controlled sources
for simulations. The method employed in these sections is same as the one used in
Example 1. Remember that, if we need to find the value of a voltage source or a
current source which is represented by a norator, then we need to find norator
voltage or norator current. But if our aim is to get the value of a resistor which is
represented by a norator, we need to get both the norator voltage and current. Then,
by simply dividing these parameters, we get the required value of resistance. In
Sect. 7, we deal with reactive elements. In order to determine the value of a reactive
element say capacitor which is represented by a norator, we need Bode plot of
norator. Hence, both the AC voltage and current through the norator are critical. In
all cases, the output ports of controlled sources with very high gain are used as
norators. The controlling input ports together with sources are used as fixators. For
determining reactive elements, a reference circuit itself is used as a ‘source’.

A second case with the diode circuit is to reduce the total number of sources in
the circuit to one voltage source, without changing the biasing of diode D1, i.e.,
diode current should remain 1 mA. Here we assume that the requirement is to keep
the actual circuit structure unchanged, with only the DC sources are replaced with a
single equivalent source. The design process is explained below.

1. Remove all DC sources in the circuit except for their internal resistance.
2. Apply Fx (1 mA, 0) in series with diode D1. Its pairing norator should be placed

at a point in the circuit, where we want the equivalent source. Here we replace
the source V1 with norator.

3. Simulate the circuit. The norator voltage defines the equivalent source.

The design arrangement is depicted in Fig. 5a. Here also, the FNP can be
represented with the help of VCVS (E), similar to what we done in Fig. 4c. The
output port of E corresponds to the norator VE. Hence the voltage across the norator
is the equivalent voltage source VE. The simulation shows that the value of voltage
source VE = 4.35 V.

Example 2 An npn-pnp feedback amplifier as shown in Fig. 6(a) is considered in
this example. Our aim in this problem is to define the values of all DC sources so as
to maintain a given DC bias condition for the transistors Q1 and Q2, which results in
faithful amplification of an input signal. The desired operating points for Q1 and Q2

are, VBE1 = 0.572 V, VCE1 = 3.4 V, IC1 = 61 µA, VBE2 = -0.66 V, VCE2 =
−3.4 V and IC2 = 82 µA. Here, R1 = 15 kΩ, R2 = 3 kΩ, R3 = 50 kΩ,
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Fig. 5 a Design of
equivalent source for the
diode circuit; b final circuit
diagram

Fig. 6 a BJT feedback
amplifier; b design of DC
sources for a given operating
point
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R4 = 20 kΩ, RS = 100 Ω and C1 = 0.1 µF. For the transistors, Bf1 = 255.9 and
Bf2 = 231.7. So, we have to freeze the operating points of both the transistors at the
desired level and at the same time values of all DC sources should be defined. The
circuit arrangement for design of DC sources using FNPs is shown in Fig. 6b. As
we have to define four unknowns, viz. V1, V2, V3 and I1, we need four FNPs. The
fixator FX1 (0.57 V, 0) fixes VBE at 0.57 V and at the same time, its pairing norator
defines the value of source V1. Similarly, FX2 (3.4 V, 61 µA) fixes the VCE and IC
of Q1 at the design and its pairing norator defines the value of V2. In the same way,
FX3 (0.66 V, 0) and FX4 (3.4 V, 82 µA) fixes operating points of Q2 and their
norators define values of V3 and I1 respectively.

In order to simulate the FNP added circuit, we must remember to use output port
of controlled sources as norators. As discussed, voltage controlled sources can be
used for current fixators and current controlled sources can be used for voltage
fxators. In both the cases, the input port of the controlled sources behaves as
nullators, provided their gain should be 109. Here, norators corresponds to the DC
biasing soures, whose value is to be defined. Upon simulating the FNP circuit as in
Fig. 6b, norators define the values of all DC sources. They are, V1 = 5 V,
V2 = 1.25 V, V3 = 5 V and I1 = 75 µA. Now, we can remove all FNPs and
instead of norators, place actual DC sources. The response of the amplifier for an
input 10 sin(20000πt) mV is shown in Fig. 7. The waveform is undistorted and the
amplifier has a voltage gain of around 40 dB. Hence it proves our design.

4 Biasing Design of Analog Circuits

Design of analog circuits needs attention, as it deals with DC biasing design as well
as AC performance design. In this section biasing design of analog circuits
employing FNPs is discussed and AC design is left for the following section.
Biasing design aims at stabilizing the DC operating points of the analog circuit at a
safe zone. For the case of an amplifier, generally, the transistors should be biased at

Fig. 7 The response of the
BJT feedback amplifier for an
input 10 sin (20000πt) mV
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the active region. The region of operation is thus determined by the biasing of
transistors and this is why the biasing design deserves much care.

Consider an amplifier circuit; there are active devices, passive devices and DC
sources. Active devices are the signal conditioning elements, but the passive
devices and DC sources are supporting elements. Hence there are two types of
devices; drivers and supporting elements. The FNP approach is to ‘DC isolate’ the
drivers from the rest of the circuit by freezing its critical biasing specs. With this
approach, the fixator fixes a particular biasing spec at the design and at the same
time, its pairing norator defines the corresponding bias supporting component. In
other words, fixator fixes a port parameter and pairing norator renders it into a
meaningful bias supporting component. Remember that for fixing one critical spec,
we need one fixator and its pairing norator should replace one of the bias supporting
components. Also, for getting fruitful results, the parameter to be fixed should have
an effect on the selected bias supporting component. Sometimes, a careful analysis
of the circuit gives us some solutions, which may help us to reduce the total number
of FNPs. Algorithm 1 portrays the basic steps in biasing design.

Algorithm 1

1. Take the analog circuit under consideration; specify the DC operating points to
be fixed.

2. Insert FNPs to the circuit. Each fixator fixes a particular design spec and its
pairing norator should replace one of the bias supporting component such as a
DC source or a power conducting component such as a resistor.

3. Use controlled sources with very high gain to represent FNPs. Remember to pair
fixators and norators in a meaningful way, such that the fixator is sensitive to the
changes in the norator.

4. Simulate the circuit. The norator voltage and current directly give us the
required solutions.

5. The final step is to remove all FNPs and instead of norators, place actual
supporting elements which are designed in step 4.

The design procedure is demonstrated with the help of two examples as given
bellow. First one is a two-stage MOS amplifier and the second is a three-stage BJT
amplifier.

Example 3 Here, a two-stage MOS amplifier as shown in Fig. 8a is considered. In
this case, our aim is to maintain a maximum output voltage swing of 3 V peak and
at the same time gate-source voltage of M1 should maintained at 1.1 V. All the
other biasing specs are not taken as critical, but transistors should operate at active
region. As we have two critical biasing specs, we need two FNPs to define two
unknowns. Let us assume that R1 and R4 are the unknowns and all other resistors
are already defined as R2 = 77 kΩ, R3 = 10 kΩ, R5 = 3.3 kΩ and RL = 10 kΩ.
Also, the capacitors CS = 1 µF, C1 = 10 µF and C2 = 5.3 µF. For the MOS
devices, W/L = 10/1. The FNP arrangement for redesign is shown in Fig. 8b. The
fixator FX1 (1.1 V, 0) fixes the gate to source voltage of M1 at 1.1 V, at the same
time; its pairing norator defines the value of R1. Similarly, a second fixator FX2
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(3 V, 0) sets the peak output voltage swing at 3 V, and its pairing norator defines
the value of R4. Here also, controlled sources with a gain of 109 are used to
represent the FNPs.

Simulating the circuit as shown in Fig. 8b implies that the value of R1 is 35.2 kΩ
and that of R2 is 1.94 kΩ. Now, it is necessary to check the final response of the
amplifier. The result of bias point analysis of the final circuit is shown in Table 1.
This validates our design.

Example 4 In this example, a part of the MC 1553 BJT amplifier circuit as shown
in Fig. 9 is considered. Here, some of the power conducting components are
already defined; but few are left out to the designer to design them in such a way
that the critical biasing conditions for this circuit are met. In Fig. 9, resistors
RS = 10 Ω, R2 = 2.7 kΩ, R3 = 9 kΩ, R6 = 640 Ω and R7 = R8 = 600 Ω and
capacitor CS = 0.1 µF. The transistor parameter Bf1 = Bf2 = Bf3 = 255.9. For this
circuit, the biasing specs, which are considered to be critical are, VCE1 = 0.366 V,
IB2 = 8.6 µA, VCE3 = 4.8 V and IC3 = 4.46 mA.

The critical specs can be considered as three port parameters and three unknowns
to be defined are resistors R1, R4 and R5. Hence we need three FNPs. Figure 10

Fig. 8 a Two-stage MOS
amplifier; b its biasing design
using FNPs

Table 1 The result of bias
point analysis of the modified
MOS amplifier

Node 1 2 3 4 5

Voltage (V) 6.00 4.12 3.02 4.89 1.89
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shows the circuit arrangement for biasing design. Here, FX1 fixes the value of VCE1,
FX2 fixes IB2 and FX3 fixes VCE and IC of Q3. After simulating this circuit, we can
calculate the values of R1, R4 and R5 as 23 kΩ, 100.3 Ω and 4.98 kΩ respectively.
Now, we can remove all FNPs from the circuit and instead of norators, place actual
resistances of designed values. Bias point analysis of the final circuit implies that
the DC biasing of the amplifier is very much close to the required values.

5 Design of Analog Integrated Circuits

An analog circuit mainly involves two types of components, drivers (active devices)
and supporting components (passive devices). But in the case of analog integrated
circuits (AIC), the role of supporting components is done by active loads (ALs) and
current mirrors (CMs). The difference between the static and dynamic resistance of
ALs (or CMs) is very high. Therefore it is possible to obtain a larger AC resistance
using ALs or CMs with small DC voltage drops across them. This is advantageous

Fig. 9 Three stage BJT
amplifier circuit

Fig. 10 Redesign of three
stage BJT amplifier using
FNPs
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for amplifiers because for obtaining a larger AC gain, and need for a high valued
resistor is avoided. This is why ALs and CMs are suited for integrated circuits.

Design of an analog circuit includes AC performance design and DC biasing
design. The AC design aims at setting the input and output resistance, gain and
bandwidth, whereas biasing design aims in non-distorted output signal; that is
running the drivers at proper operating regions. The steps in design of AIC are
discussed in Algorithm 2.

Algorithm 2

1. Select a working circuit topology. Define the AC specifications and critical DC
biasing specs required for the circuit.

2. Create a linear equivalent model of the circuit, where all active devices have
been replaced with their linear models at the desired operating points.

3. Apply FNPs into the linear circuit such that one fixator fixes one AC parameter
and its pairing norator defines value of one supporting component. Here sup-
porting component means dynamic resistance of ALs or CMs.

4. After simulating the circuit equipped with FNPs, we get values for all dynamic
resistances. This is all about the AC design and next we go to biasing design.

5. Take the original circuit and add FNPs into it in such a way that fixators fix the
critical DC biasing specs and at the same time, its pairing norators define the
value of corresponding supporting components. Here supporting components
refers to static resistance of ALs or CMs. Simulation of this arrangement pro-
vides values for all static resistances.

6. Concluding the results of AC and DC designs, we can select most suitable ALs
and CMs, which can do the role of bias supporting components. Note that, a
designer can select suitable ALs and CMs from a predefined library or a newer
one can be designed.

In this section, two examples are worked out. They are a BJT differential
amplifier and a three-stage MOS op-amp. Also, the design of ALs and CMs using
FNPs is discussed and is portrayed in Algorithm 3.

Example 5 A BJT differential amplifier with a circuit topology as in Fig. 11 is
considered in this example. The amplifier is required to have a voltage gain (AV) of
84 dB, input resistance (Rin) 18 kΩ and output resistance (Rout) 46 kΩ. The DC
biasing should be maintained such that it will allow maximum voltage swing at the
output. The desired operating points for the three transistors are given in Table 2.

Next, the linear equivalent circuit of the differential amplifier is to be developed
with active devices are replaced with their linear model at the desired operating
point. The equivalent circuit is shown in Fig. 12a. Here, rAL1-3 and rCM represents
the dynamic resistance of ALs and CMs. Our requirement is to define the values of
all dynamic resistances so that the AC performance criteria are met. The design
arrangement for dynamic resistance is shown in Fig. 12b.

In Fig. 12b, rπ1 = rπ2 = 10.8 kΩ, rπ3 = 2.79 kΩ, ro1 = 228.16 kΩ, ro2 =
225.74 kΩ, and ro3 = 75 kΩ. Fixator FX1 (100 µV, 5.55 nA) fixes input resistance
of the differential amplifier at 18 kΩ and its pairing norator defines the value of
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rAL1, which is the dynamic resistance of AL1. Similarly, output fixator FX2 (1.58 V,
0) fixes the gain of the amplifier at 84 dB and its pairing norator defines dynamic
resistance of AL2. As per the design requirement, our third AC parameter is output
resistance rout of amplifier. From the linear equivalent circuit, it is clear that rout is
the equivalent of parallel resistors ro3 and rAL3. Hence dynamic resistance rAL3 can

Fig. 11 BJT differential
amplifier circuit

Table 2 Desired operating
points for BJT differential
amplifier

BJT VCE (V) IC (µA)

Q1 4.1 324.33
Q2 5.0 327.80
Q3 −5.0 662.00

Fig. 12 a Linear model of BJT differential amplifier; b its AC design using FNPs
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be directly calculated as 120 kΩ. Since we need to define only three unknowns, we
can assume a suitable value for rCM; here it is taken as 120 kΩ. Simulating the
circuit as shown in Fig. 12b, we get rAL1 = 141 kΩ and rAL2 = 143.5 kΩ. This is
all about the AC design of BJT differential amplifier.

Next step is the design for static resistance of ALs and CMs, which is done
through DC biasing design. Figure 13 shows the FNP arrangement for the DC
design. Initially, the total number of unknowns is four. But through careful analysis,
we directly get values of two unknowns. First, we know the expected current
through and voltage across the CM. So we can directly calculate its static resistance
RCM and is seen to be 6.68 kΩ. A similar approach provides static resistance of AL3

also. It is found to be 7.55 kΩ. Hence, the total number of unknowns is now
reduced to two and we, therefore, need only two FNPs as indicated in Fig. 13. The
fixator FX1 (4.1 V, 0) fixes the VCE of Q1 at 4.1 V and at the same time the pairing
norator renders it into a proper static resistance of AL2. Similarly, FX2 (662 µA, 0)
fixes the collector current of Q3 at 662 µA and its pairing norator defines static
resistance of AL1. Simulating the circuit arrangement as in Fig. 13 provides RAL1

and RAL2 as 4.57 kΩ and 2.05 kΩ respectively.
Now we have the values for all static and dynamic resistances of the BJT

differential amplifier. Next step is to render the results of AC and DC design into a
suitable selection of ALs and CMs. As discussed, a designer can either design a
new AL and/or CM, or select from a predefined library. The FNP approach for the
design of a simple CM as shown in Fig. 14a is portrayed in Algorithm 3.

Algorithm 3

1. State the desired value of DC mirror current IM, which is the collector current of
the transistor used in the mirror.

2. Select transistors having early voltage VA such that VA/IM equals the required
value of dynamic resistance rM.

3. Bias the mirror transistor at a voltage VM, which is the proposed DC drop across
the mirror.

Fig. 13 DC design of BJT
differential amplifier using
FNPs
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4. Insert a current fixator FX (IM, 0) for fixing the collector current of mirror
transistor at IM, its pairing norator defines the value of reference resistor.

In the above algorithm, early voltage VA [15] is a parameter that relates the
collector or drain current of a transistor with the collector to emitter or the drain to
source voltage in the active or saturation region of operation. For BJTs, the large
signal collector to emitter resistance is the ratio of VA to collector saturation
current. In the case of MOSs, the large signal drain to source resistance is the ratio
of VA to drain saturation current.

The design arrangement is shown in Fig. 14b. This concludes that a CM or AL is
characterized mainly by three sets of parameters, rM, IM and VM. For a regular
designer, a library of ALs or CMs makes the overall design process simpler and
quicker. Going back to Example 5, Fig. 15 shows the final circuit. The simulation
result of final circuit is also given below, which proves our design.

Fig. 14 a A simple CM
circuit; b design of CM using
FNP

Fig. 15 Final circuit diagram
of BJT differential amplifier
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**** SMALL-SIGNAL CHARACTERISTICS
V(VO)/V_V1 = −1.565E + 04
INPUT RESISTANCE AT V_V1 = 1.858E + 04
OUTPUT RESISTANCE AT V(VO) = 4.615E + 04

Example 6 A three-stage MOS op-amp is considered in this example, which
requires a voltage gain of 82 dB and output resistance of 27 kΩ. A circuit topology
as shown in Fig. 16 is selected for this design with operating points as shown in
Table 3. Following the Algorithm 3, designing starts with the construction of the
linear equivalent model of the three stage amplifier. The rest of the designing
process is same as that of BJT differential amplifier. Here we need to set only two
parameters; hence we can relate them to only two unknowns using FNPs. Let them
be rAL4 and rAL5. Value of rAL5 can be directly defined as 54 kΩ and the total
number of unknowns is now reduced to one. Keep in mind that before going for
simulating the FNP arrangement, we must assign suitable values to other
unknowns, i.e., the dynamic resistance of remaining ALs and CMs. The FNP
arrangement for design of rAL3 is shown in Fig. 17. Fixator FX(1.26 V, 0) fixes the
voltage gain of the amplifier at 82 dB and at the same time, its pairing norator
defines the value of rAL4. Simulating the circuit as in Fig. 17 shows that value of
rAL4 is 124 kΩ.

Next, the DC biasing design is to be performed so as to keep the biasing of the
MOS transistors at the desired level and to define the static resistance of various
ALs and CMs in the circuit. Figure 18 shows the design for DC biasing. It is due to

Fig. 16 The topology of
three stage MOS op-amp

Table 3 Desired biasing
specs for the three-stage MOS
op-amp

MOS VDS (V) VGS (V) ID (µA)

M1 3.212 3.589 200.00
M2 3.212 3.589 200.00
M3 4.368 3.556 193.67
M4 4.368 3.556 193.67
M5 −5.00 −4.560 467.20
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the symmetrical property of differential pair, we are using a single FNP to find the
equivalent parallel resistance of RAL1 and RAL2 and similarly for RAL3 and RAL4.
Value of RAL5 can be directly obtained as 10.7 kΩ. In the figure, FX1 (3.59 V, 0)
fixes VGS of M1 at the design and its pairing norator finds the value of RAL1||RAL2.
A second fixaor FX2(3.2 V, 200 µA) not only fixes VDS and ID of M2 but also find
the value of RCM1. In a similar manner, FX3(3.56 V, 0) and FX4(4.37 V, 194 µA)
defines values of RAL3||RAL4 and RCM2 respectively. Simulation shows that,
RAL1 = RAL2 = 27 kΩ, RAL3 = RAL4 = 23.6 kΩ, RCM1 = 3.5 kΩ and RCM2 =
2.75 kΩ. Finally, we can select appropriate ALs and CMs to replace the FNPs. The
final circuit of three-stage amplifier is shown in Fig. 19 and the analysis of the final
circuit shows that the results are close to our design.

**** SMALL-SIGNAL CHARACTERIS
V(VO)/V_V1 = −1.304E + 04
INPUT RESISTANCE AT V_V1 = 1.000E + 20
OUTPUT RESISTANCE AT V(VO) = 2.675E + 04

Fig. 17 Design of rAL4 using FNP for a required gain

Fig. 18 DC design of the three stage MOS op-amp using FNPs
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6 Design of Feedback Networks

Feedback networks are an integral part of analog circuits. It defines the gain, input
resistance, output resistance and even the stability of the circuit. Since we are
dealing with AC parameters, it is appropriate to use the linear equivalent model of
the desired circuit for designing. Such a linear circuit is suitable to apply FNPs for
further analysis and design. In this section, design of feedback networks for con-
trolling input resistance, output resistance and gain are considered. Fixators are
applied to linear equivalent model of the target circuit and their pairing norators
define the feedback components. Care should be taken to DC isolate the added
feedback circuit so as to prevent any variation in the original biasing of the circuit.
The symbolical representation of the methodology is portrayed in Fig. 20 and the
basic steps in the procedure are given in Algorithm 4.

Algorithm 4

1. Define the required AC parameters of the target circuit, say amplifier.
2. Construct linear equivalent model of the circuit at the desired operating points.
3. Identify the location in the linear circuit X1 − X2 for applying fixators. Pairing

norator should be placed at a proper location in the circuit, Y1 − Y2.
4. Simulate the circuit hence created. By analyzing the norator current and voltage,

we can easily identify the component(s) in the feedback network.
5. Finally, remove all FNPs but replace norators with the designed feedback

component(s). Also, add proper DC isolation capacitors in the feedback path to
prevent biasing errors.

Fig. 19 Final circuit diagram of three-stage amplifier
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Note that, selection of points X1 − X2 and Y1 − Y2 needs careful attention. For
fixing parameters of a port X1 − X2, a fixator should be applied at this port and its
pairing norator gets its place between points Y1 and Y2. Thus the points Y1 and Y2

have some significance. The points should be selected such that if a proper feedback
network is applied between these points, then the parameters at X1 − X2 should be
fixed. That is both the points X1 − X2 and Y1 − Y2 are sensitive to each other and
changes in Y1 − Y2 should reflect at port X1 − X2.

Example 7 Here, a CMOS differential amplifier with buffer stage as shown in
Fig. 21 is considered for design. The component values, R1 = R2 = 28 kΩ,
R3 = 5.5 kΩ, R4 = 121 kΩ and for MOS M1 and M2, W/L = 10/1 and for M3, W/
L = 20/1. In this case, the input resistance and gain are the two critical design
specs. Originally, the amplifier possesses an extremely high input resistance and a
gain of 130 V/V. Our aim is to reduce the gain to 100 V/V and at the same time,
input resistance should be fixed at 100 kΩ. Following the Algorithm 4, design
process starts with the construction of linear equivalent model of the CMOS dif-
ferential pair and is followed by insertion of proper FNPs. The FNP circuit for the
design is shown in Fig. 22.

Fig. 20 Design of feedback
network using FNP

Fig. 21 CMOS differential
amplifier with buffer stage
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Here, FX1 (10 mV, 100 nA) fixes the input resistance of the differential amplifier
at 100 kΩ and its pairing norator defines the value of RF1. Similarly, fixator FX2
(1 V, 0) fixes the gain of the differential amplifier at 100 V/V and RF2 is defined by
its pairing norator. Simulation shows that the value of RF1 = 10.1 MΩ and
RF2 = 3.23 MΩ. The feedback components should be DC isolated from rest of the
circuit using proper coupling capacitors. The analysis of the modified circuit is
shown below and this proves our design. Final circuit diagram of the amplifier with
feedback is shown in Fig. 23. As discussed above the resistors RF1 and RF2 should
be DC isolated using proper coupling capacitors, which are AC short at the region
of operation of the differential amplifier.

Fig. 22 AC design of CMOS differential amplifier using FNPs

Fig. 23 Modified circuit of
MOS differential amplifier
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**** SMALL-SIGNAL CHARACTERISTICS
V (VO)/V_V1 = −9.999E + 01
INPUT RESISTANCE AT V_V1 = 1.000E + 05
OUTPUT RESISTANCE AT V (VO) = 7.830E + 04
The proposed method can be used for the design of input resistance, output

resistance and gain. However, the design of cut-off frequencies and bandwidth are
not included in the study. A modified form of this technique is useful for the
complete design of analog circuits, which is explained in the next section.

7 Complete Design of Analog Circuits

In this section, we are dealing with performance design of analog circuit, which
includes design for input and output resistance, gain and cut-off frequencies. The
methodology consists of two parts; the first part is the design for input and output
resistance and gain and the second part is the design for cut-off frequencies. First
part of the design is already explained in Sect. 6, hence our primary focus in this
section is on second part. The design for cut-off frequency using FNPs employs a
Bode plot approach along with a reference circuit. The reference circuit should have
the same frequency response as expected from the circuit to be designed. Here, a
two terminal sub-circuit is designed with the help of FNPs and inserted into the
circuit under design. The procedures in part 2 of the design are given in Algorithm 5
and its block diagram representation is shown in Fig. 24.

Algorithm 5

1. Take the circuit under consideration with all feedback elements designed in part
1 of the design are inserted.

2. Select a reactive element in the circuit which has an effect on the cut-off fre-
quency to be set. Otherwise identify a port in the linear circuit, where a two

Fig. 24 Design of two
terminal sub-circuit using
FNP
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terminal sub-circuit can be added. The addition of sub-circuit will modify the
desired cut-off frequency.

3. Take a suitable reference circuit which having the same frequency response as
that of the expected one. Connect the outputs of reference circuit and circuit
under consideration through a nullor.

4. Place the norator at the location selected in step 2. Simulate the circuit and plot
the impedance function of norator. By analyzing the plot, we can identify the
component(s) in the sub-circuit.

Note that, in an analog circuit, there are mainly three types of capacitors. They
are coupling, bypass, and internal transistor capacitors. First two types of capacitors
are in series to signal flow and can affect lower cut-off frequency of the analog
circuit. The internal transistor capacitors are in parallel to signal flow and it
determines the higher cut-off frequency. This should be considered while dealing
with cut-off frequencies of analog circuits.

In the Fig. 24, points Y1 − Y2 corresponds to points where feedback network is
inserted as a result of part 1 of the design. Points Z1 − Z2 denotes the location for
sub-circuit. As discussed, the reference circuit has the same frequency response as
that of from the final circuit. Its frequency response is copied to the actual circuit by
the insertion of proper sub-circuit.

Example 8 Consider the two-stage common emitter-common base (CE-CB)
amplifier as shown in Fig. 25. Design requirements are, the circuit should have a
voltage gain of 350 V/V, an input resistance of 1.25 kΩ and the higher cut-off
frequency FH of the amplifier should be 1 MHz. The first two parameters, i.e., gain
and input resistance of the amplifier are set during part 1 of the design. The second
part of the design sets the third parameter, i.e., the cut-off frequency FH.

In the figure, RS = 200 Ω, R1 = 22 kΩ, R2 = 47 kΩ, R3 = 15 kΩ, R4 = 9 kΩ,
R5 = 9 kΩ, R6 = 47 kΩ, R7 = 22 kΩ, R8 = 15 kΩ, R9 = 10 kΩ, CS = C4 = 1
µF, C1 = C2 = C3 = 10 µF and the transistor parameters βf1 = βf2 = 100. The

Fig. 25 Two-stage CE-CB amplifier circuit
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procedure for the first part of the design is already discussed in the previous section;
hence it is not repeating here. In this case, the solution to first part of the design is to
insert two feedback resistors RF1 and RF2; first one between base of Q1 and col-
lector of Q2, and the second one is between the base and collector of Q2. Design
result shows that value of RF1 = 2.43 MΩ and RF2 = 349 kΩ. Therefore, we can
modify the original circuit by inserting the two resistors. The added resistors should
be DC isolated using proper coupling capacitors. This modified circuit can be used
for second part of the design along with a reference circuit, having the same
frequency response as that of expecting.

As stated in Algorithm 5, in the second part of the design, the outputs of
reference circuit and the modified amplifier are connected together through a nullor.
The sub-circuit is planned to connect across resistor RF1; hence the norator should
be connected parallel to RF1. The circuit arrangement for the design of sub-circuit is
shown in Fig. 26 and Bode plot for norator is shown in Fig. 27.

By analyzing the bode plot, it is clear that the impedance function shows a
magnitude of 118 dB at 100 kHz and it is further found that the sub-circuit is
simply a capacitor. Using the equation C = 1/(Z (ω) × ω), its value is found to be
2 pF. The final circuit diagram of the two-stage BJT amplifier is shown in Fig. 28.
The simulation result of the modified circuit is in agreed with our design require-
ments. Finally, it is necessary to check the stability of the modified circuit. As per
the feedback stability theory, a system is considered as stable if the gain reaches
0 dB before the phase shift reaches ±360º. Magnitude-phase Bode plots of the final
circuit is shown in Fig. 29. This implies that the system is stable and thus it
concludes our design.

Fig. 26 Design of sub-circuit for the CE-CB amplifier
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Fig. 27 Bode plot for norator

Fig. 28 Final circuit diagram of the two-stage amplifier

Fig. 29 Bode plots of modified two-stage amplifier; a magnitude; b phase angle
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**** SMALL-SIGNAL CHARACTERISTICS
V(VO)/V_VS = −3.500E + 02
INPUT RESISTANCE AT V_VS = 1.250E + 03
OUTPUT RESISTANCE AT V(VO) = 5.715E + 03

8 Summary

The use of FNPs in analog design provides some shortcuts to a target solution. The
FNPs are not limited for a set of designs, but a skillful designer can expand its
applicability to any extend. The basic idea is, to design the value of an unknown so
as to fix a critical design parameter at a desired level. Remember that the application
of FNP should be within the rules and laws of circuits. Also, the fixator and norator
should be paired in a meaningful manner, failing which results the lack of feedback
effect between the pairs and thus the designing fails.

The concept of FNPs and their possible realizations, source allocation/
transformation, biasing design, AC performance design and frequency response
design are discussed in detail. In addition, using the proposed method, design of
AICs, design of ALs/CMs and complete design of analog circuits for a given set of
AC performance and DC biasing parameters are performed in a much simpler way.
The scope of the work is very large, but some typical examples have been anchored
with sufficient explanations. For obtaining fruitful results, it is better for the
designer to have a basic knowledge on the target circuit so that a skillful analysis
sometimes reduces the total number of unknowns to be found out. Less number of
unknowns implies less number of FNPs and eventually reduction in the designing
time and task. The applications of FNPs are not limited; they are the corner stone on
which an efficient designer can develop much more sophisticated design tools.
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Application of Fixator-Norator Pairs
in Analog Circuit Design

Reza Hashemian

Abstract Recently Fixator-Norator Pairs (FNP) have been shown to be very
powerful tools in designing analog circuits for multiple specs. These specs are
separated into different areas of the design, and for each area a specific design
methodology is introduced in this chapter. The areas mainly consist of designing for
circuit biasing, gains, input and output impedances, active loads and current mirrors
in ICs, and frequency responses and bandwidth for amplifiers. Very similar to a
nullor, it is shown that the role of the fixator in an FNP is to provide a fixed and
stable response to a circuit variable as specified by the design criteria. The norator,
on the other hand, acts as a place holder for one or more circuit components that are
needed to provide the requirements in the circuit to respond to spec, being held
constant by the fixator. In designing for frequency and bandwidth, specifically, the
mission is harder because of the complexity of the situation. It is shown that a
model circuit helps in this case to provide the frequency response needed for the
design. Since a model circuit is only for simulation purposes, it can be constructed
from ideal components such as controlled sources, and it can be even built quite
modular. As shown, the FNP methodology works for both linear and nonlinear
circuits. However, for nonlinear circuits we need to keep the biasing situation
unchanged during the AC design process. The circuit biasing may change when
feedbacks are added to the original amplifier circuit, if not protected. In case
needed, coupling capacitors are added to protect the circuit biasing. There are
sections in the chapter, where each covers a separate feature and application of FNP
in analog circuit design. Examples have also been worked out in rather details to
show the role and significance of FNP in each application.
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1 Introduction

This chapter covers some major applications of Fixator-Norator Pairs (FNP) in
analog circuit design [1, 2]. It starts with introducing fixators and norators. A fixator
is considered a pathological element like a nullator, where its variables are fixed
rather than being zero. The behavior of FNPs in linear circuits are discussed in
Sect. 2. Rules concerning fixators and norators are also discussed in this section.
Section 3 is on biasing design focusing on individual devices. It shows how the
nonlinear devices, mainly diodes, BJT, and MOS transistors, are linearly and
nonlinearly modeled by fixators.

The application of FNP in designing for gains, input impedances and output
impedances are covered in Sect. 4. One of the issues we are commonly facing is
when both biasing (DC) and performance (AC) designs are in conflict with the
values of some circuit components, usually resistors. The problem is, how to assign
two different values to a single component in two different cases. In integrated
circuits the problem is resolved by using current mirrors and active loads. Fixators
and norators are used for the design of active loads and current mirrors in Sect. 5.
These components are classified into three types, which are types L, R, and H for
MOS transistors as well as the same types for BJTs in this section. Designing for
analog VLSI circuits are discussed in Sect. 6. Again, FNPs are very instrumental in
this application. The difference between designing for lumped circuits and inte-
grated circuits are made clear here. In lumped circuits mixing biasing design and
performance design is possible by using coupling and bypass capacitors to separate
power and signal paths. Whereas, this is not permissible in IC designs. The way we
handle the separation of the two here is through the use of active loads and current
mirrors.

Section 7 is devoted to the use of nullors in amplifier design for bandwidth.
Because of the complexity and frequency dependency of the results such designs
must be always guided by a model circuit. This model circuit is assumed to be
given or synthetically constructed to produce the desirable output characteristic and
bandwidth needed. The role played by a nullor here is two folded; one to make the
circuit response follow the response from the model circuit, and two, to make
required modifications to adequately respond to the desirable output characteristic.
Since the model circuits are only for simulation purposes, they can be constructed
from ideal components such as ideal controlled sources, and they can be even
constructed quite modular.

There are numerous examples worked out and simulated to support the theory.
Finally, the chapter finishes with conclusion and references.
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2 Fixator-Norator Pairs

Fixator-norator pairs are pathological components that help to design analog cir-
cuits for a set of given specs. It is important to note, however, that FNPs are
temporary and do not remain in the circuit after the circuit is designed. Before we
go through the design methodologies we need to introduce FNP and its properties.

2.1 Fixator and Norator

A fixator represents a constant and fixed (in AC the amplitude and phase are fixed)
current source as well as a fixed voltage source. A fixator is a generalized nullator
that instead of zero it can accept any value for its voltage or current. There are
different forms of fixators depending on the application. Figure 1 shows two forms
of a fixator depending on whether (1) the voltage source Vj consumes power in the
fixator and the current source Ij stays idle, or (2) the other way around. In Fig. 1a
the voltage source consumes power in the fixator, and Fig. 1b is its symbolic
representation. In Fig. 1c the power sink is left out, and Fx(0, Ij) is a current fixator.
Figure 1d, e, and f are similar to (a), (b), and (c), except here the current source
consumes power in the fixator, and Fx(Vj, 0) represents a voltage fixator.

Now we need to show that a fixator cannot stay alone in a circuit. In general, any
circuit component is identified by its two variables, current and voltage. Typically
the component specifies one of its variables or a relationship between them, and the
other variable is found through KVL and KCL in a circuit analysis. However, this is
not the case in a fixator. Here both variables are specified, and the only way to be
able to include it to a circuit is to find a component that neither of its variables is
specified. And this component is a norator. This is why a fixator, like a nullator,
must always be accompanied by a norator. We may think of this pair like an ideal
controlled source, but there are major differences between the two. The gain or the
degree of dependency in an FNP is unlimited whereas it is limited in a controlled
source. The second and the major difference between the two is that, in a
multi-controlled sources situation each pair of controlling and controlled source
must be specified in the circuit analysis, but this is not the case in multi-fixators
multi-norators case. In the latter case any pairing works as long as the dependency
(sensitivity) holds. We may look at this issue differently. As discussed in [3], in a
connected circuit a typical two terminal component relies on the circuit by one of its
variables, and the other variable (voltage or current) is found through the compo-
nent characteristic. However, in case of a fixator both variables are specified by the
component itself, and in case of a norator both rely on the circuit to be specified. So,
any pair of a fixator and a norator, as long as they are mutually sensitive, satisfy the
conditions for the circuit analysis, no matter how they pair. This is summarized as:
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1. The number of fixators and norators must be equal.
2. Each norator must be sensitive to at least one fixator, and vice versa.

We will further discuss this in the following sub-section.

2.2 Fixator-Norator Pairs in Linear Circuits

Let us consider a single pair of FNP in a linear circuit N, as shown in Fig. 2.
Because of the circuit linearity we can write

in = a0 + a1If + a2Vf + a3If Vf ð1Þ

and

vn = b0 + b1If + b2Vf + b3If Vf ð2Þ

Ultimately, the impedance function of the norator becomes a bi-linear function
of the fixator variables, If and Vf., as given in Eq. (3).

zn =
vn
in

=
b0 + b1If + b2Vf + a3If Vf

a0 + a1If + a2Vf + b3If Vf
ð3Þ

From Eqs. (1), (2), and (3) we can conclude that a norator can be replace by a
current source (or sink) in, a voltage source (or sink) vn, an impedance (resistance, in
case of DC) zn, or even a combination of all these. For example, suppose in a circuit
design case, we get in = 50 μA, and vn = 2 V for a norator. This can result in an
equivalent resistor Rn = vn/in = 40 KΩ replacing the norator. Alternatively we can
replace the norator with a parallel combination of a current source ik = 40 μA and a
resistor rk = vn/in = 200 KΩ. This is in fact one of the major issues in biasing design
versus performance design in analog ICs. For instance, in designing for an analog

Ik

VkIj

VjIj

Vj

Fx(Vj, Ij)

Ik

VkIj

VjIj

Vj

Fx(Ij, Vj)

Vj

Fx(0, Ij)

Ij Fx(0, Vj)

Fx(Vj, Ij)

Fx(Ij, Vj)

(a) (b) (c)

(d) (e) (f)

Fig. 1 Fixators; a and
b voltage powered fixator and
its symbol; c current fixator;
d and e current powered
fixator and its symbol;
f voltage fixator
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VLSI circuit, the first choice of Rn = 40 KΩ may be considered as the static load,
used for biasing a driver. Whereas, the second choice of the resistance, rk = 200
KΩ, can well be taken as the dynamic load for the driver.

The following example demonstrates the relationship between a fixator and its
pairing norator in a linear circuit. It also shows how we can find the coefficients ai
and bi, for i = 0, 1, 2, and 3, given in Eqs. (1) and (2), through simulation.

Example 1 Consider a linearized common emitter amplifier shown in Fig. 3. As
design criteria we like to keep VCE = 2.4 V and allow 1 mA current to pass
through R5 in excess of the transistor collector current IC = βIb. In the final design,
this 1 mA current is what the output load needs to draw from the amplifier. We
assign these criteria to a fixator and pair it with a norator replacing R2 as demon-
strated in Fig. 3. We then simulate the circuit for four cases of fixator values: Fx(0,
0), Fx(2.4, 0), Fx(0, 0.001), and Fx(2.4, 0.001). So, there are now four equations
and four unknown regarding Eq. (1), and also four equations and four unknown
regarding Eq. (2). Solving these equations give us the coefficients ai and bi as:
a0 = 8.00E-05, a1 = −1.07E-02, a2 = −1.10E-05, and a3 = 4.17E-09. Similarly
b0 = 4.01, b1 = 13.4, b2 = 9.90E-02, and b3 = 0.

Now for our actual design criteria given in Fx(2.4, 0.001), we simply get vn =
4.256006 V and in = 42.9 μA, which results in R2 = vn/in = 99185.57 Ω. What it
means is that, if we remove the FNP (i.e., the CCVS h1 = 106 in the Spice code)
from the circuit and replace it with R2 = 99186 Ω we then should be getting the
results we asked for, i.e., VCE = 2.4 V with 1 mA delivered to the load (not shown
here).

In order to test the circuit we first write the code for simulation. The WinSpice
component listing is given below. Notice that the resistor R2 is missing in the list,
and instead we are considering a high gain CCVS as an FNP. The way it works is as
follows: The VCE is set for 2.4 V according to spec. However, this source must not
draw any current because the 1 mA current is already delivered by the current
source IX. Subsequently a CCVS (h1) is assigned to provide the voltage necessary
for the norator R2(−, −), and this controlled source is regulated by the current going
through VCE, which must be extremely small.

To test the design, we first remove the fixator and replace it with a 1 mA current
source (representing the output load). Next, we replace the norator with a resistor
R2 = 99186 Ω. Now, if we simulate the circuit we get exactly VCE = 2.4 V across
the 1 mA current source.

vn

in

Vf

If

N

Fig. 2 A fixator-norator pair
in a linear circuit N
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The WinSpice component listing is given below.

.control 
destroy all 
op
print I(v2)     
print v(1)-v(2)   
print (v(1)-v(2))/I(v2)    
.endc
.op on ITL1=300 
* 
vcc  DC 5    

DC 0.5    
DC  1m    
DC 2.4
DC 0    

R1     2 20k
R3     1.2k
R4     150
R5     1.5k
f1 100
h1

1 0
vbe 2 3
ix 5 4
vce 5 4
v2 1 6

0
3 4
4 0
1 5
5 4 vbe
6 2 vce 1.0e8 

* 
.end

For further verification let us now assume VCE = 1.5 V and allow 2 mA current
to pass through R5 in excess of the transistor collector current IC = βIb. Now, since
we already have found the coefficients ai and bi in Eqs. (1) and (2) we do not need
to use FNP anymore, and instead, we directly calculate the new vn = 4.18 and
in = 42.2 μA from Eqs. (1) and (2). This results in R2 = vn/in = 99160 Ω. Finally,
if we now replace the older R2 = 99186 Ω with this new one, R2 = 99160 Ω, and

R2(-, -) 
vbe

Fx(2.4 V, 1 mA)

βib
ib

R1

R5

R3

R4

VccFig. 3 Linearized CE
amplifier for Example 1
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simulate, we get the desired criteria, i.e., VCE = 1.503759 V and 2 mA excess of
the collector current, as we expected. This concludes our example.

For multiple FNPs situation the case is extended and Eqs. (1) and (2) are rep-
resented by matrix equations. However, the impedance zn is still bi-linearly
dependent on as many fixators as the corresponding norator is sensitive to. As it has
been shown [3] (in a typical circuit analysis using analytical methods) there is no
need to pair the fixators and norators, and the nodal admittance matrix analysis will
take care of all FNPs collectively.

Commercially available circuit simulator do not have the capability to
incorporate FNPs directly into a nodal analysis. This is why we need to manually
replace each FNP with a controlled source that has very high gain. The next
question is, how to pair them and put them into controlled sources? To answer the
question, we first need to find good matches (based on maximum sensitivity)
between the fixators and the norators, and make them pairs. As experiments show,
this is not a hard requirement, because pairing is not unique; any setting as long as
rule 2 above applies is valid. Then, after paring, each FNP can be temporarily
replaced with a dependent source with high gain. The type of controlled source
being used depends on the fixator-norator relationship. For a voltage fixator the
norator is replaced with a CCVS or CCCS, and for a current fixator the norator is
replaced with a VCVS or VCCS. Now the circuit so prepared is ready for simu-
lation. Among others, the simulation provides the currents in and the voltages vn of
the norators. Then, just like what we discussed earlier (Eqs. (1), (2), and (3)), each
norator can be replaced with (a) a current source in, (b) a voltage source vn, (c) an
impedance zn, = vn/in, or (d) a combination of all this. Finally, all fixators are also
removed from the circuit.

Now, before we move into applications we need to know the rules of engage-
ment with FNPs in circuits. Here are some of these rules in relation to other circuit
components.

2.3 Rules Governing Fixators and Norators

A fixator represents a current source and a voltage source combined; hence, its rules
must comply with both. For instance, a current source in series with a fixator may
violate KCL, and a voltage source in parallel with a fixator may violate KVL. In
general, a cutset of fixators with or without current sources may violate KCL and a
loop of fixators with or without voltage sources may violate KVL.

A cutset of norators with or without current sources and fixators are not all
independent, and a loop of norators with or without voltage sources and fixators are
not all independent either.
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Here are some other properties of the pair:

• A fixator Fx(V, I) consumes power, and the power consumed is P = V*I.
• A resistor R in series with a fixator Fx(V, I) is absorbed by the fixator and the

fixator becomes Fx(V1, I); where V1 = V + R*I. A resistor R in parallel with
a fixator Fx(V, I) is absorbed by the fixator and the fixator becomes Fx(V, I1);
where I1 = I + V/R.

• A current source IS in parallel with a fixator Fx(V, I) is absorbed by the fixator
and the fixator becomes Fx(V, I1); where I1 = I + IS.

• A voltage source VS in series with a fixator Fx(V, I) is absorbed by the fixator
and the fixator becomes Fx(V1, I); where V1 = V + VS.

• A current source in series with a norator absorbs the norator with no change; and
a voltage source in parallel with a norator absorbs the norator with no change. In
addition, a current source in parallel with a norator is absorbed by the norator;
and a voltage source in series with a norator is absorbed by the norator.

• A resistor in series or in parallel with a norator is absorbed by the norator.
• A norator in series with a fixator Fx(V, I) is equivalent to a current source I; and

a norator in parallel with a fixator Fx(V, I) is equivalent to a voltage source V.

3 Use of FNP in Biasing Design

A major property of a fixator is to keep the DC values (voltage and current) fixed
when assigned to a circuit port. We can use this property to bias the transistors in a
circuit according to a specified operating (Q) point. Figure 4 shows the biasing
models of diodes, BJT and MOS transistors using fixators. There are two types of
models for each. Figures 4a, c, and e show the linearized models, whereas Figs. 4b,
d, and f show the actual modes of fixators. There are distinct differences between
the two. In the linearized model we are assuming both voltage and current for each
port as being known and according to the transistor characteristics. In this situation
we are locked with the type of the transistor that is specified for the design, and in
case this transistor is replaced with another one, with different characteristics, then
the fixator model is no longer accurate. On the contrary, the actual model of the
transistor specifies only one variable (voltage or current) for each port and the other
variable is found through the transistor operation and according to its characteris-
tics. Hence, any change in the circuit components (including different transistors)
will keep the biasing intact. However, the price we need to pay for using the actual
model is its nonlinearity, which means we need to go through iterations when we
simulate the circuit.

Example 2 Consider a three stage BJT amplifier with feedback, shown in Fig. 5a.
The amplifier is broadband known as MC1553 [4]. All components of the amplifier
are assumed given, as listed in the following SPICE program, except for R1 and R7,
which are kept unknown for biasing design purposes. There are two design specs to
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consider here. First, for a proper operation of the amplifier with VCC = 9 V we
need to get a maximum output voltage swing close to 8 V; hence, we assign
VCE3 = 4 V. This is for the collector-emitter voltage of Q3. Second, we select to
limit IB1 = 10 μA, which is the base current of Q1. This current is almost half of the
current going through R8, and it is sufficient to provide a stable biasing condition
for the first and the critical stage of the amplifier. Figure 5b shows the design set up
using two FNPs. Notice that the norators are replacing the unknown resistors R1

and R7, as planned.

Fx(VD, ID) B
E

C

Fx(VBE,IB)

Fx(VCE,IC)

G S

D

Fx(VGS,0)

Fx(VDS,ID)

Fx(0, ID)

E

B

Fx(0, IB)

C

Fx(VCE, 0)

VBE

Fx(VDS, 0)

Fx(VGS, 0)

G

S

D

(a) (c) (e)

(b) (d) (f)

Fig. 4 Two types of biasing models; a and b diodes; c and d BJT transistors; e and f MOS
transistors

In
Q1

Q2

Q3

R3R2R1
R7

R5
R6

R4R8

C1

C2

Out

Vcc = 9V

Fx(4 V, 0)

Fx(0, 10 μA)

Q1

Q2

Q3

R3R2

R1R7

R5
R6

R4R8

C1

C2

In

Out

Vcc = 9V

(a) (b)

(a) (b)

Fig. 5 Three stage BJT amplifier with feedback, known as MC1553; a the original amplifier;
b biasing design using FNPs
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*** mc1553.cir *** from the data sheet
*** three stage npn amplifier with feedback (Sedra and Smith, 7th Edi on, p. 851) ***
* 
.control 
destroy all 
op
print (v(10)-v(2))/I(v1)    
print (v(10)-v(3))/I(v2)    
.endc
.op on ITL1=300 
* 
vcc  10 DC 9    

DC 0 sin(0 60m 10k 0 0 0) 
q1 BJT1
q2 BJT1
q3 BJT1
R2     10 5k
R3     10 500
R4     150
R5     80
R6     1k
R8 50k
c1 1u
* 
ib1 DC 10u
vce3 DC 4 
v1 10 DC 0 
v2 10 DC 0 
e1 a 2  8 1.0e3
h3

0
vin  1 0

3 8 4
5 3 0
6 5 7

5
6

4 0
7 0
4 7
2 0
1 2

2 8
6 7

a
b 
2

b 3 vce3 1.0e6
* 
***** Spice models and macro models *****
...
...
.end

We next simulate the circuit and get the values for the unknown resistors. The
WinSpice results are given below, and as indicated we get R1 = 2.985838e + 05 or
rather 300 KΩ, and R7 = 9.316896e + 03 or 9.3 KΩ.

Circuit: *** mc1553.cir *** from the data sheet
TEMP=27 deg C
DC Opera ng Point ... 100%
(v(10)-v(2))/v1#branch = 2.985838e+05
(v(10)-v(3))/v2#branch = 9.316896e+03

Our next step is to test the circuit so designed. To do this, we remove the
fixators, which means short circuit Fx(0, 10 μA) and open circuit Fx(4 V, 0), and
replace the norators with R1 and R7 that were found. We then run the circuit for the
transient analysis. The simulation result is shown in Fig. 6 with almost no
distortion.
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4 Designing for Gain, and Input and Output Impedances

Another application of FNP is in designing for AC performance of amplifiers. This
includes the gain, input, and output impedances. The following example demon-
strates one such application.

Example 3 Consider a single stage CMOS 50 nm process amplifier shown in
Fig. 7a. The desired design criteria for this amplifier are: voltage gain Av = 25 or
higher; input and output impedances, Rin and Rout, in the range of 0.5 MΩ; max-
imum undistorted output voltage swing of Vout. Note that from the four specs, the
first three (Av, Rin and Rout) are related to the performance design, and the last one
is bias-related spec. For the performance design we get:

Rout = r01∥r02 ð4Þ

Av = − gm1Rout ð5Þ

Rin =R1∥ðR2 +R3Þ ð6Þ

Where, ro1 and ro2 are the output impedances of the MOS transistors. Hence, for
Rout = 0.5 MΩ we need to have each transistor to have an output impedance in the
range of 1 MΩ. Similarly, from Eq. (5), and by assuming Av = 25, we must have
the trans-admittance for the driver gm1 = 50 μA/V or higher. The same is true for
the biasing resistors, i.e. R1, R2 and R3 must be in the range of 1 MΩ in order to
satisfy Rin = 0.5 MΩ.

To fulfill the last criteria, i.e., to maximum the output voltage swing, we need to
have the biasing to produce VDS1 = Vout = VDD/2 = 0.5 V. This is done by using a
FNP, where the fixator keeps VDS1 = 0.5 V and the norator replaces R2 shown in
Fig. 7b. For simulation purposes, we assume R1 = R3 = 1 MΩ, and the FNP is
replaced with a high gain CCVS. The simulation produces vR2 = 0.396 V and

Fig. 6 Transient response of the amplifier in Example 2, designed for biasing
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iR2 = 0.3 μA for the norator, which means we can replace the norator with a resistor
R2 = 0.396/0.3 = 1.3 MΩ.

We now need to select the right sized transistors. Following the performance
design with the trans-admittance gm1 in the range of 50 μA/V, and the output
impedances roi (i = 1 and 2), as specified, the closest choices for the transistors’
sizes are: W/L = 50/2 for the nMOS driver and W/L = 100/2 for the pMOS active
load. Finally, after complete design of the amplifier, the circuit is simulated and the
results achieved are: Av = 27, Rin = 697 KΩ, Rout = 360 KΩ, and Vout = 0.5 V
that are reasonably within the range of the design specs. This concludes our
example.

It is important to note that, although a circuit design can start with a number of
specific requirements that we try to fulfill them all but there might be cases that
some of the requirements conflict each other. This is needed to be paid special
attention to. For instance, in Example 3 we found R2 = 1.3 MΩ from the biasing
criteria. Another way to find R2 is through the input impedance. For example,
instead of Rin = 697 KΩ let us assume Rin = 600 KΩ, which is closer to our
desired value of 500 KΩ. Now from Eq. (6) we get R2 = 500 KΩ. By far this is
smaller than 1.3 MΩ, the one previously found. One solution to these types of
problems is to assume two values for such a resistor, one static for DC biasing and
another one dynamic resistance for AC operations. For example, in this case, we
assume R2 = 500 KΩ for the DC (biasing), and another one r2 = 1.3 MΩ for the
AC (performance) design. We will further discuss this issue in a later section.

Example 4 We are going to revisit the same three stage amplifier MC1553 dis-
cussed in Example 2 (Fig. 5a). The amplifier is already designed for biasing and the
transistors used are of type 2N3904. The objective now is to redesign the amplifier
for (AC) performance according to certain given criteria. Figure 8 shows a

Vout

VDD = 1V

M2

M1

R1

R2

R3

Vin

Vout

VDD = 1V

M2

M1

1 MEGΩ

R2

Vin

Fx(0.5V, 0)

1 MEGΩ

(a) (b)

+

-

+

-

Fig. 7 A single stage CMOS amplifier, a amplifier structure, b biasing design procedure using an
FNP
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linearized equivalent circuit of the amplifier. For this design we consider three
criteria as follows: (a) the input resistance needs to be high and around Rin = vi/
ii = 10 MΩ; (b) the gain obtained from the two first stages is aimed at A2 = v2/
vi = 8; and (c) the overall amplifier voltage gain is aimed at Aout = vout/vi = 60.
Because of the three design criteria specified we need to apply three FNPs. One set
of components to replace with three required norators can be R1, R3, and RC2. Other
choices of components are also possible, as well. Figure 9 shows the small signal
equivalent circuit of the amplifier after three FNPs are added to the circuit. Table 1
shows the component values of the amplifier except for the three unspecified
resistors R1, R3, and RC2 that are replaced with the norators.

After simulating the circuit the unspecified resistors are computer as shown
below:

R1 = 96 Ω
R3 = 85 Ω
RC2 = 4.617 KΩ

i1

R1

R2

R3

vπ1

voutvi

vπ2
vπ3RC1rπ1 rπ2 rπ3 g3vπ3

g1vπ1 g2vπ2
RC2

RC3

v2

Fig. 8 Small signal equivalent circuit of the three stage amplifier MC1553, in Fig. 5a

i1

R1
R2 R3

vπ1

voutvi

vπ2
vπ3RC1rπ1 rπ2

rπ3

g3vπ3
g1vπ1 g2vπ2

RC2

RC3

v2 Fx(8V, 0)

Fx(1V, -0.1μA) Fx(60V, 0)

Fig. 9 Three FNPs used for the design of MC1553 amplifier; vi/ii = 10 MΩ; v2/vi = 8; vout/
vi = 60
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Next, we need to verify the results again. To do this we first remove the fixators
and then replace the norators with the three resistors found. The circuit is now ready
for performance simulation. The current source i1 is the only signal source in the
circuit and we can assign i1 = 10−8A. The simulation results are then obtained as:
v1 = 0.1 V, v2 = 0.8 V, and vout = 6 V. If we now translate these into the design
criteria we get Rin = 10 MΩ, A2 = 8 V/V, and Aout = 60 V/V, as expected. This
concludes our example.

Before we leave this example, however, it is important to realize that the lin-
earized AC solution is valid only if the transistors operate at the (active) regions, as
modeled. To check this we need to replace the models with actual transistors and
re-run the simulation with the biasing supplies included. In this particular case we
had the biasing completed successfully in Example 2, and all transistors were in the
active regions. However, in general, any performance design of an amplifier must
include both DC and AC criteria fulfilled, i.e., we need to perform both to be sure of
accuracy.

Algorithm 1 provides a step-by-step procedure that leads to designing an
amplifier for a set of specified criteria.

Algorithm 1:

1. Given a set of design specs for an amplifier, a designer needs to go through
certain initial assumptions that form the overall circuit configuration (topology)
before starting a formal design procedure. For example, the designer may need
to specify the number of amplifier stages, and characterize each stage in terms of
types (CE, CS, …). The next assumption the designer can make is to assume the
region of operation of each transistor for biasing purposes, and so on.

2. Following the selection of the transistors and their operating regions we are
dealing with two types of circuits. One for the biasing design, which is the
circuit with all the original components present, including the transistors.
Another circuit is for the performance design. In the later case the transistors are
replaced with their small signal linear models. The DC sources are removed, the
coupling capacitors are short circuited, and the inductors are removed. In case a
region of operation is selected to be outside of the active region for a BJT, or
outside of the saturation region of a MOS transistor, then the designer can still
replace the component with the appropriate linear model, as long as the region
remains unchanged during the AC operation. This step produces a complete
linearized circuit for AC design.

Table 1 Component values for the amplifier

RC1

KΩ
RC3

Ω
R2

Ω
rπ1
KΩ

rπ2
KΩ

rπ3
Ω

g1
mS

g2
mS

g3
mS

9.0 600 640 4.18 2.7 750 36 70 293
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3. Next, the designer needs to split the design criteria into two categories: biasing
(DC) and performance (gain, I/O impedances, and so on). For n number of (DC
or AC) design criteria the designer needs to allocate n components in the circuit
to pair with the n design criteria. The n design criteria are set by using appro-
priate fixators, and the n paring components are replaced with norators.

4. The next step is to pair fixators and norators and replace each pair with a
controlled source with high enough gain. The type of the controlled source used
is discussed in Sect. 2.2.

5. The circuit so created is simulated next, and the result of the simulation provides
the voltage and current for each norator.

6. These norators are then replaces with a voltage source, a current source, a
resistor, or a combination of them, as appropriate. Finally, the fixators are
removed from the circuit and the circuit so constructed can be tested for
verification.

Example 5 Consider a CMOS differential pair with buffer shown in Fig. 10. The
initial design criteria for this amplifier are given in Table 2.

The transistors for this example are considered long-channel with L = 2 μm
channel lengths, and their major SPICE model parameters are given in Table 3.

Vout

VDD

M6
M1 M2

M4M3

M5 M7

V- V+

Vbias
ISS

Fig. 10 A CMOS differential
pair with buffer for Example 5

Table 2 Initial design
criteria for the amplifier

VDD

V
ISS
μA

VOut

V
Av

dB
CMRR
dB

5.0 150 2.5 74 86
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We first need to take some initial steps to simplify the design. (1) The transistor
M5 must carry ISS = 150 μA; so we need to decide on its channel width W5, and its
bias voltage Vbias = VGS5. For this we assume W5 = 20 μm, and then calculate the
biasing voltage which is Vbias = 1.1 V. (2) Next, we need to balance the operation
of M6 and M7 to achieve VOut = 2.5 V. This is to maximum the output swing, as
another criterion. With the assumption of W7 = 20 μm and W6 = 3*W7 we get the
gate voltage values VSG6 = VSG3 = 1.16 V. Up to here the design criteria have
helped us to find the operating (biasing) voltages for the transistors, except for M1

and M2 and their paring transistors M3 and M4. By the assumption that ISS is
equally split between M1 and M2, and since we already have the width W5, we can
simply find W1 = W2 = W5/2 = 10 μm. Finally, we get W3 = W4 = 3*W1 =
30 μm. This concludes our biasing design.
For the performance design, however, we have two criteria to fulfill that are

(1) the differential gain 74 dB or Ad = 5 K V/V, and (2) the targeted CMRR =
86 dB. To further simplify the design, we notice that the later criterion can be
treated as CMRR = Ad/Ac, which results in Ac = 0.25 V/V. The next step is to
create a linearized AC equivalent circuit for the amplifier, which its schematic is
given in Fig. 11. Here the transistors are replaced with their linear small signal
models. Notice that the transistors’ body effect are also included in the schematic.

Table 3 MOS transistor
parameters

K’P
μA/V2

VTh

V
Lambda
V−1

Gamma
V1/2

nMOS 25 0.75 0.0133 0.76
pMOS 9.3 −0.83 0.0133 0.76

1/gm3 ro4

gm2v2

ro5

ro6gm6v4gm4v3

ro1gm1vI

v1
v2

gmbv5

v5

gmbv5
ro7 vOut

v4

v3

ro2

Fig. 11 Linearized CMOS differential pair
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Now we have two steps to go, one to fulfill the differential gain Av = 5 K, and
the second one to handle the common-mode gain Ac = 0.25 V/V. This means we
need to use FNP methodology in two separate incidences. For the first step we
know that Av = g*Ro, where g is the overall trans-conductance of the differential
pair, and Ro = r6 jj r7 is the generic output load. So, to produce the differential gain
Av = vout/vd = 5 K we first apply vd = 100 μV to the input port, and then assign a
fixator Fx(0.5, 0) at the output port. Then to pair with this fixator we remove both r6
and r7 from the circuit (Fig. 11) and replace them with a norator. The WinSpice
code listing of the design is shown below.

.control 
destroy all 
op 
print v(6)/I(va)
.endc 
.op on ITL1=300 

DC 100u
DC 0

r1 1.0Meg
r2 1.0Meg
r3 7k
r4 1.0Meg
r5 0.5Meg
g1 5  137u    
g2 5  137u    
gb1 5  14u    
gb2 5  14u    
g4 0  145u    
g6 0  290u    
* 

DC 0.5
DC  0   

h1

v1 1 0
v2 2 0

3 5
4 5
3 0
4 0
5 0
3 5 1
4 5 2

3 5 0
4 5 0

4 0 3
6 0 4

vo 0 6
va 6 a

a 0 vo 1.0e6
.end

The code is simulated and the result of the simulation is shown below.

Circuit: *** L-MOS-DA.cir
TEMP=27 deg C
DC Opera ng Point ... 100%
v(6)/va#branch = 2.007606e+05

Note that the simulation is producing Ro = 2.007606e + 05 Ω, or equivalently,
r6 = r7 = 0.4 MΩ, which are not far from the actual transistors’ output impedances
of 0.5 MΩ.

Finally, we need to get the common-mode gain of Ac = 0.25. Initially, it seems
unnecessary to further proceed with the design; because there is no parameter left to
be calculated. One way to deal with this issue is to make some modifications in the
circuit topology, if needed. Thus, we first check for the common-mode gain as the
design is setup, and in case the gain exceeds well above the target value (reducing
the CMRR) then we need to replace M5 with a cascade current mirror [5]. However,
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the calculated common-mode gain for this design stays at Ac = 0.31, which is
within the acceptable tolerance. Therefore, there is no need to make changes in the
overall circuit topology.

Nevertheless, in case one desires to attempt for correcting Ac = 0.31, the way to
do this is to apply, for example, v1 = v2 = 1 V to the input port and then assign a
fixator Fx(0.25, 0) to the output port for getting Ac = 0.25. Then to pair a norator
with this fixator we may remove r5 from the circuit (Fig. 11) and replace it with a
norator. The result of the simulation provides the voltage and currents of the
norator, which in turn produces a newly computed r5.

This concludes the design of the differential amplifier, with the transistors widths
given in Table 4.

5 Designing Active Load and Current Mirrors Using FNP

As we discussed in Sect. 2, a norator can be replaced with a current source, a
voltage source, an impedance, or a combination of those. For example, let us
assume we get Ij = 42 μA and Vj = 308 mV for a norator in a circuit simulation
that contains FNPs. Let us further assume that this norator is replacing a current
mirror or an active load located in an analog IC. For DC operation, this norator
conducts power to properly bias the driver(s) in the circuit and can be represented
by a resistor Rj = 308/42 = 7.33 KΩ. At the same time this norator is replacing a
dynamic load in an AC analysis of the circuit, and it can perhaps be represented by
a parallel combination of a current source Ij’ = 36 μA and a resistor rj = 308/
6 = 51.3 KΩ, as illustrated in Fig. 12a. The i-v characteristics of the norator for
both cases are given in Fig. 12b. This simply means that a component substituted
for the norator can be a BJT or MOS transistor, as an active load or current mirror,
with the dynamic resistance rj = 51.3 KΩ, where the transistor is biased at the
operating point ID = Ij = 42 μA and VDS = Vj = 308 mV. This is depicted in
Fig. 12c, with the static load Rj and the dynamic load rj displayed.

This example leads us to the solution of a loading problem in analog IC where
the static (DC) load for biasing is different from the dynamic one. In general there
are different types of dynamic loads commonly used in IC designs. Figure 13 shows
three basic types of dynamic loads used in MOS ICs, and Fig. 14 are those typically
but used in BJT ICs. As noticed in Figs. 12 and 13, active loads or current mirrors1

Table 4 The transistor
widths for the differential
amplifier

M1

μm
M2

μm
M3

μm
M4

μm
M5

μm
M6

μm
M7

μm
10 10 30 30 20 60 20

1Active loads and current mirrors are similar in construction, and are used interchangeably. Here
we only refer to them as active loads.
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are constructed from one or more MOS or BJT ICs. Depending on their structure
and the region of operation active loads are of three types.

Type L: Type L is a low impedance active load, shown in Figs. 13a and 14a. In
its basic structure a type L load is a diode-connected BJT or MOS transistor used
mainly for voltage drops. The dynamic resistance of a Type L is rj = 1/gm, for MOS
and re = rπ/(1 + β) in case of a BJT.

Type R: Type R is a resistive active load. A type R active load represents a
biased BJT or MOS transistor operating in the triode (for MOS) or in the saturation
(for BJT) region with static resistance of Rj = Vj/Ij, as shown in Figs. 13b and 14b.
The dynamic resistance rj of this type of load is practically equal to the static
resistance Rj. A typical lumped resistance can also be considered as a Type R load.

Type H: Type H is a high impedance active load. A type H active load is a biased
BJT or MOS transistor operating in the saturation (for MOS) or in the active (for
BJT) region with high dynamic resistance of rj = ro. Note that Figs. 13c or 14c
represents only a simple and basic structure of a high impedance active load. Other
active loads such as cascodes or folded cascodes structures are also commonly used
[5]. For example, Fig. 15 shows two samples of a cascode current mirror and a
cascode active load.

rj

Ij

Ij

_

+ +

_

Vj

Vj
Rj

rj

Ij’

(a) (b)

Rj

Vj

Ij

Ij

Vj

+  

_  V bias +  _

rj ro

(c)

’ 

Fig. 12 a Passive (DC) and active (AC) load representation; b graphical representation; c circuit
construction with MOS
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_  V bias +  _
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Fig. 13 Active load designs; a Type L active load; b Type R active load; c Type H active load;
d Main design parameters in an active load; e cascode current mirror/active load
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5.1 Active Load Design

Designing for active loads can be a challenging issue. As mentioned earlier, one
needs to consider both DC (biasing) and AC (performance) criteria for the design.
For a frequent designer it might pay off to form a library of active loads before
designing for analog ICs. A typical library contains three lists of parameters for
each type of active load (L, R or H), and for each type of transistors, MOS or BJT.
Each active load in a type is identified by its circuit structure (typically one or more
MOSs or BJTs in series), and its three design parameters, Vj, Ij, and rj are specified.
This library can be created first, so that for a given set of parameters (Vj, Ij, and rj)
the designer can simply look up and select one that fits with the design specs. In
fact, depending on the type of technology, component size, and the level of com-
plexity (single, multiple, cascode and so on) the construction of such a library can
be expanded to include other design criteria such as the frequency spectrum, noise
characterization, and power consumption.

The next question pertaining to this issue is how to extract the set of specified
parameters (Vj, Ij, and rj) for an active load, in a given IC design environment? In
other words, how the circuit performance criteria (gains, bandwidth, impedances,
and so on) can be translated into the right selections of the dynamic loads ri?
Similarly, how the selective operating points for the drivers can result in right
selections of Vj, and Ij for the active loads? Let us just consider one criterion. For
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rj

Ij

Vj
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Rj
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rj

Vj

Ij
Vb

Ij
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Fig. 14 Active load designs; a Type L active load; b Type R active load; c Type H active load;
d Main design parameters in an active load; e cascode current mirror/active load
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M3 M4 M1

Vb2

Vb1

M2

Fig. 15 Active load designs;
a Type L active load; b Type
R active load; c Type H active
load; d Main design
parameters in an active load;
e cascode current mirror/
active load
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the dynamic resistances (rj), we can typically extract them from the I/O impedances
or the gain that we need. For designing a circuit for its performance, each transistor
is replaced with its small signal model, and each active load is replaced with its
dynamic resistance rj. Now, since the entire AC circuit is linear, finding all rj values
that we need for active loads is rather simple and a matter of linear circuit analysis.
In case FNPs are candidate to help, each fixator secures a design spec while its
pairing norator takes the location of a dynamic load in the circuit. After the per-
formance design is done we can start the biasing design. Circuit biasing must be
performed in order to find the other two parameters, Vj and Ij for the active loads.
Here again FNPs come into play. Then for each fixator holding a biasing criterion
(Vb and Ib) a norator provides a pair of Vj and Ij, that represents a voltage supply, a
current supply, or a power conducting component (PCC). Hence, with Vj and Ij
being found through the biasing and rj coming from the performance design, one
can completely characterize an active load, or look it up in the active load library
just described.

6 Designing Analog VLSI Circuits

Design of high performance analog circuits can be a complex and often a multi
stage process. One approach, to simplify the design and cut loops and feedbacks
between the stages, is to use as much orthogonally between the stages as possible
[6]. In the proposed method this orthogonality is practiced between the circuit
performances and the biasing; or simply between AC and DC designs. The first task
clearly is to design for the circuit performances; mainly gain, input and output
impedances, noise, signal power, and bandwidth. The process starts with a selected
circuit topology, and then selecting regions of operations for the nonlinear com-
ponents so that the design requirements can be achieved. The next step in the design
process is two folded: (i) bias the circuit with DC supplies (voltages and currents)
so that the selected operating points for the (driving) transistors are well established,
and (ii) complete the DC design of the active loads that have been already selected
for the performance design. The following examples show this design procedure
using FNPs.

Example 6 Consider a CMOS differential amplifier partially shown in Fig. 16a. All
known component values including the transistors’ sizes are listed in the following
WinSpice code. We start designing the amplifier for a differential gain of Av = vout/
vin = 200 V/V. To do this we first use a fixator Fx(0.2 V, 0) at the output port to
keep the output vout = 0.2 V for an input signal of vin = v+ − v− = 1 mV already
assigned. The pairing norator, on the other hand, is chosen to replace the resistor
Rb, as shown in Fig. 16a. Now the circuit is ready for simulation, and for that the
FNP is replaced with a VCVS as indicated in the SPICE listing. For transistor sizing
we are assuming a constant channel length of L = 1 μm. The width of the
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transistors are all related. For VGS close to 1 V and the reference current about
IR = 27 mA the transistor widths W come about the values listed in the Spice code.

*** CMOS Diff-Amp ***.
.control 
destroy all 
op
let r1 = v(7)-v(6)
print r1 
print I(vr)    
print r1/I(vr)    
.endc
.option ITL1=300 
vdd 10 0 DC 2.5
vss 0 20 DC 2.5
v1 DC 1.0e-3 
M1 10 P_1u L=1u W=60u
M2 10 P_1u L=1u W=60u
M3 10 10 P_1u L=1u W=120u
M4 20 20 N_1u L=1u W=20u
M5 20 20 N_1u L=1u W=20u
M6 10 10 P_1u L=1u W=60u
M7 20 20 N_1u L=1u W=20u
vo DC 2.0e-01
ro 10MEG
vr DC 0
e1

2 1
3 1 5
4 2 5
5 7
3 6
4 6
7 7
6 6
3 8
8 4
7 a 
6 a 8 4 1.0e6

* 
.include cmosedu_models.txt
* 
.end

The results from the simulation are listed below, where Vb, = 3.11166 V, Ib =
2.736193e-05 A are given for the norator that can be replaced with a resistor
Rb = 1.137223e + 05 Ω, or simply Rb = 114 KΩ. The final differential amplifier
is shown in Fig. 16b.

WinSpice 1 -> source "MOS-OpAmp1.cir"
Circuit: *** CMOS OP-Amp ***.
TEMP=27 deg C
DC Operating Point ... 100%

r1 = 3.111660e+00
vr#branch = 2.736193e-05
r1/vr#branch = 1.137223e+05

Example 7 The objective here is to design a three stages CMOS 50 nm process
OP-Amp with the performance criteria given as follows: (i) the overall open-loop
voltage gain is set to 77 dB (6,500 V/V), (ii) the input impedance is supposed to be
high, and (iii) the output impedance of Rout = 10 KΩ [5]. An initial configuration
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of the amplifier is shown in Fig. 17 with the active loads (AL) and the current
mirrors (CM) unspecified. In scale of 50 nm process the nMOS drivers (M1, M2,
M3 and M4) are sized at W/L = 50/2, and the pMOS driver, M5, is sized at W/
L = 1000/2, for greater current delivery. Table 5 provides a biasing specification
for the amplifier.

Practically there are only five biasing criteria in Table 5, namely Vout, VDS1,
VDS3, I1 and I3, that need to be fulfilled vs the seven active loads and current mirrors
that are going to be designed, instead. One way to solve this unmatched situation is

V+ - V- = 1 mV

VDD

M5

M1 M2

M4

M3

M7

M6

V-V+
Rb

-VSS

Fx(0.2 V, 0)
Vout

VDD

M5

M1 M2

M4

M3

M7

M6

V-V+
Rb

-VSS

+_

(a) (b)

Fig. 16 CMOS differential amplifier; a the amplifier with an FNP added; b the amplifier after the
design is completed

V-

M1 M2

AL1 AL2

CM1

M3 M4

AL3 AL4

CM2 AL5

V+

M5

VDD

Vout

Fig. 17 Symbolic structure of a three stages CMOS OP-Amp with the active loads and current
mirrors unspecified
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to use the symmetry that exist in the differential pairs, and hence, reduce the size of
the biasing circuit to the one shown in Fig. 18. Notice that the current mirrors CMa

and CMb carry half the currents going through the original mirrors CM1 and CM2,
respectively.

To start the design, we notice that the current mirrors CMa and CMb can be
initially replaced with two current sources I1/2 and I3/2. This is quite consistence
with the design procedure that is aimed for high impedance current mirrors. Later,
when the voltages across the current sources are found these current sources can be
replaced with appropriate (nMOS) current mirrors. Now the biasing design is quite
simplified, and the design can be proceed with only three FNPs, as depicted in
Fig. 19.

Next, the DC circuit so created is simulated. The simulation results given for
the active loads and the current mirrors are listed in Table 6. Table 6 also pro-
vides the static and dynamic resistances of the components, as indicated in
Fig. 13. As described in Algorithm 1, the dynamic resistances are obtained
through the linear analysis of the original amplifier of Fig. 17 (not shown here).
This is when the drivers are replaced with their linear models and the active loads
and current mirrors are replaced with their dynamic resistances so that the circuit
can perform according to the AC performance criteria (gain and output impe-
dance) specified.

Before getting into the final stage of the design, note that the biasing design can
go with different sets of specs. For instance, the design criteria VDS1, given in
Table 5, can be replaced with the buffer current I5 in Fig. 18, i.e., instead of having

Table 5 Biasing criteria for the Op-Amp

V+

V
V−
V

Vout

V
I1
μA

I3
μA

VDS1

V
VDS3

V
VDD

V

0.5 0.5 0.5 3.4 3.8 0.5 0.34 1.0

V-

M1

AL1

CMa

M3

AL3

CMb AL5

M5

VDD

Vout

I1 I3 I5

Fig. 18 The reduced DC
biasing structure for the
CMOS OP-Amp
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VDS1 = 0.5 V, as a biasing criterion it can be replaced with I5 = 100 mA as an
alternative criterion. To verify the design a simulation is conducted with this new
setting and the results closely confirm with the previous results (not given here for
space limitation).

Finally, with all the parameters found through the simulation, the active loads
can be designed (or looked up in the table) for the Op-Amp. In conclusion, Fig. 20
shows the CMOS Op-Amp that is designed after the active loads and current
mirrors are included in the design. Table 7 also provides the transistors sizes for the
active loads and the current mirrors. For the transistor sizing the channel length is
selected as L = 100 nm. The transistor widths are all related, and for the design
specs given the Ws are found, as listed in Table 7, in 50 nm.

The next step is to verify the results by applying the transient analysis to the
amplifier. Figure 21 is the open loop transient response of the amplifier. Notice that
with Vout,p-p = 0.9 V the distortion is almost negligible. Also, note that the DC
off-set voltage for the output remains at 0.5 V, as specified by the design.

VIN = 0.5 V

M1

AL1

M3

AL3

AL5

M5

VDD = 1V

Vout

Fx(0.5V, 0)

Fx(0.5V, 0) Fx(0.34V, 0)
DC I3I1

Fig. 19 Use of FNPs for the biasing design of the CMOS OP-Amp

Table 6 Active loads charactrization table

Active loads DC voltage
mV

DC current
μA

DC Res.
KΩ

AC Res.
KΩ

Load type

AL1 330 3.4 97 7.9 L
AL2 330 3.4 97 764 H
AL3 340 3.8 90 7.3 L
AL4 340 3.8 90 1350 H
AL5 500 172 2.9 10 H
CM1 170 6.8 25 84 H
CM2 290 7.5 39 98 H

Application of Fixator-Norator Pairs in Analog Circuit Design 313



To verify other performance design criteria, the amplifier is simulated using the
SPICE transfer function (.TR) and the simulation results are listed below.

TEMP=27 deg C
Transfer function analysis ...
transfer_function = 6.955680e+03
output_impedance_at_v(9,0) = 1.077840e+04
vin#input_impedance = 2.401113e+08
WinSpice 1 -> 

V- V+ 

Vout

VDD = 1V

M1 M2

M5Mc MdMa Mb

M7

M3 M4

M8 M6Vb = 0.34V

Fig. 20 CMOS Op-Amp designed with the active loads and current mirrors included

Table 7 Transistor sizes W/L for the dynamic loads and the current mirrors

AL1 AL2 AL3 AL4 AL5 CM1 CM2

100/2 100/2 100/2 100/2 450/2 100/2 100/2

Fig. 21 The open loop transient response of the CMOS OP-Amp
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Note that the outcomes of the simulation quite confirm the design criteria, with
about 6% of error margin. That is, the gain Av = 6956, the input impedance
Rin = 240 MΩ, and the output impedance Rout = 10.778 KΩ. This concludes our
design example.

7 Nullors in Amplifier Design for Bandwidth

Designing for frequency responses has always been the center piece of designing
analog circuits for performances. Analog filters, for instance, are all about fre-
quency profiles and bandwidth. Or in applications such as analog hearing aids, the
major part of the design is profiling, frequency curve fitting, and bandwidth
adjusting. But the job is not so easy. Part of the problem is because we need to
handle complex values rather than real data. Frequency responses mean dealing
with the magnitudes as well as the phase angles of the response, and coordination
between the two for cases such as stability and convergence needs quite an effort.
This usually creates problems and complicates the design procedure substantially.
One way to avoid this complexity is to go after the circuit poles and zeros, but even
that has its own limitations when it comes to extraction of poles and zeros [7]. New
advances in symbolic analysis of circuits are available but these methodologies are
relatively new and untested for designs that are rather complex [8–10].

Our objective here is to address the frequency responses of amplifiers when
designing for performances. There are typically two approach in solving this
problem. One method goes through the poles and zeros methodologies such as root
locus techniques, and symbolic verification of poles and zeros, and the second
method goes after transfer function characterization. It utilizes the conventional
Bode plot representation, common to all commercially available circuit simulators
such as SPICE [11]. Here we choose to go after the second approach, and try to
design for a desirable frequency response of a circuit transfer function. This of
course can cover a wide variety of cases and circuit types. However, here we only
consider the design of amplifiers for specified bandwidths. The tools we use are
nullors or FNPs in general.

7.1 Design Procedure for Bandwidth Matching

The purpose here is to design for a given frequency bandwidth specified for a
particular application, such as audio or video amplifiers, hearing aids and so on. The
goal is to modify the bandwidth of an amplifier to match with the frequency
bandwidth of a model circuit in one or a few steps so that we could achieve a
desirable frequency response.

The following methodology provides a technique that is quick and, if the
bandwidth requested is realizable it modifies the circuit to closely match with it.
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Methodology—We start with the following question. Given an analog circuit
(amplifier) N, how can we get a desired frequency response from N by adding one
or more sub-circuits to it? For simplicity, we assume the missing sub-circuits
(SC) are passive two-terminals, and usually connected to N as feedbacks, as shown
in Fig. 22a. In brief, we like to design one or more two-terminal circuits and add
them to N, so that the transfer function of N in Eq. (7) becomes close enough to a
specified function within a given bandwidth.

TðsÞ=V0ðsÞ ̸ViðsÞ ð7Þ

In our solution, we need to have a model circuit that can produce the charac-
terized frequency response. In case such a specific model circuit is not available we
can always create one by synthesizing methods. Our second task is to have the
output of N to exactly follow the desired frequency response generated by the
model circuit. However, this enforcement requires two things: (1) not to disturb the
output port situation for both N and the model circuit, and (2) make changes in the
circuit N so that the circuit responds favorably to the conditions imposed to its
output port.

For the first requirement a nullator is placed between the two output ports, and the
pairing norator takes care of the second requirement, as depicted in Fig. 22b. The
combined circuit is now ready for simulation. After the simulation if we assume Vn(s)
and In(s) are the voltage and current functions associated with the norator then there
would be no change in the circuit response if we replace the norator with a
two-terminal circuit that its impedance function is represented by

ZscðsÞ=VnðsÞ ̸InðsÞ ð8Þ

In other words, we will get exactly the frequency response we need (represented
through the model circuit) if we could find a two-terminal circuit with the impe-
dance function given by Eq. (8) and replace it for the norator.

vi vo

(a)
SC-1

SC-2

SC-i

vi vo

(b)

SC-2

SC-i

Model circuit

Fig. 22 a Circuit N with possible two-terminal feedback; b Combined circuit with model circuit
and a nullor added
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So, the problem can be restated as follows: find a two-terminal (feedback) circuit
so that its impedance function Z’SC(s) is close enough to that of the norator ZSC(s)
for the specified bandwidth. This may sound like we are back into square one,
designing another circuit like N, with specified frequency response. Although this
may be correct but designing for the feedback circuit is completely different from
designing the original circuit N. This is a two-terminal circuit, linear, passive and
much smaller than N; whereas, N can be linear or nonlinear of any size and any
complexity. Nevertheless, we need to be aware of a major difficulty here. Although
both V(s) and I(s) in Eq. (8) are frequency dependent, but because they represent a
non-real component (norator), the chances are that they may not be so related to
produce ZSC(s) of Eq. (8), a realizable impedance function. In general, if ZSC(s) is
realizable then there must be a two-terminal circuit with the impedance Z’SC(s) so
that ZSC(s) and Z’SC(s) share a portion of the Bode plot that covers the specified
bandwidth. For more complex cases the process may take multiple steps, resulting
in multiple feedbacks to resolve the issue, as we can see it later.

Design challenges
In general finding the right feedback is a very critical step and often hard to fulfill in
a single step. As it turns out, the designer’s skill will definitely play an important
role in designing such feedbacks. There are certain difficulties that we need to
address before proceeding further.

1. The goal must be achievable. That is, we should ask for a frequency response
that is deliverable by the circuit we have already configured. Obviously, taking
any circuit cannot bring us the desired frequency bandwidth that we are looking
for, and not all is possible by just adding feedbacks.

2. Which locations in the circuit are good candidates to attach the feedbacks? The
location of each feedback must definitely be skillfully selected, and a bad choice
might elongate the design process, add more numbers of feedbacks than are
required, and even end up unsuccessfully. A decision to select a right location
for a feedback depends on its mutual sensitivity with respect to the output
response. In other words, the changes in the norator variables (Vn(s) and In(s))
must substantially affect the output response of the circuit.

3. How many feedbacks are needed to get close enough to the desired frequency
response?

4. Finally, how each feedback is designed based on a given ZSC(s)? We must
remember that ZSC(s) is a complex function, and when turned into real com-
ponents both magnitude and phase must match. Another problem is the polarity.
There are cases when real components are fund to construct the two-terminal
curcuit but the component values are negative.

Nevertheless, we should not always expect 100% match between the model
response and that of the modified circuit after the process is completed. Just getting
“close” to the desired frequency response “within the requested bandwidth” must be
enough.
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Model circuit
The next question is how to get the model circuit M chosen? Sometimes the model
circuit is given, whether it is a prototype, a working unit with older technology, or a
black box with no information about its internal structure. In this case we need to
reconstruct or modify our target circuit N, so that both N and M have close fre-
quency responses within a certain bandwidth. In the second category the model
circuit is not physically available, but the desired response can be translated into a
transfer function TðsÞ=NðsÞ ̸DðsÞ with specified poles and zeros. We may then
artificially synthesize and construct the model. A model circuit is typically con-
structed from multiple circuit modules using ideal dependent sources. A cascade
decomposition method, for example, can simply realize a transfer function T(s). Or,
tools such as MATLAB can be used to generate the Bode plots from a given
transfer function T(s).

7.2 Implementation Procedures

It is important to discuss some implementation issues when the design involves
nonlinear devices such as transistors. As we know, nonlinear circuits need biasing
and this biasing must not change during the performance design. Hence, adding any
two-terminal feedback to the circuit must not disturb the circuit biasing. This simply
means that the nonlinear circuit N must be protected by (coupling/bypass) capac-
itors when any feedback is added to the circuit.

Here is an algorithm that explains the design procedure in a step-wise routine.
Algorithm 2

1. Consider an analog circuit (linear or nonlinear) N that must be redesigned for a
selected frequency bandwidth according to a specified criteria and application.
Next, try to find a model circuit M that produces the desirable frequency
response. If circuit M is not physically available, try to artificially synthesize M,
possibly through a cascade decomposition methodology, or else.

2. Find a location in the circuit N so that adding a two-terminal feedback to N can
significantly affect the output response.

3. Connect the two circuits, N and M, in parallel-parallel. Keep the two output
currents zero by adding a nullator between the outputs, as shown in Fig. 22b.
Further, add a matching norator in the designated location, to be replaced with a
feedback circuit, later in the process.
Note 1: parallel-parallel connection of N and M (Fig. 22b) is only valid for
voltage to voltage transfer functions. For the case of currents the connections
must be in series, as appropriate.2

2T(s) can be of any of the four types of transfer functions: voltage to voltage, voltage to current,
current to current, and current to voltage, and only the first type is selected for study here.
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4. Simulate the combined circuit. The output frequency response of the circuit N is
now exactly the same as that of the model circuit M. This simulation will also
produce the impedance function ZscðsÞ=VnðsÞ ̸InðsÞ, for the norator.

5. Next, find a two-terminal circuit so that its impedance characteristic closely
matches with ZSC(s), for the bandwidth specified. Next, replace the norator with
the two-terminal circuit just found. If Zp(s) is not realizable make proper
approximation/adjustments to fit, or declare un-realizability.
Note 2: The methodology works for nonlinear circuit as well, provided that the
two-terminal circuit does not disturb the circuit biasing, as explained earlier.
That is, circuit N must be protected by coupling/bypass capacitors, if needed.

6. Finally, if the response obtained is not satisfactory go to step 2 and continue
until the bandwidth obtained for N is within the specs.

We are now ready for implementation. The following examples demonstrate the
bandwidth adjustment in different amplifiers.

7.3 Design Examples

Example 8 Let us assume a two stage nMOS amplifier shown in Fig. 23a. The
magnitude Bode plot for the voltage gain transfer function is plotted in Fig. 24a,
plot k. The amplifier shows a bandwidth of B = 75 MHz, which is considered too
wide for our designated application. To modify this bandwidth we first need to get a
model circuit with the desirable bandwidth. A model circuit for our application is
synthesized next. This model circuit is simply an RC circuit with the output voltage
magnified by a VCVS to provide a gain of A0 = 51 dB (350 V/V), which is equal
to that of the amplifier. The model circuit is shown in Fig. 23b, which has the
desired bandwidth of B = 1 MHz. The model circuit is then simulated and its
output Bode plot is shown in Fig. 24a, plot j.
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Rd1
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Fig. 23 Circuits for Example 1. a An MOS amplifier: M1 and M2: W/L = 50/1 μm, RI = 2 KΩ,
R1 = 110 KΩ, R2 = 860 KΩ, R4 = 5 KΩ, R5 = 0.5 KΩ, R6 = 100 KΩ C1 = 20 nF, C2 = 100
nF, and C3 = 2.5 μF. b The model circuit
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Our next step is to find and add a feedback circuit to the amplifier circuit so that
its frequency response get close enough to the frequency response of the model
circuit, as our target profile. The location is selected to connect the outputs of the
two stages together, as shown in Fig. 25. The pairing nullator, on the other hand, is
used to isolate the output ports of the amplifier and the model from affecting each
other, while connected in parallel. The nullator is mainly used to stop the current
flow between the two circuits. Now the circuit is ready for simulation, but before
the simulation takes place we need to replace the nullor with a high gain controlled
source. We select a CCCS for this purpose, as shown (f1) in the SPICE code listed
below.

k

j

(a)

(b)

Fig. 24 Bode plots for the MOS amplifier (plot k), and the model circuit (plot j)
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.subckt Mamp2 1 3 4 6 7 
* Main MOS amplifier 
VDD 10 10
M1 N_1u L=1 W=50
M2 N_1u L=1 W=50
RI 2k
R1

0 DC
4 3 0 0
6 4 5 0

3 0 110k
R2 10 860k
R3 10 20k
R4 10 5K
R5 500
R6 100k
C1 20n
C2 100nu
C3

1 2

3
4
6

5 0
7 0
2 3
6 7
5 0 2.5u

.ends
* ********* The MOS amplifier 
X1 1 2 3 4 5  Mamp2
* ********* RC Model circuit
R1 50k
C1 3p

1 6
6 0

e1 7 0 6 0 350
* ********* The MOS amplifier connected to the model circuit
X2 1 8 9 11 12  Mamp2
v1 12  7  DC 0
vf 11  a  DC 0
f1 a 9 v1 1.0e6

P
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MModelvin
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Fig. 25 Combined circuit, the MOS amplifier, the model circuit and the nullor
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Next we need to see how best can we replace the norator with a two-terminal
feedback? To do so we need to characterize the norator from its magnitude and
phase Bode plots, associated with the pseudo-impedance Zp(s) = Vp(s)/Ip(s), where
Vp(s) and Ip(s) are the voltage and currents of the norator. Our next move is to try to
find a two-terminal circuit that best matches with these frequency responses.
Figure 24b shows the magnitude Bode plot of the pseudo-impedance Zp(s) of the
norator (for simplicity we ignore the phase plot). A close look at this plot reveals
that it represents very closely the impedance characteristic of a series RC circuit.
With a magnitude slope of −20 dB/dec at lower frequencies and a break point for a
zero at 380 MHz. we simply get R = 600 Ω and C = 0.7 pF. Figure 27b compares
the frequency characteristics of the norator (plot i) with the one from the RC
feedback (plot j, a shift of 2 dB is applied for clarity). We notice the closeness of
the two responses. The RC circuit so found is then replaced for the norator in
Fig. 26. Subsequently, we remove the nullor, and also the model circuit. The
amplifier is now ready for simulation. The frequency response of the amplifier with
feedback (Bode plot) is given in Fig. 27a, plot i. This result is compared with the
responses from the original amplifier without feedback, and the model circuit as
well. We notice that the frequency characteristic of the amplifier with feedback (plot
i) is almost identical to that of the model circuit (plot j), and it is distinctly far from
that of the original amplifier (plot k). This concludes our example.

7.4 Designing for Bandwidth with Multiple Feedbacks

Given the realizability of the case, it is possible to continue modifying the band-
width of an amplifier through multiple feedbacks until we get close enough to the
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Fig. 26 The MOS amplifier after being modified with feedback
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model circuit bandwidth. One way to do this is to go through a step by step
procedure and in each step repeat the combined circuit similar to Fig. 25 with
including the newest amplifier circuit that was designed in the previous step. We
will see this in the following example.

In the following example we are trying to make a reverse process, i.e., expanding
the bandwidth of an amplifier rather than shrinking it. The other difference that
exists between this example compared to the previous one is that here we go
through multiple feedbacks to achieve the maximum bandwidth expansion
required. Because of the two stages amplifier, employing multiple feedbacks are
convenient, and because a model circuit is always present we can continuously
check to see how close we are to meet the desirable solution.

Example 9 Consider a two stage BJT amplifier shown in Fig. 28a. The gain fre-
quency response of the amplifier in shown in Fig. 28b, plot x. The amplifier is
characterized as: gain A0 = 72 dB (4,000 V/V), and bandwidth B = 450 kHz. This
bandwidth is considered too low for our application, and we need to increase. To

k

j

i

j

i

(a)

(b)

Fig. 27 Bode plots for MOS amplifier after being modified by the feedback
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expand the bandwidth we first need to get a model circuit with the desired band-
width. We have simply constructed the model circuit with modular RC circuits and
ideal dependent sources (not shown). The model circuit represents the desired
bandwidth of B = 5.5 MHz and the frequency response of the circuit is shown in
Fig. 28b, plot y.

Our next move is to add a feedback circuit to the amplifier in order to modify its
response. Figure 29 shows a combined circuit set up. The amplifier is
parallel-parallel connected to the model circuit. A nullator stops the flow of currents
across the two circuit outputs while the pairing norator, as a place holder, occupies a
feedback position providing required conditions for the amplifier to respond to the
model bandwidth.

vout

Rc2

VCC

Q1

Q2

Re

R3

R1

Rc1
R2

RI

RL

C3

C2

C1

vin

N

x

y

(a)

(b)

Fig. 28 The BJT amplifier, it Bode plots response, plot x, and the ideal response, plot y
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Next, we need to characterize the norator in order to safely replace it with a
two-terminal feedback circuit. Figure 30a, plot y, represents the magnitude Bode
plot for the pseudo-impedance Zp(s) = Vp(s)/Ip(s) of the norator. Now we should be
thinking of replacing the norator with a feedback circuit that best represents it.
Looking at the plot y we realize that the upper part of the plot closely represents the
frequency response of a capacitor. To find this capacitor, we assume a feedback
capacitor Cf1 = 70 fF with the impedance characteristic plotted in Fig. 30a, plot z.
This plot is almost identical to that of the norator (plot y), or at least at the lower
frequencies. Subsequently we simulate the amplifier after the norator is replace with
the capacitor Cf1 = 70 fF, and after removing the model circuit all together. The
simulation result is plotted in Fig. 30b, plot z. Note that both frequency responses
from the original amplifier (plot x) and the one from the model circuit (plot y) are
also plotted in Fig. 30b for comparison. We now clearly notice that the bandwidth
of the amplifier in extended, and has jumped from 450 to 2.5 MHz, which is much
improved, and not far away from the desired bandwidth of 5.5 MHz.

In case further improvement is needed, one option to go for forward is to try for
a second feedback. To do this we repeat the steps we took for the first feedback
except that this time we have come closer to the model response. So we repeat
connecting the amplifier (this time with the feedback Cf1 included) with model
circuit, as shown in Fig. 29. Our selection for the feedback location this time is
across the second stage amplifier, while the first one was across the two stages. We
then simulate the combined circuit as constructed. We again get the impedance
characteristic curve for the norator, say ZSC(s) = Vn(s)/In(s). Although this char-
acteristic curve is not shown here, but it shows that it is very close to a series RC
circuit. The values found are Rf2 = 40 kΩ and Cf2 = 1.8 pF. Finally, we replace the

vout1

Rc2

VCC

Q1

Q2
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M
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Fig. 29 Combined circuit, the BJT amplifier, the model circuit and the nullor
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norator with the RC circuit, and after removing the model circuit we simulate the
amplifier circuit; this time with two feedbacks. The result of the simulation is
plotted in Fig. 31, plot z, along with the other plots, x and y, for the original
amplifier and the model circuit. Now the bandwidth is improved substantially and it
has reached to B = 4.4 MHz, which is 20% less than the ideal case (the model
response). There is still possibility to go for the third modification, but we prefer to
stop here. In comparing with plot z in Fig. 30b we also notice a substantial
improvement in the general form of the characteristic curve obtained. In Fig. 30b
the plots z and x almost come together and sharply cutting the bandwidth, whereas
in Fig. 31b plot z has moved further away from plot x of the original amplifier.
Finally, the modified amplifier circuit with both feedbacks is shown in Fig. 32.
Note that neither feedbacks disturb the biasing of the amplifier, because they have
capacitors that stop DC from entering the feedbacks. This concludes our example.

(a)

(b)

y

x z

z

y

Fig. 30 Bode plots BIT amplifier: plot x for the original amplifier, plot y for the model circuit
(norator), and plot z for the modified amplifier
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8 Conclusion

The chapter starts with introducing Fixator-Norator Pairs (FNPs). They have been
shown to be very powerful tools for designing analog circuits. The application of
FNPs are shown to be wide spread in almost all aspects of analog circuit designs,
including biasing, gain, input and output impedances, and frequency responses.
FNPs are also used in designing active loads and current mirrors in IC circuits. In
all these application the role of a fixator is to provide a fixed and stable response to
a circuit variable as specified by the design criteria, and the pairing norator acts as a
place holder for a two terminal sub-circuit that is needed to sufficiently modify the
circuit in order to respond to the fixator.

z
x

y

Fig. 31 Improved frequency response (plot z) after adding two feedbacks

v out

R c2

V CC

Q 1

Q 2

R e

R 3

R 1

R c1

R 2

R I

R L

C 3

C 2

C 1

v in

N

1.8 pF40 k Ω

70 fF

Fig. 32 Bode plots for Example 1: a Output x characteristics; b frequency responses of the
norator and the two-terminal feedback P
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Because of the complexity that exist in designing for a specific bandwidth and
frequency profile, the design methodology is changing here. It is shown that a
model circuit is extremely helpful in this case. This model circuit provides the
frequency response needed and FNP is used to force the original circuit to follow
the model circuit on its bandwidth. Since a model circuit is only for simulation
purposes, it can be constructed from ideal components such as controlled sources,
and it can be built modular.

As discussed, the FNP methodology works for both linear and nonlinear circuits.
However, for nonlinear circuits we need to keep the biasing condition unchanged
during the AC design process. The circuit biasing may change when feedbacks are
added to the original amplifier circuit, unless it is protected. In this chapter we use
coupling capacitors to protect the circuit biasing if needed.
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Nullor-Based Negative-Feedback
Memristive Amplifiers:
Symbolic-Oriented Modelling and Design

Arturo Sarmiento-Reyes and José Balaam Alarcón-Angulo

Abstract The memristor as an actual device was introduced in April 2008 at the

HP labs, while its original foundations are dated from 1971 when Prof. L. O. Chua

devised the memristor as the fourth basic circuit element. Nowadays, the memristor

has captured most of the attention not only from circuit theoreticians, but also from

circuit designers because the widely open possibilities of the device in applications

where it co-exists with traditional electronics. A particular case of such an appli-

cation arises when the memristor is combined with the nullor in order to achieve a

memristive input-output transfer function. In this chapter, we firstly introduce a fully

symbolic model of the memristor that is used for the symbolic analysis of the ampli-

fier configurations. It is important to point out the symbolic nature of our memristor

model in contrast with other models that are of numerical nature or implemented in

a macro-equivalent. Secondly, the four single-loop negative-feedback nullor-based

amplifier configurations are introduced, and their corresponding analytic transfer

functions are generated and characterised. Similarly, the noise and harmonic dis-

tortion analyses are carried out on the four configurations yielding fully symbolic

expressions for both, the output equivalent noise and the harmonic components. In

a next step, the nullor is synthesised by using a memistor, which is a combination

of two memristors connected back-to-back. Finally, a transmemristance amplifier is

used as a case study of design when the nullor is substituted by a memistor. Along

the manuscript, the resulting expressions from the mathematical analyses are verified

with HSPICE simulations that incorporate the memristor model from a description

in the VERILOG-A language.
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Keywords Symbolic modeling ⋅ Memristor models ⋅ Nullor-based memristor

amplifiers ⋅ Memristor ⋅ Memistor

1 Introduction

This chapter deals with a singular element (the nullor) when combined with the

memristor to form special classes of memristive circuits, namely the memristive

amplifiers.

1.1 The Nullor

The nullor was firstly employed by Carlin and Youla in 1961 [1], where the term

“pathologic” was coined for both the nullator and the norator. However, the nullor

was formally introduced in 1964 by Carlin [2] as a two-port defined by a nullator at

port 1 and a norator at port 2—as shown in Fig. 1a. In his work, Prof. Carlin wisely

pointed out that the nullor exhibits a more natural (and understandable) behaviour

when it appears interconnected with other circuit elements. However, it was Prof.

Bernard D.H. Tellegen who stated the concept of the four ideal amplifiers in 1954 [3].

An important niche of the nullor has been as a key-element to achieve circuit

transformations in active and passive network theory and synthesis [4–7]. In the

search for an actual implementation of a nullor in the form of an integrated circuit,

we can mention the works reported in [8–10]. This line of research led indeed to the

design of op-amps and OTAs.

The nullor is a two-port. On one side, the nullator at the input port handles:

vi = 0
ii = 0 (1)

On the other side, the norator at the output port handles:

vi = ×
ii = × (2)

where “×” indicates that both voltage and current have arbitrary values determined

by the environment, i.e. the circuitry that is connected at the output of the nullor.

It clearly results that after combining the expressions from Eqs. (1) and (2), the

chain matrix of the nullor can be expressed as:

[
A B
C D

]
=
[
0 0
0 0

]
(3)
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Fig. 1 Symbols of the nullor

with:

A = 1
μ
= vi

vo

|||io=0 = 0 B = 1
γ
= vi

io

|||uo=0
= 0

C = 1
ζ
= ii

vo

|||io=0 = 0 D = 1
βF

= ii
io

|||uo=0
= 0

Therefore, the nullor models the four ideal infinite-gain amplifiers:

μ = ∞ γ = ∞
ζ = ∞ βF = ∞ (4)

The infinite gains in Eq. (4) led to use the nullor as the active part in negative

feedback finite-gain amplifiers, with the aim of producing high performance transfer

functions of these types of amplifiers. A design methodology oriented to structure

the synthesis of negative feedback amplifiers is reported in [11–15]. Herein, the syn-

thesis of the nullor by using transistors as active devices was driven by tackling noise,

clipping and distortion as key-specifications of the procedure. Further treatment of

this methodology has been reported in [16–19]. In the rest of the manuscript, the

symbol of the nullor to be used corresponds to the one shown in Fig. 1b.

1.2 The Memristor

The memristor was introduced by Prof. L.O. Chua in his seminal paper from 1971

[20] as the fourth basic electric element that closes the loop around the basic electric

variables of Circuit Theory, namely the electric charge q, voltage v, current i, and

flux linkage φ as sketched in Fig. 2. Besides, the relationships of the cross corners of

the figure are the charge-conservation and flux-conservation laws, which are given

respectively as:

dq(t)
dt

= i(t) or q(t) = ∫
t

−∞
i(τ )dτ (5)

and
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Fig. 2 Basic circuit
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dφ(t)
dt

= v(t) or φ(t) = ∫
t

−∞
v(τ )dτ (6)

Since the electric charge and the flux are the variables involved in the memristor

branch relationship, a memristor can be either flux-controlled or charge-controlled:

q(t) = gM(φ)
𝖿 𝗅𝗎𝗑-𝖼𝗈𝗇𝗍𝗋𝗈𝗅𝗅𝖾𝖽

φ(t) = fM(q)
𝖼𝗁𝖺𝗋𝗀𝖾-𝖼𝗈𝗇𝗍𝗋𝗈𝗅𝗅𝖾𝖽

(7)

From Eqs. (5), (6), and (7), it can be easily found:

i(t) = d gM(φ)
dφ

v(t)
𝖿 𝗅𝗎𝗑-𝖼𝗈𝗇𝗍𝗋𝗈𝗅𝗅𝖾𝖽

v(t) = dfM(q)
dq

i(t)
𝖼𝗁𝖺𝗋𝗀𝖾-𝖼𝗈𝗇𝗍𝗋𝗈𝗅𝗅𝖾𝖽

(8)

These expressions can be recast in a pair of ohmic relationships:

i(t) = W(φ)v(t)
𝖿 𝗅𝗎𝗑-𝖼𝗈𝗇𝗍𝗋𝗈𝗅𝗅𝖾𝖽

v(t) = M(q)i(t)
𝖼𝗁𝖺𝗋𝗀𝖾-𝖼𝗈𝗇𝗍𝗋𝗈𝗅𝗅𝖾𝖽

(9)

where W(φ) and M(q) are denoted as the memductance and the memristance respec-

tively. A publication posterior to the seminal paper appeared in 1976 [21] revealed

an extension to memristive systems.

The theoretical concepts developed by Prof. Chua stayed in latency for nearly

30 years-time, until a nanometric memristor was actually fabricated at the HP Labs

[22, 23]. This event as well as the publication of the seminal paper represent the

most important milestones in memristor development.

Nowadays, the memristor has captured most of the attention not only from circuit

theoreticians, but also from circuit designers because of the widely open possibilities

of the device in applications where it co-exists with traditional electronics.
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2 Development of the Memristor Model

In order to carry out any further analysis of the nullor-based memristive amplifiers,

it becomes necessary to firstly determine a model for the memristor. The speed of

the drift from the doped region toward the undoped region is described by [24]:

dx(t)
dt

=
μRon

𝛥2 i(t)fw(x) (10)

where 𝛥 stands for the full length of the semiconductor material and x(t) is the nor-
malised state-variable (x = w∕𝛥), normalised by the total length. Besides, μ is the

mobility of the charges, Ron is the ON-state resistance and fw(x) is a window func-

tion that bounds the state-variable x. The current is the stimuli function given as:

i(t) = Ap sin(ωt) where Ap is the amplitude, and ω is the angular frequency.

An electrical equivalent of the mechanism can be devised as a series connexion

of the coupled resistors Ron and Roff , as shown in Fig. 3. A fully symbolic solution to

the ordinary differential equation in (10) has been found by using the perturbation-

based homotopy method from [25–27]. In order to solve the nonlinear drift equation,

the bounding of the state-variable is defined by the Joglekar function [28]:

fw(x) = 1 − (2x − 1)2k
(11)

Equation (10) is solved by using a homotopy method of order-3 with k = 1, which

yields a harmonic solution for x(t):

x(t) =

X0 −
80
3
3 + 122 − 41

+
(
403 − 162 + 41

)
cos (ωt)

+
(
42 − 163

)
cos (2ωt)

+8
3
3 cos (3ωt)

(12)
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It can be easily demonstrated that x(0) = X0 is the initial condition of the state vari-

able. Besides, the variables i are polynomials defined as:

1 = γX0(X0 − 1)Ron

2 = γ2X0(X0 − 1)(2X0 − 1)R2
on

3 = γ3X0(X0 − 1)(6X2
0 − 6X0 + 1)R3

on

(13)

with:

γ =
μAp
𝛥2ω

The resulting solution from Eq. (12) is substituted in the coupled resistor series

equivalent given as:

M(t) = Ronx(t) + Roff [1 − x(t)] (14)

which yields the memristor model:

M(t) = Ron(α − 1)

⎡⎢⎢⎢⎢⎢⎣

( 80
3
3 − 122 + 41)+

(−403 + 162 − 41) cos(ωt)+
(163 − 42) cos(2ωt)+

(−8
3
3) cos(3ωt)

⎤⎥⎥⎥⎥⎥⎦
+ Rinit (15)

In addition:

Rinit =
[
X0 + α(1 − X0)

]
Ron (16)

The expression in Eq. (15) constitutes indeed a fully symbolic model of the mem-

ristor as function of physical parameters. The model have been recast in a Verilog-A

module, that can be used for electric simulation of memristive circuits. Appendix A

shows the code of the model.

Model characterisation
Further numeric evaluations are achieved in a very straightforward form in order to

verify the fingerprints of the memristor model [29]. Nominal values corresponding

to the well-known HP-memristor are listed in Table 1.

The i(t) − v(t) characteristics for several values of the angular frequency are

shown in the t-parametric plots of Fig. 4. These characteristics proof that the devel-

oped model possesses the first fingerprint of a memristor, which is a self-crossing

pinched-hysteresis loop (PHL). In addition, it can be noticed that the area of these

characteristics decreases as the frequency increases which is another important fin-

gerprint. Besides, since the curves lie on the first and third quadrants of the i(t) − v(t)
plane, the passivity of the memristor is guaranteed, which is another important sig-

nature of the device.
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Table 1 HP-memristor

parameters
Parameter Value

μ 10−10 cm
2

s
−1

V
−1

Ron 100 Ω
𝛥 10 nm

Ap 40µA

α 160

Fig. 4 Pinched hysteresis

loop for several values of ω

Besides, the memristance-current plots for the same set of ω values are shown in

Fig. 5. Here again, it can be noticed that the memristance has an excursion that spans

from a maximum to a minimum value. The difference between both values decreases

with the frequency.

On one side, the maximum value of the memristance is the same for any fre-

quency, and it is defined as:

Mmax = M(t)|t=0 = [
X0 + α(1 − X0)

]
Ron (17)

i.e. Mmax = Rinit and it depends only on the initial condition, the on-state resistance

and the ratio with the off-state.

On the other side, the minimum value is given as:

Mmin = M(t)|t= π

ω
= Rinit + Ron (α − 1)

(
81 − 322 +

256
3

3

)
(18)
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Fig. 5 M − I characteristics

for several values of ω

Table 2 Mmax and Mmin for some discrete values of ω

ω Mmax Mmin

1 14.41 kΩ 374 Ω
2 14.41 kΩ 10.205 kΩ
5 14.41 kΩ 13.23 kΩ
10 14.41 kΩ 13.889 kΩ
100 14.41 kΩ 14.363 kΩ

Table 2 shows the values of the maximum and minimum memristance for several

discrete values of the angular frequency ω for the parameter values given in Table 1.

Figure 6 show the behaviour of both limit memristances in a continuous plot ver-

sus the frequency. This plot illustrates the assymptotic behaviour of the minimum

memristance that tends to Mmax. Hence, the memristor behaves as a linear resistor as

ω → ∞, which is another important fingerprint.

Last, but not least, Fig. 7 shows the waveforms for the current and the voltage of

the memristor for ω = 1. It can be noticed, that they fulfil the nullor behaviour of the

the memristor crossing the origin, i.e. v = 0 and i = 0 simultaneously.
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Fig. 6 Mmax and Mmin
versus the frequency

Fig. 7 Voltage and current

of the memristor for ω = 1

3 Memristive Amplifiers

A particular case of memristive circuit application arises when the memristor is com-

bined with the nullor in order to achieve a memristive output-input transfer function.

The memristive versions of the single-loop nullor-based negative-feedback ampli-
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Fig. 8 Basic memristive nullor-based amplifiers: a Voltage amplifier b Transmemristance ampli-

fier c Transmemductance amplifier d Current amplifier

fiers are shown in Fig. 8. Under the assumption of instantaneous linearity [30], the

gain of the amplifiers depicted in Fig. 8 can be expressed as:

Vo

Vi
(t) = 1 + M(t)

R
Vo

Ii
(t) = −M(t)

Io

Vi
(t) = −W(t)

Io

Ii
(t) = 1 + M(t)

R

(19)

3.1 Memristive Voltage Amplifier

The gain of this amplifier configuration is given as

Vo

Vi
(t) = 1 + M(t)

R
(20)

The voltage amplifier is simulated using the memristor model given in Eq. (15)

with the nominal values from Table 1, and chosing a value of 300 Ω for R. The result-

ing Vo − Vi transfer loops are shown in Fig. 9a from the evaluation of the symbolic

model, (b) from the symbolic circuit simulation framework AnalogInsydes [31] and

(c) from HSPICE. The obtained overall transfer characteristics have the form of a

pinched-hysteresis loop, i.e. the amplifier mimics in fact the memristor behaviour.

A usual form of reporting the behaviour of the overall gain of the amplifier is by

plotting the gain as a function of time for a given frequency [32]. For this amplifier,

the time-varying voltage gain of the amplifier is shown in Fig. 10 for ω = 1. This

curve can be better understood by looking at the values of Mmax and Mmax in Table 2,

which yield maximum and minimum gains, respectively:
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(a) (b) (c)

Fig. 9 Pinched hysteresis transfer loop for the voltage amplifier for ω = 1

Fig. 10 Voltage gain for

ω = 1

max
(

Vo

Vi

)
=

(
1 + M(t)

R

)||||M(t)=Mmax

= 1 + 14410
300

= 49.033

min
(

Vo

Vi

)
=

(
1 + M(t)

R

)||||M(t)=Mmin
= 1 + 374

300
= 2.246

(21)

On the one side, the maximum gain occurs at t = 0, 2π, i.e. at the begin and end of

the PHL, which can be seen as the cross at the origin with maximum slope. On the

other side, the minimum gain occurs at the half of the period, i.e. the cross at the

origin with minimum slope.
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(a) (b) (c)

Fig. 11 Pinched hysteresis transfer loop for the transmemristance amplifier for ω = 1

3.2 Transmemristance Amplifier

A similar treatment is done with this amplifier. The gain of this configuration is

given as

Vo

Ii
(t) = −M(t) (22)

i.e. the gain is purely defined by the memristance. The Vo − Ii transfer characteristic

of the amplifier is obtained and shown in in Fig. 11.

The maximum and minimum gains at ω = 1 are in fact determined by the limit

values of the memristance at ω = 1:

max
(

Vo

Ii

)
= −Mmax = −14410Ω

min
(

Vo

Ii

)
= −Mmin = −374Ω

(23)

Notice that the maximum and minimum correspond to the absolute values of the

gain, because the negative sign complies with the fact that the PHL transfer loop is

on the second and fourth quadrant. Figure 12 shows the time-varying gain.

3.3 Transmemductance Amplifier

The gain of this amplifier configuration is given as

Io

Vi
= − 1

M(t)
(24)

The Io − Vi transfer characteristic of the amplifier is obtained and shown in in Fig. 13.
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Fig. 12 Transmemristance

gain for ω = 1

(a) (b) (c)

Fig. 13 Pinched hysteresis transfer loop for the transmemductance amplifier for ω = 1

The maximum and minimum inverting gains at ω = 1 are in fact determined by

the limit values of the inverse of the memristance at ω = 1:

max
(

Io

Vi

)
= − 1

Mmin
= − 1

374
= −2.67m℧

min
(

Io

Vi

)
= − 1

Mmax
= − 1

14410
= −69.39μ℧

(25)

The PHL of the transfer (Fig. 13) has a steep slope in the zero crossing when t = π.

The plot of the gain as a function of time given in Fig. 14 shows how the gain drops

very fast in the vicinity of this time value. In general, the sharpness of the gain and

the PHL indicates a highly nonlinear behaviour of this amplifier.
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Fig. 14 Transmemductance gain for ω = 1

(a) (b) (c)

Fig. 15 Pinched hysteresis transfer loop for the transmemconductance amplifier for ω = 1

3.4 Memristive Current Amplifier

The gain of this amplifier configuration is given as

Io

Ii
= 1 + M(t)

R
(26)

The Io − Ii transfer characteristic of the amplifier is shown in in Fig. 15.
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Fig. 16 Current gain for

ω = 1

The time-dependent gain is shown in Fig. 16. The maximum and minimum cur-

rent gains are 49.03 and 2.24, respectively.

4 Noise Analysis

In the basic schemes of the nullor-based memristive amplifiers, the noise comes from

the resistors and the memristor. This noise is of thermal nature, i.e. due to the thermal

fluctuation of charge carriers. For the resistor, the noise can be represented as a series

noise voltage source in series with the noise-less resistor—as shown in Fig. 17a. The

power density can be expressed as:

v̄2n = 4kTR (V2∕Hz) (27)

where T is the absolute temperature of the resistor, k = 1.38−23 J/K is the Boltzmann

constant and R is the value of the resistor. Norton equivalent allows us to express the

noise current as:

ī2n = 4kT
R

(A2∕Hz) (28)

In order to determine how the noise of the memristor can be represented, it is

useful to point out that the memristor model from Eq. (15) implies an ohmic rela-

tionship:



344 A. Sarmiento-Reyes and J. B. Alarcón-Angulo

Fig. 17 Noise model of a

resistor

R

n
+

−
v

R in

(a) (b)

Fig. 18 Noise model of a

memristor

−
nM

M

+
v

inMM

(b)(a)

v(t) = M(t)i(t) (29)

In [30], under the assumption of instantaneous linearity, the noise of the memristor

is regarded in a way similar to the noise in a linear resistor. Herein, the power density

can be expressed as:

v̄2nM
= 4kTM (30)

The noise current is given as:

ī2nM
= 4kT

M
(31)

The noise equivalents for the expressions above are given in Fig. 18.

4.1 Noise in the Memristive Amplifiers

Figure 19 shows the diagram of the memristive amplifiers with the sources of noise

that contribute to the overall noise. As mentioned, the noise contributions arise from

the source resistor Rs and the feedback network. For the case of the voltage and

current amplifiers R and M are the noise contributors, while for the transmemristance

and transmemductance amplifiers, M is the only contributor. Besides, even though

the nullor is noiseless, two noise contributions are set apart for the nullor when it

is synthesised by an active device in a forthcoming step, namely a noise voltage vnn
and a noise current inn

.
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Fig. 19 Memristive amplifiers with noise sources: a Voltage amplifier b Transmemristance ampli-

fier c Transmemductance amplifier d Current amplifier

The next step in the analysis consists in determining the so-called equivalent noise

source at the input of the amplifier, which in fact models all noise contributions from

the amplifier components. The noise sources present in the amplifier schemes from

Fig. 19 must be reflected to the input by following several network transformations

based on circuit theory [17]. The result is a fully symbolic expression for the total

noise present at the input of the amplifier.

The total noise source at the input of the voltage amplifier is given as:

vn,eq,in = vns
+ vnn

+ (Rs +
RM

R + M
)inn

+
RM

R+M

R
vnR

+
RM

R+M

M
vnM

(32)

The total noise source at the input of the transmemristance amplifier is given as:

in,eq,in = ins
+ inn

+ ( 1
Rs

+ 1
M
)vnn

+ 1
M

vnM
(33)

The total noise source at the input of the transmemductance amplifier is given as:

vn,eq,in = vns
+ vnn

+ (Rs + M)inn
+ MinM

(34)
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The total noise source at the input of the current amplifier is given as:

in,eq,in = ins
+ inn

+ ( 1
Rs

+ 1
M + R

)vnn
+ R

M + R
inR

+ M
M + R

inM
(35)

In fact, Eqs. (32–35) represent the equivalent noise at the input of every ampli-

fier. Evaluations of these equations and simulation with HSPICE are summarised

in Table 3.

The deviations between evaluated and simulated results arise from the fact that

the nullor has been approximated by high-gain controlled sources because of the lack

of the nullor as a legal component in the simulator.

5 Harmonic Analysis

In this section, the memristor model described by Eq. (15) is used to obtain the sym-

bolic expressions for the harmonic components of the output signal for the memris-

tive configurations of the voltage and transmemristance amplifiers.

5.1 Harmonic Analysis for the Memristive Voltage Amplifier

The total harmonic distortion (THD) is a measure of the distortion in a system when

its input is a sinusoidal signal. THD is expressed as:

THD =

√
A2
2 + A2

3 +⋯ + A2
n

A1
(36)

where Ai is the amplitude of the i-th harmonic, n is the maximum harmonic com-

ponent considered in the analysis, and A1 is the amplitude of the fundamental fre-

quency. In fact, Eq. (36) is a comparison of the output amplitudes of all harmonic

components with respect to the amplitude of the fundamental.

The output voltage of the nullor-based memristive voltage amplifier is given by:

vout =
(
1 + M(t)

R

)
vin (37)

where vin = A sin(ωt) is the input voltage. The HPM memristor model from Eq. (15),

expressed in harmonic form, is given as:

M(t) = C0 + C1 cos(ωt) + C2 cos(2ωt) + C3 cos(3ωt) (38)
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After combining Eqs. (37) and (38), a symbolic expression for the output voltage

can be obtained:

vout = A
[(

1 +
C0
R

−
C2
2R

)
sin(ωt) +

(
C1
2R

−
C3
2R

)
sin(2ωt) +

C2
2R

sin(3ωt) +
C3
2R

sin(4ωt)
]

(39)

The amplitudes A1, A2, A3 and A4 can be easily identified as:

A1 =
(
1 + C0

R
− C2

2R

)
A

A2 =
(

C1
2R

− C3
2R

)
A

A3 =
C2
2R

A

A4 =
C3
2R

A

(40)

The resulting symbolic expressions of the harmonic components are given as:

Fv = Ain

(
1 + Rinit

R

)
+ Ain

(α−1)
R

( 56
3
3 − 102 + 41)

H2v
= Ain

(α−1)
R

(−56
3
3 + 82 − 21)

H3v
= Ain

(α−1)
R

(83 − 22)

H4v
= Ain

(α−1)
R

( 4
3
3)

(41)

where Fv, H2v
, H3v

. and H4v
stand for the fundamental, second, third and fourth

harmonic components of the output voltage, respectively. Equation (41) constitutes

indeed the symbolic harmonic model for the the memristive voltage amplifier. It

should be pointed out that up to the fourth harmonic can be obtained in fully symbolic

form due to the third-order of the memristor model from Eq. (15). The expressions

above are normalised with respect to the fundamental, and they appear in Table 4 as

the fully-symbolic expressions of the normalised harmonic components.

The voltage amplifier and the input and output signals obtained from the symbolic

simulation are shown in Fig. 20, for ω = 1. We have chosen this value for ω since the

memristor exhibits its higher nonlinearity at this frequency. Therefore, the transfer

function is given as:

Vo

Vi
= 1 + M

R
|ω=1 = 30.32984533 + 23.01811200 cos (t)

−4.689100800 cos (2 t) + 0.3744768000 cos (3 t) (42)

This expression has been obtained by using the memristor model given in Eq. (15)

with the nominal values from Table 1, and R = 300Ω. Numerical evaluations and

simulation results are shown in columns 3 and 4 of Table 4, respectively. Simulation
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Table 4 Normalised symbolic harmonic analysis for the memristive voltage amplifier

Memristive

voltage amp.

Normalised symbolic Evaluated HSPICE
simulations

F 1 1 1

H2 −2
(α−1)

(1−42+
28
3 3

)

(α−1)
(
41−102+

56
3 3

)
+R+Rinit

346.504 m 345.7994 m

H3 −2 (α−1)(2−43)
(α−1)

(
41−102+

56
3 3

)
+R+Rinit

71.7549 m 72.2021 m

H4 −4
3

(α−1)3

(α−1)
(
41−102+

56
3 3

)
+R+Rinit

5.7304 m 5.5046 m

H5 – – 189.0610µ

THD% 35.39 35.33

M

V

oV

R

i

−+

+

− −

+

+−

Fig. 20 Voltage amplifier with input and output voltages for ω = 1

have been obtained by using HSPICE with the memristor model recast as a Verilog-A

module.

A similar procedure is carried out in order to derive the expressions for symbolic

harmonics for the rest of amplifiers.

5.2 Harmonic Analysis for the Transmemristance Amplifier

The transmemristance amplifier and the input and output signals obtained are shown

in Fig. 21 for ω = 1. The transfer function at this frequency is given as:
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M

i

Vo

i

−

−

+

+

+

−

Fig. 21 Transmemristance amplifier with input current and output voltage for ω = 1

Table 5 Normalised symbolic harmonic analysis for the transmemristance amplifier

Transmemristance

amplifier

Normalised symbolic Evaluated HSPICE
simulations

F 1 1 1

H2 −2
(α−1)

(1−42+
28
3 3

)

(α−1)
(
41−102+

56
3 3

)
+Rinit

357.44 m 355.7455 m

H3 −2 (α−1)(2−43)
(α−1)

(
41−102+

56
3 3

)
+Rinit

74.0203 m 73.9590 m

H4 −4
3

(α−1)3

(α−1)
(
41−102+

56
3 3

)
+Rinit

5.9113 m 5.8484 m

H5 – – 174.7701µ

THD% 36.507 36.34

Vo

Ii
= −M|ω=1 = −8798.953600 − 6905.433600 cos (t) + 1406.730240 cos (2 t)

−112.3430400 cos (3 t) (43)

The symbolic harmonic model yields the expressions of the harmonic compo-

nents as:

Fm = AinRinit + Ain(α − 1)( 56
3
3 − 102 + 41)

H2m
= Ain(α − 1)(−56

3
3 + 82 − 21)

H3m
= Ain(α − 1)(83 − 22)

H4v
= Ain(α − 1)( 4

3
3)

(44)
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From Eq. (44), the normalised harmonic components can be obtained also in fully-

symbolic form, as shown in Table 5. Columns 3 and 4 of this table show the evaluated

and simulated results respectively.

5.3 Harmonic Analysis for the Transmemductance Amplifier

The transmemductance amplifier and the input and output signals are shown in

Fig. 22 for ω = 1. The transfer function is given as:

Io

Vi
= − 1

M
|ω=1 = − [8798.953600 + 6905.433600 cos (t) − 1406.730240 cos (2 t)

+112.3430400 cos (3 t)]−1 (45)

From the waveform of the output current, it follows that this amplifier exhibits the

most nonlinear behaviour, which is a direct result of obtaining the transmemductance

transfer function by inverting the memristance expression as denoted in Eq. (45). In

fact it conveys to a sec-like function, which is well known for having discontinuities.

Simulations results permits to verify this, as shown in Table 6.

M

i

io

−+

−

+

+−

V

Fig. 22 Transmemductance amplifier with input voltage and output current for ω = 1
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Table 6 Harmonic analysis for the transmemductance amplifier: simulation results

Transmemductance amplifier HSPICE simulations

F 1

H2 650.9889 m

H3 574.5942 m

H4 −462.3486m

H5 211.1704 m

THD% 105.654

R

i

io

i
+

−

−

+

M

Fig. 23 Current amplifier with input and output currents for ω = 1

5.4 Harmonic Analysis for the Current Amplifier

For this amplifier, its diagram as well as the input and output currents are shown in

Fig. 23 for ω = 1.

The memristive transfer function is:

Io

Ii
= 1 + M

R
|ω=1 = 30.32984533 + 23.01811200 cos (t) − 4.689100800 cos (2 t)

+0.3744768000 cos (3 t) (46)
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which results identical to the transfer function of the memristive voltage amplifier.

As a clear result, the harmonic analysis yields the same symbolic and numerical

results.

6 Implementing the Nullor with a Memistor

The synthesis of the nullor with active devices has been already matter of study by

several researchers and scholars [11, 12, 17–19, 33, 34]. The synthesis methodology

is carried out by attending a series of design guidelines with the aim of fulfilling the

user specifications. In particular, the research just mentioned has been focused on

tackling noise, distortion and bandwidth.

Hereafter, the nullor is implemented by a memistor. The memistor is a concept

introduced by Widrow in the form of three-terminal memory resistor [35]. Not only

does the name “memistor” imply a natural a confussion with the name of the “mem-

ristor”, but it also brings into light the link between both concepts, as reported in

[36–38].

The nullor is implemented by a memistor consisting in two memristors connected

back-to-back (anti-series connection) in order to establish a two-port network. The

nullor implementation results from setting an end terminal of the anti-series connec-

tion as the common terminal of the two-port, as depicted in Fig. 24. The memristor

model given by Eq. (15) is used to describe the memristors that appear in the scheme.

Noise in the memistor
As established before, the memristor contributes with noise in the same form a resis-

tor does, and as a result of this, all possible sources of noise were treated in Sect. 4.

In addition, the noise contributions for the nullor were temporarily set aside because

of the ideal properties of the nullor. However, Eqs. (32–35) already considered the

forthcoming noise contributions of the nullor when it is synthesised with devices.

In our nullor implementation with a memistor, i.e. a pair of memristors MD and

MS, it clearly results that they contribute with noise currents as depicted in Fig. 25.

Fig. 24 Nullor

implementation with

memistor

−

MS

MD

−

+

+
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Fig. 25 Memistor with

noise contributions

MS

MD

nMD
i

nMi
S

− +

+ −

Table 7 Noise equivalent at the input of the memristor from evaluation of Eq. (48)

t inn
vnn

0 4.288033476 pA 15.44764060 nV

π 26.60082721 pA 24.90148125 nV

According to Eq. (31), the noise currents for the memristors are given by:

ī2nMS
= 4kT

MS

ī2nMD
= 4kT

MD

(47)

After manipulating the inMS
and inMD

, the amount of equivalent noise present at

the input of the memistor two-port can be expressed as:

inn
= inMS

+
(
1 + MS+MD

MS

)
inMD

vnn
= MDinMD

(48)

Both expressions are incorporated to Eqs. (32–35) in order to calculate the total noise

present at the input of the amplifiers.

The equivalent noise contributions at the input of the memistor from Eq. (48) are

evaluated at t = 0,π and the values are summarised in Table 7.
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RLRs

MS
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−

+ −

+

Fig. 26 Case study: Transmemristance amplifier with memistor

Table 8 Total noise present at the input of the transmemristance amplifier using memistor

t Transmemristance amp.

Evaluated Simulated

0 1.112702349 pA 1.3118 pA

π 6.690900783 pA 8.1268 pA

6.1 A Case Study: The Transmemristance Amplifier

As an example of the use of the memistor for determining a transmemristive transfer

in a nullor-based amplifier, the transmemristance amplifier is designed by resorting

to the memistor configuration. This is schematically shown in Fig. 26.

Noise simulations
Fig. 27 depicts the transmemristance amplifier with all components having attached

the noise contributions. In fact the contributions of the nullor, namely vnn
and inn

, are

result of Eq. (48). The memristor of the feedback network (M), and the memristors

of the memistor (MS and MD) are modelled by Eq. (15). It is possible to determine

that the total noise at the input of the amplifier can be expressed as:

in,eq,in = ins
+ inMS

(49)

Evaluations of Eq. (49) and results from HSPICE simulations are recast in Table 8

for t = 0,π.

Harmonic analysis
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nMi
S

MD

nMD
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RL
Vo

nMi
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+ −
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ins
Rsi s

− +

−+
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+

M

Fig. 27 Case study: noise contributions in the transmemristance amplifier

Table 9 Normalised symbolic harmonic analysis for the transmemristance amplifier

Transmemristance

amplifier

Nullor Memistor

Evaluated Simulated Simulated

F 1 1 1

H2 357.44 m 355.7455 m 356.1120 m

H3 74.0203 m 73.9590 m 73.8547 m

H4 5.9113 m 5.8484 m 5.7772 m

H5 – 174.7701µ 170.0354µ

THD% 36.507 36.34 36.3736

Table 9 shows the simulation results of the amplifier for the harmonic analysis. The

columns corresponding to the memristive amplifier when using an ideal nullor are

repeated from Table 5 for sake of comparison.

Finally, Fig. 28 shows plots from simulation of the input current and output volt-

age of the transmemristance amplifier.
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7 Conclusions

In this chapter, a strategy for the design of nullor-based memristive amplifiers with

memistor realization of the nullor has been presented. A direct result of this strategy

is that the final implementation of the amplifier results in a full memristive circuit.

Moreover, a fully symbolic memristor model is introduced and the most important

fingerprints are highlighted. This model is used along the analysis and design steps.

The model has been recast as a behavioural model in Verilog-A. In the first stage,

the memristive amplifiers are composed by the nullor and a memristive feedback

network. Herein, noise and harmonic analyses are carried out with symbolic and

numerical simulations. In the second stage, the nullor is implemented by a memistor,

i.e. an anti-series connection of 2 memristors. Special attention has been devoted to

the noise contribution the memistor. Finally, a transmemristance amplifier has been

used as case study for the memistor implementation of the nullor, and noise and

harmonic analyses were also done.

8 Appendix

The memristor model given in Eq. (15) has been coded in Verilog-A. The .va file

is given hereafter:

‘include "const.va"

Fig. 28 Vo and Ii of the transmemristance amplifier with memistor: simulated results
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‘include "std.va"
‘include "disciplines.vams"
module Memristor(in,out);

inout in,out;
electrical in,out;
parameter real Delta = 10.0e-9;
parameter real Pi = 3.1416;
parameter real Ron = 100;
parameter real mu = 1.0e-14;
parameter real alpha = 160;
parameter real Ap = 40.0e-6;
parameter real omega = 1;
parameter real Xo = 0.1;
real mem, Rinit, p1, p2, p3, p4;

analog begin
Rinit=(Xo+(alpha*(1-Xo)))*Ron;
p1 = ((mu*Ap)/(Delta*Delta*omega))*Xo*(Xo-1)*Ron*Ron;
p2 = pow(((mu*Ap)/(Delta*Delta*omega)),2)*Xo*(Xo-1)*(2*Xo-1)*pow(Ron,3);
p3 = pow(((mu*Ap)/(Delta*Delta*omega)),3)*Xo*(Xo-1)*((6*Xo*Xo)-6*Xo+1)*pow(Ron,4);
mem=(alpha-1)*(

(16*p2-40*p3-4*p1)*cos(omega*($abstime))+
(16*p3-4*p2)*cos(2*omega*($abstime))-
((8*p3)/3)*cos(3*omega*($abstime))+
((80*p3)/3-12*p2+4*p1)

)+Rinit;
I(in,out)<+(V(in,out))/mem;
end
endmodule
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